
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9781509304592
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9781509304592
https://plusone.google.com/share?url=http://www.informit.com/title/9781509304592
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9781509304592
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9781509304592/Free-Sample-Chapter

Exam Ref 70-532
Developing Microsoft
Azure Solutions
2nd Edition

Zoiner Tejada
Michele Leroux Bustamante
Ike Ellis

Exam Ref 70-532 Developing Microsoft Azure Solutions, 2nd Edition

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2018 by Pearson Education

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions,
request forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit
www.pearsoned.com/permissions/. No patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-1-5093-0459-2
ISBN-10: 1-5093-0459-X

Library of Congress Control Number: 2017953300
1 18

Trademarks

Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is implied.
The information provided is on an “as is” basis. The authors, the publisher, and Microsoft Corporation shall have neither
liability nor responsibility to any person or entity with respect to any loss or damages arising from the information contained
in this book or programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief

Acquisitions Editor

Development Editor

Managing Editor

Senior Project Editor

Editorial Production

Copy Editor

Indexer

Proofreader

Technical Editor

Cover Designer

Greg Wiegand

Laura Norman

Troy Mott

Sandra Schroeder

Tracey Croom

Backstop Media

Liv Bainbridge

Julie Grady

Christina Rudloff

Jason Haley

Twist Creative, Seattle

http://www.pearsoned.com/permissions/
https://www.microsoft.com

Contents at a glance

Introduction	 xiii

Preparing for the exam	 xvii

CHAPTER 1	 Create and manage virtual machines	 1

CHAPTER 2	 Design and implement a storage and data strategy 	 109

CHAPTER 3	 Manage identity, application and network services	 191

CHAPTER 4	 Design and implement Azure PaaS compute and
web and mobile services	 281

Index	 413

This page intentionally left blank

v

Contents

	 Introduction	 xiii
Organization of this book. . xiii

Microsoft certifications . . xiv

Acknowledgments . . xiv

Microsoft Virtual Academy. . xv

Quick access to online references. . xv

Errata, updates, & book support. . xv

We want to hear from you . . xvi

Stay in touch . . xvi

Preparing for the exam	 xvii

Chapter 1	 Create and manage virtual machines	 1
Skill 1.1: Deploy workloads on Azure ARM virtual machines. 1

Identify supported workloads	 2

Create a Windows Server VM 	 3

Create a Linux VM 	 6

Create a SQL Server VM	 7

Skill 1.2: Perform configuration management. . 7

Automate configuration management by using
PowerShell Desired State Configuration (DSC) and
the VM Agent (using custom script extensions)	 7

Configure VMs with Custom Script Extension	 8

Use PowerShell DSC	 11

Configure VMs with DSC	 13

Enable remote debugging	 16

vi Contents

Skill 1.3: Scale ARM VMs. . 16

Scale up and scale down VM sizes	 17

Deploy ARM VM Scale Sets (VMSS)	 18

Configure Autoscale	 25

Skill 1.4: Design and implement ARM VM storage. 29

Plan for storage capacity	 30

Configure storage pools	 32

Configure disk caching	 39

Configure geo-replication	 41

Configure shared storage using Azure File storage	 41

Implement ARM VMs with Standard and Premium Storage	 45

Implement Azure Disk Encryption for Windows
and Linux ARM VMs	 46

Skill 1.5: Monitor VMs. 47

Configure monitoring and diagnostics for a new VM	 49

Configure monitoring and diagnostics for an existing VM	 50

Configure alerts	 55

Monitor metrics	 55

Skill 1.6: Manage ARM VM Availability. . 57

Configure availability sets	 58

Combine the Load Balancer with availability sets	 60

Skill 1.7: Design and implement DevTest Labs. . 67

Create a lab	 67

Add a VM to a lab	 70

Create and manage custom images and formulas	 72

Configure a lab to include policies and procedures	 83

Configure cost management	 92

Secure access to labs	 95

Use environments in a lab	 100

Thought experiment. . 105

Thought experiment answer. . 105

Chapter summary. . 105

viiContents

Chapter 2	 Design and implement a storage and data strategy 	 109
Skill 2.1: Implement Azure Storage blobs and Azure files. 109

Azure Storage blobs	 110

Create a blob storage account	 110

Read and change data	 112

Set metadata on a container	 113

Setting user-defined metadata	 113

Reading user-defined metadata	 114

Store data using block and page blobs	 115

Stream data using blobs	 115

Access blobs securely	 115

Implement Async blob copy	 116

Configure a Content Delivery Network with Azure Blob Storage	 116

Design blob hierarchies	 117

Configure custom domains	 118

Scale blob storage	 119

Azure files	 119

Implement blob leasing	 119

Create connections to files from on-premises or
cloudbased Windows or, Linux machines	 120

Shard large datasets	 122

Skill 2.2: Implement Azure Storage tables, queues,
and Azure Cosmos DB Table API . . 122

Azure Table Storage	 122

Using basic CRUD operations	 123

Querying using ODATA	 127

Designing, managing, and scaling table partitions	 128

Azure Storage Queues	 128

Adding messages to a queue	 128

Processing messages	 129

Retrieving a batch of messages	 130

Scaling queues	 130

Choose between Azure Storage Tables and Azure
Cosmos DB Table API	 131

viii Contents

Skill 2.3: Manage access and monitor storage. . 132

Generate shared access signatures	 132

Create stored access policies	 135

Regenerate storage account keys	 135

Configure and use Cross-Origin Resource Sharing	 136

Analyze logs	 141

Skill 2.4: Implement Azure SQL databases. . 144

Choosing the appropriate database tier and performance level	 144

Configuring and performing point in time recovery	 147

Enabling geo-replication	 149

Creating an offline secondary database 	 150

Creating an online secondary database 	 150

Creating an online secondary database 	 151

Import and export schema and data 	 151

Scale Azure SQL databases	 155

Managed elastic pools, including DTUs and eDTUs	 157

Implement Azure SQL Data Sync	 159

Implement graph database functionality in Azure SQL Database	 160

Skill 2.5: Implement Azure Cosmos DB DocumentDB 162

Choose the Cosmos DB API surface	 163

Create Cosmos DB API Database and Collections	 164

Query documents	 167

Run Cosmos DB queries	 167

Create Graph API databases	 168

Execute GraphDB queries	 168

Implement MongoDB database	 169

Manage scaling of Cosmos DB, including
managing partitioning, consistency, and RUs 	 169

Manage multiple regions	 171

Implement stored procedures	 173

Access Cosmos DB from REST interface	 174

Manage Cosmos DB security	 174

ixContents

Skill 2.6: Implement Redis caching. . 177

Choose a cache tier	 177

Implement data persistence	 178

Implement security and network isolation	 179

Tune cluster performance	 180

Integrate Redis caching with ASP.NET session
and cache providers	 181

Skill 2.7: Implement Azure Search. . 182

Create a service index	 182

Add data	 183

Search an index	 185

Handle Search results	 186

Thought experiment. . 186

Thought experiment answers . . 187

Chapter summary. . 188

Chapter 3	 Manage identity, application and network services	 191
Skill 3.1: Integrate an app with Azure AD. . 191

Preparing to integrate an app with Azure AD	 192

Develop apps that use WS-Federation, SAML-P, OpenID Connect
and OAuth endpoints	 198

Query the directory using Microsoft Graph API, MFA and MFA API	
207

Skill 3.2: Develop apps that use Azure AD B2C and Azure AD B2B. 216

Design and implement apps that leverage social
identity provider authentication 	 217

Leverage Azure AD B2B to design and implement
applications that support partner-managed identities
and enforce multi-factor authentication 	 225

Skill 3.3: Manage Secrets using Azure Key Vault. . 225

Configure Azure Key Vault	 226

Manage access, including tenants	 228

Implement HSM protected keys	 232

Implement logging	 233

Implement key rotation	 235

x Contents

Skill 3.4: Design and implement a messaging strategy. 236

Develop and scale messaging solutions using
Service Bus queues, topics, relays and Notification Hubs	 237

Scale and monitor messaging	 271

Determine when to use Event Hubs, Service Bus, IoT Hub,
Stream Analytics and Notification Hubs	 277

Thought experiment. . 278

Thought experiment answers. . 279

Chapter summary. . 280

Chapter 4	 Design and implement Azure PaaS compute
and web and mobile services	 281
Skill 4.1: Design Azure App Service Web Apps. . 282

Define and manage App Service plans	 282

Configure Web App settings	 287

Configure Web App certificates and custom domains	 291

Manage Web Apps by using the API, Azure PowerShell,
and Xplat-CLI	 295

Implement diagnostics, monitoring, and analytics	 296

Design and configure Web Apps for scale and resilience	 303

Skill 4.2: Design Azure App Service API Apps . . 305

Create and deploy API Apps	 305

Automate API discovery by using Swashbuckle	 310

Use Swagger API metadata to generate client code for
an API app	 314

Monitor API Apps	 316

Skill 4.3: Develop Azure App Service Logic Apps. . 318

Create a Logic App connecting SaaS services	 319

Create a Logic App with B2B capabilities	 322

Create a Logic App with XML capabilities	 331

Trigger a Logic App from another app	 337

Create custom and long-running actions	 340

Monitor Logic Apps	 341

xiContents

Skill 4.4: Develop Azure App Service Mobile Apps. 343

Create a mobile app	 343

Add authentication to a mobile app	 346

Add offline sync to a mobile app	 348

Add push notifications to a mobile app 	 350

Skill 4.5: Implement API Management . . 351

Create managed APIs	 352

Configure API Management policies	 356

Protect APIs with rate limits	 358

Add caching to improve performance	 360

Monitor APIs	 362

Customize the developer portal	 363

Skill 4.6: Implement Azure Functions and WebJobs. 366

Create Azure Functions	 367

Implement a Webhook function	 369

Create an event processing function 	 371

Implement an Azure-connected function 	 372

Integrate a function with storage	 374

Design and implement a custom binding	 376

Debug a Function	 377

Implement and configure proxies	 377

Integrate with App Service Plan	 379

Skill 4.7: Design and Implement Azure Service Fabric apps 379

Create a Service Fabric application	 380

Add a web front end to a Service Fabric application	 383

Build an Actors-based service	 387

Monitor and diagnose services	 388

Deploy an application to a container	 388

Migrate apps from cloud services	 390

Scale a Service Fabric app	 390

Create, secure, upgrade, and scale Service Fabric
Cluster in Azure	 391

xii Contents

Skill 4.8: Design and implement third-party Platform
as a Service (PaaS). . 392

Implement Cloud Foundry	 392

Implement OpenShift	 394

Provision applications by using Azure Quickstart Templates	 397

Build applications that leverage Azure Marketplace
solutions and services	 398

Skill 4.9: Design and implement DevOps. . 399

Instrument an application with telemetry	 400

Discover application performance issues by using
Application Insights	 401

Deploy Visual Studio Team Services with continuous
integration (CI) and continuous development (CD)	 403

Deploy CI/CD with third-party platform tools
(Jenkins, GitHub, Chef, Puppet, TeamCity)	 408

Thought experiment. . 410

Thought experiment answers. . 411

Chapter summary. . 412

Index	 413

xiiiIntroduction

Introduction

The 70-532 exam focuses the skills necessary to develop software on the Microsoft Azure
Cloud. It covers Infrastructure-as-a-Service (IaaS) offerings like Azure VMs and Platform-

as-a-Service (PaaS) offerings like Azure Storage, Azure CosmosDB, Azure Active Directory,
Azure Service Bus, Azure Event Hub, Azure App Services, Azure Service Fabric, Azure Functions
and other relevant marketplace applications. This book will help get started with these and
other features of Azure so that you can begin developing and deploying Azure applications.

This book is geared toward cloud application developers who focus on Azure as the target
host environment. It covers choosing from Azure compute options for IaaS and Paas, incor-
porating storage and data platforms. It will help you choose when to use features such as
Web Apps, API Apps, API Management, Logic Apps and Mobile Apps. It will explain your data
storage options between Azure CosmosDB, Azure Redis Cache, Azure Search, and Azure SQL
Database. It also covers how to secure applications with Azure Active Directory using B2C and
B2B features for single sign-on based on OpenID Connect, OAuth2 and SAML-P protocols, and
how to use Azure Vault to protect secrets.

This book covers every major topic area found on the exam, but it does not cover every
exam question. Only the Microsoft exam team has access to the exam questions, and Microsoft
regularly adds new questions to the exam, making it impossible to cover specific questions.
You should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely comfort-
able with, use the “Need more review?” links you’ll find in the text to find more information
and take the time to research and study the topic. Great information is available on MSDN,
TechNet, and in blogs and forums.

Organization of this book

This book is organized by the “Skills measured” list published for the exam. The
“Skills measured” list is available for each exam on the Microsoft Learning website:

https://aka.ms/examlist. Each chapter in this book corresponds to a major topic area in the
list, and the technical tasks in each topic area determine a chapter’s organization. If an exam
covers six major topic areas, for example, the book will contain six chapters.

https://aka.ms/examlist

xiv Introduction

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premises and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

MORE INFO  ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifications,
go to https://www.microsoft.com/learning.

Acknowledgments

Zoiner Tejada A book of this scope takes a village, and I’m honored to have received the sup-
port of one in making this second edition happen. My deepest thanks to the team at Solliance
who helped make this possible: my co-authors Michele Leroux Bustamante and Ike Ellis and the
hidden heroes, and Joel Hulen and Kyle Bunting helped us with research and coverage on criti-
cal topics as the scope of the book grew with the fast pace of Azure. Laura Norman, our editor,
thank you for helping us navigate the path to completion with structure and compassion. To
my wife Ashley Tejada, my eternal thanks for supporting me in this effort, the little things count
and they don’t go unnoticed.

Michele Leroux Bustamante  I want to thank Joel Hulen, Virgilio Esteves and Khaled Hikmat
– who have been part of key Solliance projects in Azure, including this book – and this work
and experience reflects in the guidance shared in the book. Thank you for being part of this
journey! Thank you also to, Laura Norman, our editor – who was very supporting during
challenging deadlines. A level head keeps us all sane. To my husband and son – thank you for
tolerating the writing schedule – again. I owe you - again. Much love.

Ike Ellis  First and foremost, I’d like to thank my wife, Margo Sloan, for her support in taking
care of all the necessities of life while I wrote. Our editor, Laura Norman, had her hands full
in wrangling three busy co-authors, and I’m very grateful for her diligence. I’m very grate-
ful to my co-authors, Zoiner and Michele. It’s a joy to work with them on all of our combined
projects.

https://www.microsoft.com/learning

xvIntroduction

Microsoft Virtual Academy

Build your knowledge of Microsoft technologies with free expert-led online training from
Microsoft Virtual Academy (MVA). MVA offers a comprehensive library of videos, live events,
and more to help you learn the latest technologies and prepare for certification exams. You’ll
find what you need here:

https://www.microsoftvirtualacademy.com

Quick access to online references

Throughout this book are addresses to webpages that the author has recommended you visit
for more information. Some of these addresses (also known as URLs) can be painstaking to
type into a web browser, so we’ve compiled all of them into a single list that readers of the print
edition can refer to while they read.

Download the list at https://aka.ms/examref5322E/downloads.

The URLs are organized by chapter and heading. Every time you come across a URL in the
book, find the hyperlink in the list to go directly to the webpage.

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
You can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

https://aka.ms/examref5322E/errata

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
https://support.microsoft.com.

https://www.microsoftvirtualacademy.com
https://aka.ms/examref5322E/downloads
https://aka.ms/examref5322E/errata
https://support.microsoft.com

xvi Introduction

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

https://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers go
directly to the editors at Microsoft Press. (No personal information will be requested.) Thanks
in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

https://aka.ms/tellpress
http://twitter.com/MicrosoftPress

xviiIntroduction

Preparing for the exam
Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. Although there is no substitute for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend that
you augment your exam preparation plan by using a combination of available study materi-
als and courses. For example, you might use the Exam ref and another study guide for your ”at
home” preparation, and take a Microsoft Official Curriculum course for the classroom experi-
ence. Choose the combination that you think works best for you.

Note that this Exam Ref is based on publicly available information about the exam and the
author’s experience. To safeguard the integrity of the exam, authors do not have access to the
live exam.

This page intentionally left blank

		 	 281

C H A P T E R 4

Design and implement Azure
PaaS compute and web and
mobile services
The Azure platform provides a rich set of Platform-as-a-Service (PaaS) capabilities for

hosting web applications and services. The platform approach provides more than just a
host for running your application logic; it also includes robust mechanisms for managing all
aspects of your web application lifecycle, from configuring continuous and staged deploy-
ments to managing runtime configuration, monitoring health and diagnostic data, and of
course, helping with scale and resilience. Azure Apps Services includes a number of features
to manage web applications and services including Web Apps, Logic Apps, Mobile Apps and
API Apps. API Management provides additional features with first class integration to APIs
hosted in Azure. Azure Functions and Azure Service Fabric enable modern microservices
architectures for your solutions, in addition to several third-party platforms that can be pro-
visioned via Azure Quickstart Templates. These key features are of prime importance to the
modern web application, and this chapter explores how to leverage them.

Skills in this chapter:
■■ Skill 4.1: Design Azure App Service Web Apps

■■ Skill 4.2: Design Azure App Service API Apps

■■ Skill 4.3: Develop Azure App Service Logic Apps

■■ Skill 4.4: Develop Azure App Service Mobile Apps

■■ Skill 4.5: Implement API Management

■■ Skill 4.6: Implement Azure Functions and WebJobs

■■ Skill 4.7: Design and implement Azure Service Fabric Apps

■■ Skill 4.8: Design and implement third-party Platform as a Service (PaaS)

■■ Skill 4.9: Design and implement DevOps

	282	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

Skill 4.1: Design Azure App Service Web Apps

Azure App Service Web Apps (or, just Web Apps) provides a managed service for hosting
your web applications and APIs with infrastructure services such as security, load balancing,
and scaling provided as part of the service. In addition, Web Apps has an integrated DevOps
experience from code repositories and from Docker image repositories. You pay for compute
resources according to your App Service Plan and scale settings. This section covers key con-
siderations for designing and deploying your applications as Web Apps.

This skill covers how to:
■■ Define and manage App Service plans

■■ Configure Web App settings

■■ Configure Web App certificates and custom domains

■■ Manage Web Apps by using the API, Azure PowerShell, and Xplat-CLI

■■ Implement diagnostics, monitoring, and analytics

■■ Design and configure Web Apps for scale and resilience

Define and manage App Service plans
An App Service plan defines the supported feature set and capacity of a group of virtual
machine resources that are hosting one or more web apps, logic apps, mobile apps, or API
apps (this section discusses web apps specifically, and the other resources are covered in later
sections in this chapter).

Each App Service plan is configured with a pricing tier (for example, Free, Shared, Basic,
and Standard), and each tier describes its own set of capabilities and cost. An App Service plan
is unique to the region, resource group, and subscription. In other words, two web apps can
participate in the same App Service plan only when they are created in the same subscription,
resource group, and region (with the same pricing tier requirements).

This section describes how to create a new App Service plan without creating a web app,
and how to create a new App Service plan while creating a web app. It also reviews some of the
settings that can be useful for managing the App Service plan.

MORE INFO  APP SERVICES OVERVIEW

For an overview of App Services and Web App development see https://docs.microsoft.com/
en-us/azure/app-service/.

https://docs.microsoft.com/en-us/azure/app-service/
https://docs.microsoft.com/en-us/azure/app-service/

	 Skill 4.1: Design Azure App Service Web Apps	 Chapter 4	 283

Creating a new App Service plan
To create a new App Service plan in the portal, complete the following steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select New on the command bar.

3.	 Within the Marketplace (Figure 4-1) search text box, type App Service Plan and press
Enter.

FIGURE 4-1  The Marketplace search for App Service Plan.

4.	 Select App Service Plan from the results.

5.	 On the App Service Plan blade, select Create.

6.	 On the New App Service Plan blade (Figure 4-2), provide a name for your App Service
plan, choose the subscription, resource group, operating system (Windows or Linux),
and location into which you want to deploy. You should also confirm and select the
desired pricing tier.

FIGURE 4-2  The settings for a new App Service Plan

7.	 Click Create to create the new App Service plan.

https://manage.windowsazure.com

	284	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

Following the creation of the new App Service plan, you can create a new web app and as-
sociate this with the previously created App Service plan. Or, as discussed in the next section,
you can create a new App Service plan as you create a new web app.

MORE INFO  APP SERVICE PRICING TIERS

App Service plan pricing tiers range from Free, Shared, Basic, Standard, Premium, and Iso-
lated tiers. It is important to understand the features offered by each tier related to custom
domains, certificates, scale, deployment slots, and more. For more information see https://
azure.microsoft.com/en-us/pricing/details/app-service.

Creating a new Web App and App Service plan
To create a new Web App and a new App Service plan in the portal, complete the following

steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select New on the command bar.

3.	 Within the Marketplace list (Figure 4-3), select the Web + Mobile option.

FIGURE 4-3  The Marketplace list for Web + Mobile

4.	 On the Web + Mobile blade, select Web App.

5.	 On the Web App blade (Figure 4-4), provide an app name, choose the subscription,
resource group, operating system (Windows or Linux), and choose a setting for Applica-
tion Insights. You also select the App Service plan into which you want to deploy.

https://azure.microsoft.com/en-us/pricing/details/app-service
https://azure.microsoft.com/en-us/pricing/details/app-service
https://portal.azure.com

	 Skill 4.1: Design Azure App Service Web Apps	 Chapter 4	 285

FIGURE 4-4  The selections for a new App Service.

6.	 When you click the App Service plan selection, you can choose an existing App Service
plan, or create a new App Service plan. To create a new App Service plan, click Create
New from the App Service Plan blade.

7.	 From the New App Service Plan blade (Figure 4-5), choose a name for the App Service
plan, select a location, and select a pricing tier. Click OK and the new App Service plan is
created with these settings.

FIGURE 4-5  Options for a new App Service Plan.

8.	 From the Web App blade, click Create to create the web app and associate it with the
new App Service plan.

	286	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

Review App Service plan settings
Once you’ve created a new App Service plan, you can select the App Service plan in the portal
and manage relevant settings including managing web apps and adjusting scale.

To manage an App Service plan, complete the following steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select More Services on the command bar.

3.	 In the filter text box, type App Service Plans, and select App Service Plans (Figure 4-6).

FIGURE 4-6  Search results for App Service plans

4.	 Review the list of App Service plans (Figure 4-7). Note the number of apps deployed to
each is shown in the list. You can also see the pricing tiers. Select an App Service plan
from the list to navigate to the App Service Plan blade.

FIGURE 4-7  List of App Service plans

5.	 From the left navigation pane, select Apps to view the apps that are deployed to the
App Service plan (Figure 4-8). You can select from the list of apps to navigate to the app
blade and manage its settings.

https://portal.azure.com

	 Skill 4.1: Design Azure App Service Web Apps	 Chapter 4	 287

FIGURE 4-8  List of apps deployed to the App Service plan.

6.	 From the left navigation pane, select Scale Up to choose a new pricing tier for the App
Service plan.

7.	 From the left navigation pane, select Scale Out to increase or decrease the number of
instances of the App Service plan, or to configure Autoscale settings.

Configure Web App settings
Azure Web Apps provide a comprehensive collection of settings that you can adjust to estab-
lish the environment in which your web application runs, as well as tools to define and man-
age the values of settings used by your web application code. You can configure the following
groups of settings for your applications:

■■ Application type and library versions

■■ Load balancing

■■ Slot management

■■ Debugging

■■ App settings and connection strings

■■ IIS related settings

To manage Web App settings follow these steps:

1.	 Navigate to the blade of your web app in the portal accessed via https://portal.azure.
com.

2.	 Select the Application settings tab from the left navigation pane. The setting blade ap-
pears to the right.

3.	 Choose from the general settings required for the application:

A.	 Choose the required language support from .NET Framework, PHP, Java, or Python,
and their associated versions.

B.	 Choose between 32bit and 64bit runtime execution.

https://portal.azure.com
https://portal.azure.com

	288	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

C.	 Choose web sockets if you are building a web application that leverages this feature
from the browser.

D.	 Choose Always On if you do not want the web application to be unloaded when
idle. This reduces the load time required for the next request and is a required set-
ting for web jobs to run effectively.

E.	 Choose the type of managed pipeline for IIS. Integrated is the more modern pipe-
line and Classic would only be used for legacy applications (Figure 4-9).

FIGURE 4-9  General settings section for application settings

4.	 Choose your setting for ARR affinity (Figure 4-10). If you choose to enable ARR affinity
your users will be tied to a particular host machine (creating a sticky session) for the du-
ration of their session. If you disable this, your application will not create a sticky session
and your application is expected to support load balancing between machines within a
session.

FIGURE 4-10  ARR affinity settings

5.	 When you first create your web app, the auto swap settings are not available to config-
ure. You must first create a new slot, and from the slot you may configure auto swap to
another slot (Figure 4-11).

	 Skill 4.1: Design Azure App Service Web Apps	 Chapter 4	 289

FIGURE 4-11  Auto Swap settings

6.	 Enable remote debugging (Figure 4-12) if you run into situations where deployed ap-
plications are not functioning as expected. You can enable remote debugging for Visual
Studio versions 2012, 2013, 2015, and 2017.

FIGURE 4-12  Remote debugging settings for the web app

7.	 Configure the app settings required for your application. These app settings (Figure
4-13) override any settings matching the same name from your application.

FIGURE 4-13  Application settings

8.	 Configure any connection strings for your application (Figure 4-14). These connection
string settings override any settings matching the same key name from your applica-
tion configuration. For connection strings, once you create the settings, save, and later
return to the application settings blade; those settings are hidden unless you select it to
show the value again.

FIGURE 4-14  Connection string settings

	290	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

9.	 Configure IIS settings related to default documents, handlers, and virtual applications
and directories required for your application (Figure 4-15). This allows you to control
these IIS features related to your application.

FIGURE 4-15  IIS settings

NOTE  ACCESS TO APP SETTINGS

App settings are represented as name-value pairs made available to your web application
when it starts. The mechanism you use to access these values depends on the web platform
in which your web application is programmed. If your application is built using ASP.NET 4.6,
you access the values of app settings just as you would access the AppSettings values stored
in web.config. If your web application is built using ASP.NET Core, you access the values as
you would in your appsettings.json file. If your web application is built using another sup-
ported web platform, such as Node.js, PHP, Python, or Java, the app settings are presented
to your application as environment variables.

NOTE  ACCESSING CONNECTION STRINGS

Like app settings, connection strings represent name-value pairs, but they are used specifi-
cally for settings that define the connection string to a linked resource (typically a database)
such as a SQL database, a SQL server, MySQL, or some other custom resource. Connection
strings are given special treatment within the portal, beyond that offered to app settings, in
that you can specify a type for the connection string to identify it as a SQL server, MySQL, a
SQL database, or a custom connection string. Additionally, the values for connection strings
are not displayed by default, requiring an additional effort to display the values so that their
sensitive data is not displayed or editable until specifically requested by the portal user.

	 Skill 4.1: Design Azure App Service Web Apps	 Chapter 4	 291

Configure Web App certificates and custom domains
When you first create your web app, it is accessible through the subdomain you specified in the
web app creation process, where it takes the form <yourwebappname>.azurewebsites.net. To
map to a more user-friendly domain name (such as contoso.com), you must set up a custom
domain name.

If your website will use HTTPS to secure communication between it and the browser using
Transport Layer Security (TLS), more commonly (but less accurately) referred to in the industry
as Secure Socket Layer (SSL), you need to utilize an SSL certificate. With Azure Web Apps, you
can use an SSL certificate with your web app in one of two ways:

■■ You can use the “built-in” wildcard SSL certificate that is associated with the *.azureweb-
sites.net domain.

■■ More commonly you use a certificate you purchase for your custom domain from a
third-party certificate authority.

NOTE

There are multiple types of SSL certificates, but the one you choose primarily depends on
the number of different custom domains (or subdomains) that the certificate secures. Some
certificates apply to only a single fully qualified domain name (sometimes referred to as
basic certs), some certificates apply to a list of fully qualified domain names (also called
subjectAltName or UC certs), and other certificates apply across an unlimited number of
subdomains for a given domain name (usually referred to as wildcard certs).

Mapping custom domain names
Web Apps support mapping to a custom domain that you purchase from a third-party regis-
trar either by mapping the custom domain name to the virtual IP address of your website or by
mapping it to the <yourwebappname>.azurewebsites.net address of your website. This map-
ping is captured in domain name system (DNS) records that are maintained by your domain
registrar. Two types of DNS records effectively express this purpose:

■■ A records (or, address records) map your domain name to the IP address of your website.

■■ CNAME records (or, alias records) map a subdomain of your custom domain name to the
canonical name of your website, expressed as <yourwebappname>.azurewebsites.net.

