

Microsoft® Visual C#® 2012
Step by Step

John Sharp

Copyright © 2012 by CM Group, Ltd.
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6801-0

2 3 4 5 6 7 8 9 10 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Development Editor: Russell Jones

Production Editor: Rachel Steely

Editorial Production: Zyg Group, LLC

Technical Reviewer: John Mueller

Copyeditor: Nicole Flores

Indexer: BIM Indexing Services

Cover Design: Twist Creative

Cover Composition: Zyg Group, LLC

Illustrator: Rebecca Demarest

[2013-05-24]

I dedicate this book to Diana, my wife and fellow Warwickshire
supporter, for keeping me sane and giving me the perfect excuse
to spend time watching cricket.

—John Sharp

Contents at a Glance

Introduction xxi

PART I INTRODUCING MICROSOFT VISUAL C# AND MICROSOFT
VISUAL STUDIO 2012

Chapter 1 Welcome to C# 3

Chapter 2 Working with Variables, Operators, and expressions 39

Chapter 3 Writing Methods and applying Scope 67

Chapter 4 Using Decision Statements 95

Chapter 5 Using Compound assignment and Iteration Statements 115

Chapter 6 Managing errors and exceptions 137

PART II UNDERSTANDING THE C# OBJECT MODEL

Chapter 7 Creating and Managing Classes and Objects 165

Chapter 8 Understanding Values and references 189

Chapter 9 Creating Value types with enumerations and Structures 213

Chapter 10 Using arrays 233

Chapter 11 Understanding parameter arrays 257

Chapter 12 Working with Inheritance 271

Chapter 13 Creating Interfaces and Defining Abstract Classes 295

Chapter 14 Using Garbage Collection and resource Management 325

PART III DEFINING EXTENSIBLE TYPES WITH C#

Chapter 15 Implementing properties to access Fields 349

Chapter 16 Using Indexers 371

Chapter 17 Introducing Generics 389

Chapter 18 Using Collections 419

Chapter 19 enumerating Collections 441

Chapter 20 Decoupling application Logic and handling events 457

Chapter 21 Querying In-Memory Data by Using Query expressions 491

Chapter 22 Operator Overloading 515

vi

PART IV BUILDING PROFESSIONAL WINDOWS 8 APPLICATIONS WITH C#

Chapter 23 Improving throughput by Using tasks 541

Chapter 24 Improving response time by performing
 asynchronous Operations 585

Chapter 25 Implementing the User Interface for a Windows Store app 627

Chapter 26 Displaying and Searching for Data in a Windows Store app 681

Chapter 27 accessing a remote Database in a Windows Store app 733

Index 775

 vii

Contents

Introduction . xxi

PART I INTRODUCING MICROSOFT VISUAL C#
AND MICROSOFT VISUAL STUDIO 2012

Chapter 1 Welcome to C# 3
Beginning Programming with the

Visual Studio 2012 Environment . 3

Writing Your First Program . 8

Using Namespaces .14

Creating a Graphical Application .18

Examining the Windows Store App .30

Examining the WPF Application .33

Adding Code to the Graphical Application .34

Summary. .37

Chapter 1 Quick Reference .38

Chapter 2 Working with Variables, Operators, and Expressions 39
Understanding Statements .39

Using Identifiers .40

Identifying Keywords .40

Using Variables .42

Naming Variables .42

Declaring Variables .42

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Working with Primitive Data Types .43

Unassigned Local Variables .44

Displaying Primitive Data Type Values .44

Using Arithmetic Operators .52

Operators and Types .52

Examining Arithmetic Operators .54

Controlling Precedence .59

Using Associativity to Evaluate Expressions .60

Associativity and the Assignment Operator .60

Incrementing and Decrementing Variables .61

Prefix and Postfix .62

Declaring Implicitly Typed Local Variables .63

Summary. .64

Chapter 2 Quick Reference .65

Chapter 3 Writing Methods and Applying Scope 67
Creating Methods .67

Declaring a Method .68

Returning Data from a Method .69

Calling Methods .71

Applying Scope . 74

Defining Local Scope . 74

Defining Class Scope .75

Overloading Methods . 76

Writing Methods . 76

Using Optional Parameters and Named Arguments85

Defining Optional Parameters .86

Passing Named Arguments .87

Resolving Ambiguities with Optional Parameters
and Named Arguments. .87

 ix

Summary. .92

Chapter 3 Quick Reference .93

Chapter 4 Using Decision Statements 95
Declaring Boolean Variables .95

Using Boolean Operators .96

Understanding Equality and Relational Operators 96

Understanding Conditional Logical Operators97

Short-Circuiting .98

Summarizing Operator Precedence and Associativity 98

Using if Statements to Make Decisions .99

Understanding if Statement Syntax .99

Using Blocks to Group Statements .100

Cascading if Statements .101

Using switch Statements .107

Understanding switch Statement Syntax .108

Following the switch Statement Rules .109

Summary. .113

Chapter 4 Quick Reference .114

Chapter 5 Using Compound Assignment
and Iteration Statements 115

Using Compound Assignment Operators .115

Writing while Statements. .117

Writing for Statements .123

Understanding for Statement Scope .125

Writing do Statements .125

Summary. .134

Chapter 5 Quick Reference .135

x Contents

Chapter 6 Managing Errors and Exceptions 137
Coping with Errors .137

Trying Code and Catching Exceptions. .138

Unhandled Exceptions .139

Using Multiple catch Handlers .140

Catching Multiple Exceptions .141

Propagating Exceptions .147

Using Checked and Unchecked Integer Arithmetic149

Writing Checked Statements .150

Writing Checked Expressions .151

Throwing Exceptions .154

Using a finally Block .159

Summary. .160

Chapter 6 Quick Reference .161

PART II UNDERSTANDING THE C# OBJECT MODEL

Chapter 7 Creating and Managing
Classes and Objects 165

Understanding Classification .165

The Purpose of Encapsulation .166

Defining and Using a Class .166

Controlling Accessibility .168

Working with Constructors .169

Overloading Constructors .170

Understanding static Methods and Data .180

Creating a Shared Field .181

Creating a static Field by Using the const Keyword182

Understanding static Classes .182

Anonymous Classes .185

Summary. .186

Chapter 7 Quick Reference .187

 Contents xi

Chapter 8 Understanding Values and References 189
Copying Value Type Variables and Classes .189

Understanding Null Values and Nullable Types .195

Using Nullable Types .196

Understanding the Properties of Nullable Types197

Using ref and out Parameters .198

Creating ref Parameters .199

Creating out Parameters .200

How Computer Memory Is Organized .202

Using the Stack and the Heap .203

The System.Object Class .204

Boxing .205

Unboxing .206

Casting Data Safely .207

The is Operator .207

The as Operator .208

Summary. .210

Chapter 8 Quick Reference .210

Chapter 9 Creating Value Types with Enumerations
and Structures 213

Working with Enumerations .213

Declaring an Enumeration .214

Using an Enumeration .214

Choosing Enumeration Literal Values .215

Choosing an Enumeration’s Underlying Type216

Working with Structures .218

Declaring a Structure .220

Understanding Structure and Class Differences221

Declaring Structure Variables .222

Understanding Structure Initialization .223

Copying Structure Variables .227

xii Contents

Summary. .231

Chapter 9 Quick Reference .232

Chapter 10 Using Arrays 233
Declaring and Creating an Array .233

Declaring Array Variables .234

Creating an Array Instance .234

Populating and Using an Array .235

Creating an Implicitly Typed Array .236

Accessing an Individual Array Element. .237

Iterating Through an Array .238

Passing Arrays as Parameters and Return Values for a Method . .239

Copying Arrays .241

Using Multidimensional Arrays .242

Creating Jagged Arrays .243

Summary. .254

Chapter 10 Quick Reference .255

Chapter 11 Understanding Parameter Arrays 257
Overloading: A Recap .257

Using Array Arguments .258

Declaring a params Array .260

Using params object[] .262

Using a params Array .263

Comparing Parameter Arrays and Optional Parameters266

Summary. .268

Chapter 11 Quick Reference .269

 Contents xiii

Chapter 12 Working with Inheritance 271
What Is Inheritance? .271

Using Inheritance .272

The System.Object Class Revisited .274

Calling Base Class Constructors .274

Assigning Classes .276

Declaring new Methods .277

Declaring virtual Methods .279

Declaring override Methods .280

Understanding protected Access .282

Understanding Extension Methods .288

Summary. .293

Chapter 12 Quick Reference .293

Chapter 13 Creating Interfaces and Defining Abstract Classes 295
Understanding Interfaces .295

Defining an Interface .296

Implementing an Interface .297

Referencing a Class Through Its Interface .298

Working with Multiple Interfaces .299

Explicitly Implementing an Interface .300

Interface Restrictions .302

Defining and Using Interfaces .302

Abstract Classes .312

Abstract Methods .314

Sealed Classes .314

Sealed Methods .315

Implementing and Using an Abstract Class .315

Summary. .322

Chapter 13 Quick Reference .323

xiv Contents

Chapter 14 Using Garbage Collection
and Resource Management 325

The Life and Times of an Object .325

Writing Destructors .326

Why Use the Garbage Collector? .328

How Does the Garbage Collector Work? .330

Recommendations .330

Resource Management .331

Disposal Methods .331

Exception-Safe Disposal .332

The using Statement and the IDisposable Interface332

Calling the Dispose Method from a Destructor334

Implementing Exception-Safe Disposal .336

Summary. .345

Chapter 14 Quick Reference .345

PART III DEFINING EXTENSIBLE TYPES WITH C#

Chapter 15 Implementing Properties
to Access Fields 349

Implementing Encapsulation by Using Methods .349

What Are Properties? .351

Using Properties .354

Read-Only Properties .354

Write-Only Properties .355

Property Accessibility .355

Understanding the Property Restrictions .356

Declaring Interface Properties .358

Replacing Methods with Properties .359

Generating Automatic Properties .363

Initializing Objects by Using Properties .365

Summary. .369

Chapter 15 Quick Reference .369

 Contents xv

Chapter 16 Using Indexers 371
What Is an Indexer? .371

An Example That Doesn’t Use Indexers .371

The Same Example Using Indexers .373

Understanding Indexer Accessors .376

Comparing Indexers and Arrays .376

Indexers in Interfaces .378

Using Indexers in a Windows Application .379

Summary. .386

Chapter 16 Quick Reference .386

Chapter 17 Introducing Generics 389
The Problem with the object Type .389

The Generics Solution .393

Generics vs. Generalized Classes .395

Generics and Constraints .396

Creating a Generic Class .396

The Theory of Binary Trees .396

Building a Binary Tree Class by Using Generics 399

Creating a Generic Method .409

Defining a Generic Method to Build a Binary Tree 410

Variance and Generic Interfaces .412

Covariant Interfaces .414

Contravariant Interfaces .415

Summary. .417

Chapter 17 Quick Reference .418

Chapter 18 Using Collections 419
What Are Collection Classes? .419

The List<T> Collection Class .421

The LinkedList<T> Collection Class .423

The Queue<T> Collection Class .425

The Stack<T> Collection Class .426

xvi Contents

The Dictionary<TKey, TValue> Collection Class427

The SortedList<TKey, TValue> Collection Class 428

The HashSet<T> Collection Class .429

Using Collection Initializers .431

The Find Methods, Predicates, and Lambda Expressions 431

Comparing Arrays and Collections .433

Using Collection Classes to Play Cards .434

Summary. .438

Chapter 18 Quick Reference .439

Chapter 19 Enumerating Collections 441
Enumerating the Elements in a Collection .441

Manually Implementing an Enumerator .443

Implementing the IEnumerable Interface .447

Implementing an Enumerator by Using an Iterator450

A Simple Iterator .450

Defining an Enumerator for the Tree<TItem> Class
by Using an Iterator .452

Summary. .454

Chapter 19 Quick Reference .455

Chapter 20 Decoupling Application Logic
and Handling Events 457

Understanding Delegates .458

Examples of Delegates in the .NET Framework Class Library459

The Automated Factory Scenario .461

Implementing the Factory Control System
Without Using Delegates .461

Implementing the Factory by Using a Delegate462

Declaring and Using Delegates .465

Lambda Expressions and Delegates .474

Creating a Method Adapter .474

The Forms of Lambda Expressions .475

 Contents xvii

Enabling Notifications with Events .476

Declaring an Event .477

Subscribing to an Event .478

Unsubscribing from an Event .478

Raising an Event .478

Understanding User Interface Events .479

Using Events .480

Summary. .487

Chapter 20 Quick Reference .488

Chapter 21 Querying In-Memory Data by Using Query
Expressions 491

What Is Language-Integrated Query? .491

Using LINQ in a C# Application .492

Selecting Data .494

Filtering Data .497

Ordering, Grouping, and Aggregating Data497

Joining Data .500

Using Query Operators .501

Querying Data in Tree<TItem> Objects .503

LINQ and Deferred Evaluation .509

Summary. .513

Chapter 21 Quick Reference .513

Chapter 22 Operator Overloading 515
Understanding Operators .515

Operator Constraints .516

Overloaded Operators .516

Creating Symmetric Operators .518

Understanding Compound Assignment Evaluation520

Declaring Increment and Decrement Operators .520

Comparing Operators in Structures and Classes .521

Defining Operator Pairs .522

xviii Contents

Implementing Operators .523

Understanding Conversion Operators .530

Providing Built-in Conversions .530

Implementing User-Defined Conversion Operators531

Creating Symmetric Operators, Revisited .532

Writing Conversion Operators .533

Summary. .535

Chapter 22 Quick Reference .536

PART IV BUILDING PROFESSIONAL WINDOWS 8 APPLICATIONS
WITH C#

Chapter 23 Improving Throughput by Using Tasks 541
Why Perform Multitasking by Using Parallel Processing?541

The Rise of the Multicore Processor .542

Implementing Multitasking with the .NET Framework 544

Tasks, Threads, and the ThreadPool . 544

Creating, Running, and Controlling Tasks .545

Using the Task Class to Implement Parallelism548

Abstracting Tasks by Using the Parallel Class559

When Not to Use the Parallel Class .564

Canceling Tasks and Handling Exceptions .566

The Mechanics of Cooperative Cancellation566

Using Continuations with Canceled and Faulted Tasks581

Summary. .581

Chapter 23 Quick Reference .582

Chapter 24 Improving Response Time by Performing
Asynchronous Operations 585

Implementing Asynchronous Methods .586

Defining Asynchronous Methods: The Problem586

Defining Asynchronous Methods: The Solution589

Defining Asynchronous Methods That Return Values595

Asynchronous Methods and the Windows Runtime APIs596

 Contents xix

Using PLINQ to Parallelize Declarative Data Access599

Using PLINQ to Improve Performance
While Iterating Through a Collection .600

Canceling a PLINQ Query .604

Synchronizing Concurrent Access to Data .605

Locking Data .608

Synchronization Primitives for Coordinating Tasks608

Cancelling Synchronization .611

The Concurrent Collection Classes .612

Using a Concurrent Collection and a Lock
to Implement Thread-Safe Data Access .612

Summary. .623

Chapter 24 Quick Reference .624

Chapter 25 Implementing the User Interface for a Windows
Store App 627

What Is a Windows Store App? .628

Using the Blank App Template to Build a Windows Store App 632

Implementing a Scalable User Interface .634

Applying Styles to a User Interface .669

Summary. .679

Chapter 25 Quick Reference .679

Chapter 26 Displaying and Searching for Data in a Windows
Store App 681

Implementing the Model-View-ViewModel Pattern 681

Displaying Data by Using Data Binding .682

Modifying Data by Using Data Binding .689

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

xx Contents

Using Data Binding with a ComboBox Control693

Creating a ViewModel .695

Adding Commands to a ViewModel. .699

Windows 8 Contracts .711

Implementing the Search Contract .712

Navigating to a Selected Item .722

Starting an Application from the Search Charm725

Summary. .729

Chapter 26 Quick Reference .732

Chapter 27 Accessing a Remote Database in a Windows
Store App 733

Retrieving Data from a Database .733

Creating an Entity Model .735

Creating and Using a Data Service . 741

Inserting, Updating, and Deleting Data in a Database.754

Performing Insert, Update, and Delete Operations
Through a WCF Data Service .754

Reporting Errors and Updating the User Interface764

Summary. .772

Chapter 27 Quick Reference .773

Index 775

 xxi

Introduction

Microsoft Visual C# is a powerful but simple language aimed primarily at develop-
ers creating applications by using the Microsoft .NET Framework. It inherits many

of the best features of C++ and Microsoft Visual Basic, but few of the inconsistencies
and anachronisms, resulting in a cleaner and more logical language. C# 1.0 made its
public debut in 2001. The advent of C# 2.0 with Visual Studio 2005 saw several impor-
tant new features added to the language, including generics, iterators, and anony-
mous methods. C# 3.0, which was released with Visual Studio 2008, added extension
methods, lambda expressions, and most famously of all, the Language-Integrated
Query facility, or LINQ. C# 4.0, released in 2010, provided further enhancements that
improved its interoperability with other languages and technologies. These features
included support for named and optional arguments, and the dynamic type, which
indicates that the language runtime should implement late binding for an object. An
important addition in the .NET Framework released concurrently with C# 4.0 was the
classes and types that constitute the Task Parallel Library (TPL). Using the TPL, you can
build highly scalable applications that can take full advantage of multicore processors
quickly and easily. C# 5.0 adds native support for asynchronous task-based processing
through the async method modifier and the await operator.

Another key event for Microsoft has been the launch of Windows 8. This new version
of Windows supports highly interactive applications that can share data and collabo-
rate with each other as well as connect to services running in the cloud. The develop-
ment environment provided by Microsoft Visual Studio 2012 makes all these powerful
features easy to use, and the many new wizards and enhancements included in Visual
Studio 2012 can greatly improve your productivity as a developer. The combination
of Visual Studio 2012, Windows 8, and C# 5.0 provides a comprehensive platform and
toolset for building the next generation of powerful, intuitive, and portable applica-
tions. However, even if you are not using Windows 8, Visual Studio 2012 and C# 5.0
have much to offer, and they form an invaluable partnership for helping you to build
great solutions.

Who Should Read This Book
This book assumes that you are a developer who wants to learn the fundamentals of
programming with C# by using Visual Studio 2012 and the .NET Framework version 4.5.
By the time you complete this book, you will have a thorough understanding of C# and

xxii Introduction

will have used it to build responsive and scalable Windows Presentation Foundation
(WPF) applications that can run on both Windows 7 and Windows 8.

You can build and run C# 5.0 applications on Windows 7 and Windows 8, although
the user interfaces provided by these two operating systems have some significant dif-
ferences. Consequently, Parts I to III of this book provide exercises and worked exam-
ples that will run in both environments. Part IV focuses on the application development
model used by Windows 8, and the material in this section provides an introduction to
building interactive applications for this new platform.

Who Should Not Read This Book
This book is aimed at developers new to C#, and as such, it concentrates primarily on
the C# language. This book is not intended to provide detailed coverage of the multi-
tude of technologies available for building enterprise-level applications for Windows,
such as ADO.NET, ASP.NET, Windows Communication Foundation, or Workflow
Foundation. If you require more information on any of these items, you might consider
reading some of the other titles in the Step by Step for Developers series available from
Microsoft Press, such as Microsoft ASP.NET 4 Step by Step, Microsoft ADO.NET 4 Step by
Step, and Microsoft Windows Communication Foundation 4 Step by Step.

Organization of This Book
This book is divided into four sections:

■■ Part I, "Introducing Microsoft Visual C# and Microsoft Visual Studio 2012,"
provides an introduction to the core syntax of the C# language and the Visual
Studio programming environment.

■■ Part II, "Understanding the C# Object Model," goes into detail on how to create
and manage new types by using C#, and how to manage the resources refer-
enced by these types.

■■ Part III, "Defining Extensible Types with C#," includes extended coverage of the
elements that C# provides for building types that you can reuse across multiple
applications.

■■ Part IV, "Building Professional Window 8 Applications with C#," describes the
Windows 8 programming model, and how you can use C# to build interactive
applications for this new model.

 Introduction xxiii

Note Although Part IV is aimed at Windows 8, many of the concepts de-
scribed in Chapters 23 and 24 are applicable to Windows 7 applications.

Finding Your Best Starting point in this Book
This book is designed to help you build skills in a number of essential areas. You can use
this book if you are new to programming or if you are switching from another pro-
gramming language such as C, C++, Java, or Visual Basic. Use the following table to find
your best starting point.

If you are Follow these steps

New to object-oriented
programming

 1. Install the practice files as described in the upcoming section,
“Code Samples.”

 2. Work through the chapters in Parts I, II, and III sequentially.
 3. Complete Part IV as your level of experience and interest

dictates.

Familiar with procedural pro-
gramming languages such as C
but new to C#

 1. Install the practice files as described in the upcoming section,
“Code Samples.” Skim the first five chapters to get an over-
view of C# and Visual Studio 2012, and then concentrate on
Chapters 6 through 22.

 2. Complete Part IV as your level of experience and interest
dictates.

Migrating from an object-
oriented language such as C++
or Java

 1. Install the practice files as described in the upcoming section,
“Code Samples.”

 2. Skim the first seven chapters to get an overview of C# and
Visual Studio 2012, and then concentrate on Chapters 7
through 22.

 3. For information about building scalable Windows 8 applica-
tions, read Part IV.

Switching from Visual Basic 6
to C#

 1. Install the practice files as described in the upcoming section,
“Code Samples.”

 2. Work through the chapters in Parts I, II, and III sequentially.
 3. For information about building Windows 8 applications, read

Part IV.
 4. Read the Quick Reference sections at the end of the chapters

for information about specific C# and Visual Studio 2012
constructs.

Referencing the book after
working through the exercises

 1. Use the index or the table of contents to find information
about particular subjects.

 2. Read the Quick Reference sections at the end of each chapter
to find a brief review of the syntax and techniques presented
in the chapter.

Most of the book’s chapters include hands-on samples that let you try out the
concepts just learned. No matter which sections you choose to focus on, be sure to
download and install the sample applications on your system.

xxiv Introduction

Conventions and Features in This Book
This book presents information using conventions designed to make the information
readable and easy to follow.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (for example, File | Close)
means that you should select the first menu or menu item, then the next, and
so on.

System Requirements
You will need the following hardware and software to complete the practice exercises in
this book:

■■ Windows 7 (x86 and x64), Windows 8 (x86 and x64), Windows Server 2008 R2
(x64), Windows Server 2012 (x64).

Note Visual Studio 2012 is also available for Windows Vista, Windows
XP, and Windows Server 2003. However, the exercises and code in this
book have not been tested on these platforms.

■■ Visual Studio 2012 (any edition except Visual Studio Express for Windows 8).

Note You can use Visual Studio Express 2012 for Windows Desktop,
but you can only perform the Windows 7 version of the exercises in
this book by using this software. You cannot use this software to per-
form the exercises in Part IV of this book.

 Introduction xxv

■■ Computer that has a 1.6 GHz or faster processor (2 GHz recommended).

■■ 1 GB (32-bit) or 2 GB (64-bit) RAM (add 512 MB if running in a virtual machine).

■■ 10 GB of available hard disk space.

■■ 5400 RPM hard disk drive.

■■ DirectX 9 capable video card running at 1024 × 768 or higher resolution
display; If you are using Windows 8, a resolution of 1366 × 768 or greater is
recommended.

■■ DVD-ROM drive (if installing Visual Studio from a DVD).

