


Praise for Scenario-Focused Engineering

“Breakthroughs often result when diverse disciplines collaborate to solve old problems using new 
perspectives. Scenario-Focused Engineering is just such a breakthrough. I’ll never see software 
design the same.”

—Eric Brechner, Development Manager, Microsoft Xbox, author of I.M. Wright’s Hard Code

“If your team focus is dominated by what you want to make, without enough consideration of 
why or for whom, this book is for you. Revitalize your team and your product by using these 
rigorous techniques that put the customer at the center.”

—Chris Pratley, Director of Program Management, Microsoft Office, creator of OneNote and Sway

“De Bonte and Fletcher have astute insight into how engineering teams build products today. 
They expertly lay out a compelling approach to the creation of desirable products and services 
through the embrace of Scenario-Focused Engineering. Read it and you’ll want to start using 
Scenario-Focused Engineering in your development processes immediately.”

—Gayna Williams, founder, Swash Consulting

“If you are new to customer-centricity or an expert with decades of experience, this book is a 
great addition to your library. It demonstrates that customer-centricity is the responsibility of 
everybody in the organization and gives readers strategies and ideas to make this happen.”

—Charles Bennett, CEO, NextTen

“Microsoft has gradually shifted from a feature-focused approach to product engineering to a 
more user-centric, scenario-focused approach. The shift was both profound and difficult. The SFE 
training they drove was instrumental to Microsoft meeting these challenges. In this book you’ll 
get the distilled lessons of that enormous undertaking.”

—Charles Eliot, Head of Engineering Services, Skype

“In this impeccably organized book, Fletcher and De Bonte combine practical wisdom and highly 
refined techniques to produce a hands-on guide that will enrich the design room as well as the 
classroom. A smart, easy read.“

—William Storage, Visiting Scholar, Center for Science, Technology, and Society, UC Berkeley

“One of the toughest challenges designers face is promoting the value behind building end-
to-end scenarios rather than hundreds of glitzy, yet disconnected features. SFE throws the old 
engineering processes out the window and replaces them with a common language, tools, 
and techniques that enable development, test, program management, marketing, and design 
to work together to deliver a cohesive, end-to-end experience. The program transformed our 
organization from the top down.”

—Bethany Kessen Doan, Principal User Experience Design Consultant



“The concepts of SFE are presented in a digestible and easily adopted way for people of all levels 
of experience. Having seen firsthand the impact the concepts can have on an engineering team, I 
am a big supporter of this way of thinking.“

—Sheri Panabaker, Principal User Research Manager, Microsoft Surface

“Three years ago, we decided to pilot the use of Scenario-Focused Engineering for our division. 
The improvements were almost immediate, and customers love the outcome. There’s no going 
back.”

—Jeff Comstock, General Manager, Microsoft Dynamics R&D

“With great examples and a proven approach, this book provides a great roadmap for really 
learning about your customers and how to build great products for them.”

—Mike Kelly, Managing Partner, Tech DNA

“Teams will greatly benefit from this book by shifting the primary focus from feature lists to  
‘who would use this product’ (target customer) and ‘why/how’ (scenarios).”

—Raja Abburi, CEO, Navaraga Corporation

“I saw firsthand how engineers became more deeply involved with customers. SFE was a great 
step forward.”

—Mike Tholfsen, Principal Engineering Manager, Microsoft Project

“Chockfull of common sense, SFE was controversial because taken as a whole it pushed for 
a much-needed culture shift at the company. We used to dream up scenarios to match the 
features we wanted to build. SFE helped teach the company how to start first with real customer 
needs and then design for the right scenarios.”

—Kent Lowry, Principal Design Research Manager, Microsoft Office

“There are a handful of moments in life that make an indelible impression on one’s memory. 
One of those moments for me was when Austina wrote at the top of the whiteboard, ‘To help 
design a product customers crave.’ SFE helped Microsoft transform, and it can help you as well.”

—Michael Corning, Senior Data Scientist, Microsoft Skype

“This book will be a priceless asset in helping me apply SFE at my company.”
—Arne de Booij, UX Strategist, SDL

“For those of you trying out SFE for the first time, trust that this system works. Trust that getting 
your engineers involved in the design process helps them understand the problem they are trying 
to solve. Trust that iterating and getting feedback on these iterations from customers can be 
done quickly. Trust that you will have that ‘aha moment’ when you show a design to customers 
and they are ecstatic. It’s then that you realize that SFE works.”

—Kevin Honeyman, User Experience Lead, Microsoft Dynamics



PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2014 by Austina De Bonte and Drew Fletcher

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any 
means without the written permission of the publisher.

Library of Congress Control Number: 2014946865
ISBN: 978-0-7356-7933-7

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related 
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of 
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/
EN-US.aspx are trademarks of the Microsoft group of companies.  All other marks are property of their respective 
owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and 
events depicted herein are fictitious. No association with any real company, organization, product, domain name, 
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without 
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or 
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by 
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave 
Project Editor: Devon Musgrave 
Editorial Production: Rob Nance and John Pierce 
Copyeditor: John Pierce 
Indexer: Lucie Haskins 
Cover: Twist Creative • Seattle

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx
http://www.microsoft.com/en-us/legal/intellectualproperty/Trademarks/EN-US.aspx


Contents at a glance

Foreword xvii
Introduction xix

PART I OVERVIEW

CHAPTER 1 Why delight matters 3

CHAPTER 2 End-to-end experiences, not features 21

CHAPTER 3 Take an experimental approach 39

PART II THE FAST FEEDBACK CYCLE

CHAPTER 4 Identifying your target customer 65

CHAPTER 5 Observing customers: Building empathy 91

CHAPTER 6 Framing the problem 153

CHAPTER 7 Brainstorming alternatives 201

CHAPTER 8 Building prototypes and coding 261

CHAPTER 9 Observing customers: Getting feedback 311

CHAPTER 10 The importance of iteration 365

PART III THE DAY AFTER

CHAPTER 11 The way you work 403

CHAPTER 12 Lessons learned 443

Appendix A SFE capabilities roadmap 476
Appendix B The Fast Feedback Cycle 499
Appendix C Further reading 501
Appendix D Selected case studies 507
Appendix E Desirability Toolkit 523

Index



This page intentionally left blank 



  vii

Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xix

PART I OVERVIEW

Chapter 1 Why delight matters 3
A car story  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

More data about me . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

My criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

The experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

What do you recommend? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

The common thread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

The reality check  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Useful, usable, and desirable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Useful . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Usable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Desirable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Putting it together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Need more proof?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 2 End-to-end experiences, not features 21
What’s wrong with features? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Think end to end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

What job is your product actually doing? . . . . . . . . . . . . . . . . . . . . . .24

Optimizing features doesn’t make an experience . . . . . . . . . . . . . . .25

Less—it’s the new more . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

Easy, seamless, pain free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Remember the ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Cradle to grave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Getting the details right . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31



viii Contents

What if there is no GUI? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

Ruby—a love story . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

The things developers say  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Don’t forget what you already know . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Chapter 3 Take an experimental approach 39
Designing a new mouse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

The Fast Feedback Cycle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Target customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Observe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47

Brainstorm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

Repeat: Observe customers again to get feedback . . . . . . . . . . . . . . 51

Keep iterating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Looking deeper  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

Haven’t I met you somewhere before?  . . . . . . . . . . . . . . . . . . . . . . . .56

The scientific method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Mix and match your toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

PART II THE FAST FEEDBACK CYCLE

Chapter 4 Identifying your target customer 65
Why you need a target customer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

You need to focus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

You can’t optimize for everyone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

Carryover gives you focus and breadth . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

A tale of two can openers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69

How does carryover work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

It’s a complex ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

What is a customer, exactly?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Getting specific about customers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



 Contents ix

How many target customers do I need? . . . . . . . . . . . . . . . . . . . . . . . 74

Identify stage: Tools and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Develop a business strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Map out your ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Strategies for maximizing carryover . . . . . . . . . . . . . . . . . . . . . . . . . . .78

Empower the team with a North Star . . . . . . . . . . . . . . . . . . . . . . . . . .79

What if you pick the wrong North Star?  . . . . . . . . . . . . . . . . . . . . . . .86

Target customer stage: How do you know you’re done?  . . . . . . . . . . . . . .87

Chapter 5 Observing customers: Building empathy 91
You are not the customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Building empathy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

What customers won’t tell you . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Unearthing unarticulated needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Generating insights about customers. . . . . . . . . . . . . . . . . . . . . . . . .100

The power of direct observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100

Needs versus insights  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

The multiple dimensions of customer research . . . . . . . . . . . . . . . . . . . . . .105

Generative versus evaluative research . . . . . . . . . . . . . . . . . . . . . . . .105

Do as I SAY, or as I DO?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

QUANT versus QUAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Using complementary research approaches  . . . . . . . . . . . . . . . . . .108

Where do I find customers? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

How many customers should I study? . . . . . . . . . . . . . . . . . . . . . . . .113

Do I need an expert? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

What is the engineering team’s role in research? . . . . . . . . . . . . . . .116

Observe stage: Key tools and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . .117

Data-gathering techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118

Secondary research sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

Turning the corner: Synthesizing data into insights . . . . . . . . . . . . .133

Deep dive: Creating an affinity diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

Step 1: Initial sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

Step 2: Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144



x Contents

Step 3: Read out and re-sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

Step 4: Tape it up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

Step 5: Look for insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

Observe stage: How do you know when you are done?  . . . . . . . . . . . . .148

Chapter 6 Framing the problem 153
Articulate the problem you want to solve . . . . . . . . . . . . . . . . . . . . . . . . . .154

Get everyone on the same page . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154

Maintain customer focus throughout the project . . . . . . . . . . . . . .156

The basics of framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

Capture the end-to-end experience with stories . . . . . . . . . . . . . . .157

Keep framing implementation-free . . . . . . . . . . . . . . . . . . . . . . . . . .160

Metrics set the bar for how good the solution needs to be . . . . . .163

Big stories and small stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

 Frame stage: Key tools and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

Tools that help you capture key metrics  . . . . . . . . . . . . . . . . . . . . . .167

Tools that help you tell the customer’s story  . . . . . . . . . . . . . . . . . .168

Turning the corner: Tools to help you prioritize your  
list of work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

Deep dive: Writing scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184

A good scenario is SPICIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

Anatomy of a scenario  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188

Scenario tips and tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191

Frame stage: How do you know when you are done?  . . . . . . . . . . . . . . .198

Chapter 7 Brainstorming alternatives 201
Where does innovation come from? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202

Patterns of successful innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . .202

Innovation does not happen all at once  . . . . . . . . . . . . . . . . . . . . . .205

Explore lots of alternatives  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209

The power of blends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210

The math behind innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211

The problem with tunnel vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215

Mitigating tunnel vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218



 Contents xi

Good ideas come from the strangest places . . . . . . . . . . . . . . . . . . . . . . . .224

Diverse people create more diverse ideas . . . . . . . . . . . . . . . . . . . . .225

Embrace the cousins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

Encourage lateral jumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226

Suspend disbelief about wild ideas . . . . . . . . . . . . . . . . . . . . . . . . . . .226

Marinating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228

Explore stage: Key tools and techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . .230

Visualization techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231

Brainstorming techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243

Supercharging your idea generation . . . . . . . . . . . . . . . . . . . . . . . . .246

Turning the corner: Deciding which ideas to move forward . . . . .248

Deep dive: Group brainstorming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

Follow the ground rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253

Facilitating a group brainstorming session . . . . . . . . . . . . . . . . . . . .255

Concluding a brainstorming session . . . . . . . . . . . . . . . . . . . . . . . . . .257

Brainstorm stage: How do you know when you are done?  . . . . . . . . . . .258

Chapter 8 Building prototypes and coding 261
Experimentation: Make data-driven decisions  . . . . . . . . . . . . . . . . . . . . . .261

Experimentation with rapid prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . .263

Prototypes come in many flavors . . . . . . . . . . . . . . . . . . . . . . . . . . . .264

Build multiple prototypes in parallel  . . . . . . . . . . . . . . . . . . . . . . . . .267

Rough prototypes stimulate more valuable feedback  . . . . . . . . . .268

Prototyping: More than just a feedback tool . . . . . . . . . . . . . . . . . .270

What makes a good prototype? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

Go from low fidelity to high fidelity  . . . . . . . . . . . . . . . . . . . . . . . . .274

Where do I focus my experiments? . . . . . . . . . . . . . . . . . . . . . . . . . . .275

I don’t have a GUI, why prototype?  . . . . . . . . . . . . . . . . . . . . . . . . . .277

When to transition from prototypes to production code . . . . . . . . . . . . .280

Where are you in the project?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281

What is the nature of the problem you are trying to solve?  . . . . .281

Which skills or tools are your team members most  
comfortable with? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282

Throw away code or production? . . . . . . . . . . . . . . . . . . . . . . . . . . . .283



xii Contents

Building code in slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284

Build stage: Tools and techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286

Paper prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286

Software for rapid prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287

Three-dimensional prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292

Prototyping with skits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292

Prototyping an API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293

Prototyping with code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .298

Deep dive: Paper prototyping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301

Building a paper prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303

Build stage: How do you know you’re done? . . . . . . . . . . . . . . . . . . . . . . . .308

Chapter 9 Observing customers: Getting feedback 311
Why get feedback? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .312

User testing comes in many flavors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313

Testing whether you fully understand the customer need  . . . . . .313

Testing whether you’ve got the right solution . . . . . . . . . . . . . . . . .316

Testing whether your solution works well . . . . . . . . . . . . . . . . . . . . .318

Fine-tuning the details of your solution . . . . . . . . . . . . . . . . . . . . . . .319

Testing real-world usage over time  . . . . . . . . . . . . . . . . . . . . . . . . . .320

Formal versus informal testing approaches. . . . . . . . . . . . . . . . . . . .320

Testing for improvement versus confirmation . . . . . . . . . . . . . . . . .322

The Zen of giving and receiving feedback . . . . . . . . . . . . . . . . . . . . . . . . . .323

How to listen for feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323

Ask open-ended questions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324

Present multiple options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325

How to give feedback (to teammates) . . . . . . . . . . . . . . . . . . . . . . . .326

Observe stage (feedback): Key tools and techniques . . . . . . . . . . . . . . . . .327

Scenario interview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327

Lean Startup “fake homepage” approach . . . . . . . . . . . . . . . . . . . . .327

Concept testing and focus groups . . . . . . . . . . . . . . . . . . . . . . . . . . .328

Surveys and questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330

Cognitive walk-through  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332

Heuristic evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333



 Contents xiii

Wizard of Oz test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334

Informal testing and observation . . . . . . . . . . . . . . . . . . . . . . . . . . . .334

Usability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338

Eye tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339

Card sorting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341

A/B testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341

Big data, usage telemetry, and continuous feedback . . . . . . . . . . .345

Deep dive: Usability testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350

Discount usability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351

Formal usability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355

How many people do I test?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358

Biases of usability testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .360

Getting feedback: How do you know when you are done?  . . . . . . . . . . .361

Chapter 10 The importance of iteration  365
What does (good) iteration look like? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366

Iteration is a feedback system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .366

Iterate quickly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .367

Iterate throughout the entire project life cycle  . . . . . . . . . . . . . . . .370

Iterate in a funnel shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371

How many alternatives are enough?  . . . . . . . . . . . . . . . . . . . . . . . . .373

Unpacking the Fast Feedback Cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374

Understand versus create . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .374

External versus internal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375

Diverge versus converge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376

The sawtooth  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378

Turning the corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .380

Phases of iteration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383

Needs phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384

Solution-tradeoffs phase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387

Details phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391

What about small projects? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .393

Final thoughts on iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .396 



xiv Contents

PART III THE DAY AFTER

Chapter 11 The way you work 403
Shift from doing many things to focusing on a few . . . . . . . . . . . . . . . . . .404

Shift from milestones to sprints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407

Shift from work-item lists to scenario hierarchies  . . . . . . . . . . . . . . . . . . .409

Story hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .410

Work-item tracking system  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .415

Shift from ad hoc user testing to regular customer touch points . . . . . .418

Shift from bug counts to experience metrics  . . . . . . . . . . . . . . . . . . . . . . .419

Three kinds of metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .420

Measuring customer experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . .421

The science of summative data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .422

Capturing benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .423

Trending key metrics over time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .424

Experience scorecards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .425

Shift from building components to building experience slices  . . . . . . . .427

Shift from upfront specs to alternatives, prototypes,  
and documentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .430

The alternatives (alts) doc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .431

The prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .432

Functional specs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .432

Shift from component reviews to experience reviews  . . . . . . . . . . . . . . .433

How leaders can help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .435

Shift from individual focus to team focus  . . . . . . . . . . . . . . . . . . . . . . . . . .438

What doesn’t change? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440

Chapter 12 Lessons learned 443
Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .443

Getting to aha isn’t enough . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .443

This isn’t paint by numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445

You don’t have to do everything . . . . . . . . . . . . . . . . . . . . . . . . . . . . .445

Don’t overindex on scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .447



 Contents xv

Don’t forget about the end-to-end experience . . . . . . . . . . . . . . . .447

Team dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .448

Engineers are natural skeptics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .448

Collaboration isn’t everybody doing everything together . . . . . . .450

It’s difficult to predict who will shine or where . . . . . . . . . . . . . . . . .451

Semantics matter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .454

The role of leaders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .455

Leaders: What got you here, won’t get you there . . . . . . . . . . . . . .455

You can’t fake a business strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . .457

You can’t overcommunicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .458

The way to convince an executive . . . . . . . . . . . . . . . . . . . . . . . . . . . .459

Managing change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .462

Teams with sustained focus from leaders make  
bigger changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .462

Middle managers are the hardest to bring onboard . . . . . . . . . . . .463

Harness champions as change agents  . . . . . . . . . . . . . . . . . . . . . . . .465

You can’t grow a foot overnight . . . . . . . . . . . . . . . . . . . . . . . . . . . . .467

Pilot with a small team first  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .469

The change is bigger than you think  . . . . . . . . . . . . . . . . . . . . . . . . .470

Appendix A: SFE capabilities roadmap  476

Appendix B: The Fast Feedback Cycle 499

Appendix C: Further reading 501

Appendix D: Selected case studies 507

Appendix E: Desirability Toolkit 523

Index 525



  xvii

Foreword

As a leader of a large organization, I know that change is hard. Systems are built up over many years 
to prescribe the what and how of things. Organizational structure, design artifacts, and processes are 
all put in place with good intentions. Each individual decision is often the right one, but the cumula-
tive effect can lead to interesting traps.