Table 4-1 shows some common scenarios along with the type of record, the typical record
name, and an example value based on the requirements of the mapping.

	292	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

TABLE 4-1  Mapping domain name requirements to DNS record types, names, and values

Requirement Type of Record Record Name Record Value

contoso.com should map to my web
app IP address

A @ 138.91.240.81
IP address

contoso.com and all subdomains
demo.contoso.com and www.contoso.
com should map to my web app IP
address

A * 138.91.240.81
IP address

www.contoso.com should map to my
web app IP address

A www 138.91.240.81
IP address

www.contoso.com should map to my
web app canonical name in Azure

CNAME www contoso.azurewebsites.net
Canonical name in Azure

Note that whereas A records enable you to map the root of the domain (like contoso.com)
and provide a wildcard mapping for all subdomains below the root (like www.contoso.com
and demo.contoso.com), CNAME records enable you to map only subdomains (like the www in
www.contoso.com).

Configuring a custom domain
To configure a custom domain, you need access to your domain name registrar setup for the
domain while also editing configuration for your web app in the Azure portal.

EXAM TIP

Use of a custom domain name is not supported by the Free App Service plan pricing tier. All
other pricing tiers including Shared, Basic, Standard, and Premium support custom domains.

These are the high-level steps for creating a custom domain name for your web app:

1.	 Navigate to the blade of your web app in the portal accessed via https://portal.azure.
com.

2.	 Ensure your web app uses an App Service plan that supports custom domains.

3.	 Click Custom Domains from the left navigation pane.

4.	 On the Custom Domains blade (Figure 4-16) note the external IP address of your web
app.

http://www.contoso.com
http://www.contoso.com
http://www.contoso.com
http://www.contoso.com
http://www.contoso.com
http://www.contoso.com
https://portal.azure.com
https://portal.azure.com

	 Skill 4.1: Design Azure App Service Web Apps	 Chapter 4	 293

FIGURE 4-16  Part of the custom domain blade for the web app

5.	 Select Add Hostname to open the Add Hostname blade. Enter the hostname and click
Validate for the portal to validate the state of the registrar setup with respect to your
web app. You can then choose to set up an A record or CNAME record (Figure 4-17).

FIGURE 4-17  Part of the Add hostname blade

6.	 To set up an A record, select A Record and follow the instructions provided in the blade.
It guides you through the following steps for an A record setup:

	294	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

A.	 You first add a TXT record at your domain name registrar, pointing to the default
Azure domain for your web app, to verify you own the domain name. The new TXT
record should point to <yourwebappname>.azurewebsites.net.

B.	 In addition, you add an A record pointing to the IP address shown in the blade, for
your web app.

7.	 To set up a CNAME record, select CNAME record, and follow the instructions provided
in the blade.

A.	 If using a CNAME record, following the instructions provided by your domain name
registrar, add a new CNAME record with the name of the subdomain, and for the
value, specify your web app’s default Azure domain with <yourwebappname>.
azurewebsites.net.

8.	 Save your DNS changes. Note that it may take some time for the changes to propagate
across DNS. In most cases, your changes are visible within minutes, but in some cases, it
may take up to 48 hours. You can check the status of your DNS changes by doing a DNS
lookup using third-party websites like http://mxtoolbox.com/DNSLookup.aspx.

9.	 After completing the domain name registrar setup, from the Custom Domains blade,
click Add Hostname again to configure your custom domain. Enter the domain name
and select Validate again. If validation has passed, select Add Hostname to complete the
assignment.

IMPORTANT  IP ADDRESS CHANGES

The IP address that you get by following the preceding steps will change if you move your
web app to a Free web hosting plan, if you delete and recreate it, or potentially if you subse-
quently enable SSL with the IP Based type. This can also happen unintentionally if you reach
your spending limit and the web app is changed to the Free web hosting plan mode. If the
IP address changes and you are using an A record to map your custom domain to your web
app, you will need to update the value of the A record to use the new IP address.

Configuring SSL certificates
To configure SSL certificates for your custom domain, you first need to have access to an SSL
certificate that includes your custom domain name, including the CNAME if it is not a wildcard
certificate.

To assign an SSL certificate to your web app, follow these steps:

1.	 Navigate to the blade of your web app in the portal accessed via https://portal.azure.
com.

2.	 Click SSL certificates from the left navigation pane.

3.	 From the SSL certificates (Figure 4-18) blade you may choose to import an existing app
service certificate, or upload a new certificate.

http://mxtoolbox.com/DNSLookup.aspx
https://portal.azure.com
https://portal.azure.com

	 Skill 4.1: Design Azure App Service Web Apps	 Chapter 4	 295

FIGURE 4-18  SSL certificates blade

4.	 You can then select Add Binding to set up the correct binding. You can set up bind-
ings that point at your naked domain (contoso.com), or to a particular CNAME (www.
contoso.com, demo.contoso.com), so long as the certificate supports it.

5.	 You can choose between Server Name Indication (SNI) or IP based SSL when you create
the binding for your custom domain (Figure 4-19).

FIGURE 4-19  Part of the Add Binding blade

MORE INFO  SSL CERTIFICATES AND BINDINGS

For more information on purchasing SSL certificates and setting up Web App certificates see
https://docs.microsoft.com/en-us/azure/app-service/web-sites-purchase-ssl-web-site.

Manage Web Apps by using the API, Azure PowerShell, and
Xplat-CLI
In addition to configuring and managing Web Apps via the Azure portal, programmatic or
script-based access is available for much of this functionality and can satisfy many develop-
ment requirements.

The options for this include the following:

https://docs.microsoft.com/en-us/azure/app-service/web-sites-purchase-ssl-web-site
http://www.contoso.com
http://www.contoso.com

	296	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

■■ Azure Resource Manager (ARM)  Azure Resource Manager provides a consistent
management layer for the management tasks you can perform using Azure PowerShell,
Azure CLI, Azure portal, REST API, and other development tools. For more information
on this see https://docs.microsoft.com/en-us/azure/azure-resource-manager/.

■■ REST API  The REST API enables you to deploy and manage Azure infrastructure
resources using HTTP request and JSON payloads. For more details on this see https://
docs.microsoft.com/en-us/rest/api/resources/.

■■ Azure PowerShell  Azure PowerShell provides cmdlets for interacting with Azure
Resource Manager to manage infrastructure resources. The PowerShell modules can be
installed to Windows, macOS, or Linux. For additional details see https://docs.microsoft.
com/en-us/powershell/azure/overview.

■■ Azure CLI  Azure CLI (also known as XplatCLI) is a command line experience for man-
aging Azure resources. This is an open source SDK that works on Windows, macOS, and
Linux platforms to create, manage, and monitor web apps. For details see https://docs.
microsoft.com/en-us/cli/azure/overview.

MORE INFO  MANAGING APP SERVICES

See the following links that provide samples for managing App Services using Azure and
Azure CLI at: https://docs.microsoft.com/en-us/azure/app-service/app-service-powershell-
samples and https://docs.microsoft.com/en-us/azure/app-service/app-service-cli-samples.

Implement diagnostics, monitoring, and analytics
Without diagnostics, monitoring, and analytics, you cannot effectively investigate the cause
of a failure, nor can you proactively prevent potential problems before your users experience
them. Web Apps provide multiple forms of logs, features for monitoring availability and auto-
matically sending email alerts when the availability crosses a threshold, features for monitoring
your web app resource usage, and integration with Azure Analytics via Application Insights.

EXAM TIP

App Services are also governed by quotas depending on the App Service plan you have
chosen. Free and Shared apps have CPU, memory, bandwidth, and filesystem quotas; when
reached the web app no longer runs until the next cycle, or the App Service plan is changed.
Basic, Standard, and Premium App Services are only limited by filesystem quotas based on
the SKU size selected for the host.

MORE INFO  QUOTAS

For the latest listing of specific quotas, limits, and features, visit https://docs.microsoft.com/
azure/azure-subscription-service-limits#app-service-limits.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/
https://docs.microsoft.com/en-us/rest/api/resources/
https://docs.microsoft.com/en-us/rest/api/resources/
https://docs.microsoft.com/en-us/powershell/azure/overview
https://docs.microsoft.com/en-us/powershell/azure/overview
https://docs.microsoft.com/en-us/cli/azure/overview
https://docs.microsoft.com/en-us/cli/azure/overview
https://docs.microsoft.com/en-us/azure/app-service/app-service-powershell-samples
https://docs.microsoft.com/en-us/azure/app-service/app-service-powershell-samples
https://docs.microsoft.com/en-us/azure/app-service/app-service-cli-samples
https://docs.microsoft.com/azure/azure-subscription-service-limits#app-service-limits
https://docs.microsoft.com/azure/azure-subscription-service-limits#app-service-limits

	 Skill 4.1: Design Azure App Service Web Apps	 Chapter 4	 297

Configure diagnostics logs
A web app can produce many different types of logs, each focused on presenting a particular
source and format of diagnostic data. The following list describes each of these logs:

■■ Event Log  The equivalent of the logs typically found in the Windows Event Log on
a Windows Server machine, this is a single XML file on the local file system of the web
application. In the context of web apps, the Event Log is particularly useful for capturing
unhandled exceptions that may have escaped the application’s exception handling logic
and surfaced to the web server. Only one XML file is created per web app.

■■ Web server logs  Web server logs are textual files that create a text entry for each
HTTP request to the web app.

■■ Detailed error message logs  These HTML files are generated by the web server and
log the error messages for failed requests that result in an HTTP status code of 400 or
higher. One error message is captured per HTML file.

■■ Failed request tracing logs  In addition to the error message (captured by detailed
error message logs), the stack trace that led to a failed HTTP request is captured in these
XML documents that are presented with an XSL style sheet for in-browser consumption.
One failed request trace is captured per XML file.

■■ Application diagnostic logs  These text-based trace logs are created by web applica-
tion code in a manner specific to the platform the application is built in using logging or
tracing utilities.

To enable these diagnostic settings from the Azure portal, follow these steps:

1.	 Navigate to the blade of your web app in the portal accessed via https://portal.azure.
com.

2.	 Select the Diagnostics Logs tab from the left navigation pane. The Diagnostics Logs
blade (Figure 4-20) will appear to the right. From this blade you can choose to configure
the following:

A.	 Enable application logging to the file system for easy access through the portal.

B.	 Enable storing application logs to blob storage for longer term access.

C.	 Enable Web Server logging to the file system or to blob storage for longer term
access.

D.	 Enable logging detailed error messages.

E.	 Enable logging failed request messages.

https://portal.azure.com
https://portal.azure.com

	298	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-20  The diagnostics logs blade

3.	 If you enable files system logs for application and Web Server logs, you can view those
from the Log Streaming tab (Figure 4-21).

FIGURE 4-21  The log streaming blade

4.	 You can access more advanced debugging and diagnostics tools from the Advanced
Tools tab (Figure 4-22).

	 Skill 4.1: Design Azure App Service Web Apps	 Chapter 4	 299

FIGURE 4-22  The Kudu web site

Table 4-2 describes where to find each type of log when retrieving diagnostic data stored in
the web app’s local file system. The Log Files folder is physically located at D:\home\LogFiles.

TABLE 4-2  Locations of the various logs on the web app’s local file system

Log Type Location

Event Log \LogFiles\eventlog.xml

Web server logs \LogFiles\http\RawLogs*.log

Detailed error message logs \LogFiles\DetailedErrors\ErrorPage######.htm

Failed request tracing logs \LogFiles\W3SVC**.xml

Application diagnostic logs (.NET) \LogFiles\Application*.txt

Deployment logs \LogFiles\Git. This folder contains logs generated by the internal de-
ployment processes used by Azure web apps, as well as logs for Git
deployments

	300	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

EXAM TIP

You can retrieve diagnostics logs data by using Visual Studio Server Explorer, the Site
Control Management (SCM) website (also known as Kudu), the command line in Windows
PowerShell or the xplat-cli, or direct download via FTP to query Table or Blob storage.

Configure endpoint monitoring
App Services provide features for monitoring your applications directly from the Azure portal.
There are many metrics available for monitoring, as listed in Table 4-3.

TABLE 4-3  List of available metrics that are monitored for your web apps

METRIC DESCRIPTION

Average Response Time The average time taken for the app to serve requests in ms.

Average memory working set The average amount of memory in MiBs used by the app.

CPU Time The amount of CPU in seconds consumed by the app.

Data In The amount of incoming bandwidth consumed by the app in MiBs.

Data Out The amount of outgoing bandwidth consumed by the app in MiBs.

Http 2xx Count of requests resulting in a http status code >= 200 but < 300.

Http 3xx Count of requests resulting in a http status code >= 300 but < 400.

Http 401 Count of requests resulting in HTTP 401 status code.

Http 403 Count of requests resulting in HTTP 403 status code.

Http 404 Count of requests resulting in HTTP 404 status code.

Http 406 Count of requests resulting in HTTP 406 status code.

Http 4xx Count of requests resulting in a http status code >= 400 but < 500.

Http Server Errors Count of requests resulting in a http status code >= 500 but < 600.

Memory working set Current amount of memory used by the app in MiBs.

Requests Total number of requests regardless of their resulting HTTP status code.

You can monitor metrics from the portal and customize which metrics should be shown by
following these steps:

1.	 Navigate to the blade of your web app in the portal accessed via https://portal.azure.
com.

2.	 Select the Overview tab from the left navigation pane. This pane shows a few default
charts for metrics including server errors, data in and out, requests, and average re-
sponse time (Figure 4-23 and 4-24).

https://portal.azure.com
https://portal.azure.com

	 Skill 4.1: Design Azure App Service Web Apps	 Chapter 4	 301

FIGURE 4-23  Metrics showing http server errors, data in, and data out

FIGURE 4-24  Metrics showing requests and average response time

3.	 You can customize the metrics (Figure 4-25) shown by creating new graphs and pinning
those to your dashboard.

A.	 Click one of the graphs. You’ll be taken to edit the metrics blade for the graph, lim-
ited to compatible metrics for the selection.

	302	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

B.	 Select the metrics to add or remove from the graph.

FIGURE 4-25  Selecting metrics to show on the graph

C.	 Save the graph to the dashboard. You can now navigate to your portal dashboard to
view the selected metrics without having to navigate to the web app directly. From
here you can also edit the graph by selecting it, editing metrics, and saving back to
the same pinned graph.

4.	 You can also add alerts for metrics. From the Metrics blade click Add Metric alert from
the command bar at the top of the blade. This takes you to the Add Rule blade (Figure
4-26) where you can configure the alert. To configure an alert for slow requests, as an
example, do the following:

A.	 Provide a name for the rule.

B.	 Optionally change the subscription, resource group, and resource but it will default
to the current web app.

C.	 Choose Metrics for the alert type.

FIGURE 4-26  Part of the Add rule blade

	 Skill 4.1: Design Azure App Service Web Apps	 Chapter 4	 303

D.	 Choose the metric from the drop-down list (Figure 4-27), in this case Average Re-
sponse Time with a condition greater than a threshold of 2 seconds over a 15 minute
period.

FIGURE 4-27  Part of the Add rule blade where you can set the metric values

E.	 From the same blade you can also indicate who to notify, configure a web hook, or
even configure a Logic App to produce a workflow based on the alert.

5.	 Click OK to complete the alert configuration.

6.	 You can view the alerts from the Alerts tab of the navigation pane.

NOTE  MONITORING QUOTAS

You can also monitor quotas by selecting the Quotas tab from the left navigation pane. This
gives you an indication of where you stand with your quotas based on the App Service plan.

Design and configure Web Apps for scale and resilience
App Services provide various mechanisms to scale your web apps up and down by adjusting
the number of instances serving requests and by adjusting the instance size. You can, for ex-
ample, increase the number of instances (scale out) to support the load you experience during
business hours, but then decrease (scale in) the number of instances during less busy hours

	304	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

to save costs. Web Apps enable you to scale the instance count manually, automatically via a
schedule, or automatically according to key performance metrics. Within a datacenter, Azure
load balances traffic between all of your Web Apps instances using a round-robin approach.

You can also scale a web app by deploying to multiple regions around the world and then
utilizing Microsoft Azure Traffic Manager to direct web app traffic to the appropriate region
based on a round robin strategy or according to performance (approximating the latency per-
ceived by clients of your application). Alternately, you can configure Traffic Manager to use the
alternate regions as targets for failover if the primary region becomes unavailable.

In addition to scaling instance counts, you can manually adjust your instance size (scale up
or down). For example, you can scale up your web app to utilize more powerful VMs that have
more RAM memory and more CPU cores to serve applications that are more demanding of
memory consumption or CPU utilization, or scale down your VMs if you later discover your
requirements are not as great.

EXAM TIP

Web Apps provide a high availability SLA of 99.9 percent using only a single standard in-
stance. You do not need to provision more than one instance to benefit from this SLA.

To scale your web app, follow these steps:

1.	 Navigate to the blade of your web app in the portal accessed via https://portal.azure.
com.

2.	 Select the App Service plan tab from the left navigation pane. This takes you to the App
Service Plan blade.

3.	 Select the Scale Up tab from the left navigation pane and you’ll be taken to a blade to
select the new pricing tier for your web app VMs.

4.	 Select the Scale Out tab and you’ll be taken to the Scale Out blade to choose the num-
ber of instances to scale out or into (Figure 4-28).

FIGURE 4-28  The scale out blade.

https://portal.azure.com
https://portal.azure.com

	 Skill 4.2: Design Azure App Service API Apps	 Chapter 4	 305

5.	 If you select Enable autoscale, you can create conditions based on metrics and rules in
order for the site to automatically adjust instance count.

MORE INFO  MONITORING, ANALYTICS, AND AUTOSCALING

For more information on monitoring web apps, analytics, and setting up autoscale, see:

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-azure-web-apps-ana-
lytics, https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics,
https://docs.microsoft.com/en-us/Azure/monitoring-and-diagnostics/insights-autoscale-
best-practices, and https://docs.microsoft.com/en-us/Azure/monitoring-and-diagnostics/
insights-how-to-scale.

Skill 4.2: Design Azure App Service API Apps

Azure API Apps provide a quick and easy way to create and consume scalable RESTful APIs,
using the language of your choice, in the cloud. As part of the Azure infrastructure, you can
integrate API Apps with many Azure services such as API Management, Logic Apps, Functions,
and many more. Securing your APIs can be done with a few clicks, whether you are using Azure
Active Directory, OAuth, or social networks for single sign-on.

If you have existing APIs written in .NET, Node.js, Java, Python, or PHP, they can be brought
into App Services as API Apps. When you need to consume these APIs, enable CORS support
so you can access them from any client. Swagger support makes generating client code to use
your API simple. Once you have your API App set up, and clients are consuming it, it is impor-
tant to know how to monitor it to detect any issues early on.

This skill covers how to:
■■ Create and deploy API Apps

■■ Automate API discovery by using Swashbuckle

■■ Use Swagger API metadata to generate client code for an API app

■■ Monitor API Apps

Create and deploy API Apps
There are different ways you can create and deploy API Apps, depending on the language and
development environment of choice. For instance, if you are using Visual Studio, you can create
a new API Apps project and publish to a new API app, which provisions the service in Azure.
If you are not using Visual Studio, you can provision a new API App service using the Azure
portal, Azure CLI, or PowerShell.

https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-azure-web-apps-analytics
https://docs.microsoft.com/en-us/azure/log-analytics/log-analytics-azure-web-apps-analytics
https://docs.microsoft.com/en-us/azure/application-insights/app-insights-analytics
https://docs.microsoft.com/en-us/Azure/monitoring-and-diagnostics/insights-autoscale-best-practices
https://docs.microsoft.com/en-us/Azure/monitoring-and-diagnostics/insights-autoscale-best-practices
https://docs.microsoft.com/en-us/Azure/monitoring-and-diagnostics/insights-how-to-scale
https://docs.microsoft.com/en-us/Azure/monitoring-and-diagnostics/insights-how-to-scale

	306	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

Creating a new API App from the portal
To create a new API app in the portal, complete the following steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select New on the command bar.

3.	 Within the Marketplace (Figure 4-29) search text box, type API App, and press Enter.

FIGURE 4-29  Marketplace search for API App

4.	 Select API App from the results.

5.	 On the API App blade, select Create.

6.	 On the Create API App blade, choose your Azure subscription, select a Resource Group,
select or create an App Service Plan, select whether you want to enable Application
Insights, and then click Create.

NOTE  SERVER-SIDE AND CLIENT-SIDE PROJECTS

After creating your API App service, you can quickly create sample ASP.NET, Node.js, or Java
server-side and client-side projects using your new service, by selecting Quickstart from
your API App blade in the portal.

Creating and deploying a new API app with Visual Studio 2017
Visual Studio 2017 comes preconfigured with the ability to create an API app when you have
installed the ASP.NET and web development, as well as Azure development workloads. Follow
these steps to create a new API app with Visual Studio 2017:

1.	 Launch Visual Studio, and then select File > New > Project.

2.	 In the New Project dialog, select ASP.NET Web Application (.NET Framework) within the
Cloud category (Figure 4-30). Provide a name and location for your new project, and
then click OK.

https://portal.azure.com

	 Skill 4.2: Design Azure App Service API Apps	 Chapter 4	 307

FIGURE 4-30  The ASP.NET Web Application Cloud project type

3.	 Select the Azure API App template (Figure 4-31), and then click OK.

FIGURE 4-31  The Azure API App template

Visual Studio creates a new API App project within the specified directory, adding useful
NuGet packages, such as:

■■ Newtonsoft.Json for deserializing requests and serializing responses to and from your
API app.

	308	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

■■ Swashbuckle to add Swagger for rich discovery and documentation for your API REST
endpoints.

In addition, Web API and Swagger configuration classes are created in the project’s startup
folder. All you need to do from this point, to deploy your API app is to complete your Control-
ler actions, and publish from Visual Studio.

Follow these steps to deploy your API app from Visual Studio:

1.	 Right-click your project in the Visual Studio Solution Explorer (Figure 4-32), then click
Publish.

FIGURE 4-32  Publish solution context menu

2.	 In the Publish dialog (Figure 4-33), select the Create New option underneath Micro-
soft Azure App Service, and then click Publish. This creates a new API app in Azure and
publishes your solution to it. You could alternately select the Select Existing option to
publish to an existing API App service.

FIGURE 4-33  The Publish dialog

3.	 In the Create App Service dialog (Figure 4-34), provide a unique App name, select your
Azure subscription and resource group, select or create an App Service Plan, and then
click Create.

	 Skill 4.2: Design Azure App Service API Apps	 Chapter 4	 309

FIGURE 4-34  Create App Service dialog

4.	 When your API app is finished publishing, it will open in a new web browser. When the
page is displayed, navigate to the /swagger path to view your generated API details, and
to try out the REST methods. For example http://<YOUR-API-APP>.azurewebsites.net/
swagger/ (Figure 4-35).

FIGURE 4-35  The Swagger interface for the published API App

http://<YOUR-API-APP>.azurewebsites.net/swagger/
http://<YOUR-API-APP>.azurewebsites.net/swagger/

	310	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

NOTE  SWAGGER UI MAY NOT BE ENABLED BY DEFAULT IN ASP.NET PROJECT

When you use the Swashbuckle NuGet package within an ASP.NET project, the Swagger UI
may not be enabled by default. If this is the case, open SwaggerConfig.cs and uncomment
the line that starts with .EnableSwaggerUi(c =>.

You do not need to uncomment any of the properties within the EnableSwaggerUi configu-
ration to properly enable the UI.

MORE INFO  NODE.JS API APP TUTORIAL

To follow a tutorial for creating and deploying an API App using Node.js, see https://docs.
microsoft.com/azure/app-service/app-service-web-tutorial-rest-api.

Automate API discovery by using Swashbuckle
Swagger is a popular, open source framework backed by a large ecosystem of tools that helps
you design, build, document, and consume your RESTful APIs. The previous section included a
screenshot of the Swagger page generated for an API App. This was generated by the Swash-
buckle NuGet package.

MORE INFO  SWASHBUCKLE

For more details on Swashbuckle, see https://github.com/domaindrivendev/Swashbuckle.

The core component of Swagger is the Swagger Specification, which is the API description
metadata in the form of a JSON or YAML file. The specification creates the RESTful contract for
your API, detailing all its resources and operations in a human and machine-readable format
to simplify development, discovery, and integration with other services. This is a standard-
ized OpenAPI Specification (OAS) for defining RESTful interfaces, which makes the generated
metadata valuable when working with a wide range of consumers. Included in the list of con-
sumers that can read the Swagger API metadata are several Azure services, such as Microsoft
PowerApps, Microsoft Flow, and Logic Apps. Meaning, when you publish your API App service
with Swagger, these Azure services and more immediately know how to interact with your API
endpoints with no further effort on your part.

Beyond other Azure services being able to more easily use your API App, Swagger RESTful
interfaces make it easier for other developers to consume your API endpoints. The API explorer
that comes with swagger-ui makes it easy for other developers (and you) to test the endpoints
and know what the data format looks like that need to be sent and should be returned in kind.

Generating this Swagger metadata manually can be a very tedious process. If you build your
API using ASP.NET or ASP.NET Core, you can use the Swashbuckle NuGet package to automati-
cally do this for you, saving a lot of time initially creating the metadata, and maintaining it. In

https://docs.microsoft.com/azure/app-service/app-service-web-tutorial-rest-api
https://docs.microsoft.com/azure/app-service/app-service-web-tutorial-rest-api
https://github.com/domaindrivendev/Swashbuckle

	 Skill 4.2: Design Azure App Service API Apps	 Chapter 4	 311

addition to its Swagger metadata generator engine, Swashbuckle also contains an embedded
version of swagger-ui, which it will automatically serve up once Swashbuckle is installed.

Use Swashbuckle in your API App project
Swashbuckle is provided by way of a set of NuGet packages: Swashbuckle and Swashbuckle.
Core. When you create a new API App project using the Visual Studio template, these NuGet
packages are already included. If you don’t have them installed, follow these steps to add
Swashbuckle to your API App project:

1.	 Install the Swashbuckle NuGet package, which includes Swashbuckle.Core as a depen-
dency, by using the following command from the NuGet Package Manager Console:

Install-Package Swashbuckle

2.	 The NuGet package also installs a bootstrapper (App_Start/SwaggerConfig.cs) that
enables the Swagger routes on app start-up using WebActivatorEx. You can con-
figure Swashbuckle’s options by modifying the GlobalConfiguration.Configuration.
EnableSwagger extension method in SwaggerConfig.cs. For example, to exclude API
actions that are marked as Obsolete, add the following configuration:

public static void Register()
{
 var thisAssembly = typeof(SwaggerConfig).Assembly;
 GlobalConfiguration.Configuration
 .EnableSwagger(c =>
 {
 …
 …
 // Set this flag to omit descriptions for any actions
 decorated with the Obsolete attribute
 c.IgnoreObsoleteActions();
 …
 …
 });
}

3.	 Modify your project’s controller actions to include Swagger attributes to aid the genera-
tor in building your Swagger metadata. Listing 4-1 illustrates the use of the SwaggerRe-
sponseAttribute at each controller method.

4.	 Swashbuckle is now configured to generate Swagger metadata for your API endpoints
with a simple UI to explore that metadata. For example, the controller in Listing 4-1 may
produce the UI shown in Figure 4-36.

	312	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-36  The Swagger interface for the published API App

LISTING 4-1  C# code showing Swagger attributes added to the API App’s controller actions

 /// <summary>
 /// Gets the list of contacts
 /// </summary>
 /// <returns>The contacts</returns>
 [HttpGet]
 [SwaggerResponse(HttpStatusCode.OK,
 Type = typeof(IEnumerable<Contact>))]
 [Route("~/contacts")]
 public async Task<IEnumerable<Contact>> Get()
 {
 …
 }

 /// <summary>
 /// Gets a specific contact
 /// </summary>
 /// <param name="id">Identifier for the contact</param>
 /// <returns>The requested contact</returns>
 [HttpGet]
 [SwaggerResponse(HttpStatusCode.OK,
 Description = "OK",
 Type = typeof(IEnumerable<Contact>))]
 [SwaggerResponse(HttpStatusCode.NotFound,
 Description = "Contact not found",
 Type = typeof(IEnumerable<Contact>))]
 [SwaggerOperation("GetContactById")]
 [Route("~/contacts/{id}")]
 public async Task<Contact> Get([FromUri] int id)
 {
 …
 }

 /// <summary>

	 Skill 4.2: Design Azure App Service API Apps	 Chapter 4	 313

 /// Creates a new contact
 /// </summary>
 /// <param name="contact">The new contact</param>
 /// <returns>The saved contact</returns>
 [HttpPost]
 [SwaggerResponse(HttpStatusCode.Created,
 Description = "Created",
 Type = typeof(Contact))]
 [Route("~/contacts")]
 public async Task<Contact> Post([FromBody] Contact contact)
 {
 …
 }

You can test any of the API methods by selecting it from the list. Here we selected the /
contacts/{id} GET method and tested it by entering a value of 2 in the id parameter, and click-
ing the Try It Out! button. Notice that Swagger details the return model schema, shows a Curl
command and a Request URL for invoking the method, and shows the actual response body
after clicking the button (Figure 4-37).

