

Brian Rasmussen

Pr
of

es
sio

na
l

High-Performance
Windows Store
Apps

Foreword by Eric Lippert,
C# Analysis Architect, Coverity

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2014935300
ISBN: 978-0-7356-8263-4

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related to this
book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of this book at
http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Devon Musgrave
Editorial Production: Christian Holdener, S4Carlisle Publishing Services
Technical Reviewer: Marc Young
Copyeditor: Roger LeBlanc
Indexer: Jean Skipp
Cover: Twist Creative • Seattle and Joel Panchot

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

To Kirsten for all your love and support. Thank you for going
on this adventure with me. I love you!

To Asbjørn and Janus for showing me a new and fantastic view
of the world. I love you!

This page intentionally left blank

Contents at a Glance

Introduction xv

CHAPTER 1 Setting the stage 1

CHAPTER 2 Platform overview 17

CHAPTER 3 Designing for performance 51

CHAPTER 4 Instrumentation 93

CHAPTER 5 Performance testing 125

CHAPTER 6 Investigating performance issues 153

CHAPTER 7 Wrap-up 195

Index 205

This page intentionally left blank

 vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Table of Contents

Foreword . xiii

Introduction . xv

Chapter 1 Setting the stage 1
Why is app performance so hard to optimize? . 1

A typical project . 2

Fast, fluid, and efficient . 3

Fast . 3

Fluid . 5

Efficient . 5

Working with performance in mind . 6

Performance tools . 7

Visual Studio 2013 . 7

Windows Performance Toolkit . 7

PerfView. 8

Event Tracing for Windows . 8

XAML framework . 8

Getting started with Windows Performance Toolkit 8

Installing WPT on Windows 8.1 . 9

Installing WPT on Windows RT . 9

Introduction to Windows Performance Recorder 10

Recording performance data .12

Introduction to Windows Performance Analyzer13

Summary. .16

viii Contents

Chapter 2 Platform overview 17
Anatomy of an app .18

Process start .18

Reading and parsing XAML .19

Layout .19

Binding .20

All abstractions come with a price tag .21

Windows platform and tools .21

The Windows Runtime .23

Metadata .24

Projections .24

Process lifetime management .26

Memory .27

Resource management .28

XAML .28

Less is more .29

Virtualization .31

Images .32

Binding .33

XAML threads .35

Animations .37

Overdraw .38

Asynchronous code .40

DirectX .42

The Common Language Runtime .42

Assemblies .42

Just-in-time compilation .43

Automatic memory management .43

Threads and tasks .44

 Contents ix

Your app .44

The right tools for the task .45

Blocking the UI thread .45

Overloading the UI thread .46

Too much data .48

Heavy-duty serialization .49

Summary. .49

Chapter 3 Designing for performance 51
Less is more .52

Proof of concept .53

Design challenges .54

Login .54

Live content .55

Prioritize your content, and make sure it is available 55

Use caching to reduce downloads .56

Use ContentPrefetcher to load data in advance57

Asynchronous I/O .62

Extended splash screen .67

Handling a lot of content .67

Prioritize your content .68

Partition content to reduce workload .70

Cache information to improve transitions .82

Handling media .84

Playing video .85

Displaying images .87

Playing audio .89

Releasing resources .89

Summary. .91

x Contents

Chapter 4 Instrumentation 93
Event Tracing for Windows .94

Overview of event tracing .94

Manifests .97

WinRT instrumentation .97

Using WinRT instrumentation .99

Recording events with WPR .102

Analyzing performance .104

Improving performance .108

EventSource-based instrumentation .111

Create a custom EventSource .112

Instrument your code .116

Create a recording profile for your EventSource116

Using your custom event source .117

Troubleshooting .119

Summary. .122

Chapter 5 Performance testing 125
Why are performance tests special? .125

What to test. .126

What hardware to test on .127

Handling signal-to-noise ratio .127

Cold vs. warm tests .128

Repeatable tests .128

Troubleshooting .129

Addressing regressions .130

 Contents xi

Windows App Certification Kit performance tests132

Performance tests .132

Building a performance test environment .135

Coded UI tests .136

Collecting performance test data .140

Test results .141

Improvements .145

Manual testing .146

Collecting additional performance data .147

Dogfooding .147

Telemetry .149

Summary. .150

Chapter 6 Investigating performance issues 153
Windows Performance Analyzer revisited .153

Overview of WPA .154

Loading symbols .155

Understanding graphs in WPA .156

Working with performance data in WPA .159

Methodology .167

Sample investigations .169

Slow startup .170

Slow page navigation .177

Sluggish panning performance .186

Summary. .193

xii Contents

Chapter 7 Wrap-up 195
Applying the advice of the book .196

Additional resources .199

Videos. .199

Online resources .200

Additional tools .201

Books .202

In closing .203

Index 205

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xiii

Foreword

Which is faster, dividing by four or shifting by two?

Should I make this array of 10 numbers shorts instead of ints to save on space?

What are your favorite tips and tricks for speeding up programs?

I get a lot of questions like these from real-world developers who think they might have
performance problems. Though those developers mean well, these are almost always

the wrong questions to ask! Why? Because knowing the answers will not actually lead
to improvements that any user will notice. A program that downloads and displays a
hundred million bytes of video from a server on the other side of the world is not going
to suddenly become smooth and fluid because you saved a couple nanoseconds in one
math routine or trimmed 20 bytes from an array. Rather, getting good performance is
about setting user-focused goals, asking the right questions, using the best possible
 diagnostic tools to get objective answers, and having the engineering discipline
 necessary to build a high-performance product every day of the development process.

Brian Rasmussen knows all this inside out. He and I spent many years working
together on the Roslyn project at Microsoft: a complete, from-scratch rewrite of the
C# and Visual Basic compilers and IDEs. The user-focused performance requirements
of this project were daunting: we had to be able to perform an accurate analysis of
potentially millions of lines of code in the time between keystrokes, so that the right
IntelliSense information could be displayed in the IDE as you type. We were limited to
a 32-bit address space shared with the rest of Visual Studio. There is no way we could
have achieved our lofty time and memory performance goals without using many of
the solid engineering techniques described in this book. With these techniques, you too
can succeed in amazing your users with beautiful, fast, fluid, efficient applications.

Good luck, and go fast!

Eric Lippert
Seattle, Washington
March 2014

This page intentionally left blank

 xv

Introduction

Performance is both very simple and extremely complex. You don’t need to be a
ninja programmer or employ cutting-edge tools to spot a performance problem.

Detecting performance problems is simple; anyone can identify performance problems
just by interacting with an app or a system. If the user feels that your app is too slow,
then it is—at least to that particular user. If many users share the experience, you have
a legitimate performance problem on your hands. And if the users are not pleased with
the performance of your app, they might start looking for a better alternative.

Identifying the reasons for performance problems and subsequently addressing
those issues can be mind-numbingly hard. Understanding why performance problems
happen can be complex because so many factors are in play. Why is page navigation
slow? Why is the movement of the pictures jerky when I pan across the screen? Why
does login have to take 10 seconds? Why does this app drain the battery so quickly? To
identify the reasons for performance issues, you have to possess detailed knowledge
of both the app and the runtime environment and use specialized tools to get the data
you need to understand why the app behaves as it does. You need to peek inside a
complex system, understand how the gears turn, and come up with a way to make it
run faster or more efficiently.

Many developers are obsessed with performance. Go to any developer forum and
you’ll find numerous questions and theories about the performance of this and that. In
many cases, these are observations about specific language constructs or idioms that
will not be the source of real issues in the majority of cases, but as developers we pride
ourselves on knowing these little bits of performance trivia. So, maybe for loops are
generally faster than foreach loops, but how often will your choice of loop determine
the difference between success and failure for your app? Rarely, if ever.

At the end of the day, a successful app is an app that the users enjoy using. Users
don’t know or care which loop construct you use in your code. Users care about the
features your app offers. The more important a feature is to the user, the more you
need to pay attention to how the feature appears to the user. This includes whether it
is fast enough. Features the users employ all the time should look good, feel good, and
be fast. While there’s no set goal for exactly what fast means, there’s research that can
help you make reasonable assumptions, which is a good starting point, but ultimately
the requirements need to satisfy the users’ expectations.

xvi Introduction

The purpose of this book is to show you how performance is an integral feature of
the apps you build. Great performance doesn’t happen by accident. It is something
you have to design and build. You need to think about performance just like you
would think about any other feature; you need to set goals and continually verify that
your app meets these goals. I will show you the tools and the techniques you can use
to do this for Windows Store apps. After reading this book, you should have a good
 understanding of what it takes to build high-performance Windows Store apps.

Who should read this book

This book exists to help developers, testers, designers, and project managers who want
to build Windows Store apps with great performance. If you want to learn about what
affects the performance of your apps; what you can do to build apps that are fast, fluid,
and efficient; and how you can investigate performance issues when they arise, this
book is for you.

In many cases, performance engineering is something that’s left for a few expert
developers to fix at the end of the project cycle. One of the goals of this book is
to illustrate why that approach is rarely the best option. Addressing performance
 problems at the end often leads to risky and expensive last-minute changes.

This book offers an alternative approach that acknowledges the challenges of getting
performance right. A key aspect of this is to recognize that performance is affected by
the visual design, the architecture, and the implementation of the app. As such, the entire
team should be conscious about performance goals and how to achieve them.

The other problem with the typical approach is that performance is considered a
specialist issue that only the few experts on the team should be concerned about. Like
security, performance is something that must be built into the app from the beginning.
You cannot make an app and add great performance and security at the end. Again,
performance is something everyone on the team should be concerned about, and it
takes an explicit engineering effort to get performance right.

Assumptions
This book assumes that you have at least a minimal understanding of how to build
Windows Store apps using C# and XAML. Perhaps you have already built, designed, or
tested a couple of apps and want to improve your understanding of how performance
is affected by the different parts of the app and the underlying runtime system.

 Introduction xvii

The book focuses entirely on C#, but developers using Visual Basic should be able to
map the concepts and techniques discussed in the book to their work as well.

If you need a textbook covering how to build Windows Store apps with C#, I
 recommend Windows Runtime via C# (Microsoft Press, 2013) by Jeffrey Richter and
Maarten van de Bospoort, and Windows Store App Development: C# and XAML
 (Manning, 2013) by Pete Brown.

This book might not be for you if…

This book might not be for if you are already very familiar with good engineering
 practices around performance and know and use Windows Performance Toolkit
 regularly to improve your apps, in which case you’ll find few or no new insights
in this book. The book is specifically aimed at developers, testers, designers, and
 project managers, who want to begin the journey to becoming performance experts.
 Chapter 7 includes a list of additional performance resources, so if you’re looking for
 advanced-level texts, you might be able to pick up some suggestions from there.

Organization of this book

This book is divided into seven chapters as follows:

Chapter 1, “Setting the stage,” discusses how performance is typically handled in
many projects and how this approach often leads to problems that can be difficult and
costly to address. Following that, the chapter gives a brief overview of the approach
offered in this book.

Chapter 2, “Platform overview,” walks you through the different parts of the platform
and how they each affect the performance of the apps you’re building. Understanding
the platform is necessary to understand why some designs, architectures, and
 implementations can be problematic for the apps you’re trying to build.

Chapter 3, “Designing for performance,” shows you how you can design and
 implement specific features of your app to be fast, fluid, and efficient. Regardless of
the kind of app you’re building, a number of features or user experiences will always
be more important to the users than others. Making sure these are designed and
 implemented with performance in mind is the key to building apps that are a pleasure
to use. Each experience has a set of challenges the implementation must address to
succeed. This chapter gives you several examples of challenges and approaches to
 addressing those.

xviii Introduction

Chapter 4, “Instrumentation,” covers how you can enable your app to tell you what
is going on while it is running. In short, instrumentation allows you to measure how
time and resources are spent in your app. The chapter introduces Event Tracing for
 Windows (ETW), which is the premier instrumentation technology in Windows and all
the relevant subsystems today. I show you how you can use this technology to measure
the performance of specific parts of your app.

Chapter 5, “Performance testing,” shows you how you can verify that the
 performance of your app meets the goals you defined. Between performance goals and
instrumentation, you have the basic building blocks for setting up performance tests
that will continually let you assert the performance of your app and highlight issues as
they appear.

Chapter 6, “Investigating performance issues,” discusses the tools and techniques
you need to identify and investigate performance issues. The chapter includes several
examples of investigating common issues and presents solutions to each of these.

Chapter 7, “Wrap-up,” summarizes the advice given in the book and provides a list of
further resources for you to study on your journey to becoming a performance expert.

System requirements

You will need the software below to follow the examples in the book:

■■ Windows 8 or preferably Windows 8.1. (Remember, upgrading to Windows 8.1 is
free if you already have Windows 8.) The book specifically targets Windows 8.1,
but most of the content applies to Windows 8 as well.

■■ Microsoft .NET Framework 4.5 or later.

■■ Microsoft Visual Studio 2013.

■■ Windows Assessment and Deployment Kit (Windows ADK) for Windows 8.1.
Make sure to get the latest versions as described in the following section.

■■ A PC with an HD display or better is recommended.

 Introduction xix

Windows Performance Toolkit versions

This book is written using an internal version of Windows Performance Toolkit. As
of this writing, the version used is scheduled for release before the book becomes
 available, so the text should match the software at that point. However, you should
make sure you have the latest version of the software used in this book to avoid any
confusion.

An easy way to verify if you have the latest version of Windows Performance Toolkit
is to look at the name of the recording profile provided for XAML apps. The version
that shipped with the Windows 8.1 ADK referred to this profile as “XAML Application
Analysis,” while the updated version uses the title “XAML App Responsiveness Analysis,”
as does this book. You want to make sure that the profile listed in the Scenario Analysis
section of Windows Performance Recorder (WPR) says “XAML App Responsiveness
Analysis.” Please refer to Chapters 1, 4, and 6 for additional information on WPR and
recording profiles.

Code samples

The code samples used in this book are available for download from:

http://aka.ms/highperf

Acknowledgments

Writing a book is a lot of work, and I couldn’t have done it alone. I have received
 feedback and input from numerous skilled people who have all helped make this a
much better book.

I want to thank Brian Braeckel and Kiran Kumar from the XAML performance team
for enlightening me about the details of the XAML engine and for answering countless
questions about how everything works under the hood.