■■ Internet connection to download software or chapter examples.

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2012.

Code Samples
Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects, in both their pre-exercise and
postexercise formats, can be downloaded from the following page:

http://www.microsoftpressstore.com/title/9780735668010

Follow the instructions to download the 9780735668010_files.zip file.

Note In addition to the code samples, your system should have Visual Studio
2012 installed. If available, install the latest service packs for Windows and
Visual Studio.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. Move to your Documents folder and create a new folder called Microsoft Press.

http://www.microsoftpressstore.com/title/9780735668010

xxvi Introduction

2. Copy the file that you downloaded from the book's website into the Microsoft
Press folder.

3. Unzip the file and allow it to create the folder Visual CSharp Step By Step.

Note If the license agreement doesn’t appear, you can access it from the
same webpage from which you downloaded the <yoursamplefile.zip> file.

Using the Code Samples
Each chapter in this book explains when and how to use any code samples for that
chapter. When it’s time to use a code sample, the book will list the instructions for how
to open the files.

For those of you who like to know all the details, here’s a list of the code sample
Visual Studio 2012 projects and solutions, grouped by the folders where you can find
them. In many cases, the exercises provide starter files and completed versions of the
same projects that you can use as a reference. The code samples provide versions
of the code for Window 7 and Windows 8, and the exercise instructions call out any
differences in the tasks that you need to perform or the code that you need to write
for these two operating systems. The completed projects for each chapter are stored in
folders with the suffix "- Complete".

Note If you are using Windows Server 2008 R2, follow the instructions for
Windows 7. If you are using Windows Server 2012, follow the instructions for
Windows 8.

Project Description

Chapter 1

TextHello This project gets you started. It steps through the creation of a simple
program that displays a text-based greeting.

WPFHello This project displays the greeting in a window by using Windows
Presentation Foundation (WPF).

Chapter 2

PrimitiveDataTypes This project demonstrates how to declare variables by using each of
the primitive types, how to assign values to these variables, and how to
display their values in a window.

MathsOperators This program introduces the arithmetic operators (+ – * / %).

 Introduction xxvii

Project Description

Chapter 3

Methods In this project, you’ll reexamine the code in the previous project and
investigate how it uses methods to structure the code.

DailyRate This project walks you through writing your own methods, running the
methods, and stepping through the method calls by using the Visual
Studio 2012 debugger.

DailyRate Using Optional
Parameters

This project shows you how to define a method that takes optional
parameters and call the method by using named arguments.

Chapter 4

Selection This project shows you how to use a cascading if statement to imple-
ment complex logic, such as comparing the equivalence of two dates.

SwitchStatement This simple program uses a switch statement to convert characters into
their XML representations.

Chapter 5

WhileStatement This project demonstrates a while statement that reads the contents of
a source file one line at a time and displays each line in a text box on a
form.

DoStatement This project uses a do statement to convert a decimal number to its
octal representation.

Chapter 6

MathsOperators This project revisits the MathsOperators project from Chapter 2,
“Working with Variables, Operators, and Expressions,” and shows how
various unhandled exceptions can make the program fail. The try and
catch keywords then make the application more robust so that it no
longer fails.

Chapter 7

Classes This project covers the basics of defining your own classes, complete
with public constructors, methods, and private fields. It also shows how
to create class instances by using the new keyword and how to define
static methods and fields.

Chapter 8

Parameters This program investigates the difference between value parameters
and reference parameters. It demonstrates how to use the ref and out
keywords.

Chapter 9

StructsAndEnums This project defines a struct type to represent a calendar date.

Chapter 10

Cards This project shows how to use arrays to model hands of cards in a card
game.

xxviii Introduction

Project Description

Chapter 11

ParamsArrays This project demonstrates how to use the params keyword to create a
single method that can accept any number of int arguments.

Chapter 12

Vehicles This project creates a simple hierarchy of vehicle classes by using in-
heritance. It also demonstrates how to define a virtual method.

ExtensionMethod This project shows how to create an extension method for the int type,
providing a method that converts an integer value from base 10 to a
different number base.

Chapter 13

Drawing Using Interfaces This project implements part of a graphical drawing package. The proj-
ect uses interfaces to define the methods that drawing shapes expose
and implement.

Drawing Using Abstract
Classes

This project extends the Drawing Using Interfaces project to factor
common functionality for shape objects into abstract classes.

Chapter 14

GarbageCollectionDemo This project shows how to implement exception-safe disposal of re-
sources by using the Dispose pattern.

Chapter 15

Drawing Using Properties This project extends the application in the Drawing Using Abstract
Classes project developed in Chapter 13 to encapsulate data in a class
by using properties.

AutomaticProperties This project shows how to create automatic properties for a class and
use them to initialize instances of the class.

Chapter 16

Indexers This project uses two indexers: one to look up a person’s phone num-
ber when given a name and the other to look up a person’s name when
given a phone number.

Chapter 17

BinaryTree This solution shows you how to use generics to build a typesafe struc-
ture that can contain elements of any type.

BuildTree This project demonstrates how to use generics to implement a typesafe
method that can take parameters of any type.

Chapter 18

Cards This project updates the code from Chapter 10 to show how to use col-
lections to model hands of cards in a card game.

 Introduction xxix

Project Description

Chapter 19

BinaryTree This project shows you how to implement the generic IEnumerator<T>
interface to create an enumerator for the generic Tree class.

IteratorBinaryTree This solution uses an iterator to generate an enumerator for the generic
Tree class.

Chapter 20

Delegates This project shows how to decouple a method from the application
logic that invokes it by using a delegate.

Delegates With Event This project shows how to use an event to alert an object to a signifi-
cant occurrence, and how to catch an event and perform any process-
ing required.

Chapter 21

QueryBinaryTree This project shows how to use LINQ queries to retrieve data from a
binary tree object.

Chapter 22

ComplexNumbers This project defines a new type that models complex numbers and
implements common operators for this type.

Chapter 23

GraphDemo This project generates and displays a complex graph on a WPF form. It
uses a single thread to perform the calculations.

GraphDemo With Tasks This version of the GraphDemo project creates multiple tasks to per-
form the calculations for the graph in parallel.

Parallel GraphDemo This version of the GraphDemo project uses the Parallel class to ab-
stract out the process of creating and managing tasks.

GraphDemo With
Cancellation

This project shows how to implement cancellation to halt tasks in a
controlled manner before they have completed.

ParallelLoop This application provides an example showing when you should not
use the Parallel class to create and run tasks.

Chapter 24

GraphDemo This is a version of the GraphDemo project from Chapter 23 that uses
the async keyword and the await operator to perform the calculations
that generate the graph data asynchronously.

PLINQ This project shows some examples of using PLINQ to query data by
using parallel tasks.

CalculatePI This project uses a statistical sampling algorithm to calculate an ap-
proximation for pi. It uses parallel tasks.

xxx Introduction

Project Description

Chapter 25

Customers Without
Scalable UI

This project uses the default Grid control to lay out the user interface
for the Adventure Works Customers application. The user interface
uses absolute positioning for the controls and does not scale to differ-
ent screen resolutions and form factors.

Customers With Scalable UI This project uses nested Grid controls with row and column definitions
to enable relative positioning of controls. This version of the user inter-
face scales to different screen resolutions and form factors, but it does
not adapt well to Snapped view.

Customers With Adaptive
UI

This project extends the version with the scalable user interface. It uses
the Visual State Manager to detect whether the application is running
in Snapped view, and it changes the layout of the controls accordingly.

Customers With Styles This version of the Customers project uses XAML styling to change the
font and background image displayed by the application.

Chapter 26

DataBinding This project uses data binding to display customer information re-
trieved from a data source in the user interface. It also shows how to
implement the INotifyPropertyChanged interface to enable the user
interface to update customer information and send these changes back
to the data source.

ViewModel This version of the Customers project separates the user interface from
the logic that accesses the data source by implementing the Model-
View-ViewModel pattern.

Search This project implements the Windows 8 Search contract. A user can
search for customers by first name or last name.

Chapter 27

Data Service This solution includes a web application that provides a WCF Data
Service that the Customers application uses to retrieve customer data
from a SQL Server database. The WCF Data Service uses an entity mod-
el created by using the Entity Framework to access the database.

Updatable ViewModel The Customers project in this solution contains an extended
ViewModel with commands that enable the user interface to insert and
update customer information by using the WCF Data Service.

Acknowledgments
Despite the fact that my name is on the cover, authoring a book such is this as far from
a one-man project. I’d like to thank the following people who have provided unstinting
support and assistance throughout this rather protracted exercise.

First, Russell Jones, with whom I have been communicating for the better part of a
year over what we should include in this edition and how we should structure the book.

 Introduction xxxi

He has been incredibly patient while I pondered how to address the chapters in the
final section of this book.

Next, Mike Sumsion and Paul Barnes, my esteemed colleagues at Content Master,
who performed sterling work reviewing the material for each chapter, testing my code,
and pointing out the numerous mistakes that I had made! I think I have now caught
them all, but of course any errors that remain are entirely my responsibility.

Also, John Mueller, who has done a remarkable job in performing a technical review
of the content. His writing experience and understanding of the technologies covered
herein have been extremely helpful, and this book has been enriched by his efforts.

Of course, like many programmers, I might understand the technology but my prose
is not always as fluent or clear as it could be. I would like to thank Rachel Steely and
Nicole LeClerc for correcting my grammar, fixing my spelling, and generally making my
material much easier to understand.

Finally, I would like to thank my wife Diana, for the copious cups of tea and numer-
ous sandwiches she prepared for me while I had my head down writing. She smoothed
my furrowed brow many times while I was fathoming out how to make the code in the
exercises work.

Errata and Book Support
We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://www.microsoftpressstore.com/title/9780735668010

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoftpressstore.com/title/9780735668010

xxxii Introduction

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback is our most
valuable asset. Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

PART I

Introducing
Microsoft Visual C#
and Microsoft
Visual Studio 2012

Microsoft Visual C# is Microsoft’s powerful component-oriented
language. C# plays an important role in the architecture of the
Microsoft .NET Framework, and some people have compared
it to the role that C played in the development of UNIX. If you
already know a language such as C, C++, or Java, you’ll find the
syntax of C# reassuringly familiar. If you are used to program-
ming in other languages, you should soon be able to pick up
the syntax and feel of C#; you just need to learn to put the
braces and semicolons in the right place.

In Part I, you’ll learn the fundamentals of C#. You’ll discover
how to declare variables and how to use arithmetic operators
such as the plus sign (+) and minus sign (–) to manipulate the
values in variables. You’ll see how to write methods and pass
arguments to methods. You’ll also learn how to use selection
statements such as if and iteration statements such as while.
Finally, you’ll understand how C# uses exceptions to handle
errors in a graceful, easy-to-use manner. These topics form the
core of C#, and from this solid foundation, you’ll progress to
more advanced features in Part II through Part IV.

 3

C H A P T E R 1

Welcome to C#

After completing this chapter, you will be able to

■■ Use the Microsoft Visual Studio 2012 programming environment.

■■ Create a C# console application.

■■ Explain the purpose of namespaces.

■■ Create a simple graphical C# application.

This chapter provides an introduction to Visual Studio 2012, the programming environment and tool-
set designed to help you build applications for Microsoft Windows. Visual Studio 2012 is the ideal tool
for writing C# code, and it provides many features that you will learn about as you progress through
this book. In this chapter, you will use Visual Studio 2012 to build some simple C# applications and
get started on the path to building highly functional solutions for Windows.

Beginning Programming with the
Visual Studio 2012 Environment

Visual Studio 2012 is a tool-rich programming environment containing the functionality that you
need to create large or small C# projects running on Windows 7 and Windows 8. You can even con-
struct projects that seamlessly combine modules written in different programming languages such
as C++, Visual Basic, and F#. In the first exercise, you will open the Visual Studio 2012 programming
environment and learn how to create a console application.

Note A console application is an application that runs in a command prompt window rather
than providing a graphical user interface (GUI).

Create a console application in Visual Studio 2012

■■ If you are using Windows 8, on the Start screen click the Visual Studio 2012 tile.

Visual Studio 2012 starts and displays the Start page, like this (your Start page may be differ-
ent, depending on the edition of Visual Studio 2012 you are using):

4 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Note If this is the first time you have run Visual Studio 2012, you might see a dialog box
prompting you to choose your default development environment settings. Visual Studio
2012 can tailor itself according to your preferred development language. The various dia-
log boxes and tools in the integrated development environment (IDE) will have their de-
fault selections set for the language you choose. Select Visual C# Development Settings
from the list, and then click the Start Visual Studio button. After a short delay, the Visual
Studio 2012 IDE appears.

■■ If you are using Windows 7, perform the following operations to start Visual Studio 2012:

a. On the Microsoft Windows taskbar, click the Start button, point to All Programs, and then
click the Microsoft Visual Studio 2012 program group.

b. In the Microsoft Visual Studio 2012 program group, click Visual Studio 2012.

Visual Studio 2012 starts and displays the Start page.

Note To avoid repetition, throughout this book, I will simply state “Start Visual
Studio” when you need to open Visual Studio 2012, regardless of the operating sys-
tem you are using.

 CHAPTER 1 Welcome to C# 5

■■ Perform the following tasks to create a new console application:

a. On the FILE menu, point to New, and then click Project.

The New Project dialog box opens. This dialog box lists the templates that you
can use as a starting point for building an application. The dialog box categorizes
templates according to the programming language you are using and the type of
application.

b. In the left pane, under Templates, click Visual C#. In the middle pane, verify that the combo
box at the top of the pane displays the text .NET Framework 4.5, and then click the Console
Application icon.

c. In the Location field, type C:\Users\YourName\Documents\Microsoft Press\Visual
CSharp Step By Step\Chapter 1. Replace the text YourName in this path with your
Windows username.

Note To save space throughout the rest of this book, I will simply refer to the path
C:\Users\YourName\Documents as your Documents folder.

6 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

tip If the folder you specify does not exist, Visual Studio 2012 creates it for you.

d. In the Name field, type TestHello (overtype the existing name, ConsoleApplication1).

e. Ensure that the Create Directory for Solution check box is selected, and then click OK.

Visual Studio creates the project using the Console Application template and displays the starter
code for the project, like this:

The menu bar at the top of the screen provides access to the features you’ll use in the pro-
gramming environment. You can use the keyboard or the mouse to access the menus and
commands exactly as you can in all Windows-based programs. The toolbar is located beneath
the menu bar and provides button shortcuts to run the most frequently used commands.

The Code and Text Editor window occupying the main part of the screen displays the contents
of source files. In a multifile project, when you edit more than one file, each source file has its
own tab labeled with the name of the source file. You can click the tab to bring the named
source file to the foreground in the Code and Text Editor window.

The Solution Explorer pane appears on the right side of the dialog box:

 CHAPTER 1 Welcome to C# 7

Solution Explorer displays the names of the files associated with the project, among other
items. You can also double-click a file name in the Solution Explorer pane to bring that source
file to the foreground in the Code and Text Editor window.

Before writing the code, examine the files listed in Solution Explorer, which Visual Studio 2012
has created as part of your project:

• Solution ‘TestHello’ This is the top-level solution file. Each application contains a single
solution file. A solution can contain one or more projects, and Visual Studio 2012 creates
the solution file to help organize these projects. If you use Windows Explorer to look at
your Documents\Microsoft Press\Visual CSharp Step By Step\Chapter 1\TestHello folder,
you’ll see that the actual name of this file is TestHello.sln.

• TestHello This is the C# project file. Each project file references one or more files con-
taining the source code and other artifacts for the project, such as graphics images. All
the source code in a single project must be written in the same programming language.
In Windows Explorer, this file is actually called TestHello.csproj, and it is stored in the
\Microsoft Press\Visual CSharp Step By Step\Chapter 1\TestHello\TestHello folder under
your Documents folder.

• Properties This is a folder in the TestHello project. If you expand it (click the arrow next to
the text Properties), you will see that it contains a file called AssemblyInfo.cs. AssemblyInfo.
cs is a special file that you can use to add attributes to a program, such as the name of the
author, the date the program was written, and so on. You can specify additional attributes
to modify the way in which the program runs. Explaining how to use these attributes is
beyond the scope of this book.

• References This folder contains references to libraries of compiled code that your ap-
plication can use. When your C# code is compiled, it is converted into a library and given
a unique name. In the .NET Framework, these libraries are called assemblies. Developers use
assemblies to package useful functionality that they have written so they can distribute it

8 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

to other developers who might want to use these features in their own applications. If you
expand the References folder, you can see the default set of references that Visual Studio
2012 adds to your project. These assemblies provide access to many of the commonly used
features of the .NET Framework and are provided by Microsoft with Visual Studio 2012.
You will learn about many of these assemblies as you progress through the exercises in
this book.

• App.config This is the application configuration file. It is optional, and it may not always
be present. You can specify settings that your application can use at runtime to modify its
behavior, such as the version of the .NET Framework to use to run the application. You will
learn more about this file in later chapters of this book.

• Program.cs This is a C# source file, and it is displayed in the Code and Text Editor window
when the project is first created. You will write your code for the console application in this
file. It also contains some code that Visual Studio 2012 provides automatically, which you
will examine shortly.

Writing Your First Program

The Program.cs file defines a class called Program that contains a method called Main. In C#, all
executable code must be defined inside a method, and all methods must belong to a class or a struct.
You will learn more about classes in Chapter 7, “Creating and Managing Classes and Objects,” and you
will learn about structs in Chapter 9, “Creating Value Types with Enumerations and Structures.”

The Main method designates the program’s entry point. This method should be defined in the
manner specified in the Program class, as a static method, otherwise the .NET Framework may not
recognize it as the starting point for your application when you run it. (You will look at methods in
detail in Chapter 3, “Writing Methods and Applying Scope,” and Chapter 7 provides more information
on static methods.)

Important C# is a case-sensitive language. You must spell Main with an uppercase M.

In the following exercises, you write the code to display the message “Hello World!” to the console
window; you build and run your Hello World console application; and you learn how namespaces are
used to partition code elements.

 CHAPTER 1 Welcome to C# 9

Write the code by using Microsoft IntelliSense

1. In the Code and Text Editor window displaying the Program.cs file, place the cursor in the
Main method immediately after the opening brace, {, and then press Enter to create a
new line.

2. On the new line, type the word Console; this is the name of another class provided by the
assemblies referenced by your application. It provides methods for displaying messages in the
console window and reading input from the keyboard.

As you type the letter C at the start of the word Console, an IntelliSense list appears.

This list contains all of the C# keywords and data types that are valid in this context. You can
either continue typing or scroll through the list and double-click the Console item with the
mouse. Alternatively, after you have typed Cons, the IntelliSense list automatically homes in
on the Console item, and you can press the Tab or Enter key to select it.

Main should look like this:

static void Main(string[] args)
{
 Console
}

Note Console is a built-in class.

3. Type a period immediately after Console. Another IntelliSense list appears, displaying the
methods, properties, and fields of the Console class.

4. Scroll down through the list, select WriteLine, and then press Enter. Alternatively, you can con-
tinue typing the characters W, r, i, t, e, L until WriteLine is selected, and then press Enter.

The IntelliSense list closes, and the word WriteLine is added to the source file. Main should
now look like this:

10 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

static void Main(string[] args)
{
 Console.WriteLine
}

5. Type an opening parenthesis, (. Another IntelliSense tip appears.

This tip displays the parameters that the WriteLine method can take. In fact, WriteLine is an
overloaded method, meaning that the Console class contains more than one method named
WriteLine—it actually provides 19 different versions of this method. Each version of the
WriteLine method can be used to output different types of data. (Chapter 3 describes over-
loaded methods in more detail.) Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine(
}

tip You can click the up and down arrows in the tip to scroll through the different
overloads of WriteLine.

6. Type a closing parenthesis,), followed by a semicolon, ;.

Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine();
}

7. Move the cursor, and type the string “Hello World!”, including the quotation marks, between
the left and right parentheses following the WriteLine method.

Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine("Hello World!");
}

tip Get into the habit of typing matched character pairs, such as (and) and { and
}, before filling in their contents. It’s easy to forget the closing character if you wait
until after you’ve entered the contents.

 CHAPTER 1 Welcome to C# 11

IntelliSense Icons
When you type a period after the name of a class, IntelliSense displays the name of every member
of that class. To the left of each member name is an icon that depicts the type of member. Common
icons and their types include the following:

Icon Meaning

Method (discussed in Chapter 3)

Property (discussed in Chapter 15)

Class (discussed in Chapter 7)

Struct (discussed in Chapter 9)

Enum (discussed in Chapter 9)

Extension method (discussed in Chapter 12)

Interface (discussed in Chapter 13)

Delegate (discussed in Chapter 17)

Event (discussed in Chapter 17)

Namespace (discussed in the next section of this chapter)

You will also see other IntelliSense icons appear as you type code in different contexts.

You will frequently see lines of code containing two forward slashes, //, followed by ordinary text.
These are comments. They are ignored by the compiler but are very useful for developers because
they help document what a program is actually doing. For example:

Console.ReadLine(); // Wait for the user to press the Enter key

The compiler skips all text from the two slashes to the end of the line. You can also add multiline com-
ments that start with a forward slash followed by an asterisk (/*). The compiler skips everything until it
finds an asterisk followed by a forward slash sequence (*/), which could be many lines lower down. You are
actively encouraged to document your code with as many meaningful comments as necessary.

12 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Build and run the console application

1. On the BUILD menu, click Build Solution.

This action compiles the C# code, resulting in a program that you can run. The Output window
appears below the Code and Text Editor window.

tip If the Output window does not appear, on the VIEW menu, click Output to
display it.

In the Output window, you should see messages similar to the following indicating how the
program is being compiled:

1>------ Build started: Project: TestHello, Configuration: Debug Any CPU ------
1> TestHello -> C:\Users\John\Documents\Microsoft Press\Visual CSharp Step By Step\
Chapter 1\TestHello\TestHello\bin\Debug\TestHello.exe
 ========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped ==========

If you have made any mistakes, they will be reported in the Error List window. The following
image shows what happens if you forget to type the closing quotation marks after the text
Hello World in the WriteLine statement. Notice that a single mistake can sometimes cause
multiple compiler errors.

 CHAPTER 1 Welcome to C# 13

tip You can double-click an item in the Error List window, and the cursor will be
placed on the line that caused the error. You should also notice that Visual Studio
displays a wavy red line under any lines of code that will not compile when you
enter them.

If you have followed the previous instructions carefully, there should be no errors or warnings,
and the program should build successfully.

tip There is no need to save the file explicitly before building because the Build
Solution command automatically saves the file.

An asterisk after the file name in the tab above the Code and Text Editor window
indicates that the file has been changed since it was last saved.

2. On the DEBUG menu, click Start Without Debugging.

A command window opens, and the program runs. The message “Hello World!” appears, and
then the program waits for you to press any key, as shown in the following graphic:

Note The prompt “Press any key to continue . . .” is generated by Visual Studio;
you did not write any code to do this. If you run the program by using the Start
Debugging command on the DEBUG menu, the application runs, but the command
window closes immediately without waiting for you to press a key.

3. Ensure that the command window displaying the program’s output has the focus, and then
press Enter.

The command window closes, and you return to the Visual Studio 2012 programming
environment.

4. In Solution Explorer, click the TestHello project (not the solution), and then click the Show All Files
toolbar button on the Solution Explorer toolbar. Note that you may need to click the >> button on
the right edge of the Solution Explorer toolbar to make this button appear.

