

Inside Microsoft
Dynamics AX 2012 R3

The Microsoft Dynamics AX Team

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2014940599
ISBN: 978-0-7356-8510-9

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://aka.ms/tellpress.

Microsoft and the trademarks listed at http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/
EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective
owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Rosemary Caperton
Developmental Editor: Carol Dillingham
Editorial Production: Online Training Solutions, Inc. (OTSI)
Copyeditors: Kathy Krause and Victoria Thulman (OTSI)
Indexer: Susie Carr (OTSI)
Cover: Twist Creative • Seattle and Joel Panchot

http://aka.ms/tellpress
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx

 iii

Contents

Foreword .xxiii

Introduction . xxv

PART I A TOUR OF THE DEVELOPMENT ENVIRONMENT

Chapter 1 Architectural overview 3
Introduction . 3

AX 2012 five-layer solution architecture . 4

AX 2012 application platform architecture . 6

Application development environments . 6

Data tier . 7

Middle tier . 7

Presentation tier . 8

AX 2012 application meta-model architecture . 9

Application data element types . 9

MorphX user interface control element types . 11

Workflow element types . 12

Code element types . 13

Services element types . 13

Role-based security element types . 14

Web client element types . 14

Documentation and resource element types . 16

License and configuration element types . 17

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

iv Contents

Chapter 2 The MorphX development environment and tools 19
Introduction . 19

Application Object Tree . 21

Navigating through the AOT . 21

Creating elements in the AOT . 24

Modifying elements in the AOT . 24

Refreshing elements in the AOT . 25

Element actions in the AOT . 26

Element layers and models in the AOT . 26

Projects . 27

Creating a project . 27

Automatically generating a project . 28

Project types . 30

The property sheet . 31

X++ code editor . 32

Shortcut keys . 33

Editor scripts . 34

Label editor . 34

Creating a label . 36

Referencing labels from X++ . 37

Compiler . 38

Best Practices tool . 40

Rules . 41

Suppressing errors and warnings . 43

Adding custom rules . 43

Debugger . 45

Enabling debugging . 45

Debugger user interface . 46

Debugger shortcut keys . 48

Reverse Engineering tool . 48

UML data model . 49

UML object model . 50

Entity relationship data model . 52

 Contents v

Table Browser tool . 53

Find tool . 54

Compare tool . 57

Starting the Compare tool . 57

Using the Compare tool . 59

Compare APIs . 61

Cross-Reference tool . 62

Version control . 64

Element life cycle . 66

Common version control tasks . 68

Working with labels . 69

Synchronizing elements . 69

Viewing the synchronization log . 70

Showing the history of an element . 71

Comparing revisions . 72

Viewing pending elements . 72

Creating a build . 73

Integrating AX 2012 with other version control systems 74

Chapter 3 AX 2012 and .NET 75
Introduction . 75

Integrating AX 2012 with other systems . 76

Using third-party assemblies . 76

Writing managed code . 79

Hot swapping assemblies on the server . 87

Using LINQ with AX 2012 R3 . 89

The var keyword . 89

Extension methods . 90

Anonymous types . 90

Lambda expressions . 91

Walkthrough: Constructing a LINQ query . 91

Using queries to read data . 95

AX 2012 R3–specific extension methods . 98

Updating, deleting, and inserting records . 99

vi Contents

Limitations . 101

Advanced: limiting overhead . 101

Chapter 4 The X++ programming language 105
Introduction . 105

Jobs . 106

The type system . 106

Value types . 106

Reference types . 107

Type hierarchies . 107

Syntax . 110

Variable declarations . 111

Expressions . 112

Statements . 114

Macros . 130

Comments . 132

XML documentation . 132

Classes and interfaces. 133

Fields . 134

Methods . 135

Delegates . 136

Pre-event and post-event handlers . 138

Attributes . 139

Code access security . 140

Compiling and running X++ as .NET CIL . 142

Design and implementation patterns . 143

Class-level patterns . 144

Table-level patterns . 146

 Contents vii

PART II DEVELOPING FOR AX 2012

Chapter 5 Designing the user experience 151
Introduction . 151

Role-tailored design approach . 153

User experience components . 154

Navigation layer forms . 155

Work layer forms . 156

Role Center pages . 156

Cues . 157

Designing Role Centers . 157

Area pages . 158

Designing area pages . 159

List pages . 160

Scenario: taking a call from a customer . 161

Using list pages as an alternative to reports . 162

Designing list pages . 163

Details forms . 164

Transaction details forms . 167

Enterprise Portal web client user experience . 169

Navigation layer forms . 170

Work layer forms . 171

Designing for Enterprise Portal . 171

Designing for your users . 171

Chapter 6 The AX 2012 client 173
Introduction . 173

Working with forms . 173

Form patterns . 174

Form metadata . 176

Form data sources . 177

Form queries . 183

viii Contents

Adding controls . 186

Control overrides . 186

Control data binding . 186

Design node properties . 186

Run-time modifications . 187

Action controls . 187

Layout controls . 189

Input controls . 192

ManagedHost control . 193

Other controls. 194

Using parts . 194

Types of parts . 194

Referencing a part from a form . 195

Adding navigation items . 195

MenuItem . 195

Menu . 196

Menu definitions . 196

Customizing forms with code . 197

Method overrides . 197

Auto variables . 200

Business logic . 201

Custom lookups . 201

Integrating with the Microsoft Office client . 202

Make data sources available to Office Add-ins 202

Build an Excel template . 203

Build a Word template . 204

Add templates for users . 205

Chapter 7 Enterprise Portal 207
Introduction . 207

Enterprise Portal architecture . 208

Enterprise Portal components . 211

Web parts . 211

AOT elements . 213

 Contents ix

Datasets . 213

Enterprise Portal framework controls . 215

Developing for Enterprise Portal . 228

Creating a model-driven list page . 229

Creating a details page . 231

AJAX . 233

Session disposal and caching . 234

Context . 235

Data . 237

Metadata . 238

Proxy classes . 239

ViewState . 241

Labels . 242

Formatting . 242

Validation . 243

Error handling . 244

Security . 245

Secure web elements . 246

Record context and encryption . 247

SharePoint integration . 248

Site navigation . 248

Site definitions, page templates, and web parts 249

Importing and deploying a web part page . 252

Enterprise Search . 253

Themes . 256

Chapter 8 Workflow in AX 2012 257
Introduction . 257

AX 2012 workflow infrastructure . 258

Windows Workflow Foundation . 261

Key workflow concepts . 262

Workflow document and workflow document class 262

Workflow categories . 262

Workflow types . 263

x Contents

Event handlers . 264

Menu items . 264

Workflow elements . 264

Queues . 265

Providers . 266

Workflows . 267

Workflow instances . 268

Work items . 268

Workflow architecture . 268

Workflow runtime . 269

Workflow runtime interaction . 270

Logical approval and task workflows. 272

Workflow life cycle . 275

Implementing workflows . 276

Creating workflow artifacts, dependent artifacts,
and business logic . 276

Managing state . 279

Creating a workflow category . 280

Creating the workflow document class . 280

Adding a workflow display menu item . 283

Activating the workflow . 283

Chapter 9 Reporting in AX 2012 289
Introduction . 289

Inside the AX 2012 reporting framework . 290

Client-side reporting solutions . 290

Server-side reporting solutions . 292

Report execution sequence . 293

Planning your reporting solution . 293

Reporting and users . 293

Roles in report development . 294

Creating production reports . 295

Model elements for reports. 296

SSRS extensions . 299

 Contents xi

AX 2012 extensions . 300

Creating charts for Enterprise Portal . 303

AX 2012 chart development tools . 303

Integration with AX 2012 . 304

Data series . 306

Adding interactive functions to a chart . 308

Overriding the default chart format . 310

Troubleshooting the reporting framework . 311

The report server cannot be validated . 311

A report cannot be generated . 311

A chart cannot be debugged because of SharePoint
sandbox issues . 312

A report times out . 312

Chapter 10 BI and analytics 313
Introduction . 313

Components of the AX 2012 BI solution . 313

Implementing the AX 2012 BI solution . 315

Implementing the prerequisites . 316

Configuring an SSAS server . 317

Deploying cubes . 317

Deploying cubes in an environment with multiple partitions 321

Processing cubes . 323

Provisioning users . 323

Customizing the AX 2012 BI solution . 324

Configuring analytic content . 325

Customizing cubes . 327

Extending cubes . 335

Integrating AX 2012 analytic components with external
data sources . 338

Maintaining customized and extended projects in the AOT 340

Creating cubes . 341

Identifying requirements . 341

Defining metadata . 342

xii Contents

Generating and deploying the cube . 345

Adding KPIs and calculations . 350

Displaying analytic content in Role Centers . 351

Providing insights tailored to a persona . 352

Choosing a presentation tool based on a persona 352

SQL Server Power View . 353

Power BI for Office 365 . 359

Comparing Power View and Power BI . 360

Authoring with Excel . 360

Business Overview web part and KPI List web part 361

Developing reports with Report Builder . 366

Developing reports with the Visual Studio tools for AX 2012 366

Chapter 11 Security, licensing, and configuration 371
Introduction . 371

Security framework overview . 372

Authentication . 373

Authorization . 373

Data security . 376

Developing security artifacts . 377

Setting permissions for a form . 377

Setting permissions for server methods . 379

Setting permissions for controls . 379

Creating privileges . 380

Assigning privileges and duties to security roles 381

Using valid time state tables . 383

Validating security artifacts . 384

Creating users . 384

Assigning users to roles . 384

Setting up segregation of duties rules . 385

Creating extensible data security policies . 385

Data security policy concepts . 385

Developing an extensible data security policy 386

Debugging extensible data security policies . 389

 Contents xiii

Security coding . 390

Table permissions framework . 390

Code access security framework. 392

Best practice rules . 393

Security debugging . 394

Licensing and configuration . 396

Configuration hierarchy . 398

Configuration keys . 399

Using configuration keys . 400

Types of CALs . 401

Customization and licensing . 403

Chapter 12 AX 2012 services and integration 405
Introduction . 405

Types of AX 2012 services . 407

System services . 407

Custom services . 408

Document services . 412

Security considerations . 420

Publishing AX 2012 services . 421

Consuming AX 2012 services . 422

Sample WCF client for CustCustomerService . 422

Consuming system services . 425

Updating business documents . 428

Invoking custom services asynchronously . 430

The AX 2012 send framework . 432

Implementing a trigger for transmission . 432

Consuming external web services from AX 2012 . 435

Performance considerations . 435

Chapter 13 Performance 437
Introduction . 437

Client/server performance . 437

Reducing round trips between the client and the server 438

xiv Contents

Writing tier-aware code . 442

Transaction performance . 447

Set-based data manipulation operators . 447

Restartable jobs and optimistic concurrency . 465

Caching . 467

Field lists . 477

Field justification . 483

Performance configuration options . 483

SQL Administration form . 483

Server Configuration form . 484

AOS configuration . 486

Client configuration . 486

Client performance . 486

Number sequence caching . 487

Extensive logging . 487

Master scheduling and inventory closing . 487

Coding patterns for performance . 487

Executing X++ code as common intermediate language 487

Using parallel execution effectively . 488

The SysOperation framework . 489

Patterns for checking to see whether a record exists. 494

Running a query only as often as necessary . 495

When to prefer two queries over a join . 496

Indexing tips and tricks . 497

When to use firstfast . 498

Optimizing list pages . 498

Aggregating fields to reduce loop iterations . 499

Performance monitoring tools . 501

Microsoft Dynamics AX Trace Parser . 501

Monitoring database activity . 510

Using the SQL Server connection context to find the SPID
or user behind a client session . 511

The client access log . 512

Visual Studio Profiler . 512

 Contents xv

Chapter 14 Extending AX 2012 515
Introduction . 515

The SysOperation framework . 515

SysOperation framework classes . 516

SysOperation framework attributes . 517

Comparing the SysOperation and RunBase frameworks 517

RunBase example: SysOpSampleBasicRunbaseBatch 518

SysOperation example: SysOpSampleBasicController 526

The RunBase framework . 533

Inheritance in the RunBase framework . 533

Property method pattern. 534

Pack-unpack pattern . 535

Client/server considerations . 538

The extension framework . 539

Create an extension . 539

Add metadata . 540

Extension example . 541

Eventing . 543

Delegates . 544

Pre and post events . 545

Event handlers . 545

Eventing example. 547

Chapter 15 Testing 549
Introduction . 549

Unit testing features in AX 2012 . 550

Using predefined test attributes . 550

Creating test attributes and filters . 552

Microsoft Visual Studio 2010 test tools . 556

Using all aspects of the ALM solution . 556

Using an acceptance test driven development approach 557

Using shared steps . 559

Recording shared steps for fast forwarding . 560

xvi Contents

Developing test cases in an evolutionary manner 562

Using ordered test suites for long scenarios . 562

Putting everything together . 563

Executing tests as part of the build process . 563

Using the right tests for the job . 566

Chapter 16 Customizing and adding Help 569
Introduction . 569

Help system overview . 570

AX 2012 client . 571

Help viewer . 571

Help server . 572

AOS . 573

Help content overview . 573

Topics . 573

Publisher . 574

Table of contents . 574

Summary page . 574

Creating content . 575

Walkthrough: create a topic in HTML . 576

Adding labels, fields, and menu items to a topic 584

Make a topic context-sensitive . 586

Update content from other publishers . 587

Create a table of contents file . 588

Creating non-HTML content . 591

Publishing content . 593

Add a publisher to the Web.config file . 594

Publish content to the Help server . 596

Set Help document set properties . 597

Troubleshooting the Help system . 598

The Help viewer cannot display content . 598

The Help viewer cannot display the table of contents 599

 Contents xvii

PART III UNDER THE HOOD

Chapter 17 The database layer 603
Introduction . 603

Temporary tables . 604

InMemory temporary tables . 604

TempDB temporary tables . 609

Creating temporary tables . 610

Surrogate keys . 612

Alternate keys . 614

Table relations . 615

EDT relations and table relations . 615

Foreign key relations . 617

The CreateNavigationPropertyMethods property 618

Table inheritance . 621

Modeling table inheritance . 621

Table inheritance storage model . 623

Polymorphic behavior . 624

Performance considerations . 625

Unit of Work . 626

Date-effective framework . 628

Relational modeling of date-effective entities 628

Support for data retrieval . 630

Run-time support for data consistency . 631

Full-text support . 633

The QueryFilter API . 635

Data partitions . 638

Partition management . 638

Development experience . 638

Run-time experience . 639

xviii Contents

Chapter 18 Automating tasks and document distribution 641
Introduction . 641

Batch processing in AX 2012 . 643

Common uses of the batch framework . 643

Performance . 644

Creating and executing a batch job . 645

Creating a batch-executable class . 645

Creating a batch job . 647

Configuring the batch server and creating a batch group 654

Managing batch jobs . 657

Debugging a batch task . 658

Print management in AX 2012 . 661

Common uses of print management . 662

The print management hierarchy . 662

Print management settings . 663

Chapter 19 Application domain frameworks 671
Introduction . 671

The organization model framework . 672

How the organization model framework works 672

When to use the organization model framework 675

Extending the organization model framework 677

The product model framework . 681

How the product model framework works . 681

When to use the product model framework . 685

Extending the product model framework . 685

The operations resource framework . 686

How the operations resource framework works 687

When to use the operations resource framework 690

Extending the operations resource framework 690

MorphX model element prefixes for the operations resource
framework . 692

The dimension framework . 692

How the dimension framework works . 692

 Contents xix

Constraining combinations of values. 694

Creating values . 695

Extending the dimension framework . 695

Querying data . 696

Physical table references . 697

The accounting framework . 698

How the accounting framework works . 698

When to use the accounting framework . 700

Extensions to the accounting framework . 700

Accounting framework process states . 700

MorphX model element prefixes for the accounting framework . . 701

The source document framework . 702

How the source document framework works 702

When to use the source document framework 703

Extensions to the source document framework 703

MorphX model element prefixes for the source document
framework . 705

Chapter 20 Reflection 707
Introduction . 707

Reflection system functions . 708

Intrinsic functions . 708

typeOf system function . 710

classIdGet system function . 710

Reflection APIs . 711

Table data API . 711

Dictionary API . 715

Treenodes API . 718

TreeNodeType . 721

Chapter 21 Application models 725
Introduction . 725

Layers . 726

Models . 728

xx Contents

Element IDs . 730

Creating a model . 731

Preparing a model for publication . 732

Setting the model manifest . 732

Exporting the model . 733

Signing the model . 734

Importing model files . 735

Upgrading a model . 737

Moving a model from test to production . 737

Creating a test environment . 738

Preparing the test environment . 738

Deploying the model to production . 739

Element ID considerations . 740

Model store API . 740

PART IV BEYOND AX 2012

Chapter 22 Developing mobile apps for AX 2012 745
Introduction . 745

The mobile app landscape and AX 2012 . 746

Mobile architecture . 746

Mobile architecture components . 747

Message flow and authentication . 749

Using AX 2012 services for mobile clients . 750

Developing an on-premises listener . 751

Developing a mobile app . 752

Platform options and considerations . 752

Developer documentation and tools . 752

Third-party libraries . 752

Best practices . 753

Key aspects of authentication . 753

User experience . 754

Globalization and localization . 757

App monitoring . 757

 Contents xxi

Web traffic debugging . 757

Architectural variations . 758

On-corpnet apps . 758

Web apps . 758

Resources . 759

Chapter 23 Managing the application life cycle 761
Introduction . 761

Lifecycle Services . 762

Deploying customizations . 768

Data import and export . 769

Test Data Transfer Tool . 769

Data Import/Export Framework . 771

Choosing between the Test Data Transfer Tool and DIXF 772

Benchmarking . 773

Index 775

About the authors 795

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

This page intentionally left blank

 xxiii

Foreword

The release of Microsoft Dynamics AX 2012 R3 and this book coincide with the tenth
anniversary of my involvement with the development of this product. I’ve had the

pleasure to work with a great team of people throughout that period. When I reflect
on the modest ambition we set out with a decade ago, I’m excited to see all that we
have achieved and am grateful for all the support we received along the way from our
customers, partners, and the community around this product.

We set out to build a next-generation line-of-business system that empowered
people. We wanted to go beyond traditional ERP in multiple ways:

 ■ First and foremost was to create a system of empowerment, not a system of
records. Microsoft Dynamics AX is designed to help people do their jobs, not
to record what they did after they did it.

 ■ Second, we wanted to maintain an agile system that allowed businesses to
change at their own pace and not at the pace of previous generations of elec-
tronic concrete.

 ■ Third, we wanted to provide functional depth and richness while maintaining
simplicity of implementation, to allow both midsize and large organizations to
use the same system.

The embodiment of our first goal is role-tailored computing and pervasive BI. Those
new to the Microsoft Dynamics AX community after AX 2009 can’t imagine a day when
that wasn’t a standard part of the product. AX 2012 takes that richness to a whole
new level with more than 80 predefined security roles, and Role Centers for more
than 40 distinct functions in an organization.

The implementation of our second goal is in the richness of the AX 2012 metadata
system and tools, combined with the fact that all of our solutions and localizations are
designed to work together. AX 2012 enhances those capabilities even further while
adding the organizational model, self-balancing dimensions, date effectivity, and other
powerful application foundation elements.

The realization of the third goal came in the form of deep industry solutions for
manufacturing, distribution, retail, service industries, and the public sector, along with
a comprehensive set of life cycle services for design, development, deployment, and
operations.

xxiv Foreword

This book focuses on the enhancements to the Microsoft Dynamics AX developer
toolset and is written by the team that brought you those tools. It’s truly an insider’s
view of the entire AX 2012 development and runtime environment (now updated for
the AX 2012 R3 release). I hope you enjoy it as much as we enjoyed writing the book
and creating the product.

Here’s to the next ten years of our journey together.

Thanks,

Hal Howard

Head of Product Development, Microsoft Dynamics AX
 Corporate Vice President, Microsoft Dynamics Research and Development

 xxv

Introduction

Microsoft Dynamics AX 2012 represents a new generation of enterprise resource
planning (ERP) software. With more than 1,000 new features and prebuilt indus-

try capabilities for manufacturing, distribution, services, retail, and the public sector,
AX 2012 provides a robust platform for developers to deliver specialized functionality
more efficiently to the industries that they support. AX 2012 is a truly global solution,
able to scale with any business as it grows. It is simple enough to deploy for a single
business unit in a single country, yet robust enough to support the unique requirements
for business systems in 36 countries/regions—all from a single-instance deployment of
the software. With AX 2012 R3, Microsoft Dynamics AX delivers new levels of capability
in warehouse and transportation management, demand planning, and retail.

AX 2012 R3 also represents an important step forward in the evolution of Microsoft
Dynamics AX for the cloud. As Microsoft Technical Fellow Mike Ehrenberg explains:

Microsoft is transforming for a cloud-first, mobile-first world. As part
of that transformation, with the AX 2012 R3 release, we are certifying
the deployment of Microsoft Dynamics AX on the Microsoft Azure
cloud platform, which uses the Azure Infrastructure as a Service (IaaS)
technology. This opens up the option for customers ready to move to
the cloud to deploy the power of Microsoft Dynamics AX to run their
business; for customers that favor on-premises deployment, it comple-
ments the option to harness the Microsoft Azure cloud platform for
training, development, testing, and disaster recovery—all workloads
with the uneven demand that the cloud serves so well. One of the
most exciting new capabilities introduced with AX 2012 R3 is Lifecycle
Services, our new Azure cloud-based service that streamlines every
aspect of the ERP deployment, management, servicing, and upgrade
lifecycle—regardless of whether AX 2012 itself is deployed on-premises
or in the cloud. We are leveraging the cloud to deliver rapidly evolving
services to help all of our customers ensure that they are following
best practices across their AX 2012 projects. We are already seeing
great results in rapid deployments, streamlined support interactions,
and performance tuning—and this is only the beginning of our very
exciting journey.

xxvi Introduction

Customers have also weighed in on the benefits of Microsoft Dynamics AX 2012:

Microsoft Dynamics AX 2012 allows us to collaborate within our
organization and with our constituents … using built-in controls and
fund/encumbrance accounting capabilities to ensure compliance
with Public Sector requirements … and using out-of the-box Business
Analytics and Intelligence … so executives can make effective decisions
in real time.

Mike Bailey
Director of Finance and Information Services

City of Redmond (Washington)

With AX 2012, developing for and customizing Microsoft Dynamics AX
will be easier than ever. Developers will be able to work with X++
directly from within Microsoft Visual Studio and enjoy more sophisticated
features in the X++ editor, for example. Also, the release includes more
prebuilt interoperability with Microsoft SharePoint Server and SQL
Server Reporting Services, so that developers spend less time on mun-
dane work when setting up customer systems.

Guido Van de Velde
Director of MECOMS™

Ferranti Computer Systems

AX 2012 is substantially different from its predecessor, which can mean a steep
learning curve for developers and system implementers who have worked with previ-
ous versions. However, by providing a broad overview of the architectural changes, new
technologies, and tools for this release, the authors of Inside Microsoft Dynamics AX 2012
R3 have created a resource that will help reduce the time that it takes for developers to
become productive.

The history of Microsoft Dynamics AX

Historically, Microsoft Dynamics AX encompasses more than 25 years of experience
in business application innovation and developer productivity. Microsoft acquired
the predecessor of Microsoft Dynamics AX, called Axapta, in 2002, with its purchase
of the Danish company Navision A/S. The success of the product has spurred an
increasing commitment of research and development resources, which allows
Microsoft Dynamics AX to grow and strengthen its offering continuously.

