

Learn Microsoft®

Visual Basic®
2012

Michael Halvorson

Copyright © 2012 by Michael Halvorson
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7298-7

2 3 4 5 6 7 8 9 10 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Holly Bauer

Editorial Production: Zyg Group, LLC

Technical Reviewer: Tim Patrick

Copyeditor: Zyg Group, LLC

Indexer: Zyg Group, LLC

Cover Design: Jake Rae

Cover Composition: Zyg Group, LLC

Illustrator: Rebecca Demarest

[2013-03-12]

For my brother, Jon Halvorson

Contents at a Glance

Introduction xiii

Chapter 1 Getting to Know Visual Basic 2012 1

Chapter 2 Creating Your First Windows 8 application 35

Chapter 3 Using Controls 65

Chapter 4 Designing Windows 8 applications with Blend
 for Visual Studio 97

Chapter 5 Working with XaML 125

Chapter 6 Visual Basic Language elements 147

Chapter 7 Controlling application Design, Layout, and
 program Flow 175

Chapter 8 Using the .Net Framework 207

Chapter 9 Debugging applications 233

Chapter 10 Managing Data with arrays and LINQ 251

Chapter 11 Design Focus: Five Great Features for a
 Windows 8 application 279

Chapter 12 Future Development Opportunities and the
 Windows Store 313

Index 325

 vii

Contents

Introduction . xiii

Chapter 1 Getting to Know Visual Basic 2012 1
Development Opportunities for Visual Basic Programmers 2

New Development Platforms . 3

Obtaining, Installing, and Starting Visual Studio Express 2012
for Windows 8 . 4

Downloading the Product . 5

Installing Visual Studio Express 2012 for Windows 8. 5

Starting Visual Studio Express 2012 . 6

The Visual Studio Development Environment . 7

The Visual Studio Tools .10

The Designer Window .12

Running a Visual Basic Program .16

The Properties Window .18

Moving and Resizing the Programming Tools .22

Moving and Resizing Tool Windows .24

Docking Tool Windows .25

Hiding Tool Windows .27

Switching among Open Files and Tools Using the IDE Navigator28

Opening a Web Browser Within Visual Studio .29

Customizing IDE Settings to Match This Book’s Exercises30

Checking Project and Compiler Settings .30

Exiting Visual Studio .33

Summary. .33

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Chapter 2 Creating Your First Windows 8 Application 35
Web List: Your First Visual Basic Program .36

Creating the User Interface .37

Setting the Properties .46

Writing the Visual Basic Code . 51

A Look at the Visual Basic Code-Behind File .55

Running Visual Basic Applications .56

Sample Projects on Disk .58

Building an Executable File and Deploying .59

Summary. .63

Chapter 3 Using Controls 65
Using the Ellipse and TextBlock Controls .66

Using the CheckBox and RadioButton Controls . 74

Using the MediaElement Control to Add Music and Video86

Thinking about Media Files .86

Summary. .95

Chapter 4 Designing Windows 8 Applications with Blend
for Visual Studio 97

Blend for Visual Studio .98

Why Blend Is Useful for Visual Studio Developers98

Starting Blend .99

Design Tools in the Blend IDE .102

Using XAML Controls in Blend .103

Creating a Storyboard to Add Basic Animation Effects108

Writing Event Handlers in Visual Studio .115

Using the OnNavigatedTo Event .121

Summary. .124

 Contents ix

Chapter 5 Working with XAML 125
Understanding XAML Basics .126

What Is XAML? .126

XAML Is Related to XML and HTML .127

XAML Elements .127

Examining XAML Project Files .129

Creating XAML Objects .135

Summary. .146

Chapter 6 Visual Basic Language Elements 147
Understanding Visual Basic Program Statements .148

Using Variables to Store Information .148

Setting Aside Space for Variables: The Dim Statement149

Using Variables in an Event Handler .150

Using a Variable to Store and Process Input .154

Working with Data Types .158

Constants: Variables That Don’t Change .165

Working with Visual Basic Operators .168

Basic Math: The +, –, *, and / Operators. .168

Advanced Operators: \, Mod, ,̂ and & .170

Establishing Order of Precedence .172

Using Parentheses in a Formula .173

Summary. .173

Chapter 7 Controlling Application Design, Layout, and
Program Flow 175

Creating a Tile-Based Layout for Windows Store Apps176

Designing Pages for User Input .177

Evaluating Specific Conditions Using If...Then...Else Statements187

Using the Day of the Week in an If...Then... Statement192

x Contents

Controlling Program Flow Using For...Next and
For Each...Next Loops .192

For...Next Loops .193

For Each...Next Loops .195

Writing an Exception Handler to Manage Error Conditions200

Summary. .205

Chapter 8 Using the .NET Framework 207
Programming Resourcefully: Using Class Libraries

in the .NET Framework .208

Object-Oriented Terminology .209

Using the Object Browser .210

Using Methods in System.String .214

Using Methods in System.Math .221

Working with Random Numbers .223

Using Code Snippets to Insert Ready-Made Code225

Summary. .231

Chapter 9 Debugging Applications 233
Finding and Correcting Errors .234

Three Types of Errors .234

Identifying Logic Errors .235

Debugging 101: Using Debugging Mode .236

Tracking Variables by Using a Watch Window .242

Visualizers: Debugging Tools That Display Data .245

Using the Immediate Window .246

Removing Breakpoints .248

Summary. .249

 Contents xi

Chapter 10 Managing Data with Arrays and LINQ 251
Using Arrays to Store Data .252

Declaring Arrays .252

Declaring a Fixed-Size Array .253

Using an Array .254

Assigning Initial Values to an Array. .256

Using Methods in the Array Class .261

Introducing LINQ .265

Understanding LINQ Syntax .265

Working with XML Documents .273

Using XML Documents in a Visual Basic Project275

Summary. .278

Chapter 11 Design Focus: Five Great Features for a
Windows 8 Application 279

Creating a Tile for Your App on the Windows Start Page280

Creating a Splash Screen for Your App .292

Settings Permissions and Capabilities for Your Windows 8 App 297

Using a Project Template to Showcase Application Content 300

Optimizing Your App for Touch Input and Gestures 307

Touch Input is Built In .308

The Tap .308

The Slide .309

Zooming and Resizing .309

Designing for Touch .311

Summary. .311

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

xii Contents

Chapter 12 Future Development Opportunities and
the Windows Store 313

Preparing for the Windows Store .313

Exploring the Store’s Features .314

Pricing and Sales .315

Getting Ready for Certification and Deployment 316

Store Requirements Checklist .317

Future Opportunities and Programming Resources319

Web Sites for Visual Basic and Windows 8 .319

Video on the Web .320

Books About Visual Basic and Visual Studio321

Summary. .323

Index 325

 xiii

Introduction

Microsoft Windows 8 is a powerful and visually compelling operating system
designed to dramatically enhance consumer productivity and offer access to a

wide range of web-based products and services. A rich user experience is at the heart
of Windows 8, where the new look and feel of Windows 8 applications provide rapid
access to music, photos, contacts, and user settings in the Internet “cloud”, and the
Windows Store provides immediate access to exciting consumer applications. Windows
8 has been designed to operate on a broad spectrum of devices, from touch-enabled
tablets, to laptops, to traditional desktop computers. As customers immerse themselves
in hundreds of vibrant Windows 8 applications, they are given the freedom to focus on
the task at hand, rather than the commands or features of the operating system.

From the perspective of the software developer, Windows 8 presents amazing
opportunities; it’s fast, secure, and robust, and will be installed on millions of computers
worldwide, including the Microsoft Surface tablets. Windows 8 applications are exciting
and easy to use, and they offer customers an interface that is content-rich and runs
equally well on touch-based devices or desktop PCs. Most significantly, the Windows
Store allows developers to sell their Windows 8 applications directly to the global mar-
ketplace, providing new sources of revenue and streamlining installation procedures.

This book will show you how to create compelling Windows 8 applications with
Microsoft Visual Studio 2012, the newest version of Microsoft’s bestselling software
development suite. You will learn how to download a free version of the Visual Studio
2012 Express software (that’s right—free!), and how to create interesting Windows 8
apps by using several of the tools and technologies within Visual Studio, including the
Visual Basic programming language. By the end of this book you will have learned how
to create the core features of a Windows 8 application; how to work productively in the
Visual Studio Integrated Development Environment (IDE); how to design a user inter-
face with XAML markup and Blend for Visual Studio; how to write efficient Visual Basic
program code; and how to sell your own applications in the Windows Store.

xiv Introduction

One of the coolest features of this book, of course, is that every programming tool
that it teaches and describes is free! Microsoft is offering complementary access to the
Express edition of Visual Studio because it hopes that you will enjoy learning how to
program with it, and that you will one day become a professional Visual Basic program-
mer who will build and sell great Windows applications. All you need is Windows 8
installed on a compatible computer with an Internet connection, and the desire to write
Visual Basic programs.

In fact, the outlook for professional Visual Basic programmers has never been
brighter. You just need to Start Here!

Who Should Read This Book
This is a hands-on programming tutorial for readers who enjoy learning to do new
things by actually doing them. Start Here! Learn Microsoft Visual Basic 2012 assumes no
prior knowledge of Visual Studio or Visual Basic, and it focuses entirely on introductory
programming concepts and procedures. You will be surprised at how much you can ac-
complish as a beginning programmer with Visual Studio, and you will be building your
own projects in no time. I assume only that you are an intelligent student, hobbyist,
or IT professional who is interested in learning how to program, and that you have no
prior experience with Visual Basic or the Visual Studio software suite.

This book’s content will provide you with concrete Visual Basic coding techniques as
well as a broad overview of programming strategies. In addition, you will learn about
the capabilities of the Windows 8 operating system, and the specific design guidelines
that Microsoft recommends for Windows 8 applications, an exciting new way of creat-
ing software. The Windows 8 user interface design principles are sleek and empower-
ing, and they encourage developers to put information-rich, web-aware applications at
the center of the computing experience. Windows 8 applications present new ways of
collaborating with others, as well as exciting opportunities for working with new input
devices, such as built-in cameras, touchpads, accelerometers, gyros, compasses, GPS
controls, and ambient light sensors.

The overall goal of Start Here! Learn Microsoft Visual Basic 2012 is to get you to the
point where you can comfortably use the development tools in Visual Studio, create
your own basic Windows 8 applications, and then be ready to follow a more compre-
hensive Visual Basic programming book, such as my own Microsoft Visual Basic 2012
Step by Step (Microsoft Press, 2013).

 Introduction xv

assumptions
This book is designed to teach readers with no programming experience how to use
the Visual Basic programming language. As part of that process, readers will also learn
how to use the Visual Studio 2012 Express software, which they can download for free.
Chapter 1, “Getting to Know Visual Basic 2012,” shows you how to download and install
Visual Studio 2012 Express on your system.

The book assumes that you have purchased and are running the Windows 8 operat-
ing system, and that you want to learn how to create applications for Windows 8. These
applications are simply programs that run under Windows 8, follow basic guidelines
about how the user interface works, and are (or should be) designed to take advantage
of the numerous resources and connections available on the web. Windows 8 applica-
tions are deeply interactive, and are designed to be downloaded by customers from the
Windows Store.

To make the most of your programming practice, you will need to know a little
about how to perform common tasks in Windows 8, how to work with information on
the web, how to customize the Start page and user interface, and how to adjust basic
system settings. If you also have Windows 8 installed on a tablet or touchpad device,
all the better, because a fundamental design emphasis of Windows 8 is to make touch
and gestures a natural way to manipulate content. You can build your applications on
a laptop or desktop running Visual Studio 2012 and Windows 8, and then test them on
your tablet or touchpad.

If you happen to be using one of the full retail versions of Visual Studio 2012, you
will be able to create a wider range of application types than I describe in this book—
Visual Studio Express 2012 for Windows 8 software restricts the application types
you can create to just Windows 8–style applications. A more advanced book such as
Microsoft Visual Basic 2012 Step by Step will show you how to create HTML applications
for the Web, how to create console applications, how to develop software specifically for
Windows Phone, and how to create desktop applications (Windows Forms projects)
for Windows 8 and Windows 7.

xvi Introduction

Who Should Not Read This Book
You’re going to be disappointed with this book if you’re an advanced programmer and
interested in learning Visual Basic as a second language. The examples in this book are
relatively basic, and the explanations are kept simple. You may also be disappointed
if you already have significant Visual Basic programming experience, and just want to
know the new features of Visual Studio 2012. However, if you have not programmed
before, or if it has been some time since you wrote programs, you will probably appre-
ciate the thorough introduction to Visual Studio 2012 and the coverage of the funda-
mentals of writing Windows 8 programs with Visual Basic, tasks that involve a number
of tools and methods that may be unfamiliar.

Developers who have a lot of experience will feel that I’m exploring the obvious—
but what is obvious to experienced programmers often isn’t obvious at all to someone
who is just learning to write code. If programming is a new concept for you, this is the
place to start.

Organization of This Book
Start Here! Learn Microsoft Visual Basic 2012 uses a hands-on approach to learning, in
which readers actually build Windows 8 applications from scratch, one step at a time.
Each chapter introduces a new tool or technique, and the book has been designed to
be read sequentially, so that what you learn in one chapter is carried forward to the
next. Although the core of this book involves teaching Visual Basic coding techniques,
you will also learn how to use the interesting tools and features in the Visual Studio
IDE, including the Toolbox, the Code Editor, XAML controls, Solution Explorer, and the
debugger. You will also learn how to use Blend for Visual Studio 2012, a separate design
application distributed with Visual Studio.

Collectively, the twelve chapters in this book offer you a complete introductory pro-
gramming course that you can complete at your own pace. You might try to finish one
or two chapters a day for a few days, and then take some time off to practice building
applications on your own before moving on. Reading about new techniques, trying out
what you have learned, and then pushing a bit further on your own is the best way to
acquire many new skills, including how to program.

This book offers the following topics:

 Introduction xvii

■■ Chapter 1: Getting to Know Visual Basic 2012 What types of applications
can Visual Basic programmers actually create, and how should they go about
doing it? This introductory chapter answers these fundamental questions, and
then introduces the Visual Studio IDE, an electronic workshop where Visual Basic
applications are built from the ground up. You’ll learn how to download the
Visual Studio Express 2012 for Windows 8 software, how to start it, and how to
get going with the Visual Studio programming tools.

■■ Chapter 2: Creating Your First Windows 8 application In this chapter you
learn how to build your first Windows 8 application, a web browser that allows
you to explore web sites and record the locations that you have visited. You’ll
learn more about the programming tools in Visual Studio, and you’ll learn what
it means to test an application and prepare it for distribution to others.

■■ Chapter 3: Using Controls The controls that you use to receive input, display
output, and help the user navigate your application represent a fundamental
element of the user interface. In this chapter, you’ll learn how to create several
useful XAML controls, including Ellipse, TextBlock, CheckBox, RadioButton, and
MediaElement.

■■ Chapter 4: Designing Windows 8 applications with Blend for Visual
Studio Your Visual Studio 2012 Express software installation includes a sepa-
rate program called Blend for Visual Studio, which provides easy-to-use design
tools for creating the user interface of a Windows 8 application. You’ll use Blend
in this chapter to construct a user interface that displays digital photographs
and uses storyboards and animation effects. You’ll also learn how to switch from
Blend to Visual Studio, where you can write Visual Basic program code.

■■ Chapter 5: Working with XaML Windows 8 applications use the XAML
markup language to define how the user interface appears on the screen, and
how it presents information to the user. This chapter explores in detail the struc-
ture of XAML markup, and explains how you can customize a program’s look
and feel by working with XAML markup in the Visual Studio Code Editor.

■■ Chapter 6: Visual Basic Language elements Visual Basic is an advanced
programming language that allows you to control how a Windows application
operates. When you create a Windows 8 application, you use Visual Basic code
to define how the application manages all types of information, such as input
received from the user and the results of mathematical calculations. In this chap-
ter, you will learn the syntax and format of Visual Basic program statements,
how to use variables to store information, how to use fundamental data types
and constants, and how to work with formulas and operators in a program.

xviii Introduction

■■ Chapter 7: Controlling application Design, Layout, and program
Flow Windows 8 applications should feature compelling content and pages
prepared for rich user interaction. This chapter digs deeper into Windows 8
design principles by focusing on tile-based layout and user input with the Image
and ListBox controls. To help you control execution and program flow, you’ll
learn how to write effective decision structures, loops, and exception handlers in
your applications.

■■ Chapter 8: Using the .Net Framework As you write more sophisticated
programs, you’ll need to manipulate graphics, display text files, perform calcula-
tions, process strings, and retrieve information from the web. These capabilities
and much more are supplied to you via the .NET Framework, an underlying
programming interface that is part of the Windows operating system. This chap-
ter explains how to learn more about .NET Framework classes using the Visual
Studio Object Browser, how to use Framework methods to process strings and
calculate formulas, and how to save development time by inserting ready-made
code snippets into your project.

■■ Chapter 9: Debugging applications The complex nature of Window pro-
gramming means that you’ll run into syntax errors and other logic problems
from time to time as you build your applications. This chapter introduces the
programming tools in the Visual Studio IDE that help you locate and correct
programming mistakes, and how to anticipate operating errors that your users
may encounter in the future.

■■ Chapter 10: Managing Data with arrays and LINQ Because there is so much
data in the world—employee records at the office, price and product informa-
tion online, confidential patient records at the clinic—it makes sense that soft-
ware developers are spending a lot of time thinking about how data is managed
in their programs. In Visual Studio, an important technology used for accessing
and managing data is known as Language Integrated Query (LINQ), and you will
learn the basics of using LINQ in this chapter. You’ll learn how to store informa-
tion in temporary locations called arrays, how to write LINQ query expressions
to retrieve data from arrays, and how to use the data in XML documents as a
source for LINQ queries.

