
Pr
of

es
sio

na
l

Celebrating over 30 years!

spine = .8517”

M
odern W

eb D
evelopm

ent

Master powerful new approaches to web
architecture, design, and user experience
This book presents a pragmatic, problem-driven, user-focused
approach to planning, designing, and building dynamic web solu-
tions. You’ll learn how to gain maximum value from Domain-Driven
Design (DDD), define optimal supporting architecture, and succeed
with modern UX-first design approaches. The author guides you
through choosing and implementing specific technologies and
addresses key user-experience topics, including mobile-friendly and
responsive design. You’ll learn how to gain more value from existing
Microsoft technologies such as ASP.NET MVC and SignalR by using
them alongside other technologies such as Bootstrap, AJAX, JSON,
and JQuery. By using these techniques and understanding the new
ASP.NET Core 1.0, you can quickly build advanced web solutions that
solve today’s problems and deliver an outstanding user experience.

Microsoft MVP Dino Esposito shows you how to:
• Plan websites and web apps to mirror real-world social and

business processes
• Use DDD to dissect and master the complexity of business domains
• Use UX-Driven Design to reduce costs and give customers what

they want
• Realistically compare server-side and client-side web paradigms
• Get started with the new ASP.NET Core 1.0
• Simplify modern visual webpage construction with Bootstrap
• Master practical, efficient techniques for running ASP.NET MVC

projects
• Consider new options for implementing persistence and working

with data models
• Understand Responsive Web Design’s pros, cons, and tradeoffs
• Build truly mobile-friendly, mobile-optimized websites

Get code samples at:
http://aka.ms/ModernWebDev/downloads

About This Book
• For experienced developers and

solution architects who want to plan
and develop web solutions more
effectively

• Assumes basic familiarity with the
Microsoft web development stack

About the Author
Dino Esposito is CTO and cofounder of
Crionet, a firm that provides web and
mobile solutions for sporting events
across Europe. A longtime trainer and
consultant, he is an 11-time Microsoft
MVP. His web/mobile development books
include Microsoft .NET: Architecting
Applications for the Enterprise, Second
Edition and Architecting Mobile Solutions
for the Enterprise. He speaks regularly
at industry events, including Microsoft
TechEd and premier European events such
as SDD, BASTA, and Devweek. Follow him
at software2cents.wordpress.com or
twitter.com/despos.

Modern Web Development

Esposito

Dino Esposito

Modern Web
Development
Understanding domains,
technologies, and user experience

MicrosoftPressStore.com

Programming

ISBN 978-1-5093-0001-3

9 7 8 1 5 0 9 3 0 0 0 1 3

5 4 4 9 9
U.S.A. $44.99
Canada $55.99

[Recommended]

9781509300013_ModernWebDev_cover.indd 1 2/4/2016 4:45:20 PM

Modern Web
Development:
Understanding domains,
technologies, and user
experience

Dino Esposito

Book 1.indb iBook 1.indb i 2/5/2016 2:18:07 PM2/5/2016 2:18:07 PM

PUBLISHED BY
Microsoft Press
A division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2016 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2015934865
ISBN: 978-1-5093-0001-3

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Support at mspinput@microsoft.com. Please tell us what you think of this
book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information
expressed in this book, including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fi ctitious. No real association or
connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks
of the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editor: Steve Sagman
Editorial Production: Waypoint Press
Technical Reviewer: Marc Young
Copyeditor: Roger LeBlanc
Indexer: Toni Culley
Cover: Twist Creative • Seattle and Joel Panchot

Book 1.indb iiBook 1.indb ii 2/5/2016 2:18:34 PM2/5/2016 2:18:34 PM

To my wife Silvia.

You make me feel sandy like a clepsydra. I get empty and fi lled
all the time; but it’s such a thin kind of sand that even when I’m
full, without you, I just feel empty.

—DINO

Book 1.indb iiiBook 1.indb iii 2/5/2016 2:18:34 PM2/5/2016 2:18:34 PM

Book 1.indb ivBook 1.indb iv 2/5/2016 2:18:34 PM2/5/2016 2:18:34 PM

Contents at a glance

PART I UNDERSTANDING THE DOMAIN

CHAPTER 1 Conducting a thorough domain analysis 3

CHAPTER 2 Selecting the supporting architecture 19

CHAPTER 3 UX-driven design 47

CHAPTER 4 Architectural options for a web solution 63

CHAPTER 5 The layered architecture 87

PART II DEVELOPMENT

CHAPTER 6 ASP.NET state of the art 103

CHAPTER 7 Whys, wherefores, and technical aspects of
 ASP.NET Core 1.0 109

CHAPTER 8 Core of ASP.NET MVC 133

CHAPTER 9 Core of Bootstrap 171

CHAPTER 10 Organizing the ASP.NET MVC project 217

CHAPTER 11 Presenting data 247

CHAPTER 12 Editing data 279

CHAPTER 13 Persistence and modeling 313

PART III USER EXPERIENCE

CHAPTER 14 Creating more interactive views 335

CHAPTER 15 Pros and cons of responsive design 365

CHAPTER 16 Making websites mobile-friendly 381

Book 1.indb vBook 1.indb v 2/5/2016 2:18:34 PM2/5/2016 2:18:34 PM

Book 1.indb viBook 1.indb vi 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

 vii

Contents

Introduction . xvii

PART I UNDERSTANDING THE DOMAIN

Chapter 1 Conducting a thorough domain analysis 3
Domain-driven design to the rescue . 4

Introducing design driven by the domain . 4

Clearing up common misconceptions about DDD 4

Introducing the ubiquitous language . 6

Creating a vocabulary of domain-specifi c terms 6

Keeping business and code in sync . 8

Introducing the bounded context .10

Discovering bounded contexts .10

Implementing bounded contexts .12

Introducing context mapping .15

Examining relationships between bounded contexts15

Introducing event storming . 17

Having unlimited modeling space . 17

Finding events in the domain . 17

Leading the discussion .18

Summary. .18

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can improve our books and learning resources for
you. To participate in a brief survey, please visit:

http://aka.ms/tellpress

Book 1.indb viiBook 1.indb vii 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

viii Contents

Chapter 2 Selecting the supporting architecture 19
It’s all about business logic .19

Examining the application logic .20

Examining the domain logic .21

Exploring patterns for the business logic .22

Using a single model . 24

Exploring the elements of an object-oriented domain model 24

Putting business rules inside .26

Discovering aggregates .28

Exploring the role of domain services .30

Implementing command and query separation .32

Working with the Command and Query Separation principle 33

Implementing CQRS .36

Introducing message-based formulation .39

Ad-hoc infrastructure .39

Introducing event sourcing .43

Summary. .46

Chapter 3 UX-driven design 47
Why a top-down approach is better than a bottom-up one48

Foundation of the bottom-up approach .48

Planning with a top-down approach .50

Looking at user experience from an architectural perspective 52

UX is not UI .52

Explaining UXDD in three steps . 55

Why UXDD is benefi cial to nearly everybody . 59

Summary. .62

Chapter 4 Architectural options for a web solution 63
Assessing the available web solutions .64

Deciding on the best framework .64

Laying out a solution .65

Book 1.indb viiiBook 1.indb viii 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

 Contents ix

Examining the role of ASP.NET Core 1.0 .66

Considering ASP.NET as the starting point .66

Examining the architectural dependencies in
ASP.NET Core 1.0 .68

Exploring the reasons to choose ASP.NET Core 1.069

Determining if you should use ASP.NET Web Forms72

Examining a common scenario .72

ASP.NET Web Forms at a glance .73

What’s still good with Web Forms .73

Why you should move away from Web Forms 74

Determining if you should use ASP.NET MVC . 76

ASP.NET MVC at a glance . 76

What’s good with ASP.NET MVC .77

Weak points of ASP.NET MVC .78

Examining the role of ASP.NET Web API .79

Moving from WCF to Web API .79

Comparing ASP.NET Web API and ASP.NET MVC 80

Talking about REST .82

Using Web API in ASP.NET Core 1.0 .82

Single-page applications .83

Setting up a SPA .84

Hybrid SPA .84

Weak points of a SPA .85

Summary. .85

Chapter 5 The layered architecture 87
Beyond classic three-tier systems .87

Working with a three-tier architecture today88

Fifty shades of gray areas .89

The presentation layer .90

The user experience .90

The input model .91

The view model .92

Book 1.indb ixBook 1.indb ix 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

x Contents

The application layer .92

Entry point in the system’s back end .93

Orchestration of business processes .94

The domain layer .95

The mythical domain model .95

The equally mythical concept of domain services96

A more pragmatic view of domain modeling96

The infrastructure layer .97

Current state storage .97

Event stores .98

Caching layers .99

External services .99

Summary. .100

PART II DEVELOPMENT

Chapter 6 ASP.NET state of the art 103
Web fl avors .103

The web could have been different .104

Classic web is the winner .104

ASP.NET is feature-complete .105

No more to add is no more to add .105

Is it full potential or software obsolescence? 106

ASP.NET Core 1.0 has no new functions .106

It’s about the new runtime .106

It’s about the business model .107

It’s about the development model .107

What is the state of ASP.NET? .108

Book 1.indb xBook 1.indb x 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

 Contents xi

Chapter 7 Whys, wherefores, and technical aspects of
ASP.NET Core 1.0 109

The background of ASP.NET Core .110

The cost of a large memory footprint .110

Reconsidering the cloud as the silver bullet111

Making the case for the necessity of a different
programming model .111

The impact on everyday work .112

The ASP.NET Core runtime at a glance .113

The DNX host .113

Hosting web applications in DNX .115

ASP.NET Core HTTP pipeline .116

ASP.NET Core for ASP.NET developers .118

Creating a new project .118

Application startup .122

Application settings .126

Authentication .128

Other aspects of web programming .129

Summary. .132

Chapter 8 Core of ASP.NET MVC 133
Routing incoming requests .134

Simulating the ASP.NET MVC runtime .134

Exploring the URL routing HTTP module .137

Using application routes .138

Exploring the controller class .145

Looking at aspects of a controller .145

Writing controller classes .147

Processing input data .152

Manual parameter binding .152

Model binding .153

Book 1.indb xiBook 1.indb xi 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

xii Contents

Producing action results .158

Wrapping results .158

Returning HTML markup .160

Returning JSON content .167

Summary. .169

Chapter 9 Core of Bootstrap 171
Bootstrap at a glance .171

LESS and the foundation of Bootstrap .172

Setting up Bootstrap . 174

Putting Bootstrap into perspective .175

Responsive layouts .176

The grid system .176

Screen-based rendering .178

Taxonomy of today’s web elements .183

Restyling basic HTML elements .183

Restyling list HTML elements .193

A look at more advanced components .196

Bootstrap extensions .202

Autocompletion .202

Date picking .209

Custom components .211

Summary. .215

Chapter 10 Organizing the ASP.NET MVC project 217
Planning the project solution .217

Mapping projects to the Layered Architecture pattern218

Application startup .220

Examining application services .225

Adding in other assets .227

Creating presentation layouts .228

Serving resources more effectively .231

Working with Bundling .231

Using minifi cation .236

Book 1.indb xiiBook 1.indb xii 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

 Contents xiii

Examining other aspects .238

Exploring error handling .238

Confi guring user authentication .241

Summary. .246

Chapter 11 Presenting data 247
Structuring an HTML view .247

Exploring the view model .247

Examining the page layout .250

Presenting the elements of a view .254

Displaying a list of data items .258

Creating a grid view .258

Adding paging capabilities .263

Adding scrolling capabilities to page elements268

Adding a detail view .271

Popover views .271

Drill-down views .274

Summary. .277

Chapter 12 Editing data 279
A common form for the login page .279

Presenting the form .279

Processing posted data .281

Input forms .284

The Post-Redirect-Get pattern .284

Form validation .286

Modal input forms .296

Quick tips for improving the user experience .304

Using date pickers is great, but… .305

Using autocompletion instead of long drop-down lists307

Miscellaneous tips for large input forms .310

Summary. .311

Book 1.indb xiiiBook 1.indb xiii 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

xiv Contents

Chapter 13 Persistence and modeling 313
Examining the different fl avors of a model .313

The persistence model .314
The domain model .315
The input model .317
The view model .318

Designing a persistence layer .319

Using an implicit and legacy data model .320
Using Entity Framework .322
The Repository pattern .326

Polyglot persistence .328

Polyglot persistence by example .329
Costs of polyglot persistence .330

Summary. .332

PART III USER EXPERIENCE

Chapter 14 Creating more interactive views 335
Exposing JSON content .336

Creating JSON endpoints .336
Negotiating content .339
Solving the cross-origin puzzle .340

Designing a Web API .344

Purpose of the ASP.NET Web API .344
Web API in the context of ASP.NET MVC .345
Securing a standalone Web API .346

Pulling content .349

The Ajax core .349
The jQuery tools .351
Binding data to the current DOM .354

Pushing content to the client .357

ASP.NET SignalR at a glance .358
Monitoring remote tasks .359
Other scenarios for ASP.NET SignalR .362

Summary. .363

Book 1.indb xivBook 1.indb xiv 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

 Contents xv

Chapter 15 Pros and cons of responsive design 365
Foundation of Responsive Web Design .365

A brief history of RWD .366

CSS media queries .366

RWD and device independence .371

Adapting RWD to non-desktop devices .373

Dealing with images .374

Dealing with fonts .376

Dealing with orientation .378

Summary. .379

Chapter 16 Making websites mobile-friendly 381
Adapting views to the actual device .381

The best of HTML5 for mobile scenarios .382

Feature detection .384

Client-side device detection .386

A look into the future .389

Device-friendly images .390

The ImageEngine platform .390

Resizing images automatically .391

Serving device-friendly views .392

What’s the best way to offer mobile content?392

Server-side detection .394

Summary. .399

Index 401

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can improve our books and learning resources for
you. To participate in a brief survey, please visit:

http://aka.ms/tellpress

Book 1.indb xvBook 1.indb xv 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

Book 1.indb xviBook 1.indb xvi 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

 xvii

Introduction

No later than the summer of 2008, I gave a few public talks about the future of the
web. Customers who hired me at the time heard from this expert voice that the

web of the (near) future would be signifi cantly different than what it was looking like in
2008. At the time, the brilliant future of the web seemed to be in the hands of compiled
code run from within the browser.

