
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780735698826
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780735698826
https://plusone.google.com/share?url=http://www.informit.com/title/9780735698826
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780735698826
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780735698826/Free-Sample-Chapter

Exam Ref 70-740
Installation, Storage
and Compute with
Windows Server 2016

Craig Zacker

Exam Ref 70-740 Installation, Storage, and Compute with Windows Server 2016

Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2017 by Craig Zacker

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permissions, request
forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions Department, please visit www.
pearsoned.com/permissions/. No patent liability is assumed with respect to the use of the information contained herein.
Although every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the information contained herein.

ISBN-13: 978-0-7356-9882-6
ISBN-10: 0-7356-9882-1

Library of Congress Control Number: 2016962646

First Printing January 2017

Trademarks

Microsoft and the trademarks listed at https://www.microsoft.com on the “Trademarks” webpage are trademarks of the
Microsoft group of companies. All other marks are property of their respective owners.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no warranty or fitness is
implied. The information provided is on an “as is” basis. The authors, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this book or programs accompanying it.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic
versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

Editor-in-Chief

Acquisitions Editor

Development Editor

Managing Editor

Senior Project Editor

Editorial Production

Copy Editor

Indexer

Proofreader

Technical Editor

Cover Designer

Greg Wiegand

Trina MacDonald

Rick Kughen

Sandra Schroeder

Tracey Croom

Backstop Media

Christina Rudloff

Julie Grady

Christina Rudloff

Ajay Kakkar

Twist Creative, Seattle

http://www.pearsoned.com/permissions/
http://www.pearsoned.com/permissions/
https://www.microsoft.com

Contents at a glance

Introduction xv

Preparing for the exam xix

CHAPTER 1 Install Windows Servers in host and compute environments 1

CHAPTER 2 Implement storage solutions 81

CHAPTER 3 Implement Hyper-V 165

CHAPTER 4 Implement Windows containers 259

CHAPTER 5 Implement high availability 297

CHAPTER 6 Maintain and monitor server environments 387

Index 445

This page intentionally left blank

v

Contents

Introduction xv
Organization of this book .xvi

Microsoft certifications .xvi

Free ebooks from Microsoft Press .xvi

Microsoft Virtual Academy .xvi

Quick access to online references . xvii

Errata, updates, & book support . xvii

We want to hear from you . xvii

Stay in touch . xvii

Preparing for the exam xix

Chapter 1 Install Windows Servers in host and compute
environments 1

Skill 1.1: Install, upgrade, and migrate servers and workloads 1

Determine Windows Server 2016 installation requirements 2

Determine appropriate Windows Server 2016 editions
per workloads 4

Install Windows Server 2016 6

Install Windows Server 2016 features and roles 11

Install and configure Windows Server Core 17

Manage Windows Server Core installations using Windows
PowerShell, command line, and remote management capabilities 21

vi Contents

Implement Windows PowerShell Desired State Configuration
(DSC) to install and maintain integrity of installed environments 26

Perform upgrades and migrations of servers and core workloads
from Windows Server 2008 and Windows Server 2012 to
Windows Server 2016 27

Determine the appropriate activation model for server installation 35

Skill 1.2: Install and configure Nano Server . 42

Determine appropriate usage scenarios and requirements
for Nano Server 43

Install Nano Server 44

Implement Roles and Features on Nano Server 48

Manage and configure Nano Server 50

Managing Nano Server remotely using PowerShell 55

Skill 1.3: Create, manage, and maintain images for deployment 58

Plan for Windows Server virtualization 58

Plan for Linux and FreeBSD deployments 61

Assess virtualization workloads using the Microsoft
Assessment and Planning (MAP) Toolkit 61

Determine considerations for deploying workloads into
virtualized environments 69

Update images with patches, hotfixes, and drivers 70

Install Roles and Features in offline images 75

Manage and maintain Windows Server Core, Nano Server
images, and VHDs using Windows PowerShell 76

Chapter summary 79

Thought experiment . 80

Thought experiment answer . 80

Chapter 2 Implement storage solutions 81
Skill 2.1: Configure disks and volumes. 81

Configure sector sizes appropriate for various workloads 82

Configure GUID partition table (GPT) disks 84

Create VHD and VHDX files using Server Manager or
Windows PowerShell 88

Mount Virtual Hard Disks (VHDs) 91

viiContents

Determine when to use NTFS and ReFS File Systems 93

Configure NFS and SMB shares using Server Manager 95

Configure SMB share and session settings using
Windows PowerShell 106

Configure SMB server and SMB client configuration
settings using Windows PowerShell 108

Configure file and folder permissions 112

Skill 2.2: Implement server storage . 123

Configure storage pools 123

Implement simple, mirror, and parity storage layout
options for disks or enclosures 125

Configure tiered storage 131

Configure iSCSI target and initiator 133

Configure iSNS 140

Configure Datacenter Bridging (DCB) 142

Configure Multipath I/O (MPIO) 145

Determine usage scenarios for Storage Replica 148

Implement Storage Replica for server-to-server,
cluster-to-cluster, and stretch cluster scenarios 151

Skill 2.3: Implement data deduplication . 155

Implement and configure deduplication 155

Determine appropriate usage scenarios for deduplication 158

Monitor deduplication 160

Implement a backup and restore solution with deduplication 162

Chapter summary . 162

Thought experiment . 164

Thought experiment answer . 164

Chapter 3 Implement Hyper-V 165
Skill 3.1: Install and configure Hyper-V . 165

Determine hardware and compatibility requirements for
installing Hyper-V 166

Install Hyper-V 170

Install management tools 172

viii Contents

Upgrade from existing versions of Hyper-V 173

Delegate virtual machine management 174

Perform remote management of Hyper-V hosts 174

Configure virtual machines using Windows
PowerShell Direct 180

Implement nested virtualization 181

Skill 3.2: Configure virtual machine (VM) settings 182

Creating a virtual machine 182

Add or remove memory in running a VM 185

Configure dynamic memory 186

Configure Non-Uniform Memory Access (NUMA) support 189

Configure smart paging 192

Configure resource metering 193

Manage Integration Services 195

Create and configure Generation 1 and 2 VMs and
determine appropriate usage scenarios 197

Implement enhanced session mode 199

Create Linux and FreeBSD VMs 201

Install and configure Linux Integration Services (LIS) 204

Install and configure FreeBSD Integration Services (BIS) 205

Implement Secure Boot for Windows and Linux environments 205

Move and convert VMs from previous versions of
Hyper-V to Windows Server 2016 Hyper-V 208

Export and import VMs 209

Implement Discrete Device Assignment (DDA) 212

Skill 3.3: Configure Hyper-V storage . 213

Create VHDs and VHDX files using Hyper-V Manager 214

Create shared VHDX files 220

Configure differencing disks 222

Modify virtual hard disks 223

Configure pass-through disks 225

Resize a virtual hard disk 226

Manage checkpoints 228

Implement production checkpoints 230

ixContents

Implement a virtual fibre channel adapter 231

Configure Storage Quality of Service (QoS) 233

Skill 3.4: Configure Hyper-V networking . 235

Add and remove virtual network interface cards (vNICs) 236

Configure Hyper-V virtual switches 238

Optimize network performance 243

Configure MAC addresses 244

Configure network isolation 246

Configure synthetic and legacy virtual network adapters 247

Configure NIC teaming in VMs 249

Configure virtual machine queue (VMQ) 251

Enable Remote Direct Memory Access (RDMA) on
network adapters bound to a Hyper-V virtual switch
using Switch Embedded Teaming (SET) 253

Configure bandwidth management 254

Chapter summary . 256

Thought experiment . 258

Thought experiment answer . 258

Chapter 4 Implement Windows containers 259
Skill 4.1: Deploy Windows containers . 259

Determine installation requirements and appropriate
scenarios for Windows containers 260

Install and configure Windows Server Container Host in
physical or virtualized environments 261

Install and configure Windows Server container host to
 Windows Server Core or Nano Server in a physical or
virtualized environment 264

Install Docker on Windows Server and Nano Server 266

Configure Docker Daemon start-up options 269

Configure Windows PowerShell for use with containers 270

Install a base operating system 271

Tag an image 272

Uninstall an operating system image 273

Create Windows Server containers 274

Create Hyper-V containers 275

Skill 4.2: Manage Windows containers . 277

Manage Windows or Linux containers using the Docker daemon 277

Manage Windows or Linux containers using Windows PowerShell 279

Manage container networking 281

Manage container data volumes 286

Manage resource control 287

Create new container images using Dockerfile 289

Manage container images using DockerHub
Repository for public and private scenarios 291

Manage container images using Microsoft Azure 293

Chapter summary . 293

Thought experiment . 295

Thought experiment answer . 295

Chapter 5 Implement high availability 297
Skill 5.1: Implement high availability and disaster recovery

options in Hyper-V . 297

Implement Hyper-V Replica 298

Implement live migration 303

Implement shared nothing live migration 307

Configure CredSSP or Kerberos authentication protocol
for Live Migration 308

Implement storage migration 309

Skill 5.2: Implement failover clustering . 311

Implement workgroup, single, and multi domain clusters 314

Configure quorum 317

Configure cluster networking 321

Restore single node or cluster configuration 324

Configure cluster storage 326

Implement cluster-aware updating 328

Implement cluster operating system rolling upgrade 332

xiContents

Configure and optimize clustered shared volumes (CSVs) 333

Configure clusters without network names 337

Implement Scale-Out File Server (SoFS) 337

Determine different scenarios for the use of SoFS vs.
clustered file server 341

Determine usage scenarios for implementing guest clustering 341

Implement a clustered Storage Spaces solution using
shared SAS storage enclosures 342

Implement Storage Replica 345

Implement cloud witness 345

Implement VM resiliency 348

Implement shared VHDX as a storage solution for guest clusters 349

Skill 5.3: Implement Storage Spaces Direct . 352

Determine scenario requirements for implementing
Storage Spaces Direct 352

Enable Storage Spaces direct using Windows PowerShell 354

Implement a disaggregated Storage Spaces Direct
scenario in a cluster 355

Implement a hyper-converged Storage Spaces Direct
scenario in a cluster 357

Skill 5.4: Manage failover clustering . 359

Configure role-specific settings, including continuously
available shares 359

Configure VM monitoring 361

Configure failover and preference settings 364

Implement stretch and site-aware failover clusters 365

Enable and configure node fairness 367

Skill 5.5: Manage VM movement in clustered nodes 369

Perform a live migration 369

Perform a quick migration 370

Perform a storage migration 371

Import, export, and copy VMs 372

Configure VM network health protection 373

Configure drain on shutdown 374

xii Contents

Skill 5.6: Implement Network Load Balancing (NLB) 375

Configure NLB prerequisites 375

Install NLB nodes 377

Configure affinity 381

Configure port rules 382

Configure cluster operation mode 384

Upgrade an NLB cluster 384

Chapter summary . 385

Thought experiment . 386

Thought experiment answer . 386

Chapter 6 Maintain and monitor server environments 387
Skill 6.1: Maintain server installations . 387

Implement Windows Server Update Services (WSUS) solutions 388

Configure WSUS groups 398

Manage patch management in mixed environments 401

Implement an antimalware solution with Windows Defender 405

Integrate Windows Defender with WSUS and Windows Update 409

Perform backup and restore operations using
Windows Server Backup 411

Determine backup strategies for different Windows Server
roles and workloads, including Hyper-V Host, Hyper-V Guests,
Active Directory, File Servers, and Web Servers using Windows
Server 2016 native tools and solutions 421

Skill 6.2: Monitor server installations . 425

Monitor workloads using Performance Monitor 425

Configure data collector sets 431

Determine appropriate CPU, memory, disk, and networking
counters for storage and compute workloads 433

Configure alerts 438

Monitor workloads using Resource Monitor 440

xiiiContents

Chapter summary . 442

Thought experiment . 443

Thought experiment answer . 443

Index 445

This page intentionally left blank

xvIntroduction

Introduction

Many Windows Server books take the approach of teaching you every detail about
the product. Such books end up being huge and tough to read. Not to mention that

remembering everything you read is incredibly challenging. That’s why those books aren’t
the best choice for preparing for a certification exam such as the Microsoft Exam 70-740,
“Installation, Storage, and Compute with Windows Server 2016.” For this book, we focus on
your review of the Windows Server skills that you need to maximize your chances of passing
the exam. Our goal is to cover all of the skills measured on the exam, while bringing a real-
world focus to the information. This book shouldn’t be your only resource for exam prepara-
tion, but it can be your primary resource. We recommend combining the information in this
book with some hands-on work in a lab environment (or as part of your job in a real-world
environment).

The 70-740 exam is geared toward IT professionals who have a minimum of 3 years of
experience working with Windows Server. That doesn’t mean you can’t take and pass the
exam with less experience, but it probably means that it will be harder. Of course, everyone
is different. It is possible to get the knowledge and skills required to pass the 70-740 exam in
fewer than 3 years. But whether you are a senior-level Windows Server administrator or just a
couple of years into your Windows Server journey, we think you’ll find the information in this
book valuable as your primary exam prep resource.

This book covers every major topic area found on the exam, but it does not cover every
exam question. Only the Microsoft exam team has access to the exam questions, and
Microsoft regularly adds new questions to the exam, making it impossible to cover specific
questions. You should consider this book a supplement to your relevant real-world experi-
ence and other study materials. If you encounter a topic in this book that you do not feel
completely comfortable with, use the “Need more review?” links you’ll find in the text to find
more information and take the time to research and study the topic. Great information is
available on MSDN, TechNet, and in blogs and forums.

xvi Introduction

Organization of this book

This book is organized by the “Skills measured” list published for the exam. The “Skills measured”
list is available for each exam on the Microsoft Learning website: https://aka.ms/examlist. Each
chapter in this book corresponds to a major topic area in the list, and the technical tasks in
each topic area determine a chapter’s organization. If an exam covers six major topic areas,
for example, the book will contain six chapters.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premises and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

MORE INFO ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to https://www.microsoft.com/learning.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from Mi-
crosoft Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and Mobi
for Kindle formats, ready for you to download at:

https://aka.ms/mspressfree

Check back often to see what is new!