14 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Entries named bin and obj appear above the Program.cs file. These entries correspond directly
to folders named bin and obj in the project folder (Microsoft Press\Visual CSharp Step By
Step\Chapter 1\TestHello\TestHello). Visual Studio creates these folders when you build your
application, and they contain the executable version of the program together with some other
files used to build and debug the application.

5. In Solution Explorer, expand the bin entry.

Another folder named Debug appears.

Note You might also see a folder called Release.

6. In Solution Explorer, expand the Debug folder.

Several more items appear, including a file named TestHello.exe. This is the compiled program,
and it is this file that runs when you click Start Without Debugging on the DEBUG menu. The
other files contain information that is used by Visual Studio 2012 if you run your program in
debug mode (when you click Start Debugging on the DEBUG menu).

Using Namespaces

The example you have seen so far is a very small program. However, small programs can soon grow into
much bigger programs. As a program grows, two issues arise. First, it is harder to understand and maintain
big programs than it is to understand and maintain smaller ones. Second, more code usually means more
classes, with more methods, requiring you to keep track of more names. As the number of names increases,
so does the likelihood of the project build failing because two or more names clash; for example, you might
try and create two classes with the same name. The situation becomes more complicated when a program
references assemblies written by other developers who have also used a variety of names.

In the past, programmers tried to solve the name-clashing problem by prefixing names with some
sort of qualifier (or set of qualifiers). This is not a good solution because it’s not scalable; names be-
come longer, and you spend less time writing software and more time typing (there is a difference),
and reading and rereading incomprehensibly long names.

 CHAPTER 1 Welcome to C# 15

Namespaces help solve this problem by creating a container for items such as classes. Two classes
with the same name will not be confused with each other if they live in different namespaces. You
can create a class named Greeting inside the namespace named TestHello by using the namespace
keyword like this:

namespace TestHello
{
 class Greeting
 {
 ...
 }
}

You can then refer to the Greeting class as TestHello.Greeting in your programs. If another develop-
er also creates a Greeting class in a different namespace, such as NewNamespace, and you install the
assembly that contains this class on your computer, your programs will still work as expected because
they are using the TestHello.Greeting class. If you want to refer to the other developer’s Greeting class,
you must specify it as NewNamespace.Greeting.

It is good practice to define all your classes in namespaces, and the Visual Studio 2012 environ-
ment follows this recommendation by using the name of your project as the top-level namespace.
The .NET Framework class library also adheres to this recommendation; every class in the .NET
Framework lives inside a namespace. For example, the Console class lives inside the System namespace.
This means that its full name is actually System.Console.

Of course, if you had to write the full name of a class every time you used it, the situation would be
no better than prefixing qualifiers or even just naming the class with some globally unique name such
SystemConsole. Fortunately, you can solve this problem with a using directive in your programs. If you
return to the TestHello program in Visual Studio 2012 and look at the file Program.cs in the Code and
Text Editor window, you will notice the following lines at the top of the file:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

These lines are using directives. A using directive brings a namespace into scope. In subsequent
code in the same file, you no longer have to explicitly qualify objects with the namespace to which
they belong. The five namespaces shown contain classes that are used so often that Visual Studio
2012 automatically adds these using statements every time you create a new project. You can add
further using directives to the top of a source file if you need to reference other namespaces.

The following exercise demonstrates the concept of namespaces in more depth.

16 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

try longhand names

1. In the Code and Text Editor window displaying the Program.cs file, comment out the first
using directive at the top of the file, like this:

//using System;

2. On the BUILD menu, click Build Solution.

The build fails, and the Error List window displays the following error message:

The name 'Console' does not exist in the current context.

3. In the Error List window, double-click the error message.

The identifier that caused the error is highlighted in the Program.cs source file.

4. In the Code and Text Editor window, edit the Main method to use the fully qualified name
System.Console.

Main should look like this:

static void Main(string[] args)
{
 System.Console.WriteLine("Hello World!");
}

Note When you type the period after System, the names of all the items in the
System namespace are displayed by IntelliSense.

5. On the BUILD menu, click Build Solution.

The project should build successfully this time. If it doesn’t, make sure that Main is exactly as it
appears in the preceding code, and then try building again.

6. Run the application to make sure it still works by clicking Start Without Debugging on the
DEBUG menu.

7. When the program runs and displays "Hello World!", press Enter in the console window to
return to Visual Studio 2012.

 CHAPTER 1 Welcome to C# 17

Namespaces and assemblies
A using directive simply brings the items in a namespace into scope and frees you from hav-
ing to fully qualify the names of classes in your code. Classes are compiled into assemblies.
An assembly is a file that usually has the .dll file name extension, although strictly speaking,
executable programs with the .exe file name extension are also assemblies.

An assembly can contain many classes. The classes that the .NET Framework class library
comprises, such as System.Console, are provided in assemblies that are installed on your com-
puter together with Visual Studio. You will find that the .NET Framework class library contains
thousands of classes. If they were all held in the same assembly, the assembly would be huge
and difficult to maintain. (If Microsoft updated a single method in a single class, it would have
to distribute the entire class library to all developers!)

For this reason, the .NET Framework class library is split into a number of assemblies, par-
titioned by the functional area to which the classes they contain relate. For example, a “core”
assembly (actually called mscorlib.dll) contains all the common classes, such as System.Console,
and further assemblies contain classes for manipulating databases, accessing web services,
building GUIs, and so on. If you want to make use of a class in an assembly, you must add to
your project a reference to that assembly. You can then add using statements to your code that
bring the items in namespaces in that assembly into scope.

You should note that there is not necessarily a 1:1 equivalence between an assembly and a
namespace. A single assembly can contain classes defined in many namespaces, and a single
namespace can span multiple assemblies. For example, the classes and items in the System
namespace are actually implemented by several assemblies, including mscorlib.dll, System.dll,
and System.Core.dll, among others. This all sounds very confusing at first, but you will soon get
used to it.

When you use Visual Studio to create an application, the template you select automati-
cally includes references to the appropriate assemblies. For example, in Solution Explorer for
the TestHello project, expand the References folder. You will see that a console application
automatically contains references to assemblies called Microsoft.CSharp, System, System.Core,
System.Data, System.Data.DataExtensions, System.Xml, and System.Xml.Linq. You may be
surprised to see that mscorlib.dll is not included in this list; this is because all .NET Framework
applications must use this assembly, as it contains fundamental runtime functionality. The
References folder lists only the optional assemblies; you can add or remove assemblies from
this folder as necessary.

You can add references for additional assemblies to a project by right-clicking the References
folder and clicking Add Reference—you will perform this task in later exercises. You can remove an
assembly by right-clicking the assembly in the References folder and then clicking Remove.

18 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Creating a Graphical Application

So far, you have used Visual Studio 2012 to create and run a basic console application. The Visual
Studio 2012 programming environment also contains everything you need to create graphical ap-
plications for Windows 7 and Windows 8. You can design the user interface of a Windows applica-
tion interactively. Visual Studio 2012 then generates the program statements to implement the user
interface you’ve designed.

Visual Studio 2012 provides you with two views of a graphical application: the design view and the
code view. You use the Code and Text Editor window to modify and maintain the code and program
logic for a graphical application, and you use the Design View window to lay out your user interface.
You can switch between the two views whenever you want.

In the following set of exercises, you’ll learn how to create a graphical application using Visual
Studio 2012. This program will display a simple form containing a text box where you can enter your
name and a button that when clicked displays a personalized greeting.

Important In Windows 7, Visual Studio 2012 provides two templates for building graphical
applications: the Windows Forms Application template and the WPF Application template.
Windows Forms is a technology that first appeared with the .NET Framework version 1.0.
WPF, or Windows Presentation Foundation, is an enhanced technology that first appeared
with the .NET Framework version 3.0. It provides many additional features and capabilities
over Windows Forms, and you should consider using WPF instead of Windows Forms for all
new Windows 7 development.

You can also build Windows Forms and WPF applications in Windows 8. However, Windows 8
provides a new style of user interface, referred to as the Windows Store style, and applications
that use this style of user interface are called Windows Store applications (or apps). Windows 8
has been designed to operate on a variety of hardware, including computers with touch-sensitive
screens and tablet computers or slates. These computers enable users to interact with applications
by using touch-based gestures—for example, users can swipe applications with their fingers to
move them around the screen and rotate them, or “pinch” and “stretch” applications to zoom out
and back in again. Additionally, many slates include sensors that can detect the orientation of the
device, and Windows 8 can pass this information to an application, which can then dynamically
adjust the user interface to match the orientation (it can switch from landscape to portrait mode,
for example). If you have installed Visual Studio 2012 on a Windows 8 computer, you are provided
with an additional set of templates for building Windows Store apps.

To cater to both Windows 7 and Windows 8 developers, I have provided instructions
in many of the exercises for using the WPF templates if you are running Windows 7, or
Windows 8 if you want to use the Windows Store style of user interface. Of course, you can
follow the Windows 7 and WPF instructions on Windows 8 if you prefer.

If you want more information about the specifics of writing Windows 8 applications, the
chapters in Part IV of this book provide more detail and guidance.

 CHAPTER 1 Welcome to C# 19

Create a graphical application in Visual Studio 2012

■■ If you are using Windows 8, perform the following operations to create a new graphical
application:

a. Start Visual Studio 2012 if it is not already running.

b. On the FILE menu, point to New, and then click Project.

The New Project dialog box opens.

c. In the left pane, under Installed Templates, expand the Visual C# folder if it is not already
expanded, and then click the Windows Store folder.

d. In the middle pane, click the Blank App (XAML) icon.

Note XAML stands for Extensible Application Markup Language, the language that
Windows Store apps use to define the layout for the GUI of an application. You will
learn more about XAML as you progress through the exercises in this book.

e. Ensure that the Location field refers to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 1 folder under your Documents folder.

f. In the Name field, type Hello.

g. In the Solution field, ensure that Create New Solution is selected.

This action creates a new solution for holding the project. The alternative, Add to
Solution, adds the project to the TestHello solution, which is not what you want for
this exercise.

h. Click OK.

If this is the first time that you have created a Windows Store app, you will be prompt-
ed to apply for a developer license. You must agree to the terms and conditions
indicated in the dialog box before you can continue to build Windows Store apps.
If you concur with these conditions, click I Agree. You will be prompted to sign into
Windows Live (you can create a new account at this point if necessary), and a devel-
oper license will be created and allocated to you.

20 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

i. After the application has been created, look in the Solution Explorer window.

Don’t be fooled by the name of the application template—although it is called Blank
App, this template actually provides a number of files and contains a significant
amount of code. For example, if you expand the Common folder in Solution Explorer,
you will find a file named StandardStyles.xaml. This file contains XAML code defin-
ing styles that you can use to format and present data for display. Part IV, "Build-
ing Professional Windows 8 Applications with C#," describes the purpose of these
styles in more detail, so don’t worry about them for now. Similarly, if you expand
the MainPage.xaml folder, you will find a C# file named MainPage.xaml.cs. This file is
where you add the code that runs when the user interface defined by the MainPage.
xaml file is displayed.

j. In Solution Explorer, double-click MainPage.xaml.

This file contains the layout of the user interface. The Design View window shows two
representations of this file:

 CHAPTER 1 Welcome to C# 21

At the top is a graphical view depicting the screen of a tablet computer. The lower
pane contains a description of the contents of this screen using XAML. XAML is an
XML-like language used by Windows Store apps and WPF applications to define the
layout of a form and its contents. If you have knowledge of XML, XAML should look
familiar.

In the next exercise, you will use the Design View window to lay out the user interface
for the application, and you will examine the XAML code that this layout generates.

■■ If you are using Windows 7, perform the following tasks:

a. Start Visual Studio 2012 if it is not already running.

b. On the FILE menu, point to New, and then click Project.

The New Project dialog box opens.

c. In the left pane, under Installed Templates, expand the Visual C# folder if it is not already
expanded, and then click the Windows folder.

d. In the middle pane, click the WPF Application icon.

e. Ensure that the Location field refers to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 1 folder under your Documents folder.

f. In the Name field, type Hello.

g. In the Solution field, ensure that Create New Solution is selected.

h. Click OK.

The WPF Application template generates fewer items than the Windows Store Blank
App template; it contains none of the styles generated by the Blank App template
as the functionality that these styles embody is specific to Windows 8. However, the
WPF Application template does generate a default window for your application. Like a
Windows Store app, this window is defined by using XAML, but in this case it is called
MainWindow.xaml by default.

i. In Solution Explorer, double-click MainWindow.xaml to display the contents of this file in the
Design View window.

22 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

tip Close the Output and Error List windows to provide more space for displaying
the Design View window.

Note Before going further, it is worth explaining some terminology. In a typical WPF
application, the user interface consists of one or more windows, but in a Windows
Store app the corresponding items are referred to as pages (strictly speaking, a WPF
application can also contain pages, but I don’t want to confuse matters further at
this point). To avoid repeating the rather verbose phrase “WPF window or Windows
Store app page” repeatedly throughout this book, I will simply refer to both items
by using the blanket term form. However, I will continue to use the word window to
refer to items in the Visual Studio 2012 IDE, such as the Design View window.

In the following exercises, you use the Design View window to add three controls to the form dis-
played by your application, and you examine some of the C# code automatically generated by Visual
Studio 2012 to implement these controls.

 CHAPTER 1 Welcome to C# 23

Note The steps in the following exercises are common to Windows 7 and Windows 8,
except where any differences are explicitly called out.

Create the user interface

1. Click the Toolbox tab that appears to the left of the form in the Design View window.

The Toolbox appears, partially obscuring the form, and displays the various components and
controls that you can place on a form.

2. If you are using Windows 8, expand the Common XAML Controls section.

If you are using Windows 7, expand the Common WPF Controls section.

This section displays a list of controls that are used by most graphical applications.

tip The All XAML Controls section (Windows 8) or All WPF Controls section
(Windows 7) displays a more extensive list of controls.

3. In the Common XAML Controls section or Common WPF Controls section, click TextBlock, and
then drag the TextBlock control onto the form displayed in the Design View window.

tip Make sure you select the TextBlock control and not the TextBox control. If you
accidentally place the wrong control on a form, you can easily remove it by clicking
the item on the form and then pressing Delete.

A TextBlock control is added to the form (you will move it to its correct location in a moment),
and the Toolbox disappears from view.

tip If you want the Toolbox to remain visible but not to hide any part of the form,
click the Auto Hide button to the right in the Toolbox title bar. (It looks like a pin.)
The Toolbox appears permanently on the left side of the Visual Studio 2012 window,
and the Design View window shrinks to accommodate it. (You might lose a lot of
space if you have a low-resolution screen.) Clicking the Auto Hide button once more
causes the Toolbox to disappear again.

24 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

4. The TextBlock control on the form is probably not exactly where you want it. You can click and
drag the controls you have added to a form to reposition them. Using this technique, move
the TextBlock control so that it is positioned toward the upper-left corner of the form. (The
exact placement is not critical for this application.) Notice that you may need to click away
from the control and then click it again before you are able to move it in the Design View
window.

The XAML description of the form in the lower pane now includes the TextBlock control,
together with properties such as its location on the form, governed by the Margin property,
the default text displayed by this control in the Text property, the alignment of text displayed
by this control specified by the HorizontalAlignment and VerticalAlignment properties, and
whether text should wrap if it exceeds the width of the control.

If you are using Windows 8, the XAML code for the TextBlock will look similar to this (your
values for the Margin property may be slightly different, depending on where you have posi-
tioned the TextBlock control on the form):

<TextBlock HorizontalAlignment="Left" Margin="400,200,0,0" TextWrapping="Wrap"
Text="TextBlock" VerticalAlignment="Top"/>

If you are using Windows 7, the XAML code will be much the same, except that the units used
by the Margin property operate on a different scale due to the finer resolution of Windows 8
devices.

The XAML pane and the Design View window have a two-way relationship with each other.
You can edit the values in the XAML pane, and the changes will be reflected in the Design
View window. For example, you can change the location of the TextBlock control by modifying
the values in the Margin property.

5. On the VIEW menu, click Properties Window.

If it was not already displayed, the Properties window appears at the lower-right of the screen,
under Solution Explorer. You can specify the properties of controls by using the XAML pane under
the Design View window, but the Properties window provides a more convenient way for you to
modify the properties for items on a form, as well as other items in a project.

The Properties window is context sensitive in that it displays the properties for the currently
selected item. If you click the form displayed in the Design View window, outside of the
TextBlock control, you can see that the Properties window displays the properties for a Grid
element. If you look at the XAML pane, you should see that the TextBlock control is contained
within a Grid element. All forms contain a Grid element that controls the layout of displayed
items; you can define tabular layouts by adding rows and columns to the Grid, for example.

6. Click the TextBlock control in the Design View window. The Properties window displays the
properties for the TextBlock control again.

 CHAPTER 1 Welcome to C# 25

7. In the Properties window, expand the Text property. Change the FontSize property to 20 px
and then press Enter. This property is located next to the drop-down list box containing the
name of the font, which will be different for Windows 8 (Global User Interface) and Windows 7
(Segoe UI):

Note The suffix px indicates that the font size is measured in pixels.

8. In the XAML pane below the Design View window, examine the text that defines the TextBlock
control. If you scroll to the end of the line, you should see the text FontSize=“20”. Any changes
that you make using the Properties window are automatically reflected in the XAML defini-
tions and vice versa.

Overtype the value of the FontSize property in the XAML pane, and change it to 24. The font
size of the text for the TextBlock control in the Design View window and the Properties win-
dow changes.

9. In the Properties window, examine the other properties of the TextBlock control. Feel free to
experiment by changing them to see their effects.

Notice that as you change the values of properties, these properties are added to the defini-
tion of the TextBlock control in the XAML pane. Each control that you add to a form has a
default set of property values, and these values are not displayed in the XAML pane unless
you change them.

10. Change the value of the Text property of the TextBlock control from TextBlock to Please enter
your name. You can do this either by editing the Text element in the XAML pane or by chang-
ing the value in the Properties window (this property is located in the Common section in the
Properties window).

Notice that the text displayed in the TextBlock control in the Design View window changes.

26 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

11. Click the form in the Design View window, and then display the Toolbox again.

12. In the Toolbox, click and drag the TextBox control onto the form. Move the TextBox control so
that it is directly underneath the TextBlock control.

tip When you drag a control on a form, alignment indicators appear automatically
when the control becomes aligned vertically or horizontally with other controls. This
gives you a quick visual cue for making sure that controls are lined up neatly.

13. In the Design View window, place the mouse over the right edge of the TextBox control. The
mouse pointer should change to a double-headed arrow to indicate that you can resize the
control. Click the mouse and drag the right edge of the TextBox control until it is aligned with
the right edge of the TextBlock control above; a guide should appear when the two edges are
correctly aligned.

14. While the TextBox control is selected, change the value of the Name property displayed at the
top of the Properties window from <No Name> to userName:

Note You will learn more about naming conventions for controls and variables in
Chapter 2, “Working with Variables, Operators, and Expressions.”

15. Display the Toolbox again, and then click and drag a Button control onto the form. Place the
Button control to the right of the TextBox control on the form so that the bottom of the but-
ton is aligned horizontally with the bottom of the text box.

16. Using the Properties window, change the Name property of the Button control to ok and
change the Content property (in the Common section) from Button to OK and press Enter.
Verify that the caption of the Button control on the form changes to display the text OK.

 CHAPTER 1 Welcome to C# 27

17. If you are using Windows 7, click the title bar of the form in the Design View window. In
the Properties window, change the Title property (in the Common section again) from
MainWindow to Hello.

Note Windows Store apps do not have a title bar.

18. If you are using Windows 7, in the Design View window, click the title bar of the Hello form.
Notice that a resize handle (a small square) appears in the lower-right corner of the Hello
form. Move the mouse pointer over the resize handle. When the pointer changes to a
diagonal double-headed arrow, click and drag the pointer to resize the form. Stop dragging
and release the mouse button when the spacing around the controls is roughly equal.

Important Click the title bar of the Hello form and not the outline of the grid inside
the Hello form before resizing it. If you select the grid, you will modify the layout of
the controls on the form but not the size of the form itself.

The Hello form should now look similar to the following figure.

Note Pages in Windows Store apps cannot be resized in the same way as
Windows 7 forms; when they run, they automatically occupy the full screen of the
device. However, they can adapt themselves to different screen resolutions and
device orientation, and present different views when they are “snapped.” You can
easily see what your application looks like on a different device by clicking Device
Window on the DESIGN menu and then selecting from the different screen resolu-
tions available in the Display drop-down list. You can also see how your application
appears in portrait mode or when snapped by selecting the Portrait orientation or
Snapped view from the list of available views.

28 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

19. On the BUILD menu, click Build Solution, and verify that the project builds successfully.

20. On the DEBUG menu, click Start Debugging.

The application should run and display your form. If you are using Windows 8, the form
occupies the entire screen and looks like this:

If you are using Windows 7, the form looks like this:

You can delete the text TextBox, type your name in the text box, and click OK, but nothing
happens yet. You need to add some code to indicate what should happen when the user clicks
the OK button, which is what you will do next.

21. Return to Visual Studio 2012, and on the DEBUG menu click Stop Debugging. Alternatively, if
you are using Windows 7, click the close button (the X in the upper-right corner of the form)
to close the form and return to Visual Studio.

 CHAPTER 1 Welcome to C# 29

Closing a Windows Store app
If you are using Windows 8 and you clicked Start Without Debugging on the DEBUG menu to run the
application, you will need to forcibly close it. This is because unlike console applications, the lifetime of a
Windows Store app is managed by the operating system rather than the user. Windows 8 suspends an ap-
plication when it is not currently displayed, and it will terminate the application when the operating system
needs to free the resources occupied by the application. The most reliable way to forcibly stop the Hello
application is to click (or place your finger if you have a touch-sensitive screen) at the top of the screen, and
then click and drag (or swipe) the application to the bottom of the screen. This action closes the application
and returns you to the Windows Start screen, where you can switch back to Visual Studio. Alternatively, you
can perform the following tasks:

1. Click, or place your finger, in the top-right corner of the screen and then drag the im-
age of Visual Studio to the middle of the screen (or press the Windows key and the B
key at the same time).

2. Right-click the Windows taskbar at the bottom of the desktop and then click Task Manager.

3. In the Task Manager window, click the Hello application, and then click End Task.

4. Close the Task Manager window.

You have managed to create a graphical application without writing a single line of C# code. It
does not do much yet (you will have to write some code soon), but Visual Studio 2012 actually gener-
ates a lot of code for you that handles routine tasks that all graphical applications must perform, such
as starting up and displaying a window. Before adding your own code to the application, it helps to
have an understanding of what Visual Studio has produced for you. The structure is slightly different

30 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

between a Windows Store app and a Windows 7 WPF application, and the following sections summa-
rize these application styles separately.

examining the Windows Store app
If you are using Windows 8, in Solution Explorer, click the arrow adjacent to the MainPage.xaml file to ex-
pand the node. The file MainPage.xaml.cs appears; double-click this file. The following code for the form is
displayed in the Code and Text Editor window:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

// The Blank Page item template is documented at http://go.microsoft.com/fwlink/?LinkId=234238

namespace Hello
{
 /// <summary>
 /// An empty page that can be used on its own or navigated to within a Frame.
 /// </summary>
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();
 }

 /// <summary>
 /// Invoked when this page is about to be displayed in a Frame.
 /// </summary>
 /// <param name="e">Event data that describes how this page was reached. The Parameter
 /// property is typically used to configure the page.</param>
 protected override void OnNavigatedTo(NavigationEventArgs e)
 {
 }
 }
}

In addition to a good number of using directives bringing into scope some namespaces that most
Windows Store apps use, the file contains the definition of a class called MainPage but not much else.
There is a little bit of code for the MainPage class known as a constructor that calls a method called
InitializeComponent. A constructor is a special method with the same name as the class. It is executed

 CHAPTER 1 Welcome to C# 31

when an instance of the class is created and can contain code to initialize the instance. You will learn
about constructors in Chapter 7.