 Introduction xix

■■ Chapter 11: Design Focus: Five Great Features for a Windows 8
application This chapter returns to the user interface of Windows 8 applica-
tions, and offers additional instruction about how programs can be designed so
that they comply with Microsoft’s design guidelines for Windows 8 applications.
You’ll learn how to create a tile for your app on the Windows Start page, how to
create a splash screen for your project, how to control application permissions
and capabilities, how to use ready-made project templates, and how to add
support for touch input and gestures.

■■ Chapter 12: Future Development Opportunities and the Windows
Store This last chapter provides a summary of the Visual Basic programming
techniques that you have learned, and presents future development opportuni-
ties for those interested in careers in Visual Studio programming. The chapter
also presents a detailed look at the final testing and packaging of applications,
including a discussion of the Windows Store, an exciting new distribution point
for Windows 8 applications. Also included in this chapter are web resources and
books that you can use to continue your learning.

Free eBook Reference
When you purchase this title, you also get the companion reference, Start Here!™
Fundamentals of Microsoft® .NET Programming, for free. To obtain your copy, please
see the instruction page at the back of this book.

The Fundamentals book contains information that applies to any programming lan-
guage, plus some specific material for beginning .NET developers.

As you read through this book, you’ll find references to the Fundamentals book that
look like this:

For more information, see <topic> in the accompanying Start Here! Fundamentals of
Microsoft .NET Programming book.

When you see a reference like this, if you’re not already familiar with the topic, you
should read that section in the Fundamentals book. In addition, the Fundamentals book
contains an extensive glossary of key programming terms.

xx Introduction

Conventions and Features in This Book
This book presents information using conventions designed to make the information
readable and easy to follow:

■■ Step-by-step instructions help you create Visual Basic applications. Each set of
instructions is listed in a separate section and describes precisely what you’ll
accomplish by following the steps that it contains.

■■ Screen illustrations show you exactly what is happening as you complete
the step-by-step instructions. I have used the default colors and settings for
Windows 8 to create these illustrations, and configured my screen resolution at
a low setting to make the illustrations as readable as possible.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully. Make sure that you
pay special attention to warnings because they contain helpful information for
avoiding problems and errors.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (such as File | Close), means that
you should select the first menu or menu item, then the next, and so on.

System Requirements
You will need the following hardware and software to work through the examples in
this book:

■■ The Windows 8 operating system. Depending on your Windows configuration,
you might require Local Administrator rights to install or configure Visual Studio
2012 Express.

■■ An Internet connection to download Visual Studio, try out the Windows Store, and
download this book’s sample files.

■■ Visual Studio 2012 Express for Windows 8 (see Chapter 1 for installation
instructions).

■■ A computer with 1.6 GHz or faster processor.

 Introduction xxi

■■ 1 GB RAM (32-bit) or 2 GB RAM (64-bit).

■■ 16 GB available hard disk space (32-bit) or 20 GB (64-bit) for Windows 8.

■■ 4 GB of available hard disk space for Visual Studio 2012 Express.

■■ DirectX 9 graphics device with WDDM 1.0 or higher driver.

■■ 1024 × 768 minimum screen resolution.

■■ If you want to use touch for user input, you’ll need a multitouch-capable laptop,
tablet, or display. Windows 8 supports at least five simultaneous touch points,
although not all tablets or displays do. A multitouch-capable device is optional
for the exercises in this book, although one is useful if you want to understand
what such devices are capable of as a software developer. Typically a program-
mer will develop software on a desktop or laptop computer, and then test multi-
touch functionality on a multitouch-capable device.

Code Samples
Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects, in both their pre-exercise and
post-exercise formats, can be downloaded from the following page:

http://www.microsoftpressstore.com/title/9780735672987

Follow the instructions to download the 9780735672987-files.zip file.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book:

1. Unzip the 9780735672987-files.zip file that you downloaded from the book’s
website. (Name a specific directory along with directions to create it, if
necessary.)

2. If prompted, review the displayed end-user license agreement. If you accept the
terms, select the accept option, and then click Next.

http://www.microsoftpressstore.com/title/9780735672987

xxii Introduction

Using the Code Samples
The code samples .zip file for this book creates a folder named “Start Here! Program-
ming in Visual Basic” that contains 11 subfolders—one for each of the chapters in
the book (except the last chapter). To find the examples associated with a particular
chapter, open the appropriate chapter folder. You’ll find the examples for that chapter
in separate subfolders. The subfolder names have the same names as the examples in
the book. For example, you’ll find an example called ”Web List“ in the My Documents\
Start Here! Programming in Visual Basic\Chapter 02 folder on your hard drive. If your
system is configured to display file extensions of the Visual Basic project files, look for
.sln as the file extension. Depending on how your system is configured, you may see a
“Documents” folder rather than a “My Documents” folder.

Acknowledgments
The planning for this book began well before the release of Windows 8 and the first
Visual Studio 2012 test releases. In early conversations with Microsoft Press and O’Reilly
Media, we all realized that Windows 8 and Visual Studio 2012 presented truly revolu-
tionary opportunities for Visual Basic programmers. The question was: how could we
prepare the right learning materials for new and existing software developers so that
they could get up-to-speed quickly and begin exciting Windows applications as soon as
possible?

The solution we came up with was to create two original books with information about
the Visual Studio software release—the book that you are holding now, my Start
Here! Learn Microsoft Visual Basic 2012, and a second book designed for more experi-
enced developers, my Microsoft Visual Basic 2012 Step by Step. These two books work
together to provide a comprehensive course on Windows 8 programming with Visual
Basic 2012.

Although I have written over a dozen books on Visual Basic programming in my career
as a writer and software developer, this experience was one of the most rewarding and
exciting, as two back-to-back book projects required significant coordination among
publishing team members at both Microsoft Press and O’Reilly Media. I hope that you
enjoy the results and are able to use the books to explore deeply these amazing new
products. Very quickly, you’ll be learning to program in Visual Basic 2012, and prepar-
ing applications for distribution in the Windows Store.

 Introduction xxiii

At Microsoft Press, I would like to thank Devon Musgrave for his early enthusiasm for
the books, and for connecting me to team members in the Visual Studio product group.
At O’Reilly Media, I would like to thank first and foremost Russell Jones, for our many
conversations about Visual Basic programming, and our hope that these books will pro-
vide a complete path for new and experienced programmers to unlock the secrets of
Visual Basic 2012. Tim Patrick, a talented author and Visual Basic developer in his own
right, provided a thorough review of the Start Here! manuscript, and answered many
practical questions about Visual Studio for me. Within the editorial group, I would like
to thank Holly Bauer, for scheduling the editorial review and answering questions about
content; and Damon Larson, for his skillful copy editing and managing the style issues
that arose. Also within O’Reilly Media, I would like to thank Kristin Borg and Rebecca
Demarest, and at Zyg Group, I'd like to thank Linda Weidemann, Kim Burton-Weisman,
and Kevin Broccoli for their important editorial, technical, and artistic contributions.

I am also most grateful to the Microsoft Visual Studio 2012 development team for
providing me with the beta and release candidate software to work with. In addition,
I would like to thank the Microsoft Windows 8 team for their support, and offer my spe-
cial thanks to the many MSDN forum contributors who asked and answered questions
about Visual Basic and Windows 8 programming.

As always, I offer my deepest gratitude and affection to my family for their continued
support of my writing projects and various academic pursuits. In particular, Henry
Halvorson created impressive electronic music, electronic artwork, and a video file for
Chapters 3, 7, and 11. I am so thankful for your efforts, son.

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://www.microsoftpressstore.com/title/9780735672987.

If you find an error that is not already listed, you can report it to us through the
same page. If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

http://www.microsoftpressstore.com/title/9780735672987

xxiv Introduction

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

You can also learn more about Michael Halvorson’s books and ideas at
http://michaelhalvorsonbooks.com.

 1

Chapter 1

Getting to Know
Visual Basic 2012

after completing this chapter, you’ll be able to

■■ Describe various development opportunities for Visual Basic programmers.

■■ Download and install Visual Studio Express 2012 for Windows 8.

■■ Start Visual Studio Express and explore the Visual Studio IDE.

■■ Open and run a Visual Basic program.

■■ Use Visual Studio programming tools and windows.

■■ Customize the Visual Studio IDE.

■■ Save changes and exit Visual Studio.

thIS Chapter INtrODUCeS YOU to Microsoft Visual Basic programming and gives you the skills you
need to get up and running with the Microsoft Visual Studio Express 2012 for Windows 8 Integrated
Development Environment (IDE). The Visual Studio IDE is the application you use to build and run Visual
Basic programs. The Visual Studio IDE is a busy place with numerous menu options, buttons, tool win-
dows, code editors, and output windows. However, you’ll discover that any general experience you may
have had with Windows applications will help you a lot as you learn how to use the IDE, and you’ll find
that some of the tools and features are more important than others. The important thing to remember,
faced with the IDE’s extensive capabilities, is that you don’t need to learn everything at once.

This chapter also provides an overview of the types of programs, called applications, that you
can create with Visual Basic 2012. This was once a rather straightforward subject, because choosing
to write programs in Visual Basic meant you could create great Windows desktop applications but
not much more. As you’ll see, however, Visual Studio now allows Visual Basic programmers to create
applications in a variety of formats for many different uses. Although this book focuses on creating
Windows 8 apps, it will be helpful for you to learn just how capable Visual Studio is, especially in one
of the full retail versions.

2 Start here! Learn Microsoft Visual Basic 2012

Development Opportunities for Visual Basic Programmers

Visual Basic is an object-oriented computer programming language that has roots in earlier develop-
ment tools such as BASIC and QuickBASIC—that is, logical and practical (though somewhat quirky)
programming languages from the 1960s, ‘70s, and ‘80s.

In 1991, Microsoft released Visual Basic 1.0, which innovatively combined a sophisticated Visual
Basic language compiler with an IDE that allowed developers to build Windows applications by visu-
ally arranging controls on a Windows form and then customizing the controls with property settings
and Visual Basic code. Over the past two decades, Visual Basic has grown into an extremely powerful
development tool, capable of creating fast and efficient Windows applications that can run on a vari-
ety of hardware platforms.

The term Visual Basic has come to have two meanings over the past 10 years or so. In the narrower
sense, Visual Basic is the name of a programming language with specific syntax rules and logical pro-
cedures that must be followed when a developer creates code to control some aspect of an applica-
tion’s functionality. However, Visual Basic is also used in a more comprehensive product-related sense
to describe the collection of tools and techniques that developers use to a build Windows applica-
tions with a particular software suite. In the past, developers could purchase a stand-alone version of
Visual Basic, such as Microsoft Visual Basic .NET 2003 Professional Edition, but these days Visual Basic
is sold only as a component within the Visual Studio software suite, which also includes Microsoft
Visual C#, Microsoft Visual C++, Microsoft Visual Web Developer, and other development tools.

More Info For more information about object-oriented computing, see Chapter 10,
“Object-Oriented Programming,” in the free companion volume, Start Here! Fundamentals
of .NET Programming (Microsoft Press, 2011).

The Visual Studio 2012 development suite is distributed in several different product configurations,
including Test Professional, Ultimate, Premium, Professional, Express for Windows 8, and Express for
Web. Express for Windows 8 and Express for Web are currently the free editions that you can use to
test-drive the software. (Express for Windows 8 is the product that you will be using in this book.) The
full retail versions of Visual Studio 2012 have different prices and feature sets, with Ultimate being
the most comprehensive (and expensive) development package. The Visual Studio web site (http://
www.microsoft.com/visualstudio) explains the differences between all these versions.

You have purchased this book because you want to learn how to program in Visual Basic. This is an
excellent choice; there are over 3 million Visual Basic programmers in the world developing innovative
solutions, blogging on the web, and shopping for add-ons and training materials.

The programming language that you decide to learn is a matter of choice, often related to your
past experiences and the requirements of the companies that you work for. Because different orga-
nizations have spent considerable time and capital building up their code bases, you’ll find that they
have specific language and software requirements for the teams that they employ. You may have
encountered such requirements listed in hiring advertisements for programmers. Often they require

 CHAPTER 1 Getting to Know Visual Basic 2012 3

that developers know more than one programming language, in addition to specific skills related to
database or web development.

Microsoft has tried to satisfy a wide range of programming audiences by bundling many different
software development technologies into Visual Studio, including Visual Basic, Visual C#, Visual Web
Developer, and JavaScript. Visual Studio also contains some core tools that all developers use, no mat-
ter which programming language they choose. These include the various toolbox controls, the Project
and Properties windows, the code editors, the debugger, the Blend Designer, various management
tools, and the .NET Framework—a library of coded solutions designed to be used by applications that
run on the Windows operating system.

New Development platforms
So, what can you actually do with Visual Basic and Visual Studio?

In the early 2000s, Visual Basic programmers were concerned primarily with creating Windows ap-
plications that helped businesses manage data effectively. Visual Basic’s ability to graphically display
information and provide access to it with powerful user interface controls gained many supporters for
the product. Over the past decade, the leading Visual Basic applications have been database front-
ends, inventory management systems, web applications and utilities, purchasing tools, CAD programs,
scientific applications, and games.

In the 2010s, however, the explosion of Internet connectivity and online commerce has dramati-
cally changed the landscape for software developers. In the past, most Windows applications ran
on a server or a desktop PC. Today, laptops, tablet devices, and smartphones are everywhere, and
often the same person owns all three device types. Consumers need to move applications and
information seamlessly across devices, and software developers need the tools that will allow them
to create applications that work on multiple platforms, or can at least be ported easily from one
device to the next.

The Visual Studio 2012 product team took the challenge of coding for diverse platforms seriously,
and they have created a software suite that allows developers to leverage their existing work while
also allowing developers to create a variety of different application types. The following list highlights
the major development platforms and opportunities for Visual Basic programmers (some of which are
supported only by the full retail versions of Visual Studio 2012):

■■ Windows 8 Visual Basic developers can create Windows 8 applications and traditional desk-
top applications for a wide range of Windows 8 devices, including Microsoft Surface tablets,
and sell them on the Windows Store.

■■ Windows 7 and earlier Visual Basic developers can create applications for earlier versions
of Windows and distribute them in a variety of ways. The Visual Basic and Extensible Applica-
tion Markup Language (XAML) programming techniques you learn in this book will be closest
to writing Visual Basic and XAML programs for Windows Presentation Foundation (WPF).

4 Start here! Learn Microsoft Visual Basic 2012

■■ Windows Phone Using Visual Studio and the Windows Phone software development kit
(SDK), Visual Basic programmers can create applications that run on Windows Phone and take
advantage of its unique features.

■■ Web development Developers can use Visual Basic, HTML5, CSS3, or JavaScript to create
applications that will run on the web and look great in a variety of browsers. A technology
known as ASP.NET allows Visual Basic programmers to build web sites, web applications, and
web services quickly without knowing all the details about how the information will be stored
on the web.

■■ Device drivers and console applications Visual Basic programmers can write applications
that work primarily with the internal components of the operating system or run in command-
line mode (the MS-DOS shell).

■■ Office applications Visual Basic programmers can build macros and other tools that
enhance the functionality of Microsoft Office applications, such as Excel, Word, Access, and
PowerPoint.

■■ Xbox 360 Visual Basic programmers can write games for the Xbox using Visual Studio and
Microsoft XNA Game Studio.

■■ Windows Azure applications for web servers and the cloud Visual Basic is powerful
enough to write applications that will be used on sophisticated web servers, distributed data
centers, and a version of Windows designed for cloud computing known as Windows Azure.

This is an amazing list of application types! Although this list might seem daunting at first, the
good news is that the fundamental Visual Basic programming skills that you will explore here remain
the same from platform to platform, and there are numerous tools and techniques that help you to
port work easily between them. This book provides a solid introduction to many of the core skills that
you will use; you can then learn specific programming techniques related to any particular platform
when you are ready.

Obtaining, Installing, and Starting Visual Studio Express 2012
for Windows 8

Before you can begin programming in Visual Basic, you need to install the Visual Studio software.
If you already have Windows 8 and one of the retail versions of Visual Studio 2012, you are all set
already; the teaching in this book will apply to Windows 8 and the Visual Studio software that you
have. If you don’t already have a version of Visual Studio, you can download a free copy of Visual
Studio Express 2012 for Windows 8 directly from Microsoft. After you install that product, you’ll be
able to use the examples in this book to create your own Windows 8 apps.

 CHAPTER 1 Getting to Know Visual Basic 2012 5

Note This book requires that you are running Windows 8 and that you have a ver-
sion of Visual Studio 2012 installed on your system. Although you can download Visual
Studio Express 2012 for Windows 8 for free, you will also need a valid, installed version of
Windows 8 to create the applications.

Downloading the product
Microsoft produces a number of Express products that you can download from http://www.microsoft.com/
express/Downloads/, but for the purposes of this book you need to download only this one:

■■ Visual Studio Express 2012 for Windows 8 This product provides the Visual Studio IDE and
tools that allow you to create Visual Basic, Visual C#, Visual C++, or JavaScript applications for
Windows 8. You also have to have Windows 8 installed on your computer—Windows 8 does
not come with Visual Studio Express 2012.

You must have an Internet connection to install the product. The setup files for Visual Studio Ex-
press 2012 can either be installed either directly from the web or downloaded to your hard drive and
then opened and installed later.

Installing Visual Studio express 2012 for Windows 8
To download Visual Studio Express 2012 for Windows 8, complete the following steps:

1. Open a web browser (Internet Explorer or other) and go to the following web site:
http://www.microsoft.com/express/Downloads.

