

Microsoft Visual C# 2013
Step by Step

John Sharp

Copyright © 2013 by John Sharp
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-8183-5

Third Printing: January 2015

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fi ctitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Christopher Hearse

Technical Reviewer: John Mueller

Copyeditor: Octal Publishing, Inc

Indexer: Ellen Troutman

Cover Design: Twist Creative • Seattle

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest

Contents at a glance

Introduction xix

PART I INTRODUCING MICROSOFT VISUAL C# AND MICROSOFT
VISUAL STUDIO 2013

Chapter 1 Welcome to C# 3

Chapter 2 Working with variables, operators, and expressions 39

Chapter 3 Writing methods and applying scope 65

Chapter 4 Using decision statements 93

Chapter 5 Using compound assignment and iteration statements 113

Chapter 6 Managing errors and exceptions 135

PART II UNDERSTANDING THE C# OBJECT MODEL

Chapter 7 Creating and managing classes and objects 161

Chapter 8 Understanding values and references 183

Chapter 9 Creating value types with enumerations and structures 207

Chapter 10 Using arrays 227

Chapter 11 Understanding parameter arrays 251

Chapter 12 Working with inheritance 263

Chapter 13 Creating interfaces and defining abstract classes 287

Chapter 14 Using garbage collection and resource management 317

PART III DEFINING EXTENSIBLE TYPES WITH C#

Chapter 15 Implementing properties to
 access fields 341

Chapter 16 Using indexers 363

Chapter 17 Introducing generics 381

Chapter 18 Using collections 411

Chapter 19 enumerating collections 435

Chapter 20 Decoupling application logic and handling events 451

Chapter 21 Querying in-memory data by using query expressions 485

Chapter 22 Operator overloading 511

iv Contents at a glance

PART IV BUILDING PROFESSIONAL WINDOWS 8.1 APPLICATIONS
WITH C#

Chapter 23 Improving throughput by using tasks 537

Chapter 24 Improving response time by performing asynchronous
 operations 581

Chapter 25 Implementing the user interface for a Windows Store app 623

Chapter 26 Displaying and searching for data in a Windows Store app 673

Chapter 27 accessing a remote database from a Windows Store app 721

Index 763

 v

Contents

Introduction . xix

PART I INTRODUCING MICROSOFT VISUAL C# AND MICROSOFT
VISUAL STUDIO 2013

Chapter 1 Welcome to C# 3
Beginning programming with the Visual Studio 2013 environment 3

Writing your first program . 8

Using namespaces .14

Creating a graphical application .18

Examining the Windows Store app .30

Examining the WPF application .33

Adding code to the graphical application .34

Summary. .38

Quick Reference .38

Chapter 2 Working with variables, operators, and expressions 39
Understanding statements .39

Using identifiers .40

Identifying keywords .40

Using variables . 41

Naming variables . 41

Declaring variables .42

Working with primitive data types .43

Unassigned local variables .43

Displaying primitive data type values .44

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vi Contents

Using arithmetic operators .52

Operators and types .52

Examining arithmetic operators .53

Controlling precedence .59

Using associativity to evaluate expressions .60

Associativity and the assignment operator .60

Incrementing and decrementing variables. .61

Prefix and postfix .61

Declaring implicitly typed local variables .62

Summary. .63

Quick Reference .64

Chapter 3 Writing methods and applying scope 65
Creating methods .65

Declaring a method .66

Returning data from a method .67

Calling methods .69

Applying scope .72

Defining local scope .72

Defining class scope .73

Overloading methods . 74

Writing methods . 74

Using optional parameters and named arguments83

Defining optional parameters .85

Passing named arguments .85

Resolving ambiguities with optional parameters
and named arguments .86

Summary. .91

Quick reference .92

Chapter 4 Using decision statements 93
Declaring Boolean variables .93

Using Boolean operators .94

 Contents vii

Understanding equality and relational operators94

Understanding conditional logical operators95

Short-circuiting .96

Summarizing operator precedence and associativity96

Using if statements to make decisions .97

Understanding if statement syntax .97

Using blocks to group statements .98

Cascading if statements .99

Using switch statements .105

Understanding switch statement syntax .106

Following the switch statement rules .107

Summary. .111

Quick reference .111

Chapter 5 Using compound assignment and
iteration statements 113

Using compound assignment operators .113

Writing while statements .115

Writing for Statements .121

Understanding for statement scope .123

Writing do statements .123

Summary. .132

Quick reference .133

Chapter 6 Managing errors and exceptions 135
Coping with errors .135

Trying code and catching exceptions .136

Unhandled Exceptions .137

Using multiple catch handlers .138

Catching multiple exceptions .139

Propagating exceptions .145

Using checked and unchecked integer arithmetic147

Writing checked statements .148

viii Contents

Writing checked expressions .149

Throwing exceptions .152

Using a finally block .156

Summary. .158

Quick reference .158

PART II UNDERSTANDING THE C# OBJECT MODEL

Chapter 7 Creating and managing classes and objects 161
Understanding classification .161

The purpose of encapsulation .162

Defining and using a class .162

Controlling accessibility .164

Working with constructors .165

Overloading constructors .167

Understanding static methods and data .175

Creating a shared field .176

Creating a static field by using the const keyword177

Understanding static classes .177

Anonymous classes .180

Summary. .181

Quick reference .182

Chapter 8 Understanding values and references 183
Copying value type variables and classes .183

Understanding null values and nullable types .189

Using nullable types .190

Understanding the properties of nullable types 191

Using ref and out parameters .192

Creating ref parameters .193

Creating out parameters .193

How computer memory is organized .195

Using the stack and the heap .197

 Contents ix

The System.Object class .198

Boxing .199

Unboxing .199

Casting data safely .201

The is operator .201

The as operator .202

Summary. .204

Quick reference .204

Chapter 9 Creating value types with enumerations and
structures 207

Working with enumerations .207

Declaring an enumeration .208

Using an enumeration .208

Choosing enumeration literal values .209

Choosing an enumeration’s underlying type210

Working with structures .212

Declaring a structure .214

Understanding structure and class differences 215

Declaring structure variables .216

Understanding structure initialization .217

Copying structure variables .221

Summary. .225

Quick reference .225

Chapter 10 Using arrays 227
Declaring and creating an array .227

Declaring array variables. .227

Creating an array instance .228

Populating and using an array .229

Creating an implicitly typed array .230

Accessing an individual array element .231

Iterating through an array .231

x Contents

Passing arrays as parameters and return values for a method . . .233

Copying arrays .234

Using multidimensional arrays .236

Creating jagged arrays .237

Summary. .248

Quick reference .248

Chapter 11 Understanding parameter arrays 251
Overloading—a recap .251

Using array arguments .252

Declaring a params Array .253

Using params object[] . 255

Using a params array .256

Comparing parameter arrays and optional parameters 259

Summary. .262

Quick reference .262

Chapter 12 Working with inheritance 263
What is inheritance? .263

Using inheritance .264

The System.Object class revisited .266

Calling base class constructors .266

Assigning classes .267

Declaring new methods .269

Declaring virtual methods .270

Declaring override methods .271

Understanding protected access .274

Understanding extension methods .280

Summary. .284

Quick reference .284

 Contents xi

Chapter 13 Creating interfaces and defining abstract classes 287
Understanding interfaces .287

Defining an interface .288

Implementing an interface .289

Referencing a class through its interface .290

Working with multiple interfaces .291

Explicitly implementing an interface .292

Interface restrictions .293

Defining and using interfaces .294

Abstract classes .304

Abstract methods .306

Sealed classes .306

Sealed methods .306

Implementing and using an abstract class .307

Summary. .313

Quick reference .314

Chapter 14 Using garbage collection and resource management 317
The life and times of an object .317

Writing destructors .318

Why use the garbage collector? .320

How does the garbage collector work? .322

Recommendations .322

Resource management .323

Disposal methods .323

Exception-safe disposal .324

The using statement and the IDisposable interface324

Calling the Dispose method from a destructor326

Implementing exception-safe disposal .328

Summary. .336

Quick reference .337

xii Contents

PART III DEFINING EXTENSIBLE TYPES WITH C#

Chapter 15 Implementing properties to
access fields 341

Implementing encapsulation by using methods .341

What are properties? .343

Using properties .345

Read-only properties .346

Write-only properties .346

Property accessibility .347

Understanding the property restrictions .348

Declaring interface properties .349

Replacing methods with properties .351

Generating automatic properties .355

Initializing objects by using properties .357

Summary. .360

Quick reference .361

Chapter 16 Using indexers 363
What is an indexer?. .363

An example that doesn’t use indexers .364

The same example using indexers .366

Understanding indexer accessors .368

Comparing indexers and arrays .368

Indexers in interfaces .370

Using indexers in a Windows application .371

Summary. .378

Quick reference .379

Chapter 17 Introducing generics 381
The problem with the object type .381

The generics solution .385

Generics vs. generalized classes .387

 Contents xiii

Generics and constraints .387

Creating a generic class .388

The theory of binary trees .388

Building a binary tree class by using generics 391

Creating a generic method .401

Defining a generic method to build a binary tree401

Variance and generic interfaces .403

Covariant interfaces .405

Contravariant interfaces .407

Summary. .409

Quick reference .409

Chapter 18 Using collections 411
What are collection classes? .411

The List<T> collection class .413

The LinkedList<T> collection class .415

The Queue<T> collection class .417

The Stack<T> collection class .418

The Dictionary<TKey, TValue> collection class419

The SortedList<TKey, TValue> collection class 420

The HashSet<T> collection class .422

Using collection initializers .423

The Find methods, predicates, and lambda expressions424

Comparing arrays and collections .426

Using collection classes to play cards .426

Summary. .431

Quick reference .432

Chapter 19 Enumerating collections 435
Enumerating the elements in a collection .435

Manually implementing an enumerator .437

Implementing the IEnumerable interface .441

Implementing an enumerator by using an iterator 444

xiv Contents

A simple iterator . 444

Defining an enumerator for the Tree<TItem> class by
using an iterator .446

Summary. .448

Quick reference .449

Chapter 20 Decoupling application logic and handling events 451
Understanding delegates .452

Examples of delegates in the .NET Framework class library453

The automated factory scenario .455

Implementing the factory control system without
 using delegates .455

Implementing the factory by using a delegate 456

Declaring and using delegates .459

Lambda expressions and delegates .468

Creating a method adapter .469

The forms of lambda expressions .469

Enabling notifications by using events .471

Declaring an event .472

Subscribing to an event. .472

Unsubscribing from an event .473

Raising an event .473

Understanding user interface events .474

Using events .475

Summary. .482

Quick reference .483

Chapter 21 Querying in-memory data by using
query expressions 485

What is Language-Integrated Query? .485

Using LINQ in a C# application .486

Selecting data .488

Filtering data .490

Ordering, grouping, and aggregating data 491

 Contents xv

Joining data .493

Using query operators. .495

Querying data in Tree<TItem> objects .497

LINQ and deferred evaluation .503

Summary. .507

Quick reference .508

Chapter 22 Operator overloading 511
Understanding operators .511

Operator constraints .512

Overloaded operators .512

Creating symmetric operators .514

Understanding compound assignment evaluation516

Declaring increment and decrement operators .517

Comparing operators in structures and classes .518

Defining operator pairs .518

Implementing operators .520

Understanding conversion operators .526

Providing built-in conversions .527

Implementing user-defined conversion operators 528

Creating symmetric operators, revisited .529

Writing conversion operators .529

Summary. .532

Quick reference .532

PART IV BUILDING PROFESSIONAL WINDOWS 8.1
APPLICATIONS WITH C#

Chapter 23 Improving throughput by using tasks 537
Why perform multitasking by using parallel processing?537

The rise of the multicore processor .538

Implementing multitasking by using the Microsoft .NET Framework . . .540

Tasks, threads, and the ThreadPool . 540

xvi Contents

Creating, running, and controlling tasks .541

Using the Task class to implement parallelism 544

Abstracting tasks by using the Parallel class556

When not to use the Parallel class .560

Canceling tasks and handling exceptions .562

The mechanics of cooperative cancellation 562

Using continuations with canceled and faulted tasks576

Summary. .577

Quick reference .578

Chapter 24 Improving response time by performing
asynchronous operations 581

Implementing asynchronous methods .582

Defining asynchronous methods: the problem 582

Defining asynchronous methods: the solution585

Defining asynchronous methods that return values591

Asynchronous methods and the Windows Runtime APIs592

Using PLINQ to parallelize declarative data access595

Using PLINQ to improve performance while iterating
through a collection .596

Canceling a PLINQ query .601

Synchronizing concurrent access to data .602

Locking data .604

Synchronization primitives for coordinating tasks605

Cancelling synchronization .607

The concurrent collection classes .608

Using a concurrent collection and a lock to implement
thread-safe data access .609

Summary. .619

Quick reference .619

Chapter 25 Implementing the user interface for a
Windows Store app 623

What is a Windows Store app? .624

 Contents xvii

Using the Blank App template to build a Windows Store app628

Implementing a scalable user interface .630

Applying styles to a UI .662

Summary. .671

Quick reference .672

Chapter 26 Displaying and searching for data in a
 Windows Store app 673

Implementing the Model-View-ViewModel pattern673

Windows 8.1 contracts .701

Summary. .716

Quick reference .719

Chapter 27 Accessing a remote database from a
Windows Store app 721

Retrieving data from a database .721

Inserting, updating, and deleting data through
a REST web service . 741

Summary. .759

Quick reference .760

Index 763

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

 xix

Introduction

Microsoft Visual C# is a powerful but simple language aimed primarily at develop-
ers creating applications by using the Microsoft .NET Framework. It inherits many

of the best features of C++ and Microsoft Visual Basic, but few of the inconsistencies
and anachronisms, resulting in a cleaner and more logical language. C# 1.0 made its
public debut in 2001. The advent of C# 2.0 with Visual Studio 2005 saw several impor-
tant new features added to the language, including generics, iterators, and anonymous
methods. C# 3.0, which was released with Visual Studio 2008, added extension meth-
ods, lambda expressions, and most famously of all, the Language-Integrated Query
facility, or LINQ. C# 4.0, released in 2010, provided further enhancements that improve
its interoperability with other languages and technologies. These features included
support for named and optional arguments, and the dynamic type, which indicates
that the language runtime should implement late binding for an object. An important
addition in the .NET Framework released concurrently with C# 4.0 was the classes and
types that constitute the Task Parallel Library (TPL). Using the TPL, you can build highly
scalable applications that can take full advantage of multicore processors quickly and
easily. C# 5.0 adds native support for asynchronous task-based processing through the
async method modifier and the await operator.

Another key event for Microsoft has been the launch of Windows 8. This new version
of Windows supports highly interactive applications that can share data and collabo-
rate with each other as well as connect to services running in the cloud. The develop-
ment environment provided by Microsoft Visual Studio 2012 made all these powerful
features easy to use, and the many new wizards and enhancements included in Visual
Studio 2012 can greatly improve your productivity as a developer.

After listening to feedback from developers, Microsoft modified some aspects of the
way in which the user interface works and released a technical preview of Windows 8.1
containing these changes. At the same time, Microsoft released a preview edition of Vi-
sual Studio 2013, containing incremental changes to Visual Studio 2012 and adding new
features that help to further improve programmer productivity. Although many of the
updates to Visual Studio are small, and there have been no changes to the C# language
in this release, we felt that the modifications to the way in which Windows 8.1 handles
the user interface would make it beneficial to perform a similar incremental update to
this book. The result is this volume.

xx Introduction

Note This book is based on the Technical Preview of Visual Studio 2013.
Consequently, some features of the IDE might change in the final release of
the software.

Who should read this book

This book assumes that you are a developer who wants to learn the fundamentals of
programming with C# by using Visual Studio 2013 and the .NET Framework version
4.5.1. By the time you complete this book, you will have a thorough understanding of
C# and will have used it to build responsive and scalable applications that can run by
using the Windows operating system.

You can build and run C# 5.0 applications on Windows 7, Windows 8, and Windows
8.1, although the user interfaces provided by Windows 7 and Windows 8 have some
significant differences. Additionally, Windows 8.1 has modified some parts of the user
interface model, and applications designed to take advantage of these changes might
not run on Windows 8. Consequently, Parts I to III of this book provide exercises and
working examples that run using Windows 7, Windows 8, and Windows 8.1. Part IV
focuses on the application development model used by Windows 8.1, and the material
in this section provides an introduction to building interactive applications for this new
platform.

Who should not read this book

This book is aimed at developers new to C#, but not completely new to program-
ming. As such, it concentrates primarily on the C# language. This book is not intended
to provide detailed coverage of the multitude of technologies available for building
enterprise-level applications for Windows, such as ADO.NET, ASP.NET, Windows Com-
munication Foundation, or Workflow Foundation. If you require more information on
any of these items, you might consider reading some of the other titles in the Step by
Step for Developers series available from Microsoft Press, such as Microsoft ASP.NET
4 Step by Step by George Shepherd, Microsoft ADO.NET 4 Step By Step by Tim Patrick,
and Microsoft Windows Communication Foundation 4 Step By Step by John Sharp.

 Introduction xxi

Organization of this book

This book is divided into four sections:

■■ Part I, “Introducing Microsoft Visual C# and Microsoft Visual Studio 2013,”
provides an introduction to the core syntax of the C# language and the Visual
Studio programming environment.

■■ Part II, “Understanding the C# object model,” goes into detail on how to create
and manage new types by using C#, and how to manage the resources refer-
enced by these types.

■■ Part III, “Defining extensible types with C#,” includes extended coverage of the
elements that C# provides for building types that you can reuse across multiple
applications.

■■ Part IV, “Building professional Windows 8.1 applications with C#,” describes the
Windows 8.1 programming model, and how you can use C# to build interactive
applications for this new model.

Note Although Part IV is aimed at Windows 8.1, many of the concepts de-
scribed in Chapters 23 and 24 are also applicable to Windows 8 and Windows
7 applications.

Finding your best starting point in this book
This book is designed to help you build skills in a number of essential areas. You can use
this book if you are new to programming or if you are switching from another pro-
gramming language such as C, C++, Java, or Visual Basic. Use the following table to find
your best starting point.

If you are Follow these steps

New to object-oriented programming 1. Install the practice files as described in the
upcoming section, “Code Samples.”

 2. Work through the chapters in Parts I, II, and III
sequentially.

 3. Complete Part IV as your level of experience
and interest dictates.

xxii Introduction

If you are Follow these steps

Familiar with procedural programming languages
such as C but new to C#

 1. Install the practice files as described in the
upcoming section, “Code samples.” Skim the
first five chapters to get an overview of C# and
Visual Studio 2013, and then concentrate on
Chapters 6 through 22.

 2. Complete Part IV as your level of experience
and interest dictates.

Migrating from an object-oriented language such
as C++ or Java

 1. Install the practice files as described in the
upcoming section, “Code Samples.”

 2. Skim the first seven chapters to get an over-
view of C# and Visual Studio 2013, and then
concentrate on Chapters 7 through 22.

 3. For information about building scalable Win-
dows 8.1 applications, read Part IV.

Switching from Visual Basic to C# 1. Install the practice files as described in the
upcoming section, “Code Samples.”

 2. Work through the chapters in Parts I, II, and III
sequentially.

 3. For information about building Windows 8.1
applications, read Part IV.

 4. Read the Quick Reference sections at the end
of the chapters for information about specific
C# and Visual Studio 2013 constructs.

Referencing the book after working through the
exercises

 1. Use the index or the table of contents to find
information about particular subjects.

 2. Read the Quick Reference sections at the end
of each chapter to find a brief review of the
syntax and techniques presented in the chap-
ter.

Most of the book’s chapters include hands-on samples that let you try out the
concepts just learned. No matter which sections you choose to focus on, be sure to
download and install the sample applications on your system.

Conventions and features in this book

This book presents information by using conventions designed to make the information
readable and easy to follow.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

 Introduction xxiii

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (for example, File | Close)
means that you should select the first menu or menu item, then the next, and
so on.

System requirements

You will need the following hardware and software to complete the practice exercises in
this book:

■■ Windows 7 (x86 and x64), Windows 8 (x86 and x64), Windows 8.1 (x86 and x64),
Windows Server 2008 R2 SP1 (x64), Windows Server 2012 (x64), or Windows
Server 2012 R2 (x64).

Important The Windows Store templates for Visual Studio 2013 are not
available on Windows 8, Windows 7, Windows Server 2012, or Windows
Server 2008 R2. If you want to use these templates or perform the ex-
ercises that build Windows Store apps, you must be running Windows
8.1 or Windows Server 2012 R2.

■■ Visual Studio 2013 (any edition except Visual Studio Express for Windows 8.1).

Important You can use Visual Studio Express 2013 for Windows
Desktop, but you can only perform the Windows 7 version of the exer-
cises in this book by using this software. You cannot use this software
to perform the exercises in part IV of this book.

■■ Computer that has a 1.6 GHz or faster processor (2 GHz recommended).

■■ 1 GB (32-bit) or 2 GB (64-bit) RAM (add 512 MB if running in a virtual machine).

■■ 10 GB of available hard disk space.

■■ 5400 RPM hard disk drive.

xxiv Introduction

 ■ DirectX 9 capable video card running at 1024 × 768 or higher resolution display;
If you are using Windows 8.1, a resolution of 1366 × 768 or greater is recom-
mended.

 ■ DVD-ROM drive (if installing Visual Studio from a DVD).

 ■ Internet connection to download software or chapter examples.

Depending on your Windows confi guration, you might require Local Administrator
rights to install or confi gure Visual Studio 2013.

Code samples

Most of the chapters in this book include exercises with which you can interactively try
out new material learned in the main text. You can download all sample projects, in
both their pre-exercise and postexercise formats, from the following page:

http://aka.ms/VC2013SbS/fi les

Follow the instructions to download the 9780735681835_fi les.zip fi le.

Note In addition to the code samples, your system should have Visual Studio
2013 installed. If available, install the latest service packs for Windows and
Visual Studio.

Installing the code samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. Unzip the C#_SBS.zip fi le that you downloaded from the book’s website into
your Documents folder.

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access it from
the same webpage from which you downloaded the C#_SBS.zip fi le.

C#vNext_intro.indd xxivC#vNext_intro.indd xxiv 1/15/15 8:56 AM1/15/15 8:56 AM

 Introduction xxv

Using the code samples
Each chapter in this book explains when and how to use any code samples for that
chapter. When it’s time to use a code sample, the book will list the instructions for how
to open the files.