 Introduction xxvii

The development team that created AX 2012 consists of three large teams, two that
are based in the United States (Fargo, North Dakota, and Redmond, Washington) and one
that is based in Denmark (Copenhagen). The Fargo team focuses on finance and human
resources (HR), the Redmond team concentrates on project management and account-
ing and customer relationship management (CRM), and the Copenhagen team delivers
supply chain management (SCM). In addition, a framework team develops infrastructure
components, and a worldwide distributed team localizes the Microsoft Dynamics AX
features to meet national regulations or local differences in business practices in numer-
ous languages and markets around the world.

To clarify a few aspects of the origins of Microsoft Dynamics AX, the authors contacted
people who participated in the early stages of the Microsoft Dynamics AX development
cycle. The first question we asked was, “How was the idea of using X++ as the program-
ming language for Microsoft Dynamics AX conceived?”

We had been working with an upgraded version of XAL for a while
called OO XAL back in 1996/1997. At some point in time, we stopped
and reviewed our approach and looked at other new languages like
Java. After working one long night, I decided that our approach had
to change to align with the latest trends in programming languages,
and we started with X++.

Erik Damgaard
Cofounder of Damgaard Data

Of course, the developers had several perspectives on this breakthrough event.

One morning when we came to work, nothing was working. Later in the
morning, we realized that we had changed programming languages!
But we did not have any tools, so for months we were programming
in Notepad without compiler or editor support.

Anonymous developer

Many hypotheses exist regarding the origin of the original product name, Axapta.
Axapta was a constructed name, and the only requirement was that the letter X be in-
cluded, to mark the association with its predecessor, XAL. The X association carries over
in the name Microsoft Dynamics AX.

xxviii Introduction

Who should read this book

This book explores the technology and development tools in AX 2012 through the
AX 2012 R3 release. It is designed to help new and existing Microsoft Dynamics AX
developers by providing holistic and in-depth information about developing for
AX 2012—information that may not be available from other resources, such as SDK
documentation, blogs, or forums. It aids developers who are either customizing
AX 2012 for a specific implementation or building modules or applications that blend
seamlessly with AX 2012. System implementers and consultants will also find much of
the information useful.

Assumptions
To get full value from this book, you should have knowledge of common object-oriented
concepts from languages such as C++, C#, and Java. You should also have knowledge
of relational database concepts. Knowledge of Structured Query Language (SQL) and
Microsoft .NET technology is also advantageous. Transact-SQL statements are used to
perform relational database tasks, such as data updates and data retrieval.

Who should not read this book

This book is not aimed at those who install, upgrade, or deploy AX 2012. It is also be-
yond the scope of this book to include details about the sizing of production environ-
ments. For more information about these topics, refer to the extensive installation and
implementation documentation that is supplied with the product or that is available on
Microsoft TechNet, Microsoft Developer Network (MSDN), and other websites.

The book also does not provide instructions for those who configure parameter
options within AX 2012 or the business users who use the application in their day-to-
day work. For assistance with these activities, refer to the help that is included with
the product and available on TechNet at http://technet.microsoft.com/en-us/library
/gg852966.aspx.

http://technet.microsoft.com/en-us/library/gg852966.aspx
http://technet.microsoft.com/en-us/library/gg852966.aspx

 Introduction xxix

Organization of this book

Although Inside Microsoft Dynamics AX 2012 R3 does not provide exhaustive coverage
of every feature in the product, it does offer a broad view that will benefit developers
as they develop for AX 2012.

This book is divided into four sections, each of which focuses on AX 2012 from a dif-
ferent angle. Part I, “A tour of the development environment,” provides an overview of
the AX 2012 architecture that has been written with developers in mind. The chapters
in Part I also provide a tour of the internal AX 2012 development environment to help
new developers familiarize themselves with the designers and tools that they will use
to implement their customizations, extensions, and integrations.

Part II, “Developing for AX 2012,” provides the information that developers need to
customize and extend AX 2012. In addition to explanations of the features, many chap-
ters include examples, some of which are available as downloadable files that can help
you learn how to code for AX 2012. For information about how to access these files, see
the “Code samples” section, later in this introduction.

Part III, “Under the hood,” is largely devoted to illustrating how developers can use
the underlying foundation of the AX 2012 application frameworks to develop their
solutions, with a focus on the database layer, system and application frameworks, re-
flection, and models.

Part IV, ”Beyond AX 2012,” focuses on developing companion apps for mobile devices
that allow AX 2012 users to participate in critical business processes even when they
are away from their computers. It also describes exciting new techniques and tools, such
as Lifecycle Services, that help partners and customers manage every aspect of the
 application life cycle.

xxx Introduction

Conventions and features in this book

This book presents information by using the following conventions, which are designed
to make the information readable and easy to follow.

 ■ Application Object Tree (AOT) paths use backslashes to separate nodes, such as
Forms\AccountingDistribution\Methods.

 ■ The names of methods, functions, properties and property values, fields, and
nodes appear in italics.

 ■ Registry keys and T-SQL commands appear in capital letters.

 ■ User interface (UI) paths use angle brackets to indicate actions—for example,
“On the File menu, point to Tools > Options.”

 ■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

 ■ Text that you type (apart from code blocks) appears in bold.

 ■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

System requirements

To work with most of the sample code, you must have the RTM version of AX 2012 in-
stalled. For the Language-Integrated Query (LINQ) samples, you must be using AX 2012
R3. For information about the system requirements for installing Microsoft Dynamics
AX 2012, see the Microsoft Dynamics AX 2012 Installation Guide at

http://www.microsoft.com/en-us/download/details.aspx?id=12687

You must also have an Internet connection to download the sample files that are
provided as supplements to many of the chapters.

Note Some of the features described in this book, such as data partitioning
and the EP Chart Control, apply only to AX 2012 R2 and AX 2012 R3. That is
noted where those features are discussed.

http://www.microsoft.com/en-us/download/details.aspx?id=12687

 Introduction xxxi

Code samples

Most of the chapters in this book include code examples that let you interactively try
out the new material presented in the main text. You can download the example code
from the following page:

http://aka.ms/InsideDynaAXR3

Follow the instructions to download the 9780735685109_files.zip file.

Installing the code samples
Follow these steps to install the code samples on your computer:

1. Unzip the file that you downloaded from the book’s website.

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access it
from the same webpage from which you downloaded the file.

Using the code samples
The code examples referenced in each chapter are provided as both .xpo files that you
can import into Microsoft Dynamics AX and Visual Studio projects that you can open
through the corresponding .csproj files. Many of these examples are incomplete, and
you cannot import and run them successfully without following the steps indicated in
the associated chapter.

http://aka.ms/InsideDynaAXR3

xxxii Introduction

Acknowledgments

We want to thank all the people who assisted us in bringing this book to press. We
apologize for anyone whose name we missed.

Microsoft Dynamics product team
Special thanks go to the following colleagues, whom we’re fortunate to work with.

Margaret Sherman, whose Managing Editor duties included wrangling authors,
 chasing down stray chapters, translating techno-speak into clear English, keeping
numerous balls in the air, and herding a few cats. Margaret kept the project moving
forward, on schedule, on budget, and with a real commitment to quality content.
Thank you, Margaret! This project wouldn’t have happened without your leadership!

Mark Baker and Steve Kubis, who contributed ace project management and editing
work.

Margo Crandall, who provided a quick and accurate technical review at the last min-
ute for Chapter 23.

Hal Howard, Richard Barnwell, and Ann Beebe, who sponsored the project and pro-
vided resources for it.

We’re also grateful to the following members of the product team, who provided us
with the reviews and research that helped us refine this book:

Ned Baker
Ian Beck
Andy Blehm
Jim Brotherton
Ed Budrys
Gregory Christiaens
Ahmad El Husseini
Josh Honeyman
Hitesh Jawa
Vijeta Johri
Bo Kampmann
Vinod Kumar
Arif Kureshy
Josh Lange

Mey Meenakshisundaram
Igor Menshutkin
Jatan Modi
Sasha Nazarov
Adrian Orth
Christopher Read (Entirenet)
Bruce Rivard
Gana Sadasivam
Alex Samoylenko
Ramesh Shankar
Tao Wang
Lance Wheelwright
Chunke Yang

 Introduction xxxiii

In addition, we want to thank Joris de Gruyter of Streamline Systems LLC. His
 SysTestListenerTRX code samples on CodePlex (http://dynamicsaxbuild.codeplex.com
/releases), with supporting documentation on his blog (http://daxmusings.blogspot.com/),
and his collaboration as we investigated this approach for executing SysTests from
Microsoft Dynamics AX were valuable resources as we prepared the chapter on testing.

Microsoft Press
Another big thank you goes to the great people at Microsoft Press for their support
and expertise throughout the writing and publishing process.

Carol Dillingham, the Content Project Manager for the book, who provided ongoing
support and guidance throughout the life of the project.

Rosemary Caperton—Acquisitions Editor

Allan Iversen—Technical Reviewer

Kathy Krause—Project Editor and Copyeditor with Online Training Solutions, Inc.
(OTSI)

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book. If you discover an error,
please submit it to us via mspinput@microsoft.com. You can also reach the Microsoft
Press Book Support team for other support via the same alias. Please note that product
support for Microsoft software and hardware is not offered through this address. For help
with Microsoft software or hardware, go to http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF,
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

http://dynamicsaxbuild.codeplex.com/releases
http://dynamicsaxbuild.codeplex.com/releases
http://daxmusings.blogspot.com/
http://support.microsoft.com
http://aka.ms/mspressfree

xxxiv Introduction

This edition of the book is dedicated to Hal Howard,
with many thanks for your leadership.

—The MicrosofT DynaMics aX TeaM

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you're busy, so we've kept it short with just a few questions. Your answers
go directly to the editors at Microsoft Press. (No personal information will be requested.)
Thanks in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter:

http://twitter.com/MicrosoftPress

http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

This page intentionally left blank

 19

C H A P T E R 2

The MorphX development
environment and tools

In this chapter
Introduction . 19
Application Object Tree . 21
Projects . 27
The property sheet. 31
X++ code editor . 32
Label editor . 34
Compiler . 38
Best Practices tool . 40
Debugger . 45
Reverse Engineering tool . 48
Table Browser tool . 53
Find tool . 54
Compare tool . 57
Cross-Reference tool . 62
Version control . 64

Introduction

AX 2012 includes a set of tools, the MorphX development tools, that you can use to build and
modify AX 2012 business applications. Each feature of a business application uses the application
model elements described in Chapter 1, “Architectural overview.” With the MorphX tools, you can
create, view, modify, and delete the application model elements, which contain metadata, structure
(ordering and hierarchies of elements), properties (key and value pairs), and X++ code. For example,
a table element includes the name of the table, the properties set for the table, the fields, the indexes,
the relations, and the methods, among other things.

This chapter describes the most commonly used tools and offers some tips and tricks for working
with them. You can find additional information and an overview of other MorphX tools in the MorphX
Development Tools section of the AX 2012 software development kit (SDK) on the Microsoft Developer
Network (MSDN).

20 PART I A tour of the development environment

Tip To enable development mode in AX 2012, press Ctrl+Shift+W to launch the
Development Workspace, which holds all of the development tools.

Table 2-1 lists the MorphX tools and components.

TABLE 2-1 MorphX tools and other components used for development.

Tool Purpose

Application Object Tree (AOT) Start development activities. The AOT is the main entry point for most develop-
ment activities. It allows the developer to browse the repository of all elements
that together make up the business application. You can use the AOT to invoke
the other tools and to inspect and create elements.

Projects Group related elements into projects.

Property sheet Inspect and modify properties of elements. The property sheet shows key and
value pairs.

X++ code editor Inspect and write X++ source code.

Label editor Create and inspect localizable strings.

Compiler Compile X++ code into an executable format.

Best Practices tool Automatically detect defects in both your code and your elements.

Debugger Find bugs in your X++ code.

Reverse Engineering tool Generate Microsoft Visio Unified Modeling Language (UML) and entity
 relationship diagrams (ERDs) from elements.

Table Browser tool View the contents of a table directly from a table element.

Type Hierarchy Browser and Type
Hierarchy Context

Navigate and understand the type hierarchy of the currently active element.

Find tool Search for code or metadata patterns in the AOT.

Compare tool See a line-by-line comparison of two versions of the same element.

Cross-Reference tool Determine where an element is used.

Version control Track all changes to elements and see a full revision log.

You can access these development tools from the following places:

 ■ In the Development Workspace, on the Tools menu

 ■ On the context menus of elements in the AOT

You can personalize the behavior of many MorphX tools by clicking Options on the Tools menu.
Figure 2-1 shows the Options form.

 CHAPTER 2 The MorphX development environment and tools 21

FIGURE 2-1 The Options form, in which development options are specified.

Application Object Tree

The AOT is the main entry point to MorphX and the repository explorer for all metadata. You can
open the AOT by clicking the AOT icon on the toolbar or by pressing Ctrl+D. The AOT icon looks
like this:

Navigating through the AOT
As the name implies, the AOT is a tree view. The root of the AOT contains the element categories,
such as Classes, Tables, and Forms. Some elements are grouped into subcategories to provide a
better structure. For example, Tables, Maps, Views, and Extended Data Types are located under Data
Dictionary, and all web-related elements are located under Web. Figure 2-2 shows the AOT.

22 PART I A tour of the development environment

FIGURE 2-2 The AOT.

You can navigate through the AOT by using the arrow keys on the keyboard. Pressing the Right
Arrow key expands a node if it has any children.

Elements are arranged alphabetically. Because there are thousands of elements, it’s important to
understand the naming conventions and adhere to them to use the AOT effectively.

All element names in the AOT use the following structure:

<Business area name> + <Functional area> + <Functionality, action performed, or type of content>

With this naming convention, similar elements are placed next to each other. The business area name
is also often referred to as the prefix. Prefixes are commonly used to indicate the team responsible for
an element. For example, in the name VendPaymReconciliationImport, the prefix Vend is an abbreviation
of the business area name (Vendor), PaymReconciliation describes the functional area (payment rec-
onciliation), and Import lists the action performed (import). The name CustPaymReconciliationImport
describes a similar functional area and action for the Customer business area.

Tip When building add-on functionality, in addition to following this naming convention,
you should add another prefix that uniquely identifies the solution. This additional prefix
will help prevent name conflicts if your solution is combined with work from other sources.
Consider using a prefix that identifies the company and the solution. For example, if a
company called MyCorp is building a payroll system, it could use the prefix McPR on all
elements added.

 CHAPTER 2 The MorphX development environment and tools 23

Table 2-2 contains a list of the most common prefixes and their descriptions.

TABLE 2-2 Common prefixes.

Prefix Description

Ax Microsoft Dynamics AX typed data source

Axd Microsoft Dynamics AX business document

Asset Asset management

BOM Bill of material

COS Cost accounting

Cust Customer

Dir Directory, global address book

EcoRes Economic resources

HRM/HCM Human resources

Invent Inventory management

JMG Shop floor control

KM Knowledge management

Ledger General ledger

PBA Product builder

Prod Production

Proj Project

Purch Purchase

Req Requirements

Sales Sales

SMA Service management

SMM Sales and marketing management, also called customer relationship management (CRM)

Sys Application frameworks and development tools

Tax Tax engine

Vend Vendor

Web Web framework

WMS Warehouse management

Tip When creating new elements, ensure that you follow the recommended naming con-
ventions. Any future development and maintenance will be much easier.

Projects, described in detail later in this chapter, provide an alternative view of the information in
the AOT.

24 PART I A tour of the development environment

Creating elements in the AOT
You can create new elements in the AOT by right-clicking the element category node and selecting
New <Element Type>, as shown in Figure 2-3.

FIGURE 2-3 Creating a new element in the AOT.

Elements are given automatically generated names when they are created. However, you should
replace the default names with new names that conform to the naming convention.

Modifying elements in the AOT
Each node in the AOT has a set of properties and either subnodes or X++ code. You can use the prop-
erty sheet (shown in Figure 2-9, later in this chapter) to inspect or modify properties, and you can use
the X++ code editor (shown in Figure 2-11, later in this chapter) to inspect or modify X++ code.

The order of the subnodes can play a role in the semantics of the element. For example, the tabs
on a form appear in the order in which they are listed in the AOT. You can change the order of nodes
by selecting a node and pressing the Alt key while pressing the Up Arrow or Down Arrow key.

A red vertical line next to a root element name marks it as modified and unsaved, or dirty, as
shown in Figure 2-4.

 CHAPTER 2 The MorphX development environment and tools 25

FIGURE 2-4 A dirty element in the AOT, indicated by a vertical line next to the top-level node,
AccountingDistribution.

A dirty element is saved in the following situations:

 ■ When the element is executed.

 ■ When the developer explicitly invokes the Save or Save All action.

 ■ When autosave takes place. You specify the frequency of autosave in the Options form,
which is accessible from the Tools menu.

Refreshing elements in the AOT
If several developers modify elements simultaneously in the same installation of AX 2012, each
developer’s local elements might not be synchronized with the latest version. To ensure that the local
versions of remotely changed elements are updated, an autorefresh thread runs in the background.
This autorefresh functionality eventually updates all changes, but you might want to force the refresh
of an element explicitly. You do this by right-clicking the element, and then clicking Restore. This
action refreshes both the on-disk and the in-memory versions of the element.

Typically, the general integrity of what’s shown in the AOT is managed automatically, but some
operations, such as restoring the application database or reinstalling the application, can lead to
inconsistencies that require manual resolution to ensure that the latest elements are used. To perform
manual resolution, follow these steps:

1. Close the AX 2012 client to clear any in-memory elements.

2. Stop the Microsoft Dynamics Server service on the Application Object Server (AOS) to clear
any in-memory elements.

3. Delete the application element cache files (*.auc) from the Local Application Data folder
(located in %LocalAppData%) to remove the on-disk elements.

26 PART I A tour of the development environment

Element actions in the AOT
Each node in the AOT contains a set of available actions. You can access these actions from the context
menu, which you can open by right-clicking any node.

Here are two facts to remember about actions:

 ■ The actions that are available depend on the type of node you select.

 ■ You can select multiple nodes and perform actions simultaneously on all the nodes selected.

A frequently used action is Open New Window, which is available for all nodes. It opens a new AOT
window with the current node as the root. This action was used to create the screen capture of the
AccountingDistribution element shown earlier in Figure 2-4. After you open a new AOT window, you
can drag elements into the nodes, saving time and effort when you’re developing an application.

You can extend the list of available actions on the context menu. You can create custom actions
for any element in the AOT by using the features provided by MorphX. In fact, all actions listed on
the Add-Ins submenu are implemented in MorphX by using X++ and the MorphX tools.

You can enlist a class as a new add-in by following this procedure:

1. Create a new menu item and give it a meaningful name, a label, and Help text.

2. Set the menu item’s Object Type property to Class.

3. Set the menu item’s Object property to the name of the class to be invoked by the add-in.

4. Drag the menu item to the SysContextMenu menu.

5. If you want the action to be available only for certain nodes, modify the verifyItem method on
the SysContextMenu class.

Element layers and models in the AOT
When you modify an element from a lower layer, a copy of the element is placed in the current layer
and the current model. All elements in the current layer appear in bold type (as shown in Figure 2-5),
which makes it easy to recognize changes. For a description of the layer technology, see the “Layers”
section in Chapter 21, “Application models.”

 CHAPTER 2 The MorphX development environment and tools 27

FIGURE 2-5 An element in the AOT that exists in several layers.

You can use the Application object layer and Application object model settings in the Options
form to personalize the information shown after the element name in the AOT (see Figure 2-1, shown
earlier). Figure 2-5 shows a class with the Show All Layers option set. As you can see, each method
is suffixed with information about the layers in which it is defined, such as SYS, VAR, and USR. If an
element exists in several layers, you can right-click it and then click Layers to access its versions from
lower layers. It is highly recommended that you use the Show All Layers setting during code upgrade
because it provides a visual representation of the layer dimension directly in the AOT.

Projects

For a fully customizable overview of the elements, you can use projects. In a project, you can group
and structure elements according to your preference. A project is a powerful alternative to the AOT
because you can collect all the elements needed for a feature in one project.

Creating a project
You open projects from the AOT by clicking the Project icon on the toolbar. Figure 2-6 shows the
Projects window and its Private and Shared projects nodes.

28 PART I A tour of the development environment

FIGURE 2-6 The Projects window, showing the list of shared projects.

Except for its structure, a project generally behaves like the AOT. Every element in a project is also
present in the AOT.

When you create a new project, you must decide whether it should be private or shared among all
developers. You can’t set access requirements on shared projects. You can make a shared project pri-
vate (and a private project shared) by dragging it from the shared category into the private category.

Note Central features of AX 2012 are captured in shared projects to provide an overview
of all the elements in a feature. No private projects are included with the application.

You can specify a startup project in the Options form. If specified, the chosen project automatically
opens when AX 2012 is started.

Automatically generating a project
Projects can be automatically generated in several ways—from using group masks to customizing
project types—to make working with them easier. The following sections outline the various ways
to generate projects automatically.

Group masks
Groups are folders in a project. When you create a group, you can have its contents be automatically
generated by setting the ProjectGroupType property (All is an option) and providing a regular expres-
sion as the value of the GroupMask property. The contents of the group are created automatically and

 CHAPTER 2 The MorphX development environment and tools 29

are kept up to date as elements are created, deleted, and renamed. Using group masks ensures that
your project is always current, even when elements are created directly in the AOT.

Figure 2-7 shows the ProjectGroupType property set to Classes and the GroupMask property set
to ReleaseUpdate on a project group. All classes with names containing ReleaseUpdate (the prefix for
data upgrade scripts) will be included in the project group.

FIGURE 2-7 Property sheet specifying settings for ProjectGroupType and GroupMask.

Figure 2-8 shows the resulting project when the settings from Figure 2-7 are used.

FIGURE 2-8 Project created by using a group mask.

Filters
You can also generate a project based on a filter. Because all elements in the AOT persist in a data-
base format, you can use a query to filter elements and have the results presented in a project. You
create a project filter by clicking Filter on the project’s toolbar. Depending on the complexity of the
query, a project can be generated instantly or it might take several minutes.

30 PART I A tour of the development environment

With filters, you can create projects containing elements that meet the following criteria:

 ■ Elements created or modified within the last month

 ■ Elements created or modified by a named user

 ■ Elements from a particular layer

Development tools
Several development tools, such as the Wizard Wizard, produce projects containing elements that the
wizard creates. The result of running the Wizard Wizard is a new project that includes a form, a class,
and a menu item—all the elements that make up the newly created wizard.

You can also use several other wizards, such as the AIF Document Service Wizard and the Class
Wizard, to create projects. To access these wizards, on the Tools menu, click Wizards.

Layer comparison You can compare the elements in one layer with the elements in another layer,
which is called the reference layer. If an element exists in both layers and the definitions of the element
are different, or if the element doesn’t exist in the reference layer, the element is added to the result-
ing project. To compare layers, click Tools > Code Upgrade > Compare Layers.

Upgrade projects When you upgrade from one version of Microsoft Dynamics AX to another or
install a new service pack, you need to deal with any new elements that have been introduced and
existing elements that have been modified. These changes might conflict with customizations you’ve
implemented in a higher layer.

The Create Upgrade Project feature makes a three-way comparison to establish whether an element
has any upgrade conflicts. It compares the original version with both the customized version and the
updated version. If a conflict is detected, the element is added to the project.

The resulting project provides a list of elements to update based on upgrade conflicts between
versions. You can use the Compare tool, described later in this chapter, to see the conflicts in each
element. Together, these features provide a cost-effective toolbox to use when upgrading. For more
information about code upgrade, see “Microsoft Dynamics AX 2012 White Papers: Code Upgrade”
at http://www.microsoft.com/download/en/details.aspx?id=20864.

To create an upgrade project, click Tools > Code Upgrade > Detect Code Upgrade Conflicts.