Microsoft Virtual Academy

Build your knowledge of Microsoft technologies with free expert-led online training from
Microsoft Virtual Academy (MVA). MVA offers a comprehensive library of videos, live events,
and more to help you learn the latest technologies and prepare for certification exams. You’ll
find what you need here:

https://www.microsoftvirtualacademy.com

MORE INFO ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to https://www.microsoft.com/learning.

https://aka.ms/examlist
https://www.microsoft.com/learning
https://aka.ms/mspressfree
https://www.microsoftvirtualacademy.com
https://www.microsoft.com/learning

xviiIntroduction

Quick access to online references

Throughout this book are addresses to webpages that the author has recommended you visit
for more information. Some of these addresses (also known as URLs) can be painstaking to
type into a web browser, so we’ve compiled all of them into a single list that readers of the
print edition can refer to while they read.

Download the list at https://aka.ms/examref740/downloads.

The URLs are organized by chapter and heading. Every time you come across a URL in the
book, find the hyperlink in the list to go directly to the webpage.

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion content. You
can access updates to this book—in the form of a list of submitted errata and their related
corrections—at:

https://aka.ms/examref740/errata

If you discover an error that is not already listed, please submit it to us at the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to http://
support.microsoft.com.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

https://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers go
directly to the editors at Microsoft Press. (No personal information will be requested.) Thanks
in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

https://aka.ms/examref740/downloads
https://aka.ms/examref740/errata
http://support.microsoft.com
http://support.microsoft.com
https://aka.ms/tellpress
http://twitter.com/MicrosoftPress

This page intentionally left blank

xixIntroduction

Important: How to use this book to study for the exam
Certification exams validate your on-the-job experience and product knowledge. To gauge
your readiness to take an exam, use this Exam Ref to help you check your understanding of
the skills tested by the exam. Determine the topics you know well and the areas in which you
need more experience. To help you refresh your skills in specific areas, we have also provided
“Need more review?” pointers, which direct you to more in-depth information outside the
book.

The Exam Ref is not a substitute for hands-on experience. This book is not designed to
teach you new skills.

We recommend that you round out your exam preparation by using a combination of
available study materials and courses. Learn more about available classroom training at
https://www.microsoft.com/learning. Microsoft Official Practice Tests are available for many
exams at https://aka.ms/practicetests. You can also find free online courses and live events
from Microsoft Virtual Academy at https://www.microsoftvirtualacademy.com.

This book is organized by the “Skills measured” list published for the exam. The
“Skills measured” list for each exam is available on the Microsoft Learning website:
https://aka.ms/examlist.

Note that this Exam Ref is based on this publicly available information and the author’s
experience. To safeguard the integrity of the exam, authors do not have access to the exam
questions.

https://www.microsoft.com/learning
https://aka.ms/practicetests
https://www.microsoftvirtualacademy.com
https://aka.ms/examlist

259

C H A P T E R 4

Implement Windows
containers
Containers are a means of rapidly deploying virtualized, isolated operating system en-

vironments, for application deployment and execution. Windows Server 2016 includes
support for containers, in cooperation with an open source container engine called Docker.

Skills in this chapter:
 ■ Deploy Windows containers

 ■ Manage Windows containers

Skill 4.1: Deploy Windows containers

Virtualization has been an important watchword since the early days of Windows. Virtual
memory has been around for decades; Windows can use disk space to make the system
seem like it has more memory than it has. Hyper-V virtualizes hardware, creating computers
within a computer that seem to have their own processors, memory, and disks, when in fact
they are sharing the resources of the host server. Containers is a new feature in Windows
Server 2016 that virtualizes operating systems.

 260 CHAPTER 4 Implement Windows containers

This section covers how to:
 ■ Determine installation requirements and appropriate scenarios for Windows con-

tainers

 ■ Install and configure Windows Server container host in physical or virtualized envi-
ronments

 ■ Install and configure Windows Server container host to Windows Server Core or
Nano Server in a physical or virtualized environment

 ■ Install Docker on Windows Server and Nano Server

 ■ Configure Docker daemon start-up options

 ■ Configure Windows PowerShell for use with containers

 ■ Install a base operating system

 ■ Tag an image

 ■ Uninstall an operating system image

 ■ Create Windows Server containers

 ■ Create Hyper-V containers

Determine installation requirements and appropriate
scenarios for Windows containers
Just as virtual machines provide what appear to be separate computers, containers provide
what appear to be separate instances of the operating system, each with its own memory and
file system, and running a clean, new copy of the operating system. Unlike virtual machines,
however, which run separate copies of the operating system, containers share the operating
system of the host system. There is no need to install a separate instance of the operating
system for each container, nor does the container perform a boot sequence, load libraries, or
devote memory to the operating system files. Containers start in seconds, and you can create
more containers on a host system than you can virtual machines.

To users working with containers, what they appear to see at first is a clean operating
system installation, ready for applications. The environment is completely separated from the
host, and from other containers, using namespace isolation and resource governance.

Namespace isolation means that each container only has access to the resources that are
available to it. Files, ports, and running processes all appear to be dedicated to the container,
even when they are being shared with the host and with other containers. The working envi-
ronment appears like that of a virtual machine, but unlike a virtual machine, which maintains
separate copies of all the operating system files, a container is sharing these files with the
host, not copying them. It is only when a user or application in a container modifies a file that
a copy is made in the container’s file system.

Resource governance means that a container has access only to a specified amount of pro-
cessor cycles, system memory, network bandwidth, and other resources, and no more. An ap-

This section covers how to:
■ Determine installation requirements and appropriate scenarios for Windows con-

tainers

■ Install and configure Windows Server container host in physical or virtualized envi-
ronments

■ Install and configure Windows Server container host to Windows Server Core or
Nano Server in a physical or virtualized environment

■ Install Docker on Windows Server and Nano Server

■ Configure Docker daemon start-up options

■ Configure Windows PowerShell for use with containers

■ Install a base operating system

■ Tag an image

■ Uninstall an operating system image

■ Create Windows Server containers

■ Create Hyper-V containers

Skill 4.1: Deploy Windows containers CHAPTER 4 261

plication running in a container has a clean sandbox environment, with no access to resources
allocated to other containers or to the host.

Container images
The ability to create new containers in seconds, and the isolated nature of each container,
make them an ideal platform for application development and software testing. However,
there is more to them than that.

Containers are based on images. To create a new container, you download an image from
a repository and run it. If you run an image of Windows Server 2016 Server Core, you get a
container with a clean instance of the operating system running in it. Alternatively, you can
download Windows Server images with roles or applications, such as Internet Information
Services (IIS) or Microsoft SQL Server, already installed and ready to run.

The base operating system image never changes. If you install an application in the
container and then create a new image, the resulting image contains only the files and set-
tings needed to run the application. Naturally, the new image you created is relatively small,
because it does not contain the entire operating system. To share the application with other
people, you only have to send them the new, smaller image, as long as they already have the
base operating system image.

This process can continue through as many iterations as you need, with layer upon layer
of images building on that original base. This can result in an extremely efficient software
development environment. Instead of transferring huge VHD files, or constantly creating
and installing new virtual machines, you can transfer small container images that run without
hardware compatibility issues.

Install and configure Windows Server Container Host in
physical or virtualized environments
Windows Server 2016 supports two types of containers: Windows Server Containers and
Hyper-V containers. The difference between the two is in the degree of container isolation
they provide. Windows Server Containers operate user mode and share everything with the
host computer, including the operating system kernel and the system memory.

Because of this, it is conceivable that an application, whether accidentally or deliberately,
might be able to escape from the confines of its container and affect other processes running
on the host or in other containers. This option is therefore presumed to be preferable when
the applications running in different containers are basically trustworthy.

Hyper-V containers provide an additional level of isolation by using the hypervisor to cre-
ate a separate copy of the operating system kernel for each container. Although they are not
visible or exposed to manual management, Hyper-V creates virtual machines with Windows
containers inside them, using the base container images, as shown in Figure 4-1. The con-
tainer implementation is essentially the same; the difference is in the environments where the
two types of containers exist.

 262 CHAPTER 4 Implement Windows containers

FIGURE 4-1 Windows container architecture

Because they exist inside a VM, Hyper-V containers have their own memory assigned to
them, as well as isolated storage and network I/O. This provides a container environment that
is suitable for what Microsoft calls “hostile multi-tenant” applications, such as a situation in
which a business provides containers to clients for running their own code, which might not
be trustworthy. Thus, with the addition of Hyper-V containers, Windows Server 2016 provides
three levels of isolation, ranging from the separate operating system installation of Hyper-V
virtual machines, to the separate kernel and memory of Hyper-V containers, to the shared
kernel and other resources of Windows Server Containers.

Installing a container host
Windows Server 2016 includes a feature called Containers, which you must install to provide
container support, but to create and manage containers you must download and install
Docker, the application that supports the feature.

To install the Containers feature, you can use the Add Roles And Features Wizard in Hyper-
V Manager, selecting Containers on the Select Features page, as shown in Figure 4-2.

FIGURE 4-2 Installing the Containers feature in Hyper-V Manager

Skill 4.1: Deploy Windows containers CHAPTER 4 263

NOTE WINDOWS SERVER INSTALLATION

To create Windows Server containers, the host operating system must be installed on the
computer’s C drive, which is the installation default. This is to facilitate the sharing the
operating system kernel. This is not a requirement for creating Hyper-V containers, as the
hypervisor is responsible for providing a copy of the kernel to each container.

To create Hyper-V containers, you must install both the Containers feature and the Hyper-
V role. Even though you will not be creating virtual machines for the containers, the Hyper-V
role installs the hypervisor that will be needed to create the separate copy of the Windows
kernel for each Hyper-V container.

The Hyper-V role has general hardware requirements that exceed those of the Windows
Server 2016 operating system itself. Before you can install the Hyper-V role on a server run-
ning Windows Server 2016, you must have the following hardware:

 ■ A 64-bit processor that includes hardware-assisted virtualization and second-level
address translation (SLAT). This type of virtualization is available in processors that in-
clude a virtualization option, such as Intel Virtualization Technology (Intel VT) or AMD
Virtualization (AMD-V) technology.

 ■ Hardware-enforced Data Execution Prevention (DEP), which Intel describes as eXecuted
Disable (XD) and AMD describes as No eXecute (NS). CPUs use this technology to
segregate areas of memory for either storage of processor instructions or for storage
of data. Specifically, you must enable Intel XD bit (execute disable bit) or AMD NX bit
(no execute bit).

 ■ VM Monitor Mode extensions, found on Intel processors as VT-c.

 ■ A system BIOS or UEFI that supports the virtualization hardware and on which the
virtualization feature has been enabled.

When you install the Hyper-V role using Hyper-V Manager, the Add Roles And Features
Wizard prompts to install the Hyper-V Management tools as well. If you are creating Hyper-
V containers but not Hyper-V virtual machines, there is no need to install the management
tools.

Virtualizing containers
Windows Server 2016 supports the use of containers within Hyper-V virtual machines. You
can install the Containers feature and the Docker files in any virtual machine. However, to
create Hyper-V containers on a virtual machine, the system must meet the requirements for
nested virtualization.

To create a nested Hyper-V host server, the physical host and the virtual machine on which
you create the Hyper-V containers must both be running Windows Server 2016. The VM can
run the full Desktop Experience, Server Core, or Nano Server installation option. In addition,
the physical host must have an Intel processor with VT-x and Extended Page Tables (EPT)
virtualization support.

NOTE WINDOWS SERVER INSTALLATION

To create Windows Server containers, the host operating system must be installed on the
computer’s C drive, which is the installation default. This is to facilitate the sharing the
operating system kernel. This is not a requirement for creating Hyper-V containers, as the
hypervisor is responsible for providing a copy of the kernel to each container.

 264 CHAPTER 4 Implement Windows containers

Before you install Hyper-V on the virtual machine, you must provide its virtual processor
with access to the virtualization technology on the physical computer. To do this, you must
shut down the virtual machine and run a command like the following on the physical host, in
a PowerShell session with administrator privileges:

set-vmprocessor -vmname server1 -exposevirtualizationextensions $true

In addition, you must make the following configuration changes on the VM that functions
as a Hyper-V host. Each is given first as the location in the VM Settings dialog box in Hyper-V
Manager, and then as a PowerShell command:

 ■ On the Memory page, provide the VM with at least 4 gigabytes (GB) of RAM and dis-
able Dynamic Memory.

set-vmmemory -vmname server1 -startupbytes 4gb -dynamicmemoryenabled $false

 ■ On the Processor page, set Number of Virtual Processors to 2.

set-vmprocessor -vmname server1 -count 2

 ■ On the Network Adapter/Advanced Features page, turn on MAC Address Spoofing.

set-vmnetworkadapter -vmname server1 -name “network adapter” -macaddressspoofing
on

Once you have made these changes, you can start the VM, install the Hyper-V role, and
proceed to use Docker to create Hyper-V containers.

Install and configure Windows Server container host to
Windows Server Core or Nano Server in a physical or
virtualized environment
A computer installed using the Server Core option can function as a container host. The re-
quirements are the same as for a server installed with the full Desktop Experience, except that
you must either use the command line to install the required features or manage the system
remotely.