You might find yourself in a place where, despite your best intentions and years of wisdom, you 
and your organization have lost sight of what’s most important to your customers. Worse, even when 
you find out what’s important, your processes can be so rigorous that they thwart common sense. 
You still end up shipping a bad product.

After finding ourselves in just such a position in late 2011, my team and I set out to change every
thing. We started with the design process and adopted Scenario-Focused Engineering. Then we 
changed our processes to become more agile, adopting a team-wide cadence of four-week cycles 
with individual groups measuring their work day to day. Finally, we changed our organizational struc-
ture to eliminate artificial specialization of the development and test teams.   

Figuring out what to do and implementing it across an organization of a thousand plus people 
took nearly a year. Mastering the new way of doing things took another 18 months on top of that. We 
had incremental gains at every step, but no one was certain that the new way was better than the old 
until near the end of the process. Then it became obvious that we were producing better products in 
less time and with less wasted effort. 

At every step there was reluctance and even resistance, sometimes within the team, but just as 
 often from outside—other organizations had a vested interest in defending the old way, and some-
times management feared what was new.  

Perseverance is required if you intend to implement change at scale. Fixing products is easy. Fixing 
the processes and organizations that build them is hard. The tools and techniques in this book are a 
powerful starting point for change. Use them wisely on your teams.

Hal Howard 
Corporate Vice President 
Microsoft Corporation



This page intentionally left blank 



  xix

Introduction

We are all too busy these days to do anything that doesn’t add value to our lives in one way or 
 another. So why are you spending your precious time with this book? Did somebody recommend it  
to you? Did you flip through the pages and see something that resonated with you? What added 
value are you expecting this book to provide?

If we’ve done our jobs well, the answer is simple. Circumstances in your life right now are urging 
you to improve your craft as a software engineer. You may want to improve the products and services 
you create for your customers. Perhaps you’ve noticed that your competitors are delivering solutions 
that seem to resonate with customers better than yours do. You may be thinking that there’s a better 
way for your team to develop products, and you’re looking to be a change agent for your team. Or 
you may be dreaming of creating the next breakthrough product—an offering that becomes so loved 
that it will have its own fan club. You aspire to get closer to your customers’ needs and desires and to 
build products that they crave, products they use because they want to, not because they have to.

We think there is a better way to engineer software. We believe that innovation and creativity can 
be taught, and that there is science behind it, not just art. This book bridges the gap between the 
power of analytical, deductive reasoning and the seemingly unstructured world of creativity, innova-
tion, and customer delight. It presents both the methods (things you do) and the mindsets (attitudes 
and points of view) that have been shown over time to be effective tools for creating desirable, 
 innovative products.

Who are you?

You are an engineer. You think logically and systematically. You’re smart, and you don’t have a lot 
of patience for those who aren’t. You value rigor, science, and efficiency. You strive toward finding 
 elegant solutions to every problem. You like to get things done, to make visible progress, to cross 
items off your to-do list. You don’t like to waste time, and you hate rework. And you certainly don’t 
want to waste any more of your life writing code that no one appreciates.

You’d like to be more creative, to be more innovative, to do something that has never been done 
before, that no one has ever imagined. You aspire to invent something so groundbreaking that it will 
change the world. But all the things you’ve read about innovation and creativity feel a bit hollow to 
you. You sense a lot of hand waving and magic pixie dust and see no real substance; there’s too much 
art, and too little science. But still, you have a nagging feeling that there has got to be a better way 
and that your current approaches aren’t quite working as well as you’d like. This book is for you.



xx Introduction

Or perhaps you lead a team of software engineers and want to shift the focus of your team from 
caring about the innovative details of the technology you’re building to caring more about delighting 
the customers you want to serve. This book is especially for you.

Or maybe you’re a designer, a user researcher, a product planner, a project manager, or a marketer 
and work with engineers who tend to influence big decisions on the basis of their technical knowl-
edge. You wish those engineers knew better how to understand and use your expertise. This book is 
for you, too. 

Our story

We are both engineers, who together have more than 35 years of experience designing, building, 
and shipping software products and online services at Microsoft. During our careers, we’ve witnessed 
a few teams that had great success in building  innovative products that resonated with custom-
ers. These teams had a few things in common: a strong vision, a deep sense of empathy for their 
 customers, and an iterative approach, sometimes trying tens or even a hundred alternatives over the 
course of a single release. One other common trait emerged—a healthy and productive relationship 
 between the engineering team and the user-experience design and research team. Instead of work-
ing separately, with one team tossing ideas and designs over the wall for the other team to build, the 
engineering and design teams began to function as an integrated whole. Indeed, the very qualities 
that made those engineering teams so strong—their iterative approach and customer focus—were 
also core values of their user-experience partners.

With firsthand experience in using a highly iterative, customerfocused approach on several of 
our own projects—as well as living through some less-than-ideal situations—we knew how powerful 
this approach could be in developing outstanding products. Yet we also saw that some of our fellow 
engineers found this approach counterintuitive. Where we saw tremendous quality and efficiency 
in getting regular feedback from customers, we were surprised that others feared wasted effort. 
While some people saw long lists of features as a structured way to plan work, we feared that actual 
customer needs were being forgotten. Where we saw a rigor and science behind a customer-focused, 
iterative approach, some people saw only the artistic skills of craftspeople who knew how to make 
beautiful graphics. Both perspectives had their merits, but few teams found a middle ground to  
work from.

We also noticed that we weren’t alone. A large number of engineers—as well as designers, 
researchers, marketers, and business people—also saw power in a customer-focused, iterative 
 approach. Some of these people found one another and thrived as they helped their teams build 
innovative, groundbreaking products. However, many of these people felt increasingly alone on their 
teams—lone wolves unable to convince their pack to change its technology-focused approach. Most 
team members knew that they should be talking to customers more often, gathering more feedback, 
caring more about what customers thought, and striving for a higher level of quality, but the rhythm 
of daily work just didn’t leave much room for this to happen.



 Introduction xxi

We founded the Scenario-Focused Engineering (SFE) initiative in 2008 to help close this gap. On 
one side, we sought to help every engineer see the value of using a more customer-focused, iterative 
approach to developing software and realize that this approach is fundamentally logical, rigorous, 
and based on science. On the other side, we wanted to enlist and empower those who already under-
stood these ideas and help them become leaders on their teams as they blazed a path to the future. It 
was a grassroots effort aimed at a pretty lofty goal: to fundamentally rethink how  engineering teams 
go about designing products, services, and devices and to drive company-wide change. We were 
lucky to get to focus on this mission as our full-time jobs, as part of the Engineering Excellence team 
within Microsoft’s Trustworthy Computing division. Over the next six years, we reached more than 
22,000 engineers, and in the process learned a lot about what practices work in real life and how to 
catalyze significant change on a large scale.

What we discovered

We spent the first months conducting lots of interviews across the company. We had some hypoth-
eses about the issues teams were facing, but we wanted to validate our assumptions by talking to lots 
of engineers on different product teams. The problems weren’t difficult to identify, and we quickly 
noticed that the same stories were repeated over and over again:

Each person on the team has a different idea about what’s most important, what we’re building, 
who we’re building for.

We do usability testing and betas, but the feedback comes back too late in the cycle to  
address it.

We ended up having to make a huge design change late in the cycle and had to throw away a 
lot of code. We wasted a lot of effort.

We had more features, but the competitor ate our lunch because their product had a better 
overall experience.

After a while, we began asking every team we worked with whether these statements sounded 
familiar. Their response was yes. But almost universally, very few teams had made any substantial 
progress in fixing these issues or even knowing where to start. 

At the same time, the industry was rapidly accelerating toward online services, and with that shift 
came a desire for more frequent releases, even multiple releases each day, to provide new functional-
ity to users as quickly as possible or to fix bugs as soon as they were found, not weeks or months later. 
This sea change intensified customer expectations, and we heard a growing voice within teams that 
we needed to find more efficient, effective ways to ship the right stuff, faster.

We already had the intuition that techniques such as the user-centered design methodology  
were an important missing link. Indeed, we weren’t the first ones to  discover this. Microsoft already 
had a long-running training course, offered every few weeks, that took students through the basic 
principles and techniques of user-centered design. The class was exhilarating to teach. Frequently, 
some students had breakthroughs during class and left feeling passionate and inspired. Yet, later on, 



xxii Introduction

we regularly heard from many of these same students that they weren’t able to put any of the ideas 
they learned into practice. Between their manager, coworkers, project schedules, tools, performance-
review commitments, and all the other realities of their work, these new approaches simply didn’t fit. 

Other students simply didn’t understand what was being taught and occasionally became trouble-
some in class. These cases were rare (skeptics usually don’t elect to take an optional course on a topic 
they don’t believe in), but we certainly did get a taste of the depth of skepticism that could be found 
in our engineering community.

It became clear to us that to really light a fire would require much more than having individu-
als take a one-day class. We doubled down on our mission to catalyze change within the company 
and identified two central insights that drove our work for the next six years. First, while engineers 
are known for being intelligent and adept at solving complex problems, they tend to view the 
world differently from people in creative disciplines. A large gap exists in how these two groups 
 naturally  approach solving problems, in the processes they use, and in the mindsets they maintain. 
For  example, imagine a designer at a creative brainstorming session. She embraces the most unusual 
ideas and encourages more of them, without restraint and regardless of any practical implications. 
She’s comfortable following somewhat unpredictable paths of reasoning and has faith that the 
process will result in discovering a potentially innovative solution. Now envision an engineer at this 
same brainstorming session. He will likely look at the list of ideas and begin to prioritize them based 
on criteria such as market readiness, the cost of delivery, or the amount of effort required. He might 
ask for clarification of the problem statement and begin to do a rootcause analysis. The engineer 
will immediately begin to start narrowing the possibilities to get to an answer, but the designer will 
strive to broaden the possibilities. We believe that to optimize the chances for success, you need 
both  approaches (or styles) to balance and complement each other. We’ve observed that most teams 
tend to strongly favor one style over the other, and at  Microsoft that style almost always favored the 
engineer.

Second, to get any of our ideas adopted was going to require a whole team—a  systemic effort 
that started with each team’s leaders and moved down to every individual contributor. The reality is 
that it takes a team to build a product, and if you expect change to occur, you need to push the entire 
team toward change. Customer-focused, iterative product development is not something that can 
be delegated to someone else to do. It takes the entire team, especially those engineers whose first 
response to the ideas of SFE is deeply skeptical.

Where did SFE come from?

The general principles behind SFE are not new. They come from sources such as user-centered 
design (UCD), design thinking, customer-focused design (CFD), human- computer interaction (HCI), 
and practices we observed while working with Microsoft teams and from the industry. (Iteration and 
 customer-centricity are both very hot ideas right now, and have only gotten hotter since we started 
teaching SFE in 2008. You can find many great books on these topics; we’ve listed some in  
Appendix C.) 



 Introduction xxiii

If we had to choose the single largest influence behind SFE, it would be the ideas and practices of 
design thinking, a holistic method of problem solving that is based on the practices of user-centered 
design. It is not a stretch to say that SFE is an instantiation of design thinking wrapped in engineering 
terms and concepts. 

However, during our journey of creating and refining ScenarioFocused  Engineering, we were 
 delighted to see other new approaches to software development gain traction and popularity. As  
SFE was first gaining momentum within Microsoft, Agile development was quickly becoming a main-
stream practice. As we learned more about Agile and saw how compatible it was with SFE, we made 
some adjustments in the way we spoke about SFE to find the most natural way to present its concepts 
and practices in the context of Agile development. That adjustment came quite naturally because SFE 
also values a highly iterative process, and as such is well suited for teams that have already embraced 
Agile development practices. Throughout the book we mention Agile concepts and terminology and 
point out ways to incorporate SFE techniques into an Agile development environment. 

In 2011, Eric Ries published The Lean Startup, and the ideas he describes have since gained 
 tremendous popularity. The Lean Startup is also based on the notion that you want to learn quickly  
by trying out ideas. Ries’s approach is generally focused on using actual customer behavior to deter-
mine the viability of the business ideas you are pursuing. It has a strong focus on experimentation 
and making adjustments based on what you learn. In Chapter 4, “Identifying the target customer,” 
we discuss the importance of identifying specific target customers and honing in on a viable business 
strategy. The Lean Startup provides a wealth of ideas, stories, and examples for achieving these goals 
in ways that are highly synergistic with the activities SFE offers for thinking through complete end-to-
end customer experiences. 

About the SFE workshop

This book attempts to relay the content of our SFE workshop as well as the experience that a partici-
pant might have. It also passes along insights we’ve gained after working with teams on  implementing 
SFE over the past six years, so it goes into much more detail than the original workshop. 

There was no executive mandate at Microsoft for teams to go through SFE training. Every team 
 engagement was driven at the grassroots level, and teams sought SFE training based on word-of-
mouth reports. Leaders made an informed decision for their team, when and if the timing was right, 
which was often at the start of a major release cycle. Sometimes the engagement was scoped to 
an individual team, but it often involved an entire division of several hundred or several thousand 
people.

It’s helpful to know a bit about how we run the workshop. Most importantly, the workshop is a 
team event, and the involvement of management is required before, during, and after the workshop. 
A single instance of the workshop is made up of four mandatory sessions:

 ■ Senior leader day This is an all-day session with the highest-level leaders of a team (vice 
presidents, general managers, development managers, and so on). This session typically 
involves 10–35 people. We present the content of the workshop and discuss implications for 



xxiv Introduction

the leaders’ organization. We also describe any customization of the workshop that’s desired. 
At the end of this session, a decision is made whether to pursue training for the larger team or 
division. 

 ■ Preworkshop meeting for group managers In separate one-hour meetings, we preview 
the workshop for the three to five grouplevel managers on each individual engineering team. 
This session is required for each team. We discuss the expectations of the management team 
and the logistics for the daylong workshop. We’ve learned that even for very large organiza-
tions, it is crucial to get buy-in from managers for each engineering team separately.

 ■ The workshop itself In a full-day, hands-on workshop, all members of each engineering 
team (and often key partners) are required to participate,  including group managers,  
developers, testers, program managers, user-experience professionals, product planners, etc. 
We  optimize the room, furniture layout, and training curriculum for a class size that accom-
modates a full engineering team of up to 120 people. By training together in the same room, 
team  members can look around to see that the entire team is present and that leaders are 
fully engaged. When the energy and buzz of the room escalates and a promising change or 
action item for the team is discussed, the seeds for consensus are planted in real time.

 ■ Postworkshop meeting for group managers We meet with each set of group managers a 
second time for two to three hours. We analyze and discuss feedback generated by their team 
during the team workshop. This “crowd-sourced” feedback gives the managers insights into 
which ideas are most relevant for their team, helping them settle on an initial set of techniques 
to adopt and put a plan in motion. 

The handson exercises and content of the workshop are customized for each team’s specific 
target customers, development practices, and market situation. Throughout this book, we introduce 
some of these exercises, with the intent to give you a sense of both the personal experience and the 
team dynamics that take place. You’ll gain value from doing some of the exercises on your own, and 
others can serve as interesting thought experiments. 

We have delivered the SFE workshop to hundreds of teams and worked alongside many of them as 
they put SFE concepts into practice. We’ve learned a lot, finetuned ideas that work, and abandoned 
those that don’t. We’ve discovered many gotchas and pitfalls, and we’ve had the opportunity to  
observe and participate in large-scale change in teams of all shapes and sizes. Some teams we  
worked with made huge strides with the ideas in this book, and we’ll share some of their stories and 
successes. However, we’ve also been humbled to see that some teams were not able to make the 
shift to adopt many of the ideas in this book, despite (in most cases) valiant efforts. The places they 
stumbled are noteworthy, provide important lessons, and are a reminder to future teams to take the 
change process seriously. 

The workshop, however, is just the beginning of the journey. It serves as a catalyst to get the 
whole team on the same page, working with a common vocabulary and aligned to similar aspirations. 
The real work begins the day after the workshop, when the team must start to put these ideas into 
practice by adjusting tools, schedules, and roles and building new habits. Although the ideas in this 
book are straightforward, for most software engineering teams, they represent significant changes to 



 Introduction xxv

day-to-day work habits and practices, as well as team culture, values, and habits. The change process 
is significant, and we’ll discuss aspects throughout the book and in detail in Part III.