2. Click Visual Studio 2012 to see a list of the Express products available for Visual Studio 2012.

Note You must have Window 8 installed on your computer before you install Visual
Studio Express 2012 for Windows 8.

3. Click Express for Windows 8, and follow the instructions to download and install Visual Studio
Express 2012 for Windows 8.

Specify a web installation or download the product files first and then install them. You will
also have an opportunity to specify the language that you will be using when using Visual
Studio. (For this book, the recommended language is English.) When the Express installation
is complete, you’re ready to start working with Visual Studio!

6 Start here! Learn Microsoft Visual Basic 2012

Starting Visual Studio express 2012
To start Visual Studio Express and begin working with the Visual Studio IDE, complete the following
steps.

Start Visual Studio express 2012

1. On the Windows Start screen, click VS Express for Windows 8.

If this is the first time you are starting Visual Studio, the program will take a few moments to
configure the environment. You may be prompted to get a developer license for Windows
8, which typically requires that you create a Windows Live account or enter existing account
information. During the beta testing for Visual Studio 2012, developer licenses were free and
valid for about a month before they needed to be renewed. You will likely encounter a similar
registration scenario.

2. If you are prompted to identify your programming preferences, select Visual Basic Develop-
ment Settings.

When Visual Studio starts, you see the IDE on the screen with its many menus, tools, and
component windows. (These windows are sometimes called tool windows.) You also should
see a Start page containing a set of tabs with links, learning resources, news, and project
options. The Start page is a comprehensive source of information about your project, as well
as resources within the Visual Basic development community.

The screen shown following offers a typical Visual Studio setup. I captured the screen at a res-
olution of 1024x768, which may be smaller than you are using on your computer, but I wanted
you to see the content as clearly as possible. (Larger resolutions are often great to work with
on screens that support them, but they don’t reproduce well in books.)

I have also chosen to use the Light color theme for the screen illustrations in this book.
When you first open Visual Studio, however, you may see the Dark color theme, which
displays white text on a dark background. Although the Dark color theme is restful and
emphasizes the code and user interface elements of your program, it doesn’t appear well
in books. If you see the Dark color theme now, change to the Light theme by choosing the
Options command on the Tools menu, clicking General in the Environment category, select-
ing Light from the Color Theme drop-down list box, and clicking OK. The following screen
illustration shows the Light theme:

 CHAPTER 1 Getting to Know Visual Basic 2012 7

After starting Visual Studio, you’re ready to explore the Visual Studio IDE.

Note The following section describes how to open and run a Visual Basic program in the
IDE. If you haven’t downloaded this book’s sample files yet, you should do so now, because
you’ll be asked to open a specific program on your hard disk. (For sample code installation
instructions, see the “Code Samples” section in the Introduction.) Return to this point after
you have installed the code samples.

The Visual Studio Development Environment

In the Visual Studio IDE, you can open a new or existing Visual Studio project, or you can explore the
many online resources available to you for Visual Basic programming.

Right now, let’s open an existing Visual Studio project that I created for you, entitled World
Capitals, which displays the capital of Peru in a text box.

8 Start here! Learn Microsoft Visual Basic 2012

Open a Visual Basic project

1. On the Start page, on the left side of the screen, click the Open Project link.

You’ll see the Open Project dialog box shown in the following illustration. (You can also
display this dialog box by clicking the Open Project command on the File menu or by press-
ing Ctrl+Shift+O.) Even if you haven’t used Visual Studio before, the Open Project dialog box
will seem straightforward because it resembles the familiar Open dialog box in many other
Windows applications.

tip In the Open Project dialog box, you see a number of storage locations along the
left side of the window. The Projects folder under Microsoft Visual Studio Express
2012 for Windows 8 is particularly useful. By default, Visual Studio saves your pro-
gramming projects in this Projects folder, giving each project its own subfolder.
However, this book uses a different folder to organize your programming course-
work, as you’ll discover following. Additional locations such as Favorites and Libraries
are also made available to you through this dialog box, depending on how your
computer and operating system has been configured.

 CHAPTER 1 Getting to Know Visual Basic 2012 9

2. Browse to the My Documents\Start Here! Programming in VB 2012 folder on your hard disk.

This folder is the default location for the book’s extensive sample file collection, and you’ll find
the files there if you followed the instructions in “Code Samples” in the Introduction. If you
didn’t copy the sample files, close this dialog box and copy them now.

3. Open the Chapter 01\World Capitals folder, and then double-click the WorldCapitals solution
file. (If your system shows file name extensions, this file will end with .sln.)

Visual Studio loads the WorldCapitals page, properties, and program code for the solution.
Solution Explorer, a tool window on the right side of the screen, lists some of the files in the
solution.

Visual Studio provides a special option named Always Show Solution to control several options
related to solutions within the IDE. The option’s check box is located on the Projects And Solutions
| General tab of the Options dialog box, which you open by clicking the Options command on the
Tools menu. If the check box is selected (the default position), a subfolder is created for each new
solution, placing the project and its files in a separate folder beneath the solution. Also, if you keep
the default selection for Always Show Solution, a few options related to solutions appear in the IDE,
such as commands on the File menu and a solution entry in Solution Explorer. If you like the ideas of
creating separate folders for solutions and seeing solution-related commands and settings, I suggest
that you keep the default (selected) option for this check box. You’ll learn more about these options
at the end of the chapter.

projects and Solutions
In Visual Studio, programs under development are typically called projects or solutions be-
cause they contain many individual components, not just one file. Visual Basic 2012 programs
include a project file (.vbproj), a solution file (.sln), one or more markup files (.xaml), and several
supporting files organized into various subfolders.

A project contains files and other information specific to a single programming undertaking.
A solution contains all the information for one or more projects. Solutions are therefore useful
mechanisms to manage multiple related projects. The samples included with this book typically
have a single project for each solution, so opening the project file (.vbproj) has the same effect
as opening the solution file (.sln). But for a multiproject solution, you will want to open the
solution file.

10 Start here! Learn Microsoft Visual Basic 2012

The Visual Studio Tools

At this point, you should take a few moments to study the Visual Studio IDE and identify some of the
programming tools and windows that you’ll be using as you complete this book. If you’ve written
Visual Basic programs before, you’ll recognize many (but perhaps not all) of the programming tools.
Collectively, these features are the components that you use to construct, organize, and test your
Visual Basic programs. A few of the programming tools also help you learn more about the resources
on your system, including the larger world of databases and web site connections available to you.
There are also several powerful help tools.

The menu bar provides access to most of the commands that control the development environ-
ment. Menus and commands work as they do in all Windows-based programs, and you can access
them by using the keyboard or the mouse. Located below the menu bar is the Standard toolbar, a col-
lection of buttons that serve as shortcuts for executing commands and controlling the Visual Studio
IDE. My assumption is that you’ve used Word, Excel, or some other Windows application enough
to know quite a bit about toolbars, and how to use familiar toolbar commands, such as Open, Save,
Cut, and Paste. But you’ll probably be impressed with the number and range of toolbars provided by
Visual Studio for programming tasks. In this book, you’ll learn to use several toolbars; you can see the
full list of toolbars at any time by right-clicking any toolbar in the IDE.

Along the bottom of the screen you may see the Windows taskbar. You can use the taskbar to
switch between various Visual Studio components and to activate other Windows-based programs.
You might also see taskbar icons for Windows Internet Explorer, antivirus utilities, and other programs
installed on your system. In most of my screen shots, I’ll hide the taskbar to show more of the IDE.

The following illustration shows some of the tools and windows in the Visual Studio IDE. Don’t
worry that this illustration looks different from your current development environment view. You’ll
learn more about these elements (and how you adjust your views) as you work through the chapter.

The main tools visible in this Visual Studio IDE are the Designer, Solution Explorer, the Properties
window, and the XAML tab of the Code Editor. You should locate these tools and remember their
names now, as you’ll be using them often. You might also see more specialized tools such as the Tool-
box, Document Outline window, Device window, Server Explorer, and Object Browser; alternatively,
these tools may appear as tabs within the IDE. Because no two developers’ preferences are exactly
alike, it is difficult to predict what you’ll see if your Visual Studio software has already been used.
(What I show is essentially the fresh-download (or out-of-the-box) view, with the Designer displaying
the World Capitals user interface contained in MainPage.xaml.)

 CHAPTER 1 Getting to Know Visual Basic 2012 11

If a tool isn’t visible and you want to see it, click the View menu and then select the tool. Because
the View menu has expanded steadily over the years, Microsoft has moved some of the less frequent-
ly used View tools to a submenu called Other Windows. Check there if you don’t see what you need.

The reason I said your IDE view probably doesn’t match the preceding image is because the exact
size and shape of the tools and windows in the IDE depend on how your particular development envi-
ronment has been configured. With Visual Studio, you can align and attach, or dock, windows to make
visible only the elements that you want see. You can also partially conceal tools as tabbed documents
along the edge of the development environment and then switch back and forth between documents
quickly. For example, if you click the Toolbox label on the left side of the screen, the Toolbox panel
will fly out, ready for use. If you click another tool or window in the IDE, the Toolbox panel will return
to its concealed position.

Trying to sort out which tools are important to you now and which you can learn about later is a
difficult early challenge when you’re learning the busy Visual Studio interface. Your development en-
vironment will probably look best if you set your monitor and Windows desktop settings so that they
maximize your screen space, but even then things can get a little crowded. (In fact, some experienced
Visual Studio programmers use two monitors to display different views of the software.)

12 Start here! Learn Microsoft Visual Basic 2012

The purpose of all this tool complexity is to add many new and useful features to the IDE while
providing clever mechanisms for managing the clutter. These mechanisms include features such as
docking, autohiding, floating, and a few other window states that I’ll describe later. Visual Studio 2012
also hides rarely used IDE features until you begin to use them, which has also helped to clean up the
IDE workspace.

If you’re just starting out with Visual Studio, the best way to deal with feature overload is to hide
the tools that you don’t plan to use often to make room for the important ones. The crucial tools
for beginning Visual Basic programming—the ones you’ll start using right away in this book—are
the Designer window, the Properties window, Solution Explorer, and the Toolbox. You won’t use the
Document Outline, Server Explorer, Class View, Object Browser, Device, or Debug windows until later
in the book, so feel free to hide them by clicking the Close button on the title bar of any windows that
you don’t want to see.

In the following exercises, you’ll start experimenting with the crucial tools in the Visual Studio IDE.
You’ll also learn how to display a web browser within Visual Studio and more about hiding the tools
that you won’t use for a while.

the Designer Window
If you completed the previous exercise (“Open a Visual Basic project”), the World Capitals project is
loaded in the Visual Studio development environment. However, the user interface, or page, for the
project might not yet be visible in Visual Studio. (More sophisticated projects might contain several
pages, but this first example program needs only one.) To make the page of the World Capitals proj-
ect visible in the IDE, you display it by using Solution Explorer.

Note If you don’t currently have the World Capitals project loaded, go back to and com-
plete the exercise in this chapter titled “Open a Visual Basic project.”

Display the Designer window

1. Locate the Solution Explorer window near the upper-right corner of the Visual Studio devel-
opment environment. If you don’t see Solution Explorer (if it is hidden as a tab in a location
that you cannot see or isn’t currently visible), click the View menu and then select Solution
Explorer to display it.

Note From here on in this book, you’ll sometimes see a shorter method for describ-
ing menu choices. For example, “Choose View | Solution Explorer” means “Click the
View menu and then select Solution Explorer.”

 CHAPTER 1 Getting to Know Visual Basic 2012 13

When the World Capitals project is loaded, Solution Explorer looks like this:

Like most basic Windows 8 applications, this Visual Basic solution contains an App.xaml file
that holds global project settings and resources; an Assets folder that contains any splash
screen and logo files for the project; a Common folder, which contains common classes and
XAML styles that simplify your development tasks; a deployment package manifest, containing
build and distribution settings for your file; and one or more user interface windows, or pages,
which you can identify because they have the extension .xaml.

2. Click the expansion arrow to the left of the MainPage.xaml file in the Solution Explorer
window.

With the MainPage.xaml file expanded, Solution Explorer looks like this:

In this project, the main page of the World Capitals program is defined by the MainPage.xaml
file. (MainPage.xaml is the default name for the main page when you create a new application
without a specific template.)

14 Start here! Learn Microsoft Visual Basic 2012

You can open MainPage.xaml in Design view so that you can examine and modify the user
interface with graphical design tools, or you can open the file in the Code Editor, where you
can modify the user interface with XAML, a special user interface definition language de-
signed for Windows applications and other computer programs.

Below the MainPage.xaml file, you will see a second file, named MainPage.xaml.vb. This file
is also associated with the user interface of the World Capitals project. MainPage.xaml.vb is
called a code-behind file because it contains a listing of the Visual Basic program code con-
nected to the user interface defined by MainPage.xaml. As you learn how to program in Visual
Basic, you’ll become very adept at customizing this file.

Solution Explorer is the gateway to working with the various files in your project—it is an
essential tool. When you double-click a file in Solution Explorer, it opens the file in an appro-
priate editor, if direct editing of the file is allowed.

3. Double-click the MainPage.xaml file in Solution Explorer to display the project’s user interface
in the Designer window, if it is not already visible. Use the vertical scroll bar if necessary to
adjust your view of the user interface.

The World Capitals page is displayed in the Designer, as shown here:

Notice that a tab with the file name MainPage.xaml is visible near the top of the Designer win-
dow, along with additional tab names. You can click a tab at any time to display the contents
of the various files, even if the windows become covered.

As noted previously, the MainPage.xaml file is the visual representation of the program’s
user interface. However, you can readily examine the XAML markup used to define the user
interface by double-clicking the XAML tab of the Code Editor at the bottom of the Designer
window. Or, if the XAML tab is already open in the Code Editor, you can examine the XAML

 CHAPTER 1 Getting to Know Visual Basic 2012 15

markup for the user interface and use the window’s scroll bars to view any part of the markup
that is not currently visible.

4. Double-click the XAML tab to display the XAML markup for the page in the Code Editor, and
scroll to the top of the window to see the entire document.

You’ll see the following:

The XAML contents of MainPage.xaml appear in the Code Editor, and it is this structured
information that controls how Visual Studio and Windows will display the application’s user
interface and graphics. If you know some HTML, this should look somewhat familiar. XAML
contains markup—instructions whose primary purpose is to tell a program how to display
things on the screen. The XAML markup shown here is displayed between <Page and </Page>
tags, and is further indented to make the information readable. The first seven lines below
<Page define the resources used to create the user interface. Below these lines, the section
between <Grid and </Grid> defines the objects in the user interface. This XAML content
defines one button, two text boxes, and one text block. If you look at the screen illustration of
the Designer again, you can see how these elements appear visually. You can even see specific
property settings for the objects being assigned through individual property names (like
HorizontalAlignment) and values (like Left).

You’ll learn a lot more about XAML markup in later chapters. For now, you should know that
the Designer window allows you to see both a preview of the user interface and the XAML
markup that defines the specific characteristics of objects that appear on the preview page.

16 Start here! Learn Microsoft Visual Basic 2012

Visual Studio programmers often want to see both panes of information side by side as they
work on a program. In fact, if you’ve built an HTML application in the past for the web, this
whole concept might seem a little familiar, as a number of web design tools also display page
layout at the top of the screen, while showing HTML code at the bottom.

tip There are some handy buttons along the bottom of the Designer window and
Code Editor that allow you significant control over the split-screen behavior of these
elements. At the bottom left of the Designer window are XAML and Design tabs, as
well as a handy Document Outline button, which opens a separate window to dis-
play the objects within the user interface organized by type. At the bottom right of
the Designer window are Vertical Split, Horizontal Split, and Expand Pane/Collapse
Pane buttons, which control how the Designer window and Code Editor are ar-
ranged. Expand Pane/Collapse Pane is especially useful; it is a toggle that allows you
to view the windows one at a time or side by side.

5. Click the Design tab to display the project’s main page in the Designer window again.

6. Click the Expand Pane button to display the XAML markup that renders the page in a window
below the Designer window.

Now you’ll try running this simple program within Visual Studio.

running a Visual Basic program
World Capitals is a simple Visual Basic program designed to familiarize you with the programming
tools in Visual Studio. The page you see now has been customized with four objects (one button, a
text block, and two text boxes), and I’ve added one line of program code to a code-behind file to
make the program ask a simple question and display the appropriate answer. You’ll learn more about
creating objects like these and adding Visual Basic code to a code-behind file in Chapter 2, “Creating
Your First Windows 8 Application.” For now, try running the program in the Visual Studio IDE.

run the World Capitals program

1. Click the Start button (the right-facing arrow next to the words Local Machine) on the Stan-
dard toolbar to run the World Capitals program in Visual Studio.

tip You can also press F5 or click the Start Debugging command on the Debug
menu to run a program in the Visual Studio IDE.

Visual Studio loads and compiles the project into an assembly, an EXE file that contains data
and code in a form that can be used by the computer. This particular assembly also con-
tains information that is useful for testing, or debugging, which is a fundamental part of the

 CHAPTER 1 Getting to Know Visual Basic 2012 17

software development process. If the compilation is successful, Visual Studio runs the program
in the IDE. (This is known as running the program on a local machine, as opposed to running
on a remote computer somewhere on the web or in a software simulator of some kind.)

While the program is running, an icon for the program appears on the Windows taskbar. After
a moment, you will see the World Capitals user interface running as any application would
under Windows 8. The program looks just like the preview version did within the Visual Studio
Designer:

World Capitals now asks you a question: What is the capital of Peru?

2. Click the Answer button to reveal the solution to the question, and the program should dis-
play the answer (Lima) below the question.

3. Close the application by dragging the title bar (or top portion of the screen) to the bottom of
the screen (or however you normally terminate a Windows 8 application).

