

Inside Microsoft
SharePoint 2013

Scot Hillier
Mirjam van Olst
Ted Pattison
Andrew Connell
Wictor Wilén
Kyle Davis

Copyright © 2013 by Scot Hillier Technical Solutions, LLC, Ted Pattison Group, Inc., Mirjam van Olst, Andrew
Connell, Wictor Wilén, Kyle Davis
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7447-9

2 3 4 5 6 7 8 9 10 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Kenyon Brown

Production Editor: Kara Ebrahim

Editorial Production: Online Training Solutions, Inc. (OTSI)

Technical Reviewers: Wayne Ewington and Neil Hodgkinson

Copyeditor: Online Training Solutions, Inc. (OTSI)

Indexer: Angela Howard

Cover Design: Twist Creative • Seattle

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest

[2013-11-21]

mailto:mspinput%40microsoft.com?subject=
http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents at a glance

Introduction xvii

CHAPTer 1 SharePoint 2013 developer roadmap 1

CHAPTer 2 SharePoint development practices and techniques 35

CHAPTer 3 Server-side solution development 71

CHAPTer 4 SharePoint apps 119

CHAPTer 5 Client-side programming 163

CHAPTer 6 SharePoint security 213

CHAPTer 7 SharePoint pages 267

CHAPTer 8 SharePoint Web Parts 309

CHAPTer 9 SharePoint lists 353

CHAPTer 10 SharePoint type definitions and templates 405

CHAPTer 11 SharePoint site provisioning 441

CHAPTer 12 SharePoint workflows 467

CHAPTer 13 SharePoint search 503

CHAPTer 14 SharePoint enterprise Content Management 541

CHAPTer 15 Web content management 591

CHAPTer 16 Business Connectivity Services 621

CHAPTer 17 SharePoint social enterprise features 675

Index 727

 v

Contents

Introduction .xvii

Chapter 1 SharePoint 2013 developer roadmap 1
A brief history of SharePoint . 2

Understanding the impact of SharePoint Online on the
SharePoint platform . 3

Examining SharePoint Foundation architecture . 4

Understanding SharePoint farms . 6

Creating web applications . 8

Understanding service applications .12

Creating service applications in SharePoint Server 2013 14

Managing sites .15

Customizing sites .19

Using SharePoint Designer 2013 .23

Understanding site customization vs. SharePoint development . . . 24

Windows PowerShell boot camp for SharePoint professionals 26

Learn Windows PowerShell in 21 minutes .26

The Windows PowerShell Integrated Scripting
Environment (ISE) .30

The SharePoint PowerShell snap-in . 31

Summary. .34

Chapter 2 SharePoint development practices and techniques 35
Setting up a developer environment. .36

Deciding between virtual and physical .37

Understanding hardware and software requirements 38

Delivering high-quality solutions .40

Automating SharePoint administration by using Windows
PowerShell scripts .42

Using PowerShell to deploy a custom solution 44

Configuring SharePoint service applications .46

vi Contents

Using debugging tools .52

Working with ULS and Windows event logs .53

Using the Developer Dashboard .54

Using the SharePoint Developer Tools in Visual Studio 2012 55

Choosing a development approach .59

Using the SharePoint APIs .61

Understanding the server-side object model62

Using the client-side object model .63

Using the REST APIs .67

Summary. .69

Chapter 3 Server-side solution development 71
Understanding the server-side object model .73

Developing farm solutions . 76

Creating a SharePoint project in Visual Studio77

Designing your SharePoint solution: Features 79

Adding declarative elements .81

Adding a feature receiver .84

Understanding the SharePoint root directory 86

Deploying and debugging farm solutions .89

Updating farm solutions .94

Upgrading features .95

Developing sandboxed solutions .102

Understanding the sandbox execution environment104

Creating a SharePoint project for a sandboxed solution 106

Deploying and debugging sandboxed solutions109

Updating and upgrading sandboxed solutions113

Summary. .117

Chapter 4 SharePoint apps 119
Understanding the new SharePoint app model .119

Understanding SharePoint solution challenges120

Understanding the SharePoint app model design goals 122

 Contents vii

Understanding SharePoint app model architecture122

Working with app service applications .123

Understanding app installation scopes .124

Understanding app code isolation .125

Understanding app hosting models .126

Reviewing the app manifest .130

Setting the start page URL .132

Understanding the app web .134

Working with app user interface entry points 137

Using the chrome control .144

Packaging and distributing apps .147

Packaging apps .147

Publishing apps .152

Installing apps .155

Upgrading apps .157

Trapping app life cycle events .158

Summary. .162

Chapter 5 Client-side programming 163
Understanding app designs .163

Assessing SharePoint-hosted app designs .164

Assessing cloud-hosted app designs .164

Introduction to JavaScript for SharePoint developers165

Understanding JavaScript namespaces .165

Understanding JavaScript variables .166

Understanding JavaScript functions .167

Understanding JavaScript closures .168

Understanding JavaScript prototypes .169

Creating custom libraries .170

Introduction to jQuery for SharePoint developers173

Referencing jQuery . 174

Understanding the global function . 174

Understanding selector syntax .175

viii Contents

Understanding jQuery methods .175

Understanding jQuery event handling .176

Working with the client-side object model .177

Understanding client object model fundamentals 177

Working with the managed client object model180

Working with the JavaScript client object model188

Working with the REST API .195

Understanding REST fundamentals .196

Working with the REST API in JavaScript .200

Working with the REST API in C# .206

Summary. .212

Chapter 6 SharePoint security 213
Reviewing authentication and authorization .213

Understanding user authentication .214

Understanding the User Information List .216

Working with users and groups .216

Working with application pool identities .219

Understanding the SHAREPOINT\SYSTEM account220

Delegating user credentials .221

User impersonation with the user token .221

Securing objects with SharePoint .222

Rights and permission levels .224

Understanding app authentication .224

Understanding app authentication flow .233

Understanding app authorization .234

Managing app permissions .235

Understanding app permission policies .235

Requesting and granting app permissions .236

Requesting app-only permissions .239

Establishing app identity by using OAuth .240

Understanding app principals .242

Developing with OAuth .247

Establishing app identity by using S2S trusts256

 Contents ix

Architecture of an S2S trust .257

Configuring an S2S trust .259

Developing provider-hosted apps by using S2S trusts263

Summary. .265

Chapter 7 SharePoint pages 267
SharePoint and ASP.NET .267

Learning ASP.NET basics .267

Understanding how SharePoint relates to IIS web applications . .271

Understanding the web.config file .272

Understanding the SharePoint virtual file system274

Working with files and folders in SharePoint 275

Understanding page customization .277

Using pages in SharePoint .282

Understanding master pages .282

Understanding MDS .287

Understanding content pages .289

Creating a custom branding solution .296

Working with application pages .298

Customizing the ribbon .303

Understanding the anatomy of the SharePoint ribbon303

Adding a custom ribbon control .304

Summary. .307

Chapter 8 SharePoint Web Parts 309
Understanding Web Part fundamentals .309

Understanding Web Parts .309

Comparing ASP.NET and SharePoint Web Parts310

Understanding App Parts .311

Understanding Web Part zones .311

Understanding the Web Part Manager .312

Understanding static Web Parts .312

Storing Web Part control description files in the
Web Part Gallery .313

x Contents

Developing and deploying Web Parts .313

Building your first Web Part .313

Deploying and uninstalling a Web Part .317

Deploying a Web Part page with Web Parts319

Controlling Web Part rendering .324

Overriding the RenderContents method .324

Using CreateChildControls . 325

Responding to events .325

Combining CreateChildControls and RenderContents 327

Using Visual Web Parts .329

Working with Web Part properties .331

Persisting Web Part properties .331

Using custom Editor Parts .333

Exploring advanced Web Part development .337

Using Web Part verbs .337

Using Web Part connections .340

Using parallel and asynchronous execution in Web Parts345

Summary. .350

Chapter 9 SharePoint lists 353
Creating lists .353

Working with fields and field types .357

Performing basic field operations .358

Working with lookups and relationships .361

Understanding site columns .362

Working with content types .366

Programming with content types .368

Creating custom content types .370

Working with document libraries .372

Creating a document library .372

Adding a custom document template .373

Creating document-based content types .375

Working with folders .378

 Contents xi

Creating and registering event handlers .379

Understanding event receiver classes .380

Understanding remote event receivers .381

Registering event handlers .383

Programming before events .387

Programming after events .388

Querying lists with CAML .389

Understanding CAML fundamentals .389

Querying joined lists .391

Querying multiple lists .392

Throttling queries .394

Working with LINQ to SharePoint .396

Generating entities with SPMetal . 396

Querying with LINQ to SharePoint .401

Adding, deleting, and updating with LINQ to SharePoint402

Summary. .404

Chapter 10 SharePoint type definitions and templates 405
Custom field types .405

Creating custom field types .406

Creating custom field controls .410

JSLink .420

Custom site columns and content types .428

Creating site columns and content types by using CAML428

Creating site columns and content types by using the
server-side object model .430

Custom list definitions .433

Summary. .439

Chapter 11 SharePoint site provisioning 441
The GLOBAL site definition .442

Site definitions .443

Webtemp*.xml .443

ONET.xml for site definitions .445

xii Contents

Feature stapling .448

Order of provisioning when using site definitions449

Custom site definitions .450

Web templates. .451

elements.xml .451

ONET.xml for web templates .452

Deploying web templates .455

Using custom code to create sites .458

Site templates .458

Site provisioning providers .459

Web provisioning events .461

Web templates and SharePoint apps .463

Summary. .465

Chapter 12 SharePoint workflows 467
Workflow architecture in SharePoint 2013 .467

Installing and configuring a Workflow Manager 1.0 farm468

Understanding workflow in SharePoint 2013469

Creating custom workflows for SharePoint 2013469

Building custom workflows .470

Custom workflows with Visio 2013 and SharePoint
Designer 2013 .470

Custom workflows with Visual Studio 2012 .476

SharePoint Designer 2013 and web services485

Creating custom activities .487

Using tasks in workflows .492

Adding tasks to a workflow .492

Custom task outcomes .494

Workflow services CSOM and JSOM .497

Adding custom forms to workflows .498

Association forms in SharePoint 2013 .498

Initiation forms in SharePoint 2013 .500

Summary. .502

 Contents xiii

Chapter 13 SharePoint search 503
Introducing search-based applications .504

Understanding search architecture .506

Understanding the indexing process .507

Understanding the query process .509

Understanding Keyword Query Language .510

Creating no-code customizations .513

Creating simple link queries .513

Extending the Search Center .514

Using the Content Search Web Part .523

Using the client-side API .523

Using the REST API .524

Using the CSOM API .526

Using the script Web Parts .528

Improving relevancy .529

Enhancing content processing .531

Creating .NET Assembly Connectors for search .534

Search-enabling a model .534

Implementing security in search results .537

Crawling the .NET Assembly Connector .539

Summary. .539

Chapter 14 SharePoint Enterprise Content Management 541
Understanding the Managed Metadata Service Application541

Understanding managed metadata .542

Using managed metadata in a custom solution545

Understanding content type syndication .556

Document services .559

Understanding versioning .559

Understanding Document IDs .563

Understanding Document Sets .567

Using the Content Organizer .574

Understanding Word Automation Services .578

xiv Contents

Records management .584

In-place records management .584

Records archives .586

eDiscovery .586

Summary. .589

Chapter 15 Web content management 591
Understanding the WCM features .591

Publishing site templates .592

Accessing SharePoint publishing files .594

Mapping to the SharePoint Master Page Gallery594

Page layouts .595

Understanding the page model .595

Creating a new page layout .597

Managing the presentation of page fields .597

Working with edit mode panels .599

Working with Web Part zones .600

Understanding device channels .600

Working with device channel panels .603

Understanding managed navigation .604

Working with managed navigation APIs .604

Creating a navigational term set .605

Content aggregation .607

Deciding between the Content Query and
Content Search Web Parts .609

Working with display templates .611

Understanding cross-site publishing .617

Working with catalogs .617

Summary. .620

Chapter 16 Business Connectivity Services 621
Introduction to Business Connectivity Services .622

Creating simple BCS solutions .624

 Contents xv

Creating External Content Types .624

Creating External Lists .627

Understanding External List limitations .628

Understanding BCS architecture .630

Understanding connectors .631

Understanding Business Data Connectivity 631

Managing the BDC service .632

Understanding the BDC Server Runtime .635

Understanding the client cache .635

Understanding the BDC Client Runtime .635

Introduction to the Secure Store Service .635

Understanding package deployment .639

Understanding authentication scenarios .639

Configuring authentication models .639

Accessing claims-based systems .643

Accessing token-based systems .643

Managing client authentication . 644

Creating External Content Types .645

Creating operations .645

Creating relationships .648

Defining filters .649

Using ECTs in SharePoint 2013 .651

Creating custom forms .652

Using External Data Columns .652

Using External Data Web Parts .653

Creating a profile page .654

Searching External Systems .655

Supplementing user profiles .656

Using ECTs in Office 2013 .656

Understanding Outlook integration .656

Using Word Quick Parts .657

Creating custom BCS solutions .657

Using the BDC Runtime object models .658

Using the Administration Object Model .661

xvi Contents

Creating custom event receivers .664

Creating .NET Assembly Connectors .665

Developing SharePoint apps .670

Summary. .673

Chapter 17 SharePoint social enterprise features 675
What’s new in SharePoint 2013 .675

Understanding social components .676

Working with the social APIs .677

Understanding user profiles .678

Retrieving user profile properties .679

Understanding social feeds .691

Retrieving posts from your newsfeed .691

Retrieving posts from a site feed. .700

Posting to your personal feed .706

Posting to a site feed .711

Understanding following within SharePoint 2013 712

Following people .714

Understanding Yammer .721

Understanding how Yammer can work with SharePoint.721

Retrieving followers and followings from Yammer721

Summary. .725

Index 727

 xvii

Introduction

The purpose of this book is to help you design and develop custom business apps
and solutions for SharePoint 2013, which includes the two products SharePoint

Foundation and SharePoint Server 2013. Our goal is to teach you how to create, debug,
and deploy the various components of apps and solutions such as Features, Pages, App
Parts, Remote Event Handlers, and Workflows. Once you apply yourself and become
comfortable developing with these building blocks, there’s no limit to the types of apps
and solutions you can create on the SharePoint 2013 platform.

Who this book is for

This book is written for experienced SharePoint developers who are proficient with
Microsoft Visual Studio 2012, the Microsoft .NET Framework 4, and who understand
the fundamentals of the SharePoint object model. The code samples in this book are
written in JavaScript and C# and are intended to represent the spectrum of possible
solutions. The primary audience for the book is SharePoint architects and developers
looking to master SharePoint 2013 development.

Organization of this book

This book is organized into 17 chapters:

■■ Chapter 1, “SharePoint 2013 developer roadmap,” provides a strategic view of
SharePoint development options. The chapter presents the various development
models and how they fit into the overall SharePoint development story.

■■ Chapter 2, “SharePoint development practices and techniques,” provides guid-
ance in setting up your development environment. Additionally, the chapter
covers related technologies that are important for SharePoint development,
such as Windows PowerShell.

■■ Chapter 3, “Server-side solution development,” presents the fundamentals of
sandbox and full-trust solution development. The chapter also presents the
basics of the server-side object model.

■■ Chapter 4, “SharePoint apps,” covers the new app model in detail. This chapter
presents the tools and techniques necessary for developing apps.

xviii Introduction

■■ Chapter 5, “Client-side programming,” first provides a JavaScript and jQuery
primer for SharePoint developers with an emphasis on professional patterns.
The second half of the chapter presents the fundamentals of the client-side
object model and REST APIs for SharePoint 2013.

■■ Chapter 6, “SharePoint security,” presents the security concepts necessary for
successfully developing solutions and apps. This chapter explains the concepts
behind user authentication and authorization, in addition to the app principal.
This chapter also presents the details behind the claims and OAuth security
models.

■■ Chapter 7, “SharePoint pages,” presents techniques and information for working
with pages in SharePoint solutions and apps. The chapter covers core concepts
such as master pages, content placeholders, and application pages.

■■ Chapter 8, “SharePoint Web Parts,” presents the tools and techniques required
to create Web Parts and app parts.

■■ Chapter 9, “SharePoint lists,” presents the information necessary for creating
lists and performing operations against them. This chapter contains many code
samples for reading and writing, using both server and client technologies.

■■ Chapter 10, “SharePoint type definitions and templates,” covers the techniques
for creating field types and field controls. The second part of the chapter covers
the new JSLink technology and how it can be used to customize views.

■■ Chapter 11, “SharePoint site provisioning,” shows how to create site templates
and site definitions. These templates can be reused in solutions and apps.

■■ Chapter 12, “SharePoint workflows,” presents all the information necessary for
developing custom workflows by using the new Workflow Manager engine.
Techniques for both the SharePoint Designer and Visual Studio are presented.

■■ Chapter 13, “SharePoint search,” presents architecture and development tech-
niques for Enterprise Search. The chapter details the creation of no-code solu-
tions as well as apps.

■■ Chapter 14, “SharePoint Enterprise Content Management,” presents structure
and development techniques for managed metadata, document services, and
records management.

 Introduction xix

■■ Chapter 15, “Web content management,” details the significant improvements
made for supporting website development. The chapter presents improvements
in data-driven sites, master page creation, and metadata navigation.

■■ Chapter 16, “Business Connectivity Services,” provides the background and tools
for creating solutions based on data in external systems. The chapter presents
approaches for both solutions and apps.

■■ Chapter 17, “SharePoint social enterprise features,” presents the details of the
new social infrastructure. The chapter also shows how to create solutions that
utilize social features.

Acknowledgments

The process of writing this book really began two years before the release of
SharePoint 2013, when we were fortunate enough to be selected as the team to
create the first SharePoint 2013 training materials for Microsoft. We worked through
many “Dev Kitchens” with the SharePoint team and got great information from
Mike Ammerlann, Rob Howard, Brad Stevenson, Mike Morton, Mauricio Ordonez,
and many others. After learning the technologies, we worked with a great team
headed by Keenan Newton to deliver training to Microsoft personnel around the
country. Later, we worked with Uma Subramanian and the MSDN team to create
samples and videos to be deployed online. Thanks to all these people and everyone
at Microsoft for the wonderful support and opportunities.

Of course, the book could not possibly have come together without the patience
and support of the team at Microsoft Press, starting with our editor, Ken Brown
(O’Reilly Media). Although we frustrated him endlessly at times, he maintained focus
and drove us all to success. We’d also like to thank Kara Ebrahim (Production Editor,
O’Reilly Media), Kathy Krause (Copyeditor, Online Training Solutions, Inc. [OTSI]),
Wayne Ewington (Technical Editor), and Neil Hodgkinson (Technical Editor).

Thanks, everyone. It feels great to be done!

xx Introduction

Support & feedback

The following sections provide information on errata, book support, feedback, and con-
tact information.

errata
We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed at:

http://aka.ms/InsideSP2013/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://aka.ms/InsideSP2013/errata
mailto:mspinput%40microsoft.com?subject=
mailto:mspinput%40microsoft.com?subject=
http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

 1

C H A P T E R 1

SharePoint 2013 developer
roadmap

Microsoft SharePoint technologies have become increasing popular and have made it into the
mainstream of IT infrastructures used by companies and organizations around the world. Today,

millions of people work with SharePoint technologies every day, including business users, power us-
ers, executives, site administrators, farm administrators, and professional developers.

It is important for you, as a software developer, to view SharePoint technologies as a true plat-
form for professional developers. The key point is that SharePoint technologies serve as a foundation
on top of which you can design and implement business solutions. However, getting started can be
daunting because there are several different versions of the SharePoint platform, and each version
has several different variations.

Over the last decade, most of the companies that have used SharePoint technologies have de-
ployed them as server-side software products on server computers that are under their control. This
is a scenario that is often referred to as SharePoint on-premises. It is also important to note that the
vast majority of SharePoint-related development projects have historically targeted the SharePoint
on-premises scenario. However, this is beginning to change, and the change is occurring at a very
fast pace.

Over the last few years, Microsoft has shifted the focus of their SharePoint adoption strategy from
the original on-premises model to a newer subscription-based model where the SharePoint platform
is made available to customers as a cloud-based service hosted in the Microsoft Office 365 environ-
ment. The hosted version of the SharePoint platform in the Office 365 environment is known as
SharePoint Online.

It’s clear that Microsoft sees SharePoint Online as the future direction of SharePoint technologies.
However, it’s also true that a significantly large portion of the existing SharePoint customer base is
still using the older SharePoint on-premises model. Microsoft’s ongoing effort to move its SharePoint
customer base from the original on-premises model to SharePoint Online raises a few important
questions:

■■ Are the SharePoint on-premises model and SharePoint Online just two different variations of
the same development platform, or do they represent two entirely different platforms?

■■ When developing a business solution for SharePoint 2013, is it important to choose between
targeting SharePoint on-premises and targeting SharePoint Online?

2 Inside Microsoft SharePoint 2013

■■ Can you write a generic business solution that runs equally well in a SharePoint on-premises
environment and in the SharePoint Online environment?

Unfortunately, the answer to each of these questions is “it depends,” because they are all depen-
dent upon the scenario at hand. In one scenario, you might be able to write a generic business solu-
tion that works in on-premises environments and in SharePoint Online. In another scenario, you might
find it necessary to use a development technique that works in on-premises environments but doesn’t
work at all in SharePoint Online. In a third scenario, you might decide to take advantage of features in
the Office 365 environment that are not available in the on-premises environment.

The bottom line is that there are an incredible number of details and techniques that you have to
learn if you want to build a level of expertise across the entire SharePoint platform. The goal of this
book is to cover the SharePoint 2013 development story from end to end to prepare you to make the
correct choices in any SharePoint development scenario you might encounter.

A brief history of SharePoint

Microsoft has released five versions of SharePoint technologies, which are listed in Table 1-1. Each
SharePoint release has included an underlying core infrastructure product and a second product
that adds business value to the infrastructure. The core infrastructure product has always been free
to customers who already have licenses for the underlying server-side operating system, Windows
Server. Microsoft makes money on SharePoint technologies in the on-premises model by selling
 customers server-side licenses as well as client access licenses (CALs).

TABLE 1-1 A brief history of SharePoint

Year Core infrastructure product Business value product

2001 SharePoint Team Services SharePoint Portal Server 2001

2003 Windows SharePoint Services 2.0 Microsoft SharePoint Portal Server 2003

2007 Windows SharePoint Services 3.0 Microsoft Office SharePoint Server 2007

2010 Microsoft SharePoint Foundation 2010 Microsoft SharePoint Server 2010

2013 Microsoft SharePoint Foundation 2013 Microsoft SharePoint Server 2013

SharePoint 2001 introduced an environment that allowed users to create sites, lists, and document
libraries on demand based on a data-driven design. The implementation was based on a Microsoft
SQL Server database that tracked the creation of sites and lists by adding records to a static set of da-
tabase tables. This initial version of SharePoint had a couple of noteworthy shortcomings. First, it was
cumbersome to customize sites. Second, the files uploaded to a document library were stored on the
local file system of a single, dedicated web server, which made it impossible to scale out SharePoint
Team Services sites by using a farm of web servers.

SharePoint 2003 was the first version to be implemented on top of the Microsoft .NET Framework
and ASP.NET. This version began to open up new opportunities for professional developers looking to

 CHAPTER 1 SharePoint 2013 developer roadmap 3

extend the SharePoint environment with Web Parts and event handlers. Also in this version, Microsoft
altered the implementation for document libraries to store files inside a back-end SQL Server data-
base, which made it possible to scale out SharePoint sites by using a farm of web servers.

SharePoint 2007 introduced many new concepts to the underlying SharePoint architecture,
 including site columns, content types, and features and solution packages. Microsoft also improved
the integration of SharePoint with ASP.NET, which made it possible for .NET developers to extend
SharePoint sites by creating familiar ASP.NET components such as master pages, user controls,
 navigation providers, authentication providers, and custom HttpModule components.

SharePoint 2010 was the fourth release of SharePoint technologies. It included Microsoft
 SharePoint Foundation 2010 and Microsoft SharePoint Server 2010. SharePoint 2010 introduced
the new service application architecture and a significant modernization to the user interface
 experience with the server-side ribbon, model dialogs, and new Asynchronous JavaScript and XML
(AJAX) behavior that reduced the need for page post backs. It was also with the SharePoint 2010
 release that the Microsoft Visual Studio team released the original version of the SharePoint
 De veloper Tools, which moved SharePoint developers out of the dark ages and into a far more
productive era.

SharePoint 2013 is the fifth and most recent release of SharePoint technologies. It includes
SharePoint Foundation 2013 and Microsoft SharePoint Server 2013. As you will see, the most signifi-
cant changes that Microsoft has made to SharePoint 2013 have been done to adapt the SharePoint
 platform for hosted environments in the cloud, such as SharePoint Online in the Office 365 environ-
ment. This is a big change for developers because the SharePoint platform has been split in two.
There is the older, familiar SharePoint platform in scenarios in which a company has deployed
 SharePoint on-premises. And now there is a second SharePoint platform in which developers are
called upon to provide business solutions for hosted environments such as SharePoint Online.

Understanding the impact of SharePoint Online on the
SharePoint platform
With its first two releases, Microsoft generated revenue from SharePoint technologies by using only
the on-premises model. More specifically, Microsoft made money by selling SharePoint Server as a
traditional software product that requires the customer to purchase a server-side license for each
server and a client access license (CAL) for each user.

Starting in the SharePoint 2007 life cycle, Microsoft began to sell hosted versions of SharePoint
that were bundled together with other services such as Microsoft Exchange, under the name of Busi-
ness Productivity Online Standard Suite (BPOS). In the SharePoint 2010 life cycle, Microsoft changed
the name of their bundled hosting service from BPOS to Office 365.

SharePoint 2013 represents the version in which Microsoft got serious about adapting the
 SharePoint platform for hosted environments such as SharePoint Online. This is evidenced by sig-
nificant investments on the part of Microsoft to re-architect many core aspects of the SharePoint
 platform that had been causing scalability issues in SharePoint Online with SharePoint 2010.

4 Inside Microsoft SharePoint 2013

Microsoft made one other big decision that is having a profound impact on every developer that
works with the SharePoint platform. With SharePoint 2013, Microsoft has introduced a new strategy
for developing business solutions based on the new SharePoint app model, which is a 180-degree turn
from anything that has existed before.

With SharePoint 2013, there are now two separate and distinct styles in which you can develop
a business solution. First, there is the original style of SharePoint development based on SharePoint
solutions. Second, there is the new style of development based on SharePoint apps. This means that
you must decide between creating a SharePoint solution and creating a SharePoint app each time you
start a new development project on the SharePoint platform. So which one should you choose? The
answer to that question is easy: it depends.

Examining SharePoint Foundation architecture

At its core, SharePoint Foundation 2013 is a provisioning engine—that is, its fundamental design is
based on the idea of using web-based templates to create sites, lists, and libraries to store and organ-
ize content. Templates are used to create both new websites and various elements inside a website,
such as lists, pages, and Web Parts.

SharePoint Foundation is particularly valuable to companies and organizations faced with the task
of creating and administering a large number of websites, because it dramatically reduces the amount
of work required. Someone in the IT department or even an ordinary business user can provision (a
fancy word for create) a site in SharePoint Foundation in less than a minute by filling in a browser-
based form and clicking the OK button. Creating a new page or a new list inside a site is just as easy.

SharePoint Foundation takes care of all the provisioning details behind the scenes by adding and
modifying records in a SQL Server database. The database administrator doesn’t need to create a new
database or any new tables. The ASP.NET developer doesn’t need to create a new ASP.NET website to
supply a user interface. And the system administrator doesn’t need to copy any files on the front-end
web server or configure any Internet Information Services (IIS) settings. It all just works. That’s the
magic of the SharePoint platform.

The architecture of SharePoint Foundation was specifically designed to operate in a web farm envi-
ronment. Figure 1-1 shows a basic diagram of a simple web farm with two front-end web servers and
a database server. In scenarios that have multiple web servers, a network load balancer is used to take
incoming HTTP requests and determine which front-end web server each request should be sent to.