FIGURE 4-37  An API method and result after testing with Swagger

	314	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

Enable CORS to allow clients to consume API and Swagger interface
Before clients, such as other web services or client code generators, can consume your API
endpoints and Swagger interface, you need to enable CORS on the API App in Azure. To enable
CORS, follow these steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Open your API App service. You can find this by navigating to the Resource Group in
which you published your service.

3.	 Select CORS from the left-hand menu (Figure 4-38). Enter one or more allowed origins,
then select Save. To allow all origins, enter an asterisk (*) in the Allowed Origins field and
remove all other origins from the list.

FIGURE 4-38  Enabling cross-origin calls for all sources

Use Swagger API metadata to generate client code for an
API app
There are tools available to generate client code for your API Apps that have Swagger API
definitions, like the swagger.io online editor. The previous section demonstrated how you can
automatically generate the Swagger API metadata, using the Swashbuckle NuGet package.

To generate client code for your API app that has Swagger API metadata, follow these steps:

1.	 Find your Swagger 2.0 API definition document by navigating to http://<your-api-app/
swagger/docs/v1 (v1 is the API version). Alternately, you can find it by navigating to the
Azure portal, opening your API App service, and selecting API definition from the left-
hand menu. This displays your Swagger 2.0 API definition URL (Figure 4-39).

https://portal.azure.com
http://<your-api-app/swagger/docs/v1
http://<your-api-app/swagger/docs/v1

	 Skill 4.2: Design Azure App Service API Apps	 Chapter 4	 315

FIGURE 4-39  Steps to find the API App’s Swagger 2.0 metadata URL

2.	 Navigate to https://editor.swagger.io to use the Swagger.io Online Editor.

3.	 Select File > Import URL. Enter your Swagger 2.0 metadata URL in the dialog box and
click OK (Figure 4-40).

FIGURE 4-40  Steps to import the Swagger 2.0 metadata

4.	 After a few moments, your Swagger metadata appears on the left-hand side of the edi-
tor, and the discovered API endpoints will be displayed on the right. Verify that all de-
sired API endpoints appear, and then select Generate Client from the top menu. Select
the desired language or platform for the generated client app. This initiates a download
of a zip file containing the client app (Figure 4-41).

https://editor.swagger.io

	316	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-41  Steps to generate client code in Swagger.io

Monitor API Apps
App Service, under which API Apps reside, provides built-in monitoring capabilities, such as
resource quotas and metrics. You can also set up alerts and automatic scaling based on these
metrics. In addition, Azure provides built-in diagnostics to assist with debugging an App Ser-
vice web or API app. A combination of the monitoring capabilities and logging should provide
you with the information you need to monitor the health of your API app, and determine
whether it is able to meet capacity demands.

Using quotas and metrics
API Apps are subject to certain limits on the resources they can use. The limits are defined by
the App Service plan associated with the app. If the application is hosted in a Free or Shared
plan, and then the limits on the resources the app can use are defined by Quotas, as discussed
earlier for Web Apps.

If you exceed the CPU and bandwidth quotas, your app will respond with a 403 HTTP error,
so it’s best to keep an eye on your resource usage. Exceeding memory quotas causes an ap-
plication reset, and exceeding the filesystem quota will cause write operations to fail, even to
logs. If you need to increase or remove any of these quotas, you can upgrade your App Service
plan.

Metrics that you can view pertaining to your apps are the same as shown earlier in Table
4-3. As with Web Apps, metrics are accessed from the Overview blade of your API App within
the Azure portal by clicking one of the metrics charts, such as Requests or Average Response
Time. Once you click a chart, you can customize it by clicking it and selecting edit chart. From
here you can change the time range, chart type, and metrics to display.

	 Skill 4.2: Design Azure App Service API Apps	 Chapter 4	 317

Enable and review diagnostics logs
By default, when you provision a new API App, diagnostics logs are disabled. These are detailed
server logs you can use to troubleshoot and debug your app. To enable diagnostics logging,
perform the following steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Open your API App service. You can find this by navigating to the Resource Group in
which you published your service.

3.	 Select Diagnostics logs from the left-hand menu (Figure 4-42). Turn on any logs you
wish to capture. When you enable application diagnostics, you also choose the Level.
This setting allows you to filter the information captured to informational, warning, or
error information. Setting this to verbose will log all information produced by the ap-
plication. This is also where you can go to retrieve FTP information for downloading the
logs.

FIGURE 4-42  Steps to enable diagnostics logs

You can download the diagnostics logs via FTP, or they can be downloaded as a zip archive
by using PowerShell or the Azure CLI.

https://portal.azure.com

	318	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

The types of logs and structure for accessing logs follow that described for Web Apps and
shown in Table 4-2.

MORE INFO  MONITOR AN API APP WITH WEB SERVER LOGS

For more information about monitoring API Apps with web server logs, see: https://docs.
microsoft.com/azure/app-service/web-sites-enable-diagnostic-log. To view sample CLI
scripts you can use to enable and download logs, see: https://docs.microsoft.com/azure/app-
service/scripts/app-service-cli-monitor. For information on troubleshooting your API Apps
with Visual Studio, refer to: https://docs.microsoft.com/azure/app-service/web-sites-dotnet-
troubleshoot-visual-studio.

MORE INFO  VIEWING METRICS AND QUOTAS FOR YOUR APP SERVICE

For more information on viewing metrics and quotas for your App Service, such as an API
App, see https://docs.microsoft.com/azure/app-service/web-sites-monitor.

MORE INFO  RECEIVING ALERT NOTIFICATIONS ON YOUR APP’S METRICS

You can configure alert notifications that you can receive when certain metrics thresholds
are reached. To found out how to do this, see: https://docs.microsoft.com/ azure/monitoring-
and-diagnostics/insights-receive-alert-notifications.

Skill 4.3: Develop Azure App Service Logic Apps

Azure Logic Apps is a fully managed iPaaS (integration Platform as a Service) that helps you
simplify and implement scalable integrations and workflows in the cloud. As such, you don’t
have to worry about infrastructure, management, scalability, and availability because all of
that is taken care of for you. Its Logic App Designer gives you a nice way to model and auto-
mate your process visually, as a series of steps known as a workflow. At its core, it allows you to
quickly integrate with many services and protocols, inside of Azure, outside of Azure, as well
as on-premises. When you create a Logic App, you start out with a trigger, like ‘When an email
arrives at this account,’ and then you act on that trigger with many combinations of actions,
condition logic, and conversions.

MORE INFO  LOGIC APP CONNECTORS

There is a large list of connectors you can use to integrate with services and protocols that
can be found at https://docs.microsoft.com/azure/connectors/apis-list.

https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log
https://docs.microsoft.com/azure/app-service/web-sites-enable-diagnostic-log
https://docs.microsoft.com/azure/app-service/scripts/app-service-cli-monitor
https://docs.microsoft.com/azure/app-service/scripts/app-service-cli-monitor
https://docs.microsoft.com/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/azure/app-service/web-sites-dotnet-troubleshoot-visual-studio
https://docs.microsoft.com/azure/app-service/web-sites-monitor
https://docs.microsoft.com/azure/connectors/apis-list
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-receive-alert-notifications
https://docs.microsoft.com/azure/monitoring-and-diagnostics/insights-receive-alert-notifications

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 319

This skill covers how to:
■■ Create a Logic App connecting SaaS services

■■ Create a Logic App with B2B capabilities

■■ Create a Logic App with XML capabilities

■■ Trigger a Logic App from another app

■■ Create custom and long-running actions

■■ Monitor Logic Apps

Create a Logic App connecting SaaS services
One of the strengths of Logic Apps is its ability to connect a large number of SaaS (Software as
a Service) services to create your own custom workflows. In this example, we will connect Twit-
ter with an Outlook.com or hosted Office 365 mailbox to email certain tweets as they arrive.

To create a new Logic App in the portal, complete the following steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select New on the command bar.

3.	 Select Enterprise Integration, then Logic App (Figure 4-43).

FIGURE 4-43  Creating a new Logic App from the Azure Portal

4.	 Provide a unique name, select a resource group and location, check Pin To Dashboard,
and then click Create (Figure 4-44).

https://portal.azure.com

	320	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-44  The Create logic app form

Follow the above steps to create new Logic Apps as needed in the remaining segments for
this skill.

Once the Logic App has been provisioned, open it to view the Logic Apps Designer. This is
where you design or modify your Logic App. You can select from a series of commonly used
triggers, or from several templates you can use as a starting point. The following steps show
how to create one from scratch.

1.	 Select Blank Logic App under Templates.

2.	 All Logic Apps start with a trigger. Search the list for Twitter, and then select it.

3.	 Click Sign in to create a connection to Twitter with your Twitter account. A dialog will
appear where you sign in and authorize the Logic App to access your account.

4.	 In the Twitter trigger form on the designer (Figure 4-45), enter your search text to return
certain tweets (such as #nasa), and select an interval and frequency, establishing how
often you wish to check for items, returning all tweets during that time span.

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 321

FIGURE 4-45  The Twitter trigger form in the Logic Apps Designer

5.	 Select the + New Step button, and then choose Add An Action.

6.	 Type outlook in the search box, and then select Office 365 Outlook (Send An Email)
from the results. Alternately, you can select Outlook.com from the list (Figure 4-46).

FIGURE 4-46  Adding a new Office 365 Outlook action in the Logic Apps Designer

	322	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

7.	 Click Sign In to create a connection to your Office 365 Outlook account (Figure 4-47).

8.	 In the Send An Email form, provide values for the email recipient, the subject of the
email, and the body. In each of these fields, you can select parameters from the Twitter
Connector, such as the tweet’s text and who posted it.

FIGURE 4-47  Adding details to a new Office 365 Outlook action in the Logic Apps Designer

9.	 Click Save in the Logic Apps Designer menu. Your Logic App is now live. If you wish to
test right away and not wait for your trigger interval, click Run.

Create a Logic App with B2B capabilities
Logic Apps support business-to-business (B2B) workflows and communication through the
Enterprise Integration Pack. This allows organizations to exchange messages electronically,
even if they use different protocols and formats. Enterprise integration allows you to store
all your artifacts in one place, within your integration account, and secure messages through
encryption and digital signatures. To access these artifacts from a logic app, you must first link
it to your integration account. Your integration account needs both Partner and Agreement
artifacts prior to creating B2B workflows for your logic app.

Create an integration account
To get started with the Enterprise Integration Pack so you can create B2B workflows, you must
first create an integration account, following these steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select More Services on the command bar.

3.	 In the filter box, type integration, and then select Integration Accounts in the results list
(Figure 4-48).

https://portal.azure.com

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 323

FIGURE 4-48  Navigating to the Integration accounts blade

4.	 At the top of the Integration Accounts blade, select + Add.

5.	 Provide a name for your Integration Account (Figure 4-49), select your resource group,
location, and a pricing tier. Once validation has passed, click Create.

FIGURE 4-49  The create Integration account form

	324	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

NOTE  INTEGRATION ACCOUNT AND LOGIC APP

Your integration account and logic app must be in the same location before linking them.

Add partners to your integration account
Partners are entities that participate in B2B transactions and exchange messages between each
other. Before you can create partners that represent you and another organization in these
transactions, you must both share information that identifies and validates messages sent by
each other. After you discuss these details and are ready to start your business relationship, you
can create partners in your integration account to represent you both. These message details
are called agreements. You need at least two partners in your integration account to create an
agreement. Your organization must be the host partner, and the other partner(s) guests. Guest
partners can be outside organizations, or even a department in your own organization.

To add a partner to your integration account, follow these steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select More Services on the command bar.

3.	 In the filter box, type integration, then select Integration Accounts in the results list.

4.	 Select your integration account, and then select the Partners tile.

5.	 In the Partners blade, select + Add.

6.	 Provide a name for your partner (Figure 4-50), select a Qualifier, and then enter a Value
to help identify documents that transfer through your apps. When finished, click OK.

FIGURE 4-50  Adding a partner to an Integration account

https://portal.azure.com

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 325

7.	 After a few moments, the new partner (Figure 4-51) will appear in your list of partners.

FIGURE 4-51  Partners added to an Integration account

Add an agreement
Now that you have partners associated with your integration account, you can allow them
to communicate seamlessly using industry standard protocols through agreements. These
agreements are based on the type of information exchanged, and through which protocol or
transport standards they will communicate: AS2, X12, or EDIFACT.

Follow these steps to create an AS2 agreement:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select More Services on the command bar.

3.	 In the filter box, type integration, and then select Integration Accounts in the results list
(Figure 4-52).

4.	 Select your integration account, and then select the Agreements tile.

5.	 In the Agreements blade, select + Add.

6.	 Provide a name for your agreement and select AS2 for the agreement type. Now select
the Host Partner, Host Identity, Guest Partner, and Guest Identity. You can override send
and receive settings as desired. Click OK.

https://portal.azure.com

	326	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-52  Adding an agreement to an Integration account

Link your Logic app to your Enterprise Integration account
You will need to link your Logic app to your integration account so you can create B2B work-
flows using the partners and agreements you’ve created in your integration account. You
must make sure that both the integration account and Logic app are in the same Azure region
before linking.

To link, follow these steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select More Services on the command bar.

3.	 In the filter box, type logic, and then select Logic Apps in the results list.

4.	 Select your logic app, and then select Workflow settings.

https://portal.azure.com

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 327

5.	 In the Workflow settings blade, select your integration account from the select list, and
click Save (Figure 4-53).

FIGURE 4-53  Linking an integration account with a logic app

Use B2B features to receive data in a Logic App
After creating an integration account, adding partners and agreements to it, and linking it to a
Logic app, you can now create a B2B workflow using the Enterprise Integration Pack, following
these steps:

1.	 Open the Logic App Designer on the Logic app that has a linked integration account.

2.	 Select Blank Logic App under Templates.

3.	 Search for “http request” in the trigger filter, and then select Request (When an HTTP
request is received) from the list of results (Figure 4-54).

FIGURE 4-54  Selecting a Request trigger in the Logic App Designer

	328	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

4.	 Select the + New Step button, and then choose Add An Action.

5.	 Type as2 in the search box, and then select AS2 (Decode AS2 Message) from the results
(Figure 4-55).

FIGURE 4-55  Selecting a Decode AS2 Message action in the Logic App Designer

6.	 In the form that follows, provide a connection name, and then select your integration
account, and click Create (Figure 4-56).

FIGURE 4-56  Setting the Decode AS2 Message connection information form in the Logic App
Designer

7.	 Add the Body that you want to use as input. In this example, we selected the body of the
HTTP request that triggers the Logic app. Add the required Headers for AS2. In this ex-
ample, we selected the headers of the HTTP request that triggers the Logic app (Figure
4-57).

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 329

FIGURE 4-57  Setting the Decode AS2 Message body and headers information form in the Logic
App Designer

8.	 Select the + New Step button, and then choose Add An Action.

9.	 Type x12 in the search box, and then select X12 (Decode X12 Message) from the results
(Figure 4-58).

FIGURE 4-58  Selecting a Decode X12 Message action in the Logic App Designer

10.	 In the form that follows, provide a connection name, and then select your integration
account as before, and click Create (Figure 4-59).

11.	 The input for this new action is the output for the previous AS2 action. Because the
actual message content is JSON-formatted and base64-encoded, you must specify an
expression as the input. To do this, you type the following into the X12 Flat File Message

	330	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

to Decode field: @base64ToString(body(‘Decode_AS2_Message’)?[‘AS2Message’]
?[‘Content’])

FIGURE 4-59  Setting the Decode X12 flat file message to decode the information form in the Logic
App Designer

12.	 Select the + New Step button, and then choose Add An Action (Figure 4-60).

13.	 Type response in the search box, and then select Request (Response) from the results.

FIGURE 4-60  Selecting a Request (Response) action in the Logic App Designer

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 331

14.	 The response body should include the MDN from the output of the Decode X12 Mes-
sage action (Figure 4-61). To do this, we type the following into the Body field: @
base64ToString(body(‘Decode_AS2_message’)?[‘OutgoingMdn’]?[‘Content’])

FIGURE 4-61  Setting the body in the Response form in the Logic App Designer

15.	 Click Save in the Logic Apps Designer menu.

Create a Logic App with XML capabilities
Oftentimes, businesses send and receive data between one or more organizations in XML
format. Due to the dynamic nature of XML documents, schemas are used to confirm that the
documents received are valid and are in the correct format. Schemas are also used to trans-
form data from one format to another. Transforms are also known as maps, which consist of
source and target XML schemas. When you link your logic app with an integration account,
the schema and map artifacts within enable your Logic app to use these Enterprise Integration
Pack XML capabilities.

The XML features included with the Enterprise Integration pack are:

■■ XML validation  Used to validate incoming and outgoing XML messages against a
specific schema.

■■ XML transform  Used to convert data from one format to another.

■■ Flat file encoding/decoding  Used to encode XML content prior to sending, or to
convert XML content to flat files.

■■ XPath  Used to extract specific properties from a message, using an xpath expression.

	332	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

Add schemas to your integration account
Since schemas are used to validate and transform XML messages, you must add one or more
to your integration account before working with the Enterprise Integration Pack XML features
within your linked logic app. To add a new schema, follow these steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select More Services on the command bar.

3.	 In the filter box, type integration, and then select Integration Accounts in the results list
(Figure 4-62).

4.	 Select your integration account, and then select the Schemas tile.

5.	 In the Schemas blade, select + Add.

6.	 Provide a name for your schema and select whether it is a small file (<= 2MB) or a large
file (> 2MB). If it is a small file, you can upload it here. If you select Large file, then you
need to provide a publicly accessible URI to the file. In this case, we’re uploading a small
file. Click the Browse button underneath Schema to select a local XSD file to upload.
Click OK.

FIGURE 4-62  Adding a schema to an Integration account

Add maps to your Integration account
When you want to your Logic app to transform data from one format to another, you first add
a map (schema) to your linked Integration account.

To add a new schema, follow these steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select More Services on the command bar.

3.	 In the filter box, type integration, then select Integration Accounts in the results list.

https://portal.azure.com
https://portal.azure.com

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 333

4.	 Select your integration account, and then select the Maps tile.

5.	 In the Maps blade, select + Add.

6.	 Provide a name for your map and click the Browse button underneath Map to select a
local XSLT file to upload. Click OK (Figure 4-63).

FIGURE 4-63  Adding a map to an Integration account

MORE INFO  HOW TO CREATE A TRANSFORM/MAP

You can create the map that you upload to your Integration account by using the Visual
Studio Enterprise Integration SDK at https://aka.ms/vsmapsandschemas.

Add XML capabilities to the linked Logic App
After adding an XML schema and map to the Integration account, you are ready to use the
Enterprise Integration Pack’s XML validation, XPath Extract, and Transform XML operations in a
Logic App.

Once your LogicAapp has been linked to the Integration account with these artifacts, follow
these steps to use the XML capabilities in your Logic App:

1.	 Open the Logic App Designer on the Logic pp that has a linked Integration account.

2.	 Select Blank Logic App under Templates.

3.	 Search for “http request” in the trigger filter, and then select Request (When An HTTP
Request Is Received) from the list of results (Figure 4-64).

4.	 Select the + New Step button, and then choose Add An Action.

5.	 Type xml in the search box, and then select XML (XML Validation) from the results.

https://aka.ms/vsmapsandschemas

	334	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-64  Selecting an XML Validation action in the Logic App Designer

6.	 In the form that follows, select the Body parameter from the HTTP request trigger for
the Content value. Select the Order schema in the Schema Name select list, which is the
schema we added to the Integration account (Figure 4-65).

FIGURE 4-65  Selecting an XML Validation form values in the Logic App Designer

7.	 Select the + New Step button, and then choose Add An Action.

8.	 Type xml in the search box, and then select Transform XML from the results (Figure
4-66).

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 335

FIGURE 4-66  Selecting an Transform XML action in the Logic App Designer

9.	 In the form that follows, select the Body parameter from the HTTP request trigger for
the Content value. Select the SAPOrderMap map in the Map select list, which is the map
we added to the Integration account (Figure 4-67).

FIGURE 4-67  Setting the Transform XML form values in the Logic App Designer

10.	 In the Condition form that appears, select the Edit In Advanced Mode link, and then
type in your XPath expression. In our case, we type in the following (Figure 4-68): @equ
als(xpath(xml(body(‘Transform_XML’)), ‘string(count(/.))’), ‘1’)

	336	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-68  Setting the XPath expression for the new condition in the Logic App Designer

11.	 In the “If true” condition block beneath, select Add An Action. Search for “response,”
and then select Request (Response) from the resulting list of actions (Figure 4-69).

FIGURE 4-69  Selecting a Response action for the new condition’s “If true” block in the Logic App
Designer

12.	 In the Response form, select the Transformed XML parameter from the previous Trans-
form XML step. This returns a 200 HTTP response containing the transformed XML (an
SAP order) within the body (Figure 4-70).

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 337

FIGURE 4-70  Completing the Response action form for the new condition’s “If true” block in the
Logic App Designer

13.	 Click Save in the Logic Apps Designer menu.

MORE INFO  DEPLOY THIS LOGIC APP

Visit the GitHub project page for this Azure Quickstart template to deploy the Logic App
in your Azure account at: https://github.com/Azure/azure-quickstart-templates/tree/
master/201-logic-app-veter-pipeline.

MORE INFO  USING XML CAPABILITIES IN LOGIC APPS

For more information about working with XML capabilities in Logic Apps, see: https://docs.
microsoft.com/azure/logic-apps/logic-apps-enterprise-integration-xml.

Trigger a Logic App from another app
There are many triggers that can be added to a Logic App. Triggers are what kick off the work-
flow within. The most common type of triggers you can use to trigger, or call, your Logic Apps
from another app, are those that create HTTP endpoints. Triggers based on HTTP endpoints
tend to be more widely used due to the simplicity of making REST-based calls from practically
any web-enabled development platform.

https://github.com/Azure/azure-quickstart-templates/tree/master/201-logic-app-veter-pipeline
https://github.com/Azure/azure-quickstart-templates/tree/master/201-logic-app-veter-pipeline
https://docs.microsoft.com/azure/logic-apps/logic-apps-enterprise-integration-xml
https://docs.microsoft.com/azure/logic-apps/logic-apps-enterprise-integration-xml

	338	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

These are the triggers that create HTTP endpoints:

■■ Request  Responds to incoming HTTP requests to start the Logic App’s workflow in
real time. Very versatile, in that it can be called from any web-based application, exter-
nal webhook events, even from another Logic App with a request and response action.

■■ HTTP Webhook  Event-based trigger that does not rely on polling for new items. Reg-
ister subscribe and unsubscribe methods with a callback URL used to trigger the logic
app. Whenever your external app or service makes an HTTP POST to the callback URL,
the logic app fires, and includes any data passed into the request.

■■ API Connection Webhook  The API connection trigger is similar to the HTTP trigger
in its basic functionality. However, the parameters for identifying the action are slightly
different.

Create an HTTP endpoint for your logic app
To create an HTTP endpoint to receive incoming requests for a Request Trigger, follow these
steps:

1.	 Open the Logic App Designer on the logic app to which you will be adding an HTTP
endpoint.

2.	 Select Blank Logic App under Templates.

3.	 Search for “http request” in the trigger filter, and then select Request (When An HTTP
Request Is Received) from the list of results.

4.	 You can optionally enter a JSON schema for the payload, or data, that you expect to be
sent to the trigger. This schema can be added to the Request Body JSON Schema field.
To generate the schema, select the Use Sample Payload To Generate Schema link at
the bottom of the form. This displays a dialog where you can type in or paste a sample
JSON payload. This generates the schema when you click Done. The advantage to hav-
ing a schema defined is that the designer will use the schema to generate tokens that
your logic app can use to consume, parse, and pass data from the trigger through your
workflow (Figure 4-71).

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 339

FIGURE 4-71  Adding a Request trigger with a request body JSON schema

5.	 Click Save in the Logic Apps Designer menu.

6.	 After saving, the HTTP POST URL is generated on the Receive trigger (Figure 4-72). This
is the URL your app or service uses to trigger your logic app. The URL contains a Shared
Access Signature (SAS) key used to authenticate the incoming requests.

FIGURE 4-72  The generated HTTP POST URL on the Request trigger

MORE INFO  CALL, TRIGGER, OR NEST WORKFLOWS WITH HTTP ENDPOINTS IN LOGIC APPS

For more information on the topic of using HTTP endpoints to call, trigger, or nest workflows
in Logic Apps see: https://docs.microsoft.com/azure/logic-apps/logic-apps-http-endpoint.

MORE INFO � CREATE AN API THAT FOLLOWS THE WEBHOOK
SUBSCRIBE/UNSUBSCRIBE PATTERN

For more information on how to create an API that follows the webhook subscribe and
unsubscribe pattern in logic apps see https://docs.microsoft.com/azure/logic-apps/logic-apps-
create-api-app#webhook-triggers.

https://docs.microsoft.com/azure/logic-apps/logic-apps-http-endpoint
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#webhook-triggers
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#webhook-triggers

	340	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

Create custom and long-running actions
You can create your own APIs that provide custom actions and triggers. Because these are
web-based APIs that use REST HTTP endpoints, you can build them in any language framework
like .NET, Node.js, or Java. You can also host your APIs on Azure App Service as either web apps
or API apps. However, API apps are preferred because they will make it easier to build, host,
and consume your APIs used by Logic Apps. Another recommendation is to provide an Ope-
nAPI (previously Swagger) specification to describe your RESTful API endpoints, their opera-
tions, and parameters. This makes it much easier to reference your custom API from a logic app
workflow because all of the endpoints are selectable within the designer. You can use libraries
like Swashbuckle to automatically generate the OpenAPI (Swagger) file for you.

If your custom API has long-running tasks to perform, it is more than likely that your logic
app will time out waiting for the operation to complete. This is because Logic Apps will only
wait around two minutes before timing out a request. If your long-running task takes several
minutes, or hours to complete, you need to implement a REST-based async pattern on your
API. These types of patterns are already fully supported natively by the Logic Apps workflow
engine, so you don’t need to worry about the implementation there.

MORE INFO  USE SWASHBUCKLE TO AUTOMATICALLY GENERATE OPENAPI (SWAGGER)

Swashbuckle makes it easy to automatically generate the OpenAPI (Swagger) specification
file for you. For more information see https://github.com/domaindrivendev/Swashbuckle.

Long-running action patterns
Your custom API operations serve as endpoints for the actions in your Logic App’s workflow.
At a basic level, the endpoints accept an HTTP request and return an HTTP response within the
Logic App’s request timeout limit. When your custom action executes a long-running opera-
tion that will exceed this timeout, you can follow either the asynchronous polling pattern or
the asynchronous webhook pattern. These patterns allow your logic app to wait for these long-
running tasks to finish.

Asynchronous polling
The way the asynchronous polling pattern works is as follows:

1.	 When your API receives the initial request to start work, it starts a new thread with the
long-running task, and immediately returns an HTTP Response “202 Accepted” with a
location header. This immediate response prevents the request from timing out, and
causes the workflow engine to start polling for changes.

2.	 The location header points to the URL for the Logic Apps to check the status of the
long-running job. By default, the engine checks every 20 seconds, but you can also add
a “Retry-after” header to specify the number of seconds until the next poll.

https://github.com/domaindrivendev/Swashbuckle

	 Skill 4.3: Develop Azure App Service Logic Apps	 Chapter 4	 341

3.	 After the allotted time (20 seconds), the engine polls the URL on the location header.
If the long-running job is still going, you should return another “202 Accepted” with a
location header. If the job has completed, you should return a “200 OK” along with any
relevant data. This is what the Logic Apps engine will continue the workflow with.

MORE INFO  ASYNCHRONOUS POLLING PATTERN

For more information on the asynchronous polling pattern see https://docs.microsoft.com/
azure/logic-apps/logic-apps-create-api-app#async-pattern.

Asynchronous Webhooks
The asynchronous webhook pattern works by creating two endpoints on your API controller:

■■ Subscribe  The Logic Apps engine calls the subscribe endpoint defined in the work-
flow action for your API. Included in this call is a callback URL created by the logic
app that your API stores for when work is complete. When your long-running task is
complete, your API calls back with an HTTP POST method to the URL, along with any
returned content and headers, as input to the logic app.

■■ Unsubscribe  This endpoint is called any time the logic app run is cancelled. When
your API receives a request to this endpoint, it should unregister the callback URL
and stop any running processes.