18 Start here! Learn Microsoft Visual Basic 2012

When you move the mouse cursor to the top edge of the screen, it changes to a hand, which
provides some visual feedback as you drag the title bar to the bottom of the screen to ter-
minate the program. After the application closes, you can press the Windows key or click the
Visual Studio program icon on the desktop to activate the IDE again.

The World Capitals application may continue to run for a moment or two as the Visual Studio
IDE catches up with the terminate-program request that you just issued. (For example, you
may see the phrase Running in the Visual Studio title bar, which indicates that a program in
the IDE is still executing.) You can force an immediate stop to any running application in the
Visual Studio IDE by clicking the Stop Debugging button on the toolbar.

After the program has stopped running, you will notice a few changes in the IDE. For example,
you will likely see an Output window at the bottom of the IDE with information about how
the assemblies in the application were compiled and executed. This is the expected behavior
within Visual Studio after a program has been compiled and run. The Output window provides
a fairly detailed listing of what happened during compilation, a process that involves several
stages and the loading of a number of files and resources called libraries. This record of the
process is especially valuable when the compilation fails due to an unforeseen programming
mistake or error. (Something that you will certainly experience, though not yet!)

4. After you’ve reviewed the content of the Output window, click its Close button to hide it.

I won’t emphasize the Output window much in the early chapters of this book, but if you
encounter an inadvertent error as you write your own programs, you’ll find this tool useful.
Most of the time, though, you’ll can simply close the window to allow more room for examin-
ing your code.

It’s time to learn about another useful development tool.

The Properties Window

In the IDE, you can use a tool known as the Properties window to change the characteristics, or prop-
erty settings, of one or more user interface elements on a page. A property setting is a quality of one
of the objects in your program, such as its position on the screen, its size, the text displayed on it, and
so on. For example, you can modify the question about capitals that the program asks to appear in a
different font or font size by adjusting property settings. (With Visual Studio, you can display text in
any font installed on your system, just as you can in Excel or Word.)

 CHAPTER 1 Getting to Know Visual Basic 2012 19

The Properties window contains a list of the properties for the object that is currently selected
in the Designer window. For example, if a button object is selected in the Designer, the properties
for the button object will be visible in the Properties window. The first property listed at the top of
the Properties window is the Name property, and you will use this property to name your objects if
you plan to customize them using Visual Basic code. (By default, new XAML objects are unnamed.)
Although there are a lot of properties for each object on a page, Visual Studio assigns default values
for most of them, and you can quickly find the properties that you want to set by arranging them
using the Arrange By drop-down box at the top of the Properties window.

You can change property settings from the Properties window while you are working on a page,
you can change a property setting by editing the XAML markup for a page, and you can add Visual
Basic code to a page’s code-behind file to instruct Windows to change one or more property settings
while a program is running.

As you’ll learn later, you can also customize the event handlers for objects on a page by using the
Event Handlers button (which looks like a lightning bolt) near the top of the Properties window. Event
handlers are custom Visual Basic routines that run when the user interacts with the objects on a page
by clicking, tapping, dragging, and other actions.

To get some practice setting properties, you’ll edit the text in a button object, and you’ll change
the font weight and style of a text block object to bold and italic, respectively.

Change properties

1. Click the Answer button on the page that is currently loaded in the Designer window.

To work with an object on a page, you must first select the object. When you select an object,
resize handles appear around it, and the property settings for the object are displayed in the
Properties window. You’ll also see numbers indicating the distance (in pixels) to the top and
left edges of the window.

2. Press Alt+Enter to display the Properties window, if it is not currently visible.

The Properties window might or might not be visible in Visual Studio, depending on how it
has been configured and used on your system. It usually appears below Solution Explorer on
the right side of the IDE. (If it is visible but not active, you might click the Properties window to
activate it.)

20 Start here! Learn Microsoft Visual Basic 2012

You’ll see a window similar to this one:

The Properties window lists all the property settings for the selected button object, named
btnAnswer. Property names are listed in nested groups, and the default view displays the
properties alphabetically by category. (Brush is first, Appearance is second, Common is third,
and so on.) When you expand the property groups, the property names are generally listed
on the left side, and the property settings are listed on the right. Some property settings, like
Brush, are made by selecting color values with a design tool, so there are a variety of ways to
set properties—not just entering text via the keyboard.

3. In the Common property group (containing the most typical properties for a button object),
see that the Content property is set to “Answer.”

“Answer” is the text that currently appears on the page’s main button, and you can change it
to whatever you would like using the Properties window. Add an exclamation point now to the
current value to add a little more emphasis to the button.

4. Click after “Answer” in the Content text box, type an exclamation mark (!), and then press
Enter.

The Content property setting is changed to “Answer!” in three places: within the Proper-
ties window, on the page in the Designer window, and within the XAML markup in the Code
Editor.

Note that instead of pressing the Enter key to change a property setting, you can simply click
another location in the Properties window. (Click in another text box, for example.) Just don’t
inadvertently adjust another property setting by clicking around.

 CHAPTER 1 Getting to Know Visual Basic 2012 21

Now you’ll change the font style of the text block object to bold and italic. The text block
object currently contains the text “World Capitals.”

5. Click the “World Capitals” text block object on the page. A text block object is an excellent
way to display descriptive text on a page.

6. In the Properties window, click the Text property group (not the Text property in the Common
group that is currently visible).

7. Click the Bold button to change the font weight to bold.

8. Click the Italic button to change the font style to italic.

Visual Studio records your changes and adjusts the property settings accordingly. Your screen
should look like this:

Congratulations—you’ve just updated three properties! As you design your programs, you’ll have
numerous font, color, and style options to choose from. And you’ve just learned how to use the Prop-
erties window—one of the important skills in becoming a Visual Basic programmer.

22 Start here! Learn Microsoft Visual Basic 2012

thinking about properties
In Visual Basic, each user interface element in a program (including the page itself) has a set
of definable properties. You can set properties at design time by using the Properties window,
or by editing properties in the XAML markup for the page that defines one part the program’s
user interface. Properties can also be set or referenced in Visual Basic code to make changes to
program elements while the application runs. (User interface elements that receive input often
use properties to receive information into the program.) At first, you might find properties a
difficult concept to grasp. Viewing them in terms of something from everyday life can help.

Consider this bicycle analogy: a bicycle is an object you use to ride from one place to
another. Because a bicycle is a physical object, it has several inherent characteristics. It has a
brand name, a color, gears, brakes, and wheels, and it’s built in a particular style. (It might be
a road bike, a mountain bike, or a tandem bike.) In Visual Basic terminology, these character-
istics are properties of the bicycle object. Most of the bicycle’s properties were defined when
the bicycle was built. But others (tires, travel speed, and options such as reflectors and mirrors)
are properties that change while the bicycle is used. The bike might even have intangible (that
is, invisible) properties, such as manufacture date, current owner, value, or rental status. And
to add a little more complexity, a company or shop might own one bicycle or (the more likely
scenario) an entire fleet of bicycles, all with different properties. As you work with Visual Basic,
you’ll set the properties of a variety of objects, and you’ll organize them in very useful ways.
Working with properties is a fundamental task in object-oriented programming.

Moving and Resizing the Programming Tools

With numerous programming tools to contend with on the screen, the Visual Studio IDE can become
a pretty busy place. To give you complete control over the shape and size of the elements in the de-
velopment environment, Visual Studio lets you move, resize, dock, and autohide most of the interface
elements that you use to build programs.

To move one of the tool windows in Visual Studio, simply click its title bar and drag the window to
a new location. If you position the window somewhere in the middle of the IDE and let go, it will float
over the surface of Visual Studio, unattached to other tool windows. If you drag a window along the
edge of another window, it attaches to that window, or docks itself. Dockable windows are advanta-
geous because they always remain visible. (They don’t become hidden behind other windows.) If you
want to see more of a docked window, simply drag one of its borders to view more content.

If you want to completely close a window, click the Close button in the upper-right corner of the
window. You can always open the window again later by clicking the appropriate command on the
View menu.

 CHAPTER 1 Getting to Know Visual Basic 2012 23

If you want an option somewhere between docking and closing a window, you might try autohid-
ing a tool window at the side, top, or bottom of the Visual Studio IDE by clicking the tiny Auto Hide
pushpin button on the right side of the tool’s title bar. This action removes the window from the
docked position and places the title of the tool at the edge of the development environment on an
unobtrusive tab. When you autohide a window, you’ll notice that the tool window remains visible as
long as you keep the mouse pointer in the area of the window. When you click another part of the
IDE, the window slides out of view.

To restore a window that you have autohidden, click the tool tab at the edge of the development
environment. (You can recognize a window that is autohidden because the pushpin in its title bar is
pointing sideways.) By clicking the tool tab repeatedly at the edge of the IDE, you can use the tools in
what I call peekaboo mode—in other words, to quickly display an autohidden window, click its tab,
check or set the information you need, and then click its tab again to make it disappear. If you ever
need the tool displayed permanently, click the Auto Hide pushpin button again so that the point of
the pushpin faces down, and the window then remains visible.

A useful capability of Visual Studio is also the ability to dock windows as tabbed documents (win-
dows with tab handles that partially hide behind other windows). You can also manually dock tool
windows where you would like by dragging the windows and using the docking guides that appear as
tiny squares on the perimeter of the IDE. A centrally located guide diamond will also help you manu-
ally dock tool windows by giving you a preview of where the windows will go.

24 Start here! Learn Microsoft Visual Basic 2012

The docking guides are changeable icons that appear on the surface of the IDE when you move
a window or tool from a docked position to a new location. Because the docking guides are associ-
ated with shaded, rectangular areas of the IDE, you can preview the results of your docking maneu-
ver before you actually make it. Your window orientation changes will not stick until you release the
mouse button.

Since docking and auto-hiding techniques take some practice to master, I recommend that you
use the following exercises to experiment with the window-management features of the IDE. After
you complete the exercises here, feel free to configure the Visual Studio tools in a way that seems
comfortable for you.

Moving and resizing tool Windows
To move and resize one of the programming tool windows in Visual Studio, follow these steps. This
exercise demonstrates how to manipulate the Properties window, but you can work with a different
tool window if you want to.

Move and resize the properties window

1. If the Properties window isn’t visible in the IDE, click Properties Window on the View menu.

This will activate the Properties window is in the IDE and highlight its title bar.

2. Click the Window Position toolbar menu button (the small arrow icon) on the Properties win-
dow title bar, and then click Float to display the window as a floating (undocked) window.

3. Using the Properties window title bar, drag the window to a new location in the development
environment, but don’t dock it.

Moving windows around the Visual Studio IDE gives you some flexibility with the tools and the
look of your development environment.

Now you’ll resize the Properties window to see more object property settings at once.

4. Point to the lower-right corner of the Properties window until the pointer changes to a
double-headed arrow (the resizing pointer). Then drag the lower-right border of the window
down and to the right to enlarge the window.

 CHAPTER 1 Getting to Know Visual Basic 2012 25

You can work more quickly and with more clarity of purpose in a bigger window. Feel free to
move or resize a window when you need to see more of its contents.

Docking tool Windows
If a tool window is floating over the development environment, you can move it to a new place by
dragging the window to the handy docking guides. You can also maximize a floating tool window by
double-clicking its title bar. (If you double-click the title bar again, it will return to its original shape.)
Try docking the Properties window in a different location now.

Dock the properties window

1. Verify that the Properties window (or another tool that you want to dock) is floating over the
Visual Studio IDE in an undocked position.

If you completed the previous exercise, the Properties window should be undocked now.

2. Drag the title bar of the Properties window to the top, bottom, right, or left edge of the de-
velopment environment (your choice), taking care to drag the mouse pointer over one of the
docking guides (small squares with arrows) on the perimeter of the Visual Studio IDE, or one
of the centrally located rectangles in a tight pattern, called collectively a guide diamond.

As you move the mouse over a docking guide, a blue, shaded rectangle representing the
Properties window snaps into place, giving you an indication of how your window will appear
when you release the mouse button. Note that there are several valid docking locations for

26 Start here! Learn Microsoft Visual Basic 2012

tool windows in Visual Studio, so you might want to try two or three different spots until you
find one that looks right to you. (A window should be located in a place that’s handy and not
in the way of other needed tools.)

3. Release the mouse button to dock the Properties window, and the window should snap into
place in its new home.

tip To switch between dockable, tabbed document, hidden, and floating styles,
right-click the window’s title bar (or tab, if it is a tabbed document), and then click
the option you want. Although the Properties window works very well as a dockable
window, you’ll probably find that larger windows work best as tabbed document
windows.

4. Try docking the Properties window several more times in different places to get the feel of
how docking works.

I guarantee that although a few of these window procedures may seem confusing at first, after
a while they’ll become routine for you. In general, you want to create window spaces that have
enough room for the information you need to see and use while you work on more important
tasks in the Designer window and in the Code Editor.

 CHAPTER 1 Getting to Know Visual Basic 2012 27

hiding tool Windows
To hide a tool window, click the Auto Hide pushpin button on the right side of the title bar to conceal
the window beneath a tool tab on the edge of the IDE, and click it again to restore the window to its
docked position. You can also use the Auto Hide command on the Window menu (or right-click a title
bar and select Auto Hide) to autohide a tool window. Give it a try now.

 Use the auto hide feature

1. Locate the Auto Hide pushpin button on the title bar of the Properties window.

The pushpin is currently in the down, or pushed-in, position, meaning that the Properties win-
dow is “pinned” open and autohide is disabled.

2. Click the Auto Hide button on the Properties window title bar.

The Properties window will slide off the screen and be replaced by a small tab named
Properties.

The benefit of enabling autohide, of course, is that it frees up additional work space in Visual
Studio while keeping the hidden window quickly accessible.

3. Click the Properties tab.

The Properties window should immediately reappear.

4. Click the mouse elsewhere within the IDE.

The window disappears again.

5. Finally, display the Properties window again, and then click the pushpin button on the Proper-
ties window title bar.

The Properties window returns to its familiar docked position, and you can use it without wor-
rying about it sliding away.

Spend some time moving, resizing, docking, and autohiding tool windows in Visual Studio
now to create your version of the perfect work environment. As you work through this book,
you’ll want to adjust your window settings periodically to adapt your work area to the new
tools you’re using.

tip Visual Studio lets you save your window and programming environment set-
tings and copy them to a second computer or share them with members of your
programming team. To experiment with this feature, click the Import And Export
Settings command on the Tools menu and follow the wizard instructions to export
(save) or import (load) settings from a file.

28 Start here! Learn Microsoft Visual Basic 2012

Switching among Open Files and Tools Using the IDE Navigator

Visual Studio has a feature that makes it even easier to switch among open files and program-
ming tools in the development environment. This feature is called the IDE Navigator, and it lets you
cycle through open files and tools by using key combinations, in much the same way that you cycle
through open programs on the Windows taskbar. This feature is especially useful when you have a lot
of files open in the IDE. Give it a try now.

Use the IDe Navigator

1. Hold down the Ctrl key and press Tab to open the IDE Navigator.

The IDE Navigator opens and displays the active (open) files and tools in the IDE. Your screen
will look similar to the following:

2. While holding down the Ctrl key, press Tab repeatedly to cycle through the active files until
the file you want is highlighted.

To cycle through the files in the reverse direction, hold down Ctrl+Shift and press Tab.

3. While holding down the Ctrl key, use the arrow keys to cycle through both the active files and
the active tools. You can also select an active file (or tool) by clicking its name.

4. When you’re finished with the IDE Navigator, release the Ctrl key.

The last selected item in the IDE Navigator will become active.

 CHAPTER 1 Getting to Know Visual Basic 2012 29

Opening a Web Browser Within Visual Studio

A handy feature in Visual Studio is the ability to open a simple web browser within the development
environment. The browser appears as a tabbed document window in the IDE, so it takes up little
space but can be opened immediately when needed. You could open a stand-alone web browser
(such as Internet Explorer) and keep it nearby on the Windows taskbar, but running a web browser
within Visual Studio makes examining web sites and copying data into Visual Studio even easier. Try
using the Visual Studio web browser now.

Open the Visual Studio web browser

1. Click the Other Windows submenu on the View menu and then click the Web Browser
command.

The Web Browser window appears, as shown here:

The browser is a tabbed document window by default, but you can change it to the float posi-
tion by right-clicking the window title bar and then clicking the Float command.

30 Start here! Learn Microsoft Visual Basic 2012

tip You can change the default page that appears in the Web Browser window
by changing the setting in the Options dialog box. Open the Options dialog box
by clicking Options on the Tools menu. Expand Environment, and then click Web
Browser. Change the Home Page setting to a URL you want for the default page.

2. Experiment with the browser and how it functions within the IDE.

Although the browser is more basic than Internet Explorer or another full-featured browser,
you may find it a useful addition to the Visual Studio tool collection. You can also open and
run Internet Explorer (or another browser) directly from the Windows taskbar.

3. When you’re finished, click the Close button on the right side of the web browser title bar to
close the window.

Customizing IDE Settings to Match This Book’s Exercises

Like the tool windows and other environment settings within the IDE, the compiler and personal
settings within Visual Studio are highly customizable. It is important to review a few of these settings
now so that your version of Visual Studio is configured in a way that is compatible with the step-by-
step programming exercises that follow. You will also learn how to customize Visual Studio generally
so that as you gain programming experience, you can set up Visual Studio in the way that is most
productive for you.

Checking project and Compiler Settings
If you just installed Visual Studio, you are ready to start this book’s programming exercises. But if your
installation of Visual Studio has been on your machine for a while, or if your computer is a shared
resource used by other programmers who might have modified the default settings (perhaps in a
college computer lab), complete the following steps to verify that your settings related to projects,
solutions, and the compiler match those that I use in the book.