JavaScript? It’s dead, at last! ASP.NET? It’s gone, thankfully!

The future as I saw it back then (along with many other experts) had only rich-client
technologies in store for millions of us. And Microsoft Silverlight stood at the center of
the new web universe.

If you started hibernating in 2008 and woke up any time in the past three or even
four years, you found a different world than I, or possibly you, had imagined. It was sol-
idly server-side-based and different from what the expectations were. Today, you fi nd a
web world in which JavaScript reigns and, with it, a ton of ad hoc tools and frameworks.

Customers who paid good money to hear my expert voice back in 2008 tell them to
invest in Silverlight are now paying good money to switch back more or less to where
they were in 2008.

Well, not exactly.

This book comes at a weird time, but it’s not a weird book. Two decades of web
experience taught us that real revolutions happen when, mostly due to rare astral
 alignments, a bunch of people happen to have the same programming needs. So it was
for Ajax, and so it is today for responsive and interactive front ends. JavaScript has been
revived because it is the simplest way for programmers to achieve goals. And because it
is still effective enough to make solutions easy to sell.

Planning a web solution today means having a solid server-side environment to
serve rich and interactive HTML pages, styled with CSS and actioned by JavaScript.
Even though a lot of new ad hoc technologies have been developed, the real sticking
points with modern applications (which are for the most part web applications) are

Book 1.indb xviiBook 1.indb xvii 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

xviii Introduction

domain analysis and the supporting architecture. Everything else revolves around the
implementation of a few common practices for a few common tasks, some of which are
relatively new requirements—for example, push notifi cations from the server.

In this book, you will fi nd a summary of practices and techniques that guarantee
effective solutions for your customers. The point today is no longer to use the latest
 release of the latest platform or framework. The point is just to give customers what
they really want. Tools to build software exist; ideas and plans make the difference.

Who should read this book

This book exists to help web developers improve their skills. The inspiring principle for
the book is that today we mostly write software to mirror a piece of the real world,
rather than to bend the real world to a piece of technology.

If you just want to do your day-to-day job better, learning from the mistakes that
others made and looking at the same mistakes you made with a more thoughtful
 perspective, then you should defi nitely read this book.

Assumptions
This book assumes you are familiar with the Microsoft web stack. This experience can
range from having done years of Web Forms development to being a JavaScript angel.
The main focus is ASP.NET MVC, because that will be the standard with ASP.NET Core
and remain so for the future of the ASP.NET platform. Here are some key goals for
readers of the book: learning a method general enough so that you can start develop-
ment projects with a deep understanding of the domain of the problem, select the
right approach, and go forward with reliable coding practices.

This book might not be for you if…

If you’re looking for a step-by-step guide to some ASP.NET MVC or perhaps Bootstrap,
this book is probably not the best option you have. It does cover basic aspects of both
technologies, but it hardly does that with the necessary slow pace of a beginner book.

Book 1.indb xviiiBook 1.indb xviii 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

 Introduction xix

Organization of this book

The book is divided in three parts: understanding the business domain, implementing
common features, and analyzing the user experience.

Part I offers a summary of modern software architecture, with a brief overview of
domain-driven design concepts and architectural patterns. The focus is on the real
meaning of the expression domain model and examining how it differs from other
fl avors of models you might work with. Key to effective design today—an approach
that weds domain analysis and user experience—is the separation of commands and
queries into distinct stacks. This simple strategy has a number of repercussions in terms
of persistence model, scalability, and actual implementation.

Part II begins with a summary of the ASP.NET MVC programming model—the way
to go for web developers, especially in light of the new ASP.NET Core platform. Next,
it covers Bootstrap for styling and structuring the client side of the views and looks at
techniques for posting and presenting data.

Part III is all about user experience in the context of web applications. Web content
is consumed through various devices and in a number of situations. This creates a need
for having adaptive front ends that “respond” intelligently to the requesting devices.
In this book, you’ll fi nd two perspectives regarding client responsiveness: a common
responsive web design perspective and the server-side device perspective.

So, in the end, what’s this book about?

It’s about what you need to do and know to serve your customers in the best
 possible way as far as the ASP.NET platform is concerned. At the same time, the
 practices and the techniques discussed in the book position you well for participating
in the bright future of ASP.NET Core.

Finding your best starting point in this book
Overall, I see two main ways to approach the book. One is reading it from cover to
cover, paying special attention to software design and architecture fi rst and then tak-
ing note of how those principles get applied in the context of common but isolated
programming tasks. The other approach consists of treating Part I—the part on
 software design and architecture—as a separate book and reading it when you feel it
is necessary.

Book 1.indb xixBook 1.indb xix 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

xx Introduction

If you are Follow these steps

Relatively new to ASP.NET
development but not to web
development

Ideally, you should read the book cover to cover, and be sure not to
skip Chapter 4, “Architectural options for a web solution.”

Familiar with ASP.NET MVC or
Bootstrap

Briefl y skim Chapter 8, “Core of ASP.NET MVC,” and Chapter 9, “Core
of Bootstrap.” Also, depending on your personal feelings, you might
want to also skim Chapter 6, “ASP.NET state of the art,” and Chapter
10, “Organizing the ASP.NET MVC project.” Note that the book
provides one chapter about ASP.NET Core, but that is mostly to help
you form an idea about it.

Interested in practical solutions Read Part II and Part III.

Most of the book’s chapters include hands-on samples you can use to try out the
concepts you just learned. No matter which sections you choose to focus on, be sure to
download and install the sample applications on your system.

System requirements

To open and run provided examples, you just need a working edition of Microsoft
Visual Studio.

Downloads

All sample projects can be downloaded from the following page:

http://aka.ms/ModernWebDev/downloads

Acknowledgments

A bunch of great people made this book happen: Devon Musgrave, Roger LeBlanc,
Steve Sagman, and Marc Young. It’s a battle-tested team that works smoothly and
 effectively to turn draft text into readable and, hopefully, pleasantly readable text.

When we started this book project, we expected to cover a new product named
ASP.NET vNext, but the new product, now known as ASP.NET Core, is still barely in
sight. In light of this, we moved the target along the way, and Devon was smart enough
and fl exible enough to accept my suggestions on variations to the original plan.

Book 1.indb xxBook 1.indb xx 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

 Introduction xxi

Although you’ll fi nd some information about ASP.NET Core in the book, a new
ASP.NET Core book is on its way. Ideally, it will be from the same team!

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. You can access updates to this book—in the form of a list of submitted errata
and their related corrections—at:

http://aka.ms/ModernWebDev

If you discover an error that is not already listed, please submit it to us at the same
page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF,
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

Book 1.indb xxiBook 1.indb xxi 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

xxii Introduction

We know you’re busy, so we’ve kept it short with just a few questions. Your
 answers go directly to the editors at Microsoft Press. (No personal information will be
 requested.) Thanks in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

Book 1.indb xxiiBook 1.indb xxii 2/5/2016 2:18:35 PM2/5/2016 2:18:35 PM

 87

C H A P T E R 5

The layered architecture

We shape our buildings; thereafter they shape us.

—Winston Churchill

It has been quite a few years since computer programs have been the result of monolithic software.
Monolithic software is an end-to-end sequence of procedural instructions that achieve a goal.

While nearly no professional developers or architects would seriously consider writing end-to-end
programs today, building monoliths is the most natural way of approaching software development
for newbies. Monoliths are not bad per se—it’s whether the program achieves its mission or not that
really matters—but monoliths become less and less useful as the complexity of the program grows.
In real-world software architecture, therefore, monoliths are simply out of place. And they have been
out of place for decades now.

In software, a layer hides the implementation details of a given set of functionality behind a known
interface. Layers serve the purpose of Separation of Concerns and facilitate interoperability between
distinct components of the same system. In an object-oriented system, a layer is essentially a set of
classes implementing a given business goal. Different layers may be deployed to physical tiers, some-
times in the form of services or micro-services available over a known network protocol such as HTTP.

A layer is a segment of software that lives in-process with other layers. Layers refer to a logical,
rather than physical, separation between components. The layered architecture I present in this
 chapter is probably the most widely accepted way to mix functionality and business to produce a
working system.

Beyond classic three-tier systems

You might have grown up with the idea that any software system should be arranged around three
segments: the presentation, business, and data layers. The presentation segment is made of screens
(either desktop, mobile, or web interfaces) used to collect input data and present results. The data
segment is where you deal with databases and save and read information. The business segment is
where everything else you need to have fi ts in. (See Figure 5-1.)

Book 1.indb 87Book 1.indb 87 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

88 PART I Understanding the domain

PRESENTATION

BUSINESSBUSINESS BUSINESS

DATA

FIGURE 5-1 The classic three-tier segmentation of software architecture

Industry literature mostly refers to the architecture depicted in Figure 5-1 as a three-tier
 architecture. However, you can allocate segments both on physical tiers and logical layers. It just
depends on your needs.

Working with a three-tier architecture today
The three-tier architecture has been around for a long time, but it originated at a time when most
business work was either database related or restricted to external components such as mainframes.
For the most part, the three-tier architecture uses a single data model that travels from the data store
up to the presentation and back.

The architecture certainly doesn’t prevent you from using other fl avors of data-transfer objects
(DTOs), but for the most part the three-tier architecture is emblematic of just one data model and is
database-centric. The challenge you face these days—foreseen by Domain-Driven Design (DDD)—
is matching persistence with presentation needs. Even though the core operations of any system
 remains Create-Read-Update-Delete (CRUD), the way in which business rules affect these core opera-
tions require the business layer to take care of way too many data transformations and way too much
process orchestration.

Even though a lot of tutorials insist on describing an e-commerce platform as a plain CRUD
regarding customers and orders, the reality is different. You never just add an order record to a data-
base. You never have just a one-to-one match between the user interface of an order and the schema
of the Orders table. Most likely, you don’t even have the perception of an order at the presentation
level. You more likely have something like a shopping cart that, once processed, produces an order
record in some database tables.

Business processes are the hardest part to organize in a three-tier mental model. And business
processes are not simply the most important thing in software; they’re the only thing that really
 matters and they’re the thing for which no compromises are possible. At fi rst glance, business
processes are the heart of the business tier. However, more often than not, business processes are
too widespread to be easily restricted within the boundaries of an architecture that likes to have
layers that can easily turn into physical tiers. Different presentation layers can trigger different
business processes, and different business processes can refer to the same core behavior and the
 implementation of a few rules.

Book 1.indb 88Book 1.indb 88 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

 CHAPTER 5 The layered architecture 89

Although the meaning of business logic seems to be quite obvious, the right granularity of the
reusable pieces of business logic is not obvious at all.

Fifty shades of gray areas
In a plain three-tier scenario, where would you fi t the logic that adapts data to presentation? And
where does the logic that optimizes input data for persistence belong? These questions highlight two
signifi cant gray areas that some architects still struggle with these days.

A gray area is an area of uncertainty or indeterminacy in some business context. In software
architecture, the term also refers to a situation in which the solution to apply is not obvious and the
uncertainty originates more from the availability of multiple choices than the lack of tools to solve the
problem.

To clear the sky of gray areas, a slightly revisited architecture is in order. When Eric Evans fi rst
introduced Domain-Driven Design (which I discuss in Chapter 1, “Conducting a thorough domain
analysis”), he also introduced the layered architecture, as depicted in Figure 5-2.

Presentation
Layer

Application
Layer

Domain
Layer

Infrastructure
Layer

Model Services

IoC Cache Repositories

FIGURE 5-2 The layered architecture

The layered architecture has an extra layer and expands the notion of a data-access layer to that
of just the provider of any necessary infrastructure, such as data access via object-relational mapping
(ORM) tools, implementation of inversion of control (IoC) containers, and many other cross-cutting
concerns such as security, logging, and caching.

The business layer exploded into the application and domain layers. This trend is an attempt to
clear up the gray areas and make it clear that there are two types of business logic: application and
domain. The application logic orchestrates any tasks triggered by the presentation. The domain logic
is any core logic of the specifi c business that is reusable across multiple presentation layers.

The application layer aligns nearly one-to-one with the presentation layer and is where any UI-
specifi c transformation of data takes place. The domain logic is about business rules and core business
tasks using a data model that is strictly business oriented.

Book 1.indb 89Book 1.indb 89 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

90 PART I Understanding the domain

The presentation layer

The presentation layer is responsible for providing some user interface to accomplish any necessary
tasks. The presentation layer consists of a collection of screens, either HTML forms or anything else.
Today, more and more systems have multiple presentation layers. This is an ASP.NET book, so you
might think that, at least in the current context, there’s just one presentation layer. Not exactly, I’d say.

The mobile web is another presentation layer that must be taken into account for a web
 application. A mobile web presentation layer, then, can be implemented through responsive HTML
templates or a completely distinct set of screens. However, that doesn’t change the basic fact that the
mobile web is an additional presentation layer for nearly any web application.

The user experience
No matter what kind of smart code you lovingly craft in the middle tier, no applications can be
 consumed by any users without a presentation front end. Furthermore, no applications can be enjoy-
able and effective without a well-designed user experience. However, for a long time the presentation
layer has been the last concern of developers and architects.