MORE INFO  ASYNCHRONOUS WEBHOOK PATTERN

For more information on the asynchronous webhook pattern see https://docs.microsoft.
com/azure/logic-apps/logic-apps-create-api-app#webhook-actions.

Monitor Logic Apps
When you create a logic app, you can use out-of-the-box tools within Logic Apps to monitor
your app and detect any issues it may have, such as failures. You can view runs and trigger his-
tory, overall status, and performance.

If you want real-time event monitoring, as well as richer debugging, you can enable diag-
nostics on your logic app and send events to OMS with Log Analytics, or to other services, such
as Azure Storage and Event Hubs.

Select Metrics (Figure 4-73) under Monitoring in the left-hand menu of your logic app to
view performance information and the overall state, such as how many actions succeeded or
failed, over the specified time period. It will display an interactive chart based on the selected
metrics.

https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#async-pattern
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#async-pattern
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#webhook-actions
https://docs.microsoft.com/azure/logic-apps/logic-apps-create-api-app#webhook-actions

	342	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-73  Metrics for a logic app

Select Alert Rules under Monitoring to create alerts based on metrics (such as any time fail-
ures occur over a 1-hour period), activity logs (with categories such as security, service health,
autoscale, etc.), and near real time metrics, based on the data captured by your Logic App’s
metrics, in time periods spanning from one minute to 24 hours. Alerts can be emailed to one or
more recipients, route alerts to a webhook, or run a logic app.

The overview blade of your logic app displays both Runs History and Trigger History (Figure
4-74). This view lets you see at a glance how often the app was called, and whether those op-
erations succeeded. Select a run history to see its details, including any data it received.

FIGURE 4-74  The Runs history and Trigger History of a logic app

MORE INFO  MONITOR STATUS AND SET UP DIAGNOSTICS LOGGING FOR LOGIC APPS

To learn more about how to monitor status, set up diagnostics logging, and turn on alerts
for Logic Apps see https://docs.microsoft.com/azure/logic-apps/logic-apps-monitor-your-
logic-apps.

https://docs.microsoft.com/azure/logic-apps/logic-apps-monitor-your-logic-apps
https://docs.microsoft.com/azure/logic-apps/logic-apps-monitor-your-logic-apps

	 Skill 4.4: Develop Azure App Service Mobile Apps	 Chapter 4	 343

Skill 4.4: Develop Azure App Service Mobile Apps

Mobile Apps in Azure App Service provides a platform for the development of mobile applica-
tions, providing a combination of back-end Azure hosted services with device side develop-
ment frameworks that streamline the integration of the back-end services.

This skill covers how to:
■■ Create a mobile app

■■ Add authentication to a mobile app

■■ Add offline sync to a mobile app

■■ Add push notifications to a mobile app

Mobile Apps enables the development of applications across a variety of platforms, targeting
native iOS, Android, and Windows apps, cross-platform Xamarin (Android, Forms and iOS) and
Cordova. Mobile Apps includes a comprehensive set of open source SDKs for each of the afore-
mentioned platforms, and together with the services provided in Azure provide functionality for:

■■ Authentication and authorization  Enables integration with identity providers in-
cluding Azure Active Directory, Facebook, Google, Twitter, and Microsoft Account.

■■ Data access  Enables access to tabular data stored in an Azure SQL Database or an
on-premises SQL Server (via a hybrid connection) via an automatically provisioned and
mobile-friendly OData v3 data source.

■■ Offline sync  Enables reads as well as create, update, and delete activity to happen against
the supporting tables even when the device is not connected to a network, and coordinates
the synchronization of data between local and cloud stores as dictated by the application
logic (e.g., network connectivity is detected or the user presses a “Sync” button).

■■ Push notifications  Enables the sending of push notifications to app users via Azure
Notifications Hubs, which in turn supports the sending of notifications across the most
popular push notifications services for Apple (APNS), Google (GCM), Windows (WNS),
Windows Phone (MPNS), Amazon (ADM) and Baidu (Android China) devices.

Create a mobile app
From a high level, the process for creating a mobile app is as follows:

1.	 Identify the target device platforms you want your app to target.

2.	 Prepare your development environment.

3.	 Deploy an Azure Mobile App Service instance.

4.	 Configure the Azure Mobile App Service.

5.	 Configure your client application.

6.	 Augment your project with authentication/authorization, offline data sync, or push
notification capabilities.

The sections that follow cover each of these steps in greater detail.

Identify the target device platforms
The first decision you make when creating an mobile app is choosing which device platforms to
support. For device platforms, you can choose from the set that includes native Android, Cordova,
native iOS (Objective-C or Swift), Windows (C#), Xamarin Android, Xamarin Forms and Xamarin iOS.

Because each device platform brings with it a set of requirements, it can make getting start-
ed an almost overwhelming setup experience. One way to approach this is to start with one
device platform so that you can complete the end-to-end process, and then layer on additional
platforms after you have laid the foundation for one platform. Additionally, if you choose to
use Xamarin or Cordova as your starting platform you gain the advantage that these platforms
can themselves target multiple device platforms, allowing you to write portable code libraries
once that is shared by projects that are specific to each target device.

Prepare your development environment
The requirements for your development environment vary depending on the device platforms
you wish to target. The pre-requisites here include the supported operating system (e.g., ma-
cOS, Windows), the integrated development environment (e.g., Android Studio, Visual Studio
for Windows, Visual Studio for Mac or Xcode) and the devices (e.g., the emulators/simulators or
physical devices used for testing your app from the development environment of your choice).

Table 4-4 summarizes key requirements by device platform.

TABLE 4-4  Requirements for each target platform

Target Platform Requirements

Android OS: macOS or Windows
IDE: Android Studio
Devices: Android emulator and devices

Cordova OS: macOS and Windows
IDE: Visual Studio for Windows
Devices: Android, iOS*, Windows emulators and devices.

iOS OS: macOS
IDE: Xcode
Devices: iOS simulator and devices

Windows OS: Windows
IDE: Visual Studio for Windows
Devices: Windows desktop and phone

Xamarin.Android OS: macOS or Windows
IDE: Visual Studio for mac or Windows
Devices: Android emulators and devices.

Xamarin.Forms OS: macOS and Windows
IDE: Visual Studio for mac or Windows
Devices: Android, iOS*, Windows emulators and devices.

Xamarin.iOS OS: macOS
IDE: Visual Studio for mac or Windows
Devices: iOS* simulator and devices

	344	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

	 Skill 4.4: Develop Azure App Service Mobile Apps	 Chapter 4	 345

* Running the iOS simulator or connecting to an iOS device requires a computer running
macOS that is reachable across the network from the Windows development computer,
or running the indicated IDE on a macOS.

Deploy an Azure Mobile App Service
With the aforementioned decisions in place, you are now ready to deploy an Azure Mobile App
Service instance to provide the backend services to your app. Follow these steps:

1.	 In the Azure Portal, select New, and search for Mobile App, and select the Mobile App
entry.

2.	 Select Create.

3.	 Provide a unique name for your Mobile App.

4.	 Select an Azure subscription and Resource Group.

5.	 Select an existing App Service Plan or create a new one.

6.	 Select Create to deploy the mobile app.

Configure the mobile app
Once you have deployed your mobile app, you need to configure where it will store its tabular
data and the language (your options are C# or Node.js) in which the backend APIs are imple-
mented (which affects the programming language you use when customizing the backend
behavior). The following steps walk you through preparing the quick start solution, which you
can use as a starting point for your mobile app. Follow these steps:

1.	 In the Azure Portal, navigate to the blade for your mobile app.

2.	 From the menu, under the Deployment heading, select Quick Start.

3.	 On the General listing, select the platform you wish to target first.

4.	 On the Quick Start blade, select the button underneath the header 1 Connect a data-
base that reads You Will Need A Database In Order To Complete This Quickstart. Click
Here To Create One.”

5.	 On the Data Connections blade, select + Add.

6.	 On the Add Data Connection blade, leave the Type drop-down at SQL Database.

7.	 Select SQL Database - Configure Required Settings.

8.	 On the Database blade, select an existing Azure SQL Database, or create a new database
(and optionally a new SQL Database Server).

9.	 Back on the Add Data Connection blade, select Connection String.

10.	 Provide the name to use for referring to this connection string in configuration.

11.	 Select OK.

12.	 Select OK once more to add the data connection (and create the SQL Database if so
configured).

	346	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

13.	 In a few minutes (when creating a new SQL Database), the new entry appears in the Data
Connections blade. When it does, close the Data Connections blade.

14.	 On the Quick Start blade, underneath the header, Create A Table API, choose Node.js
and select the check box I Acknowledge That This Will Overwrite All Site Contents. Then
select the Create TodoItem table button that is enabled. If you choose to use C#, note
that you will have to download the zip provided, extract it, open it in Visual Studio, com-
pile and then publish the App Service to your Mobile App instance. This is performed in
the same way as you deploy Web Apps as described previously.

15.	 Leave the Quick Start blade open and continue to the next section.

Configure your client application
Now that you have a basic mobile app backend deployed, you are now ready to create the
application that will run on your targeted devices. You can create a new application from a
generated quick start project or by connecting an existing application:

1.	 From the Quick Start blade of your mobile app, underneath the header, Configure Your
Client Application, set the toggle to create A New App If You Want To Create A Solution
or Connect An Existing App If You Already Have A Solution Built and just need to con-
nect it to the mobile app.

2.	 If you select Create A New App, you will be provided with instructions specific to the
device platform you selected previously as well as a download link from which you can
download a generated solution that includes the code customized for access to the
deployed mobile app backend. For example, if you selected Xamarin.Forms as your
platform, you are provided with a zip file that contains a personalized project that you
can open in Visual Studio for Windows or Visual Studio for macOS, which has been pre-
configured to connect to your mobile app backend.

3.	 If you select Connect An Existing App, you are provided with instructions and code
you can copy and paste into your project to connect it to the mobile app backend.

4.	 Once you have completed the steps for either option, you can open and run the proj-
ect in the IDE and start working against your mobile app backend.

Add authentication to a mobile app
Once you have your project in place and connected to your mobile app backend, you can
enable authentication and authorization. Recall that this enables integration with identity
providers including Azure Active Directory, Facebook, Google, Twitter and Microsoft Account
such that your app users need to sign in using credentials from one of these providers. To do
so, follow these steps.

1.	 Identify the set of identity providers you want to support.

2.	 For each identity provider, you need to follow the provider’s specific instructions to reg-
ister your app and retrieve the credentials needed to authenticate using that provider.
The up-to-date instructions for each provider are available:

	 Skill 4.4: Develop Azure App Service Mobile Apps	 Chapter 4	 347

A.	 Azure Active Directory: https://docs.microsoft.com/en-us/azure/app-service-mobile/
app-service-mobile-how-to-configure-active-directory-authentication

B.	 Facebook: https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-
mobile-how-to-configure-facebook-authentication

C.	 Google: https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-
mobile-how-to-configure-google-authentication

D.	 Microsoft: https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-
mobile-how-to-configure-microsoft-authentication

E.	 Twitter: https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-
mobile-how-to-configure-twitter-authentication

3.	 Configure authentication / authorization in your mobile app.

4.	 Navigate to the blade of your mobile app in the Azure Portal.

5.	 From the menu, under the Settings header, select Authentication / Authorization.

6.	 Under the Allowed External Redirect URLs header, in the text box provide a callback
URL that will be used to invoke your application. It should be of the form [scheme]://
easyauth.callback where the value of [scheme] is a string you specify that starts with
a letter and consists of only letters and numbers. For example, myapp://easyauth.
callback.

7.	 Select Save from the command bar.

8.	 Restrict permissions to authenticated users on the service side. The approach you take
varies depending on how you configured your backend language and if you have de-
ployed custom backend code.

9.	 If you are using the Node.js backend created through the quick start in the Azure
Portal, you can control access to data on a table-by-table basis. From your Mobile
App blade, in the menu select Easy Tables, and then select the table you want to se-
cure. For all of the permission options, set the value to Authenticated Access Only and
select Save.

10.	 If you deployed a C# backend, in the controller for your project that inherits from Table-
Controller, decorate the class with the Authorize attribute. For example:

[Authorize]

 public class TodoItemController : TableController<TodoItem>

11.	 If you have deployed a customized Node.js backend, you need to modify the code ac-
cessing the table and set the access property to authenticated. For example:

table.access = 'authenticated';

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-active-directory-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-active-directory-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-facebook-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-facebook-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-google-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-google-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-microsoft-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-microsoft-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-twitter-authentication
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-how-to-configure-twitter-authentication

	348	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

MORE INFO � DETAILED STEP BY STEP FOR REQUIRING AUTHENTICATION FOR
ACCESS TO TABLES

Coverage of the implementation details for every platform supported by Mobile Apps
is out of scope for this book. To read the implementation details for your particular
platform navigate to https://docs.microsoft.com/en-us/azure/app-service-mobile/app-
service-mobile-node-backend-how-to-use-server-sdk#howto-tables-auth and use the
drop-down at the top of the article to select your platform.

12.	 Add the authentication logic to your app project. The specific steps to take vary based
upon the target platform for your app, but in general they amount adding user inter-
face elements to initiate sign-in and handling the authentication events. An important
step in the configuration of the authentication is providing the value of your scheme
you defined for the Allowed External Redirects URL (e.g., myapp).

MORE INFO  ADDING AUTHENTICATION LOGIC

For the detailed steps and boilerplate code to use for each platform, see https://docs.micro-
soft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-
users and using the drop-down list at the top select your target platform.

13.	 Run your application in your local simulator or device to verify the authentication flow.

Add offline sync to a mobile app
The offline data sync capability comes from a mix of client-side SDK and service-side features.
This capability enables reads as well as create, update and delete activity to happen against
the supporting tables even when the device is not connected to a network, and coordinates
the synchronization of data between local and cloud stores as dictated by the application
logic (e.g., network connectivity is detected or the user presses a “Sync” button). The feature
includes support for conflict detection when the same record is changed on both the client and
the backend, and it allows for the conflicts to be resolved on either the client side or service
side.

■■ On the Mobile App service side, you need a table that leverages Mobile App easy tables.
This is typically a table in SQL Database that is exposed by Mobile Apps using the OData
endpoint. Easy tables can be managed in the Mobile App blade in the portal, including
adjusting their schema, setting permissions, and modifying the service side script (for
Node.js backends) that processes the create, read, update, delete (CRUD) operations.

■■ On the client side, the Azure Mobile App SDKs provide an interface referred to as a
SyncTable that wraps access to the remote easy table. When using a SyncTable all the
CRUD operations work from a local store, whose implementation is device platform spe-
cific. The local store provides the data persistence capability on the client device. In iOS

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-users
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-users
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-users
https://docs.microsoft.com/en-us/azure/app-service-mobile/appservice-mobile-node-backend-how-to-use-server-sdk#howto-tables-auth
https://docs.microsoft.com/en-us/azure/app-service-mobile/appservice-mobile-node-backend-how-to-use-server-sdk#howto-tables-auth

	 Skill 4.4: Develop Azure App Service Mobile Apps	 Chapter 4	 349

the local store is based on Core Data, and for Windows, Xamarin, and Android the local
store is based on SQL lite.

Changes to the data are made through a sync context object that tracks the changes that
are made across all of the tables. This sync context maintains an operation queue that is an
ordered list of create, update and delete operations that have been performed against the
data locally.

■■ To modify the backend table data with the changes performed against the local store,
you have to perform a push. To populate the local store with data from the backend,
you have to perform a pull. A push operation executes a series of REST calls to your
mobile app backend that applies all the CUD changes since the last push. It’s important
to note that when you push changes, you are always pushing a set containing at least
one operation; you are not pushing a specific table. This restriction ensures that multiple
operations against the context that may span across multiple tables are replayed against
the backend table in the correct order.

■■ There is a notion of an implicit push; this occurs when you execute a pull operation but
have pending operations to push. In this case, the pull will first execute a push against
the sync context.

■■ Offline sync supports incremental sync, whereby each time you pull records from the
source only the source records that are new or have changed are retrieved (as opposed
to downloading the entire table worth of data every time). You can clear the contents of
the local store by performing a purge.

You can enable Offline Sync by following these high-level steps:

1.	 Modify the client code that accesses your easy tables to use objects of the SyncTable
variety.

2.	 Implement a method that is run when your application first launches that defines the
table schema and initializes the local store with data from the remote table.

3.	 Implement a method that launches initiate sync operation. This could be triggered from
a button or refresh gesture.

4.	 You can test the offline behavior of your app by:

5.	 Running the application once as normal and adding data to your table.

6.	 Modifying the application’s configuration so that it no longer points to the correct
URI of your mobile app backend.

7.	 Run the application again. This time the offline behavior should take affect. Make
some modifications to the data.

8.	 Restore the application’s configuration.

9.	 Run the application again and verify that the changes you made while offline ap-
pear in your easy table. To do this, navigate to the blade of your mobile app, select Easy
Tables from the menu, and then select your table to view its contents.

	350	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

MORE INFO  ADDING OFFLINE SYNC LOGIC

Coverage of the implementation details of Offline Sync for every platform supported by
Mobile Apps is out of scope for this book. To read the implementation details for your
particular platform navigate to https://docs.microsoft.com/en-us/azure/app-service-mobile/
app-service-mobile-xamarin-forms-get-started-offline-data and use the dropdown at the
top of the article to select your platform.

Add push notifications to a mobile app
Push notifications enable you to send app-specific messages to your app running across a
variety of platforms. In Azure Mobile Apps, push notification capabilities are provided by Azure
Notification Hubs, which is accessed using the Mobile Apps SDKs for the platform of choice.
Notification Hubs, in turn, abstract your application from the complexities of dealing with
the various push notification systems (PNS) that are specific to each platform, which includes
challenges like device registration with the PNS, backend services to send messages to the
PNS, and provides for routing of messages to targeted users or groups of users (which requires
maintaining a mapping of users to devices), and scaling to support such functions across a
huge base of devices. Notifications Hubs supports the sending of notifications across the most
popular push notifications services for Apple (APNS), Google (GCM), Windows (WNS), Win-
dows Phone (MPNS), Amazon (ADM), and Baidu (Android China) devices.

To add push notifications, follow these steps:

1.	 Deploy a Notification Hub with your mobile app.

2.	 Navigate to the blade of your mobile app, and on the menu under the Settings heading,
select Push.

3.	 From the Command bar, select Connect.

4.	 On the Notification Hub blade, choose an existing Notification Hub or provision a new
one. If you choose to provision a new Notification Hub, provide a name for the hub, a
name for the new namespace, and select the desired pricing tier, and then select OK.

5.	 Select the link Configure Push Notification Services.

6.	 On the Push Notification Services blade, select the PNS to which you want to connect
the Notification Hub.

7.	 On the blade for the PNS, enter the PNS specific configuration, and select Save.

8.	 Configure your backend server project to send push notifications.

MORE INFO  SENDING PUSH NOTIFICATIONS FROM THE SERVER SIDE

Coverage of the implementation details of sending push notifications for every platform sup-
ported by Mobile Apps is out of scope for this book. To read the implementation details for
your particular platform navigate to https://docs.microsoft.com/en-us/azure/app-service-mo-
bile/app-service-mobile-xamarin-forms-get-started-push#update-the-server-project-to-send-
push-notifications and use the drop-down at the top of the article to select your platform.

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-offline-data
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-offline-data
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-push#update-the-server-project-to-sendpush-notifications
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-push#update-the-server-project-to-sendpush-notifications
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-push#update-the-server-project-to-sendpush-notifications

	 Skill 4.5: Implement API Management	 Chapter 4	 351

9.	 Modify the app project to respond to push notifications.

MORE INFO  RECEIVING PUSH NOTIFICATIONS IN THE CLIENT APP

Coverage of the implementation details of receiving push notifications for every
platform supported by Mobile Apps is out of scope for this book. To read the imple-
mentation details for your particular platform navigate to https://docs.microsoft.com/
en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-
push#configure-and-run-the-android-project-optional and use the drop-down at the top
of the article to select your platform.

Skill 4.5: Implement API Management

Azure API Management is a turnkey solution for publishing, managing, securing, and analyz-
ing APIs to both external and internal customers in minutes. You can create an API gateway
for back-end services hosted anywhere, not just those hosted on Azure. Many modern APIs
protect themselves by rate-limiting consumers, meaning, limiting how many requests can be
made in a certain amount of time. Traditionally, there is a lot of work that goes into that pro-
cess. When you use API Management to manage your API, you can easily secure it and protect
it from abuse and overuse with an API key, JWT validation, IP filtering, and through quotas and
rate limits.

If you have several APIs as part of your solution, and they are hosted across several services
or platforms, you can group them all behind a single static IP and domain, simplifying com-
munication, protection, and reducing maintenance of consumer software due to API locations
changing. You also can scale API Management on demand in one or more geographical loca-
tions. Its built-in response caching also helps with improving latency and scale.

Hosting your APIs on the API Management platform also makes it easier for developers to
use your APIs, by offering self-service API key management, and an auto-generated API cata-
log through the developer portal. APIs are also documented and come with code examples,
reducing developer on-boarding time using your APIs.

API Management is made up of the following components:

■■ The API gateway is the endpoint that:

■■ Accepts API calls and routes them to your backends.

■■ Verifies API keys, JWT tokens, certificates, and other credentials.

■■ Enforces usage quotas and rate limits.

■■ Transforms your API on the fly without code modifications.

■■ Caches backend responses where set up.

■■ Logs call metadata for analytics purposes.

https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-push#configure-and-run-the-android-project-optional
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-push#configure-and-run-the-android-project-optional
https://docs.microsoft.com/en-us/azure/app-service-mobile/app-service-mobile-xamarin-forms-get-started-push#configure-and-run-the-android-project-optional

	352	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

■■ The publisher portal is the administrative interface where you set up your API program.
Use it to:

■■ Define or import API schema.

■■ Package APIs into products.

■■ Set up policies like quotas or transformations on the APIs.

■■ Get insights from analytics.

■■ Manage users.

■■ The developer portal serves as the main web presence for developers, where they can:

■■ Read API documentation.

■■ Try out an API via the interactive console.

■■ Create an account and subscribe to get API keys.

■■ Access analytics on their own usage.

This skill covers how to:
■■ Create managed APIs

■■ Configure API management policies

■■ Protect APIs with rate limits

■■ Add caching to improve performance

■■ Monitor APIs

■■ Customize the Developer Portal

Create managed APIs
The API Management service is the platform on which the API gateway, publisher portal, and
developer portal are hosted. As such, before you can create APIs, you must first create a service
instance.

Create an API Management service
1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select New on the command bar.

3.	 Select Developer Tools, and then API Management (Figure 4-75).

https://portal.azure.com

	 Skill 4.5: Implement API Management	 Chapter 4	 353

FIGURE 4-75  Creating a new API Management service instance from the Azure Portal

4.	 Provide a unique name, select a resource group and location, enter an organization
name that will appear on the developer portal and emails, an administrator email, your
pricing tier, select Pin To Dashboard, and then click Create.

Add a product
Before you can publish an API, it needs to be added to a product. A product in API Manage-
ment contains one or more APIs, as well as constraints such as a usage quota and terms of use.
This is a great way to add API access levels, like starter (limit to five calls/minute) or unlimited.
You can create several products to group APIs with their own usage rules. Developers can sub-
scribe to a product once it is published, and then begin using its APIs.

Follow these steps to add and publish a new product:

1.	 Navigate to your API Management service on the portal.

2.	 Select Publisher Portal on the top of the overview blade.

3.	 Select Products on the left-hand menu, and then click Add Product.

4.	 Within the new product form, provide a Title, which should be a descriptive name for
your product that appears on the developer and admin portals. Provide a Description
that explains the product’s purpose and any other information you want to display. The
remaining fields allow you to set your level of protection, meaning, whether your prod-
uct requires a subscription, and if so, whether the subscription needs to be approved by

	354	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

an administrator, and whether developers can subscribe more than once. Once finished,
click Save.

5.	 Once the product has been added, you need to add one or more APIs to it before you
can publish it. Select a product, and then click the Add API To Product link. This gives
you a list of APIs that you can assign to the product.

Create a new API
1.	 Navigate to your API Management service on the portal.

2.	 Select Publisher Portal on the top of the overview blade.

3.	 Select APIs on the left-hand menu, and then click Add API.

4.	 Within the new product form (Figure 4-76):

A.	 Provide a unique Web API Name, which should be a descriptive name for your API
that appears on the developer and publisher portals.

B.	 Enter the Web Service URL, which is the HTTP endpoint for your API.

C.	 Enter the Web Service URL suffix, which is unique to your API, and is the last part of
the API’s public URL.

D.	 Select the desired Web API URL Scheme (HTTP or HTTPS (default)).

E.	 Select the product you created and any others you want to add it to.

F.	 When finished, click OK.

FIGURE 4-76  Completing the Response action form for the logic app

	 Skill 4.5: Implement API Management	 Chapter 4	 355

Add an operation to your API
Before you can use your new API, you must add one or more operations. These operations do
things like enable service documentation, the interactive API console, set per operation limits,
set request/response validation, and configure operation-level statistics.

1.	 Navigate to your API Management service on the portal.

2.	 Select Publisher Portal on the top of the overview blade.

3.	 Select APIs on the left-hand menu, select your API from the list, and then select the
Operations tab.

4.	 Click + Add Operation.

5.	 By default, the Signature tab will be selected. The Signature is the URL template used
to send requests to the underlying API. Here you select (Figure 4-77):

A.	 The HTTP verb (GET, POST, etc.).

B.	 Type in the URL template (e.g. /contacts/{id}).

C.	 Type in a display name, and description.

D.	 You can also add a rewrite URL template to call the back-end with a converted URL.

FIGURE 4-77  Adding a new operation to a managed API

6.	 Select the Parameters tab. New query parameters are automatically generated based
on the URL template defined in the signature. In our case, an id template parameter was
generated because the URL template of our signature for this operation is /contacts/{id}.
Specify the type (string, number, etc.) and provide a description for each query param-
eter (Figure 4-78).

	356	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-78  URL template parameters

7.	 You can optionally use the other tabs to specify caching and responses for the opera-
tion. Click Save when finished.

Publish your product to make your API available
The last step to making your API available to other developers is to publish your product to
which this and any other APIs have been added.

To publish your product, follow these steps:

1.	 Navigate to your API Management service on the portal.

2.	 Select Publisher portal on the top of the overview blade.

3.	 Select Products on the left-hand menu, and then click select your product from the list.

4.	 The summary tab will indicate whether your product has been published, and any
associated APIs. You must have at least one API added before you can publish. Click the
Publish link.

5.	 When the confirmation appears, click Yes, and then publish it.

6.	 After publishing, select the Visibility tab. Choose which roles, such as developers, you
want to be able to see the product on the developer portal and subscribe to the prod-
uct. Click Save when finished.

MORE INFO  ADD AND PUBLISH AN API PRODUCT

To learn more about creating and publishing a product in API Management see https://docs.
microsoft.com/azure/api-management/api-management-howto-add-products.

Configure API Management policies
API Management policies allow you, as the publisher, to determine the behavior of your APIs
through configuration, requiring no code changes. You define a policy definition, which is a
collection of statements that are executed sequentially on the request or response of your API.
There are many policies you can select from, such as whether to allow cross domain calls, how
to authenticate requests, find and replace strings in the body, setting rate limits, and many
more.

https://docs.microsoft.com/azure/api-management/api-management-howto-add-products
https://docs.microsoft.com/azure/api-management/api-management-howto-add-products

	 Skill 4.5: Implement API Management	 Chapter 4	 357

MORE INFO  FULL LIST OF POLICY STATEMENTS

See the Policy Reference for a full list of policy statements and their settings at https://docs.
microsoft.com/azure/api-management/api-management-policy-reference.

Because the API gateway receives all requests to your APIs, the policies you defined are
applied at this level. The policies statements you choose affect both inbound requests and
outbound responses. Policies can be applied globally, or scoped to the Product, API, or Op-
eration level.

To configure a policy, follow these steps:

1.	 Navigate to your API Management service on the portal.

2.	 Select Publisher Portal on the top of the overview blade.

3.	 Select Policies on the left-hand menu.

4.	 At the top of the policies page, you will find select lists to define the policy scope at
the Product, API, and Operations levels. If you do not select a specific operation, all
operations are included in this policy. To create a policy scoped globally, simply deselect
any options from these select lists (Figure 4-79).