Project types
When you create a new project, you can specify a project type. So far, this chapter has discussed stan-
dard projects. The Test project, used to group a set of classes for unit testing, is another specialized
project type provided in AX 2012.

http://www.microsoft.com/download/en/details.aspx?id=20864

 CHAPTER 2 The MorphX development environment and tools 31

You can create a custom specialized project by creating a new class that extends the ProjectNode
class. With a specialized project, you can control the structure, icons, and actions available to the
project.

The property sheet

Properties are an important part of the metadata system. Each property is a key and value pair. You
can use the property sheet to inspect and modify properties of elements.

When the Development Workspace opens, the property sheet is visible by default. If you close it,
you can open it again anytime by pressing Alt+Enter or by clicking the Properties button on the
toolbar of the Development Workspace. The property sheet automatically updates itself to show
properties for any element selected in the AOT. You don’t have to open the property sheet manually
for each element; you can leave it open and browse the elements. Figure 2-9 shows the property
sheet for the TaxSpec class. The two columns are the key and value pairs for each property.

Tip Pressing Esc in the property sheet sets the focus back to your origin.

FIGURE 2-9 Property sheet for an element in the AOT.

Figure 2-10 shows the Categories tab for the class shown in Figure 2-9. On this tab, related proper-
ties are categorized. For elements with many properties, this view can make it easier to find the right
property.

32 PART I A tour of the development environment

FIGURE 2-10 The Categories tab on the property sheet for an element in the AOT.

Read-only properties appear in gray. Just like files in the file system, elements contain information
about who created them and when they were modified. Elements that come from Microsoft all have
the same time and user stamps.

The default sort order places related properties near each other. Categories were introduced in
an earlier version of Microsoft Dynamics AX to make finding properties easier, but you can also sort
properties alphabetically by setting a parameter in the Options form.

You can dock the property sheet on either side of the screen by right-clicking the title bar. Docking
ensures that the property sheet is never hidden behind another tool.

X++ code editor

All X++ code is written with the X++ code editor. You open the editor by selecting a node in the AOT
and pressing Enter. The editor contains two panes. The left pane shows the methods available, and
the right pane shows the X++ code for the selected method, as shown in Figure 2-11.

FIGURE 2-11 The X++ code editor.

 CHAPTER 2 The MorphX development environment and tools 33

The X++ code editor is a basic text editor that supports color coding and IntelliSense.

Shortcut keys
Navigation and editing in the X++ code editor use standard shortcuts, as described in Table 2-3. For
AX 2012, some shortcuts differ from those in earlier versions to align with commonly used integrated
development environments (IDEs) such as Microsoft Visual Studio.

TABLE 2-3 X++ code editor shortcut keys.

Action Shortcut Description

Show the Help window F1 Opens context-sensitive Help for the type or method
currently selected in the editor.

Go to the next error message F4 Opens the editor and positions the cursor at the next
compilation error, based on the contents of the Compiler
Output window.

Execute the current element F5 Starts the current form, job, or class.

Compile F7 Compiles the current method.

Toggle a breakpoint F9 Sets or removes a breakpoint.

Run an editor script Alt+R Lists all available editor scripts and lets you select one to
execute (such as Send To Mail Recipient).

Open the Label editor Ctrl+Alt+Spacebar Opens the Label editor and searches for the selected text.

Go to the implementation (drill
down in code)

F12 Goes to the implementation of the selected method.
This shortcut is highly useful for fast navigation.

Go to the next method Ctrl+Tab Sets the focus on the next method in the editor.

Go to the previous method Ctrl+Shift+Tab Sets the focus on the previous method in the editor.

Enable block selection Alt+<mouse select>
or
Alt+Shift+arrow keys

Selects a block of code. Select the code you want by
pressing the Alt key while selecting text with the mouse.
Alternatively, hold down Alt and Shift while moving the
cursor with the arrow keys.

Cancel the selection Esc Cancels the current selection.

Delete the current selection
or line

Ctrl+X Deletes the current selection or, if nothing is selected,
the current line.

Start an incremental search Ctrl+I Starts an incremental search, which marks the first oc-
currence of the search text as you type it.
Pressing Ctrl+I again moves to the next occurrence, and
Ctrl+Shift+I moves to the previous occurrence.

Insert an XML document header /// Inserts an XML comment header when you type ///.
When typed in front of a class or method header, this
shortcut prepopulates the XML document with template
information relevant to the class or method.

Comment the selection Ctrl+E, C Inserts comment marking for the current selection.

Uncomment the selection Ctrl+E, U Removes comment marking for the current selection.

34 PART I A tour of the development environment

Editor scripts
The X++ code editor contains a set of editor scripts that you can invoke by clicking the Script icon on the
X++ code editor toolbar or by right-clicking an empty line in the code editor, pointing to Scripts, and
then clicking the script you want. Built-in editor scripts provide functionality such as the following:

 ■ Send to mail recipient.

 ■ Send to file.

 ■ Generate code for standard code patterns such as main, construct, and parm methods.

 ■ Open the AOT for the element that owns the method.

Note By generating code, in a matter of minutes you can create a new class with the right
constructor method and the right encapsulation of member variables by using parm meth-
ods. Parm methods (parm is short for “parameter”) are used as simple property getters
and setters on classes. Code is generated in accordance with X++ best practices.

Tip To add a main method to a class, add a new method, press Ctrl+A to select all code in
the editor tab for the new method, type main, and then press the Tab key. This will replace
the text in the editor with the standard template for a static main method.

The list of editor scripts is extendable. You can create your own scripts by adding new methods to
the EditorScripts class.

Label editor

The term label in AX 2012 refers to a localizable text resource. Text resources are used throughout
the product as messages to the user, form control labels, column headers, Help text in the status bar,
captions on forms, and text on web forms, to name just a few uses. Labels are localizable, meaning
that they can be translated into most languages. Because the space requirement for displaying text
resources typically depends on the language, you might fear that the actual user interface must be
manually localized as well. However, with IntelliMorph technology, the user interface is dynamically
rendered and honors any space requirements imposed by localization.

The technology behind the label system is simple. All text resources are kept in a Unicode-based
label files that are named with three-letter identifiers. In AX 2012, the label files are managed in the
AOT and distributed by using model files. Figure 2-12 shows how the Label Files node in the AOT
looks with multiple label files and the en-us language identifier.

 CHAPTER 2 The MorphX development environment and tools 35

FIGURE 2-12 The Label Files node in the AOT.

The underlying source representation is a simple text file that follows this naming convention:

Ax<Label file identifier><Locale>.ALD

The following are two examples, the first showing a U.S. English label file and the second a Danish
label file:

Axsysen-us.ALD

Axtstda.ALD

Each text resource in the label file has a 32-bit integer label ID, label text, and an optional label
description. The structure of the label file is simple:

@<Label ID><Label text>

[Label description]

Figure 2-13 shows an example of a label file.

FIGURE 2-13 Label file opened in Notepad showing a few labels from the en-us label file.

36 PART I A tour of the development environment

This simple structure allows for localization outside of AX 2012 with third-party tools. The AOT
provides a set of operations for the label files, including an Export To Label file that can be used to
extract a file for external translation.

You can create new label files by using the Label File Wizard, which you access directly from the
Label Files node in the AOT, or from the Tools menu by pointing to Wizards > Label File Wizard. The
wizard guides you through the steps of adding a new label file or a new language to an existing label
file. After you run the wizard, the label file is ready to use. If you have an existing .ald file, you can also
create the appropriate entry in the AOT by using Create From File on the context menu of the Label
Files node in the AOT.

Note You can use any combination of three letters when naming a label file, and you can
use any label file from any layer. A common misunderstanding is that the label file identi-
fier must match the layer in which it is used. AX 2012 includes a SYS layer and a label file
named SYS; service packs contain a SYP layer and a label file named SYP. This naming stan-
dard was chosen because it is simple, easy to remember, and easy to understand. However,
AX 2012 doesn’t impose any limitations on the label file name.

Consider the following tips for working with label files:

 ■ When naming a label file, choose a three-letter ID that has a high chance of being unique,
such as your company’s initials. Don’t choose the name of the layer, such as VAR or USR.
Eventually, you’ll probably merge two separately developed features into the same installation,
a task that will be more difficult if the label file names collide.

 ■ When referencing existing labels, feel free to reference labels in the label files provided by
Microsoft, but avoid making changes to labels in these label files because they are updated
with each new version of Microsoft Dynamics AX.

Creating a label
You use the Label editor to create new labels. You can start the Label editor by using any of the
 following procedures:

 ■ On the Tools menu, point to Label > Label Editor.

 ■ On the X++ code editor toolbar, click the Lookup Label > Text button.

 ■ On text properties in the property sheet, click the Lookup button.

You can use the Label editor (shown in Figure 2-14) to find existing labels. Reusing a label is
sometimes preferable to creating a new one. You can create a new label by pressing Ctrl+N or
by clicking New.

 CHAPTER 2 The MorphX development environment and tools 37

FIGURE 2-14 The Label editor.

In addition to finding and creating new labels, you can use the Label editor to find out where a
label is used. The Label editor also logs any changes to each label.

Consider the following tips when creating and reusing labels:

 ■ When reusing a label, make sure that the label means what you intend it to in all languages.
Some words are homonyms (words that have many meanings), and they naturally translate
into many different words in other languages. For example, the English word can is both a
verb and a noun. Use the description column to note the intended meaning of the label.

 ■ When creating a new label, ensure that you use complete sentences or other stand-alone
words or phrases. Don’t construct complete sentences by concatenating labels with one or
two words because the order of words in a sentence differs from one language to another.

Referencing labels from X++
In the MorphX design environment, labels are referenced in the format @<LabelFileIdentifier>
<LabelID>. If you don’t want a label reference to be converted automatically to the label text, you
can use the literalStr function. When a placeholder is needed to display the value of a variable, you
can use the strFmt function and a string containing %n, where n is greater than or equal to 1. Place-
holders can also be used within labels. The following code shows a few examples:

// prints: Time transactions
print "@SYS1";

// prints: @SYS1
print literalStr("@SYS1");

// prints: Microsoft Dynamics is a Microsoft brand
print strFmt("%1 is a %2 brand", "Microsoft Dynamics", "Microsoft");
pause;

38 PART I A tour of the development environment

The following are some best practices to consider when referencing labels from X++:

 ■ Always create user interface text by using a label. When referencing labels from X++ code,
use double quotation marks.

 ■ Never create system text such as file names by using a label. When referencing system text
from X++ code, use single quotation marks. You can place system text in macros to make it
reusable.

Using single and double quotation marks to differentiate between system text and user interface
text allows the Best Practices tool to find and report any hard-coded user interface text. The Best
Practices tool is described in depth later in this chapter.

Compiler

Whenever you make a change to X++ code, you must recompile, just as you would in any other pro-
gramming language. You start the recompile by pressing F7 in the X++ code editor. Your code also
recompiles whenever you close the editor or save changes to an element.

The compiler also produces a list of the following information:

 ■ Compiler errors These prevent code from compiling and should be fixed as soon as possible.

 ■ Compiler warnings These typically indicate that something is wrong in the implementation.
See Table 2-4, later in this section, for a list of example compiler warnings. Compiler warnings
can and should be addressed. Check-in attempts with compiler warnings are rejected unless
specifically allowed in the version control system settings.

 ■ Tasks (also known as to-dos) The compiler picks up single-line comments that start with
TODO. These comments can be useful during development for adding reminders, but you
should use them only in cases in which implementation can’t be completed. For example,
you might use a to-do comment when you’re waiting for a check-in from another developer.
Be careful when using to-do comments to postpone work, and never release code unless all
to-dos are addressed. For a developer, there is nothing worse than debugging an issue and
finding a to-do comment indicating that the issue was already known but overlooked.

 ■ Best practice deviations The Best Practices tool carries out more complex validations.
For more information, see the “Best Practices tool” section later in this chapter.

 CHAPTER 2 The MorphX development environment and tools 39

Note Unlike other languages, X++ requires that you compile only code you’ve modified,
because the intermediate language the compiler produces is persisted along with the X++
code and metadata. Of course, your changes can require other methods that consume
your code to be changed and recompiled if, for example, you rename a method or modify
its parameters. If the consumers are not recompiled, a run-time error is thrown when they
are invoked. This means that you can execute your business application even when compile
errors exist, as long as you don’t use the code that can’t compile. Always ensure that you
compile the entire AOT when you consider your changes complete, and fix any compila-
tion errors found. If you’re changing the class declaration somewhere in a class hierarchy,
all classes deriving from the changed class should be recompiled, too. This can be achieved
by using the Compile Forward option under Add-Ins in the context menu for the changed
class node.

The Compiler Output window provides access to every issue found during compilation, as shown in
Figure 2-15. The window presents one list of all relevant errors, warnings, best practice deviations, and
tasks. Each type of message can be disabled or enabled by using the respective buttons. Each line in
the list contains information about each issue that the compiler detects, a description of the issue, and
its location.

FIGURE 2-15 The powerful combination of the X++ code editor and the Compiler Output window.

40 PART I A tour of the development environment

You can export the contents of the Compiler Output window. This capability is useful if you want
to share the list of issues with team members. The exported file is an HTML file that can be viewed in
Internet Explorer or reimported into the Compiler Output window in another AX 2012 session.

In the Compiler Output window, click Setup > Compiler to define the types of issues that the
compiler should report. Compiler warnings are grouped into four levels, as shown by the examples
in Table 2-4. Each level represents a certain level of severity, with 1 being the most critical and 4
 being recommended to comply with best practices.

TABLE 2-4 Example compiler warnings.

Warning message Level

Break statement found outside legal context 1

The new method of a derived class does not call super() 1

The new method of a derived class may not call super() 1

Function never returns a value 1

Not all paths return a value 1

Assignment/comparison loses precision 1

Unreachable code 2

Empty compound statement 3

Class names should start with an upper case letter 4

Member names should start with a lower case letter 4

Best Practices tool

Following Microsoft Dynamics AX best practices when you develop applications has several important
benefits:

 ■ You avoid less-than-obvious pitfalls. Following best practices helps you avoid many obstacles,
even those that appear only in borderline scenarios that would otherwise be difficult and time
consuming to detect and test. Using best practices allows you to take advantage of the com-
bined experience of Microsoft Dynamics AX expert developers.

 ■ Your learning curve is flattened. When you perform similar tasks in a standard way, you are
more likely to be comfortable in an unknown area of the application. Consequently, adding
new resources to a project is more cost effective, and downstream consumers of the code can
make changes more readily.

 ■ You are making a long-term investment. Code that conforms to standards is less likely to
require rework during an upgrade process, whether you’re upgrading to AX 2012, installing
service packs, or upgrading to future releases.

 CHAPTER 2 The MorphX development environment and tools 41

 ■ You are more likely to ship on time. Most of the problems developers face when implementing
a solution in Microsoft Dynamics AX have been solved at least once before. Choosing a proven
solution results in faster implementation and less regression. You can find solutions to known
problems in both the Developer Help section of the SDK and in the code base.

The AX 2012 SDK contains an important discussion about conforming to best practices in AX 2012.
Constructing code that follows proven standards and patterns can’t guarantee a project’s success, but
it minimizes the risk of failure because of late, expensive discovery, and it decreases the long-term main-
tenance cost. The AX 2012 SDK is available at http://msdn.microsoft.com/en-us/library/aa496079.aspx.

The Best Practices tool is a powerful supplement to the best practices discussion in the SDK. This
tool is the MorphX version of a static code analysis tool, similar to FxCop for the Microsoft .NET
Framework. The Best Practices tool is embedded in the compiler, and the results are reported in the
Compiler Output window the same way as other messages from the compilation process.

The purpose of static code analysis is to detect defects and risky coding patterns in the code au-
tomatically. The longer a defect exists, the more costly it becomes to fix—a bug found in the design
phase is much cheaper to correct than a bug in shipped code running at several customer sites. The
Best Practices tool allows any developer to run an analysis of his or her code and application model to
ensure that it conforms to a set of predefined rules. Developers can run analysis during development,
and they should always do so before implementations are tested. Because an application in AX 2012 is
much more than just code, the Best Practices tool also performs static analysis on the metadata—the
properties, structures, and relationships that are maintained in the AOT.

The Best Practices tool displays deviations from the best practice rules, as shown earlier in Fig-
ure 2-15. Double-clicking a line on the Best Practices tab opens the X++ code editor on the violat-
ing line of code or, if the Best Practices violation is related to metadata, it will open the element in
an AOT window.

Rules
The Best Practices tool includes about 400 rules, a small subset of the best practices mentioned in
the SDK. You can define the best practice rules that you want to run in the Best Practice Parameters
dialog box: on the Tools menu, click Options > Development, and then click Best Practices.

Note You must set the compiler error level to 4 if you want best practice rule violations to
be reported. To turn off best practice violation reporting, in the Compiler Output window,
click Setup > Compiler, and then set the compiler error level to less than 4.

http://msdn.microsoft.com/en-us/library/aa496079.aspx

42 PART I A tour of the development environment

The best practice rules are divided into categories. By default, all categories are turned on, as
shown in Figure 2-16.

FIGURE 2-16 The Best Practice Parameters dialog box.

The best practice rules are divided into three levels of severity:

 ■ Errors The majority of the rules focus on errors. Any check-in attempt with a best practice
error is rejected. You must take all errors seriously and fix them as soon as possible.

 ■ Warnings Following a 95/5 rule for warnings is recommended. This means that you should
treat 95 percent of all warnings as errors; the remaining 5 percent constitute exceptions to
the rule. You should provide valid explanations in the design document for all warnings you
choose to ignore.

 ■ Information In some situations, your implementation might have a side effect that isn’t
obvious to you or the user (for example, if you assign a value to a variable but you never
use the variable again). These are typically reported as information messages.

 CHAPTER 2 The MorphX development environment and tools 43

Suppressing errors and warnings
The Best Practices tool allows you to suppress errors and warnings. A suppressed best practice deviation
is reported as information. This gives you a way to identify the deviation as reviewed and accepted. To
stop a piece of code from generating a best practice error or warning, place a line containing the fol-
lowing text just before the deviation:

//BP Deviation Documented

Only a small subset of the best practice rules can be suppressed. Use the following guidelines for
selecting which rules to suppress:

 ■ Dangerous API exceptions When exceptions exist that are impossible to detect automati-
cally, examine each error to ensure the correct implementation. Dangerous application pro-
gramming interfaces (APIs) are often responsible for such exceptions. A dangerous API is an
API that can compromise a system’s security when used incorrectly. If a dangerous API is used,
a suppressible error is reported. You can use some so-called dangerous APIs when you take
certain precautions, such as using code access security (CAS). You can suppress the error after
you apply the appropriate mitigations.

 ■ False positives About 5 percent of all warnings are false positives and can be suppressed.
Note that only warnings caused by actual code can be suppressed this way, not warnings
caused by metadata.

After you set up the best practices, the compiler automatically runs the best practices check when-
ever an element is compiled. The results are displayed in the Best Practices list in the Compiler Output
dialog box.

Some of the metadata best practice violations can also be suppressed, but the process of suppress-
ing them is different. Instead of adding a comment to the source code, you add the violation to a global
list of ignored violations. This list is maintained in the macro named SysBPCheckIgnore. This allows for
central review of the number of suppressions, which should be kept to a minimum. For more informa-
tion, see “Best Practice Checks” at http://msdn.microsoft.com/en-us/library/aa874347.aspx.

Adding custom rules
You can use the Best Practices tool to create your own set of rules. The classes used to check for rules
are named SysBPCheck<Element type>. You call the init, check, and dispose methods once for each
node in the AOT for the element being compiled.

One of the most interesting classes is SysBPCheckMemberFunction, which is called for each piece
of X++ code whether it is a class method, form method, macro, or other method. For example, if

http://msdn.microsoft.com/en-us/library/aa874347.aspx

44 PART I A tour of the development environment

developers don’t want to include their names in the source code, you can implement a best practice
check by creating the following method on the SysBPCheckMemberFunction class:

protected void checkUseOfNames()
{
 #Define.MyErrorCode(50000)
 container devNames = ['Arthur', 'Lars', 'Michael'];
 int i;
 int j,k;
 int pos;
 str line;
 int lineLen;

 for (i=scanner.lines(); i>0; i--)
 {
 line = scanner.sourceLine(i);
 lineLen = strLen(line);
 for (j=conLen(devNames); j>0; j--)
 {
 pos = strScan(line, conPeek(devNames, j), 1, lineLen);
 if (pos)
 {
 sysBPCheck.addError(#MyErrorCode, i, pos,
 "Don't use your name!");
 }
 }
 }
}

To enlist the rule, make sure to call the preceding method from the check method. Compiling this
sample code results in the best practice errors shown in Table 2-5.

TABLE 2-5 Best practice errors in checkUseOfNames.

Message Line Column

Don’t use your name! 4 28

Don’t use your name! 4 38

Don’t use your name! 4 46

Variable k not used 6 11

Method contains text constant: ‘Don’t use your name!’ 20 59

In an actual implementation, names of developers would probably be read from a file. Ensure that
you cache the names to prevent the compiler from going to the disk to read the names for each
method being compiled.

Note The best practice check just shown also identified that the code contained a variable
named k that was declared, but never referenced. This is one of the valuable checks that
ensures that the code can easily be kept up to date, which helps avoid mistakes. In this
case, k was not intended for a specific purpose and can be removed.

 CHAPTER 2 The MorphX development environment and tools 45

Debugger

Like most development environments, MorphX features a debugger. The debugger is a stand-alone
application, not part of the AX 2012 shell like the rest of the tools mentioned in this chapter. As a
stand-alone application, the debugger allows you to debug X++ in any of the following AX 2012
components:

 ■ AX 2012 client

 ■ AOS

 ■ Business Connector (BC.NET)

For other debugging scenarios, such as web services, Microsoft SQL Server Reporting Services
(SSRS) reports, and Enterprise Portal web client, see Chapter 3, “AX 2012 and .NET.”

Enabling debugging
For the debugger to start, a breakpoint must be hit when X++ code is executed. You set breakpoints
by using the X++ code editor in the Development Workspace. The debugger starts automatically
when any component hits a breakpoint.

You must enable debugging for each component as follows:

 ■ In the Development Workspace, on the Tools menu, click Options > Development > Debug,
and then select When Breakpoint in the Debug Mode list.

 ■ From the AOS, open the Microsoft Dynamics AX Server Configuration Utility under Start >
Administrative Tools > Microsoft Dynamics AX 2012 Server Configuration. Create a new con-
figuration, if necessary, and then select the check box Enable Breakpoints to debug X++ code
running on this server.

 ■ For Enterprise Portal code that uses the BCPROXY context to run interpreted X++ code, in the
Microsoft Dynamics AX Server Configuration Utility, create a new configuration, if necessary,
and select the check box Enable Global Breakpoints.

Ensure that you are a member of the local Windows security group named Microsoft Dynamics AX
Debugging Users. This is normally ensured by using setup, but if you did not set up AX 2012 by using
your current account, you need to do this manually through Edit Local Users And Groups in Windows
Control Panel. This is necessary to prohibit unauthorized debugging, which could expose sensitive
data, provide a security risk, or impose unplanned service disruptions.

Caution It is recommended that you do not enable any of the debugging capabilities in
a live environment. If you do, execution will stop when it hits a breakpoint, and the client
will stop responding to users. Running the application with debug support enabled also
noticeably affects performance.

46 PART I A tour of the development environment

To set or remove breakpoints, press F9. You can set a breakpoint on any line you want. If you set a
breakpoint on a line without an X++ statement, however, the breakpoint will be triggered on the next
X++ statement in the method. A breakpoint on the last brace will never be hit.

To enable or disable a breakpoint, press Ctrl+F9. For a list of all breakpoints, press Shift+F9.