Many architects consider presentation as the less noble part of the system—almost a detail once
the business and data-access layers have been fully and successfully completed. The truth is that the
presentation, as well as the business logic and data-access code, is equally necessary in a system of
any complexity. These days, though, the user experience—the experience the users go through when
they interact with the application—is invaluable, as I explained in Chapter 3, “UX-Driven Design.”

At any rate, whether you develop the system in a top-down manner (as recommended in
 Chapter 3) or in a more classic bottom-up fashion, you need to understand the purpose of the
 presentation. Take a look at Figure 5-3.

PRESENTATION

REST OF THE SYSTEM

APPLICATION

DOMAIN

INFRASTRUCTURE

Input
model

View
model

FIGURE 5-3 Describing the data that goes into and out of presentation screens

Book 1.indb 90Book 1.indb 90 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

 CHAPTER 5 The layered architecture 91

The presentation layer funnels data to the rest of the system, ideally using its own data model that
refl ects the structure well and organizes the data in the screens. You should render the user interface
as an order entity, and not just because you end up storing date in an Orders table. For example,
when you submit an order, you typically collect information like the shipping address that might or
might not be related to the customer that is paying for the order. And the shipping address doesn’t
necessarily get stored with the order. It could be that the shipping address is communicated to the
shipping company and the reference number is stored with the order.

Generally speaking, each screen in the presentation that posts a command to the back end of
the system groups data into an input model and receives a response using classes in a view model.
The input and view models might or might not coincide. At the same time, they might or might not
 coincide with any data model being used in the back end to perform actual tasks.

The input model
In ASP.NET MVC, any user’s clicking originates a request that a controller class will handle. Each
 request is turned into an action mapped to a public method defi ned on a controller class. What about
input data?

In ASP.NET, any input data is wrapped up in the HTTP request, either in the query string, in any
form-posted data, or perhaps in HTTP headers or cookies. Input data represents the data being
posted for the system to take an action on. Whatever way you look at it, it is just input parameters.
You can treat input data as loose values and variables, or you can group them into a class acting as a
container. The collection of input classes form the overall input model for the application.

As you’ll see in a lot more detail in upcoming chapters, in ASP.NET MVC a component part of the
system infrastructure—the model-binding layer—can automatically map sparse and loose variables
in the HTTP request to public properties of input model classes. Here are two examples of a controller
method that are equally effective:

public ActionResult SignIn(string username, string password, bool rememberme)
{
 ...
}

public ActionResult SignIn(LoginInputModel input)
{
 ...
}

In the latter case, the LoginInputModel class will have public properties whose names match the
names of uploaded parameters:

public class LoginInputModel
{
 public string UserName { get; set; }
 public string Password { get; set; }
 public bool RememberMe { get; set; }
}

Book 1.indb 91Book 1.indb 91 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

92 PART I Understanding the domain

The input model carries data in the core of the system in a way that aligns one-to-one with the
expectations of the user interface. Employing an input model makes it easier to design the user inter-
face in a strongly business-oriented way. The application layer (shown in Figure 5-3) then takes care of
unpacking any data and consuming it as appropriate.

The view model
Any request gets a response and, more often than not, the response you get from ASP.NET MVC is an
HTML view. (Admittedly, this is not the only option, but it’s still quite the most common.) In ASP.NET
MVC, the creation of an HTML view is governed by the controller, which invokes the back end of the
system and gets back some response. It then selects the HTML template to use and passes the HTML
template and data to an ad-hoc system component—the view engine—which will mix the template
and data and produce the markup for the browser.

In ASP.NET MVC, there are a few ways to pass data to the view engine that will be incorporated
in the resulting view. You can use a public dictionary such as ViewData, a dynamic object such as
 ViewBag, or a made-to-measure class that collects all properties to pass. Any class you create to carry
data to be incorporated in the response contributes to creating the view model. The application layer
is the layer that receives input-model classes and returns view-model classes:

public ActionResult Edit(LoginInputModel input)
{
 var model = _applicationLayer.GetSomeDataForNextView(input);
 return View(model);
}

More and more, in the future the ideal format for persistence will be different from the ideal
format for presentation. The presentation layer is responsible for defi ning the clear boundaries of
acceptable data, and the application layer is responsible for accepting and providing data in just
those formats. If you take this approach extensively, you then fall in line with the principles outlined in
Chapter 3 regarding UX-driven software design.

Note Putting the presentation layer at the center is an approach that pays off whether you
use a server-side approach to the building of the web solution or a client-side solution.

The application layer

To carry on business operations, the presentation layer needs a reference to the back end of the
 system. The shape and color of the entry point in the business layer of the application depends on
how you actually organized that.

Book 1.indb 92Book 1.indb 92 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

 CHAPTER 5 The layered architecture 93

In an ASP.NET MVC solution, you can call the infrastructure layer directly from the controller via a
few repository classes. Generally, though, you want to have an intermediate layer or two in between
controllers (for example, as part of the presentation layer) and repositories (for example, as part of the
infrastructure layer). Have a look at Figure 5-4.

OrderRepository

OrderService

OrderController

OrderModuleOrder

FIGURE 5-4 An aggregate-based section of the layered architecture

As you can see from the picture, you can access repositories from within controllers, but that’s just
a way to simplify things when the simplifi cation of the design doesn’t end up adding more pain than
gain. A layered architecture is generally based on four logical layers. Each layer has its own place, and
if you don’t use any it should be because you have good reasons (mostly because of simplifi cation) to
do that.

Entry point in the system’s back end
Each interactive element of the user interface (for example, buttons) triggers an action in the back
end of the system. In some simple scenarios, the action that follows some user’s clicking takes just one
step to conclude. More realistically, though, the user’s clicking triggers something like a workfl ow.

The application layer is the entry point in the back end of the system and the point of contact
 between the presentation and back end. The application layer consists of methods bound in an
almost one-to-one fashion to the use-cases of the presentation layer. You can group methods in any
way that makes sense to you.

I tend to organize application-layer methods in classes that go hand in hand with controller
 classes. In this way, the OrderController class, for example, has its own private instance of an
 OrderService class. (See Figure 5-4.)

Methods in the OrderService class get classes in the input model and return classes from the view
model. Internally, this class performs any necessary transformation to make data render nicely on the
presentation and be ready for processing in the back end.

Book 1.indb 93Book 1.indb 93 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

94 PART I Understanding the domain

Note I suggest you apply the same logic that leads you to split functions on controller
classes to create application-layer classes. On the other hand, user requests are mapped to
controller actions and controller actions should be mapped to business processes orches-
trated in the application layer. However, it is acceptable for you to use a custom mapping
of methods onto classes if that helps you achieve a higher level of reusability, especially
when multiple presentation front ends are involved.

Orchestration of business processes
The primary purpose of the application layer is abstracting business processes as users perceive them
and mapping those processes to the hidden and protected assets of the application’s back end. In
an e-commerce system, for example, the user expects a shopping cart, but the physical data model
might have no entity like the shopping cart. The application layer sits in between the presentation
and the back end and performs any necessary transformation.

Accepting an order is typically a multistep workfl ow and never a single step. If it’s a single step, you
might not fi nd any benefi t in passing through the application layer. Otherwise, the application layer
helps immensely to keep workfl ows distinct from business rules and domain-specifi c processes. To
better understand the difference between application logic and domain logic, consider the following
example from a banking scenario.

As a customer, you can talk to a teller and ask to deposit a paper check. Ultimately, some money
will be withdrawn from one account and added to another one. But actual processes might be quite
different. At a minimum, the teller will go through a process that fi rst places a request to the issuing
bank and then adds some money to your account. So you have two operations:

 ■ Cash check from a bank.

 ■ Add money to a bank account.

Both operations are domain-level operations, and both are core tasks of the business domain. The
combination of the two, on the other hand, is a workfl ow that is bound to a specifi c use-case of the
presentation layer—letting users deposit a check. The resulting workfl ow represents a statement like
“Deposit a check” and, depending on the implementation and external services involved, might or
might not be a core domain operation. That’s an architectural decision after all.

Splitting the business logic into application and domain logic gives you the logical tools to better
model the business logic as close as possible to the real world and, more than everything else, close
to the user’s expectations.

Note These days, the user experience is more important than it once was for the success
of any application at any level of complexity. So, to provide an excellent user experience,
the golden rule is, “You better have an application layer.”

Book 1.indb 94Book 1.indb 94 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

 CHAPTER 5 The layered architecture 95

The domain layer

Any software—even the simplest data-entry application—is written against a business domain. Each
business domain has its own rules. The number of rules is sometimes close to zero, but as an architect
you should always reserve room for a collection of business rules. Finally, each business domain ex-
poses a sort of an application programming interface (API). The way in which the presentation allows
end users to interact with such an API—use-cases—determines the application layer.

In a nutshell, the domain layer hosts the entire business logic that is not specifi c to one or more
 use-cases. Typically, the domain layer consists of a model (known as the domain model) and possibly
a family of services (known as domain services).

The mythical domain model
Frankly, I fi nd that there’s a lot of confusion around the intended role and purpose of the domain
model. Abstractly speaking, the domain model is a plain software model that helps render the
business domain. The software model can be defi ned using an object-oriented paradigm (the most
common scenario) or any other approach you might fi nd appropriate, such as the functional para-
digm. The domain model is the place where you implement the business rules and common, reusable
business processes.

Even when you use an object-oriented paradigm, the domain model might or might not be a plain
entity-relationship model and might or might not have a one-to-one relationship with the persistence
model. The domain model is not strictly related to persistence; the domain model must serve the
supreme purpose of implementing business rules. Persistence comes next and is one of the concerns
of the infrastructure layer.

In terms of technologies, there’s a lot of hype about Entity Framework Code First, which makes it
easy to create your classes and then instruct the runtime to create database tables accordingly. This is
not domain modeling—it’s persistence modeling. As an architect, you should be well aware of logical
layers: domain models are a different thing than persistence models. However, the two models can
match—and usually match in simpler scenarios—and this brings Entity Framework Code First into
play.

In a domain model that focuses on the logic and business rules, inevitably you have classes with
factories, methods, and read-only properties. Factories, more than constructors, let you express the
logic necessary to create new instances. Methods are the only way to alter the state of the system
according to business tasks and actions. Properties are simply a way to read the current state of an
instance of the domain model.

An object-oriented domain model is not necessarily an entity relationship model. It can be simply
a collection of sparse and loose classes that contain data and store any behavior in separate classes
with only methods. A model with entities devoid of any signifi cant behavior—that is, mere data
 structures—form an anemic domain model.

Book 1.indb 95Book 1.indb 95 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

96 PART I Understanding the domain

A domain model lives in memory and is, to a great extent, stateless. Yet, some business-relevant
actions require database reads and writes. Any interaction with the database—including the canoni-
cal example of determining whether a given customer has reached the status of “gold” customer
(whatever that means in the business)—should happen outside the domain model. It should occur
within the domain layer. This is why, along with a domain model, the domain layer should also feature
domain services.

The equally mythical concept of domain services
It’s quite simple to explain what a domain model is. Typically, developers nearly instantaneously and
completely understand the concept of a software model that renders a business domain. The trouble
emerges at a later time when you insist on the ideal separation between domain and persistence.

The point is that a signifi cant part of the business logic is related to the manipulation of
 information that is persistently saved in some data store or held and controlled by some external web
services. In an e-commerce system, to determine whether a customer has reached the status of gold
customer, you need to count the amount of orders placed in a given timeframe and compare it to a
selected range of products. The output of such a complex calculation is a plain Boolean value that
you store in a fresh instance of the Customer domain-model class. Yet you still have a lot of work to
do to get that value.

Which module is in charge of that?

Domain service is the umbrella under which a number of helper classes fall. A domain service is
a class that performs reusable tasks related to the business logic, and it performs them around the
classes in the domain model that implement business rules. Classes in the domain services segment
have free access to the infrastructure layer, including databases and external services. A domain ser-
vice, for example, orchestrates repositories—plain classes that perform CRUD operations on entities in
the persistence model.

A simple rule for domain services is that you have such a domain service class for any piece of logic
you need that requires access to external resources, including databases.

A more pragmatic view of domain modeling
I’ve probably been too rigorous and abstract in describing the domain layer. Whatever I stated is
 correct, but in the real world you often apply some degree of simplifi cation. Simplifi cation is never a
bad thing, as long as you know exactly which logical layers you are removing for simplicity. If you look
at a simplifi ed model, you risk missing some important architectural points that exist even though
they might be overkill in that scenario.

There are two terms I need to further explain here in the context of simplifying the architecture of
the domain layer: aggregates and repositories.

Both terms have some DDD heritage. An aggregate is a whole formed by combining one or more
distinct domain objects that are relevant in the business. It’s a logical grouping you apply to simplify

Book 1.indb 96Book 1.indb 96 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

 CHAPTER 5 The layered architecture 97

the management of the business domain by working with fewer coarse-grained objects. For example,
you don’t need to have a separate set of functions to deal with the items of an order. Order items
make little sense without an order; therefore, orders and order items typically go in the same aggre-
gate. Also, products might be used in the context of an order but, unlike order items, a product might
also be acted on outside of orders—for example, when users view the product description before
buying.

A repository is a component that manages the persistence of a relevant domain object or
 aggregation of domain objects. You can assign repositories any programming you like, though many
developers design these classes around a type T being a relevant domain type.

In DDD domain modeling, the concept of an aggregate is a key concept. The vision I’m trying to
convey here is more task-oriented and subsequently less centered on entities. The role of an aggre-
gate, therefore, loses importance in the context of the domain layer but remains central in the realm
of the infrastructure layer.