FIGURE 4-79  Policies page for an API Management service in the Publisher portal

5.	 To add a new policy to the selected policy scope, select + Add Policy link in the Policy
definition area.

6.	 The policy definition will appear in XML format. To add an inbound policy that limits
the call rate per key, place your cursor just inside the content of the inbound XML
element, and then click the Limit Call Rate Per Key policy statement on the right. This
adds the statement to rate limit inbound requests to the number of calls you specify
within your defined period of time in seconds, and any other conditions you desire
(Figure 4-80).

https://docs.microsoft.com/azure/api-management/api-management-policy-reference
https://docs.microsoft.com/azure/api-management/api-management-policy-reference

	358	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-80  Editing the policy definition for an API Management service in the Publisher portal

7.	 When you are finished, click Save. Your changes will be immediately applied to the API
Management gateway.

MORE INFO  APPLYING POLICIES IN API MANAGEMENT

For more information about how to apply policies in API Management see: https://docs.
microsoft.com/azure/api-management/api-management-howto-policies.

Protect APIs with rate limits
Protecting your published APIs by throttling incoming requests is one of the most attractive
offerings of API Management. When you open up your API for others to use, it is difficult to
guarantee a promised level of service if you cannot control the demand on your resources.
Or, you may be interested in controlling your resource costs by limiting requests, preventing
you from unnecessarily scaling up your services to meet unexpected demand. Rate limiting, or
throttling, is common practice when providing APIs. Oftentimes, API publishers offer varying
levels of access to their APIs. For instance, you may choose to offer a free tier with very restric-
tive rate limits, and various paid tiers offering higher request rates. This is where API Manage-
ment’s products come into play. Define products for your varying service levels, and apply rate
limiting policies to each product, accordingly.

Create a product to scope rate limits to a group of APIs
The following steps show how to create a free trial, adding APIs that developers can use on a
rate-limited free trial basis:

1.	 Navigate to your API Management service on the portal.

2.	 Select Publisher Portal on the top of the Overview blade.

3.	 Create a new product named Free Trial.

https://docs.microsoft.com/azure/api-management/api-management-howto-policies
https://docs.microsoft.com/azure/api-management/api-management-howto-policies

	 Skill 4.5: Implement API Management	 Chapter 4	 359

4.	 Set the description to Subscribers Will Be Able To Run 10 Calls/Minute Up To A Maxi-
mum Of 200 Calls/Week.

5.	 Set the visibility to Developers.

6.	 Add your APIs to the product and publish it.

7.	 Go to Policies and set the policy scope to the free trial product.

8.	 Click + Add Policy.

9.	 Position the cursor within the inbound element.

10.	 Scroll through the list of policy statements and select Limit Call Rate Per Subscription.
Modify the XML to set calls to 10 and renewal-period to 60. You can delete the API and
operation elements because they are not needed in this scenario.

11.	 Position your cursor immediately below the rate-limit element you added. Select Set Us-
age Quota Per Subscription in the list of policy statements. Modify the XML to set calls
to 200 and renewal-period to 604800. You can delete the API and operation elements
because they are not needed in this scenario.

12.	 Save your changes. In the end, your inbound policy should look as follows (Figure 4-81):

FIGURE 4-81  Editing the policy definition to set rate limits on a product

Advanced rate limiting
In its simplest implementation, you can control the rate of requests or the total requests/data
transferred. These constraints do not help when individual end-users of your API consume
exponentially more of the quota than other users. If you want to avoid having high-usage con-
sumers limit access to occasional users, by using up the pool of available resources, consider
using the new rate-limit-by-key and quota-by-key policies. These are more flexible rate limit-

	360	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

ing policies that allow you to define expressions to track traffic usage by user-level information,
such as IP address and user identity.

Here is an example of rate and quota limiting by IP address:

<rate-limit-by-key calls="10"
 renewal-period="60"
 counter-key="@(context.Request.IpAddress)" />

<quota-by-key calls="1000000"
 bandwidth="10000"
 renewal-period="2629800"
 counter-key="@(context.Request.IpAddress)" />

MORE INFO  ADVANCED RATE LIMITING

For more information about advanced rate limiting through flexible request throttling
see https://docs.microsoft.com/azure/api-management/api-management-sample-flexible-
throttling.

Add caching to improve performance
Caching is a great way to limit your resource consumption, like bandwidth, as well as reduce
latency for infrequently changing data. API Management allows you to configure response
caching on operations.

Follow these steps to add response caching for your API (Figure 4-82), and review caching
policies:

1.	 Navigate to your API Management service on the portal.

2.	 Select Publisher portal on the top of the overview blade.

3.	 Select APIs on the left-hand menu.

4.	 Select the ECHO API, which is automatically added to new API Management services.

5.	 Select the Operations tab, and then select GET Retrieve Resource (Cached) from the
list.

https://docs.microsoft.com/azure/api-management/api-management-sample-flexible-throttling
https://docs.microsoft.com/azure/api-management/api-management-sample-flexible-throttling

	 Skill 4.5: Implement API Management	 Chapter 4	 361

FIGURE 4-82  The API operations tab

6.	 Select the Caching tab (Figure 4-83) to view the caching settings. To enable cach-
ing on an operation, select the Enable check box. You can modify the keyed operation
responses by setting values in the Vary By Query String Parameters and Vary By Headers
fields. In this case, cache keys are being computed on two different headers: Accept
and Accept-Charset. Duration sets the cache duration in seconds. Here it is set to 3600
seconds.

FIGURE 4-83  Caching settings for the GET operation of the Echo API

	362	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

7.	 Select Policies from the left-hand menu of the publisher portal.

8.	 Select Echo API from the API select list, and then Retrieve Resource (Cached) from the
Operation select list.

9.	 Here you see that the caching policies in the policy editor reflect the values in the
Caching tab of the operation. Any changes here are reflected on the Caching tab, and
vice-versa.

MORE INFO  CUSTOM CACHING IN API MANAGEMENT

To learn how to implement custom caching see https://docs.microsoft.com/azure/api-man-
agement/api-management-sample-cache-by-key.

Monitor APIs
API Management provides a few methods by which you can monitor resource usage, service
health, activities, and analytics. If you want real-time monitoring, as well as richer debugging,
you can enable diagnostics on your logic app and send events to OMS with Log Analytics, or to
other services, such as Azure Storage, and Event Hubs. Select Diagnostics Logs from the left-
hand menu of your API Management service, and then select Turn On Diagnostics to archive
your gateway logs and metrics to a storage account, stream to an event hub, or send to Log
Analytics on OMS.

Activity logs provide insight into the operations that were performed on your API Manage-
ment services, so you can determine the “what, who, and when” for any write operations taken
on your API Management services. Select Activity Log from the left-hand menu to filter and
view these logs. From here, you can select Export to archive these logs in a storage account or
send them to an event hub. You can also select Log Analytics to send the logs to OMS.

■■ Select Metrics under Monitoring in the left-hand menu of your API Management service
to view the state and health of your APIs in near real-time. These metrics are emitted
every minute. You can monitor gateway requests, determine which of those were suc-
cessful or failed, and also view unauthorized gateway requests. It displays an interactive
chart based on the selected metrics.

■■ Select Alert rules under Monitoring to create alerts based on metrics (such as any time
failed gateway requests occur over a one-hour period), activity logs (with categories
such as security, service health, autoscale, etc.), and near real time metrics, based on the
data captured by your API Management service’s metrics, in time periods spanning from
one minute to 24 hours. Alerts can be emailed to one or more recipients, route alerts to
a webhook, or run a logic app.

Open the publisher portal to view Analytics. This shows an overview of usage by developers,
top products, top subscriptions, top APIs, and top operations. Each of these categories show
the number of successful calls versus blocked or failed calls, as well as bandwidth used and
average response time, when applicable. The usage tab shows number of calls and bandwidth

https://docs.microsoft.com/azure/api-management/api-management-sample-cache-by-key
https://docs.microsoft.com/azure/api-management/api-management-sample-cache-by-key

	 Skill 4.5: Implement API Management	 Chapter 4	 363

by region, highlighting countries on a map, corresponding with the origin of the requests. You
can select any continent or country to drill down further into the selected region. The health
tab shows statistics about status codes, caching, API response time, and Service response time.
Finally, the activity tab shows more detailed information about requests by developers, on
products, by subscriptions, for APIs, and on which operations.

MORE INFO  MONITOR API MANAGEMENT

To learn more about how to monitor an API Management service see https://docs.microsoft.
com/azure/api-management/api-management-howto-use-azure-monitor.

Customize the developer portal
The API Management developer portal is built on top of a content management system (CMS),
which gives you flexibility on ways you can customize its layout, content, and styles. Because
this is the portal through which developers discover, subscribe to, and learn more about your
APIs, you may wish to alter the look and feel to more closely match your company’s website, or
craft the experience for your end users in general.

There are three different methods by which you can customize the developer portal.

Edit static page content and layout elements
The layout of every page of the developer portal is based on small page elements called wid-
gets (Figure 4-84).

FIGURE 4-84  The widget layout of the developer portal

https://docs.microsoft.com/azure/api-management/api-management-howto-use-azure-monitor
https://docs.microsoft.com/azure/api-management/api-management-howto-use-azure-monitor

	364	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

The content area on the page is specific to an individual page’s contents. Any Contents wid-
get can be edited to modify that page’s content. The page layout elements are comprised of
the remaining widgets. Any edits made to these layout widgets are applied to all pages within
the portal.

To edit the contents of a layout widget, perform the following steps:

1.	 Navigate to your API Management service on the portal.

2.	 Select Publisher portal on the top of the overview blade.

3.	 Select Widgets on the left-hand menu, underneath the DEVELOPER PORTAL section.

4.	 Select the widget you wish to edit, such as Banner.

5.	 The Edit Widget form allows you to select the zone for the widget, layer, position, title,
name (used for CSS), and its HTML.

6.	 Make changes as desired, and then click Save. You immediately see your changes on
the developer portal.

To edit the contents of a page, perform the following steps:

1.	 Navigate to your API Management service on the portal.

2.	 Select Publisher portal on the top of the overview blade.

3.	 Select Content on the left-hand menu, underneath the DEVELOPER PORTAL section.

4.	 Select the page you wish to edit, such as Welcome.

5.	 The Edit Page form allows you change the page title, select whether you wish to dis-
play the title on the front-end, and its HTML.

6.	 Make changes as desired, and then click Save. When you are satisfied with your
changes, click Publish Now to make those changes visible to everyone. You immediately
see your changes on the developer portal.

Using these tools, you can add new layout widgets, as well as new pages. Use the Naviga-
tion area to create custom menu links or rearrange their order.

Customize the styling
Change the colors, fonts, spacing, and other styles by altering the style rules in the developer
portal. For instance, change the colors and fonts to match your company’s website. To change
these style rules, you need to be logged in to the developer portal as an administrator. This
requires opening the developer portal from the publisher portal.

1.	 Navigate to your API Management service on the portal.

2.	 Select Publisher portal on the top of the overview blade.

3.	 Select Developer portal from the top-right of the page.

4.	 On the developer portal, hover your mouse over the customization icon to display the
customization toolbar (Figure 4-85), and then select Styles from the toolbar.

	 Skill 4.5: Implement API Management	 Chapter 4	 365

FIGURE 4-85  The customization toolbar in the developer portal

5.	 In the list of editable styles that appear, you can either look through the list and
change style values as you see fit, or click the Select An Element On The Page button,
and then select any element on the page to view only its styles.

6.	 When you are finished making edits, click the Publish button at the bottom of the
customization toolbar. This will show a preview of your changes. When satisfied, click
the Publish Customizations button to make your changes publicly available.

Customize using templates
Use templates to customize the system-generated developer pages, such as API docs, user
authentication, products, etc. Template markup uses the DotLiquid syntax, based on Ruby’s
Liquid markup, to alter the appearance and behavior of the corresponding page. Dynamic
content in the template is controlled through tokenized strings. When you select a template to
edit, there are three panes that are displayed. The top pane is a preview of the corresponding
page. On the bottom left is the template editing pane where you edit the markup, and on the
bottom right is the template data pane. This pane serves as a guide to the data model for the
entities available in the selected template. You can reference the template data when adding
tokenized strings to the template beside it.

To edit templates, follow these steps:

1.	 Navigate to your API Management service on the portal.

2.	 Select Publisher portal on the top of the overview blade.

3.	 Select Developer portal from the top-right of the page.

4.	 On the developer portal, hover your mouse over the customization icon to display the
customization toolbar, and then select Templates from the toolbar.

5.	 Select the template you wish to edit from the list.

6.	 Alter the template markup, using the bottom-left template editing pane. Here you can
use a mix of HTML and tokenized strings. Reference the template data to the right to
view tokenized strings you can add to the template, and the values they will display if
you reference them. All changes will update the preview pane on top in real time.

7.	 When finished editing, click the save icon in the template editing pane.

	366	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

8.	 Saved templates can be published either individually, or all together. To publish an indi-
vidual template, click Publish in the template editor.

9.	 Click Yes to confirm and make your changes to the template live on the developer
portal.

MORE INFO  EDIT STATIC PAGE CONTENT AND LAYOUT ELEMENTS

To learn more about editing static page content and layout elements on the developer
portal see https://docs.microsoft.com/azure/api-management/api-management-modify-
content-layout.

MORE INFO  CUSTOMIZE THE STYLING

For more information on how customize the styling of the developer portal, see https://
docs.microsoft.com/azure/api-management/api-management-customize-styles.

MORE INFO  CUSTOMIZE USING TEMPLATES

For more information on how to customize the developer portal using templates see https://
docs.microsoft.com/azure/api-management/api-management-developer-portal-templates.

Skill 4.6: Implement Azure Functions and WebJobs

Azure Functions is a serverless compute service that enables you to run code on-demand with-
out having to explicitly provision or manage infrastructure. Use Azure Functions to run a script
or piece of code in response to a variety of events from sources such as:

■■ HTTP requests

■■ Timers

■■ Webhooks

■■ Azure Cosmos DB

■■ Blob

■■ Queues

■■ Event Hub

When it comes to implementing background processing tasks, the main options in Azure
are Azure Functions and WebJobs. It is important to mention, however, that Functions are ac-
tually built on top of WebJobs. The choice to use one or the other really depends on the prob-
lem you are trying to solve. For example, if you already have an app service running a website
or a web API and you require a background process to run in the same context, a WebJob
makes the most sense. Here are two examples that may drive you to using a WebJob:

https://docs.microsoft.com/azure/api-management/api-management-modify-content-layout
https://docs.microsoft.com/azure/api-management/api-management-modify-content-layout
https://docs.microsoft.com/azure/api-management/api-management-customize-styles
https://docs.microsoft.com/azure/api-management/api-management-customize-styles
https://docs.microsoft.com/azure/api-management/api-management-developer-portal-templates
https://docs.microsoft.com/azure/api-management/api-management-developer-portal-templates

	 Skill 4.6: Implement Azure Functions and WebJobs	 Chapter 4	 367

■■ The Service Plan  You want to share compute resources between the website or API
and the WebJob.

■■ Shared libraries  The WebJob should share libraries that run the website or API.

Otherwise, for situations where you want to externalize a process so that it runs and scales
independently from your web application or API environment, or you are implementing an
event handler in response to some external event (i.e., a Webhook); Azure Functions are the
more modern serverless technology to choose.

MORE INFO  AZURE FUNCTIONS

For a general references on Azure Functions see https://docs.microsoft.com/en-us/azure/
azure-functions/.

This skill covers how to:
■■ Create Azure Functions

■■ Implement a webhook function

■■ Create an event processing function

■■ Implement an Azure-connected function

■■ Integrate a Function with storage

■■ Debug a Function

■■ Design and implement a custom binding

■■ Implement and configure proxies

■■ Integrate with App Service Plan

Create Azure Functions
The Azure portal gives you a quick and easy way to create a functions app, add functions based
on a template and test the function.

NOTE  VISUAL STUDIO 2017

You can also develop, test, and publish functions using Visual Studio 2017.

To create a function app in the portal follow these steps (Figure 4-86):

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select New on the command bar.

3.	 Select Compute, and then Function App.

4.	 Click Create and supply the app name, subscription, resource group, hosting plan, loca-
tion, and storage plan (if you select Consumption plan).

https://docs.microsoft.com/en-us/azure/azure-functions/
https://docs.microsoft.com/en-us/azure/azure-functions/
https://portal.azure.com

	368	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

NOTE  CONSUMPTION PLANS

Consumption plan means that resources are added dynamically as required by your function.

FIGURE 4-86  The Create Function App blade

5.	 After a few minutes, the Functions App is created (Figure 4-87).

FIGURE 4-87  A new function app

MORE INFO  CREATING FUNCTIONS WITH AZURE CLI

You can also create functions using Azure CLI and from Visual Studio. See these references
at: https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-
function-azure-cli and https://docs.microsoft.com/en-us/azure/azure-functions/functions-
create-your-first-function-visual-studio.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function-azure-cli
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-first-azure-function-azure-cli
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-your-first-function-visual-studio
https://docs.microsoft.com/en-us/azure/azure-functions/functions-create-your-first-function-visual-studio

	 Skill 4.6: Implement Azure Functions and WebJobs	 Chapter 4	 369

Implement a Webhook function
Visual Studio provides a complete development and debugging environment for Azure Func-
tions with the addition of Azure Functions Extension. To create a Webhook function using
Visual Studio 2017, follow these steps:

1.	 Ensure you have the Functions App Visual Studio Extension installed first (Figure 4-88).

FIGURE 4-88  Azure Functions and WebJobs Tools

2.	 In the New Project dialog, expand Visual C# > Cloud node, select Azure Functions,
type a Name for your project, and click OK (Figure 4-89).

FIGURE 4-89  Selecting Azure Functions from the New Project dialog

	370	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

3.	 This creates a new Functions App in your subscription. You may have to log in to the
Azure portal to complete the process.

4.	 From Visual Studio, go to Solution Explorer, right-click the project node, and select
Add > New Item. Select Azure Function, and click Add.

5.	 From the New Azure Function dialog, select Generic WebHook, type the function name,
and click OK (Figure 4-90).

FIGURE 4-90  Selecting the type of Azure Function

6.	 This generates an initial implementation for your function. The FunctionName attribute
sets the name of your function. The HttpTrigger(WebHookType = “genericJson”) at-
tribute indicates the message that triggers the function.

using Microsoft.Azure.WebJobs;
using Microsoft.Azure.WebJobs.Host;
using Newtonsoft.Json;
using System.Net;
using System.Net.Http;
using System.Threading.Tasks;
namespace SolVsFunctionapp
{
 public static class GenericWebhookFunction
 {
 [FunctionName("GenericWebhookFunction")]
 public static async Task<object> Run([HttpTrigger(WebHookType =
"genericJson")]HttpRequestMessage req, TraceWriter log)
 {
 log.Info($"Webhook was triggered!");

 string jsonContent = await req.Content.ReadAsStringAsync();
 dynamic data = JsonConvert.DeserializeObject(jsonContent);

 if (data.first == null || data.last == null)
 {

	 Skill 4.6: Implement Azure Functions and WebJobs	 Chapter 4	 371

 return req.CreateResponse(HttpStatusCode.BadRequest, new
 {
 error = "Please pass first/last properties in the input
object"
 });
 }

 return req.CreateResponse(HttpStatusCode.OK, new
 {
 greeting = $"Hello {data.first} {data.last}!"
 });
 }
 }
}

7.	 You ran run the function from Visual Studio directly using Azure Functions Tools. Press
F5 to run. If prompted, accept the download and install Azure Functions Core tools.

8.	 You can copy the URL of your function from the Azure Function runtime output (Figure
4-91).

FIGURE 4-91  The console output after running a Webhook function from Visual Studio

9.	 You can now post a JSON payload to the function using any tool that an issue HTTP
requests to test the function.

Create an event processing function
To create an event processing function, please complete these steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Go to your Function App, such as the one created in the previous section, and click the +
sign to create a new function (Figure 4-92).

FIGURE 4-92  The Function Apps blade where you can create a new function

https://portal.azure.com

	372	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

3.	 Select Timer and CSharp, and select Create This Function (Figure 4-93).

FIGURE 4-93  The Function Apps blade where you can choose the type of function

4.	 This creates a skeleton function that runs based on a timer. You can edit the function.
json file to adjust settings for the function (Figure 4-94).

FIGURE 4-94  A new timer-based function

5.	 You can view the output of the function and any logs emitted as it executes.

Implement an Azure-connected function
To create an Azure-connected function using Azure Queues, follow these steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Go to your Function App, such as the one used in the previous section, and click the +
sign to create a new function.

https://portal.azure.com

	 Skill 4.6: Implement Azure Functions and WebJobs	 Chapter 4	 373

3.	 Select QueueTrigger - C#, provide a name for the function, provide the name of the
queue and the storage account that it belongs to. Click Create to create the function
(Figure 4-95).

FIGURE 4-95  The setup for a QueueTrigger

4.	 A skeleton implementation for the function is created. This is triggered for each mes-
sage written to the specified queue (Figure 4-96).

FIGURE 4-96  The code behind the QueueTrigger function

5.	 To complete the integration, create the storage account and queue that you specified
when creating the function. From the function app definition, select the Integrate tab,
and select the storage queue under Triggers. Expand the Documentation link and enter
the storage account name and key. The function will use these credentials to connect to
the storage account (Figure 4-97).

	374	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-97  The integration blade for setting up the storage queue trigger credentials

To test the function, add a message to the queue. After a few seconds the function log in
the portal shows output from processing the message (Figure 4-98).

FIGURE 4-98  The log output for the function after processing a single message

Integrate a function with storage
To create a function integrated with Azure Storage Blobs, follow these steps:

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Go to your Function App, such as the one used in the previous section, and click the +
sign to create a new function.

https://portal.azure.com

	 Skill 4.6: Implement Azure Functions and WebJobs	 Chapter 4	 375

3.	 Select BlobTrigger - C#, provide a name for the function, provide the path to the blob
container item and the storage account that it belongs to. Click Create to create the
function (Figure 4-99).

FIGURE 4-99  The setup for a BlobTrigger

4.	 A skeleton implementation for the function is created. This is triggered for each blob
written to the specified storage container (Figure 4-100).

FIGURE 4-100  The code behind the BlobTrigger function

5.	 To complete the integration, create the storage account and blob container that
you specified when creating the function. From the function app definition, select the
Integrate tab, and select Azure Blob Storage under Triggers. Expand the Documentation
link, and enter the storage account name and key. The function uses these credentials to
connect to the storage account (Figure 4-101).

	376	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-101  The integration blade for setting up the blob trigger credentials

6.	 To test the function, add a file to the blob container. After a few seconds the function
log in the portal shows output from processing the message, as illustrated in the previ-
ous section for Azure storage queues.

Design and implement a custom binding
Function triggers indicate how a function is invoked. There are a number of predefined trig-
gers, some already discussed in previous sections, including:

■■ HTTP triggers

■■ Event triggers

■■ Queues and topic triggers

■■ Storage triggers

Every function must have one trigger. The trigger is usually associated with a data payload
that is supplied to the function. Bindings are a declarative way to map data to and from func-
tion code. Using the Integrate tab (as shown in previous sections to connect a Queue to a func-
tion, for example) you can provide connection settings for such a data binding activity.

MORE INFO  TRIGGERS AND BINDINGS

For additional details on triggers and bindings available to Azure Functions, and how they
work, see https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-
bindings.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings

	 Skill 4.6: Implement Azure Functions and WebJobs	 Chapter 4	 377

EXAM TIP

You can also create custom input and output bindings to assist with reducing code bloat in
your functions by encapsulating reusable, declarative work into the binding. For details on
how to implement custom bindings see https://github.com/Azure/azure-webjobs-sdk/wiki/
Creating-custom-input-and-output-bindings.

Debug a Function
You can use VS Code or Visual Studio 2017 to debug an Azure Function. For more information
on working with local Functions projects and local debugging, see: https://docs.microsoft.com/
en-us/azure/azure-functions/functions-run-local.

Implement and configure proxies
If you have a solution with many functions you’ll find it can become work to manage given the
different URLs, naming, and versioning potentially related to each function. An API Proxy acts
as a single point of entry to functions from the outside world. Instead of calling the individual
function URLs, you provide a proxy as a facade to your different function URLs.

NOTE  API PROXIES

API Proxies make sense in HTTP-bound Azure Functions. They may work for other event-
driven functions, however, HTTP triggers are best suited for their functionality. In addi-
tion, API Proxies are in preview at the time of this writing and do not include any security
features. As an alternative, you can use API Management for a fully featured solution.

To create a simple API Proxy, follow these steps (Figure 4-102):

1.	 Consider an existing function that includes the function code (API key) and any query
string parameters in the URL such as the following example:

https://sol-newfunctionapp.azurewebsites.net/api/
AirplanesApi?code=N8eJPFEkD1MkOeQngOqRsaLVxeHRQ4QcxacFRdLtMDBdak3eeN/
kNQ==&id=0099991

2.	 API proxies require two important pieces of information:

A.	 The Route Template  Provides a template of how the proxies are triggered, for
example a REST-compliant API path that removes the need for the function code
and query string parameters:

/api/airplanes/86327

B.	 The Backend URL  The function URL to match to.

https://github.com/Azure/azure-webjobs-sdk/wiki/Creating-custom-input-and-output-bindings
https://github.com/Azure/azure-webjobs-sdk/wiki/Creating-custom-input-and-output-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local
https://docs.microsoft.com/en-us/azure/azure-functions/functions-run-local

	378	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-102  The settings while creating a new API proxy

3.	 Update the Backend URL too so that it uses the variables provided in the route tem-
plate.

https://sol-newfunctionapp.azurewebsites.net/api/{rest}Api?code=q/
vTyTaw4wTzyFuY16wuMOnUPEhJLzRFqKRDXaChGz3/HzS0myMaNw==&id={id}.

4.	 When you request the URL, the variables in the route template (i.e., {rest} and {id}) are
replaced with whatever is passed in the request. For example, this URL:

https://sol-newfunctionapp.azurewebsites.net/api/airplanes/3434

Routes to this URL:

https://sol-newfunctionapp.azurewebsites.net/api/airplanesApi?code=q/
vTyTaw4wTzyFuY16wuMOnUPEhJLzRFqKRDXaChGz3/HzS0myMaNw==&id=3434

EXAM TIP

API proxies have the ability to modify the requests and responses on the fly.

MORE INFO  API PROXIES

For more details about API Proxies see https://docs.microsoft.com/en-us/azure/azure-func-
tions/functions-proxies.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-proxies
https://docs.microsoft.com/en-us/azure/azure-functions/functions-proxies

	 Skill 4.7: Design and Implement Azure Service Fabric apps	 Chapter 4	 379

Integrate with App Service Plan
Functions can operate in two different modes:

■■ Consumption Plan  Where your function is allocated dynamically to the amount of
compute power required to execute under the current load.

■■ App Service Plan  Where your function is assigned a specific app service hosting plan
and is limited to the resources available to that hosting plan.

For more information about the difference between Consumption and App Service Plans
see: https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale. For more informa-
tion about setting up an App Service Plan see: https://docs.microsoft.com/en-us/azure/app-
service/azure-web-sites-web-hosting-plans-in-depth-overview.

Skill 4.7: Design and Implement Azure Service Fabric
apps

Azure Service Fabric is a platform that makes it easy to package, deploy, and manage
distributed solutions at scale. It provides an easy programming model for building microser-
vices solutions with a simple, familiar, and easy to understand development experience
that supports stateless and stateful services, and actor patterns. In addition, to providing
a packaging and deployment solution for these native components, Service Fabric also
supports the deployment of guest executables and containers as part of the same managed
and distributed system.

The following list summarizes these native and executable components:

■■ Stateless Services  Stateless Fabric-aware services that run without managed state.

■■ Stateful Services  Stateful Fabric-aware services that run with managed state where
the state is close to the compute.

■■ Actors  A higher level programming model built on top of stateful services.

■■ Guest Executable  Can be any application or service that may be cognizant or not
cognizant of Service Fabric.

■■ Containers  Both Linux and Windows containers are supported by Service Fabric and
may be cognizant or not cognizant of Service Fabric.

This skill provides an overview of the Service Fabric programming experience.

MORE INFO  SERVICE FABRIC OVERVIEW

For an overview of Service Fabric see https://docs.microsoft.com/en-us/azure/service-fabric.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale
https://docs.microsoft.com/en-us/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview
https://docs.microsoft.com/en-us/azure/app-service/azure-web-sites-web-hosting-plans-in-depth-overview
https://docs.microsoft.com/en-us/azure/service-fabric

	380	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

This skill covers how to:
■■ Create a Service Fabric application

■■ Add a web front end to a Service Fabric application

■■ Build an Actors-based service

■■ Monitor and diagnose services

■■ Deploy an application to a container

■■ Migrate apps from cloud services

■■ Scale a Service Fabric app

■■ Create, secure, upgrade, and scale Service Fabric Cluster in Azure

Create a Service Fabric application
A Service Fabric application can consist of one or more services. The application defines the
deployment package for the services, and each service can have its own configuration, code,
and data. A Service Fabric cluster can host multiple applications, and each has its own indepen-
dent deployment and upgrade lifecycle.