The class also contains a method called OnNavigatedTo. This is an example of a method that is in-
voked by an event, and the code in this method runs when the window is displayed. You can add your
own code to this method to configure the display if necessary. You will learn more about events in
Chapter 17, “Introducing Generics,” and Chapter 25, “Implementing the User Interface for a Windows
Store App,” provides more information about the NavigatedTo event.

The class actually contains a lot more code than the few lines shown in the MainPage.xaml.cs file, but
much of it is generated automatically based on the XAML description of the form, and it is hidden from you.
This hidden code performs operations such as creating and displaying the form, and creating and position-
ing the various controls on the form.

tip You can also display the C# code file for a page in a Windows Store app by clicking
Code on the VIEW menu when the Design View window is displayed.

At this point, you might be wondering where the Main method is and how the form gets displayed
when the application runs. Remember that in a console application, Main defines the point at which
the program starts. A graphical application is slightly different.

In Solution Explorer, you should notice another source file called App.xaml. If you expand the node for
this file, you will see another file called App.xaml.cs. In a Windows Store app, the App.xaml file provides the
entry point when the application starts running. If you double-click App.xaml.cs in Solution Explorer, you
should see some code that looks similar to this:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using Windows.ApplicationModel;
using Windows.ApplicationModel.Activation;
using Windows.Foundation;
using Windows.Foundation.Collections;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Controls.Primitives;
using Windows.UI.Xaml.Data;
using Windows.UI.Xaml.Input;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Navigation;

// The Blank Application template is documented at http://go.microsoft.com/fwlink/?LinkId=234227

namespace Hello
{
 /// <summary>
 /// Provides application-specific behavior to supplement the default Application class.
 /// </summary>
 sealed partial class App : Application

32 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

 {
 /// <summary>
 /// Initializes the singleton application object. This is the first line of authored
 /// executed, and as such is the logical equivalent of main() or WinMain().
 /// </summary>
 public App()
 {
 this.InitializeComponent();
 this.Suspending += OnSuspending;
 }

 /// <summary>
 /// Invoked when the application is launched normally by the end user. Other entry
 /// will be used when the application is launched to open a specific file, to display
 /// search results, and so forth.
 /// </summary>
 /// <param name="args">Details about the launch request and process.</param>
 protected override void OnLaunched(LaunchActivatedEventArgs args)
 {
 Frame rootFrame = Window.Current.Content as Frame;

 // Do not repeat app initialization when the Window already has content,
 // just ensure that the window is active
 if (rootFrame == null)
 {
 // Create a Frame to act as the navigation context and navigate to the first
 rootFrame = new Frame();

 if (args.PreviousExecutionState == ApplicationExecutionState.Terminated)
 {
 //TODO: Load state from previously suspended application
 }

 // Place the frame in the current Window
 Window.Current.Content = rootFrame;
 }

 if (rootFrame.Content == null)
 {
 // When the navigation stack isn't restored navigate to the first page,
 // configuring the new page by passing required information as a navigation
 // parameter
 if (!rootFrame.Navigate(typeof(MainPage), args.Arguments))
 {
 throw new Exception("Failed to create initial page");
 }
 }
 // Ensure the current window is active
 Window.Current.Activate();
 }

 /// <summary>
 /// Invoked when application execution is being suspended. Application state is saved
 /// without knowing whether the application will be terminated or resumed with the
 /// of memory still intact.
 /// </summary>

 CHAPTER 1 Welcome to C# 33

 /// <param name="sender">The source of the suspend request.</param>
 /// <param name="e">Details about the suspend request.</param>
 private void OnSuspending(object sender, SuspendingEventArgs e)
 {
 var deferral = e.SuspendingOperation.GetDeferral();
 //TODO: Save application state and stop any background activity
 deferral.Complete();
 }
 }
}

Much of this code consists of comments (the lines beginning “///”) and other statements that you
don’t need to understand just yet, but the key elements are located in the OnLaunched method,
highlighted in bold. This method runs when the application starts, and the code in this method causes
the application to create a new Frame object, display the MainPage form in this frame, and then
activate it. It is not necessary at this stage to fully comprehend how this code works or the syntax of
any of these statements, but simply appreciate that this is how the application displays the form when
it starts running.

examining the WpF application
If you are using Windows 7, in Solution Explorer, click the arrow adjacent to the MainWindow.xaml file to
expand the node. The file MainWindow.xaml.cs appears; double-click this file. The code for the form is
displayed in the Code and Text Editor window. It looks like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
namespace Hello
{
 /// <summary>
 /// Interaction logic for MainWindow.xaml
 /// </summary>
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }
 }
}

34 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

This code looks similar to that for the Windows Store app, but there are some significant differ-
ences. First, there is no OnNavigatedTo method; this is because the way in which a WPF application
moves between forms is different from a Windows Store app. Second, many of the namespaces refer-
enced by the using directives at the top of the file are different. For example, WPF applications make
use of objects defined in namespaces that begin with the prefix System.Windows, whereas Windows
Store apps use objects defined in namespaces that start with Windows.UI. This difference is not just
cosmetic. These namespaces are implemented by different assemblies, and the controls and func-
tionality that these assemblies provide are different between WPF and Windows Store apps, although
they may have similar names. Going back to the earlier exercise, you added TextBlock, TextBox, and
Button controls to the WPF form and the Windows Store app. Although these controls have the same
name in each style of application, they are defined in different assemblies: Windows.UI.Xaml.Controls
for Windows Store apps and System.Windows.Controls for WPF applications. The controls for Windows
Store apps have been specifically designed and optimized for touch interfaces, whereas the WPF con-
trols are intended primarily for use in mouse-driven systems.

As with the code in the Windows Store app, the constructor in the MainWindow class initializes the
WPF form by calling the InitializeComponent method. Again, as before, the code for this method is
hidden from you, and it performs operations such as creating and displaying the form, and creating
and positioning the various controls on the form.

The way in which a WPF application specifies the initial form to be displayed is different from
that of a Windows Store app. Like a Windows Store app, it defines an App object defined in the
App.xaml file to provide the entry point for the application, but the form to display is specified de-
claratively as part of the XAML code rather than programmatically. If you double-click the App.xaml
file in Solution Explorer (not App.xaml.cs), you can examine the XAML description. One property in
the XAML code is called StartupUri, and it refers to the MainWindow.xaml file, as shown in bold in
the following code example:

<Application x:Class="Hello.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com.winfx/2006/xaml"
 StartupUri="MainWindow.xaml">
 <Application.Resources>

 </Application.Resources>
</Application>

In a WPF application, the StartupUri property of the App object indicates which form to display.

adding Code to the Graphical application
Now that you know a little bit about the structure of a graphical application, the time has come to
write some code to make your application actually do something.

 CHAPTER 1 Welcome to C# 35

Write the code for the OK button

1. Open the MainPage.xaml file (Windows 8) or MainWindow.xaml file (Windows 7) in the De-
sign View window (double-click MainPage.xaml or MainWindow.xaml in Solution Explorer).

2. In the Design View window, click the OK button on the form to select it.

3. In the Properties window, click the Event Handlers for Selected Element button. This button
displays an icon that looks like a bolt of lightning.

The Properties window displays a list of event names for the Button control. An event indi-
cates a significant action that usually requires a response, and you can write your own code to
perform this response.

4. In the box adjacent to the Click event, type okClick and then press Enter.

The MainPage.xaml.cs file (Windows 8) or MainWindow.xaml.cs file (Windows 7) appears in
the Code and Text Editor window, and a new method called okClick is added to the MainPage
or MainWindow class. The method looks like this:

private void okClick(object sender, RoutedEventArgs e)
{

}

Do not worry too much about the syntax of this code just yet—you will learn all about meth-
ods in Chapter 3.

5. If you are using Windows 8, perform the following tasks:

a. Add the following using directive shown in bold to the list at the top of the file (the ellipsis
character, …, indicates statements that have been omitted for brevity):

36 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

using System;
...
using Windows.UI.Xaml.Navigation;
using Windows.UI.Popups;

b. Add the following code shown in bold to the okClick method:

void okClick(object sender, RoutedEventArgs e)
{
 MessageDialog msg = new MessageDialog("Hello " + userName.Text);
 msg.ShowAsync();
}

This code will run when the user clicks the OK button. Again, do not worry too much about
the syntax, just make sure you copy it exactly as shown; you will find out what these state-
ments mean in the next few chapters. The key things to understand are that the first
statement creates a MessageDialog object with the message “Hello <YourName>”, where
<YourName> is the name that you type into the TextBox on the form. The second statement
displays the MessageDialog, causing it to appear on the screen. The MessageDialog class is
defined in the Windows.UI.Popups namespace, which is why you added it in step a.

6. If you are using Windows 7, just add the single statement shown in bold to the okClick
method:

void okClick(object sender, RoutedEventArgs e)
{
 MessageBox.Show("Hello " + userName.Text);
}

This code performs a similar function to that of the Windows Store app, except that it uses
a different class called MessageBox. This class is defined in the System.Windows namespace,
which is already referenced by the existing using directives at the top of the file, so you don’t
need to add it yourself.

7. Click the MainPage.xaml tab or the MainWindow.xaml tab above the Code and Text Editor window
to display the form in the Design View window again.

8. In the lower pane displaying the XAML description of the form, examine the Button element,
but be careful not to change anything. Notice that it now contains an element called Click that
refers to the okClick method:

<Button x:Name="ok" ... Click="okClick" />

9. On the DEBUG menu, click Start Debugging.

10. When the form appears, in the text box overtype the text TextBox with your name and then
click OK.

 CHAPTER 1 Welcome to C# 37

If you are using Windows 8, a message dialog appears across the middle of the screen, wel-
coming you by name:

If you are using Windows 7, a message box appears displaying the following greeting:

11. Click Close in the message dialog (Windows 8) or OK (Windows 7) in the message box.

12. Return to Visual Studio 2012, and on the DEBUG menu click Stop Debugging.

Summary

In this chapter, you have seen how to use Visual Studio 2012 to create, build, and run applications.
You have created a console application that displays its output in a console window, and you have
created a WPF application with a simple GUI.

38 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 2.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 1 Quick Reference

To Do this

Create a new console application using
Visual Studio 2012

On the FILE menu, point to New, and then click Project to open the New
Project dialog box. In the left pane, under Installed Templates, click Visual
C#. In the middle pane, click Console Application. Specify a directory for
the project files in the Location box. Type a name for the project. Click
OK.

Create a new Windows Store blank graphi-
cal application for Windows 8 using Visual
Studio 2012

On the FILE menu, point to New, and then click Project to open the New
Project dialog box. In the left pane, under Installed Templates, expand
Visual C# and then click Windows Store. In the middle pane, click Blank
App (XAML). Specify a directory for the project files in the Location box.
Type a name for the project. Click OK.

Create a new WPF graphical application
for Windows 7 using Visual Studio 2012

On the FILE menu, point to New, and then click Project to open the
New Project dialog box. In the left pane, under Installed Templates, ex-
pand Visual C# and then click Windows. In the middle pane, click WPF
Application. Specify a directory for the project files in the Location box.
Type a name for the project. Click OK.

Build the application On the BUILD menu, click Build Solution.

Run the application in debug mode On the DEBUG menu, click Start Debugging.

Run the application without debugging On the DEBUG menu, click Start Without Debugging.

 39

C H A P T E R 2

Working with Variables, Operators,
and expressions

After completing this chapter, you will be able to

■■ Understand statements, identifiers, and keywords.

■■ Use variables to store information.

■■ Work with primitive data types.

■■ Use arithmetic operators such as the plus sign (+) and the minus sign (–).

■■ Increment and decrement variables.

In Chapter 1, “Welcome to C#,” you learned how to use the Microsoft Visual Studio 2012 program-
ming environment to build and run a console program and a graphical application. This chapter
introduces you to the elements of Microsoft Visual C# syntax and semantics, including statements,
keywords, and identifiers. You’ll study the primitive types that are built into the C# language and the
characteristics of the values that each type holds. You’ll also see how to declare and use local vari-
ables (variables that exist only in a method or other small section of code), learn about the arithmetic
operators that C# provides, find out how to use operators to manipulate values, and learn how to
control expressions containing two or more operators.

Understanding Statements

A statement is a command that performs an action, such as calculating a value and storing the result,
or displaying a message to a user. You combine statements to create methods. You’ll learn more
about methods in Chapter 3, “Writing Methods and Applying Scope,” but for now, think of a method
as a named sequence of statements. Main, which was introduced in the previous chapter, is an
example of a method.

Statements in C# follow a well-defined set of rules describing their format and construction. These
rules are collectively known as syntax. (In contrast, the specification of what statements do is collec-
tively known as semantics.) One of the simplest and most important C# syntax rules states that you

40 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

must terminate all statements with a semicolon. For example, you saw in Chapter 1 that without its
terminating semicolon, the following statement won’t compile:

Console.WriteLine("Hello World!");

tip C# is a “free format” language, which means that white space, such as a space charac-
ter or a new line, is not significant except as a separator. In other words, you are free to lay
out your statements in any style you choose. However, you should adopt a simple, consis-
tent layout style to make your programs easier to read and understand.

The trick to programming well in any language is learning the syntax and semantics of the lan-
guage and then using the language in a natural and idiomatic way. This approach makes your pro-
grams more easily maintainable. As you progress through this book, you’ll see examples of the most
important C# statements.

Using Identifiers

Identifiers are the names you use to identify the elements in your programs, such as namespaces,
classes, methods, and variables. (You will learn about variables shortly.) In C#, you must adhere to the
following syntax rules when choosing identifiers:

■■ You can use only letters (uppercase and lowercase), digits, and underscore characters.

■■ An identifier must start with a letter or an underscore.

For example, result, _score, footballTeam, and plan9 are all valid identifiers, whereas result%,
footballTeam$, and 9plan are not.

Important C# is a case-sensitive language: footballTeam and FootballTeam are not the
same identifier.

Identifying Keywords
The C# language reserves 77 identifiers for its own use, and you cannot reuse these identifiers for
your own purposes. These identifiers are called keywords, and each has a particular meaning. Exam-
ples of keywords are class, namespace, and using. You’ll learn the meaning of most of the C# key-
words as you proceed through this book. The following table lists the keywords:

 CHAPTER 2 Working with Variables, Operators, and Expressions 41

abstract do in protected true

as double int public try

base else interface readonly typeof

bool enum internal ref uint

break event is return ulong

byte explicit lock sbyte unchecked

case extern long sealed unsafe

catch false namespace short ushort

char finally new sizeof using

checked fixed null stackalloc virtual

class float object static void

const for operator string volatile

continue foreach out struct while

decimal goto override switch

default if params this

delegate implicit private throw

tip In the Visual Studio 2012 Code and Text Editor window, keywords are colored blue
when you type them.

C# also uses the following identifiers. These identifiers are not reserved by C#, which means that
you can use these names as identifiers for your own methods, variables, and classes, but you should
avoid doing so if at all possible.

add get remove

alias global select

ascending group set

async into value

await join var

descending let where

dynamic orderby yield

from partial

42 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Using Variables

A variable is a storage location that holds a value. You can think of a variable as a box in the
computer’s memory holding temporary information. You must give each variable in a program an
unambiguous name that uniquely identifies it in the context in which it is used. You use a variable’s
name to refer to the value it holds. For example, if you want to store the value of the cost of an item
in a store, you might create a variable simply called cost and store the item’s cost in this variable.
Later on, if you refer to the cost variable, the value retrieved will be the item’s cost that you stored
there earlier.

Naming Variables
You should adopt a naming convention for variables that helps you avoid confusion concerning the vari-
ables you have defined. This is especially important if you are part of a project team with several develop-
ers working on different parts of an application; a consistent naming convention helps to avoid confusion
and can reduce the scope for bugs. The following list contains some general recommendations:

■■ Don’t start an identifier with an underscore. Although this is legal in C#, it can limit the
interoperability of your code with applications built by using other languages, such as
Microsoft Visual Basic.

■■ Don’t create identifiers that differ only by case. For example, do not create one variable
named myVariable and another named MyVariable for use at the same time, because it is
too easy to get them confused. Also, defining identifiers that differ only by case can limit the
ability to reuse classes in applications developed by using other languages that are not case
sensitive, such as Microsoft Visual Basic.

■■ Start the name with a lowercase letter.

■■ In a multiword identifier, start the second and each subsequent word with an uppercase letter.
(This is called camelCase notation.)

■■ Don’t use Hungarian notation. (Microsoft Visual C++ developers reading this book are prob-
ably familiar with Hungarian notation. If you don’t know what Hungarian notation is, don’t
worry about it!)

For example, score, footballTeam, _score, and FootballTeam are all valid variable names, but only
the first two are recommended.

Declaring Variables
Variables hold values. C# has many different types of values that it can store and process—integers,
floating-point numbers, and strings of characters, to name three. When you declare a variable, you must
specify the type of data it will hold.

 CHAPTER 2 Working with Variables, Operators, and Expressions 43

You declare the type and name of a variable in a declaration statement. For example, the following
statement declares that the variable named age holds int (integer) values. As always, the statement
must be terminated with a semicolon.

int age;

The variable type int is the name of one of the primitive C# types, integer, which is a whole number.
(You’ll learn about several primitive data types later in this chapter.)

Note Microsoft Visual Basic programmers should note that C# does not allow implicit vari-
able declarations. You must explicitly declare all variables before you use them.

After you’ve declared your variable, you can assign it a value. The following statement assigns age
the value 42. Again, you’ll see that the semicolon is required.

age = 42;

The equal sign (=) is the assignment operator, which assigns the value on its right to the variable on
its left. After this assignment, you can use the age variable in your code to refer to the value it holds.
The next statement writes the value of the age variable, 42, to the console:

Console.WriteLine(age);

tip If you leave the mouse pointer over a variable in the Visual Studio 2012 Code and Text
Editor window, a ScreenTip appears, telling you the type of the variable.

Working with Primitive Data Types

C# has a number of built-in types called primitive data types. The following table lists the most com-
monly used primitive data types in C# and the range of values that you can store in each.

Data type Description Size (bits) Range Sample usage

int Whole numbers (integers) 32 –231 through 231 – 1
int count;
count = 42;

long Whole numbers (bigger range) 64 –263 through 263 – 1
long wait;
wait = 42L;

float Floating-point numbers 32 ±1.5 x 10-45 through
±3.4 x 1038

float away;
away = 0.42F;

double Double-precision (more accu-
rate) floating-point numbers 64 ±5.0 x 10-324 through

±1.7 x 10308
double trouble;
trouble = 0.42;

44 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Data type Description Size (bits) Range Sample usage

decimal Monetary values 128 28 significant figures
decimal coin;
coin = 0.42M;

string Sequence of characters 16 bits per
character Not applicable

string vest;
vest = "fortytwo";

char Single character 16 0 through 216 – 1
char grill;
grill = 'x';

bool Boolean 8 true or false
bool teeth;
teeth = false;

Unassigned Local Variables
When you declare a variable, it contains a random value until you assign a value to it. This behavior
was a rich source of bugs in C and C++ programs that created a variable and accidentally used it as a
source of information before giving it a value. C# does not allow you to use an unassigned variable.
You must assign a value to a variable before you can use it, otherwise your program will not compile.
This requirement is called the definite assignment rule. For example, the following statements gener-
ate the compile-time error message “Use of unassigned local variable ‘age’” because the Console.
WriteLine statement attempts to display the value of an uninitialized variable:

int age;
Console.WriteLine(age); // compile-time error

Displaying primitive Data type Values
In the following exercise, you use a C# program named PrimitiveDataTypes to demonstrate how sev-
eral primitive data types work.

Display primitive data type values

1. Start Visual Studio 2012 if it is not already running.

2. On the FILE menu, point to Open, and then click Project/Solution.

The Open Project dialog box appears.

3. If you are using Windows 8, move to the \Microsoft Press\Visual CSharp Step By Step\
Chapter 2\Windows 8\PrimitiveDataTypes folder in your Documents folder. If you are using
Windows 7, move to the \Microsoft Press\Visual CSharp Step By Step\Chapter 2\Windows 7\
PrimitiveDataTypes folder in your Documents folder.

 CHAPTER 2 Working with Variables, Operators, and Expressions 45

Note To avoid repetition and to save space, in subsequent exercises I will simply
refer to solution paths by using a phrase of the form \Microsoft Press\Visual CSharp
Step By Step\Chapter 2\Windows X\PrimitiveDataTypes, where X is either 7 or 8,
depending on the operating system you are using.

4. Select the PrimitiveDataTypes solution file, and then click Open.

The solution loads, and Solution Explorer displays the PrimitiveDataTypes project.

Note Solution file names have the .sln suffix, such as PrimitiveDataTypes.sln. A so-
lution can contain one or more projects. Project files have the .csproj suffix. If you
open a project rather than a solution, Visual Studio 2012 automatically creates a new
solution file for it. This situation can be confusing if you are not aware of this feature,
as it can result in you accidentally generating multiple solutions for the same project.

tip Be sure to open the solution file in the correct folder for your operating system.
If you attempt to open a solution for a Windows Store app by using Visual Studio
2012 on Windows 7, the project will fail to load. Solution Explorer will mark the
project as unavailable and display the message “This project requires Windows 8 or
higher to load” if you expand the project node, as shown in the following image:

If this happens, close the solution and open the version in the correct folder.

5. On the DEBUG menu, click Start Debugging.

You might see some warnings in Visual Studio. You can safely ignore them. (You will correct
them in the next exercise.)

If you are using Windows 8, the following page is displayed:

46 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

If you are using Windows 7, the following window appears:

6. In the Choose a Data Type list, click the string type.

The value “forty two” appears in the Sample Value box.

7. Click the int type in the list.

The value “to do” appears in the Sample Value box, indicating that the statements to display
an int value still need to be written.

8. Click each data type in the list. Confirm that the code for the double and bool types is not yet
implemented.

9. Return to Visual Studio 2012, and on the DEBUG menu click Stop Debugging.

 CHAPTER 2 Working with Variables, Operators, and Expressions 47

Note If you are using Windows 7, you can also click Quit to close the window and
stop the program.

Use primitive data types in code

1. In Solution Explorer, expand the PrimitiveDataTypes project (if it is not already expanded) and then
double-click MainWindow.xaml.

Note To keep the exercise instructions simple, the forms in the Windows 8 and
Windows 7 applications have the same names from now on.

The form for the application appears in the Design View window.

tip If your screen is not big enough to display the entire form, you can zoom in and
out in the Design View window by using Ctrl+Alt+= and Ctrl+Alt+- or by selecting
the size from the zoom drop-down list in the bottom-left corner of the Design View
window.