I want to thank my colleagues Jürgen Schwertl, Will Sergeant, and Kraig
 Brockschmidt, who all provided a lot of useful input and great ideas for the book. I also
want to thank Cenk Ergan, Jason Hendrickson, and Cameron McColl for taking the time
to discuss various performance issues covered in the book. Along those lines, I want to
thank my friend (and fellow Dane) Mads Torgersen because he provided great feedback

http://aka.ms/highperf

xx Introduction

for the book, but more importantly, Mads has been my guide and mentor to life at
Microsoft; for that, I am eternally grateful.

A special thank-you goes out to Vance Morrison and Cosmin Radu of the Common
Language Runtime team at Microsoft for building PerfView and the entire set of
tools for accessing Event Tracing for Windows from managed code. Vance Morrison
also provided feedback on the text and answered all my questions about ETW and
 performance investigations.

On the Windows Performance Analyzer team, I want to thank Robin Giese for
 helping me understand how WPA handles ETW and for improving the support for
 using EventSource with WPA. Robin also has one of the coolest offices I have seen at
 Microsoft.

Additionally, I want to thank my editor at Microsoft Press, Devon Musgrave, for
 giving me the courage to write a book and for skillfully and patiently guiding me
through the entire process. In the same spirit I owe a big thanks to my managers,
Kyle Marsh and Keith Rowe, for supporting the idea and making the book possible.

A number of people provided great feedback and did great work during the
 development of this book, and I want to thank my technical editor Marc Young,
 copyeditor Roger LeBlanc, proofreader Nicole Schlutt, and indexer Jean Skipp for their
awesome contributions.

Last but not least, I want to thank Eric Lippert for writing the Foreword for my
book. I had the privilege of working with Eric and a number of other very skilled and
 name-dropping-worthy people as part of the Roslyn project. We worked on building
the next-generation C# and Visual Basic compilers and language services for Visual
Studio. I cherish the fact that I could ask Eric Stack Overflow questions in person. I’m
very grateful that I got the chance to work on that project, and I am so happy that Eric
wrote the Foreword.

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. You can access updates to this book—in the form of a list of submitted errata
and their related corrections—at:

http://aka.ms/highperf

If you discover an error that is not already listed, you can submit it to us at the same
page.

http://aka.ms/highperf

 Introduction xxi

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to
http://support.microsoft.com.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your
 answers go directly to the editors at Microsoft Press. (No personal information will be
 requested.) Thanks in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://support.microsoft.com
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

This page intentionally left blank

 51

C H A P T E R 3

Designing for performance

No matter what kind of app you’re building, a number of key usage scenarios are essential for the
success of your app. A shopping app must enable users to quickly find and purchase items. A

news app must be able to quickly present users with what’s going on in the world. These key scenarios
are what your app does well. This is where your app provides value to the users, so you need to make
sure your design and architecture support them efficiently. All your key scenarios should provide a
good user experience. That means they should look good and perform well. By keeping performance
in mind for your key scenarios, you will reduce the risk of making the wrong architectural decisions
that would be expensive to change later in the game.

For instance, let’s assume you’re designing a news app. Needless to say, you want the app to be
able to retrieve and display the latest news because that would be a key scenario for a news app. One
approach is to download the news on startup, but what happens if the back end or the network is
not responsive? If your app waits for the news to download, it stalls. How do you think the users will
react if they have to wait several seconds every time they want to check the news? How would you
like turning on your favorite news channel on TV only to discover a big “Please wait” sign for a couple
of seconds? That wouldn’t work on TV, and it isn’t a good user experience for your app either. Users
want to check the news at their convenience; making them wait is a bad idea.

This prompts the question: how can you design a news app that is both immediately responsive
and able to show the latest news quickly? As the developer, you can control how fast the app
launches and becomes responsive by optimizing the code and design, but unless you hold some
secret power over the Internet, you are at its mercy. Users access the cloud through everything from
high-speed, optical networks to spotty mobile connections on the outskirts of civilization, so there’s
no way you can control or even predict the expected performance of their network connections. This
leads to a simple conclusion: if your app has to wait for the latest news as part of startup, there’s just
no way you can guarantee a good experience in all cases. To ensure a quick launch, you cannot rely
on the news being immediately available.

If you ignore this fact, your app might perform well under ideal circumstances, but most likely
you will see bad reviews from users who happen to spend their time in the real world where network
performance isn’t always as fast and reliable as we would like it to be. You can avoid this problem by
designing your experience around the fact that network connections are fickle. The only way you can
control the user experience is by relying on the parts you can trust.

Designing your app with performance in mind is the topic of this chapter.

52 Less is more CHAPTER 3

Less is more

The most common performance problem I see is apps that try to do too much at once. Of course,
this problem comes in a plethora of guises. Sometimes the app is doing work in advance instead
of deferring it until needed, sometimes the app tries to handle more data than it is capable of, and
sometimes it is doing the same work over and over again. The examples are plentiful, but the overall
problem is the same.

In many cases, the majority of this work is done on the XAML UI thread. As you learned in
Chapter 2, “Platform overview,” the job of this thread is to keep the app responsive, so you don’t
want to burden the UI thread with too much work. Doing so results in a slow and unresponsive app.

Regardless of the specifics, the solution to this problem is always the same: do less work. In other
words, make sure the app does what is necessary to implement its features, but no more than that.
Optimizing the performance of your app is all about getting rid of the nonessential elements or at
least moving them out of the way on the critical path.

However simple this might sound, it is probably the best advice I can give you for building fast
apps. Of course, the minimum amount of work required for any given key scenario isn’t always
 obvious. Identifying redundant work can be difficult, but keeping the mantra of “less is more” in mind
will help you trim your app and achieve great performance. If something isn’t needed, don’t do it. If
it’s needed later, defer it. If you have to perform a nontrivial operation repeatedly, consider caching
the result and use that instead of doing the work again. You have many options, but they all boil
down to getting rid of redundant work.

This might still be a little abstract, so let me give you an example of what I’m talking about. This
example is from a sports app I worked on. One of the main features of the app was to display results
of recent games. Consequently, the app would retrieve results for all of today’s and yesterday’s games
at startup. Furthermore, it would retrieve the entire set of results at a fixed interval. Unlike stock
prices, most game results don’t change very often and presumably yesterday’s results don’t change
at all, so the majority of numbers would be unchanged between updates. Yet the app would retrieve
these numbers over and over. Obviously, this approach doesn’t represent the minimal amount of
work, because the same data is retrieved and processed repeatedly.

Unfortunately, that was not the only problem. The app downloaded the data as a couple of XML
files, one file per day. Because of the redundancy of retrieving all the results on every request, the
XML files were large. There are many good things to be said about XML, but it is rarely the optimal
choice from a performance perspective. Unless the data is very verbose, XML markup tends to
 constitute a significant part of—and in many cases, even the majority of—the content of XML files.
In this case, the XML markup dwarfed the actual content of the files. Downloading, reading, and
 decoding the data that way carries a noticeable overhead. For performance-critical parts of the
 application, you can usually find better options than XML. Processing these files repeatedly is not
optimal either.

 CHAPTER 3 Designing for performance 53

Fortunately, solving these problems is not difficult—conceptually, at least. We can easily come
up with ways to improve this approach. Instead of retrieving all the results on every request, just use
a timestamp to limit the retrieval to the latest results. This reduces the amount of data processed
on each request significantly, and it might even eliminate the need to process any data at all on
some requests. Similarly, picking more efficient encoding for the data is straightforward. There are
 numerous, less verbose encodings to choose from.

The solutions to the problems are almost trivial. Unfortunately, to implement these changes the
team would have to redesign both the app and the back end to accommodate the different approach
for getting the data. That’s a significant risk to take on late in the project. This scenario re-iterates
the point of Chapter 1, “Setting the stage”: design decisions that affect performance are much less
expensive to make at the beginning of the project, which is why you should scrutinize all your app’s
key scenarios and look for redundant work to eliminate as you design the app.

Proof of concept

Unless you’re building an app very similar to apps you already built, you will probably need to explore
certain areas to get the data you need to make good decisions. A common mistake is to settle on a
design or an architecture without verifying that it performs and scales as needed. Your requirements
should specify the key scenarios for the app and the expected performance of these given specific
volumes of input. You need to know ahead of time what kind of data loads you expect to see and
make sure your app can handle these.

Building a prototype or a proof-of-concept app is a great way to try out various approaches and
collect information on what works and what doesn’t work. You want to make sure the app can handle
all the relevant key scenarios with the expected performance before you settle on a design and an
architecture.

Some designers build prototypes to test usability issues as well. That’s a great idea, but typically
these prototypes are not useful for measuring performance. Usability prototypes are often built
around limited, hard-coded datasets, which provides enough functionality for the users to interact
with the app. However, to properly assert performance, you need to use real data sources, and you
need to test with data volumes that match your expected usage scenarios. Real data sources have
latency that might affect the user experience. Similarly, most designs and algorithms work well as
long as the input is limited. If you want your app to be able to handle specific quantities of input, your
prototype must verify that your design and architecture are capable of doing so.

The time you spend up front verifying your assumptions about the design and architecture is a
good investment. Any shortcomings you can spot at this stage can be addressed, and the cost of
 doing so is far less than it will be if you have to fix those problems at a later stage.

54 Login CHAPTER 3

Design challenges

In the remainder of this chapter, I go through a number of common app scenarios, look at the design
challenges they present, and provide guidelines on how to address these. The scenarios are

■■ Login

■■ Live content

■■ Handling a lot of content

■■ Handling media

Getting these scenarios to perform well can be a challenge, but if you think about the performance
during the design, you can address the biggest issues at this stage. You might still have to tune the
implementation later, but getting the architecture right is paramount.

Login

Many social apps, enterprise apps, and so forth need the user to log in before they show relevant
content. If you’re building an app like that, realize that launching your app consists of the following
phases:

1. Launch

2. Authentication

3. Show content

The launch part is really simple. Your app just needs to present itself to the user and offer a login
experience. Obviously, the login screen should present the visual identity of the app, but other than
that there’s really no reason to do any kind of work at this point. The login screen is simple, and
consequently the launch experience should be simple and very fast. Yet, I have seen several apps that
go through elaborate setup prior to displaying the login screen, which makes the launch experience
much longer than it needs to be. There are really no good reasons that this shouldn’t be fast.

Once the login screen shows, the app will most likely sit idle for a while—possibly for a long time
before the user enters her credentials. If your app needs to perform additional setup steps or fetch
resources, this can run in the background as the app is waiting for the user to log in. Launching work
at this point means the app can prepare resources while the user enters her credentials.

Authentication itself requires interaction with your app back end, and this interaction might
involve a noticeable delay. If your app waits for authentication to complete before proceeding, this
latency delays the login experience. While you obviously don’t want to present sensitive content
to nonauthenticated users, the app can still do a lot of work while waiting for the authentication to
complete.

 CHAPTER 3 Designing for performance 55

If your app waits until the user is authenticated, you’re optimizing for the case where the login is
unsuccessful. A better approach is to optimize for the case where login is successful. After all, this is
the scenario your users care about and it is probably the most frequent scenario as well. Go ahead
and do as much work and render as much of the UI as possible under the assumption that the login
will succeed. This reduces or even eliminates the latency of the authentication. If the login doesn’t
succeed as expected, you can implement a fallback to handle that. It is much less important to get the
performance of the failed login scenario right, because fundamentally this scenario isn’t very valuable
to the users.

Login is an interesting scenario because it includes a lot of time where the app is simply waiting.
The key to optimizing the experience is using this delay to your advantage by doing as much as
 possible while the app is waiting.

Live content

Many apps need to display the most recent information to the users at startup or during page
 navigation. News apps obviously fall into this category, but so do shopping apps, financial apps,
movie and music apps, and many others. Typically, these apps pull content from services in the cloud
and, as discussed earlier, that presents a challenge, because networks are inherently unreliable. I
go through numerous techniques you can use to improve the user experience when handling live
 content. The topics are

■■ Prioritize your content, and make sure it is available.

■■ Use caching to reduce downloads.

■■ Use ContentPrefetcher to load data in advance.

■■ Asynchronous I/O.

■■ Extended splash screen.

Prioritize your content, and make sure it is available
First you should prioritize your content. All your content is not going to be equally important to the
users. Your design should reflect this. You need to figure out which are the most important resources
and make sure the app handles these before anything else. Basically, you want to identify all the
resources needed to populate the first screen of the app or at least part of it.

Your app should retrieve these resources as soon as possible and defer everything else. The goal
is to get the data needed and nothing more, present that to the user, and make sure the app is
 responsive as quickly as possible. All other resources should be handled once the app is responsive.

Once your content is prioritized, you must make sure it is available. This can be tricky if your
content isn’t local to the app. Any content you have to retrieve at run time might delay progress
 indefinitely. The only way to guarantee a fast experience is to rely on local resources.

56 Live content CHAPTER 3

Your app can attempt to download resources at startup, but it shouldn’t wait for these, or at least
it should limit the wait to a few hundred milliseconds. In case online resources are not available,
your app should have a fallback scenario that allows it to launch with slightly stale data. The prefetch
feature discussed later in this chapter is a great way to refresh local caches even when the app isn’t
running. This means that stale data might not be very old.

There are various ways to update local content with retrieved content once this is available. One
approach is to use the FlipView in a way similar to what the Store app does. (I’m sure you’re familiar
with the Store app, but for your convenience Figure 3-1 shows what I am talking about.) Your app
can load a FlipView with local content and start retrieving additional content. Once this content is
 available, it can be added to the FlipView carousel. This provides a smooth transition between the
two and guarantees a good user experience even when updated resources cannot be retrieved.

FIGURE 3-1 The Windows Store app uses the FlipView to display both cached and new content.

Use caching to reduce downloads
Caching is a standard feature of all HTTP-based protocols. If resources are cached, they are retrieved
locally instead of through the network. Using caching can significantly reduce the need for retrieving
data over the network, so the second thing you should do is make sure all your data is cached
 appropriately. Some resources might be valid only for seconds, but most resources will probably be
relevant for minutes, hours, or even days. After all, even high-profile news sites don’t change their top
story every minute.

Caching is controlled entirely by the server. As long as the server outputs the proper caching
information, the Windows Internet (WinINet) stack caches resources as needed and you don’t have to

 CHAPTER 3 Designing for performance 57

do anything in the app itself to take advantage of this. The HttpClient class in Windows.Web.Http
uses WinINet (but the HttpClient defined in System.Net.Http does not, so make sure you use the
right one). If data is cached, it is retrieved locally instead of through the network. Once the caching
expires, the resource will be retrieved and cached again on the next request. All of this is completely
transparent to the app, so you don’t need to do anything in the app itself, but you need to make sure
caching is handled correctly on the server.

