Code examples for controlling LED
using Visual Basic and JavaScript

ere you find additional examples for controlling the LED circuit you developed in Chapter 2,
“Universal Windows Platform on devices.” The following sample applications offer alternative
ways for accessing the UWP and do not show any additional functionality.

Headed app using Visual Basic/XAML

The implementation of the loT Hello, World! app proceeds as follows:
1. Open the New Project dialog box.
2. Inthe New Project dialog box:
a. Type Visual Basic in the search box.
b. Select the Blank App (Universal Windows) project template.
c. Change the app name to HelloWorldloTVB and click the OK button.
3. Open MainPage.xaml.vb and edit it according to Listing A-1.
4. Reference Windows loT Extensions for the UWP.

5. Change the target platform to ARM and point to your loT device as the remote machine.
(For help, see the procedure in the section "C#/XAML" in Chapter 2.)

6. Start debugging. The application will be deployed and executed on your loT device.

LISTING A-1 Visual Basic implementation of LED control

Imports Windows.Devices.Gpio

PubTlic NotInheritable Class MainPage
Inherits Page

Private Const gpioPinNumber = 5

Private Const msShineDuration 4000

A-1

Protected Overrides Sub OnNavigatedTo(e As NavigationEventArgs)
MyBase.OnNavigatedTo(e)

BlinkLed(gpioPinNumber, msShineDuration)
End Sub

Private Function ConfigureGpioPin(pinNumber As Integer) As GpioPin
Dim gpioControl = GpioController.GetDefault()
Dim pin As GpioPin = Nothing

If gpioControl IsNot Nothing Then
pin = gpioControl.OpenPin(pinNumber)

If pin IsNot Nothing Then
pin.SetDriveMode(GpioPinDriveMode.Output)
End If
End If

Return pin
End Function

Private Sub BlinkLed(gpioPinNumber As Integer, msShineDuration As Integer)
Dim pin = ConfigureGpioPin(gpioPinNumber)

If pin IsNot Nothing Then
pin.Write(GpioPinValue.Low)

Task.Delay(msShineDuration).Wait()

pin.Write(GpioPinValue.High)
End If
End Sub
End Class

The structure of the Visual Basic UWP project is very similar to its C# counterpart. Namely, the
MainPage view is implemented within two files: MainPage.xaml and MainPage.xaml.vb. The latter
implements logic, which in the preceding example turns on an LED for 4 seconds. The general flow of
the application is the same as in the case of C# and C++ projects. That is, you first obtain a reference
to the instance of GpioController class, which is subsequently used to open the GPIO port. The latter
is set to a low state to power a LED, and to a high state to turn off a diode, assuming an LED circuit is
assembled in an active-low state.

Headless app using Visual Basic/XAML

To implement the background loT application using Visual Basic, follow these steps:

1. Create the new loTBackgroundAppVB app using the Background Application (loT) project template.
You can find this template by typing Visual Basic loT in the search box of the New Project
dialog box.

A-2 Code examples for controlling LED using Visual Basic and JavaScript

2. Reference Windows loT Extensions for the UWP.

3. Modify the StartupTask.vb file according to Listing A-2.

4. Deploy an app to your loT. An LED will start blinking.

LISTING A-2 The contents of a StartupTask.vb file

Imports Windows.ApplicationModel.Background
Imports Windows.Devices.Gpio

PubTlic NotInheritable Class StartupTask
Implements IBackgroundTask

Private
Private

Const gpioPinNumber = 5
Const msShineDuration = 4000

Public Sub Run(taskInstance As IBackgroundTaskInstance) Implements
IBackgroundTask.Run
BlinkLed(gpioPinNumber, msShineDuration)

End Sub
Private
Dim
Dim

Function ConfigureGpioPin(pinNumber As Integer) As GpioPin
gpioControl = GpioController.GetDefault()
pin As GpioPin = Nothing

If gpioControl IsNot Nothing Then

End

pin = gpioControl.OpenPin(pinNumber)

If pin IsNot Nothing Then
pin.SetDriveMode(GpioPinDriveMode.Output)

End If

If

Return pin
End Function

Private Sub BlinkLed(gpioPinNumber As Integer, msShineDuration As Integer)

Dim

ledGpioPin = ConfigureGpioPin(gpioPinNumber)

If ledGpioPin IsNot Nothing Then

End
End Sub

Private
Dim
Dim

While True
SwitchGpioPin(ledGpioPin)
Task.Delay(msShineDuration) .Wait()
End While
If

Sub SwitchGpioPin(gpioPin As GpioPin)
currentPinValue = gpioPin.Read()
newPinValue = InvertGpioPinValue(currentPinValue)

gpioPin.Write(newPinValue)

Code examples for controlling LED using Visual Basic and JavaScript

End Sub

Private Function InvertGpioPinValue(currentPinValue As GpioPinValue) As
GpioPinValue
Dim invertedGpioPinValue As GpioPinValue

If currentPinValue = GpioPinValue.High Then
invertedGpioPinValue = GpioPinValue.Low
Else
invertedGpioPinValue = GpioPinValue.High
End If

Return invertedGpioPinValue

End Function
End Class

Headed app using JavaScript, HTML, and CSS

Implement the headed app as follows:
1. Open the New Project dialog box.