For those of you who like to know all the details, here’s a list of the code sample
Visual Studio 2013 projects and solutions, grouped by the folders where you can find
them. In many cases, the exercises provide starter files and completed versions of the
same projects that you can use as a reference. The code samples provide versions of
the code for Window 7 and Windows 8.1, and the exercise instructions call out any
differences in the tasks that you need to perform or the code that you need to write
for these two operating systems. The completed projects for each chapter are stored in
folders with the suffix “- Complete”.

Important If you are using Windows 8, Windows Server 2012 or Windows
Server 2008 R2, follow the instructions for Windows 7. If you are using
Windows Server 2012 R2, follow the instructions for Windows 8.1.

Project Description

Chapter 1

TextHello This project gets you started. It steps through the
creation of a simple program that displays a text-
based greeting.

WPFHello This project displays the greeting in a window by us-
ing Windows Presentation Foundation (WPF).

Chapter 2

PrimitiveDataTypes This project demonstrates how to declare variables
by using each of the primitive types, how to assign
values to these variables, and how to display their
values in a window.

MathsOperators This program introduces the arithmetic operators
(+ – * / %).

Chapter 3

Methods In this project, you’ll re-examine the code in the pre-
vious project and investigate how it uses methods to
structure the code.

xxvi Introduction

Project Description

DailyRate This project walks you through writing your own
methods, running the methods, and stepping
through the method calls by using the Visual Studio
2013 debugger.

DailyRate Using Optional Parameters This project shows you how to define a method that
takes optional parameters and call the method by
using named arguments.

Chapter 4

Selection This project shows you how to use a cascading if
statement to implement complex logic, such as com-
paring the equivalence of two dates.

SwitchStatement This simple program uses a switch statement to con-
vert characters into their XML representations.

Chapter 5

WhileStatement This project demonstrates a while statement that
reads the contents of a source file one line at a time
and displays each line in a text box on a form.

DoStatement This project uses a do statement to convert a decimal
number to its octal representation.

Chapter 6

MathsOperators This project revisits the MathsOperators project from
Chapter 2 and shows how various unhandled excep-
tions can make the program fail. The try and catch
keywords then make the application more robust so
that it no longer fails.

Chapter 7

Classes This project covers the basics of defining your own
classes, complete with public constructors, methods,
and private fields. It also shows how to create class
instances by using the new keyword and how to de-
fine static methods and fields.

Chapter 8

Parameters This program investigates the difference between
value parameters and reference parameters. It dem-
onstrates how to use the ref and out keywords.

Chapter 9

 Introduction xxvii

Project Description

StructsAndEnums This project defines a struct type to represent a cal-
endar date.

Chapter 10

Cards This project shows how to use arrays to model hands
of cards in a card game.

Chapter 11

ParamsArrays This project demonstrates how to use the params
keyword to create a single method that can accept
any number of int arguments.

Chapter 12

Vehicles This project creates a simple hierarchy of vehicle
classes by using inheritance. It also demonstrates
how to define a virtual method.

ExtensionMethod This project shows how to create an extension
method for the int type, providing a method that
converts an integer value from base 10 to a different
number base.

Chapter 13

Drawing Using Interfaces This project implements part of a graphical drawing
package. The project uses interfaces to define the
methods that drawing shapes expose and imple-
ment.

Drawing Using Abstract Classes This project extends the Drawing Using Interfaces
project to factor common functionality for shape
objects into abstract classes.

Chapter 14

GarbageCollectionDemo This project shows how to implement exception-safe
disposal of resources by using the Dispose pattern.

Chapter 15

Drawing Using Properties This project extends the application in the Drawing
Using Abstract Classes project developed in Chapter
13 to encapsulate data in a class by using properties.

AutomaticProperties This project shows how to create automatic proper-
ties for a class and use them to initialize instances of
the class.

xxviii Introduction

Project Description

Chapter 16

Indexers This project uses two indexers: one to look up a
person’s phone number when given a name and
the other to look up a person’s name when given a
phone number.

Chapter 17

BinaryTree This solution shows you how to use generics to build
a typesafe structure that can contain elements of any
type.

BuildTree This project demonstrates how to use generics to
implement a typesafe method that can take param-
eters of any type.

Chapter 18

Cards This project updates the code from Chapter 10 to
show how to use collections to model hands of cards
in a card game.

Chapter 19

BinaryTree This project shows you how to implement the gener-
ic IEnumerator<T> interface to create an enumerator
for the generic Tree class.

IteratorBinaryTree This solution uses an iterator to generate an enu-
merator for the generic Tree class.

Chapter 20

Delegates This project shows how to decouple a method from
the application logic that invokes it by using a del-
egate.

Delegates With Event This project shows how to use an event to alert an
object to a significant occurrence, and how to catch
an event and perform any processing required.

Chapter 21

QueryBinaryTree This project shows how to use LINQ queries to re-
trieve data from a binary tree object.

Chapter 22

 Introduction xxix

Project Description

ComplexNumbers This project defines a new type that models complex
numbers and implements common operators for this
type.

Chapter 23

GraphDemo This project generates and displays a complex graph
on a WPF form. It uses a single thread to perform the
calculations.

GraphDemo With Tasks This version of the GraphDemo project creates mul-
tiple tasks to perform the calculations for the graph
in parallel.

Parallel GraphDemo This version of the GraphDemo project uses the
Parallel class to abstract out the process of creating
and managing tasks.

GraphDemo With Cancellation This project shows how to implement cancellation to
halt tasks in a controlled manner before they have
completed.

ParallelLoop This application provides an example showing when
you should not use the Parallel class to create and
run tasks.

Chapter 24

GraphDemo This is a version of the GraphDemo project from
Chapter 23 that uses the async keyword and the
await operator to perform the calculations that gen-
erate the graph data asynchronously.

PLINQ This project shows some examples of using PLINQ to
query data by using parallel tasks.

CalculatePI This project uses a statistical sampling algorithm to
calculate an approximation for pi. It uses parallel
tasks.

Chapter 25

Customers Without Scalable UI This project uses the default Grid control to lay
out the user interface for the Adventure Works
Customers application. The user interface uses abso-
lute positioning for the controls and does not scale
to different screen resolutions and form factors.

Customers With Scalable UI This project uses nested Grid controls with row and
column definitions to enable relative positioning of
controls. This version of the user interface scales to
different screen resolutions and form factors, but it
does not adapt well to Snapped view.

xxx Introduction

Project Description

Customers With Adaptive UI This project extends the version with the scalable
user interface. It uses the Visual State Manager to
detect whether the application is running in Snapped
view, and it changes the layout of the controls ac-
cordingly.

Customers With Styles This version of the Customers project uses XAML
styling to change the font and background image
displayed by the application.

Chapter 26

DataBinding This project uses data-binding to display customer
information retrieved from a data source in the
user interface. It also shows how to implement the
INotifyPropertyChanged interface so that the user
interface can update customer information and send
these changes back to the data source.

ViewModel This version of the Customers project separates the
user interface from the logic that accesses the data
source by implementing the Model-View-ViewModel
pattern.

Search This project implements the Windows 8.1 Search
contract. A user can search for customers by first
name or last name.

Chapter 27

Web Service This solution includes a web application that pro-
vides an ASP.NET Web API web service that the
Customers application uses to retrieve customer data
from a SQL Server database. The web service uses an
entity model created by using the Entity Framework
to access the database.

Updatable ViewModel The Customers project in this solution contains an
extended ViewModel with commands that enable
the user interface to insert and update customer
information by using the WCF Data Service.

Acknowledgments

Despite the fact that my name is on the cover, authoring a book such is this is far from
a one-man project. I’d like to thank the following people who have provided unstinting
support and assistance throughout this rather protracted exercise.

First, Russell Jones, who first alerted me to the impending release of the Windows
8.1 and Visual Studio 2013 technical previews. He managed to expedite the entire

 Introduction xxxi

process of getting this edition of the book ready to go to print. Without his efforts you
might have been reading this edition just as the next edition of Windows emerged.

Next, Mike Sumsion and Paul Barnes, my esteemed colleagues at Content Master,
who performed sterling work reviewing the material for the original versions of each
chapter, testing my code, and pointing out the numerous mistakes that I had made! I
think I have now caught them all, but of course any errors that remain are entirely my
responsibility.

Also, John Mueller, who has done a remarkable job in performing a very swift tech-
nical review of this edition. His writing experience and understanding of the technolo-
gies covered herein have been extremely helpful, and this book has been enriched by
his efforts.

Of course, like many programmers, I might understand the technology but my prose
is not always as fluent or clear as it could be. I would like to thank the editors for cor-
recting my grammar, fixing my spelling, and generally making my material much easier
to understand.

Finally, I would like to thank my wife and cricketing companion, Diana, for not
frowning too much when I said I was about to start work on an updated edition of this
book. She has now become used to my cranky mutterings while I debug code, and the
numerous “d’ohs” that I emit when I realize the crass mistakes I have made.

Errata and book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://aka.ms/VC2013SbS/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com

xxxii Introduction

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback is our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 3

C H A P T E R 1

Welcome to C#

After completing this chapter, you will be able to:

■■ Use the Microsoft Visual Studio 2013 programming environment.

■■ Create a C# console application.

■■ Explain the purpose of namespaces.

■■ Create a simple graphical C# application.

This chapter provides an introduction to Visual Studio 2013, the programming environment, and tool-
set designed to help you build applications for Microsoft Windows. Visual Studio 2013 is the ideal tool
for writing C# code, and it provides many features that you will learn about as you progress through
this book. In this chapter, you will use Visual Studio 2013 to build some simple C# applications and
get started on the path to building highly functional solutions for Windows.

Beginning programming with the Visual Studio 2013
environment

Visual Studio 2013 is a tool-rich programming environment containing the functionality that you
need to create large or small C# projects running on Windows 7, Windows 8, and Windows 8.1. You
can even construct projects that seamlessly combine modules written in different programming
languages such as C++, Visual Basic, and F#. In the first exercise, you will open the Visual Studio 2013
programming environment and learn how to create a console application.

Note A console application is an application that runs in a command prompt window rath-
er than providing a graphical user interface (GUI).

Create a console application in Visual Studio 2013

■■ If you are using Windows 8.1 or Windows 8, on the Start screen, type Visual Studio, and then,
in the Search results pane, click Visual Studio 2013.

4 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

Note On Windows 8 and Windows 8.1, to find an application, you can literally type
the application name (such as Visual Studio) in any blank part of the Start screen,
away from any tiles. The Search results pane will appear automatically.

Visual Studio 2013 starts and displays the Start page, similar to the following (your Start page
might be different, depending on the edition of Visual Studio 2013 you are using).

Note If this is the first time you have run Visual Studio 2013, you might see a dia-
log box prompting you to choose your default development environment settings.
Visual Studio 2013 can tailor itself according to your preferred development lan-
guage. The default selections for the various dialog boxes and tools in the integrated
development environment (IDE) are set for the language you choose. From the list,
select Visual C# Development Settings and then click the Start Visual Studio button.
After a short delay, the Visual Studio 2013 IDE appears.

■■ If you are using Windows 7, perform the following operations to start Visual Studio 2013:

a. On the Windows taskbar, click the Start button, click All Programs, and then click the
Microsoft Visual Studio 2013 program group.

b. In the Microsoft Visual Studio 2013 program group, click Visual Studio 2013.

Visual Studio 2013 starts and displays the Start page.

 CHAPTER 1 Welcome to C# 5

Note To avoid repetition and save space, throughout this book, I will simply state
“Start Visual Studio” when you need to open Visual Studio 2013, regardless of the
operating system you are using.

■■ Perform the following tasks to create a new console application:

a. On the File menu, point to New, and then click Project.

The New Project dialog box opens. This dialog box lists the templates that you
can use as a starting point for building an application. The dialog box categorizes
templates according to the programming language you are using and the type of
application.

b. In the left pane, in the Templates section, click Visual C#. In the middle pane, verify that
the combo box at the top of the pane displays the text .NET Framework 4.5, and then
click the Console Application icon.

c. In the Location box, type C:\Users\YourName\Documents\Microsoft Press\Visual
CSharp Step By Step\Chapter 1. Replace the text YourName in this path with your Win-
dows user name.

6 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

Note To avoid repetition and save space, throughout the rest of this book, I will re-
fer to the path C:\Users\YourName\Documents simply as your Documents folder.

Tip If the folder you specify does not exist, Visual Studio 2013 creates it for you.

d. In the Name box, type TestHello (type over the existing name, ConsoleApplication1).

e. Ensure that the Create Directory For Solution check box is selected, and then click OK.

Visual Studio creates the project using the Console Application template and displays the
starter code for the project, like this:

The menu bar at the top of the screen provides access to the features you’ll use in the pro-
gramming environment. You can use the keyboard or the mouse to access the menus and
commands, exactly as you can in all Windows-based programs. The toolbar is located beneath
the menu bar. It provides button shortcuts to run the most frequently used commands.

The Code and Text Editor window occupying the main part of the screen displays the contents
of source files. In a multifile project, when you edit more than one file, each source file has its
own tab labeled with the name of the source file. You can click the tab to bring the named
source file to the foreground in the Code and Text Editor window.

The Solution Explorer pane appears on the right side of the dialog box:

 CHAPTER 1 Welcome to C# 7

Solution Explorer displays the names of the files associated with the project, among other
items. You can also double-click a file name in the Solution Explorer pane to bring that source
file to the foreground in the Code and Text Editor window.

Before writing the code, examine the files listed in Solution Explorer, which Visual Studio 2013
has created as part of your project:

• Solution ‘TestHello’ This is the top-level solution file. Each application contains a single
solution file. A solution can contain one or more projects, and Visual Studio 2013 creates
the solution file to help organize these projects. If you use Windows Explorer to look at
your Documents\Microsoft Press\Visual CSharp Step By Step\Chapter 1\TestHello folder,
you’ll see that the actual name of this file is TestHello.sln.

• TestHello This is the C# project file. Each project file references one or more files con-
taining the source code and other artifacts for the project, such as graphics images. You
must write all the source code in a single project in the same programming language. In
Windows Explorer, this file is actually called TestHello.csproj, and it is stored in the \Micro-
soft Press\Visual CSharp Step By Step\Chapter 1\TestHello\TestHello folder in your Docu-
ments folder.

• Properties This is a folder in the TestHello project. If you expand it (click the arrow next
to Properties), you will see that it contains a file called AssemblyInfo.cs. AssemblyInfo.cs
is a special file that you can use to add attributes to a program, such as the name of the
author, the date the program was written, and so on. You can specify additional attributes
to modify the way in which the program runs. Explaining how to use these attributes is
beyond the scope of this book.

• References This folder contains references to libraries of compiled code that your ap-
plication can use. When your C# code is compiled, it is converted into a library and given
a unique name. In the Microsoft .NET Framework, these libraries are called assemblies. De-
velopers use assemblies to package useful functionality that they have written so that they
can distribute it to other developers who might want to use these features in their own

8 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

applications. If you expand the References folder, you will see the default set of references
that Visual Studio 2013 adds to your project. These assemblies provide access to many of
the commonly used features of the .NET Framework and are provided by Microsoft with
Visual Studio 2013. You will learn about many of these assemblies as you progress through
the exercises in this book.

• App.config This is the application configuration file. It is optional, and it might not always
be present. You can specify settings that your application can use at run time to modify its
behavior, such as the version of the .NET Framework to use to run the application. You will
learn more about this file in later chapters of this book.

• Program.cs This is a C# source file, and it is displayed in the Code and Text Editor win-
dow when the project is first created. You will write your code for the console application
in this file. It also contains some code that Visual Studio 2013 provides automatically, which
you will examine shortly.

Writing your first program

The Program.cs file defines a class called Program that contains a method called Main. In C#, all
executable code must be defined within a method, and all methods must belong to a class or a struct.
You will learn more about classes in Chapter 7, “Creating and managing classes and objects,” and you
will learn about structs in Chapter 9, “Creating value types with enumerations and structures.”

The Main method designates the program’s entry point. This method should be defined in the
manner specified in the Program class, as a static method; otherwise, the .NET Framework might not
recognize it as the starting point for your application when you run it. (You will look at methods in
detail in Chapter 3, “Writing methods and applying scope,” and Chapter 7 provides more information
on static methods.)

Important C# is a case-sensitive language. You must spell Main with an uppercase M.

In the following exercises, you write the code to display the message “Hello World!” to the console
window; you build and run your Hello World console application; and you learn how namespaces are
used to partition code elements.

Write the code by using Microsoft IntelliSense

1. In the Code and Text Editor window displaying the Program.cs file, place the cursor in the
Main method, immediately after the opening brace, {, and then press Enter to create a new
line.

 CHAPTER 1 Welcome to C# 9

2. On the new line, type the word Console; this is the name of another class provided by the
assemblies referenced by your application. It provides methods for displaying messages in the
console window and reading input from the keyboard.

As you type the letter C at the start of the word Console, an IntelliSense list appears.

This list contains all of the C# keywords and data types that are valid in this context. You can
either continue typing or scroll through the list and double-click the Console item with the
mouse. Alternatively, after you have typed Cons, the IntelliSense list automatically homes in
on the Console item, and you can press the Tab or Enter key to select it.

Main should look like this:

static void Main(string[] args)
{
 Console
}

Note Console is a built-in class.

3. Type a period immediately following Console.

Another IntelliSense list appears, displaying the methods, properties, and fields of the Console
class.

4. Scroll down through the list, select WriteLine, and then press Enter. Alternatively, you can con-
tinue typing the characters W, r, i, t, e, L until WriteLine is selected, and then press Enter.

The IntelliSense list closes, and the word WriteLine is added to the source file. Main should
now look like this:

static void Main(string[] args)
{
 Console.WriteLine
}

10 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

5. Type an opening parenthesis, (. Another IntelliSense tip appears.

This tip displays the parameters that the WriteLine method can take. In fact, WriteLine is an
overloaded method, meaning that the Console class contains more than one method named
WriteLine—it actually provides 19 different versions of this method. You can use each version
of the WriteLine method to output different types of data. (Chapter 3 describes overloaded
methods in more detail.) Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine(
}

tip You can click the up and down arrows in the tip to scroll through the different
overloads of WriteLine.

6. Type a closing parenthesis,), followed by a semicolon, ;.

Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine();
}

7. Move the cursor and type the string “Hello World!”, including the quotation marks, between
the left and right parentheses following the WriteLine method.

Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine("Hello World!");
}

tip Get into the habit of typing matched character pairs, such as parentheses, (and
), and curly brackets, { and }, before filling in their contents. It’s easy to forget the
closing character if you wait until after you’ve entered the contents.

 CHAPTER 1 Welcome to C# 11

IntelliSense icons
When you type a period after the name of a class, IntelliSense displays the name of every mem-
ber of that class. To the left of each member name is an icon that depicts the type of member.
Common icons and their types include the following:

Icon Meaning

Method (discussed in Chapter 3)

Property (discussed in Chapter 15, “Implementing properties to access fields”)

Class (discussed in Chapter 7)

Struct (discussed in Chapter 9)

Enum (discussed in Chapter 9)

Extension method (discussed in Chapter 12)

Interface (discussed in Chapter 13, “Creating interfaces and defining abstract
classes”)

Delegate (discussed in Chapter 17, “Introducing generics”)

Event (discussed in Chapter 17)

Namespace (discussed in the next section of this chapter)

You will also see other IntelliSense icons appear as you type code in different contexts.

You will frequently see lines of code containing two forward slashes (//) followed by ordinary text.
These are comments, and they are ignored by the compiler but are very useful for developers be-
cause they help document what a program is actually doing. Take for instance the following example:

Console.ReadLine(); // Wait for the user to press the Enter key

The compiler skips all text from the two slashes to the end of the line. You can also add multiline
comments that start with a forward slash followed by an asterisk (/*). The compiler skips everything
until it finds an asterisk followed by a forward slash sequence (*/), which could be many lines lower
down. You are actively encouraged to document your code with as many meaningful comments as
necessary.

Build and run the console application

1. On the Build menu, click Build Solution.

12 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

This action compiles the C# code, resulting in a program that you can run. The Output window
appears below the Code and Text Editor window.

tip If the Output window does not appear, on the View menu, click Output to display it.

In the Output window, you should see messages similar to the following, indicating how the
program is being compiled:

1>------ Build started: Project: TestHello, Configuration: Debug Any CPU ------
1> TestHello -> C:\Users\John\Documents\Microsoft Press\Visual CSharp Step By Step\
Chapter
1\TestHello\TestHello\bin\Debug\TestHello.exe
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

If you have made any mistakes, they will be reported in the Error List window. The following
image shows what happens if you forget to type the closing quotation marks after the text
Hello World in the WriteLine statement. Notice that a single mistake can sometimes cause
multiple compiler errors.

 CHAPTER 1 Welcome to C# 13

tip To go directly to the line that caused the error, you can double-click an item in the
Error List window. You should also notice that Visual Studio displays a wavy red line under
any lines of code that will not compile when you enter them.

If you have followed the previous instructions carefully, there should be no errors or warnings,
and the program should build successfully.

tip There is no need to save the file explicitly before building because the Build Solution
command automatically saves it.

An asterisk after the file name in the tab above the Code and Text Editor window indicates
that the file has been changed since it was last saved.

2. On the Debug menu, click Start Without Debugging.

A command window opens and the program runs. The message “Hello World!” appears; the
program waits for you to press any key, as shown in the following graphic:

Note The prompt “Press any key to continue” is generated by Visual Studio; you did not
write any code to do this. If you run the program by using the Start Debugging command
on the Debug menu, the application runs, but the command window closes immediately
without waiting for you to press a key.

3. Ensure that the command window displaying the program’s output has the focus (meaning
that it’s the window that’s currently active), and then press Enter.

The command window closes, and you return to the Visual Studio 2013 programming envi-
ronment.

4. In Solution Explorer, click the TestHello project (not the solution), and then, on the Solution
Explorer toolbar, click the Show All Files button. Be aware that you might need to click the
double-arrow button on the right edge of the Solution Explorer toolbar to make this button
appear.

14 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

Entries named bin and obj appear above the Program.cs file. These entries correspond directly
to folders named bin and obj in the project folder (Microsoft Press\Visual CSharp Step By
Step\Chapter 1\TestHello\TestHello). Visual Studio creates these folders when you build your
application; they contain the executable version of the program together with some other files
used to build and debug the application.

5. In Solution Explorer, expand the bin entry.

Another folder named Debug appears.

Note You might also see a folder named Release.

6. In Solution Explorer, expand the Debug folder.

Several more items appear, including a file named TestHello.exe. This is the compiled program,
which is the file that runs when you click Start Without Debugging on the Debug menu. The
other files contain information that is used by Visual Studio 2013 if you run your program in
debug mode (when you click Start Debugging on the Debug menu).