What will you get out of this book?

This book is about discovering how to put customers at the center of your engineering efforts. It 
describes effective and efficient ways to iterate and explore so that you can deliver solutions that 
 customers will find deeply delightful, and deliver them as quickly and efficiently as possible. It’s our 
hope and intent that this book will inspire you to reach out and connect with your customers in a 
richer way than you ever have before. 

We also strive to arm you with enough data, tools, examples, tips, and gotchas that you have the 
confidence to take action and will be motivated to try out some of these ideas in your current project; 
in short, after reading this book, you will know just enough to be dangerous. We include references 
to our favorite books on each topic at the end of this book so that you can dig deeper into the tech-
niques you choose to invest in. We expect that you will need to reach out to experts or to leverage 
some of the references we list to put these practices to full use. This book will help you figure out the 
menu of what’s available and help you make informed choices about the most appropriate techniques 
for your individual situation. Finally, we hope that many of you are energized by this book and begin 
an effort on your team to put customers at the center of your work.

A special note to the user-experience community
Thanks for checking out this book. While you already know that it is not targeted directly at 
you, there is tremendous value in bridging the gap between what you know how to do and 
what engineers know how to do, and that is what we are aiming to do. As the saying goes, “It 
takes two to tango.” We are trying to get the dance started.

Over the years, we’ve noticed that user experience (UX) designers and researchers have a 
few fairly predictable reactions to the idea of presenting a detailed workshop about customer 
focus, iteration, and design practices to engineers. We’ve spoken to other authors who have 
written books on the design process and have been fascinated to discover they have had the 
same experience with the UX community. Those reactions are worth a bit of discussion here so 
that you can bypass the anxiety and get directly to the value. Here are the three gut responses 
we tend to hear from UX professionals: 

We learned all this early on in design school. These are the basics. This isn’t even the meat 
of design work. It’s not worth my time; there is nothing here for me to learn. 

Hey, wait a minute! You can’t just boil down these complicated and sophisticated concepts 
and skills and wrap them in warm fuzzies about collaboration and expect amateurs to get the 
same great design results I’ve produced for years! Sure, readers will learn some principles and 
buzzwords, but I don’t want software engineers thinking they really know this stuff. And you  
know these engineers: when they learn a little, they think they know everything. I don’t want  



xxvi Introduction

 
to have to clean up more mess. I won’t admit this publicly, but when it comes to budget crunch 
time, this will make me worried that the pointy-haired managers will see me as redundant!

We’re BFFs at last! Is it possible that by learning more about the importance of the 
design process, engineers will finally see the value I can bring to the team? If I can be seen 
as a champion for a customer-centric effort using terminology and processes the team 
understands, maybe they’ll stop throwing decorative UI projects over the fence and will 
actually engage with me from the product’s conception through delivery.

We get it. We understand. We can say with some confidence that if you went to school for 
interaction design or user research, most of the principles and techniques described here will 
be well known to you. (To software developers: think about it as giving an “Introduction to Data 
Structures” class to someone who’s never studied computer science.) And we know that we  
cannot represent the full scope of the research and design professions in a few chapters aimed 
at people who are trained in different skills.

However, our experience is that if an engineering team embraces the ideas in this book,  
several outcomes are likely. First, the demand for your skills and experience will increase, not 
decrease. The engineers will now understand the breadth of your experience and will under-
stand that it’s not quite as easy as it looks, and you will become very, very popular. Second, you 
will spend less time fighting for the right things to happen, as the entire team will be aligned 
on the customer’s needs from the beginning. Third, if it does not exist already, the team will 
demand that you create and fill a reliable customer feedback pipeline. And finally, you will have 
more time to go deep on detailed research and design work. Other people on the engineer-
ing team will now be able to effectively contribute the basic elements that frequently spread 
your time too thin. You will be able to build on those elements and proceed with a newfound 
 confidence, finally having the opportunity to use your true expertise. The really cool part is 
that once you make that shift, everyone on the team will have a shared vocabulary. Everyone is 
sitting at the same table, speaking the same language, able to work together more effectively 
than ever to create products that will delight your customers. 

Organization of this book

This book is divided into three sections. Part I, “Overview,” delves into the reasons why customer 
delight and end-to-end experiences are so important and introduces the Fast Feedback Cycle, which 
powers the Scenario-Focused Engineering approach. Part II, “The Fast Feedback Cycle,” details 
each stage in the cycle, describing the principles and key considerations for each stage as well as 
 techniques to choose from. In several “Deep dive” sections, we offer details about our favorite, most 
broadly useful techniques. Part III, “The day after,” discusses insights we’ve gained from watching 
many teams adopt the practices of Scenario-Focused Engineering. The insights involve project man-
agement implications and the realities of shifting team culture.



 Introduction xxvii

This book also includes appendixes that provide resources and references. Appendix A presents 
the “SFE capability roadmap,” a checklist teams can use to gauge their level of sophistication in 10 
core capability areas. Appendix B provides a one-page diagram of the Fast Feedback Cycle along 
with the most essential ideas for each stage. It makes a great poster. Appendix C, “Further reading,” 
provides a list of books and resources for further exploration. Appendix D offers two case studies of 
teams that used the SFE approach. Appendix E, “Desirability Toolkit,” is a reference list of the words 
used in the Desirability Toolkit technique presented in Chapter 9.

How to read this book

This is a pretty long book, with a lot of varied content. Some sections read like hard-to-put-down 
stories, perhaps something you’d enjoy reading on an airplane. Other sections present encyclopedia-
style descriptions of tools and techniques that are perfect as a reference guide. Still other sections 
give indepth instruction on a specific technique that you could apply in your work. 

While we certainly welcome you to read this book cover to cover, we know that different people 
have different needs from a book such as this one. We’ve organized the book so that it works for 
 several different kinds of readers and situations. Here are a few suggestions for ways you might 
 experience the content of this book:

 ■ The toe in the water You’ve always been interested in innovation, technology, creativ-
ity, and building products that customers’ love. You suspect that you can do some things in 
your own work that would make a big difference. But you are super busy, don’t have a lot of 
time to read, and certainly don’t want to take on the task of plowing through a long, detailed 
reference. You’d love to take a couple of hours and learn some new things and perhaps feel 
energized to bring up a couple of new ideas at work.

Read Chapters 1 through 3. These are fun, easy chapters and stand alone quite well. You’ll get 
a great introduction to the ideas behind SFE—why it’s important and what is involved—and 
come away with some good anecdotes to share at the water cooler.

 ■ The deeper read You are about to get on a coasttocoast flight, and you’re looking at the 
bestsellers in the airport bookstore. You’re looking for something that will be an engaging 
read, that has the potential to add a lot of value to your work when you return. Wondering if 
this book might be helpful, you flip through a few pages and find yourself saying, “So true, so 
true. Oh, my gosh, that’s my team,” and your curiosity is piqued.

Read Chapters 13 and the first half of each chapter in Part II, skipping the tools and tech-
niques sections. Reading these portions of the book will give you a solid overview of SFE and 
the Fast Feedback Cycle, including the standout mindshifts and behaviors. If you have more 
time, take a look at Part III and Appendix A to crystallize your thoughts around the current 
state of your team, a few things you might like to try, and how you might go about doing so.



xxviii Introduction

 ■ The student You’re in the middle of a university program, working toward a degree in 
computer science. You’re taking a hot new class that claims to bridge the gap between the 
business, computer science, and design schools and this is the textbook.

Focus your reading on Part II, Chapters 4-10, which describes the Fast Feedback Cycle and the 
techniques in detail. Parts I and III and the appendixes provide some real-world context, but 
the meat of the book is in Part II and includes all the howto information and the specific tech-
niques you’ll draw from. We hope you have fun and that your class project yields a bazillion-
dollar idea. Go forth and delight!

 ■ The change agent You are already a fan of SFE and the Fast Feedback Cycle. Maybe you’ve 
taken a class, have used these ideas on a previous team, or have read through Part I and 
 gotten inspired. Now you want to help your team gain proficiency in some of these practices.

Start by reading Part III (Chapters 11 and 12) to get some perspective on how best to intro-
duce a new practice to your team. Then, pick a chapter in Part II that covers an approach that 
you think will add the most immediate value to your team. Focus your team on trying out a 
few of the different tools and techniques presented in that chapter and gain some experience 
in that area. After some early success, you and a few of your cohorts might dig into the SFE 
capability roadmap in Appendix A to assess where you are and to figure out what areas you 
might work on next.

Contact us

SFE has grown beyond Microsoft. There is a large and growing community of SFE practitioners 
worldwide. Join in the conversation. We love to hear from readers. Please tell us how these ideas are 
working for you and what new techniques you’ve developed so that we can all continue to learn and 
iterate: http://www.scenariofocusedengineering.com.

Acknowledgments

Although this book was largely written by two people, it is the reflection of the hard work, passion, 
and dedication of hundreds of people—the Scenario-Focused Engineering community, whose  
members spent countless hours teaching, iterating, coaching, and practicing these techniques with 
their teams throughout the past six years. 

First and foremost, we’d like to thank our families. 

Austina: To Erik, Maja, and Viktor, thank you for your infinite patience, allowing me to sit in my 
chair and write—for what seemed like ages, and long into the wee hours. An enormous thank you to 
my parents, who lived with us this past year and helped so much with keeping the household running, 
feeding all of us, and delivering the kids wherever they needed to be. Thank you all for being there 
and for believing in me and in this crazy project.

http://www.scenariofocusedengineering.com


 Introduction xxix

Drew: To Kristy, Kylie, and Derek. I am so lucky to have each of you in my life. You have been my 
inspiration and my muse. Thank you for understanding when I didn’t have time to cook a proper  
dinner (although I have learned how much you do like the frozen Chinese food from TJ’s), was late 
picking you up from school, and why I was occasionally grumpy and tired after a long day of very 
deep thinking. But most, thank you for being you and for sharing your lives with me. I love you all 
dearly. 

A handful of people have been instrumental in helping us write this book. Without them, this book 
would never have been finished. Thank you to Kent Sullivan for being our resident UX research guru 
and for providing data, countless interviews, and tireless reviews and for essentially ghost writing 
Chapter 5 and Chapter 9. Thank you to  Norman Furlong, who was our official sidebar wrangler and 
who kept our spirits high. Many thanks to William Parkhurst, who provided inspiration and motiva-
tion, gave valuable feedback every step of the way, and, when we needed it the most, provided 
 surfing lessons. Finally, thanks to Jeanine Spence, who did the lion’s share of the work to conceive, 
build, and test the SFE capability roadmap (see Appendix A) and who synthesized data from more 
than 60 experts across Microsoft and the industry. 

We’d like to offer a special note of gratitude to Dr. Indrė Viskontas, our resident neuroscientist and 
opera star. When we first approached Indrė, we had one topic in mind that we wanted her thoughts 
on. That initial idea quickly grew to a long list of topics, as it became clear how much overlap there 
was between our work and the available science to support it. We are deeply grateful to Indrė for her 
insights and contributions to this book.

In all, the book contains roughly 40 “SFE in action” sidebars. Thank you to everyone who contrib-
uted sidebars or provided their expert advice. Sadly, because of space constraints, we were not able 
to print all the sidebars that were contributed, but we are deeply thankful to all the people who took 
the time to suggest sidebars and other content proposals.

Many people offered their time and patience to help us test the concepts in this book and to 
review the text as it was drafted, rewritten, finetuned, edited, rewritten again, and finally sent to 
production. A special thank you for going above and beyond goes to Paula Bach, Bill Chiles, Steven 
Clark, Terrell Cox, David Deer, Bernie Duerr, David Duffy, Paul Elrif, Serguei Endrikhovski, Valentina 
Grigoreanu, Kevin Honeyman, Karl Melder, Susan Mings, Damien Newman, Bruce Nussbaum, William 
Parkhurst, Victor Robinson, Prashant Sridharan, Bill Storage, Mike Toot, Sam Zaiss, the entire SFE team, 
and the many other SFE champions within Microsoft. 

Throughout the book, we talk about design as a team sport. The team that developed, taught, iter-
ated, and coached SFE is no exception. We are ever grateful and humbled to have had the opportu-
nity to work with the strong group of passionate engineers who made up the SFE team over the years:

 ■ SFE instructors and core team Jeanine Spence, the synthesizer-conceptualizer  
extraordinaire; Kent Sullivan, our ultra-collaborator; Margie Clinton, who still holds the record 
for teaching the most classes; Ken Zick and Norman Furlong, who made the toolbox  repository 
happen; Alex Blanton, who brought us “The Delighted Customer” blog; Ed Essey, who folded  
in Agile concepts and crucial platform team examples; Seth Eliot, who taught us about  
experimentation; Phillip Hunter, who taught us the nuances of the meaning of “delight”; and 



xxx Introduction

Court Crawford, who was such a passionate champ that he joined the team. The early  teaching 
team included Bill Begorre, Bill Hanlon, Richard Kleese, Marina Polishchuk, Alec Ramsey, and 
Surya Vanka. The international teaching team included Alex Cobb, Sven Hallauer, Antonio 
Palacios, Lior Moshaiov, and Jayashree Venkataraman. The early PM team was John Pennock, 
Li Lu-Porter, and Van Van. The founding team included Keith Bentley, Margie Clinton, and 
Michael Corning. 

 ■ Instructional design team Robert Deupree, Fredrika Sprengle, and Brian Turner.

 ■ Operations team Robyn Brown, Joetta Bell, Kim Hargraves, Cristina Knecht, and LouAn 
 Williams. 

Thanks to Wendy Tapper for helping to get SFE off the ground by designing the “green card” 
in her spare time; our calling card has truly stood the test of time. Thanks also to Peter Moon, who 
saw the value in SFE early on and customized and adapted the SFE workshop for delivery to several 
thousand engineers in the IT departments at Microsoft. Gratitude also goes to Karl Haberl, Martin 
Plourde, and Brian Pulliam, who taught us how to measure and scorecard SFE’s impact. Special thanks 
to Alec Ramsey for conceptualizing the first versions of the Fast Feedback Cycle model, which became 
the backbone of Scenario-Focused Engineering. Thanks also to Dean O’Neill, who taught us the value 
of good tooling and independently spearheaded the Microsoft Process Template in Team  Foundation 
Server, which enabled SFE work-item tracking for many teams. We’d also like to thank a handful of 
expert Agile practitioners who helped us over the years: Bill Begorre, Arlo Belshee, Ed Essey, Sam 
Guckenheimer, Bill Hanlon, and Scot Kelly.

As we were developing the SFE program, Irada Sadykova and Eric Brechner were the leaders who 
created the space and budget in which we could operate. They battled for our cause in the metaphor-
ical executive washrooms when SFE’s success, popularity, and value were not immediately obvious to 
those who needed to care. Were it not for their hard work, we would never have gotten this project 
off the ground. More recently, thanks to Peter Loforte and Debbie Thiel for continuing to support 
SFE and especially for enabling the conditions to allow this book to be written. Thank you also to all 
our colleagues in Engineering Excellence for their support along the way. A special thank you goes to 
Surya Vanka, who represented SFE to the UX leadership community, served as our design guru, and 
helped recruit incredible talent to the SFE team. 

Our first champion at Microsoft was Matt Kotler, who was instrumental in bringing the SFE work-
shop and ideas to the entire Microsoft Office team. Thank you, Matt, for being the first to believe 
and the first to champion SFE throughout such a large organization. Similarly, Ian Todd had a huge 
impact in making these ideas take root in Windows Phone. Susan Mings and Dean O’Neill had a 
similar  impact in Windows Server, as did Lisa Mueller in Dynamics and Tracey Trewin in the Developer 
Division.

Throughout the years, a large and thriving community of SFE champions and change agents 
has developed, and each of them deserves big kudos for their work, passion, and perseverance: 
Bia Ambrosa, Gabe Aul, Paula Bach, Cyrus Balsara, Don Barnett,  Richard Barnwell, Dan Barritt, Tom 
Baxter, Derrick Bazlen, Laura Bergstrom, Brijesh  Bhatia, Safiya Bhojawala, Jeff Braaten, Tim Briggs, 
Adam Bronsther, Graham Bury,  Jeremy Bye, John Cable, Ben Canning, Greg Chapman, Alison Clark, 



 Introduction xxxi

Steven Clarke, Ken Coleman, Jeff Comstock, Matthew Cosner, Robin Counts, Clint Covington, Arne 
de Booij, Lance Delano, Shikha Desai, Tammy Dietz, Serguei Endrikhovski, Umer Farooq, Rob Farrow, 
Tricia Fejfar, James Fiduccia, Joseph Figueroa, Ned Friend, Bob Fries, Jim Fullmer, Jean Gabarra, Tyler 
Gibson, Stephen Giff, Valentina Grigoreanu, Carol  Grojean, Sam Guckenheimer, Joe Hallock, Mark 
Hansen, Ed Harris, Geoff Harris, Steve Herbst, Steve Hoberecht, Kevin Honeyman, Christy Hughes 
Harder, Jeremy Jobling, Joe Kennebec, Alma Kharrat, Ruth Kikin-Gil, J. T. Kimbell, Bernhard Kohlmeier, 
Miki Konno, Kevin Lane, Sue Larson, Mikal Lewis, John Licata, Jane Liles, Ulzi Lobo, Derek Luhn, Craig 
Maitlen, Steve May, Michael McCormack, Ford McKinstry, Soni Meinke, Karl Melder, Trish Miner, 
Becky Morley, Cathy Moya, Lisa Mueller, Joe Munko, Mark Mydland, Dean O’Neill, Susan Palmer, 
Sheri Panabaker, Sachin Panvalkar, Milan Patel, Mike Pell, Ken Perilman, Nancy Perry, Mike Pietraszak, 
Barton Place, Chandra Prasad,  Ed Price, TJ Rhoades, Lawrence Ripsher, Ramon Romero, Dona Sarkar, 
Joel  Schaeffer, Ravi Shanker, Wenqi Shen, Jasdeep Singha, Shilpi Sinha, Cameron Skinner, Bill Stauber, 
Derik  Stenerson, Christina Storm, Philip Su, Deannah Templeton, Mike Tholfsen, Robin Troy, Jonathan 
V. Smith, Kimberly Walters, Kim Wilton, Sam Zaiss, Brant Zwiefel, and so many more.