In the domain layer, you should focus on classes that express business rules and processes. You
should not aim at identifying aggregations of data to persist. Any aggregation you identify should
simply descend from your business understanding and modeling. Next, you have the problem of
persisting the state of the system.

And when it comes to this, you have at least two options. One option is the classic persistence
of the last-known-good-state of the system; the other option is the emerging approach known as
event sourcing, in which you just save what happened and describe what has happened and any data
involved. In the former case, you need aggregates. In the latter case, you might not need aggregates
as a way to keep related data together in the description of the event that has happened.

The infrastructure layer

The infrastructure layer is anything related to using concrete technologies, whether it’s data
 persistence (ORM frameworks like Entity Framework), external web services, specifi c security API,
 logging, tracing, IoC containers, caching, and more.

The most prominent component of the infrastructure layer is the persistence layer—nothing more
than the old-faithful data-access layer, possibly extended to cover a few data sources other than plain
relational data stores. The persistence layer knows how to read or save data and is made of repository
classes.

Current state storage
If you use the classic approach of storing the current state of the system, you’ll need one repository
class for each relevant group of entities—this is the aggregate concept. By group of entities, I mean
entities that always go together like orders and order items.

Book 1.indb 97Book 1.indb 97 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

98 PART I Understanding the domain

The structure of a repository can be CRUD-like, meaning you have Save, Delete, and Get methods
on a generic type T and work with predicates to query ad hoc sections of data. Nothing prevents you
from giving your repository a remote procedure call (RPC) style with methods that refl ect actions—
whether the actions are reads, deletes, or insertions—that serve the business purpose.

I usually summarize this by saying that there’s no wrong way to write a repository. Technically, a
repository is part of the infrastructure layer. However, from the perspective of simplifying things, a
repository can be seen as a domain service and can be exposed up to the application layer so that the
application can better orchestrate complex application-level workfl ows.

Event stores
I would bet that event sourcing will have a dramatic impact on the way we write software. As
 discussed in Chapter 2, “Selecting the supporting architecture,” event sourcing involves using events
as the primary data source of the application.

Event sourcing is not necessarily useful for all application. In fact, developers blissfully ignored it
for decades. Today, however, more and more domain experts need to track the sequence of events
the software can produce. You can’t do this with a storage philosophy centered on saving the current
state. When events are the primary data source of your application, a few things change and the need
for new tools emerges.

Event sourcing has an impact on two aspects: persistence and queries. Persistence is characterized
by three core operations: insert, update, and delete. In an event-sourcing scenario, insert is nearly the
same as in a classic system that persists the current state of entities. The system receives a request and
writes a new event to the store. The event contains its own unique identifi er (for example, a GUID),
a type name or code that identifi es the type of the event, a timestamp, and associated information
such as the content that makes up the data entity being created. The update exists in another insert
in the same container of data entities. The new entry simply indicates the data—which properties has
changed, the new value and, if relevant in the business domain, why and how it changed. Once an
update has been performed, the data store evolves as in Figure 5-5.

BookCreated dd-MM-yyyy Entity ID #1 data

BookCreated dd-MM-yyyy Entity ID #2 data

UPDATED now Entity ID #1 What changed

FIGURE 5-5 A new record to indicate the update to the book entity with ID #1

Book 1.indb 98Book 1.indb 98 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

 CHAPTER 5 The layered architecture 99

The delete operation works in the same way as an update except that it has different type
 information.

Making updates in an event-based data store immediately creates a few issues when it comes to
queries. How do you get to know if a given record exists or, if it exists, what its current state is? That
requires an ad hoc layer for queries that conceptually selects all records with a matching ID and then
analyzes the data-set event after the event. For example, it could create a new data entity based on
the content of the Created event and then replay all successive steps and return what remains at the
end of the stream. This technique is known as event replay.

The plain replay of events to rebuild the state might raise some concerns about performance
because of the possible huge number of events to process. The problem is easy to understand if you
think of the list of events that make up the history of a bank account. As a customer, you probably
opened the bank account a few years back and went through hundreds of operations per year. In this
context, is it acceptable to process hundreds of events every time you want to see the current bal-
ance? The theory of event sourcing has workarounds for this scenario, the most important of which
consists of creating snapshots. A snapshot is a record that saves the known state of the entity at any
given time. In this way, to get the current balance you process only the events recorded since the lat-
est snapshot was taken.

Event sourcing gives architects and domain experts a lot more power to design effective solutions,
but for the time being it requires a lot of extra work to create and operate the necessary infrastruc-
ture. Event sourcing requires a new family of tools—event stores. An event store is another type of
database with a public API and a programming language tailor-made for event data items.

Caching layers
Not all data you have in a system changes at the same rate. In light of this, it makes little sense to ask
the database server to read unchanged data each and every time a request comes in. At the same
time, in a web application requests come in concurrently. Many requests might hit the web server in
a second, and many of those concurrent requests might request the same page. Why shouldn’t you
cache that page or at least the data it consumes?

Very few applications can’t survive a second or two of data caching. In a high-traffi c site, a second
or two can make the difference. So caching, in many situations, has become an additional layer
built around ad hoc frameworks (actually, in-memory databases), such as Memcached, ScaleOut, or
NCache.

External services
Yet another scenario for the infrastructure layer is when data is accessible only through web services.
A good example of this scenario is when the web application lives on top of some customer re-
lationship management (CRM) software or has to consume proprietary company services. The
 infrastructure layer, in general, is responsible for wrapping external services as appropriate.

Book 1.indb 99Book 1.indb 99 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

100 PART I Understanding the domain

In summary, architecturally speaking, these days we really like to think of an infrastructure layer
rather than a plain data-access layer that wraps up a relational database. Caching, services, and
events are all emerging or consolidated aspects of a system, and they work side by side with plain
 persistence.

Summary

Software will never be what it was some 10 years ago. Software is destined to be more and more
integrated with real life. For this to happen—and it will happen—we have to revisit our architectural
principles and change some of them.

In this chapter, I presented a general and generic architecture that can be adapted to any type of
software you might write today. It’s an evolutionary phase of the classic multitier architecture we grew
up with. Although it apparently adds only an extra layer, it has a deep impact on the way we think and
do things.

I encourage you to form a clear picture of the purpose of the layered architecture and all its parts
before you move further into the book. The issue I see is not that you might miss the point of what a
layered architecture represents. That’s well-known, at least at a big-picture level. It’s the little-known
details of the layered architecture—the parts subject to simplifi cation—that represent the sore point
and the aspects of the architecture I recommend you spend some time on. Even spending time to
decide you don’t need those parts is more productive than ignoring them.

Book 1.indb 100Book 1.indb 100 2/5/2016 2:18:39 PM2/5/2016 2:18:39 PM

Index

 401

Symbols
/ (forward slash), 139, 141

A
abstraction, 226
Accept-* HTTP headers, 389
AcceptVerbs, 148
Access-Control-Allow-Methods, 346
Access-Control-Allow-Origin, 345
access tokens, 349
ACID consistency, 35
Action, 257–258
action fi lters, 295

HandleError, 238
xxxConfi g, 222

action methods, 150–151
producing results, 158–168

ActionName, 148, 163, 250
ActionResult, 80, 151, 158–159, 338, 340
action result classes, 160
actions

mapping to HTTP verbs, 148–150
mapping to methods, 147–148

active users, architecture design, 51
ActiveX, 351
adaptiveness, 365
adding services, 125
ad hoc event stores, 44
ad hoc frameworks, 84
ad hoc infrastructure, 39
ad hoc mobile sites, 393
ad hoc model binding, 153–158
AdminController, 288
ADO.NET, 31

calls, 146
data access, 14
data-access layer, 214

persistence, 222
repository class, 227

advertised_device_os, 395
advertising, optimizing with WURFL.JS, 388
aggregated objects, 23
aggregate root, 29
aggregates, 18, 28–30, 96–97, 229

Customer, 31
distinct stacks, 34
replaying events, 45

Ajax, 104, 351
$.ajax function, 353–355
$.ajax method, 344
caching, 356
$.get, 355
$.getJSON, 355
JQuery snippets, 167
load, 355
paging data, 266–267
placing calls, 355
$.post, 355
shorthand functions, 355
user experience, 337

$.ajax function, 353–355
$.ajax method, 344
Ajax POST, 301
Ajax requests, CORS, 350–351
alert widgets, 294
all-encompassing context, 13
AllowAnonymous, 242
always, jqXHR, 354
Amazon, device detection, 393–394
analytics, enhancing with WURFL.JS, 388
AND, 367–368
Android

adapting views for, 381–389
CSS media queries level 4 standard, 368
date input fi eld, 383

Book 1.indb 401Book 1.indb 401 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

402

Android (continued)
PICTURE, 376
tel input fi eld, 382–383

anemic domain model, 95
AngularJS, 77, 84, 104, 358
anticorruption layer, 16
ApiController, 80, 349
APIs (application programming interfaces), 95

private setters, 27
append-only data stores, 44
Apple iPad, device detection, 397
Apple iPhone

media types, 367
Responsive Web Design (RWD), 366

ApplicationDbContext, 226
application hosts, 114
application/json MIME, 338
application layer, 20, 92–94

controllers, 147
data model, 220
external services, 32
repository classes, 228
worker-service class, 225

application-layer methods, 58
application logic, 20–21, 50, 65, 89

design of, 9
difference from domain logic, 21
gray areas, 20
patterns of, 21

application programming interfaces (APIs), 27, 95
application routes, 138–145
applications, 90, 227

mapping ASP.NET MVC, 218–219
multitenant, 223

application services, 225–227
application settings, 126–127
Application_Start, 140
application startup, 220–224
appSettings, 126–127
App_Start, 140
architect role, 51–52
architecture

application-layer, 58
ASP.NET Core, 122
ASP.NET MVC, 77, 80
ASP.NET Web API, 80
bounded context, 14
controller, 58
data model, 214
DDD changes to, 50
dependencies in ASP.NET Core, 68

gray area, 89
ImageEngine platform, 390
input model, 218
layered, 65–66
onion diagram 1990s, 48
onion diagram today, 49
three-tier, 65, 88
top-down approach, 48
user vs. developer perspective, 66
view model, 219–220

architecture design,
active users, 51
choosing Bootstrap, 175
passive users, 51
Table Module, 23
Transaction Script, 22

AreaMasterLocationFormats, 162
AreaPartialViewLocationFormats, 162
areas, 145

ASP.NET MVC, 220
confi guration, 222
registering for application startup, 220

AreaViewLocationFormats, 162
art direction, 375, 391
Asimov, Isaac, 171
aspect ratio, 367
ASP.NET

Application Hosting, 223–224
binding layer login form, 280
diagram, 67–68
feature-complete, 105–106
Identity, 244
middleware components, 117
Responsive Web Design (RWD), 366
SignalR, 104, 359–361
state of, 108
URL routing HTTP module, 143
virtual path provider, 161–163
Web Forms, 105

ASP.NET 1.x, 115
ASP.NET Core, 64, 66–71

impact of, 112
new functions, 106
reasons to choose, 69–71
runtime, 113–118

ASP.NET Core 1.0, 346
ASP.NET MVC, 14, 58, 64, 76–79, 105, 111, 118

vs. ASP.NET Web API, 80–82
display modes, 398
exposing JSON content, 338
input model, 218

Android

Book 1.indb 402Book 1.indb 402 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 403

ASP.NET MVC (continued)
login form, 281–282
paging data, 263–264
planning projects, 217–230
registering routes, 221
URL routing HTTP module, 137–138
weak points, 78–79
Web API, 347–348
vs. Web Forms, 133
xxxFor, 291

ASP.NET MVC 3, 105
ASP.NET Web API, 64–65

vs. ASP.NET MVC, 80–82
purpose of, 346–347
REST, 82
role of, 79–83

ASP.NET Web Forms, 64, 72–75, 118, 133, 221, 244.
See also Web Forms

ASPX, 161
ASPX pages, 133
async, placing scripts for speed, 252
async/await, 129
asynchronous operations, 168
attribute routing, 143–145
attributes

About, 148
AcceptVerbs, 148–150
ActionName, 148, 163
AllowAnonymous, 242
Authorize, 242
Compare, 287
contentedittable, 306
CustomValidation, 287
data annotations, 287–288
data-dismiss, 297–298
data-id, 273
Flags, 148
fl oat, 261
HandleError, 238
HttpGet, 148
HttpPost, 148
HttpPut, 148
media, 367
NonAction, 147–148
OutputCache, 280
Range, 287
RegularExpression, 287
Remote, 287
Required, 287
route, 140
Route, 144

RouteArea, 144
RoutePrefi x, 144
StringLength, 287
type, 306
ValidationAttribute, 287
ViewResult, 163

audit logs, 44
authentication, 128–129

OAuth, 349–350
authorization, 128

by host, 348
Authorize attribute, 128, 242, 348
autocompletion, 307–310

Bootstrap Typeahead, 307–308
simulate a drop-down list, 310

Auto-growth, 233
autosave, 311
Axure, 56
Azure SQL Database, 231

B
back ends

end point, 93–94
from prototype, 58–59

backoffi ce, 12
Backup, 232
Balsamiq, 54, 56
Base64 text stream, IMG element, 374
Basic authentication, 348–349
basic query language, 367–368
behavior, 25

value objects, 26
binding,

DOM, 356–359
posting from login form, 281
primitive types, 154–155
webHttpBinding, 346

Bin folder, 217
blog engine, multitenant applications, 223
Bloodhound, Typeahead, 308
BODY, Bootstrap, 376
Boolean model binding, 156
Boolean value, 96
Bootstrap

codes, 177
data-placement, 272
date-picker, 305–306
drill-down view, 276
fl uid grid schema, 176–177
fonts in RWD, 376–378