In some cases, you might not control the caching on the server, such as when you’re integrating
data from back ends you don’t control. In that case, you can introduce a façade server that retrieves
the same data as your app would and adds caching information as necessary. Admittedly, this makes
the back end part of the app more complex, but doing this improves the performance of your app for
all users. If you’re doing this, you might also be able to rearrange the data to better suit your needs.
Perhaps the original feed is more verbose than what your app needs. Trimming the data feed to your
needs is a great way to reduce the amount of data downloaded and the time needed to handle it.

For non-HTTP-based protocols, you typically have to implement your own caching scheme.

Use ContentPrefetcher to load data in advance
Caching requires resources to be retrieved once, so you might be thinking how you can take
 advantage of caching on something like news stories and accompanying pictures. If the user has to
retrieve the data before it can be cached, it is not going to benefit scenarios like that.

The ContentPrefetcher class introduced in Windows 8.1 aims at solving that specific problem.
The idea is that you can specify—either directly or indirectly—resources that should be retrieved
and cached even if your app is not running. Windows will then automatically retrieve those resources
periodically and cache them on behalf of your app. This increases the chance that resources can be
retrieved locally from the cache. Obviously, all the resources must support caching to take advantage
of this. If they don’t, prefetching them will not make any difference.

It goes without saying that Windows cannot simply poll the resources every other second because
that would drain the power of the device quickly and possibly exhaust the user’s data plan. Instead,
Windows uses heuristics to determine what resources are downloaded and how. These heuristics
take into account network and power conditions, app usage history, and the results of prior prefetch
attempts to provide maximum user benefit. The bottom line is that Windows does this in an effective
manner, but there is no guarantee that any particular resource will have been downloaded before a
given app launches.

In a way, using ContentPrefetcher is a bit like owning a lottery ticket. You might not win
 anything, but the cost of the ticket is low. However, unlike a real lottery ticket, the odds of winning are
pretty good in this case. Although the rewards will not yield you a new Ferrari, they will improve the
performance of your app. If you ask me, that’s well worth the small cost.

58 Live content CHAPTER 3

Using ContentPrefetcher directly
Using ContentPrefetcher is straightforward. If the URIs (locations) of the resources are known
to the app, the app simply configures a list of resources with the system and Windows attempts to
retrieve them. This is the direct way of using ContentPrefetcher, and it works well if the URIs don’t
change but the content returned does. Listing 3-1 shows how to use ContentPrefetcher when the
list of resources is known to the app.

LISTING 3-1 Using ContentPrefetcher when the URIs are known to the app.

var resources = new[] {
 "http://windowsteamblog.com/windows/b/developers/atom.aspx",
 "http://windowsteamblog.com/windows/b/windowsexperience/atom.aspx",
 "http://windowsteamblog.com/windows/b/extremewindows/atom.aspx",
 "http://windowsteamblog.com/windows/b/business/atom.aspx",
 "http://windowsteamblog.com/windows/b/bloggingwindows/atom.aspx",
 "http://windowsteamblog.com/windows/b/windowssecurity/atom.aspx",
 "http://windowsteamblog.com/windows/b/springboard/atom.aspx",
 "http://windowsteamblog.com/windows/b/windowshomeserver/atom.aspx",
 "http://windowsteamblog.com/windows_live/b/windowslive/rss.aspx",
 "http://windowsteamblog.com/windows_live/b/developer/atom.aspx",
 "http://windowsteamblog.com/ie/b/ie/atom.aspx",
 "http://windowsteamblog.com/windows_phone/b/wpdev/atom.aspx",
 "http://windowsteamblog.com/windows_phone/b/wmdev/atom.aspx",
 "http://windowsteamblog.com/windows_phone/b/windowsphone/atom.aspx"
};

ContentPrefetcher.ContentUris.Clear();
foreach (var res in resources)
{
 ContentPrefetcher.ContentUris.Add(new Uri(res));
}

Listing 3-1 adds a number of URIs to the list of ContentUris on ContentPrefetcher.
This populates a global list, so unless you clear the list first, you’ll simply add to the existing list.
 Furthermore, ContentPrefetcher limits the number of ContentUris to 40 per app. If you add
more than 40 URIs, ContentPrefetcher throws Exception. (For some reason, it doesn’t throw a
more specific exception.) The bottom line is you should either check the content of ContentUris or
clear the content before adding to the list. Moreover, you must limit the number of resources to 40 or
fewer per app.

The preceding code instructs Windows to retrieve the resources according to the heuristics
discussed earlier. To test that prefetching works as expected, you can force the system to fetch the
configured resources through the IContentPrefetcherTaskTrigger::TriggerContentPrefetc
herTask method. Unfortunately, there’s no managed wrapper for this call yet, so you have to do this
from a C++ app. See the “Triggering prefetching” sidebar for an example of a small C++ console app
that triggers fetching for a specific app.

 CHAPTER 3 Designing for performance 59

Triggering prefetching
Once you set up ContentPrefetcher to retrieve resources for your app, Windows will do so
according to its heuristics. To test that the resources are fetched as expected, you can trigger
fetching by calling IContentPrefetcherTaskTrigger::TriggerContentPrefetcher
Task. Unfortunately, there’s currently no other way to do that. To make matters a bit more
 complicated, this method is not exposed to managed apps, so you have to call it from native
code.

Listing 3-2 contains the code required to trigger prefetching for a specified app. To compile
this project, you need to do the following:

1. Create a C++ Win32 console application named TriggerPrefetch.

2. Enter the code from Listing 3-2 into the TriggerPrefetch.cpp file.

3. Go to project properties, and locate the C/C++ section. Enter or enable the following:

a. Under General, add the paths C:\Program Files (x86)\Microsoft SDKs\
Windows\v8.1\ExtensionSDKs\Microsoft.VCLibs\12.0\References\

CommonConfiguration\neutral and C:\Program Files (x86)\Windows
Kits\8.1\References\CommonConfiguration\Neutral.

b. Under General > Consume Windows Runtime Extensions, select the value Yes (/ZW).

c. Under Code Generation > Enable Minimal Build, select the value No (/Gm–).

4. Build the project.

5. Use the Get-AppxPackage command in Windows PowerShell to get the full package
name for your app.

6. Run the newly built TriggerPrefetch utility with the full package name as input.

7. Check the return value by echoing %errorlevel%. A value of zero means no errors.

This makes Windows fetch the configured resources immediately. You can verify that the
fetch occurs by monitoring network traffic with a network monitor such as Fiddler or by
 capturing events from the Microsoft-Windows-BackgroundTransfer-ContentPrefetcher
provider. Admittedly, this is not the most elegant way to test this, so I’m hoping the experience
improves with a future release.

LISTING 3-2 C++ code for the TriggerPrefetch utility.

#include "stdafx.h"
#include <IContentPrefetcherTaskTrigger.h>
#include <roapi.h>
#include <winstring.h>

60 Live content CHAPTER 3

int _tmain(int argc, _TCHAR* argv[])
{
 WCHAR* activableClass = L"Windows.Networking.BackgroundTransfer.ContentPrefetcher";
 int iLen = wcslen(activableClass);
 HSTRING hs_activableClass;
 int rc = 0;

 if (argc > 1) {
 if (SUCCEEDED(WindowsCreateString(activableClass, iLen, &hs_activableClass))) {
 if (SUCCEEDED(RoInitialize(RO_INIT_MULTITHREADED)))
 {
 IContentPrefetcherTaskTrigger *trigger = nullptr;
 if (SUCCEEDED(Windows::Foundation::GetActivationFactory(hs_activableClass,
 &trigger))) {
 // supply PackageFullName at prompt, retrieve the name by running
 // Get-AppxPackage cmdlet
 if (FAILED(trigger->TriggerContentPrefetcherTask(argv[1]))) {
 // log error and set bad return value
 rc = -1;
 }
 trigger->Release();
 }
 }
 RoUninitialize();
 }

 if (FAILED(WindowsDeleteString(hs_activableClass))) {
 // log error and set bad return value
 rc = -2;
 }
 }
 else {
 printf("Syntax: TriggerPrefetch <PackageFullName>\n");
 }

 return rc;
}

Using ContentPrefetcher indirectly
For some apps, the direct approach is not very attractive. For example, a news app might retrieve
stories and corresponding images whose URIs change all the time. Today’s top story has a different
URI than yesterday’s top story, so the app has no way to enumerate the resources it wants to prefetch.
To handle this situation, ContentPrefetcher offers an indirect way to specify the resources to be
fetched. When you use the indirect approach, the ContentPrefetcher queries a single resource for
a list of resources to retrieve. That is, the list of resources is always available at the same URI, but the
content returned through this list differs over time. This allows news apps and the like to constantly
refresh the cache based on the new resources on the server side.

The list of resources is just an XML document. The document must conform to the schema
in Listing 3-3. Listing 3-4 shows the same resources you used in the example in Listing 3-1 as a

 CHAPTER 3 Designing for performance 61

proper XML file for ContentPrefetcher. With the XML file in place, you just need to set the
 IndirectContentUri property as shown here:

ContentPrefetcher.IndirectContentUri = new Uri("http://localhost:46449/resources.xml");

This configures ContentPrefetcher to retrieve the list of resources—in this case, called
 resources.xml—from the specified URI. For the purpose of this example, I am just using a local server,
but obviously you should point to a real URI to retrieve the list.

LISTING 3-3 Schema for IndirectContentUri.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="PrefetchUris">
 <xs:complexType>
 <xs:sequence>
 <xs:element minOccurs="1" name="uri" type="xs:anyURI" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

LISTING 3-4 Sample XML file for IndirectContentUri.

<?xml version="1.0" encoding="utf-8" ?>
<prefetchUris>
 <uri>"http://windowsteamblog.com/windows/b/developers/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows/b/windowsexperience/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows/b/extremewindows/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows/b/business/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows/b/bloggingwindows/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows/b/windowssecurity/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows/b/springboard/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows/b/windowshomeserver/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows_live/b/windowslive/rss.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows_live/b/developer/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/ie/b/ie/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows_phone/b/wpdev/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows_phone/b/wmdev/atom.aspx"</uri>
 <uri>"http://windowsteamblog.com/windows_phone/b/windowsphone/atom.aspx"</uri>
</prefetchUris>

Tips for using ContentPrefetcher
ContentPrefetcher has a LastSuccessfulPrefetchTime property that returns a nullable
 DateTimeOffset indicating when the last prefetch (if any) executed. You can use this to display a
message about when the content was retrieved.

Common to both the direct and indirect approach is that they work only with the HttpClient
class defined in the Windows.Web.Http namespace. ContentPrefetcher does not work with the
HttpClient class from the System.Net.Http namespace, so you have to make sure you use the
right HttpClient for this to work.

62 Live content CHAPTER 3

I hope this goes without saying, but setting up ContentPrefetcher should not be part of the
critical path for the launch experience. ContentPrefetcher doesn’t alter the current launch, but
it might improve subsequent launches by making resources available locally. Consequently, this is
 something you should set up once the app is up and running.

Asynchronous I/O
Even with the help of ContentPrefetcher, many apps still need to retrieve resources from the cloud
at run time. Retrieving data from the network easily takes hundreds of milliseconds, and it might even
take seconds to complete. In the past, it was easy to block the UI thread doing I/O like that. Blocking
the UI thread for more than 50 milliseconds (ms) or so can make your app appear unresponsive.
 Fortunately, WinRT and C# make it easy to write asynchronous code, which prevents you from
 blocking the UI thread because of I/O.

Despite the asynchronous design of the WinRT API and the excellent support for writing
 asynchronous code in C#, you still need to keep in mind a couple of pitfalls. Although asynchronous
I/O prevents the UI thread from blocking and thus keeps your app responsive, it doesn’t change how
long a given operation takes. If it takes 400 ms to download some resource, making this operation
asynchronous allows your app to do other work while waiting for the operation to complete, but it
doesn’t change the fact that the app has to wait 400 ms. Asynchronous code allows your app to do
something while it is waiting, but it doesn’t change the duration of the wait.

Consider Listing 3-5. It retrieves an RSS feed asynchronously and does some work as represented
by the DoMoreWork method once that operation has completed. Using await accomplishes two
things here. It makes SomeMethod return immediately so that the caller is not blocked, and it captures
the state and the remaining code of the method so that it can run once RetrieveFeedAsync
completes. Now assume that retrieving this RSS feed takes 400 ms. That means the total running
time for SomeMethod is 400 ms or more. The calling thread can do other work in the meantime, but
 DoMoreWork doesn’t run until at least 400 ms have passed.

LISTING 3-5 Simple asynchronous method.

public async void SomeMethod()
{
 var feedUri = new Uri("http://windowsteamblog.com/windows/b/developers/atom.aspx");
 var client = new Windows.Web.Syndication.SyndicationClient();
 var feed = await client.RetrieveFeedAsync(feedUri);

 DoMoreWork();
}

If DoMoreWork needs the result of the asynchronous operation, this approach makes perfect sense,
but it doesn’t change the fact that the invocation of the method is delayed by the duration of the
asynchronous operation in RetrieveFeedAsync.

 CHAPTER 3 Designing for performance 63

This is something to keep in mind when you design the launch and navigation experiences for your
app. For example, if you await an asynchronous operation before you create the main frame in the
OnLaunched method, the launch experience is delayed by the duration of said operation because the
app cannot proceed before the asynchronous operation completes.

Similarly, if you wait before an asynchronous data source is fully populated before you set up
binding, the app will not show any data before all the data is available. This might be desirable for a
reliable, fast data source, but if the data source could introduce arbitrary delays, this likely turns into
a bad user experience. On the other hand, if you set up binding and then populate the data source
asynchronously, the app displays data as it is added to the data source. If any of the elements take
a long time to retrieve, they will not show up before they are ready, but at least the app remains
responsive and shows the data that is available while the remaining data is retrieved.

Cancelling asynchronous operations
When you write asynchronous code, the await keyword acts like a rendezvous point in the code.
Whenever the asynchronous method completes, your code continues to execute just as if the call had
been synchronous.

That’s great, until you realize that “whenever” is unbounded. Your code could end up waiting
 forever to run. If an asynchronous calls stalls forever, the remaining code will never run.

If that’s a concern, you want to be able to detect situations like that and cancel the asynchronous
operation. For instance, if your app requests live content at startup, you should implement a fallback
mechanism that cancels the outstanding requests and provides content in an alternate fashion if the
request takes too long.