Using namespaces

The example you have seen so far is a very small program. However, small programs can soon grow
into much bigger programs. As a program grows, two issues arise. First, it is harder to understand and
maintain big programs than it is to understand and maintain smaller ones. Second, more code usually
means more classes, with more methods, requiring you to keep track of more names. As the number
of names increases, so does the likelihood of the project build failing because two or more names
clash; for example, you might try and create two classes with the same name. The situation becomes
more complicated when a program references assemblies written by other developers who have also
used a variety of names.

 CHAPTER 1 Welcome to C# 15

In the past, programmers tried to solve the name-clashing problem by prefixing names with some
sort of qualifier (or set of qualifiers). This is not a good solution because it’s not scalable; names be-
come longer, and you spend less time writing software and more time typing (there is a difference),
and reading and rereading incomprehensibly long names.

Namespaces help solve this problem by creating a container for items such as classes. Two classes
with the same name will not be confused with each other if they live in different namespaces. You
can create a class named Greeting inside the namespace named TestHello by using the namespace
keyword like this:

namespace TestHello
{
 class Greeting
 {
 ...
 }
}

You can then refer to the Greeting class as TestHello.Greeting in your programs. If another develop-
er also creates a Greeting class in a different namespace, such as NewNamespace, and you install the
assembly that contains this class on your computer, your programs will still work as expected because
they are using the TestHello.Greeting class. If you want to refer to the other developer’s Greeting class,
you must specify it as NewNamespace.Greeting.

It is good practice to define all your classes in namespaces, and the Visual Studio 2013 environ-
ment follows this recommendation by using the name of your project as the top-level namespace.
The .NET Framework class library also adheres to this recommendation; every class in the .NET Frame-
work lives within a namespace. For example, the Console class lives within the System namespace. This
means that its full name is actually System.Console.

Of course, if you had to write the full name of a class every time you used it, the situation would be
no better than prefixing qualifiers or even just naming the class with some globally unique name such
SystemConsole. Fortunately, you can solve this problem with a using directive in your programs. If you
return to the TestHello program in Visual Studio 2013 and look at the file Program.cs in the Code and
Text Editor window, you will notice the following lines at the top of the file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

These lines are using directives. A using directive brings a namespace into scope. In subsequent
code in the same file, you no longer need to explicitly qualify objects with the namespace to which
they belong. The five namespaces shown contain classes that are used so often that Visual Studio
2013 automatically adds these using statements every time you create a new project. You can add
further using directives to the top of a source file if you need to reference other namespaces.

The following exercise demonstrates the concept of namespaces in more depth.

16 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

try longhand names

1. In the Code and Text Editor window displaying the Program.cs file, comment out the first using
directive at the top of the file, like this:

//using System;

2. On the Build menu, click Build Solution.

The build fails, and the Error List window displays the following error message:

The name 'Console' does not exist in the current context.

3. In the Error List window, double-click the error message.

The identifier that caused the error is highlighted in the Program.cs source file.

4. In the Code and Text Editor window, edit the Main method to use the fully qualified name
System.Console.

Main should look like this:

static void Main(string[] args)
{
 System.Console.WriteLine("Hello World!");
}

Note When you type the period after System, IntelliSense displays the names of all the
items in the System namespace.

5. On the Build menu, click Build Solution.

The project should build successfully this time. If it doesn’t, ensure that Main is exactly as it
appears in the preceding code, and then try building again.

6. Run the application to ensure that it still works by clicking Start Without Debugging on the
Debug menu.

7. When the program runs and displays “Hello World!”, in the console window, press Enter to
return to Visual Studio 2013.

 CHAPTER 1 Welcome to C# 17

Namespaces and assemblies
A using directive simply brings the items in a namespace into scope and frees you from having
to fully qualify the names of classes in your code. Classes are compiled into assemblies. An as-
sembly is a file that usually has the .dll file name extension, although strictly speaking, execut-
able programs with the .exe file name extension are also assemblies.

An assembly can contain many classes. The classes that the .NET Framework class library
comprises, such as System.Console, are provided in assemblies that are installed on your com-
puter together with Visual Studio. You will find that the .NET Framework class library contains
thousands of classes. If they were all held in the same assembly, the assembly would be huge
and difficult to maintain. (If Microsoft were to update a single method in a single class, it would
have to distribute the entire class library to all developers!)

For this reason, the .NET Framework class library is split into a number of assemblies, par-
titioned by the functional area to which the classes they contain relate. For example, a “core”
assembly (actually called mscorlib.dll) contains all the common classes, such as System.Console,
and further assemblies contain classes for manipulating databases, accessing web services,
building GUIs, and so on. If you want to make use of a class in an assembly, you must add to
your project a reference to that assembly. You can then add using statements to your code that
bring the items in namespaces in that assembly into scope.

You should note that there is not necessarily a 1:1 equivalence between an assembly and a
namespace: A single assembly can contain classes defined in many namespaces, and a single
namespace can span multiple assemblies. For example, the classes and items in the System
namespace are actually implemented by several assemblies, including mscorlib.dll, System.dll,
and System.Core.dll, among others. This all sounds very confusing at first, but you will soon get
used to it.

When you use Visual Studio to create an application, the template you select automatically
includes references to the appropriate assemblies. For example, in Solution Explorer for the Tes-
tHello project, expand the References folder. You will see that a console application automati-
cally contains references to assemblies called Microsoft.CSharp, System, System.Core, System.
Data, System.Data.DataExtensions, System.Xml, and System.Xml.Linq. You might be surprised
to see that mscorlib.dll is not included in this list. The reason for this is that all .NET Framework
applications must use this assembly because it contains fundamental runtime functionality. The
References folder lists only the optional assemblies; you can add or remove assemblies from
this folder as necessary.

To add references for additional assemblies to a project, right-click the References folder
and then, in the shortcut menu that appears, click Add Reference—you will perform this task
in later exercises. You can remove an assembly by right-clicking the assembly in the References
folder and then clicking Remove.

18 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

Creating a graphical application

So far, you have used Visual Studio 2013 to create and run a basic console application. The Visual
Studio 2013 programming environment also contains everything you need to create graphical ap-
plications for Windows 7, Windows 8, and Windows 8.1. You can design the user interface (UI) of a
Windows application interactively. Visual Studio 2013 then generates the program statements to
implement the user interface you’ve designed.

Visual Studio 2013 provides you with two views of a graphical application: the design view and the
code view. You use the Code and Text Editor window to modify and maintain the code and program
logic for a graphical application, and you use the Design View window to lay out your UI. You can
switch between the two views whenever you want.

In the following set of exercises, you’ll learn how to create a graphical application by using Visual
Studio 2013. This program displays a simple form containing a text box where you can enter your
name and a button that when clicked displays a personalized greeting.

Important In Windows 7 and Windows 8, Visual Studio 2013 provides two templates for
building graphical applications: the Windows Forms Application template and the WPF
Application template. Windows Forms is a technology that first appeared with the .NET
Framework version 1.0. WPF, or Windows Presentation Foundation, is an enhanced technol-
ogy that first appeared with the .NET Framework version 3.0. It provides many additional
features and capabilities over Windows Forms, and you should consider using WPF instead
of Windows Forms for all new Windows 7 development.

You can also build Windows Forms and WPF applications in Windows 8.1. However,
Windows 8 and Windows 8.1 provide a new flavor of UI, referred to as the “Windows Store”
style. Applications that use this style of UI are called Windows Store applications (or apps).
Windows 8 has been designed to operate on a variety of hardware, including computers
with touch-sensitive screens and tablet computers or slates. These computers enable users
to interact with applications by using touch-based gestures—for example, users can swipe
applications with their fingers to move them around the screen and rotate them, or “pinch”
and “stretch” applications to zoom out and back in again. Additionally, many tablets include
sensors that can detect the orientation of the device, and Windows 8 can pass this informa-
tion to an application, which can then dynamically adjust the UI to match the orientation
(it can switch from landscape to portrait mode, for example). If you have installed Visual
Studio 2013 on a Windows 8.1 computer, you are provided with an additional set of tem-
plates for building Windows Store apps. However, these templates are dependent on features
provided by Windows 8.1, so if you are running Windows 8, the Windows Store templates are
not available.

 CHAPTER 1 Welcome to C# 19

To cater to Windows 7, Windows 8, and Windows 8.1 developers, I have provided instruc-
tions in many of the exercises for using the WPF templates. If you are running Windows 7 or
Windows 8 you should follow the Windows 7 instructions. If you want to use the Windows
Store style UI, you should follow the Windows 8.1 instructions. Of course, you can follow
the Windows 7 and Windows 8 instructions to use the WPF templates on Windows 8.1 if
you prefer.

If you want more information about the specifics of writing Windows 8.1 applications, the
final few chapters in Part IV of this book provide more detail and guidance.

Create a graphical application in Visual Studio 2013

■■ If you are using Windows 8.1, perform the following operations to create a new graphical ap-
plication:

a. Start Visual Studio 2013 if it is not already running.

b. On the File menu, point to New, and then click Project.

The New Project dialog box opens.

c. In the left pane, in the Installed Templates section, expand the Visual C# folder if it is not
already expanded, and then click the Windows Store folder.

d. In the middle pane, click the Blank App (XAML) icon.

Note XAML stands for Extensible Application Markup Language, which is the language that
Windows Store apps use to define the layout for the GUI of an application. You will learn
more about XAML as you progress through the exercises in this book.

e. Ensure that the Location field refers to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 1 folder in your Documents folder.

f. In the Name box, type Hello.

g. In the Solution box, ensure that Create New Solution is selected.

This action creates a new solution for holding the project. The alternative, Add To
Solution, adds the project to the TestHello solution, which is not what you want for
this exercise.

h. Click OK.

If this is the first time that you have created a Windows Store app, you will be
prompted to apply for a developer license. You must agree to the terms and

20 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

conditions indicated in the dialog box before you can continue to build Windows
Store apps. If you concur with these conditions, click I Agree, as depicted in the
illustration that follows. You will be prompted to sign into Windows Live (you can
create a new account at this point if necessary), and a developer license will be
created and allocated to you.

i. After the application has been created, look in the Solution Explorer window.

Don’t be fooled by the name of the application template—although it is called Blank
App, this template actually provides a number of files and contains some code. For
example, if you expand the MainPage.xaml folder, you will find a C# file named Main-
Page.xaml.cs. This file is where you add the code that runs when the UI defined by the
MainPage.xaml file is displayed.

j. In Solution Explorer, double-click MainPage.xaml.

This file contains the layout of the UI. The Design View window shows two representa-
tions of this file:

At the top is a graphical view depicting the screen of a tablet computer. The lower
pane contains a description of the contents of this screen using XAML. XAML is an
XML-like language used by Windows Store apps and WPF applications to define the
layout of a form and its contents. If you have knowledge of XML, XAML should look
familiar.

In the next exercise, you will use the Design View window to lay out the UI for the ap-
plication, and you will examine the XAML code that this layout generates.

 CHAPTER 1 Welcome to C# 21

■■ If you are using Windows 8 or Windows 7, perform the following tasks:

a. Start Visual Studio 2013 if it is not already running.

b. On the File menu, point to New, and then click Project.

The New Project dialog box opens.

c. In the left pane, in the Installed Templates section, expand the Visual C# folder if it is not
already expanded, and then click the Windows folder.

d. In the middle pane, click the WPF Application icon.

e. Ensure that the Location box refers to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 1 folder in your Documents folder.

f. In the Name box, type Hello.

g. In the Solution box, ensure that Create New Solution is selected, and then click OK.

The WPF Application template generates fewer items than the Windows Store Blank
App template; it contains none of the styles generated by the Blank App template be-
cause the functionality that these styles embody is specific to Windows 8.1. However,
the WPF Application template does generate a default window for your application.
Like a Windows Store app, this window is defined by using XAML, but in this case it is
called MainWindow.xaml by default.

22 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

h. In Solution Explorer, double-click MainWindow.xaml to display the contents of this file in
the Design View window.

tip Close the Output and Error List windows to provide more space for displaying the
Design View window.

Note Before going further, it is worth explaining some terminology. In a typical WPF ap-
plication, the UI consists of one or more windows, but in a Windows Store app the cor-
responding items are referred to as pages (strictly speaking, a WPF application can also
contain pages, but I don’t want to confuse matters at this point). To avoid repeating the
rather verbose phrase “WPF window or Windows Store app page” repeatedly throughout
this book, I will simply refer to both items by using the blanket term form. However, I will
continue to use the word window to refer to items in the Visual Studio 2013 IDE, such as the
Design View window.

In the following exercises, you will use the Design View window to add three controls to the form
displayed by your application, and you will examine some of the C# code automatically generated by
Visual Studio 2013 to implement these controls.

 CHAPTER 1 Welcome to C# 23

Note The steps in the following exercises are common to Windows 7, Windows 8, and
Windows 8.1, except where any differences are explicitly called out.

Create the UI

1. Click the Toolbox tab that appears to the left of the form in the Design View window.

The Toolbox appears, partially obscuring the form, and displays the various components and
controls that you can place on a form.

2. If you are using Windows 8.1, expand the Common XAML Controls section.

If you are using Windows 7 or Windows 8, expand the Common WPF Controls section.

This section displays a list of controls that most graphical applications use.

tip The All XAML Controls section (Windows 8.1) or All WPF Controls section (Windows 7
and Windows 8) displays a more extensive list of controls.

3. In the Common XAML Controls section or Common WPF Controls section, click TextBlock, and
then drag the TextBlock control onto the form displayed in the Design View window.

tip Ensure that you select the TextBlock control and not the TextBox control. If you acci-
dentally place the wrong control on a form, you can easily remove it by clicking the item on
the form and then pressing Delete.

A TextBlock control is added to the form (you will move it to its correct location in a moment),
and the Toolbox disappears from view.

tip If you want the Toolbox to remain visible but not hide any part of the form, at the right
end of the Toolbox title bar, click the Auto Hide button (it looks like a pin). The Toolbox ap-
pears permanently on the left side of the Visual Studio 2013 window, and the Design View
window shrinks to accommodate it. (You might lose a lot of space if you have a low-reso-
lution screen.) Clicking the Auto Hide button once more causes the Toolbox to disappear
again.

4. The TextBlock control on the form is probably not exactly where you want it. You can click and
drag the controls you have added to a form to reposition them. Using this technique, move
the TextBlock control so that it is positioned toward the upper-left corner of the form. (The
exact placement is not critical for this application.) Notice that you might need to click away

24 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

from the control and then click it again before you are able to move it in the Design View
window.

The XAML description of the form in the lower pane now includes the TextBlock control,
together with properties such as its location on the form, governed by the Margin property,
the default text displayed by this control in the Text property, the alignment of text displayed
by this control specified by the HorizontalAlignment and VerticalAlignment properties, and
whether text should wrap if it exceeds the width of the control.

If you are using Windows 8.1, the XAML code for the TextBlock will look similar to this (your
values for the Margin property might be slightly different, depending on where you have
positioned the TextBlock control on the form):

<TextBlock HorizontalAlignment="Left" Margin="400,200,0,0" TextWrapping="Wrap"
Text="TextBlock" VerticalAlignment="Top"/>

If you are using Windows 7 or Windows 8, the XAML code will be much the same, except that
the units used by the Margin property operate on a different scale due to the finer resolution
of Windows 8.1 devices.

The XAML pane and the Design View window have a two-way relationship with each other.
You can edit the values in the XAML pane, and the changes will be reflected in the Design
View window. For example, you can change the location of the TextBlock control by modifying
the values in the Margin property.

5. On the View menu, click Properties Window.

If it was not already displayed, the Properties window appears at the lower right of the screen,
under Solution Explorer. You can specify the properties of controls by using the XAML pane
under the Design View window, but the Properties window provides a more convenient way
for you to modify the properties for items on a form, as well as other items in a project.

The Properties window is context sensitive in that it displays the properties for the currently
selected item. If you click the form displayed in the Design View window, outside of the
TextBlock control, you can see that the Properties window displays the properties for a Grid
element. If you look at the XAML pane, you should see that the TextBlock control is contained
within a Grid element. All forms contain a Grid element that controls the layout of displayed
items; for example, you can define tabular layouts by adding rows and columns to the Grid.

6. In the Design View window, click the TextBlock control. The Properties window displays the
properties for the TextBlock control again.

7. In the Properties window, expand the Text property. Change the FontSize property to 20 px
and then press Enter. This property is located next to the drop-down list box containing the
name of the font, which will be different for Windows 8.1 (Global User Interface) and Windows
7 or Windows 8 (Segoe UI):

 CHAPTER 1 Welcome to C# 25

Note The suffix px indicates that the font size is measured in pixels.

8. In the XAML pane below the Design View window, examine the text that defines the TextBlock
control. If you scroll to the end of the line, you should see the text FontSize=“20”. Any changes
that you make using the Properties window are automatically reflected in the XAML defini-
tions, and vice versa.

Type over the value of the FontSize property in the XAML pane, changing it to 24. The font
size of the text for the TextBlock control in the Design View window and the Properties win-
dow changes.

9. In the Properties window, examine the other properties of the TextBlock control. Feel free to
experiment by changing them to see their effects.

Notice that as you change the values of properties, these properties are added to the defini-
tion of the TextBlock control in the XAML pane. Each control that you add to a form has a
default set of property values, and these values are not displayed in the XAML pane unless
you change them.

10. Change the value of the Text property of the TextBlock control from TextBlock to Please enter
your name. You can do this either by editing the Text element in the XAML pane or by chang-
ing the value in the Properties window (this property is located in the Common section in the
Properties window).

Notice that the text displayed in the TextBlock control in the Design View window changes.

11. Click the form in the Design View window and then display the Toolbox again.

12. In the Toolbox, click and drag the TextBox control onto the form. Move the TextBox control so
that it is directly below the TextBlock control.

26 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

tip When you drag a control on a form, alignment indicators appear automatically
when the control becomes aligned vertically or horizontally with other controls. This
gives you a quick visual cue to ensure that controls are lined up neatly.

13. In the Design View window, place the mouse over the right edge of the TextBox control. The
mouse pointer should change to a double-headed arrow, indicating that you can resize the
control. Drag the right edge of the TextBox control until it is aligned with the right edge of the
TextBlock control above; a guide should appear when the two edges are correctly aligned.

14. While the TextBox control is selected, at the top of the Properties window, change the value of
the Name property from <No Name> to userName, as illustrated here:

Note You will learn more about naming conventions for controls and variables in Chapter
2, “Working with variables, operators, and expressions.”

15. Display the Toolbox again and then click and drag a Button control onto the form. Place the
Button control to the right of the TextBox control on the form so that the bottom of the but-
ton is aligned horizontally with the bottom of the text box.

16. Using the Properties window, change the Name property of the Button control to ok and
change the Content property (in the Common section) from Button to OK and press Enter.
Verify that the caption of the Button control on the form changes to display the text OK.

17. If you are using Windows 7 or Windows 8, click the title bar of the form in the Design View
window. In the Properties window, change the Title property (in the Common section again)
from MainWindow to Hello.

 CHAPTER 1 Welcome to C# 27

Note Windows Store apps do not have a title bar.

18. If you are using Windows 7 or Windows 8, in the Design View window, click the title bar of
the Hello form. Notice that a resize handle (a small square) appears in the lower-right corner
of the Hello form. Move the mouse pointer over the resize handle. When the pointer changes
to a diagonal double-headed arrow, drag the pointer to resize the form. Stop dragging and
release the mouse button when the spacing around the controls is roughly equal.

Important Click the title bar of the Hello form and not the outline of the grid inside the
Hello form before resizing it. If you select the grid, you will modify the layout of the con-
trols on the form but not the size of the form itself.

The Hello form should now look similar to the following figure:

Note Pages in Windows Store apps cannot be resized in the same way as WPF forms; when
they run, they automatically occupy the full screen of the device. However, they can adapt
themselves to different screen resolutions and device orientation, and present different
views when they are “snapped.” You can easily see what your application looks like on a dif-
ferent device by clicking Device Window on the Design menu and then selecting from the
different screen resolutions available in the Display drop-down list. You can also see how
your application appears in portrait mode or when snapped by selecting the Portrait orien-
tation or Snapped view from the list of available views.

19. On the Build menu, click Build Solution, and then verify that the project builds successfully.

20. On the Debug menu, click Start Debugging.

The application should run and display your form. If you are using Windows 8.1, the form oc-
cupies the entire screen and looks like this:

28 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

Note When you run a Windows Store App in Debug mode in Windows 8.1, two pairs of
numbers appear in the upper-left and upper-right corner of the screen. These numbers
track the frame rate, and developers can use them to determine when an application starts
to become less responsive than it should be (possibly an indication of performance issues).
They appear only when an application runs in Debug mode. A full description of what these
numbers mean is beyond the scope of this book, so you can ignore them for now.

If you are using Windows 7 or Windows 8, the form looks like this:

In the text box, you can type over what is there, type your name, and then click OK, but noth-
ing happens yet. You need to add some code to indicate what should happen when the user
clicks the OK button, which is what you will do next.

21. Return to Visual Studio 2013. On the DEBUG menu, click Stop Debugging.

• If you are using Windows 8.1, press the Windows key + B. This should return you to the
Windows Desktop running Visual Studio, from which you can access the Debug menu.

 CHAPTER 1 Welcome to C# 29

• If you are using Windows 7 or Windows 8, you can switch directly to Visual Studio. You can
also click the close button (the X in the upper-right corner of the form) to close the form,
stop debugging, and return to Visual Studio.