Breakpoints are persisted in the SysBreakpoints and SysBreakpointLists database tables. Each devel-
oper has his or her own set of breakpoints. This means that your breakpoints are not cleared when
you close AX 2012 and that other AX 2012 components can access them and break where you want
them to.

Debugger user interface
The main window in the debugger initially shows the point in the code where a breakpoint was hit.
You can control execution one step at a time while inspecting variables and other aspects of the code.
Figure 2-17 shows the debugger opened to a breakpoint with all the windows enabled.

FIGURE 2-17 Debugger with all windows enabled.

 CHAPTER 2 The MorphX development environment and tools 47

Table 2-6 describes the debugger’s various windows and some of its other features.

TABLE 2-6 Debugger user interface elements.

Debugger element Description

Code window Shows the current X++ code.
Each variable has a ScreenTip that reveals its value. You can drag the next-statement
pointer in the left margin. This pointer is particularly useful if the execution path isn’t
what you expected or if you want to repeat a step.

Variables window Shows local, global, and member variables, along with their names, values, and types.
Local variables are variables in scope at the current execution point. Global variables
are variables on global classes that are always instantiated: Appl, Infolog, ClassFactory,
and VersionControl.
Member variables are shown on classes.
If a variable is changed as you step through execution, it is marked in red. Each variable
is associated with a client or server icon. You can modify the value of a variable by
double-clicking the value.

Call Stack window Shows the code path followed to arrive at a particular execution point.
Clicking a line in the Call Stack window opens the code in the Code window and updates
the local Variables window. A client or server icon indicates the tier on which the code
is executed.

Watch window Shows the name, value, and type of the variables. Five different Watch windows are
available. You can use these to group the variables you’re watching in the way that
you prefer.
You can use this window to inspect variables without the scope limitations of the
Variables window. You can drag a variable here from the Code window or the Variables
window.

Breakpoints window Lists all your breakpoints. You can delete, enable, and disable the breakpoints through
this window.

Output window Shows the traces that are enabled and the output that is sent to the Infolog application
framework, which is introduced in Chapter 5, “Designing the user experience.” The
Output window has the following views:

 ■ Debug You can instrument your X++ code to trace to this page by using
the printDebug static method on the Debug class.

 ■ Infolog This page contains messages in the queue for the Infolog.
 ■ Database, Client/Server, and ActiveX Trace Any traces enabled on the

Development tab in the Options form appear on these pages.

Status bar window Provides the following important context information:
 ■ Current user The ID of the user who is logged on to the system. This

information is especially useful when you are debugging incoming web
requests.

 ■ Current session The ID of the session on the AOS.
 ■ Current company accounts The ID of the current company accounts.
 ■ Transaction level The current transaction level. When this level reaches

zero, the transaction is committed.

Tip As a developer, you can provide more information in the value field for your classes than
what is provided by default. The defaults for classes are New and Null. You can change the
defaults by overriding the toString method. If your class doesn’t explicitly extend the object
(the base class of all classes), you must add a new method named toString, returning and
taking no parameters, to implement this functionality.

48 PART I A tour of the development environment

Debugger shortcut keys
Table 2-7 lists the most important shortcut keys available in the debugger.

TABLE 2-7 Debugger shortcut keys.

Action Shortcut Description

Run F5 Continue execution.

Stop debugging Shift+F5 Break execution.

Step over F10 Step over the next statement.

Run to cursor Ctrl+F10 Continue execution but break at the cursor’s position.

Step into F11 Step into the next statement.

Step out Shift+F11 Step out of the method.

Toggle breakpoint Shift+F9 Insert or remove a breakpoint.

Variables window Ctrl+Alt+V Open or close the Variables window.

Call Stack window Ctrl+Alt+C Open or close the Call Stack window.

Watch window Ctrl+Alt+W Open or close the Watch window.

Breakpoints window Ctrl+Alt+B Open or close the Breakpoints window.

Output window Ctrl+Alt+O Open or close the Output window.

Reverse Engineering tool

You can generate Visio models from existing metadata. Considering the amount of metadata avail-
able in AX 2012 (more than 50,000 elements and more than 18 million lines of text when exported),
it’s practically impossible to get a clear view of how the elements relate to each other just by using
the AOT. The Reverse Engineering tool is a great aid when you need to visualize metadata.

Note You must have Visio 2007 or later installed to use the Reverse Engineering tool.

The Reverse Engineering tool can generate a Unified Modeling Language (UML) data model, a
UML object model, or an entity relationship data model, including all elements from a private or
shared project. To open the tool, in the Projects window, right-click a project or a perspective, and
point to Add-Ins > Reverse Engineer. You can also open the tool by selecting Reverse Engineer from
the Tools menu. In the dialog box shown in Figure 2-18, you must specify a file name and model type.

 CHAPTER 2 The MorphX development environment and tools 49

FIGURE 2-18 The Reverse Engineering dialog box.

When you click OK, the tool uses the metadata for all elements in the project to generate a Visio
document that opens automatically. You can drag elements from the Visio Model Explorer onto the
drawing surface, which is initially blank. Any relationship between two elements is automatically shown.

UML data model
When generating a UML data model, the Reverse Engineering tool looks for tables in the project. The
UML data model contains a class for each table and view in the project and the class’s attributes and
associations.

The UML data model also contains referenced tables and all extended data types, base enumera-
tions, and X++ data types. You can include these items in your diagrams without having to run the
Reverse Engineering tool again.

Fields in AX 2012 are generated as UML attributes. All attributes are marked as public to reflect the
nature of fields in AX 2012. Each attribute also shows the type. The primary key field is underlined. If
a field is a part of one or more indexes, the field name is prefixed with the names of the indexes; if the
index is unique, the index name is noted in braces.

Relationships in AX 2012 are generated as UML associations. The Aggregation property of the
association is set based on two conditions in metadata:

 ■ If the relationship is validating (the Validate property is set to Yes), the Aggregation property is
set to Shared. This is also known as a UML aggregation, represented by a white diamond.

 ■ If a cascading delete action exists between the two tables, a composite association is added to
the model. A cascading delete action ties the lifespan of two or more tables and is represented
by a black diamond.

50 PART I A tour of the development environment

Figure 2-19 shows a class diagram with the CustTable (customers), InventTable (inventory items),
SalesTable (sales order header), and SalesLine (sales order line) tables. To simplify the diagram, some
attributes have been removed.

FIGURE 2-19 UML data model diagram.

The name of an association endpoint is the name of the relationship. The names and types of all
fields in the relationship appear in braces.

UML object model
When generating an object model, the Reverse Engineering tool looks for Microsoft Dynamics AX
classes, tables, and interfaces in the project. The UML model contains a class for each Microsoft
Dynamics AX table and class in the project and an interface for each Microsoft Dynamics AX inter-
face in the project. The UML model also contains attributes and operations, including return types,
parameters, and the types of the parameters. Figure 2-20 shows an object model of the most impor-
tant RunBase and Batch classes and interfaces in Microsoft Dynamics AX. To simplify the view, some
attributes and operations have been removed and operation parameters are suppressed.

The UML object model also contains referenced classes, tables, and all extended data types, base
enumerations, and X++ data types. You can include these elements in your diagrams without having
to run the Reverse Engineering tool again.

Fields and member variables in AX 2012 are generated as UML attributes. All fields are generated
as public attributes, whereas member variables are generated as protected attributes. Each attribute

 CHAPTER 2 The MorphX development environment and tools 51

also shows the type. Methods are generated as UML operations, including return type, parameters,
and the types of the parameters.

The Reverse Engineering tool also picks up any generalizations (classes extending other classes),
realizations (classes implementing interfaces), and associations (classes using each other). The associa-
tions are limited to references in member variables.

FIGURE 2-20 UML object model diagram.

Note To get the names of operation parameters, you must reverse engineer in debug
mode. The names are read from metadata only and are placed into the stack when in
 debug mode. To enable debug mode, on the Development tab of the Options form,
 select When Breakpoint in the Debug Mode list.

For more information about the elements in a UML diagram, see “UML Class Diagrams: Reference”
at http://msdn.microsoft.com/en-us/library/dd409437.aspx.

http://msdn.microsoft.com/en-us/library/dd409437.aspx

52 PART I A tour of the development environment

Entity relationship data model
When generating an entity relationship data model, the Reverse Engineering tool looks for tables and
views in the project. The entity relationship model contains an entity type for each AOT table in the
project and attributes for the fields in each table. Figure 2-21 shows an entity relationship diagram (ERD)
for the tables HcmBenefit (Benefit), HcmBenefitOption (Benefit option), HcmBenefitType (Benefit type),
and HcmBenefitPlan (Benefit plan).

Note For AX 2012 R2, Microsoft has introduced a website that hosts ERDs for the core
tables in AX 2012 R2 application modules. You can use the site to quickly get detailed infor-
mation about a large number of tables. To access the site, go to http://www.microsoft.com
/dynamics/ax/erd/ax2012r2/Default.htm.

FIGURE 2-21 ERD using Crow’s Foot notation.

Fields in AX 2012 are generated as entity relationship columns. Columns can be foreign key (FK),
alternate key (AK), inversion entry (IE), and optional (O). A foreign key column is used to identify a
record in another table, an alternate key uniquely identifies a record in the current table, an inversion
entry identifies zero or more records in the current table (these are typical of the fields in nonunique
indexes), and optional columns don’t require a value.

http://www.microsoft.com/dynamics/ax/erd/ax2012r2/Default.htm
http://www.microsoft.com/dynamics/ax/erd/ax2012r2/Default.htm

 CHAPTER 2 The MorphX development environment and tools 53

Relationships in AX 2012 are generated as entity relationships. The EntityRelationshipRole property
of the relationship is used as the foreign key role name of the relation in the entity relationship data
model.

Note The Reverse Engineering tool produces an ERX file. To work with the generated file
in Visio, do the following: In Visio, create a new database model diagram, and then on the
\Database tab, point to Import > Import ERwin ERX File. Afterward, you can drag relevant
tables from the Tables And Views pane (available from the Database tab) to the diagram
canvas.

Table Browser tool

The Table Browser tool is a small, helpful tool that can be used in numerous scenarios. You can browse
and maintain the records in a table without having to build a user interface. This tool is useful when
you’re debugging, validating data models, and modifying or cleaning up data, to name just a few uses.

To access the Table Browser tool, right-click any of the following types of items in the AOT, and
then point to Add-Ins > Table Browser:

 ■ Tables

 ■ Tables listed as data sources in forms, queries, and data sets

 ■ System tables listed in the AOT under System Documentation\Tables

Note The Table Browser tool is implemented in X++. You can find it in the AOT under the
name SysTableBrowser. It is a good example of how to bind the data source to a table at
run time.

Figure 2-22 shows the Table Browser tool when it is started from the CustTrans table. In addition
to the querying, sorting, and filtering capabilities provided by the grid control, you can type an
SQ SELECT statement directly into the form by using X++ SELECT statement syntax and see a visual
display of the result set. This tool is a great way to test complex SELECT statements. It fully supports
grouping, sorting, aggregation, and field lists.

54 PART I A tour of the development environment

FIGURE 2-22 The Table Browser tool showing the contents of the CustTrans table demo data.

You can also choose to see only the fields from the auto-report field group. These fields are printed
in a report when the user clicks Print in a form with this table as a data source. Typically, these fields
hold the most interesting information. This option can make it easier to find the values you’re looking
for in tables with many fields.

Note The Table Browser tool is just a standard form that uses IntelliMorph. It can’t display
fields for which the visible property is set to No or fields that the current user doesn’t have
access to.

Find tool

Search is everything, and the size of AX 2012 applications calls for a powerful and effective search tool.

Tip You can use the Find tool to search for an example of how to use an API. Real examples
can complement the examples found in the documentation.

You can start the Find tool, shown in Figure 2-23, from any node in the AOT by pressing Ctrl+F
or by clicking Find on the context menu. The Find tool supports multiple selections in the AOT.

 CHAPTER 2 The MorphX development environment and tools 55

FIGURE 2-23 The Find tool.

On the Name & Location tab, you define what you’re searching for and where to look:

 ■ In the Search list, the options are Methods and All Nodes. If you choose All Nodes, the
Properties tab appears.

 ■ The Named box limits the search to nodes with the name you specify.

 ■ The Containing Text box specifies the text to look for in the method, expressed as a regular
expression.

 ■ If you select the Show Source Code check box, results include a snippet of source code con-
taining the match, making it easier to browse the results.

By default, the Find tool searches the node (and its subnodes) selected in the AOT. If you change
focus in the AOT while the Find tool is open, the Look In value is updated. This is quite useful if you
want to search several nodes by using the same criterion. You can disable this behavior by clearing
the Use Selection check box.

On the Date tab, you specify additional ranges for your search, such as Modified Date and
 Modified By.

On the Advanced tab, you can specify more advanced settings for your search, such as the layer
to search, the size range of elements, the type of element, and the tier on which the element is set
to run.

On the Filter tab, shown in Figure 2-24, you can write a more complex query by using X++ and
type libraries. The code in the Source text box is the body of a method with the following profile:

boolean FilterMethod(str _treeNodeName,
 str _treeNodeSource,
 XRefPath _path,
 ClassRunMode _runMode)

56 PART I A tour of the development environment

The example in Figure 2-24 uses the class SysScannerClass to find any occurrence of the ttsAbort
X++ keyword. The scanner is primarily used to pass tokens into the parser during compilation. Here,
however, it detects the use of a particular keyword. This tool is more accurate (though slower) than
using a regular expression because X++ comments don’t produce tokens.

FIGURE 2-24 Filtering in the Find tool.

The Properties tab appears when All Nodes is selected in the Search list. You can specify a search
range for any property. Leaving the range blank for a property is a powerful setting when you want
to inspect properties: it matches all nodes, and the property value is added as a column in the results,
as shown in Figure 2-25. The search begins when you click Find Now. The results appear at the bottom
of the dialog box as they are found.

FIGURE 2-25 Search results in the Find tool.

Double-clicking any line in the result set opens the X++ code editor and sets the focus on the code
example that matches. When you right-click the lines in the result set, a context menu containing the
Add-Ins menu opens.

 CHAPTER 2 The MorphX development environment and tools 57

Compare tool

Several versions of the same element typically exist. These versions might emanate from various layers
or revisions in version control, or they could be modified versions that exist in memory. AX 2012 has a
built-in Compare tool that highlights any differences between two versions of an element.

The comparison shows changes to elements, which can be modified in three ways:

 ■ A metadata property can be changed.

 ■ X++ code can be changed.

 ■ The order of subnodes can be changed, such as the order of tabs on a form.

Starting the Compare tool
To open the Compare tool, right-click an element, and then click Compare. A dialog box opens where
you can select the versions of the element you want to compare, as shown in Figure 2-26.

FIGURE 2-26 The Comparison dialog box.

The versions to choose from come from many sources. The following is a list of all possible types
of versions:

 ■ Standard layered version types These include SYS, SYP, GLS, GLP, FPK, FPP, SLN, SLP, ISV,
ISP, VAR, VAP, CUS, CUP, USR, and USP.

 ■ Old layered version types (old SYS, old SYP, and so on) If a baseline model store is pres-
ent, elements from the files are available here. This allows you to compare an older version of
an element with its latest version. For more information about layers and the baseline model
store, see Chapter 21, “Application models.”

 ■ Version control revisions (Version 1, Version 2, and so on) You can retrieve any revision
of an element from the version control system individually and use it for comparison. The ver-
sion control system is explained later in this chapter.

 ■ Best practice washed version (Washed) A few simple best practice issues can be resolved
automatically by a best practice “wash.” Selecting the washed version shows you how your
implementation differs from best practices. To get the full benefit of this, select the Case
Sensitive check box on the Advanced tab.

58 PART I A tour of the development environment

 ■ Export/import file (XPO) Before you import elements, you can compare them with existing
elements (which will be overwritten during import). You can use the Compare tool during the
import process (Command > Import) by selecting the Show Details check box in the Import
dialog box and right-clicking any elements that appear in bold. Objects in bold already exist
in the application.

 ■ Upgraded version (Upgraded) MorphX can automatically create a proposal for how
a class should be upgraded. The requirement for upgrading a class arises during a version
upgrade. The Create Upgrade Project step in the Upgrade Checklist automatically detects
customized classes that conflict with new versions of the classes. A class is conflicting if you’ve
changed the original version of the class, and the publisher of the class has also changed the
original version. MorphX constructs the proposal by merging your changes with the pub-
lisher’s changes to the class. MorphX requires access to all three versions of the class—the
original version in the baseline model store, a version with your changes in the current layer
in the baseline model store, and a version with the publisher’s changes in the same layer as
the original. The installation program ensures that the right versions are available in the right
places during an upgrade. Conflict resolution is shown in Figure 2-27.

FIGURE 2-27 How the upgraded version proposal is created.

Note You can also compare two different elements. To do this, select two elements in the
AOT, right-click, point to Add-Ins, and then click Compare.

 CHAPTER 2 The MorphX development environment and tools 59

Figure 2-28 shows the Advanced tab, on which you can specify comparison options.

FIGURE 2-28 Comparison options on the Advanced tab.

The following list describes the comparison options shown in Figure 2-28:

 ■ Show Differences Only All equal nodes are suppressed from the view, making it easier to
find the changed nodes. This option is selected by default.

 ■ Suppress Whitespace White space, such as spaces and tabs, is suppressed into a single
space during the comparison. The Compare tool can ignore the amount of white space, just
as the compiler does. This option is selected by default.

 ■ Case Sensitive Because X++ is not case sensitive, the Compare tool is also not case sensitive
by default. In certain scenarios, case sensitivity is required and must be enabled, such as when
you’re using the best practice wash feature mentioned earlier in this section. This option is
cleared by default.

 ■ Show Line Numbers The Compare tool can add line numbers to all X++ code that is dis-
played. This option is cleared by default but can be useful during an upgrade of large chunks
of code.

Using the Compare tool
After you choose elements and set parameters, start the comparison by clicking Compare. Results are
displayed in a three-pane dialog box, as shown in Figure 2-29. The top pane contains the elements
and options that you selected, the left pane displays a tree structure resembling the AOT, and the
right pane shows details that correspond to the item selected in the tree.

Color-coded icons in the tree structure indicate how each node has changed. A red or blue check
mark indicates that the node exists only in a particular version. Red corresponds to the SYS layer, and
blue corresponds to the old SYS layer. A gray check mark indicates that the nodes are identical but
one or more subnodes are different. A not-equal-to sign (≠) on a red and blue background indicates
that the nodes are different in the two versions.

60 PART I A tour of the development environment

FIGURE 2-29 Comparison results.

Note Each node in the tree view has a context menu that provides access to the Add-Ins
submenu and the Open New Window option. The Open New Window option provides an
AOT view of any element, including elements in old layers.

Details about the differences are shown in the right pane. Color coding is also used in this pane
to highlight differences the same way that it is in the tree structure. If an element is editable, small
action icons appear. These icons allow you to make changes to code, metadata, and nodes, which
can save you time when performing an upgrade. A right or left arrow removes or adds the difference,
and a bent arrow moves the difference to another position. These arrows always come in pairs, so you
can see where the difference is moved to and from. If a version control system is in use, an element is
editable if it is from the current layer and is checked out.

 CHAPTER 2 The MorphX development environment and tools 61

Compare APIs
Although AX 2012 provides comparison functionality for development purposes only, you can reuse
the comparison functionality for other tasks. You can use the available APIs to compare and present
differences in the tree structure or text representation of any type of entity.

The Tutorial_CompareContextProvider class shows how simple it is to compare business data by
using these APIs and present it by using the Compare tool. The tutorial consists of two parts:

 ■ Tutorial_Comparable This class implements the SysComparable interface. Basically, it creates a
text representation of a customer.

 ■ Tutorial_CompareContextProvider This class implements the SysCompareContextProvider
interface. It provides the context for comparison. For example, it creates a Tutorial_Comparable
object for each customer, sets the default comparison options, and handles context menus.

Figure 2-30 shows a comparison of two customers, the result of running the tutorial.

FIGURE 2-30 The result of comparing two customers by using the Compare API.

62 PART I A tour of the development environment

You can also use the line-by-line comparison functionality directly in X++. The static run method
on the SysCompareText class, shown in the following code, takes two strings as parameters and
returns a container that highlights differences in the two strings. You can also use a set of optional
parameters to control the comparison.

public static container run(str _t1,
 str _t2,
 boolean _caseSensitive = false,
 boolean _suppressWhiteSpace = true,
 boolean _lineNumbers = false,
 boolean _singleLine = false,
 boolean _alternateLines = false)

Cross-Reference tool

The concept of cross-references in AX 2012 is simple. If an element uses another element, the reference
is recorded. With cross-references, you can determine which elements a particular element uses and
which elements other elements are using. AX 2012 provides the Cross-Reference tool for accessing
and managing cross-reference information.

Here are a couple of typical scenarios for using the Cross-Reference tool:

 ■ You want to find usage examples. If the product documentation doesn’t help, you can use the
Cross-Reference tool to find real implementation examples.

 ■ You need to perform an impact analysis. If you’re changing an element, you need to know
which other elements are affected by your change.

You must update the Cross-Reference tool regularly to ensure accuracy. The update typically takes
several hours. The footprint in a database is about 1.5 gigabytes (GB) for a standard application.

To update the Cross-Reference tool, on the Tools menu, point to > Cross-Reference > Periodic >
Update. Updating the Cross-Reference tool also compiles the entire AOT because the compiler emits
cross-reference information.

Tip Keeping the Cross-Reference tool up to date is important if you want its information
to be reliable. If you work in a shared development environment, you share cross-reference
information with your team members. Updating the Cross-Reference tool nightly is a good
approach for a shared environment. If you work in a local development environment, you
can keep the Cross-Reference tool up to date by enabling cross-referencing when compiling.
This option slows down compilation, however. Another option is to update cross-references
manually for the elements in a project. To do so, right-click the project and point to Add-Ins
> Cross-Reference > Update.

 CHAPTER 2 The MorphX development environment and tools 63

In addition to the main cross-reference information, two smaller cross-reference subsystems exist:

 ■ Data model Stores information about relationships between tables. It is primarily used by
the query form and the Reverse Engineering tool.

 ■ Type hierarchy Stores information about class and data type inheritance.

For more information about these subsystems and the tools that rely on them, see the AX 2012
SDK (http://msdn.microsoft.com/en-us/library/aa496079.aspx).

The information that the Cross-Reference tool collects is quite comprehensive. You can find a com-
plete list of cross-referenced elements by opening the AOT, expanding the System Documentation
node, and clicking Enums and then xRefKind. When the Cross-Reference tool is updating, it scans all
metadata and X++ code for references to elements of the kinds listed in the xRefKind subnode.

Tip It’s a good idea to use intrinsic functions when referring to elements in X++ code. An
intrinsic function can evaluate to either an element name or an ID. The intrinsic functions
are named <Element type>Str or <Element type>Num, respectively. Using intrinsic functions
provides two benefits: you have compile-time verification that the element you reference
actually exists, and the reference is picked up by the Cross-Reference tool. Also, there is no
run-time overhead. Here is an example:

// Prints ID of MyClass, such as 50001
print classNum(myClass);

// Prints "MyClass"
print classStr(myClass);

// No compile check or cross-reference
print "MyClass";

For more information about intrinsic functions, see Chapter 20, “Reflection.”

To access usage information, right-click any element in the AOT and point to Add-Ins >
Cross-Reference > Used By. If the option isn’t available, either the element isn’t used or the
cross-reference hasn’t been updated.

http://msdn.microsoft.com/en-us/library/aa496079.aspx

64 PART I A tour of the development environment

Figure 2-31 shows where the prompt method is used on the RunBaseBatch class.

FIGURE 2-31 The Cross-Reference tool, showing where RunBaseBatch .prompt is used.

When you view cross-references for a class method, the Application hierarchy tree is visible, so that
you can see whether the same method is used on a parent or subclass. For types that don’t support
inheritance, the Application hierarchy tree is hidden.