Using CancellationToken with Task
If you are familiar with the Task Parallel Library (TPL), you probably know about CancellationToken.
A CancellationToken is useful when you want to cancel a running task. You simply pass in the
token and your task can then check whether cancellation has been requested. If you want to cancel
a CPU-bound Task, you should use a CancellationToken, just like you would when using TPL for
desktop or server applications. Listing 3-6 shows a simple example of doing this.

LISTING 3-6 Using CancellationToken to cancel a long-running computation.

using System;
using System.Threading;
using System.Threading.Tasks;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;

// The Blank Page item template is documented at http://go.microsoft.com/fwlink/?LinkId=234238

64 Live content CHAPTER 3

namespace CancelTask
{
 /// <summary>
 /// An empty page that can be used on its own or navigated to within a Frame.
 /// </summary>
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();
 }

 // input for Fibonacci calculation
 private int Counter = 35;

 private CancellationTokenSource Cts;

 private async void Calculate_Click(object sender, RoutedEventArgs e)
 {
 Cts = new CancellationTokenSource();

 try

 {

 Output.Text = (await LongRunningComputationAsync(Cts.Token)).ToString();

 }

 catch (OperationCanceledException)

 {

 Output.Text = "Cancelled";

 }

 }

 private void Cancel_Click(object sender, RoutedEventArgs e)
 {
 Cts.Cancel();
 }

 private Task<int> LongRunningComputationAsync(CancellationToken token)
 {
 return Task.Run(() => RecursiveFibonacci(Counter++, token), token);
 }

 // Very ineffective implementation of Fibonacci
 // For illustration purposes only - Don't use!
 private int RecursiveFibonacci(int n, CancellationToken token)
 {
 if (n <= 1)
 {
 return 1;
 }

 token.ThrowIfCancellationRequested();

 return RecursiveFibonacci(n - 2, token) + RecursiveFibonacci(n - 1, token);
 }
 }
}

 CHAPTER 3 Designing for performance 65

Listing 3-6 sets up two event handlers. The first event handler triggers a long-running,
 asynchronous calculation. In this case, the calculation is an extremely inefficient implementation
of Fibonacci. There are much better ways to implement this function. The only nice feature of this
 implementation is that it is simple to read. The performance of this implementation is horrible, so
please don’t use this code.

The interesting thing about this implementation is that it takes a CancellationToken as input
and checks whether cancellation has been requested. If cancellation is requested, it throws an
 OperationCanceledException, which must be caught by the caller. The exception is automatically
marshalled from the worker thread running the asynchronous operation to the calling thread that
initiated the operation.

The second event handler simply signals that cancellation was requested. This is
done by calling the Cancel method on the CancellationTokenSource. This changes
the state of the CancellationToken and aborts the asynchronous operation with an
 OperationCanceledException.

Notice how the CancellationToken in LongRunningComputationAsync is passed to both
RecursiveFibonacci and to Task.Run. The reason for this is that both methods need to be able to
detect whether cancellation was requested. If cancellation was requested before Task.Run executes,
no task is scheduled. If cancellation was requested while the calculation was in progress, the call to
ThrowIfCancellationRequested will cancel it.

Using CancellationToken with WinRT APIs
Task and CancellationToken are .NET Framework concepts and thus unknown to the
WinRT APIs. That is, none of the asynchronous WinRT methods take a CancellationToken as
 input, so by default the approach in Listing 3-6 doesn’t work with WinRT methods. Luckily, the
 WindowsRuntimeSystemExtensions class provides the AsTask extension method that turns the
object returned by a WinRT asynchronous method into a Task.

The WindowsRuntimeSystemExtensions class provides many overloads of the AsTask extension
method, and several of those take a CancellationToken. In other words, the AsTask extension
method effectively bridges the gap between Task-based asynchronous methods and WinRT-based
asynchronous methods. All you need to do to use a CancellationToken with WinRT-based
methods is call the AsTask extension method on the objected returned by the asynchronous method.

Listing 3-7 shows how you can use a CancellationToken to cancel an asynchronous WinRT
method.

LISTING 3-7 Using CancellationToken with WinRT-based asynchronous methods.

using System;
using System.Threading;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;

66 Live content CHAPTER 3

// The Blank Page item template is documented at http://go.microsoft.com/fwlink/?LinkId=234238

namespace CancelAsyncWinRT
{
 /// <summary>
 /// An empty page that can be used on its own or navigated to within a Frame.
 /// </summary>
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();
 }

 private CancellationTokenSource Cts;

 private async void Download_Click(object sender, RoutedEventArgs e)
 {
 Cts = new CancellationTokenSource();

 var feedUri = new Uri("http://windowsteamblog.com/windows/b/developers/atom.aspx");

 var client = new Windows.Web.Syndication.SyndicationClient();

 // Disable cache, so method runs for a while

 client.BypassCacheOnRetrieve = true;

 var feed = client.RetrieveFeedAsync(feedUri).AsTask(Cts.Token);

 try
 {
 Output.Text = (await feed).Title.Text;
 }
 catch (OperationCanceledException)
 {
 Output.Text = "Cancelled";
 }

 }

 private void Cancel_Click(object sender, RoutedEventArgs e)
 {
 Cts.Cancel();
 }
 }
}

Listing 3-7 is similar to the code in Listing 3-6. However, this time the app calls
 RetrieveFeedAsync on SyndicationClient. That’s a native, asynchronous WinRT method.
By default, this doesn’t support the use of a CancellationToken. Notice how AsTask turns the
object returned by RetrieveFeedAsync into a Task<SyndicationFeed>. The AsTask overload
takes a CancellationToken as input, which enables you to cancel the WinRT API call just like you
would do if this was a regular .NET task. Furthermore, you can await the Task just like any other
 awaitable type, and once the asynchronous operation completes, you can fetch the Title from the
 downloaded feed.

 CHAPTER 3 Designing for performance 67

Extended splash screen
The MSDN guidelines state that your app can use an extended splash screen if it needs more time
during startup. The reasons for using an extended splash screen are twofold. First of all, you want to
prevent Windows from terminating the app because of excessive startup time. Second, you might
want to let users know that the app is still launching. The extended splash screen typically replaces
the system-controlled splash screen with an identical or similar screen that is displayed while the app
loads.

From the point of view of Windows, the app is actually running at this point. Using an extended
splash screen prevents Windows from shutting down your app because it spends too much time
getting started, but it doesn’t change the fact that the user has to wait a long time for the app to
become responsive. Waiting several seconds for an app to launch is not a good user experience,
extended splash screen or not.

Many apps simply display their logo accompanied by a progress indicator as their extended splash
screen. There might be a few users out there who get all excited by seeing spinning dots for seconds,
but for the rest of us that’s not a great experience. I’m not a big fan of extended splash screens, but if
your app must use an extended splash screen at least make sure it adds some value. You can beef up
the progress indicator by telling the user what the app is doing. I don’t feel that it adds a lot of value,
but it does break the monotony, which makes it a tad better than the progress indicator on its own.
Instead, try to come up with some interesting information you can show the user. This could be in the
form of helpful tips for using the app, interesting stats about the usage, or something else that might
make the user interested in exploring new areas of the app.

Extended splash screens make sense for advanced games or apps that have to process large
amounts of data on startup. Most regular apps should not need an extended splash screen, and using
one should definitely be the last resort. Make sure your app’s start experience is as fast as it can get
using the tips covered in this chapter. Before you even consider using an extended splash screen, you
should measure the startup performance of your app and optimize the critical path as described in
Chapter 6, “Investigating performance issues.” It is likely that you can optimize the launch experience
to the point where you don’t need an extended splash screen. All things considered, a faster startup
makes for a much better user experience than simply using an extended splash screen to mask
 performance issues.

Handling a lot of content

Some apps handle large datasets. Many shopping apps make thousands of items available to the user,
photo browsers let the users browse large image libraries, and social apps handle countless messages,
replies, comments, and so forth. If you’re building an app that needs to handle a lot of content, there
are several things to keep in mind. I go through the following topics:

■■ Prioritize your content.

■■ Partition content to reduce workload.

68 Handling a lot of content CHAPTER 3

■■ Size or decode images.

■■ Cache information to improve transitions.

Prioritize your content
I know this repeats one of the points of the previous section, but prioritizing is a very important part
of performance work in general, so it bears repeating. Every time you make some scenario run faster,
you do so at the expense of something else. There’s no way every part of your app can be as fast as
possible, so you need to prioritize.

If your app needs to show a lot of content, some content will be more important than other
 content. If you do not figure out what the important parts are and focus on those, you force the user
to make this prioritization and that is not a great user experience. This is the reason news apps have
top stories—they help the readers focus their attention on the important parts. Furthermore, it is
virtually impossible to avoid suggesting some kind of prioritization even when you try not to. A news
app that simply lists all the available stories without any embellishment still suggests priority by the
order in which the stories are listed.

The key here is that priority is a useful tool that shapes the user experience. You can use this tool
to your advantage. Users are looking for order, so don’t give them chaos. If your app has a lot of
 content, the best way to improve the user experience and the performance is to acknowledge that
some of the content is going to be more important to the user and make sure this is readily available.

In practical terms, this means everything visible on the first page of the app is more important
than all the off-screen items. Furthermore, you probably even want to prioritize the content of the
first page as well. The new Hub control introduced in Windows 8.1 is an excellent way to do that, but
there are other useful ways to achieve the same effect.

Many things affect our perception of what is important and what isn’t. Order, size, and color of
elements all affect how we interpret importance. The Hub control uses all these elements to create
a clear ordering of things, as you can see in Figure 3-2. On the left, a large picture attracts the
user’s attention. Because many users read from left to right, both the size and the placement of this
item underlines its importance. The next item in the second column is smaller, suggesting it is less
 important. However, it has a picture to draw attention to it, which makes it more important than the
item in the third column, and so forth.

 CHAPTER 3 Designing for performance 69

FIGURE 3-2 Mockup of a Hawaii app based on the Hub app template.

The Hub control establishes an obvious order of the elements on the page. To support this, your
app must make sure the necessary resources are retrieved in the same order.

Ideally, all the important resources should be loaded locally. The app can attempt to retrieve the
resources online, but the only way to guarantee good performance is to have a mechanism to fall
back to local content in case network latency is too high. Your app can launch asynchronous tasks to
retrieve the elements, but if these run for more than a few hundred milliseconds, the app should use
cached resources instead, even if these are stale. The content can be refreshed once the resources are
available. If you optimize for responsiveness, your users will be able to use the app but might not have
the latest data. On the other hand, if you optimize for absolutely up-to-date content, users will get
neither responsiveness nor fresh content when the network isn’t cooperating.

A common problem in this area is that the server-side APIs might not be designed to support the
prioritization of the content your app needs. I have seen several apps that get all their resources in
bulk. This means the important resources are bundled with the less important resources, and the
result is that the app cannot do anything before everything is ready. In other words, content
cannot be prioritized and the overall workload increases. That hurts performance. You need to make
sure your back end supports specific queries so that your app can retrieve just the resources it needs
at any given time. When your app uses a back end, performance is affected by both the app itself,
the back end, and the protocol used to communicate between the two. All three must be designed
with performance for the specific scenarios in mind and the maxim “less is more” applies to all of
them. Make sure your app is simple; make sure you don’t send, receive, and process more data than
 necessary; and design your back end to support the queries your app needs to make.

70 Handling a lot of content CHAPTER 3

Partition content to reduce workload
Very large datasets present a number of challenges. If your app needs to handle large datasets, you
should spend some time identifying the maximum reasonable size. Although XAML offers several
ways to help you partition the content on the screen, you still need to figure out what a manageable
amount of content looks like.

Even though random access virtualization allows the user to page through huge collections of
data, you need to ask yourself if that’s the best way to present the content. Nobody wants to flip
through dozens of pages to find an item. After all, there’s a reason department stores have different
departments and your newspaper has different sections. Your app should make it easy for the user to
zoom in on the content she desires.

Virtualization
Once you identify the right partitioning of your app’s data, you might still need to present a lot of
items on the screen. As discussed in Chapter 2, XAML offers two ways to handle lists or grids with a
lot of items. To avoid repeating myself here, I will just talk about grids, but keep in mind that these
ideas apply to lists as well.

As you know, grids can be either virtualized or not virtualized. When a grid is virtualized, the
XAML engine renders content on demand. When a grid is not virtualized, everything is rendered up
front. Grids that are not virtualized can have great performance once everything is set up, but the
time needed to do so can easily hurt the performance significantly. Nonvirtualized grids don’t scale
well because of this. If your app has to build a large nonvirtualized grid as part of startup or page
 navigation, performance suffers. Consequently, the recommendation is to use nonvirtualized grids
only for small and simple grids.

Virtualized grids are much better at handling large collections because most of the work can be
deferred until needed and the underlying data structures can be recycled. Virtualization reduces the
work and the storage needed to handle and display the collection, which improves the performance.
Virtualized grids scale much better with the number of elements, and they should be your preferred
choice for anything but the simplest grids.

However, virtualized grids pay for great startup performance by doing more work during the
navigation of the data, so you need to pay attention to how much work is required to handle each
element in the grid. XAML offers a couple of ways to customize how this work is handled.

As you saw in Chapter 2, virtualization requires that the ItemsPanel of the GridView support
virtualization. In Windows 8, the default ItemsPanel was WrapGrid, which supports virtualization.
If you change the ItemsPanel to VariableSizedWrapGrid, you disable virtualization for the
 GridView because this panel doesn’t support virtualization.

 CHAPTER 3 Designing for performance 71

If your data source was grouped, you would use a VirtualizingStackPanel as your
 ItemsPanel for the GridView (or nothing at all because VirtualizingStackPanel was the
 default). The VirtualizingStackPanel virtualizes the content based on entire groups, which
means that all groups that are completely or partially on the screen are fully rendered. Groups that
are completely off the screen are not rendered. If panning brings these groups on the screen, they
get rendered as expected.

Group-based virtualization works well if you have many smaller groups. Most of the groups will be
off the screen at any given time, so the XAML engine doesn’t spend time rendering those. However, if
you have few, large groups, the majority of any given group will be off the screen most of the time. In
that case, XAML still spends a lot of time rendering items in the group that are not visible.