Closing a Windows Store app
If you are using Windows 8.1 and you clicked Start Without Debugging on the Debug menu
to run the application, you will need to forcibly close it. This is because unlike console applica-
tions, the lifetime of a Windows Store app is managed by the operating system rather than
the user. Windows 8.1 suspends an application when it is not currently displayed, and it will
terminate the application when the operating system needs to free the resources consumed
by that application. The most reliable way to forcibly stop the Hello application is to click (or
place your finger if you have a touch-sensitive screen) at the top of the screen and then click
and drag (or swipe) the application to the bottom of the screen and hold it until the image of
the application flips around (if you release the application before the image flips, the applica-
tion will continue to run in the background). This action closes the application and returns you
to the Windows Start screen where you can switch back to Visual Studio. Alternatively, you can
perform the following tasks:

1. Click, or place your finger, in the upper-right corner of the screen and then drag the
image of Visual Studio to the middle of the screen (or press Windows key + B)

2. At the bottom of the desktop, right-click the Windows taskbar, and then click Task
Manager.

3. In the Task Manager window, click the Hello application, and then click End Task.

4. Close the Task Manager window.

30 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

You have managed to create a graphical application without writing a single line of C# code. It
does not do much yet (you will have to write some code soon), but Visual Studio 2013 actually gener-
ates a lot of code for you that handles routine tasks that all graphical applications must perform, such
as starting up and displaying a window. Before adding your own code to the application, it helps to
have an understanding of what Visual Studio has produced for you. The structure is slightly different
between a Windows Store app and a WPF application, and the following sections summarize these
application styles separately.

examining the Windows Store app
If you are using Windows 8.1, in Solution Explorer, click the arrow adjacent to the MainPage.xaml file
to expand the node. The file MainPage.xaml.cs appears; double-click this file. The following code for
the form is displayed in the Code and Text Editor window:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

// The Blank Page item template is documented at http://go.microsoft.com/fwlink/?LinkId=234238

namespace Hello
{
 /// <summary>
 /// An empty page that can be used on its own or navigated to within a Frame.
 /// </summary>
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();
 }
 }
}

In addition to a good number of using directives bringing into scope some namespaces that most
Windows Store apps use, the file contains the definition of a class called MainPage but not much else.
There is a little bit of code for the MainPage class known as a constructor that calls a method called
InitializeComponent. A constructor is a special method with the same name as the class. It runs when
an instance of the class is created and can contain code to initialize the instance. You will learn about
constructors in Chapter 7.

 CHAPTER 1 Welcome to C# 31

The class actually contains a lot more code than the few lines shown in the MainPage.xaml.cs file,
but much of it is generated automatically based on the XAML description of the form, and it is hidden
from you. This hidden code performs operations such as creating and displaying the form, and creat-
ing and positioning the various controls on the form.

tip You can also display the C# code file for a page in a Windows Store app by clicking
Code on the View menu when the Design View window is displayed.

At this point, you might be wondering where the Main method is and how the form gets displayed
when the application runs. Remember that in a console application Main defines the point at which
the program starts. A graphical application is slightly different.

In Solution Explorer, you should notice another source file called App.xaml. If you expand the node
for this file, you will see another file called App.xaml.cs. In a Windows Store app, the App.xaml file
provides the entry point at which the application starts running. If you double-click App.xaml.cs in
Solution Explorer, you should see some code that looks similar to this:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.ApplicationModel;
using Windows.ApplicationModel.Activation;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

// The Blank Application template is documented at http://go.microsoft.com/fwlink/?LinkId=234227

namespace Hello
{
 /// <summary>
 /// Provides application-specific behavior to supplement the default Application class.
 /// </summary>
 sealed partial class App : Application
 {
 /// <summary>
 /// Initializes the singleton application object. This is the first line of authored
code
 /// executed, and as such is the logical equivalent of main() or WinMain().
 /// </summary>
 public App()
 {
 this.InitializeComponent();
 this.Suspending += OnSuspending;

32 PART I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

 /// <summary>
 /// Invoked when the application is launched normally by the end user. Other entry
points
 /// will be used when the application is launched to open a specific file, to display
 /// search results, and so forth.
 /// </summary>
 /// <param name="args">Details about the launch request and process.</param>
 protected override void OnLaunched(LaunchActivatedEventArgs e)
 {

#if DEBUG
 if (System.Diagnostics.Debugger.IsAttached)
 {
 this.DebugSettings.EnableFrameRateCounter = true;
 }
#endif

 Frame rootFrame = Window.Current.Content as Frame;

 // Do not repeat app initialization when the Window already has content,
 // just ensure that the window is active
 if (rootFrame == null)
 {
 // Create a Frame to act as the navigation context and navigate to the first
page
 rootFrame = new Frame();

 if (e.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 //TODO: Load state from previously suspended application
 }

 // Place the frame in the current Window
 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 // When the navigation stack isn't restored navigate to the first page,
 // configuring the new page by passing required information as a navigation
 // parameter
 if (!rootFrame.Navigate(typeof(MainPage), e.Arguments))
 {
 throw new Exception("Failed to create initial page");
 }
 }
 // Ensure the current window is active
 Window.Current.Activate();
 }

 /// <summary>
 /// Invoked when application execution is being suspended. Application state is saved
 /// without knowing whether the application will be terminated or resumed with the
contents
 /// of memory still intact.

C#vNext_ch01.indd 32C#vNext_ch01.indd 32 1/15/15 9:06 AM1/15/15 9:06 AM

 CHAPTER 1 Welcome to C# 33

 /// </summary>
 /// <param name="sender">The source of the suspend request.</param>
 /// <param name="e">Details about the suspend request.</param>
 private void OnSuspending(object sender, SuspendingEventArgs e)
 {
 var deferral = e.SuspendingOperation.GetDeferral();
 //TODO: Save application state and stop any background activity
 deferral.Complete();
 }
 }
}

Much of this code consists of comments (the lines beginning “///”) and other statements that you
don’t need to understand just yet, but the key elements are located in the OnLaunched method, high-
lighted in bold. This method runs when the application starts, and the code in this method causes the
application to create a new Frame object, display the MainPage form in this frame, and then activate
it. It is not necessary at this stage to fully comprehend how this code works or the syntax of any of
these statements, but it’s helpful that you simply appreciate that this is how the application displays
the form when it starts running.

examining the WpF application
If you are using Windows 7 or Windows 8, in Solution Explorer, click the arrow adjacent to the Main-
Window.xaml file to expand the node. The file MainWindow.xaml.cs appears; double-click this file. The
code for the form displays in the Code and Text Editor window, as shown here:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
namespace Hello
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }
 }
}

34 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

This code looks similar to that for the Windows Store app, but there are some significant differ-
ences; many of the namespaces referenced by the using directives at the top of the file are different.
For example, WPF applications make use of objects defined in namespaces that begin with the prefix
System.Windows, whereas Windows Store apps use objects defined in namespaces that start with
Windows.UI. This difference is not just cosmetic. These namespaces are implemented by different as-
semblies, and the controls and functionality that these assemblies provide are different between WPF
and Windows Store apps, although they might have similar names. Going back to the earlier exercise,
you added TextBlock, TextBox, and Button controls to the WPF form and the Windows Store app.
Although these controls have the same name in each style of application, they are defined in different
assemblies: Windows.UI.Xaml.Controls for Windows Store apps, and System.Windows.Controls for WPF
applications. The controls for Windows Store apps have been specifically designed and optimized for
touch interfaces, whereas the WPF controls are intended primarily for use in mouse-driven systems.

As with the code in the Windows Store app, the constructor in the MainWindow class initializes the
WPF form by calling the InitializeComponent method. Again, as before, the code for this method is
hidden from you, and it performs operations such as creating and displaying the form, and creating
and positioning the various controls on the form.

The way in which a WPF application specifies the initial form to be displayed is different from that
of a Windows Store app. Like a Windows Store app, it defines an App object defined in the App.xaml
file to provide the entry point for the application, but the form to display is specified declaratively as
part of the XAML code rather than programmatically. If you double-click the App.xaml file in Solution
Explorer (not App.xaml.cs), you can examine the XAML description. One property in the XAML code
is called StartupUri, and it refers to the MainWindow.xaml file, as shown in bold in the following code
example:

<Application x:Class="Hello.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com.winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

In a WPF application, the StartupUri property of the App object indicates which form to display.

adding code to the graphical application
Now that you know a little bit about the structure of a graphical application, the time has come to
write some code to make your application actually do something.

Write the code for the OK button

1. In the Design View window, open the MainPage.xaml file (Windows 8.1) or MainWindow.xaml
file (Windows 7 or Windows 8) (double-click MainPage.xaml or MainWindow.xaml in Solution
Explorer).

 CHAPTER 1 Welcome to C# 35

2. Still in the Design View window, click the OK button on the form to select it.

3. In the Properties window, click the Event Handlers for the Selected Element button.

This button displays an icon that looks like a bolt of lightning, as demonstrated here:

The Properties window displays a list of event names for the Button control. An event indi-
cates a significant action that usually requires a response, and you can write your own code to
perform this response.

4. In the box adjacent to the Click event, type okClick, and then press Enter.

The MainPage.xaml.cs file (Windows 8.1) or MainWindow.xaml.cs file (Windows 7 or Windows
8) appears in the Code and Text Editor window, and a new method called okClick is added to
the MainPage or MainWindow class. The method looks like this:

private void okClick(object sender, RoutedEventArgs e)
{

}

Do not worry too much about the syntax of this code just yet—you will learn all about meth-
ods in Chapter 3.

5. If you are using Windows 8.1, perform the following tasks:

a. Add the following using directive shown in bold to the list at the top of the file (the ellipsis
character […] indicates statements that have been omitted for brevity):

using System;
...
using Windows.UI.Xaml.Navigation;
using Windows.UI.Popups;

b. Add the following code shown in bold to the okClick method:

36 PART I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

{
 MessageDialog msg = new MessageDialog("Hello " + userName.Text);
 msg.ShowAsync();
}

This code will run when the user clicks the OK button. Again, do not worry too much about
the syntax, just ensure that you copy it exactly as shown; you will fi nd out what these state-
ments mean in the next few chapters. The key things to understand are that the fi rst state-
ment creates a MessageDialog object with the message “Hello <YourName>”, where <Your-
Name> is the name that you type into the TextBox on the form. The second statement
displays the MessageDialog, causing it to appear on the screen. The MessageDialog class is
defi ned in the Windows.UI.Popups namespace, which is why you added it in step a.

This code will display a warning concerning the use of an asynchronous method when it is
compiled. You do not have to be concerned about this warning. Asynchronous methods are
explained more fully in Chapter 24

6. If you are using Windows 7 or Windows 8, just add the following single statement shown in
bold to the okClick method:

void okClick(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Hello " + userName.Text);
}

This code performs a similar function to that of the Windows Store app, except that it uses
a different class called MessageBox. This class is defi ned in the System.Windows namespace,
which is already referenced by the existing using directives at the top of the fi le, so you don’t
need to add it yourself.

7. Click the MainPage.xaml tab or the MainWindow.xaml tab above the Code and Text Editor
window to display the form in the Design View window again.

8. In the lower pane displaying the XAML description of the form, examine the Button element,
but be careful not to change anything. Notice that it now contains an element called Click that
refers to the okClick method.

<Button x:Name="ok" ... Click="okClick" />

9. On the Debug menu, click Start Debugging.

10. When the form appears, in the text box type your name over the existing text, and then click
OK.

If you are using Windows 8.1, a message dialog appears across the middle of the screen, wel-
coming you by name.

C#vNext_ch01.indd 36C#vNext_ch01.indd 36 1/15/15 10:01 AM1/15/15 10:01 AM

 CHAPTER 1 Welcome to C# 37

If you are using Windows 7 or Windows 8, a message box appears displaying the following
greeting:

11. Click Close in the message dialog (Windows 8.1) or OK (Windows 7 or Windows 8) in the mes-
sage box.

12. Return to Visual Studio 2013 and then, on the Debug menu, click Stop Debugging.

38 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2013

Summary

In this chapter, you saw how to use Visual Studio 2013 to create, build, and run applications. You
created a console application that displays its output in a console window, and you created a WPF
application with a simple GUI.

■■ If you want to continue to the next chapter, keep Visual Studio 2013 running, and turn to
Chapter 2.

■■ If you want to exit Visual Studio 2013 now, on the File menu, click Exit. If you see a Save dialog
box, click Yes to save the project.

Quick Reference

To Do this

Create a new console application using Visual Studio 2013 On the File menu, point to New, and then click Project to
open the New Project dialog box. In the left pane, under
Installed Templates, click Visual C#. In the middle pane,
click Console Application. in the Location box, specify a
directory for the project files. Type a name for the project
and then click OK.

Create a new Windows Store blank graphical application
for Windows 8.1 using Visual Studio 2013

On the File menu, point to New, and then click Project to
open the New Project dialog box. In the left pane, in the
Installed Templates section, expand Visual C#, and then
click Windows Store. In the middle pane, click Blank App
(XAML). In the Location box, specify a directory for the
project files. Type a name for the project and then click
OK.

Create a new WPF graphical application for Windows 7 or
Windows 8 using Visual Studio 2013

On the File menu, point to New, and then click Project to
open the New Project dialog box. In the left pane, in the
Installed Templates section, expand Visual C#, and then
click Windows. In the middle pane, click WPF Application.
Specify a directory for the project files in the Location
box. Type a name for the project and then click OK.

Build the application On the Build menu, click Build Solution.

Run the application in Debug mode On the Debug menu, click Start Debugging.

Run the application without debugging On the Debug menu, click Start Without Debugging.

 227

C H A P T E R 1 0

Using arrays

After completing this chapter, you will be able to:

■■ Declare array variables.

■■ Populate an array with a set of data items.

■■ Access the data items held in an array.

■■ Iterate through the data items in an array.

You have already seen how to create and use variables of many different types. However, all the
examples of variables you have seen so far have one thing in common—they hold information about
a single item (an int, a float, a Circle, a Date, and so on). What happens if you need to manipulate a
set of items? One solution is to create a variable for each item in the set, but this leads to a number
of further questions: How many variables do you need? How should you name them? If you need
to perform the same operation on each item in the set (such as increment each variable in a set of
integers), how would you avoid very repetitive code? This solution assumes that you know, when you
write the program, how many items you will need, but how often is this the case? For example, if you
are writing an application that reads and processes records from a database, how many records are in
the database, and how likely is this number to change?

Arrays provide a mechanism that helps to solve these problems.

Declaring and creating an array

An array is an unordered sequence of items. All the items in an array have the same type, unlike the
fields in a structure or class, which can have different types. The items in an array live in a contiguous
block of memory and are accessed by using an index, unlike fields in a structure or class, which are
accessed by name.

Declaring array variables
You declare an array variable by specifying the name of the element type, followed by a pair of
square brackets, followed by the variable name. The square brackets signify that the variable is an
array. For example, to declare an array of int variables named pins (for holding a set of personal iden-
tification numbers) you can write the following:

int[] pins; // Personal Identification Numbers

228 part II Understanding the C# object model

Note If you are a Microsoft Visual Basic programmer, you should observe that square
brackets, not parentheses, are used in the declaration. If you’re familiar with C and C++, also
note that the size of the array is not part of the declaration. Java programmers should dis-
cern that the square brackets must be placed before the variable name.

You are not restricted to primitive types as array elements. You can also create arrays of structures,
enumerations, and classes. For example, you can create an array of Date structures like this:

Date[] dates;

tip It is often useful to give array variables plural names, such as places (where each ele-
ment is a Place), people (where each element is a Person), or times (where each element is a
Time).

Creating an array instance
Arrays are reference types, regardless of the type of their elements. This means that an array variable
refers to a contiguous block of memory holding the array elements on the heap, just as a class vari-
able refers to an object on the heap. (For a description of values and references and the differences
between the stack and the heap, see Chapter 8, “Understanding values and references.”) This rule ap-
plies regardless of the type of the data items in the array. Even if the array contains a value type such
as int, the memory will still be allocated on the heap; this is the one case where value types are not
allocated memory on the stack.

Remember that when you declare a class variable, memory is not allocated for the object until you
create the instance by using new. Arrays follow the same pattern: when you declare an array variable,
you do not declare its size and no memory is allocated (other than to hold the reference on the stack).
The array is given memory only when the instance is created, and this is also the point at which you
specify the size of the array.

To create an array instance, you use the new keyword followed by the element type, followed by
the size of the array you’re creating between square brackets. Creating an array also initializes its
elements by using the now familiar default values (0, null, or false, depending on whether the type is
numeric, a reference, or a Boolean, respectively). For example, to create and initialize a new array of
four integers for the pins variable declared earlier, you write this:

pins = new int[4];

The following graphic illustrates what happens when you declare an array, and later when you cre-
ate an instance of the array:

 CHAPTER 10 Using arrays 229

Because the memory for the array instance is allocated dynamically, the size of the array does not
have to be a constant; it can be calculated at run time, as shown in this example:

int size = int.Parse(Console.ReadLine());
int[] pins = new int[size];

You’re can also create an array whose size is 0. This might sound bizarre, but it’s useful for situa-
tions in which the size of the array is determined dynamically and could even be 0. An array of size 0
is not a null array; it is an array containing zero elements.

Populating and using an array

When you create an array instance, all the elements of the array are initialized to a default value
depending on their type. For example, all numeric values default to 0, objects are initialized to null,
DateTime values are set to the date and time “01/01/0001 00:00:00”, and strings are initialized to null.
You can modify this behavior and initialize the elements of an array to specific values if you prefer.
You achieve this by providing a comma-separated list of values between a pair of braces. For example,
to initialize pins to an array of four int variables whose values are 9, 3, 7, and 2, you write this:

int[] pins = new int[4]{ 9, 3, 7, 2 };

The values between the braces do not have to be constants; they can be values calculated at run
time, as shown in the following example, which populates the pins array with four random numbers:

Random r = new Random();
int[] pins = new int[4]{ r.Next() % 10, r.Next() % 10,
 r.Next() % 10, r.Next() % 10 };

Note The System.Random class is a pseudorandom number generator. The Next method
returns a nonnegative random integer in the range 0 to Int32.MaxValue by default. The
Next method is overloaded, and other versions enable you to specify the minimum value
and maximum value of the range. The default constructor for the Random class seeds the
random number generator with a time-dependent seed value, which reduces the possibility
of the class duplicating a sequence of random numbers. Using an overloaded version of the
constructor, you can provide your own seed value. That way, you can generate a repeatable
sequence of random numbers for testing purposes.

230 part II Understanding the C# object model

The number of values between the braces must exactly match the size of the array instance being
created:

int[] pins = new int[3]{ 9, 3, 7, 2 }; // compile-time error
int[] pins = new int[4]{ 9, 3, 7 }; // compile-time error
int[] pins = new int[4]{ 9, 3, 7, 2 }; // OK

When you’re initializing an array variable in this way, you can actually omit the new expression and
the size of the array. In this case, the compiler calculates the size from the number of initializers and
generates code to create the array, such as in the following example:

int[] pins = { 9, 3, 7, 2 };

If you create an array of structures or objects, you can initialize each structure in the array by call-
ing the structure or class constructor, as shown in this example:

Time[] schedule = { new Time(12,30), new Time(5,30) };

Creating an implicitly typed array
The element type when you declare an array must match the type of elements that you attempt to
store in the array. For example, if you declare pins to be an array of int, as shown in the preceding
examples, you cannot store a double, string, struct, or anything that is not an int in this array. If you
specify a list of initializers when declaring an array, you can let the C# compiler infer the actual type of
the elements in the array for you, like this:

var names = new[]{"John", "Diana", "James", "Francesca"};

In this example, the C# compiler determines that the names variable is an array of strings. It is
worth pointing out a couple of syntactic quirks in this declaration. First, you omit the square brackets
from the type; the names variable in this example is declared simply as var, not var[]. Second, you
must specify the new operator and square brackets before the initializer list.

If you use this syntax, you must ensure that all the initializers have the same type. This next ex-
ample causes the compile-time error “No best type found for implicitly typed array”:

var bad = new[]{"John", "Diana", 99, 100};

However, in some cases, the compiler will convert elements to a different type, if doing so makes
sense. In the following code, the numbers array is an array of double because the constants 3.5 and
99.999 are both double, and the C# compiler can convert the integer values 1 and 2 to double values:

var numbers = new[]{1, 2, 3.5, 99.999};

Generally, it is best to avoid mixing types and hoping that the compiler will convert them for you.

Implicitly typed arrays are most useful when you are working with anonymous types, as described
in Chapter 7, “Creating and managing classes and objects.” The following code creates an array of
anonymous objects, each containing two fields specifying the name and age of the members of my
family:

 CHAPTER 10 Using arrays 231

var names = new[] { new { Name = "John", Age = 47 },
 new { Name = "Diana", Age = 46 },
 new { Name = "James", Age = 20 },
 new { Name = "Francesca", Age = 18 } };

The fields in the anonymous types must be the same for each element of the array.

accessing an individual array element
To access an individual array element, you must provide an index indicating which element you
require. Array indexes are zero-based; thus, the initial element of an array lives at index 0 and not
index 1. An index value of 1 accesses the second element. For example, you can read the contents of
element 2 of the pins array into an int variable by using the following code:

int myPin;
myPin = pins[2];

Similarly, you can change the contents of an array by assigning a value to an indexed element:

myPin = 1645;
pins[2] = myPin;

All array element access is bounds-checked. If you specify an index that is less than 0 or greater
than or equal to the length of the array, the compiler throws an IndexOutOfRangeException exception,
as in this example:

try
{
 int[] pins = { 9, 3, 7, 2 };
 Console.WriteLine(pins[4]); // error, the 4th and last element is at index 3
}
catch (IndexOutOfRangeException ex)
{
 ...
}

Iterating through an array
All arrays are actually instances of the System.Array class in the Microsoft .NET Framework, and this
class defines a number of useful properties and methods. For example, you can query the Length
property to discover how many elements an array contains and iterate through all the elements of an
array by using a for statement. The following sample code writes the array element values of the pins
array to the console:

int[] pins = { 9, 3, 7, 2 };
for (int index = 0; index < pins.Length; index++)
{
 int pin = pins[index];
 Console.WriteLine(pin);
}

232 part II Understanding the C# object model

Note Length is a property and not a method, which is why you don’t use parentheses when
you call it. You can learn about properties in Chapter 15, “Implementing properties to ac-
cess fields.”

It is common for new programmers to forget that arrays start at element 0 and that the last ele-
ment is numbered Length – 1. C# provides the foreach statement with which you can iterate through
the elements of an array without worrying about these issues. For example, here’s the preceding for
statement rewritten as an equivalent foreach statement:

int[] pins = { 9, 3, 7, 2 };
foreach (int pin in pins)
{
 Console.WriteLine(pin);
}

The foreach statement declares an iteration variable (in this example, int pin) that automatically
acquires the value of each element in the array. The type of this variable must match the type of the
elements in the array. The foreach statement is the preferred way to iterate through an array; it ex-
presses the intention of the code directly, and all of the for loop scaffolding drops away. However, in a
few cases, you’ll find that you have to revert to a for statement:

■■ A foreach statement always iterates through the entire array. If you want to iterate through
only a known portion of an array (for example, the first half) or bypass certain elements (for
example, every third element), it’s easier to use a for statement.

■■ A foreach statement always iterates from index 0 through index Length – 1. If you want to iter-
ate backward or in some other sequence, it’s easier to use a for statement.

■■ If the body of the loop needs to know the index of the element rather than just the value of
the element, you’ll have to use a for statement.

■■ If you need to modify the elements of the array, you’ll have to use a for statement. This is
because the iteration variable of the foreach statement is a read-only copy of each element of
the array.

tip It’s perfectly safe to attempt to iterate through a zero-length array by using a foreach
statement.