SharePoint Foundation 2013 and SharePoint Server 2013 are available only in 64-bit versions.
They can be installed on a 64-bit version of Windows Server 2012 or Windows Server 2008 R2. Unlike
SharePoint 2010, Microsoft does not support installing SharePoint 2013 on a client operating system
such as Windows 7 or Windows 8. However, you can run Windows 8 and enable Microsoft Hyper-V,
which will allow you to create virtual machines (VMs) based on Windows Server 2012 or Windows
Server 2008 R2. Therefore, you can install SharePoint 2013 on a VM running on Windows 8.

 CHAPTER 1 SharePoint 2013 developer roadmap 5

FIGURE 1-1 SharePoint Foundation is designed to scale out by using a farm of web servers.

SharePoint Foundation takes advantage of IIS on front-end web servers to listen for incoming
HTTP requests and to manage the server-side worker processes by using the IIS application pool
 infrastructure. The version of IIS depends upon the operating system. Windows Server 2012 will
use IIS 8.0, whereas Windows Server 2008 R2 will use IIS 7.5. The runtime environment of SharePoint
Foundation runs within a worker process launched from the IIS application pool executable named
w3wp.exe. As shown in Figure 1-2, SharePoint Foundation 2013 is built on .NET Framework 4.5.

FIGURE 1-2 The SharePoint Foundation runtime loads into an IIS application pool running ASP.NET 4.5.

6 Inside Microsoft SharePoint 2013

Understanding SharePoint farms
Every deployment of SharePoint Foundation is based on the concept of a farm. Simply stated, a
SharePoint farm is a set of one or more server computers working together to provide SharePoint
Foundation functionality to clients. For simple scenarios, you can set up an on-premises farm by
installing SharePoint 2013 and configuring everything you need on a single server computer or a
single VM. An on-premises farm in a typical production environment runs SQL Server on a separate,
dedicated database server and can have multiple front-end web servers, as shown in Figure 1-3. As
you will learn later in this chapter, a farm can also run one or more application servers in addition to a
database server and a set of web servers.

FIGURE 1-3 A SharePoint farm is a set of servers running SharePoint that are all associated by a single
 configuration database.

Each SharePoint farm runs a single SQL Server database known as the configuration database.
SharePoint Foundation creates a configuration database whenever it creates a new farm, in order to
track important farm-wide information. For example, the configuration database tracks which web
servers are associated with the farm, as well as which users have been assigned administrative permis-
sions within SharePoint Foundation at the farm level.

When you are creating a SharePoint 2013 development environment with an on-premises farm,
it is typical to install and configure SharePoint 2013 as a single-server farm by using either Windows
Server 2012 or Windows Server 2008 R2. You have the option of installing a version of SharePoint 2013
on a native installation of Windows Server or on a virtual machine (VM). For example, you can install
a 64-bit version of Windows 8 as a host operating system and configure it to run Hyper-V. Hyper-V
allows you to create a VM on which you can install a 64-bit version of Windows Server 2012 and
SharePoint Server 2013.

 CHAPTER 1 SharePoint 2013 developer roadmap 7

As a SharePoint developer, you must remember that farms come in all different shapes and sizes.
Although it is common to write and test your code on a single-server farm, this type of environment
is probably not the type of farm in which your code will be deployed. It can be a big mistake to as-
sume that your target SharePoint production environment is just like your development environment.

Many companies that are invested in on-premises SharePoint development categorize their farms
into three different types. SharePoint developers write and debug SharePoint solutions in develop-
ment farms. Staging farms simulate a more realistic environment and are used to conduct quality
assurance testing on SharePoint solutions. For example, the servers in a staging farm should be built
without installing developer tools such as Microsoft Visual Studio 2012. After a SharePoint solution
or a SharePoint app has been thoroughly tested in a staging farm, it can be deployed in a production
farm, where its functionality is made available to users.

Working with SharePoint 2013 Central Administration
As a SharePoint developer, you must wear many hats. One hat you frequently wear is that of
a SharePoint farm administrator. You should become familiar with the administrative site that
 SharePoint Foundation automatically creates for each farm. This administrative site is known as
 SharePoint 2013 Central Administration, and its home page is shown in Figure 1-4.

FIGURE 1-4 SharePoint developers should become familiar with SharePoint 2013 Central Administration.

8 Inside Microsoft SharePoint 2013

Figure 1-4 shows the home page of SharePoint 2013 Central Administration in an on-premises
farm with SharePoint Server 2013 installed. If you only install SharePoint Foundation instead of
 SharePoint Server 2013, you will not find as many links to administrative pages, because quite a
few are only installed with SharePoint Server 2013. Also note that SharePoint 2013 Central Admini-
stration is extensible. If you need to create a SharePoint solution for administrative purposes, you
canintegrate your work into SharePoint 2013 Central Administration by adding custom links and
custom administration pages.

Scenario: Introducing Wingtip Toys
Many of the example configurations and code samples in this book are based on Wingtip Toys,
a company that was fictitiously founded in 1882 by Henry Livingston Wingtip. Wingtip Toys
has a long and proud history of producing the industry’s most unique and inventive toys for
people of all ages. Wingtip Toys has set up an intranet using SharePoint internally to provide
a means of collaboration between its trinket design scientists, its manufacturing team, and its
remote sales force. It has also erected an extranet, using SharePoint to interact with partners
and toy stores around the world. Finally, Wingtip Toys has decided to use SharePoint to create
its Internet-facing site to advertise and promote its famous line of toys and novelties.

Creating web applications
SharePoint 2013 is built on top of Internet Information Services (IIS). SharePoint 2013 is completely
dependent upon IIS because it uses IIS websites to listen for and process incoming HTTP requests.
Therefore, you need to understand exactly what an IIS website really is.

An IIS website provides an entry point into the IIS web server infrastructure. For example, the
default website that is automatically created by IIS listens for incoming HTTP requests on port 80.
You can create additional IIS websites to provide additional HTTP entry points using different port
numbers, different IP addresses, or different host headers. In this book’s scenario, we’ll use host
 headers to create HTTP entry points for domain names such as http://intranet.wingtiptoys.com.

SharePoint Foundation creates an abstraction on top of IIS that is known as a web application. At
a physical level, a SharePoint web application is a collection of one or more IIS websites configured
to map incoming HTTP requests to a set of SharePoint sites. The web application also maps each
SharePoint site to one or more specific content databases. SharePoint Foundation uses content
 databases to store site content such as list items, documents, and customization information.

 CHAPTER 1 SharePoint 2013 developer roadmap 9

Warning: Don’t touch the SharePoint databases
When developing for SharePoint 2013, you’re not permitted to directly access the configuration
database or any of the content databases. For example, you must resist any temptation to write
data access code that reads or writes data from the tables inside these databases. Instead, you
should write code against one of the SharePoint 2013 APIs to reach the same goal, and leave
it to SharePoint 2013 to access the configuration database and content database behind the
scenes.

SharePoint Foundation leverages the ASP.NET 4.0 support in IIS to extend the standard behavior
of an IIS website. It does this by configuring IIS websites to run SharePoint-specific components in
the ASP.NET pipeline by using HttpModule objects. This integration with ASP.NET allows SharePoint
Foundation to take control over every request that reaches an IIS website that has been configured as
a SharePoint web application.

Keep in mind that every SharePoint web application runs as one large ASP.NET application. Con-
sequently, SharePoint Foundation adds a standard ASP.NET web.config file to the root directory of
each IIS website associated with a web application. When you create a web application in SharePoint
Foundation, it creates an IIS website with a root folder containing a web.config file at the following
location:

C:\inetpub\wwwroot\wss\VirtualDirectories

 The fact that there is a one-to-many relationship between a web.config file and SharePoint sites
can be counterintuitive for developers who are migrating from ASP.NET. A single SharePoint site is un-
like an ASP.NET site because it can’t have its own web.config file. That means that a single web.config
file in SharePoint Foundation supplies configuration information for every site in a web application.
This is true even in scenarios where the number of sites in a web application reaches into the hun-
dreds or thousands.

A SharePoint on-premises farm typically runs two or more web applications. The first web ap-
plication is created automatically when the farm is created. This web application is used to run
SharePoint 2013 Central Administration. You need at least one additional web application to create
the sites that are used by business users. The IT staff at Wingtip Toys decided to configure their pro-
duction farm with three different web applications used to reach employees, partners, and customers,
as shown in Figure 1-5.

10 Inside Microsoft SharePoint 2013

FIGURE 1-5 Each web application has one or more content databases.

Understanding web applications and user authentication
The first thing to understand is that the SharePoint platform itself does not supply the actual code
to authenticate users. Instead, the SharePoint platform relies on external user authentication systems
such as Windows Server and Active Directory or the built-in support in ASP.NET for forms-based
authentication (FBA). After an external system has authenticated a user and created a security token,
the SharePoint platform is then able to create a profile around that security token to establish and
track the user’s identity inside the SharePoint security system.

The manner in which SharePoint authenticates users is configured at the web application level.
When you create a SharePoint web application, you have the option of creating it in either claims
mode or classic mode. Classic authentication mode is the older style of user authentication that was
used in SharePoint 2007, where user identity is tracked by using native Windows security tokens.
Though classic mode is still supported in SharePoint 2013 for older scenarios, its use is deprecated
and should be avoided. That means new web applications should be configured to use claims-based
security.

The claims-based authentication mode was introduced in SharePoint 2010; it allows the SharePoint
platform to use a single, unified format for all the security tokens that are created during the user

 CHAPTER 1 SharePoint 2013 developer roadmap 11

authentication process. More specifically, the user authentication tokens are converted into a special
format for caching known as a FedAuth token. Within developer circles, a FedAuth token is also com-
monly referred to as a claims token.

Let’s walk through the authentication process in a SharePoint web application in a scenario in
which the user is authenticated with Windows authentication. The first part of the authentication
process involves creating a native Windows security token. In the second part of the authentication
process, SharePoint Foundation will convert the Windows security token into a FedAuth token by
 using a local service known as the Security Token Service (STS).

You also have the option of configuring a web application in an on-premises farm to support
forms-based authentication by using an ASP.NET authentication provider. In this style of authentica-
tion, SharePoint Foundation once again calls upon the STS to create a FedAuth token for the FBA user
during the user authentication process.

In SharePoint 2010, the FedAuth tokens created during the user authentication process are cached
in memory on a per–web server basis and can be reused across multiple requests from the same user.
SharePoint 2013 further optimizes the caching of FedAuth tokens with a new platform-level service
known as the Distributed Cache Service, which can be configured to maintain a farm-wide cache of
FedAuth tokens.

SharePoint Foundation’s use of claims-based authentication and FedAuth tokens provides another
noteworthy point of flexibility. It opens up the number of identity providers that can be integrated
with a SharePoint farm to provide user authentication. In addition to supporting Windows authentica-
tion and FBA, claims-based security makes it possible to configure a SharePoint web application to
authenticate users by using external identity providers that support an XML-based industry standard
known as Security Assertion Markup Language (SAML). More specifically, SharePoint 2013 supports
identity providers that support the SAML 1.1 specification. Examples of supported providers include
Windows Azure Access Control Service (ACS), Windows Live ID, Google Single Sign-on, and Facebook.

Now that you have learned the fundamentals of how web applications provide the support for
user authentication, let’s examine how you might configure a set of web applications in a real-world
scenario. For example, imagine a scenario in which the IT staff at Wingtip Toys must decide how many
web applications should be created in their production farm.

The Wingtip Toys IT staff decided to create the first web application for the exclusive use of Wing-
tip employees, all of whom have their own Active Directory user accounts. Therefore, the first web
application was configured for intranet usage by requiring Integrated Windows authentication and by
prohibiting anonymous access.

The Wingtip Toys IT staff decided to create a second web application so they could create sites
that could be made accessible to external users such as partners and vendors. The key characteris-
tic of these external users is that they will never have their own Active Directory user accounts and,
therefore, cannot be authenticated by using Windows authentication. Therefore, the Wingtip Toys IT
staff decided to configure the second web application to support user authentication using FBA, so
that these external users can be authenticated without any need for Active Directory user accounts.

12 Inside Microsoft SharePoint 2013

The Wingtip Toys IT staff decided to create a third web application to host any SharePoint site
that requires anonymous access, such as their public website hosted at http://www.wingtiptoys.com.
Although they configured this web application to allow visitors from the Internet to view their public
website anonymously, they also wanted to make logging onto the site an available option so that
customers could create member accounts and customer profiles. Therefore, they configured this web
application with a trust to Windows Live ID. When customers attempt to log onto the Wingtip Toys
public website, they are redirected to the Windows Live ID site and prompted to enter their Windows
Live ID credentials. After the customer is authenticated by Windows Live ID, he is then redirected back
to the Wingtip Toys public website with an established identity.

Understanding service applications
A SharePoint farm must provide an efficient way to share resources across sites running in different
web applications. It must also provide the means for offloading processing cycles for certain types
of processes from front-end web servers to dedicated application servers. To meet this requirement,
SharePoint Foundation uses an architecture based on service applications that was introduced in
SharePoint 2010. Service applications are used to facilitate sharing resources across sites running in
different web applications and different farms. The service application architecture also provides the
means for scaling a SharePoint farm by offloading processing cycles from the front-end web servers
over to dedicated application servers in the middle tier.

A key benefit of the service application architecture is that you can treat a service application as
a moveable entity. After you create a service application, you can configure it for several different
deployment scenarios. In a simple two-tier farms, the service application can be configured to run on
one or more of the web servers in the farm, as shown on the left in Figure 1-6. In scenarios that re-
quire the ability to scale to thousands of users, the same service application can be configured to run
on a dedicated application server such as the one shown on the right in Figure 1-6. In scenarios that
require even greater scale, a service application can be configured to run within its own dedicated
farm of application servers.

FIGURE 1-6 SharePoint farms run service applications in addition to web applications.

 CHAPTER 1 SharePoint 2013 developer roadmap 13

The service application architecture of the SharePoint platform was created with extensibility in
mind. Any developer with the proper knowledge and motivation can develop a service application
that can be deployed within a SharePoint 2013 farm. However, this is not an easy undertaking. A ser-
vice application targeting a SharePoint platform must be written to a specific set of requirements. For
example, a service application must query the configuration database about its current deployment
configuration and adjust its behavior accordingly. A service application must be written in such a way
that it can be deployed and configured using nothing more than Windows PowerShell.

When a service application runs across the network on a dedicated application server, it relies on a
proxy component that must be written to run on the web server. The service application proxy is cre-
ated and configured along with the service application. The service application proxy provides value
by abstracting away the code required to discover where the service application lives on the network.
The service application proxy provides additional value by encapsulating the Windows Communication
Foundation (WCF) code used to execute web service calls on the target service application.

The proxy-based design of service applications provides flexibility in terms of deployment and
configuration. For example, you can configure a proxy in one farm to communicate with a service
application in another farm. The proxy simply consults the configuration database and discovers the
correct address for the application server running the service application. The implication here is that
the new service application architecture makes it much easier to share resources across farms while
still controlling what services are made available and how they are consumed.

As a SharePoint developer creating business solutions, it is unlikely that you would ever find the
need or have the proper incentives to develop a custom SharePoint service application. However, you
still need to understand how service applications work and how they fit into the high-level archi-
tecture of SharePoint Foundation. For example, SharePoint Server 2013 delivers a good deal of its
functionality through service applications.

The key point here is that you must learn how to create and configure service applications and ser-
vice application proxies to properly build out a local on-premises farm for SharePoint development.
This can be done most easily by using the Farm Configuration Wizard, which is available in Central
Administration. However, using a custom Windows PowerShell script allows you to create service
 applications and service application proxies with far more control and flexibility than is afforded by
the Farm Configuration Wizard.

Building an environment for SharePoint development
If you plan on developing SharePoint solutions or SharePoint apps that will be used within
private networks such as a corporate LAN, it makes sense to build out a development environ-
ment with a local SharePoint 2013 farm. Critical Path Training provides a free download called
the SharePoint Server 2013 Virtual Machine Setup Guide, which provides you with step-by-step
instructions to install all the software you need and to build out a local SharePoint 2013 farm.
You can download the guide from http://criticalpathtraining.com/Members.

http://criticalpathtraining.com/Members

14 Inside Microsoft SharePoint 2013

Creating service applications in SharePoint Server 2013
SharePoint Server 2013 is nothing more than a layer of software that’s been written to run on SharePoint
Foundation. Every installation of SharePoint Server 2013 begins with an installation of SharePoint
Foundation. After installing SharePoint Foundation, the installation for SharePoint Server 2013 then
installs its own templates, components, and service applications. The Standard edition of SharePoint
Server 2013 only supports a subset of the features and services available in the Enterprise edition of
SharePoint Server 2013.

Adding to the complexity is that the feature set of SharePoint Online does not exactly match that
of the on-premises version of SharePoint Server 2013. Therefore, you can really break SharePoint 2013
out into four distinct platforms that all vary in some degree from one another:

■■ SharePoint Foundation 2013

■■ SharePoint Server 2013 Standard edition

■■ SharePoint Server 2013 Enterprise edition

■■ SharePoint Online

To help you understand which service applications are available in each variation of the
 SharePoint 2013 platform, Table 1-2 lists some of the SharePoint 2013 service applications in
 addition to the editions of SharePoint 2013 that support each of these service applications.

TABLE 1-2 Service applications included with SharePoint 2013 platform

Name Foundation Standard Enterprise Online

Access Services No No Yes Yes

Access Services 2010 No No Yes No

App Management
Service

Yes Yes Yes Yes

Business Data
Connectivity Service

Yes Yes Yes Yes

Excel Services
Application

No No Yes Yes

Machine Translation
Service

No No Yes Yes

PerformancePoint
Service Application

No No Yes No

PowerPoint
Automation Services

No Yes Yes Yes

Managed Metadata
Service Application

No Yes Yes Yes

Search Service
Application

Yes Yes Yes Yes

Secure Store Service No Yes Yes Yes

Site Subscription
Settings Service

Yes Yes Yes Yes

 CHAPTER 1 SharePoint 2013 developer roadmap 15

Name Foundation Standard Enterprise Online

State Service Yes Yes Yes Yes

User and Health Data
Collection Service

Yes Yes Yes Yes

User Profile Service
Application

No Yes Yes Yes

Visio Graphics Service No No Yes Yes

Word Automation
Services

No Yes Yes Yes

Work Management
Service Application

No Yes Yes Yes

Workflow Service
Application

Yes Yes Yes Yes

Managing sites
Now that you understand the high-level architecture of a SharePoint farm, you need to know how
SharePoint Foundation creates and manages sites within the scope of a web application. Let’s start by
asking a basic question: What exactly is a SharePoint site?

This question has many possible answers. For example, a site is an endpoint that is accessible from
across a network such the Internet, an intranet, or an extranet. A site is also a storage container that
allows users to store and manage content such as list items and documents. In addition, a site is a
customizable entity that allows privileged users to add pages, lists, and child sites as well as install
SharePoint apps. Finally, a site is a securable entity whose content is accessible to a configurable set
of users.

As a developer, you can also think of a site as an instance of an application. For example, the sci-
entists at Wingtip Toys use a SharePoint site to automate the business process of approving a new toy
idea. When Wingtip scientists have new ideas for a toy, they describe their ideas in Microsoft Word
documents, which they then upload to a document library in the site. The approval process is initiated
whenever a scientist starts a custom approval workflow on one of those documents.

A site can also be used as an integration point to connect users to back-end data sources such
as a database application or a line-of-business application such as SAP or PeopleSoft. The Business
Connectivity Services that ship with SharePoint 2013 make it possible to establish a read-write con-
nection with a back-end data source. One valuable aspect of the Business Connectivity Services
architecture is that this external data often appears to be a native SharePoint list. There are many
user scenarios and developer scenarios in which you can treat external data just as you would treat
a native SharePoint list.

Understanding the role of site collections
Every SharePoint site must be provisioned within the scope of an existing web application. However,
a site can’t exist as an independent entity within a web application. Instead, every site must also be
created inside the scope of a site collection.

16 Inside Microsoft SharePoint 2013

A site collection is a container of sites. Every site collection has a top-level site. In addition to the
top-level site, a site collection can optionally contain a hierarchy of child sites. Figure 1-7 shows a web
application created with a host header path of http://intranet.wingtiptoys.com that contains four site
collections. The first site collection has been created at the root of the web application and contains
just a single, top-level site. Note that the top-level site, the site collection, and the hosting web ap-
plication all have the same URL.

FIGURE 1-7 Each site collection has a top-level site and can optionally contain a hierarchy of child sites.

Only one site collection within a web application can be created at the same URL as the hosting
web application itself. The other three site collections shown in Figure 1-7 have been created at URLs
that are relative to the host header path of the hosting web application. The site collection created at
the relative path of /sites/operations has just a top-level site. The site collection created at the relative
path of /sites/sales contains one level of child sites below the top-level site. The last site collection on
the right, which has been created at the relative path of /sites/financials, contains a more complex
hierarchy with three levels.

When a company begins using SharePoint Foundation or SharePoint Server 2013, one of the first
questions that comes up is how to partition sites across site collections. For example, should you
create one big site collection with lots of child sites, or should you create many individual site collec-
tions? This decision is usually best made after thinking through all the relevant issues discussed in the
next few paragraphs. You must gain an understanding of how partitioning sites into site collections
affects the scope of administrative privileges, security boundaries, backup and restore operations, and
site design.

You could be asking yourself why the SharePoint Foundation architecture requires this special con-
tainer to hold its sites. For starters, site collections represent a scope for administrative privileges. If

 CHAPTER 1 SharePoint 2013 developer roadmap 17

you’ve been assigned as a site collection administrator, you have full administrative permissions within
any existing site and any future site created inside that site collection.

Think about the requirements of site management in a large corporation that’s provisioning
thousands of sites per year. The administrative burden posed by all these sites is going to be more
than most IT staffs can deal with in a timely manner. The concept of the site collection is important
because it allows the IT staff to hand off the administrative burden to someone in a business division
who takes on the role of the site collection administrator.

Let’s walk through an example. The Wingtip Toys IT staff is responsible for provisioning new site
collections, and one of the Wingtip business divisions submits a request for a new site. Imagine the
case where the Wingtip Sales Director has put in a request to create a new team site for his sales staff.
A Wingtip IT staff member would handle this request by creating a new site collection with a team
site as its top-level site.

When creating the new site collection, the Wingtip IT staff member would add the Wingtip Sales
Director who requested the site as the site collection administrator. The Wingtip Sales Director would
have full administrative privileges inside the site collection and could add new users, lists, and pages
without any further assistance from the Wingtip IT staff. The Wingtip Sales Director could also add
child sites and configure access rights to them independently of the top-level site.

A second advantage of site collections is that they provide a scope for membership and the con-
figuration of access rights. By design, every site collection is independent of any other site collection
with respect to what security groups are defined, which users have been added as members, and
which users are authorized to perform what actions.

For example, imagine that the Wingtip IT staff has provisioned one site collection for the Sales de-
partment and a second site collection for the Finance department. Even though some users within the
Finance department have administrative permissions within their own site collection, there’s nothing
they can do that will affect the security configuration of the Sales site collection. SharePoint Founda-
tion sees each site collection as an island with respect to security and permissions configuration.

A third reason for site collections is that they provide a convenient scope for backup and restore
operations. You can back up a site collection and later restore it with full fidelity. The restoration of a
site collection can take place in the same location where the backup was made. Alternatively, a site
collection can be restored in a different location—even inside a different farm. This technique for
backing up a site collection and restoring it in another location provides one possible strategy for
moving sites and all the content inside from one farm to another.

A final motivation for you to start thinking about in terms of site collections is that they provide a
scope for many types of site elements and for running custom queries. For example, the server-side
object model of SharePoint Foundation provides you with the capability to run queries that span all
the lists within a site collection. However, there is no query mechanism in the SharePoint server-side
object model that spans across site collections. Therefore, if your application design calls for running
queries to aggregate list data from several different sites, it makes sense to add sites to the same site
collection when they contain lists that must be queried together.

18 Inside Microsoft SharePoint 2013

Imagine a case in which the West Division of the Wingtip Sales team has four field offices. The
Wingtip Sales Director could create a child site for each field office below a site that was created for
the West Division. Now assume that each child site has a Contacts list that is used to track sales leads.
By using programming techniques shown later in this book, you can execute queries at the scope of
the West Division site that would aggregate all the Contacts items found across all of its child sites.
You could execute the same query at a higher scope and get different results. For example, if you
executed the same query scoped to the top-level site, it would aggregate all the Contacts found
throughout the site collection, including both the West Division and the East Division.

Understanding host-named site collections (HNSCs)
The traditional way to manage the URLs of site collections is to create the hosting web application
with a host header path such as http://intranet.wingtiptoys.com. The site collections created inside
this type of web application are known as path-based site collections because they all must be cre-
ated with a URL that starts with the same host header path. When you create path-based site collec-
tions, you must create the URL for each site collection by starting with the host header path defined
by the hosting web application:

■■ http://intranet.wingtiptoys.com

■■ http://intranet.wingtiptoys.com/sites/operations

■■ http://intranet.wingtiptoys.com/sites/sales

■■ http://intranet.wingtiptoys.com/sites/financials

There is a second approach, which provides more flexibility when you are managing the URLs for
the site collections with a web application. This approach requires you to create the hosting web ap-
plication without the traditional host header path. When you create a new web application without
the host header path, you then have the ability to create site collections with unique host names. This
type of site collection is known as a host-named site collection (HNSC).

Consider the following scenario. Imagine you are required to create a set of site collections using
the following domain names:

■■ http://operations.wingtiptoys.com

■■ http://sales.wingtiptoys.com

■■ http://financials.wingtiptoys.com

If you use the older, traditional approach of creating path-based site collections, you would have
to create a separate web application to host each of these site collections. However, this approach is
going to become problematic because it cannot be scaled due to the fact that you are limited in how
many web applications can be created within a single farm. However, if you use an approach based
on host-named site collections, you can create all these site collections and many more with unique
domain names within a single web application.

 CHAPTER 1 SharePoint 2013 developer roadmap 19

Note that the creation of host-named collections can be a little tricky at first. That’s because a
host-named site collection cannot be created through Central Administration. You must create a host-
named site collection by using Windows PowerShell.

Customizing sites
SharePoint Foundation provides many user options for configuring and customizing sites. If you’re
logged onto a site as the site collection administrator, site administrator, or a user granted Designer
permissions, you can perform any site customization options supported by SharePoint Foundation. If
you’re logged onto a site without administrative privileges in the role of a contributor, however, you
won’t have the proper permissions to customize the site. Furthermore, if you’re logged on as a con-
tributor, SharePoint Foundation uses security trimming to remove the links and menu commands that
lead to pages with functionality for which you don’t have permissions.

If you’re logged onto a standard team site as a site administrator, you should be able to locate and
open the Site Actions menu by clicking the small gear icon in the upper-right corner of the page, as
shown in Figure 1-8. Note that the gear icon of the SharePoint Site Action menu is easy to confuse
with the gear icon displayed by Windows Internet Explorer, which provides a menu that can be used
to configure browser settings. Remember that the lower gear icon is specific to SharePoint and the
one above it is specific to Internet Explorer.

FIGURE 1-8 SharePoint sites provide the Site Actions menu to users with the correct permissions.

The Site Actions menu provides commands that allow you to edit the current page; to create new
pages, lists, and document libraries; to view site contents; to change the look and feel of the current
site; and to navigate to the Site Settings page shown in Figure 1-9.

20 Inside Microsoft SharePoint 2013

FIGURE 1-9 The Site Settings page is accessible to site administrators on any site.

The Site Settings page provides links to pages that allow you to perform various administrative and
customization tasks. Notice that the Site Settings page for a top-level site contains one section for
Site Administration and a second section for Site Collection Administration. The Site Settings page for
child sites doesn’t include the section for Site Collection Administration.

Figure 1-9 shows several sections of links, including Users and Permissions, Look and Feel, Web
Designer Galleries, Site Actions, Site Administration, and Site Collection Administration, all of which
provide links to various other administrative pages for the current site. If you’re new to SharePoint
Foundation, you should take some time to explore all the administrative pages accessible through the
Site Settings page. Also keep in mind that Figure 1-9 shows only the links on the Site Settings page

 CHAPTER 1 SharePoint 2013 developer roadmap 21

of a team site running within a SharePoint Foundation farm. If the site were running in a SharePoint
Server 2013 farm, there would be additional links to even more site administration pages that are not
part of the standard SharePoint Foundation installation.