2. In the XAML pane, scroll down to locate the markup for the ListBox control. This control
displays the list of data types in the left part of the form, and it looks like this (some of the
properties have been removed from this text):

<ListBox x:Name="type" ... SelectionChanged="typeSelectionChanged">
 <ListBoxItem>int</ListBoxItem>
 <ListBoxItem>long</ListBoxItem>
 <ListBoxItem>float</ListBoxItem>
 <ListBoxItem>double</ListBoxItem>
 <ListBoxItem>decimal</ListBoxItem>
 <ListBoxItem>string</ListBoxItem>
 <ListBoxItem>char</ListBoxItem>
 <ListBoxItem>bool</ListBoxItem>
</ListBox>

The ListBox control displays each data type as a separate ListBoxItem. When the application
is running, if a user clicks an item in the list, the SelectionChanged event occurs (this is a little
bit like the Clicked event that occurs when the user clicks a button, which you saw in Chapter
1). You can see that in this case, the ListBox invokes the typeSelectionChanged method. This
method is defined in the MainWindow.xaml.cs file.

48 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

3. On the VIEW menu, click Code.

The Code and Text Editor window opens, displaying the MainWindow.xaml.cs file.

Note Remember that you can also use Solution Explorer to access the code. Click
the arrow to the left of the MainWindow.xaml file to expand the node, and then
double-click MainWindow.xaml.cs.

4. In the Code and Text Editor window, find the typeSelectionChanged method.

tip To locate an item in your project, on the EDIT menu, point to Find and Replace,
and then click Quick Find. A menu opens in the top-right corner of the Code and
Text Editor window. In the text box in this menu, type the name of the item you’re
looking for, and then click Find Next (this is the button with the right-arrow symbol
next to the text box):

By default, the search is not case sensitive. If you want to perform a case-sensitive
search, click the down arrow next to the text to search for, click the drop-down ar-
row to the right of the text box in the shortcut menu to display additional options,
and then select the Match Case check box. If you have time, you can experiment
with the other options as well.

You can also press Ctrl+F to display the Quick Find dialog box rather than using the
EDIT menu. Similarly, you can press Ctrl+H to display the Quick Replace dialog box.

 CHAPTER 2 Working with Variables, Operators, and Expressions 49

As an alternative to using the Quick Find functionality, you can also locate the meth-
ods in a class by using the class members drop-down list box above the Code and
Text Editor window, on the right.

The class members drop-down list box displays all the methods in the class, together
with the variables and other items that the class contains. (You will learn more about
these items in later chapters.) In the drop-down list, click the typeSelectionChanged
method, and the cursor will move directly to the typeSelectionChanged method in
the class.

If you have programmed using another language, you can probably guess how the
typeSelectionChanged method works; if not, then Chapter 4, “Using Decision Statements,” will
make this code clear. At present, all you need to understand is that when the user clicks an
item in the ListBox control, the value of the item is passed to this method, which then uses this
value to determine what happens next. For example, if the user clicks the float value, then this
method calls another method named showFloatValue.

5. Scroll down through the code and find the showFloatValue method, which looks like this:

private void showFloatValue()
{
 float floatVar;
 floatVar = 0.42F;
 value.Text = floatVar.ToString();
}

The body of this method contains three statements. The first statement declares a variable
named floatVar of type float.

The second statement assigns floatVar the value 0.42F. (The F is a type suffix specifying that
0.42 should be treated as a float value. If you forget the F, the value 0.42 is treated as a double

50 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

and your program will not compile, because you cannot assign a value of one type to a vari-
able of a different type without writing additional code—C# is very strict in this respect.)

The third statement displays the value of this variable in the value text box on the form. This
statement requires your attention. If you remember from Chapter 1, the way in which you dis-
play an item in a text box is to set its Text property (you did this by using XAML in Chapter 1).
You can also perform this task programmatically, which is what is going on here. Notice that
you access the property of an object by using the same dot notation that you saw for running
a method. (Remember Console.WriteLine from Chapter 1?) Also, the data that you put in the
Text property must be a string and not a number. If you try to assign a number to the Text
property, your program will not compile. Fortunately, the .NET Framework provides some help
in the form of the ToString method.

Every data type in the .NET Framework has a ToString method. The purpose of ToString is to
convert an object to its string representation. The showFloatValue method uses the ToString
method of the float variable floatVar object to generate a string version of the value of this
variable. This string can then be safely assigned to the Text property of the value text box.
When you create your own data types and classes, you can define your own implementa-
tion of the ToString method to specify how your class should be represented as a string. You
learn more about creating your own classes in Chapter 7, “Creating and Managing Classes
and Objects.”

6. In the Code and Text Editor window, locate the showIntValue method:

private void showIntValue()
{
 value.Text = "to do";
}

The showIntValue method is called when you click the int type in the list box.

7. Type the following two statements at the start of the showIntValue method, on a new line
after the opening brace, as shown in bold type in the following code:

private void showIntValue()
{
 int intVar;
 intVar = 42;
 value.Text = "to do";
}

The first statement creates a variable called intVar that can hold an int value. The second
statement assigns the value 42 to this variable.

 CHAPTER 2 Working with Variables, Operators, and Expressions 51

8. In the original statement in this method, change the string “to do” to intVar.ToString().

The method should now look exactly like this:

private void showIntValue()
{
 int intVar;
 intVar = 42;
 value.Text = intVar.ToString();
}

9. On the DEBUG menu, click Start Debugging.

The form appears again.

10. Select the int type in the Choose a Data Type list. Confirm that the value 42 is displayed in the
Sample Value text box.

11. Return to Visual Studio, and on the DEBUG menu click Stop Debugging.

12. In the Code and Text Editor window, find the showDoubleValue method.

13. Edit the showDoubleValue method exactly as shown in bold type in the following code:

private void showDoubleValue()
{
 double doubleVar;
 doubleVar = 0.42;
 value.Text = doubleVar.ToString();
}

This code is similar to the showIntValue method, except that it creates a variable called
doubleVar that holds double values, and it is assigned the value 0.42.

14. In the Code and Text Editor window, locate the showBoolValue method.

15. Edit the showBoolValue method exactly as follows:

private void showBoolValue()
{
 bool boolVar;
 boolVar = false;
 value.Text = boolVar.ToString();
}

Again, this code is similar to the previous examples, except that boolVar can only hold a Bool-
ean value, true or false.

16. On the DEBUG menu, click Start Debugging.

52 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

17. In the Choose a Data Type list, select the int, double, and bool types. In each case, verify that
the correct value is displayed in the Sample Value text box.

18. Return to Visual Studio, and on the DEBUG menu click Stop Debugging.

Using Arithmetic Operators

C# supports the regular arithmetic operations you learned in your childhood: the plus sign (+) for
addition, the minus sign (–) for subtraction, the asterisk (*) for multiplication, and the forward slash (/)
for division. The symbols +, –, *, and / are called operators because they “operate” on values to create
new values. In the following example, the variable moneyPaidToConsultant ends up holding the prod-
uct of 750 (the daily rate) and 20 (the number of days the consultant was employed):

long moneyPaidToConsultant;
moneyPaidToConsultant = 750 * 20;

Note The values that an operator operates on are called operands. In the expression 750 *
20, the * is the operator, and 750 and 20 are the operands.

Operators and types
Not all operators are applicable to all data types. The operators that you can use on a value depend
on the value’s type. For example, you can use all the arithmetic operators on values of type char, int,
long, float, double, or decimal. However, with the exception of the plus operator, +, you can’t use the
arithmetic operators on values of type string, and you cannot use any of them with values of type
bool. So the following statement is not allowed, because the string type does not support the minus
operator (subtracting one string from another is meaningless):

// compile-time error
Console.WriteLine("Gillingham" - "Forest Green Rovers");

You can use the + operator to concatenate string values. You need to be careful because this can
have unexpected results. For example, the following statement writes “431” (not “44”) to the console:

Console.WriteLine("43" + "1");

tip The .NET Framework provides a method called Int32.Parse that you can use to convert
a string value to an integer if you need to perform arithmetic computations on values held
as strings.

 CHAPTER 2 Working with Variables, Operators, and Expressions 53

You should also be aware that the type of the result of an arithmetic operation depends on the
type of the operands used. For example, the value of the expression 5.0/2.0 is 2.5; the type of both
operands is double, so the type of the result is also double. (In C#, literal numbers with decimal points
are always double, not float, to maintain as much accuracy as possible.) However, the value of the
expression 5/2 is 2. In this case, the type of both operands is int, so the type of the result is also int.
C# always rounds toward zero in circumstances like this. The situation gets a little more complicated if
you mix the types of the operands. For example, the expression 5/2.0 consists of an int and a double.
The C# compiler detects the mismatch and generates code that converts the int into a double before
performing the operation. The result of the operation is therefore a double (2.5). However, although
this works, it is considered poor practice to mix types in this way.

C# also supports one less-familiar arithmetic operator: the remainder, or modulus, operator, which
is represented by the percent sign (%). The result of x % y is the remainder after dividing the value x
by the value y. So, for example, 9 % 2 is 1 because 9 divided by 2 is 4, remainder 1.

Note If you are familiar with C or C++, you know that you can’t use the remainder operator
on float or double values in these languages. However, C# relaxes this rule. The remainder
operator is valid with all numeric types, and the result is not necessarily an integer. For
example, the result of the expression 7.0 % 2.4 is 2.2.

Numeric types and Infinite Values
There are one or two other features of numbers in C# that you should be aware of. For ex-
ample, the result of dividing any number by zero is infinity, which is outside the range of the
int, long, and decimal types; consequently, evaluating an expression such as 5/0 results in an
error. However, the double and float types actually have a special value that can represent infin-
ity, and the value of the expression 5.0/0.0 is Infinity. The one exception to this rule is the value
of the expression 0.0/0.0. Usually, if you divide zero by anything, the result is zero, but if you
divide anything by zero the result is infinity. The expression 0.0/0.0 results in a paradox—the
value must be zero and infinity at the same time. C# has another special value for this situation
called NaN, which stands for “not a number.” So if you evaluate 0.0/0.0, the result is NaN.

NaN and Infinity propagate through expressions. If you evaluate 10 + NaN, the result is
NaN, and if you evaluate 10 + Infinity, the result is Infinity. The one exception to this rule is the
case when you multiply Infinity by 0. The value of the expression Infinity * 0 is 0, although the
value of NaN * 0 is NaN.

54 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

examining arithmetic Operators
The following exercise demonstrates how to use the arithmetic operators on int values.

run the MathsOperators project

1. Start Visual Studio 2012 if it is not already running.

2. Open the MathsOperators project, located in the \Microsoft Press\Visual CSharp Step By Step\
Chapter 2\Windows X\MathsOperators folder in your Documents folder.

3. On the DEBUG menu, click Start Debugging.

If you are using Windows 8, the following page appears:

If you are using Windows 7, the following form displays:

 CHAPTER 2 Working with Variables, Operators, and Expressions 55

4. Type 54 in the Left Operand text box.

5. Type 13 in the Right Operand text box.

You can now apply any of the operators to the values in the text boxes.

6. Click the – Subtraction button, and then click Calculate.

The text in the Expression text box changes to 54 – 13, but the value 0 appears in the Result
box; this is clearly wrong.

7. Click the / Division button, and then click Calculate.

The text in the Expression text box changes to 54/13, and again the value 0 appears in the
Result text box.

8. Click the % Remainder button, and then click Calculate.

The text in the Expression text box changes to 54 % 13, but once again the value 0 appears in the
Result text box. Test the other combinations of numbers and operators; you will find that they all
currently yield the value 0.

Note If you type a noninteger value into either of the operand text boxes, the ap-
plication detects an error and displays the message “Input string was not in a correct
format.” You will learn more about how to catch and handle errors and exceptions in
Chapter 6, “Managing Errors and Exceptions.”

9. When you have finished, return to Visual Studio, and on the DEBUG menu click Stop
Debugging (if you are using Windows 7, you can also click Quit on the MathsOperators form).

As you may have guessed, none of the calculations is currently implemented by the
MathsOperators application. In the next exercise, you will correct this.

perform calculations in the MathsOperators application

1. Display the MainWindow.xaml form in the Design View window. (Double-click the file Main-
Window.xaml in the MathsOperators project in Solution Explorer.)

2. On the VIEW menu, point to Other Windows, and then click Document Outline.

The Document Outline window appears, showing the names and types of the controls on the
form. The Document Outline window provides a simple way to locate and select controls on
a complex form. The controls are arranged in a hierarchy, starting with the Page (Windows
8) or Window (Windows 7) that constitutes the form. As mentioned in the previous chapter,
a Windows Store app page or a WPF form contains a Grid control, and the other controls are
placed in this Grid. If you expand the Grid node in the Document Outline window, the other

56 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

controls appear, starting with another Grid (the outer Grid acts as a frame, and the inner Grid
contains the controls that you see on the form). If you expand the inner Grid, you can see each
of the controls on the form.

If you click any of these controls, the corresponding element is highlighted in the Design View
window. Similarly, if you select a control in the Design View window, the corresponding control is
selected in the Document Outline window (pin the Document Outline window in place by deselect-
ing the Auto Hide button in the top-right corner of the Document Outline window to see this in
action.)

3. On the form, click the two TextBox controls in which the user types numbers. In the Document
Outline window, verify that they are named lhsOperand and rhsOperand.

When the form runs, the Text property of each of these controls holds the values that the
user enters.

4. Toward the bottom of the form, verify that the TextBlock control used to display the expres-
sion being evaluated is named expression and that the TextBlock control used to display the
result of the calculation is named result.

5. Close the Document Outline window.

6. On the VIEW menu, click Code to display the code for the MainWindow.xaml.cs file in the
Code and Text Editor window.

7. In the Code and Text Editor window, locate the addValues method. It looks like this:

 CHAPTER 2 Working with Variables, Operators, and Expressions 57

private void addValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome;
 // TODO: Add rhs to lhs and store the result in outcome
 expression.Text = lhsOperand.Text + " + " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

The first statement in this method declares an int variable called lhs and initializes it with the
integer corresponding to the value typed by the user in the lhsOperand text box. Remember
that the Text property of a TextBox control contains a string, but lhs is an int, so you must
convert this string to an integer before you can assign it to lhs. The int data type provides the
int.Parse method, which does precisely this.

The second statement declares an int variable called rhs and initializes it to the value in the
rhsOperand text box after converting it to an int.

The third statement declares an int variable called outcome.

A comment stating that you need to add rhs to lhs and store the result in outcome follows.
This is the missing bit of code that you need to implement, which you will do in the next step.

The fifth statement concatenates three strings indicating the calculation being performed
(using the plus operator, +) and assigns the result to the expression.Text property. This causes
the string to appear in the Expression text box on the form.

The final statement displays the result of the calculation by assigning it to the Text property of
the Result text box. Remember that the Text property is a string, and the result of the calcula-
tion is an int, so you must convert the int to a string before assigning it to the Text property.
Recall that this is what the ToString method of the int type does.

8. Underneath the comment in the middle of the addValues method, add the statement shown
below in bold:

private void addValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome;
 // TODO: Add rhs to lhs and store the result in outcome
 outcome = lhs + rhs;
 expression.Text = lhsOperand.Text + " + " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

This statement evaluates the expression lhs + rhs and stores the result in outcome.

58 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

9. Examine the subtractValues method. You should see that it follows a similar pattern, and you
need to add the statement to calculate the result of subtracting rhs from lhs and storing it in
outcome. Add the statement shown below in bold to this method:

private void subtractValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome;
 // TODO: Subtract rhs from lhs and store the result in outcome
 outcome = lhs - rhs;
 expression.Text = lhsOperand.Text + " - " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

10. Examine the mutiplyValues, divideValues, and remainderValues methods. Again, they all have
the crucial statement that performs the specified calculation missing. Add the appropriate
statements to these methods (shown below in bold).

private void multiplyValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome = 0;
 // TODO: Multiply lhs by rhs and store the result in outcome
 outcome = lhs * rhs;
 expression.Text = lhsOperand.Text + " * " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

private void divideValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome = 0;
 // TODO: Divide lhs by rhs and store the result in outcome
 outcome = lhs / rhs;
 expression.Text = lhsOperand.Text + " / " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

private void remainderValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome = 0;
 // TODO: Work out the remainder after dividing lhs by rhs and store the result
 outcome = lhs % rhs;
 expression.Text = lhsOperand.Text + " % " + rhsOperand.Text;
 result.Text = outcome.ToString();
}

 CHAPTER 2 Working with Variables, Operators, and Expressions 59

test the MathsOperators application

1. On the DEBUG menu, click Start Debugging to build and run the application.

2. Type 54 in the Left Operand text box, type 13 in the Right Operand text box, click the + Addi-
tion button, and then click Calculate.

The value 67 should appear in the Result text box.

3. Click the – Subtraction button and then click Calculate. Verify that the result is now 41.

4. Click the * Multiplication button and then click Calculate. Verify that the result is now 702.

5. Click the / Division button and then click Calculate. Verify that the result is now 4.

In real life, 54/13 is 4.153846 recurring, but this is not real life—this is C# performing integer
division. When you divide one integer by another integer, the answer you get back is an inte-
ger, as explained earlier.

6. Click the % Remainder button and then click Calculate. Verify that the result is now 2.

When dealing with integers, the remainder after dividing 54 by 13 is 2; (54 – ((54/13) * 13)) is
2. This is because the calculation rounds down to an integer at each stage. (My school math-
ematics teacher would be horrified to be told that (54/13) * 13 does not equal 54!)

7. Return to Visual Studio and stop debugging (or click Quit if you are using Windows 7).

Controlling precedence
Precedence governs the order in which an expression’s operators are evaluated. Consider the follow-
ing expression, which uses the + and * operators:

2 + 3 * 4

This expression is potentially ambiguous: do you perform the addition first or the multiplication?
The order of the operations matters because it changes the result:

■■ If you perform the addition first, followed by the multiplication, the result of the addition
(2 + 3) forms the left operand of the * operator, and the result of the whole expression is 5 * 4,
which is 20.

■■ If you perform the multiplication first, followed by the addition, the result of the multiplica-
tion (3 * 4) forms the right operand of the + operator, and the result of the whole expression
is 2 + 12, which is 14.

In C#, the multiplicative operators (*, /, and %) have precedence over the additive operators
(+ and –), so in expressions such as 2 + 3 * 4, the multiplication is performed first, followed by the
addition. The answer to 2 + 3 * 4 is therefore 14.

60 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

You can use parentheses to override precedence and force operands to bind to operators in a dif-
ferent way. For example, in the following expression, the parentheses force the 2 and the 3 to bind to
the + operator (making 5), and the result of this addition forms the left operand of the * operator to
produce the value 20:

(2 + 3) * 4

Note The term parentheses or round brackets refers to (). The term braces or curly brackets
refers to { }. The term square brackets refers to [].

Using associativity to evaluate expressions
Operator precedence is only half the story. What happens when an expression contains different op-
erators that have the same precedence? This is where associativity becomes important. Associativity is
the direction (left or right) in which the operands of an operator are evaluated. Consider the following
expression that uses the / and * operators:

4 / 2 * 6

At first glance, this expression is potentially ambiguous. Do you perform the division first or the
multiplication? The precedence of both operators is the same (they are both multiplicative), but the
order in which the operators in the expression are applied is important because you can get two dif-
ferent results:

■■ If you perform the division first, the result of the division (4/2) forms the left operand of the
* operator, and the result of the whole expression is (4/2) * 6, or 12.

■■ If you perform the multiplication first, the result of the multiplication (2 * 6) forms the right
operand of the / operator, and the result of the whole expression is 4/(2 * 6), or 4/12.

In this case, the associativity of the operators determines how the expression is evaluated. The
* and / operators are both left-associative, which means that the operands are evaluated from left to
right. In this case, 4/2 will be evaluated before multiplying by 6, giving the result 12.

associativity and the assignment Operator
In C#, the equal sign, =, is an operator. All operators return a value based on their operands. The
assignment operator = is no different. It takes two operands: the operand on its right side is evalu-
ated and then stored in the operand on its left side. The value of the assignment operator is the value
that was assigned to the left operand. For example, in the following assignment statement, the value
returned by the assignment operator is 10, which is also the value assigned to the variable myInt:

int myInt;
myInt = 10; // value of assignment expression is 10

 CHAPTER 2 Working with Variables, Operators, and Expressions 61

At this point, you might be thinking that this is all very nice and esoteric, but so what? Well, be-
cause the assignment operator returns a value, you can use this same value with another occurrence
of the assignment statement, like this:

int myInt;
int myInt2;
myInt2 = myInt = 10;

The value assigned to the variable myInt2 is the value that was assigned to myInt. The assignment
statement assigns the same value to both variables. This technique is useful if you want to initialize
several variables to the same value. It makes it very clear to anyone reading your code that all the
variables must have the same value:

myInt5 = myInt4 = myInt3 = myInt2 = myInt = 10;

From this discussion, you can probably deduce that the assignment operator associates from
right to left. The rightmost assignment occurs first, and the value assigned propagates through the
variables from right to left. If any of the variables previously had a value, it is overwritten by the value
being assigned.

You should treat this construct with caution, however. One frequent mistake that new C# program-
mers make is to try to combine this use of the assignment operator with variable declarations. For
example, you might expect the following code to create and initialize three variables with the same
value (10):

int myInt, myInt2, myInt3 = 10;

This is legal C# code (because it compiles). What it does is declare the variables myInt, myInt2, and
myInt3, and initialize myInt3 with the value 10. However, it does not initialize myInt or myInt2. If you
try to use myInt or myInt2 in an expression such as this:

myInt3 = myInt / myInt2;

the compiler generates the following errors:

Use of unassigned local variable 'myInt'
Use of unassigned local variable 'myInt2'

Incrementing and Decrementing Variables

If you want to add 1 to a variable, you can use the + operator:

count = count + 1;

However, adding 1 to a variable is so common that C# provides its own operator just for this pur-
pose: the ++ operator. To increment the variable count by 1, you can write the following statement:

count++;

62 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

Similarly, C# provides the –– operator that you can use to subtract 1 from a variable, like this:

count--;

The ++ and –– operators are unary operators, meaning that they take only a single operand. They
share the same precedence and are both left-associative.

Prefix and Postfix
The increment, ++, and decrement, ––, operators are unusual in that you can place them either
before or after the variable. Placing the operator symbol before the variable is called the prefix form
of the operator, and using the operator symbol after the variable is called the postfix form. Here are
examples:

count++; // postfix increment
++count; // prefix increment
count--; // postfix decrement
--count; // prefix decrement

Whether you use the prefix or postfix form of the ++ or –– operator makes no difference to the
variable being incremented or decremented. For example, if you write count++, the value of count
increases by 1, and if you write ++count, the value of count also increases by 1. Knowing this, you’re
probably wondering why there are two ways to write the same thing. To understand the answer, you
must remember that ++ and –– are operators and that all operators are used to evaluate an expres-
sion that has a value. The value returned by count++ is the value of count before the increment takes
place, whereas the value returned by ++count is the value of count after the increment takes place.
Here is an example:

int x;
x = 42;
Console.WriteLine(x++); // x is now 43, 42 written out
x = 42;
Console.WriteLine(++x); // x is now 43, 43 written out

The way to remember which operand does what is to look at the order of the elements (the op-
erand and the operator) in a prefix or postfix expression. In the expression x++, the variable x occurs
first, so its value is used as the value of the expression before x is incremented. In the expression ++x,
the operator occurs first, so its operation is performed before the value of x is evaluated as the result.