 Bootstrap

Book 1.indb 403Book 1.indb 403 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

404

Bootstrap (continued)
at a glance, 171–176
glyph icons, 251
grid system, 176–178
hidden-xx, 181–182
Internet Explorer Compatibility, 175
line height, 376
media queries, 369
modal, 296
offsetting columns, 183
orientation, 379
overall template, 176–177
popovers in action, 274
popover view, 271–274
progress bar, 363
pulling columns, 183
putting in perspective, 175–176
rendering data in logical groups, 261–263
Responsive HTML templates, 392
Responsive Web Design (RWD), 366
screen-based rendering, 178–183
setting up, 174–175
tool tips, 272
visible-xx, 181
WURFL.JS, 389

Bootstrap 3, 378
Bootstrap 3.x, 376
Bootstrap 4, 376

changes in, 378
Internet Explorer 8, 378
REM option, 378

Bootstrap Datepicker, 305–306
Bootstrap Typeahead, 307–308
bottom-up approach, 48–50
bounded context, 4, 10–14

architecture, 14
backoffi ce, 12
conformist relationship, 16
customer/supplier relationship, 16
DDD, 226
detecting, 11–12
discovering, 10
distinct, 13–14
event storming, 17–18
implementing, 12–14
online store application example, 11–12
partner relationship, 16
relationships between, 15–16
subdomains, 11
two-pizza rule, 17

bounded text
anticorruption layer, 16
shared kernel, 16

Bower fi le, 119–120
bower.json, 119–120
BPM (Business Process Management), 4
Brandolini, Alberto, 17
breakpoints, 177

Bootstrap codes, 179–180
screen size, 179–180

brittle model, 13
brownfi eld migration, 112
browser personalization, WURFL.JS, 389
browsers

CORS-aware, 345
date pickers, 305
new input types, 382
responsive images, 374–376

Bundle
CSS, 233
ScriptBundle, 236–237
StyleBundle, 236–237

BundleCollection, 234
BundleConfi g, 231
BundleFileSetOrdering, 234
BundleTable, EnableOptimizations, 232–233
bundling

browser activity, 234
LESS, 174
optimization, 232–233
script fi les, 233–234
working with, 231–235
xxxConfi g, 222

buses
message-based formulation, 39
saga, 42
xxxConfi g, 222

business domain, 4
modeling, 223
repositories, 229

business layer, 87
controller class, 146

business logic, 19, 88–89
DDD changes in, 50
Domain Model, 23
external services, 32
legacy code, 32
Table Module, 23
Transaction Script, 22

business logic layer, 65
domain model, 216

Bootstrap

Book 1.indb 404Book 1.indb 404 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 405

business model, ASP.NET Core, 107
business processes, 88

orchestration of, 94
Business Process Management (BPM), 4
business rules, 26–28

aggregates, 30
anemic entity class, 26–27
behavior-rich entity classes, 27–28
domain model, 216
private setters, 27

button, command, 40

C
C#, 9, 24

input forms, 284
in Razor, 166

cache
data model, 220
debug=true, 388

caching, 8
Ajax, 356
jQuery, 299, 356
paging data, 266

caching layers, 99
calling back, 362
canonical data stores, 50
canonical layered architecture, 33–34
canonical recovery, 241
cascading options, 31
Cascading Style Sheets. See CSS
Cassandra, 231
catch, 241
catch-all parameters, 143
CDN (content delivery network), 233

ImageEngine platform, 390
cell phones, Responsive Web Design (RWD), 366
child objects, repositories, 31
Chrome,

date pickers, 305
PICTURE, 376

Churchill, Winston, 87
classes, 24

clearfi x, 261
entity, 25
input model class, 288
naming conventions, 6
size-specifi c, 181–182
worker-service, 225–227

classic web model, 104

class names, 177
clearfi x, 181, 261
click, popover, 272
Client Hints, 389
clients

broadcasting changes, 364
calling back, 362
device detection, 388–389

Clients.All, 365
client-side device detection, 386–389

and responsive pages, 388–389
user-agent sniffi ng, 386
WURFL.JS, 387–388

client-side enhancements, 392–393
client-side solutions, 92
client-side validation,

HTML5, 382
input form, 301–303
jQuery, 303, 382

cloud, hosting with, 111
cloud API, NuGet, WURLF framework, 394
CloudClientManager, 398
cloud-optimized frameworks, 107
cloud storage, 222
CLR (Common Language Runtime), 67

as DNX layer, 114
host, 114

code
Bootstrap, 177
breakpoints, 179–180
Razor, 164–167

code assistants, ReSharper, 9
Code First, 215, 226–227
col CSS, 370
collections, model binding, 157–158
columns,

offsetting in Bootstrap, 183
pulling in Bootstrap, 183

Command and Query Separation (CQS), 33–39
CommandDatabase object, 39
command processor, 39
Command Query Responsibility Segregation. See

CQRS (Command Query Responsibility
Segregation)

CommandResponse, 293
commands, 40

button, 40
message-based formulation, 39
saga, 42

 commands

Book 1.indb 405Book 1.indb 405 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

406

command stack
mapping ASP.NET MVC, 219
Match example, 36–39
repository classes, 228

common base class, view model, 248
Common Language Runtime (CLR), 67–68
communication channel, sharing, 361
Compare, 287
complete, 385
complete_device_name, 387, 395
conditional style sheets. See also CSS

CSS media queries, 368–369
confi guration,

areas, 222
blog engine, 223
repositories, 229
routes, 222
understanding, 223–224

Confi gure, 116, 123, 131, 223–224
Confi gureServices, 123, 224
confi rmation messages, 284–285
conformist relationship, 16

anticorruption layer, 16
Confucius, 133
$.connection, 360
connection strings, 228

repositories, 229
container class, model binding, 156
container-fl uid class, 178
container.less, 173
containers

Bootstrap, 177–179
DIV elements, 178
horizontal scrolling, 268

content
downloaded to any user agent, 372
horizontal scrolling, 268
modal, 296
negotiating, 341–342
negotiation, 81
pushing, 359–365
Web API, 347

content delivery network (CDN), 233
ImageEngine platform, 390

contentedittable, 306
Content folder, 228
ContentResult, 159, 168
context mapping, 4, 15
controller classes,

exploring, 145–151

statelessness, 146
writing, 147–151

controller methods
example, 91–92
JSON, 338–341
POST, 295

controllers, 61, 76, 225
ApiController, 80
area, 145
areas of ASP.NET MVC, 220
ASP.NET Core 1.0, 346
asynchronous operations, 168
error handling, 238–241
granularity, 145–146
mapping ASP.NET MVC, 219
partial view, 228–229
RouteData, 153
testability of, 147
URL routing HTTP module, 137–138
view engine structure, 161
view model, 92

controller-specifi c folder, 256
cookie authentication, 128–129
cookies

input data, 152–153
TempData, 286

Cordova, modal windows, 304
CoreCLR, 112
CoreCLR.DNX, 113
CORS (Cross-Origin Resource Sharing), 342–346,

350–351
enabling, 344–346
status code, 353

CQRS (Command Query Responsibility Segregation),
14, 24, 33, 65, 79, 219, 285

event persistence, 43
mapping ASP.NET MVC, 219
Match example, 36–39
message-based architecture, 42
message-based formulation, 39–42
polyglot persistence, 231
repository classes, 228

CQS (Command and Query Separation), 33–39
Create, Read, Update, Delete (CRUD), 12, 75, 78
cross-entity business logic, 30–31
Cross-Origin Resource Sharing. See CORS (Cross-

Origin Resource Sharing)
cross-platform APIs, WURFL framework, 387
cross-property validation, 292–293

the next view, 293–295

command stack

Book 1.indb 406Book 1.indb 406 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 407

CRUD (Create, Read, Update, Delete), 12, 75, 78
CSS

orientation, 378
show/hide, 372
style sheets, 393

CSS 3
AND, 367–368
aspect-ratio, 367
core properties, 367
device-aspect-ratio, 367
device-height, 367
device-width, 367
height, 367
media attribute, 367–368
Modernizr, 385
OR, 367–368
orientation, 367
width, 367

CSS bundle, 233
CSS classes, 228
CSS fi les,

bundling, 231–232
LESS, 174
minifi cation, 236–237

CSS fl oat, 181
CSS media queries

conditional style sheets, 368–369
fl uid grid, 366–367
media types, 366–367
Responsive Web Design (RWD), 366

CSS media queries level 4 standard, 368
Android, 368
features added, 368
hover, 368
pointer, 368
resolution, 368
scripting, 368

CssMinify, 236–237
current state storage, 97–98
Customer aggregate, 29, 31
CustomerRepository, 31
customer/supplier relationship, 16
customization, comparison of tools, 233
custom transformers, 237
CustomValidation, 287, 292
custom view engines, 229–230

VirtualPathProviderViewEngine, 229

D
DAL (data-access layer), 214
data

annotation attributes for validation, 287
grid view, 258–259
paging, 263–268
passing to partial view, 256
posting from a modal input form, 299–301
processing posted, 281–283, 290–291
rendering in logical groups, 261–263

data access, 131
data-access API, 229
data-access layer (DAL), 214
data-access logic, 228
data annotations

validation messages, 291
validation process, 287–288

DataAnnotationsModelValidatorProvider, 287
database-inferred data models, 224
databases

event store, 99
impact on model, 5–6
schema, 126
segments, 225–226

data-defi nition language (DDL), 227. See also Code
First

data-dismiss, 297–298
data-id, 273
data-input type, Modernizr, 385
data items, displaying, 258–271
data-last, on-demand scrolling, 270–271
data layer, 87
data models, 214

database-inferred, 224
different fl avors, 214–220
old-fashioned, 221

data-placement, popover, 272
data repository, 387
DataSet, 222
data sources

events, 43
event sourcing, 98

data stores, 98
append-only, 44

DataTable, 222
data-target, 297
data-toggle, 297
data-transfer objects (DTOs), 33

view model, 247

 data-transfer objects (DTOs)

Book 1.indb 407Book 1.indb 407 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

408

data-trigger, popover, 272
date pickers, 305–307

Bootstrap Datepicker, 305–306
dates

input fi elds, 305
new input types, 382
plain text, 307

DbContext, 38, 225, 227
repositories, 229

DbSet, 38
DDD (Domain Driven Design), 4, 88

changes in, 50
DDD-bounded contexts, 226
misconceptions, 4–6

DDL (data-defi nition language), 227. See also Code
First

debug=true, 388
default.aspx, 143
DefaultBundleOrderer, 234
default location formats, 162
DefaultModelBinder, 153–154, 157
default values, 140–141
defer, 252
DELETE, 138
delete operations, 99
demos, 54
dependency injection (DI), 225
design,

strategic, 5
tactical, 5

desktop browsers, 382
desktop view, modal windows, 304
detail view, 271–276

drill-down views, 274–276
modal dialog boxes, 276

detecting authenticated users, 129
development models, 107–108
device-aspect-ratios, 367
device detection, 392

WURFL.JS, 388
xxxConfi g, 222

device-friendly images, 390–392
device-friendly views, 392–399
device-height, 367
device independence, 371–373
devices, adapting views for, 381–389
device-width, 367
DI (dependency injection), 225
direct binding, 356–357
DisableCors, 350

displayKey, 308
display modes,

ASP.NET MVC, 398
device detection, 397

distinct databases, 34–35
distinct stacks, 33–34
DIV

modal-content, 297
modal-dialog, 297

DLL fi les, 217
DNVM (.NET Version Manager), 115
DNX (.NET Execution Environment), 113–116

hosting web applications, 115–116
Kestrel, 122
layers of, 114
understanding confi guration, 223–224

dnx.exe utility, 114
DNX runtime environment, 70
document NoSQL data stores, 50
document.write, 252
DOM, binding data, 356–359
domain, 90

mapping ASP.NET MVC, 218–219
domain class, 288
Domain-Driven Design (DDD), 4, 88–89

domain model, 216–218
misconceptions, 4–6

Domain-Driven Design: Tackling Complexity in the
Heart of Software (Evans), 4, 24

domain event storming, 17
domain layer, 30, 50, 95–97

data model, 220
domain model, 216

domain logic, 50, 65, 89
difference from application logic, 21
examining, 21–22
persistence, 22

domain model, 5, 23–24, 95––97, 214, 216–218,
227–228

aggregates, 28–30, 96–97
architecture, 14
bounded context, 12
business rules, 26–28
canonical layered architecture, 33–34
data model, 220
distinct stacks, 33–34
event store, 44
Mercator, 32
repositories, 96–97
simple exercise, 216–218
single model, 224

data-trigger

Book 1.indb 408Book 1.indb 408 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 409

domain model (continued)
sports match example, 26–27
value types, 26

Domain Model pattern, 5
domain services, 30, 95.96

cross-entity business logic, 30–31
in a Domain Model, 23
repositories, 31
the role of, 30–32

domain-specifi c terms, 6–8
done, jqXHR, 354
“Don’t Repeat Yourself” (DRY), 172
downloading to different devices, 372
downstream context, 15
drill-down views, 274–276
drop-down lists

autocompletion, 307–310
text box as, 309–310

drop-down menus, 171
DRY (“Don’t Repeat Yourself”), 172
DTOs (data-transfer objects), 33

view model, 247
dynamic, 165

E
EF Core (Entity Framework Core), 112
Eiffel programming language, 33
Einstein, Albert, 109
ELMAH (Error Logging Modules and Handlers), 118,

241
email input fi eld, 382–383
EmptyResult, 159
EM units, font size, 377
EnableCors, 350
EnableOptimizations, BundleTable, 232–233
endpoints, 93–94