Creating and customizing pages
The support for wiki page libraries and Web Parts is an aspect of SharePoint Foundation that enables
business users to make quick changes to the content on pages in a SharePoint site. Business users with
no experience in web design or HTML can quickly add and customize webpages. A good example of
this can be seen when creating a new SharePoint 2013 team site. As part of the provisioning process,
SharePoint Foundation automatically creates a new wiki library at the SitePages path off the root of
the site, and it adds a wiki page named Home.aspx. It additionally configures Home.aspx to be the
home page of the site, so it becomes the first page users see when navigating to the site.

Customizing the home page is simple for any user who has the proper permissions. The user can
enter edit mode by using either the Site Actions menu or the ribbon. When in edit mode, the user is
free to simply type text or copy and paste from another application. The Insert tab on the ribbon also
makes it easy for the user to add tables, links, and images.

Web Part technology also plays a prominent role in page customization. Web Parts are based on
the idea that the SharePoint platform and developers supply a set of visual components that users
can add and move around in their pages. Every site collection has a Web Part Gallery, which contains
a set of Web Part template files. This set of Web Part template files determines which types of Web
Parts can be added to pages within the site collection.

Although earlier versions of SharePoint technologies supported Web Parts, they were not as flex-
ible as SharePoint Foundation because Web Parts could be added only to Web Part pages. Starting
with SharePoint 2010, SharePoint Foundation has made it possible to add Web Parts anywhere inside
a wiki page. When you’re editing the content of a wiki page, you can place the cursor wherever you
want and add a new Web Part by using the Insert tab on the ribbon. The new Web Part appears inline
along with your other wiki content.

Creating and customizing lists
The Site Actions menu provides an Add A Page menu command for creating new pages and an Add
An App menu command for creating new lists and document libraries. If you click the Add An App
menu command in the Site Actions menu, SharePoint Foundation displays the Add An App page,
which allows you to create a new list or document library, as shown in Figure 1-10.

22 Inside Microsoft SharePoint 2013

FIGURE 1-10 From the Add An App page, you can create new lists and document libraries.

In addition to list templates, the standard collaboration features of SharePoint Foundation also
include templates for creating several different types of document libraries. Besides the standard
document library type, there are also more specialized document library types for wiki page libraries,
picture libraries, and InfoPath form libraries.

What’s appealing to SharePoint users is that after they create a new list, it’s immediately ready to
use. SharePoint Foundation provides instant gratification by including page templates as part of the
list template itself, making it possible to create each new list and document library with a set of pages
that allow users to add, view, modify, and delete items and documents.

After a list has been created, SharePoint Foundation gives a user the flexibility to further customize
it. SharePoint Foundation provides a List Settings page for each list and document library. Figure 1-11
shows a typical List Settings page. It provides a set of links to secondary pages that allow the user to
modify properties of a list such as its title and description and to configure other important aspects of

 CHAPTER 1 SharePoint 2013 developer roadmap 23

the list, including versioning, workflow, and security permissions. The List Settings page also provides
links to add and manage the set of columns behind the list.

FIGURE 1-11 The List Settings page allows you to modify list properties and to add columns.

SharePoint Foundation provides many built-in list templates to track information about common
business items such as tasks, contacts, and scheduled events. For business scenarios in which the
list data that needs to be tracked doesn’t conform to a built-in list template, SharePoint Foundation
makes it easy for a user to create a custom list with a unique set of columns for these ad hoc
situations.

SharePoint Foundation provides a list template named Custom List. When you create a new list
from this template, it will initially contain a single column named Title. A user can add columns
with just a few mouse clicks. Each added column is based on an underlying field type. SharePoint
Foundation supplies a rich set of built-in field types for columns whose values are based on text,
 numbers, currency, dates, and yes/no values.

Using SharePoint Designer 2013
Microsoft SharePoint Designer 2013 is a specialized site customization tool. It is a rich desktop ap-
plication that is often easier to use for customizing a site than a browser is. SharePoint Designer 2013
is a free product that can be downloaded from the following URL:

http://www.microsoft.com/en-us/download/details.aspx?id=35491

If you have used a previous version of SharePoint Designer, you might be surprised to find that the
editor window for customizing pages no longer supplies a Design View. The Design View feature of
the page editor has been discontinued in SharePoint Designer 2013. This means that you only have a
Code View editor when working on site pages, master pages, and page layouts.

http://www.microsoft.com/en-us/download/details.aspx%3Fid%3D35491

24 Inside Microsoft SharePoint 2013

SharePoint Designer 2013 is primarily designed to assist users who have been granted Designer
permissions or have been put in the role of site collection administrator or site administrator. The tool
makes it quick and easy to examine the properties and structure of a site and to perform common
site tasks such as adding security groups and configuring permissions. Many users will also prefer the
experience of SharePoint Designer 2013 over the browser when it comes to creating new lists and
adding columns.

SharePoint Designer 2013 also allows a user to perform site customizations that aren’t possible
through the browser. The ability to create and customize custom workflow logic by using a new set
of workflow designers provides a great example. By using SharePoint Designer 2013, an experienced
user can create and design complex workflows on targets such as sites, lists, and document libraries.

In Chapter 12, “SharePoint workflows,” you will learn that SharePoint Designer 2013 supports
the creation of custom workflows in both the new SharePoint 2013 format as well as the older
SharePoint 2010 format. You will learn how custom workflows created with SharePoint Designer
can be packaged and reused across site collections, web applications, and farms.

Understanding site customization vs. SharePoint development
In one sense, SharePoint Foundation lessens the need for professional software developers because
it empowers users to create and customize their own sites. In minutes, a user can create a SharePoint
site, add several lists and document libraries, and customize the site’s appearance to meet the needs
of a particular business situation. An identical solution that has all the rich functionality that Share-
Point Foundation provides out of the box would typically take an ASP.NET development team weeks
or months to complete.

In another sense, SharePoint Foundation provides professional developers with new and exciting
development opportunities. As with any other framework, the out-of-the-box experience with Share-
Point Foundation takes you only so far. At some point, you’ll find yourself needing to create custom
list types and write code for custom SharePoint components such as Web Parts and event handlers.
What is attractive about SharePoint Foundation as a development platform is that it was designed
from the ground up with developer extensibility in mind.

As you begin to design software for SharePoint 2013, it is critical that you differentiate between
customization and development. SharePoint Foundation is very flexible for users because it was
designed to support high levels of customization. As we’ve pointed out, you no longer need to be
a developer to build a complex and highly functional website. Today, many sophisticated users are
capable of customizing SharePoint sites for a large number of business scenarios. Site customization
has its limitations, however. SharePoint Foundation records every site customization by modifying
data within a content database, whether a new list is created or an existing list is customized with
new columns and views. All types of site customization that can be performed by using SharePoint
Designer 2013 are recorded this way.

 CHAPTER 1 SharePoint 2013 developer roadmap 25

The fact that all site customization is recorded as a modification to the content database is both a
strength and a weakness for SharePoint Foundation. It is a strength because it provides so much flex-
ibility to users and site administrators doing ad hoc customizations. It is a weakness from the perspec-
tive of a professional software developer because customization changes are hard to version and can
also be hard or impossible to make repeatable across site collections and farms.

Think about a standard ASP.NET development project in which all the source files you’re working
with live within a single directory on your development machine. After you’ve finished the site’s initial
design and implementation, you can add all the site’s source files to a source control management
system such as Team Foundation Server.

By using a source control management system, you can formalize a disciplined approach to de-
ploying and updating an ASP.NET site after it has gone into production. You can also elect to push
changes out to a staging environment where your site’s pages and code can be thoroughly tested
before they are used in the production environment.

As a developer, you should ask yourself the following questions: How do I conduct source control
management of customization changes? How do I make a customization change to a list definition or
a page instance and then move this change from a development environment to a staging environ-
ment and finally to a production environment? How do I make a customization change within a site
and then reuse it across a hundred different sites? Unfortunately, these questions have tough answers,
and usually you’ll find that a possible solution isn’t worth the trouble.

Fortunately, as a developer, you can work at a level underneath the SharePoint Foundation cus-
tomization infrastructure. To be more specific, you can create a SharePoint farm solution that allows
you to work with the low-level source files to create underlying templates for items such as pages and
lists. These low-level source files don’t live inside the content database; instead, they live within the
file system of the front-end web server.

Working at this level is complex and has a steep learning curve. Even so, this low-level approach
lets you centralize source code management and have a more disciplined approach to code sign-off
when moving functionality from development to staging to production. This approach also makes
versioning and reuse of code far more manageable across multiple sites, web applications, and farms.

For the remainder of this book, we differentiate between customization and development accord-
ing to these criteria. SharePoint site customizations are updates to a site accomplished by making
changes to the content database, generally through the web browser or SharePoint Designer 2013. A
site customization never requires the front-end web server to be touched.

SharePoint development, on the other hand, often involves working with farm solutions that
include files that must be deployed to the file system of the front-end web server. In Chapter 3,
“Server-side solution development,” we introduce SharePoint solutions and discuss best practices for
how to package a development effort for deployment within a SharePoint 2013 farm. In Chapter 4,
“SharePoint apps,” we introduce the alternative development approach of creating SharePoint apps.
You will learn that the two approaches are quite different.

26 Inside Microsoft SharePoint 2013

Windows PowerShell boot camp for SharePoint professionals

SharePoint 2013 is the second version of SharePoint technologies in which Microsoft supports admin-
istration through Windows PowerShell scripts. In earlier versions of SharePoint, farm administrators
must use a command-line utility named stsadm.exe to run interactive commands from the console
window and to write MS-DOS–style batch file scripts to automate common administrative tasks such
as creating, backing up, or restoring a new site collection.

SharePoint Foundation still installs the stsadm.exe utility, but it is primarily included to support
backward compatibility with pre-existing scripts migrated from earlier versions. Microsoft recom-
mends using the Windows PowerShell support for writing, testing, and executing scripts that au-
tomate the same types of administrative tasks that you can accomplish by using stsadm.exe, plus a
whole lot more.

The Windows PowerShell support for SharePoint Foundation adds a new required skill for every
farm administrator and every developer moving to SharePoint 2010 or SharePoint 2013. You’re now
required to be able to read, write, and execute Windows PowerShell scripts to automate tasks such as
creating a new web application or a new site collection.

Given the expected percentage of readers without any prior experience with Windows PowerShell,
we decided to conclude Chapter 1 with a fast and furious Windows PowerShell boot camp. Our goal
here is to get you up to speed on Windows PowerShell so that you can start reading, writing, execut-
ing, and debugging Windows PowerShell scripts. So fasten your seat belt.

Learning Windows PowerShell in 21 minutes
Working with Windows PowerShell is much easier than writing MS-DOS–style batch files. It’s easier
because the Windows PowerShell scripting language treats everything as an object. You can create
and program against .NET objects as well as COM objects. Furthermore, Windows PowerShell has
first-rate support for calling out to EXE-based utilities and passing parameters to execute specific
commands.

There are two common ways in which you can use Windows PowerShell. First, you can execute
commands interactively by using the Windows PowerShell console window. Second, you can write
scripts to automate administration tasks. Then you can execute these scripts either on demand or
through some type of scheduling mechanism.

Let’s first get familiar with the Windows PowerShell console window. In Windows Server 2012,
press the Windows logo key and then type PowerShell. In Windows Server 2008 R2, you can launch
the Windows PowerShell console window from the following path from the Windows Start menu:

Start\All Programs\Accessories\Windows PowerShell\Windows PowerShell

When the Windows PowerShell console appears, type and execute the following three commands
interactively:

1. Type cd\ and then press Enter. This sets the current location to the root of drive C.

 CHAPTER 1 SharePoint 2013 developer roadmap 27

2. Type cls and then press Enter. This clears the console window.

3. Type 2 + 2 and then press Enter. This performs a mathematical calculation and displays the
result.

If you followed these steps correctly and executed each of the three commands, your console
 window should look like the one in Figure 1-12.

FIGURE 1-12 You can execute commands interactively from the Windows PowerShell console window.

Congratulations! You’ve just completed your first lesson. Now you know how to execute a com-
mand interactively from the Windows PowerShell console window. You simply type the command at
the cursor in the Windows PowerShell console window and press Enter.

Windows PowerShell is based on reusable libraries containing functions known as cmdlets (pro-
nounced “command lets”). Cmdlets have names that follow the convention of a common verb fol-
lowed by a noun. For example, the built-in Windows PowerShell libraries provide a cmdlet named
Get-Process, which returns a collection of objects representing the Windows processes running on
the current machine:

PS C:\> Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 94 9 2780 13448 99 0.33 6592 conhost
 83 9 1588 3652 42 0.03 8188 csrss
 130 13 2020 5608 31 0.02 1312 dfssvc
 1126 768 1172456 484268 1693 56.23 1176 DistributedCacheService
 5261 6161 87624 86352 128 0.88 1636 dns
 1197 76 27332 82044 398 11.73 3696 explorer
 531 39 9136 34820 183 2.08 5348 iexplore
 712 53 46252 56792 598 2.06 1504 Microsoft.ActiveDirectory.WebServices
 2045 743 517044 492284 -631 19.44 6748 noderunner
 1954 757 557248 503572 -649 17.98 6796 noderunner
 461 238 343372 383888 1201 152.95 4828 OWSTIMER
 594 39 113076 119668 653 3.03 6676 powershell
 867 473 1674072 94884 552 284.56 1852 sqlservr
 82 8 1388 5296 38 0.02 2016 sqlwriter
 1536 657 378000 210600 1767 8.16 3852 w3wp
 1715 794 916880 758228 -1882 29.83 5244 w3wp
 1672 657 226404 192840 1772 7.33 5360 w3wp
 335 32 32612 36616 547 17.83 2816 WSSADMIN

28 Inside Microsoft SharePoint 2013

Pipelining is an important concept to understand when you are executing cmdlets. The basic idea
is that every cmdlet returns an object or a collection of objects. Pipelining allows you to take the
output results of one cmdlet and pass it as an input parameter to a second cmdlet. The second cmdlet
can execute and then pass its output results to a third cmdlet, and so on. You create a pipeline by typ-
ing a sequence of cmdlets separated by the | (pipe) character:

cmdlet1 | cmdlet2 | cmdlet3

Let’s examine a common scenario in which you need to create a pipeline of two cmdlets to filter
a collection of objects. First you call Get-Process to return a collection of objects, and then you use
pipelining to pass this collection of objects to the Where-Object cmdlet:

PS C:\> Get-Process | Where-Object {$_.ProcessName -like "w*"}

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 977 135 173372 180504 1511 4.94 2176 w3wp
 773 123 161220 164464 1485 3.36 5112 w3wp
 270 31 25052 17860 496 0.14 2568 WSSADMIN

The Where-Object cmdlet takes a predicate expression enclosed in curly braces as a parameter. In-
side these curly braces, you can use $_ to refer to an object as it’s being filtered. The predicate expres-
sion in this example is {$_.ProcessName -like “w*”}. The filter returns all processes whose process name
starts with “w”.

Windows PowerShell cmdlets such as Where-Object use standard Windows PowerShell comparison
operators. You should memorize these operators because you’ll be using them regularly as you work
with Windows PowerShell. Table 1-3 lists some commonly used Windows PowerShell comparison
operators.

TABLE 1-3 Commonly used Windows PowerShell comparison operators

Operator Purpose

-lt Less than

-le Less than or equal to

-gt Greater than

-ge Greater than or equal to

-eq Equal to

-ne Not equal to

-like Like, using wildcard matches

-notlike Not like, using wildcard matches

You should understand that Windows PowerShell comparison operators that work with strings are
case insensitive by default. However, these operators can be made case sensitive by adding a c imme-
diately after the hyphen. For example, -ceq represents the case-sensitive equal-to operator.

 CHAPTER 1 SharePoint 2013 developer roadmap 29

Writing Windows PowerShell scripts
Now that you’ve seen how to execute cmdlets from the Windows PowerShell console window, it’s
time to move on to Windows PowerShell scripting. Windows PowerShell scripts are text files that have
an extension of .ps1. You can create and edit a Windows PowerShell script by using any text editor,
including Notepad.

Before you can begin writing and testing Windows PowerShell scripts, you might be required to
adjust the Windows PowerShell script execution policy on your developer workstation. The reason for
this step is that Windows PowerShell is configured out of the box to prohibit or to prompt the user
during script execution.

You should take note that the installation of SharePoint 2013 actually changes the Windows
PowerShell execution policy of the local machine. By default, the Windows PowerShell execution
policy is set to restricted, which means that scripts have to be digitally signed before they can be
run. However, the installation of SharePoint 2013 lowers the execution policy from restricted to
unrestricted, which allows scripts to run even when they are not digitally signed.

On a developer workstation, it’s common to disable the default execution constraints so that you
can write and test scripts without security errors. You make this adjustment by calling the standard
Windows PowerShell cmdlet named Set-ExecutionPolicy from the Windows PowerShell console to set
the current machine’s execution policy to “bypass”:

Set-ExecutionPolicy "bypass"

After you’ve correctly adjusted the Windows PowerShell execution policy, you can write your first
script. Open Notepad and type in the following one-line script:

Write-Host "Hello World"

Now you need to save the file for the script with a .ps1 extension. First, create a new directory
named Scripts on your local drive C. Next, save your new Windows PowerShell script file as c:\Scripts\
Script1.ps1. Now that you’ve saved the Windows PowerShell script file with a .ps1 extension, you can
execute the script to test your work.

Let’s first execute the script through the Windows PowerShell console window. In the console
window, move to the new directory by executing Set-Location c:\Scripts. Now you can execute the
script by typing .\Script1.ps1 and pressing Enter. When you do this, the message Hello World should
appear in the Windows PowerShell console window.

Now let’s create a Windows batch file so that you can execute the script without having to use the
Windows PowerShell console window. Just create a new text file named RunIt.bat in the same direc-
tory as Script1.ps1, and call powershell.exe and pass the -Command parameter with the following
syntax to execute the script:

powershell.exe -Command "& {.\Script1.ps1}"
pause

30 Inside Microsoft SharePoint 2013

Notice that this example batch file also added a pause operation at the end. This can be handy
because it keeps the Windows PowerShell console window open so that you can view the output of
your Windows PowerShell script.

Finally, you should learn how to directly execute a Windows PowerShell script without any assis-
tance from an MS-DOS batch file. If you right-click a Windows PowerShell script such as Script1.ps1 in
Windows Explorer, you’ll find a Run With PowerShell menu command. If you execute this command,
the Windows operating system takes care of executing the Windows PowerShell script for you.

Executing Windows PowerShell scripts by using the Run With PowerShell command is quick and
easy, but it doesn’t leave the Windows PowerShell console window open when it’s done. If you like
using this technique but you still want to display the Windows PowerShell console window afterward,
you can simply add the Read-Host cmdlet at the bottom of your script, which results in the Windows
PowerShell console window remaining open until you press the Enter key:

Write-Host "Hello World"
Read-Host

The Windows PowerShell Integrated Scripting environment (ISe)
Although you can use any text editor to write Windows PowerShell scripts, you’ll probably prefer to
use a powerful new utility, the Windows PowerShell Integrated Scripting Environment (ISE), which is
included with the Windows Server operating system.

The Windows PowerShell ISE will be immediately familiar to anyone with experience in Visual Studio.
You can type a script in the top window and then press the F5 key to execute the script in debug
mode. The Windows PowerShell ISE allows you to debug by setting breakpoints and to single-step
through your code. After you’ve launched the Windows PowerShell ISE, type the following script
into the top window and then press F5:

$sum1 = 2 + 2
$sum2 = 3 + 4
$sum3 = $sum1 + $sum2
Write-Host $sum3

This example shows how to create a new variable in a Windows PowerShell script. You simply cre-
ate a new variable name, which begins with the $ character. You don’t need to define variables before
you use them, as you do in C#. Instead, you just create a variable when you begin using it.

Now, let’s write a Windows PowerShell control-of-flow construct. In this case, we create a new
string array by using the proper Windows PowerShell syntax, and then write a foreach loop to enu-
merate each string:

$band = "Paul", "John", "George", "Ringo"

foreach($member in $band) {
 Write-Host $member
}

 CHAPTER 1 SharePoint 2013 developer roadmap 31

One aspect of Windows PowerShell that will instantly appeal to .NET developers is that you can
create and program against any .NET object. For example, imagine you want to create an object from
the DateTime class of the .NET Framework. You do this by executing the New-Object cmdlet and pass-
ing the class name and initialization values as parameters:

$date = New-Object -TypeName System.DateTime -ArgumentList @(1882,7,4,0,0,0)
$message = "Wingtip Toys, Inc. was founded on " + $date.ToLongDateString()
Write-Host $message

The preceding script produces the following output:

Wingtip Toys, Inc. was founded on Tuesday, July 04, 1882

In addition to creating new .NET objects, Windows PowerShell allows you to call the static methods
and static properties of classes in the .NET Framework. You do this by typing the namespace-qualified
class name in square brackets, like this: [System.DateTime]. After you type the class name, you add the
:: operator (two colons) and then the call to a static member:

$today = [System.DateTime]::Today
Write-Host $today.ToLongDateString()
Write-Host $today.ToString("MM/dd/yy")
Write-Host $today.AddDays(100).ToString("MMMM d")

If you’re feeling nostalgic, you can even use Windows PowerShell to create and program against
COM objects. For example, let’s say you want to write a Windows PowerShell script that launches
Internet Explorer and navigates to a specific URL. The Windows operating system provides a built-in
COM interface that allows you to launch and control Internet Explorer:

$ie = New-Object -ComObject "InternetExplorer.Application"
$ie.Navigate("http://intranet.wingtiptoys.com")
$ie.Visible = $true

Windows PowerShell snap-ins for SharePoint
Windows PowerShell installs a set of core libraries containing cmdlets such as Write-Host, Get- Process,
and Where-Object. Environments such as SharePoint Foundation add their own library of custom
cmdlets by installing and registering a special type of an assembly DLL known as a Windows
PowerShell snap-in. When you install SharePoint 2013, a Windows PowerShell snap-in named
 Microsoft.SharePoint.PowerShell is installed. However, this snap-in doesn’t automatically load into
every Windows PowerShell session. Instead, you have to ensure that the Microsoft.SharePoint.
PowerShell snap-in is loaded before you begin to call the cmdlets specific to SharePoint.

SharePoint Foundation provides a specialized version of the Windows PowerShell console known
as the SharePoint 2013 Management Shell. The main difference between the standard Windows
PowerShell console window and the SharePoint 2013 Management Shell console has to do with which
Windows PowerShell providers get loaded automatically. More specifically, the SharePoint 2013
Management Shell automatically loads the Microsoft.SharePoint.PowerShell snap-in, whereas the
standard Windows PowerShell console does not. In general, you can’t always rely on the SharePoint

32 Inside Microsoft SharePoint 2013

snap-in Microsoft.SharePoint.PowerShell being loaded automatically, so you need to learn how to load
it explicitly within a Windows PowerShell script.

Let’s say you’ve just launched the standard Windows PowerShell console window and you attempt to
execute one of the cmdlets built into SharePoint Foundation, such as Get-SPWebApplication. The call
to this cmdlet will fail unless you’ve already loaded the Microsoft.SharePoint.PowerShell Windows
PowerShell snap-in. Before calling the Get-SPWebApplication cmdlet, you need to load the SharePoint
Management Windows PowerShell snap-ins for SharePoint by using the Add-PSSnapin cmdlet:

Add-PSSnapin Microsoft.SharePoint.PowerShell
Get-SPWebApplication

Executing these two cmdlets in sequence displays the current collection of web applications for the
current farm, excluding the web application for SharePoint 2010 Central Administration:

DisplayName Url
----------- ---
Wingtip Intranet http://intranet.wingtiptoys.com/
Wingtip Extranet http://extranet.wingtiptoys.com/
Wingtip Public Web site http://www.wingtiptoys.com/

Now let’s write a Windows PowerShell script to create a new web application. You can do this by
calling the New-SPWebApplication cmdlet. The call requires quite a few parameters. Note that the
following script creates a “classic mode” web application, which is no longer supported through the
Central Administration interface in SharePoint 2013:

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"

$name = "Wingtip Intranet Web App"
$port = 80
$hostHeader = "intranet.wingtiptoys.com"
$url = "http://intranet.wingtiptoys.com"
$appPoolName = "SharePoint Default Appl Pool"
$appPoolAccount = Get-SPManagedAccount "WINGTIP\SP_Content"

New-SPWebApplication -Name $name -Port $port -HostHeader $hostHeader -URL $url '
 -ApplicationPool $appPoolName '
 -ApplicationPoolAccount $appPoolAccount

Notice that the call to the New-SPWebApplication cmdlet in the preceding script breaks across
multiple lines for clarity. When you write scripts, however, you must place the entire call to a cmdlet
and all its parameters on a single line. That is, of course, unless you know the special trick of using
the grave accent (`) to add line breaks within a call to a cmdlet inside a Windows PowerShell script, as
shown in the preceding example.

As you can imagine, writing and executing scripts like this can save you quite a bit of time in a pro-
duction farm because the need to perform the same tasks manually through SharePoint 2013 Central
Administration is eliminated. Scripts like this also provide a great way to create consistency in how you
create web applications across farms.

 CHAPTER 1 SharePoint 2013 developer roadmap 33

We’ll finish with one more example. Let’s write a script to create a new site collection in the web
application created earlier, which has a team site as its top-level site. You can accomplish this by call-
ing the New-SPSite cmdlet:

Add-PSSnapin Microsoft.SharePoint.PowerShell

$title= "Wingtip Intranet"
$url = "http://intranet.wingtiptoys.com"
$owner = "WINGTIP\Administrator"
$template = "STS#0"

New-SPSite -URL $url -Name $title -OwnerAlias $owner -Template $template

When you create a new site collection by using the New-SPSite cmdlet, you must specify the URL
and title and provide a user account to be configured as the site collection administrator. You can
also specify a template by using the Template parameter, which is applied on the top-level site. In this
example, a template of STS#0 has been applied to create the top-level site as a standard team site.

Now you’ve written a script to create a new site collection. The first time you run it, it works great.
But what happens when you run it a second time? The second attempt to call the New-SPSite cmdlet
fails because a site collection already exists at the target URL.

During development, there’s a common scenario in which you must continually delete and re-
create a site to effectively test and debug your code. Before deleting a site collection, your script
should check to determine whether a target site collection already exists at the target URL by using
the Get-SPSite cmdlet. If the site collection already exists, you can delete it with the Remove-SPSite
cmdlet:

Add-PSSnapin Microsoft.SharePoint.PowerShell

$title= "Wingtip Intranet"
$url = "http://intranet.wingtiptoys.com"
$owner = "WINGTIP\Administrator"
$template = "STS#1"

delete target site collection if it exists
$targetSite = Get-SPSite | Where-Object {$_.Url -eq $url}
if ($targetSite -ne $null) {
 Remove-SPSite -Identity targetSite -Confirm:$false
}

create new site collection
New-SPSite -URL $url -Name $title -OwnerAlias $owner -Template $template

Remember that cmdlets such as New-SPSite return objects that you can program against. For
example, imagine you want to update the title of the top-level site after the site collection has been
created. A site collection object exposes a RootWeb property that allows you to access the top-level
site. The site object provides a Title property that you can modify with a new title. You must call the
site object’s Update method to write your changes back to the content database:

34 Inside Microsoft SharePoint 2013

Add-PSSnapin Microsoft.SharePoint.PowerShell

$title= "Wingtip Dev Site"
$url = "http://intranet.wingtiptoys.com"
$owner = "WINGTIP\Administrator"
$template = "STS#0"

delete target site collection if it exists
$targetSite = Get-SPSite | Where-Object {$_.Url -eq $url}
if ($targetSite -ne $null) {
 Remove-SPSite -Identity targetSite -Confirm:$false
}

$sc = New-SPSite -URL $url -Name $title -OwnerAlias $owner -Template $template
$site = $sc.RootWeb
$site.Title = "My New Site Title"
$site.Update

You’ve just seen an example of writing code against the server-side object model of SharePoint
Foundation. Unfortunately, the Windows PowerShell ISE isn’t able to provide IntelliSense in the same
manner that Visual Studio does. However, the Windows PowerShell ISE still has valuable editing and
debugging features that are easy to learn and use. You should become familiar with this tool because
it provides a quick way to script out changes to the local farm in your development workstation or in
a production environment.