To work around this, Windows 8.1 introduced a new ItemsPanel called ItemsWrapGrid,
which supports virtualization at the item level. This support allows XAML to virtualize within
groups, allowing it to render only a part of any group as necessary. Furthermore, in Windows 8.1,
 ItemsWrapGrid replaces VirtualizingStackPanel as the default ItemsPanel for grouped
grid views. This means that if you have a Windows 8 app that uses the default ItemsPanel, all you
have to do is retarget your app for Windows 8.1 and your app will automatically use the improved
 ItemsWrapGrid. However, if you customized the ItemsPanel to explicitly use another panel
(or explicitly specified the use of VirtualizingStackPanel), you need to update this to use
 ItemsWrapGrid if you want your app to use the improved version.

To illustrate the performance differences between the different kinds of virtualizations, let me walk
you through an example. Figure 3-3 shows a simple grid app with a grouped data source. The app
displays 900 abstract pictures along with a title and a short description for each picture. The pictures
are all local assets, so network response times don’t affect the performance in this case. The pictures
are grouped into five groups of 180 pictures each.

FIGURE 3-3 Grid app using a grouped data source.

72 Handling a lot of content CHAPTER 3

The XAML corresponding to the preceding app is shown in Listing 3-8 next.

LISTING 3-8 XAML for grid page.

<Page
 x:Class="GridVirtualization.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:GridVirtualization"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Page.Resources>
 <CollectionViewSource x:Key="PictureSource" IsSourceGrouped="True" Source="{Binding}"/>
 </Page.Resources>

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}" Margin="40">
 <GridView ItemsSource="{Binding Source={Binding PictureSource}}" SelectionMode="None" >
 <GridView.ItemTemplate>
 <DataTemplate>
 <Grid Width="188" Height="125" Margin="10">
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Image Grid.Column="0" Source="{Binding Location}" />
 <StackPanel Grid.Column="1" Margin="10,0,10,0">
 <TextBlock Text="{Binding Title}" FontSize="20" />
 <TextBlock Text="{Binding Tagline}" />
 </StackPanel>
 </Grid>
 </DataTemplate>
 </GridView.ItemTemplate>

 <GridView.ItemsPanel>
 <ItemsPanelTemplate>
 <VirtualizingStackPanel Orientation="Horizontal" />
 </ItemsPanelTemplate>
 </GridView.ItemsPanel>

 <GridView.GroupStyle>
 <GroupStyle>

 <GroupStyle.HeaderTemplate>
 <DataTemplate>
 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
 Text="{Binding Key}" Margin="10"/>
 </DataTemplate>
 </GroupStyle.HeaderTemplate>

 <GroupStyle.Panel>
 <ItemsPanelTemplate>
 <VariableSizedWrapGrid/>
 </ItemsPanelTemplate>

 CHAPTER 3 Designing for performance 73

 </GroupStyle.Panel>

 </GroupStyle>
 </GridView.GroupStyle>
 </GridView>

 </Grid>
</Page>

The XAML shouldn’t contain any big surprises. This is similar to how the Grid App template
would arrange the markup for a Windows 8 app. The XAML sets up a grouped data source and
binds that to a GridView. The interesting part is the GridView.ItemsPanel section. This section
 defines the ItemsPanelTemplate for the grid elements. In this case, I explicitly specify a horizontal
 VirtualizingStackPanel as highlighted in the code. Because this panel doesn’t support
 virtualization on the item level, performance suffers because of the large groups in the grid. On my
Surface 2, displaying the grid takes around 2.5 seconds with another 2.5 seconds before the entire set
of visible images are rendered. That’s 5 seconds in total—far beyond acceptable.

These numbers obviously depend on the size of the total grid as well as the size of each group. In
this case, each group contains 180 elements. With 24 elements shown on the screen on a Surface 2,
the bulk of any group is off the screen at any given point. Because VirtualizingStackPanel causes
 virtualization to happen per group, XAML has to do a lot of work to render the off-screen elements for
the group or groups being displayed.

If I change the markup to use the new ItemsWrapGrid instead, the grid virtualizes on a per-item
basis, which improves the performance drastically in this case. I measured less than 1.5 seconds for
the grid to appear with all visible items rendered on my Surface 2. At this point, the app is responsive
to the user. That’s certainly within the desired target values, and an example of how you can make a
huge difference just picking the proper ItemsPanel. Further optimizations might be possible, but
obviously picking the proper panel was important. Of course, you don’t actually have to specify the
ItemsPanel explicitly, because the default is ItemsWrapGrid if you target Windows 8.1. However, if
you do specify an ItemsPanel, make sure you pick the right one for the task.

Of course, if you use a non-virtualizing ItemsPanel such as VariableSizedWrapGrid instead,
performance suffers as XAML has to render the entire grid. In this case, I measured around 8 seconds
to render the grid on a Surface 2 when using a non-virtualizing ItemsPanel.

Placeholders
In Windows 8, a common problem with large, virtualized grids was what we call panning to black.
Recall that when a grid or a list is virtualized, XAML has to create and render elements as they
are panned into view. Creating and rendering each of these items take time. If the items are too
 complex, too numerous, or both, XAML might not be able to keep up and render these as quickly
as needed, which means that nothing is displayed for these elements until XAML is able to catch up.
Because many apps use a black background, the result of this problem is usually a large black area, as
 illustrated in Figure 3-4, and hence the term panning to black.

74 Handling a lot of content CHAPTER 3

FIGURE 3-4 Panning to black—a common problem with large, virtualized grids in Windows 8.

The app in Figure 3-4 is based on the abstract pictures example mentioned earlier, but as you
can see I made the formatting of each item a little more complex. In the new layout, there’s a border
around each picture and a drop shadow made from placing a rectangle underneath each picture, and
the text is now placed on a rectangle on top of the picture itself. Furthermore, I reduced the size of
each picture element to fit more items on the screen. The more items and the more complex they are,
the more likely it is that XAML might not be able to keep up during fast panning on slower devices. In
this case, I have enough items on the screen to cause rendering problems on low-end devices.

Fortunately, this issue has been addressed in Windows 8.1 as well with the
 ShowsScrollingPlaceholders property on ListViewBase. Because both ListView and
 GridView specialize ListViewBase, this addition applies to both lists and grids.

When ShowsScrollingPlaceholders is enabled, XAML shows gray placeholder items in place of
any items that it cannot render during panning as illustrated in Figure 3-5. This behavior immediately
lets the user know that more items are being rendered. This makes for a much better user experience
than simply panning through a sea of black. With the placeholders, the user is no longer in doubt
about whether more content is coming.

 CHAPTER 3 Designing for performance 75

FIGURE 3-5 When you enable ShowsScrollingPlaceholders, XAML renders gray boxes in place of content that has
not been rendered.

ShowsScrollingPlaceholders is enabled by default, so you don’t need to do anything to take
advantage of this feature if you’re building for Windows 8.1, but you might actually want to disable it
in some cases. Why, you ask. Well, let me tell you about another feature in Windows 8.1.

Customized placeholders
Placeholders let the user know that additional items are on their way, but they are generic and
don’t provide any specific information on what’s coming—after all, they are just gray boxes. If the
XAML engine cannot keep up during panning, it is typically because each element being rendered is
 complex. By default, XAML attempts to render each visible item in full, and failing to do so, it renders
the placeholder instead until it has the bandwidth to render the missing items.

But what if XAML could render the simple parts of each element before moving on to the more
complex parts? The overall time to render the element wouldn’t improve, but instead of waiting for
the entire element to render, the user would see some useful information for each element during
panning and eventually all of each element on the screen.

The ContainerContentChanging event defined on ListViewBase allows just that. If you attach
an event handler to this event, XAML calls your handler as it renders each element. This behavior
allows you to render a simple version of the element initially. This could be something like a title or a
brief description. From the handler, you can set up another handler to be called during the next phase
of rendering the item. You can chain these handlers as you like and thus partition the work needed to
render each element as you like. This is essentially an improved version of the placeholders feature,
so if you implement this, you want to disable placeholders to avoid rendering both the generic
 placeholders and your own improved placeholders.

76 Handling a lot of content CHAPTER 3

Let me walk you through an example. The app in Figure 3-6 is the same as you saw earlier for
the example on placeholders. In the following, I walk you through how you can change this app to
use the ContainerContentChanging event to provide custom placeholders instead of generic
 placeholders. The XAML for the app is listed in Listing 3-9.

FIGURE 3-6 This grid app shows a large number of somewhat complex elements and thus might not be able to
provide a smooth panning experience on low-end devices.

LISTING 3-9 XAML for the abstract pictures viewer app.

<Page
 x:Class="GridVirtualization.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:GridVirtualization"
 xmlns:d=http://schemas.microsoft.com/expression/blend/2008
 xmlns:mc=http://schemas.openxmlformats.org/markup-compatibility/2006
 mc:Ignorable="d">

 <Page.Resources>
 <CollectionViewSource x:Key="PictureSource" IsSourceGrouped="True" Source="{Binding}"/>
 </Page.Resources>

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}" Margin="40">
 <GridView ItemsSource="{Binding Source={Binding PictureSource}}"
 SelectionMode="None" ShowsScrollingPlaceholders="True" >
 <GridView.ItemTemplate>
 <DataTemplate>
 <Border BorderBrush="Black" BorderThickness="1" Background="DarkGray">
 <Grid Width="97" Height="65" Margin="5">
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 CHAPTER 3 Designing for performance 77

 <Rectangle x:Name="dropShadow" Fill="Black" Opacity="0.8"
 Width="94" Height="62" Margin="5,5,0,0"/>
 <Image Grid.Column="0" Source="{Binding Location}"
 VerticalAlignment="Top" HorizontalAlignment="Left"
 Width="94" Height="62"/>
 <Rectangle x:Name="textBackground" Fill="Black" Opacity="0.75"
 Height="35" VerticalAlignment="Bottom"
 Margin="0,0,3,3"/>
 <StackPanel Grid.Column="1" Margin="3,0,0,6"
 VerticalAlignment="Bottom" >
 <TextBlock Text="{Binding Title}" FontSize="12" />
 <TextBlock Text="{Binding Tagline}" FontSize="10" />
 </StackPanel>
 </Grid>
 </Border>
 </DataTemplate>
 </GridView.ItemTemplate>

 <GridView.ItemsPanel>
 <ItemsPanelTemplate>
 <ItemsWrapGrid />
 </ItemsPanelTemplate>
 </GridView.ItemsPanel>

 <GridView.GroupStyle>
 <GroupStyle>

 <GroupStyle.HeaderTemplate>
 <DataTemplate>
 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
 Text="{Binding Key}" Margin="10"/>
 </DataTemplate>
 </GroupStyle.HeaderTemplate>

 <GroupStyle.Panel>
 <ItemsPanelTemplate>
 <VariableSizedWrapGrid/>
 </ItemsPanelTemplate>
 </GroupStyle.Panel>

 </GroupStyle>
 </GridView.GroupStyle>
 </GridView>

 </Grid>
</Page>

The markup is similar to what you saw in Listing 3-8, but I added some additional
presentation elements and changed the size of each picture listing. Notice the use of the
ShowsScrollingPlaceholders in the GridView tag. This is explicitly set to true, which
isn’t strictly necessary because that’s the default. In other words, you could delete this attribute
and achieve the same effect. However, because part of this exercise is to disable the generic
 placeholders, I included the attribute so that you can see where it goes.

78 Handling a lot of content CHAPTER 3

To change this from using generic placeholders to using ContainerContentChanging, I need to
do a couple of things. First and foremost, I need to hook up the event handler in the GridView tag.
Second, I need to name the element for each abstract picture so that I can reference it in the event
handler. The last thing I need to do in the markup is turn the generic placeholders off so that XAML
doesn’t spend time rendering those as well as my custom placeholders. The updated XAML is shown
in Listing 3-10.

LISTING 3-10 XAML updated to use ContainerContentChanging instead of ShowsScrollingPlaceholders.

<Page
 x:Class="GridVirtualization.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:GridVirtualization"
 xmlns:d=http://schemas.microsoft.com/expression/blend/2008
 xmlns:mc=http://schemas.openxmlformats.org/markup-compatibility/2006
 mc:Ignorable="d">

 <Page.Resources>
 <CollectionViewSource x:Key="PictureSource" IsSourceGrouped="True" Source="{Binding}"/>
 </Page.Resources>

 <Grid Background="{ThemeResource ApplicationPageBackgroundThemeBrush}" Margin="40">
 <GridView ItemsSource="{Binding Source={Binding PictureSource}}"
 SelectionMode="None" ShowsScrollingPlaceholders="False"
 ContainerContentChanging="ContainerContentChanging" >
 <GridView.ItemTemplate>
 <DataTemplate>
 <Border BorderBrush="Black" BorderThickness="1" Background="DarkGray">
 <Grid Width="97" Height="65" Margin="5">
 <Grid.RowDefinitions>
 <RowDefinition Height="auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

 <Rectangle x:Name="dropShadow" Fill="Black" Opacity="0.8"
 Width="94" Height="62" Margin="5,5,0,0"/>
 <Image x:Name="picture" Grid.Column="0" Source="{Binding Location}"
 VerticalAlignment="Top" HorizontalAlignment="Left"
 Width="94" Height="62"/>
 <Rectangle x:Name="textBackground" Fill="Black" Opacity="0.75"
 Height="35" VerticalAlignment="Bottom"
 Margin="0,0,3,3"/>
 <StackPanel Grid.Column="1" Margin="3,0,0,6"
 VerticalAlignment="Bottom" >
 <TextBlock x:Name="titleText" Text="{Binding Title}"
 FontSize="12" />
 <TextBlock x:Name="descText" Text="{Binding Tagline}"
 FontSize="10" />
 </StackPanel>
 </Grid>
 </Border>
 </DataTemplate>
 </GridView.ItemTemplate>

 CHAPTER 3 Designing for performance 79

 <GridView.ItemsPanel>
 <ItemsPanelTemplate>
 <ItemsWrapGrid />
 </ItemsPanelTemplate>
 </GridView.ItemsPanel>

 <GridView.GroupStyle>
 <GroupStyle>

 <GroupStyle.HeaderTemplate>
 <DataTemplate>
 <TextBlock Style="{StaticResource SubheaderTextBlockStyle}"
 Text="{Binding Key}" Margin="10"/>
 </DataTemplate>
 </GroupStyle.HeaderTemplate>

 <GroupStyle.Panel>
 <ItemsPanelTemplate>
 <VariableSizedWrapGrid/>
 </ItemsPanelTemplate>
 </GroupStyle.Panel>

 </GroupStyle>
 </GridView.GroupStyle>
 </GridView>

 </Grid>
</Page>

The updated XAML markup hooks up an event handler for the ContainerContentChanging
event, so obviously we need to implement that.