Check project and compiler settings

1. Click the Options command on the Tools menu to display the Options dialog box.

The Options dialog box is your window to many of the customizable settings within Visual
Studio. To assist you in finding the settings that you want to change, Visual Studio organizes
the settings by category.

 CHAPTER 1 Getting to Know Visual Basic 2012 31

2. Expand the Projects And Solutions category and then click the General item within it.

This group of check boxes and options configures the Visual Studio project and solution
settings.

3. So that your software matches the settings used in this book, adjust your settings to match
those shown in the following dialog box:

In particular, I recommend that you clear the check marks (if you see them) from the Always
Show Solution and Save New Projects When Created check boxes. The first option shows ad-
ditional solution commands in the IDE, which is not necessary for solutions that contain only
one project (the situation for most programs in this book). The second option causes Visual
Studio to postpone saving your project until you click the Save All command on the File menu
and provide a location for saving the file. This delayed-save feature allows you to create a test
program, compile and debug the program, and even run it without actually saving the project
on disk—a useful feature when you want to create a quick test program that you might want
to discard instead of saving. (An equivalent situation in word-processing terms is when you
open a new Word document, enter an address for a mailing label, print the address, and then
exit Word without saving the file.) With this default setting, the exercises in this book prompt
you to save your projects after you create them, although you can also save your projects in
advance by selecting the Save New Projects When Created check box.

You’ll also notice that I have browsed to the location of the book’s sample files (Start Here!
Programming in Visual Basic) in the top text box on the form to indicate the default location
for this book’s sample files. Most of the projects that you create will be stored in this folder,

32 Start here! Learn Microsoft Visual Basic 2012

and they will have a “My” prefix to distinguish them from the completed project I provide for
you to examine. (Be sure to change this path to the location of the book’s sample files on your
computer.)

After you have adjusted these settings, you’re ready to check the Visual Basic compiler
settings.

4. Click the VB Defaults item in the expanded Projects And Solutions section.

Visual Studio displays a list of four compiler settings: Option Explicit, Option Strict, Option
Compare, and Option Infer. Your screen looks like this:

Although a detailed description of these settings is beyond the scope of this chapter, you’ll
want to verify that Option Explicit is set to On and Option Strict is set to Off—the default
settings for Visual Basic programming within Visual Studio. Option Explicit On is a setting that
requires you to declare a variable before using it in a program—a very good programming
practice that I want to encourage. Option Strict Off allows variables and objects of different
types to be combined under certain circumstances without generating a compiler error. (For
example, a number can be assigned to a text box object without error.) Although this is a
potentially worrisome programming practice, Option Strict Off is a useful setting for certain
types of demonstration programs.

 CHAPTER 1 Getting to Know Visual Basic 2012 33

Option Compare determines the comparison method when different text strings are com-
pared and sorted. For more information about comparing strings and sorting text, see
Chapter 10, "Managing Data with Arrays and LINQ.”

Option Infer was a new setting in Visual Basic 2008. When you set Option Strict to Off and
Option Infer to On, you can declare variables without explicitly stating a data type. Or rather,
if you make such a declaration, the Visual Basic compiler will infer (or take an educated guess
about) the data type based on the initial assignment you made for the variable. You’ll learn
more about the feature in Chapter 6, “Visual Basic Language Elements.”

As a general rule, I recommend that you set Option Infer to Off to avoid unexpected results in
how variables are used in your programs. I have set Option Infer to Off in most of the sample
projects included in the sample files.

Feel free to examine additional settings in the Options dialog box related to your programming
environment and Visual Studio. When you’re finished, click OK to close the Options dialog box.

You’re ready to exit Visual Studio and start programming.

Exiting Visual Studio

When you’re finished using Visual Studio for the day, save any projects that are open and close the
development environment. Give it a try.

exit Visual Studio

1. Save any changes you’ve made to your program by clicking the Save All button on the Stan-
dard toolbar.

You’ve made a few changes to your project, so you should save your changes now.

2. On the File menu, click the Exit command.

The Visual Studio program closes. You are now ready to create your first program from scratch
in Chapter 2.

Summary

Each chapter in this book concludes with a Summary section that offers a review of what the chapter
has presented. You can use these sections to quickly recap what you have learned in each chapter
before you move on to the one that follows.

34 Start here! Learn Microsoft Visual Basic 2012

This chapter introduced you to Visual Studio 2012 Express for Windows 8 and the IDE that you use
to open and run Visual Basic programs. You can create Windows 8 apps by opening a new or exist-
ing solution in Visual Studio, and then adding to the solution with the assorted programming tools
provided by the product. In this chapter, you learned how to display the user interface of a Visual
Basic program, how to examine the objects on a page, and how to change property settings with the
Properties window.

As you toured the Visual Studio IDE, you learned how to use menu commands, how to open and
run a program, how to examine XAML markup for a page in the Code Editor, and how to move im-
portant tool windows around the IDE. You also learned how to customize settings in Visual Studio by
using the Options command on the Tools menu.

The Visual Studio IDE is a busy place, with many more commands and features than this chapter
covered. However, as you continue reading this book, you will be introduced to the most important
programming tools and techniques one step at a time. Although you worked with a very simple
Windows 8 application in this chapter, Visual Studio is capable of creating a variety of powerful
programs for a number of different hardware environments or platforms. These platforms include
Windows 8 and earlier operating systems, Windows Phone, web applications for numerous brows-
ers, Xbox system games, and Windows Azure (cloud-computing) web servers. By learning Visual
Basic 2012, you will be well positioned to benefit from many of the most exciting technologies in the
marketplace.

 35

Chapter 2

Creating Your First
Windows 8 application

after completing this chapter, you’ll be able to

■■ Create the user interface for a Windows 8 application.

■■ Add XAML controls to a page.

■■ Move and resize objects on a page.

■■ Set the properties for objects in the user interface.

■■ Write Visual Basic program code for an event handler.

■■ Save, run, and test a program.

■■ Build an executable file and deploy the application.

Chapter 1, “GettING tO KNOW VISUaL BaSIC 2012,” introduced you to Microsoft Visual Studio
2012 and the development tools that you can use to build Microsoft Visual Basic applications. In this
chapter, you’ll learn how to create your first Windows 8 application from scratch. The program will
be a simple Internet-browsing tool that displays active webpage content in a window and also keeps
track of the web addresses that you use as you run the program.

Although the project itself is quite basic, it will teach you essential programming techniques that
you will use each time that you write a program. You will create a basic user interface with XAML con-
trols, adjust property settings for the controls, and add Visual Basic program code to create an event
handler. Along the way, you’ll learn how to use the Visual Studio Toolbox, how to use the Button,
TextBox, and WebView controls, and how to use the Code Editor to create a Visual Basic code-behind
file for the user interface. You’ll also learn how to run and test a program, how to save your changes,
and how to deploy an application so that it is ready to use on your computer.

36 Start here! Learn Microsoft Visual Basic 2012

Web List: Your First Visual Basic Program

The Windows 8 application that you are going to create is Web List, a program that displays live
webpage content and also keeps track of the web sites that you visit in a text box. The tool allows you
to rapidly examine and record a list of favorite web sites, and it also shows you how to view web site
information directly on the home page of an application. Here’s what the Web List program will look
like when it’s finished:

The Web List user interface contains one button, two text boxes, and a web browser window that
allows you to examine the live contents of any web site you wish. I produced these elements by creat-
ing four objects on the Web List application page and then changing several properties for each ob-
ject. After I designed the user interface, I used Visual Basic program code to create an event handler
for the Visit Web Site button, which executes when the user types a web address in the first text box
and clicks the Visit Web Site button. To re-create Web List, you’ll follow three essential programming
steps in Visual Studio: creating the user interface, setting the properties, and writing the Visual Basic
program code. The following list outlines the development process for Web List:

1. Create the user interface (requires four objects).

2. Set the properties (requires nine properties).

3. Write the program code (requires one object).

 CHAPTER 2 Creating Your First Windows 8 Application 37

Creating the User Interface

In this exercise, you’ll start building Web List by creating a new project and then using XAML Toolbox
controls to construct the user interface.

Create a new project

1. Start Visual Studio 2012.

2. On the Visual Studio File menu, click New Project.

tip You can also start a new programming project by clicking the New Project
link on the Visual Studio Start page. (The link is formatted in blue in most
configurations.)

The New Project dialog box opens, as shown here:

38 Start here! Learn Microsoft Visual Basic 2012

The New Project dialog box provides access to the major project types available for writing
Windows 8 applications, which are also called Windows Store apps. Since the most recent
selection I made in this dialog box was Visual Basic, the Visual Basic templates are currently
visible, but other programming templates and resources are also available, including those for
Microsoft Visual C#, Microsoft Visual C++, and JavaScript.

3. In the Visual Basic template group, click the Blank App (XAML) project.

Visual Studio prepares the development environment for a basic Windows 8 application with
no predefined controls or layout.

4. In the Name text box, type My Web List.

Visual Studio assigns the name My Web List to your project. (You’ll specify a folder location
for the project later.) I’m recommending the “My” prefix here so you don’t confuse your new
application with the Web List project I’ve created for you on disk.

tip If your New Project dialog box contains Location and Solution Name text boxes,
you need to specify a folder location and solution name for your new program-
ming project now. The presence of these text boxes is controlled by a check box in
the Project And Solutions category of the Options dialog box, but it may not be the
default setting. (You display this dialog box by clicking the Options command on
the Tools menu.) Throughout this book, you will be instructed to save your projects
(or discard them) after you have completed the programming exercise. For more
information about this delayed-saving feature and default settings, see the section
entitled “Customizing IDE Settings to Match this Book’s Exercises” in Chapter 1.

5. Click OK to create the new project in Visual Studio.

Visual Studio cleans the slate for a new programming project and displays Visual Basic code
associated with the blank application template in the IDE. Your screen will look like this:

 CHAPTER 2 Creating Your First Windows 8 Application 39

You won’t spend too much time with this code right now. What you see is standard start-up code
for a Windows 8 application created within Visual Studio, and it is stored in the file App.xaml.vb within
the project. Although each project contains an App.xaml file, your work today will begin in the appli-
cation’s user interface, which is stored in the MainPage.xaml file. You’ll display that user interface now
and enhance it with Toolbox controls.

Create a user interface

1. Open Solution Explorer if it is not currently visible, and then double-click the file
MainPage.xaml.

Visual Studio opens MainPage.xaml in a Designer window and shows the upper-left corner
of the application’s main page. Below this page, you’ll see the Code Editor with several lines
of XAML markup associated with the user interface page in the Designer window. As you add
controls to the application page in the Designer window, the Code Editor reflects the changes
by displaying the XAML statements that will create the user interface. Your screen should look
like this:

40 Start here! Learn Microsoft Visual Basic 2012

Now let’s get to know the Designer window a bit better.

2. Click the scroll box in the Designer window’s vertical scroll bar and drag it down.

When you drag a scroll box in the Designer window, you can see more of the user interface
you are working on.

3. Click the scroll box on the Designer window’s horizontal scroll bar and drag it right. (Likewise,
when you drag a horizontal scroll box, you can see hidden parts of the user interface.)

Near the lower-left corner of the Designer window, you’ll see a Zoom tool, which allows you
to zoom in on the current application page (to see more detail) or zoom out (to see more
of the page). The current value of the Zoom tool is 100%. You can select a different value by
clicking the Zoom tool’s drop-down button.

4. Click the Zoom drop-down button and then click Fit All.

The entire application page now fits within the Designer window. Depending on your screen
resolution and the amount of screen space you have designated for the other IDE tools, you’ll
see a somewhat smaller version of the page.

tip If your mouse has a mouse wheel, you can move quickly from one zoom setting
to the next by holding down the Ctrl key and rotating the mouse wheel. This feature
works whenever the Designer window is active.

 CHAPTER 2 Creating Your First Windows 8 Application 41

It is important to be able to quickly view different parts of the application page in different
sizes while you build it. Sometimes you want to see the entire page to consider the layout of
controls or other elements, and sometimes you need to view portions of the page up close.
Now return to the original setting.

5. Click the Zoom drop-down button, and then click 100%.

Now you’ll open the Toolbox.

6. If the Toolbox is not currently visible, click the Toolbox tab or click the Toolbox command on
the View menu.

The Toolbox window contains a large collection of user interface controls that you can add to
your application. Because you are building an application for Windows 8, the types of controls
that are displayed in the Toolbox are so-called XAML controls—that is, structured elements
that control the design of an application and can be successfully organized on a page by the
XAML parser within Visual Studio. There are other types of Toolbox controls for other types
of applications (Windows forms controls, HTML controls for web applications, and so on), but
you don’t have to worry about that now—Visual Studio automatically loads the proper con-
trols into the Toolbox when you open a new solution.

Your screen should look like this:

For convenience, the Toolbox controls have been organized into two groups: Common XAML
Controls (those controls that appear in many applications), and All XAML Controls (a list of all

42 Start here! Learn Microsoft Visual Basic 2012

the XAML controls that are currently installed on your system). Keep in mind that the Toolbox
window is like any other tool window in the Visual Studio IDE. You can move it, resize it, or pin
it as needed. Most programmers have the Toolbox open while adding controls to a new page,
and then they pin it to the side of the IDE, as you’ll do in the following step.

Next, you’ll practice adding a text box object to the page.

7. Click the TextBox control in the Toolbox, and then click the Auto Hide button on the Toolbox
title bar to pin the Toolbox to the IDE, if it is not already pinned.

Remember that when you pin a window to the IDE, the Auto Hide pushpin points in the down
direction. Putting the Toolbox in this position will stop it from obscuring any of the Designer
window while you work.

8. Move the mouse pointer to the upper-left corner of the Designer window, and then drag right
and down to create a rectangular-shaped text box object on the page.

When you release the mouse button, Visual Studio creates a XAML text box object on the
page, as shown here. (You may need to reposition the Designer window to see what is shown
in the illustration.)

The text box is currently enclosed with selection handles, indicating that the object is selected
in the IDE. The property settings of the selected object are loaded into the Properties window, and

 CHAPTER 2 Creating Your First Windows 8 Application 43

below in the Code Editor, XAML markup for the text box object appears nested within a grid object.
All Windows 8 app user interfaces created with XAML markup have a grid object as their base layout
element, and the controls that you add to the page appear nested within this main grid.

Move and resize a text box

1. Point to the lower-right corner of the new text box object, click the sizing handle on the cor-
ner of the text box, and drag it to a new location.

As you drag the corner, the text box object will be resized, although the upper-left corner of
the text box will remain in place.

Whenever an object is selected in the Designer window, you can resize it by using the sizing
handles. As you make sizing adjustments, grid lines reveal the dimensions of the object in pix-
els, and you can use the grid lines to create objects of a uniform size, or to align an object with
another object on the page. Your selected text box will also have little locking icons at the
top and left edges of the text box. These locks indicate that the element is locked, or frozen, a
set distance from the edge of the window, but you can adjust this by clicking the locks, which
open and close like a toggle.

2. Click the middle of the text box object and slowly drag it around the application page.

The text box floats around the surface of the page, and the grid lines and sizing information
adjust as you move the object.

It is very simple to move objects on a page in the Designer window. As you make these adjust-
ments, note that your changes are recorded in XAML markup in the Code Editor, as well as in
the Designer window.

3. Position the text box so that it is 40 pixels from the left edge of the page and 24 pixels from
the top edge of the page, and has a height of 32 pixels and a width of 420 pixels.

These dimensions will be fine for the single-line text box that the user will use to enter the
web address (URL) that they want to browse to when the program runs. Your Designer window
should look like this:

Now you’ll add a button object to the page. The Toolbox should currently be visible, since you
pinned it to the IDE.

44 Start here! Learn Microsoft Visual Basic 2012

add a button object

1. Click the Button control in the Toolbox and then move the mouse pointer over the application
page.

The mouse pointer changes to crosshairs and a button icon. The crosshairs are designed to
help you draw the rectangular shape of the button on the page. You can also create a button
with the default size by double-clicking the Button control in the Toolbox.

2. Drag the pointer down and to the right. Release the mouse button to complete the button,
and watch it snap to the page.

3. Resize the button object so that it is 40 pixels high and 140 pixels wide.

tip At any time, you can delete an object and start over again by selecting the ob-
ject on the page and then pressing Delete. Feel free to create and delete objects to
practice creating your user interface.

4. Move the button object so that it is below the text box object. Snap lines will appear as you
move the object, and the right edge of the button will snap to the right edge of the text box
when aligned.

Your screen should look like this:

Now you’ll add a second (larger) text box object to the page. This text box object will contain the
list of web sites that you visited while the Web List program was running.

add a second text box

1. Use the horizontal scroll bar in the Designer window to make the right side of the application
page more visible.

You’re going to add the second text box object to the right side of the application page.

 CHAPTER 2 Creating Your First Windows 8 Application 45

2. Click the TextBox control in the Toolbox, move the mouse to the Designer window, and then
create a second text box object on the page. Make the text box about the same width but
much taller than the first one.

Visual Studio creates a second text box object on the page. Your screen will look like this:

Now you’ll add a large web browser window on the page to display information from the web sites
that you visit. This object is created by using the WebView control in the Toolbox. WebView is not a
full-featured web browser like Internet Explorer. However, it was added to the XAML Toolbox to give
Visual Studio programmers a simple way to display live web information in a Windows 8 application.

add a web view object

1. Click the WebView control in the Toolbox. (You’ll find it in the All XAML Controls section.)

2. Using the drawing pointer for the control, create a very large rectangular box on the page
below the button object and second text box object.

The goal with this object is to display as much of the web browser as possible. However, for
web content that extends beyond the viewing area, the web view object will allow users to
scroll up and down to see more information.

3. After you create the object, you may wish to close the Toolbox window or adjust the amount
of zoom magnification in the Designer window to make as much of the page visible in the IDE
as possible.