You can declare the iteration variable as a var and let the C# compiler work out the type of the
variable from the type of the elements in the array. This is especially useful if you don’t actually know
the type of the elements in the array, such as when the array contains anonymous objects. The follow-
ing example demonstrates how you can iterate through the array of family members shown earlier:

var names = new[] { new { Name = "John", Age = 47 },
 new { Name = "Diana", Age = 46 },
 new { Name = "James", Age = 20 },

 CHAPTER 10 Using arrays 233

 new { Name = "Francesca", Age = 18 } };
foreach (var familyMember in names)
{
 Console.WriteLine("Name: {0}, Age: {1}", familyMember.Name, familyMember.Age);
}

passing arrays as parameters and return values for a method
You can define methods that take arrays as parameters or pass them back as return values.

The syntax for passing an array as a parameter is much the same as declaring an array. For exam-
ple, the code sample that follows defines a method called ProcessData that takes an array of integers
as a parameter. The body of the method iterates through the array and performs some unspecified
processing on each element:

public void ProcessData(int[] data)
{
 foreach (int i in data)
 {
 ...
 }
}

It is important to remember that arrays are reference objects, so if you modify the contents of an
array passed as a parameter inside a method such as ProcessData, the modification is visible through
all references to the array, including the original argument passed as the parameter.

To return an array from a method, you specify the type of the array as the return type. In the
method, you create and populate the array. The following example prompts the user for the size of an
array, followed by the data for each element. The array created by the method is passed back as the
return value:

public int[] ReadData()
{
 Console.WriteLine("How many elements?");
 string reply = Console.ReadLine();
 int numElements = int.Parse(reply);

 int[] data = new int[numElements];
 for (int i = 0; i < numElements; i++)
 {
 Console.WriteLine("Enter data for element {0}", i);
 reply = Console.ReadLine();
 int elementData = int.Parse(reply);
 data[i] = elementData;
 }
 return data;
}

You can call the ReadData method like this:

int[] data = ReadData();

234 part II Understanding the C# object model

array parameters and the main method
You might have noticed that the Main method for an application takes an array of strings as a
parameter:

static void Main(string[] args)
{
 ...
}

Remember that the Main method is called when your program starts running; it is the entry
point of your application. If you start the application from the command line, you can specify
additional command-line arguments. The Microsoft Windows operating system passes these
arguments to the Common Language Runtime (CLR), which in turn passes them as arguments
to the Main method. This mechanism gives you a simple way to provide a user with a way to
give information when an application starts running rather than prompting the user interac-
tively, which is useful if you want to build utilities that can be run from automated scripts.

The following example is taken from a utility application called MyFileUtil that processes
files. It expects a set of file names on the command line, and it calls the ProcessFile method (not
shown) to handle each file specified:

static void Main(string[] args)
{
 foreach (string filename in args)
 {
 ProcessFile(filename);
 }
}

The user can run the MyFileUtil application from the command line like this:

MyFileUtil C:\Temp\TestData.dat C:\Users\John\Documents\MyDoc.txt

Each command line argument is separated by a space. It is up to the MyFileUtil application
to verify that these arguments are valid.

Copying arrays

Arrays are reference types (remember that an array is an instance of the System.Array class). An array
variable contains a reference to an array instance. This means that when you copy an array variable,
you actually end up with two references to the same array instance, as demonstrated in the following
example:

int[] pins = { 9, 3, 7, 2 };
int[] alias = pins; // alias and pins refer to the same array instance

 CHAPTER 10 Using arrays 235

In this example, if you modify the value at pins[1], the change will also be visible by reading alias[1].

If you want to make a copy of the array instance (the data on the heap) that an array variable refers
to, you have to do two things. First, you create a new array instance of the same type and the same
length as the array you are copying. Second, you copy the data element by element from the original
array to the new array, as in this example:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
for (int i = 0; i < pins.Length; i++)
{
 copy[i] = pins[i];
}

Note that this code uses the Length property of the original array to specify the size of the new
array.

Copying an array is actually a common requirement of many applications—so much so that the
System.Array class provides some useful methods that you can employ to copy an array rather than
writing your own code. For example, the CopyTo method copies the contents of one array into an-
other array given a specified starting index. The following example copies all the elements from the
pins array to the copy array starting at element zero:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
pins.CopyTo(copy, 0);

Another way to copy the values is to use the System.Array static method named Copy. As with
CopyTo, you must initialize the target array before calling Copy:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
Array.Copy(pins, copy, copy.Length);

Note Ensure that you specify a valid value for the length parameter of the Array.
Copy method. If you provide a negative value, the method throws an ArgumentOutOf
RangeException exception. If you specify a value that is greater than the number of
elements in the source array, the method throws an ArgumentException exception.

Yet another alternative is to use the System.Array instance method named Clone. You can call this
method to create an entire array and copy it in one action:

int[] pins = { 9, 3, 7, 2 };
int[] copy = (int[])pins.Clone();

236 part II Understanding the C# object model

Note Clone methods are described in Chapter 8. The Clone method of the Array class re-
turns an object rather than Array, which is why you must cast it to an array of the appropri-
ate type when you use it. Furthermore, the Clone, CopyTo, and Copy methods all create a
shallow copy of an array (shallow and deep copying are also described in Chapter 8). If the
elements in the array being copied contain references, the Clone method simply copies the
references rather than the objects being referred to. After copying, both arrays refer to the
same set of objects. If you need to create a deep copy of such an array, you must use ap-
propriate code in a for loop.

Using multidimensional arrays

The arrays shown so far have contained a single dimension, and you can think of them as simple lists
of values. You can create arrays with more than one dimension. For example, to create a two-dimen-
sional array, you specify an array that requires two integer indexes. The following code creates a two-
dimensional array of 24 integers called items. If it helps, you can think of the array as a table with the
first dimension specifying a number of rows, and the second specifying a number of columns.

int[,] items = new int[4, 6];

To access an element in the array, you provide two index values to specify the “cell” holding the
element. (A cell is the intersection of a row and a column.) The following code shows some examples
using the items array:

items[2, 3] = 99; // set the element at cell(2,3) to 99
items[2, 4] = items [2,3]; // copy the element in cell(2, 3) to cell(2, 4)
items[2, 4]++; // increment the integer value at cell(2, 4)

There is no limit on the number of dimensions that you can specify for an array. The next code
example creates and uses an array called cube that contains three dimensions. Notice that you must
specify three indexes to access each element in the array.

int[, ,] cube = new int[5, 5, 5];
cube[1, 2, 1] = 101;
cube[1, 2, 2] = cube[1, 2, 1] * 3;

At this point, it is worth giving a word of caution about creating arrays with more than three
dimensions. Specifically, arrays can consume a lot of memory. The cube array contains 125 elements
(5 * 5 * 5). A four-dimensional array for which each dimension has a size of 5 contains 625 elements. If
you start to create arrays with three or more dimensions, you can soon run out of memory. Therefore,
you should always be prepared to catch and handle OutOfMemoryException exceptions when you use
multidimensional arrays.

 CHAPTER 10 Using arrays 237

Creating jagged arrays
In C#, ordinary multidimensional arrays are sometimes referred to as rectangular arrays. Each dimen-
sion has a regular shape. For example, in the following tabular two-dimensional items array, every row
has a column containing 40 elements, and there are 160 elements in total:

int[,] items = new int[4, 40];

As mentioned in the previous section, multidimensional arrays can consume a lot of memory. If the
application uses only some of the data in each column, allocating memory for unused elements is a
waste. In this scenario, you can use a jagged array, for which each column has a different length, like
this:

int[][] items = new int[4][];
int[] columnForRow0 = new int[3];
int[] columnForRow1 = new int[10];
int[] columnForRow2 = new int[40];
int[] columnForRow3 = new int[25];
items[0] = columnForRow0;
items[1] = columnForRow1;
items[2] = columnForRow2;
items[3] = columnForRow3;
...

In this example, the application requires only 3 elements in the first column, 10 elements in the
second column, 40 elements in the third column, and 25 elements in the final column. This code
illustrates an array of arrays—rather than items being a two-dimensional array, it has only a single
dimension, but the elements in that dimension are themselves arrays. Furthermore, the total size of
the items array is 78 elements rather than 160; no space is allocated for elements that the application
is not going to use.

It is worth highlighting some of the syntax in this example. The following declaration specifies that
items is an array of arrays of int.

int[][] items;

The following statement initializes items to hold four elements, each of which is an array of inde-
terminate length:

items = new int[4][];

The arrays columnForRow0 to columnForRow3 are all single-dimensional int arrays, initialized to
hold the required amount of data for each column. Finally, each column array is assigned to the ap-
propriate elements in the items array, like this:

items[0] = columnForRow0;

Recall that arrays are reference objects, so this statement simply adds a reference to columnFor-
Row0 to the first element in the items array; it does not actually copy any data. You can populate data

238 part II Understanding the C# object model

in this column either by assigning a value to an indexed element in columnForRow0 or by referencing
it through the items array. The following statements are equivalent:

columnForRow0[1] = 99;
items[0][1] = 99;

You can extend this idea further if you want to create arrays of arrays of arrays rather than rectan-
gular three-dimensional arrays, and so on.

Note If you have written code using the Java programming language in the past, you
should be familiar with this concept. Java does not have multidimensional arrays; instead,
you can create arrays of arrays exactly as just described.

In the following exercise, you will use arrays to implement an application that deals playing cards
as part of a card game. The application displays a form with four hands of cards dealt at random from
a regular (52-card) pack of playing cards. You will complete the code that deals the cards for each
hand.

Use arrays to implement a card game

1. Start Microsoft Visual Studio 2013 if it is not already running.

2. Open the Cards project, which is located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 10\Windows X\Cards folder in your Documents folder.

3. On the Debug menu, click Start Debugging to build and run the application.

A form appears with the caption Card Game, four text boxes (labeled North, South, East, and
West), and a button with the caption Deal.

If you are using Windows 7, the form looks like this:

 CHAPTER 10 Using arrays 239

If you are using Windows 8.1, the Deal button is on the app bar rather than on the main form,
and the application looks like this:

240 part II Understanding the C# object model

Note This is the preferred mechanism for locating command buttons in Windows
Store apps, and from here on all Windows Store apps presented in this book will fol-
low this style.

4. Click Deal.

Nothing happens. You have not yet implemented the code that deals the cards; this is what
you will do in this exercise.

5. Return to Visual Studio 2013. On the Debug menu, click Stop Debugging.

6. In Solution Explorer, locate the Value.cs file. Open this file in the Code and Text Editor window.

This file contains an enumeration called Value, which represents the different values that a
card can have, in ascending order:

enum Value { Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten, Jack, Queen, King,
Ace }

7. Open the Suit.cs file in the Code and Text Editor window.

This file contains an enumeration called Suit, which represents the suits of cards in a regular
pack:

enum Suit { Clubs, Diamonds, Hearts, Spades }

8. Display the PlayingCard.cs file in the Code and Text Editor window.

This file contains the PlayingCard class. This class models a single playing card.

class PlayingCard
{
 private readonly Suit suit;
 private readonly Value value;

 public PlayingCard(Suit s, Value v)
 {
 this.suit = s;
 this.value = v;
 }

 public override string ToString()
 {
 string result = string.Format("{0} of {1}", this.value, this.suit);
 return result;
 }

 public Suit CardSuit()
 {
 return this.suit;
 }

 CHAPTER 10 Using arrays 241

 public Value CardValue()
 {
 return this.value;
 }
}

This class has two readonly fields that represent the value and suit of the card. The constructor
initializes these fields.

Note A readonly field is useful for modeling data that should not change after it
has been initialized. You can assign a value to a readonly field by using an initializer
when you declare it, or in a constructor, but thereafter you cannot change it.

The class contains a pair of methods called CardValue and CardSuit that return this informa-
tion, and it overrides the ToString method to return a string representation of the card.

Note The CardValue and CardSuit methods are actually better implemented as
properties, which you learn how to do in Chapter 15.

9. Open the Pack.cs file in the Code and Text Editor window.

This file contains the Pack class, which models a pack of playing cards. At the top of the Pack
class are two public const int fields called NumSuits and CardsPerSuit. These two fields specify
the number of suits in a pack of cards and the number of cards in each suit. The private card-
Pack variable is a two-dimensional array of PlayingCard objects. You will use the first dimen-
sion to specify the suit and the second dimension to specify the value of the card in the suit.
The randomCardSelector variable is a random number generated based on the Random class.
You will use the randomCardSelector variable to help shuffle the cards before they are dealt to
each hand.

class Pack
{
 public const int NumSuits = 4;
 public const int CardsPerSuit = 13;
 private PlayingCard[,] cardPack;
 private Random randomCardSelector = new Random();
 ...
}

10. Locate the default constructor for the Pack class. Currently, this constructor is empty apart
from a // TODO: comment. Delete the comment, and add the following statement shown in
bold to instantiate the cardPack array with the appropriate values for each dimension:

public Pack()
{
 this.cardPack = new PlayingCard[NumSuits, CardsPerSuit];
}

242 part II Understanding the C# object model

11. Add the following code shown in bold to the Pack constructor. These statements populate the
cardPack array with a full, sorted deck of cards.

public Pack()
{
 this.cardPack = new PlayingCard[NumSuits, CardsPerSuit];
 for (Suit suit = Suit.Clubs; suit <= Suit.Spades; suit++)
 {
 for (Value value = Value.Two; value <= Value.Ace; value++)
 {
 this.cardPack[(int)suit, (int)value] = new PlayingCard(suit, value);
 }
 }
}

The outer for loop iterates through the list of values in the Suit enumeration, and the inner
loop iterates through the values each card can have in each suit. The inner loop creates a new
PlayingCard object of the specified suit and value, and adds it to the appropriate element in
the cardPack array.

Note You must use one of the integer types as indexes into an array. The suit and
value variables are enumeration variables. However, enumerations are based on the
integer types, so it is safe to cast them to int as shown in the code.

12. Find the DealCardFromPack method in the Pack class. The purpose of this method is to pick a
random card from the pack, remove the card from the pack to prevent it from being selected
again, and then pass it back as the return value from the method.

The first task in this method is to pick a suit at random. Delete the comment and the state-
ment that throws the NotImplementedException exception from this method and replace them
with the following statement shown in bold:

public PlayingCard DealCardFromPack()
{
 Suit suit = (Suit)randomCardSelector.Next(NumSuits);
}

This statement uses the Next method of the randomCardSelector random number genera-
tor object to return a random number corresponding to a suit. The parameter to the Next
method specifies the exclusive upper bound of the range to use; the value selected is between
0 and this value minus 1. Note that the value returned is an int, so it has to be cast before you
can assign it a Suit variable.

There is always the possibility that there are no more cards left of the selected suit. You need
to handle this situation and pick another suit if necessary.

13. After the code that selects a suit at random, add the while loop that follows (shown in bold).

 CHAPTER 10 Using arrays 243

This loop calls the IsSuitEmpty method to determine whether there are any cards of the speci-
fied suit left in the pack (you will implement the logic for this method shortly). If not, it picks
another suit at random (it might actually pick the same suit again) and checks again. The loop
repeats the process until it finds a suit with at least one card left.

public PlayingCard DealCardFromPack()
{
 Suit suit = (Suit)randomCardSelector.Next(NumSuits);
 while (this.IsSuitEmpty(suit))
 {
 suit = (Suit)randomCardSelector.Next(NumSuits);
 }
}

14. You have now selected a suit at random with at least one card left. The next task is to pick a
card at random in this suit. You can use the random number generator to select a card value,
but as before, there is no guarantee that the card with the chosen value has not already been
dealt. However, you can use the same idiom as before: call the IsCardAlreadyDealt method
(which you will examine and complete later) to determine whether the card has been dealt
before, and if so, pick another card at random and try again, repeating the process until a card
is found. To do this, add the following statements shown in bold to the DealCardFromPack
method, after the existing code:

public PlayingCard DealCardFromPack()
{
 ...
 Value value = (Value)randomCardSelector.Next(CardsPerSuit);
 while (this.IsCardAlreadyDealt(suit, value))
 {
 value = (Value)randomCardSelector.Next(CardsPerSuit);
 }
}

15. You have now selected a random playing card that has not been dealt previously. Add the
following code to the end of the DealCardFromPack method to return this card and set the
corresponding element in the cardPack array to null:

public PlayingCard DealCardFromPack()
{
 ...
 PlayingCard card = this.cardPack[(int)suit, (int)value];
 this.cardPack[(int)suit, (int)value] = null;
 return card;
}

16. Locate the IsSuitEmpty method. Remember that the purpose of this method is to take a Suit
parameter and return a Boolean value indicating whether there are any more cards of this suit
left in the pack. Delete the comment and the statement that throws the NotImplementedEx-
ception exception from this method, and add the following code shown in bold:

private bool IsSuitEmpty(Suit suit)

244 part II Understanding the C# object model

{
 bool result = true;
 for (Value value = Value.Two; value <= Value.Ace; value++)
 {
 if (!IsCardAlreadyDealt(suit, value))
 {
 result = false;
 break;
 }
 }

 return result;
}

This code iterates through the possible card values and determines whether there is a card
left in the cardPack array that has the specified suit and value by using the IsCardAlreadyDealt
method, which you will complete in the next step. If the loop finds a card, the value in the
result variable is set to false and the break statement causes the loop to terminate. If the loop
completes without finding a card, the result variable remains set to its initial value of true. The
value of the result variable is passed back as the return value of the method.

17. Find the IsCardAlreadyDealt method. The purpose of this method is to determine whether
the card with the specified suit and value has already been dealt and removed from the pack.
You will see later that when the DealFromPack method deals a card, it removes the card from
the cardPack array and sets the corresponding element to null. Replace the comment and the
statement that throws the NotImplementedException exception in this method with the code
shown in bold:

private bool IsCardAlreadyDealt(Suit suit, Value value)
{
 return (this.cardPack[(int)suit, (int)value] == null);
}

This statement returns true if the element in the cardPack array corresponding to the suit and
value is null, and it returns false otherwise.

18. The next step is to add the selected playing card to a hand. Open the Hand.cs file, and display
it in the Code and Text Editor window. This file contains the Hand class, which implements a
hand of cards (that is, all cards dealt to one player).

This file contains a public const int field called HandSize, which is set to the size of a hand of
cards (13). It also contains an array of PlayingCard objects, which is initialized by using the
HandSize constant. The playingCardCount field will be used by your code to keep track of how
many cards the hand currently contains as it is being populated.

class Hand
{
 public const int HandSize = 13;
 private PlayingCard[] cards = new PlayingCard[HandSize];
 private int playingCardCount = 0;
 ...
}

 CHAPTER 10 Using arrays 245

The ToString method generates a string representation of the cards in the hand. It uses a
foreach loop to iterate through the items in the cards array and calls the ToString method on
each PlayingCard object it finds. These strings are concatenated together with a newline char-
acter in between (the \n character) for formatting purposes.

public override string ToString()
{
 string result = "";
 foreach (PlayingCard card in this.cards)
 {
 result += card.ToString() + "\n";
 }

 return result;
}

19. Locate the AddCardToHand method in the Hand class. The purpose of this method is to add
the playing card specified as the parameter to the hand. Add the following statements shown
in bold to this method:

public void AddCardToHand(PlayingCard cardDealt)
{
 if (this.playingCardCount >= HandSize)
 {
 throw new ArgumentException("Too many cards");
 }
 this.cards[this.playingCardCount] = cardDealt;
 this.playingCardCount++;
}

This code first checks to ensure that the hand is not already full. If the hand is full, it throws
an ArgumentException exception (this should never occur, but it is good practice to be safe).
Otherwise, the card is added to the cards array at the index specified by the playingCardCount
variable, and this variable is then incremented.

20. In Solution Explorer, expand the MainWindow.xaml node and then open the MainWindow.
xaml.cs file in the Code and Text Editor window.

This is the code for the Card Game window. Locate the dealClick method. This method runs
when the user clicks the Deal button. Currently, it contains an empty try block and an excep-
tion handler that displays a message if an exception occurs.

21. Add the following statement shown in bold to the try block:

private void dealClick(object sender, RoutedEventArgs e)
{
 try
 {
 pack = new Pack();
 }
 catch (Exception ex)
 {
 ...

246 part II Understanding the C# object model

 }
}

This statement simply creates a new pack of cards. You saw earlier that this class contains a
two-dimensional array holding the cards in the pack, and the constructor populates this array
with the details of each card. You now need to create four hands of cards from this pack.

22. Add the following statements shown in bold to the try block:

try
{
 pack = new Pack();

 for (int handNum = 0; handNum < NumHands; handNum++)
 {
 hands[handNum] = new Hand();
 }
}
catch (Exception ex)
{
 ...
}

This for loop creates four hands from the pack of cards and stores them in an array called
hands. Each hand is initially empty, so you need to deal the cards from the pack to each hand.

23. Add the following code shown in bold to the for loop:

try
{
 ...
 for (int handNum = 0; handNum < NumHands; handNum++)
 {
 hands[handNum] = new Hand();
 for (int numCards = 0; numCards < Hand.HandSize; numCards++)
 {
 PlayingCard cardDealt = pack.DealCardFromPack();
 hands[handNum].AddCardToHand(cardDealt);
 }
 }
}
catch (Exception ex)
{
 ...
}

The inner for loop populates each hand by using the DealCardFromPack method to retrieve a
card at random from the pack and the AddCardToHand method to add this card to a hand.

24. Add the following code shown in bold after the outer for loop:

try
{
 ...
 for (int handNum = 0; handNum < NumHands; handNum++)

 CHAPTER 10 Using arrays 247

 {
 ...
 }

 north.Text = hands[0].ToString();
 south.Text = hands[1].ToString();
 east.Text = hands[2].ToString();
 west.Text = hands[3].ToString();
}
catch (Exception ex)
{
 ...
}

When all the cards have been dealt, this code displays each hand in the text boxes on the
form. These text boxes are called north, south, east, and west. The code uses the ToString
method of each hand to format the output.

If an exception occurs at any point, the catch handler displays a message box with the error
message for the exception.

25. On the Debug menu, click Start Debugging. When the Card Game window appears, click Deal.

The cards in the pack should be dealt at random to each hand, and the cards in each hand
should be displayed on the form, as shown in the following image:

26. Click Deal again. Verify that a new set of hands is dealt and the cards in each hand change.

27. Return to Visual Studio and stop debugging.

248 part II Understanding the C# object model

Summary

In this chapter, you learned how to create and use arrays to manipulate sets of data. You saw how to
declare and initialize arrays, access data held in arrays, pass arrays as parameters to methods, and
return arrays from methods. You also learned how to create multidimensional arrays and how to use
arrays of arrays.