Before I go through the implementation though, let me stress that this is called for each element
in the grid as part of rendering. This affects the time XAML spends creating display frames—recall
from Chapter 2, that XAML breaks down the layout of the user interface in a number of frames. If
 creating the frames requires a lot of work, XAML will not be able to keep up with user interactions
and responsiveness will suffer.

Take a look at the implementation of the initial event handler in Listing 3-11. It doesn’t do a lot, which
is intentional because this method is called synchronously for each element. Whatever complex work
you need to do to render the elements should be done at later stages, as I’ll discuss momentarily. Initially,
ContainerContentChanging informs the XAML engine that the current element has been handled. This
is an important optimization that tells XAML that it can skip its usual work for this element.

It then digs out all the references for the UI elements it needs to access and sets the Opacity of
those to 0. This instructs the XAML engine to skip those elements during rendering because they
are not visible. The elements are still part of the visual tree, however. The border element is left
 unchanged, so it still renders for each element. In other words, the border is the first visible piece in
my custom placeholder. Finally, the handler sets up an additional callback for this element, signaling
that there’s more work to do before rendering is complete. Unlike the first handler, subsequent
 callbacks are invoked asynchronously when XAML has the bandwidth to render additional details.

80 Handling a lot of content CHAPTER 3

LISTING 3-11 Implementation of ContainerContentChanging.

private void ContainerContentChanging(ListViewBase sender,
 ContainerContentChangingEventArgs args)
{
 // For improved performance, set Handled to true
 // so the app does not set content on this item
 args.Handled = true;

 var templateRoot = (Border)args.ItemContainer.ContentTemplateRoot;
 var textBg = (Rectangle)templateRoot.FindName("textBackground");
 var title = (TextBlock)templateRoot.FindName("titleText");
 var desc = (TextBlock)templateRoot.FindName("descText");
 var dropShadow = (Rectangle)templateRoot.FindName("dropShadow");
 var image = (Image)templateRoot.FindName("picture");

 textBg.Opacity = 0;
 title.Opacity = 0;
 desc.Opacity = 0;
 dropShadow.Opacity = 0;
 image.Opacity = 0;

 args.RegisterUpdateCallback(ShowText);
}

You can chain as many callbacks as you like, but if you need to chain more than a few, your
 elements might be too complex to be displayed efficiently in a grid or a list. This sample sets up a
chain of three event handlers. The next handler displays the title and the description for the picture.
The final handler displays the image and the drop shadow. The two remaining callbacks are shown in
Listing 3-12.

LISTING 3-12 Remaining callbacks for the movies app.

private void ShowText(ListViewBase sender, ContainerContentChangingEventArgs args)
{
 var picture = (AbstractPicture)args.Item;
 var templateRoot = (Border)args.ItemContainer.ContentTemplateRoot;

 var textBg = (Rectangle)templateRoot.FindName("textBackground");
 var title = (TextBlock)templateRoot.FindName("titleText");
 var desc = (TextBlock)templateRoot.FindName("descText");

 title.Text = picture.Title;
 desc.Text = picture.Description;

 textBg.Opacity = 1;
 title.Opacity = 1;
 desc.Opacity = 1;

 args.RegisterUpdateCallback(ShowPicture);
}

 CHAPTER 3 Designing for performance 81

private void ShowPicture(ListViewBase sender, ContainerContentChangingEventArgs args)
{
 var picture = (AbstractPicture)args.Item;
 var templateRoot = (Border)args.ItemContainer.ContentTemplateRoot;

 var dropShadow = (Rectangle)templateRoot.FindName("dropShadow");
 var image = (Image)templateRoot.FindName("picture");

 image.Source = picture.Location;

 dropShadow.Opacity = 1;
 image.Opacity = 1;
}

They both follow the same general idea. Each callback surfaces additional detail about the item
being handled. Notice how the actual data item is passed in the Item property of args. In ShowText,
this is used to retrieve the title and description of the picture and expose those. When data is ready,
the corresponding UI elements are made visible by setting the Opacity property to 1, thus rendering
the data during that phase.

ShowPicture doesn’t set up another callback, so it completes the chain of callbacks. When
 ShowPicture completes, the current item is rendered completely.

With the preceding implementation, each element renders as follows:

1. Border

2. Title and description on top of a rectangle

3. Picture and drop shadow

ContainerContentChanging offers a great way to customize rendering for complex elements
in grids and lists during panning. However, keep a couple of things in mind when using this
 approach. Splitting the rendering into multiple phases adds overhead to the work needed for
each element, so you might need to try various approaches to get the balance right. The first
method in the chain of methods is special. It must make sure to set the Handled property on the
 ContainerContentChangingEventArgs instance, and it should execute as quickly as possible
 because it is invoked synchronously for each element. The work you do in this method adds latency
to the act of rendering the grid, so keep it as brief as possible.

Before you use ContainerContentChanging, you should simplify the layout for each element as
much as possible. The goal is to make panning fast and smooth. The best way to do that is to reduce
the amount of work XAML has to do for each element, reduce the number of elements, or both. Once
you have done that, you can use ContainerContentChanging to partition the remaining work if
needed.

82 Handling a lot of content CHAPTER 3

Cache information to improve transitions
It doesn’t matter if your app does heavy calculations, performs complex queries, or downloads
 truckloads of data from the cloud—retrieving the necessary data can be time consuming. As
 discussed, you don’t want your app to wait for the data to become available because that leads to a
bad user experience. Furthermore, when the data is finally present, you might want to hold on to it
to avoid the overhead of calculating or retrieving the data again. Of course, holding on to data is not
free either, so you need to come up with a good strategy for what you want your app to cache and
how long data should be cached. Remember, a cache without an expiration policy is just a fancy word
for a memory leak.

Getting caching right can be tricky. If you don’t get it right, you might cause your app’s memory
usage to balloon, with no noticeable gain in performance. Before you implement caching, make
sure you collect the data to support your decision. Once you implement your caching, you need to
 measure and adjust the implementation as necessary.

When it comes to caching, you’re generally looking for scenarios where getting the required
data takes longer than desired and the bulk of the data is reused. If the data isn’t reused, caching
it makes no sense regardless of how long it takes to retrieve it. If some of the data is reused, you
need to consider the hit/miss ratio. If your app has to hold on to large amounts of data to facilitate
 caching, you might run into problems because of excessive memory usage, as described in Chapter 2.
You might need to experiment with different approaches to get the balance right. As I said, getting
 caching right isn’t easy.

Once you identify scenarios that might benefit from caching, consider the following:

■■ Is caching already available? Anything your app retrieves over HTTP can be cached, and the
protocol has its own scheme for controlling caching. To use HTTP caching, you need to be able
to control how data is handled on the server. If that’s an option, HTTP caching is a good choice
because it provides an easy-to-use, well-understood mechanism for caching resources, and
best of all, it is completely transparent to the app.

■■ Can results be cached for multiple users? Some calculations and queries are common across
many or all the user sessions. These can be executed and cached on the server instead of
letting each client do the work. This can eliminate the work in the majority of cases if many
scenarios use the same data. However, it obviously adds additional network latency to the
equation. For this to be attractive, the cost of doing the work locally must exceed the latency.

■■ Does data retrieval follow a pattern? In some scenarios, there’s a good chance you can predict
subsequent queries or calculations based on the current action. If that’s the case, you can use
this to prepopulate your app cache. This works for both local caches and when interacting
with a back end. For example, if your app uses a local cache, the current action can trigger
a background task that proactively calculates the next expected result set and stores that.
A CancellationToken can be used to cancel the action if the prediction turns out to be
 incorrect. For back-end-based solutions, the server can return the requested data as well
as data likely to be returned for the next query or queries. Doing so reduces the number of
 network round trips between the app and the back end for each request.

 CHAPTER 3 Designing for performance 83

■■ Is the data valid beyond the current user interaction? If the user closes and restarts the
app, will it need the same data again? If the app needs the same data, the cache should be
 persisted locally and read upon restart. There are various options for persisting data. For
data that is read in bulk, just serializing the objects is a good approach. If data is read back
 selectively, a local database such as SQLite might be a better option. Persisting and releasing
the data can also reduce the memory usage of the app. This works well if different parts of the
app use distinct sets of data.

Releasing memory on demand
The problem with holding on to too much data is that the memory usage of the app grows
to undesirable levels. This affects overall system performance and increases the risk of the app
being terminated by the operating system. In a .NET app, you don’t manage memory usage
 explicitly—instead, the Common Language Runtime (CLR) allocates and frees memory based on the
lifetime of objects. As long as your app holds references to objects, they are not reclaimed during
garbage collection and the associated memory segments are not released.

Weak references allow your app to release memory on demand. When your app holds a strong
reference to an object or a graph of objects, these are considered in use and thus not reclaimed
during garbage collection. A weak reference allows your app to hold on to an object or a collection
of objects while still permitting the objects to be collected during garbage collection. By using weak
references, your app can hold on to data and release it automatically if needed. Listing 3-13 shows
how to use the WeakReference class to hold on to a list of items.

LISTING 3-13 Using a weak reference to hold on to a list.

// Instance field
WeakReference<List<SomeType>> weakRef;

…
// Some place in the code
…

var list = GetListOfObjects();

// Create a weak reference to the list
weakRef = new WeakReference<List<SomeType>>(list);

…
// Somewhere else in the code
…

List<SomeType> list = null;
if(!weakRef.TryGetTarget(out list))
{
 // The list was reclaimed during GC, so we have to re-create it
 list = GetListOfObjects();
}

84 Handling media CHAPTER 3

The code is straightforward. weakRef is an instance field on some class that uses a
List<SomeType>. Initially, I create a list using a strong local reference. As long as that reference is
alive, the list cannot be reclaimed. Next, I assign a WeakReference to the field on the current object
that points to the same list. When the original strong reference is no longer valid, the weak reference
holds on to the list, but it will not prevent the list from being reclaimed if a garbage collection needs
to reclaim the associated memory.

Because the list might have been reclaimed, I need to check if the weakRef is still referencing
it before I can access the list. This is done through the TryGetTarget method. If it returns false,
it means that list could not be set and I need to re-create the list. If it returns true, the list
 reference is set through the out parameter. This makes the original list object accessible and prevents
the list from being collected.

You can use weak references in your data model to hold on to data as needed. Weak references
are useful for data that can be re-created quickly. For data retrieved from the network, weak
 references might not be the best solution because garbage collections trigger the need to download
the data again. For such data, it is better to persist it locally. Once that’s done, you can use weak
 references to hold on to in-memory copies of the data.

Handling media

Including media in your app is a compelling way to enhance the user experience. XAML makes it easy
to include video, audio, and images in your application. Just pick the right UI element, set the source,
and voila, XAML and WinRT take care of all the heavy lifting of decoding and presenting the media
appropriately.

For example, to include video in your app, you just drop a MediaElement on your user interface
and set the source to a local or remote video. Listing 3-14 shows the simple XAML you need to write
to do this. Using audio and images are equally straightforward.

LISTING 3-14 Including media in your app is simple.

<MediaElement x:Name="mediaSimple"
 Source="Videos/video.mp4"
 Width="400" />

While including media in your app is deceptively easy, you can do a couple of things to ensure
proper and efficient playback. In the following sections, I go through a number of things to keep in
mind when handling media content:

■■ Playing video

■■ Displaying images

■■ Playing audio

■■ Releasing resources

 CHAPTER 3 Designing for performance 85

Playing video
WinRT supports a number of popular video formats. Selecting the right format can have a great
impact on both performance and power utilization. For videos, the recommended encoding is H.264,
and for local playback, the preferred file container is MP4. H.264 decoding is accelerated through
most recent graphics hardware. Although hardware acceleration for VC-1 decoding is broadly
 available, for a large set of graphics hardware on the market, the acceleration is limited in many cases
to a partial acceleration level, rather than a full-steam-level hardware offload.

Apart from picking the optimal format, there are a number of things to keep in mind when playing
video. You should prefer videos that are scaled to the display resolution. Decoding video takes a lot of
memory and GPU cycles, so choose a video format close to the resolution it will be displayed at. There
is no point in using the resources to decode high-definition video if it’s going to get scaled down to a
much smaller size. If the back end offers multiple formats, make sure to pick the proper format.

Defer processing of media content
By default, MediaElement retrieves one of the initial frames to display before the video is played.
Opening the file, decoding the frames, and picking an image is not a trivial operation. If the
user never plays the file, this is a lot of work to do up front. Fortunately, MediaElement has a
 PosterSource property that allows you to specify an image that can be used instead. Note, however,
that this property is useful only if Source is not set in the markup as well. To use PosterSource, set
it to some image and then dynamically set the Source as needed at a later point. The PosterSource
image is displayed while the work to retrieve an appropriate frame from the video is in progress. Once
a frame has been identified, it is cached to reduce the necessary work the next time the video is used.
The PosterSource is also displayed if the MediaFailed event fires.

If your app displays a collection of videos, the use of PosterSource can have a significant effect
on the user experience because XAML doesn’t have to retrieve and display an image from each of
the files. Furthermore, if your app handles multiple videos, you should defer setting the source until
needed. When you set the source, XAML does work to prepare the video for playback. If you have
many videos, that’s a significant amount of work, and chances are that most of it will not be needed
because the user might not play all the videos. By deferring this work, the app can present the users
with the available options much faster.

Controlling playback
In Windows 8, the MediaElement tag didn’t provide any controls to manage the playback of video
or audio by default, so you had to implement those yourself. If you want to customize the controls,
this approach is still viable, but for all those cases where you just want to play back media content,
it is a little tedious to implement this. Fortunately, the AreTransportControlsEnabled property
was added to MediaElement in Windows 8.1. If you set this to true, you get a set of standard media
controls.

The controls include everything you need for controlling regular playback of both audio and video
content. More importantly, if you enable AreTransportControlsEnabled, the MediaElement

86 Handling media CHAPTER 3

automatically does the right thing in many cases. For instance, the controls are displayed on demand
and automatically removed when no longer used. This optimizes the playback of video because XAML
doesn’t have to composite the controls on top of the video frames.

Full-screen playback
If video playback is an important part of your application, you should prefer full-screen playback
over embedded playback. Full-screen playback enjoys several optimizations that provide for a better
user experience as well as better power utilization. In Windows 8, you had to make sure the size of
the MediaElement matched the display resolution. In Windows 8.1, you can use the IsFullWindow
property on MediaElement. If you set this to true, XAML makes sure your video is played at the
proper resolution and you don’t have to set the dimensions on the MediaElement.