After switching to a PowerShell session, you can install the Containers feature and the
Hyper-V role using the following command:

install-windowsfeature -name containers, hyper-v

Configuring Nano Server as a container host
Nano Server, included with Windows Server 2016, supports both Windows Server containers
and Hyper-V containers. The Nano Server implementation includes packages supporting both
the Containers feature and the Hyper-V role, which you can add when you create a Nano
Server image with the New-NanoServerImage cmdlet in Windows PowerShell, as in the fol-
lowing example:

Skill 4.1: Deploy Windows containers CHAPTER 4 265

new-nanoserverimage -deploymenttype guest -edition datacenter -mediapath d:\ -targetpath
c:\nano\nano1.vhdx -computername nano1 -domainname contoso -containers

This command creates a Nano Server image with the following characteristics:

•	 deploymenttype guest Creates an image for use on a Hyper-V virtual machine

•	 edition datacenter Creates an image using the Datacenter edition of Windows
Server

•	 mediapath d:\ Accesses the Nano Server source files from the D drive

•	 targetpath c:\nano\nano1.vhdx Creates an VHDX image file in the C:\nano
folder with the name Nano1.vhdx

•	 computername nano1 Assigns the Nano Server the computer name Nano1

•	 domainname contoso Joins the computer to the Contoso domain

•	 containers Installs the Containers feature as part of the image

•	 compute Installs the Hyper-V role as part of the image

If you plan on creating Hyper-V containers on the guest Nano Server, you must provide it
with access to the virtualization capabilities of the Hyper-V server, using the following proce-
dure.

1. Create a new virtual machine, using the Nano Server image file you created, but do not
start it.

2. On the Hyper-V host server, grant the virtual machine with access to the virtualization
capabilities of the Hyper-V server’s physical processor, using a command like the fol-
lowing:

set-vmprocessor -vmname nano1 -exposevirtualizationextensions $true

3. Start the Nano Server virtual machine.

Once the Nano Server virtual machine is running, you must establish a remote PowerShell
session from another computer, so you can manage it. To do this, run a command like the fol-
lowing on the computer you use to manage Nano Server:

enter-pssession -computername nano1 -credential

NOTE REMOTE NANO SERVER MANAGEMENT

This section assumes that the Nano Server is located on a network with a DHCP server that
assigns its TCP/IP settings and that it has successfully joined an Active Directory Domain
Services domain. If those are not the case, you must configure the TCP/IP settings for the
Nano Server manually, from its console, and then add the Nano Server to the Trusted Hosts
list on the computer you use to manage it.

NOTE REMOTE NANO SERVER MANAGEMENT

This section assumes that the Nano Server is located on a network with a DHCP server that
assigns its TCP/IP settings and that it has successfully joined an Active Directory Domain
Services domain. If those are not the case, you must configure the TCP/IP settings for the
Nano Server manually, from its console, and then add the Nano Server to the Trusted Hosts
list on the computer you use to manage it.

 266 CHAPTER 4 Implement Windows containers

Install Docker on Windows Server and Nano Server
Docker is an open source tool that has been providing container capabilities to the Linux
community for years. Now that it has been ported, you can implement those same capabili-
ties in Windows. Docker consists of two files:

 ■ Dockerd.exe The Docker engine, also referred to as a service or daemon, which runs
in the background on the Windows computer

 ■ Docker.exe The Docker client, a command shell that you use to create and manage
containers

In addition to these two files, which you must download and install to create containers,
Docker also includes the following resources:

 ■ Dockerfiles Script files containing instructions for the creation of container images

 ■ Docker Hub A cloud-based registry that enables Docker users to link to image and
code repositories, as well as build and store their own images

 ■ Docker Cloud A cloud-based service you can use to deploy your containerized ap-
plications

Installing Docker on Windows Server
Because Docker is an open source product, it is not included with Windows Server 2016. On
a Windows Server 2016 Desktop Experience or Server Core computer, you must download
Docker and install it before you can create containers. To download Docker, you use OneGet,
a cloud-based package manager for Windows.

To access OneGet, you must install the DockerMsftProvider module, using the following
command. If you are prompted to install a NuGet provider, answer Yes.

install-module -name dockermsftprovider -repository psgallery -force

The Install-Module cmdlet downloads the requested module and installs it to the C:\Pro-
gram Files\Windows PowerShell\Modules folder, where it is accessible from any PowerShell
prompt. Next, to download and install Docker, run the following Install-Package command. If
the command prompts you to confirm that you want to install an untrusted package, answer
Yes.

install-package -name docker -providername dockermsftprovider

This command, after downloading the Docker files, registers Dockerd.exe as a Windows
service and adds the Docker.exe client to the path, so that it is executable from and location
in the file system.

Once the installation is completed, restart the computer with the following command:

restart-computer -force

Skill 4.1: Deploy Windows containers CHAPTER 4 267

Installing Docker on Nano Server
Once you have entered a remote PowerShell session with a Nano Server computer, you can
install Docker using the same commands as for a Desktop Experience or Server Core system.
However, Microsoft recommends that, once the Dockerd service is installed on the Nano
Server, you run the Docker client from the remote system.

To do this, you must complete the following tasks:

1. Create a firewall rule. For the Nano Server to allow Docker client traffic into the system,
you must create a new firewall rule opening port 2375 to TCP traffic. To do this, run the
following command in the Nano Server session:

netsh advfirewall firewall add rule name=”docker daemon“ dir=in action=allow
protocol=tcp localport=2375

2. Configure the Dockerd engine to accept network traffic. Docker has its origins in Linux,
and like most Linux applications, it uses text files for configuration. To enable the
Dockerd engine to accept client traffic over the network, you must create a text file
called daemon.json in the C:\ProgramData\Docker directory on the Nano Server that
contains the following line:

{ “hosts”: [“tcp://0.0.0.0:2375”, “npipe://”] }

The following two PowerShell commands create the new file and insert the required text:

new-item -type file c:\programdata\docker\config\daemon.json

add-content ‘c:\programdata\docker\config\daemon.json’ ‘{ “hosts”:
[“tcp://0.0.0.0:2375”, “npipe://”] }’

3. Restart the Dockerd engine. Once you have created the daemon.json file, you must
restart the Dockerd engine, using the following command:

restart-service docker

4. Download the Docker client. To Manage the Dockerd engine remotely, you must
download and install the Docker.exe client on the remote system (not within the Nano
Server session). To do this, you can open a browser and type in the following URL to
download the Docker package:

https://download.docker.com/components/engine/windows-server/cs-1.12/docker.zip

5. To do this in PowerShell, use the following command:

invoke-webrequest “https://download.docker.com/components/engine/windows-server/
cs-1.12/docker.zip” -outfile “$env:temp\docker.zip” -usebasicparsing

6. Install Docker.exe. If you downloaded the Docker. zip file through a browser, you install
the application by extracting the Docker.exe file from the zip archive and copying it to
a folder you must create called C:\ProgramData\Docker. To do this using PowerShell,
run the following command:

expand-archive -path “$env:temp\docker.zip” -destinationpath $env:programfiles

https://download.docker.com/components/engine/windows-server/cs-1.12/docker.zip
https://download.docker.com/components/engine/windows-server/cs-1.12/docker.zip�
https://download.docker.com/components/engine/windows-server/cs-1.12/docker.zip�

 268 CHAPTER 4 Implement Windows containers

7. Set the PATH environment variable. To run the Docker client from any location on the
management system, you must add the C:\ProgramData\Docker folder to the system’s
PATH environment variable. To do this graphically, open the System Properties sheet
from the Control Panel and, on the Advanced tab, click Environment Variables to dis-
play the dialog box shown in Figure 4-3.

FIGURE 4-3 The Environment Variables dialog box

8. To do this in PowerShell, run the following command:

[environment]::setenvironmentvariable(“path”, $env:path + “;c:\program files\
docker”, [environmentvariabletarget]::machine)

Once you have completed these steps, you can run the Docker.exe client outside of the
Nano Server session, but you must include the following parameter in every command, where
the ipaddress variable is replaced by the address of the Nano Server you want to manage:

-h tcp://ipaddress:2375

For example, to create a new container with the microsoft/nanoserver image, you would
use a command like the following:

docker -h tcp://172.21.96.1:2375 run -it microsoft/nanoserver cmd

To avoid having to add the -h parameter to every command, you can create a new
environment variable as follows:

docker_host = "tcp://ipaddress:2375"

To do this in PowerShell, use a command like the following:

$env:docker_host = "tcp://172.21.96.1:2375"

Skill 4.1: Deploy Windows containers CHAPTER 4 269

Configure Docker Daemon start-up options
As mentioned in the previous section, the configuration file for the Dockerd engine is a plain
text file called daemon.json, which you place in the same folder as the Dockerd.exe file. In
addition to the one you used earlier to permit client traffic over the network, there are many
other configuration settings you can include in the file. All of the settings you include in a
single daemon.json file should be enclosed in a single set of curly braces, as in the following
example:

{
"graph": "d:\\docker"
 "bridge" : "none"
 "group" : "docker"
{"dns": 192.168.9.2, 192.168.9.6 }
}

EXAM TIP

Be aware that while the Windows port of Docker supports many of the Linux Dockerd con-
figuration settings, it does not support all of them. If you are studying Docker documenta-
tion, be sure to look for the Windows version of the documents.

Redirecting images and containers
To configure the Dockerd engine to store image files and containers in an alternate location,
you include the following command in the daemon.json file, where d:\\docker is replaced by
the location you want to use:

{ "graph": "d:\\docker" }

Suppressing NAT
By default, the Dockerd engine creates a network address translation (NAT) environment for
containers, enabling them to communicate with each other and with the outside network. To
modify this default behavior and prevent the engine from using NAT, you include the follow-
ing command in the daemon.json file:

{ "bridge" : "none" }

Creating an administrative group
By default, only members of the local Administrators group can use the Docker client to
control the Dockerd engine when working on the local system. In some cases, you can grant
users this ability without giving them Administrators membership. You can configure Dockerd
to recognize another group—in this case, the group is called “docker”—by including the fol-
lowing setting in the daemon.json file.

{ "group" : "docker" }

 270 CHAPTER 4 Implement Windows containers

Setting DNS server addresses
To specify alternative DNS server addresses for the operating systems in containers, you can
add the following setting to the daemon.json file, where address1 and address2 are the IP
addresses of DNS servers:

{"dns": "address1" , "address2" }

Configure Windows PowerShell for use with containers
The Dockerd engine is supplied with a Docker.exe client shell, but it is not dependent on it.
You can also use Windows PowerShell cmdlets to perform the same functions. The Docker
PowerShell module, like Docker itself, is in a constant state of cooperative development, and
it is therefore not included with Windows Server 2016.

You can download and install the current version of the PowerShell module from a reposi-
tory called DockerPS-Dev, using the following commands:

register-psrepository -name dockerps-dev -sourcelocation https://ci.appveyor.com/nuget/
docker-powershell-dev

install-module docker -repository dockerps-dev -scope currentuser

Once the download is completed, you can view a list of the Docker cmdlets by running the
following command:

get-command -module docker

The current resulting output is shown in Figure 4-4.

FIGURE 4-4 Cmdlets in the Docker module for Windows PowerShell

https://ci.appveyor.com/nuget/docker-powershell-dev
https://ci.appveyor.com/nuget/docker-powershell-dev

Skill 4.1: Deploy Windows containers CHAPTER 4 271

Once you have registered the repository and imported the Docker module, you do not
have to run those commands again. You can always obtain the latest version of the module by
running the following command:

update-module docker

Install a base operating system
With the Dockerd engine and the Docker client installed and operational, you can take the
first step toward creating containers, which is to download a base operating system image
from the Docker Hub repository. Microsoft has provided the repository with Windows Server
2016 Server Core and Nano Server images, which you can download and use to create con-
tainers and then build your own container images.

To use the Docker client, you execute the Docker.exe file with a command and sometimes
additional options and parameters. To download an image, you run Docker with the Pull
command and the name of the image. For example, the following command downloads the
Server Core image from the repository.

docker pull microsoft/windowsservercore

The PowerShell equivalent is as follows:

request-containerimage -repository microsoft/windowsservercore

The output of the command (which can take some time, depending on the speed of your
Internet connection) is shown in Figure 4-5.

FIGURE 4-5 Output of the Docker Pull command

By default, the Docker Pull command downloads the latest version of the specified image,
which is identified by the tag: “latest.” When there are multiple versions of the same image
available, as in an application development project, for example, you can specify any one of
the previous images to download, by specifying its tag. If you run the Docker Pull command
with the -a parameter, you get all versions of the image. If the image you are pulling consists
of multiple layers, the command automatically downloads all of the layers needed to deploy
the image in a container.

If you know that the repository has a Nano Server image, but you are not sure of its name,
you can use the Docker Search command to locate it, and then use Docker Pull to download
it, as shown in Figure 4-6

 272 CHAPTER 4 Implement Windows containers

FIGURE 4-6 Output of the Docker Search command

Tag an image
Tagging, in a container repository, is a version control mechanism. When you create multiple
versions of the same image, such as the successive builds of an application, Docker enables
you to assign tags to them that identify the versions. Tags are typically numbers indicating
the relative ages of the image iterations, such as 1.1, 1.2, 2.0, and so forth.

There are two ways to assign a tag to an image. One is to run Docker with the Tag com-
mand, and the other is to run Docker Build with the -t parameter. In both cases, the format of
the image identifier is the same.

To tag an image on your local container host, you use the following syntax:

docker tag imagename:tag

If you are going to be uploading the image to the Docker Hub, you must prefix the image
name with your Docker Hub user name and a slash, as follows:

docker tag username/imagename:tag

For example, a user called Holly Holt might tag the latest build of her new application as
follows:

docker tag hholt/killerapp:1.5

To do the same thing in Windows PowerShell, you would use the Add-ContainerImageTag
cmdlet, as follows:

add-containerimagetag -imageidorname c452b8c6ee1a -repository hholt/killerapp -tag 1.5

Skill 4.1: Deploy Windows containers CHAPTER 4 273

If you omit the tag value from the command, Docker automatically assigns the image a tag
value of the word “latest,” which can lead to some confusion. When you pull an image from a
repository without specifying a tag, the repository gives you the image with the “latest” tag.
However, this does not necessarily mean that the image you are getting is the newest.