These operators are most commonly used in while and do statements, which are presented in
Chapter 5, ”Using Compound Assignment and Iteration Statements.“ If you are using the increment
and decrement operators in isolation, stick to the postfix form and be consistent.

 CHAPTER 2 Working with Variables, Operators, and Expressions 63

Declaring Implicitly Typed Local Variables

Earlier in this chapter, you saw that you declare a variable by specifying a data type and an identifier,
like this:

int myInt;

It was also mentioned that you should assign a value to a variable before you attempt to use it.
You can declare and initialize a variable in the same statement, like this:

int myInt = 99;

Or you can even do it like this, assuming that myOtherInt is an initialized integer variable:

int myInt = myOtherInt * 99;

Now, remember that the value you assign to a variable must be of the same type as the variable.
For example, you can assign an int value only to an int variable. The C# compiler can quickly work out
the type of an expression used to initialize a variable and indicate if it does not match the type of the
variable. You can also ask the C# compiler to infer the type of a variable from an expression and use
this type when declaring the variable by using the var keyword in place of the type, like this:

var myVariable = 99;
var myOtherVariable = "Hello";

The variables myVariable and myOtherVariable are referred to as implicitly typed variables. The
var keyword causes the compiler to deduce the type of the variables from the types of the expres-
sions used to initialize them. In these examples, myVariable is an int, and myOtherVariable is a string.
However, it is important for you to understand that this is a convenience for declaring variables
only, and that after a variable has been declared you can assign only values of the inferred type to
it—you cannot assign float, double, or string values to myVariable at a later point in your program,
for example. You should also understand that you can use the var keyword only when you supply an
expression to initialize a variable. The following declaration is illegal and causes a compilation error:

var yetAnotherVariable; // Error - compiler cannot infer type

Important If you have programmed with Visual Basic in the past, you might be familiar
with the Variant type, which you can use to store any type of value in a variable. I empha-
size here and now that you should forget everything you ever learned when programming
with Visual Basic about Variant variables. Although the keywords look similar, var and
Variant mean totally different things. When you declare a variable in C# using the var key-
word, the type of values that you assign to the variable cannot change from that used to
initialize the variable.

64 part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2012

If you are a purist, you are probably gritting your teeth at this point and wondering why on earth
the designers of a neat language such as C# should allow a feature such as var to creep in. After all, it
sounds like an excuse for extreme laziness on the part of programmers and can make it more difficult
to understand what a program is doing or track down bugs (and it can even easily introduce new
bugs into your code). However, trust me that var has a very valid place in C#, as you will see when
you work through many of the following chapters. However, for the time being, we will stick to using
explicitly typed variables except for when implicit typing becomes a necessity.

Summary

In this chapter, you have seen how to create and use variables, and you have learned about some of
the common data types available for variables in C#. You have learned about identifiers. In addition,
you have used a number of operators to build expressions, and you have learned how the precedence
and associativity of operators determine how expressions are evaluated.

■■ If you want to continue to the next chapter

Keep Visual Studio 2012 running, and turn to Chapter 3.

■■ If you want to exit Visual Studio 2012 now

On the FILE menu, click Exit. If you see a Save dialog box, click Yes and save the project.

 CHAPTER 2 Working with Variables, Operators, and Expressions 65

Chapter 2 Quick Reference

To Do this

Declare a variable Write the name of the data type, followed by the name of the vari-
able, followed by a semicolon. For example:

int outcome;

Declare a variable and give it an initial value Write the name of the data type, followed by the name of the vari-
able, followed by the assignment operator and the initial value. Finish
with a semicolon. For example:

int outcome = 99;

Change the value of a variable Write the name of the variable on the left, followed by the assign-
ment operator, followed by the expression calculating the new value,
followed by a semicolon. For example:

outcome = 42;

Generate a string representation of the value
in a variable

Call the ToString method of the variable. For example:

int intVar = 42;
string stringVar = intVar.ToString();

Convert a string to an int Call the System.Int32.Parse method. For example:

string stringVar = "42";
int intVar = System.Int32.Parse(stringVar);

Override the precedence of an operator Use parentheses in the expression to force the order of evaluation.
For example:

(3 + 4) * 5

Assign the same value to several variables Use an assignment statement that lists all the variables. For example:

myInt4 = myInt3 = myInt2 = myInt = 10;

Increment or decrement a variable Use the ++ or -- operator. For example:

count++;

 775

&& operator, 97
+ operator, 52
+= operator, 116, 463
=> operator, 433
|| operator, 97
| (OR) operator, 372
|| (OR) operator, 97, 98, 99, 114
() (parentheses)

if statements and, 100
in Boolean expressions, 97
in methods, 68, 72
use in precedence, 60

% (percent sign), 53
-- (post-decrement) operator, 98
++ (post-increment) operator, 98
() (precedence override) operator, 98
++ (pre-increment) operator, 98
% (remainder) button, 55
; (semicolon), 40
' (single quotation mark), 112
[] (square brackets), 60, 234
- (subtraction) button, 55
- (subtraction) operator, 98
~ (tilde) character, 327
// TO DO comment, 104
_ (underscore) character, 40, 42, 169, 353
^ (XOR) operator, 372, 376

A
abstract classes

creating, 315–318, 323
overview, 312–314

abstracting tasks, using Parallel class, 559–563
abstract keyword, 314, 322
abstract methods, 312–314, 314
Accelerate method, 285

Index

Symbols
+ (addition) operator, 98
& (AND) operator, 372
&& (AND) operator, 97, 98, 99, 114
= (assignment) operator, 96, 99, 100
* (asterisk), 98, 209. See also asterisk (*)
\ (backslash) character, 112
>> button, 13
+= compound assignment operator, 462
{ } (curly braces), 60, 68, 202, 235
-- (decrement) operator, 116, 520–521
– (decrement) operator, 62–63
/ (division) operator, 98
% (division remainder) operator, 98
. (dot operator), 326
" (double quotation mark), 112
... (ellipsis) character, 35
== (equality) operator, 96, 99, 100, 114, 215, 400, 522,

527–529
= (equal) sign, 43, 60
// (forward slashes), 11
> (greater than) operator, 97, 99, 114, 400, 522
>= (greater than or equal to) operator, 97, 99, 114, 522
++ (increment) operator, 61–62, 116, 520–521
!= (inequality) operator, 96, 523
<< (left-shift) operator, 372
< (less than) operator, 97, 99, 114, 400, 522
<= (less than or equal to) operator, 97, 99, 114, 522
? modifier, 214, 223
% (modulus) operator, 53, 98
* (multiplication) button, 59
!= (not equal to) operator, 99, 522, 527–530
! (NOT) operator, 96, 98, 198
~ (NOT) operator, 372
–= operator, 478
? : operator, 384

accessibility

776 Index

accessibility
of methods and fields, 168
of properties, 355–356

accidental assignments, 100
Action delegate, 461, 545, 546
Action<object> parameter, 546
adapter methods, 474–475
AddAfter method, 423
AddAppBarButtonStyle style, 769
AddBefore method, 423
Add button, 380
AddCardToHand method, 251, 437
AddCount method, 610
AddCustomer command, 757, 770
Add Existing Project dialog box, 505
AddFirst method, 423
Adding mode, 756, 762
addition (+) operator, 98
additive operators, 59
AddLast method, 423
Add method, 381, 421, 431, 464, 520
Add or Remove Buttons option, 130
AddParticipant method, 610
Add Portable Class Library dialog box, 402
Add Reference option, 17
addresses array, 497
addr variable, 497
Add Service Reference wizard, 744, 745
AddToAccumulator method, 565
AddToCustomers method, 755, 763
addValues method, 56, 70, 72, 148
Advanced Build Settings dialog box, 150
AdvanceMonth method, 229
Age field, 185, 460
age variable, 263
AggregateException, 611
Airplane class, 283
aligning

buttons, 26
controls, 26
text, 24

AllCustomers property, 717
allEmployees collection, 511
allocation, 326
Allow Unsafe Code option, 209
All WPF Controls section, 23
All XAML Controls section, 23
amount variable, 127
AND (&) operator, 372

AND (&&) operator, 97, 98, 99, 114
anonymous classes, 185–186
anonymous methods, 476
anotherAnonymousObject variable, 185
anotherMethod, 75
Any method, 503
AppBar control, 708
AppBarSizeChanged method, 736, 769
App.config file, 8
App.g.i.cs file, 144
Application.Current property, 717
ApplicationPageBackgroundThemeBrush

resource, 671
applications

Windows Store apps, 18
assemblies used with, 34
closing, 29
command buttons on, locating, 29
design features, 29
developer license, 19
displaying code file for page, 31
displaying data in using data binding, 682–689
distribution and deployment of, 630
general explanation of, 628
graphical application, creating, 30–33
interactions with other apps. See also contracts
interaction with other apps, 630
lifetime of, 630
look and feel of, 628
mobility and, 629
modifying data using data binding, 689–693
potrait mode, viewing in, 27
searching in. See Search charm; Search contract
security constraints on, 630
specifying of initial form to display, 34
testing using Simulator, 647
viewing on various devices, 27
WinRT and, 320

WPF applications
assemblies used with, 34
graphical application, creating for, 33–34
namespaces used with, 34
specifying of initial form to display, 34

App object, 34
AppStyles.xaml file, 669
App.xaml.cs file, 31, 632
App.xaml file, 31, 34
Area method, 168
areYouReady variable, 96
ArgumentException class, 241, 259

 await operator

 Index 777

ArgumentException exception, 264, 290
argumentList, 72
ArgumentOutOfRangeException, 241
ArgumentOutOfRangeException class, 154
arguments, named, 87–88, 93
arg variable, 200
arithmetic operators. See also Boolean operators

associativity of, 60–61
implementing in exercise, 524–527
overview, 52
precedence, controlling, 59, 65
prefix and postfix forms, 62
types and, 52–53
using on int values, 54–55
variables and

implicitly typed local, declaring, 63–64
incrementing and decrementing, 61–62

Array.Copy method, 241
"Array index out of bounds" message, 579
arrays. See also indexers

accessing individual array element, 237, 255
vs. collection classes, 433–434
copying, 241–242
declaring, 234, 255
disadvantages of, 258–259
elements in, finding number of, 255
exposing as properties, 377
implicitly typed, 236–237
vs. indexers, 376–377
index use with, 237
instance of, creating, 234–235, 255
iterating through, 238–239, 255
jagged, 243–244
vs. List<T> collection class, 421
multidimensional, 242–243, 255
naming, 234
parameter arrays

declaring, 260–261
Main method and, 240
of type object, 262
purpose of, 257
Sum method used with, 263–266
vs. optional parameters, 266–268

passing as parameters, 239
populating and using, 235–236
returning from methods, 239–240
size of, 235
using to implement card game, 244–254

array variable, 234

The Art of Computer Programming, Vol. 3
(Knuth), 396

as operator, 208–209
AsParallel method, 599, 604
ASP.NET Empty Web Application template, 737
assemblies

adding references for, 17
defined, 7
extension for, 17
namespaces and, 17
removing, 17
used with WPF vs. Windows Store apps, 34

AssemblyInfo.cs file, 7
assignment (=) operator, 43, 96, 99, 100
assignment operators

associativity and, 60–61
compound, 115–116

assignments, accidental, 100
associative array, 427
associativity of operators, 60–61, 98–99, 516
AsStream method, 597
asterisk (*), 13
AsyncCallback delegate, 599
asynchronous methods. See also multitasking;

parallel processing; tasks
defined, 586
implementing, 624
modifying application to use, 592–594
problem solved by, 586–589
that return values, 595–596
Windows Runtime APIs and, 596–597

async modifier, 589
AttachDatabase.sql window, 735
attached properties, 653
AuditingCompleteDelegate delegate, 482
audit-nnnnnn.xml file, 467
Auditor class, 468, 473, 482
AuditOrder method, 469, 473, 482
AuditProcessingComplete event, 482
Audit record written message, 487
AuditService project, 468
Auto Hide button, 23, 56
automatic properties

defining, 367–368
generating, 363–369

AutomaticProperties dialog box, 367
Average method, 459, 460
await operator, 571, 589

backslash (\) character

778 Index

B
backslash (\) character, 112
Balance property, 357
BankAccount class, 357
Barrier class, 610, 611
base classes

constructors of, 274–275, 293
derived class, creating from, 293
protected access and, 282–283

BasedOn property, 673
base keyword, 274
baseToConvertTo parameter, 290
BasicCollection<T> class, 450–451
BeginExecute method, 747–748
BeginOperationName method, 598, 599
BeginWrite method, 598
bidirectional data binding, 689
binary operators, 516, 517
BinarySearch method, 417
BinaryTree assembly, 406, 448
BinaryTree class

building using generics
creating Tree<TItem> class, 402–405
overview, 399
testing Tree<TItem> class, 406–408

modifying to implement IEnumerable<T>
interface, 447–449

retrieving data from using extension
methods, 503–508

retrieving data from using query operators, 509–
510

BinaryTree.dll assembly, 410
BinaryTree project, 443
binary trees

defining generic methods to build, 410–412
explanation of, 396–399

BinaryTree solution, 406
BinaryTreeTest dialog box, 406
binding. See data binding
bin folder, 14
BitArray class, 420
bitwise operators, 215, 372–373
Black.Hole method, 262
Blank App template, 20, 21

applying styles, 669–678
creating example app, 632–634
implementing scalable user interface

adapting layout using Visual State
Manager, 660–669

laying out page, 634–645
tabular layout using Grid Control, 650–660

overview, 632
Blank App (XAML) icon, 19
blocks

finally, 159–160
grouping statements with, 100–101
try blocks, 138–139

destructors and, 328
exception matching multiple catch handlers at

end of, 142
exception throwing by with no corresponding

catch handler, 139–140
use with do statements, 125
use with for statements, 124
use with while statements, 118

bool data type, 44
Boolean expressions

chaining together, 101–102
overview, 100
while statements and, 117

Boolean operators
associativity of, 98–99
conditional logical, 97
defined, 96
equality/inequality, 96
precedence of, 98–99
relational, 96–97
short-circuiting and, 98

Boolean variables
as expression for if statement, 100
declaring, 95–96, 114

bool keyword, 114, 219
boolVar variable, 51
bottomRight variable, 179
boxing, 205
Brake method, 285
Breakpoints Window button, 130
break statement, 110

jumping out of iteration statements using, 126
jumping out of switch statements using, 110

Breathe method, 272, 273
Browse button, 337, 410
Browsing mode, 756, 760
BUILD menu, 177
Build Solution command, Visual Studio 2012, 12, 13
built-in Equals() method, 220
Button class, 479
Button control, 26

 CIL (Common Intermediate Language)

 Index 779

buttons
aligning, 26
event names for, 35

Buxton Sketch font, 672, 676, 677
byte keyword, 219
byte type, 216

C
C#. See Microsoft Visual C#
Calculate button, 147
calculateClick method, 73, 74, 147
calculateData method, 562, 563
calculatedValue variable, 73, 74
calculateFee method, 77, 79, 89
calculateValueAsync method, 596
calculateValue method, 595
Calculator class, 336
Calculator.cs file, 339, 340
callback methods, 568
camelCase identifiers, 353
camelCase naming scheme, 169
CanBrowse property, 757
Cancel button, 570
cancelButton_Click method, 568, 571
Canceled state, 575
Canceled status, 572
canceling tasks, 566, 581–582. See also cooperative

cancellation
cancellation token, 566
CancellationToken class, 575
CancellationToken object, 567, 568, 569
CancellationToken parameter, 569
CancellationTokenSource object, 567, 568
cancellationTokenSource variable, 567
Cancel method, 567, 611
CanExecuteChanged event, 700, 702, 710
canExecuteChangedEventTimer_Click method, 703
CanExecute method, 699, 701, 710
CanSaveOrDiscardChanges property, 757, 761
Canvas class, 303, 307
Car class, 283
Car.cs file, 284
card game, 244–254
Card Game window, 251
cardPack array, 247
cardPack Dictionary collection, 436
cardPack variable, 435
cardsInSuit object, 435

CardsPerSuit field, 247
Cards project, 244, 434
CardSuit method, 247
CardValue method, 247
cascading if statements, 101–106
case

C# and (in general), 8
of class names, 169
of field names, 648
of identifiers, 42
in Find and Replace, 48
of method names, 68, 648
of public vs. private identifiers, 169

case labels, 108, 109
casting data, 207–208
cast operation, 206
catch handlers, 138

example of use, 157–158
exception thrown by try block with no

corresponding catch handler, 139–140
multiple, 140–141, 142
overview, 138
using to trap Exception exception, 158

catch keyword, 138
C/C++ fall-through, mimicking, 110
ccyy parameter, 225
Change Resolution option, 657
character pairs, matched, 10
characters, data type for sequence of, 44
char data type, 44
char variable, 129
checked expressions, 151–153
checked keyword, 151
Check for Arithmetic Overflow/Underflow check

box, 150
Checkout button, 465
CheckoutButtonClicked method, 469, 473, 481, 485
CheckoutController class, 470, 480
CheckoutController component, 470, 472
CheckoutController.cs file, 470, 471
checkoutController variable, 472
CheckoutDelegate type, 471
Checkout option, 467, 487
CheckoutProcessing delegate, 471
CheckoutService dialog box, 470
CheckoutService project, 470
ChewGrass method, 299
Choose a Data Type list, 46
chromeless, apps as, 628
CIL (Common Intermediate Language), 230

circ1.cs file

780 Index

circ1.cs file, 172
circ2.cs file, 172
Circle class, 166, 168, 304–305, 308, 309–312
Circle.cs file, 307
Circle variable, 392
classes. See also collection classes; inheritance;

namespaces
abstract

creating, 315–318, 323
overview, 312–314

accessibility of methods and fields in, 168
anonymous, 185–186
case of, 169
constructors of

default, 169–170, 171, 175
overloading, 170–171
overview, 169–170
public and private, 170
writing, 173–177

declaring, 187
defining, 166–167
encapsulation and, 166
finding methods in, 49
generic

using constraints with, 396
indicating, 393
vs. generalized, 395

names of, 14–15
.NET Framework class library, 17
vs. objects, 167
operators in, vs. in structures, 521–522
partial, 172
purpose of, 165–166
referencing through interfaces, 298–299
representing binary trees, 396–399
scope of, 75
sealed, 314, 323
splitting across multiple files, 172
static, 182
vs. structures, 221–222, 228–230

class library
defined, 399
template for, 470

class members drop-down list box, 49
Clicked event, 47
Click event, 479
Click property, 480
Clone method, 191, 242, 377
Close method, 331, 332
closing Windows Store apps, 29

CLR (common language runtime), 230, 240, 320, 321,
459, 519, 586
concurrency and, 544
exceptions, 153, 157
garbage collection and, 326, 329

code
commenting out, 511
duplication in, 313
managed, 230
native, 230
refactoring, 81, 313
unsafe, 209

Code and Text Editor window, 6, 80
code file for page in Windows Store app, 31
code view, of graphical application, 18
collectable objects. See interfaces
collection classes. See also concurrent collection

classes
adding items to, 439
card playing example, 434–438
creating, 439
Dictionary<TKey, TValue>, 420, 427–428
enumerating elements in

defining enumerator for Tree<TItem> class using
iterator, 452–454

implementing enumerator manually, 443–446
implementing enumerator using interator,

450–454
overview, 441–442

HashSet<T>, 420, 429–430
iterating through items in, 439
LinkedList<T>

description of, 420, 423–424
Find method, 431–433

List<T>
decription of, 420
description of, 421–422
features of, 421
Find method, 431–433, 459–460
number of elements for, determining, 423

locating items in, 439
nongeneric, 420
number of elements in, finding, 439
overview, 419–420
Queue<T>, 420, 425
removing items from, 439
SortedDictionary<TKey, TValue>, 428
SortedList<TKey, TValue>, 420, 428–429
Stack<T>, 420, 426
vs. arrays, 433–434

 continuations

 Index 781

Collect method, GC class, 329
Color class, 304
Color property, 362
ColumnarHeaderStyle style, 674
columnForRow0 array, 244
columnForRow3 array, 244
ComboBox control, 640, 693–695
ComboBoxItem elements, 695
<ComboBox> tag, 641
COM (Component Object Model), 85
COMException, 756
Command class, 700–703
Command.cs file, 700
commands, adding to ViewModel

ICommand interface
creating class that implements, 700–704
items defined by, 699–700

NextCustomer and PreviousCustomer
commands, 704–711

Command variable, 758
Comment Out the Selected Lines button, 511
comments, 11, 173, 511
Common Language Runtime Exceptions, 577
Common section, 25
Common WPF Controls section, Toolbox, 23
Common XAML Controls section, Toolbox, 23
companiesGroupedByCountry method, 498
CompanyName column, 502
CompanyName field, 497, 500
Compare button, 104
compareClick method, 104
Compare method, 107, 416
CompareTo method, 296, 400, 401, 404, 504, 506
compiled code, folder for, 7
compile-time errors, 76
compilng code, 12
Complex class, 524–527, 533, 533–535
Complex.cs file, 524, 533
complex numbers, 523–529
Complex Numbers dialog box, 524
Complex value, 535
compound assignment operators

evaluating, 520
overview, 115–116

computers, price and capacity of, 542–543
concurrency

challenges of, 544
synchronizing concurrent access to data. See

also concurrent collection classes
cancelling synchronization, 611

locking data, 608
overview, 608–610
synchronization primitives for coordinating

tasks, 608–611
Task class and, 544–545

concurrent collection classes
implementing thread-safe data access using

calculating pi using parallel tasks, 619–620
calculating pi using single thread, 615–618
general discussion, 612–614
using thread-safe connection, 621–622

overview, 612
ConcurrentDictionary<TKey, TValue> class, 612
ConcurrentQueue<T> class, 612
ConcurrentStack<T> class, 612
conditional logical operators, 97
configuration file. See App.config file
<ConnectionStrings> section, 740
Connect to Server dialog box, 735
Console Application icon, 5
console applications

creating using Visual Studio 2012, 3–8. See
also namespaces
building and running application, 12–14
using IntelliSense, 9–11

defined, 3
Console Application template, 6, 336, 410
Console class, 9
Console.WriteLine method, 166, 175, 226, 257, 263,

339, 620, 710
Console.WriteLine statement, 44, 78, 118, 292, 504
Console.Write method, 78
constantExpression identifier, 108
constantExpression value, 109
const keyword, 182, 187
constructors

base class, calling, 274–275
calling, 187
declaring, 187
default, 169–170, 171, 175
defining with varying parameters, 365
interfaces and, 302
overloading, 170–171
overview, 169–170
public and private, 170
specifying object initializers in combination

with, 366
writing, 173–177

Content property, 26
continuations, 581–582

continue statement

782 Index

continue statement, 126
ContinueWith method, 547, 580, 581
contracts

commonly used, 711
overview, 630
Search contract

implementing in example application, 712–720
overview, 712
testing, 721–722

contravariant interfaces, 415–417
Controller class, 462, 463, 477
Controller constructor, 464
controllingExpression, 109
controls

adding forms, 22–28
aligning, 26
dragging, 26
locating and selecting using Document Outline

window, 55
resizing, 26

control variable, 123
conversion operators

built-in conversions, 530–531
overview, 530
user-defined, 531–532
writing, 533–535