To further optimize playback, make sure no elements are rendered on top of the MediaElement.
If you’re implementing your own playback controls, make sure they are removed when no
 longer needed. Rendering elements on top of the MediaElement forces composition to
 happen, which adds a bit of overhead and prevents some internal optimizations. If you’re using
 AreTransportControlsEnabled, you don’t have to do anything else because it automatically
 removes the controls as needed.

A common problem in this regard is progress indicators. Retrieving media content can take
some time, so showing a progress indicator can be a good idea to let the user know that the app is
working on retrieving content. However, if you do that, you must make sure to disable the progress
 indicator by setting the IsActive property to false once the media is ready. If you don’t do that,
the progress indicator continues to run its animation even if it isn’t visible. That hurts performance
and reduces battery life significantly because WinRT cannot apply its optimizations in this area. If the
media is not full screen, this also causes overdraw.

A good way to detect this problem is to enable DebugSettings.EnableRedrawRegions and run
the app. This causes the Desktop Window Manager (DWM) to display sections in different colors each
time it updates the display. If you have a progress indicator working in the background, you’ll see the
DWM compositing the dots along with the video.

One thing to be aware of when using EnableRedrawRegions is that this works on the DWM level,
so you might see other applications trigger DWM work as well. Somewhat surprisingly, the artifacts
of this work show up even though your app uses the entire screen. If you see any DWM updates you
didn’t expect, this might be caused by other applications. To reduce the noise, close or minimize all
other applications while you test with this property enabled.

Embedded playback
For some apps, full-screen video is not really an option. If your app edits video, you might want
to show controls and data alongside the media content. If the media content is not available in a
decent resolution, showing it in full screen leaves a lot to be desired. Whatever the reason, there are
 scenarios where displaying full-screen video is not the way to go. For those cases, you can embed the
MediaElement on the page.

 CHAPTER 3 Designing for performance 87

If you embed media on the page, WinRT is not able to apply all the optimizations available for
 full-screen display. However, the same tips still apply. To optimize performance of the playback, you
don’t want to place any XAML elements on top of your MediaElement. If you implement your own
media controls, make sure to place these next to the MediaElement instead of on top as illustrated
in Figure 3-7. If you do place them on top, make sure to remove them after a while, similar to what
AreTransportControlsEnabled does.

FIGURE 3-7 Place controls next to MediaElement to optimize playback.

Displaying images
Images often play an important part of the presentation in Windows Store apps. As discussed in
Chapter 2, handling images is far from trivial, and the amount of work needed to handle an image
increases with the size of the image.

The optimal approach is to make sure all your image resources are stored in the size needed. Using
correctly sized images affects performance noticeably in many cases. If the images are downloaded
dynamically, smaller images load faster. Smaller images are also decoded and transferred to the GPU
faster, so there are several reasons why getting the size right is important.

If you cannot specify the native size of the images, the next best thing to do is to make sure your
app decodes the images in the proper size. If you’re using the BitmapImage class, you can use the
DecodePixelWidth and DecodePixelHeight properties to specify the decode size. This affects
decoding itself and the amount of data transferred to the GPU, both of which can affect performance
significantly.

88 Handling media CHAPTER 3

Listing 3-15 is not very effective because it forces the entire image to be loaded, decoded, and
then resized. This increases memory usage significantly and might exhaust GPU bandwidth as well.

LISTING 3-15 The ineffective way to handle a large image—don’t do this.

<!-- Don't do this -->
<Image Source="ms-appx:///Assets/highresPicture.jpg" Width="300" Height="200"/>

Listing 3-16 does the right thing by specifying the height and width for the decoded image. This
reduces the size of the decoded image and thus the memory usage, and it decreases the amount of
data sent to the GPU. Be sure to either scale your images to the desired size or set the decode size.

LISTING 3-16 The proper way to handle a large image.

<Image>
 <Image.Source>
 <BitmapImage UriSource="ms-appx:///Assets/highresPicture.jpg"
 DecodePixelWidth="300" DecodePixelHeight="200"/>
 </Image.Source>
</Image>

Also, to prevent images from being decoded more than once, assign the Image.Source property
from an Uri rather than using a memory stream. The XAML engine can associate multiple Bitmaps
based on the same Uri with a single decoded image. There’s no similar optimization for memory
streams, so if you use a Bitmap based on a memory stream as the source of multiple images, XAML
has to decode the image multiple times.

Specifying DecodePixelWidth and DecodePixelHeight is useful for handling images efficiently.
However, if all you really need are thumbnails, the StorageFile.GetThumbnailAsync is a better
option because it can read the thumbnails cached by the file system. Listing 3-17 shows how to use
GetThumbnailAsync to retrieve thumbnails of images in a folder.

LISTING 3-17 Using GetThumbnailAsync to retrieve a thumbnail of an image file and assign it as the source of an
image in XAML.

var picker = new FileOpenPicker();
picker.FileTypeFilter.Add(".jpg");
picker.FileTypeFilter.Add(".jpeg");
picker.FileTypeFilter.Add(".png");
picker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;

var file = await picker.PickSingleFileAsync();

var fileThumbnail = await file.GetThumbnailAsync(ThumbnailMode.SingleItem, 64);

var bmp = new BitmapImage();
bmp.SetSource(fileThumbnail);

image.Source = bmp;

 CHAPTER 3 Designing for performance 89

Listing 3-17 creates an instance of FileOpenPicker, adds some commonly used image
formats, and asks the user to pick a file. GetThumbnailAsync is then used to create a
 StorageItemThumbnail with a requested size of 64 for the picked file.

Using thumbnails is appropriate for apps that let the user browse any kind of media.
 GetThumbnailAsync can retrieve thumbnails for images, audio files, videos, documents, and even
folders containing these types by specifying the proper ThumbnailMode. If your app needs only
thumbnails, this approach is preferable to using DecodePixelWidth and DecodePixelHeight.

Playing audio
WinRT also supports numerous audio formats, but for the best results you should prefer Advanced
Audio Coding (AAC) and MP3, because they offer the best performance. If your app plays short,
low-latency sound effects, use WAV files with uncompressed Pulse-Code Modulation (PCM) data to
reduce processing overhead that is typical for compressed audio formats.

When playing sound, it might make sense to turn off the display after a while. However, if your
app shows information related to the playback, you can instruct Windows to leave the display on
as described in the upcoming “Display deactivation” section. Remember to call DisplayRequest.
RequestRelease if the playback stops for some reason, so your app doesn’t keep the display
 needlessly on.

Windows also supports hardware offload of audio playback. To enable this, your app must set
 MediaElement.AudioCategory to either ForegroundOnlyMedia or BackgroundCapableMedia.
Hardware audio offload optimizes audio rendering, which can improve both functionality and battery life.

Releasing resources
Media files can be huge, and consequently accessing them increases the memory usage of your app
significantly. To use media content efficiently, you must release the resources as soon as possible
when you’re done using them.

Streams
An obvious example of resources is streams. Streams can be used to read and write media content if
you want to do more than the basics provided by the media UI elements. For instance, your app could
read media content from a stream in order to modify it. If you read or write media content through a
stream, make sure to close the stream as soon as the app is done reading from it.

Listing 3-18 shows an example where an app reads a picture from a file, modifies the content, and
writes the updated picture to the stream of a bitmap. Notice how the streams are used inside using
blocks. This, of course, implicitly calls the Dispose method at the end of the block and thus releases
the resources as necessary.

90 Handling media CHAPTER 3

LISTING 3-18 Reading and writing media content via streams.

// Get picture from library
var folder = KnownFolders.PicturesLibrary;
var file = await folder.GetFileAsync("pic.png");

// Read stream from file
var streamRef = RandomAccessStreamReference.CreateFromFile(file);
using (var fileStream = await streamRef.OpenReadAsync())
{
 // Decode format
 var decoder = await BitmapDecoder.CreateAsync(fileStream);
 var frame = await decoder.GetFrameAsync(0);

 // Get pixels as byte array
 var pixelDataProvider = await frame.GetPixelDataAsync();
 var pixels = pixelDataProvider.DetachPixelData();

 // Change picture by manipulating the byte array
 ManipulatePixels(pixels);

 // Create bitmap and write the modified pixels
 var bitmap = new WriteableBitmap((int)frame.PixelWidth, (int)frame.PixelHeight);
 using (var stream = bitmap.PixelBuffer.AsStream())
 {
 stream.Write(pixels, 0, pixels.Length);
 } // this closes the stream

 // Display modified picture
 image.Width = frame.PixelWidth;
 image.Height = frame.PixelHeight;
 image.Source = bitmap;
} // this closes the file stream

Display deactivation
If you leave your device idle for a while, Windows dims and eventually turns off the display to
 preserve power. That’s rarely the desired behavior when playing media content such as video. The
user should be able to watch videos without having to tap the display every now and then. Yes, this
sounds silly, but believe me I have seen media apps that didn’t do this.

To prevent Windows from turning off the display during media playback, your app must call the
DisplayRequest.RequestActive method. This informs Windows it should not turn off the display
to preserve power. That ensures the user can enjoy the media playback uninterrupted, which is exactly
what you want as long as the user is actually watching the media.

If the user pauses the media or watches the content to the end, or the app encounters a media
playback error, the display is no longer required and your app should call DisplayRequest.
RequestRelease to let Windows know that the display can be turned off again when idle. If your
app doesn’t do that, the display will drain the device’s battery, and possibly leave the user with an
unusable device.

 CHAPTER 3 Designing for performance 91

If your app uses AreTransportControlsEnabled as described earlier and the playback
is full screen, or if your app sets the IsFullWindow property, XAML automatically calls
DisplayRequest.RequestActive and DisplayRequest.RequestRelease as appropriate.

Summary

Making the key scenarios of your app perform well is paramount for a good user experience and
 positive ratings on the Windows Store. Unless your app accurately predicts tomorrow’s stock prices,
users don’t want to wait for your app to respond. Of course, if your app can predict the market,
I’m pretty sure most users will accept a little waiting and you can ignore most of the advice in this
 chapter. For the rest of us, here’s a summary of what I covered.

Designing for performance means getting rid of everything that isn’t essential for the experience.
If it isn’t needed, don’t do it. If it’s needed later, do it later. If it takes a long time to do, save the result.

You need to identify the key scenarios and the resources needed to implement those. Once you
identify the resources, you need to prioritize them so that your app can retrieve and handle the most
important assets first. Your goal should be to optimize for responsiveness. Make sure the user can
interact with the important parts of your app with as little delay as possible. Everything else can be
handled once the app is responsive.

If your app needs to retrieve data from the network, you need to address the fact that you cannot
guarantee a fast and steady rate of data. If your app is not useful without a fast network connection,
you’re cutting off a lot of users. You need to design your app so that it handles poor network
 connectivity. Windows offers several tools to help you do that.

The ContentPrefetcher class introduced in Windows 8.1 lets your app subscribe to automatic
content updates even when it isn’t running. This reduces the risk of cached data being stale.
 Launching with local content is the only way to guarantee a specific performance.

Asynchronous I/O lets your app retrieve data without blocking the UI thread. This keeps your
app responsive, but it doesn’t change the fact that I/O might take a long time, asynchronous
or not. You need to design around this. If your app retrieves data as part of launch or
 navigation, you need to provide a fallback option in the case of a slow network connection. The
 WindowsRuntimeSystemExtensions class provides a series of extension methods that bridges
the gap between the WinRT APIs and the .NET Task Parallel Library. This means you can wait for and
 cancel asynchronous calls using the familiar mechanisms of the .NET library.

A lot of work went into making Windows 8.1 even better at presenting large datasets to the user
efficiently. The grid and list controls were both updated to support faster virtualization. If you’re
building for 8.1, you get these benefits automatically, but if you’re upgrading your Windows 8.0
app, you should make sure your grids use the ItemsWrapGrid panel. This panel supports item-level
 virtualization, which improves performance significantly for large groups in a grid. Furthermore, it
allows you to display generic placeholders for items that are still being rendered. To improve the
experience beyond that, you can even implement your own placeholders, which allows you to render
each element in phases.

92 Summary CHAPTER 3

Media content is an integral part of many Windows apps. If your app handles images, video, or
audio, you can do several things to improve the experience. The most important part is to make sure
you’re not forcing XAML to do more work than necessary for each item. For images and video, that
means scaling resolution as appropriate. For videos, that means deferring as much work as possible
and preferring full-screen playback over embedded playback. Because media content is demanding
on the system, your app needs to release resources as soon as they are no longer needed.

To help you measure the performance of your code and ensure the techniques discussed in this
chapter are working in your favor, you should instrument your code, and doing so is the topic of
Chapter 4, “Instrumentation.”