2. Type JavaScript in the search box, and then pick Blank App (Universal Windows) from the
list of project templates.

3. Change the project name to loTBackgroundAppJS and click the OK button.
4. Reference Windows loT Extensions for the UWP.
5. Modify the defaultjs file according to Listing A-3.
6. Change the target platform to ARM.
7. Open the Project Properties dialog box and do the following:
a. Change the Platform setting to ARM.
b. Select Remote Machine from the Debugger to Launch drop-down list.
c. Discoveryour loT device using <Locate> in the Machine Name input box. See Figure A-1.

8. Startapp debugging.

LISTING A-3 GPIO port control using JavaScript

(function O {
"use strict";

var app = Win]S.Application;

A-4 Code examples for controlling LED using Visual Basic and JavaScript

var
var
var

var

app

If;

activation = Windows.ApplicationModel.Activation;

gpio = Windows.Devices.Gpio;
gpioPinNumber = 5;
msShineDuration = 1000;

.onactivated = function (args) {

if (args.detail.kind === activation.ActivationKind.launch) {
if (args.detail.previousExecutionState !==
activation.ApplicationExecutionState.terminated) {
} else {
3
args.setPromise(WinJS.UI.processA11());

b1inkLed(gpioPinNumber, msShineDuration);

function configureGpioPin(pinNumber) {

}

var gpioController = gpio.GpioController.getDefault(Q);
var gpioPin = null;

if (gpioController) {
gpioPin = gpioController.openPin(pinNumber) ;

if (gpioPin) {

gpioPin.setDriveMode(gpio.GpioPinDriveMode.output) ;
}

return gpioPin;

function blinkLed(pinNumber, msShineDuration) {

}

app.

Irg

app.

HO;

var ledGpioPin = configureGpioPin(pinNumber) ;

if (ledGpioPin) {
ledGpioPin.write(gpio.GpioPinValue.low);

setTimeout(function O {
TedGpioPin.write(gpio.GpioPinValue.high);
}, msShineDuration);

oncheckpoint = function (args) {

start(Q);

Code examples for controlling LED using Visual Basic and JavaScript

HelloWorldIoTIS Property Pages ? X

Configuration: Active(Debug) v Platform: ARM v | Configuration Manager...

4 Configuration Properties Debugger to launch:

General Remote Machine -

Debugging

Launch Application Yes

Allow Local Network Loopback Yes
Debugger Type Script Only
Dawid-RPi] =

Require Authentication Universal (Unencrypted Protocol)

FIGURE A-1 JavaScript Universal Windows app debugging configuration.

As in the case of the Visual Basic sample, this application is deployed and executed to the loT device.
After a short while, the appropriate LED is turned on for 1second.

Look at the project skeleton generated using JavaScript Blank App (Universal Windows). Besides the
application manifest file, it contains the following elements:

m Cssfolder The storage for style sheets

= Images folder A template-provided location for image resources
m Jsfolder A storage forJavaScript files
m WinJS folder Stores the files of the JavaScript library for building HTML/CSS UWP applications

m Default.html Ul declaration of the application main view (page)

By default, css and js folders contain one file each: default.css and default js, respectively. Those files,
together with default.html, implement the main page of the JavaScript UWP application.

I did not modify the Ul declaration of ToTBackgroundAppJS but updated the default contents of the
JavaScript file, default.js, which implements the logic of the view. It consists of the single anonymous
function, which starts the UWP application and attaches event handlers to the application onactivated
event handler. Within this handler, | call the b1inkLed method, which as before (assuming an active-low
state) configures the GPIO pin and drives it to the output-low state. Subsequently, the GPIO pin is
driven to the output-high state to turn off the LED. To implement a delay between subsequent calls to
awrite method exposed by the gpioPin object, | use the setTimeout JavaScript function.

An entry point of the headed JavaScript app

A-6

I did not discuss the entry point of the Visual Basic app because it is analogous to the C# and C++ projects.
On the other hand, JavaScript/HTML UWP applications are activated in a slightly different manner from
XAML applications. They include no static Program class implementing the Main method. Instead, the
hosting environment, which is the instance of the WWAHost.exe process, loads the start page indicated
in the package.appxmanifest file. In the case of the HelloWorldloTJS project, this file points to a page,
defined within the default.html file. This configuration can be changed either by manually editing the
appropriate entry in the manifest file, shown in Listing A-4, or by using Visual Studio package.appx-
manifest editor (see Figure A.2).