Thank you to all of the teams across Microsoft that put their trust in us to show them some 
new tricks. Special thanks to the entire Office team for living through our first big iterations of the 
 workshop. It was a pretty rocky road in some regards, but we and your leaders learned a lot, SFE is 
now better for it, and Office has forged a great path forward. Thank you to the Dynamics team,  
which was the first large organization to figure out how to integrate SFE practices in an Agile 
 environment at scale—and to demonstrate unquestionable business results from their investment. 
Thank you to  Windows Phone for doubling down on SFE several times over the years and leading  
the way on the importance of brand, and to Windows Server for going the distance in building  
tools and  infrastructure to support SFE. These and many other teams were the reason we continued 
investing in this work.

At Microsoft, senior leaders of user experience teams gather monthly as the User Experience 
 Leadership Team (UXLT). That team provided valuable support, resources, encouragement, and course 
corrections throughout our journey. Thank you UXLT! We’d like to specifically call out appreciation to 
Lisa Anderson, Tom Bouchard, Andy Cargile, Terrell Cox, Monty Hammontree, Steve Kaneko, Laura 
Kern, Kent Lowry, Kartik Mithal, and Jakob Nielsen for their sponsorship.

One of the most rewarding aspects of driving the SFE initiative at Microsoft was that we developed 
close relationships with many senior leaders who provided mentorship for us as they brought SFE to 
their organizations. Thank you all so much for the invaluable contributions you’ve made to SFE and to 
both of us—Stuart Ashmun, Joe Belfiore, Erin Chapple, Andy Erlandson, Chuck Friedman, PJ Hough, 
Hal Howard, Bill Laing, Chris Pratley, Tara Roth, Zig Serafin, and Jeffrey Snover.

Finally, thank you to our developmental editor, Devon Musgrave, and to John Pierce and Rob 
Nance for their editorial and production work. We appreciate the patience they showed dealing with 
all of our funky, late, and ongoing requests. Thank you all for helping us make our dream happen!



xxxii Introduction

Errata, updates, & book support

Microsoft Press has made every effort to ensure the accuracy of this book. If you  discover an error, 
please submit it to us via mspinput@microsoft.com. You can also reach the Microsoft Press Book 
Support team for other support via the same alias. Please note that product support for Microsoft 
software and hardware is not offered through this address. For help with Microsoft software or  
hardware, go to  http://support.microsoft.com.

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks from Microsoft 
Press cover a wide range of topics. These ebooks are available in PDF, EPUB, and Mobi for Kindle 
formats, ready for you to download at:

http://aka.ms/mspressfree 

Check back often to see what is new!

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset. 
Please tell us what you think of this book at: 

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers go directly 
to the editors at Microsoft Press. (No personal information will be requested.) Thanks in advance for 
your input! 

And let’s keep the conversation going! We’re on Twitter: http://twitter.com/ MicrosoftPress

http://support.microsoft.com
http://aka.ms/mspressfree
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress




  39

C H A P T E R  3

Take an experimental approach

To stand out in today’s mature software market, you need to delight customers at an emotional level. 
A reliable way to delight customers is to deliver an end-to-end experience that solves a complete  
customer need, even if that means delivering less functionality overall. But how do you build those 
end-to-end experiences? And perhaps more importantly, how do you know which end-to-end  
experiences to build in the first place? The secret is staying focused on customers’ realworld needs 
and desires and taking an iterative, experimental approach to zero in on great solutions for those 
needs. 

In this chapter, we give you an overview of the customer-focused, iterative approach that we call 
the Fast Feedback Cycle. You will see what it looks like, what the basic activities are at each stage, and 
how the stages fit together. Subsequent chapters dive into more details and techniques for the work 
you do in each stage of the Fast Feedback Cycle.

Designing a new mouse

Let’s start with an example of using the Fast Feedback Cycle to build a hardware device—a mouse. 
This is a case study of Project Bentley, a Microsoft hardware project that was chartered to build a 
highly ergonomic mouse. 

The inspiration for the mouse was simple—when observing customers who were using Microsoft’s 
ergonomic keyboards, the hardware team noticed that many customers used gel pads or other acces-
sories to make their mice more comfortable to use.1 A highly ergonomic mouse would be a natural 
extension to Microsoft’s line of strong-selling ergonomic keyboards, and so the project was born.

With a bit of research about situations in which people used a mouse, which buttons and sliders 
got the most use, and the size of the average hand; a decision to focus exclusively on right-handed 
users; and a long history of designing mice and other hardware, the team began to brainstorm pos-
sible solutions. Here’s what its first round of ideas looked like:



40 PART 1 Overview

The team made many quick prototypes—about 50 of them in all. Each of the prototypes was made 
very quickly from inexpensive, easy-to-work modeling materials. None took more than 15 minutes to 
create, some much less. But take a closer look; many of the prototypes are not finished. In fact, some 
of them are downright strange. For instance, look at the gray one in the center: Which way do you 
hold it? Where do the buttons go? Look at the tall one just above the gray one and to the left—it’s 
sharp on top. Would anyone ever ship a mouse that’s sharp on top? Many of the mockups look like 
they were abandoned halfway through. Several have thin lips on the bottom that look destined to 
crack off and would never pass a manufacturing review. 

The point is that the team tried out ideas that even in their mind’s eye were going nowhere, just to 
see whether they might lead to a better idea. 

At this stage in the project, it’s cheap and fast to try out a new approach, so the team considered 
as many different shapes, configurations, and form factors that they could think of. This is a classic 
brainstorming step, where you cast the net as wide as possible at the very beginning of the process, 
when your brain is most capable of generating many different ideas. It turns out that some solid 
neuroscience lies behind why your brain is much more capable of generating lots of ideas when you 
brainstorm early, as the first step of a project, before you become too mentally committed to any 
single approach. We’ll go into this in detail in Chapter 7, “Brainstorming alternatives.”



 CHAPTER 3 Take an experimental approach 41

To get some input as to which models were working best ergonomically, the team then showed 
them to a few customers to touch, feel, and hold. The team also began thinking through which 
approaches were most likely to be technically feasible. It’s notable that this first round of customer 
feedback happened just a few weeks into the project.

After considering that feedback, they produced their second round of ideas:

Note that the team didn’t choose just one of their initial ideas to work with in more detail—they 
were still working on nine alternatives in this round. But this time, instead of using foam and clay, they 
built CAD models for each mouse and “printed” them out using a 3-D printer to create the physical 
forms. At this point the details were starting to get worked out. The buttons and precise contours 
were all there, and you can see that each one now incorporates a scroll wheel, which turned out to be 
a key request from customers. 

The team was now also considering the technical implications of each design. Would it work for 
manufacturing? Would all the gearing and components fit inside the case? What kind of plastics could 
be used? In parallel, they continued testing with users to get feedback about how the mouse felt in 
people’s hands—because, after all, the ultimate goal was to build a mouse with superior ergonomics.

Here’s what they produced for round three:



42 PART 1 Overview

Again, the team didn’t pick just one concept to move forward with . This time they selected four 
options to prototype more fully—now with functional buttons, real materials, and all the internal 
mechanisms . Just as before, they debated the technical feasibility of each design and had customers 
use these mice in real situations to get detailed feedback about what worked and what didn’t . 

In the end, here is what they finally shipped, the Microsoft Natural Mouse 6000, released in 2008:

Did you notice that the mouse they shipped is not the same as any of the final four prototypes? 
While it is most similar to H, look closely and you’ll see that it incorporates aspects of all four of 
the final models. The same sort of combinatoric mixing of good ideas from multiple lines of think-
ing happened at every stage of this process . Go back and look at the 3-D models—none of them is 
exactly the same as any of the original foam models . Similarly, none of the four functional prototypes 
is the same as any one of the 3-D models . As the team iterated, it combined and recombined the 
best ideas from different prototypes to narrow in on the combination that worked the best—both for          
technical feasibility and for end-user ergonomics . In the end, they delivered a product that did well in 
the market, and really delighted their customers .2



 CHAPTER 3 Take an experimental approach 43

Engineers naturally tend to iterate ideas. As you work through the issues and get feedback from 
others on the team, your solutions steadily get better and more refined. However, unlike in this exam-
ple, you typically start with only one seed—one reasonably good idea of how to solve the problem, 
and you iterate from there, continually refining that idea until you get to a final solution.

However, if you think back to your mathematics background, starting with one seed is a really 
good way to find a local maximum in a complex plane. If you want a more statistically reliable way 
to find the global maximum, you need to start with more seeds. This is the magic behind the itera-
tive approach illustrated by the mouse example—combining and recombining the best ideas from 
multiple lines of thinking within the Fast Feedback Cycle to give you the very best odds of finding the 
most optimal solution across all of your constraints.

Some of you may question whether this illustration is even relevant to software development. We 
chose this example because it provides a great visualization of what an ideal iterative process might 
look like. It’s a good example precisely because it is so physical and easy to photograph and view step 
by step. For software projects, you don’t prototype with clay and foam, but on paper, with wireframes, 
whiteboard drawings, storyboards, PowerPoint mockups, prototyping toolkits, flow diagrams, or even 
by writing prototype code. To capture a similar snapshot of the iterative stages in a software project 
would take stacks and stacks of paper, and the patterns would be much harder to see at a glance. But 
regardless of the form factor, the core ideas are exactly the same:

 ■ Start with a clear idea of which target customers you are building for.

 ■ Understand those customers’ needs and desires in the context of their real-life situations.

 ■ Explore many possible ideas, especially in visual ways.

 ■ Build several rapid prototypes of the most promising ideas.

 ■ Evaluate prototypes with customers to get feedback and learn, while working through techni-
cal feasibility in parallel.

 ■ Refine prototypes, gradually focusing in on fewer ideas, adding more details at each successive 
round, and eventually writing production code once your plan has stabilized. 

 ■ Repeat as needed.

It’s worth taking a short pause to ponder a quick thought experiment. What would it take to actu-
ally work with multiple ideas in an iterative approach in your software development process? How 
different would that be? How close are you to doing these things already in your current team and 
project? What would the implications be if you recentered your whole engineering system on this 
approach?



44 PART 1 Overview

The Fast Feedback Cycle

The Fast Feedback Cycle is the heart of Scenario-Focused Engineering, and there’s a clear science and 
rigor for how to do it well.

As the mouse example showed, you want to take a more experimental approach to building solu-
tions. The key term here is experimental. This means that your job as an engineer is less about decid-
ing what the product will do and more about discovering what is actually going to work in real time, in 
real usage, with real people, and with real technology constraints.

It’s important to see how the different parts of the Fast Feedback Cycle fit together to achieve 
this goal. Together, the parts of this cycle form a general approach to problem solving; they aren’t a 
specific prescribed tool set. In fact, you could (and should) apply lots of different tools at each stage 
in the cycle, depending on your situation and how far along you are in your project. We’ll talk about 
the most common ones used for software projects throughout the book, and we’ll also mention alter-
natives for more unusual situations or different domains. However, while you need to pick the most 
appropriate set of tools for your individual situation, the underlying rhythm and general approach 
shouldn’t change. The science (and the power) of the Fast Feedback Cycle is in this rhythm, illustrated 
in Figure 3-1.

FIGURE 3-1 The Fast Feedback Cycle.



 CHAPTER 3 Take an experimental approach 45

Let’s walk through the Fast Feedback Cycle at a high level so that you can see the overall pattern. 
The chapters in Part II, “The Fast Feedback Cycle,” go into each stage in detail.

Target customer

First, before you can start iterating, you need to know who your target customer is. That is, who 
do you intend to build this solution for? The choice of target customer is primarily a business-strategy 
decision—which customers are the most lucrative or most leveraged or most likely to drive long-term 
success? 

Defining a target customer is essential because it acts as a lens through which all the other stages 
are focused. The target customer is the fuel that powers the cycle, and knowing your customer is the 
most important prerequisite before starting the iterative process. 

Chapter 4, “Identifying your target customer,” discusses this topic in more depth and describes why 
this focus is so essential.



46 PART 1 Overview

Observe

After your target customers are identified, you spend time researching them—looking for their un-
articulated (or latent) needs: that is, what customers can’t quite tell you themselves but which are the 
deep desires and underlying needs that drive their behaviors. Identifying an unarticulated need that 
your competition has not yet noticed, and then building an excellent solution for it, is a great way to 
achieve differentiation in a crowded market.

Site visits and other observational research approaches help ground you in customers’ real-world 
situations—not in abstractions of what they should need, but in the reality of what they run into in 
their actual usage. By watching customers in their native habitats (on their couch, in their office, or 
walking in a crowded shopping mall), you learn things you wouldn’t have thought to ask about. For 
example, “Why are you doing that eight-step workaround when this beautiful feature over here would 
do it for you? . . . Oh, you knew it was there, but it doesn’t work with your company’s procurement 
system? Hmm, you’re right; oops, we didn’t plan for that situation.”

Your goal in observing customers is to gather data that will help you ferret out root causes—not 
the symptoms or the Band-Aids or the referred pain, but the original source of the problem or the 
deep human need that is driving the customers’ behavior. You may uncover a critical detail—a prod-
uct interaction you never noticed before. Or you may discover a surprising insight into what really 
matters for a knowledge worker. Perhaps for that worker deep delight comes not from getting the job 
done but from unobtrusively staying in touch with his family throughout the workday, which counter-
intuitively improves productivity because he isn’t worried about whether his kids got to school safely.

Collecting and analyzing more numerical, or quantitative, data adds another piece to the puzzle. 
Whether you are looking at statistics about your competitors or crunching massive amounts of usage 
data from your existing systems, quantitative data can help alert you to usage patterns, anomalies, or 
pain points that may help you find a new, unique opportunity to delight your customer. 



 CHAPTER 3 Take an experimental approach 47

 
 
Customers want to have input. Too often there are many layers between the customer 
and the development team. Any feedback received is often diluted, distorted, and dis-
missed. Having a direct, real, and personal connection with customers can energize the 
team, as well as tell your customers that you really care about their needs.

After doing even a moderate amount of research, it’s easy to collect a veritable mountain of data 
points, customer requests, ideas, and notes. These may come in a wide variety of formats: quotes, sur-
vey data, photos, video footage, competitive information, usage statistics, and so on. Unfortunately, 
the breakthrough opportunities you are looking for may not always be immediately obvious. As you 
get ready to exit this stage, it is vital to look across your research to identify patterns and themes that 
point to the most pressing customer needs and opportunities. Affinity diagramming is a straightfor-
ward and extremely effective technique for making sense of a large amount of unstructured customer 
data of this sort and will help you identify patterns and insights about your customers that might 
elude you otherwise.

Chapter 5, “Observing customers: Building empathy,” discusses how to use a mix of subjective,  
objective, qualitative, and quantitative methods to uncover unarticulated customer needs and 
develop empathy for your customer. It also shows how to use affinity diagrams and other analysis 
techniques to distill a large set of data points into a small set of key insights.

Frame

While observing customers, you will undoubtedly discover lots and lots of needs and potential  
opportunities. The next step is to make a judgment about which of those needs are the most impor-
tant to address, and to precisely articulate what those needs are. This is called framing the problem. 

MINDSHIFT



48 PART 1 Overview

Think of it like holding up an empty picture frame in front of an imaginary tapestry that depicts 
every aspect of your customers’ needs, usage patterns, and desires. Depending on where you hold 
that picture frame, you determine which aspect of the customers’ experience you are going to focus 
on. Will you hold it close and focus in on a specific, narrow situation? Or will you hold it farther away 
and zoom out to include a complete cradle-to-grave experience? Will you focus on this problem or 
on that one? On this situation or that other one?

Once you decide on a frame, this allows you to focus on how to fill out the inside of that frame—
and not become distracted or continually debate why you are working on this particular need. In 
addition, framing encourages a bit of rigor to ensure that you articulate exactly which problem or 
situation you are trying to solve before launching into building solutions, which is vital for alignment 
when you have multiple people (or multiple teams) who need to contribute to a project.

One very helpful and broadly applicable framing technique is to write stories such as scenarios, 
epics, or user journeys that tell the story of what a customer is trying to accomplish that your product 
could help with. We have found the scenario technique to be a particularly effective tool for describ-
ing the kind of end-to-end experiences that we aspire to build with software. A scenario introduces 
the target customer, describes a real situation in which the customer has a need, and articulates what 
qualities a good solution would have—without saying anything about exactly how that solution 
would work.