Version control

The Version Control tool in MorphX makes it possible to use a version control system, such as Microsoft
Visual SourceSafe or Visual Studio Team Foundation Server (TFS), to keep track of changes to elements
in the AOT. The tool is accessible from several places: from the Version Control menu in the Develop-
ment Workspace, from toolbars in the AOT and the X++ code editor, and from the context menu on
elements in the AOT.

Using a version control system offers several benefits:

 ■ Revision history of all elements All changes are captured, along with a description of the
change, making it possible to consult the change history and retrieve old versions of an element.

 ■ Code quality enforcement The implementation of version control in AX 2012 enables a
fully configurable quality standard for all check-ins. With the quality standard, all changes are
verified according to coding practices. If a change doesn’t meet the criteria, it is rejected.

 ■ Isolated development Each developer can have a local installation and make all modifica-
tions locally. When modifications are ready, they can be checked in and made available to
consumers of the build. A developer can rewrite fundamental areas of the system without
causing instability issues for others. Developers are also unaffected by any downtime of a
centralized development server.

 CHAPTER 2 The MorphX development environment and tools 65

Even though using a version control system is optional, it is strongly recommended that you consider
one for any development project. AX 2012 supports three version control systems: Visual SourceSafe
6.0 and TFS, which are designed for large development projects, and MorphX VCS. MorphX Version
Control System (VCS) is designed for smaller development projects that previously couldn’t justify the
additional overhead that using a version control system server adds to the process. Table 2-8 shows a
side-by-side comparison of the version control system options.

TABLE 2-8 Overview of version control systems.

Requirements and
 features

No version control
system MorphX VCS Visual SourceSafe TFS

Application Object Servers
required

1 1 1 for each
developer

1 for each
developer

Database servers required 1 1 1 for each
developer

1 for each
developer

Build process required No No Yes Yes

Master file Model store Model store XPOs XPOs

Isolated development No No Yes Yes

Multiple checkout N/A No Configurable Configurable

Change description No Yes Yes Yes

Change history No Yes Yes Yes

Change list support (atomic
check-in of a set of files)

N/A No No Yes

Code quality enforcement No Configurable Configurable Configurable

The elements persisted on the version control server are file representations of the elements in the
AOT. The file format used is the standard Microsoft Dynamics AX export format (.xpo). Each .xpo file
contains only one root element.

There are no additional infrastructure requirements when you use MorphX VCS, which makes it
a perfect fit for partners running many parallel projects. In such setups, each developer often works
simultaneously on several projects, toggling between projects and returning to past projects. In these
situations, the benefits of having a change history are enormous. With just a few clicks, you can enable
MorphX VCS to persist the changes in the business database. Although MorphX VCS provides many of
the same capabilities as a version control server, it has some limitations. For example, MorphX VCS does
not provide any tools for maintenance, such as making backups, archiving, or labeling.

In contrast, Visual SourceSafe and TFS are designed for large projects in which many developers
work together on the same project for an extended period of time (for example, an independent
software vendor building a vertical solution).

Figure 2-32 shows a typical deployment using Visual SourceSafe or TFS, in which each developer
locally hosts the AOS and the database. Each developer also needs a copy of all .xpo files. When a
developer communicates with the version control server, the .xpo files are transmitted.

66 PART I A tour of the development environment

FIGURE 2-32 Typical deployment using version control.

Note In earlier versions of Microsoft Dynamics AX, a Team Server was required to assign
unique IDs as elements were created. AX 2012 uses a new ID allocation scheme, which
eliminates the need for the Team Server. For more information about element IDs, see
Chapter 21.

Element life cycle
Figure 2-33 shows the element life cycle in a version control system. When an element is in a state
marked with a lighter shade, it can be edited; otherwise, it is read-only.

You can create an element in two ways:

 ■ Create a new element.

 ■ Customize an existing element, resulting in an overlayered version of the element. Because
elements are stored for each layer in the version control system, customizing an element
 effectively creates a new element.

After you create an element, you must add it to the version control system. First, give it a proper
name in accordance with naming conventions, and then click Add To Version Control on the context
menu. After you create the element, you must check it in.

 CHAPTER 2 The MorphX development environment and tools 67

FIGURE 2-33 Element life cycle.

An element that is checked in can be renamed. Renaming an element deletes the element with the
old name and adds an element with the new name.

Quality checks
Before the version control system accepts a check-in, it might subject the elements to quality checks.
You define what is accepted in a check-in when you set up the version control system. The following
checks are supported:

 ■ Compiler errors

 ■ Compiler warnings

 ■ Compiler tasks

 ■ Best practice errors

When a check is enabled, it is carried out when you do a check-in. If the check fails, the check-in
stops. You must address the issue and restart the check-in.

Source code casing
You can set the Source Code Titlecase Update tool, available on the Add-Ins submenu, to execute
automatically before elements are checked in to ensure uniform casing in variable and parameter
declarations and references. You can specify this parameter when setting up the version control
system by selecting the Run Title Case Update check box.

68 PART I A tour of the development environment

Common version control tasks
Table 2-9 describes some of the tasks that are typically performed with a version control system. Later
sections describe additional tasks that you can perform when using version control with AX 2012.

TABLE 2-9 Version control tasks.

Action Description

Check out an element To modify an element, you must check it out. Checking out an element locks it so that
others can’t modify it while you’re working. To see which elements you have currently
checked out, on the Microsoft Dynamics AX menu, click Control > Pending Objects. The
elements you’ve checked out (or that you’ve created and not yet checked in) appear in
blue, rather than black, in the AOT.

Undo a checkout If you decide that you don’t want to modify an element that you checked out, you can
undo the checkout. This releases your lock on the element and imports the most recent
checked-in revision of the element to undo your changes.

Check in an element When you have finalized your modifications, you must check in the elements for them
to be part of the next build. When you click Check-In on the context menu, the dialog
box shown later in Figure 2-34 appears, displaying all the elements that you currently
have checked out. The Check In dialog box shows all open elements by default; you can
remove any elements not required in the check-in from the list by pressing Alt+F9.
The following procedure is recommended for checking in your work:

 ■ Perform synchronization to update all elements in your environment to the
latest version.

 ■ Verify that everything is still working as intended. Compilation is not enough.
 ■ Check in the elements.

Create an element When using version control, you create new elements just as you normally would in a
MorphX environment without a version control system. These elements are not part of
your check-in until you click Add To Version Control on the context menu.
You can also create all element types except those listed in System Settings (on the
Development Workspace Version Control menu, point to Control > Setup > System
Settings). By default, jobs and private projects are not accepted.
New elements should follow Microsoft Dynamics AX naming conventions. The best
practice naming conventions are enforced by default, so you can’t check in elements
with names such as aaaElement, DEL_Element, element1, or element2. (The only DEL_
elements allowed are those required for version upgrade purposes.) You can change
naming requirements in System Settings.

Rename an element An element must be checked in to be renamed. Because all references between .xpo
files are strictly name-based, all references to renamed elements must be updated. For
example, if you rename a table field, you must also update any form or report that uses
that field.
Most references in metadata in the AOT are ID-based, and thus they are not affected
when an element is renamed; in most cases, it is enough to check out the form or report
and include it in the check-in to update the .xpo file. You can use the Cross-Reference
tool to identify references. References in X++ code are name-based. You can use the
compiler to find affected references.
An element’s revision history is kept intact when elements are renamed. No tracking
information in the version control system is lost because an element is renamed.

Delete an element You delete an element as you normally would in Microsoft Dynamics AX. The delete
operation must be checked in before the deletion is visible to other users of the version
control system. You can see pending deletions in the Pending Objects dialog box.

Get the latest version of an
element

If someone else has checked in a new version of an element, you can use the Get Latest
option on the context menu to get the version of the element that was checked in most
recently. This option isn’t available if you have the element checked out yourself.

 CHAPTER 2 The MorphX development environment and tools 69

Working with labels
Working with labels is similar to working with elements. To change, delete, or add a label, you must
check out the label file containing the label. You can check out the label file from the Label editor
dialog box.

The main difference between checking out elements and checking out label files is that simultaneous
checkouts are allowed for label files. This means that others can change labels while you have a label
file checked out.

Figure 2-34 shows the Check In dialog box.

FIGURE 2-34 The Check In dialog box.

If you create a new label when using version control, a temporary label ID is assigned (for example,
@$AA0007 as opposed to @USR1921). When you check in a label file, your changes are automatically
merged into the latest version of the file and the temporary label IDs are updated. All references in the
code are automatically updated to the newly assigned label IDs. Temporary IDs eliminate the need
for a central Team Server, which was required for AX 2009, because IDs no longer have to be assigned
when the labels are created. If you modify or delete a label that another person has also modified or
deleted, your conflicting changes are abandoned. Such lost changes are shown in the Infolog after
the check-in completes.

Synchronizing elements
Synchronization makes it possible for you to get the latest version of all elements. This step is required
before you can check in any elements. You can initiate synchronization from the Development
Workspace. On the Version Control menu, point to Periodic > Synchronize.

70 PART I A tour of the development environment

Synchronization is divided into three operations that happen automatically in the following
sequence:

1. The latest files are copied from the version control server to the local disk.

2. The files are imported into the AOT.

3. The imported files are compiled.

Use synchronization to make sure your system is up to date. Synchronization won’t affect any new
elements that you have created or any elements that you have checked out.

Figure 2-35 shows the Synchronization dialog box.

FIGURE 2-35 The Synchronization dialog box.

Selecting the Force check box gets the latest version of all files, even if they haven’t changed, and
then imports every file.

When using Visual SourceSafe, you can also synchronize to a label defined in Visual SourceSafe.
This way, you can easily synchronize to a specific build or version number.

Synchronization is not available with MorphX VCS.

Viewing the synchronization log
The way that you keep track of versions on the client depends on your version control system. Visual
SourceSafe requires that AX 2012 keep track of itself. When you synchronize the latest version, it is
copied to the local repository folder from the version control system. Each file must be imported into
AX 2012 to be reflected in the AOT. To minimize the risk of partial synchronization, a log entry is
created for each file. When all files are copied locally, the log is processed, and the files are automati-
cally imported into AX 2012.

When synchronization fails, the import operation is usually the cause of the problem. Synchroni-
zation failure leaves your system in a partially synchronized state. To complete the synchronization,
restart AX 2012 and restart the import. You use the synchronization log to restart the import, and you
access it from the Development Workspace menu at Version Control > Inquiries > Synchronization log.

 CHAPTER 2 The MorphX development environment and tools 71

The Synchronization Log dialog box, shown in Figure 2-36, displays each batch of files, and you
can restart the import operation by clicking Process. If the Completed check box is not selected, the
import has failed and should be restarted.

The Synchronization log is not available with MorphX VCS.

FIGURE 2-36 The Synchronization Log dialog box.

Showing the history of an element
One of the biggest advantages of version control is the ability to track changes to elements. Select-
ing History on an element’s context menu displays a list of all changes to an element, as shown in
Figure 2-37.

FIGURE 2-37 Revision history of an element.

72 PART I A tour of the development environment

For each revision, this dialog box shows the version number, the action performed, the time the
action was performed, and who performed the action. You can also see the change number and
the change description.

A set of buttons in the History dialog box allows further investigation of each version. Clicking
Contents opens a form that shows other elements included in the same change. Clicking Compare
opens the Compare dialog box, where you can do a line-by-line comparison of two versions of the
element. The Open New Window button opens an AOT window that shows the selected version of
the element, which is useful for investigating properties because you can use the standard MorphX
toolbox. Clicking View File opens the .xpo file for the selected version in Notepad.

Comparing revisions
Comparison is the key to harvesting the benefits of a version control system. You can start a com-
parison from several places, including from the context menu of an element, by pointing to Compare.
Figure 2-38 shows the Comparison dialog box, where two revisions of the form CustTable are selected.

FIGURE 2-38 Comparing element revisions from version control.

The Compare dialog box contains a list of all checked-in versions, in addition to the element
 versions available in other layers that are installed.

Viewing pending elements
When you’re working on a project, it’s easy to lose track of which elements you’ve opened for editing.
The Pending Objects dialog box, shown in Figure 2-39, lists the elements that are currently checked
out in the version control system. Notice the column containing the action performed on the element.
Deleted elements are available only in this dialog box; they are no longer shown in the AOT.

 CHAPTER 2 The MorphX development environment and tools 73

FIGURE 2-39 Pending elements.

You can access the Pending Objects dialog box from the Development Workspace menu: Version
Control > Pending Objects.

Creating a build
Because the version control system contains .xpo files and not a model file, a build process is required
to generate the model file from the .xpo files. The following procedure provides a high-level overview
of the build process:

1. Use the CombineXPOs command-line utility to combine all .xpo files into one. This step makes
the .xpo file consumable by AX 2012. AX 2012 requires all referenced elements to be present
in the .xpo file or to already exist in the AOT to maintain the references during import.

2. Import the new .xpo file by using the command-line parameter -AOTIMPORTFILE=
<FileName.xpo>-MODEL=<Model Name> to Ax32.exe. This step imports the .xpo file and
compiles everything. After this step is complete, the new model is ready in the model store.

3. Export the model to a file by using the axutil command-line utility: axutil export
/model:<model name> /file:<model file name>.

4. Follow these steps for each layer and each model that you build.

The build process doesn’t apply to MorphX VCS.

74 PART I A tour of the development environment

Integrating AX 2012 with other version control systems
The implementation of the version control system in AX 2012 is fully pluggable. This means that any
version control system can be integrated with AX 2012.

Integrating with another version control system requires a new class implementing the SysVersion-
ControlFileBasedBackEnd interface. It is the implementation’s responsibility to provide the communi-
cation with the version control system server being used.

This page intentionally left blank

 745

C H A P T E R 2 2

Developing mobile apps for
AX 2012

In this chapter
Introduction . 745
The mobile app landscape and AX 2012. 746
Mobile architecture . 746
Developing a mobile app . 752
Architectural variations . 758
Resources . 759

Introduction

Device form factors and their associated interfaces are changing rapidly. At the same time, AX 2012
customers have an increasing need to interact with AX 2012 across a broad set of devices. In addition,
new technologies are facilitating new scenarios, in which apps that provide personalized information
in context are becoming more important for improving employees’ productivity. Microsoft is invest-
ing in these new scenarios that let customers work with devices in new ways, and Microsoft Dynamics
is taking full advantage of this work.

Microsoft Dynamics is creating new mobile device experiences for AX 2012 customers through apps.
These apps are designed to help a broad range of employees improve their efficiency while on the go
and stay connected to their business processes. Scenarios include native experiences for both smart-
phones and tablets. In addition to developing its own apps, Microsoft Dynamics is committed to help-
ing developers build their own immersive device experiences for AX 2012.

These apps can interact directly with AX 2012 by using the existing AX 2012 services framework.
This approach also uses existing AX 2012 user accounts so that no additional provisioning is required.
For more information about AX 2012 services, see Chapter 12, “AX 2012 services and integration.”

This chapter begins by providing an overview of the current mobile app landscape and how it
relates to AX 2012. It then describes the AX 2012 mobile architecture and the technical and user
interface considerations for developing mobile apps. For more detailed instructions about developing
mobile apps for AX 2012, see the sources listed in the “Resources” section at the end of the chapter.

746 PART IV Beyond AX 2012

The mobile app landscape and AX 2012

With AX 2012 R3 and its associated investments in mobile solutions, the Microsoft Dynamics AX team
expects that the Microsoft Dynamics AX ecosystem will see an increasing investment in mobile apps.
There is an early-mover advantage for developers who identify and take advantage of these opportu-
nities, and AX 2012 customers who equip their people with powerful mobile apps will have an advan-
tage in their respective markets. The mobile architecture discussed throughout this chapter has been
proven by mobile apps that are already available in the marketplace and by customers who are deploy-
ing those apps.

Creating mobile apps requires a different set of skills than developing for AX 2012, and customers
and partners might find it advantageous to pair an AX 2012 developer with a mobile app developer.
This way, necessary AX 2012 services can be created by experienced AX 2012 developers. Except for
needing to understand the content of the services, typical mobile app developers can develop AX
2012 mobile apps without having to understand the intricate details of AX 2012. Thus, partners and
customers can take advantage of the vast pool of mobile app developers.

Mobile architecture

The AX 2012 mobile architecture is designed to help developers overcome the following challenges
that are inherent in developing mobile apps:

 ■ How to facilitate communication between apps and on-premises installations

 ■ How to authenticate users

 ■ How to develop for multiple platforms

Because AX 2012 most often runs on-premises or is privately hosted, the average phone or tablet
device does not have access to AX 2012 services, which are usually available only through a corporate
network. To overcome this challenge, the mobile architecture uses the Microsoft Azure Service Bus
Relay. The Service Bus Relay solves the challenges of communicating between on-premises applica-
tions and the outside world by allowing on-premises web services to project public endpoints. Systems
can then access these web services, which continue to run on-premises, from anywhere.

The Service Bus Relay is based on a namespace that is set up for each company that deploys mobile
apps for AX 2012. For example, an administrator from the Contoso company can create an Azure
subscription and set up a unique namespace, such as contosomobapps. The namespace is a friendly
identifier that end users enter into the mobile app to connect to their company’s AX 2012 instance.

The second challenge is authenticating users. AX 2012 has existing user accounts that are based
on Active Directory accounts. Ideally, device users simply use their corporate identities (user IDs and

 CHAPTER 22 Developing mobile apps for AX 2012 747

passwords) to access AX 2012 from their devices. The mobile architecture accomplishes this by using
Active Directory Federation Services (AD FS). AD FS is a Windows Server component that is used by
users whose devices are not on the corporate network to authenticate themselves by using their
existing corporate credentials.

Another challenge that mobile app developers face is providing apps for various device platforms,
such as Windows 8.1, Windows Phone 8, iOS, and Android. By taking advantage of the mobile archi-
tecture, developers can create applications for the platform they choose, depending on customer
requirements.

Note In some scenarios, you might want to use variations on the architecture described
in this section. For more information, see the “Architectural variations” section later in this
chapter.

Mobile architecture components
The AX 2012 mobile architecture includes the following key components:

 ■ AX 2012 services Apps communicate with AX 2012 through the AX 2012 services framework.

 ■ Active Directory Users who access AX 2012 through mobile apps are authenticated against
their existing corporate identities.

 ■ AD FS AD FS facilitates authentication of Active Directory–based users who are accessing
AX 2012 through mobile apps.

 ■ Service Bus Relay The Service Bus Relay ferries messages from the mobile app to an on-
premises listener through which the app can reach an on-premises instance of AX 2012.

 ■ On-premises listener The listener listens for messages from mobile apps that are relayed
through the Service Bus Relay. The listener then makes calls to AX 2012 and responds to the
mobile app through the Service Bus Relay.

 ■ Microsoft Azure Active Directory Access Control Access Control verifies that the user
has been authenticated through AD FS and then allows messages to be sent through the
Service Bus Relay.

 ■ Mobile apps These apps can be for a phone or tablet on any of the prevailing mobile plat-
forms—Windows, iOS, or Android. The architecture provides the means for these apps to com-
municate with AX 2012. The apps can then interact with AX 2012 as appropriate, based on the
business scenario. Apps can also be designed to communicate with other systems, depending
on the needs of the business scenario.

748 PART IV Beyond AX 2012

Figure 22-1 shows the components of the mobile architecture.

FIGURE 22-1 Mobile architecture components.

To become familiar with the mobile architecture, we recommend that you install and configure
one or more of the AX 2012 mobile apps and the Microsoft Dynamics AX connector (on-premises lis-
tener) for mobile apps. Doing so will help you learn the configuration steps necessary for Azure, AD FS,
AX 2012, and the listener. That familiarity will help you greatly in debugging and troubleshooting your
apps. For more information about these components and their configuration, see the following white
papers:

 ■ Microsoft Dynamics AX 2012 White Paper: Developing Mobile Apps at http://www.microsoft.com
/en-us/download/details.aspx?id=38413.

 ■ Configure Microsoft Dynamics AX Connector for Mobile Applications at https://mbs.microsoft.com
/downloads/customer/AX/ConfigureAXConnectorforMobileApplications.pdf. To access this paper,
you must have CustomerSource or PartnerSource credentials.

You can download the AX 2012 expense app, which is used as an example throughout this chapter,
at http://apps.microsoft.com/windows/en-us/app/dynamics-ax-2012-expenses/07aab6f9-c6ce-4b81-
b04c-4b43c3f6de67.

http://www.microsoft.com/en-us/download/details.aspx?id=38413
http://www.microsoft.com/en-us/download/details.aspx?id=38413
https://mbs.microsoft.com/downloads/customer/AX/ConfigureAXConnectorforMobileApplications.pdf
https://mbs.microsoft.com/downloads/customer/AX/ConfigureAXConnectorforMobileApplications.pdf
http://apps.microsoft.com/windows/en-us/app/dynamics-ax-2012-expenses/07aab6f9-c6ce-4b81-b04c-4b43c3f6de67
http://apps.microsoft.com/windows/en-us/app/dynamics-ax-2012-expenses/07aab6f9-c6ce-4b81-b04c-4b43c3f6de67

 CHAPTER 22 Developing mobile apps for AX 2012 749

Message flow and authentication
The following process outlines the flow of messages and describes how users are authenticated:

1. The user submits credentials to obtain a token from AD FS.

2. If the user’s credentials are verified, a token is returned that is based on Security Assertion
Markup Language (SAML). The token contains a claim that indicates the user name and
company domain, such as user@contoso .com. The claim is used to verify the user’s company
affiliation and identity within the company.

3. The mobile app then presents the claim in the SAML token to Access Control. Access Control
controls access to the Service Bus Relay; any app that calls the Service Bus Relay must have a
token from Access Control.

4. Access Control validates the SAML token based on the previously established trust relation-
ship between Access Control and AD FS for the Service Bus Relay namespace and company
domain. Based on the claim in the SAML token, Access Control verifies that the user is from
the company associated with the Service Bus Relay namespace. Access Control then provides
a second token to the mobile app in Simple Web Token (SWT) format. The SWT token is then
included in the request to the Service Bus Relay to send a message to AX 2012. The SAML
token is also included and is used by the on-premises listener to authenticate the user.

5. The mobile app then sends the message (with associated tokens) through the Service Bus
Relay to the on-premises listener. The Service Bus Relay ferries the message to the listener.

The listener must also be authenticated to listen to the Service Bus Relay. This authentication
is based on a Service Bus Relay namespace credential that is stored on the listener. The listener
presents this credential as it starts to listen for messages coming from the namespace.

6. After a message is received from the Service Bus Relay, the listener validates the SAML token.
The validation is based on a previously established trust relationship between the listener and
AD FS. After verifying the token, the listener uses the claim to determine which AX 2012 user
is using the mobile app making the call to AX 2012. The listener calls AX 2012 on behalf of the
user identified in the claim.

7. The listener receives a response from AX 2012 and then returns the response message
through the Service Bus Relay.

8. The Service Bus Relay sends the response message to the mobile app.

750 PART IV Beyond AX 2012

Figure 22-2 illustrates the message flow and authentication process. The numbering in the figure
roughly corresponds to the numbers in the list.

FIGURE 22-2 Message flow and authentication process.

Using AX 2012 services for mobile clients
To develop mobile apps, you must have an interface with AX 2012. The ideal approach is to use
AX 2012 services for communication between mobile apps and AX 2012. For more information
about AX 2012 services, see Chapter 12.

The AX 2012 services framework provides multiple types of services—system services, custom
 services, and document services—each with its own programming model. Custom services are the
most likely to provide the exchange of messages that are appropriate for a mobile app.

To design an AX 2012 service that can be consumed by your mobile app, you will need to do the
following:

1. Create AX 2012 services and data contracts, and deploy a basic inbound port to expose the
service operations for consumption.