MORE INFO  SERVICE FABRIC APPLICATIONS

The following reference has additional information about the Service Fabric application and
related concepts at https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-
application-model.

In this skill you create a new Service Fabric application that has a stateful service. This service
is reachable via RPC and is called by a web front end created in the next section. The service is
called Lead Generator and returns the current count for the number of leads that have been
generated and persisted with the service. Figure 4-103 illustrates the service endpoint.

FIGURE 4-103  A simple stateful service endpoint supporting RPC communication

To create a new Service Fabric application, follow these steps:

1.	 Launch Visual Studio, and then select File > New > Project.

2.	 In the New Project dialog, select Service Fabric Application within the Cloud category.
Provide a name and location for your new project, nd then click OK. In this example the
name is LeadGenerator (Figure 4-104).

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-model
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-application-model

	 Skill 4.7: Design and Implement Azure Service Fabric apps	 Chapter 4	 381

FIGURE 4-104  The New Project dialog where you can select Service Fabric Application as the proj-
ect type

3.	 Select Stateful Service from the list of service templates and provide a name,
LeadGenerator.Simulator as shown here.

FIGURE 4-105  The New Service Fabric Service dialog where you can select Stateful Service as the
service template

4.	 From Solution Explorer, expand the new LeadGenerator.Simulator node and expand the
PackageRoot folder where you’ll find ServiceManifest.xml. This file describes the service
deployment package and related information. It includes a section that describes the
service type that is initialized when the Service Fabric runtime starts the service:

<ServiceTypes>
 <StatefulServiceType ServiceTypeName="SimulatorType" HasPersistedState="true" />
</ServiceTypes>

5.	 A service type is created for the project; in this case the type is defined in the Simula-
tor.cs file. This service type is registered when the program starts, in Program.cs, so that
the Service Fabric runtime knows which type to initialize when it creates an instance of
the service.

	382	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

private static void Main()
{
 try
 {
 ServiceRuntime.RegisterServiceAsync("SimulatorType",
 context => new Simulator(context)).GetAwaiter().GetResult();
 ServiceEventSource.Current.ServiceTypeRegistered(Process.
GetCurrentProcess().Id,
 typeof(Simulator).Name);
 Thread.Sleep(Timeout.Infinite);
 }
 catch (Exception e)
 {
 ServiceEventSource.Current.ServiceHostInitializationFailed(e.ToString());
 throw;
 }
}

6.	 The template produces a default implementation for the service type, with a RunAsync
method that increments a counter every second. This counter value is persisted with the
service in a dictionary using the StateManager, available through the service base type
StatefulService. This counter is used to represent the number of leads generated for the
purpose of this example.

protected override async Task RunAsync(CancellationToken cancellationToken)
{
 var myDictionary = await this.StateManager.GetOrAddAsync<IReliableDictionary<s
tring, long>>("myDictionary");
 while (true)
 {
 cancellationToken.ThrowIfCancellationRequested();
 using (var tx = this.StateManager.CreateTransaction())
 {
 var result = await myDictionary.TryGetValueAsync(tx, "Counter");
 ServiceEventSource.Current.ServiceMessage(this.Context, "Current
Counter Value: {0}",
 result.HasValue ? result.Value.ToString() : "Value does not
exist.");
 await myDictionary.AddOrUpdateAsync(tx, "Counter", 0, (key, value)
 => ++value);
 await tx.CommitAsync();
 }
 await Task.Delay(TimeSpan.FromSeconds(1), cancellationToken);
 }
}

7.	 This service will run, and increment the counter as it runs persisting the value, but by
default this service does not expose any methods for a client to call it. Before you can
create an RPC listener you add the required nuget package, Microsoft.ServiceFabric.
Services.Remoting.

	 Skill 4.7: Design and Implement Azure Service Fabric apps	 Chapter 4	 383

8.	 Create a new service interface using the IService marker interface from the Microsoft.
ServiceFabric.Services.Remoting namespace, that indicates this service can be called
remotely:

using Microsoft.ServiceFabric.Services.Remoting;
using System.Threading.Tasks;
public interface ISimulatorService : IService
{
 Task<long> GetLeads();
}

9.	 Implement this interface on the Simulator service type, and include an implementation
of the GetLeads method to return the value of the counter:

public async Task<long> GetLeads()
{
 var myDictionary = await StateManager.GetOrAddAsync<IReliableDictionary<stri
ng, long>>("myDictionary");
 using (var tx = StateManager.CreateTransaction())
 {
 var result = await myDictionary.TryGetValueAsync(tx, "Counter");
 await tx.CommitAsync();
 return result.HasValue ? result.Value : 0;
 }
}

10.	 To expose this method to clients, add an RPC listener to the service. Modify the Create-
ServiceReplicaListeners() method in the Simulator service type implementation, to add
a call to CreateServiceReplicaListeners() as shown here:

 protected override IEnumerable<ServiceReplicaListener>
CreateServiceReplicaListeners() {
 yield return new ServiceReplicaListener(this.
CreateServiceRemotingListener);
 }

MORE INFO  SERVICE FABRIC COMMUNICATION

For more information related to setting up listeners for Service Fabric stateful services see
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-com-
munication.

Add a web front end to a Service Fabric application
The previous section reviewed creating a simple stateful service that returns the value of a
counter over RPC. To illustrate calling this service from a client application, this section reviews
how to create a web front end and call a stateful service endpoint, as illustrated in Figure 4-106.

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-communication
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-services-communication

	384	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-106  An HTTP listener-based web app calling a stateful service over RPC

Follow these steps to add a web app to an existing Service Fabric application:

1.	 From the Solution Explorer in Visual Studio, expand the Service Fabric application node.
Right-click the Services node, and select New Service Fabric Service (Figure 4-107).

FIGURE 4-107  The context menu for adding a new Service Fabric service to the existing application
services

2.	 From the New Service Fabric Service dialog, select Stateless ASP.NET Core for the service
template. Supply the service name LeadGenerator.WebApp, and click OK (Figure 4-108).

FIGURE 4-108  The New Service Fabric Service dialog where you can choose the Stateless ASP.NET
Core template

	 Skill 4.7: Design and Implement Azure Service Fabric apps	 Chapter 4	 385

3.	 From the New ASP.NET Core Web Application dialog select Web Application (Model-
View-Controller) template. Click OK.

4.	 From Solution Explorer, expand the new LeadGenerator.WebApp node, and expand
the PackageRoot folder where you’ll find ServiceManifest.xml. Alongside the service
type definition there is a section that describes the HTTP endpoint where the web app
will listen for requests:

 <Endpoints>"
 <Endpoint Protocol="http" Name="ServiceEndpoint" Type="Input" Port="8168" />
</Endpoints>

5.	 The new WebApp type is defined in WebApp.cs, which inherits StatelessService.
For the service to listen for HTTP requests, the CreateServiceInstanceListeners()
method sets up the WebListener as shown in this listing for the type:

internal sealed class WebApp : StatelessService
{
public WebApp(StatelessServiceContext context) : base(context)
{ }
protected override IEnumerable<ServiceInstanceListener>
CreateServiceInstanceListeners()
{
 return new ServiceInstanceListener[]
 {
 new ServiceInstanceListener(serviceContext =>
 new WebListenerCommunicationListener(serviceContext,
"ServiceEndpoint", (url, listener) =>
 {
 ServiceEventSource.Current.ServiceMessage(serviceContext,
$"Starting WebListener on {url}");
 return new WebHostBuilder().UseWebListener()
 .ConfigureServices(services =>
 services
 .AddSingleton<StatelessServiceContext>(serviceCon
text))
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseStartup<Startup>()
 .UseApplicationInsights()
 .UseServiceFabricIntegration(listener,
ServiceFabricIntegrationOptions.None)
 .UseUrls(url)
 .Build();
 }))
 };
}
}

Next you call the stateful service that returns the leads counter value, from the stateless web
application just created.

1.	 Make a copy of the service interface defined for the service type, in this case ISimula-
torService:

	386	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

public interface ISimulatorService : IService
{
 Task<long> GetLeads();
}

2.	 Modify the ConfigureServices instruction in WebApp.cs to inject an instance of the
FabricClient type (change shown in bold):

return new WebHostBuilder().UseWebListener()
 .ConfigureServices(services => {
 services
 .AddSingleton<StatelessServiceContext>(serviceContext)
 .AddSingleton(new FabricClient());
})

3.	 Now that FabricClient is available for dependency injection, modify the HomeController
to use it:

private FabricClient _fabricClient;
public HomeController(FabricClient client) { _fabricClient = client; }

4.	 Modify the Index method in the HomeController to use the FabricClient instance to
call the Simulator service:

public async Task<IActionResult> Index()
{
 ViewData["Message"] = "Your home page.";
 var model = new Dictionary<Guid, long>();
 var serviceUrl = new Uri("fabric:/LeadGenerator/Simulator");
 foreach (var partition in await
_fabricClient.QueryManager.GetPartitionListAsync(serviceUrl))
 {
 var partitionKey = new ServicePartitionKey
(((Int64RangePartitionInformation)partition.PartitionInformation).LowKey);
 var proxy = ServiceProxy.Create<ISimulatorService>(serviceUrl,
partitionKey);
 var leads = await proxy.GetLeads();
 model.Add(partition.PartitionInformation.Id, leads);
 }
 return View(model);
}

5.	 Update Index.cshtml to display the counter for each partition:

@model IDictionary<Guid, long>
<h2>@ViewData["Title"].</h2>
<h3>@ViewData["Message"]</h3>
<table class="table-bordered">
 <tr>
 <td>PARTITION ID</td>
 <td># LEADS</td>
 </tr>
 @foreach (var partition in Model)
 {
 <tr>

	 Skill 4.7: Design and Implement Azure Service Fabric apps	 Chapter 4	 387

 <td>@partition.Key.ToString()</td>
 <td>@partition.Value</td>
 </tr>
 }
</table>

6.	 To run the web app and stateful service, you can publish it to the local Service Fabric
cluster. Right-click the Service Fabric application node from the Solution Explorer and
select Publish. From the Publish Service Fabric Application dialog, select a target profile
matching one of the local cluster options, and click Publish (Figure 4-109).

FIGURE 4-109  The Publish Service Fabric Application dialog

7.	 Once the application is deployed, you can access the web app at http://localhost:8162
(or, whatever the indicated port is in the service manifest for the web app. The home
page triggers a call to the stateful service, which will increment as the counter is up-
dated while it runs.

Build an Actors-based service
The actor model is a superset of the Service Fabric stateful model. Actors are simple POCO ob-
jects that have many features that make them isolated, independent unit of compute and state
with single-thread execution.

To create a new Service Fabric application based on the Actor service template, follow these
steps:

http://localhost:8162

	388	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

1.	 Launch Visual Studio, then select File > New > Project.

2.	 In the New Project dialog, select Service Fabric Application within the Cloud category.
Provide a name and location for your new project, and then click OK.

3.	 Select Actor Service from the list of service templates and provide a name, such as
SimpleActor.

4.	 This generates a default implementation of the Actor Service.

MORE INFO  SERVICE FABRIC RELIABLE ACTORS

For more information on the implementation of the actor pattern in Service Fabric see
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-intro-
duction.

Monitor and diagnose services
All applications benefit from monitoring and diagnostics to assist with troubleshooting issues,
evaluating performance or resource consumption, and gathering useful information about the
application at runtime. For more information about Service Fabric specific approaches to this,
see https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-overview.

Deploy an application to a container
Service Fabric can run processes and containers side by side, and containers can be Linux or
Windows based containers. If you have an existing container image and wish to deploy this to
an existing Service Fabric cluster, you can follow these steps to create a new Service Fabric ap-
plication and set it up to deploy and run the container in your cluster:

1.	 Launch Visual Studio, nd then select File > New > Project.

2.	 In the New Project dialog, select Service Fabric Application within the Cloud category.
Provide a name and location for your new project, and then click OK.

3.	 From the New Service Fabric Service dialog, choose Container for the list of templates
and supply a container image and name for the guest executable to be created (Figure
4-110).

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-reliable-actors-introduction
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-diagnostics-overview

	 Skill 4.7: Design and Implement Azure Service Fabric apps	 Chapter 4	 389

FIGURE 4-110  The New Service Fabric Service dialog with Container selected, and an image name
specified

4.	 From Solution Explorer, open the ServiceManifest.xml file and modify the <Resources>
section to provide a UriScheme, Port and Protocol setting for the service endpoint.

 <Resources>
 <Endpoints>
 <Endpoint Name="IISGuestTypeEndpoint" UriScheme="http" Port="80"
Protocol="http"/>
 </Endpoints>
 </Resources>

5.	 From Solution Explorer, open the ApplicationManifest.xml file. Create a policy for
container to host <PortBinding> policy by adding this <Policies> section to the <Ser-
viceManifestImports> section. Indicate the container port for your container. In this
example the container port is 80.

 <ServiceManifestImport>
 <ServiceManifestRef ServiceManifestName="IISGuestPkg"
ServiceManifestVersion="1.0.0" />
 <ConfigOverrides />
 <Policies>
 <ContainerHostPolicies CodePackageRef="Code">
 <PortBinding ContainerPort="80" EndpointRef="IISGuestTypeEndpoint"/>
 </ContainerHostPolicies>
 </Policies>
 </ServiceManifestImport>

	390	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

6.	 Now that you have the application configured, you can publish and run the service.

EXAM TIP

Currently, you cannot run containers in the local Service Fabric cluster because it requires
Windows Server 2016 with container support.

MORE INFO  WINDOWS CONTAINERS

For more information regarding working with Windows containers both locally and in Win-
dows Server environments see https://docs.microsoft.com/en-us/virtualization/windowscon-
tainers/index.

Migrate apps from cloud services
You can migrate your existing cloud services, both web and worker roles, to Service Fabric ap-
plications following instructions in the following reference at https://docs.microsoft.com/en-us/
azure/service-fabric/service-fabric-cloud-services-migration-worker-role-stateless-service.

Scale a Service Fabric app
In order to scale a Service Fabric app, the following terms are important to understand: In-
stances, Partitions, and Replicas.

By default, the Service Fabric tooling produces three publish profiles that you can use to
deploy your application:

■■ Local.1Node.xml  To deploy against the local 1-node cluster.

■■ Local.5Node.xml  To deploy against the local 5-node cluster.

■■ Cloud.xml  To deploy against a Cloud cluster.

These publish profiles indicate the settings for the number of instances and partitions for
each service. Consider this example of the parameters to a Local.5Node.xml:

 <Parameters>
 <Parameter Name="WebApp_InstanceCount" Value="3" />
 <Parameter Name="Simulator_PartitionCount" Value="3" />
 <Parameter Name="Simulator_MinReplicaSetSize" Value="3" />
 <Parameter Name="Simulator_TargetReplicaSetSize" Value="3" />
 </Parameters>

■■ WebApp_InstanceCount   Specifies the number of instances the WebApp service
must have within the cluster.

■■ Simulator_PartitionCount  Specifies the number of partitions (for the stateful service)
the Simulator service must have within the cluster.

■■ Simulator_MinReplicaSetSize  Specifies the minimum number of replicas required
for each partition that the WebApp service should have within the cluster.

https://docs.microsoft.com/en-us/virtualization/windowscontainers/index
https://docs.microsoft.com/en-us/virtualization/windowscontainers/index
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cloud-services-migration-worker-role-stateless-service
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cloud-services-migration-worker-role-stateless-service

	 Skill 4.7: Design and Implement Azure Service Fabric apps	 Chapter 4	 391

■■ Simulator_TargetReplicaSetSize  Specifies the number of target replicas required for
each partition that the WebApp service should have within the cluster.

Consider the following diagram illustrating the instances and partitions associated with the
stateless Web App and stateful simulator service, as shown in the Local.5Node.xml configura-
tion (Figure 4-111).

FIGURE 4-111  The instances for a stateless service, and partitions for a stateful service

■■ The Web App instance count is set to 3. As the diagram illustrates, when published to
a Service Fabric cluster in Azure requests would be load balanced across those three
instances.

■■ The Simulator service is assigned three partitions, each of which have replicas to ensure
durability of each instance’s state.

EXAM TIP

Sometimes the terms instances and replicas are used interchangeably, however, instances
are for stateless services whereas replicas are for stateful services.

Create, secure, upgrade, and scale Service Fabric Cluster in
Azure
To publish your Service Fabric application to the Azure in production, you’ll create a cluster,
learn how to secure it, learn how to upgrade applications with zero downtime, and configure
the application to scale following some of the practices already discussed. The following refer-
ences will start you off with these topics:

■■ For an introduction to creating a Service Fabric Cluster see:

■■ https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started-
azure-cluster

■■ https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-deploy-any-
where

■■ For details on securing Azure Service Fabric Clusters in production, see this reference:

■■ https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-security

■■ For details on upgrading clusters, see this reference:

■■ https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-upgrade

■■ You can scale clusters manually or programmatically as described in these references:

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started-azure-cluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-get-started-azure-cluster
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-deploy-anywhere
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-deploy-anywhere
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-security
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-upgrade

	392	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

■■ https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-scale-up-
down

■■ https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-pro-
grammatic-scaling

Skill 4.8: Design and implement third-party Platform as
a Service (PaaS)

Azure supports many third-party PaaS offerings and services through the Azure Marketplace.
These can be deployed through the Azure portal, using ARM, or using other CLI tools. This skill
helps you navigate those offerings.

This skill covers how to:
■■ Implement Cloud Foundry

■■ Implement OpenShift

■■ Provision applications by using Azure Quickstart Templates

■■ Build applications that leverage Azure Marketplace solutions and services

Implement Cloud Foundry
Cloud Foundry is an open-source PaaS for building, deploying, and operating 12-factor
applications developed in various languages and frameworks. It is a mature container-based
application platform allowing you to easily deploy and manage production-grade applications
on a platform that supports continuous delivery and horizontal scale, and supports hybrid and
multi-cloud scenarios.

There are two forms of Cloud Foundry available to run on Azure:

■■ Open-source Cloud Foundry (OSS CF)  An entirely open-source version of Cloud
Foundry managed by the Cloud Foundry Foundation.

■■ Pivotal Cloud Foundry (PCF)  An enterprise distribution of Cloud Foundry from
Pivotal Software Inc., which adds on a set of proprietary management tools and
enterprise support.

MORE INFO  AZURE SERVICE PRINCIPALS

Before you can create a Cloud Foundry cluster in Azure you must first create an Azure Ser-
vice Principal, following the instructions found at: https://github.com/cloudfoundry-incuba-
tor/bosh-azure-cpi-release/blob/master/docs/get-started/create-service-principal.md.

To deploy a basic Pivotal Cloud Foundry on Azure from the Azure Marketplace, follow these
steps:

https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-scale-up-down
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-scale-up-down
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-programmatic-scaling
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-cluster-programmatic-scaling
https://github.com/cloudfoundry-incubator/bosh-azure-cpi-release/blob/master/docs/get-started/create-service-principal.md
https://github.com/cloudfoundry-incubator/bosh-azure-cpi-release/blob/master/docs/get-started/create-service-principal.md

	 Skill 4.8: Design and implement third-party Platform as a Service (PaaS)	 Chapter 4	 393

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select Marketplace from the Azure Dashboard.

3.	 Search for “Pivotal Cloud Foundry,” and select Pivotal Cloud Foundry On Azure.

4.	 From within the Pivotal Cloud Foundry On Azure blade, click Create (Figure 4-112).

5.	 On the Basics blade, provide a storage account name prefix, paste your SSH public
key, upload the azure-credentials.json Service Principal file, enter the Pivotal Network
API token, choose a resource group, and location for the cluster. Click OK.

FIGURE 4-112  The selections for a new Pivotal Cloud Foundry cluster in the portal

6.	 On the Summary blade, wait for the validation to pas,s and click OK.

7.	 On the Buy blade, click Purchase.

To deploy the open-sourced version of Cloud Foundry on Azure, you deploy BOSH and then
Cloud Foundry. The steps can be performed manually, or via Azure Resource Manager (ARM)
templates. Detailed instructions can be found at https://github.com/cloudfoundry-incubator/
bosh-azure-cpi-release/tree/master/docs.

MORE INFO  SSH KEYS

For more information about creating SSH keys for creating clusters see: https://docs.micro-
soft.com/en-us/azure/virtual-machines/linux/ssh-from-windows.

MORE INFO  DEPLOYING AN APP TO CLOUD FOUNDRY

For more information about deploying apps to your Cloud Foundry cluster see: https://docs.
microsoft.com/azure/virtual-machines/linux/cloudfoundry-deploy-your-first-app.

https://github.com/cloudfoundry-incubator/bosh-azure-cpi-release/tree/master/docs
https://github.com/cloudfoundry-incubator/bosh-azure-cpi-release/tree/master/docs
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/ssh-from-windows
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/ssh-from-windows
https://docs.microsoft.com/azure/virtual-machines/linux/cloudfoundry-deploy-your-first-app
https://docs.microsoft.com/azure/virtual-machines/linux/cloudfoundry-deploy-your-first-app
https://portal.azure.com

	394	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

Implement OpenShift
The OpenShift Container Platform is a PaaS offering from Red Hat built on Kubernetes. It
brings together Docker and Kubernetes, and provides an API to manage these services. Open-
Shift simplifies the process of deploying, scaling, and operating multi-tenant applications onto
containers.

There are two forms of OpenShift that you can deploy to Azure:

■■ The open-source OpenShift Origin

■■ The enterprise-grade Red Hat OpenShift Container Platform

Both are built on the same open source technologies, with the Red Hat OpenShift Container
Platform offering enterprise-grade security, compliance, and container management.

Prerequisites for installing both forms of OpenShift include:

1.	 Generate an SSH key pair (Public / Private), ensuring that you do not include a pass-
phrase with the private key.

2.	 Create a Key Vault to store the SSH Private Key.

3.	 Create an Azure Active Directory Service Principal.

4.	 Install and configure the OpenShift CLI to manage the cluster.

Some specific prerequisites for deploying Red Hat OpenShift Container Platform include:

5.	 OpenShift Container Platform subscription eligible for use in Azure. You need to
specify the Pool ID that contains your entitlements for OpenShift.

6.	 Red Hat Customer Portal login credentials. You may use either an Organization ID and
Activation Key, or a Username and Password. It is more secure to use the Organization
ID and Activation Key.

You can deploy both from the Azure Marketplace templates, or using ARM templates.

To deploy Red Hat OpenShift Container Platform on Azure from the Azure Marketplace,
perform the following steps (Figure 4-113):

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select Marketplace from the Azure Dashboard.

3.	 Search for “OpenShift,” and select Red Hat OpenShift Container Platform (BYOL).

4.	 From within the Red Hat OpenShift Container Platform (BYOL) blade, click Create.

5.	 On the Basics blade, provide the VM Admin user name, paste the SSH public key,
choose a resource group and location for the platform. Click OK.

https://portal.azure.com

	 Skill 4.8: Design and implement third-party Platform as a Service (PaaS)	 Chapter 4	 395

FIGURE 4-113  The selections in the Basics blade for a new Red Hat OpenShift Container Platform

6.	 On the Infrastructure Settings blade, provide an OCP cluster name prefix, select a
cluster size, provide the resource group name for your Key Vault, as well as the Key Vault
name and its secret name you specified in the prerequisites. Click OK (Figure 4-114).

FIGURE 4-114  The selections in the Infrastructure Settings blade for a new Red Hat OpenShift Con-
tainer Platform in the portal

7.	 On the OpenShift Container Platform Settings blade, provide an OpenShift Admin user
password, enter your Red Hat subscription manager credentials, specify whether you
want to configure an Azure Cloud Provider, and select your default router subdomain.
Click OK (Figure 4-115).

	396	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-115  The selections in the OpenShift Container Platform Settings blade for a new Red Hat
OpenShift Container Platform in the portal

8.	 On the Summary blade, wait for the validation to pass, and click OK.

9.	 On the Buy blade, click Purchase.

MORE INFO  OPENSHIFT CONTAINER PLATFORM PREREQUISITES

For an alternative method to deploy the OpenShift Container Platform using ARM tem-
plates instead of the marketplace, as well as detailed steps to complete the prerequisites see
https://github.com/Microsoft/openshift-container-platform.

MORE INFO  DEPLOYING OPENSHIFT ORIGIN ON AZURE

For step-by-step instructions on how to deploy OpenShift Origin on Azure, including
completing the prerequisites see https://docs.microsoft.com/en-us/azure/virtual-machines/
linux/openshift-get-started.

https://github.com/Microsoft/openshift-container-platform
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/openshift-get-started
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/openshift-get-started

	 Skill 4.8: Design and implement third-party Platform as a Service (PaaS)	 Chapter 4	 397

Provision applications by using Azure Quickstart Templates
Azure Quickstart Templates are community-contributed Azure Resource Manager (ARM)
templates that help you quickly provision applications and solutions with minimal effort. You
can search available Quickstart Templates in the gallery located at https://azure.microsoft.com/
resources/templates.

Resources that are deployed as part of a Quickstart template can be thought of as related
and interdependent parts of a single entity. ARM templates allow you to deploy, update, or
delete all of the resources within the solution in a single, coordinated operation. You use a tem-
plate for deployment and that template can work for different environments such as testing,
staging, and production, while ensuring your resources are deployed in a consistent state.

Depending on the Quickstart Template you select, you will provide a set of parameters that
get passed into the deployment command.

You can deploy a Quickstart Template using one of these methods (based on the example at
https://azure.microsoft.com/resources/templates/101-hdinsight-hbase-replication-geo):

1.	 Using PowerShell, use the New-AzureRmResourceGroupDeployment cmdlet. You are
prompted to supply values for the parameters. For example:

New-AzureRmResourceGroupDeployment -Name <deployment-name> -ResourceGroupName
<resource-group-name> -TemplateUri https://raw.githubusercontent.com/azure/azure-
quickstart-templates/master/101-hdinsight-hbase-replication-geo/azuredeploy.json

2.	 Using the Azure Command-Line Interface (CLI), use the group deployment create
command. You are prompted to supply values for the parameters. For example:

azure config mode arm

azure group deployment create <my-resource-group> <my-deployment-name> --template-
uri https://raw.githubusercontent.com/azure/azure-quickstart-templates/master/101-
hdinsight-hbase-replication-geo/azuredeploy.json

3.	 Click the Deploy to Azure button, if provided. This opens a form for the Quickstart
template in Azure, allowing you to enter the parameter values from within the portal
(Figure 4-116).

https://azure.microsoft.com/resources/templates
https://azure.microsoft.com/resources/templates
https://azure.microsoft.com/resources/templates/101-hdinsight-hbase-replication-geo

	398	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

FIGURE 4-116  An Azure Quickstart Template form in the Azure Portal after clicking a Deploy to
Azure button

MORE INFO  AZURE QUICKSTART TEMPLATE GALLERY

Browse and search Quickstart Templates contributed by the community at https://azure.
microsoft.com/resources/templates.

Build applications that leverage Azure Marketplace
solutions and services
The Azure Marketplace is an online applications and services marketplace that enables start-
ups and independent software vendors (ISVs) to offer their solutions to Azure customers
around the world. The marketplace makes it easier for consumers to search, purchase, and de-
ploy a wide range of applications and services in just a few clicks. Some such applications and

https://azure.microsoft.com/resources/templates
https://azure.microsoft.com/resources/templates

	 Skill 4.9: Design and implement DevOps	 Chapter 4	 399

services include virtual machine images and extensions, APIs, applications, Machine Learning
services, and data services.

You can subscribe to and deploy a product from the Azure Marketplace by visiting https://
azuremarketplace.microsoft.com/ or by clicking the Marketplace tile on the Azure Portal dash-
board.

Pricing varies based on product types. ISV software charges and Azure infrastructure costs
are charged separately through your Azure subscription. Pricing models include:

■■ BYOL Model  Bring-your-own-license. You obtain outside of the Azure Marketplace
the right to access or use the offering and are not charged Azure Marketplace fees for
use of the offering in the Azure Marketplace.

■■ Free  Free SKU. Customers are not charged Azure Marketplace fees for use of the of-
fering.

■■ Free Software Trial (Try it now)  Full-featured version of the offer that is promotion-
ally free for a limited period of time. You are not charged Azure Marketplace fees for use
of the offering through a trial period. Upon expiration of the trial period, customers are
automatically be charged based on standard rates for use of the offering.

■■ Usage-Based  You are charged or billed based on the extent of your use of the offer-
ing. For Virtual Machines Images, you are charged an hourly Azure Marketplace fee. For
Data Services, Developer services, and APIs, you are charged per unit of measurement
as defined by the offering.

■■ Monthly Fee  You are charged or billed a fixed monthly fee for a subscription to the
offering (from date of subscription start for that particular plan). The monthly fee is not
prorated for mid-month cancellations or unused services.

You can find the offer-specific pricing details on the solution details page.