ConvertToBase method, 290, 290–291
Convert.ToChar method, 129
cooperative cancellation

acknowledging cancellation, 576–578
adding cancellation functionality to

application, 568–572
displaying status of tasks, 574–576
overview, 566–568
using continuations with canceled/faulted

tasks, 581–582
Copy.As method, System.Array class, 241
CopyCustomer method, 758
copying

arrays, 241–242
reference types, 191, 210
structure variables, 227–228
value types, 210

copyi variable, 190
Copy method, 242
copyOne method, 111
CopyTo method, System.Array class, 241
copy variable, 195
Cos method, 180
cost variable, 42

CountdownEvent class, 609
Count method, 459, 460, 499, 502
Count property, 423, 439
Country field, 497
covariant interfaces, 414–415
“Cramming More Components onto Integrated

Circuits” (Moore), 543
CREATE DATABASE command, 735
Created status, 572
Create New Solution option, 19
.csproj suffix, 45
Ctrl+Alt+- shortcut, 47
Ctrl+Alt+= shortcut, 47
Ctrl+E shortcut, 511
Ctrl+F shortcut, 48
Ctrl+H shortcut, 48
curly braces { }, 60, 68, 202, 235
CurrentCount property, 609
currentCustomer variable, 697, 706
currentData variable, 444
currentItem variable, 444, 446, 447
currentNodeValue variable, 404
Current property, 442, 445, 446, 546, 697–698
Customer class, 683, 689, 720
customerFirstNames object, 495
customers array, 500
customersColumnView control, 685
Customers.CustomersService namespace, 749
CustomersInMemory class, 602
Customers property, 746–747
customersTabularView control, 685
customersTabularView Grid control, 662, 667
c variable, 190, 204

D
dailyRate parameter, 91
DailyRate project, 77
dangling reference, 329
data access

parallelizing. See PLINQ
synchronizing concurrent access to data. See

also concurrent collection classes
cancelling synchronization, 611
locking data, 608
overview, 608–610
synchronization primitives for coordinating

tasks, 608–611

 Design View window

 Index 783

thread-safe
calculaing pi using parallel tasks, 619–620
calculaing pi using single thread, 615–618
general discussion, 612–614
using thread-safe collection, 621–622

databases. See also data services
and entity model, creating, 735–741
installing example database, 734–735

data binding
displaying data using, 682–689
modifying data using, 689–693
two-way, 689–693
using with ComboBox control, 693–695

DataContext property, 685, 686, 698
data parameter, 444
Data property, 377
DataServiceQuery class, 747
DataServiceQuery<Customer> collection, 746
DataServiceRequestException exception, 765
data services. See also databases

consuming, 744–748, 773
creating, 741–744, 773
defined, 734
fetching data from, 749–752, 773
opening connection to, 773
WCF Data Service, 754–764

data types. See also primitive data types; value types
numeric, 53
operators and, 52–53

DataTypes project, 468
dateCompare method, 104
dates, comparing, 107
Date structure, 225
DateTime data type, 104
Date value, 226
DbContext class, 740, 743, 744
DbSet class, 744
DbSet<Customer> type, 740
dd parameter, 225
Deal button, 245, 438
DealCardFromPack method, 248
dealClick method, 251
Debug button, 344
Debug folder, 14
debugging. See also errors; exceptions

debugger, Visual Studio 2012, 81–85
exception handlers, 153

DEBUG menu, 13

Debug Target drop-down list box, 647
Debug toolbar, 81, 93
decimal data type, 44
decimal keyword, 219
declaring

methods, 68–69
variables, 42–43

decrement (--) operator, 62–63, 116, 520–521
default constructors, 170, 171, 175
defaultDate variable, 226
default keyword, 444
deferred evaluation, 509–513
definite assignment rule, 44
defragmenting, 330
delegate keyword, 462, 476
delegates. See also events

in automated factory scenario, 461–465
delegate types, 415
examples of, 459–460
vs. function pointers, 459
lambda expressions and, 474–476
overview, 458–459
in Wide World Importers example, 465–469

CheckoutController component, creating,
470–473

testing application, 473
DELETE command, 741
DeleteObject method, 755
delete operator, 326
DeliveryService project, 468, 483
Deposit method, 357
Dequeue method, 390, 391, 392, 394, 420–419, 439
Dequeue operation, 425
DerivedClass, 272
derived classes

creating, 293
protected access and, 282

Description control, 720
DESIGN menu, 27
design pattern. See MVVM (Model-View-ViewModel)

pattern
design view, of graphical application, 18
Design View window, 20, 21, 480, 632, 636

adding controls to forms, 22–28
shrinking to view Toolbox, 23
space for, 22
XAML pane and, 24
zooming in and out of, 47

784 Index

destroying objects. See garbage collection

destroying objects. See garbage collection
destructors. See also garbage collection

calling Dispose method from, 334–336
creating simple class that uses, 336–339
interfaces and, 302
restrictions for, 327
shouldn't depend on each other/overlap, 331
writing, 326–328, 330–331, 345

developer license, 19
devices, viewing apps on various, 27
Device Window option, DESIGN menu, 27
Dictionary class, 395
Dictionary<Suit, List< PlayingCard>> object, 434
Dictionary<TKey, TValue> collection class, 420,

427–428
DigestGrass method, 314
digitCode variable, 131, 132
digit variable, 128, 129, 132
DiscardAppBarButtonStyle style, 769
DiscardChanges command, 757, 770
Discard method, 766
Dispatcher object, 589
DispatcherTimer object, 703
dispatch- nnnnnn.txt file, 467
dispatch note, 465
Dispatch note generated message, 487
displayData method, 120
Display drop-down list, 27
displaying

code file for page in Windows Store app, 31
data, using data binding

overview, 682–689
two-way, 689–693
with ComboBox control, 693–695

primitive data types, 44–47
displayMessage method, 486
disposal methods

calling inside of finally blocks, 332–336
overview, 331

Dispose method
calling from destructor, 334–336
overview, 339–340
thread safety and, 342

DistanceTo method, 177, 178
distance variable, 179
Distinct method, 506, 507

distribution and deployment of Windows Store
apps, 630

DivideByZeroException, 157, 158, 344, 579, 581
Divide method, 337
divideValues method, 58, 71
division (/) button, 55
division (/) operator, 98
division remainder (%) operator, 98
.dll extension, 17, 399
doAdditionalProcessing method, 606
doAuditing method, 482
Document Outline window, 55–56, 56
doFirstLongRunningOperation method, 587, 590,

591
doIncrement method, 199
doLoopWork method, 573
doMoreAdditionalProcessing method, 606
doMoreWork method, 547
doSecondLongRunningOperation method, 587, 588,

590
doShipping method, 483
do statements

stepping through, 129–134
syntax, 125
writing, 127–129

doThirdLongRunningOperation method, 587, 588,
590

dot operator (.), 326
double data type, 43
double keyword, 219
double.Parse method, 78
double-precision floating-point numbers, 43
double quotation mark ("), 112
double type, 53
doWork method, 173, 193, 267, 368, 508
DoWorkWithData method, 85
dragging

controls, 26
gesture for, 629

drawingCanvas_MouseLeftButtonDown
method, 309, 360, 362

drawingCanvas_MouseRightButtonDown
method, 311, 312, 361, 362

drawingCanvas_RightTapped method, 311, 361, 362
drawingCanvas_Tapped method, 309, 312, 360, 362

 exceptions

 Index 785

DrawingPad class, 309
Drawing Pad window, 319
DrawingPad.xaml.cs file, 310, 360
DrawingPad.xaml file, 311
DrawingShape class, 316, 326, 359

creating, 315–318
exposing location and color of shapes as

properties, 359–363
modifying Square class to inherit from, 318–319

DrawingShape.cs file, 315
Draw method, 302, 308, 310, 311, 317, 326
Drive method, 283, 286
dual-core processors, 543
duplication in code, 313

E
EditAppBarButtonStyle style, 769
EditCustomer command, 757, 770
Editing mode, 757
Edit method, 759
Ellipse class, 308
ellipsis character (...), 35
else clause, 99, 101
else keyword, 101
EmailAddress property, 690
Employee class, 506
EmployeeID property, 353
empTree binary tree, 510
encapsulation, 166, 349–352
EndExecute method, 748
EndOperationName method, 598, 599
EndSaveChanges method, 756, 763
EndWrite method, 598
enlargeIfFull method, 381
Enqueue method, 390, 391, 394, 419, 439
EnterReadLock method, 610
Enter the Number of Days prompt, 81
Enter Your Daily Rate prompt, 81
Entity Data Model template, 737
Entity Data Model Wizard, 737–739
Entity Framework, 734
entity model, creating, 735–741
Entity Model editor, 739
enumData queue, 444
enumData variable, 446

Enumerable class, 495
Enumerable.Select method, 495
enumerations

creating and using, 216–218
declaring, 214, 232
literal values, 215
of elements in collection classes

defining enumerator for Tree<TItem> class using
iterator, 452–454

implementing enumerator manually, 443–446
implementing enumerator using iterator,

450–454
overview, 441–442

underlying type, 216
using, 214–215

enumeration variable, 214
EnumeratorTest project, 448
enum keyword, 214
enum type, 213
equality (==) operator, 96, 99, 100, 114, 215, 400,

522, 523, 527–529
equal (=) sign, 43, 60
Equals method, 381, 523, 527–528, 528
equi-joins, 503
error handling, Windows, 143
Error List window, 12, 13, 16, 22, 528, 535
errors. See also exceptions

compile-time, 76
global variables and, 138
reporting, adding to ViewModel, 764–766
shown in Error List window, 12–13

EventArgs argument, 480
event field, 479
Event Handlers button, 309
Event Handlers for Selected Element button, 35
events

declaring, 477–478, 488
raising, 478–479, 489
subscribing to, 478, 488
unsubscribing from, 478, 489
user interface events, 479–480
using in Wide World Importers app, 480–487

Example class, 335
Example.xaml.cs file, 480
Exception exception, 141, 142, 158
exceptions

catch handlers and, 138, 140–141, 157–158, 161
examining in Visual Studio, 140

786 Index

exceptions, continued

exception-safe disposal
creating simple class that uses destructor,

336–339
IDisposable interface, implementing, 339–340
overview, 332
preventing objects from being disposed of more

than once, 340–342
verifying object is disposed after exception, 344

families of, 141
finally blocks and, 159–160
generated from tasks, 579
multiple, 141–147
propagating, 147–149
resulting from earlier exception, 146
throwing, 154–156, 161
try blocks and, 138–139
unhandled, 139–140, 158
Visual Studio Debugger and, 153

Exceptions dialog box, 153, 577
ExceptWith method, 429
Execute method, 699, 701
Exists method, 437, 459
ExitReadLock method, 610
explicit conversion, 531
Expression text box, 55
expression.Text property, 57
Extensible Application Markup Language

(XAML), 19, 21, 480
ExtensionMethod project, 290
extension methods, 288–292, 294
extensions for assemblies, 17
Extensions namespace, 290
Extract Method dialog box, 81

F
F10 shortcut, 83
fast Fourier transform (FFT), 617
Faulted status, 572
faulted tasks, using continuations with, 581–582
fEx variable, 139
FFT (fast Fourier transform), 617
fields

accessibility of, 168
inheritance and, 274
interfaces and, 302
naming, 169, 353, 648
private, 168, 178, 192, 321, 350–351
public, 168, 350–351, 363

readonly, 247
shared, 181
static, 180–181, 182, 183, 187
vs. properties, 356

FileInfo class, 120
File I/O, 597
FILE menu, 386
FileOpenPicker class, 120, 596
File Open Picker contract, 711
Filled view, 644, 666, 683
Fill property, 307
Filter_Checked method, 716
filterList collection, 722
Filter_SelectionChanged method, 716, 719
filtersItemsControl, 714
Finalize method, 328
finally blocks, 159–160, 332–336
finally keyword, 328
FindAll method, 432
Find by Name button, 383
findByNameClick method, 383
findByPhoneNumberClick method, 384
finding

items in project, 48
methods in class, 49

FindLandSpeed method, 299
Find method, 431–433, 436, 437, 459
Find Next button, 48
FinishFolding method, 474
FinishWelding method, 474
firstDate control, 102
First label control, 638
firstMethod method, 75
FirstName field, 494, 500
FirstName property, 754
First property, 423
First TextBlock control, 642
First TextBox control, 639, 642
float data type, 43, 53
floating-point numbers, 42, 43
float keyword, 219
fname variable, 263
FontSize property, 25, 640
FontStyle style, 672
foreach construct, 441
foreach loop, 421
foreach statement, 238, 264

use with arrays, 238, 255
use with Dictionary<TKey, TValue> collection, 427
use with LinkedList<T> object, 423

 Graph Demo window

 Index 787

FormatException, 138, 139, 141, 142, 146
Format method, String class, 226
forms

adding controls to, 22–28
resizing, 27
use of term, 22

for statements
multiple initializations and updates in loop, 124
omitting parts of, 124
purpose of, 123
scope of, 125
syntax, 123
use with arrays, 238, 255

forward slashes (//), 11
four-dimensional array, 243
Fourth label control, 638
Frame.Navigate metho, 724
Frame object, 33
freachable queue, 330
“free format”, C# as, 40
FromAsync method, 599, 748, 755
F suffix, 49
Fullscreen view, 666, 683
Func delegate, 460, 579
function pointers, 459
Func<T> type, 700

G
garbage collection. See also destructors

defined, 196
exception-safe disposal

creating simple class that uses destructor, 336–
339

IDisposable interface, implementing, 339–340
overview, 332
preventing objects from being disposed of more

than once, 340–342
verifying object is disposed after exception, 344

forcing, 345
process, 330
reasons for using, 328–330
resource management

disposal methods, 331
overview, 331

using statement, 332–334
when it occurs, 329

GarbageCollectionDemo, 337, 344
GC class, 341, 342

GC.Collect method, 329
GC.SuppressFinalize method, 336
generalized classes, 395
generateDataForGraph method, 577
generateGraphDataAsync method, 593, 594
generateGraphData method, 550, 551, 555–557, 562,

569, 569–570, 593
generateGraphMethod method, 551
Generate Method Stub Wizard, 76, 77–80, 93
generics

building binary tree class using
creating Tree<IItem> class, 402–405
overview, 399
testing Tree<TItem> class, 406–408

generic classes
using constraints with, 396
vs. generalized classes, 395

generic interfaces
contravariant, 415–417
covariant, 414–415

generic methods
creating, 409
defining to build binary tree, 410–412

problem solved by, 389–393
purpose of, 393

gestures, touch-based, 18, 629
get accessors

for indexers, 376
in interfaces, 378–379
overriding property accessibility for, 355–356
use in PhoneBook example, 382

GetAwaiter method, 590
GetData method, 412, 413, 750–751, 757, 764
GetEnumerator method, 442, 447, 448, 450, 451,

452, 453
GetHashCode method, 381, 416, 523, 527
get keyword, 352, 378
GetPosition method, 310
GetTypeName method, 281
GetX accessor, 350
globally unique identifier (GUID), 762
global methods, 68
Global User Interface, Windows 8, 25
global variables, 138
GoTo method, 723
goto statement, 110
GoToState method, 667, 736
GraphDemo application, 548, 554, 568
Graph Demo window, 552, 563

graphical applications, creating

788 Index

graphical applications, creating
developer license for, 19
MainPage.xaml.cs file, 20–21
OK button, code for, 35–37
overview, 18
templates for, 18, 21
user interface, creating, 23–28
Windows Store app, code for, 30–33

graphical user interface (GUI). See user interface
graphImage control, 549
GraphWindow class, 569, 592
GraphWindow constructor, 549
GraphWindow form, 574
GraphWindow.xaml.cs file, 555, 556, 561, 574
GraphWindow.xaml file, 548
GraphWindow.xaml node, 561
GrazingMammal class, 313
greater than 0 value, 400
greater than (>) operator, 97, 99, 114, 400, 522
greater than or equal to (>=) operator, 97, 99, 114,

522
Greeting class, 15
<Grid.ColumnDefinition> section, 654
Grid.Column property, 655
Grid.ColumnSpan property, 656
Grid control, 55, 635–636, 650–660
Grid element, 24
Grid.Row attribute, 653
<Grid.RowDefinitions> section, 653
GroupBy method, 498, 507
grouping statements, 100–101
group operator, 502
GUID (globally unique identifier), 762
GUI (graphical user interface), 3, 458. See user

interface

H
Hand class, 250
Hand.cs file, 250, 437
Handle method, 579
handlWriteCompleted method, 598
hands array, 252
HandSize field, 250
hashing algorithms, 523

HashSet<T> class, 420, 429–430
Haskell programming language, 432
HasValue property, 197
HeaderStyle style, 673
heaps

boxing and, 205
overview, 202–204

Height property, 484
Hello application, 29
Hello form title bar, 27
hidden code, 31
hiding virtual methods, 279–280
High Performance Computing (HPC) Server

2008, 542
HorizontalAlignment property, 24, 637, 640, 653,

656
Horse class, 273, 297
Horse.GetTypeName method, 282
Horse.Talk method, 277
Horse variable, 277, 299
Hour argument, 533
Hour class, 517, 522
Hour parameter, 532
HPC (High Performance Computing) Server

2008, 542
HTTP GET request, 742
Hungarian notation, 42, 297

I
IAsyncResult design pattern, 598
IColor.cs file, 304
IColor interface, 302, 318
ICommand interface

creating class that implements, 700–704
items defined by, 699–700

IComparable<Employee> interface, 504
IComparable interface, 297, 400, 401, 407, 411, 443
IComparable<TItem> interface, 402
IComparer interface, 415–417
IComparer<Object> interface, 416
icons, Microsoft IntelliSense, 11
IDE (integrated development environment), 4
identifiers

naming, 169
overloaded, 76
overview, 40–41

 interfaces

 Index 789

IDisposable.Dispose method, 446
IDisposable interface, 334, 334–336, 335, 339–340,

445
IDraw.cs file, 303, 360
IDraw interface, 302, 308, 318
id TextBox control, 684
IEnumerable interface

implementing, 447–449
LINQ and, 493
overview, 442

IEnumerable<string> object, 495
IEnumerable<T> interface, 415, 442, 495, 503
IEnumerable<TItem>.GetEnumerator method, 452
IEnumerator interface, 442, 443–446
IEnumerator<T> interface, 442
if statements. See also switch statements

Boolean variable as expression for, 100
cascading, 101–106
grouping using blocks, 100–101
nesting, 101–106
purpose of, 114
syntax, 99

IGrazable interface, 299
ILandBound interface, 298
ImageBrush resource, 670
Imaginary property, 528
Implement Interface Explicitly option, 452
Implement Interface Wizard, Visual Studio, 298
implicit conversions, 530
implicitly typed local variables, 63–64
implicit variable declarations, 43
increment (++) operator, 61–62, 116, 520–521, 522
indexers

accessors, 376
vs. arrays, 376–377
creating, 386
defined, 371
examples using, 373–375, 379–384

calling indexers, 383–385
testing application, 385–386
writing indexers, 382–383

in interfaces, 378–379, 387
vs. methods, 375
non-numeric subscripts, use of, 376
overloading, 376
used as ref or out parameters, 377

Indexers project, 380
indexes, array, 237
IndexOf method, 382, 723
IndexOutOfRangeException, 579, 581

IndexOutOfRangeException exception, 237
indirect unmanaged resources, 327
inequality (!=) operator, 96, 523
infinite values, 53
inheritance

assigning classes, 276–277
base class constructors, calling, 274–275
declaring, 272–273
declaring new methods, 277–278
declaring override methods, 280
declaring virtual methods, 279
defined, 271
hierarchies

creating, 283–288
exceptions and, 141

interfaces and, 297, 298, 302
not applicable to structures, 274
protected access and, 282–283
and System.Object class, 274

initializations, multiple, 124
InitializeComponent method, 30, 34
InitializeService method, 743
InnerException property, 146
INotifyPropertyChanged interface, 690–691, 704
“Input string was not in a correct format” error

message, 55
INSERT command, 741
InsertIntoTree method, 411, 410–412
Insert method, 403–404, 405, 434
instance methods, 178–180
Int32.Parse method, 52
IntBits type, 374–375
int data type, 43
integer arithmetic, 151–153, 161
integer types, 216
integrated development environment (IDE), 4
IntelliSense

icons, 11
using when writing code, 9–11

interfaces
abstract classes and, 312–314
declaring, 323
defining, 296–297, 302–304
generic

contravariant, 415–417
covariant, 414–415

implementing, 297–298, 300–302, 304–309, 323
indexers in, 378–379, 387
keyword, 296
multiple, 299

790 Index

interfaces, continued

naming, 297
overview, 295–296
properties of, 358–359, 370
referencing classes through, 298–299
restrictions, 302
sealed methods and, 314

Interface template, 304
Intersect method, 503
IntersectWith method, 429, 430
int keyword, 219, 407
int parameter, 69
int.Parse statement, 139
intQueue queue, 394
int type, 216

using, 371–373
using arithmetic operators on, 54–55
using as array of bits, 373–375

int variable, 63, 535
intVar variable, 50
Invalidate method, WriteableBitmap class, 551
InvalidCastException, 206, 207, 413
InvalidOperationException, 156, 157, 421, 446, 755
Invoke method, 589
IPrintable interface, 396
IRetrieveWrapper object, 415
IRetrieveWrapper<T> interface, 414, 414–415
IsAddingOrEditing property, 757, 767
IsAdding property, 756
IsAtEnd property, 705
IsAtStart property, 705, 710
IsBrowsing property, 756
IsBusy property, 752
IsCancellationRequested property, 566, 567, 568
IsCardAlreadyDealt method, 249, 436
iscardChanges Command variable, 760
IsChecked property, 156
IsEditing property, 757
IsEnabled property, 767
IsItemClickEnabled property, 723
IsMatch method, 758
IsNullOrEmpty method, 384
is operator, 207
isplayData method, 121
IsProperSubsetOf method, 430
IsProperSupersetOf method, 430
IsSticky property, 708
IsSubsetOf method, 429
IsSuitEmpty method, 249

IStoreWrapper<T> interface, 414–415
ItemClick property, 723
ItemsControl control, 714
ItemsSource property, 694, 723
iteration statement, 126
iteration statements. See do statements; for

statements; while statements
do statements

stepping through, 129–134
syntax, 125
writing, 127–129

for statements
multiple initializations and updates in loop, 124
omitting parts of, 124
purpose of, 123
scope of, 125
syntax, 123
use with arrays, 238, 255

while statements, 135
purpose of, 117
syntax, 117
terminating, 117
writing, 118–123

iteration variable, 239
i variable, 117, 190, 205
IWrapper<A> object, 413
IWrapper interface, 413
IWrapper<string> interface, 413

J
jagged arrays, 243–244
JavaScript Object Notation (JSON), 741
joining data, 500–501
Join method, 500
join operator, 502–503
JSON (JavaScript Object Notation), 741

K
Key property, 427
keys, associating with values, 427–429
key/value pair, 428
KeyValuePair<TKey, TValue> structure, 427, 428
keywords, table of, 40–41

 MainWindow.xaml file

 Index 791

L
lambda expressions

anonymous methods and, 476
delegates and, 474–476
forms of, 475–476
overview, 432–433

Land method, 284
Language-Integrated Query (LINQ). See also PLINQ

(Parallel LINQ)
deferred evalutation and, 509–513
joining data, 500–501
ordering data, 497–498
overview, 491–492
querying in Tree<TItem> objects, 503–509
query operators, 501–503
selecting data, 494–496