46 Start here! Learn Microsoft Visual Basic 2012

Your final page should look like this in the Designer window:

In my Designer window, the zoom is set to Fit All (about 40 percent) so that I can see the entire
application page. Also note how the Code Editor now shows XAML markup for four objects: a text
box, a button, a second text box, and a web browser. Now you’re ready to customize your interface
by setting a few properties.

Setting the Properties

As you discovered in Chapter 1, you can change properties by selecting objects on a page and chang-
ing their settings in the Properties window. You’ll start by changing the property settings for the first
text box.

Set the web address text box

1. Click the first text box you created on the page. The text box object is selected and is sur-
rounded by resize handles.

2. Open the Properties window.

 CHAPTER 2 Creating Your First Windows 8 Application 47

tip If the Properties window isn’t visible, click the Properties Window command on
the View menu, or press Alt+Enter.

3. At the top of the Properties window, click the Name property text box. The Name property
will appear selected in the Properties window. Although not all XAML controls on a page need
a name, you do need to specify one if you plan to use the control in Visual Basic program
code. Setting the Name property for this text box will give you something that you can make
reference to later.

4. Type NewURL and press Enter.

As you name the objects on a page, it is useful to follow some basic naming conventions
that make the objects easy to recognize in your code-behind file. In this case, I’ve speci-
fied NewURL because the object will hold the new web address or URL that the user of the
program wants to browse to. Programmers sometimes name objects according to numeric
patterns as well, such as TextBox1, TextBox2, and so on.

Now you’ll put a sample URL in the text box to show users the pattern that you want them to
follow.

5. In the Common category, click the Text property, type http://www.msn.com, and press
Enter.

The Text property holds the text that is currently displayed in the text box object on the page,
and if you look in the Designer window now, you’ll see that the default text has changed from
“TextBox” to “http://www.msn.com.”

A text box object can contain one or more lines of text. You can modify the text that appears
in a text box by using the Properties window, by directly editing the XAML markup associated
with the text box in the Code Editor, or by modifying the Text property of the text box in the
Visual Basic code-behind file so that the text box changes while the program is running.

The following screen shot shows what the Properties window looks like after you have set the
Name and Text properties. It shows the window slightly expanded and floating over the IDE,
which is probably a good way to use the tool when you first start using it. Once you get the
hang of it, however, you’ll find it easiest to use the Properties window in its docked position.

48 Start here! Learn Microsoft Visual Basic 2012

Now you’ll change the Name property for the second text box object on the page.

6. Click the second text box object, and use the Properties window to change the Name prop-
erty of the text box to AllSites.

You’ll give the larger text box this name because you’ll use it to list all of the web sites that the
user visits while the program runs. The text box should be big enough to list up to a dozen
web sites.

7. Click the Text property for the AllSites text box, delete the text that is there, and then press
Enter.

The Properties window removes “TextBox” from the AllSites text box in the Designer. This is
done to prevent text from being displayed in the text box when the program starts.

8. In the Common category, click the IsReadOnly check box.

You’ll see a check mark in the check box, indicating that the IsReadOnly property has been set
to True. This setting will prevent the user from editing content in the AllSites text box while the
program is running, although they can still copy information from the text box to the Clip-
board by selecting text in the object with the mouse and pressing Ctrl+C.

Now you’ll set a property for the button object in the program.

Set the Content property of the button object

1. Click the button object on the page.

The button will be selected and surrounded by resize handles.

The XAML Button control uses the Content property to store the text that is displayed on a
button, so you’ll edit that property now. The text that is currently displayed is “Button,” but
you’ll change it to “Visit Web Site” to make the element more descriptive.

 CHAPTER 2 Creating Your First Windows 8 Application 49

2. Use the Properties window to change the Content property of the button object to
Visit Web Site.

Once you make the change, the text is updated in the Properties window, in the button object
on the page, and in the XAML markup in the Code Editor.

Now you’ll set a few properties for the web view object in the program.

Set the properties of the web view object

1. Click the web view object on the page.

The XAML WebView control is a no-frills web browser that allows you to quickly display web-
page content in a Windows 8 application. It is useful because you can’t easily start Internet
Explorer or another web browser from within a Windows 8 program.

Adding direct access to the web from a Windows application is an exciting feature. You’ll up-
date the Name property of the web view object now so that you can use this interesting tool
in Visual Basic code.

2. Use the Properties window to change the Name property to WebView1.

tip While you are working with the web view object, you might notice that in the
Designer window, the object displays the following message: “This element is en-
abled only when the application is running.” This means that the web browser will
not work while you are creating your application, so you can’t preview how web
content will appear until you actually run the program. Not to worry—testing how
your program works is part of the overall development process, which I’ll discuss
later in the book.

Now you’ll center the horizontal and vertical alignment of the web content so that the user
can see it clearly within the application window that you have designed.

3. In the Properties window, expand the Layout category and scroll down a bit so that you can
see the HorizontalAlignment and VerticalAlignment properties.

These properties control how content is aligned within the web view object. The default is left
for HorizontalAlignment and top for VerticalAlignment. However, you’ll want to specify center
alignment for both properties. You change these values in the Properties window by click-
ing one of the four alignment buttons, each of which contains a visual representation of the
alignment.

4. Click the center-alignment button for the HorizontalAlignment property.

5. Click the center-alignment button for the VerticalAlignment property.

50 Start here! Learn Microsoft Visual Basic 2012

Your Properties window will look like this:

Congratulations! You are finished setting the properties for the Web List program. Now you’ll write
a few lines of Visual Basic program code to navigate to web sites as needed, and to keep track of the
web sites that the user has visited.

reading properties in tables
In this chapter, you’ve set the properties for the Web List program one step at a time. In future
chapters, the instructions to set properties will be presented in table format unless a setting
is especially tricky. Table 2-1 lists the properties you’ve set so far in the Web List program, as
they will look later in the book. Settings you need to type in are shown in quotation marks.
(““ means that you should delete the text currently in the property setting.) You shouldn’t type
the quotation marks.

TABLE 2-1 Web List Properties

Object Property Setting

Text box 1 Name
Text

NewURL
“http://www.msn.com”

Text box 2 Name
Text
IsReadOnly

AllSites
““
True

Button 1 Caption “Visit Web Site”

Web view Name
HorizontalAlignment
VerticalAlignment

WebView1
Center
Center

 CHAPTER 2 Creating Your First Windows 8 Application 51

Writing the Visual Basic Code

Now you’re ready to write the code for the My Web List program. Because most of the objects you’ve
created already “know” how to work when the program runs, they’re ready to receive input from the
user and process it. The inherent functionality of objects is one of the great strengths of Visual Studio
and Visual Basic—after XAML objects are placed on a page and their properties are set, they’re ready
to run. However, the core of the My Web List program—the code that starts the web browser and
copies each web site that is visited to a text box—is still missing. This computing logic can only be
built into the application by using program statements—code that clearly spells out what the pro-
gram should do at each step of the way. Because the Visit Web Site button drives the program, you’ll
create an event handler that runs, or fires, when the user clicks this button. The event handler will be
created using Visual Basic code in a file that is connected to the page you just built.

In the following steps, you’ll create an event handler for a button click event using the Code Editor.

Use the Code editor to create an event handler

1. In the Designer window, click the button object.

2. Open the Properties window, and next to the Name property text box, click the Event Han-
dlers button (a square button displaying a lightning bolt icon).

A long list of events that the button object can detect fills the Properties window. Typical
events that a button object might respond to include Click (a mouse click), DoubleClick (two
mouse clicks in quick succession), DragOver (an object being dragged over a button), and
Drop (an object being dragged over and dropped on a button). Since Visual Basic is at its core
an event-driven programming language, much of what you do as a software developer is
create user interfaces that respond to various types of input from the user, and then you write
event handlers that manage the input.

Most of the time, you will only need to write event handlers for a few events associated with
the objects in your programs. (The list of events is quite comprehensive, however, to give you
many options.)

To create an event handler for a particular event, you double-click the text box next to the
event in the Properties window. Since you want to load a webpage each time that the user
clicks the button in your program, you’ll write an event handler for the button’s Click event.

3. Double-click the text box next to the Click event in the Properties window.

Visual Studio inserts an event handler named Button_Click_1 in the Click text box, and opens
the MainPage.xaml.vb code-behind file in the Code Editor. Your screen should look like this:

52 Start here! Learn Microsoft Visual Basic 2012

Inside the Code Editor are program statements associated with the MainPage template that
you opened when you started this project. This is Visual Basic program code, and you may
notice right away that some of the code is organized into concise units, known as procedures.
There is a procedure called OnNavigatedTo, and there is a new event handler procedure that
you just created called Button_Click_1.

The Sub and End Sub keywords designate a procedure, and the keywords Protected and
Private indicate how the procedure will be used. You’ll learn more about these keywords later.

When you double-clicked the Click text box in the Properties window, Visual Studio automati-
cally added the first and last lines of the Button_Click_1 event procedure, as the following
code shows:

Private Sub Button_Click_1(sender As Object, e As RoutedEventArgs)

End Sub

The body of a procedure fits between these lines and is executed whenever a user activates
the interface element associated with the procedure. In this case, the event is a mouse click,
but as you’ll see later in the book, it could also be a different type of event. Programmers refer
to this sequence as “triggering an event.”

 CHAPTER 2 Creating Your First Windows 8 Application 53

tip You may also notice lines of text highlighted with green type in the Code Editor.
In the default settings, green type indicates that the text is a comment, or an ex-
planatory note written by the creator of the program, so that it might be better un-
derstood or used by others. The Visual Basic compiler does not execute, or evaluate,
program comments.

4. Type the following program code and press the Enter key after the last line:

WebView1.Navigate(New Uri(NewURL.Text))
AllSites.Text = AllSites.Text & NewURL.Text & vbCrLf

As you enter the program code, Visual Studio formats the text and displays different parts of
the code in color to help you identify the various elements. When you begin to type the name
of an object property, Visual Basic also displays the available properties for the object you’re
using in a list box, so you can double-click the property or keep typing to enter it yourself.

Your screen should now look like this:

If Visual Basic displays an additional error message, you might have misspelled a program
statement. Check the offending line against the text in this book, make the necessary correc-
tion, and continue typing. (You can also delete a line and type it again from scratch.)

54 Start here! Learn Microsoft Visual Basic 2012

Program statements are a little like complete sentences in a human language—statements
can be of varying lengths but must follow the grammatical rules of the language. In Visual
Studio, program statements can be composed of keywords, properties, object names, vari-
ables, numbers, special symbols, and other values. As you enter these items in the Code Editor,
Visual Studio uses a feature known as IntelliSense to help you write the code. With IntelliSense,
as Visual Studio recognizes language elements, it will automatically complete many expressions.

More Info You’ll learn more about Visual Basic language fundamentals in Chapter 6,
“Visual Basic Language Elements.”

5. Click the Save All command on the File menu to save your additions to the program.

The Save All command saves everything in your project—the project file, the pages, the code-
behind files, the assets, the package manifest, and other related components in your applica-
tion. Since this is the first time that you have saved your project, the Save Project dialog box
opens, prompting you for the name and location of the project. (If your copy of Visual Studio
is configured to prompt you for a location when you first create your project, you won’t see
the Save Project dialog box now—Visual Studio just saves your changes.)

6. Browse and select a location for your files.

I recommend that you use the My Documents\Start Here! Programming in Visual Basic\
Chapter 02 folder (the location of the book’s sample files), but the location is up to you. Since
you used the “My” prefix when you originally opened your project, this version won’t over-
write the practice file that I built for you on disk.

7. Clear the Create Directory For Solution check box.

When this check box is selected, it creates a second folder for your program’s solution files,
which is not necessary for solutions that contain only one project (the situation for most pro-
grams in this book).

8. Click Save to save your files.

Notice that the object names in the Code Editor (WebView1, NewURL, and AllSites) are now
displayed in normal type.

tip If you want to save just the item you are currently working on (the page, the
code module, or something else), you can use the Save command on the File menu.
If you want to save the current item with a different name, you can use the Save As
command.

 CHAPTER 2 Creating Your First Windows 8 Application 55

a Look at the Visual Basic Code-Behind File
The Button_Click_1 event handler is executed when the user clicks the Visit Web Site button on
the page. The procedure uses some interesting Visual Basic code, which is worth looking at before
moving on.

The first statement uses the Navigate method of the WebView1 object to load a webpage into the
window you created earlier in this project:

WebView1.Navigate(New Uri(NewURL.Text))

Navigate is a method, or a statement that performs a specific action for an object in your program.
The web view object has numerous methods, but the Navigate method is the one that prompts web
view to load a webpage. Right now, you should notice that the Navigate method is connected to
the WebView1 object by a period (.), which is the same syntax that is used to reference a property in
program code.

In parentheses following the Navigate method is a reference to the text that the user has entered
into the first text box on the page (NewURL). The text is stored in the Text property, and the New
Uri keywords are used to put the user input into a standard format used for web addresses—the
so-called uniform resource indicator (URI) format. Since this is a simple demonstration program, I am
assuming that the user is entering the web address in the proper way. In fact, if an incorrect or badly
formatted web address is entered, the program will not load the webpage and there will be little
indication that something went wrong. This is not what you would do in a commercial application,
of course, and I’ll show you later in the book how to be much more deliberate about handling errors
introduced by the user.

The second statement builds the list of web sites that the user visits while the program runs:

AllSites.Text = AllSites.Text & NewURL.Text & vbCrLf

Each web site is entered through the Text property of the NewURL object. This Text property is
combined with the current contents of the AllSites text box through the string-concatenation opera-
tor (&), which appends each new web site that is entered to the bottom of the list. A line break is added
to the end of each line by the vbCrLf constant. You’ll learn more about the string-concatenation
operator when you learn about how Visual Basic computes mathematical and textual operations in
Chapter 6.

With just two lines of Visual Basic code, your program is complete. Now you are ready to run the
application.

56 Start here! Learn Microsoft Visual Basic 2012

Running Visual Basic Applications

To run a Visual Basic program from the development environment, you can do any of the following:

■■ Click Start Debugging on the Debug menu.

■■ Click the Start Debugging (Local Machine) button on the Standard toolbar.

■■ Press F5.

Try running the My Web List program now. If Visual Studio has difficulty compiling your program
or displays an error message, you might have made a typing mistake or two in your program code.
Try to fix it by comparing the printed version in this book with the one you typed, or load Web List
from this book’s sample files and run it.

tip When you run the My Web List program, you will use the WebView control to
display live information from the Internet in your application. By default, if Visual
Studio encounters any type of error when loading web pages into the WebView
control, it will display an error message in a dialog box entitled “Visual Studio Just-
In-Time Debugger.” If you click “Yes” in this dialog box, you will enter debugging
mode (or break mode) and be able to learn more about the error message. If you
click “No”, you can suppress the error message and keep running the My Web List
program.

Internet script errors can occur for a variety of reasons on the web. Most of these er-
rors are simple warning messages that are not too serious. To suppress Just-In-Time
script debugging for now, while you are still getting your feet wet with Visual Studio,
I recommend that you click Tools | Options | Debugging | Just-In-Time, remove the
check mark from the Script check box, and then click OK. After you complete this
chapter, you can restore this setting.

run the My Web List program

1. Click the Start Debugging button on the Standard toolbar (the green arrow button with the
words “Local Machine” next to it).

The My Web List program will compile and run in the IDE. After a few seconds, the user
interface appears, just as you designed it. The Microsoft MSN web site (http://www.msn.com)
appears in the first text box as a sample web site you can browse to.

2. Click the Visit Web Site button.

The program uses the Navigate method of the WebView1 object to access the site. The web
site appears in the web view object, and the web site URL appears in the second text box on
the page. Your screen will look like this:

 CHAPTER 2 Creating Your First Windows 8 Application 57

3. Enter a new URL in the first text box, such as http://www.plu.edu, and then click Visit
Web Site. (This is the university where I teach, but you can substitute your own favorite web
address.)

4. Visual Basic immediately adds the web site to the list of visited sites and loads the webpage
into the web browser. Keep in mind that the content in the web browser is live—you can click
around within the webpages and move from link to link as you would on a normal webpage.
To see webpage content that is not currently visible, simply press the Down Arrow key or
rotate the mouse wheel.

5. Enter a third URL in the text box, such as http://msdn.microsoft.com, and then click Visit
Web Site.

6. Enter a fourth URL in the text box, such as http://www.microsoftpress.oreilly.com, and
then click Visit Web Site.

58 Start here! Learn Microsoft Visual Basic 2012

Your screen will look like this:

Now that you’ve entered four or five web sites, you can begin to see the value of the web
site address list that is slowly accumulating in the second text box. Visual Basic offers you the
power to track all types of information, including a list of the web sites that you have visited.
If you would like to save the list for future use, simply select the contents of the text box
with your mouse, press Ctrl+C to copy the list to the Clipboard, open an application such as
Notepad or Microsoft Word, and then press Ctrl+V to paste the list into the open document.

When you’re finished experimenting with the Web List program, close the application. You’ve just
tested your first Windows application!

Sample projects on Disk
If you didn’t build the My Web List project from scratch (or if you did build the project and want
to compare what you created to what I built as I wrote the chapter), take a moment to open
and run the completed Web List project now, which is located in the My Documents\Start Here!
Programming in Visual Basic\Chapter 02 folder on your hard disk (the default location for the practice
files for this chapter). If you need a refresher course on opening projects, see the detailed instruc-
tions in Chapter 1. If you are asked if you want to save changes to the My Web List project, be sure
to click Save.