Summary

SharePoint 2013 mainly consists of two products: SharePoint Foundation and SharePoint Server 2013.
Having a solid understanding of SharePoint Foundation is essential even for developers who are only
building software for SharePoint Server 2013. That’s because SharePoint Foundation provides the
underlying infrastructure on which SharePoint Server 2013 is built.

SharePoint Foundation represents different things to different people. To users, SharePoint
Foundation provides the infrastructure for web-based business solutions that scale from simple team-
collaboration sites to enterprise-level applications. To site collection administrators, SharePoint
Foundation provides the capability to customize sites by adding lists and document libraries and by
customizing many aspects of a site’s appearance through the browser or by using a customization
tool such as SharePoint Designer 2013.

To a company’s IT staff, SharePoint Foundation provides a scalable and cost-effective solution for
provisioning and managing a large number of sites in a web farm environment. It also provides a reli-
able mechanism to roll out applications and to version these applications over time.

To a developer, SharePoint Foundation represents a rich development platform that adds value
on top of the underlying ASP.NET platform. Developers build software solutions targeting SharePoint
Foundation by using features and components such as Web Parts, event handlers, and workflows.
Now that you’ve studied the SharePoint developer roadmap and made it through our Windows
 PowerShell boot camp, you’re ready to dive into the fundamentals of SharePoint 2013 development.

 35

C H A P T E R 2

SharePoint development practices
and techniques

Before you can start building a custom Microsoft SharePoint solution you will have to make sure
you set up your development environment correctly. Because the hardware requirements for

SharePoint 2013 are again a lot more demanding than they were for SharePoint 2010, setting up a
new development environment might well mean that you have to acquire new hardware. There might
be quite a bit of time between the moment that you order the hardware, whether from an external
vendor or from an internal department, and when you can actually start using the hardware. This
means that it’s important to start planning your SharePoint customizations early, so that waiting on
the hardware will not interfere with your project planning.

When you have gotten the hardware, you will have to install your development environment. It is
important to do this meticulously, to follow best practices and to make sure you document the entire
configuration. Documentation is important if you have to create a second environment, or if you have
to recreate your development environment.

When your SharePoint environment has been set up properly, you will need proper specifications
so that you can start designing your solution. You will have to decide what type of solution will best
suit your skills, the environment into which the solution will have to be deployed, and the functional-
ity that you have to create. SharePoint 2013 introduces a new development approach, which means
that you can now not only create farm solutions and sandboxes solution, but you can also create
SharePoint apps. SharePoint 2013 also introduces a third application programming interface (API) by
making Representational State Transfer (REST) APIs available that allow you to use simple HTTP re-
quests and responses to perform CRUD (create, read, update, delete) operations on SharePoint data.

All these additions give you more options, but they also require you to make more choices, and
it is important to make deliberate and well-informed choices to make sure that you end up with the
best solution that you could possibly build for your specific situation and scenario. This chapter talks
you through a lot of the choices and can help you make the right decisions.

36 Inside Microsoft SharePoint 2013

Setting up a developer environment

Whenever you are looking at building a custom solution for any platform, one of the things you will
have to determine is what environment you will use to build your custom solution. This is no different
when you want to create a custom solution for SharePoint. Determining the best way to set up your
development environment has always been difficult for SharePoint, and SharePoint 2013 adds even
more complexity to it, with extended hardware requirements and two new types of servers.

Let’s start by looking at the different server roles that you can choose from.

■■ Domain controller

■■ Database server

■■ SharePoint server

• Web server

• Application server

■■ Office Web Apps server

■■ Windows Azure workflow server

Although it is possible to build a development environment by using a standalone server installa-
tion of SharePoint on a single server without a domain controller or separate computer that is running
Microsoft SQL Server, for practical reasons you will at least need a domain controller, a database
server, and a SharePoint server. For certain types of SharePoint apps you might not need a SharePoint
development environment, because these apps can be hosted on a generic web server that doesn’t
have SharePoint installed on it. However, you should test what your app looks like in a SharePoint
environment before you add the app to the production environment, so you should always use some
sort of test or development environment.

If your development environment is installed in an existing domain, you don’t have to build your
own domain controller; you can simply use an existing one. If you are creating your own domain,
you will have to create a domain controller as well. You can create a single server and use that as the
domain controller, the database server, and the SharePoint server. Be aware, though, that some things
don’t work on a domain controller and some things have to be configured differently. It is important
to keep this in mind while developing and testing custom solutions on your development server.

In SharePoint 2010, Microsoft Office Web Apps came in a separate installation that had to be in-
stalled on at least one of the SharePoint servers in the farm. After installation, they could be config-
ured as service applications. In SharePoint 2013, this is no longer the case. Office Web Apps is now its
own product. Office Web Apps has to be installed in its own separate farm, and it cannot be installed
on a server that also has SharePoint installed on it, because Office Web Apps will completely take
over the Internet Information Services (IIS) on the server. You can install Office Web Apps on one or
more servers and connect the Office Web Apps farm to the SharePoint farm. Having Office Web Apps
installed in its own farm on one or more servers means that it is now more scalable. The Office Web

 CHAPTER 2 SharePoint development practices and techniques 37

Apps farm can be connected to one or more SharePoint farms. This means that one Office Web Apps
farm can support the SharePoint servers of several developers.

With SharePoint 2010, you automatically got the SharePoint 2010 workflow host, which was based
on Windows Workflow Foundation 3. Windows Workflow Foundation was a native part of SharePoint,
but the way in which it was implemented meant that customers who were serious about using work-
flow in SharePoint almost always ran into issues with scalability. SharePoint 2013 uses a new work-
flow service, which is built on the Windows Workflow Foundation components of the Microsoft .NET
Framework 4.5. The new workflow service is called Workflow Manager and, like Office Web Apps, is a
separate installation that should be installed on separate servers. After you have created a Workflow
Manager farm consisting of one or more servers, you can connect this farm to your SharePoint 2013
farm. As with Office Web Apps, creating a separate workflow farm means that your environment will
be a lot easier to scale out and a lot more suitable for use in a serious workflow solution or a large
enterprise. Your old SharePoint 2010 workflows will still work, because SharePoint 2013 automatically
installs the SharePoint 2010 workflow engine.

To summarize, if you want to have all SharePoint 2013 functionality available to you in your devel-
opment environment, you will need at least three servers:

■■ A domain controller/database server/SharePoint server

■■ An Office Web Apps server

■■ A Workflow Manager server

You can, of course, have many more: you could split out your domain controller, database server,
and SharePoint server; you could have separate SharePoint web and application servers; and you can
have as many Office Web Apps and Workflow Manager servers as you want. How many servers you
use will mostly depend on the size of the solution that you are building, the type of functionality that
you need, and—let’s face it—your budget.

Deciding between virtual and physical
An important decision that you have to make when you start to think about your development envi-
ronment is whether you will be using virtual or physical servers. You could choose to install a support-
ed server operating system (we’ll get into more detail on that soon) directly on your computer, either
by connecting to an existing domain or turning the computer into a domain controller and installing
SQL Server and SharePoint on it. You can no longer install SharePoint on a client operating system
such as Windows 7 or Windows 8 as you could with SharePoint 2010. However, unlike Windows 7,
Windows 8 does support Hyper-V, which means that you can create your virtual machines in Hyper-V
on your Windows 8 computer. The Windows 8 version of Hyper-V is officially called Client Hyper-V.

As long as you only work on a single project, and you only need a single server (so you don’t
need Workflow Manager or Office Web Apps), you can run your development environment directly
on your computer. However, creating your development environment by using virtual servers is a far
more flexible solution. You can either host the virtual servers on your own computer or on a server
somewhere in the network, or even in the cloud. With today’s hardware requirements (especially the

38 Inside Microsoft SharePoint 2013

memory) and considering the fact that you might need more than one server, running your develop-
ment environment on your computer won’t be a feasible solution for most people, so in a lot of cases
development servers are hosted in a network somewhere. If you are using your development environ-
ment on a daily basis, it is recommended that you make sure that your servers are hosted somewhere
relatively close to you to minimize latency issues and frustrations.

Running the development environment on a virtual server has a few advantages:

■■ Using virtual servers as a development environment means that you can use a different virtual
server for each project you’re working on. When a developer works on more than one project,
it is better not to have the configuration and custom solutions from these projects in a single
environment. Settings or solutions from one project might influence the behavior of the solu-
tions from the second project, which means that you have no way of knowing what is causing
problems and you can’t determine how the solution will behave in the production environment.

■■ Another advantage of working with virtual servers is the fact that it’s easy to create snapshots
and to go back to them. By using snapshots, the developer can run tests and, depending on
the outcome of a test, decide to go back to a snapshot of a previous situation. He can then
make some changes to the solution and run the same tests again.

Also, when project work goes on for a long time, environments sometimes get messy from
testing different solutions and settings, and going back to a snapshot is a very easy way to
clean that up. Using snapshots also means that you can go back to a previous state if a solu-
tion that you deployed or a script that you ran messed up your environment.

■■ Using virtual servers to create development environments also makes it easier to set up a new
development environment when a new developer is added to the project. Later on in this
chapter we will talk in more detail about having a team of developers work on a single project.

■■ In most cases, using virtual servers is also a lot cheaper than using physical servers. If you have
a large physical server, you can run several virtual servers on it. This means you can save on
hardware costs. Also, if you don’t need all your servers at the same time, they can share the
resources, and if you need a new server, you can very quickly set it up, instead of having to
order hardware and wait till it arrives.

Understanding hardware and software requirements
As with every SharePoint version, SharePoint 2013 has its own hardware requirements. Table 2-1
shows an overview of the hardware requirements for SharePoint 2013. As you can see, the amount
of memory needed to run a SharePoint Server development environment has again increased sig-
nificantly. There are a couple of things to note:

■■ Single server means that both SharePoint and its databases are running on the same server.

■■ A single server development installation of SharePoint Server 2013 is listed as requiring 24
gigabytes (GB) of RAM. However, the amount of RAM it really needs heavily depends on what
services you are running in the environment. For instance, if you are actively using search, you

 CHAPTER 2 SharePoint development practices and techniques 39

probably need 24 GB, or at least something close to that. However, if you are only using web
applications and some of the lighter service applications, you can get away with having a lot
less memory.

■■ The storage on the system drive has to be at least 80 GB. It is very important to note that this
does not include the storage that is needed to store the databases that contain the content
from your SharePoint environment, and it doesn’t include the storage that is needed to store,
for instance, the SharePoint logs. Make sure that you have enough storage on your system;
storage is cheap, and it’s very annoying to have to go into your development server every day
to try and free up some storage so that at least your server will keep running.

TABLE 2-1 Hardware requirements for SharePoint 2013

Type of installation RAM Processor Storage on system drive

Single server development
installation of SharePoint
Foundation 2013

8 GB 64-bit, 4 cores 80 GB

Single server development
installation of SharePoint
Server 2013

24 GB 64-bit, 4 cores 80 GB

SharePoint server in a
SharePoint Server 2013
development environment

12 GB 64-bit, 4 cores 80 GB

Database server in a
SharePoint 2013 develop-
ment environment

8 GB 64-bit, 4 cores 80 GB

SharePoint 2013 also comes with its own software requirements. For a SharePoint 2013 server, the
following software is required:

■■ The 64-bit edition of Windows Server 2008 R2 Service Pack 1 (SP1) Standard, Enterprise, or
Datacenter or the 64-bit edition of Windows Server 2012 Standard or Datacenter

■■ Hotfix: The SharePoint parsing process crashes in Windows Server 2008 R2 (KB 2554876)

■■ Hotfix: FIX: IIS 7.5 configurations are not updated when you use the ServerManager class to
commit configuration changes (KB 2708075)

■■ Hotfix: WCF: process may crash with “System.Net.Sockets.SocketException: An invalid argu-
ment was supplied” when under high load (KB 2726478)

■■ The prerequisites installed by the Microsoft SharePoint Products Preparation Tool

■■ Hotfix: ASP.NET (SharePoint) race condition in .NET 4.5 RTM:

• Windows Server 2008 R2 SP1 (KB 2759112)

• Windows Server 2012 (KB 2765317)

40 Inside Microsoft SharePoint 2013

For a database server in a SharePoint 2013 farm, the following software is required:

■■ The 64-bit edition of Microsoft SQL Server 2012, or the 64-bit edition of SQL Server 2008 R2
Service Pack 1

■■ The 64-bit edition of Windows Server 2008 R2 Service Pack 1 (SP1) Standard, Enterprise, or
Datacenter or the 64-bit edition of Windows Server 2012 Standard or Datacenter

■■ Hotfix: The SharePoint parsing process crashes in Windows Server 2008 R2 (KB 2554876)

■■ Hotfix: FIX: IIS 7.5 configurations are not updated when you use the ServerManager class to
commit configuration changes (KB 2708075)

■■ Hotfix: ASP.NET (SharePoint) race condition in .NET 4.5 RTM:

• Windows Server 2008 R2 SP1 (KB 2759112)

• Windows Server 2012 (KB 2765317)

■■ .NET Framework version 4.5

When setting up your development environment, you should always aim to make sure that it’s as
much like the production environment as possible.

Delivering high-quality solutions
To deliver high-quality solutions it is best for the development environment to be as much like the
production environment as possible. Theoretically this is true for all aspects of the environment:
hardware, software, configuration, and data. In most cases, however, the hardware of a development
environment cannot be the same as the hardware of a production environment. This is fine, as long as
you are aware of the differences and what the impact of them might be on your test results.

So that accurate tests can be performed in a development environment, the software should
be the same as the software in the production environment. You should use the same version of
Windows Server and SharePoint and a similar version of SQL Server. If the production environment
has SharePoint Server installed, make sure the development environment doesn’t have SharePoint
Foundation installed. If the production server has a Windows service pack installed on it, make
sure you install the same service pack in the development environment. It also works the other way
around; if the service pack will not be installed in the production environment, do no install it in
the development environment either. If one of the environments gets a SharePoint service pack or
cumulative update installed on it, make sure all environments get that same service pack or cumula-
tive update installed on them.

The way in which you configure your development server should also be as much like the pro-
duction environment as possible. The best thing is to try and get access to the build guide for the
production environment and use that to set up your development environment.

 CHAPTER 2 SharePoint development practices and techniques 41

Examples of settings that are important when configuring your development environment are:

■■ Using the default SQL instance or different instances

■■ The authentication type:

• NT LAN Manager (NTLM)

• Kerberos

• Windows claims

• Security Assertion Markup Language (SAML) claims

■■ Using host headers on your web application, or Host Header Site Collections

■■ HTTP or HTTPS

■■ The number of web applications

■■ The way in which the farm, application pool, and services accounts are configured and the
level of permissions they have. Make sure you have the same number of managed accounts in
your development environment as in the production environment.

In order to get accurate test results, it is also very helpful to have representative sample data and
test users. The data will help you perform the same type of actions that a user would. If you are able
to load enough sample data into your development environment, it will also help you test the scal-
ability of your solution, at least to a certain extent. Most custom solutions perform very well with only
a couple of documents, users, or sites, but when there are tens of thousands it might be a completely
different story. Even if you can’t test on the scale of your production environment, you should always
keep in mind what numbers your solution will have to cope with after it’s in production. It is always
a good idea to at least make sure that you test whether your application will keep working past the
list view threshold. The list view threshold is a web application setting that can be adjusted in Central
Administration that tells SharePoint how many items can be requested from the database in a single
query. The default list view threshold is 5,000.

As a developer, you will usually log in with an account that has administrative permissions. It’s the
only way in which you can properly develop custom full trust solutions. Do make sure that you are not
logged on as the SharePoint farm account. When you are testing your solution, it is very important
to not only test it using your administrative account, but also with accounts that have Read, Contrib-
ute, and Site Owner permissions. A lot of custom SharePoint solutions will work fine when run by an
administrator, but need more work when a reader or contributor of a site should be able to work with
them as well. For instance, the List view threshold (the throttling feature that specifies the maximum
number of list or library items that a database operation, such as a query, can process at the same
time) will not be applied if you are logging onto your SharePoint environment as a local administrator,
which means that you cannot test the behavior of large lists properly.

42 Inside Microsoft SharePoint 2013

Automating SharePoint administration by using
Windows PowerShell scripts

Windows PowerShell scripts can be used to automate SharePoint installation and management. When
you are using Windows PowerShell scripts to install SharePoint, it is easy to repeat the installation in
exactly the same way. This is very useful when you have to create multiple development environments
or multiple servers in a production environment, or when a farm has to be rebuilt after a system
failure. Be aware that not all steps of the installation can be scripted by using Windows PowerShell, so
you will still have to make sure that all steps are documented as well.

Using Windows PowerShell to manage SharePoint is very useful for repeatable tasks. When you
use a saved script every time, the chances of human errors causing serious problems during mainte-
nance decrease. Windows PowerShell can also be used to fully automate maintenance steps. It would,
for example, be possible to create a Windows PowerShell script that creates a new site collection. The
next step would be to add a couple of parameters and then automatically start the script. You could,
for instance, start the script whenever a new project or customer is added to a Customer Relationship
Management (CRM) system.

Though it is often convenient to use Windows PowerShell to install or configure SharePoint, in
some cases you don’t have a choice because some functionality doesn’t show up in the user interface
and can only be configured by using Windows PowerShell. Examples of this are the multitenancy
features. The multitenancy features are a set of features that allow SharePoint to work as a hosting
platform. They allow for operational service management of SharePoint for one or more divisions,
organizations, or companies. Using the multitenancy features allows SharePoint to separate data,
features, administration, customizations, and operations. In order to set up multitenancy in an envi-
ronment, you have to set up site subscriptions, partitioned service applications, tenant administration
sites, and (optionally) host header site collections and feature packs. All these features can only be
configured by using Windows PowerShell.

If you need to install development environments on a regular basis—for instance, because you are
working on different projects, or because you are working on a long-running project and developers
are coming and going—it is worthwhile to create a Windows PowerShell script to install a develop-
ment environment. Even if you would just use Windows PowerShell to configure SharePoint, this will
save you a lot of time. It will also make sure that your development environments are always config-
ured in exactly the same way. In addition to the fact that doing a scripted installation is often faster,
this approach also allows you to do work on something else while the script is running.

There are two different tools in which you can write and run Windows PowerShell scripts: the
Windows PowerShell console window or the Windows PowerShell Integrated Scripting Environment
(ISE). To make the Windows PowerShell ISE available on your server, you need to install the Windows
PowerShell Integrated Scripting Environment (ISE) Windows feature. You can do this by opening up
the Server Manager, clicking Add Features, and selecting the ISE feature.

If you are using the console environment, you can either use the general console environment or
the SharePoint 2013 Management Shell. You can access the general console environment by selecting

 CHAPTER 2 SharePoint development practices and techniques 43

it from the Windows Start menu. If it’s not on the first page, you can get to it from the Windows Start
menu by simply starting to type PowerShell. This will give you the option to select one of the avail-
able Windows PowerShell tools and consoles.

Don’t pick the 32-bit version (x86); SharePoint is a 64-bit product. You can also go to the Windows
Start menu to select the SharePoint 2013 Management Shell. You can find this in the same way as
the general console; go to the Start menu, start typing PowerShell, and select the SharePoint 2013
Management Console.

These are effectively the same environment, except for the fact that in the SharePoint Manage-
ment Shell the Microsoft.SharePoint.PowerShell snap-in has already been loaded. If you are using the
standard console, you will have to load the snap-in yourself, by using the following command:

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"

You add the -ErrorAction “SilentlyContinue” mainly because the console will throw an error if the
snap-in has already been loaded. You can ignore this, so it will look nicer if you hide the error. You
can also play it safe and check to see whether the snap-in is already loaded before attempting to load
it, by using the following:

$snap = Get-PSSnapin | Where-Object {$_.Name -eq 'Microsoft.SharePoint.PowerShell'}
if ($snap -eq $null) {
 Add-PSSnapin Microsoft.SharePoint.PowerShell
}

If you are creating a larger script, it is probably easier to open up the Windows PowerShell ISE,
because this provides a better editing environment. You will have to load the Microsoft.SharePoint.
PowerShell snap-in into the ISE as well. You can do this by using exactly the same script used for the
console. If you find yourself using the ISE a lot, you can also add the snap-in automatically when
the ISE starts, by adding it to the Windows PowerShell profile. The profile is a Windows PowerShell
script file that runs every time you start Windows PowerShell. It has a .ps1 extension like any normal
Windows PowerShell file, and you can put any valid Windows PowerShell cmdlet in it. The only way
in which the profile file differs from a normal script file is in its name and location.

If you want to use the profile, you will first have to figure out whether a profile already exists on
the server. You can do this by using the Test-Path cmdlet:

Test-Path $profile

If the profile already exists, the Test-Path cmdlet will return True; if it doesn’t exist, it will return
False. You can also just run the $profile cmdlet and use Windows Explorer to browse to the path that
it returns. If the file isn’t there, the profile doesn’t exist:

$profile

You can use the New-Item cmdlet to create a profile if one doesn’t already exist. -path $profile
passes in the full path, and -type file tells the cmdlet that you are trying to create a file:

New-Item -path $profile -type file

44 Inside Microsoft SharePoint 2013

When you open the profile, you will notice that it is completely empty. You can add to it any script
that you want to always be executed before you start working on your scripts. This could, for instance,
be a command telling Windows PowerShell to always go to a default location:

Set-Location C:\scripts

Or you can add the Microsoft.SharePoint.PowerShell snap-in:

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"

Using Windows PowerShell to deploy a custom solution
As a developer, you may also find Windows PowerShell very useful for creating a deployment script
that can be used to install your custom solution in a SharePoint environment. This will allow you to
distribute your custom solution across test, user acceptance, and production environments a lot more
easily. It will mean that administrators don’t have to perform a lot of manual steps and that you as a
developer don’t have to describe all these steps in a deployment manual.

When using Windows PowerShell to write a deployment script, you will have to take into account
that a previous version of your solution might already be installed in the environment that you are
deploying to. This means that you first have to retract and remove the solution before you can install
and deploy the solution. Retracting a solution forces SharePoint to delete most of the files it copied
during deployment as well as to uninstall features and delete assemblies from the global assembly
cache. After you’ve retracted a solution, you can then remove it, which deletes the solution package
file from the configuration database.

One thing to be aware of is that SharePoint doesn’t clean up after itself very well when you retract
a solution. For instance, SharePoint doesn’t explicitly deactivate features before it retracts the solution
that they are deployed in. Because of this, it is a best practice to make sure that you deactivate all
features in a solution before retracting the solution. Another thing to keep in mind is that SharePoint
doesn’t always delete all files that were deployed using a solution when the solution is retracted.
When it doesn’t, this often is for a good reason (for instance, because it could cause errors if the files
were to be deleted), but it is something to keep in mind because it can cause quite a bit of cluttering,
especially in a development or test environment where solutions are installed and retracted all the
time.

You can retract a solution package by using the Uninstall-SPSolution cmdlet. When calling
Uninstall-SPSolution, you should pass the -Identity parameter and the -Local parameter in the
same manner as when calling Install-SPSolution. You should also pass the -Confirm parameter
with a value of $false because failing to do so will cause the cmdlet to prompt the user, which can
cause problems if the script is not monitored while it runs. After you’ve retracted the solution, you
can then remove it by calling Remove-SPSolution, which instructs SharePoint Foundation to delete
the solution package file from the configuration database:

 CHAPTER 2 SharePoint development practices and techniques 45

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"
$SolutionPackageName = "WingtipDevProject1.wsp"
Uninstall-SPSolution -Identity $SolutionPackageName -Local -Confirm:$false
Remove-SPSolution -Identity $SolutionPackageName -Confirm:$false

These calls to Uninstall-SPSolution and Remove-SPSolution will fail if the solution package isn’t
currently installed and deployed. Therefore, it makes sense to add a call to Get-SPSolution and con-
ditional logic to determine whether the solution package is currently installed and deployed before
attempting to retract or remove it:

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"
$SolutionPackageName = "WingtipDevProject1.wsp"
$solution = Get-SPSolution | where-object {$_.Name -eq $SolutionPackageName}
check to see if solution package has been installed
if ($solution -ne $null) {
 # check to see if solution package is currently deployed
 if($solution.Deployed -eq $true){
 Uninstall-SPSolution -Identity $SolutionPackageName -Local -Confirm:$false
 Remove-SPSolution -Identity $SolutionPackageName -Confirm:$false
 }
}

Now that you’ve made sure that there’s no old version of your solution installed on the farm, you
can add and deploy your solution. Listing 2-1 shows the complete Windows PowerShell script. This
script can be used to deploy a solution that cannot be scoped to a web application. Also, the DLL file
in this solution will be deployed to the global assembly cache. If a solution can be scoped to a web
application, the –AllWebApplications parameter can be used to deploy the solution to all web applica-
tions, or the –WebApplication parameter can be used to specify a specific web application that the
solution should be deployed to.

LISTING 2-1 A Windows PowerShell script to uninstall and install a solution

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"
$solution = Get-SPSolution | where-object {$_.Name -eq $SolutionPackageName}
if ($solution -ne $null) {
 if($solution.Deployed -eq $true){
 Uninstall-SPSolution -Identity $SolutionPackageName -Local -Confirm:$false
 }
 Remove-SPSolution -Identity $SolutionPackageName -Confirm:$false
}
Add-SPSolution -LiteralPath $SolutionPackagePath
Install-SPSolution -Identity $SolutionPackageName -Local -GACDeployment

46 Inside Microsoft SharePoint 2013

Configuring SharePoint service applications

In SharePoint Server 2010 the concept of service applications was introduced. SharePoint contains
several different service applications, and all of them provide a specific piece of functionality to your
SharePoint farm if they are enabled. All service applications can be shared across web applications,
and some service applications can even be shared across farms. Let’s establish the terminology first.

A service application itself is the logical container of the service. We use the term service application
to describe the services architecture in SharePoint. It is also what is exposed in the Central Administra-
tion site through the Manage Service Applications page. For most service applications, there can be
more than one instance of the service application in a single farm.

The service instance is the actual implementation of the service, the binaries. A service instance
could include Windows Services, configuration, registry settings, timer jobs, and more. The bits that
make up the service instance are deployed to every SharePoint server in the farm.

The service machine instance of a particular service application is the server or servers in the farm
on which the service for that service application runs. You can check where a service is running and
start or stop a service on a particular server by going to the Services On Server page in the Central
Administration site. On this page, you can select a server and then start the services you want to run
on that particular server. When a service runs on more than one server in the farm, software round-
robin load balancing is provided by SharePoint. Not all service applications have an associated service
machine instance. Most service applications can have more than one associated service machine
instance, but some can only have one. Not all services you see on the Services On Server page are
service machine instances of a service application.

The service application endpoint is created when you start a service. Starting the service and thus
creating a service machine instance creates an Internet Information Services (IIS) virtual application in
the SharePoint Web Services IIS website. The virtual application includes a Windows Communication
Foundation (WCF) or .asmx web service. This web service is the service application endpoint. Each ser-
vice application must have its own service application endpoint.

A service application proxy (also called service connection or service association) is a virtual link
between a web application and a service application. The service application proxy also enables cross-
farm services.

 CHAPTER 2 SharePoint development practices and techniques 47

A proxy group is a group of service application proxies that are selected for one or more web ap-
plications. By default, all service application proxies are included in the default proxy group. When
you create a web application, you can do one of the following:

■■ Select the default proxy group.

■■ Create a custom proxy group by selecting which service application proxies you want to link
to the web application. These service application proxies will then be included in the proxy
group.

The custom proxy group for one web application cannot be reused with a different web
application.

There are three ways in which you can configure service applications:

■■ By selecting services when you run the SharePoint Products Configuration Wizard

■■ By adding services one by one on the Manage Service Applications page in SharePoint 2013
Central Administration

■■ By using Windows PowerShell

It is not recommended that you use the SharePoint Product Configuration Wizard to configure
service applications. Using the wizard will create the service applications with a set of default settings
that might not be suitable for your environment. If you use the wizard it is also very easy (as easy as
selecting a check box) to create too many service applications. You should always just create the ser-
vice applications that you need in your farm. Every service application consumes a certain amount of
resources, so creating a service application that you don’t need means that you are burning valuable
resources on your server.