■■ If you want to continue to the next chapter, keep Visual Studio 2013 running, and turn to
Chapter 11.

■■ If you want to exit Visual Studio 2013 now, on the File menu, click Exit. If you see a Save dialog
box, click Yes and save the project.

Quick reference

To Do this

Declare an array variable Write the name of the element type, followed by square
brackets, followed by the name of the variable, followed
by a semicolon. For example:

bool[] flags;

Create an instance of an array Write the keyword new, followed by the name of the ele-
ment type, followed by the size of the array enclosed in
square brackets. For example:

bool[] flags = new bool[10];

Initialize the elements of an array to specific values For an array, write the specific values in a comma-separat-
ed list enclosed in braces. For example:

bool[] flags = { true, false, true, false };

Find the number of elements in an array Use the Length property. For example:

int [] flags = ...;
...
int noOfElements = flags.Length;

Access a single array element Write the name of the array variable, followed by the
integer index of the element enclosed in square brackets.
Remember, array indexing starts at 0, not 1. For example:

bool initialElement = flags[0];

Iterate through the elements of an array Use a for statement or a foreach statement. For example:

bool[] flags = { true, false, true, false };
for (int i = 0; i < flags.Length; i++)
{
 Console.WriteLine(flags[i]);
}

foreach (bool flag in flags)
{
 Console.WriteLine(flag);
}

 CHAPTER 10 Using arrays 249

To Do this

Declare a multidimensional array variable Write the name of the element type, followed by a set of
square brackets with a comma separator indicating the
number of dimensions, followed by the name of the vari-
able, followed by a semicolon. For example, use the fol-
lowing to create a two-dimensional array called table and
initialize it to hold 4 rows of 6 columns:

int[,] table;
table = new int[4,6];

Declare a jagged array variable Declare the variable as an array of child arrays. You can
initialize each child array to have a different length. For
example, use the following to create a jagged array called
items and initialize each child array:

int[][] items;
items = new int[4][];
items[0] = new int[3];
items[1] = new int[10];
items[2] = new int[40];
items[3] = new int[25];

762 part IV Building professional Windows 8.1 applications with C#

 763

== (equal to) operator, 94, 97, 111
implementing overloaded version, 523
pairing with !+ operator, 518

=> operator, 425
using with on clause of LINQ expression, 497

! (exclamation mark)
!= (inequality) operator, 94, 97, 111

implementing overloaded version, 523
pairing with == operator, 519

logical NOT operator, 96, 191
- (minus sign)

-- (decrement) operator, 61, 96, 114
declaring your own version, 517

negation operator, 96
-= (subtraction and assignment) operator, 114, 133

removing methods from delegates, 457
unsubscribing from an event, 473

subtraction operator, 52, 54, 57, 97
overloading, 521

\n (newline character), 119
() (parentheses)

enclosing parameters in lambda expressions, 425
in method calls, 70
using to override operator precedence, 59, 96

% (percent sign)
%= (modulus and assignment) operator, 114
modulus operator, 53, 55, 58, 96, 126

| (pipe symbol)
bitwise OR operator, 364
|| (logical OR) operator, 95, 97, 111

+ (plus sign)
+= (addition and assignment) operator, 114, 127,

133
evaluation, understanding, 516
using with delegates, 456, 457
using with events, 472

addition operator, 52, 57, 97, 113, 513–516

Index

Symbols
& (ampersand)

address-of operator, 202
bitwise AND operator, 365
&& (logical AND) operator, 95, 97, 111

< > (angle brackets)
<= and >= operators, pairing, 519
> (greater than) operator, 95, 97, 111
>= (greater than or equal to) operator, 95, 97, 111
<< (left-shift) operator, 364
< (less than) operator, 95, 97, 111
<= (less than or equal to) operator, 95, 97, 111
< operator and > operator, pairing, 519
>> right-shift operator, 364

* (asterisk)
in pointers, 203
*= (multiplication and assignment) operator, 114
multiplication operator, 52, 58, 96

associativity, 60
overloading, 522

\ (backslash), escape character in C#, 110
{ } (braces or curly brackets), 59

code block enclosed in, life span of variables defined
in, 196

enclosing code blocks, 98
in lambda expressions, 425
use in intializing array elements to specific

values, 229
^ (caret), bitwise XOR operator, 365, 368
, (comma), separating multiple initializations and

updates in for loops, 122
. (dot notation), 281, 318
= (equal sign)

assignment operator, 60, 97, 113
using properties to simulate, 512

confusing = and == in if statement, 98

? (question mark)

764 Index

overloading, 521
++ (increment) operator, 61, 96, 114

declaring your own version, 517
in classes versus structures, 518

string concatenation operator, 52
unary + operator, 96

? (question mark)
indicating that enumeration is nullable, 208
indicating that structure in nullable, 217
indicating that value type is nullable, 190, 204

" (quotation marks, double), 110
' (quotation marks, single), 110
; (semicolon)

ending statements, 39
variable declarations, 42

in lambda expressions, 425
replacing method body in interface method

declarations, 288
separating initialization, Boolean expression, and

update control variable in for loops, 122
/ (slash)

/* and */ surrounding multiline comments, 11
///, beginning comments in XAML files, 33
/= (division and assignment) operator, 114, 126
division operator, 52, 55, 58, 96

associativity, 60
overloading, 522

// preceding comments, 11
[] (square brackets), 59

array size in, 228
in indexers, 366
signifying array variables, 227
using indexers to simulate [] operator, 512

~ (tilde)
in destructor syntax, 319
NOT operator, 364

_ (underscore), beginning names of private
fields, 165

A
abstract classes, 304–306, 315

abstract methods, 306
implementing and using (exercise), 307–311

abstract modifier
abstract keyword, 305, 314
inapplicable to operators, 513

access modifiers
for properties, 347
not applicable for destructors, 319

not defined for interface methods, 294
accessor methods, 342. See also properties
Action delegate types, 455

Action<T, …> delegate, 454
registering with task's cancellation token, 564
using with tasks, 541

adapter methods, 469
addition operator. See + (plus sign), under Symbols
Add New Project dialog box, templates displayed

in, 442
address-of operator (&), 202
Add Scaffold wizard, 729
ADO.NET, 723
ADO.NET Entity Data Model template, 726
AggregateException class, 575, 579
aggregating data, 492, 496
Allow Unsafe Code option, 203
All WPF Controls section (Windows 7 and 8), 23
All XAML Controls section (Windows 8.1), 23
animations in Windows Store apps, 624

visual state transitions, 660
anonymous classes, 180
anonymous methods, lambda expressions and, 471
anonymous types, arrays of, 230
AppBarButton controls, 699
AppBar control, 699
app bars, 698–701

adding Next and Previous buttons, 698–701
App.config file, 8
App object, defined in App.xaml file of WPF

application, 34
apps, 18. See also Windows Store apps
AppStyles.xaml file, 663

referencing in global resource dictionary, 664
App.xaml.cs file, examining in Solution Explorer, 31–

33
App.xaml file, 31

examining XAML description for WPF
application, 34

ArgumentOutOfRangeException class, 152
arguments

inability to modify original argument through
changes in parameter, 192

passing named arguments, 85
writing method that modifies, using ref and out

keywords, 192–195
arithmetic operators, 52–61

controlling precedence, 59
data types used with, 52

 attached properties

 Index 765

implementing overloaded versions in Complex
class, 521

using on int values, 53–61
arithmetic overflow checking, 147, 158

turning on or off in Visual Studio 2013, 148
arithmetic, performing on enumerations, 212
Array class, 231

Clone method, 236
Copy method, 235
CopyTo method, 235

array notation
referencing existing element in List<T>, 413
using to access values in dictionary

collections, 424
using with Dictionary<TKey, TValue>, 420

arrays, 227–250
comparison to collections, 426–431
comparison to indexers, 368–370

properties, arrays, and indexers, 369
copying, 234–236
declaring and creating, 227–229

creating array instance, 228, 248
declaring array variables, 227, 248

implementing IEnumerable interface, 435
in Dictionary<TKey, TValue> class, 419
limitations of, 411
listing elements with foreach statement, 435
List<T> class versus, 413
parameter. See parameter arrays
populating and using, 229–234, 248

accessing individual array element, 231
creating implicitly typed array, 230
initializing array elements to specific

values, 229
iterating through an array, 231
passing arrays as method parameters and

return values, 233
using multidimensional arrays, 236–247, 249

creating a jagged array, 237, 249
using arrays to implement a card game, 238–

247
as operator, 202

performing cast and testing if result is null, 205
AsParallel extension method, 596
ASP.NET Web API Client Libraries, installing, 734
ASP.NET Web API, model supporting inserting,

updating, and deleting data, 741
ASP.NET Web API template, 725

Entity Framework version referenced, 726
web service created with, 730

assemblies
for System.Windows and Windows.UI

namespaces, 312
namespaces and, 17

assignment of values to variables, 42, 43
assignment operator. See = (equal sign), under

Symbols; See + (equal sign), under Symbols
assignment operators, compound, 113–114, 133

understanding compound assignment
evaluation, 516–517

associative arrays, 419
associativity, 60, 511

assignment operator and, 60
summary of operator associativity, 96

asynchronous operations, 581–621
IAsyncResult design pattern in earlier versions of

.NET Framework, 594
implementing asynchronous methods, 582–595,

619
asynchronous methods and Windows Runtime

APIs, 592–596
defining asynchronous methods,

problem, 582–585
defining asynchronous methods,

solution, 585–591
defining asynchronous methods that return

values, 591–592
using asynchronous methods in GraphDemo

application, 588–591
synchronizing concurrent access to data, 602–

619
cancelling synchronization, 607
concurrent collection classes, 608
locking data, 604
synchronization primitives to coordinate

tasks, 605–607
using concurrent collection and lock for safe

data access, 609–619
using PLINQ to parallelize declarative data

access, 595–601
canceling a PLINQ query, 601
improving performance while iterating over

collections, 596–601
web service requests, 737

async modifier
implementing asynchronous method, 586
misconceptions about, 586
no await statement in async method, 588
prefixing delegates, 588

attached properties, 648

awaitable objects

766 Index

awaitable objects, 586
await keyword, outside of async methods, 586
await operator, 585, 587

important points about, 586
invoking asynchronous method that returns a

value, 592

B
background image for page or control, 666
Barrier class, 607
base class, 264

calling base class constructors, 266
calling original implementation of method

in, 271
methods, 269
protected members, access to, 274

BasicCollection<T> class, 444–446
bin and obj folders, 14
binary operators, 512

explicit arguments, 513
binary trees, 388

building binary tree class using generics, 391–
397

creating enumerator for, 437–441
defining a generic method to build, 401–403
defining enumerator for Tree<TItem> class using

an iterator, 446–448
querying data in Tree<TItem> objects, 497–503
testing Tree<TItem> class, 397–400

bitwise operators, 364
Blank App template, 20, 628. See also Windows

Store apps
blocks. See code blocks
Boolean expressions

creating, 111
in for statements, 121
in if statements, 98
in while statements, 115

Boolean operators, 94–97
conditional logical operators, 95
equality and relational operators, 94

Boolean variables, declaring, 93, 111
bool type, 43
boxing and unboxing, 199–202, 205

performance and, 201, 384
break statements, 108, 124

mandatory for each case in switch
statement, 108

busy indicator, adding to Customer form, 740
Button class, 474
Button controls

adding to forms, 26
adding to views in Windows Store apps, 698–701
binding to commands provided by

ViewModel, 719

C
C#

as an evolving language, 759
case-sensitivity, 8
code for page in Windows Store app,

displaying, 31
keywords, 40
source file, Program.cs, 8
white space in, 40

cached evaluation (LINQ), 504
camelCase naming scheme, 165
camelCase notation, 42
canceled tasks, 568

using continuations with, 576
CancellationToken object, 563, 601, 621

ThrowIfCancellationRequested method, 571, 579
CancellationTokenSource object, 563, 579, 601, 621

Cancel method, 564
CanExecuteChanged event, 691

adding Command class to, 693
adding timer to raise the event, 693
raising too frequently, 700

CanExecute method, 690
Command class, implementing, 692

card game
using arrays to implement, 238–247
using collection classes, 426–431

case
case-sensitivity in C#, 8
in variable names, 42

case keyword, 106
case labels in switch statements, 107
casting

converting between objects and strings, 404
explicit casts and object type, 384
safely casting data, 201–203, 205

as operator, 202
is operator, 201

using in unboxing, 200
catch handlers, 136, 158

 collections

 Index 767

catching an exception, 154
catching unhandled exceptions, 155
using multiple, 138

C/C++
array declarations, 228
copy behavior of structure variables in C++, 222
delete operator in C++, nonexistent in C#, 318
function pointers in C++, similarity to

delegates, 453
functions or subroutines, similarity of methods

to, 65
global methods, 66
hidden this parameter for operators in C++, 513
inheritance in C++, 265
integer expressions in if statements, 98
new operation in C++, 318
operator overloads in C++, 515
params as type-safe equivalent to varargs

macros, 254
pointers and unsafe code, 202
public and private keywords in C++, 164
remainder operator, 53
structures in C++, no member functions, 225
switch fall-through, differences in C#, 108
unassigned local variables, 43
unassigned variables, 94

character sets, 126
char type, 43
checked expressions, writing, 149
checked keyword, 148, 158
checked statements, writing, 148
CIL (Common Intermediate Language), 224
Circle class, 162, 164

copying reference types and data privacy, 185
classes, 161

abstract, 304–306
implementing and using, 307–311

anonymous, 180
arrays of, 228
assigning in inheritance hierarchy, 267–269
consumed by unmanaged applications through

WinRT, 313
controlling accessibility, 164–175

constructors, 165–166
naming and accessibility, 165
overloading constructors, 167
partial classes, 168

declaring, 182
defining and using, 162–163
defining in namespaces, 15

defining scope, 73
encapsulation, 162
implementing interface property in, 361
inheritance. See inheritance
instance methods, 173–175
IntelliSense icon for, 11
keywords used in defining methods, 313
objects versus, 163
operators in, 518
referencing a class through its interface, 290
sealed, 306–313
static, 177
structures versus, 215

comparing copy behavior of class and
structure, 222–224

understanding classification, 161
value type, 183
writing constructors and creating objects, 169–

173
class members

drop-down list in Code and Text Editor, 49
IntelliSense icons for, 11

class methods. See static methods and data
Clone method, 185

Array class, 236
using to copy arrays, 369

Close method, 323
CLR (Common Language Runtime), 83, 224

managing threads to implement concurrent
tasks, 541

WinRT and, 312
Code and Text Editor window, 6, 47

finding and replacing code, 48
Program.cs file in, 8

code blocks
grouping if statements in, 98
life span of variables defined in, 196
using with for statements, 122
using with while statements, 116

collections, 411–433
adding or removing items, 432
collection classes, 411–423

Dictionary<TKey, TValue>, 419–420
HashSet<T>, 422
LinkedList<T>, 415–417
List<T>, 413–415
most commonly used, 412
nongeneric, in System.Collections, 412
Queue<T>, 417–418
SortedList<TKey, TValue>, 420

Stack<T>, 418
comparison to arrays, 426–431

using collection classes to play cards, 426–
431

concurrent collection classes, 608–609
creating, 432
enumerating, 435–449, 487

elements in a collection, 435–443
implementing enumerator using an

iterator, 444–448
finding number of elements in, 432
Find methods, predicates, and lambda

expressions, 424–426
improving performance while iterating through,

using PLINQ, 596–601
in memory, vs. tables in relational database, 495
iterating through, 433
locating an item in, 432
using collection initializers, 423

ColumnarHeaderStyle style, 667
ColumnarLayout state, 660
ComboBox controls

adding to Windows Store app, 635–637
adding ComboBoxItem, 636

implementing data binding for title ComboBox
controls, 685

using data binding with, 684
ComboBoxItem controls, 637
CommandManager object, 693
commands, 719

adding to a ViewModel, 690
buttons bound to commands in ViewModel, 699
implementing Command class, 691–694

comments
/* and */ surrounding multiline comments, 11
///, beginning comments in XAML files, 33
// (forward slashes) preceding, 11
TODO comments, use by developers, 169

Common Intermediate Language (CIL), 224
Common Language Runtime. See CLR
Common WPF Controls, 23
Common XAML Controls, 23
Compare method, 407
complex numbers, developing class that

simulates, 520–526
adding conversion operators, 529–532
creating Complex class and implementing

arithmetic operators, 520–523
implementing equality operators, 523–526

Component Object Model (COM), 83
compound assignment operators. See assignment

operators, compound
compound operators, controlling using checked and

unchecked keywords, 149
concurrency

issues to consider in implementing, 540
synchronizing concurrent access to data, 602–

619
ConcurrentBag<T> class, 608
concurrent collections

classes, 608
using with lock for safe data access, 609–619

ConcurrentDictionary<TKey, TValue> class, 608
ConcurrentQueue<T> class, 608
ConcurrentStack<T> class, 609
conditional logical operators, 95

short-circuiting, 96
Connection Properties dialog box, 726
Connect To Server dialog box, 723
console applications, 3

creating using Visual Studio 2013, 3, 38
steps in process, 5

writing Hello World application, 8–14
Console class, 9
Console.WriteLine method, 9

calling ToString method automatically, 213
classic example of overloading in C#, 251
overload to support format string argument

containing placeholders, 256
const keyword, creating a static field with, 177, 182
constructed types, 387
constructors, 165

calling base class constructor from derived class
constructor, 266, 284

declaring and calling, 182
default, 166
for static classes, 177
for structures, 215, 217
not defined in interfaces, 294
object initializers and, 358
overloading, 167
public and private, 166
writing, 170–173

Content property, changing for Button controls, 26
continuations, 543

specified by await operator, 586, 587
using with canceled and faulted tasks, 576

continue statements, 124

 Debug mode

 Index 769

ContinueWith method, Task object, 543, 576
parameters specifying additional items, 543

contracts, 626, 701–716
implementing Search contract, 702–713

contravariant interfaces, 407–409
controller classes, REST web service

creating additional, 732
incoming web requests handled by, 730

controls
applying styles to, in Windows Store app, 662,

672
attached properties, 648
binding commands to, 693
dragging from Toolbox to forms, 633
hierarchy of, on complex forms, 55

conversion operators, 526–532
built-in conversions for built-in types, 527
creating symmetric operators, 529
defining, 533
user-defined, implementing, 528
writing, 529–532

Copy method, Array class, 235
CopyTo method, Array class, 235
CountdownEvent class, 606
Count, Max, Min and other summary methods, 492

invoking Count, 496
Count property

finding number of elements in collections, 432
List<T> class, 415

covariant interfaces, 405, 410
Created status, tasks, 568
.csproj files, 44
Current property, IEnumerator interface, 436

D
database, remote, accessing from Windows Store

app, 721–762
inserting, updating, and deleting data through

REST web service, 741–759
implementing add and edit functionality in

ViewModel, 742–750
integrating add and edit functionality into

Cutsomers form, 754–756
reporting errors and updating the UI, 751–

753
testing the Customers app, 756–758

retrieving data from a database, 721–741

creating and using a REST web service, 729–
741

creating an entity model, 723–729
installing AdventureWorks database, 723

data binding, 719
associating same piece of data to multiple

controls, 659
displaying data using, 674–680
implementing for title ComboBox controls, 685
modifying data using, 680
using with ComboBox control, 684

DataContext property, MainPage object, 689
data types

array elements, 228, 230
casting, using as operator, 202
conversions, 526–532

built-in conversions for built-in types, 527
implementing user-defined conversion

operators, 528–532
declaring implicitly typed local variables, 62
numeric types and infinite values, 53
operators and, 52
primitive, 43–51
primitive types in C# and equivalents in .NET

Framework, 213
specifying for variables, 42
switch statement use on, 107
ToString method, 50
variables created with var keyword, 180
verifying type of an object with is operator, 201

dates and time
comparing dates in method using cascading if

statement, 100–105
comparing dates in real-world applications, 105
creating and using structure to represent a

date, 218–221
DbContext class, 729
DbSet generic type, 729
Debug folder, 14
debugger

exception handling and Visual Studio
debugger, 151

stepping through methods with Visual Studio
2013 debugger, 80–83

debugging Windows Store apps, 27
Debug menu

Start Debugging, 14
Start Without Debugging, 13

Debug mode, 14

decimal type

770 Index

Windows Store app in Windows 8.1, 28
decimal type, 43
decision statements, 93–112

declaring Boolean variables, 93
if statements, 97–105
switch statements, 105–111
using Boolean operators, 94–97

declarations, variable, 42, 62
implicitly typed, 63

decrementing variables, 61
prefix and postfix, 61

decrement operator. See - (minus sign), under
Symbols

deep copying, 185, 236
default constructor, 166

writing your own constructor and, 167
default keyword, 106

initializing variable defined with a type
parameter, 441

deferred evaluation, LINQ and, 503–507
definite assignment rule, 43
delegates, 451–470

Action and Func type, using with Command
class, 691

adapter methods, 469
async modifier with, 588
attaching to events, 473
declaring a delegate type, 483
declaring and using (exercise), 459–469

creating CheckoutController
component, 464–468

examining Wide World Importers
application, 459–464

testing the application, 468
detaching from events, 473
examples in .NET Framework class library, 453–

455
factory control system implemented without, 455
for events, 474
implementing factory control system using, 456–

458
delegate referring to multiple methods, 457
invoking a delegate, 457
removing methods from delegate, 457

IntelliSense icon for, 11
invoking, 483
lambda expressions, 469–471
registering Action delegate with task's

cancellation token, 564

understanding, 452
use with Dispatcher object, Invoke method, 585
using to mimic function call as an operator, 512

DELETE requests, 741
derived classes, 264

creating from base class, 284
methods masking base class methods, 269
protected members, 274

Design View window, 20
expanding/contracting elements in XAML

pane, 656
using to add form controls, 22
XAML form description changes and, 24
zooming in and out, 47

destructors
calling Dispose method from, 326–338, 331
creating simple class that uses, 328–330
not defined in interfaces, 294
not running until objects are garbage

collected, 321
writing, 318–320, 337

restrictions on destructors, 319
development environment settings, 4
Device Window (on the Design menu), 27
dictionary-oriented collections

adding or removing an item, 432
ConcurrentDictionary<TKey, TValue> class, 608
finding a value and accessing it, 424
locating an item in, 432

Dictionary<TKey, TValue> class, 412, 419–420
Dispatcher object, 585
DispatcherTimer class, 693
disposal methods, 323, 337

defined, 323
exception-safe disposal, 324

Dispose method, 325, 331
calling from a destructor, 326–338, 331
thread safety and, 334

Distinct method, 493, 496, 501
DivideByZeroException, 575
division operator. See / (slash), under Symbols
Document Outline window, 55

pinning in place with Audo Hide button, 56
Documents folder, 6
do statements, 123–132, 133

stepping through, 127–132
writing, 125–127

dot notation (.), 281, 318
double type, 43

 events

 Index 771

duplicates, eliminating from query results, 493, 496

E
else statements, 97. See also if statements
encapsulation, 162

implementing by using methods, 341–343
Entity Data Model Wizard, 726
Entity Framework, 722

mapping layer between relational database and
your app, 724

T4 templates, security warning about, 728
versions, 726

entity model, creating, 723–729, 760
AdventureWorks entity model, 724–741

Entity Model editor, 728
entity sets, 729
Enumerable class, 488–494

Count, Max, Min and other summary
methods, 492

GroupBy method, 492
Join method, 493
OrderByDescending method, 492
OrderBy method, 491
Select method, 489–490

definition of, 489
ThenBy or ThenByDescending method, 492
Where method, 490

enumerable collections, 435, 487
implementing IEnumerable interface, 441–443
making a collection class enumerable, 449
projecting specified fields from, 508

enumerations, 207–212
arrays of, 228
casting to int, 242
choosing enumeration literal values, 209
choosing enumeration's underlying values, 210–

212
declaring, 208, 225
using, 208–209

enumerators, 436
defining by using an iterator, 449
defining for Tree<TItem> class using an

iterator, 446–448
implementing by using an iterator, 444–448
implementing manually, 437–441
implementing without using an iterator, 449

enum keyword, 208
enums, IntelliSense icon for, 11

enum types. See enumerations
equality operators, 94, 111

associativity and precedence, 97
implementing overloaded versions, 523–526
overriding == and != operators, 518

Equals method
overriding in Complex class, 524
overriding in System.Object or System.