The “latest” tag is supposed to indicate that the image possessing it is the most recent ver-
sion. However, whether that is true or not depends on the people managing the tags for that
repository. Some people think that the “latest” tag is automatically reassigned to the most
recent version of an image, but this is not the case. You can assign the “latest” tag to any ver-
sion of an image, the oldest or the newest. It is solely up to the managers of the repository to
maintain the tag values properly. When someone tells you to get the latest build of an image,
is the person referring to the most recent build or the build with the “latest” tag? They are not
always the same thing.

Uninstall an operating system image
Running Docker with the Images command displays all of the images on the container host,
as shown in Figure 4-7.

FIGURE 4-7 Output of the Docker Images command

In some instances, you might examine the list of images and find yourself with images that
you do not need. In this example, there are two non-English versions of Nano Server that
were downloaded accidentally.

To remove images that you do not need and free up the storage space they’re consum-
ing, you run Docker with the Rmi command and specify either the repository and tag of the
specific image to delete, or the Image ID value, as in the following examples:

docker rmi -f microsoft/nanoserver:10.0.14393.206_de-de

docker rmi -f a896e5590871

The PowerShell equivalent is the Remove-ContainerImage cmdlet, as in the following:

remove-containerimage microsoft/nanoserver:10.0.14393.206_de-de

remove-containerimage a896e5590871

It is possible for the same image to be listed with multiple tags. You can tell this by the
matching Image ID values. If you attempt to remove one of the images using the tag, an error

 274 CHAPTER 4 Implement Windows containers

appears, because the image is in use with other tags, Adding the -f parameter forces the com-
mand to delete all the tagged references to the same image.

Create Windows Server containers
With the Containers feature in place and Docker installed, you are ready to create a Windows
Server container. To do this, you use the Docker Run command and specify the image that
you want to run in the container. For example, the following command creates a new con-
tainer with the Server Core image downloaded from Docker Hub:

docker run -it microsoft/windowsservercore powershell

In addition to loading the image into the container, the parameters in this command do
the following:

 ■ i Creates an interactive session with the container

 ■ t Opens a terminal window into the container

 ■ powershell Executes the PowerShell command in the container session

The result is that after the container loads, a PowerShell session appears, enabling you to
work inside the container. If you run the Get-ComputerInfo cmdlet in this session, you can
see at the top of the output, shown in Figure 4-8, that Server Core is running in the container,
when the full Desktop Experience edition in running on the container host.

FIGURE 4-8 Output of the Get-ComputerInfo cmdlet

You can combine Docker Run switches, so the -I and -t appear as -it. After the name of the
image, you can specify any command to run in the container. For example, specifying cmd
would open the standard Windows command shell instead of PowerShell.

NOTE OBTAINING IMAGES

Pulling an image from the Docker Hub is not a required step before you can run it. If you
execute a Docker Run command, and you don’t have the required image on your container
host, Docker initiates a pull automatically and then creates the container. For large images,
however, pulling them beforehand can save time when creating new containers.

The Docker Run command supports many command line parameters and switches, which
you can use to tune the environment of the container you are creating. To display them, you
can run the following command:

docker run --help

NOTE OBTAINING IMAGES

Pulling an image from the Docker Hub is not a required step before you can run it. If you
execute a Docker Run command, and you don’t have the required image on your container
host, Docker initiates a pull automatically and then creates the container. For large images,
however, pulling them beforehand can save time when creating new containers.

Skill 4.1: Deploy Windows containers CHAPTER 4 275

NOTE EXECUTING DOCKER COMMANDS

Note that this, and other, Docker commands sometimes use double hyphens to process
command line parameters.

Figure 4-9 displays roughly half of the available parameters. For example, including the -h
parameter enables you to specify a host name for the container, other than the hexadecimal
string that the command assigns by default.

FIGURE 4-9 Output of the Docker Run --help command

The PowerShell equivalent of the Docker Run command uses the New-Container cmdlet,
as in the following example:

new-container -imageidorname microsoft/windowsservercore -input -terminal -command
powershell

Create Hyper-V containers
The process of creating a Hyper-V container is almost identical to that of creating a Win-
dows Server container. You use the same Docker Run command, except that you add the
--isolation=hyperv parameter, as shown in the following example:

docker run -it --isolation=hyperv microsoft/windowsservercore powershell

NOTE EXECUTING DOCKER COMMANDS

Note that this, and other, Docker commands sometimes use double hyphens to process
command line parameters.

 276 CHAPTER 4 Implement Windows containers

Once you create a Hyper-V container, it is all but indistinguishable from a Windows Server
container. One of the few ways to tell the types of containers apart is to examine how they
handle processes. For example, you can create two containers and execute a command in
each one that starts them pinging themselves continuously, as shown in the following com-
mands:

docker run -it microsoft/windowsservercore ping -t localhost

docker run -it --isolation=hyperv microsoft/windowsservercore ping -t localhost

The Windows Server container created by the first command has a PING process run-
ning in the container, as shown by the Docker Top command in Figure 4-10. The process ID
(PID) number, in this case, is 404. Then, when you run the Get-Process cmdlet, to display the
processes (starting with P) running on the container host, you see the same PING process with
the 404 ID. This is because the container is sharing the kernel of the container host.

FIGURE 4-10 Output of Docker Top and Get-Process commands for a Windows Server container

On the other hand, when you run the Docker Top command on the Hyper-V container, you
again see the PING process, this time with a PID of 1852, as shown in Figure 4-11. However,
the Get-Process cmdlet shows no PING process, because this container has its own kernel
provided by the hypervisor.

Skill 4.2: Manage Windows containers CHAPTER 4 277

FIGURE 4-11 Output of the Docker Top and Get-Process commands for a Hyper-V container

Skill 4.2: Manage Windows containers

 ■ Manage Windows or Linux containers using the Docker daemon

 ■ Manage Windows or Linux containers using Windows PowerShell

 ■ Manage container networking

 ■ Manage container data volumes

 ■ Manage Resource Control

 ■ Create new container images using Dockerfile

 ■ Manage container images using DockerHub repository for public and private sce-
narios

 ■ Manage container images using Microsoft Azure

Manage Windows or Linux containers using the Docker
daemon
When you use the Docker Run command to create a new container, you can include the -it
switches to work with it interactively, or you can omit them and let the container run in the
background. Either way, you can continue to use the Docker client to manage container,
either Windows or Linux.

 278 CHAPTER 4 Implement Windows containers

Listing containers
To leave a PowerShell or CMD session you started in a container, you can just type the follow-
ing:

exit

However, this not only closes the session, it also stops the container. A stopped container
still exists on the host; it is just functionally turned off. To exit a session without stopping the
container, press Ctrl+P, then Ctrl+Q.

You can display a list of all the running containers on the host by using the Docker PS com-
mand. If you add the -a (for all) switch, as in the following example, the command displays all
of the containers on the host, whether running or not, as shown in Figure 4-12.

docker ps -a

FIGURE 4-12 Output of the Docker ps a command

Starting and stopping containers
To start a stopped container, you use the Docker Start command, as in the following example:

docker start dbf9674d13b9

You can also forcibly stop a container by using the Docker Stop command, as follows:

docker stop dbf9674d13b9

The six-byte hexadecimal string in these commands is the Container ID that Docker assigns
to the container when creating it. You use this value in Docker commands to identify the
container that you want to manage. This value also becomes the container’s computer name,
as you can see if you run Get-ComputerInfo from within a container session.

If you run Docker PS with the --no-trunc (for no truncation) parameter, as shown in Figure
4-13, you can see that the Container ID is a 32-byte hexadecimal string, although it is far
more convenient to use just the first six bytes on the command line.

FIGURE 4-13 Output of the Docker ps -a --no-trunc command

Skill 4.2: Manage Windows containers CHAPTER 4 279

Attaching to containers
To connect to a session on a running container, use the Docker Attach command, as in the
following example:

docker attach dbf9674d13b9

Running the command in multiple windows opens additional sessions, enabling you to
work in multiple windows at once.

Creating images
If you have modified a container in any way, you can save the modifications to a new image
by running the Docker Commit command, as in the following example:

docker commit dbf9674d13b9 hholt/killerapp:1.5

This command creates a new image called hholt/killerapp with a tag value of 1.5. The
Docker Commit command does not create a duplicate of the base image with the changes
you have made; it only saves the changes. If, for example, you use the Microsoft/win-
dowsservercore base image to create the container, and then you install your application,
running Docker Commit will only save the application. If you provide the new image to a col-
league, she must have (or obtain) the base image, in order to run the container.

Removing containers
To remove a container completely, use the Docker RM command, as shown in the following
example:

docker rm dbf9674d13b9

Containers must be in a stopped state before you can remove them this way. However,
adding the -f (for force) switch will cause the Docker RM command to remove any container,
even one that is running.

Manage Windows or Linux containers using Windows
PowerShell
As mentioned earlier, the Dockerd engine does not require the use of the Docker.exe client
program. Because Docker is an open source project, it is possible to create an alternative
client implementation that you can use with Dockerd, and Microsoft, in cooperation with the
Docker community, is doing just that in creating a PowerShell module that you can use to cre-
ate and manage Docker containers.

Because the Docker module for PowerShell is under development, it does not necessarily
support all of the functions possible with the Docker.exe client. However, the primary func-
tions are there, as shown in the following sections.

 280 CHAPTER 4 Implement Windows containers

Listing containers
You can display a list of all the containers on the host by running the Get-Container cmdlet in
Windows PowerShell, as shown in Figure 4-14. Unlike the Docker PS command, the Get-Con-
tainer cmdlet displays all of the containers on the host, whether they are running or stopped.

FIGURE 4-14 Output of the Get-Container cmdlet

Starting and stopping containers
When you create a container using the New-Container cmdlet, the container is not started by
default. You must explicitly start it. To start a stopped container, you use the Start-Container
cmdlet, as in the following example:

start-container dbf9674d13b9

You can also stop a container by simply changing the verb to the Stop-Container cmdlet,
as follows:

stop-container dbf9674d13b9

Attaching to containers
To connect to a session on a running container, use the Enter-ContainerSession cmdlet, as in
the following example:

Enter-containersession dbf9674d13b9

This cmdlet is also aliased as Attach-Container, enabling to reuse another command with
just a verb change.

Creating images
If you have modified a container in any way, you can save the modifications to a new image
by running the ConvertTo-ContainerImage cmdlet, as in the following example:

convertto-containerimage -containeridorname dbf9674d13b9 -repository hholt/killerapp
-tag 1.5

This cmdlet is also aliased as Commit-Container.

Skill 4.2: Manage Windows containers CHAPTER 4 281

Removing containers
To remove a container, use the Remove-Container cmdlet, as shown in the following example:

remove-container dbf9674d13b9

As with the Docker RM command, containers must be in a stopped state before you can
remove them. However, adding the Force switch will cause the cmdlet command to remove
any container, even one that is running.

Manage container networking
Containers can access the outside network. This is easy to prove, by pinging a server on the
local network or the Internet. However, if you run the Ipconfig /all command in a container
session, as shown in Figure 4-15, you might be surprised at what you see.

FIGURE 4-15 Output of Ipconfig /all command on a container

In this example, the IP address of the network adapter in the container is 172.25.117.12/12,
which is nothing like the address of the network on which the container host is located. How-
ever, if you run the Ipconfig /all command on the container host, as shown in Figure 4-16, the
situation becomes clearer.

 282 CHAPTER 4 Implement Windows containers

FIGURE 4-16 Output of Ipconfig /all command on a container host

There are two Ethernet adapters showing on the container host system. One has an IP
address on the 192.168.2.0/24 network, which is the address used for the physical network
to which the container host is connected. The other adapter has the address 172.25.112.1/12,
which is on the same network as the container’s address. In fact, looking back at the con-
tainer’s configuration, the container host’s address is listed as the Default Gateway and DNS
Server address for the container. The container host is, in essence, functioning as a router
between the 172.16.0.0/12 network on which the container is located and 192.168.2.0/24,
which is the physical network to which the host is connected. The host is also functioning as
the DNS server for the container.

If you look at another container on the same host, it has an IP address on the same net-
work as the first container. The two containers can ping each other’s addresses, as well as
those of systems outside the 172.16.0.0/12 network.

This is possible because the Containers feature and Docker use network address translation
(NAT) by default, to create a networking environment for the containers on the host. NAT is
a routing solution in which the network packets generated by and destined for a system have
their IP addresses modified, to make them appear as though the system is located on another
network.

When you ping a computer on the host network from a container session, the container
host modifies the ping packets, substituting its own 192.169.2.43 address for the container’s

Skill 4.2: Manage Windows containers CHAPTER 4 283

172,25.117.12 address in each one. When the responses arrive from the system being pinged,
the process occurs in reverse.

The Dockerd engine creates a NAT network by default when runs for the first time, and
assigns each container an address on that NAT network. The use of the 172.16.0.0/12 network
address is also a default coded into Docker. However, you can modify these defaults, by speci-
fying a different NAT address or by not using NAT at all.

The network adapters in the containers are, of course, virtual. You can see in the configu-
ration shown earlier that the adapter for that container is identified as vEthernet (Container
NIC 76b9f047). On the container host, there is also a virtual adapter, called vEthernet (HNS
Internal NIC). HNS is the Host Network Service, which is the NAT implementation used by
Docker. If you run the Get-VMSwitch cmdlet on the container host or look in the Virtual
Switch Manager in Hyper-V Manager, as shown in Figure 4-17, you can see that Docker has
also created virtual switch called nat. This is the switch to which the adapters in the containers
are all connected. Therefore, you can see that containers function much like virtual machines,
as far as networking is concerned.