Skill 4.9: Design and implement DevOps

DevOps is a combination of Development (Dev) and information technology Operations (Ops).
It describes a set of practices emphasizing the collaboration between both teams, while auto-
mating software delivery and infrastructure changes with the ultimate goal of reliability and
repeatability of these processes. Automation and repeatability allows for increased deploy-
ment frequency, as the manual burden of tending to all of the steps involved in deploying to
one or more target environments has been removed. Some organizations use DevOps prac-
tices to deploy hundreds of times a day, which would otherwise be nearly impossible. DevOps
improves reliability by ensuring each step of the software delivery or infrastructure change
process is monitored, and any automated tests successfully pass.

https://azuremarketplace.microsoft.com/
https://azuremarketplace.microsoft.com/

	400	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

This skill covers how to:
■■ Instrument an application with telemetry

■■ Discover application performance issues by using Application Insights

■■ Deploy Visual Studio Team Services with Continuous integration
(CI) and Continuous development (CD)

■■ Deploy CI/CD with third-party platform tools (Jenkins, GitHub, Chef,
Puppet, TeamCity)

Instrument an application with telemetry
Application Insights is an extensible analytics service for application developers on multiple
platforms that helps you understand the performance and usage of your live applications. With
it, you can monitor your web application, collect custom telemetry, automatically detect per-
formance anomalies, and use its powerful analytics tools to help you diagnose issues and un-
derstand what users actually do with your app. It works with web applications hosted on Azure,
on-premises, or in another cloud provider. You can use it from web applications developed on
multiple platforms, like .NET, Node.js, and J2EE. To get started, you just need to provision an
Application Insights resource in Azure, and then install a small instrumentation package in your
application. The things you can instrument are not limited just to the web application, but also
any background components, and JavaScript within its web pages. You can also pull telemetry
from host environments, such as performance counters, Docker logs, or Azure diagnostics.

Here is a comprehensive list of telemetry that can be collected by Application Insights.

From server web apps:

■■ HTTP requests

■■ Dependencies such as calls to SQL Databases; HTTP calls to external services; Azure
Cosmos DB, table, blob storage, and queue

■■ Exceptions and stack traces

■■ Performance Counters, if you use Status Monitor, Azure monitoring, or the Application
Insights collected writer

■■ Custom events and metrics that you code

■■ Trace logs if you configure the appropriate collector

From client web pages:

■■ Page view counts

■■ AJAX calls requests made from a running script

■■ Page view load data

■■ User and session counts

■■ Authenticated user IDs

	 Skill 4.9: Design and implement DevOps	 Chapter 4	 401

From other sources, if you configure them:

■■ Azure diagnostics

■■ Docker containers

■■ Import tables to Analytics

■■ OMS (Log Analytics)

■■ Logstash

The standard telemetry modules that run “out of the box” when using the Application
Insights SDK send load, performance and usage metrics, exception reports, client informa-
tion such as IP address, and calls to external services. If you install the SDK in development,
this allows you to send your own telemetry, in addition to the standard modules. This custom
telemetry can include any data you wish to send.

MORE INFO  ABOUT APPLICATION INSIGHTS

For additional information about Application Insights see https://docs.microsoft.com/azure/
application-insights.

MORE INFO  SETTING UP APPLICATION INSIGHTS

For more information about setting up Application Insights on the portal and within your
application see https://docs.microsoft.com/azure/application-insights/app-insights-create-
new-resource.

MORE INFO  COLLECT CUSTOM EVENTS AND METRICS IN APPLICATION INSIGHTS

A good resource for collecting custom event and metrics telemetry in Application Insights
see https://docs.microsoft.com/azure/application-insights/app-insights-api-custom-events-
metrics.

Discover application performance issues by using
Application Insights
System performance depends on several factors. Each factor is typically measured through key
performance indicators (KPIs), such as the number of database transactions per second or the
volume of network requests your application can handle within a specified time frame. You can
gather your application’s KPIs through specific performance measures, or a combination of
metrics.

Application Insights can help you quickly identify any application failures. It also tells you
about any performance issues and exceptions. With the right configuration and tooling, Appli-
cation Insights can also help you find and diagnose the root causes of slowdowns and failures.

https://docs.microsoft.com/azure/application-insights
https://docs.microsoft.com/azure/application-insights
https://docs.microsoft.com/azure/application-insights/app-insights-create-new-resource
https://docs.microsoft.com/azure/application-insights/app-insights-create-new-resource
https://docs.microsoft.com/azure/application-insights/app-insights-api-custom-events-metrics
https://docs.microsoft.com/azure/application-insights/app-insights-api-custom-events-metrics

	402	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

When you open any Application Insights resource you see basic performance data on the
overview blade. Clicking on any of the charts allows you to drill down into the related data to
see more detail and related requests, as well as viewing different time ranges.

NOTE  PERFORMANCE METRICS

Earlier in this chapter performance metrics were discussed for API Apps and Logic Apps -
and these are also similar across other resource blades in the Azure Portal.

Application Insights offers a full-screen, interactive performance investigator through the
Performance blade. The dashboard arranges a set of performance-related metrics that you can
use to quickly explore possible performance bottlenecks, and adds additional insights, such
as common properties of selected requests. The common properties are the users’ location,
performance bucket (in milliseconds), and cloud role of the resource. This information can help
you find common variables that affect groups of users, such as response times being lengthier
for users coming from certain countries or regions (Figure 4-117).

FIGURE 4-117  The Application Insights Performance blade

If your web application is built on ASP.NET or ASP.NET Core, you can turn on Application
Insight’s profiling tool to view detailed profiles of live requests. In addition to displaying ‘hot
paths’ that are using the most response times, the Profiler shows which lines in the application

	 Skill 4.9: Design and implement DevOps	 Chapter 4	 403

code slowed down performance. You can view the profile request details to see trace informa-
tion, showing the call stack through your application. This level of detail allows you to quickly
pinpoint issues and address them faster than digging through logs alone. There is little over-
head running the profiler because it executes for two minutes per hour, but should provide a
satisfactory sample set of data.

To enable the Profiler, follow these steps:

1.	 From the Application Insights resource in Azure, select Performance from the left-hand
menu.

2.	 Select Profiler Rules from the top of the Performance blade.

3.	 Select Add Linked Apps from the top of the Configure Application Insights Profiler
blade.

4.	 Select the application you wish to link to see all its available slots. Click Add to link them
to the current Application Insights resource.

5.	 After linking your desired apps, select Enable Profiler from the top of the Configure Ap-
plication Insights Profiler blade. Note, linked applications require Basic or above service
plans to enable the profiler (Figure 4-118).

FIGURE 4-118  The Application Insights Profiler actions to add linked apps and enable the Profiler

MORE INFO  ABOUT APPLICATION INSIGHTS PROFILER

For additional information about using the Application Insights Profiler, see this reference:
https://docs.microsoft.com/azure/application-insights/app-insights-profiler.

MORE INFO  MONITOR PERFORMANCE IN WEB APPLICATIONS

For more information about using Application Insights to monitor performance in your web
applications see https://docs.microsoft.com/azure/application-insights/app-insights-web-
monitor-performance.

Deploy Visual Studio Team Services with continuous
integration (CI) and continuous development (CD)
Visual Studio Team Services (VSTS) is a collection of hosted DevOps services for application
developers, including Build and Release services, which help you manage continuous integra-
tion and delivery of your applications.

https://docs.microsoft.com/azure/application-insights/app-insights-profiler
https://docs.microsoft.com/azure/application-insights/app-insights-web-monitor-performance
https://docs.microsoft.com/azure/application-insights/app-insights-web-monitor-performance

	404	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

Continuous Integration (CI) is a practice by which the development team members inte-
grate their work frequently, usually daily. An automated build verifies each integration, typi-
cally along with tests to detect integration errors quickly, when it’s easier and less costly to fix.
Output, or artifacts, generated by the CI systems are fed to the release pipelines to streamline
and enable frequent deployments. The Build service in VSTS helps you set up and manage CI
for your applications.

Continuous Delivery (CD) is a process where the full software delivery lifecycle is automated,
including tests, and deployed to one or more test and production environments. Azure App
Services supports deployment slots, into which you can deploy development, staging, and
production builds from the CD process. Automated release pipelines consume the artifacts
that the CI systems produce, and deploys them as new versions and fixes to existing systems.
Monitoring and alerting systems run continually to drive visibility into the entire CD process.
The Release service in VSTS helps you set up and manage CD for your applications.

Because a key component of the Build system is integrating code changes and automating
builds, you must host your source code in a version control system. VSTS provides two different
version control systems:

■■ Git

■■ Team Foundation Version Control

You can also host your source code in GitHub, Subversion, Bitbucket, or any other Git re-
pository. The Build service can integrate with any one of these options.

VSTS build services provide preconfigured tasks to build many application types, such as
.NET, Java, Node, Android, XCode, and C++. You can also run command line, PowerShell, or
Shell scripts in your automation to support almost any type of application.

Azure App Services was mentioned earlier as a deployment target for the VSTS Release ser-
vice. VSTS Release services can deploy to virtual machines, containers, on-premises and cloud
platforms, or PaaS services. You can also publish your mobile applications to a store.

The following steps show one way to configure the CI/CD pipeline from the Azure portal
(Figure 4-119):

1.	 Navigate to the portal accessed via https://portal.azure.com.

2.	 Select New on the command bar.

3.	 Select Web + Mobile, and then Web App.

https://portal.azure.com

	 Skill 4.9: Design and implement DevOps	 Chapter 4	 405

FIGURE 4-119  Completing the Response action form for the new condition’s “If true” block in the
Logic App Designer

4.	 Provide a unique name for your web app, and then click Create (Figure 4-120).

FIGURE 4-120  The create Web App blade

	406	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

5.	 After the new web app is provisioned open it in Azure portal, and then select Continu-
ous Delivery from the left-hand menu. Click Configure on the Continuous Delivery
blade (Figure 4-121).

FIGURE 4-121  The Continuous Delivery blade on the provisioned web app

6.	 Select Choose repository, and then select VSTS for the code repository. Select the VSTS
account, project, repository, and source code branch from which you wish to deploy.
Click OK (Figure 4-122).

FIGURE 4-122  The Continuous Delivery source code configuration options

	 Skill 4.9: Design and implement DevOps	 Chapter 4	 407

7.	 Select Configure Continuous Delivery, and then your web application framework. In
our example, we selected ASP.NET Core. Click OK. Skip the other two steps for now, and
then click OK to complete the configuration (Figure 4-123).

FIGURE 4-123  The Continuous Delivery build options

8.	 At this point, Azure Continuous Delivery configures and executes a build and deploy-
ment in VSTS. After the build completes, the deployment is automatically initiated.
When you commit a change to the source code repository, the automated deployment
appears in the Continuous Delivery application logs on your web app, as shown in
Figure 4-124.

FIGURE 4-124  The Continuous Delivery blade with activity logs showing the initial build

	408	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

MORE INFO  ABOUT VSTS BUILD AND RELEASE SERVICES

For additional information about the VSTS Build and Release services see https://docs.micro-
soft.com/vsts/build-release.

MORE INFO  THE MULTI-STAGE CONTINUOUS DEPLOYMENT (CD) PROCESS

VSTS supports releasing to multiple environments, such as development, staging, QA, and
production. To learn more about defining your multi-stage CD process see https://docs.
microsoft.com/vsts/build-release/actions/define-multistage-release-process.

MORE INFO  TUTORIAL ON CREATING A CI PIPELINE WITH VSTS AND IIS

To follow a tutorial showing how to create a continuous integration (CI) pipeline with VSTS
and IIS on a VM see https://docs.microsoft.com/azure/virtual-machines/windows/tutorial-
vsts-iis-cicd.

Deploy CI/CD with third-party platform tools (Jenkins,
GitHub, Chef, Puppet, TeamCity)
Azure allows you to continuously integrate and deploy with any of the leading DevOps tools,
targeting any Azure service. Whether you are following your organization’s established CI/CD
procedures, or just getting started with DevOps, use the tools best-suited for your team.

If you are using VSTS to host your source code or as your CI service, you can use various
build services, like Jenkins, through service hooks. In this way, you can use Jenkins for your
continuous integration builds, or use both VSTS and Jenkins as for building parts of your solu-
tion. Refer to this tutorial for more information: https://docs.microsoft.com/vsts/service-hooks/
services/jenkins.

In addition, Table 4-5 lists some popular DevOps tools that work with Azure.

TABLE 4-5  References for using third-party DevOps tools with Azure

Tool Description More Information and Tutorials

Chef Use Chef to automate workloads on
Azure, whether IaaS, PaaS, cloud or
hybrid, Windows or Linux

https://www.chef.io/implementations/
azure/
https://docs.microsoft.com/azure/virtual-
machines/windows/chef-automation

Puppet Use Puppet to automate the life-
cycle of your entire Azure infra-
structure

https://azuremarketplace.microsoft.
com/marketplace/apps/PuppetLabs.
PuppetEnterprise37
https://puppet.com/resources/whitepaper/
getting-started-deploying-puppet-enter-
prise-microsoft-azure

https://docs.microsoft.com/vsts/build-release
https://docs.microsoft.com/vsts/build-release
https://docs.microsoft.com/vsts/build-release/actions/define-multistage-release-process
https://docs.microsoft.com/vsts/build-release/actions/define-multistage-release-process
https://docs.microsoft.com/azure/virtual-machines/windows/tutorial-vsts-iis-cicd
https://docs.microsoft.com/azure/virtual-machines/windows/tutorial-vsts-iis-cicd
https://docs.microsoft.com/vsts/service-hooks/services/jenkins
https://docs.microsoft.com/vsts/service-hooks/services/jenkins
https://www.chef.io/implementations/azure/
https://www.chef.io/implementations/azure/
https://docs.microsoft.com/azure/virtual-machines/windows/chef-automation
https://docs.microsoft.com/azure/virtual-machines/windows/chef-automation
https://azuremarketplace.microsoft.com/marketplace/apps/PuppetLabs.PuppetEnterprise37
https://azuremarketplace.microsoft.com/marketplace/apps/PuppetLabs.PuppetEnterprise37
https://azuremarketplace.microsoft.com/marketplace/apps/PuppetLabs.PuppetEnterprise37
https://puppet.com/resources/whitepaper/getting-started-deploying-puppet-enterprise-microsoft-azure
https://puppet.com/resources/whitepaper/getting-started-deploying-puppet-enterprise-microsoft-azure
https://puppet.com/resources/whitepaper/getting-started-deploying-puppet-enterprise-microsoft-azure

	 Skill 4.9: Design and implement DevOps	 Chapter 4	 409

Tool Description More Information and Tutorials

Jenkins The Jenkins and Azure teams have
been collaborating on making
tighter integrations between the
two. Benefit from the extensive
tooling as a result

https://docs.microsoft.com/azure/virtual-
machines/linux/tutorial-jenkins-github-
docker-cicd
https://docs.microsoft.com/azure/jenkins/
https://docs.microsoft.com/azure/storage/
common/storage-java-jenkins-continuous-
integration-solution

TeamCity Use TeamCity with Azure for a va-
riety of DevOps processes, such as
deploying Azure services or scaling
out your build farm by having it
automatically start agents on Azure
when you need more power, and
stop them, when they are no longer
needed

https://confluence.jetbrains.com/display/
TW/Microsoft+Azure+cloud
https://blog.jetbrains.com/teamc-
ity/2016/11/teamcity-dotnet-core/

Out of the box, Azure App Services integrates with source code repositories such as GitHub
to enable a continuous deployment workflow. This is the simplest way to integrate a CD pro-
cess without the need for installing and configuring additional tools and services. Follow these
simple steps to enable continuous deployment from a GitHub repository:

1.	 Publish your application source code to GithHub.

2.	 Open your app’s Menu blade in the Azure portal, and then select Deployment Options
under Deployment in the left-hand menu.

3.	 In the Deployment option blade, select Choose Source, and then select GitHub from
the list of sources.

4.	 Select Authorization, and then click the Authorize button to enter your GitHub cre-
dentials. When authorized, click OK.

5.	 In the Deployment Option blade, select your project and branch from which you wish to
deploy your app, and click OK.

App Service creates an association with the selected repository, pulls in the files from the
specified branch, and maintains a clone of your repository for your App Service app. Now,
when you push a change to your repository, your app is automatically updated with the latest
changes. More information about this process can be found at: https://docs.microsoft.com/
azure/app-service/app-service-continuous-deployment.

https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-jenkins-github-docker-cicd
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-jenkins-github-docker-cicd
https://docs.microsoft.com/azure/virtual-machines/linux/tutorial-jenkins-github-docker-cicd
https://docs.microsoft.com/azure/jenkins/
https://confluence.jetbrains.com/display/TW/Microsoft+Azure+cloud
https://confluence.jetbrains.com/display/TW/Microsoft+Azure+cloud
https://blog.jetbrains.com/teamcity/2016/11/teamcity-dotnet-core/
https://blog.jetbrains.com/teamcity/2016/11/teamcity-dotnet-core/
https://docs.microsoft.com/azure/app-service/app-service-continuous-deployment
https://docs.microsoft.com/azure/app-service/app-service-continuous-deployment
https://docs.microsoft.com/azure/storage/common/storage-java-jenkins-continuous-integration-solution
https://docs.microsoft.com/azure/storage/common/storage-java-jenkins-continuous-integration-solution
https://docs.microsoft.com/azure/storage/common/storage-java-jenkins-continuous-integration-solution

	410	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

Thought experiment

In this thought experiment, apply what you’ve learned about implementing App Services,
Azure Functions, Azure Service Fabric, third-party PaaS, and DevOps to evaluate and deter-
mine a recommended set of features to use in a particular solution implementation.

You can find answers to this thought experiment in the next section. The following para-
graphs describe the solution and the questions to answer.

You are designing a solution that issues certificates of insurance for end users. You are ex-
pecting insurance companies who you partner with to provide this service to their clients, your
end user, through your solution. The following describes core components in the solution, and
other requirements:

■■ Insurance companies can sign up with your service so that they can call your Policy Sync
APIs and send insurance policy data using the X12 EDI standard. Their license with your
API determines how much policy data they can upload to your service. This policy data
is what supports certificate issuance to the end user owning the policy.

■■ Insurance companies can manage access to those policies through a Policy Manage-
ment web application that allows them to create users who can later login and request
certificates of insurance for their policy data.

■■ End users will, once invited by the insurance company, be able to login to the Certificate
Issuance web application to request certificates of insurance on demand for their poli-
cies.

■■ When a certificate is requested, a workflow should be kicked off to generate a PDF from
the policy data, save the PDF to a secure location from where it can be securely shared,
and email a secure link to the PDF to a specified email address.

■■ While this is a new service, it is possible that many 100,000s of requests can be pro-
cessed by a single insurance company per week so there is potential for large scale
growth and the design must be ready to grow with demand.

■■ You are expecting to use a third-party Java-based executable component for PDF gen-
eration, alongside the other work, which will be based on ASP.NET Core.

■■ As a startup, you are looking for a solution that allows you to contain costs now, but
grow into an architecture that can scale with your business growth.

Consider how you would answer the following questions for this solution:

1.	 How would you evaluate the core platform tools and hosting environment that you will
use for the web apps and APIs? Consider these aspects:

A.	 Cost containment early on with potential for growth.

B.	 Manageability with a small team.

C.	 Support for polyglot development and third-party application components.

	 Thought experiment answers	 Chapter 4	 411

2.	 How will you control the onboarding process to use your Policy Sync APIs and subse-
quent throttling of their use by license?

3.	 How will you handle the inbound EDI requests and store those for the partner?

4.	 How will you prepare to scale the requests for certificates of insurance based on the
potential growth?

Thought experiment answers

This section contains the solution to the thought experiment.

1.	 Consider the following:

■■ deploying the application to Web Apps on an App Service Plan that can scale as
needed.

■■ Consider if the main components of the application can be deployed as containers—
in particular verifying that the Java component can be containerized. If so, standard-
izing around container deployments to Web Apps will keep things consistent and
enable a future deployment to a container orchestration platform. If not, traditional
Web App deployments for the ASP.NET Core applications will still reduce manage-
ment overhead. The Java application may require a VM if it cannot be deployed to a
Linux-based Web App due to underlying requirements.

■■ Consider moving to a container orchestration platform, or Service Fabric cluster as
the application needs to scale. Keep in mind the Service Fabric can support deploy-
ment of both ASP.NET Core applications alongside guest executables such as the
Java application.

2.	 Consider using API Management for onboarding partners, setting up licensing, throt-
tling access to the EDI process through licensing, and providing statistics on usage.

3.	 Consider using Logic App to handle X12 EDI transforms from API Management initiated
calls. The Logic App can convert this payload to the target data format required for the
application.

4.	 Look to scale out the requests for certificates of insurance by writing requests to
a queue that triggers a Logic App to handle calls to generate PDFs and send emails
through a workflow. Make sure the Java component is deployed to a tier that can scale
independently given the potential for scale.

	412	 Chapter 4	 Design and implement Azure PaaS compute and web and mobile services

Chapter summary
■■ Azure App Services provide a simple PaaS solution for deploying, managing, and scaling

web applications, APIs, API Apps, Logic Apps, and Mobile Apps.

■■ API Apps and API Management both provide ways to publish APIs for partner integra-
tion. API Management provides richer features for partner management, licensing,
throttling, security, and related management tools.

■■ Logic Apps provide an easy way to create workflows, modern integrations, and even
legacy integration with EDI formats.

■■ Azure Functions provide an easy way to trigger workloads that can scale based on con-
sumption or a hosting plan. There are many integration points for triggering functions
including queues, HTTP requests, and data triggers.

■■ Azure Service Fabric is a modern orchestration platform that can support native services
that leverage unique features such as stateful services and actor patterns, in addition to
guest and container processes.

■■ Azure supports several third-party PaaS platforms for containers and microservices
including Cloud Foundry and OpenShift.

■■ You have many choices for DevOps and CI/CD workflows in Azure including Applica-
tion Insights for diagnostics, monitoring and alerts; and VSTS, Jenkins, Chef, Puppet and
more for CI/CD integration.

413

Index

adding operation to 355–356
creating 352–356
monitoring 362–363
publishing 356
rate limits 358–360

caching 360–362
components 351–352
developer portal 363–366
overview 351–352
policies 356–358
service creation 352–353

API Proxies 377–378
append blobs 115
Application Insights 400–403

performance issues and 401–403
Profiler 403
telemetry 400–401

application logs 49, 52, 56–57
applications

ASP.NET 181
availability of 57–66
Azure Marketplace and 398–399
Azure Service Fabric 379–392
directory queries 207–216
enterprise 265
instrumenting, with telemetry 400–401
integration with Azure AD 191–216

directory creation 194–195
preparation for 192–198
querying directory 207–216
viewing endpoints 197–198
with OAuth 202–203
with OpenID Connect 199–202
with SAML-P 206–207
with WS-Federation 203–206

listener 242–245
Microsoft Application Registry 208–209
mobile 343–351
multi-tier 58

A
access control

anonymous access 133
Azure Key Vault 228–232
blobs 115–116
DevTest Labs 95–100
role-based 95–96
shared access signatures 132–135
storage 132–136
stored access policies 135

access keys 111–112, 179
access policies 113, 262
Active Directory (AD) 176–177
activity logs 362
actors 379, 387–388
AD. See Active Directory
ADE. See Azure Disk Encryption
Advanced Message Queuing Protocol (AMQP) 239
advanced rate limiting 359–360
alerts

configuration 55
AMQP. See Advanced Message Queuing Protocol
anonymous access 127, 133
anonymous logs 141–142
API Apps 305–318

client code generation 314–316
creating and deploying 305–310
diagnostic logs 317–318
discovery automation using Swashbuckle 310–314
enabling CORS 314
metrics 316, 318
monitoring 316–318
quotas 316

API Management 281, 351–366
adding product 353–354
APIs

414

﻿

passwords 209
performance issues 401–403
provisioning, with Azure Quickstart Templates

397–398
registering 195–197, 221–223
remote debugging 16
sender 245–246
single page 192
using Azure AD B2B 225
using Azure AD B2C 216–225
using social identity provider authentication 217–225
web 281
Web/API 195–196

application tiers 58
App Service plans 282–287

creating 283–285
function integration with 379
pricing tiers 282
settings 286–287

A records 291–292, 293–294
ARM. See Azure Resource Manager
ARR affinity settings 288
ASP.NET 306
ASP.NET applications 181
asynchronous polling 340–341
asynchronous webhooks 341
authenticated logs 141–142
authentication

Azure AD 192–193
mobile apps 343, 346–348
multi-factor 210–216, 225
scenarios 193
social identity provider 217–225
storage account 135–136
users 203–206

authorization
mobile apps 343

authorization protocols
 202–203

automatic asynchronous replication 150
automatic failover 172–173
Autoscale

configuration 25–29
AutoScale 18
auto-shutdown policy 87–89
auto-start policy 90–91
Auto Swap settings 289
availability

high 59
sets 19

application tiers and 58
configuration 58–60
Load Balancer and 60–66

virtual machines 57–66
AZCopy 44
Azure Active Directory (Azure AD)

application integration 191–216
directory creation 194–195
preparation for 192–198
querying directory 207–216
registering application 195–197
viewing endpoints 197–198
with OAuth 202–203
with OpenID Connect 199–202
with SAML-P 206–207
WS-Federation 203–206

B2B 225
B2C 216–225
code samples 194
documentation 192
PowerShell with 192
uses of 191

Azure AD B2B 225
Azure AD B2C 216–225

application registration 221–223
identity provider configuration 223–224
policy configuration 224
tenant creation 218–221

Azure AD Connect 195
Azure AD Graph API 207
Azure App Services 281, 404

API Apps 305–318
integration with source code repositories 409
Logic Apps 318–342
Mobile Apps 343–351
plans 282–287
quotas 296
Web Apps 282–305

Azure Autoscale. See Autoscale
Azure Command Line Interface (Azure CLI) 7–8

Web Apps and 296
Azure-connected functions 372–374
Azure Cosmos DB accounts

creating 164
Azure Cosmos DB DocumentDB 160, 162–177

accessing from REST API 174
choosing surface 163
consistency 170

application tiers

415

Azure SQL Database

database and collections creation 164–167
Graph API database creation 168
GraphDB API queries 168
MongoDB database and 169
multiple regions, managing 171–173
query documents 167–168
scaling 169–171
security 174–176
stored procedures 173–174
users and permissions 175

Azure Cosmos DB Table API 131, 163
Azure Disk Encryption (ADE) 46–47
Azure Files 109

connections to 120–121
storage 119

Azure File storage 41–45
Azure Functions 281, 366–379

Azure-connected functions 372–374
creating 367–368
custom bindings 376–377
debugging 377
event processing 371–372
integration with App Service plan 379
integration with storage 374–376
overview 366–367
proxies 377–378
triggers 376–377
webhook function, implementing 369–371

Azure Key Vault 46, 225–236
access management 228–232
configuration 226–228
HSM protected keys 232–233
key rotation 235–236
logging implementation 233–235
uses of 225

Azure Marketplace 2, 398–399
Azure Portal

adding owners and users to lab with 97–98
API app creation from 306
Autoscale configuration with 25–29
custom image creation with 74–75
load balancing with 61–66
metrics monitoring with 55–56
monitoring configuration with 49–54
Scale Set deployment using 19–21
scaling VMs using 17
VM configuration using 14–15

Azure queues 253

Azure Queues 372–373
Azure Quickstart Templates 281, 397–398
Azure Relay 236, 239–253

Hybrid Connections 240–247
namespaces 240
scaling 273–274
WCF Relay 247–253

Azure Resource Manager (ARM)
deployment 111
templates 2, 22, 100–104, 393, 397–398
virtual machines

availability 57–66
configuration management 7–16
DevTest Labs 67–104
load balancing 61–67
monitoring 47–57
scaling 16–29
storage 29–47
workload deployment 1–7

Web Apps and 296
Azure Samples 210
Azure Search 182–186

adding data 183–184
index search 185
search results 186
service indexes 182–183

Azure Service Fabric 281, 379–392
actors-based service 387–388
applications

adding web front end to 383–387
creating 380–383
deployment to container 388–390
migration from cloud services 390
scaling 390–391

clusters 391–392
monitoring and diagnose services 388
overview 379–380

Azure SQL Database 123
backups 147
database tiers, choosing 144–147
geo-replication 149–150
graph database functionality in 160–161
implementation 144–161
managed elastic pools 157–159
performance level, choosing 144–147
point in time recovery 147–149
scaling 155–157
schema and data, import and export 151–155
secondary databases

offline 150

416

Azure Storage

online 150–151
SQL Data Sync 159–160
vs. Azure Tables 123

Azure Storage. See storage
Azure Storage accounts 42
Azure Storage Analytics 132
Azure Storage Queue 128–131

adding messages to 128–129
batch message retrieval 130
processing messages 129–130
scaling queues 130–131