To create a service application from the Manage Service Applications page in Central Administra-
tion, you start by clicking the New button on the Manage Service Applications page, as shown in
Figure 2-1. Click Managed Metadata Service to create a managed metadata service application.

48 Inside Microsoft SharePoint 2013

FIGURE 2-1 The Manage Service Applications page in Central Administration

On the next page, you enter a name for the service application and for the database that will store
the contents and configuration of the managed metadata service application that you are creating, as
shown in Figure 2-2. In this example, the name of the service application is Managed Metadata Ser-
vice Application. The name of the database is ManagedMetadata. If this is the first service application
that you are creating, you will also have to create an application pool that it can use. The name of the
application pool in this example is SharePoint Web Services Default. This is the same name that the
wizard would have used for the application pool that it creates if you use it to create service applica-
tions. In most cases, this application pool can be used for most if not all of your service applications.
The account that is used in this example is the WINGTIPTOYS\spservices account. Be aware that the
account that you use as the application pool account must be a managed account. Go to the Config-
ure Managed Accounts page in Central Administration to create a new managed account. All man-
aged accounts should be dedicated service accounts. Selecting Add This Service Application To The
Farm’s Default List means that SharePoint will add the service application to the default proxy group
after you click OK.

Figure 2-3 shows the Manage Service Applications page after the managed metadata service ap-
plication has been created. Creating the managed metadata service application through the Man-
age Service Applications page also automatically creates the managed metadata service application
proxy. Most service applications automatically create their proxy when they are created through the
Central Administration user interface. When Windows PowerShell is used to create the service appli-
cation, you will almost always have to create the service application proxy yourself.

 CHAPTER 2 SharePoint development practices and techniques 49

FIGURE 2-2 Creating a Managed Metadata Service Application

50 Inside Microsoft SharePoint 2013

FIGURE 2-3 The Manage Service Applications page with the Managed Metadata Service Application and proxy

Some service applications start their service or services automatically, but for most service applica-
tions you will have to go into the Manage Services On Server page in Central Administration (shown
in Figure 2-4). For the managed metadata service application, you will have to start the Managed
Metadata Web Service on at least one server in the farm. In most development environments you will
only have one SharePoint server, so you can start the service only on that server. Starting the service
will also create a new IIS virtual application in the SharePoint Web Services IIS website. The name of
the virtual application is a GUID, and the application will include the MetadataWebService.svc web
service.

 CHAPTER 2 SharePoint development practices and techniques 51

FIGURE 2-4 The Manage Services On Server page

Listing 2-2 shows the Windows PowerShell script that will create the service application, the appli-
cation pool, and the service application proxy and that will start the managed metadata web service.

52 Inside Microsoft SharePoint 2013

LISTING 2-2 A Windows PowerShell script to configure the Managed Metadata Service Application

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"

$saAppPoolName = "SharePoint Web Services Default"
$appPoolUserName = "WINGTIPTOYS\spservices"

Gets Application Pool, or creates one
$saAppPool = Get-SPServiceApplicationPool -Identity $saAppPoolName -EA 0
if($saAppPool -eq $null)
{

 Write-Host "Creating Application Pool"
 # Create Application Pool
 $saAppPoolAccount = Get-SPManagedAccount -Identity $appPoolUserName
 $saAppPool = New-SPServiceApplicationPool -Name $saAppPoolName ´
 -Account $saAppPoolAccount
}

$mmsInstanceName = "MetadataWebServiceInstance"
$mmsName = "Managed Metadata Service Application"
$mmsDBName = "ManagedMetadata"

Write-Host "Creating Managed Metadata Service Application & proxy"
$mms = New-SPMetadataServiceApplication -Name $mmsName ´
 -ApplicationPool $saAppPoolName -DatabaseName $mmsDBName
$proxy = New-SPMetadataServiceApplicationProxy -Name "$mmsName Proxy "´
 -ServiceApplication $mms -DefaultProxyGroup
Write-Host "Starting Managed Metadata Web Service"
Get-SPServiceInstance | where {$_.GetType().Name ´
 -eq $mmsInstanceName} | Start-SPServiceInstance
Write-Host "Managed Metadata Service Application successful configured!"

Using debugging tools

While creating a custom solution, you can and probably will use Microsoft Visual Studio to debug
your code in your development environment if you experience any issues or unexpected behavior.
You might even use Visual Studio to do some debugging to simply get a better understanding of
what’s happening behind the scenes in SharePoint. The Visual Studio Debugger is not the only way
to understand and troubleshoot SharePoint and your custom components, though. Other tools that
you can use include:

■■ Unified Logging Service (ULS) and Windows event logs

■■ The Developer Dashboard

■■ Fiddler and other network monitoring tools

 CHAPTER 2 SharePoint development practices and techniques 53

Working with ULS and Windows event logs
The ULS logs are SharePoint’s own dedicated log files. Whenever there is problem with a SharePoint
environment, the first place a SharePoint developer or administrator should look for information is in
the ULS logs. One of the advantages of the ULS logs is that they can be used for troubleshooting in all
types of environments. Regardless of whether problems are occurring in a development environment,
in a test or integration environment, or in a production environment, ULS logs should contain valu-
able pointers to what’s happening.

By default, the ULS logs are stored on the file system of every SharePoint server in the <Program
Files Directory>\Common Files\Microsoft Shared\Web Server Extensions\15\LOGS folder, which is
the LOGS folder under the SharePoint root folder. By going into Configure Diagnostic Logging on
the Monitoring page in Central Administration, it is possible to specify the folder where the ULS logs
are stored. Administrators can change the number of days logs are kept and the total amount of disk
space that can be used by the logs. If you are troubleshooting a server that wasn’t configured by you
and the logs are not in the LOGS folder in the SharePoint root folder, you can browse to the Configure
Diagnostic Logging page to find out where the log files are stored on the server. The page can also be
used to change the severity of the events that are logged both to the ULS logs and to the Windows
event logs. Flood protection can be enabled to make sure that SharePoint events won’t flood the
Windows event logs.

The ULS logs are text files that are quite difficult to read and that usually contain a lot of data.
To more easily read events in the ULS logs and also to search, sort, and filter the ULS logs, the ULS
Viewer is a must-have tool for everyone who has to troubleshoot SharePoint. The ULS Viewer can be
downloaded from MSDN at http://archive.msdn.microsoft.com/ULSViewer and is an .exe file that has
to be run on the SharePoint server. It will enable you to start and stop traces and to search through
the logs by using a well-organized user interface instead of a text file.

Troubleshooting information for a SharePoint environment can also be found in the Windows
event logs. On the server, the Windows event logs can be consulted by opening up the Event Viewer.
There is some overlap in the information between the ULS logs and the Windows Event Viewer, but
both also contain specific information that can be valuable for finding the source of the problem.

When an error occurs in SharePoint, an error message will be displayed in the user interface that
contains what is referred to as a correlation ID. A correlation ID is a GUID that uniquely identifies a
particular request. The correlation ID is generated by the SharePoint web server that receives the
request. Every event that is part of the request is tagged with the same ID, and the ID even persists
across different servers in the farm. For instance, if a request was sent to a SharePoint web server, it
will be generated on that server and it will mark all entries in the ULS log that are part of the request
with that particular correlation ID. If, as part of the request, some managed metadata has to be
requested from the Managed Metadata service that runs on a dedicated application server, the same
correlation ID can be found in the ULS logs on that application server. You can even use the correla-
tion ID to trace the request on the server that is running SQL Server by using SQL Profiler to filter out
requests related to the ID.

http://archive.msdn.microsoft.com/ULSViewer

54 Inside Microsoft SharePoint 2013

When an end user encounters an error in a SharePoint environment, that user will usually see an
error message that contains a correlation ID. Even though the ID is of no use to the user himself, users
can be asked to include the ID when they place a call to a helpdesk. Having the ID of the user’s faulty
request can help administrators and developers find out what went wrong with the user’s request and
help solve the issue.

Correlation IDs aren’t just generated for faulty requests; they are generated for all requests. To find
the correlation ID for a successful request, you can use the Developer Dashboard.

Using the Developer Dashboard
The Developer Dashboard was introduced in SharePoint 2010 to show performance and tracing
information for a SharePoint page in a control on the page itself. In SharePoint 2013, the Developer
Dashboard has been dramatically improved. The dashboard is no longer a control on a page; it opens
in a separate dedicated window. The dashboard also no longer just contains information about the
latest request but contains information about several requests, so that you can compare them if you
want to and more easily get an overview. The information on the Developer Dashboard is a lot more
detailed than it was in SharePoint 2010. For instance, you can now easily see the SQL requests and the
time it took to process them, the different scopes and execution times, service calls, and also all ULS
log entries that are related to the selected request. All this can really help you to identify any poten-
tial problems related to a request, because you have all the information SharePoint collected about
the requests in a single place.

By default, the Developer Dashboard is disabled. You can enable it by using Windows PowerShell.
The Windows PowerShell cmdlet only supports On or Off; the OnDemand parameter has been dep-
recated, although On now pretty much acts the way OnDemand did in SharePoint 2010; it displays
an icon in the upper-right corner that allows you to open up the Developer Dashboard. The Windows
PowerShell cmdlet to turn on the Developer Dashboard is displayed in Listing 2-3.

LISTING 2-3 Changing the mode of the Developer Dashboard

Add-PSSnapin Microsoft.SharePoint.PowerShell -ErrorAction "SilentlyContinue"
$DevDashboardSettings = [Microsoft.SharePoint.Administration.SPWebService]:: ´
ContentService.DeveloperDashboardSettings
$DevDashboardSettings.DisplayLevel = 'On'
$DevDashboardsettings.Update()

Figure 2-5 shows the Developer Dashboard after the welcome page of an out-of-the-box team site
has been loaded. On the dashboard, you can see different tabs for server information, scopes, SQL
info, ULS information, and a lot more. The Server Info tab contains the total execution time for the
page, the current user, whether the page is published, and the correlation ID. The SQL tab also shows
the execution time for all database queries and for all methods. By using the dashboard you can not
only see how long a page took to load just the out-of-the-box functionality on it, but you can also
see how long it takes your custom component to load. You can identify whether your code executes
any expensive methods or database queries.

 CHAPTER 2 SharePoint development practices and techniques 55

FIGURE 2-5 The Developer Dashboard

To write information from your own custom solution to the Developer Dashboard you can
either execute your code in an OnInit or Render override, or you can wrap your code in an
SPMonitoredScope block. Only code from farm solutions can send information to the Developer
Dashboard; the contents of sandboxed solutions or apps cannot send information to the
dashboard.

Using the SharePoint Developer Tools in Visual Studio 2012

The release of SharePoint 2007 was a significant milestone for SharePoint as a development platform
because in this version, Microsoft introduced support for features and solution packages. Soon after
SharePoint 2007 was released, however, it became clear within Microsoft and throughout the indus-
try that more and better developer productivity tools were needed. With SharePoint 2010, Microsoft
extended the developer platform by introducing the SharePoint Developer Tools in Visual Studio 2010.
These new tools made developing for SharePoint 2010 much faster and easier because they automated

56 Inside Microsoft SharePoint 2013

grungy tasks and hid many of the low-level details that developers had to worry about when develop-
ing for SharePoint 2007. For example, every SharePoint project in Visual Studio 2010 is created with
built-in support to generate its output as a solution package. The SharePoint Developer Tools also
integrate commands into the Visual Studio 2010 environment that make it easy to deploy and retract
the solution package for a SharePoint project during testing and debugging.

With the introduction of SharePoint 2013 and Visual Studio 2012, Microsoft has further improved
the SharePoint Developer Tools. For the project types that were available for SharePoint 2010 there
are now also SharePoint 2013 versions. There are also Office add-in project types that can be used to
create add-ins for the Microsoft Office 2013 and Office 2010 applications. The biggest change, how-
ever, is that the SharePoint Developer Tools in Visual Studio 2012 contain two project types that allow
you to create two different types of apps:

■■ Apps for Office 2013

■■ Apps for SharePoint 2013

You can find the app for SharePoint 2013 C# in the New Project dialog box within Visual Studio
2012 by navigating to Visual C#\Office/SharePoint\Apps, as shown in Figure 2-6.

FIGURE 2-6 Selecting the App for SharePoint 2013 project type to create an app

When you click OK you are asked to confirm the name of the app and specify the site to which you
want Visual Studio to deploy the app and how you want to host your app, as shown in Figure 2-7.

 CHAPTER 2 SharePoint development practices and techniques 57

FIGURE 2-7 Specifying a name, test site URL, and trust level for an app

SharePoint apps will be discussed in detail in Chapter 4, “SharePoint apps.” For now, you will create
a SharePoint-hosted app, which means that all of the app will be deployed to a SharePoint site. When
you click the Finish button in the SharePoint Customization Wizard, Visual Studio takes a few seconds
to create and configure the new project. Figure 2-8 shows what the new SharePoint project looks like
in Solution Explorer.

FIGURE 2-8 An app's Features node, Package node, and some standard content

58 Inside Microsoft SharePoint 2013

A SharePoint app is created with some default content. There is a style sheet, an app icon image,
a default page, and several JavaScript files. The AppManifest.xml file contains metadata such as the
name and the title of the app, the app icon, and the scopes at which the app needs to have permis-
sions. You use the Features node of the App for SharePoint 2013 project to add new features to the
app. Notice that the Features node of a SharePoint app contains one feature, called Feature1, when
the app is created. Feature1 contains the default content and is web scoped. A feature in a SharePoint
app can only be web scoped, it is not supported to use a SharePoint app to deploy a site, web ap-
plication, or farm-scoped feature. You use the Package node to track project-wide settings related to
building the project into a solution package .wsp file and an app package .app file.

Just like normal SharePoint projects, SharePoint apps also have three special menu commands
to support deployment and packaging of the app: Deploy, Package, and Retract. These menu com-
mands are available when you right-click the top-level project node in Solution Explorer. You can run
the Package command to build a SharePoint project into a solution package. You can use the Deploy
command to run a sequence of deployment steps that deploy the solution package in the local farm
so that you can test and debug your work. The Retract command reverses the act of deployment by
retracting the solution package from the local farm. When you click the Deploy button, Visual Studio
deploys the app to the site you listed in the Customization Wizard. You can find the app on the Site
Contents page and in the navigation pane on the left side of the page, under the Recent heading, as
shown in Figure 2-9. Clicking the app name or icon will open the app’s default.aspx page.

FIGURE 2-9 The WingTip app on the Site Contents page and in the navigation pane on the left side of the page

 CHAPTER 2 SharePoint development practices and techniques 59

Choosing a development approach

At least as important as knowing how to create a solution is knowing when to create a solution and
what type of solution to create. Even though this is a book about custom development, the best ap-
proach when using SharePoint is to use out-of-the-box functionality. Customizations are the number-
one cause of problems with SharePoint environments. Knowing this, you have to make sure that when
you create a custom solution, the same functionality couldn’t be achieved by using out-of-the-box
functionality. If you do have to create a custom solution, you have to make sure that you create the
right type of solution and that you build the solution in a way that uses the least amount of resources
from the SharePoint server.

When you open up Visual Studio, the first thing you have to decide is what type of project you
want to create. With the new SharePoint 2013 app model added into the mix, you can now choose
between a SharePoint 2013 farm solution, a SharePoint 2013 sandboxed solution, and a SharePoint
2013 app. There isn’t one right project type; the best type depends on what kind of customizations
you want to build and to what type of environment you want to deploy the customizations.

The best option is always the project type that puts the least amount of load on the SharePoint
server. However, the solution also has to be maintainable and upgradable. The solution should not
be overly complex, so that it can be maintained by others. The solution design should follow best
practices to ensure that it can be upgraded to a next version of SharePoint. Of course, you also have
to make sure that the solution can be deployed to the environment that you are creating the custom-
izations for. To summarize, when you create SharePoint customizations, the following things have to
be taken into account:

■■ Put the least possible load on the SharePoint server.

■■ Keep the customizations as simple as possible.

■■ Make sure you follow best practices, so the solutions don’t block the SharePoint environment
from being upgraded.

■■ Ensure that the solution can be deployed to the target environment.

Because a SharePoint app can’t deploy server-side code to the SharePoint server, that will always
be the project type that puts the least amount of load on the SharePoint server. Sandboxed solutions
can deploy server-side code to the SharePoint server; however, a sandboxed solution can only use a
limited amount of server resources before it is shut down. A farm solution can technically use all the
resources that are available on the server, and because of that, a farm solution can bring down an
entire SharePoint farm. This is not just a theoretical scenario; it actually happens on a regular basis to
both small and really large SharePoint environments.

It is likely that the version of the customizations that you are building is not the last version. Either
the customizations will be a huge hit and users will ask for more functionality, or they aren’t what
users were expecting and they need modifications to fit the user’s needs. To make the solution easy
to maintain, make it as simple as possible. This means that even though your first choice should be to
build a SharePoint app, because that would consume the least amount of SharePoint server resources,

60 Inside Microsoft SharePoint 2013

you shouldn’t do it at all costs. If creating an app would create a solution that is significantly more
complex, the best solution is probably to build a sandboxed or farm solution.

If the SharePoint environment is successful, it’s very likely that at some point the environment will
have to be upgraded to the next version of SharePoint. Some SharePoint customizations can block
the upgrade of a SharePoint environment. For instance, if a solution makes unsupported changes to
the database or to SharePoint files on the file system, it won’t be possible to upgrade the environ-
ment. Also, when certain customizations such as site definitions are involved, it will be significantly
more difficult to move the contents of the SharePoint farm to a cloud-hosted environment. Because
Microsoft has positioned the SharePoint app model as the SharePoint customization type of the
future, and because almost all parts of the SharePoint app live outside of SharePoint, creating apps
is your safest bet when you want to guarantee that your environment can upgrade without being
hindered by the customizations.

Using farm solutions means that the solution will have to be upgraded when the SharePoint farm
gets upgraded. Sandboxed solutions live in the content database and can only affect the site collec-
tion that they are deployed in. This means that the impact they can have on an upgrade to a new
version of SharePoint is a lot smaller than for farm solutions. However, sandboxed solutions are dep-
recated in SharePoint 2013. This means that although both sandboxed solutions that were created for
SharePoint 2010 and new sandboxed solutions created for SharePoint 2013 are still fully supported,
Microsoft is planning to remove support for sandboxed solutions at some point in the future. This
doesn’t necessarily have to be in the next release; it could be in the release after that, or an even later
release. Investing in large-scale sandboxed solutions is probably not a good idea, though.

If your environment is a cloud-hosted environment such as Office 365, you might not have much
of a choice, because you won’t be allowed to deploy full trust solutions, and not all customizations
can be created by using apps. In those cases, you will probably still want to create new sandboxed
solutions. The advice would then be to try and create the solutions in such a way that you can remove
the sandboxed solution without the entire site breaking down. When Microsoft then at some point
removes the support for sandboxed solutions, at least your existing content is still accessible.

When you are upgrading from SharePoint 2010 to SharePoint 2013, you can choose how you want
to upgrade you custom solutions:

■■ You can deploy your SharePoint 2010 solutions as is. Microsoft has designed SharePoint 2013
to make sure that your solutions keep working. This means that the entire solution should
work when a site is in SharePoint 2010 mode. When a site is in SharePoint 2013 mode, most of
the solution should work, but some things might not work. Things that don’t work are mostly
related to functionality that is no longer available in SharePoint. For instance, custom solutions
that use the SharePoint 2010 Web Analytics features will not work in a SharePoint 2013 envi-
ronment, because the Web Analytics Service Application and all related functionality has been
removed. In most cases, you will not just deploy your existing solutions as is. The only case in
which it makes sense to not make any changes and just deploy an existing SharePoint 2010 so-
lution as is to a SharePoint 2013 environment is when the solution is only there to keep existing
SharePoint 2010 sites working in SharePoint 2010 mode in the SharePoint 2013 environment. In
all other cases, you will at least want to recompile your solution.

 CHAPTER 2 SharePoint development practices and techniques 61

■■ The second way to move SharePoint 2010 solutions to a SharePoint 2013 environment is to
open the SharePoint 2010 solution in Visual Studio 2012. The solution can then be recompiled
against the SharePoint 2013 DLLs. While you are doing this, you can decide to make some mi-
nor changes to the solution. You should definitely remove any references to functionality that
no longer exists in SharePoint 2013, such as the Web Analytics functionality. Another example
of something that will definitely not work in a SharePoint 2013 mode are SharePoint 2010
visual designs. Any master pages and style sheets that were created for SharePoint 2010 will
not work in sites that are in SharePoint 2013 mode. Normally SharePoint will just not use the
SharePoint 2010 designs in SharePoint 2013 mode sites. However, if you had a stapling feature
in SharePoint 2010 that stapled a custom design to sites in the environment, especially if it
stapled the design to all sites in the environment by stapling it to the GLOBAL site definition,
you will want to remove the stapling feature before moving the solution to SharePoint 2013.
Stapling a SharePoint 2010 design to the GLOBAL site definition and deploying it to SharePoint
2013 can make it impossible to create any fully functional sites, either by using out-of-the-box
site definitions or custom web templates.

■■ The third approach that can be taken when moving solutions from SharePoint 2010 to Share-
Point 2013 is to rebuild the solution to use the new SharePoint 2013 functionality where pos-
sible. Rebuilding the solution could mean replacing custom features with new out-of-the-box
functionality. In a lot of cases, the aim should be to minimize the amount of customizations
in an environment, which means that cutting customizations in favor of new out-of-the-box
functionality is a very valid change to invest in. Do keep in mind, though, that in order to be
able to upgrade existing sites you might need to have certain SharePoint 2010 customizations
deployed in your environment, even if you don’t want to actively use them anymore in your
SharePoint 2013 environment. There are also cases in which a customization can’t be replaced
by out-of-the-box functionality but could be replaced by SharePoint apps, by an application
that runs external to SharePoint and that uses the SharePoint Web Services or the vastly im-
proved SharePoint Client Object Model. This should only be done if replacing the functionality
by using a SharePoint app or an external solution doesn’t make the solution significantly more
complex. If that is not the case, rebuilding functionality as a SharePoint app or as an external
service will give you practice and experience in using the new development options, and it will
make sure that your solution is easier to deploy in hosted environments. Assuming that the
SharePoint app model is here to stay, it will also make sure that your solution becomes more
future proof.

Using the SharePoint APIs

In SharePoint 2013, you can now choose from three different APIs: the server-side object model
(SSOM), the client-side object model (CSOM), and the REST API. All three APIs give you the option to
build customizations for your SharePoint environment. This section will provide an overview of the
three different APIs. Each API will then be used extensively in examples throughout the book. For
specific detailed coverage of CSOM and REST, see Chapter 5, “Client-side programming.”

62 Inside Microsoft SharePoint 2013

Understanding the server-side object model
The core server-side object model of SharePoint Foundation is loaded through an assembly named
Microsoft.SharePoint.dll. When you reference this assembly within a Visual Studio 2012 project, you
can start programming against the classes in the server-side object model, such as SPSite, SPWeb, and
SPList. There are two initial requirements for a Visual Studio project that programs against the server-
side object model by using the Microsoft.SharePoint assembly. First, the project must be configured
to use .NET Framework 4 or 4.5 as its target framework. Pay extra attention if you are upgrading a
SharePoint 2010 solution, because that will have been built using the .NET Framework 3.5 as its target
framework. The second requirement is that your project must have a platform target setting that is
compatible with a 64-bit environment, which is essential for properly loading the Microsoft.SharePoint
assembly.

Another critical requirement for any application or component that is programmed against the
server-side object model is that the application or component must be deployed and run on a
 SharePoint server in the farm in which you want to use the component. The deployment of applica-
tions or components that use the SharePoint server-side object model should always be done by
using a SharePoint Solution or .wsp file. To deploy the solution, you will need access to at least one
SharePoint server in the farm where the solution should be deployed. In most production environ-
ments, this means that you will hand off the solution and a document that describes how to deploy
the solution to the administrator of the server. In your development environment, Visual Studio will
usually do the deployment for you.

You can also create client applications with Visual Studio 2012 that program against the server-side
object model. For example, you can create a standard console application that uses the server-side
object model to access a site and the elements inside the site, such as lists and items. However, keep
in mind that any client application that depends on the Microsoft.SharePoint assembly can be run
only when launched on a server that has SharePoint installed on it and that is part of a SharePoint
farm. This means that it’s not likely that you will encounter real-world scenarios that call for creating
client applications that use the server-side object model. Even so, creating simple console applica-
tions that program against the Microsoft.SharePoint assembly in your development environment can
be useful, because it gives you a quick and easy way to write and test code as you begin learning the
server-side object model.

Most of the SharePoint Foundation APIs reside in Microsoft.SharePoint.dll. However, if you are build-
ing a custom solution ,using the server-side object model you might also want to use SharePoint Server
APIs and functionality. The bulk of the SharePoint Server APIs reside in Microsoft.Office.Server.dll;
how ever, this isn’t the only available DLL that contains SharePoint Server APIs. For a full list of
SharePoint APIs and the DLLs in which you can find them, see the MSDN page .NET server API
reference for SharePoint 2013 at http://msdn.microsoft.com/en-us/library/jj193058.aspx.

http://msdn.microsoft.com/en-us/library/jj193058.aspx

 CHAPTER 2 SharePoint development practices and techniques 63

Using the client-side object model
SharePoint 2010 introduced the SharePoint Foundation client-side object model, which allows devel-
opers to use SharePoint content and objects in their client-side solutions. As a developer, you could
now create a very simple solution that would be deployed into a SharePoint site or onto a user’s
desktop and that could read or manage data in a SharePoint site.

In SharePoint 2010, the client-side object model was only available for SharePoint Foundation
objects. In SharePoint 2013, however, the client-side object model has again been vastly improved
by making a lot of the SharePoint Server objects available through the client-side object model. In
SharePoint 2010 there were three client-side object models, and in SharePoint 2013 there are four.
SharePoint 2013 allows you to choose between the Managed, Silverlight, Mobile, and JavaScript
object models. Each of the four object models provides an object interface to SharePoint functional-
ity that is based on the objects available in the Microsoft.SharePoint namespace. All four client-side
object models also have support for at least part of the SharePoint Server 2013 functionality, but not
all of them include the same SharePoint Server 2013 components.

The four client-side object models also all have their own usages. Each of the four object models
presents an object interface in front of a service proxy. Developers write client-side code by using
the object model, but the operations are batched and sent as a single XML request to the Client.svc
service. When the XML request is received, the Client.svc service makes calls to the server-side object
model on behalf of the client. The results of the server-side calls are then sent back to the calling cli-
ent in the form of a JavaScript Object Notation (JSON) object.