FIGURE 4-17 Nat switch in the Virtual Switch Manager

 284 CHAPTER 4 Implement Windows containers

Modifying NAT defaults
If you want to use a different network address for Docker’s NAT configuration, because
you already have a network using that same address, for example, it is possible to do so. To
specify an alternate address, you must use the daemon.json configuration file, as discussed
earlier in the remote Docker client configuration.

Daemon.json is a plain text file that you create in the directory where the Dockerd.exe
program is located. To specify an alternate NAT network address, you include the following
text in the file:

{ "fixed-cidr":"192.168.10.0/24" }

You can use any network address for the NAT implementation, but to prevent address
conflicts on the Internet, you should use a network in one of the following reserved private
network addresses:

 ■ 10.0.0.0/8

 ■ 172.16.0.0/12

 ■ 192.168.0.0/16

To prevent the Dockerd engine from creating any network implementation at all, place the
following text in the daemon.json file:

{ "bridge":"none" }

If you do this, you must manually create a container network, if you want your containers
to have any network connectivity.

Port mapping
If you plan to run a server application in a container that must expose ports for incoming
client traffic, you must use a technique called port mapping. Port mapping enables the con-
tainer host, which receives the client traffic, to forward the packets to the appropriate port
in the container running the application. To use port mapping, you add the -p switch to the
Docker Run command, along with the port numbers on the container host and the container,
respectively, as in the following example:

docker run -it -p 8080:80 microsoft\windowsservercore powershell

In this example, any traffic arriving through the container host’s port 8080 will be forward-
ed to the container’s port 80. Port 80 is the well-known port number for web server traffic,
and this arrangement enables the container to use this standard port without monopolizing it
on the container host, which might need port 80 for its own web server.

Skill 4.2: Manage Windows containers CHAPTER 4 285

Creating a transparent network
Instead of using NAT, you can choose to create a transparent network, one in which the
containers are connected to the same network as the container host. If the container host is a
physical computer, the containers are connected to the physical network. If the container host
is a virtual machine, the containers are connected to whatever virtual switch the VM uses.

Docker does not create a transparent network by default, so you must create it, using the
Docker Network Create command, as in the following example:

docker network create -d transparent trans

In this example, the command creates a new network using the transparent driver, signi-
fied by the -d switch, and assigns it the name trans. Running the following command displays
a list of all the container networks, which now includes the trans network you just created, as
shown in Figure 4-18.

docker network ls

FIGURE 4-18 Output of the Docker Network LS command

Once you have created the transparent network, you can create containers that use it by
adding the network parameter to your Docker Run command, as in the following example:

docker run -it --network=trans microsoft/windowsservercore powershell

When you run the Ipconfig /all command in this container, you can see that it has an IP
address on the 10.0.0.0/24 network, which is the same as the network used by the virtual
machine functioning as the container host.

When you create a transparent network and the containers that use it, they all obtain IP
addresses from a DHCP on the container host network, if one is available. If there is no DHCP
server available, however, you must specify the network address settings when creating the
network and manually configure the IP address of each container by specifying it on the
Docker Run command line.

To create a transparent network with static IP addresses, you use a command like the fol-
lowing:

docker network create -d transparent --subnet=10.0.0.0/24 --gateway=10.0.0.1 trans

Then, to create a container with a static IP address on the network you created, you use a
Docker Run command like the following:

docker run -it --network=trans --ip=10.0.0.16 --dns=10.0.0.10 microsoft/
windowsservercore powershell

 286 CHAPTER 4 Implement Windows containers

Manage container data volumes
In some instances, you might want to preserve data files across containers. Docker enables
you to do this by creating data volumes on a container that correspond to a folder on the
container host. Once created, the data you place in the data volume on the container is also
found in the corresponding folder on the container host. The opposite is also true; you can
copy files into the folder on the host and access them in the container.

Data volumes persist independent of the container. If you delete the container, the data
volume remains on the container host. You can then mount the container host folder in an-
other container, enabling you to retain your data through multiple iterations of an application
running in your containers.

To create a data volume, you add the -v switch to a Docker Run command, as in the fol-
lowing example:

docker run -it -v c:\appdata microsoft/windowsservercore powershell

This command creates a folder called c:\appdata in the new container and links it to a sub-
folder in C:\ProgramData\docker\volumes on the container host. To learn the exact location,
you can run the following command and look in the Mounts section, as shown in Figure 4-19.

docker inspect dbf9674d13b9

FIGURE 4-19 Partial output of the Docker Inspect command

The Mounts section (which is small part of a long, comprehensive listing of the container’s
specifications) contains Source and Destination properties. Destination specifies the folder
name in the container, and Source is the folder on the container host. To reuse a data volume,
you can specify both the source and destination folders in the Docker Run command, as in
the following example:

docker run -it -v c:\sourcedata:c:\appdata microsoft/windowsservercore powershell

If you create a data volume, specifying a folder on the container that already contains files,
the existing contents are overlaid by the data volume, but are not deleted. Those files are ac-
cessible again when the data volume is dismounted.

By default, Docker creates data volumes in read/write mode. To create a read-only data
volume, you can add :ro to the container folder name, as in the following example:

docker run -it -v c:\appdata:ro microsoft/windowsservercore powershell

Skill 4.2: Manage Windows containers CHAPTER 4 287

NOTE ADDING A DATA VOLUME

To add a data volume to an existing container, your only option is to use Docker Commit
to save any changes you’ve made to the existing container to a new image, and then use
Docker Run to create a new container from the new image, including the -v switch to add
the data volume.

Manage resource control
As noted earlier, the Docker Run command supports many parameters and switches, some of
which have already been demonstrated in this chapter. For example, you have seen how the it
switches create an interactive container that runs a specific shell or other command. To create
a container that runs in the background—in what is called detached mode—you use the -d
switch, as in the following example:

docker run -d -p 80:80 microsoft/iis

To interact with a detached container, you can use network connections or file system
shared. You can also connect to the container using the Docker Attach command.

Working with container names
By default, when you create a container using the Docker Run command, the Dockerd engine
assigns three identifiers to the container, as shown in Figure 4-20:

 ■ Long UUID A 32-byte hexadecimal string, represented by 64 digits, as in
the following example: 0e38bdac48ca0120eff6491a7b9d1908e65180213b-
2c1707b924991ae8d1504f

 ■ Short UUID The first six bytes of the long UUID, represented as 12 digits, as in the
following example: 0e38bdac48ca.

 ■ Name A randomly chosen name consisting of two words separated by an underscore
character, as in the following example: drunk_jones

FIGURE 4-20 Output of the Docker ps --no-trunc command

You can use any of the three identifiers when referencing the container on the command
line. You can also assign your own name to the container when you create it by adding the
name parameter to the Docker Run command line, as in the following example:

docker run -it microsoft/windowsservercore powershell --name core1

NOTE ADDING A DATA VOLUME

To add a data volume to an existing container, your only option is to use Docker Commit
to save any changes you’ve made to the existing container to a new image, and then use
Docker Run to create a new container from the new image, including the -v switch to add
the data volume.

 288 CHAPTER 4 Implement Windows containers

Constraining memory
The Docker Run command supports parameters that enable you to specify how much
memory a container is permitted to use. By default, container processes can use as much host
memory and swap memory as they need. If you are running multiple containers on the same
host or a memory intensive application on the host itself, you might to impose limits on the
memory certain containers can use.

The memory parameters you can use in a Docker Run command are as follows:

 ■ -m (or --memory) Specifies the amount of memory the container can use.
Values consist of an integer and the unit identifier b, k, m, or g (for bytes, kilobytes,
megabytes, or gigabytes, respectively).

 ■ -memory-swap Specifies the total amount of memory plus virtual memory that the
container can use. Values consist of an integer and the unit identifier b, k, m, or g.

 ■ -memory-reservation Specifies a soft memory limit that the host retains for the
container, even when there is contention for system memory. For example, you might
use the -m switch to set a hard limit of 1 GB, and a memory reservation value of 750
MB. When other containers or processes require additional memory, the host might
reclaim up to 250 MB of the container’s memory, but will leave at least 750 MB intact.
Values consist of an integer smaller than that of the m or --memory-swap value and
the unit identifier b, k, m, or g.

 ■ -kernel-memory Specifies the amount of the memory limit set using the -m switch
that can be used for kernel memory. Values consist of an integer and the unit identifier
b, k, m, or g.

 ■ -oom-kill-disable Prevents the kernel from killing container processes when an
out of memory error occurs. Never use this option without the -m switch, to create a
memory limit for the container. Otherwise, the kernel could start to kill processes on
the host when an OOM error occurs.

Constraining CPU cycles
You can also specify parameters that limit the CPU cycles allocated to a container. By default,
all the containers on a host share the available CPU cycles equally. Using these parameters,
you can assign priorities to the containers, which take effect when cpu contention occurs.

The Docker Run parameters that you can use to control container access to CPUs are as
follows:

 ■ -c (or --cpu-shares) Specifies a value from 0 to 1024 that specifies the weight of the
container in contention for the CPU cycles. The actual amount of processor cycles that
a container receives depends on the number of containers running on the host and
their respective weights.

 ■ -cpuset-cpus Specifies which CPUs in a multiprocessor host system that the
container can use. Values consist of integers representing the CPUs in the host
computer, separated by commas.

Skill 4.2: Manage Windows containers CHAPTER 4 289

 ■ -cpuset-mems Specifies which nodes on a NUMA host that the container can use.
Values consist of integers representing the CPUs in the host computer, separated by
commas.

Create new container images using Dockerfile
If you have made changes to a container since you first created it with the Docker Run com-
mand, you can save those changes by creating a new container image using Docker Commit.
However, the recommended method for creating container images is to build them from
scratch using a script called a dockerfile.

A dockerfile is a plain text file, with the name dockerfile, which contains the commands
needed to build your new image. Once you have created the dockerfile, you use the Docker
Build command to execute it and create the new file. The dockerfile is just a mechanism that
automates the process of executing the steps you used to modify your container manually.
When you run the Docker Build command with the dockerfile, the Dockerd engine runs each
command in the script by creating a container, making the modifications you specify, and
executing a Docker Commit command to save the changes as a new image.

A dockerfile consists of instructions, such as FROM or RUN, and a statement for each in-
struction. The accepted format is to capitalize the instruction. You can insert remarks into the
script by preceding them with the pound (#) character.

An example of a simple dockerfile is as follows:

#install DHCP server
FROM microsoft/windowsservercore
RUN powershell -command install-windowsfeature dhcp -includemanagementtools
RUN powershell -configurationname microsoft.powershell -command add-dhcpserverv4scope
-state active -activatepolicies $true -name scopetest -startrange 10.0.0.100 -endrange
10.0.0.200 -subnetmask 255.255.255.0
RUN md boot
COPY ./bootfile.wim c:/boot/
CMD powershell

In this example:

 ■ The FROM instruction specifies the base image from which the new image is created.
In this case, the new image starts with the microsoft/windowsservercore image.

 ■ The first RUN command opens a PowerShell session and uses the Install-WindowsFea-
ture cmdlet to install the DHCP role.

 ■ The second RUN command uses the Add-DhcpServerv4Scope cmdlet to create a new
scope on the DHCP server.

 ■ The third RUN command creates a new directory called boot.

 ■ The COPY command copies a file called bootfile.wim from the current folder on the
container host to the c:\boot folder on the container.

 ■ The CMD command opens a PowerShell session when the image is run.

 290 CHAPTER 4 Implement Windows containers

Once you have created the dockerfile script, you use the Docker Build command to create
the new image, as in the following example:

docker build -t dhcp .

This command reads the dockerfile from the current directory and creates an image called
dhcp. As the Dockerd engine builds the image, it displays the results of each command and
the IDs of the interim containers it creates, as shown in Figure 4-21. Once you have created
the image, you can then create a container from it using the Docker Run command in the
usual manner.

FIGURE 4-21 Output of the Docker Build command

This is a simple example of a dockerfile, but they can be much longer and more complex.

Quick check
Which of the following Docker commands can you use to create new container im-
age files?

1. Docker Run

2. Docker Commit

3. Docker Build

4. Docker Images

Quick check answer
Answers 2 and 3 are correct. Docker Commit is the command used to create a new
image from an existing container. Docker Build is the command used to create a
new container image using the instructions in a dockerfile.

Quick check
Which of the following Docker commands can you use to create new container im-
age files?

1. Docker Run

2. Docker Commit

3. Docker Build

4. Docker Images

Quick check answer
Answers 2 and 3 are correct. Docker Commit is the command used to create a new
image from an existing container. Docker Build is the command used to create a
new container image using the instructions in a dockerfile.

Quick check

Skill 4.2: Manage Windows containers CHAPTER 4 291

Manage container images using DockerHub Repository for
public and private scenarios
DockerHub is a public repository that you can use to store and distribute your container im-
ages. When you download container images using the Docker Pull command, they come from
DockerHub by default, unless you specify another repository in the command. However, you
can upload images as well, using the Docker Push command.

Uploading images to DockerHub enables you to share them with your colleagues, and
even with yourself, so you don’t have to transfer files manually to deploy a container image
on another host.

Before you can upload images to the Docker Hub, you must register at the site at http://
hub.docker.com. Once you have done this, your user name becomes the name of your reposi-
tory on the service. For example, the microsoft/windowsservercore image you pulled earlier is
an image called windowsservercore in the Microsoft repository. If your user name on Dock-
erHub is hholt, your images will all begin with that repository name, followed by the image
name, as in the following example:

hholt/nano1

Once you have an account, you must login to the DockerHub service from the command
line before you can push images. You do this with the following command:

docker login

Docker prompts you for your user name and password, and then provides upload access
to your repository.