Additionally, it is critical at this stage to establish a few metrics to track as key criteria for success 
and to embed these metrics in each scenario. Putting thought into specific, measurable goals for 
each scenario helps zero in on exactly what kind of experience you are aiming for. For instance, when 
looking for a photo of my daughter in my vast photo archive, is it more important to achieve a sense 
of magic (that the software somehow knows how to distinguish my daughter’s face from my son’s), or 
simply to get the job done quickly (where a simple text search for her name might be close enough—
and much easier to build)? What aspects of a solution are going to drive customer delight in this  
situation? How might you measure them? Later in the project, these metrics can be listed on a  
scorecard to provide a view of how well you are achieving your goals across all of your scenarios and 
to help you know when you are “done” and ready to ship.

Scenarios are a popular and effective method for framing software projects, and they have some 
strong benefits. However, it’s important to note that they are not the only possible approach, or 
even always the best method for every team. Other options include goals and non-goals, require-
ments, user journeys, outcomes, Agile user stories, and epics, some of which share characteristics with 
scenarios. Each tool has its pros and cons, but the essential job at this stage is to clearly frame the 
problem and define what success looks like before you jump into building anything. For the purposes 
of this book, we often refer to scenarios as the most typical framing tool, but you can easily substitute 
a different approach if that is appropriate for your situation.

Chapter 6, “Framing the problem,” discusses framing and measuring against that frame in more 
detail.



 CHAPTER 3 Take an experimental approach 49

Brainstorm

Now that you have the problem clearly framed, it’s time to start considering possible solutions. You 
want to take the time to explore—to brainstorm and play around with lots of ideas before you make 
any decisions about which of those ideas you will pursue. At this point, you aren’t concerned with 
finding the single perfect idea; rather, you’re generating lots of ideas to give yourself plenty of choices 
that you can mix and match throughout the iterative process. There are many techniques to help you 
generate creative, innovative ideas—and it truly is possible to get better with practice.

 
Do the due diligence to generate multiple alternatives before deciding. Often you will 
find that the best concept emerges as a blend of multiple brainstormed ideas, and you 
might not have noticed this if you hadn’t taken the time to come up with lots of alterna-
tives first. Some companies embed this principle in a rule: you cannot make a decision 
about anything until you have done the due diligence to generate at least X number of alterna-
tives first. The most common number we’ve heard is five—you need to generate at least five 
ideas before you are allowed to narrow down the choices and select one. We’ve heard house 
rules as high as nine or as few as three. Those are minimums, not maximums—in practice, some 
teams and companies regularly generate hundreds of ideas as a matter of course, especially in 
early turns of the iterative cycle. Note that this rule applies not just to deciding how many story-
boards to generate or UI layouts to wireframe, but also to how to solve architectural problems 
or even what to have for lunch. Whatever minimum benchmark you set for yourself, the idea 
is to get serious about forcing yourself to generate multiple credible alternatives as part of the 
due diligence of doing engineering and to fully explore the problem space. Do not allow your-
self to fall in love with your first good idea.

MINDSHIFT



50 PART 1 Overview

When you’re brainstorming, it is important to think through “complete” solution ideas—that is, 
ones that solve the entire end-to-end scenario and are not just snapshots of one piece of function-
ality. It is also very helpful to visualize your ideas, whether in a sketch, a flow chart, or a comic strip. 
Storyboarding is a very popular technique at this stage because it allows you to visualize a sequence 
of events that map out a potential end-to-end experience, yet it is lightweight enough that you can 
sketch dozens of alternatives in an hour or two. 

We’ll discuss storyboarding as well as other brainstorming and visualization techniques in  
Chapter 7.

Build

After you explore the range of possible endtoend solutions, it’s time to flesh out a few of those 
ideas in more detail—not all of them, but the ones that seem to have the most promise from a busi-
ness, technical, and customerexperience perspective. It’s essential to find very cheap, fast, light-
weight ways to create prototypes for your first few iterations through the Fast Feedback Cycle—to be 
as efficient as possible and minimize wasted time on dead ends. You can often do this without writing 
any code, even when you’re working on deeply technical platform components or APIs. The goal of 
these early prototypes is to get customer feedback on some specific approaches as quickly as possible 
so that you can make quick course corrections with a minimum of sunk cost.

Your prototypes can be paper drawings, wireframe mockups in PowerPoint, SketchFlow drawings 
in Expression Blend, an API interface written out on paper, flow charts or block diagrams in Visio, or a 
skit designed to work out a process workflow or customerservice scenario. The format of the proto-
type is much less important than how well it facilitates quick feedback from customers about whether 
you are on the right track. It’s important to choose the prototyping technique that works best for you, 
depending on the type of solution you are working on and the feedback you are looking for. When 
you finish prototyping, write code in slices to enable continual customer feedback.



 CHAPTER 3 Take an experimental approach 51

We’ll discuss prototypes and coding techniques for many different kinds of situations in Chapter 8, 
“Building prototypes and coding.” 

Repeat: Observe customers again to get feedback

Now that you have a few prototypes, you start the cycle over again by observing customers using 
your prototypes. After all, the reason you built those prototypes is to get feedback from customers as 
quickly as possible so that you can learn and make course corrections while it is still cheap and easy to 
do so. 

Ideally, your first prototypes are little more than simple sketches on paper. You want to learn as 
early as possible if you are on the right track or where your ideas are falling short. In the extreme, 
your first prototype for customer feedback could be the scenario you wrote earlier, to be sure that it 
rings true before you spend any time on solutions for an irrelevant problem.

 
Get feedback early, really early. Customers are actually much better at dealing with rough 
prototypes than they’re often given credit for. In fact, counterintuitively, showing custom-
ers very early prototypes can often result in better-quality feedback because customers 
subconsciously see that you are still in the early stages of your project, you haven’t decided 
yet, their feedback might actually be heard, and your feelings won’t be hurt if they tell you 
that they don’t like your approach. Some engineers tend to resist sharing their thinking 
until they’ve thought everything through, but this tendency makes it harder to get the im-
mediate customer feedback needed to power a fast, efficient feedback cycle. It is important 
to become comfortable showing early, half-baked ideas so that you have the opportunity to make 
a course correction before you have too much sunk cost that may end up being wasted effort.

MINDSHIFT



52 PART 1 Overview

When you show rough, early prototypes to customers, you learn an amazing number of things. 
You may find out that your approaches resonate with the customer and that you’re on the right track, 
so you can accelerate your team’s work with confidence. You may identify a preference among the 
alternatives you’re considering. Or you may discover that your solution doesn’t make sense to  
customers at all, that you forgot to consider a key constraint, that you addressed only part of their 
endtoend problem, or that the overall approach is flawed. It is not uncommon to discover in this 
first customer touch point that the problem you thought you were solving isn’t really a problem—or 
that you misunderstood the essence of what needed to be solved. Or perhaps what you thought 
would be a key source of delight for your customers just doesn’t resonate with them.

All of these possible outcomes have dramatic impact on the future of the project—and might even 
cause you to scrap it and focus on a different scenario altogether. Yet, in a typical software project, 
you wouldn’t get this kind of feedback until the code is well on its way, and possibly already working. 
We’ve all been in situations where we discover way too late in a product cycle that we made a bad 
assumption somewhere along the line, that there was a crucial misunderstanding or a critical miss-
ing component. The idea here is to ferret out those big oversights much earlier, while it’s still cheap 
and easy to recover. For highest efficiency, optimize your approach to verify that you’ve got the big 
picture correct first, before you spend too much time on the details, and certainly before you invest in 
writing production code. That way, if you find that you need to change direction, you haven’t wasted 
much time or effort. Showing your early, incomplete thinking to customers is a powerful and effective 
way to catch these big bugs early.

We’ll discuss ways to get customer feedback on your prototypes in more detail in Chapter 9,  
“Observing customers: Getting feedback.”

 
Plan to get it wrong. One of the most important concepts in this book is to plan to get it 
wrong. Despite plenty of personal experience to the contrary, we all tend to be optimists 
and believe that this time we will finally get it right on the first try. A more realistic  
approach is to assume that your first attempt will be partly wrong, you just don’t know 
which part. The best insurance is to put a feedback loop in place to figure out as soon as possible 
where the problems are and build time into your project schedule to spend some cycles iterating. 

Think back in your history. Has any product you’ve ever shipped turned out exactly the way 
you first imagined it? No, you made plenty of adjustments along the way, sometimes even 
quite big ones. Those changes were expensive, too, and everyone knows that the later they 
happen, the more expensive they become to fix (and more work will have been wasted).

Yet we treat those changes as the exception, not the rule. We think that if only we were 
smarter, we would have come up with the right plan the first time. The problems seem 
preventable, yet the pattern seems to happen every time. We promise ourselves to do bet-
ter next time. The trouble is that the world is so complex, and the problems we are solving 
now are much harder than they used to be—the easy problems were solved a long time 
ago. You can’t predict everything, and even if you could, the landscape is always changing. 
So stop beating yourself up about it. Instead, plan for the fact that change will happen.  

MINDSHIFT



 CHAPTER 3 Take an experimental approach 53

 
Assume that you will get it wrong the first time, and reserve the right to become smarter 
as the project progresses.

Keep iterating
You’ve surely noticed that this approach isn’t a linear progression of steps but rather a cycle. In fact, 
the most important aspect of the Fast Feedback Cycle isn’t any single step, but rather the fact that you 
repeat them. The faster you loop through the cycle, the better the results you are likely to get and the 
more efficient your team will be. We call each trip around the cycle an iteration.

 
An iteration is a single trip around the Fast Feedback Cycle, starting with observing custo- 
mers, then framing the problem, then exploring many ideas, and finally prototyping or 
building a few possible solutions to present for customer feedback in the next iteration of 
the cycle. We say that a team iterates as it makes multiple trips around the Fast Feedback 
Cycle, progressively narrowing in on an optimal solution as it gets customer feedback at 
the start of every iteration.

Here is a description of how your thinking might progress as you continue iterating after your first 
trip around the Fast Feedback Cycle:

 ■ Observe So, what happens after you show your first prototypes to customers? Well, it all 
depends on what you learn from the customer feedback you receive. Perhaps customers loved 
what you showed them. More likely, they liked parts of it, but other parts didn’t seem relevant 
to their needs or just plain didn’t make sense.

 ■ Frame Now compare the customer feedback against your scenario. This may be a very quick 
check to confirm that the feedback you received is consistent with the scenario you originally 
wrote. However, perhaps the feedback suggests that you need to adjust the scenario. Maybe 
your customers’ actual needs or motivations are different from what you initially thought. 
Maybe their judgment of what a good solution looks like is different, which would suggest 
that you change the success metrics. Maybe there is a constraint that you didn’t realize—for 
instance, you didn’t consider that your customer might not have reliable access to the Inter-
net when using your service on the road. Any of these things might cause you to edit your 
scenario to include these new needs and insights.

 ■ Brainstorm Next, you move on to exploring some revised alternatives, this time with new 
information to inspire your idea generation in slightly different directions. Perhaps the solution 
alternatives you originally prototyped didn’t quite hit the mark, so you need to try a different 
approach. Or, perhaps your highlevel solutions were working fine with customers, so now 
your brainstorming is focused primarily on getting to the next level of detail, to bring your 
rough solutions to a higher level of fidelity. But still, the key behavior is to generate more ideas 

VOCAB



54 PART 1 Overview

than you need so that you have done the due diligence to really explore the problem space 
before you decide which ideas are worth pursuing. 

 ■ Build Then, as before, you move on to building or prototyping, but this time you create 
fewer alternatives and develop them in somewhat more detail than in the previous iteration. 
You still use the fastest prototyping techniques that are sufficient to get customer feedback. 
Perhaps after seeing what worked for customers, you can combine ideas from multiple  
approaches to create an even better prototype. At this stage you should also start exploring 
which alternatives not only delight customers but are also possible and reasonable from an 
engineering perspective and support your business plan. You also transition into writing  
production code.

 ■ Observe, again Then you get that second round of prototypes right back in front of 
customers, just as you did before, and so it continues. But be careful that you don’t ask for 
feedback from just anyone—be sure that you prioritize getting feedback from your target 
customer. 

 ■ Keep going The Fast Feedback Cycle can be repeated over and over, and, indeed, you 
should continue repeating it throughout your project, all the way until the endgame, when 
you have a final, shippable solution that customers find delightful and that works flawlessly. 

As your project progresses, your iterations through the Fast Feedback Cycle will naturally shift 
their core activities, even though the essence of each stage remains the same. For instance, in early 
iterations, the framing stage is mostly about deciding which problem to solve and making sure you 
have described it correctly. As you start iterating, you might realize that your understanding of the 
problem is incomplete, so you normally update your framing once or twice. In later iterations, this 
stage becomes more about assessing your solution against that frame to be sure that you are still 
solving the problem you initially set out to address and assessing how close you are to achieving your 
metrics. 

Similarly, in later iterations, the build stage becomes less about prototyping multiple alternatives 
and more about writing production code, fixing bugs, and finetuning the details. As you shift from 
showing mockedup prototypes, to having customers attempt to use working code, to finalizing pro-
duction code, the techniques you use to gather customer feedback will change as well.

 
A rule of thumb for any good-size project is to iterate three times around the Fast 
Feedback Cycle before you commit to a spec, start writing large quantities of production-
quality code, or otherwise finalize the plan. That gives you three opportunities to identify 
course corrections through customer feedback, even if that feedback happens in a light-
weight, informal way. For most teams and most situations, this is the right tradeoff  
between taking sufficient time to ensure that you’re on the right track before you invest 
too deeply and not getting stuck in analysis-paralysis in an effort to keep making the plan 
“just a little better.” For very large projects, you may find that you need a few more initial 
iterations to solidify a plan.

TIP



 CHAPTER 3 Take an experimental approach 55

After you go through the Fast Feedback Cycle a few times, you should have a concept for an end-
to-end solution that you like—one that works from a feasibility perspective and is testing well with 
customers. Only then is it time to start breaking that solution down into the bits and parts of features 
and work items that will populate your product backlog, Team Foundation Server, or whatever system 
you use for tracking engineering work items. But even after you start writing production code, contin-
ue iterating: test your latest builds with customers, check against your scenario to be sure you are still 
solving the customers’ core problem, and whenever you find that you have to make a design decision  
(addressing customer feedback, building the next feature, or fixing a bug), take a couple of minutes to 
brainstorm some alternatives and perhaps even quickly test them with customers before you pick an 
approach to move forward with.

 
Faster is better. The Fast Feedback Cycle is most efficient and effective when you are able 
to iterate quickly. To make that happen, you need to let up on your inherent perfectionism 
and let the first couple of trips around the cycle be pretty loose. You don’t have to have 
finished, statistically perfect, triplechecked customer research to start writing a scenario—
a well-informed hunch based on talking with a few target customers could be plenty to 
start with. Nor does your scenario need to be perfect—take your best shot, brainstorm, 
and prototype against it, and you’ll quickly see whether you’re on the right track when you 
show it to customers. That first touch point with customers will give you the information 
you need to figure out what additional research you should do and where your scenario 
is not quite accurate, which will help you identify the root of the problem and the optimal 
solution that much faster.

It’s important to note that the rhythm of constant and rapid iteration around the Fast Feedback 
Cycle should continue throughout the project, even during milestones that are primarily about imple-
mentation or stabilization. Iteration is not just for the early stages of a project. Obtaining continual 
customer feedback on your work in progress is essential for maximizing efficiency and minimizing 
wasted effort, and it may cause you to rethink the need for a separate implementation or stabilization 
milestone in the first place. 

Looking deeper 

An interesting pattern that’s embedded in the Fast Feedback Cycle is worth pointing out. As  
Figure 3-2 shows, the top half of the cycle is all about clearly understanding the problem you are 
trying to solve. The bottom half of the cycle is all about creating an actual solution. As the cycle plays 
out over time, this split ends up being a sinusoidal sort of rhythm—identify a problem, try a solution, 
see whether it works, adjust based on what you learn, try a different solution, and keep on cycling. It’s 
very powerful to go back and forth between understanding and creating based on that understand-
ing, which then leads to deeper understanding, from which you can create something even better, 
and on and on. Expert practitioners sometimes call the creating phase learning by making, as  

MINDSHIFT



56 PART 1 Overview

compared with learning by thinking, and believe that it is a crucial skill to master to get the most out 
of an iterative approach.

FIGURE 3-2 The top half of the Fast Feedback Cycle focuses on understanding the problem; the bottom half 
focuses on creating a solution.

Achieving a balanced rhythm across all stages of the cycle is ideal, though different teams will have 
natural strengths in different parts of the cycle. Predictably, most engineering teams are very strong 
at building. However, can they build rapid prototypes as well as they write code? And are they equally 
strong at generating and exploring multiple alternatives? Is the team practiced at identifying insights 
from customer research? Is the team good at framing a problem to identify the heart of the most 
important end-to-end experience to solve? What are the strengths of your team?

Haven’t I met you somewhere before?
The fundamental concepts of the Fast Feedback Cycle have been around a long, long time. In fact, 
you can see a very similar cyclical rhythm in many other creative domains: 

 ■ Architects who draw and build foam core models to review before they finalize their plans.

 ■ Artists who do pencil sketches before pulling out the paints, and who paint in layers, adding 
detail and refining as they go. 

Or, bringing it to a more technology-oriented realm:

 ■ Agilists who cap each weekly sprint with a demo or touch point to get feedback from their 
customer or product owner before starting the next sprint.

 ■ Entrepreneurs who use the Lean Startup buildmeasurelearn cycle to quickly find and validate 
new business opportunities.



 CHAPTER 3 Take an experimental approach 57

People from diverse backgrounds and disciplines have independently concluded that a fundamen-
tally iterative, cyclical approach is the most effective, efficient way of developing new ideas. 