Code examples for controlling LED using Visual Basic and JavaScript

LISTING A-4 Fragment of the HelloWorldloTJS app manifest file

<Applications>
<Application

Id="App"

StartPage="default.html">

<uap:VisualElements
DisplayName="HelloWor1dIoTJ]S"
Description="HelloWor1dIoTJ]S"
BackgroundColor="transparent"
Squarel50x150Logo="1images\Squarel50x150Logo.png"
Square44x44lLogo="1mages\Square44x44Logo.png">

<uap:DefaultTile Wide310x150Logo="1images\Wide310x150Logo.png" />
<uap:SplashScreen Image="images\splashscreen.png" />

</uap:VisualETements>
</Application>
</Applications>

0 HelloWorldioTs = B X

package.appxmanifest # X -

The properties of the deployment package for your app are contained
in the app manifest file. You can use the Manifest Designer to set or
modify one or more of the properties.

Declarations Content URIs Packaging
Application Visual Assets Capabilities
rFs
Display name: HelloWorldloTJS
Start page: default.html
Default language: en-US More i
Description: HelloWorldloTIS
v
4 >

FIGUREA-2 The package.appxmanifest editor of the HelloWorldloTJS application. The name of the file implementing
the default application view is highlighted.

The automatically generated default.html file appears in Listing A-5. It contains typical HTML markup
and is what WWAHost.exe loads and processes when the app is launched. When WWAHost.exe encoun-
ters referenced JavaScript files—in this case the WinJS library and the app’s startup code in default,js
(see Listing A-6)—it loads and then executes that code. Default js is structured as a self-executing
anonymous function for app initialization to retrieve the App1ication object and set up listeners for the
onactivated and oncheckpoint events, which are fired when the app is launched and suspended,
respectively.

Code examples for controlling LED using Visual Basic and JavaScript A-7

LISTING A-5 The contents of the default.html file of HelloWorldloTJS project

<!DOCTYPE html>

<html>

<head>
<meta charset="utf-8" />
<title>HelloWorT1dIoTJS</title>

<!-- WinJS references -->

<link href="Winl]S/css/ui-dark.css" rel="stylesheet" />
<script src="Winl]S/js/base.js"></script>

<script src="WinJS/js/ui.js"></script>

<!-- HelloWorl1dIoT]S references -->
<link href="/css/default.css" rel="stylesheet" />
<script src="/js/default.js"></script>
</head>
<body class="win-type-body">
<p>Content goes here</p>
</body>
</html>

LISTING A-6 Default JS UWP app entry point

(function O {
"use strict";

var app = WinJS.Application;
var activation = Windows.ApplicationModel.Activation;

app.onactivated = function (args) {
if (args.detail.kind === activation.ActivationKind.Tlaunch) {
if (args.detail.previousExecutionState !==
activation.ApplicationExecutionState.terminated) {
} else {
3
args.setPromise(WinJS.UI.processAl11());

app.oncheckpoint = function (args) {

app.start(Q;
HO;

Code examples for controlling LED using Visual Basic and JavaScript

Implement the headless JavaScript app by following these steps:

1. Open the New Project dialog box.

2. Type JavaScript in the search box, and then pick the Background Application (loT) project

template.

3. Change the project name to loTBackgroundAppJS and click the OK button.

4. Reference Windows loT Extensions for the UWP.

5. Modify startuptask.js according to Listing A-7.

6. Deploy an app to your loT device. After a while, the LED will start blinking.

LISTING A-7 JavaScript implementation of the loT background application

(function O {
"use strict";

var gpio = Windows.Devices.Gpio;
var gpioPinNumber = 5;

var msShineDuration = 1000;

function configureGpioPin(pinNumber) {
var gpioController = gpio.GpioController.getDefault();

var gpioPin = null;

if (gpioController) {
gpioPin = gpioController.openPin(pinNumber) ;

if (gpioPin) {

gpioPin.setDriveMode(gpio.GpioPinDriveMode.output) ;

}
}

return gpioPin;

}

function switchGpioPin(gpioPin) {
var currentPinValue = gpioPin.read();
var newPinValue = !currentPinValue;

gpioPin.write(newPinValue);

}

function blinkLED(pinNumber, msShineDuration) {
var ledGpioPin = configureGpioPin(pinNumber) ;

if (ledGpioPin) {
setInterval (function O {
switchGpioPin(1edGpioPin);

Code examples for controlling LED using Visual Basic and JavaScript

}, msShineDuration);

}

b1inkLED(gpioPinNumber, msShineDuration);
PHO;

Code examples for controlling LED using Visual Basic and JavaScript