Searching for images
You can search for images on the DockerHub by using the web site, as shown in Figure 4-22.
This interface provides the latest information about the image, as well as comments from
other users in the Docker community.

FIGURE 4-22 Screen capture of a DockerHub web search

http://hub.docker.com
http://hub.docker.com

 292 CHAPTER 4 Implement Windows containers

You can also search the DockerHub from the command line, using the Docker Search com-
mand, as in the following example:

docker search microsoft --no-trunc

Adding the no-trunc parameter prevents the command from truncating the image de-
scriptions, as shown in Figure 4-23.

FIGURE 4-23 Output of the Docker Search command

Pushing images
To upload your own images to the repository, you use the Docker Push command, as in the
following example:

docker push hholt/nano1

By default, the Docker Push command uploads the specified image to your public reposi-
tory on the DockerHub, as shown in Figure 4-24. Anyone can access images pushed in this
way.

FIGURE 4-24 Output of the Docker Push command

Because Docker is open source software, sharing images and code with the community
is a large part of the company’s philosophy. However, it is also possible to create private
repositories, which you can share with an unlimited number of collaborators you select. This
enables you to use DockerHub for secure application development projects or any situation
in which you do not want to deploy an image to the public. DockerHub provides a single
private repository as part of its free service, but for additional repositories, you must purchase
a subscription.

In addition to storing and providing images, DockerHub provides other services as well,
such as automated builds. By uploading a dockerfile and any other necessary files to a reposi-
tory, you can configure DockerHub to automatically execute builds for you, to your exact

Chapter summary CHAPTER 4 293

specifications. The code files are available to your collaborators, and new builds can occur
whenever the code changes.

Manage container images using Microsoft Azure
In addition to creating containers locally, you can also use them on Microsoft Azure. By creat-
ing a Windows Server 2016 virtual machine on Azure, you can create and manage containers
just as you would on a local server. Azure also provides the Azure Container Service (ACS),
which enables you to create, configure, and manage a cluster of virtual machines, configured
to run container-based applications using various open source technologies.

Microsoft Azure is a subscription-based cloud service that enables you to deploy virtual
machines and applications and integrate them into your existing enterprise. By paying a
monthly fee, you can create a Windows Server 2016 virtual machine, as shown in Figure 4-25.
Once you have created the virtual machine, you can install the Containers feature and the
Docker engine. Containers and images that you create on an Azure virtual machine are com-
pletely compatible with the Docker implementations on your local computers.

FIGURE 4-25 Microsoft Azure Resource Center

Chapter summary

 ■ Containers are based on images. You create a container by running an image, and you
create an image by saving the contents of a container.

 ■ Windows Server 2016 includes the Containers feature, which provides the support
environment for the Docker platform.

 ■ Both the Server Core and Nano Server installation options support the creation of
Windows Server and Hyper-V containers. In Nano Server, you can run the Docker.exe
client on a remote system.

 ■ Docker is an open source container solution that consists of two files: Dockerd.exe,
which is the engine that runs as a service on Windows, and Docker.exe, which is the
command line client that controls the Dockerd engine.

 294 CHAPTER 4 Implement Windows containers

 ■ Using a text file called daemon.json, you can configure start-up options for the Dock-
erd engine.

 ■ The Docker client is one way to control the Docker engine, but it is not the only way.
You can also use the Docker module for Windows PowerShell to perform the same
tasks.

 ■ To download images from the Docker Hub, you use the Docker Pull command.

 ■ Tags are version indicators that developers can use to track the builds or versions of a
container image. To assign tag values, you use the Docker Tag command.

 ■ To uninstall a container image, you use the Docker RMI command.

 ■ To create a Windows Server container, you use the Docker Run command, specifying
the name of a container image.

 ■ The procedure for creating a Hyper-V container using Docker differs from a Windows
Server container only in the inclusion of the --isolation parameter.

 ■ The Docker.exe client enables you to control containers by starting, stopping, saving,
and removing them.

 ■ The Docker module for Windows PowerShell provides an alternative to the Docker.exe
client that can perform most, if not all, of the same functions.

 ■ By default, Docker uses network address translation to provide containers with net-
work access. However, you can override the default and configure containers to be
part of your larger network.

 ■ Docker enables you to create data volumes that exist on the container host and add
them to a container. Data volumes remain in place, even if you remove the container
itself.

 ■ Using parameters on the Docker Run command line, you can limit the amount of
memory and CPU resources a container is permitted to use.

 ■ A dockerfile is a script that contains instructions for building a new container image.
You use the Docker Build command to execute the script and create the image.

 ■ Docker Hub is a free repository, based in the cloud, on which you can upload your

 ■ Microsoft Azure enables you to create virtual machines that you can use as container
hosts.

Thought experiment answer CHAPTER 4 295

Thought experiment

In this thought experiment, demonstrate your skills and knowledge of the topics covered in
this chapter. You can find answer to this thought experiment in the next section.

Ralph wants to create a virtual machine called Core1 that functions as a container host
for both Windows Server and Hyper-V containers. To create the container host, he plans to
perform the following tasks:

 ■ Create a virtual machine.

 ■ Configure the virtual machine with 4 GB of memory, two virtual processors, and MAC
address spoofing enabled.

 ■ Install Windows Server 2016 on the virtual machine.

 ■ Install the Containers feature.

 ■ Install the Hyper-V role.

 ■ Install the dockermsftprovider module.

 ■ Install the Docker package.

 ■ Pull the Server Core image from DockerHub.

 ■ Create containers using the Docker Run command.

What step has Ralph forgotten, that prevents him from creating the containers he needs?
What task must he perform to complete his plan, and when should he complete it?

Thought experiment answer

This section contains the solution to the thought experiment.

Ralph has forgotten to expose the virtualization extensions of the physical computer’s
processor to the VM, so that it can run the Hyper-V role. To do this, he must run the following
command in a PowerShell session after creating the virtual machine and before he starts it:

set-vmprocessor -vmname server1 -exposevirtualizationextensions $true

This page intentionally left blank

445

Index

authorization 113
Automatic Virtual Machine Activation (AVMA) 41–42
AVMA. See Automatic Virtual Machine Activation
AVMAkey variable 42
Azure

managing container images using 293
Azure Access Panel. See Access Panel

B
backups

Active Directory 421–422
before upgrading 30
data deduplication and 162
failover clusters and 324–326
group policy objects 423
Hyper-V 424–425
IIS 424–425
incremental 417–418
mirrored 416
restores from 418–421
scheduled 415–417
single job creation 412–415
strategies for 421–425
Windows Server Backup 411–421

balloon driver 188
bandwidth management 254–256
Basic Input/Output System (BIOS) 86
basic permissions 114, 117–120
BIOS settings 7
blob files 45, 46–47
Block-SmbShareAccess cmdlet 109
boot

Secure Boot 205–208
traditional 205

bottlenecks 433–434

A
access control entries (ACEs) 112, 115
access control lists (ACLs) 112
ACEs. See Access Control Entries (ACEs); See access con-

trol entries (ACEs)
ACLL. See Attempt Copy Last Logs
ACLs. See access control lists (ACLs)
activation models 35–42

Active-Directory based 39–41
Automatic Virtual Machine Activation 41–42
Key Management Service 36–39
multiple activation keys 35–36

activation threshold 37
activation validity interval 37
Active Directory

backing up 421–422
Active Directory-based activation 39–41
Active Directory-detached clusters 337
Active Directory Domain Services (AD DS) 337
Add-ClusterSharedVolume cmdlet 153
Add-ClusterVirtualMachineRole cmdlet 304
Add-ClusterVMMonitoredItem cmdlet 362
Add-Computer cmdlet 20
Add-ContainerImageTag cmdlet 272
Add Roles And Features Wizard 11–15
Add-VMNetworkAdapter cmdlet 237
administrative access points 337
Administrators groups 269
advanced permissions 114–115, 120–121
allocation unit size 82–84
antimalware solution 405–410
asynchronous replication 148
Attach-Container cmdlet 280
authentication protocols

for Live Migration 308–309

446

C
cabinet (CAB) files 48, 74
checkpoints

applying 229–230
creating 228–229
managing 228–230
production 230–231
standard 230

child partitions 167
Chkdsk.exe 94
chunks 159
chunk store 158
churn 158, 161
Close-SmbOpenFile cmdlet 108
Close-SmbSession cmdlet 107
cloud-based services 43
cloud deployment 4
cloud witnesses 345–348
Cluster-Aware Updating (CAU) 328–332
Clustered Storage Spaces 342–345
cluster name object (CNO) 313, 337
Cluster Operating System Rolling Upgrade 332–333
cluster shared volume (CSV) 153
cluster shared volumes (CSVs) 333–336, 341
cluster-to-cluster configurations 149, 151–155
CNA. See converged network adapter (CNA)
collector technologies 65
Compare-VM cmdlet 212
connectors. See also receive connectors;

See also send connectors
containers. See Linux containers;

See Windows containers
converged network adapter (CNA) 143
converged networks 143
convergence 376
ConvertTo-ContainerImage cmdlet 280
Convert-VHD cmdlet 228
Copy-Item cmdlet 180
CPU counters 434–435
CPU cycles 288–289
Create New Data Collector Set wizard 438–439
Credential Security Support Provider (CredSSP) 308–309
CSV. See cluster shared volume (CSV)

D
DAC. See Datacenter Activation Coordination
daemon.json 269–270
DAGs. See Database Availability Groups
DAS. See Direct-Attached Storage
databases. See mailbox databases
datacenter bridging (DCB) 142–145
Datacenter edition 4, 5, 41
data collector sets 431–433
data deduplication 155–162

backup and restore solution with 162
configuration of 155–158
monitoring 160–161
optimization rates 159
usage scenarios for 158–160
workload evaluation 159–160

Data Deduplication Savings Evaluation Tool 160
Data Protection Manager (DPM) 162
data replication 148–155
data storage. See also storage architectures; See

also storage requirements
data volumes 286–287
DCB. See datacenter bridging (DCB)
DCBX Willing bit 143
DDA. See Discrete Device Assignment (DDA)
Ddpeval.exe 160
deduplication. See data deduplication
Deployment Image Servicing and Management

(DISM.exe) 172
adding drivers to image files using 72–74
/disable-feature command 76
/enable-feature command 76–77
installing roles and features in offline images with

75–77
umounting image with 74
updating images with 70–72
Windows PowerShell equivalents for 77–79

Desired State Configuration (DSC) 26–28
creating configuration scripts 26
deploying configurations 27–28

Desktop Experience 2
devices

detecting 147
Device Specific Module (DSM) 145

policies 148
DFS. See Distributed File Share

cabinet (CAB) files

447

external network switches

differencing disks 222–223
/disable-feature command 76
Discrete Device Assignment (DDA) 212–213
discretionary access control lists (DACLs) 93
disk counters 436–437
disk fragmentation 83
Disk Management console 84, 139–140

creating VHD or VHDX files using 88–90
mounting VHD and VHDX files with 91–92

disk partitions 9–10
disks

adding to CSVs 336
differencing 222–223
GUID partition table 84–88
initializing new 84–85
MBR 84–85
partition style selection 87
pass-through 212, 225–226
physical 125, 225–226
storage layout options 125–131
virtual. See virtual disks

disk sectors
size configuration 82–84

disk volume
allocation unit size 82–84

DISM.exe. See Deployment Image Servicing
and Management

Dismount-VHD cmdlet 92
Distributed Component Object Model (DCOM) 25
Distributed File System (DFS) Replication 150
Djoin.exe tool 46
DNS round robin 376
DNS server addresses 270
Docker

Attach command 279
Build command 290
Commit command 279
Images command 273
installation

on Nano Server 267–268
on Windows Server 266

managing containers with 277–279
Network Create command 285
PowerShell and 270–271
Pull command 271
Push command 292
RM command 279
Run command 274–276, 285, 287, 288

Start command 278
start-up options 269–270
Stop command 278

Dockerd.exe 266, 269
Docker.exe 266
dockerfile 289–290
DockerHub 271, 291–293
Domain Name System (DNS) 39
domains

joining, with Nano Server 45–47
drive arrays 134
drivers

adding to image files 72–74
DSC. See Desired State Configuration (DSC)
Dynamic Host Configuration Protocol (DHCP) 51
Dynamic Host Configuration Protocol (DHCP) server 11
dynamic least queue depth 148
dynamic memory

allocations 188
configuration 186–188
limitations 187
settings 186–188

dynamic quorum management 318

E
Edit-NanoServerImage cmdlet 49, 51, 77
EFS. See Encrypting File System
emulated adapters 248–249
Enable-DedupVolume cmdlet 157–158
/enable-feature command 76–77
Encrypting File System (EFS) 94
enhanced session mode 199–201
Enter-ContainerSession cmdlet 280
Enter-PsSession cmdlet 22, 56
ESRA. See EdgeSync replication account (ESRA)
Essentials edition 5, 6
Ethernet 142–143
Exit-PsSession cmdlet 22, 57
Exit-PSSession cmdlet 177
explicit remoting 176
Export-SmigServerSetting cmdlet 33
Export-VM cmdlet 210
Extended Page Tables (EPT) 263
Extensible Firmware Interface (EFI)-based

boot partition 87
external network switches 239, 241

448

failback policy

F
failback policy 148
failbacks 364
failover affinity 367
failover clusters 153, 220–221, 304, 311–351

cloud witnesses 345–348
Cluster-Aware Updating 328–332
cluster configuration 324–326
Clustered Storage Spaces 342–345
cluster networking 321–324
Cluster Operating System Rolling Upgrade 332–333
cluster shared volumes 333–336, 341
configurating without network names 337
guest clustering 341–342, 349–351
managing 359–368
monitoring VMs in 361–363
node fairness 367–368
quorum 317–321
role-specific settings 359–361
Scale-out File Server 337–341
shared VHDX files 349–351
site-aware 365–367
storage configuration 326–328
stretch 365–367
VM resiliency and 348–349
workgroup, single, and multi-domain 314–317

failover policy 148
failovers 150
failover settings 364–365
fault tolerance 128–131
features

implemention on Nano Server 48–50
installation of 13–15

in offline images 75–77
offline installation 225

Fiber Channel over Ethernet (FCoE) 142
Fibre Channel 133, 326

adapter 231–233
file compression 94
file ownership 122
file permissions 112–122
File Server cluster role 360
File Server Resource Manager (FSRM) 103
File Server role service 96
File Sharing dialog box 95
file systems