ValueType, 519
structures, 214

equi-joins, LINQ support for, 497
Error List window, 12, 524
error reporting, adding to ViewModel class, 751–753
errors and exceptions, 135–158

coping with errors, 135–136
ensuring exception-safe disposal, 324, 337
exception handling and Visual Studio

debugger, 151
exceptions, 76
implementing exception-safe disposal

(exercise), 328–336
task exceptions

canceled tasks, 571
continuations with canceled or faulted

tasks, 577
handling with AggregateException class, 575,

579
throwing exceptions, 152–156
trying code and catching exceptions, 136–147

catching multiple exceptions, 139–145
propagating exceptions, 145–147
unhandled exceptions, 137
using multiple catch handlers, 138

using a finally block, 156
using checked and unchecked integer

arithmetic, 147–151
writing checked expressions, 149
writing checked statements, 148

EventArgs class, 475
Event Handlers for the Selected Element button, 35
events, 451

declaring, 483
enabling notifications by using, 471–474

declaring an event, 472
raising an event, 473
subscribing to an event, 472

IntelliSense icon for, 11
security feature, 474
subscribing to, 483

Exception class

772 Index

tasks waiting for, 605
UI (user interface) events, 474–482

adding event to CheckoutController class
(exercise), 475–482

unsubscribing from, 484
Exception class, 139

catchall handler to trap Exception
exceptions, 155

catch handler for all exceptions, 158
exceptions. See errors and exceptions
executable version of a program, 14
Execute method, 691
explicit and implicit keywords, 528
explicit conversions, 527
explicit interface implementation, 289, 292

implementing an indexer, 371, 379
Extensible Application Markup Language. See XAML
extension methods, 280–284

creating (exercise), 281–284
defining for a type, 285
Enumerable.Select, 489
IntelliSense icon for, 11

F
factory control system, 455–458

implementing by using a delegate, 456
implementing without using delegates, 455

faulted tasks, 543, 568
using continuations with, 576

fields, 163
implementing encapsulation by using

methods, 341–343
implementing properties to

access. See properties
initialization, 164
names of, warning about property names

and, 345
naming conventions, 165
not defined in interfaces, 293
private or public, 164
readonly, 241
static, 175–182

creating a shared field, 176
structure, 214

FileInfo class, 118
file input/output (I/O), source of slow

operations, 593
filename extensions, solution and project files, 44

FileOpenPicker class, asynchronous processing
in, 593

File Open Picker contract, 701
filtering data, 490, 508

using where operator, 496
Finalize method, 320
finally blocks, 156–157
Find method, generic collections, 424–426

List<T> class, 453
first-in, first-out (FIFO) model, 381, 412
floating-point arithmetic, checked and unchecked

keywords and, 149
float type, 43
FontSize property, changing for TextBlock

control, 24
FontStyle style, 666
foreach statements

iterating through an array, 232, 248, 435
iterating through collections, 433
iterating through List<T> collections, 414

ForEach<T> method, Parallel class, 556
canceling, 569
general rule for using, 562

For method, Parallel class, 556, 603
canceling, 569
general rule for using, 562

forms, 22, 451
locating and selecting controls with Document

Outline window, 55
resizing of WPF forms, 27
Windows Forms and WPF applications, 18

for statements, 121–123, 133
continue statement in, 124
iterating through an array, 231, 248
iterating through collections, 433
multiple initializations and updates in, 122
omitting initialization, Boolean expression, or

update control variable, 122
scope, 123

frame rate, tracking for Windows Store apps, 28
from operator, 495, 502, 508
F (type suffix), 50
Func delegate types, 454–455

Func<T, …> delegate, 454
functional programming languages, 424
functions

defined, 469
in Visual Basic, 67
similarity of methods to, 65

 ICommand interface

 Index 773

G
garbage collection, 318–323

allowing CLR to manage, 333
forcing, 337
GC class providing access to, 333
how the garbage collector works, 322
invoking the garbage collector, 321
reasons to use garbage collector, 320–322
stopping from calling destructor on an

object, 328
writing destructors, 318–320

GC class, 333
GC.Collect method, 321
GC.SuppressFinalize method, 328, 333
Generate Method Stub Wizard, 75
generics, 381–410

binary trees, theory of, 388–391
building binary tree class using generics, 391–

397
testing Tree<TItem> class, 398–400

collection classes, 411–423
creating a generic class, 388–400
creating a generic method, 401–403

defining method to build a binary tree, 401–
403

generic method, Select<TSource, TResult>, 489
problems with object type, 381–384
solution to problems with object type, 385–387
using constraints, 387
variance and generic interfaces, 403–409
versus generalized classes, 387

gestures, 625
get and set accessors. See also properties

for indexers, 367
understanding, 368

for properties, 342
restrictions on, 348

GetAwaiter method, awaitable objects, 586
GetHashCode method, 407

overriding in Complex class, 525
overriding in System.Object or System.

ValueType, 519
globally unique identifiers (GUIDs), 750
graphical application, creating, 18–37

adding code, 34–37
C# and XAML files created by Visual Studio, 20
on Windows 7 or 8, 21

greater than operator. See < > (angle brackets),
under Symbols

greater than or equal to operator. See < > (angle
brackets), under Symbols

Grid App template, 628, 717
Grid control

for Windows Store app, 631
implementing tablular layout using, 645–655

modifying layout to scale to different form
factors and orientations, 647–655

Grid.Row attribute, 648
GridStyle style, 665
GroupBy method, 492, 501, 508
group by operator, 508
group operator, 496
GUIDs (globally unique identifiers), 750

H
HashSet<T> class, 412, 422

SortedSet<T> and, 423
Haskell programming language, 424
HasValue property, nullable types, 191
HeaderStyle style, 666

modifying with additional property Setter
elements, 668

heap, 196
arrays on, 228
automatic copying of items from stack

(boxing), 199
class instances on, 216
expense of boxing and unboxing, 201
multiple variables referring to same object, 198
organization by the runtime, 197
using, 197

Hello World console application, 8–14
hill-climbing algorithm, 541
HttpClient class, 734

GetAsync method, 737
HTTP requests and responses, 730

PUT, POST, and DELETE requests, 741
REST web service, 732

HttpResponseMessage class, 734, 737
HttpResponseObject, 737
Hub App template, 718
Hungarian notation, 42, 289

I
IAsyncResult design pattern, 594
ICommand interface, 690, 691

IComparable<T> interface

774 Index

IComparable<T> interface, 498
IComparer<T> interface, 407–409
idempotency in REST web services, 742
identifiers, 40–41

for variables, 42
IDisposable interface, 325

implementation (example), 326
implementing, 337
implementing (exercise), 330–332

IEnumerable interface, 435
data structures implementing, 487
GetEnumerator method, 436

IEnumerable<T> interface, 436
class implementing, 444
data structures implementing, 487
implementing, 441–443

IEnumerator interface, 436
IEnumerator<T> interface, 436
if statements, 97–105, 111

Boolean expressions in, 98
cascading, 99–105
data types used on, 107
syntax, 97
using blocks to group, 98

ImageBrush resource, 664
Implement Interface Wizard, 290
implicit and explicit keywords, 528
implicit conversions, 527
implicitly typed arrays, 230–231
implicitly typed variables, 63
incrementing and decrementing variables, 61

controlling ++ and -- operators with checked/
unchecked keywords, 149

prefix and postfix, 61
using ++ and -- operators instead of compound

assignment operators, 114
increment operator. See + (plus sign), under Symbols
indexers, 363–380

accessors, understanding, 368
comparison to arrays, 368–370

properties, arrays, and indexers, 369
creating for class or structure, 379
defined, 363
example not using indexers, 364–365
example using indexers, 366
important points about, 367
in interfaces, 370–371, 379
using in a Windows application, 371–378

examining the phone book application, 372–
374

testing the application, 377
writing the indexers, 374–377

using to simulate [] operator, 512
indexes

array, 231
integer types as, 242
multidimensional arrays, 236

Dictionary<TKey, TValue> class, 419
IndexOutOfRangeException, 231, 576
inequality operator. See ! (exclamation mark), under

Symbols
infinite values, 53
inheritance, 263–286

applicable to classes only, not structures, 266
assigning classes, 267–269
calling base class constructors, 266
classes implementing interfaces, 289

inheriting from another class, 290
creating a hierarchy of classes (exercise), 274–279
declaring new methods, 269
declaring override methods, 271–273
declaring virtual methods, 270
defined, 263
exception types, 139
from System.Object class, 198
interface inheriting from another interface, 290
interfaces, 294
preventing with sealed classes, 306
protected access, 274
System.Object class as root class, 266
understanding extension methods, 280–284
virtual methods and polymorphism, 272

InitializeComponent method, MainWindow class, 34
initializers, collection, 423
INotifyPropertyChanged interface,

implementing, 682–685
instance methods

defined, 173
writing and calling, 173–175

Int32.Parse method, 52
integers

integer types as indexes into an array, 242
integer values associated with enumeration

elements, 209, 210
IntelliSense in Visual Studio 2013, 9

icons for class members, 11
interface keyword, 288

 LINQ (Language-Integrated Query)

 Index 775

interfaces, 287–304
declaring and implementing interface

properties, 349–355, 361
defining, 288, 314
defining and using (exercise), 294–304

creating classes that implement the
interface, 296–301

testing implementation classes, 301–304
explicitly implementing, 292
generic, 387

variance and, 403–409, 410
implementing, 289–290, 314
indexers in, 370–371, 379
inheriting from another interface, 290
IntelliSense icon for, 11
keywords used in defining methods, 313
naming convention, 289
referencing a class through its interface, 290
restrictions, 293
understanding, 287
working with multiple interfaces, 291

IntersectWith, UnionWith, and ExceptWith methods,
HashSet<T> class, 422

int type, 43, 364–365
implementation of IComparable and

IComparable<T>, 399
operators used to manipulate individual bits, 364
size, 147

InvalidCastException, 200
Invoke method

Dispatcher object, 585
Parallel class, 557

reserving for computationally intensive
operations, 560

is operator, 201
determining if an object has specified type, 291
testing if cast is valid, 205

iterators
defining enumerator by using, 449
implementing an enumerator using, 444–448

defining enumerator for Tree<TItem>
class, 446–448

implementing enumerator without using an
iterator, 449

J
jagged arrays, 237, 249
Java

arrays of arrays, 238
inheritance, 265
square brackets before array variable name, 228
varargs facility operating similarly to params

keyword in C#, 254
virtual methods, 271

JavaScript Object Notation. See JSON
Join method, 493, 509
join operator, 497, 509
JSON (JavaScript Object Notation), 730

response returned from REST web service, 734

K
KeyValuePair<TKey, TValue> structure, 420
keywords, 40

defining methods for interfaces, classes, and
structs, 313

L
LabelStyle style, 669
lambda expressions, 424–426

and anonymous methods, 471
forms of, 469–484
syntax, 425
using in Select method, 488
using in Where method, 491

landscape orientation, 640
Language-Integrated Query. See LINQ
language interoperability, operators and, 516
last-in, first-out (LIFO) model, 411
Length property

Array class, 231, 248
List<T> class, 415

less than operator. See < > (angle brackets), under
Symbols

less than or equal to operator. See < > (angle
brackets), under Symbols

libraries
references to, in References folder, 7

lifecycle of Windows Store apps, 626
LinkedList<T> class, 412, 415–417
LINQ (Language-Integrated Query), 485, 581, 724

await operator, inability to use in LINQ
queries, 586

parallelizing a LINQ query, 620
PLINQ (Parallel LINQ), 582

List<T> class

776 Index

cancellation of PLINQ query, 620
using to parallelize declarative data

access, 595–601
using in a C# application, 486–507

filtering data, 490
joining data, 493
LINQ and deferred evaluation, 503–507
ordering, grouping, and aggregating

data, 491–493
querying data in Tree<TItem> objects, 497–

503
selecting data, 488–490
using query operators, 495–497

List<T> class, 412, 413–415
creating, manipulating, and iterating

through, 414
determining number of elements in, 415
features that preclude array limitations, 413
methods using delegates, 453–455

local scope, defining
defining, 72

local variables
memory required for, 196
unassigned, 43

locking data, 604
using concurrent collection and lock for safe data

access, 609–619
using ReaderWriterLockSlim object, 621

lock statement, 334
logical operators, 95

associativity and precedence, 97
in Boolean expressions, 111

long type, 43

M
Main method, 8

array parameters and, 234
console application example, 9

MainPage.xaml.cs file, 20
examining for Windows Store app, 30

MainPage.xaml folder, 20
MainWindow.xaml.cs file, examining contents of, 33
MainWindow.xaml file, 21
managed code, 224
managed execution environment, 224
managed resources, destructors and, 318
ManualResetEventSlim class, 605, 620
Math class, 162, 175

memory
allocation and reclamation for variables and

objects, 317
allocation for array instance, 229
how computer memory is organized, 195–198

stack and the heap, 196
using the stack and the heap, 197

unmanaged, for objects created in unsafe
code, 203

use by multidimensional arrays, 236
MessageBox class, 36
MessageDialog object, 36

ShowAsync method, 592
methods, 163

abstract, 306
adapter, 469
anonymous, 471
asynchronous. See asynchronous operations
calling, 69
constructor. See constructors
creating a generic method, 401–403
declaring, 66
declaring new methods for class in inheritance

hierarchy, 269
declaring override methods, 271–273
declaring virtual methods, 270
defining and invoking a generic method, 409
delegates. See delegates
elements of, 424
extension methods, understanding, 280–284
implementing encapsulation by using, 341–343
indexers versus, 367
instance, 173–175
IntelliSense icon for, 11
interface, 288, 294

implementation of, 289
invoking, 452
keywords used in defining methods for

interfaces, classes, and structs, 313
length of, 69
memory required for parameters and local

variables, 196
naming conventions, 165
non-params, priority over params methods, 255
overloaded, 10
overloading, 74, 251
passing arrays as parameters and return

values, 233
private or public, 164
replacing with properties (exercise), 351–355

 .NET Framework

 Index 777

returned by lambda expressions, 424–426
returning data from, 67
scope, 72–74
sealed, 306
signature, 269
static, 175–181, 182
using optional parameters and named

arguments, 83–91
defining and calling method with optional

parameters, 87–91
defining optional parameters, 85
passing named arguments, 85
resolving ambiguities, 86

using ref and out parameters, 192–195
using value and reference parameters, 186–189
virtual methods and polymorphism, 272
writing, 74–83

parameters, 78
stepping through with debugger, 80
testing the program, 79
using Generate Method Stub Wizard, 75

Methods For Fetching And Updating Data region,
ViewModel, 744

Microsoft Blend for Visual Studio 2013
defining complex styles to integrate into an

app, 671
Microsoft SQL Server, 486
Minimum Width setting, 640
mobility as key requirement for modern apps, 625
Model-View-ViewModel pattern. See MVVM pattern
modifier methods, 342. See also properties
modifiers. See also keywords and modifiers listed

throughout
applicable and inapplicable to oprators, 513

modulus operator. See % (percent sign), under
Symbols

Moore’s Law, 539
MoveNext method, enumerators, 436
multicore processors, rise of, 538
multidimensional arrays, 236–247

creating jagged arrays, 237
params keyword, inability to use with, 254
using to implement a card game, 238–247

multiplication operator. See * (asterisk), under
Symbols

multitasking
implementing using .NET Framework, 540–562
performing using parallel processing, 537–539

MVVM (Model-View-ViewModel) pattern, 673–701
adding commands to a ViewModel, 690–693

adding Next and Previous buttons to View, 698–
701

adding NextCustomer and PreviousCustomer
commands to ViewModel, 694–698

creating a ViewModel, 686–690
defined, 674
displaying data using data binding, 674–680
modifying data using data binding, 680

N
named arguments, 85

resolving ambiguities with, 86
Name property for all controls, 635
namespace keyword, 15
namespaces

and assemblies, 17
IntelliSense icon for, 11
in WPF applications versus Windows Store

apps, 34
using, 14–17

naming conventions
for classes, 165
for fields and methods, 165
interfaces, 289
properties and field names, warning about, 345

NaN (not a number), 53
narrowing conversions, 527
native code, 224
.NET Framework

and compatibility with WinRT on Windows 8 and
8.1, 311–313

class library, split into assemblies, 17
CLR (Common Language Runtime), 224
collection classes, 411–423

in System.Collections.Generic.Concurrent
namespace, 413

in System.Collections.Generic namespace, 411
in System.Collections namespace, 412

concurrent collection classes, 608
delegates, examples in class library, 453–455
events, 471
exception classes, 152
exception types, 139
FileInfo class, 118
GUI classes and controls, events, 474
HttpClient class, 734
HttpResponseMessage class, 734

New ASP.NET Project dialog box

778 Index

IAsyncResult design pattern in earlier
versions, 594

IEnumerable and IEnumerator interfaces, 436
IEnumerable<T> and IEnumerator<T>

interfaces, 436
implementing multitasking by using, 540–562
interfaces exhibiting covariance, 406
libraries or assemblies, 7
PLINQ extensions, 596
primitive types and equivalents in C#, 213
synchronization primitives, 605
synchronizing data access across tasks, 582
System.Collections.Generics namespace, 386
TextReader class, 118

New ASP.NET Project dialog box, 725
new keyword, 163, 314

calling constructors, 182
creating array instance, 228, 248
object creation, 317

newline character (\n), 119
New Project dialog box, 5
NotImplementedException, 76
NOT operator (!), 94
NOT operator (~), 364
nullable types, 190

as method parameters, 192
creation in heap memory, 196
enumeration, 208
structure, 217
understanding properties of, 191

null value
ascertaining if nullable variable contains, 191
assigning to reference variables, 190
declaring a variable that can hold, 204
inability to assign to value types, 190
understanding, 189

numeric types
and infinite values, 53
using remainder operator with, 53

O
Object Collection Editor window, 636
object initializers, 358, 359
object keyword, 198
object references. See also references; reference

types
stored by classes in System.Collections

namespace, 412

objects
classes versus, 163
coverting to strings, 50
creating, 170
creating using new keyword, 163
initializing by using properties, 357–360, 362
life and times of, 317–323
memory allocation and recalamation for, 317
memory required for, 196
parameters array of type object, 255
private modifier and, 174
System.Object class, 198, 266

Finalize method, 320
overriding Equals and GetHashCode

methods, 519
verifying type with is operator, 201

object type, 78
problems with, 381–384

obj folder, 14
on clause of LINQ expressions, 497
Open dialog box, 117
Open file picker, 116
Open Project dialog box, 44
operands, 52
OperationCanceledException, 571, 576, 579

handling, 572
operators, 52

and data types, 52
associativity, 60
bitwise, 364
Boolean, using, 94
increment and decrement, 61
overloading

and language interoperability, 516
comparing operators in structures and

classes, 518
compound assignment evaluation, 516–517
conversion operators, 526–532
creating symmetric operators, 514–516
declaring increment and decrement

operators, 517
defining operator pairs, 518–519
implementing operators, 520–526

precedence and associativity, 96
understanding, 511–516

operator constraints, 512
use on enumeration variables, 209
use on your own structure types, 214

optional parameters
comparing to parameter arrays, 259–261

 polymorphism

 Index 779

defining, 85
defining and calling a method with, 87–91
resolving ambiguities with, 86

OrderByDescending method, 492
OrderBy method, 491, 508
orderby operator, 496, 508
orientations

tablet app in landscape or portrait, 640
testing for Windows Store app in Simulator, 652
testing in Simulator, 644

out keyword, 192
inability to use with params arrays, 255

out parameters
creating, 193, 205
indexers versus arrays, 369

Output window, 12
OverflowException, thrown by checked

statements, 148
overloaded methods, 10
overloading methods, 74, 251

constructors, 167
override keyword, 271, 273, 314

inapplicable to operators, 513
using with virtual keyword, 272

overriding methods, 285
declaring override methods, 271–273

P
pages, 22

adapting to different screen resolutions and
device orientation, 27

Parallel class
abstracting tasks by using, 556–560

Parallel.ForEach<T> method, 556
Parallel.For method, 556
Parallel.Invoke method, 557
parallelizing operations in GraphData

application, 557–560
canceling Parallel.For or ForEach loop, 569
Parallel.For method, 603
when not to use, 560–562

parallelism
Parallel class determining degree of, 557
using Task class to implement, 544–555

parallelization
degree of versus units of, 540
dividing method into series of parallel

operations, 587

using PLINQ to parallelize declarative data
access, 595–601

ParallelLoopState object, 556, 569
parallel processing, using to perform

multitasking, 537–539
ParallelQuery object, 596

WithCancellation method, 601, 620
parameter arrays, 251–262

comparing to optional parameters, 259–261
overloading, recap of, 251
using array arguments, 252–259

declaring a params array, 253
important points about params arrays, 254
params object[], 255
using a params array (exercise), 256–259

parameters
generic types as, 401
lambda expression, 425
memory required for, 196
nullable variables as, 191
operator, 513
optional parameters for methods, 83–92

defining, 85
defining and calling method with, 87–91
resolving ambiguities with, 86

passing arrays as parameters, 233
array parameters and Main method, 234

using ref and out parameters, 192–195, 204
using value and reference parameters, 186–189

params keyword, 253
important points about params arrays, 254

partial classes, 168
PascalCase naming scheme, 165
Peek Definition feature, 88
performance

impact of raising CanExecuteChanged event too
frequently, 700

multidimensional arrays and, 236
pixels, font size measured in, 25
PLINQ (Parallel LINQ), 582

cancellation of PLINQ query, 620
using to parallelize declarative data access, 595–