 CHAPTER 2 Creating Your First Windows 8 Application 59

Note The Start Here! programming series is designed to be a hands-on learning experi-
ence, so you will benefit most from building the projects on your own as you read this
book. But after you have completed the projects, it is often a good idea to compare what
you have with the practice file solution that I provide, especially if you run into trouble.
To make this easy, I will give you the name of the solution files on disk before you run the
completed program in most of the exercises that follow.

After you have compared the My Web List project to the Web List solution files on disk, reopen
My Web List and prepare to compile it as an executable file. If you didn’t create My Web List, use the
book’s solution file to complete the exercise.

Building an Executable File and Deploying

Your last task in this chapter is to complete the development process and create an application for
Windows, or an executable file. Windows applications created with Visual Studio have the file name
extension .exe and can be run on any system that contains Windows and the necessary support files.
Visual Studio installs the support files that you need when you deploy a completed project—including
the .NET Framework files—automatically.

Since you are creating an application for the Windows 8 user interface, you will need to deploy this
program on a computer running Windows 8, because your application is designed for that environ-
ment. Chapter 12, “Future Development Opportunities and the Windows Store” introduces you to the
Windows Store, an online purchasing and distribution system that allows Visual Studio programmers
to sell their Windows 8 applications to customers around the world.

Before you prepare your app for the Windows Store, however, you need to know a little more
about programming, and also a little more about how applications are compiled and tested. When
Visual Studio programmers complete the initial design and functionality of their application, they
typically test their program systematically to verify that the code works as expected under a variety
of operating conditions. Often, more than one developer, or tester, is involved in the process, and they
typically use a variety of machines, operating systems, and computing scenarios to test the seawor-
thiness of the application. If you examine the Build, Debug, and Test menus in the Visual Studio IDE,
you’ll begin to see how elaborate this process can actually be.

To assist in the testing and compilation process, Visual Studio allows you to create two types of
executable files for your Windows application project: a debug build and a release build.

Debug builds are created automatically by Visual Studio when you create and test your program.
They are stored in a folder called bin\Debug within your project folder. The debug executable file
contains debugging information that makes the program run slightly slower.

60 Start here! Learn Microsoft Visual Basic 2012

Release builds are optimized executable files stored in the bin\Release folder within your project.
To customize the settings for your release build, you click the [ProjectName] Properties command
on the Project menu, and then click the Compile tab, where you’ll see a list of compilation options
that looks like the following screen. The Solution Configurations drop-down list box on the Standard
Visual Studio toolbar (circled in the following image) indicates whether the executable is a debug
build or a release build. If you change the Solution Configurations setting, the path in the Build Out-
put Path text box will also change.

The process of preparing an executable file for a specific computer is called deploying the ap-
plication. As noted, when you deploy an application with Visual Studio, the IDE handles the process
of copying all the executable and support files that you will need to register the program with the
operating system and run it. Visual Studio allows you to deploy applications locally (on the computer
you are using) or remotely (on a computer attached to the network or Internet).

In the following exercise, you’ll deploy a release build for the My Web List application locally and
create an application icon for the program on the Windows Start page. In Chapter 12, you’ll learn
more about packaging applications that have been tested and prepared for the Windows Store.

 CHAPTER 2 Creating Your First Windows 8 Application 61

Deploy a release build for a Windows 8 application

1. Click the Solution Configurations drop-down list box on the Standard toolbar, and then click
the Release option.

Visual Studio will prepare your project for a release build, with the debugging information
removed. The build output path is set to bin\Release\.

2. On the Build menu, click the Deploy My Web List command.

The Build command creates a bin\Release folder in which to store your project (if the folder
doesn’t already exist) and compiles the source code in your project. The Output window
appears to show you milestones in the assembly and deployment process. The result is an
executable file named My Web List.exe, which Visual Studio registers with the operating sys-
tem on your computer.

Visual Studio deploys the application locally because Local Machine is currently selected
on the toolbar next to the Start button. This is the desired behavior here, but you can also
deploy applications on a remote machine (i.e., a computer attached to yours via a network
or the Internet) by selecting the Remote Machine option. If you select this option, you’ll be
presented with a dialog box asking for more information about the remote connection. Keep
in mind that remote deploying is mostly designed for testing purposes. The best way to install
completed applications via the Internet is through the Windows Store.

When you deploy an application built for the Windows 8 user interface, Windows automati-
cally creates a new program icon for the application on the Start page. You can use this icon
to launch the program whenever you want to run it. Try running My Web List now from the
Windows Start page on your computer.

3. Open the Windows Start page, and browse to the list of applications that are currently in-
stalled. (The most recent applications are typically located on the right side of the Start page.)

62 Start here! Learn Microsoft Visual Basic 2012

My Windows Start page currently looks like this:

4. Click the My Web List application icon.

The My Web List program will load and run in Windows.

5. Test the application again, browsing to several web sites. When you are finished, close the
application.

6. Return to Visual Studio, and close the Output window and the My Web List properties page.
Note that you can view and change compilation options whenever you want—the properties
page is always there.

7. On the File menu, click Exit to close Visual Studio and the My Web List project.

8. Click Save if you are prompted to, and the Visual Studio development environment will close.

Congratulations on completing your first Windows 8 application!

 CHAPTER 2 Creating Your First Windows 8 Application 63

tip Would you like to add to a Visual Basic program after you’ve finished working with
it? Simply restart Visual Studio and check the Recent Projects pane on the Start page. The
last few projects that were open in Visual Studio will be listed there, and you can click the
project and pick up where you left off. If the project is not there (if you worked on it some
time ago), click the Open Project command on the File menu and browse your computer’s
hard disk to find it. Most programmers edit and revise their projects over a period of days,
weeks, and months. It is very simple to add to an existing Visual Basic project or to move
components from one project to the next.

Summary

This chapter described how to create a Windows 8 application by using Visual Studio and the Visual
Basic programming language. The process is very straightforward conceptually. First, you create a
user interface on an application page by using controls from the XAML Toolbox. The XAML Toolbox
offers numerous controls for user interface features that have been optimized for use in Windows 8.
The Designer window allows you to place and resize the controls on the application page so that they
look good and take on the design of the Windows 8 user interface. Once a Toolbox control is placed
on a page, it is referred to as an object.

The next step is adjusting the property settings for one or more objects by using the Proper-
ties window. Before you can adjust the properties for an object, you must select the object in the
Designer window. Once an object is selected, its property settings fill the Properties window, and you
can adjust them by clicking, typing, and selecting values from list boxes. In the Web List project you
created in this chapter, you adjusted property settings for the text box, button, and web view objects.

The third step is creating event handlers for the objects in your program that are manipulated in
some way by the user. Event handlers are written in the Code Editor with Visual Basic program code.
This Visual Basic code, sometimes referred to as a Visual Basic code-behind file, follows the syn-
tax rules of the Visual Basic programming language and connects the developer to the power and
functionality of the Windows operating system. Event handlers and other Visual Basic routines are
considered the core of a Visual Studio program; they process information, calculate values, set object
properties, and use object methods. In the My Web List project, you created the Button_Click_1 event
handler, which opens a webpage and adds the current web site to a text box when the user clicks the
Visit Web Site button.

After the user interface and code-behind file for a project are complete, the application is ready to
be tested against a variety of operating conditions. When you are finished testing your project, you
can deploy it locally or remotely, which involves compiling the project into an executable file and reg-
istering it with the operating system. Finally, you can package your finished application and upload it
to the Windows Store for global sales and distribution, a process that will be discussed more fully in
Chapter 12.

 325

opening using Search tool, 281
overview, 36
permissions for, 297–300
projects, creating, 37–39
reserving names for in Windows Store, 316
running from IDE, 56–58
security for in Windows 8, 297
splash screens for, 292–297
text boxes

adding, 44–45
for web addresses, 46–48
moving and resizing, 43

tile-based layout for, 176–177
tiles for Start Page

adding live content to, 284
dimensions for, 281, 282
matching color to application, 287–288
overview, 280
PNG format, 284

touch input for
built-in for Windows 8, 308
design implications of, 311
resize gesture, 309–310
slide gesture, 309
tap gesture, 308
zoom gesture, 309–310

user interface, creating, 39–42
web view objects

adding, 45–46
properties of, setting, 49–50

App.xaml file, 13, 129, 130–132
App.xaml.vb file, 39, 129–132
Array.Clear() method, 261
Array.Copy() method, 261
Array.Find() method, 261
Array.Reverse() method, 261–263

Index

Symbols
+ (addition) operator, 168, 172
= (assignment operator), 149–150
/> (closing bracket), 128
/ (division) operator, 168, 172
^ (exponentiation) operator, 168, 170–172
\ (integer division) operator, 168, 170, 172
* (multiplication) operator, 168, 172
– (negation) operator, 172
< (opening angle bracket), 128
& (string-concatenation) operator, 55, 168, 170, 198,

260
- (subtraction) operator, 168, 172

A
Abs(n) method, System.Math class, 221
Add Existing Item dialog box, 179
addition operator, 168, 172
Adobe Elements, 292
Adobe Illustrator, 292
advanced operators, 170–171
alphanumeric order for arrays, 261
Always Show Solution check box, 9, 31
animation. See storyboards
Animation workspace. Blend, 108
applications. See also controls; See also Blend for Visual

Studio
button objects

adding, 44
setting Content property for, 48

capabilities for, 297–300
deploying release build for, 61–62
event handlers, creating, 51–54
hierarchical interface for, 300
hub design for, 300

arrays

326 Index

arrays
assigning values to, 256–261
comma-separated values for, 256
declaring, 252–253
defined, 252
dynamic, 253
finding overlapping elements with LINQ

query, 271–274
fixed-size

declaring, 253–254
defined, 253
dimensions for, 253–254

indices for, 254
memory for, 254
methods for, 261–265
querying with LINQ, 267–271
referencing, 254–255
scope for, 252
sorting, 261

Array.Sort() method, 261–263
Artboard, Blend, 102
artwork

folder for, 88
in Blend, 102, 104

Assets folder, 13, 88, 139, 179
Assets panel, 103
assignment operator (=), 149–150
Atan(n) method, System.Math class, 221
attributes. See properties
audience for this book, xiv, xvi
audio, playing using MediaElement control, 87–89
Auto Hide feature, 27
autoplay, forcing, 89
AutoReverse property, 120
Autos window, 237, 241–242, 245

B
Back button in applications, 303
Background property, 134
basic operators, 168–170
Beginning ASP.NET 4.5 in VB, 322
BitmapImage data type, 185
Blend for Visual Studio

behaviors missing from, 115
benefits of, 98–99
design tools in IDE of, 102–103
event handlers in

editing to reverse animation, 120–121

opening and running, 117–120
startup, creating for main page, 121–123

opening project in, 99–101
overview, 97
storyboards

creating, 108–113
running and testing, 113–115

using XAML with
adjusting project settings, 115–117
controls, 103–107

boilerplate (blank) tile, 291
book resources, 321–323
Boolean data type, 159
Boolean IsMuted property, 91
borders, 70
braces, using for arrays, 256
breakpoints, 248–249
browser. See web browser
Brunetti, Roberto, 321
Brush category, 68
Build command, 61
Build Windows 8 Apps with Microsoft Visual C# and

Visual Basic Step by Step, 321
Button_Click_1 event handler, 51–52, 55, 156–157
Button control, 89–92
button objects

adding, 44
Content property, setting, 48–49

Byte data type, 159

C
Canvas control

adding and filling with shapes, 142–145
organizing child elements using, 135

canvas, Microsoft Paint, 283
capabilities, setting for applications, 297–300
Catch clause, of exception handler, 200–203
center-alignment button, 49
certificates, 298
Channel 9 web site, 320
Char data type, 159
CheckBox control, 75–79
checklist for Windows Store apps, 317
classes

namespaces and, 209
objects and, 209
viewing in Object Browser, 211

Clear All DataTips command, 241
Clear() method, Array class, 261

 deployment package manifest

 Index 327

ClearType, 176
Click event, 77–79
closing bracket (/>), 128
closing Visual Studio, 33
Code, 322
code-behind files, 166–168
Code Complete, Second Edition, 322
Code Editor

creating event handler with, 51–54
experimenting with methods in, 261
green type in, 53
XAML markup, viewing in, 14–16

code snippets, 225–231
Code Snippets Manager dialog box, 231
Collapse Pane button, Designer window, 16
collections. See arrays
Color Resources editor, 68–71
color saturation, 68
Colors class, 82
colors of text, 82
color themes, 6
color values, 68–71
comma-separated values for arrays, 256
comments, 53
Common folder, 13
Common property group, 20
company identity and UI design, 300
Compare method, 215
Compare() method, 215
CompareTo() method, 215
compilation, 18
compiler settings, 30–33
conditional expressions, 187–192
constants, 165–168

declarations of, location of, 167
scope of, 165–168
using in code-behind files, 166–168
viewing in Object Browser, 213

Const keyword, 165
Contains method, 218–221
Contains() method, 215
content, displaying in application UI, 300–307
Content property, 20, 48–49, 76, 137
Content.ToString() method, 198
controls

Button control, 89–92
CheckBox control, 75–79
Ellipse control, 66–71
ListBox control, 154, 182

MediaElement control
file formats and, 86–87
overview, 86
playing audio using, 87–89
playing video using, 92–94

overview, 65
PasswordBox control, 154
RadioButton controls, 80–86
TextBlock control, 72–74
TextBox control, 154–157
using in Blend, 103–107

Copy() method, Array class, 261
Cos(n) method, System.Math class, 221
Create Directory For Solution check box, 54
customizing

project and compiler settings, 30–33
settings for release build, 60

D
Dalal, Mamta, 321
Dark color theme, 6
DataModel folder, 302
dataset visualizer, 245
Data Structures and Algorithms Using Visual Basic

.NET, 322
DataTips, 240
data types

chart of, 158
overview, 158
using in code, 159–165

Date check box, 78–79
Date data type, 159
dates, copying to text box, 78
day of week, 192
debugging. See also errors

debugging mode (break mode), 164, 236–242
programs with LINQ data, 273
removing breakpoints, 248–249
using Immediate window, 246–248
using visualizers, 245–246
using Watch window, 242–244
with Stop statement, 273

Decimal data type, 159
delayed-save feature, 31
deleting objects, 44
deploying release build, 61–62
deployment package manifest, 13

Designer window

328 Index

Designer window, 12–16
moving objects on page in, 43
resizing objects selected in, 43

Design tab, Designer window, 16
Design workspace, Blend, 108
developer account for Windows Store, 316
development environment. See Visual Studio IDE
development opportunities, 2–4
dimensions

for application tiles, 282
for fixed-size arrays, 253–254
for splash screens, 292

Dim statement, 149–151, 265
division operator, 168, 172
docking tool windows, 25–27
documentation, 261
Document Outline button, Designer window, 16
Documents Library, allowing access to, 298–299
Double data type, 158, 160, 166, 170
double-precision floating-point values, 160
Do...While loop, 225–231
downloading Visual Studio Express 2012, 5

E
Elements, Adobe, 292
elements, in arrays, 255
Ellipse control, 66–71
End Select keywords, 185
EndsWith() method, 216
errors. See also debugging

exception handlers for, 200–205, 235
finding, 83
logic errors

defined, 234
identifying, 235–236

run-time errors, 234–235
syntax errors, 234–235
types of, 234–235

Essential Windows Phone 7.5: Application
Development with Silverlight, 321

Event Handler button, 76, 184
event handlers

creating, 51–54, 77
customizing, 19
defined, 19, 77
for radio buttons, 84–85
for toggle button object, 139–142

in Blend
creating startup event handler for main

page, 121–123
editing to reverse animation, 120–121
editing with Visual Studio, 116
opening and running, 117–120

making constants available to all on page, 165
using variables in, 150–153

Event Handlers button, 19
exception handlers, 200–205, 235
Exception object, 200
exceptions. See errors
Expand Pane button, Designer window, 16
Expand To See Comments button, 240
Exp(n) method, System.Math class, 221
exponentiation operator, 168, 170–172
Export DataTips command, 241
Extensible Application Markup Language. See XAML
Extensible Markup Language. See XML

F
feature overload, 12
files, switching among open, 28
Fill command, Microsoft Paint, 286
Finally clause, 200
Find() method, Array class, 261
fixed-size arrays

declaring, 253–254
defined, 253
dimensions for, 253–254

Float command, 29
folders, project, 8
fonts, 176, 183
Font Size text box, 73
For Each...Next loop, 192–193, 269
Foreground property, 82
formulas, 173
For...Next loop, 192–195
free trial period for applications, 317
From keyword, 266
Fun with Variables page, 150–153

G
Ghoda, Ashish, 321
gradient brush color pattern, 70–71
green type, in Code Editor, 53
Grid App (XAML) template, 300–307

 locking icons

 Index 329

Grid element, 134–135
grid lines, 43, 282
Grid object, Blend, 102
GroupDetailPage.xaml, 303
GroupedItemsPage.xaml, 302
GroupName property, 81

H
Halvorson, Michael, 321
hexadecimal color value, 69
hiding tools, 12
hierarchical interface, 300
history of Visual Basic, 2
HorizontalAlignment property, 49
Horizontal Split window, Designer window, 16
Howard, Michael, 322
HTML

and XAML, 127
visualizers for, 245

hub design, 300
hue, 68
HyperText Markup Language. See HTML

I
IDE. See Visual Studio IDE
IDE Navigator, 28
If...Then...Else statement

adding, 189–192
overview, 187–189

If...Then... statement, 192
Illustrator, Adobe, 292
Immediate window, 246–248
Import And Export Settings command, Tools

menu, 27
Import DataTips command, 241
Imports statement, 82–83, 208
IndexOf() method, 215
IndexOutOfRangeException error, 255
indices for arrays, 254
inheritance, 209
Insert() method, 215
Insert Snippet command, 225–231
Insert Snippet list box, 226
installing Visual Studio Express 2012, 5–6
Integer data type, 158, 160
integer division operator, 168, 170, 172