This page intentionally left blank

Index

 205

Symbols and Numbers
% Weight column, 162
.NET Framework, 22–24, 40
.pdb files, 14

A
abstractions, 21, 45
Advanced Audio Coding (AAC), 89
All Your Base Are Belong To Us, 201
analysis graphs, 13
analysis profiles, 14, 154–155. See also XAML analysis

profile
animations, 4–5, 35, 37–38
App CPU time, 36–37
App FPS time, 36–37
App Logging Events, 104–105, 118
app packages

anatomy of, 18–21
goals for, 196
starting process of, 18

ApplyTemplate, 174–175
architecture, 53
AreTransportControlsEnabled property, 85–86, 90–91
ARM-based systems, 7–9, 128–129, 132, 134, 146, 148
Arrange activity, 191
arrange pass, 20–42
assemblies, 42–43
Assessment and Deployment Kit (ADK), 9
AsTask extension method, 65–66
async keyword, 40, 45
asynchronous code, 40–41, 45, 62–66, 183–185
audio playback, 85–86, 89
authentication, 54–55
automation, 128, 135–140
AutomationID, 137–138

AutoNGEN, 43, 102, 128
await keyword, 40, 45–48, 62–63, 66

B
baselines, 127–128
Big Picture tab, 14–15, 104–107, 109, 160, 190
binding, 20–21, 33–35, 63, 184–185
blogs, 200–201
books, on performance, 202–203
bottlenecks, CPU, 171–177, 186
Build conferences, 199–200
bulk updates, 34–35

C
C# language, 21–22, 42, 123, 200
C++ language, 42–43, 59
caching, 56–57, 82–83, 185–186
call stacks

decoding, 106, 155–156, 163, 183–184
instrumentation with, 93–94
purpose of, 15
viewing, 106–107, 109
XAML-related, 29

Campbell, Colin, 203
CancellationToken, 63–66
certification, testing for, 27, 132–135
Channel 9, 199–200
CLR (Common Language Runtime), 17, 22–23, 42–44
CLR via C# (Richter), 202
Coded UI tests, 136–140
cold tests, 128
CompareExchange64, 108
compilation, 42–43, 128
compositor threads. See render threads

206

Computation category, 154
configuration

of test code, 145
preset, 157

ConfigureAwait, 48
constructors, App class, 18–19
consumers, 94–96
ContainerContentChanging event, 75–81
content

cached, 56–57
handling a lot of, 67
live, 55–67
partitioning, 70
prefetching, 57–61
prioritiziting, 55–56, 68–69
updating, 56

ContentPrefetcher class, 57–62
direct, 58–60
indirect, 60–61

controllers, 94–96
controls, placement of video, 86–87
converters. See value converters
coordination, of wait times, 145
Count column, 162
CPU Usage (Precise) graphs, 15, 161, 173, 181–183
CPU Usage (Sampled) graphs, 15, 161, 164–165

call stacks, 106–107
filtering, 161–162
processes, 162–163
thread activity in, 174–175, 190–191
View Editor, 165–167

cross-boundary calls, 25–26
CustomEventSource event provider, 113–118,

121–122

D
data

caching, 56–57, 185–186
collecting, 110, 140–141, 147–150
displays, 157
grouped, 71–73, 158
handling large amounts of, 48–49, 67
recording performance, 12
virtualization, 31–32

data converters. See value converters
data-driven methodology, 167–169
Dawson, Bruce, 201
deactivation, 90–91

DecodePixelHeight property, 87–89
DecodePixelWidth property, 87–89
delays, desired target maximum, 4–5
delegates, 144
dependent animations, 37–38
design

eliminating redundancy during, 53
testing elements of, 53

Desktop Window Manager (DWM), 19, 86,
94, 188

DirectX, 23, 42
Disk Usage graphs, 15
Dispatcher property, 48
dogfooding, 147–149
Dollard, Kathleen, 201
DoMoreWork method, 62
Dwm Frame Details graphs, 15, 158

E
Effective C# (Wagner), 202
efficient performance, 5
elements

naming, 139
and performance, 29–30

EnableRedrawRegions, 86
event providers, 94–96, 112–115
event sources, 94–96
Event Tracing for Windows (ETW)

components, 94–97
overview, 8, 94–95
troubleshooting, 119–122

Event Tracing for Windows (ETW) in .NET
(Dollard), 201

EventRegister Tool, 119–120
events

collecting, 140–144
recording, 102
unrecorded, 120

EventSource
creating custom, 112–115
enabling exceptions for, 122
and manifests, 97
and providers, 94–96
recording profiles for, 116–117
troubleshooting, 119
using custom, 117–118

exceptions, 122

Computation category

 207

F
Fabulous Adventures in Coding (Lippert), 200
fast performance, 3–5
Fiddler, 201
FileOpenPicker, 88–89
fill rate, 38
Find in Column feature, 161–162
Flatow, Ido, 202
FlipView, 56
fluid performance, 5
Fold feature, 157
Frame activity, 191
Frame Analysis tab, 15, 189
frame-rate counters, 36–37, 187
frames, in XAML, 37, 189

G
garbage collection, impact of, 44
GenerateImage app

markup, 99–101
performance test for, 135–140
source code, 100–101
testing, 139–140, 142–144

GenerateImage method, 24–26, 108
as customized EventSource, 112–115
and instrumentation, 102, 116

Generic Events, 104–106, 109, 118, 161, 182
GetGuid method, 120
GetThumbnailAsync, 33, 88–89
goals, setting, 6–7, 125
Goldshtein, Sasha, 201–202
GPU Utilization (FM) graphs, 15, 191
Graph Explorer, 13, 104, 154–155, 157
graphs

customizing, 165–167
in Windows Performance Analyzer (WPA), 14–15,

156–159
scaling, 158
VSync-DwmFrame, 189

grids
number of elements in, 29–30
and UI virtualization, 31
virtualized versus non-virtualized, 70

GridView, 70–73
GUID, 96–97, 117, 119–120

H
hardware, 4–5, 127, 133
HTTP caching, 56–57, 82
HttpClient class, 56, 61
Hub control, 68–69

I
ILDasm, 201
ILSpy, 201
Image.Source property, 88
images, 32–33, 87–89, 192–193
Improving .NET Application Performance and

Scalability (Microsoft), 203
incremental virtualization, 32
independent animations, 37–38
InitializeComponent, 18
instrumentation

adding, 97–98, 101
EventSource-based, 96–97, 111
for performance, 97–110
for user experience, 110–111
of code, 116
using, 99–102
WinRT, 96

Ionescu, Alex, 202
IsFullWindow property, 86
IsOverdrawHeatMapEnabled property, 38–40, 192
item-level virtualization, 70
ItemsPanel, 70–71, 73
ItemsWrapGrid, 71–73

J
Johnson, Ralph, 203
just-in-time compilation, 42–43, 128

K
Knuth, Donald E., 7

L
launch performance, 133–134, 171–177
launch screens, 54, 63

 launch screens

208

Lawrence, Eric, 201
layout trees, 19–20
layouts, 19–20, 186, 192–193
Lippert, Eric, 50, 200
listeners, 147–148
logging systems, 129–130, 145
LoggingActivity class, 98, 101–102
LoggingChannel class, 97–98, 101–102
logins, 54–55

M
managed code, and Windows Runtime (WinRT),

24–26
manifests, 97
markup, 19, 29, 178–179
Match!, 197–198
Measure activity, 191
measure pass, 20
measurement, of performance, 6
media content, 84–91

adding, 84
defer processing of, 85
display, 90–91
releasing, 89
streaming, 89–90

MediaElement, 84–87, 154–155
Memory category, 154
memory usage, 27–28, 132

automatic management, 43–44
recommended level of, 5
releasing, 83–84
with assemblies, 43
with caching, 82–83

metadata, 24
Microsoft EventRegister tool, 119–120
Microsoft intermediate language (MSIL), 42
Microsoft-Windows-Diagnostics-LoggingChannel

provider, 97, 119–120, 122, 142
Miller, Ade, 203
More Effective C# (Wagner), 202
Morrison, Vance, 201
MP3 files, 89
MSIL (Microsoft intermediate language), 42

N
navigation

desired target maximum delays for, 4
improving, 177–186

NGEN utility, 43
noise reduction, 127–128
NuGet, 144–145

O
online resources, 200–201
OnSuspending event handler, 26–27
operations, cancelling, 63–66
orientation, desired target maximum delays for, 4–5
overdraw, 38–40, 192

P
page navigation, improving, 177–186
panning

fluid, 5, 35
improving sluggish, 186–193
to black, avoiding, 73–75
and virtualization, 31

Parallel Programming with Microsoft .NET
(Campbell, Johnson, Miller, and Toub), 203

parsers, 143–144
partitioning, of content, 70
performance

analyzing, 104
attributes of successful, 3–5
evaluation of, 93–94
methodology to investigate, 167–169
source of problem, 17
tools to improve, 7–8
understanding, 1–3
users’ expectations for, 3–5

performance tests
automation, 135–140
compared to functional tests, 125–126
and data sets, 126
environment, 128–129
manual, 146
repeatable, 128–129
setting up, 133, 145
troubleshooting, 129–130
Windows App Certification Kit (WACK), 27,

132–135
PerfTrack_PLM_SuspendApplication event, 134
PerfTrack_SplashScreen_AppShown event, 133
PerfView, 8, 96, 115, 121, 201
Pictures page, 178–180
placeholders, 73–81

Lawrence, Eric

 209

playback
audio, 89
controlling, 85–86
display deactivation during, 90–91
embedded, 86–87
full-screen, 86

PLM (Process Lifetime Management), 5, 26–27
PosterSource property, 85
Power category, 154
prefetching, content, 57–61
preset configurations, 157
prioritization, importance of, 55–56, 68–69
privacy, 149–150
Pro .NET Performance: Optimize Your

C# Applications (Goldshtein, Zurbalev, and
Flatow), 202

Process Lifetime Management (PLM), 5, 26–27
Process, calling, 144
progress indicators, 4, 86
projections, 24
proof-of-concept app, 53
prototypes, 53
providers, 94–96

R
random access virtualization, 31
Random ASCII (Dawson), 201
redundancy, and performance, 52
RegisteredTraceEventParser, 143
regressions, 128, 130–132
render threads, 35–36, 38, 190
RenderWalk activity, 191
resize, desired target maximum delays for, 4–5
resources

management, 28
prefetching, 57–61

Richter, Jeffrey, 202
Russinovich, Mark, 202

S
Scenario Analysis, 10
scrolling, 5, 74–75, 77–78
Select View Preset, 157
serialization, XML, 49
Series, in Window in Focus, 157–158
services.windowsstore.com, 149
SetDataContext method, 180, 183–186

ShowsScrollingPlaceholders property, 74–75, 77–78
signal-to-noise ratio, 127–128
Skeet, Jon, 200
Solomon, David, 202
source.Process(), 144
splash screens, 18, 67, 133, 173
Stack Overflow, 200
stacked lines and bars, 158
startup

desired target maximum delays for, 5
improving, 170–177
splash screens at, 67

static linking, 43
storage

of data, 145
recommended level of, 5

Storage category, 154
StorageFolderQueryResult.ContentsChanged

event, 186
StorageItemThumbnail, 89
streams, 89–90
SubmitFrame activity, 191
suspension, of apps

desired target maximum delays for, 4–5
measurement of performance, 134–135
memory usage during, 27–28
with PLM, 26–27

symbols, loading, 14, 106, 155–156
System activity category, 154
System CPU time, 36–37
System FPS time, 36–37

T
Task field, 115
Task Parallel Library, 41, 44
tasks, cancelling, 63–66
telemetry, 149–150
termination, of apps, 26–27
test results, 141–145
test-runner scripts, 140–141
tests. See performance tests
threads, 17, 35–36, 44, 46–48, 162–163
thumbnails, 33, 88–89, 177–179
timeout values, 129
timestamps, 53, 105–106, 142
Toub, Stephen, 203
Touch Events, 104, 182–183
Trace Markers tab, 104–106, 182

 Trace Markers tab

210

Trace menu, 155
Trace Rundown, 159
TraceEvent library, 141–142, 144–145, 147
traces, recording, 187–189
transition animations, 4–5
troubleshooting

performance tests, 129–130
regressions, 130–132
using Windows Performance Analyzer, 18–21

U
UI threads, 35, 38, 45–48, 190–191
UIMap tool, 137–138
updates, bulk, 34–35
user interface

connecting to business logic, 33–35
creation of, 19–20
virtualization, 31

V
value converters, 21, 33–34, 175–177
VariableSizedWrapGrid, 70, 175
vertical syncs (VSyncs), 190
Video category, 154
videos

playing, 85–87
recommended resource, 199–200

View Editor, 157, 165–167
view models, 20, 29, 33–35
virtualization, 31–32, 70–73
VirtualizingStackPanel, 71, 73
Visual Basic, 21–22, 42, 123
Visual Studio, 7, 128, 136–137, 140
VSync-DwmFrame, 189
VSyncs (vertical syncs), 190

W
Wagner, Bill, 202
wait scenarios, 145
warm tests, 128
WAV files, 89
weak references, 83–84
Weight (In View) column, 162–163
Window in Focus graphs, 14, 156–159, 173, 190

Windows 8.1
Hub control, 68–69
ItemsWrapGrid, 71
virtualization in, 70–71
Windows Performance Toolkit installment, 9

Windows App Certification Kit (WACK), 27, 132–135
hardware requirements, 133
test performance goals, 134

Windows Assessment and Deployment Kit (ADK), 9
Windows Dev Center, 200
Windows Internals (Russinovich, Solomon, and

Ionescu), 202
Windows Performance Analyzer (WPA), 13–15

enabling views in, 104–108
graphs in

categories for, 153–155
features, 156–159

loading symbols, 14, 106, 155–156
performance data, 159–165

aggregated, 162–163
filtering, 161
finding and viewing, 159–162
grouping of, 163–165

Windows Performance Recorder (WPR), 102–103
command-line version, 140–141
overview, 10–11
profiles, 116–117
recording with, 172, 181
using, 12, 102–110

Windows Performance Toolkit (WPT), 7–9, 29.
See also Windows Performance Analyzer (WPA);
also Windows Performance Recorder (WPR)

Windows Platform and Tools, 21–22
Windows Process Lifetime Management (PLM),

5, 26–27
Windows Runtime (WinRT), 23–29

API, 111
asynchronous code, 40–41
cancelling operations, 65–66
components, 22, 96
metadata, 24
overview, 23–24
projections, 24–26
Windows Performance Toolkit installment, 9
XAML in, 28–29

Windows Runtime Broker, 23, 181–182
Windows Runtime via C# (Richter and van de

Bospoort), 202

Trace menu

 211

Windows Stores app
certification, 27, 132–135
components of, 21–23

workflow, analyzing, 175–177
WrapGrid, 70
WriteByte, 108–109

X
x86/x64 devices, 129, 132, 134
XAML, 23, 28–41

asynchronous code, 40–41
automatic element naming, 140
coded UI test framework for, 136–140
DirectX with, 42
frame-rate counters, 36–37

 Zurbalev, Dima

framework, 8
grid view, 72–73
images, 32–33
markup, 29
number and complexity of elements in, 29–30
overdraw heat map, 38–40
reading and parsing files, 19
threads, 35–36

XAML analysis profile, 14–15, 159, 162, 181, 188
XAML Application Analysis, 10, 12
XML, 49, 52

Z
Zurbalev, Dima, 202

	Table of Contents������������������������
	Foreword���������������
	Introduction�������������������
	Chapter 3 Designing for performance
	Less is more�������������������
	Proof of concept�����������������������
	Design challenges������������������������
	Login������������
	Live content�������������������
	Prioritize your content, and make sure it is available���
	Use caching to reduce downloads��������������������������������������
	Use ContentPrefetcher to load data in advance��
	Asynchronous I/O�����������������������
	Extended splash screen�����������������������������

	Handling a lot of content��������������������������������
	Prioritize your content������������������������������
	Partition content to reduce workload���
	Cache information to improve transitions���

	Handling media���������������������
	Playing video��������������������
	Displaying images������������������������
	Playing audio��������������������
	Releasing resources��������������������������

	Summary��������������

	Index������������
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