2. Implement the service methods in X++ classes to perform data operations in AX 2012.

 CHAPTER 22 Developing mobile apps for AX 2012 751

The mobile client must communicate with the AX 2012 service, which is hosted on an Application
Object Server (AOS) instance that is deployed behind a corporate firewall. Instead of configuring
changes in the firewall, such as exposing an Internet Information Services (IIS) server externally to
expose the on-premises service, the app makes use of a secured Service Bus Relay.

AX 2012 services are typically accessed by using Simple Object Access Protocol (SOAP). This ap-
proach might work well for some mobile applications. However, the trend in developing web and
mobile applications is to interact by using RESTful services. (Representational state transfer [REST] is
an architecture that allows developers to write asynchronous code that connects with cloud-based
services more easily.) For information about RESTful services, see the article, “An Introduction To
RESTful Services With WCF,” at http://msdn.microsoft.com/en-us/magazine/dd315413.aspx.

Currently AX 2012 does not expose custom services by using a RESTful approach. One option is for
the on-premises listener to translate RESTful calls from a mobile app to SOAP calls to AX 2012 (and
vice versa). The Microsoft Dynamics AX product group used this approach to develop the Microsoft
Dynamics AX Windows Store apps (expenses, timesheets, and approvals). For more information about
the Microsoft Dynamics AX Windows Store apps, see “What’s new: Companion apps for Microsoft
Dynamics AX 2012 R2” at http://technet.microsoft.com/en-us/library/dn527182.aspx.

Developing an on-premises listener
As described earlier, you’ll need an on-premises service that acts as an intermediary between the
Service Bus Relay and AX 2012 services. One approach is to use Windows Communication Foundation
(WCF) to build a simple listener.

Beyond the listener’s primary purpose of passing messages between the Service Bus Relay and
AX 2012, the listener can provide additional features that facilitate the development of mobile
applications. For example, the listener can provide configuration information to the app, such as
whether certain features of the app are enabled or disabled. The listener can expose RESTful calls to
the client. The Microsoft Dynamics AX product group used WCF features to translate between the
SOAP and JavaScript Object Notation (JSON) protocols for messaging to the Windows Store apps.
This is a standard feature of WCF. The listener can also capture meaningful information in the event
log and provide telemetry information.

Another approach is to use the Azure Service Bus adapter built into AX 2012 starting with AX 2012
R2 cumulative update 6. With this approach, you configure IIS as the listener. Depending on the require-
ments of your mobile app, you can choose the best approach. For a comparison of these approaches,
see “Microsoft Dynamics AX White Paper: Developing Mobile Apps” at http://www.microsoft.com/en-us
/download/details.aspx?id=38413.

http://www.microsoft.com/en-us/download/details.aspx?id=38413
http://www.microsoft.com/en-us/download/details.aspx?id=38413
http://msdn.microsoft.com/en-us/magazine/dd315413.aspx
http://technet.microsoft.com/en-us/library/dn527182.aspx

752 PART IV Beyond AX 2012

Developing a mobile app

When you are developing a mobile app, it is helpful to start by prototyping and developing based
on simple scenarios. For example, one initial prototype app that the Microsoft Dynamics AX team
developed simply updated data to AX 2012; it didn’t read data from AX 2012 or require authentica-
tion. Additional features were added as the app moved from prototype to production. Keeping apps
as focused and as simple as possible is a good guideline for mobile apps in general.

Platform options and considerations
The mobile architecture described in this chapter is platform-independent and device-independent.
You can use this architecture to develop applications across the spectrum of devices, including laptops,
tablets, and phones. You can also use it across the landscape of development technologies, such as C#
and Extensible Application Markup Language (XAML), HTML5 and JavaScript, Objective-C, and Java.

The underlying technologies used in the architecture, such as AD FS, the Service Bus Relay, and
AX 2012 services, are commonly used in cross-platform development.

Developer documentation and tools
One of the goals of the mobile architecture is to solve the basic issues of interacting with AX 2012
so that mobile app developers can focus on their apps. With the problem of communicating with
AX 2012 solved, developers can use the wealth of documentation and tools available to them. A large
community of mobile app developers builds apps for AX 2012, without needing to understand the
underlying AX 2012 framework. To the mobile app, calls to AX 2012 are simply web services calls,
which is very common for mobile apps.

Microsoft offers an exhaustive set of samples, tutorials, and tools for developers who are creating
apps for the Windows Store and for Windows Phone. As of this writing, the Windows 8.1 app sample
pack includes more than 330 samples at http://code.msdn.microsoft.com/windowsapps/Windows-8-
Modern-Style-App-Samples/view/SamplePack#content. The following are of particular of interest:

 ■ “Windows Store app for banking: code walkthrough (Windows Store apps using JavaScript and
HTML)” at http://msdn.microsoft.com/library/windows/apps/hh464943.

 ■ A data binding overview (Windows Store apps using C#, Visual Basic, C++, and XAML) at
http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx.

These types of samples can be relevant to developing mobile apps for AX 2012.

Third-party libraries
In addition to published samples, an extensive set of third-party libraries are available for developing
mobile apps. Examples of functions provided by these libraries include data binding, storage, lookups,
currency, controls (such as calendars), and date/time functions. If your organization allows the use of
third-party libraries, using these libraries can help boost developer productivity.

http://code.msdn.microsoft.com/windowsapps/Windows-8-Modern-Style-App-Samples/view/SamplePack#content
http://code.msdn.microsoft.com/windowsapps/Windows-8-Modern-Style-App-Samples/view/SamplePack#content
http://msdn.microsoft.com/library/windows/apps/hh464943
http://msdn.microsoft.com/en-us/library/windows/apps/hh758320.aspx

 CHAPTER 22 Developing mobile apps for AX 2012 753

Best practices
This section describes some valuable considerations to keep in mind when designing and developing
mobile apps.

 ■ Take advantage of native device capabilities Taking advantage of the capabilities of
a device can greatly enhance mobile apps. For example the device’s camera can be used to
record documents or receipts. The camera can also be used to capture damage or repair
 situations (for construction, manufacturing, or field services) as part of an AX 2012 transaction.
The geographic information from the device can be used to map a location or address known
to AX 2012, such as a customer, vendor, or site.

 ■ Make use of data caching and local storage Master and lookup data might need to be
cached on the device as an alternative to requesting data from the service each time it is
needed. For example, expense categories or currency types are relatively static and can be
safely cached locally. The mobile app can refresh those on an infrequent basis. Some reference
data can be cached but must be refreshed more frequently. For example, projects or custom-
ers can be stored locally but might need to be refreshed at app startup or on a regular basis.

You can store data locally by using available technologies such as indexDB or SQLite. These
technologies are supported across platforms and devices. You might need to use the RecVersion
field to determine whether records are synchronized. For more information, see “Concurrency
When Updating Data” at http://technet.microsoft.com/en-us/library/cc639058.aspx.

 ■ Consider bandwidth and connectivity in your design Mobile devices typically have less
bandwidth than desktop computers on corporate networks. You’ll need to make appropri-
ate tradeoffs to ensure that your apps work on lower bandwidths. For example, a phone app
might impose a size limit on a picture that is sent with a transaction because of bandwidth
limitations.

You should also consider intermittent connectivity. Mobile apps should be designed to expect
interruptions in connectivity. This might mean saving appropriate state information and data
locally, and using that stored data when connectivity is restored.

 ■ Allow for offline use In some scenarios, it is beneficial for users to have some app function-
ality when the app is offline (not connected). Consider whether you can enable some of the
app’s functionality offline. It is important to consider the level of business logic that should
reside in the app for offline scenarios. It probably makes sense to enable offline features
where extensive business logic (which is available in AX 2012) is not required. If you don’t en-
able offline features in such cases, your app will need to apply the business logic and have the
user react as appropriate when it reconnects.

Key aspects of authentication
Authentication was discussed earlier in this chapter as part of the overall message flow. However,
because authentication is a key and potentially complicated part of the process, this section focuses
on some of its more complicated aspects.

http://technet.microsoft.com/en-us/library/cc639058.aspx

754 PART IV Beyond AX 2012

As mentioned earlier, because the mobile app will likely run on a device that is not on a corporate
network, users must be authenticated. The first step in the process is to acquire the users’ credentials
(user names and passwords). We recommend that you store those credentials in the app by using a
secure storage mechanism on the device. That way, the mobile app can silently authenticate users
without prompting them for credentials each time the app runs.

Another complicated aspect of configuring authentication is setting up Secure Sockets Layer (SSL).
AD FS uses SSL to ensure that the passing of credentials and tokens between the mobile app and AD FS
is protected. The AD FS endpoint has a URL based on the company’s domain. For example, the AD
FS endpoint for the Contoso company might end in contoso .com. To enable SSL, you must install an
appropriate SSL certificate in AD FS. More precisely, you must set up SSL in IIS, which is used as the
front end for AD FS.

Setting up SSL in IIS is a common practice because many websites require the use of SSL for inter-
actions that require authentication or share protected information. The SSL certificate must be issued
by a recognized certificate authority (CA). In issuing an SSL certificate, the CA verifies that the entity
requesting the certificate is associated with the domain for which the certificate is being issued.
For example, the administrator for Contoso must prove to the CA that she is associated with the
contoso .com domain. This is typically done by the CA making contact by using the contact informa-
tion (phone number and email address) associated with the contoso.com domain in the Domain Name
System (DNS) records. Whether you are setting up AD FS for demonstration, testing, or production
purposes, it is necessary to have a CA-issued SSL certificate for the domain used by AD FS. For more
information, see “Obtain an SSL Certificate” at http://msdn.microsoft.com/en-us/library/gg981937.aspx.

For more information about configuring authentication, see “Developing secure mobile apps
for Microsoft Dynamics AX 2012” at http://technet.microsoft.com/EN-US/library/dn155874.aspx and
“Microsoft Dynamics AX Connector for Mobile Applications” at https://mbs.microsoft.com/downloads
/customer/AX/ConfigureAXConnectorforMobileApplications.pdf (CustomerSource or PartnerSource
credentials are required).

User experience
Developing mobile apps for AX 2012 creates an opportunity for developers to reimagine user experi-
ences. Across the landscape of devices, mobile apps are generating a wave of exciting new user ex-
periences. We encourage you to be inspired by these immersive experiences when envisioning mobile
apps for AX 2012. The expense app created by the Microsoft Dynamics AX product group provides
some vivid examples.

The following illustrations show examples of the existing AX 2012 experience compared with the
new mobile app experience in the expense app. The top half of Figure 22-3 shows the expense report
experience in the AX 2012 Employee Services portal. The bottom half of Figure 23-3 shows the corre-
sponding experience in the AX 2012 expense mobile app. Both user interfaces display views of a list of

http://msdn.microsoft.com/en-us/library/gg981937.aspx
http://technet.microsoft.com/EN-US/library/dn155874.aspx
https://mbs.microsoft.com/downloads/customer/AX/ConfigureAXConnectorforMobileApplications.pdf
https://mbs.microsoft.com/downloads/customer/AX/ConfigureAXConnectorforMobileApplications.pdf

 CHAPTER 22 Developing mobile apps for AX 2012 755

expense reports. Note that the mobile app takes advantage of cards to represent expense reports and
uses color to represent status. The app is designed to be touch-friendly and hides commands until
needed. However, the mobile app also works well with a mouse and keyboard.

FIGURE 22-3 Screenshots of expense reports in the AX 2012 Employee Services portal and in the expense
 mobile app.

756 PART IV Beyond AX 2012

Figure 22-4 shows the edit experience within an expense report in the AX 2012 Employee Services
portal and in the expense app. Again, the mobile app uses cards to represent expenses, and color and
icons to show categories. The mobile app also uses a calendar to show the expenses during the week
based on the transaction date.

FIGURE 22-4 Screenshots of the edit expense reports experience in the AX 2012 Employee Services portal and in
the expense mobile app.

User experience guidelines are quickly evolving as the role of devices expands. For detailed infor-
mation and guidelines for developing mobile apps, see “Getting started with developing for Windows
Phone 8” at http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402529(v=vs.105).aspx.
This document is updated frequently, so check back often.

http://msdn.microsoft.com/en-us/library/windowsphone/develop/ff402529(v=vs.105).aspx

 CHAPTER 22 Developing mobile apps for AX 2012 757

Globalization and localization
Mobile apps should support globalization and localization, as described here:

 ■ Globalization entails using the correct formats for numbers, dates, times, addresses, and phone
numbers for different locales. For the AX 2012 apps developed by Microsoft, globalization is
based on the country or regional settings of the device.

 ■ Localization entails displaying the user interface in the language of the user. For the AX 2012
apps developed by Microsoft, the app language is based on the user’s language in AX 2012.

We recommend that you design apps so that resources, such strings and images, are separate from
code. This enables them to be independently localized into different languages.

App monitoring
Having information about the usage of your mobile apps is generally valuable, so we suggest that you
develop your apps to capture and save monitoring information. This approach is also referred to as
telemetry or instrumentation. Windows Store apps and Windows Phone apps inherently capture some
information, including downloads, basic usage, and errors. In addition, it is useful to capture more
detailed information about how the apps are used. Application insights help you find out what users are
doing with the app and help you diagnose performance or exceptions with the app. Application Insights
for Microsoft Visual Studio Online is a cloud-based service designed for monitoring mobile or web apps.
For more information, see http://msdn.microsoft.com/en-us/vstudio/dn481095(v=vs.98).aspx.

Web traffic debugging
The mobile app architecture relies heavily on calls to web services. These include calls to authenticate
the user of the app and calls to AX 2012 (through the Service Bus Relay). It is very useful to capture
and analyze the content of these calls. The Fiddler web debug proxy is an excellent tool for viewing
and analyzing the web services calls. You can configure Fiddler to work with mobile devices.

The following blog posts describe how to use Fiddler to develop apps for Windows 8 phones:

 ■ http://www.geekchamp.com/news/windows-phone-8-and-fiddler

 ■ http://www.spikie.be/blog/post/2013/01/04/Windows-Phone-8-and-Fiddler.aspx

 ■ http://blogs.msdn.com/b/fiddler/archive/2011/09/14/fiddler-and-windows-8-metro-style-
applications-https-and-private-network-capabilities.aspx

And the following blog post describes how to use Fiddler with iPhone5:

 ■ http://blog.brianbeach.com/2013/01/using-fiddler-with-iphoneipad.html

http://www.geekchamp.com/news/windows-phone-8-and-fiddler
http://www.spikie.be/blog/post/2013/01/04/Windows-Phone-8-and-Fiddler.aspx
http://blogs.msdn.com/b/fiddler/archive/2011/09/14/fiddler-and-windows-8-metro-style-applications-https-and-private-network-capabilities.aspx
http://blogs.msdn.com/b/fiddler/archive/2011/09/14/fiddler-and-windows-8-metro-style-applications-https-and-private-network-capabilities.aspx
http://blog.brianbeach.com/2013/01/using-fiddler-with-iphoneipad.html
http://msdn.microsoft.com/en-us/vstudio/dn481095(v=vs.98).aspx

758 PART IV Beyond AX 2012

Architectural variations

So far, this chapter has focused primarily on a specific mobile architecture that solves the key chal-
lenges of allowing remote mobile apps to work with an on-premises deployment of AX 2012. This ar-
chitecture is also optimized for apps that are distributed by app stores and installed on local devices.
However, certain variations of this architecture might be appropriate in specific scenarios.

On-corpnet apps
In some scenarios, mobile apps are used exclusively within a corporate network environment. An ex-
ample is a warehouse app that has corporate network connectivity throughout the facility. In such a
case, the user is already authenticated when accessing the corporate network, so further authentica-
tion isn’t necessary. Also, the app can access AX 2012 through the corporate network, so the Service
Bus Relay might not be necessary.

Web apps
Another approach to mobile apps is the use of web apps targeted for mobile devices. In this case, the
app is available through the web browser on the device. This approach has some tradeoffs. Some sce-
narios might be most appropriate for web apps, and other scenarios might be most appropriate for
mobile apps that are installed on the device. Many popular websites today also deliver mobile apps
that users install, even though the experience is also available through browsers.

Web apps have the following advantages:

 ■ They work across devices, although they need to be tested and refined to handle device-
specific nuances.

 ■ They are more adaptable to AX 2012 customizations and extensions. Because they are rendered
from the AX 2012 server, the apps can include the customizations and extensions that have
been applied to the server.

 ■ They do not require users to install or configure the apps.

Web apps have the following disadvantages:

 ■ They don’t provide the high-fidelity, immersive experiences available in modern mobile apps.

 ■ They rely completely on the server to deliver the app and content. The server might not
 perform as well or might be less responsive than an app that is installed on the device.

 ■ They typically don’t have local caching or offline capabilities.

 ■ They probably can’t take advantage of device features such as a camera or GPS.

You can use these tradeoffs to decide which approach is most appropriate for your scenario.

 CHAPTER 22 Developing mobile apps for AX 2012 759

Resources

This section contains a list of recommended sources of information to assist developers with trouble-
shooting and debugging.

 ■ CustomerSource and PartnerSource The “Mobile Apps for Dynamics AX” page on
 CustomerSource and PartnerSource has a wealth of information for deploying the existing
apps or developing mobile apps:

• CustomerSource https://mbs.microsoft.com/customersource/northamerica/AX
/news-events/news/MSDYN_MobileAppsAX

• PartnerSource https://mbs.microsoft.com/partnersource/northamerica/news-events
/news/MSDYN_MobileAppsAX

Note You must register to be able to access these sites.

 ■ Companion Apps blog The Microsoft Dynamics AX Companion Apps blog is a source of
regularly updated information. The blog includes an FAQ page for common questions and
 issues at http://blogs.msdn.com/b/axcompapp/.

 ■ Support The normal Microsoft Dynamics AX support channels are available to support the
mobile apps released by Microsoft for AX 2012. This includes support for the on-premises
listener and its associated configuration.

https://mbs.microsoft.com/customersource/northamerica/AX/news-events/news/MSDYN_MobileAppsAX
https://mbs.microsoft.com/customersource/northamerica/AX/news-events/news/MSDYN_MobileAppsAX
https://mbs.microsoft.com/partnersource/northamerica/news-events/news/MSDYN_MobileAppsAX
https://mbs.microsoft.com/partnersource/northamerica/news-events/news/MSDYN_MobileAppsAX
http://blogs.msdn.com/b/axcompapp/

This page intentionally left blank

This page intentionally left blank

Index

 775

A
abstract tables, in inheritance hierarchy, 622
acceptance test driven development (ATDD), 557, 558,

566
access control

defined, 373
security roles, managing through, 375

access operators, X++ expressions, 113
accessing data with queries, 299
accounting

distribution process, 704
events, documenting, 702
requirements, deriving, 698

accounting framework, 698–702
action controls

Action pane strips, 188
Action panes, 188
buttons, 187

action icons, 60
action menu items, 264
Action pane

described, 188
designing for ease of use, 169
details forms, displaying in, 165
Enterprise Portal, using with, 170
organizing by activity, 163
strips, 188
web part in Enterprise Portal, 211

actions, 26
activating a workflow, 283–287
activity entity, 688–692
address bar, 155
address book framework, integrating, 675
ad hoc mode, using, 482, 483
ad hoc reports, 293
aggregates, 96
AJAX, 233
alert notifications, displaying on webpages, 213
ALM. See application life cycle management (ALM)
alternate key columns, 52
alternate keys, 614
analytic content

configuring, 325, 326
Role Centers, displaying in, 351

anonymous types, 90
anytype

reference type, 108
variable declaration, 111

AOS. See Application Object Server (AOS)
AOT. See Application Object Tree (AOT)
APIs

Batch, 652–654
document services, provided by, 412
model store, 740
one-way messages, using to send, 433
QueryFilter, 635–638
reflection, 711–724
securing, 392

application data element types, 9–18
application development environments, 6
Application Integration services, 8
application life cycle management (ALM)

benchmarking, 773
deploying customizations, 768
life cycle phases, 761
Lifecycle Services (LCS), 762–768
solution, tracking with, 556

application model elements, updating with MorphX, 19
Application Object Server (AOS)

client configuration, 486
configuration, 486, 655, 659
Help system, and, 573
improving performance of, 486
report execution sequence, in, 293
system services, 407, 408

Application Object Tree (AOT)
assemblies, referencing, 77
autorefresh, enforcing, 25
chart controls, managing, 304
dirty elements, 25
document set properties, setting, 597
elements, 20, 22, 24–26
elements, Enterprise Portal, 213

776

Application Object Tree (AOT) (continued)
jobs, creating with, 106
Label Files node, 34
layers and models, 26
manual resolution, 25
modeling capabilities, 326
navigating, 21
opening, 21
projects, maintaining in, 340
publishing services, 421
subnodes, changing the order, 24
synchronizing elements, 25

application platform architecture
data element types, 9
development environments, 6
layers, 5
tiers, 7, 8

approvals workflow element, 264, 277
architecture

application meta-model, 9
application platform, 6
client-side reporting solutions, 290, 291
design principles, 3
DIXF, components of, 772
Enterprise Portal, described, 208
layers, 4
mobile, 746–751, 758
security, in AX 2012, 372
server-side reporting solutions, 292

area pages, 158–160
Arithmetic operators, expressions, 113
artifacts

ALM solution, tracking with, 556
custom services, 408
document services, 412, 413
security, validating, 384
workflow, 278

ASP.NET controls
Chart Control, 290
User control web part, hosting with, 213
user input, validating, 243

ASP.NET webpages, creating with AJAX, 233
assemblies

coding against, in X++, 78
hot swapping on servers, 87, 88
references, adding, 77
strong-named, using, 76, 77
third-party, 76

assigning security roles, 376, 384
ATDD (acceptance test driven development), 557,

558, 566
attributes

classes and methods, using with, 139
creating, 552
predefined, test, 550–552

product, 684
SysObsoleteAttribute, 139
SysOperation framework, 517

authentication
described, 373
mobile apps, 749, 754

Authenticode, signing models with, 734
authorization, 373, 391
auto design reports, 297, 298
Auto variables, 200
auto-inference, 378
automated decisions and tasks, in workflows, 265
autorefresh, 25
avg aggregate functions, in select statements, 119
AX 2012

batch processing, 643, 644
chart development tools, 303
client, Help actions, 571
consuming services, 422–432
custom services, 408, 411
data connection queries, 299
designing new transaction details forms, 169
Development Workspace, launching, 20
Enterprise Search, 253
Excel templates, building, 203
extending transaction details forms, 169
extensions, 300
IDs, assigning, 66
integrating with other systems, 74, 76–88
labels, 34
localization, allowing for, 36
managed DLLs, referencing from, 77
metadata layers, 727
mobile architecture, 746–751
mobile clients, services for, 750, 751
MorphX development tools, 19
print management, 661–669
publishing services, 421
reporting development tools, 296
reporting framework architecture, 293
security framework, 372–376
send framework, 432–434
services framework, 407–420, 750
solution, as, 3
SQL Server Power View, 353–358
system services, 408
Trustworthy Computing, 390, 393
unit testing features, 550–553
value type conversions, 128
version control systems, 65
Word templates, building, 204

AX 2012 R3
extension methods, specific to, 98, 99
LINQ, using with, 89

Axd<Document> classes, 414

application platform architecture

 777

Axd queries, generating document services with, 416
AxPopup controls, 225
Ax<Table> classes, 415
AXUpdatePortal utility parameters, 252, 253
AXUtil, models and, 731, 734
Azure demo environment topology, 766