JSON, 338–341
Enterprise Library Data Access Application Block, 222
entities, 25

aggregate roots, 29
identity, 25
methods, 25
persistence, 25
properties, 25

Entity Framework, 5, 31, 37, 97, 131, 223–228
Code First, 226–227
database segments, 225
persistence model, 215

polyglot persistence, 231
read model, 38–39
repository class, 227

Entity Framework 6, 131
Entity Framework Code First, 95, 226–227
Entity Framework Core (EF Core), 112, 131
EnumDataType, 287
errorContainer, 302
error handling, 238–241
errorLabelContainer, 302
Error Logging Modules and Handlers (ELMAH), 118,

241
error messages,

displaying login, 281–282
input form, 292
status code, 352–353

ES (event sourcing), 24, 43–45
Evans, Eric, 3–4, 24, 89

Domain-Driven Design: Tackling Complexity in the
Heart of Software, 4

event-based data stores, 44–45, 50, 98–99, 223
event handlers

Application_Start, 140
saga, 42

event projection, 43
event replay, 99
events, 41, 43

immutable, 43
orientation change, 379
replaying, 45
replaying, 45
resize, 379
saga, 42
sequence diagram, 44
trend in software, 50

event sourcing (ES), 24, 43–45, 97–99
Event Store project, 45
event storming, 17–18

modeling space, 17
exception handling tool, 118
Exceptionless, 241
exceptions

collecting, 241
NotSupported, 143
route, 239–240
route not found, 238

ExecuteResult, 159
extension methods,

in languages, 9
Map, 117
MapWhen, 117

 extension methods

Book 1.indb 409Book 1.indb 409 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

410

extension methods (continued)
UseExceptionHandler, 117
UseStaticFiles, 117

external services, 32
storing data, 99

F
F#, 24
F5 effect, 290
F5 key, 284–285
Facebook,

OAuth, 349–350
polyglot persistence, 230
social authentication, 244–245
WURFL framework, 387

FacebookAuthenticated, 245
factories, 95
fail, jqXHR, 354
fat-free controllers, 225
favicon, 252
feature detection, 392

Modernizr, 384–386
RWD, 384–386

FileContentResult, 159
FileExtensions, 163
FilePathResult, 159
FileSetOrderList, 234
FileStreamResult, 159
Finish, 37
Firefox,

date pickers, 305
device independence, 371
PICTURE, 376

Flags, 148
fl exible rendering, 182
fl oat, 261
fl ow of data, 20
fl uid containers, 178
fl uid grid, 366–367
folders

Application, 227
Content, 228

FontAwesome, 251
fonts

RWD, 376–378
in a web application, 228

font size
EM units, 377
REM units, 377
viewport units, 377

formatters, Web API, 347
formatting layer, 81
form_factor, 387
forms, 152–153

input, 284
validation, 286–295

Forms authentication, 241
forward slash (/), 141

URL parameter, 139
Fowler, Martin, 5

Repository pattern, 227
frameworks

deciding the best, 64–65
Web Forms, 64

functional features, 24
functional languages, 24
functional paradigm, 95
f_XXX, 391

G
GAC (Global Assembly Cache), 115
GalaxyBase, 32
Galileo, 18
Gandhi, Mahatma, 63
gated check-ins, 9
geolocation, 384
$.get,

Ajax, 355
GetHttpHandler, 143
$.getJSON, 344

Ajax, 355
GetOrderById, 144
GETs, 138, 144, 285

caching, 356
login form, 280

global.asax, 139, 397
application startup, 220–224
bundling, 231–232
RegisterAllAreas, 221
registering routes, 221

Global Assembly Cache (GAC), 115
globally accessible data, 222
glossary, 7

choosing terms, 7–8
and international teams, 9
sharing, 8

glyph icons, 251
God antipattern, 32
gold customer, 30

extension methods

Book 1.indb 410Book 1.indb 410 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 411

Google, WURFL framework, 387
Google Maps, 32
graceful degradation, 373
granularity,

controller, 145–146
user interface, 146

graph database, polyglot persistence, 231
graphical user interface (GUI), 52–53
gray area, 89
grid system, 371

Bootstrap, 176–178
example, 369–370
media queries, 369–371

grid view, 258–259
GridView, 263–264
group of entities, 97
Grunt, 120
GUI (graphical user interface), 52–53
GUID, saga, 42
Gulp, 174
Gulp fi le, 120–121
Guriddo jqGrid, 263–264
GZIP, 231

H
handheld media, 366–367. See also media types
HandleError, 238
handlers, 41–42

application startup, 220
command processor, 40

Hawking, Stephen, 217
headers, Accept-* HTTP, 389
HEAD section, 251, 254
height,

CSS 3 media queries, 367
IMG element, 374

helper methods, 338–339
ASP.NET MVC xxxFor, 291

hidden-xx, 181–182
high scalability, 43
h_NNN, 391
home page, 125
home/test/*, HTTP handler, 136
hosting layer, ASP.NET, 115–116
host pages, client-side validation, 302
hover

CSS media queries level 4 standard, 368
popover, 272

HTML, 171
markup, 160–161

TextBoxFor, 289
Web API, 346–350

HTML5, 75
client-side validation, 382
date pickers, 305–307
IMG element, 374
INPUT, 382
for mobile devices, 382–384
Modernizr, 385
support for browsers, 305–307

Html.CheckBox, 280
HTML FORM, 310
HTML forms, view model, 219–220
HTML helpers, 254

Html.Raw helper method, 166
input form, 289

Html.PagedListPager, 265
Html.ValidationMessageFor, 291
Html.ValidationSummary, 291
HTML view, 247–258
HTTP, 346
HTTP/2, 109
HTTP 200, 352–353
HTTP 404 error, 137–138, 143, 239, 352–353
HTTP 500, 352–353
HttpApplication, 222

application startup, 220
HttpContext, 398
HTTP endpoints, 65
HTTP errors, 238–241
HttpGet, 148
HTTP GET, 80–81
HTTP handlers, 130

defi ning behavior, 135–136
exposing JSON content, 338
home/test/*, 136
invoking, 136–137
MvcEmule.HomeController, 136

HTTP modules, 130
URL routing, 137–138

HttpNotFoundResult, 159
HTTP pipeline, 116–118

confi guring, 123–124
HttpPost, 148
HttpPut, 148
HTTP requests, 133

open, 351–352
placing, 351–352
send, 351–352

HTTP responses processing, 352
HttpStatusCodeResult, 159

 HttpStatusCodeResult

Book 1.indb 411Book 1.indb 411 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

412

HttpUnauthorizedResult, 159
HTTP verbs, 138

mapping actions to, 148–150
Hub class, 365
hubs

internals, 362–363
ProgressHub, 362

hybrid SPA, 84, 104

I
IActionResult, 17
IApplicationBuilder, 117, 124, 223–224
IBundleOrderer, 234
IBundleTransform, 236–237
icon, website, 252
ID, saga, 42
id attribute, 281
identity, 25

value objects, 26
ID.Next, 36
IFRAME, 228–229
ignore lists, 235

BundleCollection, 234–235
IgnoreRoute, 143
IHostingEnvironment, 124
IHTTPHandler, 135
IIS (Internet Information Services), 67–68, 347
IIS 7, 106, 110, 345
IISPlatformHandler, 122
ILoggerFactory, 124
ImageEngine, 390, 393

account with, 391
ImageEngine Lite, 376
image-resizing tool, 390
images

client device detection, 388–389
device-friendly, 390–392
resizing automatically, 391–392
responsive, 374–376
in a web application, 228

IMG elements, 374
JSONP, 342

immutable events, 43
immutable types, 25
imports, LESS, 173
Include, 232
IncludeDirectory, 232
incoming requests, 134–145
Index defragmentation, 232

index.smartphone.cshtml, 398
Indigo Studio, 57
infrastructure, 90

mapping ASP.NET MVC, 218–219
infrastructure layer, 30, 97–100

data model, 220
domain model, 216

@inject, 127
inline editing, 311
INPUT

HTML5, 382
login form, 280
test input type, 385

input data
action methods, 150–151
new types for mobile devices, 382–383
processing, 152–158
route, 153

input forms, 284–304
error messages, 292
modal, 296–304
presenting, 289–290
tips for large, 310–311

input model class, 153
decorating, 288

input models, 90–92, 218, 227–228
data model, 220

Instagram, 244
instances, 248
Int32 types, 25
integrated pipeline, 110
interactivity, 365
internal state, Match example, 37
Internet Explorer

ActiveX, 351
Bootstrap, 175
date pickers, 305
device independence, 371
input types, 383
site icon, 252

Internet Explorer 7, 351
Internet Explorer 8

Bootstrap, 175
Bootstrap 4, 378

Internet Information Services. See under IIS (Internet
Information Services)

inversion of control (IoC)
data model, 220
xxxConfi g, 222

iPad, Responsive Web Design (RWD), 366

HttpUnauthorizedResult

Book 1.indb 412Book 1.indb 412 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 413

iPhone. See also Apple iPhone
adapting views for, 381–389
Responsive Web Design (RWD), 366

IQueryable objects, 39
IRouteHandler, 142
IsAjaxRequest, 301
IsDesktop, 398
IsGold method, 31
IsInProgress, 27
IsKnownOrigin, 345
is_mobile, 387
IsSmartphone, 398
is_smartphone, 395
is_tablet, 395
IsTeamLeading, 27
is_wireless_device, 395
Item indexer, 152
IViewEngine, 161

J
Java, 24
JavaScript, 68, 109

action methods with, 151
for adapting views, 381–389
ASP.NET MVC, 77
in Bootstrap, 171
minifi cation, 236–237
Paginator, 267
paging data, 263–264
placing scripts, 252
posting from a modal input form, 299–301
Save button, 310
template libraries, 357–359

JavaScriptResult, 159
JavaScriptSerializer, 338, 340
jQuery, 77, 167

$.ajax function, 353–355
ASP.NET SignalR, 360–361
caching, 299, 356
client-side validation, 301, 303, 382
drill-down view, 276
fi le bundling, 234–235
jqXHR, 353
library, 344
Mobile websites, 304
plugins in Bootstrap, 171
tools, 353–356
validation, 299–302

jQuery UI, 305
date-picker plugin, 385

JsMinify, 236–237
JSON, 81

action methods with, 151
endpoints, 338–341
exposing content, 338–346
hijacking, 339–340
negotiating content, 341–342
response data, 339
returning, 167

JSON fi les, 69–70, 126
JSON.NET, 338
JSONP (JSON with Padding), 342–344
jsonpCallback, 344
JsonpResult, 343
JsonRequestBehavior, 339–340
JsonResult, 159, 338, 340–341, 343
JustInMind, 57

K
Kennedy, John F., 247
Kestrel, 115
Kestrel, 122
King, Martin Luther, 103
Knockout, 77, 85

template libraries, 357
Kotlin, 9

L
lambda code, 117
landscape, 379
languages, extension methods, 9
layered architecture, 65–66, 87, 89, 93

mapping, 218–219
layouts,

creating presentation, 228–230
responsive, 176–183

lead, fonts in RWD, 376
leader of discussion, 18
legacy code, 32, 106
legacy data model, 221–223
LESS, Bootstrap, 172–174
LessTransform, 237
line height, Bootstrap, 376
LINK, 367
LinkedIn,

on-demand scrolling, 269
social authentication, 244

LINQ IQueryable, 226
LINQ-to-DataSet, 222–223

 LINQ-to-DataSet

Book 1.indb 413Book 1.indb 413 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

414

LinQ-to-Entities, 38
Linux, 68

DNX runtime environment, 70
listeners, 41–42
lists, drill-down views, 274–275
ListView, paging data, 263–264
load, Ajax, 355
locale, 142
localization, xxxConfi g, 222
logging, 8
logical groups, 261–263
Login, 243

Facebook authentication, 245
login forms, 280

common forms, 279–283
displaying errors, 281–282
posting from, 281
processing posted data, 281–283
system feedback, 283

LoginInputModel, 91, 129, 219
posting from login form, 281

LoginViewModel, 219
LoveGermanShepherds, 148

M
Mac, 68

DNX runtime environment, 70
Main, 122–123
maintenance operations, tools, 232
Malcolm X, 381
managed entry point, 114
Mandela, Nelson, 337
Map, 117
mapping

actions to HTTP verbs, 148–150
actions to methods, 147–148
layers to models, 228
of methods, 94
model-binding, 153

MapRoute, 140, 221
MapWhen, 117
MapXxx, 117
Marcotte, Ethan, Responsive Web Design (RWD), 366
MasterLocationFormats, 162, 229
master pages, layout, 250
Match class, 26, 37–39
matchMedia, 379
MatchState property, 27

matrix
Bootstrap, 176–177
container in Bootstrap, 176–177

MaxJsonLength, 340
media, 366

LINK, 367
print, 366
screen, 366

media queries, 393
Bootstrap, 369
grid system, 369–371
orientation, 378

media types
CSS media queries, 366–367
handheld, 366–367

Memcashed, 99
memory footprint,

ASP.NET Core, 106
cost of, 110

Menu, common base class, 248
Mercator map, 32
message-based CQRS architecture, 42
message-based formulation, 39–42
methods, 25, 95

application-layer, 58
Confi gure, 123–124
Confi gureServices, 123
Get, 144
GetHttpHandler, 143
Include, 232
IncludeDirectory, 232
Login, 243
LoveGermanShepherds, 148
Main, 122–123
mapping actions to, 147–148
MapRoute, 140
MapXxx, 117
naming conventions, 6
OnConnected, 365
OnDisconnected, 365
OnReconnected, 365
Partial, 256
private setters, 27
RegisterRoutes, 140
Render, 233
RenderBody, 253–254
RenderPartial, 256
RouteConfi g, 140
Run, 117
saga, 42
ToString, 168