NTFS 93–95

ReFS 93–95
folder ownership 122
folder permissions 112–122
folder shares. See shares
Format-List cmdlet 161
FreeBSD

virtual machines 201–203
FreeBSD deployments 61
FreeBSD Integration Services (BIS) 61
FreeBSD Integration Services (FIS) 204, 205
FSW. See File Share Witness

G
garbage collection 158
Generation 1 VMs 197, 214
Generation 2 VMs 197–199, 205, 215
generic volume licensing keys (GVLKs) 39
Get-Command cmdlet 21
Get-ComputerInfo cmdlet 274
Get-Container cmdlet 280
Get-DedupStatus cmdlet 161
Get-help cmdlet 21
Get-NetAdapter cmdlet 19
Get-NetAdapterVmqQueue cmdlet 252–253
Get-SmbClientConfiguration cmdlet 111–112
Get-SmbOpenFile cmdlet 108
Get-SmbServerConfiguration cmdlet 109–110
Get-SmbSession cmdlet 107
Get-SmbShareAccess cmdlet 108
Get-SmigServerFeature cmdlet 33
Get-SRGroup cmdlet 154
Get-VM cmdlet 177
Get-VMHostSupportedVersion cmdlet 209
Get-VM PowerShell cmdlet 208
Get-WindowsFeature cmdlet 15
globally-unique identifier (GUID) 86
GPT. See GUID partition table (GPT) disks
Grant-SmbShareAccess cmdlet 109
Grant-SRAccess cmdlet 153
Group policy objects (GPOs) 401–403, 409

backing up 423
GRUB boot loader 202
GUID partition table (GPT) disks

advantages of 86
booting from 87–88
compared with MBR 87
configuration of 84–88

449

inheritance

H
hard disk drives (HDDs) 131
hard disks. See disks
hardware address 244–246
hardware requirements 3–4
high availability 297–386

failover clustering 311–351, 359–368
in Hyper-V 297–310
Live Migration 303–309, 369–370
network load balancing 375–384
Storage Migration 309–311
Storage Spaces Direct (S2D) 352–358
VM movement in clustered nodes 369–375

host bus adapter (HBA) 134
hotfixes 74–75
hot spares 130–131
hygiene. See message hygiene
hyperthreading 4
Hyper-V 165–258

backing up 424–425
checkpoints 228–231
containers 261–264, 275–277
converting from previous versions 208–209
Discrete Device Assignment 212–213
enhanced session mode 199–201
export and import functions 209–212
Fibre Channel adapter 231–233
guest operating systems 203–208
guests 165, 166
hardware limitations 167–169
high availability in 297–310
hosts 165, 174–179
installation 165–173

hardware and compatibility requirements 166–170
management tools 172–173
using PowerShell 171
using Server Manager 170–171

Integration Services 195–196, 204
Nano Server and 43
nested virtualization 181
networking 235–256

bandwidth management 254–256
MAC address configuration 244–246
network isolation 246–247
NIC teaming 249–251
performance optimization 243–244
Switch Embedded Teaming 253–254
synthetic network adapters 247–249
virtual machine queue 251–253

virtual network interface cards 236–237
virtual switches 238–242, 244, 247

New Virtual Hard Disk Wizard 88
permissions 174
PowerShell Direct 180
remote management 174–179
resource metering 193–195
smart paging 192–193
storage 213–235

differencing disks 222–223
quality of service 233–235
shared VHDX files 220–222
VHDs 214–220, 223–225
VHDX files 214–220

supported guest VMs 61
upgrading from existing versions of 173
virtual machine configuration 182–213

hypervisor 166–167
Hyper-V Manager 172–173

conflict handling 212
container host installation in 262–263
creating VHDs and VHDX files using 214–220
creating virtual hard disks in 216–218
importing VMs using 210–211
remote management using 174–176
virtual machine creation in 183–184

Hyper-V Replica 298–303
Hyper-V Server 168
Hyper-V Server edition 5

I
image files

adding drivers to 72–74
adding updates to 74–75
committing 74
container 261, 291–293
for deployment 58–79
installing roles and features in offline 75–77
managing, using Windows PowerShell 76–78
mounting 71–72
removing 273–274
umounting 74
updating 70–75

implicit remoting 177, 178–179
Import-SmigServerSetting cmdlet 33
Import-VM cmdlet 211–212
inheritance

permission 115–116

450

initiators

initiators
iSCSI 133–140

in-place upgrades 28–32
installation

MAP Toolkit 63
Nano Server 44–48
Server Core 17–19
upgrades 28–32
Windows Server 2016 1–18

activation models 35
clean installation 6–9
features and roles 11–17
mass deployment 11
partitions 9–10
requirements 2–4

Windows Server Migration Tools 33–34
Install-WindowsFeature cmdlet 15, 171, 377
Install-WindowsFeature PowerShell cmdlet 225
Institute of Electrical and Electronics Engineers (IEEE)

143
Integration Services 195–196, 204
integrity scrubbing 158–159
internal network switches 241
Internet Information Services (IIS)

backing up 424–425
Internet SCSI (iSCSI) 327
Internet Small Computer System Interface (iSCSI)

133–140
creating targets 134–138
initiators and targets 133–134
using initiators 138–140

Internet Storage Name Service (iSNS) 140–142
Inventory And Assessment Wizard 65–67
Invoke-Command cmdlet 180
IP addresses

configuration
Nano Server 51–53

iSNS Protocol (iSNSP) 141

J
just-a-bunch-of-disks (JBOD) arrays 123

K
Kerberos 308–309
Key Management Service (KMS) 36–39

client configuration 39
host installation 37–39

limitations 36–37
KMS. See Key Management Service

L
legacy network adapters 248–249
Lightweight Directory Access Protocol (LDAP) 66
Linux

Secure Boot and 206–208
virtual machines 201–203

Linux containers
managing

using Docker daemon 277–279
using PowerShell 279–281

Linux deployments 61
Linux Integration Services (LIS) 61, 204–205
Live Migration

CredSSP or Kerberos authentication protocol for
308–309

implementing 303–308
in cluster 304
of VM 369–370
Shared Nothing 307–308
without a cluster 305–307

local area network (LAN) 142
Local Configuration Manager (LCM) 26
local Hyper-V Administrators 174
local memory 189
log files. See transaction log files
logical unit number (LUN) 134
Lync Online. See Skype for Business

M
MAK Volume Licensing agreements 35–36
Management Object Format (MOF) files 27
MapSetup.exe 63–64
MAP Toolkit. See Microsoft Assessment and Planning

(MAP) Toolkit
master boot record (MBR) 84–85, 87
maximum hardware configurations 4
MBR. See master boot record (MBR)
Measure-VM cmdlet 194, 234–235
Media Access Control (MAC) address

configuration of 244–246
memory

adding or removing, in VM 185–186
containers 288

451

network load balancing (NLB)

dynamic 186–188
local 189
Non-Uniform Memory Access 189–192
remote 189
virtual 259

memory counters 435–436
Merge-VHD cmdlet 228
message transport. See transport
Microsoft Assessment and Planning (MAP) Toolkit 61–69

collection of inventory information 64–68
discovery methods 66
evaluation of results 68–69
functions of 62
installation 63–64

Microsoft Azure. See Azure
Microsoft Azure Active Directory. See Azure Active Direc-

tory (Azure AD)
Microsoft Management Console (MMC) snap-ins

using remotely 25–26
migrations. See also Live Migration

migration guides 34–35
P2V 60
Quick Migration 370–371
roles 32–33
servers 32–35
Storage Migration 309–311, 371–372
virtual machines 369–372

mirror storage layout 128
MOF files. See Management Object Format (MOF) files
Mount-DiskImage cmdlet 92
mounting

virtual hard disks 91–93, 224–225
mounting images

images 71–72
Mount-VHD cmdlet 92
MSU files 74
multi-domain clusters 314–317
Multipath I/O (MPIO) 145–148
multiple activation keys (MAKs) 35–36
Multipoint edition 5

N
namespace isolation 260
Nano Server 2, 4, 42–57

as container host 264–265
authentication screen 50
configuration 50–55

firewall rules 54–55
IP address 51–53

Docker installation on 267–268
features of 42, 43
image creation 44–45
installation 44–48
joining a domain 45–47
managing, using Windows PowerShell 76–78
remote management 265
remote management of 55–57
roles and features implementation on 48–50
shortcomings of 44
usage scenarios and requirements for 43–44
virtual machine creation 47–48

Nano Server Recovery Console 50–54
NAS. See network attached storage (NAS)
NAT. See network address translation (NAT)
nested virtualization 181
Netdom.exe tool 21
network adapters 246–247

enabling RMDA on 253–254
legacy 248–249
NIC teaming 249–251
synthetic 247–249
virtual 251, 283

network address translation (NAT) 269, 284
network attached storage (NAS) 123
network counters 437–438
Network File System (NFS) shares 96

creation of 101–103
network hardware 322
network health protection 373–374
networking

cluster 321–324
container 281–285
Hyper-V 235–256

bandwidth management 254–256
MAC address configuration 244–246
network isolation 246–247
NIC teaming 249–251
performance optimization 243–244
Switch Embedded Teaming 253–254
synthetic network adapters 247–249
virtual machine queue 251–253
virtual network interface cards 236–237
virtual switches 238–242, 244, 247

S2D 353–354
transparent networks 285

network load balancing (NLB) 375–384
affinity configuration 381–382

452

New-Cluster cmdlet

cluster operation mode configuration 384
cluster upgrades 384
node installation 377–381
port rules 382–383
prerequisites 375–377

New-Cluster cmdlet 337
New-Container cmdlet 275, 280
New-NanoServerImage cmdlet 44–49, 51, 52, 264
New-NetIpAddress cmdlet 19, 20
New-NetQosPolicy cmdlet 144
New-NetQosTrafficClass cmdlet 144
New-PsSession cmdlet 21–22, 55
New-PSSession cmdlet 177, 180
New-SmbShare cmdlet 106–107, 340
New-SRPartnership cmdlet 151
New-VHD cmdlet 90, 219, 223
New Virtual Hard Disk Wizard 88
New-VM cmdlet 47, 184
New-VM PowerShell cmdlet 197
NICs. See network interface cards (NICs)
NIC teaming 249–251
NLB. See network load balancing (NLB)
node fairness 367–368
nodes 311, 375
Non-Uniform Memory Access (NUMA) 189–192

nodes 189
node spanning 189–190
ratio 189
topology 190–192

N_Port ID Virtualization (NPIV) 232
NTFS file system 93–95
NTFS permissions 112–114, 117–122

O
Office Telemetry. See telemetry
operating system environments (OSEs) 5
Optimize-VHD cmdlet 228
organizationally unique identifier (OUI) 244

P
P2V migration 60
packages

Nano Server 48–49
parent partitions 167
parity storage layout 129
partitions 9–10, 167

pass-through disks 212, 225–226
patches 74–75
performance counter alerts 438–439
Performance Metrics Wizard 68
Performance Monitor

bottlenecks and 433–434
CPU counters 434–435
data collector sets 431–433
disk counters 436–437
memory counters 435–436
monitoring workloads using 425–430
network counters 437–438

permissions
advanced 114–115, 120–121
allowing 115, 116
assigning 117–121
basic 114, 117–120
configuration 112–122
denying 115, 116
Hyper-V 174
inheritance 115–116
NTFS 112–114, 117–122
resource ownership and 122
share 96, 104–106, 108–109, 112–113
understanding effective access 116–117

physical disks 225–226
adding 125

physical servers
migration to virtual 60

platform-as-a-service. See PaaS
Plug and Play (PnP) 147
port mapping 284
power-on self-test (POST) 205
PowerShell. See Windows PowerShell
PowerShell Core 57
Preboot Execution Environment (PXE) 198, 249
Preboot Execution Environment (PXE) feature 11
Priority-based Flow Control (PFC) 145
private networks 244
private network switches 241
production checkpoints 230–231
Pull Server 27–28

Q
quality of service (QoS) policies 144, 233–235
Quick Migration 370–371

453

Server Manager

quorum 317–321
dynamic quorum management 318
modifying configuration of 318–320
voting 321
witnesses 317–318, 320–321

quotas 94

R
Receive-SmigServerData cmdlet 33
redundancy 128, 145
ReFS (Resilient File System) 93–95
Remote Direct Memory Access (RDMA) 253–254
remote management

configuration of 55
Hyper-V 174–179
Nano Server 265
of Nano Server 55–57
using MMC snap-ins 25–26
using PowerShell 21–22
using Server Manager 22–24

remote memory 189
Remote Server Administration Tools 174
Remove-Container cmdlet 281
Remove-ContainerImage cmdlet 273
Remove-SmbShare cmdlet 108
reparse point 158
replica servers 299–301
replication

asynchronous 148
DFS 150
Hyper-V Replica 298–303
Storage Replica 148–155
synchronous 148