B
backing entities, creating, 695, 696
base enumeration

types, 9, 111
values, adding, 677, 679

basic integration ports, 421
batch bundling, 488
batch framework

Batch API, using, 652–654
common uses, 643, 644
described, 641
requirements, 516

batch groups, 643, 656
batch jobs

batch-executable classes, creating, 645–647
creating, 647–654
described, 643
managing, 657, 658
task dependencies, 650–653

batch processing, 643, 644
batch servers

AOS instances, configuring as, 655
described, 643
operations, running on, 517

batch tasks
debugging, 658–660
described, 643

batch-executable classes, creating, 645–647
benchmarking, 773
best practices

mobile apps, 753
rules, 41, 43
washed version, 57

Best Practices tool
application logic, validating with, 393
benefits of, 40
checking customized tables, 417
custom rules, adding, 43
deviations, 38
suppressing errors and warnings, 43

BI. See business intelligence (BI)
Bitwise operators, expressions, 113
boolean variable declaration, 111
BoundField controls, 227
BPM (Business Process Modeler), 764, 765
breakpoints, 46, 47
browsers, interactions with Enterprise Portal, 209

build process
creating, 73
executing tests, 563–566

business documents. See also workflow, document
class

document hashes, 430
transmitting, 432–434
updating, 428–430
workflow documents, 262

business intelligence (BI)
analytic content, configuring, 325, 326
components of, 314
customizing solutions, 324
displaying information, 211
external data integration, 338–340
implementing, 315–324
prebuilt solutions, customizing, 324–340

business logic, referencing in classes, 201
Business Overview web part, 211, 361
Business Process Modeler (BPM), 764, 765
business processes, 257, 258. See also process cycles
business unit, 673
button controls, 187, 188

C
CacheLookup values, 441
caching

client vs. server tiers, 471, 474
declarative display method, 439
EntireTable, 474
global variables, 477
indexing, and, 441, 468
number sequencing, 487
records, 467, 468
set-based, enabling, 474
unique index join, 441

calculations, moving to AX 2012, 351
calendars, date dimensions, 330
call stack, 106
calls, grouping into chunks, 445
CALs (client access licenses), 401
capability, 687, 688
CAS (code access security), 140
case, specifying for source code, 67
Case Sensitive comparison option, 59
categories

product, 684
reporting functions, 294
workflows, using in, 280

chart controls
binding to datasets, 306
ED Chart Control, adding, 304
markup elements, 305

chart controls

778

charts
creating for Enterprise Portal, 303
default format, overriding, 310
development tools, AX 2012, 303
EP Chart Control, adding to projects, 304
interactive functions, adding, 308, 309
troubleshooting, 312

class types, 107
classes

batch-executables, creating, 645–647
declarations, defining in macros, 535
decorating with attributes, 139
main method, adding, 34
rules, checking for, 43
securing, 392
structuring, 134
upgraded versions, 58

classes and interfaces, 133
class-level patterns, 144–146
client access logs, 512
client callbacks, eliminating, 444
client configuration on AOS, 486
Client Performance Options form, 486
client workspace components, 155, 156
client/server performance, optimizing, 438
client-side reporting solutions, 290, 291
cloud, deploying services to, 422
Cloud Hosted Environments, 765
Cloud Powered Support, 767
cloud-based services, using REST, 751
code. See also managed code

call stack, viewing in debugger, 47
customizing forms, with, 197
element types, 13, 14
executing X++ as CIL, 487
permissions, 381
quality, enforcing, 64
recompiling in X++ code editor, 38
set-based operations, transferring into, 459
set-based statements, replacing with, 461
tier-aware, writing, 442
viewing X++ in debugger, 47

code access security (CAS), 140
code access security framework, 392
code samples, downloading, vi
coding patterns, 487–500. See also patterns
collection types, 106
columns

displaying default, 164
entity relationship, 52

COM interoperability, 129
combined values, constraining, 694
comments to X++ code

adding, 132
TODO, 38

common language runtime (CLR), 126–129
Common menu grouping, 196
Common section, area pages, 159
common type, 108
Compare tool, 57–59
Compare APIs, 61
compiling,

X++ code
LINQ queries, 101

concepts, mapping to physical table elements, 697
concrete tables, in inheritance hierarchy, 622
Conditional operators, expressions, 113
conditions, creating for workflows, 280
configuration key element types, 17
configuration keys

references, 401
table hierarchy consistency, 622
using, 399, 400

configuration technology and product masters,
684, 685

configuration time, defining tables, 611
conflicts, resolving with OCC, 430
Connect web part, 212
constrained table security policy, 385
constraint-based configuration technology, 684
constructor encapsulation, 144
consuming AX 2012 services, 422, 435
container variable declaration, 111
containers

AxColumn, for controls, 217
converting table buffers into, 445

content pane, workspace component, 156
content section, in HTML, 582, 598
context-sensitive topics, in Help, 586, 587
control elements, user interface, 11
controls

actions, 187
adding, 186
buttons, 187
charting, 303
data binding, 186
Enterprise Portal framework, 215–228
input, 192
layout, 189
ManagedHost, 193
overrides, 186
permissions, setting, 379
reports, using in, 297
runtime modifications, 187
user input, validating, 243

CopyCallerQuery property, 185
cost center operating unit, 673
count aggregate functions, in select statements, 119
coupling, reducing or eliminating, 543
Create Upgrade Project, 30

charts

 779

Cross-Reference tool, 62, 63
CRUD operations, 408
cubes

creating, 341–351
customizing, 327–335
data, exposing to users, 351
deploying, 317–323
extending, 335–337
field-level properties, defining, 344
processing, 323
table-level properties, defining, 344

cue element types, 12
cue group element types, 12
cue groups, 195
cues, 157
Cues web part, 212
currency conversions, 333, 346–350
CustName, 110
Customer Details form, 152
customers, creating new, 152
Customization Analysis, 766
customizations, deploying, 768
customizing

business intelligence solutions, 324–340
defaulting logic for table fields, 419
document services, 417
Help system, 569, 570

custom lookups, 201
custom rules, adding, 43
custom services

adding, 418
artifacts, 408
invoking asynchronously, 430
registering, 411

D
dangerous API exceptions, 43
data

business documents, updating in, 428
dimensions, querying, 696
importing and exporting, 769–772

data access logic, using datasets, 213
data binding

controls, 186, 306
field values, displaying, 227
strategies, 306

data caching, mobile apps and, 753
data connections, supported in SSRS, 299
data contracts

parameters, using in service operations, 410
X++ collection types, using in, 411

Data Dictionary, 21
Data Import/Export Framework (DIXF), 771, 772

data mash-ups, 354
data models

entity relationship, 52
UML, generating, 49

data partitions, 638, 639
data security, 376, 377
data series, 306–308
data source view (DSV), 337
data sources

derived, 179, 180
forms, 177
metadata properties, 182
Office Add-ins, making available to, 202
OLAP, 306
OLTP, 306
saving records in, 181
services, making available, 202
table inheritance and, 178–180

data tier architecture, 7
data warehouses, 339
data-aware statements, syntax, 116
database transactions, rolling back, 123
datasets

binding chart controls to, 306
data access logic, defining, 213
dynamic series, 308
initializing with init method, 214
methods, 214, 215
multiseries, 307
single series, 307
temporary record buffers as pointers to, 605–608
views, 214

date effectivity, 181
date variable declaration, 111
date-effective framework, 628–633
debugging. See also errors; troubleshooting

batch tasks, 658–660
breakpoints, 46
Debugger tool, 20
enabling, 45
extensible data security policies, 389
Help system, 598, 599
multiple concurrent updates, 430
security constructs, 394
shortcut keys, 48
user interface elements, 46, 47
web traffic, 757
X++ in batches, with Visual Studio, 660

declarations section, in HTML, 576–578
declarative display method caching, 439
decoupling

base and derived classes, 539, 540
events, 544

Default Dimensions, 693
defaulting logic, 419, 420

defaulting logic

780

delegates
declaring, 136
members of a class, adding, 544
subscribing to, 137

delete_from transaction statement, 122
department operating unit, 673
dependencies, batch job tasks, 650–653
deploying customizations, 768
derived data sources, 179, 180
derived tables, creating, 621
design, workflow phase, 275
Design node properties, 186
design phase

described, 761
hierarchies, creating, 764
LCS tools and services, 764

design principles of AX 2012, 3
design time, defining tables, 610, 611
designing new transaction detail forms, 169
details forms, 164–166
details pages, creating, 231
DetailsFormMaster template, 175
DetailsFormTransaction template, 175
develop phase

customizations, deploying, 768
described, 761
LCS tools and services, 765

development environments
MorphX, 6
Visual Studio, 6

development tools
accessing, 20
layer comparison, 30
mobile apps, 752
wizards, 30

Development Workspace, launching, 20
Dialog template, 175
dictionary API, type-safe reflection, 715
digital signatures, adding to models, 734
Dimension Attribute Sets, 693
dimension framework, 692–697
Dimension Sets, 693
dimension-based configuration technology, 685
dimensions

concepts, physical table reference mapping, 697
product, 681
querying data, 696
storage, 683, 693, 694
tracking, 683

dirty elements, 25
display menu items, 264
distribution policies, controlling with tokens,

667–669
DIXF (Data Import/Export Framework), 771, 772
DLLs. See managed DLLs

document
body section, in HTML, 581
files, in Help, 572
hashes, 430
head section, in HTML, 578–580
services, 412–420, 424, 428
sets, 572, 597

documentation and resource element types, 16
documenting XML methods and classes, 132
DropDialog template, 175
DSV (data source view), 337
duties

security roles, assigning to, 381
segregating, 375, 385

duty element types, 14
dynalinks, 178
dynamic role assignment, 376
dynamic series datasets, 308

E
editing Power View reports, 357
editor scripts, 34
EDTs (extended data types)

schemas, restricting, 414
table relations, and, 615–617

element types, 9–18
elements

actions, accessing in the AOT, 26
AOT, 213
browsing, 20
creating, 66
customizing existing, 66
dirty, 25
hierarchies of, 712, 713
IDs, in models, 730, 740
intrinsic functions, referencing with, 708, 709
layers and models, in, 26, 726, 727
life cycle, 66
modifying in the AOT, 24
naming syntax, 22
overwriting, in models, 735
pending, 72
referencing by name, 709
reflecting, using APIs, 711–724
refreshing, 25
revision history, 71
synchronizing, 25, 69
types, 730
upgrade conflicts, 30
versions, 57
workflow, 264

Enterprise Portal
Action pane, 170

delegates

 781

AOT elements, 213
architecture, 208
charts, creating, 303
components of, 211
deploying as SharePoint features, 250
described, 207
design considerations, 171
developing applications, 228
exceptions, 244
feature definitions, 250
framework, described, 8
framework controls, 215–228
master pages, 250
metadata, APIs for accessing, 238
navigation paths, 170
page processing, 210
proxies, predefined, 240
search bar, 170
security, role-based, 245
SharePoint, integrating with, 248, 256
SharePoint navigation elements, using, 248
style sheets, 256
top navigation bar, 170
web client, described, 8
web client user experience, 169
web part pages, creating, 252
web parts, 211
workspace components, 170

Enterprise Portal Chart Control. See EP Chart Control
enterprise resource planning (ERP), 153
Enterprise Search, 253, 254
EntireTable caching, 474
entity relationship data model, 52
enumeration types, 106
EP Chart Control

creating, 304
data binding strategies, 306–308
described, 289

ERP (enterprise resource planning), 153
error handling, 244
errors. See also debugging; troubleshooting

best practice rules, 42
compiler, 38
Help system, 598, 599
suppressing, 43

event handlers, 264, 545, 546
eventing, 543–548
Excel

data mash-ups, 354
Power BI, 359
reports, sharing with users, 360
templates, building, 203

exception data type enumerations, 124
exception handling

best practice, 122

duplicate key, 125
exceptions

dangerous API, 43
throwing, 122

exists method, 147
export/import file (XPO), 58
exporting

data, 769–772
model stores, 726

expressions
lambda, 91
operators, 113

extended data type element types, 10
extended data types, 106, 110
extending transaction detail forms, 169
extensibility patterns

eventing, 543–548
extension framework, 539

extensible
classes, 541
data security policies, 385–389

extensible data security (XDS) framework, 376, 675
extension framework, 539, 540
extension methods, 90, 97. See also AX 2012 R3
extensions

AX 2012, 300
creating, 539
data processing, 302
disabling, 301
RDL transformations, 301
SSRS, 299

external data integration, 338–340
external data sources, data mash-ups in Excel, 354
external web services, consuming from AX 2012, 435

F
FactBox pane, 156
FactBoxes, 164, 165
factory method, 145
false positives, 43
FastTabs

described, 165
organizing fields into, 166

FastTabs TabPage layout control style, 191
feature definitions, 250
Fiddler web debug proxy, 757
field lists, 477–479
field-bound controls, 192
field-level properties, in cubes, 344
fields

aggregating within code, 499
declaring, 134
entity relationship columns, as, 52

fields

782

fields (continued)
hiding, using TabPage, 190
justifying, 483
methods, overriding, 199
organizing into FastTabs, 166
table properties, 616

filters
applying programmatically, 221
custom time periods, adding, 364, 365
projects, using in, 29
tests, creating for, 552

financial dimensions, 329, 675
find method, 147
Find tool, 54
firstfast hint, using, 498
flexible authentication, 373
foreign key columns, 52
foreign keys

CreateNavigationPropertyMethods, 618–620
relations, 617
surrogate, 181

forms
Action panes, 188
ad hoc mode, using on, 482
Auto variables, 200
batch jobs, creating, 648–654
business logic, adding calls to, 201
controls, 186, 189, 192–194
creating, 174
customizing with code, 197
data sources, 177
dynalinks, 178
element types, 11
hiding fields, 190
input controls, 192
layout controls, 189
lookups, custom, 201, 202
metadata, 176, 182
methods, overriding, 198
navigation items, adding, 195, 196
.NET button, adding, 193
parts, 194, 195
patterns, 174
permissions, setting, 377
queries, 183–186
referencing parts, 195
table data information, 712
TabPage, hiding fields using, 190
templates, 175
workflow, enabling in, 284, 285

foundation layer, 5
frameworks

accounting, 698–702
address book, integrating, 675
application modules, integrating, 675, 676

batch, 641–644, 652–654
date-effective, 628–633
dimension, 692–697
Enterprise Portal, 8, 215–228
extensible data security, 675
extension, 539
operations resource, 686–692
organization model, 672–680
policy, 675
product model, 681–686
RunBase, 517, 533
source document, 702–705
SysOperation, 516
SysTest, 550–553, 566

full update mode, applying for document services,
428

full-text search queries, 633, 634
functions

interactive, adding to charts, 308, 309
reflection system, 707–711

G
Generic Record Reference, 148
global variables, 47
globalization, 757. See also localization
grids, displaying input controls in, 191
group by sort, in join conditions, 120
group masks in projects, 28
grouping, input controls, 189
guid variable declaration, 111

H
handling exceptions, 122, 125
handshake, secure, 140
hashes, documents, 430
Help documentation set element types, 16
Help system

described, 570–576
document files, 572
errors, 598, 599
Help server, 572, 573
Help viewer, 571
HTML metadata file, creating, 591, 592
publisher ID, 574
publishing content, 593–597
summary page, 574
table of contents, 574, 588–590
topics, creating, 573–588
troubleshooting, 598, 599
web service, 8, 572, 573

helper threads, 487

filters

 783

hierarchies
Business Process Modeler (BPM), creating with,

764
elements, 712, 713
organization model framework, 673, 674
print management, 662, 663

hierarchy designer, extending, 680
history

batch jobs, reviewing, 658
elements, 71

hosting ASP.NET controls, 213
hot swapping assemblies, 87, 88
HTML

Help topics, creating in, 576–588
metadata file, creating, 591, 592

human workflows, defined, 259–260

I
IDs

elements, in models, 730
treenode type, 722

importing
data, 769–772
model files, 735, 736

included columns, in indexing, 497
indexing

caching, and, 441, 468
included columns, optimizing with, 497

IndexTabs TabPage layout control style, 190
indicator definitions, 365
individual task modeling, 488
info parts, 11, 194
Infolog web part, 212
information messages, best practice rules, 42
infrastructure callback, 273
Infrastructure Estimation, 764
inheritance

metadata, 177
RunBase framework, 533
tables, 178–180, 621–626

InMemory temporary tables, 442, 448, 604–609
input controls, 192
Inquiries menu grouping, 196
Inquiries section, area pages, 159
insert method transaction statements, 122
insert_recordset transaction statements, 122
int variable declaration, 111
int64 variable declaration, 111
Integrated Windows Authentication, 373
integration ports

basic, 421
processing messages, sequence of, 435
publishing services, 408

selecting, 433
integration with Microsoft Office client, 202
interaction patterns, implementing, 232
interactive functions, adding to charts, 308, 309
interface types, 107
inter-form dynalinks, 178
Internet services queries, 299
interoperability

CLR, 126
COM, 129

intra-form dynalinks, 178
intrinsic functions

referencing elements, 708, 709
using, 63

inventory closing, improving speed of, 487
inversion entry column, 52
Issue Search, 767

J
job element types, 13
jobs

model elements, 106
restarting, 465

joined data sources, 178
joins

group by sort, 120
joining tables, 120
operators, 121
set-based operations, and, 455
TempDB temporary tables, using with, 609

Journals section, area pages, 159

K
keys

alternate, columns, 52
configuration, 399, 400
foreign, surrogate, 181

keywords, for select statements, 117, 118
KPI List web part, 361
KPIs

adding, 350, 363
modeling in AOT, 337

L
label editor, 34, 36, 37
label files

element type, 16
Label Files node, 36
uses for, 242

label files

784

labels, 34
checking out, 69
creating, 36
Help, referencing from, 584–586
reusing, 37
X++, referencing from, 37

lambda expressions, 91
Language-Integrated Query. See LINQ (Language-

Integrated Query)
languages, changing in prebuilt solutions, 331, 332
layers

comparing, 30
element definitions, 726, 727
five-layer solution, 4–6
logical partitions, 5, 6
metadata, 727
models, and, 728

layout controls, 189
LCS (Lifecycle Services), 762–768
Ledger Dimensions, 693
Left navigation web part, 212
legal entity organization type, 672
license codes

described, 397, 398
element types, 17

License Sizing Estimator, 764
licensing

customizing, 403
models, 396

life cycle
elements, 66
phases, 761

Lifecycle Services (LCS), 762–768
line-item workflows, 265
linked data sources, 178
LINQ (Language-Integrated Query)

anonymous types, creating, 90
components of, 89
constructing, 91–94
data access problems, solving, 95–98
defined, 76
extension methods, 90
lambda expressions, 91
overhead, limiting with C# compiler, 101
records, managing, 99, 100
var keyword, using to omit variable types, 89

list definition element types, 16
list pages

alternative to reports, 162
Analyze Data button, adding to, 358
described, 160
designing, 163
displaying default columns, 164
FactBoxes, 164
interaction classes, defining, 230

model-driven, creating, 229
optimizing for performance, 498
performing bulk actions, 164

List web part, 212
ListPage template, 175
literals, supporting upgrade scenarios, 452
local variables, 47
localization, 36, 242, 757
Logical operators, expressions, 113
logical partitions, 5
logs, client access, 512
lookups, customizing, 201, 202, 222

M
macro library, 130, 131
macros

class declarations, defining in, 535
element types, 13
supported directives, 130
using parameters, 131

managed code
debugging, 84
proxies, 85
writing, 79–84

managed DLLs, referencing from AX 2012, 77
ManagedHost control, 193
managing state, 279
manifest, models described in, 732
map element types, 10
map record types, 107
master data sources, 177
master pages, 250
master scheduling, improving speed of, 487
maxOf aggregate function, in select statements, 120
measuring performance, 773
member variables, 47
memory heap, 106
menu element types, 11
menu item element types, 11
menu items

labels, in Help topics, 586
operating unit types, creating for, 678
role associations, changing, 403
security properties of, 380
workflows, in, 264, 283

menus, grouping, 196
messages

flow and authentication, 749
sending, unsolicited, 432, 433

metadata
accessing through managed code, 238
associations, in forms, 176
crawling with Enterprise Search, 254

labels

 785

definitions, selecting, 328
derived classes, adding to, 540
element IDs, 740
form data source properties, 182
Help topics, HTML, 578–579
Help topics, non-HTML, 591
inheritance, in forms, 177
layers, 727
model store, in, 737–739
perspectives, defining, 343
queries, retrieving, 425
WSDL, publishing in, 407–420

Method invocations, expressions, 113
method-bound controls, 192
methods

decorating with attributes, 139
extension, 90
initializing a dataset, 214
invoking on objects, 707
main, adding to a class, 34
modifiers, 135
object behavior, declaring, 135
overriding with code, 197, 198
pack-unpack, 535–538
purposes, adding, 679
QueryBuildDataSource, 184
QueryRunQueryBuildDataSource, 184
RunBase overrides, 516
static new, characteristics of, 533
X++, exposing as a custom service, 408

Microsoft Azure Active Directory Access Control, 747
Microsoft Azure Service Bus adapter, 422
Microsoft Azure Service Bus Relay, 746
Microsoft Dynamics AX

Infolog messages, displaying on webpages, 212
Report Definition Customization Extension

(RDCE), 300
Reporting Project, 296
Trace Parser, 501. See also tracing

Microsoft Dynamics AX 2012, See AX 2012; AX 2012
R3

Microsoft Dynamics Enterprise Portal configuration,
245. See also Enterprise Portal

Microsoft Dynamics Public configuration, 245
Microsoft Office client, integrating with, 202–205.