LinQ-to-Entities

Book 1.indb 414Book 1.indb 414 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 415

methods (continued)
UseXxx, 117
value objects, 26
worker-service class, 225

Meyer, Bertrand, 33
Microsoft ActiveX. See ActiveX
Microsoft Ajax. See Ajax
Microsoft Application Insights, 241
Microsoft ASP.NET Identity, 242–244
Microsoft ASP.NET Web Optimization, 231

WebGrease, 236–237
Microsoft Azure SQL Database. See Azure SQL

Database
Microsoft C#, 73
Microsoft C# compiler, 150
Microsoft Cordova, 304
Microsoft Edge, 305
Microsoft Entity Framework. See Entity Framework
Microsoft Internet Explorer. See Internet Explorer
Microsoft Internet Information Services (IIS). See

under IIS (Internet Information Services)
Microsoft Json. See JSON
Microsoft Message Queuing (MSMQ), 346
Microsoft .NET Framework, 110

ASP.NET Core, 66
data-access layer, 214
JSON data, 338

Microsoft NuGet. See NuGet
Microsoft Offi ce Excel, 8
Microsoft OneDrive, 8
Microsoft ReSharper, 9
Microsoft Silverlight, 75, 104
Microsoft SQL Server, 222

persistence model, 215
Microsoft stack,

ASP.NET Core, 66
ASP.NET MVC, 76–79
web solutions, 64–66

Microsoft Visual Basic 6, 221
Microsoft Visual Basic user interface, 49
Microsoft Visual Studio 2015. See Visual Studio 2015
Microsoft Web Essentials, 174
Microsoft Web Forms. See Web Forms
middleware, 130–131

ASP.NET, 117
minifi cation, 174, 236–237
mirroring, 18
mixins, LESS, 172
mobile applications, 346–350
mobile content, 392–394
mobile-fi rst, 373

mobile-last, 373
mobile-only-use-case, 384
mobile sites

client-side device detection, 386
redirecting to, 393

mobile web, 90
mockups, 53
modal, 297–298
modal-content, 297
modal dialog boxes, 171, 276, 297
modal forms, 296–304

confi guring, 296–297
initializing, 298–299
posting, 299–301
pros and cons, 303–304
tablets, 393

modal updates, 364
modal windows,

cache setting, 356
desktop view, 304
improving user experience, 304–311

@model, 164
model binders, 152, 225
model binding, 91, 153–158

binding complex types, 156
Boolean, 156
collections, 157–158
default, 153–154
optional values, 155–156

modeling, 18
modeling space, event storming, 17
models, 61, 225

adding in ASP.NET MVC, 227–228
areas of ASP.NET MVC, 220
for the business domain, 50
classic web, 104
different programming, 111
persistence, 5–6

ModelState dictionary, 290
Model-View-Controller (MVC), 61–62, 134
Model-View-Presenter (MVP), 61–62
Model-View-ViewModel (MVVM), 61–62
@Model.XXX, 164
Modernizr

bundling fi les, 234–235
data-input type, 385
date pickers, 305
feature detection, 384–386
polyfi ll, 376
what it can do, 384–386

modern webpages, 171

 modern webpages

Book 1.indb 415Book 1.indb 415 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

416

Mono, 71
monoliths, 87
mouse pointer, 393
Moustache, 85
m-site, 393
MSMQ (Microsoft Message Queuing), 346
multiresolution views, 180–181
multitenant applications, 223
mustache.js, 357

sample template, 359
MVC (Model-View-Controller), 61–62, 67–68, 134
MvcEmuleHandler, 134
MvcEmule.HomeController, 136
MVC triad, 61
MVP (Model-View-Presenter), 61–62
MVVM (Model-View-ViewModel), 61–62
m_XXX, 391

N
name, route, 140
name attributes, 281
named pipes, 346
naming conventions,

event, 41
ubiquitous language, 6

native process, 114
navigator, user-agent sniffi ng, 386
NCache, 99
Neo4j, 231
.NET CLR, 70
.NET Core, 67–68, 71, 107, 111
.NET Execution Environment, 113, 223–224
.NET Framework, 30, 67–68, 110

ADO.NET., 222
ASP.NET Core, 66, 70
data-access layer, 214
defi nition, 112
JSON data, 338

.NET Version Manager (DNVM), 115

.NET X-platform, 67–68
New, 288
NHibernate, 225, 227
NonAction, 148
non-desktop devices, 373–379
NoSQL, 31
NoSQL, 223
NotSupported exception, 143
NuGet, 115, 119, 121, 231

ASP.NET SignalR, 360–361
Bootstrap, 174

cloud API, 394
ELMAH, 241
http://github.com/eternicode/bootstrap-

datepicker, 305–306
jQuery Validation, 302
JSON.NET, 338
LessTransform, 237
PagedList, 264
paging data, 263–268
Typeahead, 307–308
WURLF framework, 394

null, 156
numbers, input types, 382

O
OAuth, 244, 349–350
object models, distinct stacks, 34
object-oriented domain model, 24–26
object-oriented paradigm, 95
Object/Relational Modeling (O/RM), 31
obsolescence, 106
OnActionExecuted, 295
OnActionExecuting, 295
OnConnected, 365
OnDisconnected, 365
OnException, 238
online users, counting, 365
onreadystatechange, 352
OnReconnected, 365
Open Web Interface for .NET (OWIN), 67, 112
Opera

date pickers, 305
PICTURE, 376

optimization, 109
bundling, 232–233

optional values, model binding, 155–156
OR, CSS 3, 367–368
OrderController, 93
OrderCreated, 17, 41
OrderDetails, 28–29
orderers, BundleCollection, 234–235
orderId, 144
OrderItem, 29
OrderModule, 93
OrderRepository, 31, 93
Orders, 28
OrderService, 93
orientation, 368–369, 378

Bootstrap, 379
changes, 379

Mono

Book 1.indb 416Book 1.indb 416 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 417

origin, 345
O/RM (Object/Relational Modeling), 31, 37, 223
O/RM helper object, 224
output caching, 280
OWIN (Open Web Interface for .NET), 67–68, 78,

112, 128
ASP.NET SignalR, 360–361

P
package diagnostics, 123
package.json, 121
packages, 124
packages.confi g, 119
page-agnostic URL, 136
PagedList, 264–265
page layout

in Bootstrap, 179–180
examining, 250–253

page loading, placing scripts for speed, 252
Paginator, 267
paging data, 263–268

Ajax, 266–267
caching, 266
Guriddo jqGrid, 263–264
Html.PagedListPager, 265
selecting a helper package, 263–264
Telerik, 264
URL-based, 264–266

parameter binding, manual, 152–153
parameters, catch-all, 143
Partial, 167, 256
partial view, 167, 228–229, 255–256

grid view, 258–259
passing data to, 256
Razor, 229

PartialViewLocationFormats, 162, 229
PartialViewResult, 159
partner relationship, 16
Pascal (Wirth, Niklaus), 48
passive users, 51
password hashing service, 243
pathinfo, 143
patterns

business logic, 22–24
Domain Model, 22–24
Model-View-Controller (MVC), 61–62, 134
Model-View-Presenter (MVP), 61–62
Model-View-ViewModel (MVVM), 61–62
Post-Redirect-Get pattern (PRG), 284–286

Repository pattern, 227–229
Table Module, 22–24
Transaction Script, 22–24

PaymentCompleted, 41
PayPal, WURFL framework, 387
pc_NN, 391
P.CSS, 376
performance, event replay, 45
persistence, 5, 92

ADO.NET., 222
aggregates, 30
database segments, 225–226
domain logic, 22
domain model, 95, 97
Domain Model, 23
entities, 25
Entity Framework Code First, 95
events, 43–44
event sourcing, 98
event store, 44
infrastructure layer, 97
mapping ASP.NET MVC, 219
Match example, 37
repositories, 31
Table Module, 23

persistence layer, 220, 224, 228
designing, 220–229
domain model, 216
modeling the business domain, 223
Repository pattern, 227–229

persistence model, 214–215, 220, 227–228
persistent store, 126
personas, 52
per-status code views, 240
physical fi les, requests, 142–143
PICTURE, 375, 390

Android, 376
Chrome, 376
Firefox, 376
hidden costs, 376
Opera, 376

pilot, 54
pixels

Bootstrap, 378
font size, 376–378

placeholders, URL parameter, 139
plain ASP.NET, 105
plain stored procedures, 31
plain text dates, 307
planning projects, 217–230

 planning projects

Book 1.indb 417Book 1.indb 417 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

418

plugins,
date-picker, 385
Modernizr, 305

PoC (proof of concept), 53
pointer, CSS media queries level 4 standard, 368
polyfi ll, Modernizr, 376
polyglot persistence, 222, 230–233

canonical example, 231
costs, 231
customer support, 231–232
tools comparison, 232
variegated information, 230

popovers, 274
enabling, 272
linking in Bootstrap, 175
setting content, 272–273

popover view, 271–274
popups, tablets, 393
portrait orientation, 379
position CSS, 276
$.post, Ajax, 355
Post-Redirect-Get pattern (PRG), 284–286
PostResolveRequestCache, 138
POSTs, 138, 285

controller methods, 295
HTTP requests, 351–352
login form, 280
modal input form, 301

presentation, 48, 218–219
layouts, 228–230

presentation layer, 30, 87, 90–92
controller class, 146
data model, 220

Presentation Model, 61
presentation screens, 90

input model, 218
PRG (Post-Redirect-Get pattern), 284–286
primitive types, 26

binding, 154–155
principal, 349
print, 366
privileged access, 30
productid, 142
program exceptions, 238–239
programming interface, task-oriented, 229
ProgressHub, 362
progressive enhancement, 373
projections, 43

event store, 44
project.json, 121–122

proof of concept (PoC), 389
proof of concept (PoC), 53
properties, 25, 95

naming conventions, 6
prototypes, 53–54

turning views into, 57
pulling content, 351–359
pull-right class, 181
push notifi cations, 359
PUTs, 138

Q
queries, 30

event sourcing, 98
event store, 44

%QUERY, 308
query stack , 219
QueryString, 152–153, 284

R
Range, 287
RavenDB, 231–232
Raygun, 241
Razor, 74, 118, 125, 161

ASP.NET virtual path provider, 161–163
C# instructions in, 166
code snippets, 164–167
default location formats, 162
horizontal scrolling, 268
ImageEngine, 391
login form, 280
partial views, 255–256
referencing CSS bundle, 233
sections, 254
template libraries, 357–359
view engine, 161–163, 228–229
view model, 247–250
VirtualPathProviderViewEngine, 229
Visual Basic instructions in, 166

RazorViewEngine, 229
RDBMS (relational database management system),

214
React, 77, 104
ReadDatabase root object, 39
read model, sample, 38–39
read stack,

Match example, 37–39
message-based formulation, 39–42
repository classes, 228

plugins

Book 1.indb 418Book 1.indb 418 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 419

ready handler, client-side validation, 302
readyState, 352
Recordset, 222
Recovery model, simple, full, 233
RecusionLimit, 340
RedirectResult, 159
RedirectToAction, 282
RedirectToRouteResult, 159
refactoring tools, 9
Refresh, 284
RegisterDisplayModes, 398
RegisterRoutes, 140
RegularExpression, 287
relational database management system (RDBMS),

214
relational databases, 223

persistence model, 215
polyglot persistence, 230

relational data stores, 50
REM, Bootstrap 4, 378
Remote, 287
remote procedure calls (RPCs), 78–79, 98
remote tasks, monitoring, 361–364
REM units, font size, 377
Render, 233
render actions, 257–258
RenderBody, page layout, 253
@RenderBody, 164
rendering,

fl exible, 182
screen-based, 178–183

RenderPartial, 256
RenderSection, 254
RepeatText, 156
replay of events, 45
repositories, 25, 31, 96–97, 227–229

data model, 220
distinct stacks, 34
implementing, 229

repository classes, 228
Repository pattern, 227–229
Representational State Transfer (REST), 138
RequestContext, 142
Request.Params, 152
requests, 152–153

mapping to a controller method, 153–154
physical fi les, 142
routing incoming, 134–145

Required, 287
RequireJS, 253
ResetAll, 235

ReSharper, 9
resize, events, 379
resolution, CSS media queries level 4 standard, 368
resources,

serving more effectively, 231–237
using in web applications, 228

responseText, 352
responsiveness, 365

responsive HTML templates, 392
responsive images, 374–376
responsive layouts, 176–183
responsive pages, 388–389

Responsive Web Design (RWD), 176
adapting to non-desktop devices, 373–379
adaptive, 365
Bootstrap, 366
dealing with images, 374–376
device independence, 371–373
feature detection, 384–386
fonts, 376–378
foundation, 365–373
history, 366
Marcotte, Ethan, 366
mobile-fi rst, 373
mobile-last, 373
orientation, 378
paradox, 372
responsiveness, 365
screen size, 369

REST (Representational State Transfer), 78, 138
starter kit, 346

RESTful, 346
return on investment (ROI), 61
roles, 8
Route, 83, 144, 221
RouteArea, 144
RouteCollection, 142–143
RouteConfi g, 140, 221
RouteData, 153
RouteData.Values, 153
route exceptions, 239–240

search engine optimization (SEO), 240
RouteExistingFiles, 142–143
route handlers

introducing, 142
IRouteHandler, 142

route not found, 238
RoutePrefi x, 144
routes

application, 138–145
confi guration, 222

 routes

Book 1.indb 419Book 1.indb 419 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