The object model for Microsoft Silverlight can be used to build Silverlight applications, Web Parts,
ASP.NET applications, apps for SharePoint and Office, and Silverlight applications for phones that use
SharePoint data or SharePoint objects. A Silverlight application is compiled into an .xap file that can
pretty much be stored anywhere. Examples of where .xap files can be deployed are a client computer,
the file system of a SharePoint server, a list in a SharePoint library, and an external (web) server. The
Silverlight client-side object model is contained in assemblies in the LAYOUTS\ClientBin folder. The
following DLLs are available:

■■ Microsoft.SharePoint.Client.Silverlight.dll

■■ Microsoft.SharePoint.Client.Silverlight.Runtime.dll

■■ Microsoft.SharePoint.Client.DocumentManagement.Silverlight.dll

■■ Microsoft.SharePoint.Client.Publishing.Silverlight.dll

■■ Microsoft.SharePoint.Client.Search.Applications.Silverlight.dll

■■ Microsoft.SharePoint.Client.Search.Silverlight.dll

64 Inside Microsoft SharePoint 2013

■■ Microsoft.SharePoint.Client.Taxonomy.Silverlight.dll

■■ Microsoft.SharePoint.Client.UserProfiles.Silverlight.dll

■■ Microsoft.SharePoint.Client.WorkflowServices.Silverlight.dll

■■ Microsoft.Office.Client.Policy.Silverlight.dll

■■ Microsoft.Office.Client.TranslationServices.Silverlight.dll

The Mobile object model can be used to create applications that run on Windows Phones. The
Mobile client-side object model is a special version of the Silverlight client-side object model. The
Mobile object model contains most of the same functionality as the Silverlight object model. A couple
of areas are missing, but when you are creating a Windows Phone application using the Mobile object
model you can use the REST APIs to access these areas. The Mobile client-side object model also con-
tains some functionality that is specific to phones, such as APIs that enable a phone app to register for
notifications from the Microsoft Push Notification Service. The Mobile client-side object model can be
found in the same folder as the Silverlight client-side object model, in the LAYOUTS\ClientBin folder.
The DLLs that are available for the Mobile client-side object model are:

■■ Microsoft.SharePoint.Client.Phone.dll

■■ Microsoft.SharePoint.Client.Phone.Runtime.dll

■■ Microsoft.SharePoint.Client.DocumentManagement.Phone.dll

■■ Microsoft.SharePoint.Client.Publishing.Phone.dll

■■ Microsoft.SharePoint.Client.Taxonomy.Phone.dll

■■ Microsoft.SharePoint.Client.UserProfiles.Phone.dll

■■ Microsoft.Office.Client.Policy.Phone.dll

■■ Microsoft.Office.Client.TranslationServices.Phone.dll

The Managed object model can be used to create .NET applications that run on Windows operat-
ing systems that aren’t phones or SharePoint servers. This means that the Managed object model can
be used to create applications that run on client computers, or on Windows web servers not running
SharePoint. The Managed object model can be found in the ISAPI folder and is contained in the fol-
lowing DLLs:

■■ Microsoft.SharePoint.Client.dll

■■ Microsoft.SharePoint.Client.Runtime.dll

■■ Microsoft.SharePoint.Client.ServerRuntime.dll

■■ Microsoft.SharePoint.Client.DocumentManagement.dll

■■ Microsoft.SharePoint.Client.Publishing.dll

■■ Microsoft.SharePoint.Client.Search.Applications.dll

 CHAPTER 2 SharePoint development practices and techniques 65

■■ Microsoft.SharePoint.Client.Search.dll

■■ Microsoft.SharePoint.Client.Taxonomy.dll

■■ Microsoft.SharePoint.Client.UserProfiles.dll

■■ Microsoft.SharePoint.Client.WorkflowServices.dll

■■ Microsoft.Office.Client.Education.dll

■■ Microsoft.Office.Client.Policy.dll

■■ Microsoft.Office.Client.TranslationServices.dll

■■ Microsoft.Office.SharePoint.ClientExtensions.dll

The last client-side object model is the JavaScript object model. The JavaScript object model can
be used in inline script or in separate .js files. Using the JavaScript client-side object model is an excel-
lent way to add custom SharePoint code to a SharePoint-hosted app. The JavaScript object model
is different from the other three in that it is not contained in a set of DLLs. Instead, it is contained in
a JavaScript library, inside of .js files. The many .js files that make up the JavaScript client-side object
model are located in the LAYOUTS folder. The core SharePoint functionality can be found in SP.js and
in SP.Core.js.

Though the four client-side object models don’t contain exactly the same functionality, Microsoft
has taken great care to ensure that the four models return objects that behave similarly. This means
that if you know how to write code against one of the models, you can easily port that code to either
of the other three models. Table 2-2 shows some of the main objects supported by each model along-
side the related object from the server-side model.

TABLE 2-2 Equivalent objects in the server and client models

Server model Managed model Silverlight model Mobile model JavaScript model

SPContext ClientContext ClientContext ClientContext ClientContext

SPSite Site Site Site Site

SPWeb Web Web Web Web

SPList List List List List

SPListItem ListItem ListItem ListItem ListItem

SPField Field Field Field Field

As in the standard code you write against the server-side object model, code written for client
object models requires a starting point in the form of a context object. The context object pro-
vides an entry point into the associated API that can be used to gain access to other objects. When
you have access to the objects, you can interact with the scalar properties of the object freely (for
example, Name, Title, Url, and so on). Listing 2-4 shows how to create a context in each of the models
and return an object representing a site collection. After the site collection object is returned, the Url
property is examined. Code for the server model is included for comparison.

66 Inside Microsoft SharePoint 2013

LISTING 2-4 Creating contexts

//Server Object Model
SPSite siteCollection = SPContext.Current.Site;
string url = siteCollection.Url;

//Managed Client Object Model
using (ClientContext ctx = new ClientContext("http://intranet.wingtiptoys.com"))
{
 Site siteCollection = ctx.Site;
 ctx.Load(siteCollection);
 ctx.ExecuteQuery();
 string url = siteCollection.Url;
}

//Silverlight Client Object Model
using (ClientContext ctx =
 new ClientContext("http://intranet.wingtiptoys.com"))
{
 Site siteCollection = ctx.Site;
 ctx.Load(siteCollection);
 ctx.ExecuteQuery();
 string url = siteCollection.Url;
}

//Mobile Client Object Model
using (ClientContext ctx =
 new ClientContext("http://intranet.wingtiptoys.com"))
{
 Site siteCollection = ctx.Site;
 ctx.Load(siteCollection);
 ctx.ExecuteQuery();
 string url = siteCollection.Url;
}

//JavaScript Client Object Model
var siteCollection;
function getSiteCollection
{
 var ctx = new SP.ClientContext("/");
 siteCollection = ctx.get_site;
 ctx.load(site);
 ctx.executeQueryAsync(success, failure);
}

function success {
 string url = siteCollection.get_url;
}

function failure {
 alert("Failure!");
}

 CHAPTER 2 SharePoint development practices and techniques 67

The ClientContext class in the Managed, Silverlight, and Mobile object models inherits from the
ClientContextRuntime class. By using the ClientContext class, you can get a valid run-time context by
passing in the URL of a site. In addition, this class provides several members that are needed to access
data and invoke methods on the server.

The SP.ClientContext class in the JavaScript client object model inherits from the SP.ClientContext-
Runtime class and provides equivalent functionality to the ClientContext class found in the Managed,
Silverlight, and Mobile client object models. As with the Managed and Silverlight models, you can
get a run-time context in the JavaScript model by using the SP.ClientContext class and passing a URL.
Unlike the other client object models, however, the JavaScript model also allows you to get a run-time
context to the current site by using a constructor with no arguments, so the example above could be
rewritten as simply var ctx = new SP.ClientContext.

All four client-side object models only communicate with the SharePoint server when the code
calls the ExecuteQuery or ExecuteQueryAsync method. This is to prevent the object models from
making too many calls to the SharePoint server and from affecting the SharePoint server’s health by
querying the server too much. This means that when you are writing your code, you have to really
think about when the statements that you are writing actually have to be executed on the server. You
will want to minimize traffic to the server, but you will need to communicate with the server if you
want to request data from, or send data into, the SharePoint environment.

The ExecuteQuery method creates an XML request and passes it to the Client.svc service. The client
then waits synchronously while the batch is executed and the JSON results are returned. The Execute-
QueryAsync method, which is used in the Silverlight and Mobile client object models, sends the XML
request to the server, but it returns immediately. Designated success and failure callback methods
receive notification when the batch operation is complete.

The JavaScript model works like the Managed and Silverlight models by loading operations and
executing batches. In the case of the JavaScript model, however, all batch executions are accom-
plished asynchronously. This means that you must call the ExecuteQueryAsync method and pass in
the name of functions that will receive success and failure callbacks, as shown earlier in Listing 2-4.

Using the reST APIs
The most lightweight option for performing relatively simple operations on data in SharePoint lists
and sites is to use the REST capabilities that are built into SharePoint 2013. The SharePoint 2013
implementation of a REST web service uses the Open Data Protocol (OData) to perform CRUD
operations on data in SharePoint. Using REST allows your code to interact with SharePoint by using
standard HTTP requests and responses. Table 2-3 shows the mapping between HTTP verbs and data
operations.

68 Inside Microsoft SharePoint 2013

TABLE 2-3 Mapping between HTTP verbs and data operations

HTTP verb Data operation

GET Retrieve

POST Create

PUT Update all fields

DELETE Delete

MERGE Update specified fields

The Client.svc web service handles the HTTP request and serves a response in either Atom or JSON
format.

To access any object on a site by using a RESTful call, the URL you should use will start with the
following construction:

http://<server>/<site>/_api

To access an actual object within the site you simply add the object to the URL:

//Access a site collection
http://<server>/<site>/_api/site

//Access a specific site
http://<server>/<site>/_api/web

//Access a list in a specific site
http://<server>/<site>/_api/web/lists('GUID')

You can use the querystring syntax to specify parameters for the methods that you call by using a
RESTful HTTP request:

//Apply a "blank" site site definition to a SharePoint site
http://<server>/<site>/_api/web/applyWebTemplate?template="STS#1"

The query strings can become rather complex, but because of that the queries that can be per-
formed are rather powerful as well. You can select, sort, page, filter, and expand data by using a
RESTful query. The filtering allows both numeric and string comparisons as well as date and time
comparisons. The next example of a RESTful query requests the FirstName, LastName, and Phone-
Number columns from a list with a specific GUID and filters the items by items where the FirstName
starts with an a:

http://<server>/<site>/_api/web/lists('GUID')/items?$select=FirstName,LastName,
PhoneNumber$filter=startWith(FirstName, a)

 CHAPTER 2 SharePoint development practices and techniques 69

Summary

In this chapter, all the basics of developing a custom SharePoint solution have been touched on. The
first step is to determine what type of development environment you need to create the solution
that you want to create, or to complete the project that you are working on. When you have your
hardware and the design of the development environment in place, you can install and configure it
manually, but you can also use Windows PowerShell to configure your server. Especially if you need to
create multiple development environments, scripting the installation and configuration can save you
time and will help to ensure that all development environments are identical.

The next step is to determine a development approach. The best approach for your solution
depends on the functionality that you want to build and on the environment that the solution should
be deployed to. If the solution has to be deployed to a cloud-hosted environment, creating a farm
solution is not an option, because you won’t be able to deploy it. The most future-proof approach is
to create a SharePoint app. However, some of the functionality that you might want to build might
not be able to be created by using a SharePoint app (yet). This forces you to make a decision between
creating an app that implements as much of the functionality as possible and creating a farm solu-
tion that implements the exact functionality that you are looking for. If you deploying a farm solution,
you will have to upgrade it if you want to upgrade your environment, and at some point in the future
Microsoft might remove support for farm solutions completely. Although it will be a while before this
happens, it should already be a consideration when you are determining the development approach
you are going to use for your solution.

After your solution is deployed, you might have to debug it. There are several debugging tools
that can be used to debug custom SharePoint solutions. The best tool to use depends on the type of
problem you are trying to debug and on what type of environment your solution is in. The ULS and
Windows Event Logs, and the Developer Dashboard, can give you valuable information from all types
of environments and are all useful tools to help you identify the cause of a problem on your farm.

 727

access tokens, S2S, 256
ACL (access control list), 216–217, 537–538
.action4 files, 469
action files, 469, 489–491
Active Directory, user authentication using, 10, 214–215
activities

CompositeTask activity, 492
custom, creating, 487–491
DynamicValue activity, 470
HTTPSend activity, 470
Loop [n] Times activity, 470
Loop with Condition activity, 470
Sequence activity, 479, 482
SingleTask activity, 492–494
for workflows, 469

activity feeds, 674, 676. See also social feeds
ActivityId filter, BCS, 649
addClass method, jQuery, 176
<AddContentTypeField> element, 114
AdditionalPageHead delegate control, 285
Add-PSSnapin cmdlet, 32, 43, 44
administration, automating with PowerShell, 42–45
AdministrationMetadataCatalog object, 659
Administration Object Model for, 659–661
after events, 379–380
AJAX (Asynchronous JavaScript and XML), 201, 686
AjaxDelta control, 287–288
AllRolesForCurrentUser property, SPSecurableObject

class, 223
AND operator, managed properties, 512
anonymous functions, JavaScript, 167–168
APIs (application programming interfaces), 61–68

for apps, 163–165
CSOM. See CSOM API
REST. See REST APIs
SSOM. See SSOM API

app catalog, publishing SharePoint apps to, 153–155

Index

Symbols
: (colon), contains operator for managed

properties, 511
:: (colons, double), preceding class members, 31
$ (dollar sign)

jQuery global function alias, 174
preceding PowerShell variables, 30

.. (dots, double), range operator for managed
properties, 511

= (equal sign), equal to operator for managed
properties, 511

(hash sign), preceding DOM elements, 174
<> (left and right angle bracket), not equal to operator

for managed properties, 511
< (left angle bracket), less than operator for managed

properties, 511
<= (left angle bracket, equal sign), less than or equal to

operator for managed properties, 511
- (minus sign), NOT operator for managed

properties, 512
+ (plus sign), AND operator for managed

properties, 512
> (right angle bracket), greater than operator for

managed properties, 511
>= (right angle bracket, equal sign), greater than

or equal to operator for managed
properties, 511

[] (square brackets), enclosing class names, 31

A
AccessChecker method, BCS, 645
access control list. See ACL
Access Services, 14
access tokens, OAuth, 225–226, 232–234, 245–246,

250–254

<App> element

728 Index

<App> element, 131
.app files, 147
AppIcon.png.config.xml file, 147
AppIcon.png file, 147
app identifier, 235
app launcher, 126
application pages, 298–302

base classes for, 299
creating, 299–301
location of, 298
navigation support for, 302
securing, 301–302
template files for, 87

application pool identity, 219
application pools, 268
application programming interfaces. See APIs

(application programming interfaces)
ApplyChanges method, 335
<ApplyElementManifests> element, 114
App Management Service, 14
AppManifest.xml file, 58, 130–132, 147

<AppPermissionRequest> element, 237, 240
<AppPermissionRequests> element, 132, 524
<AppPrincipal> element, 131, 227
<AutoDeployedWebApplication> element, 247
editing with visual designer, 132
elements in, 131
<RemoteEndpoint> element, 232
<RemoteWebApplication> element, 247
<StartPage> element, 229
start page URL, 132–134, 135

app-only access tokens, 253–254
app-only permissions, 239–240
app parts (client Web Parts), 137–140, 149, 311
<AppPermissionRequest> element, 237, 240
<AppPermissionRequests> element, 132, 524
<AppPrerequisites> element, 132
<AppPrincipal> element, 131, 227
app principals, 242–243
apps. See Office Web Apps; Sharepoint apps
appSettings variables, 247
app web, 134–137
AppWebProxy.aspx page, 228
.ascx files, 87
.ashx files, 87
.asmx files, 87
asp:Content control, 271
asp:ContentPlaceHolder control, 271, 284
asp:Label control, 269

ASP.NET, 267–271
applications, 268
FBA (forms-based authentication), 10–12,

214–215
master pages, 270–271
user controls, template files for, 87
web applications using, 9
web.config file for, 268
Web Forms, 268–270, 282

code-behind component, 269
running, 269–270
UI component, 268–269

Web Parts, compared to SharePoint, 310–311
.aspx.cs files, 268
.aspx files, 87, 268
ASPX forms, 651
.aspx.vb files, 268
Assemblies folder, 106
association forms, 498–500
AssociationNavigator method, BCS, 645
Associator method, BCS, 645
asynchronous execution

with JSOM, 67, 180, 188
of Web parts, 347–350

Asynchronous JavaScript and XML. See AJAX
authentication for apps, 224–234

access tokens for, 225, 226, 232
cross-domain library for, 227–230
external, 225, 232–233. See also OAuth

authentication; S2S authentication
flow for, 233–234
internal, 225, 226–232
SAML tokens for, 225, 233
web proxy for, 231–232

authentication for BCS, 635–638, 639–644
claims authentication, 643
client authentication, 643–644
Impersonation and Delegation model, 639–640
Passthrough authentication, 644
RevertToSelf authentication, 644
SSS for, 642
token-based authentication, 643
Trusted Subsystem model, 639–642

authentication for users, 214–224
Active Directory for, 10, 214–215
ASP.NET FBA for, 10–12, 214–215
challenges with, 120–121
claims-based security for, 10–11, 214–215
classic mode for, 10
configuring in web applications, 215

 CAL (client access license)

 Index 729

external systems for, 10, 214–215
impersonating users, 121, 221–222
for SharePoint object access, 222–224
user credentials for, 221
User Information List for, 216
for web applications, 10–12

authoritative pages, 529
authoritative sites. See publishing sites
authorization code, OAuth, 245, 254–256
authorization for apps, 234–239

app identifier for, 235
default policy for, 235
permissions, 235–239, 241

authorization for users
ACLs for, 216–217
for application pool identity, 219
escalating privileges, 219, 220–221
groups, 216, 217–219
for SharePoint object access, 222–224
for SHAREPOINT\SYSTEM account, 220–221
users, 216–217

Author managed property, 512
<AutoDeployedWebApplication> element, 247
autohosted apps, 129–130, 150–152, 163–164. See

also cloud-hosted apps
Azure ACS. See Windows Azure ACS

B
badge and reward system, 673
<BaseTypes> element, 442
Batching filter, BCS, 649
BatchingTermination filter, BCS, 649
BCS (Business Connectivity Services), 15, 621–624,

630–639
Administration Object Model for, 659–661
for apps, 668–671
authentication for, 639–644

claims authentication, 643
client authentication, 643–644
models of, 639–642
Passthrough authentication, 639–640, 644
RevertToSelf authentication, 640–642, 644
SSS for, 635–638, 642
token-based authentication, 643

BDC layer for, 631–635
BDC Runtime object models for, 656–659
client cache, 635
Client layer, 623

connectors for, 631
CSOM for, 669
event receivers for, 662–663
External Data Columns, 652
non-programmatic solutions using, 624–628
profile pages, creating, 653
VSTO deployment package for, 627, 639

BCS permission type, 239
BDC (Business Data Connectivity), 14, 622, 631–635

Client Runtime object model, 635, 656–659
managing, 632–634
metadata cache, 632
Metadata Model, 644–645, 664, 668
Model Explorer, 664
permissions for, 634
Server Runtime object model, 635, 656–659
Service Application, 634, 657
throttle settings, 632–634

BdcServiceApplicationProxy object, 657
before events, 379–380
BinarySecurityDescriptorAccessor method, BCS, 645
blogging. See social feeds
BPOS (Business Productivity Online Standard

Suite), 3
branding for UI, 296–298
BreakRoleInheritance method, SPSecurableObject

class, 222
BulkAssociatedIdEnumerator method, BCS, 646
BulkAssociationNavigator method, BCS, 646
BulkIdEnumerator method, BCS, 646
BulkSpecificFinder method, BCS, 646
Business Connectivity Services. See BCS
Business Data Connectivity. See BDC
Business Data Item Builder Web Part, 653
Business Data Item Web Part, 653
Business Data List Web Part, 652
Business Data Related List Web Part, 653
Business Productivity Online Standard

Suite. See BPOS

C
C#

cloud-hosted apps using, 125, 163–165
feature receivers using, 84
managed CSOM with, 180–187
REST API with, 206–212

CAL (client access license), 3

CAML (Collaborative Application Markup Language)

730 Index

CAML (Collaborative Application Markup
Language), 103–104

content types, creating, 428–430
creating content types, 370
creating document libraries, 372
querying External Lists, 630
querying lists, 185, 389–396
site columns, creating, 428–430

CAS (code access security) policies, 102
catalogs, 617–620
Category attribute, 332
Central Administration, 7–8

application pages in, template files for, 87
Configure Diagnostic Logging page, 53
Farm Configuration Wizard, 13
Manage Service Applications page, 46, 48
Services on Server page, 46

ChangedIdEnumerator method, BCS, 645
CheckPermissions method, SPSecurableObject

class, 223
chrome control, 144–147
claims authentication, 643
claims-based security, 10–11, 214–215
claims mode, for web applications, 215
classic mode, for web applications, 215
client access license. See CAL
ClientContext object, 65, 179
ClientContextRuntime class, 179
ClientId variable, 247
ClientRequestException error, 181
ClientSecret variable, 247
client-side object model. See CSOM (client-side

object model) API
Client.svc service, 177, 178, 196
<ClientWebPart> element, 138
client Web Parts (app parts), 137–140, 149, 311
closures, JavaScript, 168–169
cloud-hosted apps, 125–126

app designs using, 163–165
app principal for, 242
authentication for, 227–230, 232–233. See

also OAuth authentication; S2S
authentication

autohosted apps, 129–130, 163, 164
hosting models for, 127–130
packaging, 150–152
provider-hosted apps, 127–129, 163, 164, 257,

263–264
requirements for, 164–165

cmdlets, PowerShell, 27. See also specific cmdlets

code access security policies. See CAS policies
code-behind component, Web Forms, 269
Collaborative Application Markup

Language. See CAML
Colleagues, 675. See also following, features for
colon (:), contains operator for managed

properties, 511
colons, double (::), preceding class members, 31
COM (Component Object Model) objects

PowerShell scripts accessing, 31
SharePoint objects using, 76

community portals, 673
Comparison filter, BCS, 649
comparison operators, PowerShell, 28
compatibility levels, 594
Component Object Model objects. See COM objects
CompositeTask activity, 492
configuration database, 6, 9
<Configuration> element, 444, 446
<Configurations> element, 442, 446
Configure Diagnostic Logging page, 53
connectors, 507–508

BCS connectors, 631
.NET Assembly Connectors, 534–539, 663–668

content aggregation, 591, 607–616
CQWP (Content Query Web Part), 608–611
CSWP (Content Search Web Part), 608–611
display templates, 611–616

ContentClass managed property, 513
Content control, 271, 289
content databases, 8–10, 74, 274–275

adding content types to, 370
customized pages in, 278
lists in, 396
permissions in, 237
sandbox solutions in, 71
site customizations in, 24–25
social feeds in, 676
SPDataAccess role for, 219
updating, 398, 402–403, 412–413

Content Organizer, 574–578
content pages, 289–295

creating, 289
deploying, 290–292

ContentPlaceHolder control, 271, 284
ContentPlaceHolderID attribute, 289
Content Processing Enrichment Service. See CPES
Content Search Web Part. See CSWP
<ContentTypeBinding> element, 496
<ContentType> element, 107, 370, 430, 569

 DataContext class

 Index 731

Content Type Hub, 556, 558
content types, 366–371

adding site columns to, 369
creating, 367, 370–371
custom, creating, 428–433
for documents, 375–377
enumerating through, 368–369
standard, list of, 366–367

content types gallery, 366
content type syndication, 556–559
context objects, CSOM, 178–179
context tokens, OAuth, 244, 246, 250
Contribute site role, 224
<Control> element, 286
controls, 268–269. See also specific controls

delegate controls, 285–286
registering as safe, 280–282

control templates, 611–615
ConversionInfo class, 581
ConversionItemInfo class, 580
ConversionJob class, 580, 581
ConversionJobInfo class, 580, 581
ConversionJobSettings class, 581
ConversionJobStatus class, 580, 581
correlation ID, 53–54
CPES (Content Processing Enrichment Service), 508,

531–534
CQWP (Content Query Web Part), 608–611
crawling. See indexing process
CreateChildControls method, 325, 327–328,

334–336, 348–349
Created managed property, 512
CreatePost method, SocialFeedManager, 704–705,

709
Creator method, BCS, 645
Credential Manager, 644
Critical Path Training (SharePoint Server 2013 Virtual

Machine Setup Guide), 13, 124
cross-domain library, 227–230
cross-site publishing, 617–620
CSOM (client-side object model) API, 63–67,

177–187
accessing BCS data, 669–671
app authentication, 225, 227, 233, 246, 253, 256
context objects, 178–179
creating content types, 371
creating lists, 354
JSOM (JavaScript object model), 65, 67, 164, 177,

188–195
error handling, 190–191

manipulating items, 192–195
returning collections, 188–190

Managed object model, 64–65, 164–165, 177,
180–187

error handling, 181–184
manipulating document libraries, 186–187
manipulating items, 184–186
returning collections, 180–181

Mobile object model, 64
people, following, 711–715
personal feeds, posting to, 704–707
personal feeds, retrieving, 689–695
querying External Lists, 630
searches using, 526–528
Silverlight object model, 63–64
site feeds, posting to, 709
site feeds, retrieving, 699–702
user profile properties, retrieving, 677–683
workflow services with, 497–498

CSOM files, templates for, 87
CSS files, templates for, 87
css method, jQuery, 176
.csv files

importing term sets and terms from, 545
lists exported to, 588

CSWP (Content Search Web Part), 523, 608–611
{CurrentDisplayLanguage} token, 516
{CurrentDisplayLCID} token, 516
<CustomAction> element, 141, 302, 581
custom actions. See UI custom actions
CustomDocumentProperties, in display

templates, 614–615
custom forms, in workflows, 498–502

association forms, 498–500
initiation forms, 500–502
task forms. See tasks, in workflows

customized pages, 278–282
CustomizedPageStatus property, 279
custom libraries, JavaScript, 170–173
<CustomUpgradeAction> element, 98

D
.dacpac files, 152
DatabaseBackedMetadataCatalog object, 657
databases. See configuration database; content

databases
database server, 36, 39–40
DataContext class, 398

<data> element

732 Index

<data> element, 316
Data Tier Application package, 151, 152
data types, JavaScript, 166
debugging, 52–55

deactivating Web Parts after, 318–319
Developer Dashboard, 54–61
PowerShell scripts, 30
tools for, 52
ULS logs, 53–54
web.config file settings for, 274
Windows event logs, 53–54

DefaultMasterPage module element, 442
delegate controls, 285–286
DeletedIdEnumerator method, BCS, 645
Deleter method, BCS, 645, 659
DeltaManager object, 287
Deploy command, for projects, 78
Deployment service, for workflows, 497
Design Manager

creating custom master pages, 296
creating page layouts, 597

Design site role, 224
Developer Dashboard, 54–61
Developer Tools. See SharePoint Developer Tools
development environment, 35, 36–41

configuring, 40–41
hardware requirements, 38–39
installing with PowerShell scripts, 42
server types for, 36–38
similarity to production environment, 40–41
software requirements, 38–40

development farms, 7
device channel panels, 603–604
device channels, 591, 600–604

customizing content based on, 603–604
determining from user agent, 600–601
properties of, 601
redirecting to master pages, 602–603

DFWP (Data Form Web Part), 651
DIP (Document Information Panel), 656
Disassociator method, BCS, 645
discussion forums, 673
display templates, 611–616

control templates, 611–615
CustomDocumentProperties in, 614–615
item templates, 611–612, 615–616
JavaScript in, 615

DocumentIDProvider class, 564
Document ID providers, 564–567
Document IDs, 563–567

document libraries, 186, 371–379
content types for, 375–377
creating, 21–23, 275–276, 372
customizing, 22–23
Document IDs for documents in, 563–567
document templates for, 373–375
folders in, 378–379

document services, 559–583
Content Organizer, 574–578
Document IDs, 563–567
Document Sets, 567–574

activating, 567
characteristics of, 567
creating, 568–574

records management, 584–589
archives, site collection for, 586
eDiscovery, 586–589
in-place records management, 584–585

versioning, 559–562
Word Automation Services, 578–583

Document Sets, 567–574
activating, 567
characteristics of, 567
creating, 568–574

DoCustomSearchBeforeDefaultSearch() method,
DocumentIdProvider class, 565

DoesUserHavePermissions method,
SPSecurableObject class, 223

dollar sign ($)
jQuery global function alias, 174
preceding PowerShell variables, 30

domain controller, 36
DOM elements

binding to events, 176–177
manipulating, 175–176
selecting, 174–175

dots, double (..), range operator for managed
properties, 511

.dwp files, 313
DynamicMasterPageFile attribute, Page

directive, 299
dynamic reordering, 529
DynamicValue activity, 470

E
ECB (Edit Control Block) menu, 140, 358, 372
ECM (Enterprise Content Management), 541

document services, 559–583

 farm-scoped features

 Index 733

Content Organizer, 574–578
Document IDs, 563–567
Document Sets, 567–574
records management, 584–589
versioning, 559–562
Word Automation Services, 578–583

Managed Metadata Service Application, 541–559
content type syndication, 556–559
custom solution for term store, 545–556
term groups, 542–543
term sets, 543–544
term store, 541–545

ECT (External Content Type), 622, 623
in apps, 668
BDC Metadata Model for, 644–645
connection to External System, 625
creating, 624–626, 644–650
event receivers for, 662–663
exporting to XML, 626
filters for, 649–650
.NET Assembly Connector for, 663–668
Office 2013 using, 655–656
operations for, 626, 645–647
relationships between, 648–649
saving, 626
searches using, 534

eDiscovery, 586–589
Edit Control Block menu. See ECB (Edit Control

Block) menu
edit mode panels, 599
Editor Parts, 333–336
EffectiveBasePermissions property,