601
canceling a PLINQ query, 601
improving performance while iterating

through collections, 596–601
pointers and unsafe code, 202
polymorphism

defined, 273
virtual methods and, 272

Pop method

780 Index

Pop method, 411
portrait mode, viewing app in, 27
portrait orientation, 640
post-decrement operator (--), 96
post-increment operator (++), 96
POST requests, 741
precedence, 511

controlling with arithmetic operators, 59
expressions containing operators with same

precedence, 60
operator precedence, summary of, 96

pre-decrement operator (--), 96
predicates, 424–426

delegates and, 453
prefix and postfix, increment (++) and decrement (--)

operators, 61, 517
pre-increment operator (++), 96
primitive data types, 43–51

as value types, 183
displaying values, 44–51
fixed size, 147
in C# and equivalent types in .NET

Framework, 213
private keyword, 164, 314
private modifier, 274

class level versus object level, 174
constructors, 166
copying reference types and data privacy, 185
identifiers, naming scheme for, 165
properties, 347
use with static keyword, 178

Program class, 8
Program.cs file, 8
project files (.csproj suffix), 44
propagating exceptions, 145–147
properties, 341–362, 363

accessibility, 347
arrays and indexers, 369
declaring and implementing on an interface, 361
declaring interface properties, 349–355
defined, 343
generating automatic properties, 355–356, 362
initializing objects by using, 357–360, 362
IntelliSense icon for, 11
names of, warning about field names and, 345
read-only, 346, 361
read/write, 346, 361
replacing methods with (exercise), 351–355
restrictions on, understanding, 348–349
using, 345–346

using appropriately, 349
using to simulate assignment operator (=), 512
write-only, 346, 361

Properties folder, 7
Properties window

Event Handlers for the Selected Element
button, 35

specifying properties of form controls, 24
PropertyChanged event, 719
protected keyword, 314
protected modifier, 274

properties, 347
public keyword, 164, 314
public modifier, 274

constructors, 166
identifiers, naming scheme for, 165
properties, 347
required for operators, 513
structure fields and, 214

Push method, 411
PUT requests, 741

Q
querying in-memory data, 485–510

LINQ (Language-Integrated Query), 485
using LINQ in a C# application, 486–507

filtering data, 490
joining data, 493
LINQ and deferred evaluation, 503–507
ordering, grouping, and aggregating

data, 491
query operators, 495–497
retrieving data from BinaryTree using

extension methods, 497–501
retrieving data from BinaryTree using query

operators, 502
selecting data, 488–490

queues
ConcurrentQueue<T> class, 608
generic Queue<T> class, 385–387, 411, 412

example Queue<int> class and
operations, 417–418

object-based Queue class, 381–384
Queue class versus Queue<T> class, 387

Quick Find dialog box, 48

 scope

 Index 781

R
Random class, 229
RanToCompletion status, tasks, 568
readability, 624
ReaderWriterLockSlim class, 606, 621
readonly fields, 241
read-only properties, 346, 361
read/write properties, 346, 361
rectangular arrays, 237
refactoring code, 79
references

creating multiple references to an object, 320
reclamation by the heap, 198
referencing a class through its interface, 290
setting to null for immediate disposal, 318
storage on the stack, 197

References folder, adding/removing references for
assemblies, 17

reference types, 183, 383
arrays, 228
classes, 216
copying a reference type variable, 204
copying, data privacy and, 185
copying reference type variables, 214
covariance, 406
GetHashCode method, 407
initializing using null values, 189
memory allocation and reclamation for, 317
ref and out modifiers on reference

parameters, 195
using for method parameters, 188, 192
variables of type object referring to, 198

ref keyword, 192
inability to use with params arrays, 255

ref parameters
creating, 193
indexers versus arrays, 369
passing an argument to, 204
using, 194

Regex class, 744
relational database management systems, 486
relational databases

tables in, vs. in memory collections, 495
relational operators, 94, 111

associativity and precedence, 97
remainder (or modulus) operator (%), 53
RenderTransform property, 668
resource dictionary, 663, 672

adding reference for AppStyles.xaml file, 664

resource management, 323–328
calling Dispose method from a destructor, 326–

338
disposal methods, 323
exception-safe disposal, 324
implementing exception-safe disposal

(exercise), 328–336
creating class that uses a destructor, 328–330
implementing IDisposable interface, 330–332
preventing multiple disposals of object, 332–

334
thread safety and Dispose method, 334
verifying object disposal after an

exception, 335
response time, issues with, 581
REST web services, 760

creating and using, 729–741
idempotency in, 742
inserting, updating, and deleting data

through, 741–759
return statement, 67
return type for methods, 66

generic types as, 401
return values, passing arrays as, 233
RoutedEventArgs object, 474
RoutedEventHandler delegate type, 474
Run method, Task class, 542, 578
Running status, tasks, 568

S
scalable user interface for Windows Store app,

implementing, 630–662, 672
adapting layout using Visual State

Manager, 655–662
implementing tabular layout using Grid

control, 645–655
modifying layout for different form factors

and orientations, 647–655
laying out page for Customers app, 630–641
testing app in Visual Stuido 2013 Simulator, 642–

645
scope, 72–74

defining class scope, 73
defining local scope, 72
in for statements, 123
overloading methods, 74
starting new scope in code blocks, 99
variables declared in using statement, 325

screen resolutions

782 Index

screen resolutions
pages in Windows Store apps adjusting to, 27
Simulator in Visual Studio 2013, 643
testing for Windows Store app in Simulator, 653

sealed classes, 306–313, 315
sealed keyword, 314

inapplicable to operators, 513
search

enabling Windows Store app to support
searching, 719

navigating to selected item, 713–716
Search contract, 702

implementing, 702–713, 719
registering Customers app with Windows

Search, 710–712
testing Search contract, 711

SearchResultsPage class, 705
OnItemClick method, 714

Select method, 488–490, 500, 508
select operator, 495, 502, 508
semantics, 39
SemaphoreSlim class, 606, 620
sentinel variable, 116
Setter elements (XAML), 664
shallow copying, 185, 236
Share Target contract, 701
short-circuiting, 96
showBoolValue method, 51
showDoubleValue method, 51
showFloatValue method, 49
showIntValue method, 50
signature, method, 269
Simulator, using to test Windows Store apps, 642–

645, 652–655
.sln files, 44
Snapped view for apps, 27
Solution Explorer, 6

project files in, 7
solution files (.sln suffix), 44
Solution ‘TestHello’ file, 7
SortedDictionary<TKey, TValue> class, 420
SortedList<TKey, TValue> class, 412, 420
SortedSet<T> class, 423
spinning, 597
Split App template, 628, 717
SQL Server, 486
SQL (Structured Query Language), 486

Entity Framework reducing dependency on, 723
entity model converting LINQ queries to SQL

commands, 724

generation of SQL commands by DBContext and
DBSet, 729

stack, 196
automatic copying of item from stack to heap

(boxing), 199
ConcurrentStack<T> class, 609
organization by the runtime, 196
structure instances on, 216
using, 197

StackOverflowException, 345
Stack<T> class, 411, 412, 418–419
Start method, Task object, 542
StartupUri property, App object, WPF

application, 34
statements, 39–40

syntax and semantics, 39
static methods and data, 175–182

creating a shared field, 176
creating static field using const keyword, 177
static classes, 177
static method accepting value parameter, 186
writing static members and calling static

methods, 178–180
static modifier

properties, 346
required for operators, 513
use with private keyword, 178

Status property, Task object, 568
StopWatch object, 546
StorageFile class, 593

asynchronous operations, 593
streams, writing to, 593
string concatenation operator (+), 52
string keyword, 184
strings

arrays of, 230
as objects, 403
converting enumeration variables to, 209
converting to integer values, 52
coverting objets to, 50
implementation of IComparable and

IComparable<T>, 399
+= operator used on, 114
string type as class, System.String, 184

string type, 43
Structured Query Language. See SQL
structures, 212–225

arrays of, 228
classes versus, 215
common structure types, 212

 TaskContinuationOptions enumeration

 Index 783

compatibility with runtime on Windows 8 and
8.1, 224

copying structure variables, 221
comparing copy behavior of structure and

class, 222–224
creating and using structure to represent a

date, 218–221
declaring, 214, 226
declaring structure variables, 216, 226
implementing interface property in, 361
inheritance not applicable to, 266
initialization, 217
IntelliSense icon for, 11
keywords used in defining methods, 313
operators in, 518
used as parameters for Console.WriteLine

method, 252
Style elements (XAML), 664
styles, applying to Windows Store app UI, 662–671,

672
creating custom styles, 672
defining styles for Customers form, 663–671

subscribing to events, 472, 483
subtraction operator. See - (minus sign), under

Symbols
superset or subset methods, HashSet<T> class, 422
suspending and resuming apps, 626
switch keyword, 106
switch statements, 105–111, 112

fall-through rules, 108
rules for, 107
syntax, 106
writing, 108–111

synchronizing concurrent access to data, 602–619,
620

cancelling synchronization, 607–608
concurrent collection classes, 608–609
locking data, 604
synchronization primitives for coordinating

tasks, 605–607
using concurrent collection and lock for safe data

access, 609–619
syntax, 39
System.Array class, 231, 435. See also Array class;

arrays
System.Collections.Concurrent namespace, 608
System.Collections.Generic.Concurrent

namespace, 413
System.Collections.Generic namespace

collection classes, 411

IComparer interface, 407
SortedDictionary<TKey, TValue> class, 420
SortedSet<T> class, 423

System.Collections.IEnumerable interface, 435
System.Collections.IEnumerator interface, 436
System.Collections namespace, 412
System.Diagnostics.Stopwatch object, 546
SystemException class, 139
System.Int32 class, 212

implementing IComparable and
IComparable<T>, 399

System.Int64 class, 212
System.Linq namespace, Enumerable class, 489–495
System namespace, 15

assemblies implementing classes in, 17
System.Object class, 198, 266, 383

overriding Equals or GetHashCode methods, 519
ToString method, 270

System.Random class, 229
Systems.Collections.Generics namespace, 386
System.Single class, 212
System.String class, 184

implementation of IComparable and
IComparable<T>, 399

System.Text.RegularExpressions namespace, 744
System.Threading.CancellationTokenSource

object, 563
System.Threading namespace, 540

synchronization primitives, 605
System.Threading.Tasks namespace

Parallel class, 556
TaskStatus enumeration, 568

System.ValueType class, 266
overriding Equals or GetHashCode methods, 519

System.Windows.Controls assembly, 34
System.Windows.MessageBox class, 36
System.Windows namespaces, 34

T
TabularHeaderStyle style, 667
tabular layout, implementing using Grid

control, 645–655
modifying layout to scale to different form

factors and orientations, 647–655
TabularLayout state, 660
TaskCanceledException, 576
Task class, 540
TaskContinuationOptions enumeration, 576

TaskContinuationOptions type

784 Index

TaskContinuationOptions type, 543
TaskCreationOptions enumeration, 542
Task List window, locating TODO comments, 186
Task Manager, closing Windows Store apps, 29
tasks, 537–579, 582–585

canceling tasks and handling exceptions, 562–
577, 579

acknowledging cancellation and handling
exception, 572–574

adding cancellation to GraphDemo
application, 564–568

canceling Parallel For or ForEach loop, 569
continuations with canceled or faulted

tasks, 576
displaying status of each task, 569–571
handling exceptions with AggregateException

class, 575
implementing multitasking using .NET

Framework, 540–562
abstracting tasks using Parallel class, 556–560
creating, running, and controlling tasks, 541–

544
using Task class to implement

parallelism, 544–555
when not to use Parallel class, 560–562

PLINQ based on. See PLINQ
reasons to perform multitasking using parallel

processing, 537–539
synchronizing concurrent access to data, 602–

619
synchronization primitives for coordinating

tasks, 605–607
TaskScheduler object, 542
TaskStatus enumeration, 568
Task<TResult> class, 591
templates

choosing template for console application, 5
for graphical applications, 18
Windows Store app, 628, 717

TestHello folder, 7
TextBlock controls

adding to forms using Design View window, 23
adding to page in Windows Store app, 631

labels for TextBoxes, 637
labels used to identify data on page, 633
setting properties, 632

TextBox controls
adding to forms, 25
adding to Windows Store app

displaying text ID First Name, and Last
Name, 634–636

for email address and telephone number, 637
TextReader class, 118

Close method, 323
ThenBy or ThenByDescending method, 492
this keyword

use with indexers, 366
Thread class, 540
ThreadPool class, 540
threads

halting when garbage collector runs, 322
tasks, threads and the ThreadPool, 540
thread safety and Dispose method, 334

throwing exceptions, 152–156, 158
catching the exception, 154
catching unhandled exceptions, 155

Title property, changing for forms, 26
ToArray method, 506

collection classes, 426
TODO comments, 169, 186
ToList method, 504, 506
Toolbox

dragging a control onto a form, 25
showing or hiding, 23

ToString method, 50
System.Object class, 270

touch-based devices and user interfaces, 224, 624
touch-based gestures, interacting with

applications, 18
Transact-SQL Editor window, 723
transformations, 668
try/catch/finally statement blocks, 157

await operator and, 586
calling disposal method in finally block of try/

finally, 324
try blocks, 136
try/catch statement block, writing, 142–145
try/finally block, Finalize method in, 320

type parameter (<T>) for generics, 385
typeSelectionChanged method, 49
type suffixes, 50

U
UI (user interface)

creating for Windows Store apps
Adventure Works Customers app

(exercise), 628–630

 Visual Basic

 Index 785

applying styles to a UI, 662–671
implementing scalable user interface, 630–

662
events, 474–482

unary operators, 512
explicit argument, 513

unassigned local variables, 43
unboxing, 199–201
unchecked block statements, 148
unchecked keyword, 148
unhandled exceptions, 137

catching, 155
Windows reporting of, 140–142

unmanaged applications, 224
classes consumed by, through WinRT, 313

unmanaged memory, 203
unmanaged resources, destructors and, 318
unsafe keyword, marking code as unsafe, 203
unsubscribing from events, 473, 484
user experience (UX), 624
using directives, 15

using statement versus, 324
using statement, 337

and IDisposable interface, 324–326
purpose of, 335

Util class, 281

V
Value property, nullable types, 191
ValueType class, 266
value types, 183

copying value type variables, 214
copying variables and classes, 183, 204

declaring variables and classes as, 184
creating with enumerations and structures, 207–

226
structures, 212–225
working with enumerations, 207–212

creation in heap memory, 196
creation in stack memory, 196
memory allocation and reclamation for, 317
nullable types, 190
ref and out modifiers on value parameters, 195
structures, 217. See also structures
using nullable types, 190–192
using value parameters, 186–188, 192
variables of type object referring to, 199

variables, 41–43

array, 227, 248
declaring, 42
declaring implicitly typed local variables, 62
defined in code block, life span of, 196
enumeration, 208, 225
holding information about a single item, 227
initializing variable defined with a type

parameter, 441
memory allocation and recalamation for, 317
multiple, referring to same object, 198
naming, 41
scope, 72
structure, 216, 226
unassigned local variables, 43
value type, 183

variance, generic interfaces and, 403–409, 410
contravariant interfaces, 407–409
covariant interfaces, 405
invariant interfaces, 405

var keyword, 180
use in defining type of enumerable

collection, 490
using in place of a type, 63

ViewModel
adding commands to, 690–694
adding error reporting to, 751–753
adding NextCustomer and PreviousCustomer

commands to, 694–698
creating, 686–690
GoTo method, 713
implementing add and edit functionality

in, 742–750
virtual keyword, 314

declaring property implementations as
virtual, 350

inapplicable to operators, 513
virtual methods, 271, 285

and polymorphism, 272
important rules for, 272
indexer accessors implemented in a class, 371
IntelliSense display of available methods, 278

Visual Basic
functions or subroutines, similarity of methods

to, 65
functions, procedures, and subroutines, 67
global methods, 66
managed code, 224
naming class members, case and, 165
operators and language interoperability with

C#, 516

Visual State Manager, adapting Windows Store app layout with

786 Index

square brackets in C# array declarations, 228
Visual State Manager, adapting Windows Store app

layout with, 655–662
Visual Studio 2013

beginning programming with, 3–8
creating console application, 5
default development settings, 4
project files in Solution Explorer, 7
Start page, 4

creating a graphical application, 18–37
creating console application, 38
creating Windows Store app for Windows 8.1, 38
creating WPF application for Windows 7 or 8, 38
Microsoft Blend, 671
returning to, after debugging Windows Store

app, 28
Simulator, 642–645, 652–655
Technical Preview Edition, default version of

Entity Framework, 726
templates and tools for building web

services, 722
templates for Windows Store apps, 628
writing your first program, 8–14

void keyword return type for methods, 67

W
WaitAll and WaitAny methods, Task class, 544, 575

WaitAll method, 578
WaitingToRun status, tasks, 568
Wait method, Task object, 544, 575, 578
Web API template, 725
web applications, creating, 725
web services, 722

creating and using REST web service, 729–741
creating AdventureWorks web service, 730–

734
fetching data from AdventureWorks web

service, 735–741
inserting, updating, and deleting data through

REST web service, 741–759
implementing add and edit functionality in

ViewModel, 742–750
integrating add and edit functionality into

Customers form, 754
reporting errors and updating the UI, 751–

754
testing Customers app, 756–759

Where method, 490, 501, 508

where operator, 496, 508
while statements, 115–121, 133

syntax, 115
writing, 116–121

white space in C#, 40
widening conversions, 527
widths for Windows Store apps

default minimum, 640
defining layout for narrow view, 656–659
testing in Simulator, 654

Win32 APIs, 224
Windows 7

exercises in this book, 19
Open dialog box, 117
starting Visual Studio 2013, 4
templates for graphical applications, 18

Windows 8 and 8.1
asynchronicity in Windows 8.1, 581
compatibility with Windows Runtime (WinRT)

on, 311–313
contracts in Windows 8.1, 701–716
creating console application in Visual Studio

2013, 3
creating graphical application in Visual Studio

2013 (Windows 8.1), 19
exercises in this book, 19
gestures interacting with Windows 8.1, 625
icons and toolbars for Windows 8.1,

displaying, 647
Open file picker (Windows 8.1), 116
running Windows Store app in Debug mode in

Windows 8.1, 28
structs and compatibility with Windows

Runtime, 224
templates for Windows Store apps (Windows

8), 18
Windows 8.1 running on wide range of

devices, 625
Windows Store style UI (Windows 8.1), 18

Windows Forms Application template, 18
Windows Phone devices, width of, 640
Windows Runtime (WinRT), 224

asynchronicity, 581
asynchronous methods and Windows Runtime

APIs, 592–595
compatibility with, 311–313

Windows Store apps, 18, 623–672
accessing remote database from, 721–762

inserting, updating, and deleting data
through REST web service, 741–759

 XML, data from REST web service

 Index 787

retrieiving data from a database, 721–741
building using Blank App template, 628–671

applying styles to a UI, 662–671
creating Adventure Works Customers app

(exercise), 628–630
implementing scalable user interface, 630–

662
closing, 29
creating, 672
creating for Windows 8.1 using Visual Studio

2013, 38
defined, 624–627
displaying and searching for data, 673–720

implementing MVVM pattern, 673–701
Windows 8.1 contracts, 701–720

examining code generated by Visual Studio
for, 30–33

on Windows 8 and 8.1, running using WinRT, 312
templates for, 717
using Simulator to test, 642–645

Windows.UI namespaces, 34
Windows.UI.Popups namespace, 36
Windows.UI.Xaml.Controls assembly, 34
Windows.UI.Xaml.Media.Imaging namespace, 545
Windows.UI.Xaml namespace

DispatcherTimer class, 693
WinRT. See Windows Runtime
WPF applications

creating for Winsows 7 or 8 using Visual Studio
2013, 38

examining code files generated by Visual
Studio, 33

WPF Application template, 18, 21
WPF (Windows Presentation Foundation),

CommandManager object, 693
WriteableBitmap object, 545, 594
write-only properties, 346, 361

X
XAML (Extensible Application Markup Language), 19

App.xaml file for WPF application, examining, 34
defined, 20
TextBlock control for a form, 24

XML, data from REST web service, 730

about the author

JOHN SHARP is a principal technologist working for Content Master, a
division of CM Group Ltd in the United Kingdom. The company specialises
in advanced learning solutions for large international organisations, often
utilising the latest and most innovative technologies to deliver effective
learning outcomes. John gained an honors degree in Computing from Impe-
rial College, London. He has been developing software and writing training

courses, guides, and books for over 27 years. John has extensive experience in a range
of technologies, from database systems and UNIX to C, C++, and C# applications for
the .NET Framework.

He has also written about Java and JavaScript development, and designing enterprise
solutions by using Windows Azure. Apart from seven editions of Microsoft Visual C#
Step By Step, he has penned several other books, including Microsoft Windows Commu-
nication Foundation Step By Step and the J# Core Reference. In his role at Content Mas-
ter he is a regular author for Microsoft Patterns & Practices, and has recently worked on
guides such as Building Hybrid Applications in the Cloud on Windows Azure, and Data
Access for Highly Scalable Solutions Using SQL, NoSQL, and Polyglot Persistence.

	Contents at a glance
	Contents
	Introduction
	Chapter 1: Welcome to C#
	Beginning programming with the Visual Studio 2013 environment
	Writing your first program
	Using namespaces
	Creating a graphical application
	Examining the Windows Store app
	Examining the WPF application
	Adding code to the graphical application

	Summary
	Quick Reference

	Chapter 10: Using arrays
	Declaring and creating an array
	Declaring array variables
	Creating an array instance

	Populating and using an array
	Creating an implicitly typed array
	Accessing an individual array element
	Iterating through an array
	Passing arrays as parameters and return values for a method

	Copying arrays
	Using multidimensional arrays
	Creating jagged arrays

	Summary
	Quick reference

	Index