The scientific method
We don’t think this is a coincidence—at their core, all of these approaches stem from the scientific 
method. 

While the scientific method is applied with some variation in different domains, it is generally  
accepted that it entails several key stages. First, you observe some phenomenon and notice some-
thing unusual or unexplainable about it. You then identify a specific question you want to answer. 
Next, you consider various hypotheses about how to answer that question to explain the phenom-
enon you observed and select a hypothesis to test. Then, you design an experiment and predict 
what you expect will happen, which outcome would give you the ability to prove or disprove your 
hypothesis. You then conduct the experiment and collect data. If the data disproves your hypothesis, 
you repeat the process, first confirming that you are asking the right question, then trying a different 
hypothesis and experiment, and on again until you land on a hypothesis that actually works to explain 
the phenomenon you observed. Scientific rigor is achieved by continually challenging the dominant 
hypothesis through other scientists repeating an experiment in a different lab and by designing new 
experiments to continue testing the validity of the hypothesis in other situations. The parallels to the 
Fast Feedback Cycle are plainly obvious, as you can see in Figure 3-3.

FIGURE 3-3 The Fast Feedback Cycle has much in common with the scientific method.

Historically, many groups of people have approached problem solving in a way that also has roots 
in the scientific method. Following is a brief survey of the main inspirations for the ideas behind 



58 PART 1 Overview

Scenario-Focused Engineering and the Fast Feedback Cycle, as well as related methodologies that 
have substantial overlap in methods and mindsets.

User-centered design (UCD)

The most substantial inspiration for ScenarioFocused Engineering comes from the field of user 
centered design. Both academics and practitioners have been developing, studying, using, and  
applying user-centered design techniques for decades. Many universities offer degrees in interaction 
design, user research, and numerous related specialties. 

The core ideas behind user-centered design are central to this book: develop empathy with your 
customers, use observation to discover unarticulated needs, use storytelling to frame the problems 
to be solved, brainstorm and visualize alternative solutions, test prototypes with customers to get 
feedback, iterate repeatedly at increasing levels of fidelity in response to customer need, and mind-
fully narrow the funnel of solutions at each iteration to ensure that the best amalgamated solution is 
delivered. The fundamentally experimental, cyclical nature of a user-centered design approach is a 
close analog of the scientific method and is embodied in the Fast Feedback Cycle.

A mainstay of user-centered design is a form of logic called abductive reasoning.3 Unlike deduc-
tive or inductive logic, abduction is a form of logical inference that takes a set of data and creates 
a hypothesis that could possibly explain that data. When designing solutions, abduction is a logical 
leap of mind that suggests a reasonable design that could solve an attendant problem. Logically, you 
can’t know for sure that this solution will work, but it might. Abduction creates a hypothesis that you 
can test, measure, validate, or disprove—just as a scientific hypothesis is tested through the scientific 
method.

In the past few years, the field of usercentered design has been broadened and is often referred 
to as design thinking, which is a recasting of the same core ideology and methods, recognizing its 
applicability to a much wider class of problems than just user-interface design. We concur that as a 
variant of the scientific method, these approaches are indeed very broadly applicable. They can be 
applied not just to designing products and services, but also to developing new business strategies, 
designing optimal organizations and systems, and even solving seemingly impossible world-scale 
problems, such as creating viable ways for people to get out of poverty and improving community 
access to clean water. 

Agile

Agile was born from the software developer community in response to the need to build higher-
quality software with less wasted effort in an environment in which precise customer requirements 
change over time and are hard to articulate upfront. Agile was invented independently by software 
engineers, but fascinatingly, it aimed to solve a lot of the same root problems that user-centered 
design aimed to tackle.

If you’re working on an Agile team, a lot of this chapter probably feels familiar. You already loop 
quickly in sprints, likely somewhere from one to four weeks in length. It’s easy to squint and see how 
one loop around the Fast Feedback Cycle could map to an Agile sprint, complete with a customer 



 CHAPTER 3 Take an experimental approach 59

touch point at the end to get direct customer feedback on the increment you just delivered. It’s likely 
that some of the same activities we discussed already occur during the course of your sprints. 

ScenarioFocused Engineering differs from Agile in two main areas, which we believe help fill in 
some missing gaps. First, we believe that it’s not necessary for every sprint to deliver shippable code. 
In early sprints, it’s often more efficient to get customer feedback on a sketch, mockup, or prototype 
before investing in production code. However, we completely agree that getting customer feedback 
at the end of every sprint is absolutely essential, whether that sprint built prototypes or production 
code.

Second, we believe that the product owner is actually a mythical creature. We challenge the idea 
that any one person on the team, no matter how senior, no matter how often they talk with custo- 
mers, can accurately channel exactly what real customers need and desire and provide accurate 
“customer” feedback at the end of a sprint. Agile oversimplified the whole business of understanding 
customers by giving that job to one person—the product owner. Anything beyond the most basic 
customer needs are too complex for that approach to work reliably in today’s market. We hope you’ll 
find that the ideas in this book give you practical ways to break out of that mold and actually talk to 
real customers.

Interestingly, most Agilists have concluded that shorter sprints work better than longer ones: 
sprints of one to two weeks are better than sprints of three to four weeks. We have come to a similar 
conclusion; you should probably aim to finish a single cycle within two weeks. Left to their own  
devices, most teams will spend too long on an iteration. Time boxing is key to keep people moving, 
and Agile sprints are a really natural way to time box on a software project.

Lean Startup

The ideas of Lean Startup were made popular by Eric Ries’s book of the same name and are rooted 
in a combination of Steve Blank’s “Four Steps to the Epiphany” approaches to entrepreneurship and 
the continuing evolution of lean approaches that started with “lean manufacturing“ at Toyota in the 
1990s.4 The lean approach believes in finding ways to achieve equivalent value but with less work. 
Lean Startup takes this core belief and applies it from a business-minded entrepreneur’s frame of 
mind to identifying and incubating successful new business ventures. However, the ideas in it are just 
as relevant to developing new services, products, and offerings in established companies as they are 
for an entrepreneurial startup.

There are particularly strong parallels between the Fast Feedback Cycle, the scientific method, 
and Lean Startup techniques. The build-measure-learn cycle is really just a simpler statement of the 
essence of the scientific method: experiment, collect data, create hypothesis. Lean Startup’s focus 
on “innovation-accounting” measurement techniques emphasizes the importance of collecting data 
rigorously to prove or disprove your hypothesis, and to not allow “vanity metrics” or other psycho-
logical biases to get in the way of objectively assessing progress against your actual business results. 
The idea of a faked-up home page for your new offering is another form of a rapid, low-cost proto-
type intended to get customer feedback as quickly as possible to verify that you are on the right track 
with a minimum of sunk cost. As Ries would say, your goal is to reduce your “mean time to learning.” 



60 PART 1 Overview

Similarly, a “minimum viable product” is a powerful concept to help keep a team focused, usually on 
solving a single scenario and seeing how it does in the market before branching out.

Mix and match your toolbox
At the core, these approaches are inherently compatible because they are fundamentally based on 
the rhythm of the scientific method. Therefore, it’s ridiculous to say, “We have to decide whether to 
use Scenario-Focused Engineering or Agile for this project.” Or “Is it better to go with user-centered 
design or Lean Startup?” It absolutely does not need to be an either/or proposition. 

Rather, the questions to ask are “Which Agile techniques would be helpful for this project?” and 
“Which Scenario-Focused Engineering techniques would apply?” and “Which Lean Startup techniques 
would work?” Each methodology provides a set of techniques that enrich the toolbox; these tech-
niques are born from different perspectives and emphasize different sets of expertise, but they are all 
fundamentally compatible. Use the tools and techniques that work for your situation and your team. 
When you consider them in the context of the Fast Feedback Cycle, you will find that they fit together 
nicely.

As we detail each stage in the Fast Feedback Cycle in the following chapters, you will see that you 
can choose from dozens of different specific techniques within each stage. In most cases, we  
encourage you to pick one or perhaps only a small handful of techniques to use at any given time—
certainly don’t feel as though you have to do it all, or even think that doing it all would be ideal. 
Actually, the idea is to select the fewest number of techniques and activities at each stage that give 
you just enough information to move forward to the next stage as quickly as possible. Remember that 
fast iterations are the key! 

We have coached many different teams as they adopt an approach based on Scenario-Focused 
Engineering, often with a mix of Agile or Lean Startup (and sometimes both) mixed in. Our experience 
is that this is not a cookie-cutter process, and there is no single best recipe that works for everyone. 
Each team is responsible for building its toolbox to complement the scale of its project, its timeline, 
the skills already on the team, and all the other myriad factors that make each team unique. Each 
team’s toolbox is different. However, we’ve found that a few tools are used more often than others, 
and these are the ones we elaborate on throughout the next chapters in sections that we call “Deep 
Dive.” 

If you aren’t sure where to start, rest assured that experts are available for nearly every topic dis-
cussed in this book. We’ll highlight the places where getting expert help is a particularly good idea.

 
You’re probably noticing by now that there is some pretty heavy stuff embedded in 
Scenario-Focused Engineering. On the surface, the Fast Feedback Cycle looks easy and 
straightforward. But actually implementing it in an engineering team is far from simple, 
and there are many questions to answer. We’ve worked with a lot of teams, and there are 
common issues, questions, and tradeoffs that come up with nearly every one.

MINDSHIFT



 CHAPTER 3 Take an experimental approach 61

 
How do you schedule for iteration when you can’t predict how many iterations you need  
to get to a great solution? How can you write scenarios when you’re not sure what your 
customer really needs? Who is going to do all of that customer research anyway? Should  
every developer really go visit customers instead of writing code, or is reading a trip report 
sufficient? Who exactly is our target customer? How will we get access to customers to 
test early prototypes quickly without a lot of overhead? Realistically, can we actually plan 
out an entire engineering release without a feature list and focus on a small number of 
end-to-end scenarios instead? How can we keep focus on scenarios all the way to the 
endgame—what project reviews, status-tracking systems, or scorecards will we need to 
keep us honest? Will our leadership actually support this approach? Does our office space, 
performance-review process, and team culture support the kind of open collaboration we 
need for this approach to work?

Probably the most significant aspect beyond any individual question is the fact that you need 
the entire engineering team to use this approach for it to actually work. Indeed, this is one of 
our biggest insights from starting the Scenario-Focused Engineering initiative at Microsoft, 
and it has been reinforced over and over again as we’ve worked with countless teams to 
adopt these ideas. There are noteworthy changes in schedule, process, and tools, as well as 
significant shifts in mindset, leadership, and team culture that need to happen to make the 
Fast Feedback Cycle a reality, especially on a large scale.

If you are one developer on a larger team reading this book, what do you do? You can’t 
change the whole organization, can you? Take heart, the good news is that you don’t have 
to do the entire Fast Feedback Cycle to get some nice benefits—even just brainstorm-
ing more intentionally, or taking the time to write a scenario before you jump headlong 
into solutions, will give you plenty of incremental gains. You don’t have to do everything; 
you can still get a lot of benefit by making use of just a few of these tools and techniques. 
Furthermore, as excellent as this book may be—we are sad to say that the chances of you 
reading this book and becoming an expert practitioner overnight are pretty slim. It takes 
most teams years to truly make this shift, so be patient with yourself. Appendix A includes 
the SFE capability roadmap, which is a checklist of skills and behaviors that can help you 
plan your team's progress over time and prioritize which skills are most important for your 
team to develop and improve on.

We have seen many teams get started very simply. A single champion on the team identi-
fies a couple of practices that make sense to try in an incremental way. That champion  
recruits a few buddies on the team to help make it happen on one small project. After  
those first attempts show some success, the larger team becomes more receptive, the 
leaders agree to train the rest of the team, and the practice continues to develop from 
there. It’s worth noting that even teams that have tried to “do it all” found that there was a 
practical limit to how much change their organization could absorb at one time. We’ll con-
tinue discussing the team and cultural impacts of adopting Scenario-Focused Engineering 
throughout the book and in detail in Chapter 12, “Lessons learned.”



62 PART 1 Overview

Summary

Good product design follows a predictable, age-old pattern that can be learned and replicated. 
This pattern is encapsulated in the rhythm of the Fast Feedback Cycle, which is an application of the 
scientific method to the business of designing and delivering software products, services, or devices. 
By observing customers, framing their key scenarios, exploring multiple ideas, prototyping rapidly, 
and judging your progress against customer feedback and predetermined metrics, you can quickly 
discover whether you’re on the right track to delight your target customers, with an absolute mini-
mum of sunk cost.

Notes
1. Interestingly, better ergonomics wasn’t something that customers were asking for per se, as people didn’t seem to think it was possible to make a 
mouse more ergonomic. This is a great example of an unarticulated customer need.

2. The ergonomic mouse met all its sales targets, despite being released just at the start of the recession and despite being a high-end product for a 
niche market. But it didn’t get universally great reviews—in fact, the reviews were somewhat polarized. There were many customers who absolutely 
loved this mouse. Then there were others who complained that it didn’t work at all for lefties or that the buttons didn’t work well for smaller hands 
or for very large hands. The product team made a conscious choice to focus on right-handed people of average size knowing that it couldn’t do its 
ergonomic goals justice for a broader group, which was a key constraint the team figured into its business plan and sales targets. But for the target 
customer, this mouse was a dream come true and had a loyal following.

3. Abductive logic was originally coined by Charles Sanders Peirce (http://plato.stanford.edu/entries/peirce/) in the early 1900s as he described the 
interplay between abductive logic (making hypotheses), deductive logic, and inductive logic in the scientific method. More recently, Roger Martin 
discussed the role of abduction in design thinking in his books Opposable Mind: Winning Through Integrative Thinking (Harvard Business Review 
Press, 2009) and The Design of Business: Why Design Thinking Is the Next Competitive Advantage (Harvard Business Review Press, 2009).

4. Eric Reis, The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses (New York: Crown 
Business, 2011); Steve Blank, The Four Steps to the Epiphany, 2nd ed. (K&S Ranch, 2013).

http://plato.stanford.edu/entries/peirce/


This page intentionally left blank 



Index

 525

A
A/B testing

about, 312, 341–345, 362n
as complementary research approach, 109
prototyping with code, 298

abductive reasoning, 58, 62n
Abi-Chahine, Elie, 273
acronyms, inventing, 82–83
active listening, 323–324
affinity diagrams

about, 47, 137
brainstorming alternatives and, 251
creating, 141–148
finding patterns and insights using, 136–137
grouping considerations, 144
initial sorting, 143–144
looking for insights, 147–148
preparation, 142
reading out and re-sorting, 146–147
summaries, 144–145
taping it up, 147

Agile process, 58–59, 273, 368
all-hands meetings, 82
Amazon Kindle e-reader, 29–30
Amtrak case study, 30–31, 140
analysis paralysis, 54, 86
analyst reports, 133
animation, prototyping, 299
anomalies in data, 110–112
APIs (application programming interfaces)

design considerations, 32, 241–243
prototyping, 293–297

Apple (company), 208–209
application programming interfaces (APIs)

design considerations, 32, 241–243
prototyping, 293–297

Applied Imagination (Osborn), 253
architectural drawings, 241–243
Asch, Solomon, 329
assumptions, challenging, 226–228, 247
auditioning components, 300

B
Bach, Paula, 386
The Back of the Napkin (Roam), 235
Bacon, Kevin, 203
Bain & Company research, 16
Balsamiq tool, 265, 291
Basadur Creative Problem Solving Profile, 381, 452–454
BDUF (Big Design Up Front) philosophy, 368
Belfiore, Joe, 406
benchmarks, capturing, 423
Berkun, Scott, 257–258
biases

confirmation, 126
experimentation and, 263
functional fixedness, 218
groupthink, 131
introducing into data, 115
usability testing, 360–361

big data, 107–109, 344–348
Big Design Up Front (BDUF) philosophy, 368
big-T truths

about, 100
insights and, 104
motivation behind, 131
social media and, 206

Bing search engine, 97, 342–345
Blank, Steve, 59
blends, 210, 251
block diagrams, 241–243, 284
Bodine, Kerry, 17, 141, 347–348



526

body language, 323
brainstorming alternatives

about, 201, 243–244
affinity diagrams and, 251
breadth before depth, 219–220
building a customer museum, 251–252
challenging assumptions, 226–228, 247
collective decision making, 252–253
considering feasibility, 249–251
diversity in, 222, 224–225, 230–231
due diligence in, 49
embracing cousin ideas, 225
exploratory drawings and, 309n
exploring, 209–223
first great idea and, 220–221
group brainstorming, 244, 253–258
identifying minimum number of, 437
individual brainstorming, 245–246
innovation in, 202–209
iteration cycle and, 53–54, 366, 373, 385–386,   
 390, 392–393
key tools and techniques, 230–258
knowing when you’re done, 258–259
lateral jumps, 225–226
looking for blends, 251
marinating, 226–228
moving forward with ideas, 248–253
Project Bentley case study, 40–43, 371
quietstorming, 244–245
SCAMPER acronym, 248
scientific method and, 57
shifting from upfront specs to, 430–432
six thinking hats, 248
sources of, 224–230
supercharging idea generation, 246–248
T-shirt-size costing, 250
trading places with customers, 97
visualizing, 50
writing down ideas, 249