Reset-VMResourceMetering cmdlet 195
Resize-VHD cmdlet 228
resource governance 260–261
resource metering 193–195
Resource Monitor 440–442
resource ownership 122
restores

data deduplication and 162
from backups 418–421

Revoke-SmbShareAccess cmdlet 109
roles

implemention on Nano Server 48–50

installation 11–17
in offline images 75–77

migration of 32–33
offline installation 225

round robin policy 148

S
SAN. See storage area network (SAN)
saved-state (.vsv) files 182
Scale-out File Server (SoFS) 337–341
SCCM. See System Center Configuration Manager
SCSI (Small Computer Systems Interface) controllers

214–215
sector sizes 82–84
Secure Boot 205–208
security identifiers (SIDs) 113
security principal 112
self-service deployment. See user-driven client deploy-

ments
Send-SmigServerData cmdlet 33
Serial Attached SCSI (SAS) 327
Server Core 2, 4, 42

configuration 19–20
Hyper-V Server and 168
installation 17–19
management of 21–25

using Windows PowerShell 76–78
Windows containers and 264

server folders
sharing 95–109

Server for NFS role service 97
server installations

maintaining 387–425
backup strategies 421–425
patch management 401–405
Windows Defender 405–410
Windows Server Backup 411–421
Windows Server Update Services 388–405

monitoring 425–442
performance counter alerts 438–439
using Performance Monitor 425–430, 431–438
using Resource Monitor 440–442

Server Manager
deduplication configuration using 155–157
Hyper-V installation using 170–171
installing roles using 11–15
managing Server Core using 22–24
share configuration using 95–106

454

Server Message Blocks (SMB) clients

simple storage layout 128
single domain clusters 314–317
Single Instance Store (SIS) technology 158
single-root I/O virtualization (SR-IOV) 243
site-aware failover clusters 365–367
site-based fault tolerance 376
slack space 82, 83
Small Computer System Interface (SCSI) 327
smart paging 192–193
SMB 3.0 protocol 360
SmbShare 106–112
SMTP. See Single Mail Transfer Protocol (SMTP)
snapshots 228. See also checkpoints
software patches 401–405
software storage bus 353
solid state drives (SSDs) 131–132
SPF. See send policy framework (SPF) records
standard checkpoints 230
Standard edition 5
Start-DscConfiguration cmdlet 27
storage area network (SAN) 123, 133, 142
storage area networks (SANs) 231
storage infrastructure 151–152
Storage Migration 309–311, 371–372
storage pools 123–125, 342–343, 344

expanding 131
hot spares 130–131

Storage Replica (SR)
clustering configuration 153
event log entries 154
implementing 151–155, 345
replication partnerships 154–155
storage infrastructure for 151–152
testing topology 152–153
usage scenarios for 148–150

Storage Server edition 5
storage solutions 81–164

clusters 326–328
datacenter bridging 142–144
data depulication 155–162
fault tolerance and 128–131
GUID partition table (GPT) disks 84–88
Hyper-V 213–235
implementation of 123–155
Internet Storage Name Service (iSNS) 140–142
iSCSI targets and initiators 133–140
NTFS file system 93–95
permissions configuration 112–122

Server Message Blocks (SMB) clients
configuration settings 111–112

Server Message Blocks (SMB) server
configuration settings 109–111

Server Message Blocks (SMB) shares 96
configuration of 106–108
creation of 97–101

servers. See also Windows Server 2016
adding, in Server Manager 22–24
choosing, to virtualize 59–60
configuration of multiple 13
DHCP 11, 51
fault tolerance 128–131
mass deployment of 11
migration of 32–35
replica 299–301
SMB 109–111
upgrades 28–32

server-to-server configurations 148–149, 151–155
Server Virtualization And Consolidation Wizard 68–69
Set-Disk cmdlet 226
Set-DnsClientServerAddress cmdlet 20
Set-FileStorageTier cmdlet 133
Set-Item cmdlet 56
Set-NetAdapterVmq PowerShell cmdlet 253
Set-NetQoSbcdxSetting cmdlet 143
Set-SmbPathAcl cmdlet 340
Set-SmbServerConfiguration cmdlet 109–111
Set-SRPartnership cmdlet 155
Set-VM cmdlet 231
Set-VMFirmware cmdlet 208
Set-VMMemory cmdlet 185
Set-VMNetworkAdapter cmdlet 255
Set-VmReplicationServer cmdlet 300
Shared Nothing Live Migration 307–308
shares

advanced 103–104
configuration

using Windows PowerShell 106–108
configuration, using Server Manager 95–106
continuously available 360–361
NFS 96

creation of 101–103
permissions 96, 104–106, 108–109, 112–113
removing 108
sessions management 107–108
SMB 96

creation of 97–101
shielded virtual machines 198

455

virtual hard disks (VHDs)

Type II virtualization 166
Type I virtualization 167

U
Unblock-SmbShareAccess cmdlet 109
Unified Extensible Firmware Interface (UEFI) 86, 205, 206
Universal Extensible Firmware Interface (UEFI) 198
unoptimization 159
updates

patch management 401–405
Windows Server Update Services 388–405

Update-VMVersion cmdlet 209
upgrades

Hyper-V 173
in-place 28–32
paths 28
preparing for 29–30
procedure for 30–32
virtual machines 208

user accounts. See also identities
User Datagram Protocol (UDP) 144
user identities. See identities

V
VAMT. See Volume Activation Management Tool
VHD Set files 351
VHD sets 221
VHDX files 182

creating
shared 220–222
using Hyper-V Manager 214–220

creation of 88–91
using Disk Management 88–90
with Windows PowerShell 90–91

mounting 91–93
shared 349–351

virtual disks
creating 123, 125–128, 132

virtual hard disks (VHDs) 44, 60, 182
adding to virtual machines 219–220
creating

in PowerShell 219
using Hyper-V Manager 214–220
with VMs 215–216

creation of 88–91
using Disk Management 88–90
with Windows PowerShell 90–91

Quality of Service for 233–235
ReFS file system 93–95
sector size configuration 82–84
shared VHDX files 349–351
shares configuration

using Server Manager 95–106
using Windows PowerShell 106–108

storage layout options 125–131
storage pools 123–125
Storage Replica 148–155
tiered storage 131–133
virtual disks 125–128
virtual hard disks

creating 88–91
mounting 91–93

Storage Spaces 123
Clustered 342–345
expanding storage pools 131
fault tolerance in 128–131
tiered storage 131–133

Storage Spaces Direct 198
Storage Spaces Direct (S2D) 352–358

disaggregated 355–357
disk drives 353
enabling, using PowerShell 354–355
hyper-converged 357–358
networking 353–354
scenario requirements for 352–354
servers 352

stretch clusters 149–150, 151–155, 345, 365–367
Suspend-ClusterNode cmdlet 374
Switch Embedded Teaming (SET) 253–254
symmetric multiprocessing (SMP) 189
synchronous replication 148
synthetic network adapters 247–249
system boot 205
System Center Configuration Manager (SCCM) 66, 249
Systeminfo.exe 169–170

T
targets

iSCSI 134–138
Test-SRTopology cmdlet 152–153
thin provisioning 126
tiered storage 131–133
traffic classes 144
Traffic Control Protocol (TCP) 144
transparent networks 285

456

virtualization

enhanced session mode 199–201
exporting and importing 209–212
FreeBDS deployment 61
FreeBSD 201–203
Generation 1 197, 214
Generation 2 197–199, 205, 215
import, export, and copy of 372–373
installation

guest operating system 203
Linux 201–203
Linux deployment 61
Live Migration of 303–309, 369–370
monitoring 361–363
movement of, in clustered nodes 369–375
moving between hosts 297–310
Nano Server for 43, 47–48
network health protection 373–374
Quick Migration 370–371
resiliency 348–349
shielded 198
storage 213–235
Storage Migration 309–311, 371–372
upgrading to Windows Server 2016 Hyper-V 208–209

virtual memory 259
virtual network adapters 283
virtual network interface cards (vNICs) 236–237
virtual switches 238–242, 244, 247, 250
Volume Activation Management Tool (VAMT) 36
Volume Activation Tools Wizard 38, 41
volume shadow copies 94
Volume Shadow Copy Service (VSS) 424

W
Wbadmin command 325–326
WDS. See Windows Deployment Services
weighted paths 148
WIM. See Windows Imaging Format (WIM)
Windows

Secure Boot and 205–206
Windows containers 259–296

architecture 262
attaching 279, 280
container names 287
CPU cycles 288–289
creating 274–277
creating images 279, 280, 289–290
deployment of 259–277

formats 215
managing, using Windows PowerShell 76–78
modifying 223, 223–225
mounting 91–93, 224–225
resizing 226–228

virtualization 259. See also Hyper-V
advantages of 303
architectures 166–167
defining scope of 59–60
deployment considerations 69–70
maximum hardware configurations and 4
nested 181
N_Port ID Virtualization (NPIV) 232
planning for 58–60
single-root I/O virtualization (SR-IOV) 243
strategy 3
Type I 167
Type II 166
Windows containers 263–264
workload assessment 61–69

Virtualization Service Client (VSC) 247–248
Virtualization Service Provider (VSP) 247–248
Virtualized Backup Server 162
virtual LANs (VLANs) 247
virtual machine configuration (.vmc) files 182
Virtual Machine Connection (VMConnect) 199
virtual machine monitor (VMM) 166
virtual machine queue (VMQ) 243, 251–253
Virtual Machine role 360
virtual machines (VMs) 166

adding or removing memory 185
adding virtual disks to 219–220
advantages of 58–59
Automatic Virtual Machine Activation 41–42
configuration

dynamic memory 186–188
FreeBSD 202–203
Integration Services 195–196
Linux 202–203
resource metering 193–195
settings 184–185
smart paging 192–193
using PowerShell Direct 180

configuration of 301–303
containers with 263–264
converting generations 199
creating 47–48, 182–184, 201–202
delegating management of 174
drain on shutdown configuration 374–375

457

workload monitoring

SMB share configuration using 106–108
using containers with 270–271
VHD and VHDX file creation in 90–91
VM creation in 184
Windows Defender configuration using 407–408

Windows PowerShell Direct
VM configuration using 180

Windows Remote Management (WinRM) 21
configuration 55

Windows Server 2012
upgrading 28

Windows Server 2012 R2
upgrading 28

Windows Server 2016
Docker installation on 266
editions 2, 4–6
images for deployment 58–73
installation 1–18

activation model for 35–42
clean 6–9
features and roles 11–17
mass deployment 11
requirements 2–4

migrations 32–35
permissions management 112–122
upgrades to 28–32
virtualization

planning for 58–60
working with partitions in 9–10

Windows Server Backup 324–325, 411–421, 424
Windows Server Migration Tools 32, 33–34
Windows Server Update Services (WSUS) 388–400

architectures 388–391
client configuration 401–405
configuration of 394–398
database 391–392
deploying 393
groups 398–400
storage 392–393
Windows Defender integration 409–410

Windows Setup page 7
Windows Update Stand-Alone Installer (MSU) files 74
Winrm.exe tool 56
witnesses

cloud 345–348
quorum 317–318, 320–321

workgroup clusters 314–317
workload monitoring 425–430, 440–442

Docker and 266–270
Hyper-V 261–264, 275–277
images 261
image tagging 272–273
installation

base operating system 271–272
container host 262–263
requirements 260–261

listing 278, 280
managing

data volumes 286–287
networking 281–285
resource control 287–289
using Docker daemon 277–279
using Microsoft Azure 293
using PowerShell 279–281
with DockerHub 291–293

memory constraints 288
Nano Server as container host 264–265
PowerShell and 270–271
removing 279, 281
Server Core and 264
starting and stopping 278, 280
uninstalling operating system image 273–274
use scenarios for 260–261
virtualizing 263–264
Windows Server 261, 264–265, 274–275

Windows Defender 405–410
configuration of 405–408
integration with WSUS and Windows Update 409–410

Windows Deployment Services (WDS) 11, 249
Windows Firewall 300–301

configuration 54–55
Windows PowerShell

container management using 279–281
creating virtual disks in 219
deduplication configuration in 157–158
Desired State Configuration 26–28
DISM.exe command equivalents 77–79
displaying cmdlets 21
enabling S2D using 354–355
Hyper-V installation using 171
importing VMs using 211–212
installing roles using 15–16
managing Nano Server using 77–79
managing Server Core using 21–22, 77–79
mounting VHD and VHDX files in 92–93
remote management of Nano Server using 55–57
remote management using 176–179

458

World Wide Node Names (WWNNs)

workloads
virtualization considerations for 69–70

World Wide Node Names (WWNNs) 232
World Wide Port Names (WWPNs) 232
WSUS. See Windows Server Update Services (WSUS)

	Cover
	Title Page
	Copyright Page
	Contents
	Introduction
	Organization of this book
	Microsoft certifications
	Free ebooks from Microsoft Press
	Microsoft Virtual Academy
	Quick access to online references
	Errata, updates, & book support
	We want to hear from you
	Stay in touch
	Preparing for the exam

	Chapter 4 Implement Windows containers
	Skill 4.1: Deploy Windows containers
	Determine installation requirements and appropriate scenarios for Windows containers
	Install and configure Windows Server Container Host in physical or virtualized environments
	Install and configure Windows Server container host to Windows Server Core or Nano Server in a physical or virtualized environment
	Install Docker on Windows Server and Nano Server
	Configure Docker Daemon start-up options
	Configure Windows PowerShell for use with containers
	Install a base operating system
	Tag an image
	Uninstall an operating system image
	Create Windows Server containers
	Create Hyper-V containers

	Skill 4.2: Manage Windows containers
	Manage Windows or Linux containers using the Docker daemon
	Manage Windows or Linux containers using Windows PowerShell
	Manage container networking
	Manage container data volumes
	Manage resource control
	Create new container images using Dockerfile
	Manage container images using DockerHub Repository for public and private scenarios
	Manage container images using Microsoft Azure

	Chapter summary
	Thought experiment
	Thought experiment answer

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