420

routes (continued)
defi ning application, 139–141
global.asax fi le, 139, 141
input data, 153
input forms, 284
locale, 142
matching, 141
processing, 141
productid, 142
registering in ASP.NET MVC, 221
URL routing HTTP module, 137–138

RouteTable, 221
RouteTable.Routes, 140
routing, 137–138

attribute-based, 143
enabling attribute, 144
MVC (Model-View-Controller), 134
preventing, 143

Rowling, J. K., 279
rows, Bootstrap, 177–178
RPCs (remote procedure calls), 98
Run, 117
runtime

ASP.NET Core, 106–107, 113–118
ASP.NET Core 1.0, 346
ASP.NET MVC (Model-View-Controller), 134–137
MVC (Model-View-Controller), 134–137
Web API, 80, 347

runtime pipeline, 67

S
Safari

date pickers, 305
device independence, 371
input types, 383

sagas, 41–42
Same-Origin Policy, 342
Save button, 310
scalability, 60
ScaleOut, 99
schemas, 126

fl uid grid in Bootstrap, 176–177
login forms, 281

screen-based rendering, 179–180
screen orientation, 368–369
screens, 55–57, 60, 90, 366
screen size,

breakpoints, 179–180
conditional style sheets, 368–369

RWD, 369
screen-based rendering, 179–180

script-based custom polyfi lls, 383
ScriptBundle, 236–237
SCRIPT element, 342
script fi les

bundling, 233–234
in a web application, 228

scripting
CSS media queries level 4 standard, 368
placing, 252–253

scrolling
adding to webpage, 268–271
horizontal, 268–269
on-demand, 269–271

search engine optimization (SEO)
per-status code views, 240
route exceptions, 240

sections, page layout, 254–255
security,

HTTP 404 error, 239
Web API, 348

segmented option buttons, 171
send, HTTP requests, 351–352
SEO (search engine optimization), 240
separation of concerns (SoC), 87, 146, 225
serialization, 300, 347
server controls, 73
server-side approaches, 92
server-side detection, 394–399
server-side preprocessing, 174
ServerVariables, 152–153
service buses,

xxxConfi g, 222
services,

adding, 125
data model, 220

Session, NHibernate, 225
SetMatchState method, 27
Shakespeare, William, 365
Shared folder,

partial view, 228–229, 256
Views, 250

shared kernel, 13, 16
shell script, 114
show events, 298–299
show/hide, 372
Shrink database, 232
Shrink transaction log, 232
SignalR, 118, 364

ASP.NET, 104

routes

Book 1.indb 420Book 1.indb 420 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 421

SignalR (continued)
connection ID, 361
refreshing view, 364

signifi cant entities, 229
Silverlight, 75, 104
Simple Object Access Protocol (SOAP), 346
simple query language, 367–368
single-page applications (SPAs), 64, 75, 83–85, 104

popovers, 273
weak points, 85

singleton services, 125
site icons, 252
sketches, 53
small fonts in RWD, 376
smartphones,

creating mobile sites, 393
HTML5, 382
Responsive Web Design (RWD), 366

snapshots, 99
snippets, 167
SOAP (Simple Object Access Protocol), 346
SoC (separation of concerns), 146, 225
social authentication, 244–245
social networks, polyglot persistence, 230
software architects, 3, 51–52
software layers, 87
software models

for business domain, 50
object-oriented domain model, 24–26

Solution Explorer, 118–119
sources, 375
span4_*, 370
spans, 370
SPAs (single-page applications), 64, 75, 83–85, 104

popovers, 273
weak points, 85

sqlcmd, 232
SQL data stores, 231
SQL queries, 44
SQL Server, 215, 222

comparison of tools, 232
SQL Server Management Studio, 232
SQL Server Profi ler, 232
srcset, 375
StackOverfl ow, 286
Start method, 37
Start method, 27–28
startup, 116, 131, 223–224

Code First, 226–227
Main, 122–123

startup.cs, 360–361

statelessness, 146
status codes, 352–353
StopRoutingHandler, 143
storage, planning architecture, 65
storyboards, 55–57
strategic design, 5, 18
StringLength, 287
String/Object dictionary, RouteData.Values, 153
String types, 25
StyleBundle, 236–237
(RPC)-style HTTP services, Web API, 346
subdomains, 10–11
submitHandler, 302
supporting architecture, 24
swipe, 268
synchronization, 53
syntax, 134
system.web, 67–68, 110
System.Web.Extensions.dll, 338
System.Web.Routing, 142

T
Table Module, 23
tablets,

HTML5, 382
modal forms, 393
popups, 393
Responsive Web Design (RWD), 366

tab strips, 171
tactical design, 5, 18
tag helpers, 254
task-oriented programming interface, 229
tasks,

monitoring remote, 361–364
perform with action methods, 151
from prototype, 57–58

TCP, 346
Team Foundation Server, 9
tel, input fi eld, 382–383
Telerik, 264
TempData,

login errors, 282
Post-Redirect-Get pattern (PRG), 285–286

TempData dictionary, 295
template libraries,

JavaScript, 357–359
Knockout, 357
mustache.js, 357

testable code, 225
text boxes, 309–310

 text boxes

Book 1.indb 421Book 1.indb 421 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

422

three-tier architecture, 65, 87–89
tilde conversion, 251
tiles, rendering data, 260–261
time, new input types, 382
toggle facility, popover, 272
tokens, access, 349
tooltips, 175
top-down approach, 48–52

UX, 51
Torvalds, Linus, 47
ToString method, 168
touch-based devices, 393
Transaction Script, 22
transformers, custom, 237
triggers, 296
true, cross-property validation, 292
T-SQL statements, 146
Twain, Mark, 214
Twitter

Bootstrap, 77, 175
OAuth, 349–350
social authentication, 244

two-pizza rule, 17
two-tier schema, 75
Typeahead, 307–308

Bloodhound, 308
types, 306

U
ubiquitous language, 4, 218

acronyms, 10
bounded context, 10–14
choosing terms, 7–8
constituent elements of, 7
extension methods, 9
and international teams, 9
mockup, 53
naming conventions, 6
refl ecting in code, 8–9
sketch, 53
wireframe, 53

UI (user interface), 49
Unit-of-Work pattern, 225
Universal Windows applications, 62
updateProgressBar, 363
upstream context, 15
url, input fi eld, 382–383
@Url.Content, 164
URL parameters, 138–139

ImageEngine, 391

URL patterns
route, 140
and routes, 138–139

URL routing HTTP module, 137–138
URLs

defi ning syntax of, 134
IMG element, 374

usability review, 52, 54
UseExceptionHandler, 117
user-agent sniffi ng, 386
user authentication,

comparing ways, 242–244
confi guring, 241
Microsoft ASP.NET Identity, 242–244

user experience (UX), 49, 90–91, 94, 337
architecture, 52–59
demo, 54
improving, 304–311
pilot, 54
prioritization of features, 55
prototype, 53–54
synchronization, 53
top-down approach, 51
UX-Driven Design, 47

user interface (UI), 49
granularity, 146
presentation layer, 90
updating in real time, 363–364
Visual Basic for, 49

user permission, geolocation, 384
user preferences, 231
users, 349

detecting authenticated, 129
UseStaticFiles, 117
UseXxx, 117
UXDD (UX-Driven Design), 47

benefi ts, 59–62
diagram, 60–61
diagram of three steps, 55
layout, 59
list of tools, 56

UXPin, 56

V
validate step, 9
ValidationAttribute, 287
validation messages, 291–292
validation process, 286–295
validationSummary, 302
value types, 25–26, 29

three-tier architecture

Book 1.indb 422Book 1.indb 422 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 423

variables, LESS, 171
VH, viewport units, 377
ViewBag, 92, 165
ViewData, 92
view engines, 92, 228–229

custom, 229–230
invoking, 163
structure, 161

viewers, 275–276
ViewLocationFormats, 163, 229
View method, 163
View-Model, 225
ViewModelBase, 253
view models, 90, 92, 219–220, 227–228

data model, 220
exploring, 247–250
instances, 249
worker-service method, 249

viewports
Bootstrap, 174
Bootstrap grid system, 176–178
HEAD section, 251

viewport units, 377
VH, 377
VMAX, 377
VMIN, 377
VW, 377

ViewResult, 159, 163
ViewResultBase, 159
views, 61, 125, 225

adapting to devices, 381–389
adding master/detail, 271–276
areas, 145
areas of ASP.NET MVC, 220
ASP.NET MVC, 217
ASP.NET virtual path provider, 161–163
drill-down, 274–276
error handling, 238–241
HTML helpers, 254
image-resizing tool, 390
page layout, 250
partial views., 167
Post-Redirect-Get pattern (PRG), 285–286
presenting elements, 254–258
refreshing after modal update, 364
routing based on detected device, 397–398
tag helpers, 254
URL routing HTTP module, 137–138

Views folder, 230
viewstate, 76

virtual measurements, screen-based rendering,
179–180

VirtualPathProviderViewEngine, 229
visible-xx, 181
Visual Basic, 73, 221

in Razor, 166
user interface, 49

Visual Studio, 64, 118
areas of ASP.NET MVC, 221
error handling, 238
Gulp fi le, 120–121
LESS, 174
page layout, 251
partial views, 255–256

Visual Studio 2015, 64, 118
ASP.NET Core template, 128

VMAX, viewport units, 377
VMIN, viewport units, 377
VW, viewport units, 377

W
W3C (Worldwide Web Consortium), 366
WCF (Windows Communication Foundation), 79–80
Web APIs, 21–22, 67–68, 118

ASP.NET Core, 82
ASP.NET MVC, 347–348
designing, 346–350
security, 348–351
standalone, 348
xxxConfi g, 222

WebApplication, 123
web.confi g fi le

defi ning syntax of URLs, 134
login page, 279–281

Web Essentials, 174
web farms, Post-Redirect-Get pattern (PRG), 286
web fl avors, 103–105
Web Forms, 64, 67–68, 72–75, 105, 118, 130

controller, 146
differences from ASP.NET MVC, 133
good points, 73–74
login forms, 281–282
page-agnostic URLs, 136
page layouts, 253
paging data, 263–264
partial views, 167, 255–256
rendering data as tiles, 260–261
view engines, 161

Web Forms ASPX, exposing JSON content, 338
WebGrease, 236–237

 WebGrease

Book 1.indb 423Book 1.indb 423 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

424

webHttpBinding, 346
Web Pages, 104, 118
web programming, 129–132
webroot folder, 119
web services

caching, 99
front ends, 79
hosting, 82

website icons, 252
website resources

http://caniuse.com website, 305–307, 384–386
http://detectmobilebrowsers.com, 386
http://github.com/eternicode/bootstrap-

datepicker, 305
http://haacked.com/ archive/2009/06/25/json-

hijacking.aspx, 339
http://igrigorik.github.io/http-client-hints, 389
http://knockoutjs.com, 357
http://modernizr.com, 385
http://scottjehl.github.io/picturefi ll, 376
https://developer.mozilla.org/en-US/ docs/Web/

HTTP/Access_control_CORS, 346
https://github.com/ janl/mustache.js, 357
http://web.wurfl .io, 376, 387–388, 392
http://wurfl .sourceforge.net, 395
http://www.expoware.org/wit.html, 375
http://www.expoware.org/wjs.htm, 388
http://www.json.org, 338
http://www.newtonsoft.com/json, 338
http://www.quirksmode.org/js/detect.html, 386
http://www.scientiamobile.com, 388, 395
http://www.w3.org/TR/css3-mediaqueries, 368

web solutions, 64–66
WFC (Windows Communication Foundation), 79–80,

346
what-if scenarios, 45
widgets, reusable alerts, 294
width,

CSS 3 media queries, 367
IMG element, 374

wiki, 8
windows, 379

Web API, 347
Windows CE devices, Responsive Web Design (RWD),

366
Windows Communication Foundation (WCF), 79–80,

346
wireframes, 53–54, 56, 60

Wirify, 57
Wirth, Niklaus, 48
w_NNN, 391
worker-service classes, 225–227

placement, 227
worker-service methods, 249
workfl ow

from prototype, 57–58
saga, 42

Worldwide Web Consortium (W3C), 366
wrappers, 302
wrapping results, action method, 158–160
WS-* protocols, 346
WURFL, 394–395

capabilities, 395
cloud API, 395–397
cloud user dashboard, 396
framework, 387
NuGet, 394
on-premises API, 394
server-side detection, 394

WURFL.JS, 393
client-side detection, 387–388
properties, 387
test page, 388

WURFL server, 387
WurlfService class, 396
wwwroot folder, 119, 121

X
XAML-based applications, 62
XML, 126
XML .browser fi les, 392
XML formatter, 341
XMLHttpRequests, 345, 351–352

pulling content, 351
XML serializers, 342
XS devices, Bootstrap columns and rows, 178
xxxConfi g, 222
xxxFor, 291

Y
Young, Greg, 19
YourApp.MvcApplication, 220

webHttpBinding

Book 1.indb 424Book 1.indb 424 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

About the author

DINO ESPOSITO is CTO and co-founder of Crionet, a startup providing
software and IT services to professional tennis and sports companies. Dino
still does a lot of training and consulting and is the author of several other
books on web and mobile development. His most recent book is Architecting
Applications for the Enterprise, Second Edition, written along with Andrea
Saltarello. A Pluralsight author, Dino speaks regularly at industry conferences
and community events. You can follow Dino on Twitter at @despos and
through his blog at http://software2cents.wordpress.com.

Book 1.indb 425Book 1.indb 425 2/5/2016 2:18:53 PM2/5/2016 2:18:53 PM

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

SurvPage_Corp_b&w.indd 1 4/24/13 12:45 PM

	Contents
	Introduction
	CHAPTER 5: The layered architecture
	Index
	About the author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