SPSecurableObject class, 223
<ElementManifest> element, 96
<Elements> element, 107, 286, 293, 302
elements.xml file, 96

for application page navigation, 302
for client Web Parts, 138–139
for custom lists, 433–435
for custom site columns, 422, 424, 428
for site templates, 458
for Web Parts, 314, 316–317, 320–321
for web templates, 451–452, 455, 457

EnsureChildControls method, 336
Enterprise Content Management. See ECM

(Enterprise Content Management)
Enterprise Search. See search capabilities
entity classes, 396–400
Entity Design Surface, 664
-eq (equal to) operator, PowerShell, 28

equal sign (=), equal to operator for managed
properties, 511

equal to (-eq) operator, PowerShell, 28
error handling

JSOM, 190–191
Managed object model, 181–184

error messages, 53–54. See also debugging
ETags, 205
event handling

after events, 379–380, 388–389
before events, 379–380, 387
event receivers for, 380–383, 662–663
feature receivers for, 84–86, 98–101, 344
jQuery, 176–177
life cycle events for apps, 158–162
naming events, 380
site provisioning events, 461–463
synchronization modes for, 380
for Web Part rendering, 325–327

event receivers, 380–383, 662–663. See also feature
receivers

Excel Services Application, 14
ExceptionHandlingScope object, 183
exchange objects, 589
ExecuteQueryAsync method, ClientContextRuntime

class, 67, 180
ExecuteQuery method, ClientContextRuntime

class, 67, 180, 184
Execution Manager, 104
External Content Type. See ECT
External Data

BDC Runtime object models for, 656–659
types of, 622–624

External Data Columns, 622, 652
External Data Web Parts, 622–623, 652–653
External Lists, 622–623

accessing programmatically, 629–630
creating, 627–628
event receivers for, 662–663
forms from, creating, 651
limitations of, 628–630
synchronizing to Outlook, 655

External System, 622
connecting to, 625
searching, 654

F
Farm Configuration Wizard, 13
farm-scoped features, 80

farm solutions

734 Index

farm solutions, 71, 76–102
debugging, 77, 92–94
deploying, 89–94, 121
deploying content pages in, 290–291
features for

adding, 79–84
feature receivers for, 84–86, 98–101
lists, 81–84
scope of, 80
version number of, 95–96

packaging, 89–90
project for, creating, 77–79
requirements for, 72
security for, 121
template files for, 86–89
upgrading, 60

features, 94–102
to new SharePoint version, 120, 121

Web Parts in, 313–317
Workflow Manager farm, 468

FAST Query Language. See FQL
FBA (forms-based authentication), 10–12
<Feature> element, 96
feature receivers, 84–86, 98–101, 344. See

also event receivers
<FeatureSiteTemplateAssociation> element, 448
Features node, for projects, 78–79
feature stapling, 448–450
feature.xml file, 96
field controls, 406, 410–420

class for, 412–414
for multicolumn values, 415–417
in page layouts, 595–596
rendering template for, 410–411

Field object, 65
<FieldType> element, 409, 417
field types, custom, 405–428

classes for, 407–409
creating, 405–408
custom properties for, 417–420
deploying, 406, 409–410
field controls for, 406, 410–420
JSLink property for, 420–428
limitations of, 406
for multicolumn values, 415–417
validation for, 408, 427

<File> element, 293, 317, 320, 321
FileExtension managed property, 512
file formats, conversions between. See Word

Automation Services

FileReader object, 373
files and folders

accessing with SSOM, 275–277
in document libraries, 378–379
mapped folders, 87
in sites, 74

Files collection object, 373
$filter operator, OData, 199–200
filters, for ECTs, 649–650
Finder method, BCS, 645–647, 658
FirstUniqueAncestorSecurableObject property,

SPSecurableObject class, 223
FixedFormatSettings class, 581
flowchart workflow, 478
folders. See files and folders
following, features for, 675, 710–720

entities that can be followed, 710–711
people, following, 711–720
Yammer, 720–724

foreach loops, PowerShell, 30
format handlers, 508
forms

custom forms for workflows, 498–502
InfoPath forms, 651

forms-based authentication. See FBA
FQL (FAST Query Language), 510
Full Control site role, 224
full-trust configuration, 257

in prior SharePoint versions, 103
uncustomized pages supported for, 278

G
-ge (greater than or equal) operator, PowerShell, 28
GenerateDocumentId() method,

DocumentIdProvider class, 564
GenericInvoker method, BCS, 645
GetAccessToken method, TokenHelper class, 251
GetAppOnlyAccessToken method, TokenHelper

class, 253
GetAuthorizationUrl method, TokenHelper class, 254
GetClientContextWithContextToken method,

TokenHelper class, 249
GetContextTokenFromRequest method, TokenHelper

class, 249
GetDocumentUrlsById() method,

DocumentIdProvider class, 564
GetFeedFor method, SocialFeedManager, 699
GetFeed method, SocialFeedManager, 691–692, 693

 IWebPartTable contract

 Index 735

GetFollowed method, SocialFollowingManager, 714
GetFollowers method, SocialFollowingManager, 714
GetFullThread method, SocialFeedManager, 693
getJSON method, jQuery, 201
Get-Process cmdlet, 27
GetS2SAccessTokenWithWindowsIdentity method,

TokenHelper class, 263
GetSampleDocumentIdText() method,

DocumentIdProvider class, 565
Get-SPSite cmdlet, 33
Get-SPSolution cmdlet, 45
Get-SPWebApplication cmdlet, 32
Get-SPWebTemplate cmdlet, 592–594
GetUserEffectivePermissionInfo method,

SPSecurableObject class, 223
GetUserEffectivePermissions method,

SPSecurableObject class, 223
ghosted pages. See uncustomized pages
global funciton, jQuery, 174
GLOBAL site definition, 442–443, 449, 454
greater than (-gt) operator, PowerShell, 28
greater than or equal (-ge) operator, PowerShell, 28
groups

for authorization, 216, 217–219
proxy groups, 47–48
term groups, 542–543

-gt (greater than) operator, PowerShell, 28

H
hardware requirements, 38–39
hash sign (#), preceding DOM elements, 174
HasUniqueRoleAssignment property,

SPSecurableObject class, 223
hide method, jQuery, 176
high-trust configuration, 257
history of SharePoint, 1, 2–4
HNSC (host-named site collection), 18–19
hosting realm. See hosting tenancy
hosting tenancy, 122–123, 235
host-named site collection. See HNSC
{HostTitle} token, 145
{HostUrl} token, 143
host web feature, 150
host web permission type, 239
"How to Create a Page Layout in SharePoint

2013", 597
html() method, jQuery, 176
HttpModule object, 9

HTTP requests
IIS handling, 5, 8
MDS for, 287
REST APIs using, 67–68

HTTPSend activity, 470

I
IdEnumerator method, BCS, 645
IFilters, 508
IIS (Internet Information Services), 5, 8

ASP.NET applications in, 268
SharePoint Web Applications in, 271–272
virtual directories in, 268, 274–275
web applications, 271

images, templates for, 87
impersonating users, 221–222, 639–640
Impersonation and Delegation model, 639–640
indexing process, 507–508
InfoPath forms, 651
initiation forms, 500–502
in-place records management, 584–585
Input filter, BCS, 649
InputOutput filter, BCS, 649
installation scopes, for SharePoint apps, 124–125
installing SharePoint apps, 155–157, 158
Install-SPSolution cmdlet, 44
Instance service, for workflows, 497
Integrated Scripting Environment,

PowerShell. See ISE, PowerShell
Internet Information Services. See IIS
InvalidQueryExpressionException error, 181
IsCompliant property, 288
IsDocument managed property, 512
ISE (Integrated Scripting Environment),

PowerShell, 30–31, 42
{ItemId} token, 143
items in sites, 74

CRUD operations on
in C#, with CSOM, 184–187
in C#, with REST API, 207–212
in JavaScript, with CSOM, 192–195
in JavaScript, with REST API, 201–206

returning collections of, 180–181
item templates, 611–612, 615–616
{ItemURL} token, 143
IWebPartField contract, 340
IWebPartParameters contract, 340
IWebPartRow contract, 340
IWebPartTable contract, 340

JavaScript

736 Index

J
JavaScript, 165–173

closures, 168–169
for cloud-hosted apps, 164–165
custom libraries, 170–173
data types, 166
in display templates, 615
functions, 167–168
jQuery library, 173–177
namespaces, 165
prototypes, 169–170
REST API with, 200–206
for SharePoint-hosted apps, 163–164
strict, 166–167
variables, 166–167

JavaScript object model. See JSOM
jQuery, 173–177

DOM elements
binding to events, 176–177
manipulating, 175–176
selecting, 174–175

event handling, 176–177
global function, 174
methods, 175–176
referencing in apps, 174

jQuery.ajax method, 201
JSLink property, SPField class, 420–428
JSOM (JavaScript object model), 65–67, 188–195

error handling, 190–191
libraries for, 177
manipulating items, 192–195
returning collections, 188–190
for SharePoint-hosted apps, 164
workflow services with, 497–498

JWT (JSON Web Token) standard, 252
.jz files, 87

K
KeywordQuery object, 526
KQL (Keyword Query Language), 510–513

in link queries, 513–514
managed properties for, 511–513

L
Label control, 269
LastId filter, BCS, 649

LastModifiedTime managed property, 512
LastName managed property, 513
layout pages. See application pages
_layouts directory, 298
LayoutsPageBase class, 299
left and right angle bracket (<>), not equal to

operator for managed properties, 511
left angle bracket, equal sign (<=), less than or equal

to operator for managed properties, 511
left angle bracket (<), less than operator for

managed properties, 511
-le (less than or equal) operator, PowerShell, 28
less than (-lt) operator, PowerShell, 28
less than or equal (-le) operator, PowerShell, 28
LFWP (List Form Web Part), 651
libraries, 74

custom, JavaScript, 170–173
document libraries, 186, 371–379

content types for, 375–377
creating, 275–276, 372
document templates for, 373–375
folders in, 378–379

versioning of, 559–562
licenses for SharePoint Server, 3
life cycle events for apps, 158–162
-like operator, PowerShell, 28
Limited Access site role, 224
Limit filter, BCS, 649, 650
link queries, 513–514
LinkTitle field, lists, 358
LinkTitleNoMenu field, lists, 358
LINQ to SharePoint, 396–404

adding items to lists, 402–404
deleting items from lists, 402–404
entity classes for, 396–400
querying lists, 401–402
updating items in lists, 402–404

listdata.svc web service, 196
{ListId} token, 143
<ListInstance> element, 354
ListItem object, 65
{ListItem} tokens, 517
List object, 65
list permission type, 239
lists, 74

adding items, with LINQ, 402–404
adding to solutions, 81–84
configuring

in JavaScript, with CSOM, 356
in JavaScript, with REST API, 356

 MdsCompliantAttribute

 Index 737

in JavaScript, with SSOM, 356
creating, 21–23, 353–356
CRUD operations on

in C#, with CSOM, 184–187
in C#, with REST API, 207–212
in JavaScript, with CSOM, 192–195, 354–355
in JavaScript, with REST API, 201–206,

354–355
in JavaScript, with SSOM, 354–355

custom, creating, 433–439
customizing, 22–23
deleting items, with LINQ, 402–404
document libraries, 371–379

content types for, 375–377
creating, 372
document templates for, 373–375
folders in, 378–379

in eDiscovery sets, 588
External Lists, 622, 623

accessing programmatically, 629–630
creating, 627–628
event receivers for, 662–663
forms for, 651
limitations of, 628–630
synchronizing to Outlook, 655

fields in, 357–362
adding, 359–361
content types for, 366–371
display name of, 358, 360
internal name of, 358, 360
LinkTitle field, 358
LinkTitleNoMenu field, 358
lookup fields, 361–362
modifying, 358–359
properties of, 360
site columns as alternatives to, 363–366
Title field, 358
types of, 357

querying with CAML, 389–396
joined lists, 391–392
multiple lists, 392–394
throttling queries, 394–396

querying with LINQ, 396–402
relationships in, 361–362
types of, 353–354
updating

with LINQ, 402–404
with versioning, 562

versioning of, 559–562
List Settings page, 22

<ListTemplate> element, 436
<ListTemplates> element, 442
{List} tokens, 517
{ListUrlDir} token, 143
Load method, ClientContextRuntime class, 179–180
load method, JavaScript, 188
LoadQuery method, ClientContextRuntime

class, 179–180
loadQuery method, JavaScript, 188
logs. See debugging
lookup fields, in lists, 361–362
Loop [n] Times activity, 470
Loop with Condition activity, 470
-lt (less than) operator, PowerShell, 28

M
Machine Translation Service, 14
Managed Metadata Service Application. See MMS

Application
managed navigation, 604–607

APIs for, 604–605
namespaces for, 605
navigational term sets for, 605–607
TaxonomySiteMapProvider for, 606

Managed object model, 64–65, 164–165, 177,
180–187

error handling, 181–184
manipulating document libraries, 186–187
manipulating items, 184–186
returning collections, 180–181

managed properties, 509, 511–513
Management Shell, SharePoint 2013, 31
Manage Service Applications page, 46, 48
manifest.xml file, 90
mapped folders, 87
<%@ Master%> directive, 270–271
.master files, 270
MasterPageFile attribute, Page directive, 271, 286
Master Page Gallery, 282

accessing files in, 594
deploying files to, 296, 423
display templates in, 518–520

master pages, 270–271, 282–287, 595–596
custom, for branding, 296–298
default master pages, 283–285
delegate controls in, 285–286
referencing, 286
in site collection, 282

MdsCompliantAttribute, 288

MDSFeature folder

738 Index

MDSFeature folder, 288
MDS (Minimal Download Strategy), 287–289
metadata

for ECTs, 632
enhancing with CPES, 508
managed by MMS. See MMS (Managed

Metadata Service)
<metaData> element, 316
Method Details pane, 664
microblogging. See social feeds
microfeed permission type, 239
Microsoft.BusinessData.dll assembly, 656
Microsoft.Office.BusinessApplications.Runtime.dll

assembly, 656
Microsoft.Office.Server.ActivityFeed namespace, 675
Microsoft.Office.Server.dll assembly, 62
Microsoft.Office.Server.Search.dll assembly, 528
Microsoft.Office.Server.SocialData namespace, 675
Microsoft.Office.Server.Social namespace, 675
Microsoft.Office.Server.UserProfiles namespace, 675
Microsoft.SharePoint.Client.dll assembly, 177
Microsoft.SharePoint.Client.Publishing

namespace, 605
Microsoft.SharePoint.Client.Publishing.Navigation

namespace, 605
Microsoft.SharePoint.ClientRuntime.dll

assembly, 177
Microsoft.SharePoint.Client.Social namespace, 676
Microsoft.SharePoint.Client.Taxonomy

namespace, 605
Microsoft.SharePoint.Client.UserProfiles

namespace, 676, 678–679
Microsoft.SharePoint.dll assembly, 62, 74, 106, 656
Microsoft.SharePoint.PowerShell snap-in, 31, 43–44
Microsoft.SharePoint.SubsetProxy.dll assembly, 106
Microsoft.SharePoint.UserCode.dll assembly, 106
Minimal Download Strategy. See MDS
minimal.master file, 283
minus sign (-), NOT operator for managed

properties, 512
MMS (Managed Metadata Service) Application, 14,

541–559, 604
content type syndication, 556–559
term groups, 542–543
term sets, 543–544
term store, 541–545

managing, custom solution for, 545–556
Mobile object model, 64
<Module> element, 290, 293, 296, 316, 320, 373,

424, 447, 571

module pattern, JavaScript, 171–172
<Modules> element, 442, 447
multitenancy, 42, 128–129
MyAutoHostedApp project, 150
MyAutoHostedAppWeb project, 150
My Sites, 673, 676

N
namespaces

JavaScript, 165
for managed navigation, 605
for REST URIs, 198
for social enterprise features, 675–676

<NavBars> element, 442, 446
navigation

for application pages, 302
managed, 604–607
structured, 606

NEAR operator, managed properties, 512
-ne (not equal to) operator, PowerShell, 28
.NET Assembly Connectors, 534–539, 631, 663–668
.NET Framework, 5, 40, 62
.NET objects, accessing, 31
New-Item cmdlet, 43
New-Object cmdlet, 31
news feed permission type, 239
newsfeeds. See social feeds
New-SPSite cmdlet, 33
New-SPWebApplication cmdlet, 32
not equal to (-ne) operator, PowerShell, 28
-notlike operator, PowerShell, 28
NOT operator, managed properties, 512

O
OAuth authentication, 232, 240–255

app principals for, 242–243
authentication server for, 242
client app for, 242
configuration for, 247
content owners for, 242
content server for, 242
flow for, 244–246
security tokens for, 164, 244–246, 250–254

access tokens, 225–226, 232–233, 245, 246,
250–254

authorization code, 245, 254–256
context tokens, 244, 246, 250

 parameters.xml file

 Index 739

JWT standard for, 252
refresh tokens, 245–246, 250

TokenHelper class for, 248–251
versions of, 240
Windows Azure ACS used by, 241–242

OData Extension Provider, 643
OData (Open Data Protocol) source, 196

authentication for, 643
connector for, 631
ECTs using, 668
querying, 199–200

Office 365
authosted apps in, 129
hosting tenancies with, 122–123
sandboxed solutions with, 60
SharePoint Online, 1

Office 2013
BCS architecture for, 630–631
BCS Client layer for, 623
ECTs used in, 655–656

Office Business Parts, 639
Office Developer Tools, 73
Office Store, publishing SharePoint apps to, 152–153
Office Web Apps, 36–37
ONEAR operator, managed properties, 512
ONET.xml file, 442, 444

for site definitions, 445–450
for site templates, 458
for web templates, 451–455, 457

on-premises model, 1–2
hosting tenancies with, 123
licenses for, 3
SharePoint farms using, 6–7

OOBThemesV15 module element, 442
Open Data Protocol. See OData
operating systems, 4–6
OR operator, managed properties, 512
oslo.master file, 283
Outlook

External Lists synchronized with, 627–628
synchronizing lists to, 655

Output filter, BCS, 649

P
Package node, for project, 78, 90
Package.Template.xml file, 90
packaging

farm solutions, 89–90
SharePoint apps, 147–152

<%@ Page%> directive, 269
DynamicMasterPageFile attribute, 299
MasterPageFile attribute, 286
for Web Part pages, 292

page layouts, 595–600
creating, 596–597
page fields in

edit mode panels for, 599
field controls for, 595–596
properties of, configuring, 598–599
RichHtmlField type, 597–599
TextField type, 597
Web Parts in, 599–600

page libraries, 21
Page_Load method, 269, 300
page model, 595–596
PageNumber filter, BCS, 649
PageRenderMode control, 289
pages, 267

adding programmatically, 276–277
application pages, 298–302

base classes for, 299
creating, 299–301
navigation support for, 302
securing, 301–302

content pages, 289–295
creating, 289
deploying, 290–292

creating, 21
customized, 21, 278–282
in eDiscovery sets, 589
layouts for. See page layouts
manipulating with SSOM, 275–277
master pages, 270–271, 282–287, 595–596

custom, for branding, 296–298
default master pages, 283–285
delegate controls in, 285–286
referencing, 286
in site collection, 282

page model for, 595–596
publishing pages, 295
requesting from virtual file system, 274–275
uncustomized (ghosted), 277–279
Web Part pages, 292–295, 319–323

PageTitle control, 284
{Page} tokens, 517
parallel execution

thread safety required for, 346
of Web Parts, 345–346

parameters.xml file, 399–400

parsers

740 Index

parsers, 508
Passthrough authentication, 639–640, 644
Password filter, BCS, 649
path-based site collection, 18
Path managed property, 513
people, following, 711–720
PeopleManager object, 680, 684
People term group, 542
PerformancePoint Service Application, 14
permissions. See also authorization

for apps, 235–239
app-only permissions, 239–240
default policy for, 235
requesting, 236–239
types of, 239

for BDC service, 634
for site customizations, 19, 24
for testing, 41

personal feeds (public), 675
posting to, 704–709
retrieving posts from, 689–698
types of, 691–692

Personalizable attribute, 331–333
physical servers, 37
pipelining, in PowerShell, 28
plus sign (+), AND operator for managed

properties, 512
PortalSiteMapProvider, 606
PowerPoint Automation Services, 14
PowerShell scripts, 26–34

administering SharePoint, 26, 42–45
cmdlets, 27
COM objects, accessing, 31
comparison operators, 28
console for

SharePoint 2013 Management Shell, 31
Windows PowerShell console, 26, 42–43

debugging, 30
execution policy for, 29
foreach loops, 30
ISE for, 30–31, 42
.NET objects, accessing, 31
pipelining, 28
profile for, 43–44
service applications, creating, 51–52
snap-in for, 31–34, 43–44
solutions

deploying, 44–45
retracting, 44–45

variables, 30

writing, 29–30
private feeds. See site feeds (private)
privileges. See authorization for users
production environment, 40–41
production farms, 7
Products Configuration wizard, 101
$profile cmdlet, 43
profile page, BCS, 653
profile synchronization connections, 655
<Project> element, 445
projects. See also SharePoint solutions

creating in Visual Studio, 77–79
Deploy command, 78
Features node, 78–79
Package node, 78
Retract command, 78
templates for, 77

<PropertyBag> element, 457
<Property> element, 317
PropertyOrFieldNotInitializedException error, 181
<PropertySchema> element, 417
prototype pattern, JavaScript, 172–173
prototypes, JavaScript, 169–170
provider-hosted apps, 127–129, 163, 164, 257,

263–264. See also cloud-hosted apps
proxy groups, 47–48
.ps1 file extension, 29
PSConfig tool, 101
public feeds. See personal feeds (public)
Publishing feature, 295, 591
publishing pages, 295
publishing SharePoint apps, 152–155
publishing sites, 591–594

accessing files in, 594
content aggregation for, 607–616
cross-site publishing, 617–620
device channels for, 600–604
managed navigation for, 604–607
page layouts for. See page layouts
page model for, 595–596
templates for, 592–594

Q
query process, for searches, 509–513

KQL for, 510–513
managed properties, 509, 511–513
ranking models, 510
result sources, 510

 sandboxed solutions

 Index 741

query rules, 521
{QueryString} tokens, 517
query tokens, 516–518
Quick Parts, Word, 656

R
ranking models, 510, 530
ReadAndValidateContextToken method,

TokenHelper class, 249
Read site role, 224
realm. See hosting tenancy
<Receivers> element, 384, 462
Records Center site, 586
records management, 584–589

archives, site collection for, 586
eDiscovery, 586–589
in-place records management, 584–585

RefinementScriptWebPart Web Part, 529
refiners, 521–522
refresh tokens, OAuth, 245, 246, 250
Register-SPWorkflowServices cmdlet, 468
<RemoteEndpoint> element, 232
<RemoteEndpoints> element, 132
remote event receivers, 381–383
Remote Procedure Call. See RPC
RemoteSharedFileBackedMetadataCatalog

object, 657
<RemoteWebApplication> element, 247
removeClass() method, jQuery, 176
Remove-SPSite cmdlet, 33
Remove-SPSolution cmdlet, 44
RenderContents method, 324, 327–328
rendering template, 410–411
Representational State Transfer APIs. See REST APIs
{Request} tokens, 517
ResetRoleInheritance method, SPSecurableObject

class, 223
resource files, templates for, 87
Resource Points, 76
REST (Representational State Transfer) APIs, 67–68,

195–212
_api entry point for, 198
app authentication, 225, 227, 233, 246, 251
in C#, 206–212
for cloud-hosted apps, 164–165
creating content types, 371
creating lists, 354
in JavaScript, 200–206

people, following, 716–720
personal feeds

posting to, 707–709
retrieving, 695–698

querying External Lists, 630
searches using, 524–526
for SharePoint-hosted apps, 164
site feeds

posting to, 710
retrieving, 702–704

URIs for, 196–200
user profile properties, retrieving, 683–689
for Web Parts, 323

ResultScriptWebPart Web Part, 528
result sources, for search queries, 510, 515–518
.resx files, 87
Retract command, for projects, 78
ReusableAcl property, SPSecurableObject class, 223
RevertToSelf authentication, 640–642, 644
ribbon menu, customizing, 303–307
RichHtmlField type, 597–600
right angle bracket, equal sign (>=), greater than

or equal to operator for managed
properties, 511

right angle bracket (>), greater than operator for
managed properties, 511

RoleAssignments property, SPSecurableObject
class, 223

root directory, 86–89
RPC (Remote Procedure Call), 196
<RuleDesigner> element, 491
RunWithElevatedPrivileges method, SPSecurity

object, 219, 220–221
Run With PowerShell command, 30

S
S2S (server-to-server) authentication, 232, 256–264

access tokens for, 256–258
configuring trust for, 259–263
as high-trust configuration, 257
for provider-hosted apps, 257, 263–264
test certificates for, 264
X.509 certificate for, 257–259

Safe Mode parsing, 280–282
SAML (Security Assertion Markup Language)

tokens, 214–215, 225, 233
sample data, 41
sandboxed solutions, 71, 102–117

scalability, testing

742 Index

activating, 110, 121
CAML in, 103–104
CAS policies for, 102
code-behind in, 103
creating, 106–109
debugging, 105, 113
deploying, 109–113, 121
deploying content pages in, 291
execution environment for, 104–106
objects accessible in, 76
requirements for, 72
security for, 120–121
uncustomized pages not supported for, 278
upgrading, 60

features, 113–117
to new SharePoint version, 121

validator for, 110–112
Web Parts in, 311

scalability, testing, 41
Scalar method, BCS, 645
schema.xml file, 433–439
scopes, 79–81

for app installations, 124–125
farm-scoped features, 80–81
site-scoped features, 80–81
web application-scoped features, 80–81
web-scoped features, 79–81

script tags, 174
script Web Parts, 528–529
{SearchBoxQuery} token, 517
SearchBoxScriptWebPart Web Part, 529
search capabilities, 503–504

architecture of, 506–510
connectors used for, 507–508, 534–539
CSOM API for, 526–528
CSWP (Content Search Web Part), 523
indexing process, 507–508, 531–534, 539
KQL (Keyword Query Language), 510, 510–513
link queries, 513–514
list of, by SharePoint version, 503–504
managed properties, 509, 511–513
query process, 509–513
query rules, 521
ranking models, 510
refiners, 521–522
REST API for, 524–526
result sources, 510, 515–518
script Web Parts, 528–529
search-based applications, 504–506
Search Center, extending, 514–523

search results
adding pages for, 514–515
displaying, 518–521
relevancy of, improving, 529–531
security for, 537–538

Search Results Web Part, 518, 521
SSA (Search Service Application), 14, 506–507

Search Directories term group, 542
SearchExecutor object, 526
search permission type, 239
Search Service Application. See SSA
{SearchTerms} token, 517
seattle.master file, 283, 283–285
Secure Sockets Layer. See SSL
Secure Store Service, 14
security. See also authentication; authorization

for application pages, 301–302
for app web, 136
for search results, 537–538

Security Assertion Markup Language
tokens. See SAML (Security Assertion
Markup Language) tokens

security principals, 213–214, 216. See also user
authentication

app principals, 242–243
apps as, 224
assigning roles to, 224
SHAREPOINT\SYSTEM account as, 220–221

security tokens, 10, 213–215, 216
access tokens, 225
OAuth tokens, 244–246, 250–254
SAML tokens, 225

Security Token Service. See STS
{SelectedItemId} token, 144
{SelectedListId} token, 143
$select operator, OData, 199
selectors, jQuery, 174–175
Sequence activity, 479, 482
sequential workflow, 476
ServerException error, 181, 183
servers, 73

database server, 36
domain controller, 36
Office Web Apps server, 36
physical, 37
services on, determining, 46
SharePoint server, 36
types of, 36
virtual, 37–38
Workflow Manager server, 37

 SharePoint apps

 Index 743

server-side controls. See Web Forms controls
server-side object model. See SSOM (server-side

object model) API
server-to-server authentication. See S2S

authentication
service applications, 12–13, 46–52

configuring, 47–52
endpoint for, 46
instances of, 46
platform availability of, 14–15
proxy for, 13–14
proxy groups of, 47–48
for SharePoint apps, 123–124
web service for, 46

Services on Server page, 46
Set-ExecutionPolicy cmdlet, 29
SharePoint

compatibility levels, 594
history of, 1–4
on-premises model, 1–3, 6–7, 123
operating systems supported by, 6