Azure Storage Tables 48–49
Azure Tables 122–128

creating 123–124
CRUD operations 123–127
deleting records 127
inserting multiple records 125–126
partitions 123–124, 128–129
querying, usnig OData 127
record insertion 124–125
records in partitions 126
transactions 125–126
updating records 126–127
vs. Azure Cosmos DB Table API 131
vs. Azure SQL Database 123

Azure Virtual Machine Agent. See VM Agent

B
back off polling 131
backups

Azure SQL Database 147
BACPAC files 151–155
batch messages 130
blobs 30, 42, 109–122

about 110
access control 132
append 115
block 115, 141
containers 112–113, 117, 122
copying 116
geo-replication for 41
hierarchies 117–118
integration of function with 374–376
leasing 119–120
metadata 113–114
page 115
partition keys 122

read and change data 112–113
SAS tokens 133
scaling 119–120
secure access 115–116
storage account creation 110–112
streaming 115
types of 115
URIs 113

Blob storage 30, 111
Content Delivery Network with 116–117
naming requirements 42

block blobs 115, 141
boot diagnostic logs 57
BrokeredMessage type 257
business-to-business (B2B) workflows

Logic Apps supporting 322–331

C
cache

CDN 116–117
configuration 39–41
expiry period 117
host 39–41
local 39–41
providers 181
Redis 177–182
tiers 177–178

caching
adding 360–362

capacity metrics 137
CDN. See Content Delivery Network
certificate authority (CA) 291
certificate permissions 230
certificates

SSL 291, 294–295
Chef 408
cifs-utils package 121
CLI. See Azure Command Line Interface
client-side logging 141
Cloud Foundry 392–393
cloud services 390
clusters

Redis 180
Service Fabric 391–392

CNAME records 291, 292, 294
collections

417

data

Cosmos DB API 164–167, 169–170
compute resources 282
compute time 119, 123
configuration

alerts 55
API Management policies 356–358
Autoscale 25–29
availability sets 58–60
Azure AD B2C policies 224
Azure Key Vault 226–228
Content Delivery Network 116–117
custom domains 118, 292–294
DevTest Labs

cost management 92–95
policies and procedures 83–91

diagnostics 49–54
disk caching 39–41
endpoint monitoring 300–303
geo-replication 41
identity providers 223–224
Load Balancer 61–67
Mobile Apps 345–346
monitoring 49–54
proxies 377–378
shared storage 41–45
SSL certificates 294–295
Storage Analytics Logging 140–141
Storage Analytics Metrics 137–140
storage pools 32–39
Web Apps 287–295

Configuration keyword 11–12
configuration management

virtual machines 7–16
using Azure Portal 14–15
using DSC 13–15
with Custom Script Extension 8–10
with DSC 11–12

configuration scripts 13
connection strings

accessing 290
settings 289

connectivity issues 239
consistency 131, 170, 171
consumer groups 269
Consumption plans 379
containers 112–113, 117, 122, 379

Service Fabric application deployment to 388–390
Windows 390

Content Delivery Network (CDN) 116–117

continuous development (CD)
VSTS with 404–409
with third-party platform tools 408–409

continuous integration (CI)
VSTS with 404–409
with third-party platform tools 408–409

CORS 314
cost by resource 95
cost management

DevTest Labs 92–95
Cost Trend chart 92
crash dumps 49, 53–54
Create Alert Rule dialog box 146–147
CreateServiceReplicaListeners() 383
credentials

Event Hub 267
Service Bus queue 255–256
Service Bus topic 262
WCF Relay 249–250

Cross-Origin Resource Sharing (CORS) 136–141
CRUD operations 348
custom actions

in Logic Apps 340–341
custom domains

configuration 118, 292–294
mapping names 291–292

custom images
creating 72–76

from provisioned VM 72–74
with Azure Portal 74–75
with PowerShell 76

deleting 77
pros and cons of 72
Scale Set deployment using 22–24

custom resources 12
Custom Script Extension

VM configuration with 8–10

D
data

consistency 170, 171
import and export 151–155
loading into storage account 112
logging. See logs
persistence 178–179
read and change 112–113
redundancy 149
replication 111, 171–172

418

data access

storing
using blobs 115

streaming 115
validation 135

data access 343
databases

Cosmos DB API 164–167
graph 163, 168
graph database functionality 160–161
relational 161, 171
sharding 156

database throughput units (DTUs) 144–146, 157–159
data products 109
datasets

sharding large 122–123
dead letter queues 259
deployment

API Apps 305–310
ARM templates 22
Azure Relay namespaces 240
Azure Resource Manager 111
Hybrid Connection 240–241
Mobile Apps 345
Service Fabric applications 388–390
Virtual Machine Scale Sets 18–24
WCF Relay 248–249

Desired State Configuration (DSC) 7
Configuration keyword 11–12
configuration management 7–8, 11–15
custom resources 12
Local Configuration Manager 12–13
resources 11

developer portal 363–366
DevOps 399–409

Application Insights 400–403
overview 399
telemetry 400–401
third-party platform tools 408–409
Visual Studio Team Services 403–408

DevTest Labs 67–104
adding owner or user 97–99
adding VM 70–71
ARM templates 100–104
configuration

cost management 92–95
policies and procedures 83–91

custom images
creating 72–76
deleting 77

environments 100–104
formulas

creating 77–81
deleting 83
modifying 81–82
pros and cons of 77

lab creation 67–70
lab settings 99–100
policies and procedures

auto-shutdown policy 87–89
auto-start policy 90–91
per lab policy 86–87
per user policy 85–86
set expiration date policy 91
virtual machine sizes policy 83–85

security access 95–100
diagnostic infrastructure logs 49, 54, 56–57
diagnostic logs 317–318, 362
diagnostics 48–50

boot 57
configuration 49–54
services 388
Web Apps 296–300

Diagnostics extension 48
differential backups 147
directories

creating 194–195
premium 195
querying 207–216

disaster recovery 149–150
disk caching

configuration 39–41
disks

encryption 46–47
managed 30–31
premium 30–31, 45
standard 30–31, 45
storage 30–32
unmanaged 30–31

Docker 394
DocumentDB API 173
documents

retrieving from Azure Cosmos DB DocumentDB
167–168

searching 185
domain name system (DNS) records 291
domains

custom 118, 291–294
fault 58
update 58

419

guest executables

domain specific language (DSL) 161
DSC. See Desired State Configuration
dump files 49
duplicate logs 140

E
easy tables 348
eDTUs 157–159
Elastic Database Tools 156–157
elastic Database Transaction Units (eDTUs) 157–159
elastic pools 157–159
encryption

at rest 174
Azure Disk Encryption 46–47
disk 46–48
in flight 174
storage service 111
Storage Service Encryption 46–47

endpoints
HTTP 338–339
listener 250–252
monitoring 300–303
OAuth 202
relay 250–252
SAML-P 207
WS-Federation 206

enterprise applications 265
Enterprise Integration Pack 322–323, 331, 333. See

also integration accounts
environments

DevTest Lab 100–104
error message logs 297
ETag 124
Event Hubs 237, 265–270

connection strings 268
creating 266–267
credentials 267
monitoring 276–277
overview 265
pricing tiers 272
properties 266
receiving messages from consumer groups 269–270
scaling 275
sending messages to 268
when to use 277–278

event logs 52–53, 56–57, 297
EventProcessorHost 270, 278

event tracing 49
external users

adding to DevTest Labs 97–99

F
failed request trace logs 297
fault domains 58
file locking 43
files. See also Azure Files

accessing 42
BACPAC 151–155
connections to 120–121

file shares 42–45
accessing files 44–45
creating 43
mounting 43–44

file storage. See storage
firewalls

network 175
First In First Out (FIFO) buffer 253
formulas

creating 77–81
deleting 83
modifying 81–82
pros and cons of 77

full backups 147
full text search 182
functions 164. See Azure Functions

G
General Purpose storage 111
geo-replication 149–150

configuration 41
Get-AzureRmAdUser cmdlet 99
Get-AzureRmResource cmdlet 76, 99
GetContainerReference() 114
GetMessage() 129
GetMessages() 130
Git 404
GitHub 409
Graph API databases

creating 168
graph databases 160–161, 163
GraphDB API queries 168
Gremlin 161, 163, 168
guest executables 379

420

Hardware Security Module (HSM) protected keys

H
Hardware Security Module (HSM) protected keys

232–233
HDD disks 30
high availability 59
high availability/disaster recovery (HADR) scenarios 171
host cache 39–41
HTTP endpoints 338–339
HTTP protocol 239, 248
HTTP requests 115
HTTPS requests 115, 174
Hybrid Connections 240–247

Azure Relay namespace deployment 240
configuration retrieval 241–242
deployment 240–241
listener application creation 242–245
running applications 246–247
sender application creation 245–246

I
IaaSDiagnostics extension 48
identity providers 223–224. See also social identity

provider authentication
IIS logs 49, 57
IIS settings 290
ImageToUpload variable 112
incremental log backups 147
Infrastructure-as-a-Service (IaaS) 1
InsertOrReplace() 126
integration accounts

adding agreements 325–326
adding maps to 332–333
adding partners to 324–325
adding schemas to 332
creating 322–324
linking Logic app to 326–327

Internet of Things (IoT) 265, 278
IP addresses

changes in 294

J
Jenkins 408, 409
JSON document storage 160, 162–163, 171. See

also Azure Cosmos DB DocumentDB

K
key performance indicators (KPIs) 401
key permissions 229
key-value stores 160, 177
Key Vault 46, 225–236
Kubernetes 394
Kudu 299, 300

L
lambda LINQ 167
leases

blob 119–120
LINQ queries 167
Linux virtual machines

creating 6
metrics data 48

listener applications 242–245
listener endpoints 250–252
Load Balancer

availability sets and 60–66
local cache 39–41
Local Configuration Manager 12–13
locally redundant replication 41
Locally Redundant Storage (LRS) 111
Logic App Designer 318
Logic Apps 318–342

creating
connecting SaaS services 319–322
with B2B capabilities 322–331
with XML capabilities 331–337

custom and long-running actions 340–341
HTTP endpoints for 338–339
integration accounts

adding agreement 325–326
adding maps to 332–333
adding partners to 324–325
adding schemas to 332
creating 322–324
linking to 326–327

metric 341–342
monitoring 341–342
overview 318
receiving data in 327–331
triggering from another app 337–339

Login-AzureRmAccount cmdlet 98
logs

activity 362

421

Mobile Apps

analyzing 141–143
anonymous 141
API Apps 317–318
application 49, 52, 56–57
authenticated 141
boot diagnostics 57
client-side 141
configuration 49–54
diagnostic 297–300, 317–318, 362
diagnostic infrastructure 49, 54, 56–57
duplicate 140
error message 297
event 49, 52–53, 56–57, 297
failed request tracing 297
finding 142–143
IIS 49, 57
Key Vault 233–235
metadata 143
operation 142
retention 140
status messages 142
storage 140–143
Storage Analytics 132, 140–141
system 48
viewing 56–57
viewing, with Microsoft Excel 143
Web Apps 296–300
web server 297, 318

long-running actions 340–341
LRS. See Locally Redundant Storage

M
managed disks 30
managed elastic pools 157–159
maps

adding to integration account 332–333
XML 331

messages
adding to queue 128–129
batch 130
batching 264, 274
duplicate 259
filtering 264–265
identifiers 129
invisibility 129
pre-fetching 274
processing 129

receiving
from consumer group 269–270
from queues 257–259
from subscriptions 263–264

sending
through relay 252
to a topic 262–263
to Event Hubs 268
to queues 256–257

messaging protocols 238–239
messaging strategy 236–278

Azure Relay 236, 239–253
Event Hubs 237, 265–270
Hybrid Connections 240–247
Notification Hubs 237, 270–271
scaling and monitoring 271–277
Service Bus queues 237, 253–259
Service Bus topics and subscriptions 259–265
WCF Relay 247–253

metadata
log 143
reading 114
setting 113–114
system properties 113, 114
user-defined 113–114
WS-Federation 206

metrics 48, 132
analyzing 139
API Apps 316, 318
capacity 137
levels of 137–138, 138
Logic Apps 341–342
monitoring 55–57, 139
performance 402
retention 138
storage 137–140
transaction 137
Web Apps 300–303

MFA. See multi-factor authentication
Microsoft Application Registry 208–209
Microsoft Azure Traffic Manager 304
Microsoft Excel

viewing logs with 143
Microsoft Graph API 207–210
Microsoft SQL Server 164
minidumps 49
Mobile Apps 343–351

authentication 346–348
client application 346

422

MongoDB database

O
OAuth 2.0 198, 202–203
OData

querying using 127
offline secondary databases 150
offline sync 343, 348–350
online secondary databases 150–151
OpenAPI Specification (OAS) 310
OpenID Connect 192–193, 198, 199–202, 217
OpenShift Container Platform 394–396
OpenShift Origin 394, 396
Open-source Cloud Foundry (OSS CF) 392
operation logs 142
owners

adding to DevTest Labs 97–98

P
page blobs 115
partition keys 123–125, 126–128, 170, 269
partitions 128–129, 169–170, 269, 274, 275
partner-managed identities 225
passwords

application 209
PeekLock mode 257
Performance Counters 51
performance metrics 402
permissions 95

certificate 230
Cosmos DB 175
key 229
secret 230

Pivotal Cloud Foundry (PCF) 392–393
Placement groups 19
plain-old CLR objects (POCOs) 166
Platform-as-a-Service (PaaS) 1, 281

Azure Marketplace 398–399
Azure Quickstart Templates 397–398
Cloud Foundry 392–393
OpenShift Container Platform 394–396
third-party 392–399

point in time restores 147–149
PowerShell

accessing file share using 44
adding external users to lab with 98–99
availability set configuration using 60

configuration 345–346
creating 343–346
deployment 345
development environment 344–345
offline sync for 348–350
overview 343
push notifications 350–351
target device platforms 344

MongoDB database 163, 169
monitoring

alerts 55
API Apps 316–318
APIs 362–363
diagnostics 47–49
Event Hubs 276–277
Logic Apps 341–342
metrics 55–57
Notification Hubs 277
Service Bus features 275–277
services 388
storage metrics 139
viewing logs 56–57
virtual machines 47–57

configuration 49–54
Web Apps 296

Monthly Estimated Cost Trend chart 92
multi-factor authentication (MFA) 210–216, 225
multi-tier applications 58

N
namespaces 274

Azure Relay 240
Event Hubs 275
Service Bus 237–238, 273

.NET Storage Client Library 141
NetTcpRelayBinding relay 248
network firewalls 175
network isolation 179–180
New-AzureRmResourceGroupDeployment cmdlet 76
New-AzureRmRoleAssignment cmdlet 99
Newtonsoft.Json 307
Node.js 310
nodes 160–161
Notification Hubs 237, 270–271, 272

monitoring 277
when to use 277–278

423

Service Bus topics

relationships 160–161
relays 237. See also Azure Relay;

See also WCF Relay scaling 273–274
relay service endpoints 250–252
remote debugging 16, 289
Remote Desktop (RDP) 44
replication

automatic asynchronous 150
data 111, 171–172
geo-replication 41, 149–150
locally redundant 41
options 111

Request Units (RUs) 131
resilience

Web Apps 303–305
resources

custom 12
DSC 11

REST API 174
REST APIs 43, 45
RESTful APIs 296, 305, 310, 340
restores

point in time 147–149
REST services 248
retention

backups 147
Role-Based Access Control (RBAC) 95–96
roles 95, 96
row keys 123, 124
RPC listeners 383
RUs. See Request Units

S
SAML 2.0 Protocol (SAML-P) 192, 198, 206–207
SAS. See secure access signature
SBMP. See Service Bus Messaging Protocol
Scale Sets 18–24
scaling

Azure Cosmos DB DocumentDB 169–171
Azure SQL Database 155–157
blob storage 119–120
Event Hubs 275
queues 130
relays 273–274
Service Bus features 272–273
Service Bus queues 274
Service Bus topics 274

Azure AD management with 192
custom image creation with 76
disk encryption using 46–47
scaling VMs with 17
Web Apps and 296

PowerShell Desired State Configuration. See Desired
State Configuration

pre-fetching messages 274
premium directories 195
premium disks 30–31, 45
premium storage 45
pricing tier 271–272, 282
primary keys 132
proxies 377–378
Publish-AzureRMVmDscConfiguration cmdlet 13
Publish-AzureVMDscConfiguration cmdlet 14
Puppet 408
push notifications 343, 350–351

Q
queues 128–131

Azure 253
SAS tokens for 134–135
Service Bus 237, 253–259

QueueSender 256
Quickstart Templates 397–398
quotas

API Apps 316

R
rate limits

for APIs 358–360
RBAC. See Role-Based Access Control
ReceiveAndDelete mode 257
ReceiveBatch() 264
ReceiveBatchAsync() 264
receiver keys 250
records

deleting 127
in partitions 126
inserting, into tables 124–125
inserting multiple 125–126
updating 126

Redis caching 177–182
Redis clusters 180
relational databases 161, 171

424

schema

duplicate messages and 259
monitoring 275
properties of 254
receiving messages 257–259
scaling 274
sending messages to 256–257

Service Bus subscriptions 237, 259–265, 278
creating 261
filtering messages 264–265
properties 260
receiving messages from 263–264

Service Bus topics 237, 259–265, 278
creating 261
credentials 262
filtering messages 264–265
monitoring 276
properties 260
scaling 274
sending messages to 262–263

Service Fabric. See Azure Service Fabric
Service Tiers 144–147
session state 181
SetAzureRmVmDscExtension cmdlet 13
set expiration date policy 91
shard maps 156
shared access signatures 116
Shared Access Signature (SAS) 127
shared access signatures (SAS) 132–135
Shared Key 116
Shared Key Lite 116
shared storage

configuration 41–45
single page applications (SPAs) 192
Site Control Management (SCM) website 300
SOAP protocol 248
social identity provider authentication 217–225
Software as a Service (SaaS) 319–322
SQL Data Sync 159–160
SQL queries 167
SQL Server

virtual machines
creating 7

SQL Server Management Studio (SSMS) 151–155
SSD disks 30
SSH keys 393
SSH public keys

generation of 6
SSL certificates 291, 294–295

Service Fabric apps 390–391
Web Apps 303–305

schema
import and export 151–155

schemas
adding to integration account 332
XML 331

scopes 95
search

Azure Search 182–186
full text 182

Search Units (SUs) 182
secondary databases

offline 150
online 150–151

secondary keys 132
secret permissions 230
secrets

managing, with Key Vault 225–236
secure access signature (SAS)

data validation 135
tokens

recommendations for 135
renewing 135

Secure Socket Layer (SSL) 291
security. See also access control; See also authentication

Cosmos DB 174–176
DevTest Labs 95–100
Redis 179–180

Select-AzureRmSubscription cmdlet 76, 98
sender applications 245–246
sender keys 250
Server Manager 32
Server Message Block (SMB) protocol 42
Service Bus

messaging protocols 238–239
monitoring 275–277
namespaces 237–238, 273
pricing tier 271–272
quotas 273
scaling features 272–273
when to use 277–278

Service Bus Messaging Protocol (SBMP) 239
Service Bus queues 237, 253–259, 278

connection strings 256
creating 255
credentials 255–256
dead letter 259

425

triggers

creating 133–134
Storage Analytics Logging 140–141
Storage Analytics Metrics 132

analysis 139
configuration 137–140
monitoring 139

Storage API 114
Storage Client Library 44–45, 133
Storage Service Encryption (SSE) 46–47
stored access policies 135
stored procedures 164, 170, 173–174
Stream Analytics 278
Swagger 308–310, 312–316, 340
Swagger Specification 310
Swashbuckle 308, 310–314, 340
Sync Groups 159
Sync Schemas 159
SyncTable 348
Syslog 48
system logs 48
system properties

metadata 113
reading 114

T
tables. See also Azure Tables

easy 348
SAS tokens for 134

TeamCity 409
Team Foundation Version Control 404
telemetry 400–401
temp drive 30
third-party Platform-as-a-Service (PaaS) 392–399

Azure Marketplace 398–399
Azure Quickstart Templates 397–398
Cloud Foundry 392–393
OpenShift Container Platform 394–396

throughput units 275
tiered pricing 144
Timestamp 124
Time-to-Live (TTL) 117, 265
tokens 203
transaction metrics 137
transforms 331
Transform XML 334–336
Transport Layer Security (TLS) 291
triggers 164, 173, 373–374, 376–377

standard disks 30–31, 45
standard storage 45
stateful Fabric-aware services 379
stateless Fabric-aware services 379
status messages 142
storage

access control 132–136
access policies 113
accounts 42

blob 110–112
CDN configuration 116–117
geographic location 111
key regneration 135–136
read and change data 112–113
types 111

Azure File 41–45
Azure Files 119
Azure Storage Queue 128–131
Azure Tables 122–128
blob 30, 42
blobs 109–122

append 115
block 115
copying 116
hierarchies 117–118
leasing 119–120
metadata 113–114
page 115
read and change data 112–113
scaling 119–120
secure access 115–116
streaming data 115
types of 115

containers 112–113, 117, 122
Cross-Origin Resource Sharing 136–141
custom domains 118
disk caching 39–41
disk encryption 46–48
geo-replication 41
integration of function with 374–376
locally redundant 111
logs 140–143
metrics 132
pools 32–39
shared 41–45
virtual machines 29–47

capacity planning 30–32
premium 45
standard 45

storage access signatures (SAS)
tokens

426

T-SQL

policies and procedures 83–91
security access 95–100

disks
creating generalized 22

extensions 7–8
images 2
load balancing 61–67
monitoring 47–57

configuration 49–54
diagnostics 47–49
metrics 55–57

per lab policy 86–87
per user policy 85–86
remote debugging 16
scaling 16–29
set expiration date policy 91
sizes 17
sizes policy 83–85
storage 29–47

capacity planning 30–32
disk caching 39–41
disk encryption 46–48
geo-replication 41
pools 32–39
premium 45
shared 41–45
standard 45

workload deployment 1–7
virtual networks (VNet) 179
Visual Studio 2017

API app creation with 306–310
Visual Studio Server Explorer 300
Visual Studio Team Services (VSTS) 403–408
VM Agent 7, 47

configuration management using 7–8
VM Depot 2

W
WADDiagnosticInfrastructureLogsTable 49
WADETWEventTable 49
WADLogsTable 49
WADPerformanceCountersTable 48
WCF Relay 240, 247–253

credentials 249–250
deployment 248–249
protocols 247
relay and listener endpoints 250–252
sending messages 252–253

Web/API applications 195–196

for Logic Apps 337–339
T-SQL 161

U
UDFs. See user-defined functions
Universal Naming Convention (UNC) 41
unmanaged disks 30
update domains 58
URIs 111, 113
user defined functions (UDFs) 173
user-defined metadata 113–114
users

adding to DevTest Labs 97–99
authentication of 192, 203–206
Cosmos DB 175

V
vent processing functions 371–372
version control 404
virtual hard disks (VHDs) 30, 72

custom image creation from 74–76
virtual machine disks 30
Virtual Machine Scale Sets (VMSS)

configuring Autoscale on existing 27–29
configuring Autoscale when provisioning 25–26
deployment 18–24

virtual machines (VMs) 1–108
alerts, configuration 55
auto-shutdown policy 87–89
auto-start policy 90–91
availability 57–66
configuration management 7–16

with Azure Portal 14–15
with Custom Script Extension 8–10
with DSC 7–8, 11–12, 13–15
with VM Agent 7–8

creating
Linux 6
SQL Server 7
Windows Server 3–5

DevTest Labs 67–104
adding VM to lab 70–71
cost management 92–95
custom images 72–78
environments 100–104
formulas 77–83
lab creation 67–70

427

XplatCLI ﻿

web applications 281
Web Apps 282–305

analytics 296
configuration

certificates 291, 294
settings 287–290

creating 284–285
custom domains 291–294
diagnostics 296–300
managing 295–296
monitoring 296, 300–303
resilience 303–305
scaling 303–305

webhook functions 369–371
Webhooks 94, 341
WebJobs 366–367
web server logs 297, 318
web services 281
WebSockets 239
Windows containers 390
Windows virtual machines

creating 3–5, 45
metrics data 48
remote debugging 16

workloads
deployment, on ARM VMs 1–7
identifying supported 2–3
requirements 3–4

WS-Federation 192, 198, 203–206

X
XML capabilities

Logic Apps with 331–337
XML documents 331
XML Validation 333–334
XplatCLI 296

This page intentionally left blank

About the authors

ZOINER TEJADA has more than 18 years of experience in the software industry as a software
architect, CTO, and start-up CEO, with particular expertise in cloud computing, big data, ana-
lytics, and machine learning. He was among the first to receive a Microsoft Azure MVP (“Most
Valuable Professional”) designation and has since been awarded the MVP for six consecutive
years, and most recently a dual MVP award for Azure and Data Platform. Additionally, he was
recently recognized by Microsoft as a Microsoft Regional Director.

MICHELE LEROUX BUSTAMANTE is cofounder / CIO of Solliance, a Microsoft Regional Direc-
tor and Azure MVP, has been awarded Azure Elite and Azure Insider status as well as the ASP.
NET Insider designation. Michele is a respected technology executive / thought leader, who
builds high performance teams and infrastructure. With over 20 years of experience Michele
has held senior executive positions, assembled software development teams and implemented
processes for all aspects of the software development lifecycle, and actively facilitated large-
scale enterprise application deployments. Michele is a recognized expert in many fields includ-
ing distributed systems architecture, cloud computing and identity and access management
– the latter, an area with very few deep technical experts. Today, Michele specializes in deliver-
ing cloud-enabled solutions at scale, cloud migration, security, compliance, and micro-services
platforms.

IKE ELLIS is a data architect who stays current on many database technologies. He special-
izes in the Microsoft Data Platform, including DocumentDB, Azure SQL Datawarehouse, and
Azure Data Lake. He also loves visualizing data using Microsoft tools like Power BI, SQL Server
Reporting Services, and mobile dashboarding. Ike is a current Microsoft MVP for the data
platform team.

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Organization of this book
	Microsoft certifications
	Acknowledgments
	Microsoft Virtual Academy
	Quick access to online references
	Errata, updates, & book support
	We want to hear from you
	Stay in touch
	Preparing for the exam

	Chapter 4 Design and implement Azure PaaS compute and web and mobile services
	Skill 4.1: Design Azure App Service Web Apps
	Define and manage App Service plans
	Configure Web App settings
	Configure Web App certificates and custom domains
	Manage Web Apps by using the API, Azure PowerShell, and Xplat-CLI
	Implement diagnostics, monitoring, and analytics
	Design and configure Web Apps for scale and resilience

	Skill 4.2: Design Azure App Service API Apps
	Create and deploy API Apps
	Automate API discovery by using Swashbuckle
	Use Swagger API metadata to generate client code for an API app
	Monitor API Apps

	Skill 4.3: Develop Azure App Service Logic Apps
	Create a Logic App connecting SaaS services
	Create a Logic App with B2B capabilities
	Create a Logic App with XML capabilities
	Trigger a Logic App from another app
	Create custom and long-running actions
	Monitor Logic Apps

	Skill 4.4: Develop Azure App Service Mobile Apps
	Create a mobile app
	Add authentication to a mobile app
	Add offline sync to a mobile app
	Add push notifications to a mobile app

	Skill 4.5: Implement API Management
	Create managed APIs
	Configure API Management policies
	Protect APIs with rate limits
	Add caching to improve performance
	Monitor APIs
	Customize the developer portal

	Skill 4.6: Implement Azure Functions and WebJobs
	Create Azure Functions
	Implement a Webhook function
	Create an event processing function
	Implement an Azure-connected function
	Integrate a function with storage
	Design and implement a custom binding
	Debug a Function
	Implement and configure proxies
	Integrate with App Service Plan

	Skill 4.7: Design and Implement Azure Service Fabric apps
	Create a Service Fabric application
	Add a web front end to a Service Fabric application
	Build an Actors-based service
	Monitor and diagnose services
	Deploy an application to a container
	Migrate apps from cloud services
	Scale a Service Fabric app
	Create, secure, upgrade, and scale Service Fabric Cluster in Azure

	Skill 4.8: Design and implement third-party Platform as a Service (PaaS)
	Implement Cloud Foundry
	Implement OpenShift
	Provision applications by using Azure Quickstart Templates
	Build applications that leverage Azure Marketplace solutions and services

	Skill 4.9: Design and implement DevOps
	Instrument an application with telemetry
	Discover application performance issues by using Application Insights
	Deploy Visual Studio Team Services with continuous integration (CI) and continuous development (CD)
	Deploy CI/CD with third-party platform tools (Jenkins, GitHub, Chef, Puppet, TeamCity)

	Thought experiment
	Thought experiment answers
	Chapter summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