Bryant, Christine, 123–124
bug counts (metric), 419–427
build-measure-learn cycle, 59
building a customer museum, 135–136, 251–252
building empathy (observing customers)

about, 47–48, 91–92, 95–97
by trading places, 97
generating insights about customers, 100–104
knowing when you’re done, 148–149
researching customers, 105–117
unarticulated needs and, 98–101, 113

understanding customers, 92–95
vigilant tester case study, 93–94, 139–140

building end-to-end experience
business strategy in, 35–36
considering details in, 31
cradle-to-grave, 30–31
ecosystem around products, 29–30
features and, 21–22, 25–26
flowing seamlessly, 27–29
GUI and, 31–32
identifying for products, 24
iteration cycle and, 53–56
less is more in, 26–27
Ruby programming language example, 32–35
thinking about, 23

building prototypes
about, 50–51, 261, 264–267
APIs, 293–297
benefits of, 270–272
brainstorming alternatives, 234–235
characteristics of good prototypes, 272–280
choosing technique, 50–51
data-driven decisions, 261–263
feedback and, 50, 263–264, 268–270, 279–280
iteration cycle and, 53–54, 366, 368, 386,   
 390–391, 393
key tools and techniques, 286–308
knowing when you’re done, 308
low fidelity to high fidelity, 274, 291–292
multiple parallel, 267–268
nondisclosure agreements and, 349
observing customers through, 51
paper. See paper prototyping
parallel computing, 278–280
rapid prototypes, 261–272, 282
scientific method and, 57
shifting from upfront specs to, 430–432
showing work early, 269
skits, 292–293
transitioning to production code, 280–286

Bump feature (iPhone), 26–27
business strategies

aligning with, 436
communicating broadly, 81–83
developing, 75–76
framing memos, 82–86
identifying target customers, 45
lessons learned, 458
mapping out ecosystem, 76–77
maximizing carryover, 78–79

body language



 527

North Star, 79–87
prioritizing storytelling, 184
when building end-to-end experience, 35–36

C
C++ programming language, 33–34, 273
camera studies, 122–124
Campbell, Joseph, 179
card sorting, 341
carryover

about, 69
focus and breadth with, 68–72
lead users and, 114
maximizing, 78–79

case studies, 136–137
challenging assumptions, 226–228, 247
champions as change agents, 465–467
Chan, Kelvin, 207–208
change agents, 465–467
change management (lessons learned), 462–475
Chapple, Erin, 467–469
Christensen, Clayton, 176
Clarke, Steven, 93–94, 139–140
cloud computing, 263–264
CoC (Convention over Configuration), 33
code of conduct, 120–121
code reviews, 103
coding

building in slices, 284–286
delaying, 267–268
prototyping with, 298–300
throwing away, 283–284
transitioning to, 280–286

cognitive walk-throughs, 332–333, 362n
Coleman, Ken, 172
collective decision making, 252–253
communication (lessons learned), 458
competitive data, 132–133
competitive strengths and weaknesses, 183–184
concept testing, 328–329
confabulation, 71
confidentiality considerations, 348–350
confirmation bias, 126
Consent for Research Subjects form, 352
consultants, hiring, 115–116
consumerization of IT, 12
contextual inquiry, 118
continuous feedback, 345–348

continuous improvement, 203–205
controlled online experimentation. See A/B testing
Convention over Configuration (CoC), 33
converge

about, 377
diverge versus, 376–380
turning points, 380–383

Cook, Scott, 95
cousin ideas, 225
Covington, Clint, 163–165
cradle-to-grave experience, 30–31
CSAT (Customer Satisfaction), 422
Curie, Marie S., 259n
customer delight

about, 14–15
car story, 3–6
carryover and, 70–71
customer surveys, 16–17
framing the problem, 48
Kano analysis on, 181
power of direct observation, 101
prototyping and, 52
usability testing and, 361
What Product Do You Recommend to Others   
 exercise, 6–9

customer-experience metrics, 419–427
customer profiles, 137–140
customer research

about, 74
complementary approaches, 108–112
DO versus SAY data, 105–110, 114
engineering team’s role in, 116–117
ensuring demographic criteria, 113
ethical considerations, 115
finding customers, 112–113
generative versus evaluative, 105, 311
hiring experts, 115–116
key tools and techniques, 117–148
knowing when you’re done, 148–149
number of customers to study, 113–115
quantitative versus qualitative data, 106–112, 114
SPICIER anagram, 188
vigilant tester case study, 93–94, 139–140

customer safaris, 123–124
Customer Satisfaction (CSAT), 422
customer support data, 129
customer touch points versus user testing, 418–419
Czikszentmihalyi, Mihaly, 96

Czikszentmihalyi, Mihaly



528

D
diary and camera studies, 122–124
data-driven decisions, 261–263
data exhaust, 107, 128
data gathering

analyst reports, 133
building a customer museum, 135–136
competitive data, 132–133
customer support data, 129
data mining the web, 132
diary and camera studies, 122–124
focus groups, 130–131
importance of, 117–118
key tools and techniques, 117–133
listening to social media, 129–130
observing customers, 46–47
site visits and interviews, 118–122
surveys and questionnaires, 124–127
synthesizing into insights, 133–141
telemetry and instrumentation, 128
third-party sources, 133
usability testing, 130
wallowing in data, 134–135
web analytics, 128

data mining the web, 132
de Bono, Edward, 248
delighting customers. See customer delight
deliverables, tracking, 415–417
demo.txt approach, 294–296
Derstadt, Jeff, 315–316
design ethnography, 101
design squiggle, 397–399
design thinking, 58, 397–399
Desirability Toolkit, 340
desirable products, 11–15, 183
details phase (iteration), 275, 277, 383–384, 391–393
development philosophy, 66–68
devingers, 290
direct observation

as complementary research approach, 109
power of, 100–103

discount usability testing, 338, 351–355, 360
diverge

about, 376
versus converge, 376–380
turning points, 380–383

diversity in brainstorming alternatives, 222, 224–225,  
 230–231
DO data (objective data)

A/B testing, 341–345
about, 105–106
big data, 345–348
continuous feedback, 345–348
customer support data, 129
eye tracking, 339–340
fake homepage approach, 328
qualitative data and, 107–109, 114
quantitative data and, 108–110, 114
site visits and, 118–122
telemetry and instrumentation, 128
usability testing, 130, 338
usage telemetry, 345–348
web analytics, 128
Wizard of Oz test, 334

documentation
cookbook approach, 296
open book, close book technique, 297
shifting from upfront specs to, 430–432
writing, 294–296

dogfooding, 319, 348
Don’t Repeat Yourself (DRY), 33
Dr. Watson tool, 128
DRY (Don’t Repeat Yourself), 33
due diligence in brainstorming alternatives, 49

E
Eberle, Bob, 248
ecosystem surrounding products

end-to-end experience and, 29–30
target customers and, 73–77

effort versus value, 180–181
80 percent case, 78
Elrif, Paul, 329–330
email messages example, 110–111
emoticons, 207–208
empathy, 95. See also building empathy
end-to-end experience

about, 23
brainstorming solutions, 50
building. See building end-to-end experience
building prototypes, 50–52
capturing with stories, 157–160
car story, 3–6
customer surveys, 16–17
features and, 21–22, 25–26
framing the problem, 48
lessons learned, 447–448

diary and camera studies



 529

programming languages and, 33–35
storytelling tools capturing, 168–169, 179–184
user-journey mapping, 140–141
What Product Do You Recommend to Others   
 exercise, 6–9

end user license agreement (EULA), 150n
Engelbeck, George, 336–338
epics, 48, 171–175
ergonomic mouse case study, 39–43, 371
Essey, Ed, 278–280, 336–338, 394–396
ethics and customer research, 115
EULA (end user license agreement), 150n
evaluative research

A/B testing. See A/B testing
about, 327
big data and, 107–109, 344–348
card sorting, 341
classifying techniques in, 322
cognitive walk-throughs, 332–333
concept testing and focus groups, 328–330
continuous feedback, 345–350
eye tracking, 339–340
fake homepage approach, 328
generative versus, 105, 311
heuristic evaluation, 333–334
informal testing and observation, 334–338
scenario interviews, 327
surveys and questionnaires, 330–332
usability testing. See usability testing
usage telemetry, 345–350
Wizard of Oz test, 334

experience architect, 388
experience reviews, 432–435
experience scorecards, 425–427
experimentation

controlled online. See A/B testing
data-driven decisions, 261–263
focusing, 275–277
with rapid prototypes, 263–272

experts, hiring, 115–116
Expression Blend API, 50
external versus internal pattern, 375
eye tracking, 339–340

F
Facebook, 204, 206
failure

failing fast, 316

impact on customer experience, 168
as inspiration, 164
limiting brainstorming and, 214
recovering from, 228
tracing, 100, 155
value of, 261–262

fake homepage approach, 273, 328
Farber, Sam, 69
Farrow, Rob, 344–345
Fast Feedback Cycle

about, 44–45
brainstorming alternatives. See brainstorming   
 alternatives
building empathy. See building empathy
building prototypes. See building prototypes
ergonomic mouse case study, 39–43, 371
faster is better, 55
framing the problem. See framing the problem
getting feedback. See feedback
implementation considerations, 403–442
iteration cycle. See iteration cycle
lessons learned, 443–475
observing customers. See observing customers
patterns within, 374–383
planning to get it wrong, 52–53
scientific method and, 57–60
target customers. See target customers

features, end-to-end experience and, 21–22, 25–26
feedback (observing customers)

about, 47, 51–53, 311
Agile process and, 59
asking open-ended questions, 324–325
continuous, 345–348
in customer environment, 299
Desirability Toolkit, 340
finding qualified customers for, 336–338
giving to teammates, 326–327
importance of, 55, 312–313, 436
informal, 321, 325
intuition versus, 314
iteration and. See iteration cycle
key tools and techniques, 327–361
knowing when you’re done, 361–362
listening for, 323–324
negative, 309n
overusing from teammates, 319
presenting multiple options, 325–326
in Project Bentley case study, 41–43
prototyping and, 50, 263–264, 268–270, 279–280
providing quickly, 273–274

feedback



530

feedback, continued
quick pulse study and, 353
Send-a-Smile program, 332
user testing and, 313–323, 325
vanity metrics and, 165

flow charts, 240–241, 292
Fly Delta app, 27–29
focus groups, 130–131, 328–330
Ford, Henry, 98
formal usability testing, 355–357, 423
formative research, 322–323
Forrester Research, 16–17, 30, 141
framing memos, 82–86
framing the problem

about, 47–48, 153–154
articulating the problem, 154–157
capturing end-to-end experience, 157–160
customer focus in, 156–157
decision-making considerations, 156
getting everyone on same page, 154–156
iteration cycle and, 53, 366, 385, 390, 392
keeping implementation-free, 160–163
key tools and techniques, 166–198
knowing when you’re done, 198
scientific method and, 57
setting metrics, 48, 84–85, 163–165
storytelling in, 165–166
unarticulated needs and, 99
when to know you’re done, 198

franken-persona, 139
fresh brains, 223
fresh snow, 216–218, 222
functional fixedness, 218
functional specs, 431–432
funnel shape of iteration

about, 371–373
details phase and, 391–393
needs phase and, 384–387
sawtooth shape and, 378–380
solution-tradeoffs phase and, 387–391
turning the corner and, 380–383

Furlong, Norman, 230

G
gathering data. See data gathering
gaze paths (eye tracking), 339
generative research

about, 117–118

analyst reports and third-party sources, 133
competitive data, 132–133
customer support data, 129
data mining the web, 132
diary and camera studies, 122–124
evaluative versus, 105, 311
focus groups, 130–131
listening to social media, 129–130
site visits and interviews, 118–122
surveys and questionnaires, 124–127, 330
telemetry and instrumentation, 128
usability testing. See usability testing

Get Out of the Building (GOOB), 101
global customer-satisfaction metrics, 422
global optimum, 213–215
goals and non-goals list, 177–178
Goldilocks questions, 331
GOOB (Get Out of the Building), 101
Google Analytics, 128
Graf, Robert, 126–127, 221–222
graphical user interface (GUI)

end-to-end experience and, 31–32
prototyping and, 277–280

group brainstorming
about, 244
concluding sessions, 257
defending, 257–258
facilitating sessions, 255–257
following ground rules, 253–254

groupthink, 131, 329
GUI (graphical user interface)

end-to-end experience and, 31–32
prototyping and, 277–280

gut instinct, 72

H
Hadiaris, Regis, 312
Hallock, Joe, 172
heat map (eye tracking), 339
Herbst, Steve, 420
heuristic evaluation, 333–334
highfidelity prototyping, 274, 291–292
hill climbing, 213
Hong, James, 204
Hotmail, 203, 206
Hough, PJ, 83–86

feedback



 531

I
I can statements, 175–176
IDEO consultancy, 30, 253–254, 398
IDEs (integrated development environments), 32–33
illumination (creative process), 228
incubation (creative process), 228, 315
index cards, 305
individual brainstorming, 245–246
influencers, 78
informal testing and observation, 334–338
innovation

combining ideas, 203
continuous improvement, 203–205
evolution of, 202–203
math behind, 211–215
pedestrian path of, 205–208
science behind, 208–209

Innovation Lab (Nordstrom), 391
insights about customers

about, 100
affinity diagrams and, 147–148
difficulty spotting, 187
generating, 100
needs versus, 103–104
synthesizing data into, 133–141
usability testing and, 357

instrumentation
A/B testing and, 342
as complementary research approach, 109–110
as data-gathering technique, 128
system-level, 168

integrated development environments (IDEs), 32–33
interviews

as complementary research approach, 109
as data-gathering technique, 118–122
interacting with customers, 120–122
structured for feedback, 327

introverts and brainstorming, 244–246
intuition versus feedback, 314
iPhone

Bump feature, 26–27
customer loyalty, 72

iteration cycle
A/B testing and, 342
about, 53–55, 365–366
determining number of alternatives for, 373
developing business strategies, 76
as feedback system, 366–367
final thoughts on, 396–399

flexibility and, 389
funnel shape approach. See funnel shape of   
 iteration
pacing of, 367–369
patterns within Fast Feedback Cycle, 374–383
phases of, 275–277, 383–393
in Project Bentley case study, 40–43, 371
prototypes and, 262
quick pulse study and, 353
rule of thumb, 54
small projects and, 393–396
in software development, 43
through entire project life cycle, 370
unusual places for, 336–338
usability testing and, 359–360

J
Jobling, Jeremy, 420
Jobs, Steve, 208

K
Kamen, Dean, 205
Kano analysis, 181–183
Kaushik, Avinash, 312
Kharoufeh, Bishara, 263–264
Kindle e-reader, 29–30
Kinect games, 299, 317–318, 339
Kohavi, Ron, 312, 342, 344
Konno, Miki, 353–354
Kotler, Matt, 471–474
Kotter, John, 470

L
Landauer, Tom, 358
latent needs, 99
lateral jumps, 225–226
lateral thinking techniques, 227, 247
lead users

carryover and, 114
insights from, 114
maximizing carryovers with, 78–79

leaders
experience reviews and, 435–437
lessons learned, 455–467

lean manufacturing (Toyota), 59

lean manufacturing



532

Lean Startup
about, 59–60
fake homepage approach, 273, 328
Microsoft and, 315
minimum viable product, 273

The Lean Startup (Ries), 59, 163, 328
learning by making, 55–56
learning by thinking, 56
LeGrandeur, Matt, 172
Lehrer, Jonah, 257–258
less is more in building end-to-end experience,   
 26–27
lessons learned

about, 443
getting started, 443–448
managing change, 462–475
role of leaders, 455–462
team dynamics, 448–455

Lieb, David, 27
lighthouse stories, 159–160
Likert scale, 331
listening for feedback, 323–324
listening to social media, 129–130
Lobo, Ulzi, 123–124
local optimum, 213
longitudinal research, 123, 320
lowfidelity prototyping, 274, 291–292

M
making, learning by, 55–56
Manning, Harley, 17, 141
Manzi, Jim, 312
marinating ideas, 228–230
market drivers, 77
market researchers, 116
Martin, Roger, 62n
Matsumoto, Yukihiro, 33
McDonald’s fast-food chain, 66
McFarland, Colin, 312
McKinley, Dan, 312
Melder, Karl, 120–122, 323
Merton, Robert K., 329
metrics/measurements

bug counts versus experience metrics, 419–427
framing the problem and, 48, 84–85, 163–165
information about, 440n
Lean Startup, 59
vanity metrics, 163–165

Microsoft
A/B testing, 344–345
adding emoticons, 207–208
building empathy example, 97
creating surveys, 126–127
customer safaris, 123–124
demo.txt approach, 294–296
Desirability Toolkit, 340
email usage data, 110–111
finding qualified customers for feedback,   
 336–338
framing memos, 83–86
interacting with customers, 120–122
Lean Startup and, 315
parallel computing techniques, 278–280
PowerPoint. See PowerPoint
Project Bentley case study, 39–43, 371
rapid prototyping and, 287–290
rowing in the same direction, 80–81
storytelling storyboard toolkit, 172–175
telemetry and instrumentation analysis, 128
on vanity metrics, 163–165
vigilant tester case study, 93–94, 139–140
Visio. See Visio
Visual Basic programming language, 32

milestones versus sprints, 407–409
mindmapping, 246
Miner, Trish, 340
Mings, Susan, 172
minimum marketable feature (MMF), 273
minimum marketable product (MMP), 273
minimum viable product (MVP), 60, 273
mirror neurons, 102
MMF (minimum marketable feature), 273
MMP (minimum marketable product), 273
model-view-controller (MVC) pattern, 33
Moran, Mike, 312
mouse device case study, 39–43, 371
Mueller, Lisa, 234–235, 269
museum, building a, 135–136, 251–252
MVC (model-view-controller) pattern, 33
MVP (minimum viable product), 60, 273