Integrated Development Environment. See Visual
Studio IDE

IntelliSense, 54, 135, 261, 267
Internet, allowing access to, 298
IsChecked property, 78, 137
IsLooping property, 89
IsReadOnly property, 48
ItemDetailPage.xaml, 306

J
jagged lines, 151, 235

K
keyframes, 112
Kosinaska, Elena, 322

L
Language-Integrated Query. See LINQ
layout, tile-based

overview, 176–177
with XAML markup, 178–184

LeBlanc, David, 322
Leeds, Chris, 322
Length property, 215
Light color theme, 6
LINQ

debugging programs containing, 273
defined, 265
ease of use, 265
finding overlapping array elements with, 271–274
From keyword, 266
querying array with, 267–271
querying XML documents with, 275–277
Select keyword, 266
using Dim keyword for queries, 265
using For Each...Next loop with, 269
Where keyword, 266

ListBox control, 154, 182, 184–187
ListBoxItem data type, 196
listboxPhotos_SelectionChanged event handler, 184,

198
local machine, running program on, 17–18
Locals window, 164
location, allowing applications to access, 298
Location text box, 38
locking icons, 43

logic errors

330 Index

logic errors
defined, 234
identifying, 235–236

Long data type, 158, 160

M
MacDonald, Matthew, 322
MainPage class, 166
MainPage.xaml file, 13, 14, 101, 129, 132–135, 287
MainPage.xaml.vb file, 14, 51, 129
MainPage.xml file, 133–135
Manifest Designer, 289, 295, 299
McConnell, Steve, 322
McMillan, Michael, 322
MediaElement control

file formats and, 86–87
overview, 86
playing audio using, 87–89
playing video media using, 92–94

memory
for arrays, 254
variables and, 149

menus in Blend, 102
microphone, allowing access to, 298
Microsoft ADO.NET 4 Programming Step by

Step, 322
Microsoft Developer Network Platforms. See MSDN
Microsoft Expression Blend 4 Step by Step, 322
Microsoft Learning web site, 320
Microsoft Paint

alternatives to, 292
and transparent images, 292
defined, 281
Fill command in, 286
resizing canvas in, 283

Microsoft Visual Basic 2012 Step by Step, 321
Microsoft Visual Studio Developer Center, 319
misspellings, 53
mistakes in programming, 83
Mod operator, 168, 170, 172
moving

text boxes, 43
tool windows, 24–25

MSDN, 261, 304, 320
multidimensional arrays, 256
multi-finger gestures, 309–310
multiplication operator, 168, 172
music. See audio

Music Library, allowing access to, 298
Mute button, 92
My Web List program. See Web List example

program

N
Name property, 19, 47–49, 129
namespaces

defined, 82
of .NET Framework classes, 208–209
use of term, 132
viewing in Object Browser, 212
XAML, 132
XML, 129

naming variables in Visual Basic, 153
Navigate method, 55–56
navigation, and UI design, 300
near-field communication, allowing application

access to, 298
negation operator, 172
.NET Framework

class libraries in, 208
Object Browser, 210–214
object-oriented, 209
System.String methods

chart of, 215–216
overview, 214–215
processing text with, 216–218
searching string for pattern, 219–221

New keyword, 155
new program icon, 61
New Project dialog box, 37–39
New Project link, Visual Studio Start page, 37
NewURL object, 55
NFC devices, allowing access to, 298

O
Object Browser, in .NET, 210–214
object collections, 196
Object data type, 159, 196
object-oriented, .NET as, 209
objects

classes and, 209
deleting, 44
making constants available to all on page, 165

Objects And Timeline panel, Blend, 108–109

 Properties window

 Index 331

Office applications, 4
OnNavigatedTo event, 121–123
Opacity property, 70
open files, switching between, 28
opening angle bracket (<), 128
opening Visual Basic project, 8–9
operators

advanced, 170–171
basic, 168–170
chart of, 168
order of precedence, 172–173
overview, 168
string concatenation, 260

Option Compare setting, 33
Option Explicit On setting, 32
Option Infer setting, 33
Options dialog box, 30–33
options, for solutions, 9
Option Strict Off setting, 32
Option Strict setting, 163
O’Reilly Media web site for Visual Basic programming

books, 320
Output window, Visual Studio IDE, 18

P
Page element, 133
Paint, Microsoft

alternatives to, 292
and transparent images, 292
defined, 281
Fill command in, 286
resizing canvas in, 283

panels, in Blend, 103
parentheses, in formulas, 173
partial class, 132
PasswordBox control, 154
Path element, 145
Patrick, Tim, 322
Pause method, 90
permissions for applications, 297–300
Petzold, Charles, 322
Pialorsi, Paolo, 321
Pictures Library, allowing access to, 298
pinch gesture, 309–310
platforms, 3–4
playback, 89–92
Play method, 90
PNG format, 284

point size, of text, 72–73
Position property, 89
price tiers in Windows Store, 315
pricing in Windows Store, 315
product configurations of Visual Basic 2012, 2
Professional Visual Basic 2012 and .NET 4.5, 321
programmers. See Visual Basic programmers
Programming Microsoft LINQ in Microsoft .NET

Framework 4, 322
programming mistakes. See errors
project file (.vbproj), 9
projects

creating, 37–39
opening, 8–9
saving everything in, 54
settings for, customizing, 30–33
storage locations for, 8
use of term, 9

Projects folder, 8
project templates

avoiding separate pages using, 306
customizing, 300
displaying content in, 300–307

properties
for text box objects, 128
for web adress text box, 46–48
for web view object, 49–50
modifying, 18–21

Properties panel, in Blend, 105–106
Properties window, 18–21

audio, 89
buttons to control playback, 90–92
changing Content property of button object, 49
colors, 68–70
creating event handlers, 51–54
displaying, 47
docking, 25–27
hiding, 27
moving and resizing, 24–25
radio buttons, 81–86
text, 72–74
video media, 93–94
web address text box settings, 46–48
web view object properties, 49–50

RadioButton controls

332 Index

R
RadioButton controls, 80–86
raising to a power, operator for. See exponentiation

operator
random numbers

generating, 224–225
generating set of with Do...While loop, 225–231
overview, 223–224

ready-made code templates, 225–231
Record Keyframe button, 112
referencing arrays, 254–255
Regnicoli, Luca, 321
release build for Windows 8 applications

customizing settings for, 60
deploying, 61–62

remainder division operator, 168, 170, 172
remote machine, deploying applications on, 61
Removable Storage, allowing access to, 298
Remove() method, 215
RenderTransform property, 145
Replace() method, 216
resize gesture, 309–310
resizing

text boxes, 43
tool windows, 24–25

resolution of videos, 93
resources

books, 321–323
videos on web, 320
web sites, 319–320

Reverse() method, Array class, 261–263
reversing animation, 120–121
rotating text block, 73
Rulers in Microsoft Paint, 282
"Running in the Visual Studio title bar" message, 18
run-time errors, 234–235
Russo, Marco, 322

S
Save All command, 54
Save As command, 54
Save command, 54
Save New Projects When Created check box, 31
saving

projects
delayed-save feature, 31
everything in, 54

settings for programming environment, 27

SByte data type, 159
scope for arrays, 252
screenshots for Windows Store, 318
screen size, 93
scroll bars, 228–230
Search tool, opening applications using, 281
security in Windows 8 applications, 297
Segoe font, 176, 183
Select Case decision structure, 184–187
Select Case keywords, 185
SelectedIndex property, 178, 185, 189, 190
SelectionChanged event, 178
Select keyword, LINQ, 266
settings. See also properties

for programming environment, 27
of projects and compiler, 30–33

shadow effect, 70
Sheldon, Bill, 321
Short data type, 158, 160, 162
Sign(n) method, System.Math class, 221
Silverlight, 127
Single data type, 158, 170
Sin(n) method, System.Math class, 221
slide gesture, 309
.sln (solution file), 9
snippets, 225–231
Software Project Survival Guide, 322
SolidColorBrush class, 155–156
Solution Configurations drop-down list box, 60
Solution Explorer, 14
solution file (.sln), 9
Solution Name text box, 38
solutions, use of term, 9
sorting arrays, 261
Sort() method, Array class, 261–263
Source property, 88, 105–106, 185
space characters, 155
splash screens

adding to project, 295
creating, 292–297
defined, 292
dimensions for, 292
purpose of, 292
transparent images for, 292

Split App (XAML) template, 300
Split() method, 216
Spotlight area (Windows Store), 314
SQL vs. LINQ, 251, 265
Sqrt method, 222
Sqrt(n) method, System.Math class, 221

 ToLower() method

 Index 333

square roots, computing, 222–223
StackPanel control, 135
StandardStyles.xaml file, 132
Standard toolbar, Visual Studio IDE, 10
Start Debugging command, 16
Start Here! Fundamentals of Microsoft .NET

Programming eBook, xix
StartsWith() method, 216
statements, 148

parts of, 54
syntax of, 148

status bar in Microsoft Paint, 282
Stephens, Rod, 321
Step Into button, Debug toolbar, 237
Stop Debugging button, 18
Stop method, 91
stopping applications, 18
Stop statement, 273
storage locations for projects, 8
storyboards

creating, 108–113
running and testing, 113–115

String class. See System.String class
String.Compare() method, 215
String.CompareTo() method, 215
string concatenation operator, 55, 168, 170, 198
string concatenation operator (&), 260
String.Contains() method, 215
String data type, 159
String.EndsWith() method, 216
String.IndexOf() method, 215
String.Insert() method, 215
String.Length property, 215
String.Remove() method, 215
String.Replace() method, 216
String.Split() method, 216
String.StartsWith() method, 216
String.Substring() method, 215
String.ToLower() method, 215
String.ToUpper() method, 215
String.Trim() method, 215
string variables, 149
Stroke property, 69–70
StrokeThickness property, 70
subgroups, Grid App template, 305
Substring() method, 215
subtraction operator, 168, 172
syntax errors, 234–235
syntax rules, 148
System.DateTime object, 189

System.DateTime.Today property, 78
System.Math class, methods in, 221–225
system requirements, xx–xxi
System.String class, methods in

chart of, 215–216
overview, 214
processing text with, 216–218
searching string for pattern, 219–221

T
Tan(n) method, System.Math class, 221
tap gesture, 308
taskbar, Windows, 10
technical forums for Microsoft products, 320
testing applications, 59–60
TextBlock1 object, 82
TextBlock control, 72–74
text block objects, 21
TextBox control, 154–157
text boxes

adding, 44–45
modifying text in, 47
moving and resizing, 43
setting properties for with XAML, 128

text-messaging, 298
Text property, 47, 55
Text property group, 21
text visualizer, 245–246
tile-based layout

overview, 176–177
with XAML markup, 178–184

tiles, application
adding live content to, 284
creating image for

adding to Visual Studio project, 287–291
changing color of, 286–287
from blank template, 291
process, 281–286

dimensions for, 281–282
matching color to application, 287–288
overview, 280
PNG format, 284

timeline, 112
toast notifications, 284
ToggleButton control, 136–139
toggle button object, 139–142
ToLower method, 215, 217–218
ToLower() method, 215

Toolbox panel

334 Index

Toolbox panel, 11
Tools panel, Blend, 103
tools, Visual Studio IDE

hiding, 12
overview of, 10–11
switching between open files and, 28
viewing, 11

tool windows
docking, 25–27
hiding, 27
moving and resizing, 24–25

touch input, 176
built-in for Windows 8 applications, 308
designing for, 311
designing for in development, 307
multi-finger gestures, 309–310
pinch gesture, 309–310
resize gesture, 309–310
slide gesture, 309
tap gesture, 308
zoom gesture, 309–310

ToUpper method, 215–217, 221
ToUpper() method, 215
Translate property, 111
transparency, 70
transparent images for splash screen, 292
Trim() method, 215
TrimStart method, 155
Try...Catch exception handler, 200–205

U
UInteger data type, 158
ULong data type, 158
underlined variables, 151
UniformToFill setting, of Stretch property, 105
Unpin From Source button, 240
UriSource property, 185
user interface

creating, 39–42
hierarchical interface, 300
hub design, 300
infusing company identity into, 300

UShort data type, 158

V
values, assigining for arrays, 256–261
variables. See also constants

allowing combining with objects, 32
data types used for

chart of, 158
overview, 158
using in code, 159–165

explicitly declaring, 149–150
memory and, 149
naming, 153
purpose of, 148–149
storing and processing input using, 154–157
string, 149
tracking using Watch window, 242–244
using in event handlers, 150–153
values of

changing, 150–153, 246–248
double-precision floating-point values, 160

vbCrLf constant, 55
.vbproj (project file), 9
VerticalAlignment property, 49
Vertical Split button, Designer window, 16
video media, playing, 92–94
video resources, 320
Videos Library, allowing access to, 298
View menu, Visual Studio IDE, 11
Visibility property, 70
Visual Basic

application of term, 2
books about, 321
history of, 2
operators

advanced, 170–171
basic, 168–170
chart of, 168
order of precedence, 172–173
overview, 168

platforms for, 3–4
Visual Basic 2012 Programmer’s Reference, 321
Visual Basic Learning Center, 320
Visual Basic programmers

development opportunities for, 2–4
number of, 2

visualizers, 245–246
Visual Studio 2012

accessing MSDN from within, 320
core tools, overview of, 3
documentation for, 261

 Writing Secure Code, Second Edition

 Index 335

downloading and installing, 5–7
production configurations, 2
software bundled with, 3
web site for, 2

Visual Studio IDE
Designer window, 12–16
exiting, 33
menu bar, 10
opening web browser within, 29
overview, 7–9
Properties window, 18–21
running programs from, 16–18, 56–58
settings, customizing, 30–33
Standard toolbar, 10
switching among open files and tools, 28
switching between components, 10
tools

hiding, 12
moving and resizing, 22–27
overview of, 10–11
viewing, 11

Volume property, 89

W
Watch window, 242–244
web address text box, 46–48
web browsers

opening within Visual Studio, 29
within Windows 8 applications, 45–46, 49

Web Browser window, 29–30
webcam, allowing access to, 298
web development, 4
Web List example program

button objects
adding, 44
setting Content property for, 48–49

deploying release build, 61–62
event handler, creating, 51–54
moving and resizing text boxes, 43
overview, 36
projects, creating, 37–39
running programs from IDE, 56–58
text boxes, adding, 44–45
user interface, creating, 39–42
web address text box settings, 46–48
web view object

adding, 45–46
properties of, setting, 49–50

web site resources, 319–320

WebView control, 45, 49
web view objects

adding, 45–46
alignment of content in, 49
properties of, setting, 49–50

Where keyword, LINQ, 266
white space, removing, 155
whole-number division operator, 168, 170, 172
Wildermuth, Shawn, 321
Windows 7 operating system, 3
Windows 8 operating system. See also .NET

Framework
compiling an application, 59–62
controls that receive input in, 39, 74, 136, 154, 182,

307
creating a Start page tile, 280–281
development for, 3
development platform, 3, 127, 176
devices, 3, 86, 176, 297, 307, 311
guidelines for application design, 176, 228, 284,

307
namespaces, 82, 208–209
permissions, 297–298
required for Visual Studio 2012, 5
running a program under, 16–18
security for applications in, 297
splash screen for apps, 292–297
templates for apps, 300–307
Visual Studio Express for, downloading and

installing, 5–7
Windows Azure, 4
Windows Dev Center for Windows Store apps, 320
Windows Phone, 4
Windows Presentation Foundation (WPF), 127
Windows Runtime API, 208
Windows Start Page, tiles for, 280–291
Windows Store

developer account for, 316
installing apps from, 315
listings in, 315
overview, 313
pricing in, 315
reserving app names in, 316
Spotlight area in, 314
submission checklist, 317

Windows Store apps. See applications
Windows taskbar, 10
Windows.UI namespace, 82
WPF (Windows Presentation Foundation), 127
Writing Secure Code, Second Edition, 322

XAML

336 Index

X
XAML

adjusting Blend settings for projects, 115–117
building tile-based layout with, 178–184
creating objects

Canvas control, 142–145
event handlers for toggle button object,

139–142
overview, 135
ToggleButton control, 136–139

editing markup in MainPage.xml, 133–135
elements of, 127–129
namespaces, 132
opening new project, 129–132
overview, 126
relationship to XML and HTML, 127
setting propeties in, 22
viewing markup, 14–16

XAML Button control, 48

XAML Developer Reference, 321
.xaml extension, 13
Xbox 360, 4
XML

advantages of, 274
and XAML, 127
elements in, 274
namespaces, 129
overview, 273–274
querying with LINQ, 275–277
visualizers for, 245

x prefix, 132

Z
zoom gesture, 309–310

about the author

MICHAEL HALVORSON is the author or co-author of more than 35 books,
including Microsoft Visual Basic 2010 Step by Step, Learn Microsoft Visual
Basic Now, and Microsoft Visual Basic 6.0 Professional Step by Step. Halvorson
has been the recipient of numerous nonfiction writing awards, including the
Computer Press Best How-to Book Award (Software category) and the Society
for Technical Communication Excellence Award (Writing category). Halvorson

earned a bachelor’s degree in Computer Science from Pacific Lutheran University and
master’s and doctoral degrees in History from the University of Washington. He was
employed at Microsoft Corporation from 1985 to 1993, and has been an advocate for
Visual Basic programming since the product’s original debut at Windows World in 1991.
Halvorson is currently an associate professor at Pacific Lutheran University. You can
learn more about his books and ideas at http://www.michaelhalvorsonbooks.com.

	Cover
	Contents
	Chapter 1
	Chapter 2
	Index
	Author Bio