SharePoint 2001, 2
SharePoint 2003, 3, 214
SharePoint 2007, 3

BPOS, 3
root directory, 86
user authentication, 214

SharePoint 2010, 3
CSOM, 63
Developer Dashboard, 54
Developer Tools, 55
Health Check for, 279
Office Web Apps, 36–37
root directory, 86
stapling feature, 61
upgrading solutions to SharePoint 2013, 60–61
visual designs, 61
Web Analytics, 60–61
workflow host, 37

SharePoint 2013, 3–4
component hierarchy, 73–76
development environment for, 35–41
hardware requirements, 38–39
operating systems supported, 4, 5
root directory, 86
social enterprise features, 673–674
software requirements, 38–40

SHAREPOINT\APP account, 254
SharePoint apps, 122–144

APIs for, 163–165

app launcher for, 126
App Management Service, 123–124
app manifest for, 130–132, 147
app web for, 134–137
app web solution package, 148–149
authentication for, 224–234

access tokens for, 225–226, 232
cross-domain library for, 227–230
external, 225, 232–233. See also OAuth

authentication; S2S authentication
flow for, 233–234
internal, 225–232
SAML tokens for, 225, 233
web proxy for, 231–232

authorization for, 234–264
app identifier for, 235
default policy for, 235
permissions, 235–239, 241

BCS for, 668–671
C# for, 163–165, 206–212
cloud-hosted, 125–126

app designs using, 163–165
app principal for, 242
authentication for, 227–230, 232–233. See

also OAuth authentication; S2S
authentication

autohosted, 129–130, 163–164
hosting models for, 127–130
packaging, 150–152
provider-hosted, 127–129, 163–164, 257,

263–264
requirements for, 164–165

code isolation for, 125–126
compared to solutions, 4
custom workflow activities for, 487–490
default content for, 58
deploying, 58
development environment for, 124
event handling in, 381–383
features, adding, 58
hosting tenancy for, 122–123, 235
icon for, 147
installation scopes, 124–125
installing, 155–158
JavaScript for, 163–173

closures, 168–169
custom libraries, 170–173
data types, 166
DOM elements, selecting, 174–175
functions, 167–168

SharePoint Customization Wizard

744 Index

jQuery library, 173–177
namespaces, 165
prototypes, 169–170
REST API with, 200–206
strict, 166–167
variables, 166–167

JSOM for, 188–195
life cycle events for, 158–162
Managed object model for, 180–187
multitenancy, 128
packaging, 147–152
publishing, 133, 152–155
REST API for, 195–212
retracting, 58
server requirements for, 36
SharePoint-hosted, 125–127

app designs with, 163–164
authentication for, 227
requirements for, 164

Site Subscription Settings Service, 123–124
solution package for, building, 58
start page URL, 132–135
types of, 56–57
uncustomized pages not supported for, 278
uninstalling, 135, 158
upgrading, 157–158
user interface for, 137–144

app parts, 137–140, 149
chrome control, 144–147
link back to host web, 137, 144
UI custom actions, 140–144, 149

web templates for, 463–465
SharePoint Customization Wizard, 77
SharePoint Designer 2013

custom workflows
activities for, 490–491
creating, 470–475, 485–487
custom task outcomes for, 495–496

features of, 23–24
SharePoint Developer Tools, 55–58, 71–72
SharePoint Enterprise, 503–504. See also ECM

(Enterprise Content Management)
SharePoint farms, 4–7, 73

account for
not using for testing, 41

administration of, 7–8
configuration database for, 6, 9
development farms, 7
local, 13
on-premises farms, 6–7

production farms, 7
solutions requiring, 72
staging farms, 7
web applications in, 9
web.config files for, 272

SharePointForm control, 284
SharePoint Foundation, 4–21

history of, 2
search capabilities in, 503–504
service applications for, 14–15

SharePoint-hosted apps, 125–127
app designs with, 163–164
authentication for, 227
requirements for, 164

SharePoint objects
COM used for, 76
customizing with JSLink property, 420–428
disposing of, 76
hierarchy of, 74
iterating through, 74–76

SharePoint Online, 1–2, 3–4
search capabilities in, 503–504
service applications for, 14–15

SharePoint Portal Server, 2
SharePoint Server, 36

history of, 2–3
licenses for, 3
load on, minimizing, 59, 67
Publishing feature, 591
service applications for, 14–15

SharePoint Server 2013 Virtual Machine Setup Guide
(Critical Path Training), 13, 124

SharePoint Services, 2–3
SharePoint solutions. See also projects

best practices for, 59–60
challenges with, 120–122
compared to apps, 4
deploying with PowerShell, 44–45
farm solutions. See farm solutions
project types for, 59
retracting with PowerShell, 44–45
sandboxed solutions. See sandboxed solutions
upgrading, 59–61
upgrading to new SharePoint version, 121

SHAREPOINT\SYSTEM account, 220–221
SharePoint Team Services, 2
show() method, jQuery, 176
Silverlight object model, 63–64
Silverlight Web Part item template, 314
Simple Object Access Protocol. See SOAP

 {Source} token

 Index 745

single server development installation, 36, 38–39
SingleTask activity, 492–494
singleton pattern, JavaScript, 170
Site Actions menu, 19
sitecollection permission type, 239
site collections, 15–19, 74

authorization in, 216–219
creating, 33, 441, 456
host-named site collection, 18–19
master pages in, 282
path-based site collection, 18
Resource Points for, 76

{SiteCollection} tokens, 517
site columns, 362–366

adding choices to, 365–366
in content types, 369
creating, 364–365
custom

creating, 422
custom, creating, 428–433
enumerating through, 363–364
field controls mapped to, 595–596
for managed metadata, 551–553
standard, list of, 362–363

site columns gallery, 362, 363
site definitions, 441–450

custom code with, 458
custom, creating, 450
feature stapling, 448–449, 450
GLOBAL site definition, 442–443, 449, 454
ONET.xml file, 442–449
order of provisioning, 449–450
webtemp*.xml files, 443–445

SiteDeleted event, 461
SiteDeleting event, 461
<SiteFeatures> element, 447, 455
Site Feed feature, 698–699
site feeds (private), 675

posting to, 709–710
retrieving posts from, 698–704

Site object, 65
site pages. See content pages
site roles, 218, 224
sites, 15–19, 74

customizations to, 19–25
development for, 24–25
fields in. See site columns
provisioning, 441–466

custom code for, 458
events associated with, 461–463

providers for, 459–461
reserving URL for, 441
site definitions for, 441–450
site templates for, 458–459
web templates for, 451–457

site-scoped app installations, 124
site-scoped features, 80, 314
Site Settings page, 19–20
Site Subscription Settings Service, 14
site templates, 458–459
{Site} tokens, 517
{SiteUrl} token, 143
$skip operator, OData, 200
SOAP (Simple Object Access Protocol), 196
social core permission type, 239
SocialDataItem object, 706
social enterprise features, 674–676

APIs for, 675–676
following, 675, 710–720

entities that can be followed, 710–711
people, following, 711–720

new features, 673–674
social feeds, 689–710

personal feeds (public), 675, 689–698,
704–709

site feeds (private), 675, 698–704, 709–710
types of, 675

user profiles, 674, 676–689
properties of, retrieving with CSOM, 677–683
properties of, retrieving with REST, 683–689

Yammer, 720–724
SocialFeedManager object, 689–691, 699, 704–705
SocialFeed object, 693
SocialFeedOptions class, 692
social feeds, 674, 689–710

personal feeds (public), 675
posting to, 704–709
retrieving posts from, 689–698
types of, 691–692

site feeds (private), 675
posting to, 709–710
retrieving posts from, 698–704

types of, 675
SocialFollowingManager object, 711, 713–714
SocialPostCreationData object, 705
SocialThread object, 693
software requirements, 38–40
Solution Gallery site collection, 102, 109
$sort operator, OData, 200
{Source} token, 143

SPBasePermissions enumeration

746 Index

SPBasePermissions enumeration, 224
SP.ClientContext object, 179
SPContentDatabase object, 74
SPContext object, 65
SPDisposeCheck tool, 76
SpecificFinder method, BCS, 645, 647, 658
SPEmailEventReceiver class, 380
SPFarm object, 74
SPFeatureReceiver class, 85
SPField class, 65, 360, 420–428
SPFieldMultiColumn class, 407
SPFieldNumber class, 407
SPFieldText class, 407
SPFile class, 276, 377
SPFolder class, 276, 373
SPGroup class, 216
SPHtmlTag control, 284
SPItemEventReceiver class, 380, 662
SPItem object, 74
sp.js library, 177
SPLimitedWebPartManager class, 321–323
SPList class, 358
SPListEventReceiver class, 380
SPListItem object, 65, 377, 378, 629
SPList object, 65, 74, 377, 629
SPMetal utility, 396–400
SPPrincipal class, 216
SPQuery object, 389, 394
SP.RequestExecutor object, 228
SPRequestModule, 274–275
SPRoleDefinition class, 224
SPSecurableObject class, 222–224
SPSecurity object, 219, 220–221
SPServer object, 74
SPSiteCollection object, 458
SPSiteDataQuery object, 392, 394
SPSite object, 65, 74
SPSolutionValidator class, 111
sp.ui.controls.js library, 144
SP.UI.Controls.Navigation object, 144
SPUser class, 216
SPUserToken class, 216, 221–222
SPVirtualPathProvider class, 275
SPWebApplication object, 74
SPWeb class, 363
SPWebCollection object, 458
SPWebEventReceiver class, 380, 461
SPWeb object, 65, 74, 219, 458
SPWebPartManager class, 312
SP.WebRequestInfo object, 231

SPWorkflowEventReceiver class, 380
SQL connector, 631
SQL query language, 510
square brackets ([]), enclosing class names, 31
SSA (Search Service Application), 14, 506–507
SSL (Secure Sockets Layer), 243
SSOM (server-side object model) API, 62

content types, creating, 430–433
creating content types, 370
creating lists, 354
files and folders, accessing, 275–277
hierarchy of, 73–76
objects in, CSOM equivalents for, 65
site columns, creating, 430–433

SsoTicket filter, BCS, 649
SSS (Secure Store Service), 635–638, 642
stages, in workflows, 470, 472–475
staging farms, 7
{StandardTokens} token, 134, 137, 145
stapling. See feature stapling
<StartPage> element, 132–135, 229
state machine workflow, 478
State Service, 15
StreamAccessor method, BCS, 645
strict JavaScript, 166–167
structured navigation, 606
stsadm.exe utility, 26
STS (Security Token Service), 215
Subscribe method, BCS, 646
Subscription service, for workflows, 497
.svc files, 87
SyncChanges method, 335
SyncConverter class, 580–583
System term group, 542
System.Web.UI.Page class, 268

T
tasks, in workflows, 492–497

creating, 492–494
custom task outcomes, 494–497

TaxonomyField class, 551–553
TaxonomyFieldValue class, 555
taxonomy permission type, 239
TaxonomySession object, 605
TaxonomySiteMapProvider, 606
TaxonomyWebTaggingControl, 553–556
<Template> element, 444
templates

 user profiles permission type

 Index 747

display templates, 611–616
document templates, 373–375
rendering templates for custom fields, 410–411
in root directory, 86–89
site templates, 458–465

tenancy. See hosting tenancy
tenancy-scoped app installations, 125, 156–157
tenant permission type, 239
term groups, 542–543
term sets, 543–544
term store, 541–545

capacity of, 544
importing term sets and terms to, 545
limitations of, 544
managing, custom solution for, 545–556
term groups in, 542–543
term sets in, 543–544

TermStores property, TaxonomySession object, 605
{Term} tokens, 517
testing, 40–41. See also debugging
Test-Path cmdlet, 43
TextField type, 597
text() method, jQuery, 176
.thmx files, 442
Timestamp filter, BCS, 649
Title field, lists, 358
Title managed property, 512
{Today} token, 517
toggle() method, jQuery, 176
token-based authentication, 643
TokenHelper class, 164, 248–251

GetAccessToken method, 251
GetAppOnlyAccessToken method, 253
GetAuthorizationUrl method, 254
GetClientContextWithContextToken method, 249
GetContextTokenFromRequest method, 249
GetS2SAccessTokenWithWindowsIdentity

method, 263
ReadAndValidateContextToken method, 249
TrustAllCertificates method, 264

$top operator, OData, 200
TrustAllCertificates method, TokenHelper class, 264
Trusted Subsystem model, 639, 640–642
TypeConverter attribute, 333

U
UI component, Web Forms, 268–269. See

also controls
UI custom actions, 140–144, 149, 302

ULS logs, 53–54
ULS Viewer, 53
uncustomized (ghosted) pages, 277–279
Uninstall-SPSolution cmdlet, 44
UnsecuredLayoutsPageBase class, 299
Unsubscribe method, BCS, 646
Updater method, BCS, 645, 658
Update-SPSolution cmdlet, 101
<UpgradeActions> element, 98, 114
upgrading SharePoint apps, 157–158
URIs, REST, 196–200
<UrlAction> element, 142
URL, reserving for sites, 441, 449
{URLToken} token, 517
user agent string, device channels from, 600–601
User and Health Data Collection Service, 15
user authentication, 214–224

Active Directory for, 10, 214–215
ASP.NET FBA for, 10–12, 214–215
claims-based security for, 10–11, 214–215
classic mode for, 10
configuring in web applications, 215
external systems for, 10, 214–215
impersonating users, 221–222
for SharePoint object access, 222–224
user credentials for, 221
User Information List for, 216
for web applications, 10–12

user authorization
ACLs for, 216–217
for application pool identity, 219
escalating privileges, 219–221
groups, 216–219
for SharePoint object access, 222–224
for SHAREPOINT\SYSTEM account, 220–221
users, 216–217

User Code Service, 104
UserContext filter, BCS, 649
user credentials, 221
UserCulture filter, BCS, 649
User Information List, 216
user information profile, 216
Username filter, BCS, 649
UserProfile filter, BCS, 650
user profiles, 674, 676–689

properties of, retrieving with CSOM, 677–683
properties of, retrieving with REST, 683–689

User Profile Service Application, 15, 468, 655
user profiles permission type, 239

{User} tokens

748 Index

{User} tokens, 518

V
v4.master file, 283
validators, for sandboxed solutions, 110–112
variables

JavaScript, 166–167
PowerShell, 30

var keyword, JavaScript, 166
verbs, for Web Parts, 337–339
versioning, 559–562
<VersionRange> element, 114
virtual file system, IIS, 268, 274–277
Virtual Machine Setup Guide, SharePoint 2013

(Critical Path Training), 13
virtual path provider, 275
virtual servers, 37–38
Visio 2013, custom workflows with, 470–475
Visio Graphics Service, 15
Visual Studio

Document Sets, creating, 568–574
projects, creating, 77–79

Visual Studio 2010
custom workflows using, 470
SharePoint Developer Tools, 55

Visual Studio 2012
configuring, 72–73
custom workflows

creating, 476–485
custom task outcomes for, 496–497

installing, 71–73
Office Developer Tools, 73
SharePoint Developer Tools, 55–58, 71–72

Visual Web Part item template, 314
Visual Web Parts, 329–331
VSTO deployment package, 627, 639

W
w3wp.exe file, 5
w3wp.exe process, 105
WCF (Windows Communication Foundation), 177

connectors, 625, 631
for custom workflows, 470

WCM (Web Content Management), 591–594
content aggregation, 607–616
cross-site publishing, 617–620
device channels, 600–604

managed navigation, 604–607
page layouts, 595–600
publishing files, accessing, 594
publishing site templates, 592–594

WebAdding event, 461
web applications, 8–12, 73

as ASP.NET applications, 9
claims mode, 215
classic mode, 215
creating, 32–34
IIS, compared to SharePoint, 271–272
user authentication, configuring, 215
user authentication for, 10–12

web application-scoped features, 80
WebBrowsable attribute, 332
web.config file, 9, 272–274

for ASP.NET applications, 268, 271
backup files for, 274
for cloud-hosted apps, 247
configuring for debugging, 274
SafeMode element, 282

Web Content Management. See WCM (Web Content
Management)

WebDeleted event, 461
WebDeleting event, 461
WebDescription attribute, 332
WebDisplayName attribute, 332
<WebFeatures> element, 447, 454, 457
Web Forms, 268–270, 282

code-behind component, 269
running, 269–270
UI component, 268–269

WebMoved event, 461
WebMoving event, 461
WebNavigationSettings object, 606
Web object, 65
WebPart class, 310, 315–316
.webpart files, 313–314, 316
Web Part Gallery, 313
Web Part Manager, 312
WebPartPage class, 292–293
Web Part pages

creating, 292–295
deploying with Web Parts, 319–323

Web Parts, 21, 309–313. See also client Web Parts
(app parts)

ASP.NET compared to SharePoint, 310–311
asynchronous execution of, 347–350
client Web Parts (app parts), 137–140
connections for, 340–345

 workflows

 Index 749

consumers, 342–343
contracts, 340
providers, 341–342

control description files for, 313, 314, 316
CQWP (Content Query Web Part), 608–611
creating, 313–317
CSWP (Content Search Web Part), 523, 608–611
deactivating, 318–319
deploying, 317–323
element manifest for, 316–317, 320–321
files associated with, 314
item templates for, 314
managed metadata fields in, 553–556
parallel execution of, 345–346
properties of, 331–336

editing, with Editor Part, 333–336
persisting, 331–333
for Web Part verbs, 337

rendering of, controlling, 324–331
CreateChildControls method, 325, 327–328
event handling, 325–327
RenderContents method, 324, 327–328
Visual Web Parts, 329–331

in RichHtmlField type, 599–600
script Web Parts, 528–529
Search Results Web Part, 518, 521
site-scoped Feature for, 314
static, 312
verbs (menu options) for, 337–339
for wiki pages, 292–293, 322–323
zones for, 311–312

WebPartZone control, 311–312
Web Part zones, 599–600
web permission type, 239
Web Platform Installer tool, 468
WebProvisioned event, 461
web proxy, 231–232
web-scoped features, 79–80
web services

for service applications, 46
template files for, 87
for workflows, 470, 483–484, 485–487

website resources
"How to Create a Page Layout in SharePoint

2013", 597
MDS request and response, 288
RichHtmlField type properties, 598
SharePoint Features schema, 291
Web Platform Installer tool, 468

<WebTemplate> element, 451–452, 458

web templates, 451–457
custom code with, 458
deploying, 455–457
elements.xml file, 451–452
ONET.xml file, 451, 452–455
order of provisioning, 454
for SharePoint apps, 463–465

webtemp.xml file, 463
webtemp*.xml files, 443–445
Where-Object cmdlet, 28
WikiEditPage class, 292–293
wiki pages, Web Parts in, 292–293, 322–323
Wildcard filter, BCS, 650
Windows 8, 4, 6, 37
Windows Azure ACS, 241–242
Windows Communication Foundation. See WCF
Windows event logs, 53–54
Windows PowerShell scripts. See PowerShell scripts
Windows Server, 4, 6, 39
Windows Workflow Foundation, 37. See

also Workflow Manager
Wingtip Toys examples, 8
Word

Document Information Panel, 656
Quick Parts, 656

Word Automation Services, 15, 578–583
WORDS operator, managed properties, 512
Worker Service, 104
Workflow Custom Activity item template, 476, 490
Workflow Foundation runtime, 467
Workflow item template, 476
Workflow Manager, 37, 467–468
Workflow Manager Configuration Wizard, 468
workflows, 467–470

activities for, 469, 487–491
custom, 470–491

arguments in, 480
flowchart workflow, 478
sequential workflow, 476
stages in, 470, 472–473, 474–475
state machine workflow, 478
templates for, 476
variables in, 480
Visio and SharePoint Designer for, 470–475,

485–487
Visual Studio for, 476–485
web services for, 470, 483–487

custom forms in, 498–502
association forms, 498–500
initiation forms, 500–502

Workflow Service Application

750 Index

Publishing Site With Workflow template, 592–593
services for, 497–498
status page for, 469
tasks in, 492–497

creating, 492–494
custom task outcomes, 494–497

workflow association for, 469
workflow definition for, 469

Workflow Service Application, 15
Workflow Service Manager, 497–498
Work Management Service Application, 15
.wsp files, 78, 92, 148. See also packaging

X
X.509 certificate, 257–259
.xap files, 87
XRANK keyword, 512, 529

Y
Yammer, 720–724

Z
zones, for Web Parts, 311–312

About the authors

Scot Hillier is an independent consultant and Microsoft SharePoint Most Valuable
Professional (MVP) focused on creating solutions for information workers with Share-
Point, Microsoft Office, and related .NET technologies. He is the author/coauthor of 15
books and DVDs on Microsoft technologies, including Inside Microsoft SharePoint 2010
(Microsoft Press, 2011). Scot splits his time between consulting on SharePoint projects,
speaking at SharePoint events such as Tech Ed, and delivering training for SharePoint
developers. Scot is a former US Navy submarine officer and is a graduate of the Virginia
Military Institute. Scot can be reached at scot@shillier.com.

Mirjam van Olst works as a SharePoint Architect for Avanade in the Netherlands. Hav-
ing worked with different versions of SharePoint since 2004, she has helped companies
in different industries and of different sizes to implement successful SharePoint portal,
ECM, and search solutions. Mirjam is one of the very few Microsoft Certified Masters
for both SharePoint 2007 and SharePoint 2010. Being a strong community advocate,
Mirjam is a co-organizer of the Dutch Information Worker User Group (DIWUG). Mirjam
is a regular author and editor for the popular DIWUG eMagazine. Mirjam is a regular
speaker at both national and international conferences and events and can be found
blogging at http://sharepointchick.com. Mirjam has been awarded the Microsoft MVP
award since 2010. In her spare time Mirjam likes to play tennis and hang out with
friends and family.

Ted Pattison has been writing technical books for software developers, speaking at
industry conferences, and leading technical training classes for the last 20 years. In
March 2003, his professional focus turned to SharePoint technologies when he began
to work with the beta of SharePoint Server 2003. As a recognized author and trainer
within the industry, Ted was selected by Microsoft early in the beta lifecycle of Share-
Point 2007, SharePoint 2010, and SharePoint 2013 to author developer-focused training
material for early adopters, and he has been fortunate to gain many close contacts
within the SharePoint team at Microsoft over the years. Currently, Ted is the owner and
president of Critical Path Training (www.CriticalPathTraining.com), a company dedicated
to training and education focusing on SharePoint technologies. Ted manages the cur-
riculum at Critical Path Training and also serves as a senior instructor training hundreds
of professional developers and IT pros on SharePoint 2013 and Office 365 each year.
Ted has been a SharePoint MVP 19 years running since he was originally awarded it as a
SharePoint Server MVP in 1994.

mailto:scot%40shillier.com?subject=
http://sharepointchick.com
www.CriticalPathTraining.com

752 Inside Microsoft SharePoint 2013

Andrew Connell is an independent consultant who enjoys development, writing, and teaching.
He has a background in content management solutions and web development that spans back to
his time as a student at the University of Florida in the late 1990s, managing class websites. He has
consistently focused on the challenges facing businesses today to maintain a current and dynamic
online presence without having to rely constantly on web developers or have a proficiency in web
technologies. Andrew is an nine-time recipient of Microsoft’s MVP award (2005-2013) for Microsoft
Content Management Server (MCMS) and SharePoint Server. You can learn from Andrew by taking
one of his hands-on courses through Critical Path Training (www.CriticalPathTraining.com) or through
one of the many on-demand classes he has published though Pluralsight (www.Pluralsight.com). He
has authored and contributed to numerous MCMS and SharePoint books over the years, including
Professional SharePoint 2007 Web Content Management Development (Wrox, 2008), Inside Microsoft
SharePoint 2010 (Microsoft Press, 2011), and Real World SharePoint 2010 (Wrox, 2010) and is the
author of numerous articles on the Microsoft Developer Network (MSDN) and in various magazines.
Andrew has presented at numerous conferences and taught in the United States, Canada, Australia,
England, Spain, Norway, Sweden, and the Netherlands. You can find Andrew on his blog (http://www.
andrewconnell.com), follow him on Twitter @andrewconnell, or email him at me@andrewconnell.com.

Wictor Wilén is one of the few Microsoft Certified Architects in the world and Microsoft Certified
Solutions Master for SharePoint. He works as Director and Solution Architect at Connecta AB in Swe-
den. Wictor has worked in the portal and web content management industry since 1998 for consult-
ing companies, founded and sold his own software company and saw the dawn of SharePoint back
in 2001. Wictor is an active SharePoint community participant, author, tutor, and frequent speaker at
local and international conferences. Since 2010 Wictor has been awarded the SharePoint Server MVP
title by Microsoft for his community contributions. He can be found online at http://www.wictorwilen.
se/. Wictor is based in Stockholm, Sweden.

Kyle Davis is the Solution Architect for the Emerging Technology Group at Catapult Systems. Kyle is a
frequent speaker at various Microsoft events and enjoys traveling across the nation sharing best prac-
tices and different approaches to solve business needs. Kyle spends most of his time architecting solu-
tions built with emerging technologies and meeting with businesses on how they can do the same.
Kyle holds SharePoint MCITP and MCPD certifications and can be followed at @cldarchitect on Twitter.

www.CriticalPathTraining.com
www.Pluralsight.com
http://www.andrewconnell.com
http://www.andrewconnell.com
mailto:me%40andrewconnell.com?subject=
http://www.wictorwilen.se/
http://www.wictorwilen.se/

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

CriticalPathsAdFinal.9.13:Layout 1 9/6/13 2:40 PM Page 1

Critical Path Training is your fastest way

up the SharePoint 2013 learning curve.

Listen to what our customers have to say:

[The Great SharePoint Adventure] was the best course I‘ve ever
taken. Ted [Pattison] did an excellent job of presenting the “ information, and the demos were extremely useful.

John, British Columbia

Andrew [Connell] is a rock star. Easily the best instructor I‘ve had
for a technical training class. He knows SharePoint, keeps it
entertaining, and doesn‘t forget how it's done in the real world.
Top notch.

Tim, Michigan

Maurice Prather is the best Microsoft trainer I have ever had at
any conference, seminar, or paid training.

Tim, Dallas

Asif [Rehmani] is a wonderful instructor. He paced the class well
and used lots of real world examples to apply the materials. I
also appreciated him suggesting outside vendors for sharepoint
products; it‘s nice to hear from the people who really know these
vendors!

Heidi, Florida

Matt McDermott was as entertaining as he was educational.
Phenomenal instructor. Timing of the course was perfect and was
a good pace all week. Plenty of time for labs. I would recommend
this course to all SharePoint IT Professionals.

Daniel, Florida

”
Get training directly from the instructors who wrote this book. Critical Path Training

offers handson training, online training, private onsite classes and courseware licensing.

Ted Pattison Andrew Connell Scot Hillier Maurice Prather Asif Rehmani Matt McDermott David Mann John Holliday

www.CriticalPathTraining.com @criticalpath

http:www.CriticalPathTraining.com

	Contents
	Introduction
	Chapter 1: SharePoint 2013 developer roadmap
	A brief history of SharePoint
	Understanding the impact of SharePoint Online on the SharePoint platform

	Examining SharePoint Foundation architecture
	Understanding SharePoint farms
	Creating web applications
	Understanding service applications
	Creating service applications in SharePoint Server 2013
	Managing sites
	Customizing sites
	Using SharePoint Designer 2013
	Understanding site customization vs. SharePoint development

	Windows PowerShell boot camp for SharePoint professionals
	Learn Windows PowerShell in 21 minutes
	The Windows PowerShell Integrated Scripting Environment (ISE)
	The SharePoint PowerShell snap-in

	Summary

	Chapter 2: SharePoint development practices and techniques
	Setting up a developer environment
	Deciding between virtual and physical
	Understanding hardware and software requirements
	Delivering high-quality solutions

	Automating SharePoint administration by using Windows PowerShell scripts
	Using PowerShell to deploy a custom solution

	Configuring SharePoint service applications
	Using debugging tools
	Working with ULS and Windows event logs
	Using the Developer Dashboard

	Using the SharePoint Developer Tools in Visual Studio 2012
	Choosing a development approach
	Using the SharePoint APIs
	Understanding the server-side object model
	Using the client-side object model
	Using the REST APIs

	Summary

	Index