N
NDA (nondisclosure agreement), 349–350, 352, 362n
near field communication (NFC), 27
needs of customers

versus insights, 103–104

Lean Startup



 533

testing for understanding of, 313–316, 327
unarticulated, 98–101, 113, 317
versus wants, 99

needs phase (iteration), 275–276, 383–387
Net Promoter Score (NPS), 164, 422
Net Satisfaction (NSAT), 422
neuroscience. See Viskontas, Indrė
Newman, Damien, 397–399
NFC (near field communication), 27
Nielsen, Jakob, 333, 358–360, 362n
Nielsen Norman Group website, 339
Nintendo Wii Fit, 12–13, 99
nondisclosure agreement (NDA), 349–350, 352, 362n
Nordstrom Innovation Lab, 391
North Star

about, 79
communicating broadly, 81–83
moving toward, 187
need for, 79–81
picking wrong, 86–87

NPS (Net Promoter Score), 164, 422
NSAT (Net Satisfaction), 422

O
objective data (DO data)

A/B testing, 341–345
about, 105–106
big data, 345–348
continuous feedback, 345–348
customer support data, 129
eye tracking, 339–340
fake homepage approach, 328
qualitative data and, 107–109, 114
quantitative data and, 108–110, 114
site visits and, 118–122
telemetry and instrumentation, 128
usability testing, 130, 338
usage telemetry, 345–348
web analytics, 128
Wizard of Oz test, 334

observing customers
building empathy. See building empathy
gathering data, 46–47
getting feedback. See feedback
iteration cycle and, 53–54, 366, 385, 389–390,   
 392
key tools and techniques, 117–148, 327–361
knowing when you’re done, 148–149

scientific method and, 57
site visits and interviews, 118–122

OH&Co branding consultants, 30
OneDrive, 16
open book, close book technique, 297
open-ended questions, 324–325, 331
O’Reilly Media, 296
Osborn, Alex

on brainstorming, 243
on brainstorming rules, 253–254
on critique and criticism, 258
intention for brainstorming, 257
SCAMPER acronym and, 248

outcome-based metrics, 422
outcomes in scenario format, 176, 190
Outside In (Bodine and Manning), 141
OXO Good Grips, 69, 78, 102–103

P
pairing team members, 439
Palmer, Susan, 97
Panay, Panos, 80–81
paper prototyping

about, 265, 286–287, 301–302
backdrop for, 303
in brainstorming alternatives, 234–235
building, 303–308
common shapes, 307
dental floss, 307
fishing line, 307
index cards, 305
paper and scissors, 304
pens, pencils, markers, 306
printouts, 307–308
screenshots, 307–308
staying organized, 308
sticky notes, 304
tape, 306
testing with, 354–355
transparencies, 305–306

parallel computing, 278–280
patterns

card sorting and, 341
within Fast Feedback Cycle, 374–383
finding in data, 134–137
in healthy brainstorming, 225–226
shifting work. See shifting work patterns
of successful innovation, 202–205

patterns



534

Pauling, Linus, 209, 219
peanut butter, releasing, 68
Peck, Tonya, 452–454
Peirce, Charles Sanders, 62n
perception metrics, 167, 422
perfectionism, 368
performance metrics, 167, 421–422
performance-review process, 439
personas and customer profiles, 137–140
Perticarati, Henrique, 309n
physical models, 243
Piccoult, Jon, 17
Pietraszak, Mike, 273
piggybacking ideas, 244–245, 254
pilot teams, 469–470
pixel pushing sketches, 270
planning to get it wrong, 52–53
PLINQ framework, 278–280
POP (prototyping on paper), 291
Post-it notes, 99
PowerPoint, 282, 287–289
predictive analytics, 347
preparation (creative process), 228
press releases, 178
pretotypes, 266, 309n
primary cases. See target customers
prioritized lists, 406
prioritizing stories

about, 179
business strategy alignment, 184
competitive strengths and weaknesses, 183–184
cutting low-priority early, 180
effort versus value, 180–181
Kano analysis, 181–183
less is more, 184
useful, usable, desirable, 183

problem, framing the. See framing the problem
process diagrams, 292
product planners, 116
products

common thread of recommended, 7–8
desirable, 11–15, 183
ecosystem surrounding, 29–30
identifying customers’ end-to-end experience, 24
reality check, 8–9
usable, 11, 14, 183, 386–387
useful, 10, 14, 183, 386–387
What Product Do You Recommend to Others   
 exercise, 6–9

programming languages, 31–35, 93–94

Project Bentley case study, 39–43, 371
project reviews, 432–435
prototyping. See building prototypes
prototyping on paper (POP), 291
proxies versus real customers, 96

Q
QPS (quick pulse study), 353–354
qualitative data

about, 106–107
affinity diagrams and, 136–137, 143–144
card sorting, 341
cognitive walk-throughs, 332–333
concept testing, 328–329
customer support data, 129
diary and camera studies, 122–124
Desirability Toolkit, 340
DO data and, 107–109, 114
eye tracking, 339–340
focus groups, 130–131, 328–329
heuristic evaluation, 333–334
interviews and, 118–122
listening to social media, 129–130
SAY data and, 107–109, 114
scenario interviews and, 327
site visits and, 118–122
usability testing, 130, 338
Wizard of Oz test, 334

quality
desirable products and, 12
end-to-end experience and, 31
product testing and, 94

quantitative data
A/B testing, 341–345
about, 106–107
big data, 345–348
card sorting, 341
continuous feedback, 345–348
customer support data, 129
DO data and, 108–110, 114
fake homepage approach, 328
SAY data and, 107–110, 114
surveys and questionnaires, 124–127, 330–332
synthesizing, 141
telemetry and instrumentation, 128
usage telemetry, 345–348
web analytics, 128

Pauling, Linus



 535

Questionnaire for User Interface Satisfaction (QUIS),  
 331
questionnaires. See surveys and questionnaires
questions

Goldilocks, 331
open-ended, 324–325, 331
screener questions in surveys, 113
yes/no, 331

quick pulse study (QPS), 353–354
quietstorming, 244–245
QUIS (Questionnaire for User Interface Satisfaction),  
 331

R
RAD (rapid application development), 32
Rails application framework, 33–34
random input and association, 247
rapid application development (RAD), 32
Rapid Iterative Testing and Evaluation (RITE),   
 352–353
rapid prototypes, 266, 282, 287–292
raw data, 117–118
reality check

for customer satisfaction, 8–9
stories as, 159

Reichheld, Fred, 164
reports, day-to-day, 416–417
requirements, software, 176–177
research

customer. See customer research
evaluative. See evaluative research
generative. See generative research

reversal technique, 247
Ries, Eric

on fake homepage approach, 273
on Lean Startup, 59
on user testing, 328
on vanity metrics, 163

RITE method, 352–353
Roam, Dan, 235–238
Romero, Ramon, 317–318
root causes, finding in data, 134
round-table discussions, 82
rowing in the same direction, 80–81
Ruby programming language, 32–35

S
Sanders, Elizabeth, 13
Savoia, Alberto, 266, 309n
sawtooth pattern, 378–380
SAY data (subjective data)

about, 105–106
card sorting, 341
cognitive walk-throughs, 332–333
concept testing, 328–329
customer support data, 129
diary and camera studies, 122–124
focus groups, 130–131, 328–329
heuristic evaluation, 333–334
interviews and, 118–122
listening to social media, 129–130
qualitative data, 107–109, 114
quantitative data and, 107–110, 114
scenario interviews and, 327
surveys and questionnaires, 124–127, 330–332

SCAMPER acronym, 248
Scenario-Focused Engineering

end-to-end experience. See end-to-end   
 experience
Fast Feedback Cycle. See Fast Feedback Cycle
implementation considerations, 60–61
mixing approaches, 60–61
tiny iterations, 394–396
What Product Do You Recommend to Others   
 exercise, 6–9

scenarios
about, 153
anatomy of, 188–190
in framing the problem, 48, 158–159
implementation-free, 436
informal testing and observation, 335
lessons learned, 447, 467–469
quick pulse study and, 353
SPICIER anagram, 185–188
structured feedback on, 327
tips and tricks, 191–198, 415
work-item lists versus, 409–418
writing, 166, 168, 184–188

Schilling, Doug, 273
scientific method, 57–60
scorecards, experience, 425–427
screener questions in surveys, 113
Send-a-Smile feedback program, 332
serendipity and brainstorming, 246
serial prototyping, 268

serial prototyping



536

shifting work patterns
about, 403–404
from ad hoc user testing to customer touch   
 points, 418–419
from bug counts to experience metrics, 419–427
from building components to experience slices,  
 427–429
from component to experience reviews, 432–437
from doing many things to a few, 404–406

shifting work patterns, continued
from individual to team focus, 437–439
from milestones to sprints, 407–409
from upfront specs to alternatives, prototypes, 
documentation, 430–432
what doesn’t change, 440
from work-item lists to scenario hierarchies,   
 409–418

Show and Tell (Roam), 235
Simmons, Annettee, 100
site visits

as complementary research approach, 109
as data-gathering technique, 118–122
interacting with customers, 120–122

six thinking hats, 248
SketchFlow tool, 289–290
sketching

pixel pushing, 270
scheduling sketchfests, 243
sketch storyboard method, 173–175, 270
as visualization technique, 232–238

skits as prototyping tools, 292–293
Skype, 210
skywriting, 225
slicing approach

about, 309n
building code in slices, 284–286
building experience slices, 427–429

Snapchat, 210
Snover, Jeffrey, 294–296
social media, listening to, 129–130
software development

Agile process and, 58–59
brainstorming alternatives, 209–215
framing the problem, 165–166
getting everyone on the same page, 155
iterative process in, 43, 371
nondisclosure agreements and, 349–350
programming languages and, 31–35
prototyping and, 51–52
vigilant tester case study, 93–94, 139–140

solution-tradeoffs phase (iteration), 275–277,   
 383–384, 387–391
Spencer, Rick, 362n
SPICIER anagram, 185–188, 191–194, 414
 spikes, 300
sprints versus milestones, 407–409
SQM (software quality metrics), 128
Stanford University, 268
state diagrams, 240–241
stories and storytelling

art of, 178–179
asking customers for stories, 122
benefits of, 159
capturing end-to-end experience, 157–160,   
 179–184
case studies and, 137
epics, 171–175
in framing the problem, 48
goals and non-goals, 177–178
I can statements, 175–176
including stories with insights, 138
lighthouse stories, 159–160
outcomes, 176
press release, 178–179
prioritizing, 179–184
as reality check, 159
requirements, 176–177
scenarios, 168–169
SPICIER anagram, 185–188
storyboard toolkit, 172–175
task-level stories, 412–415
tools helping, 168–179
two-level hierarchy, 165–166, 410–415
user-journey maps, 168–169
user stories, 170–171
vision-level stories, 412–413

storyboarding
flow charts and, 240–241
storytelling toolkit, 172–175
as visualization technique, 50, 238–240

stream of consciousness ideas, 246
subjective data (SAY data)

about, 105–106
card sorting, 341
cognitive walk-throughs, 332–333
concept testing, 328–329
customer support data, 129
diary and camera studies, 122–124
focus groups, 130–131, 328–329
heuristic evaluation, 333–334

shifting work patterns



 537

interviews and, 118–122
listening to social media, 129–130
qualitative data and, 107–109, 114
quantitative data and, 107–110, 114
scenario interviews and, 327
surveys and questionnaires, 124–127, 330–332

success criteria, 436
suitcases with wheels, 69–70, 78
Sullivan, Kent, 452–454
summative research, 322, 422–423
sunk cost, 51
surveys and questionnaires

as complementary research approach, 109
creating, 126–127
as data-gathering techniques, 124–127
getting feedback from, 330–332
screener questions, 113

SUS (System Usability Scale), 331
suspending disbelief, 226–228
swarming, 439
System Usability Scale (SUS), 331

T
T-shirt-size costing, 67, 250
target customers

carryover and, 68–72, 78–79
ecosystem complexity, 73–77
focusing on, 435–436
getting specifics about, 74
identifying, 45, 75–87
introducing, 153–154
knowing when you’re done, 87–88
narrowing focus, 66–68
need for, 65–68
as North Star, 79–87
number needed, 74–75
researching. See customer research
scientific method and, 57

task-level customer stories, 412–415
team dynamics (lessons learned), 448–455
technical investigations, 300
telemetry

as data-gathering technique, 128
getting feedback from, 345–348

test-case pass rates, 168
testing

-ilities, 300
A/B. See A/B testing

concept, 328–329
in customer environment, 299
getting feedback from, 317–318, 327–350
informal, 334–338
with paper prototypes, 354–355
usability. See usability testing
user. See user testing
vigilant tester case study, 93–94, 139–140
work in progress, 284–285

themes for releases, 82–83, 412
thinking, learning by, 56
third-party sources, 133
Tholfsen, Mike, 420
3-D models, 243, 292
3M Post-it notes, 99
time boxing, 369
Todd, Ian, 382
tools and techniques

based on scientific method, 57–61
brainstorming alternatives, 230–258
building empathy, 117–148
building prototypes, 286–308
framing the problem, 166–198
getting feedback, 327–361
observing customers, 117–148, 327–361
targeting customers, 75–87
team comfort with, 282
vigilant tester case study, 93–94, 139–140

Toyota, 59, 205
tracking system, work-item, 415–416
trading places to build empathy, 97
trending metrics over time, 424–425
Trewin, Tracey, 386–387
tunnel vision

mitigating, 217–224
problem with, 215–217

two-level story hierarchies, 165–166, 410–415

U
UCD (user-centered design), 58
unarticulated needs of customers

solving, 317
unearthing, 98–101, 113

understand versus create pattern, 374–375
Usability Engineering (Nielsen), 333
usability testing

about, 338, 350–351
adding rigor to, 355–357

usability testing



538

usability testing, continued
biases of, 360–361
as complementary research approach, 109
as data-gathering technique, 130
discount, 338, 351–355, 360
dogfooding in, 319
father of, 333
formal, 355–357, 423
getting feedback during, 318–319, 325
number of people needed, 358–360

usability testing, continued
roles in, 357
vigilant tester case study, 93–94, 139–140

usable products
about, 11
solving problems for, 14, 183
user testing for, 386–387

usage data analysis, 345–348
use cases, 171
useful products

about, 10
solving problems for, 14, 183
user testing for, 386–387

user-centered design (UCD), 58
User Experience Professionals Association (UXPA),   
 115
user-journey maps, 48, 140–141, 169–170
user profiles, 137–140
user researchers, 116, 123
user stories, 170–175
user testing

about, 313
customer touch points and, 418–419
finetuning solution details, 319–320, 328–332
formal versus informal approaches, 321–322
giving and receiving feedback during, 323–327
if solution works well, 318–319
if you’ve got right solution, 316–318, 328–332
importance of, 328
for improvement versus confirmation, 322–323
nondisclosure agreements and, 349–350
real-world usage over time, 320
for understanding of customer needs, 313–316,  
 327–332
Wizard of Oz test, 334

UXPA (User Experience Professionals Association),   
 115

V
value versus effort, 180–181
vanity metrics, 163–165, 461
verification (creative process), 228
vigilant tester case study, 93–94, 139–140
Visio, 289, 309n
vision-level customer stories, 412–413
Viskontas, Indrė

on comparing multiple options, 325
on confabulation, 70
on creative process, 228–229
on double-blind studies, 126
on functional fixedness, 218
on left brain/right brain distinction, 231–232
on mirror neurons, 102
on neocortex size, 157–158
on neurons firing together, 216

Visual Basic programming language, 32
Visual C++ programming language, 94
Visual Studio programming language, 93–94,   
 102–103
visualization

about, 231–232
APIs as, 241–243
architectural drawings as, 241–243
block diagrams as, 241–243, 284
brainstorming alternatives, 50, 231–243
customer ecosystem, 76–77
flow charts as, 240–241, 292
physical models, 243
scheduling sketchfests, 243
sketching as, 232–238
state diagrams as, 240–241
storyboarding as, 50, 238–240

W
wallowing in data, 134–135
wants versus needs, 99
Warfel, Todd, 309n
web analytics, 128
What Product Do You Recommend to Others   
 exercise, 6–9
wheeled-suitcases, 69–70, 78
Wiegert, Craig, 213
Wii Fit software, 12–13, 99
Windows Presentation Framework (WPF), 289
winnowing, 318, 371–372
wireframe drawings

usability testing



 539

Balsamiq support, 291
PowerPoint support, 282, 287
in prototypes, 265–266, 283

Wizard of Oz test, 266, 334
work-item lists versus scenario hierarchies, 409–418
work patterns, shifting. See shifting work patterns
workplace environment, 438–439, 440n
WPF (Windows Presentation Framework), 289
writing stories (framing the problem), 48
wrong, planning for being, 52–53

X
Xerox PARC, 397–399

Y
Yes, and... technique, 219
yes/no questions, 331
Young, Jim, 204

Z
Zen frame of mind, 323–324
Zuckerberg, Mark, 204

Zuckerberg, Mark



This page intentionally left blank 


	Contents
	Foreword
	Introduction
	Chapter 3 Take an experimental approach
	Designing a new mouse
	The Fast Feedback Cycle
	Looking deeper 
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