See also Office Add-ins
Microsoft SQL Server Reporting Services (SSRS),

displaying reports, 212
Microsoft XML Core Services (MSXML), 129
migrating customizations, 768
minOf aggregate function, in select statements, 120
mobile apps

architecture variation considerations, 758
AX 2012 service design for, 750
best practices, designing and developing, 753

data storage, 753
described, 747
developer resources, 752, 759
developing, 752–757
message flow, 749
offline use, allowing for, 753
on-premise listener, 751
usage, monitoring, 757
user authentication, 749, 754

mobile architecture
components of, 747
developer resources, 752, 759
platform options, 752
variations, 758

mobile clients, using AX 2012 services, 750, 751
model element prefixes, MorphX, 692, 701, 705
model file, generating from .xpo, 73
model stores

API, 740
defined, 725
deploying, 739
element IDs, 740
exporting, 726

model-driven list pages, 212, 229
modeling

capabilities in the AOT, 326
functional scenarios, 676

models
categories, 733
conflicts, resolving with push, 736
creating, 731
described, 728, 729
element IDs, 730, 731
exporting, 733
importing, 735, 736
layers, 726
manifest, describing in, 732
overwriting elements, 735
production, deploying to, 739
publishing, 732–736
signing, 734
staging, 737–740
test environment, 738
upgrading, 737

modifications, rolling back, 465
module-specific navigation links, 212
MorphX

Application Object Tree (AOT), 21
Best Practices tool, 38
classes, upgrading, 58
Compare tool, 57
compiler, 38
Cross-Reference tool, 62
datasets, creating, 213
debugger, 45

MorphX

786

MorphX (continued)
development environment, 6
Find tool, 54
implementing actions, 26
label editor, 34
labels, referencing from X++, 37
model element prefixes, 692, 701, 705
models, creating, 731
personalizing tool behavior, 20
property sheet, 31
Reverse Engineering tool, 48
Table Browser tool, 53
tools and components, 20
Type Hierarchy Browser, 20, 108
Type Hierarchy Context, 20, 108
updating application model elements, 19
user interface control element types, 11
version control, 64, 65
X++ code editor, 32

MSXML (Microsoft XML Core Services), 129
multiseries datasets, 307

N
Name extended data type, 110
Named User license, 396
navigation

items on forms, 195, 196
layer forms, 155, 156, 170
links, 212
panes, 155, 156
SharePoint sites, elements, 248

.NET AJAX. See AJAX

.NET buttons, adding to forms, 193

.NET CIL (common intermediate language), running
X++ as, 142

.NET CLR interoperability statements, 114
number sequence caching, 487
numeric information, displaying on webpages, 212

O
Object creation operators, expressions, 113
object models, UML, 50
object types

reference type, 109
variable declaration, 111

objects
methods, invoking on, 707
Query, 185
QueryRun, 185

OCC (optimistic concurrency control), 430
Office 365, Power BI, 359
Office Add-ins, 202–205

Office clients, 8
OLAP database, providing access to, 324
old layered version types, 57
on-corpnet mobile apps, 758
on-premise listener, developing for mobile apps, 751
operate phase

described, 761
LCS tools and services, 767

operating unit organization types, 672, 673, 677
operations

batch servers, running on, 517
downgrading, 454, 456
requirements for defining, 516

operations resource framework, 686–692
operators

join, 121
set-based data, manipulating, 447
table hierarchies, 448

optimistic concurrency, 466
optimistic concurrency control (OCC), 430
OptionalRecord, 181
ordered test suites, 562
organization

hierarchies, 673, 674
types, 672, 674

organization model framework, 672–680
over-layering, 727
overriding

controls, 186
default chart formats, 310
form methods, 198

P
pack-unpack pattern, 535–538
page definition element types, 16
Page title web part, 212
pages

Enterprise Portal, processing in, 210
pop-up browser window, opening in, 225
SharePoint templates, 249
standard interaction patterns, implementing, 232

parallel activities, in workflows, 265
parallel processing, 433, 435, 488
parameter method, implementing, 144
parameters

AXUpdatePortal utilities, 252
data contract, using in service operations, 410

Parentheses, in expressions, 113
parent pages, passing data to, 226
Parm methods, 34
partial update mode, applying for document

services, 429
partitions, 638, 639
parts, 194, 195. See also web parts

MSXML (Microsoft XML Core Services)

 787

passing information
Context data structure, 235
record context interface, 247

patterns
checking for existing records, 494
class-level, 144–146, 145
extensibility, 539
for performance, 487–500
pack-unpack, 535–538
property method, 534
storage, dimensions, 693, 694
table-level, 147, 148

pending elements, viewing, 72
performance

AOS configuration settings, 486
benchmarking, 773
caching, 438, 477
coding patterns, optimizing for, 487–500
configuration options, 483–487
declarative display method caching, 439
field justification, 483
field lists, limiting, 479
list pages, optimizing, 498
monitoring tools, 501–513
parallel processing, using, 435
table inheritance, 626
transactions, optimizing for, 447
Usage Profiler, 764

Periodic menu grouping, 196
Periodic section, area pages, 159
permissions

auto-inference, using, 378
code, 381
defined, 374
forms, setting for, 377
privileges, creating, 380
property values, 381

personas, defined, 352
personName, 112
perspective element types, 10
physical tables, mapping to concepts, 697
platform architecture

application development environments, 6
tiers, 7, 8

platforms, and mobile architecture, 752
policies

context information, 386
extensible data security, 385

policy framework, 675
policy query, 386
polymorphic

associations, 147
queries, 178, 179, 624, 625

pop-up browser windows
opening pages in, 225

parent page, passing data to, 226
Power BI

Office 365 and, 359
Power View, comparing to, 360

Power View, 353–358, 360
pre and post events, 545
prebuilt BI solutions, customizing, 324–346
precision design reports, 298
predefined variant configuration technology, 685
pre-event and post-event handlers, 138
prefixes

business area name, as, 22
commonly used, list of, 23
MorphX, model elements, 692, 701, 705

pre-processing data in reports, 299
presentation tier architecture, 8
primary entity, creating and extending, 165
primary table security policy, 386
primitive types, 106
print management

applying, 662
automating tasks, described, 642
hierarchy of, 662, 663
settings, 663–669

privilege element types, 14
privileges

creating, 380
defined, 374
security roles, assigning, 381
using, 246

process cycle element types, 14
process cycles, 375
process states

accounting distribution, 704
accounting framework, 700, 701
subledger journalizing, 704

product masters, 681
product variants, 681
product model framework, 681–686
production

models, deploying to, 739
reports, 293, 295

profiles, associating with users, 323
projects

AOT, maintaining in, 340
creating, 27
customizing, 327–335
development tools, 30
filters, 29
generating automatically, 28
group masks, 28
layers, comparing, 30
property sheet, 31
type, specifying, 30
upgrading, 30

projects

788

properties
AOSAuthorization, 391
CopyCallerQuery, 185
Design node, 186
document sets, setting in Help, 597

property method pattern, 534
property sheets, 31
provider callback, 273
proxies

creating new, 240
described, 85

proxy classes, 239
publisher ID, and Help, 574
publishing

AX 2012 services, 421
Help content, 593–597
models, 732–736

Purchase Order form, 167
purposes

base enum values, creating for, 679
creating custom, 678–680
organization types and, 674

Q
quality checks, 67
queries

Axd, guidelines for creating, 416
data, reading through LINQ, 95
data processing extensions, using, 302
dimension data, 696
document services, generating, 412, 416
Enterprise Search, using, 253
filters, applying, 185
forms, 183
Internet services, 299
LINQ, constructing, 91–94
metadata, retrieving, 425
Office Add-ins, making available, 203
polymorphic, 178
reducing execution of, 495
SSAS OLAP, accessing data, 299
T-SQL, accessing data, 299
using, vs. joins, 496

query element types, 11
Query objects, 185
query string parameters, passing record context, 248
QueryBuildDataSource method, 184
QueryFilter API, 635–638
QueryRun objects, 185
QueryRunQueryBuildDataSource method, 184
Quick launch web part, 212
Quick links web part, 212

R
RapidStart Services, accessing LCS, 764
RDCE (Microsoft Dynamics AX Report Definition

Customization Extension), 300
RDL transformations, 301
RDP (report data provider), 299
real variable declaration, 111
record buffer

pointers to datasets, 605–608
turning off checks, 451, 456

record context interface, 247
Record type variable declaration, 111
record types, 107
record-based operations

downgrading to, 450
transferring to set-based, 463

records
caching, 467, 468
date-effective framework modes, 632
existing, checking for, 494
form templates and, 175
inserting multiple, 457
joins and, 182
LINQ, managing with, 99, 100
locate, using record context, 247
polymorphic creation of, 179
saving, in form data sources, 181
selecting optimistically, 466
specifying types users can create, 180
updating multiple, 453

RecordViewCache, 475, 476
reference element types, 13
reference layer, 30
reference types, 107
references, dimension concepts and physical tables,

697
referential integrity, Unit of Work, 626
reflection

APIs, 711–724
described, 707
methods on objects, invoking, 707
Reverse Engineering tool, 707
system functions, 707–711
tables, 714
views, 714

refreshing elements, 25
Relational operators, expressions, 113
relationships between tables, 615–620
released products, 683
rendering extensions, disabling, 301
Report Builder, 366
report data provider (RDP), 299
Report model, in Visual Studio, 297
Report web part, 212

properties

 789

reporting framework, troubleshooting, 311, 312
reports

AX 2012 development tools, 296
categorizing based on roles, 294
client-side solutions, 290
controls, using, 297
creating, 295
datasets, 294, 298
designs, 294, 297, 298
development roles, 294
display content, controlling, 298
edits by users, 357
element types, 12
execution sequences, 300, 302
extensions, 8
layout design, 297
Microsoft Dynamics AX Reporting Project

template, 296
Model Editor, using, 297
Power View, 354, 357
pre-processing data, 299
Report Builder, using, 366
server-side solutions, 292
solutions, planning, 293
SSRS elements, 296
SSRS extensions, 299
static, creating, 302
troubleshooting, 311, 312
Visual Studio tools, using, 366–369

Reports menu grouping, 196
Reports section, area pages, 159
resource element types, 16
resources, identifying for activities, 690
RESTful services, 751
retail channel operating unit, 673
Reverse Engineering tool

described, 48
entity relationship data model, 52
UML models, generating, 49, 50

revision history, 71
RFP Responses, 764
Role Centers

analytic content, displaying, 351–369
OLAP reports, 326
pages, 156, 157
reports, adding, 355, 356
user profiles, 323

role-based security, 14, 246
roles

access control, based on, 373
assigning to users, 384
categories of, 352
element types, 14
menu item associations, changing, 403
privileges, assigning, 381

reporting needs, based on, 294
security, assigning to users, 376
security artifact associations, changing, 403

role-tailored design, 153
rolling back modifications, 465
root data sources, 177
root tables, creating, 621
round trips, reducing, 438–441, 445, 447, 458, 477
RowCount method, 121
rows, deleting multiple, 455
rules, segregating duties, 385. See also best practices,

rules
RunBase

inheritance, 533
round trips, handling, 440
SysOperation, comparing to, 517, 518

RunOn, instantiating objects, 442
run time, and temporary tables, 611, 612
runtime modifications, 187

S
Sales Order form, 167
scenarios, modeling, 676
search bar

Enterprise Portal, in, 170
workspace component, 155

searching
Enterprise Search, using, 253, 254
Find tool, using, 54
full-text support, 633, 634
Help viewer, 571
Issue Search, 767
ranges, specifying, 56
Windows Search Service, 573

securing APIs, 392
security

APIs, 392
authorization, role-based access, 373
CAL role mapping, 402
coding, 390–394
controls, permissions for, 379
data policies, assigning, 376
debugging, 394–396
duties, assigning to roles, 381
Enterprise Portal, 245
exposing web controls, 246
forms, setting permissions for, 377
hash parameters, using, 248
hierarchy and user types, 402
policy concepts, 385
privileges, 380, 381
role-based, 246
roles, 375, 376

security

790

security (continued)
server methods, setting permissions for, 379
service operations, and, 420

security artifacts
developing, 377–381
menu options, 395
role associations, changing, 403
validating, 384

security framework, 372–376
security policy element types, 14
select forUpdate transaction statements, 122
select query, ordering and grouping, 119
select statements

aggregate functions, 120
joining tables, 120
keyword options, 117, 118
syntax, 117

separation of concerns and processes, 3
serializing with the pack and unpack methods, 146
Server Configuration form, 484
server methods, setting permissions for, 379
server-side reporting solutions, 292
service contracts

custom services, in, 409, 410
document services, in, 412

service element types, 13
service implementation

custom services, 409
document services, 413
service contracts, 409

service operations, and security, 420
services

AX 2012, consuming, 422
making available, 202

sessions, disposal and caching, 234
set-based operations

caching, 474
code, transferring into, 459
downgrading, 451, 452, 454
InMemory temporary tables, and, 448
joins, using, 455
manipulating data, 447
record-based, downgrading to, 450
table hierarchies, and, 448

Setup menu grouping, 196
Setup section, area pages, 159
SGOC (SysGlobalObjectCache), 477
shared steps, 559–561
SharePoint

developing web part pages and lists, 228
sites, 249
SQL Server Power View, and, 355
themes, integrating with Enterprise Portal, 256

Shift operators, expressions, 113

shortcut keys
debugging, 48
X++ code editor, 33

Show Differences Only comparison option, 59
Show Line Numbers comparison option, 59
signing models, 734
SimpleList template, 175
SimpleListDetails template, 175
single series datasets, 307
site navigation, 248
solution architecture, five-layer, 4–6
source code casing, executing, 67
Source Code Titlecase Update tool, 67, 111
source document framework, 702–705
SQL Administration form, 483
SQL Server Analysis Services. See SSAS (SQL Server

Analysis Services)
SQL Server Power View. See Power View
SQL Server Reporting Services. See SSRS (SQL Server

Reporting Services)
SSAS (SQL Server Analysis Services), 4, 315, 317,

335, 336
described, 8
OLAP queries, 299

SSRS (SQL Server Reporting Services)
components of, 296
data connections, supported, 299
described, 4
report element types, 12
reporting extensions, 8, 299
reports, displaying, 212

standard layered version types, 57
Standard TabPage layout control style, 190
state model, 279
statements, 114–116
states, managing, 279
static file element types, 16
static RDL reports, 302
static schema, 326
storage, dimensions, 683, 693, 694
str variable declaration, 111
string, as Name extended data type, 110
String concatenation, expressions, 113
string literals, expressing, 112
strong names, 76, 77, 734
style sheets, 256
subledger journalizing process, 704
subnodes, changing the order of, 24
subworkflows, 264
sum aggregate function, in select statements, 120
summary page, in Help, 574
suppressing

errors and warnings, 43
whitespace, during file comparison, 59

surrogate keys, 181, 612–614

security artifacts

 791

synchronizing elements
sequence of operations, 69
viewing the log, 70

SysAnyType, 108
SysGlobalCache, 477
SysGlobalObjectCache (SGOC), 477
SysObsoleteAttribute, 139
SysOperation

attributes, 517
classes, 516
execution modes, 489, 490
RunBase, comparing to, 440, 517, 518

System Diagnostic Service, 767
system documentation element types, 16
system navigation, role-tailored, 153
system services, 407, 408, 425
system workflows, defined, 259
SysTest framework, 550–553, 566

T
Table Browser tool, 53
table collection element types, 11
table hierarchies, and set-based operations, 448
table of contents, in Help, 574, 588–590, 593–599
table permissions framework, 377, 390
table-level patterns, 147, 148
table-level properties, in cubes, 344
TableOfContents template, 175
tables

alternate keys, 614
Ax<Table> classes, accessing with, 415
behavior, specifying in hierarchy, 622
buffers, 445
caching contents, 441, 467, 468
configuration time, 611
customizing, 417
data consistency, and run-time support, 631
data retrieval, 630, 631
data storage, mapping to, 623
date-effective entities, relational modeling

of, 628–630
defaulting logic for fields, 419, 420
design time, 610, 611
EDT relations, 615–617
field labels, adding to Help topics, 585
field properties, 616
field states, tracking, 420
foreign keys, 617, 618
index clause, 118
inheritance, 178–180, 621–626
InMemory, 442, 604–608
joins, 609, 613, 618, 625, 626, 635, 636
keys, 612–614

model store, 725
multiple records, inserting, 449, 457
physical, mapping to concepts, 697
record types, 107
records, inserting and modifying, 121
references, custom lookups, 201
reflection, 714
relationships between, 615–620
rows, manipulating, 465
run time, 611, 612
surrogate keys, 612–614
TempDB, 609–612
TempDB vs. inMemory, 443
temporary, 442, 443, 448, 449, 604–612
type-safe method, and, 109
unique index join cache, 473
valid time state, using, 383

TabPage layout controls, 190
tasks

batch, debugging, 658–660
batch jobs, and, 650–653
compiler, 38
workflow element, 264

Team Foundation Build, 563–566
TempDB temporary tables, 443, 444, 609–612
templates

adding for users, 205
Excel, building for, 203
form patterns, 174
Help topics, 576
Word, building for, 204

temporary tables
creating, 610, 611
InMemory, 442, 604–609
multiple records, inserting, 449
set-based operations and inMemory, 448
TempDB, 609–612
TempDB vs. inMemory, 443

test cases, developing in phases, 562
Test Data Transfer Tool, 769, 770, 772, 773
test environments, models, 738, 739
Test project type, 30
test suites, using for long scenarios, 562
testing

ALM solution, 556
ATDD (acceptance test driven development), 557,

558, 566
attributes, creating for tests, 552
build processes, executing in, 563–566
environments, described, 566, 567
evolutionary case development, 562
filters, creating, 552
integration, 552–555
ordered test suites, 562
predefined attributes, 550–552

testing

792

testing (continued)
shared steps, 559–561
Team Foundation Build, 563–566
Visual Studio 2010 tools, 556–562

TFS version control system, 65
themes, integrating with SharePoint, 256
third-party

assemblies, 76–79
clients, 8
libraries, mobile app developer resources, 752

tiers
Business Intelligence solution, 314
caching, client vs. server, 471
client vs. server, 538
instantiating objects using RunOn, 442

time periods, 365
TimeOfDay variable declaration, 111
TODO comments, 38
tokens, print management, 667–669
Toolbar web part, 213
toolbars

AxToolbar control, using, 224
displaying on webpages, 213

topics, in Help
context-sensitivity, 586, 587
described, 573, 574
labels, adding, 584–586
templates, 576

top navigation bar, in Enterprise Portal, 170
top picking, 489
Trace Parser, 501, 502. See also tracing
tracing

analyzing results, 506
code instrumentation, using, 505
database activity, monitoring, 510
importing, 506
starting, 502, 503
Tracking Cockpit options, 503
troubleshooting, 509
Visual Studio Profiler, 512
Windows Performance Monitor, using, 504

Tracking Cockpit options, 503
transaction details forms

described, 167
designing new, 169
extending existing, 169
header view, 168
line view, 168
Purchase Order, 167
toggling between views, 168

transaction statements, 122
transactions, optimizing for performance, 447
Transact-SQL (T-SQL) queries, 299
translations, 331, 332
transmitting business documents, 432–434

treenodes, 718–723
triggers, implementing for message transmission,

432
troubleshooting. See also debugging; errors

Help system, 598, 599
reporting framework, 311, 312
reports, 312
Server Process ID (SPID), using, 511
systems, using System Diagnostic Service, 767
tracing issues, 509
usage issues, 764

trusted code, defining, 140
T-SQL (Transact-SQL) queries, 299
ttsAbort transaction statements, 121
ttsBegin transaction statements, 121
ttsCommit transaction statements, 121
type hierarchies, 107, 621
Type Hierarchy Browser tool, 20, 108
Type Hierarchy Context tool, 20, 108

U
unbound controls, 192
under-layering, 727
Unified work list web part, 213
unique index join cache, 441, 473
Unit of Work, 181, 626–628
unit testing, 550–553
Update Installer for Microsoft Dynamics AX 2012 R3,

767
update_recordset transaction statements, 122
updating

business documents, 428–430
Help topics, 587, 588

Upgrade Analysis, 766
upgraded class versions, 58
upgrading projects, 30, 766
URLs, Power View parameters, 356
Usage Profiler, 764
user authentication

mobile apps, 749, 754
SSL, setting up, 754

user context information, 47
User control web part, 213
user experience

Enterprise Portal, 169
mobile apps, and, 754
navigation layer, 154
role-tailored design, 153
simplifying with FactBoxes, 166
work layer, 154

user input, validators, 243
user interface

control element types, MorphX, 11

TFS version control system

 793

debugger elements, 46
default, creating from definitions, 516
labels, referencing from Help, 584–586
wizard-driven, 326

user templates, adding, 205
user types, and security hierarchy, 402
user-defined class types, 107
users

access to OLAP database, providing, 324
assigning roles to, 384
CAL role mapping, 402
creating, 384
cube data, exposing data to, 351
Power View reports, editing, 357
profiles, associating with, 323
provisioning, 323
tracking activities, 512

USR layer, 726
utcDateTime variable declaration, 111

V
valid time state tables, 383
validating

logic, with Best Practices tool, 393
security artifacts, 384

validation code elements, 418, 419
validation logic, 418
value stream operating unit, 673
value types, 106
values

combinations, constraining, 694
expressions, 113
Ledger Dimensions, creating, 695

var keyword, 89
variables

Auto, form-specific, 200
declarations, 111
declared as reference types, 107
expressions, 113
grouping in debugger, 47
reference, declared as record types, 107
viewing in debugger, 47

VendName, 110
version control systems

build process, 73
code quality, enforcing, 64
common tasks, 68
element life cycle, 66
history of elements, showing, 71
integrating AX 2012, 74
isolated development, 64
labels, working with, 69
MorphX VCS, 65

pending elements, viewing, 72
quality checks, 67
revisions, comparing, 72
source code casing, 67
synchronization log, viewing, 70
synchronizing elements, 69
TFS, 65
Visual SourceSafe, 65

Version Control tool, 64
VerticalTabs TabPage layout control style, 190
view element types, 10
view record types, 107
views

dimensions, creating, 677
reflection, 714

ViewState, 241
Visio models, generating, 48
Visual SourceSafe 6.0 version control system, 65
Visual Studio

details pages, creating, 231
EP Chart Control markup, 305
Microsoft Dynamics AX Reporting Project

template, 296
Report model, 297
reports, creating with, 366–369
Team Foundation Build, 563–566
test tools, 556–562
X++, debugging in a batch, 660

Visual Studio Profiler, 512

W
weak type systems, avoiding, 108
web apps for mobile devices, 758
web client element types, 15–16
web elements, securing, 246
web menu items, 264
web parts

Action pane, 211
business intelligence information, 211
Business Overview, 361
integrating into webpages, 211
KPI List, 361
linking information, 212
page framework, using from SharePoint, 208
Page Viewer, 356, 357
pages, 251–253
Power View, exposing reports, 355–357
SharePoint sites, 249

web service calls, analyzing, 757
web services

consuming from AX 2012, 435
debugging traffic, 757

Web Services Description Language (WSDL), 407

Web Services Description Language (WSDL)

794

web traffic, debugging, 757
Web.config files, adding publishers, 594–596
webpages

alert notifications, 213
ASP.NET, creating with AJAX, 233
ASP.NET controls, hosting, 213
Infolog messages, displaying, 212
page-specific navigation, 212
toolbars, displaying, 213
web parts, integrating, 211
workflow actions, displaying, 213

WF (Windows Workflow Foundation), 261
Windows client, 8
Windows Performance Monitor, using to trace, 504
Windows Search Service, 573, 598
Windows Workflow Foundation (WF), 261
WindowMode settings, 232
Word, building templates, 204
work layer forms, 154
workflow

action menu items, 264
actions, displaying on webpages, 213
activating, 283–287
architecture, explained, 268
artifacts, 275–277
automating, 276
categories, 262, 280
conditions, creating, 280
display menu items, 264
document class, 262, 280, 282
editor, 267
elements, 12, 264
event handlers, 264
forms, enabling in, 284, 285
implementing, 276
infrastructure, 258–260, 276
instances, 268
key concepts, 262–268
life cycle phases, 275
line-item, 265
menu items, 264, 283
provider model, 266
queues, assigning to, 265
runtime, 269–273
states, managing, 279
types, 258–259, 263
work items, 268

workflow runtime
acknowledgment messages, 272
activation messages, processing, 270
API, to expose functionality, 269
application code, invoking, 269

components, 269
events, 272
instance storage, 269
interaction patterns, 272, 274
logical approvals, 272
message queue, 269
task elements, 272
tracking information, 269

workspace components. See client workspace
components

WSDL (Web Services Description Language)
described, 407
proxy generation, using for, 422

X
X++

APIs, reflecting on elements, 711–724
collections, using in data contracts, 411
datasets, 214
delegates, adding, 544
events, 543
expression operators, 113
interoperability, allowing, 125
jobs, 106
macro capabilities, 130
methods, exposing as a custom service, 408
primitive types, converting from and to CRL

objects, 128
reflection, system functions, 707–711
statements, 114
syntax, 110, 111
variable declarations, 111

X++ code
class-level patterns, 144
compiling and running as .NET CIL, 142
design and implementation patterns, 143
executing as CIL, 487

X++ code editor, 20
editor scripts, 34
opening, 32
recompiling, 38
shortcut keys, 33

XDS (extensible data security) framework
creating policies, 385
described, 376

XML
documentation, 132, 133
messages, sending asynchronously, 431
serialization, implementing for data objects, 414

XPO (export/import file), 58

web traffic, debugging

	Contents
	Foreword
	Introduction
	Chapter 2 The MorphX development environment and tools
	Introduction
	Application Object Tree
	Projects
	The property sheet
	X++ code editor
	Label editor
	Compiler
	Best Practices tool
	Debugger
	Reverse Engineering tool
	Table Browser tool
	Find tool
	Compare tool
	Cross-Reference tool
	Version control

	Chapter 22 Developing mobile apps for AX 2012
	Introduction
	The mobile app landscape and AX 2012
	Mobile architecture
	Developing a mobile app
	Architectural variations
	Resources

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