LastError property, 767, 771
LastName field, 500
LayoutAwarePage.cs file, 716
learning about items, gesture for, 629
leftHandSide parameter, 68, 107
Left Operand text box, 55, 142
left-shift (<<) operator, 372
LeftTree property, 402
Length property, 238, 241, 255, 423
less than 0 value, 400
less than (<) operator, 97, 99, 114, 400, 522
less than or equal to (<=) operator, 97, 99, 114, 522
lhsOperand control, 56
libraries, folder for, 7
license, developer, 19
lifetime of Windows Store apps, 630
LinearGradientBrush, 683
lines, wavy red, 13
line variable, 121
LinkedList<T> collection class

description of, 420
Find method, 431–433
overview, 423–424

LINQ (Language-Integrated Query)
deferred evaluation and, 509–513
joining data, 500–501
ordering data, 497–498
overview, 491–492, 586
Parallel (PLINQ)

canceling queries, 604–605, 624
overview, 599–600

parallelizing query joining two collections,
602–604

parallelizing query over simple collection,
600–602

querying in Tree<TItem> objects, 503–509
query operators, 501–503
selecting data, 494–496

ListBox control, 47
List<Employee> collection, 512
List<Object> object, 417
List<Person> class, 460
List<Person> collection, 432
List<PlayingCard> collection, 435, 437
List<T> collection class

description of, 420
features of, 421
Find method, 431–433, 459–460
methods of that use delegates to perform

operations, 460
number of elements for, determining, 423
overview, 417
vs. arrays, 421

ListView control, 466
lname variable, 263
LoadState method, 715, 718
local scope, 74–75
Locals window, 130
Location field, 5
locking data, 608
lock statement, 342, 343
locX field, 316
locY field, 316
login method, 355
Log method, 180
long data type, 43, 216
long keyword, 219

M
MachineOverheating event, 477, 478
Main method, 8, 31, 32, 240
MainPage class, 30
MainPage.xaml.cs file, 20–21, 30–33, 31, 35
MainPage.xaml file, 684
MainPage.xaml tab, 36
MainViewModel property, 716
MainWindow class, 34, 383, 471, 486
MainWindow.xaml.cs file, 33–34, 35, 47
MainWindow.xaml file, 21, 34

MainWindow.xaml node

792 Index

MainWindow.xaml node, 251
MainWindow.xaml tab, 36
Mammal class, 272
Mammal.Talk method, 277
managed execution environment, 230
mandatory parameters, 86
ManualResetEventSlim class, 609
Margin property, 24, 637, 640, 653
Match Case check box, 48
matched character pairs, 10
matchingFirstNames collection, 719
Matching First Names filter, 722
matchingLastNames collection, 719
Math class, 166, 180
Max method, 459, 460, 499
MaxValue property, 149
memory

boxing and, 205
multidimensional arrays and, 243
object creation and, 326
overview, 202–204
use of int types to save, 372

menu bar, Visual Studio 2012, 6
MessageBox class, 36
MessageDialog class, 36, 596
MessageDialog object, 36
Message Passing Interface (MPI), 542
Message property, 139
methodName, 68
method parameter, 177
methods. See also constructors; delegates

abstract, 312–314, 314
accessibility of, 168
adapter methods, 474–475
asynchronous. See multitasking; parallel

processing; tasks
defined, 586
modifying application to use, 592–594
problem solved by, 586–589
that return values, 595–596
Windows Runtime APIs and, 596–597

belonging to other objects, calling, 74
body statements, 68
calling, 73–74, 93
declaring, 68–69, 93, 277–278
defined, 67
disposal methods, 331, 332–336
encapsulation and, 166

extension methods, 288–292, 294
creating, 290–292
purpose of, 289

finding in class, 49
generic

creating, 409
defining to build binary tree, 410–412

global, 68
implementing encapsulation using, 349–352
vs. indexers, 375
inheritance and, 272
in interfaces, 296, 297, 298, 302
instance methods

writing, 178–180
length of, 71
memory for, 202
naming, 67, 68, 169, 648
overloaded, 10
overloading, 76, 257–258
overriding

declaring override methods, 280
vs. hiding, 279

parameters of, 68, 72. See also optional
parameters
mandatory, 86
named, passing argument as, 87–88, 93
overloading, 76

polymorphic, 281
private, 168
public, 168
replacing with properties, 359–363
return arrays from, 239–240
returning data from, 69–71, 93
scope of, 74–75
sealed, 315
signature of, 277
statements and, 39
statements in, 68
static, 180–181, 184, 187
stepping out of/into, 93
virtual, declaring, 279, 293
writing using Generate Method Stub Wizard, 77–

80
method signatures, 268
Method Stub option, 78
methodToDetectCanExecute field, 700–701
methodToExecute field, 700–701
Microsoft IntelliSense

icons, 11
using when writing code, 9–11

 myVar variable

 Index 793

Microsoft Visual C#
arithmetic operators. See also variables

associativity and, 60–61
controlling precedence, 59
overview, 52
prefix and postfix forms, 62
types and, 52–53
using on int values, 54–55

as “free format” language, 40
identifiers, 40–41
primitive data types

displaying, 44–47
table of, 43
using in code, 47–52

statements, 39–40
syntax, 39
variables, 42–43

Microsoft Visual Studio 2012
console application, creating, 3–8. See

also namespaces
building and running application, 12–14
using Intellisense, 9–11

debugger, 81–85
examining exceptions in, 140
graphical applications, creating

developer license for, 19
for Windows Store apps, code for, 30–33
for WPF applications, code for, 30–31
MainPage.xaml.cs file, 20–21
OK button, code for, 35–37
overview, 18
templates for, 18, 21
user interface, creating, 23–28

menu bar, 6
overview, 3
starting, 4

Microsoft Visual Studio IDE, 298
Min method, 258, 260, 261, 460, 499
MinValue property, 149
mi variable, 263
mm parameter, 225
mobility, 629
Model-View-ViewModel pattern. See MVVM (Model-

View-ViewModel) pattern
Mode parameter, 689
ModifiedDate property, 761
modifying data using data binding, 689–693
modulus (%) operator, 53, 98
monetary values, data type for, 44

Month.cs file, 216
Month first variable, 217
Month.January variable, 217
Month property, 105
Moore, Gordon E., 543
Moore’s Law, 543
MouseButtonEventArgs parameter, 310
MouseRightButtonDown event, 311
MoveNext method, 442, 443, 445, 446, 451
MPI (Message Passing Interface), 542
mscorlib.dll assembly, 17
multicore processors, 542–543
multidimensional arrays, 242–243, 255
multiline comments, 11
multiple interfaces, 299
multiplicative operators, 59, 98
multiplicity of operators, 516
multiply (*) operator, 98
multiplyValues method, 71, 151
multitasking. See also asynchronous methods;

parallel processing; Task class; tasks
defined, 544
reasons for using, 541–542

multiword identifiers, 42
mutipleValues method, 58
MVVM (Model-View-ViewModel) pattern, 682. See

also ViewModel
data binding

displaying data, 682–689
modifying data, 689–693
using with ComboBox control, 693–695

overview, 681–682
myAnonymousObject variable, 185
MyData array, 378
myData variable, 377
MyDoubleMethod method, 530
myField variable, 75
MyFileUtil application, 240
myFp variable, 328
myInt2 variable, 61
myInt3 variable, 61
MyIntMethod method, 531
myInt variable, 60
myMammal variable, 282
myOtherVariable variable, 63
mySquare variable, 326
myVariable variable, 63
myVar variable, 75

Name.cs file

794 Index

N
Name.cs file, 381
named arguments, 87–88, 93
Name field, 185
Name parameter, 379
Name property, 26, 640
namespaces

and scope, 15, 17
assemblies and, 17
longhand names, 16
purpose of, 14–15
used with WPF application, 34
with using directive, 15, 17

Names type, 496
naming

array variables, 234
fields, 169, 353
identifiers, 169
interfaces, 297
methods, 67, 68, 169, 648
properties, 353
variables, 42

NaN (not a number) value, 53
narrowing conversion, 531
native code, 230
Navigate method, 724
navigationParameter parameter, 715
Negate method, 288
NegInt32 type, 288
nested loops, 117
nesting if statements, 101–106
.NET Framework, class library, 17
newCust object, 755
new keyword, 167, 185, 189, 202, 203, 322

arrays and, 234, 255
turning off warnings with, 278

new line, 40
NewNamespace.Greeting class, 15
new operator, 325
New Project dialog box, 19, 402
New Project dialog box, Visual Studio 2012, 5
NextAppBarButtonStyle, 708
NextCustomer command

adding to ViewModel class, 704–711
NextCustomer property, 706–707
nextDigit variable, 131, 132
Next method, 236, 248
Next property, 423

NodeData property, 402, 403, 453
nodeValue parameter, 403
noiseToMakeWhenStarting parameter, 284
noiseToMakeWhenStopping parameter, 284
nongeneric collections, 420
non-params method, 261
noOfDays parameter, 91
NoResultsFound state, 719
noResultsTextBlock control, 715
not a number (NaN) value, 53
not equal to (!=) operator, 99, 522, 527–530
Notify method, 478
NotImplementedException exception, 78, 248, 306
NotImplementedException() method, 78, 79
NotImplementedException(); statement, 446
NotOnCanceled option, 547
NotOnFaulted option, 547
NotOnRanToCompletion option, 547
NOT (!) operator, 96, 98, 198
NOT (~) operator, 372
NOT operator, 96
nullable structure variables, 223
nullable value types, 197–198
nullable variable, 197
NullReferenceException exception, 463, 479
null value

defined, 196
Number field, 194
number generator, 236
NumberOfLegs method, 297
numbers, data types for, 43
NumCircles field, 181
NumCircles++ statement, 181
numElements field, 390
numeric types, infinite values and, 53
numPointsInCircle variable, 616, 617
NumSides property, 367
NumSuits field, 247

O
Object class, 204–205, 412, 529
Object Collection Editor, 641, 642
ObjectComparer object, 416
ObjectCount method, 184
Object.Finalize method, 328
object initializers, 366–368
object keyword, 204, 219
objects, 167

behavior of vs. properties of, 357

 overriding methods

 Index 795

converting to its string representation, 50
creating, 325–326
destroying. See garbage collection
initializing using properties, 365–369
referencing through interfaces, 298–299
vs. classes, 167

obj folder, 14
OData Client Tools, 745
okayClick method, 480
OK button, code for, 35–37
okClick method, 35, 36
oldCustomer variable, 759
on clause, of LINQ expression, 503
OnLaunched method, 33
OnlyOnCanceled option, 547
OnlyOnFaulted option, 547
OnlyOnRanToCompletion option, 547
OnModelCreating method, 740
OnNavigatedTo method, 31, 34, 724
OnPropertyChanged method, 692, 704
OnSearchActivated method, 726
Open dialog box, 119
openFileClick method, 120
openFileDialogFileOk method, 120
OpenFileDialog window, 120
Open file picker, 118
OpenText method, 120
operands

and prefix/postfix forms of operators, 62
defined, 52
of = operator, 60
type of result of operation and, 53

OperationCanceledException, 575, 575–578, 581,
605, 611

OperationCanceledException exception, 576, 579
operators. See also arithmetic operators; Boolean

operators
for accessing/manipulating bits in ints, 372
associativity of, 516
bitwise, 372–373
compound assignment operators

evaluating, 520
constraints, 516
conversion operators

built-in conversions, 530–531
overview, 530
user-defined, 531–532
writing, 533–535

implementing in exercise, 523–529
multiplicity of, 516

overloading, 516–517
overview, 515–516
in pairs, defining, 522–523
precedence of, 98–99, 516
query operators, 501–503
in structures vs. classes, 521–522
symmetric, 518–519, 532–533

operator symbols, 516
optional parameters

ambiguities with, resolving, 87–88
defining, 86–87, 93
defining and calling method taking, 89–92
overview, 85–86
vs. parameter arrays, 266–268

optMethod method, 86, 88
OrderByDescending method, 498
OrderBy method, 497–498, 498
orderby operator, 502
Order Details pane, 467
ordering data, 497–498
Order parameter, 471
Order Placed message, 473
OrdersInMemory class, 602
orientation, 18
origin variable, 179
OR operation, 372
OR (|) operator, 372
OR (||) operator, 97, 98, 99, 114
outcome variable, 57
out keyword, 200
OutOfMemoryException, 204, 243, 549, 616
out parameters, indexers used as, 377
Output window, Visual Studio 2012, 12, 22
o variable, 204
Overall Utilization option, 553
overflow checking, 150

controlling using checked/unchecked
keywords, 151

OverflowException, 139, 141, 150, 153
overloaded methods, 10
overloading

constructors, 170–171
indexers, 376
methods, 76, 257–258

override keyword, 280, 281, 322
overriding methods

declaring override methods, 280
vs. hiding, 279

Package.appxmanifest file

796 Index

P
Package.appxmanifest file, 631
Pack.cs file, 434
<Page.BottomAppBar> element, 768
Page class, 634
<Page.Resources> section, 715
pages, in Windows Store apps

size of, 27
use of term, 22

<Page> tag, 633
PaintOff method, 474
Parallel class, 559, 573
Parallel.For construct, 559
Parallel.ForEach method, 566, 573
Parallel.ForEach<T> method, 560
Parallel.For method, 559–560, 560, 562, 566, 573
Parallel.Invoke construct, 566
Parallel.Invoke method, 560, 564
Parallel LINQ. See PLINQ
ParallelLoopState object, 560, 573
ParallelLoopState parameter, 573
ParallelPI method, 615–621
parallel processing. See also asynchronous methods;

multitasking; PLINQ; Task class; tasks
abstracting tasks using Parallel class, 559–563
implementing parallelism using Task class

modifying application to use Task objects,
555–559

running single-threaded application, 548–553
when to avoid using Parallel class, 564–566

ParallelQuery object, 599
ParallelTest method, 607
parameter arrays

declaring, 260–261
Main method and, 240
of type object, 262
purpose of, 257
Sum method used with, 263–266
vs. optional parameters, 266–268

parameterList, 68
parameters

optional, vs. parameter arrays, 266–268
passing arrays as, 239
ref, 199, 200–202, 210

parameters of methods, 68, 72
mandatory, 86
named, passing argument as, 87–88, 93

optional
ambiguities with, resolving, 87–88
defining, 86–87, 93
defining and calling method taking, 89–92
overview, 85–86

overloading, 76
Parameters project, 192
paramList array, 265
paramList parameter, 264
param parameter, 194
params array, 261
ParamsArray dialog box, 264
ParamsArray project, 263
params int[] parameter, 263
params keyword, 260
parentheses ()

if statements and, 100
in Boolean expressions, 97
in methods, 68, 72
use in precedence, 60

Parse method, 57, 73, 138
partial classes, 172
partial keyword, 172
ParticipantCount property, 611
ParticipantsRemaining property, 611
partitionEnd parameter, 556
partitionStart parameter, 556
PascalCase naming scheme, 169
Pass.cs file, 192
Pass.Reference method, 194
Pass.Value method, 193
passwords, 355
percent sign (%), 53
Performance tab, 553
performCalculationDelegate delegate, 458
performCalculation method, 458
personal computers, price and capacity of, 542–543
Person values, 394
PhoneBook class, 379
PhoneBook.cs file, 381
PhoneNumber.cs file, 381
PhoneNumber parameter, 379
Phone Number text box, 385
Phone property, 691
pi, calculating

using parallel tasks, 619–620
using single thread, 615–618

PickSingleFileAsync method, 596
"pinch" gesture, 629

 properties

 Index 797

pins array, 235
pi variable, 208
PixelBuffer property, WriteableBitmap object, 551
pixelHeight field, 550
pixelHeight variable, 549
pixels, 25
pixelWidth variable, 549
PlayingCard class, 246, 434
playingCardCount field, 250
playingCardCount variable, 251
playingCardCount variable., 437
PlayingCard.cs file, 246
PLINQ (Parallel LINQ)

canceling queries, 604–605, 624
overview, 599–600
parallelizing query joining two collections,

602–604
parallelizing query over simple collection,

600–602
plotButton button, 550
plotButton_Click method, 550, 557, 558–559, 569,

570, 571, 592, 593
plotButton control, 549
Plot Graph button, 571
Plot Graph option, 552
plotXY method, 551
Point class, 174
Point.cs file, 176
pointers, 208, 209
pointsList collection, 620
Point structure, 310
Polygon class, 367–368
Polygon.cs file, 367
polymorphic methods, 280, 281
polymorphism, 321
Pop method, 439
populate method, 446
populating arrays, 235–236
Portable Class Library template, 402
portrait mode, 27
post-decrement (--) operator, 98
postfix form, 62, 521
postfix form of operator, 62
post-increment (++) operator, 98
precedence of operators, 59, 65, 98–99, 516
precedence override () operator, 98
prefix form of operator, 62
pre-increment (++) operator, 98
PresentationCore assembly, 320

PresentationFramework assembly, 320
"press and hold" gesture, 629
“Press any key to continue . . .” prompt, 13
PreviousAppBarButtonStyle, 708
PreviousCustomer command, 704–711
Previous property, 423
primary operators, 98
primitive data types. See also value types

displaying, 44–47
table of, 43
using in code, 47–52

PrimitiveDataTypes program, 44
PrintableCollection class, 396
Print method, 396
private data, and copying reference types, 191
private fields, 178, 192, 321, 350–351, 352
private _isBusy field, 752
private keyword, 70, 168, 191, 322
private _mainPageViewModel field, 716
ProcessData method, 239
ProcessFile method, 240
Processor object, 458
processors, multicore, 542–543
Program class, 8, 600
Program.cs file, 8, 454
ProgressRing control, 753
PROJECT menu, 307
properties

accessibility of, 355–356
assigning values through, 356
automatic

defining, 367–368
generating, 363–364

explicit implementation of, 359
exposing arrays as, 377
initializing objects using, 365–369
of interfaces, declaring, 358–359, 370
naming, 353
read-only, 354–355, 364, 369
read/write, 354, 369
replacing methods with, 359–363
restrictions applying to, 356–357
for secure data, 355
static, declaring, 354
syntax, 351–352
using, 354
vs. behavior of objects, 357
vs. fields, 356
write-only, 355, 364

Properties folder, Solution Explorer

798 Index

Properties folder, Solution Explorer, 7
Properties window, 24, 636

context sensitivity, 24
description of, 24

PropertyChanged event, 690–691, 704, 758, 760
PropertyChangedEventArgs parameter, 692
protected access, 282–283
protected keyword, 282, 322
pseudorandom number generator, 236
public data, 350
public fields, 168, 350–351, 363
public keyword, 168, 322
public methods, 168
public properties, 352
Push method, 419, 439
p variable, 78
px suffix, 25
Pythagoras theorem, 178

Q
quad-core machines, 555
QueryBinaryTree solution, 503
query operators, 501
queryText variable, 715, 718
Queue class, 389–392, 391
Queue<Horse> parameter, 395
Queue<int> collection, 425
Queue object, 390
Queue<T> class, 395, 420, 425
Quick Find dialog box, 48
Quick Replace dialog box, 48

R
radio buttons, 156
radius field, 191
randomCardSelector variable, 247
Random class, 236
random number generator, 236
range checks, 375
RanToCompletion, 572, 578
ReadData method, 240
readDouble method, 77
reader.Dispose function, 159
reader.ReadLine method, 121
reader variable, 120

ReaderWriterLockSlim class, 610
readInt method, 77, 79
ReadLine method, 78, 79, 331
readonly fields, 247
read-only properties, 354–355, 364, 369
read/write properties, 354, 369
Real property, 528
Rebuild Solution option, 527
Rectangle class, 305
Rectangle control, 683
rectangular arrays, 243
rect field, 307
recursive algorithms, 443
red lines, 13
refactoring code, 81, 313
Reference Manager dialog box, 407
Reference method, 194
reference objects, 239
reference parameters, 192–195
References folder, 7, 17
referenceToMyFp variable, 328
reference type parameters, 202
reference types, 189

copying, 191, 210
vs. value types, 190

ref keyword, 199, 210, 476
ref parameters, 199, 200–202, 210, 377
Regex class, 758
Register method, 568
RegularExpressions namespace, 758
regular methods, 433
relational operators, 96–97, 99
Release folder, 14
remainderValues method, 58, 71
RemoveAt method, 421
RemoveFirst method, 423
RemoveLast method, 423
Remove method, 421, 464
RemoveParticipant method, 610
RenderTransform property, 675
Representational State Transfer (REST), 741
requestPayment method, 469
Reset method, 445, 609
resizing

controls, 26
forms, 27

resolutions, screen, 27, 644, 649, 688
ResourceDictionary.MergeDictionaries element, 671
response time. See asynchronous methods

 Shift+F11 shortcut

 Index 799

responsiveness, improving, 541
REST (Representational State Transfer), 741
Result property, 595
resultsGridView control, 714, 723
resultsListView control, 715
Result text box, 55, 147
return statement, 69–70, 93, 110
Reverse property, 451
rhsOperand control, 56
rhsOperand text box, 73
rightHandSide parameter, 68, 107
Right Operand text box, 55, 146
RightTapped event, 311
RightTree property, 402
Rotate Clockwise button, 648
Rotate Counterclockwise button, 658
"rotate" gesture, 629
round brackets. See parentheses
RoutedEventArgs object, 479
RoutedEventHandler delegate, 479
RowDefinition item, 484
Row property, 653
Run method, 546, 575
Running status, 572
Run to Cursor option, 82

S
Sample Value box, 46
SaveAppBarButtonStyle style, 769
SaveChanges command, 757, 770
SaveChanges Command variable, 763
SaveChanges method, 755
Save dialog box, 345
Save method, 761
saving files, when not necessary, 13
sbyte keyword, 219
scalability, improving, 542
sCardAlreadyDealt method, 250
scope

blocks and, 101
namespaces and, 15, 17
of classes, 75
of methods, 74–75
of variables, 74

ScreenPosition structure, 352
screen resolution, 27, 644, 649, 688
sealed classes, 314, 323
sealed keyword, 314, 315, 322

sealed methods, 315
Search charm, starting application from, 725–729
Search contract

implementing in example application, 712–720
overview, 712
testing, 721–722

SearchPageResults.xaml.cs file, 723
searchResults collection, 719
SearchResultsPage class, 716
SearchResultsPage.xaml.cs file, 713
SearchResultsPage.xaml file, 712
Season enumeration, 214
secondDate control, 102
secondDate TextBlock control, 106
Second label control, 638
seconds variable, 100
Second TextBlock control, 642
Second TextBox control, 639, 642
secure data, properties for, 355
security constraints on Windows Store apps, 630
Security Warning message box, 739
Segoe UI, Windows 7, 25
selectedFilter variable, 716
SelectedValue property, 693
selecting item, gesture for, 629
SelectionChanged event, 47
SelectionChangedEventArgs parameter, 716
Select method, 494, 495–497, 500, 501, 507
selector parameter, 495
SemaphoreSlim class, 609
semicolon (;), 40
sentinel variable, 117
separators, 40
sequence of characters, data type for, 44
SerialPI method, 615–621
SerialTest method, 606, 607
set accessors

for indexers, 376
in interfaces, 378–379
overriding property accessibility for, 355–356

SetColor method, 302, 307, 310, 311, 316, 361
SetData method, 412, 413
set keyword, 352, 378
SetLeft method, Canvas class, 307
SetLocation method, 302, 306, 308, 316, 360, 361
SetTop method, Canvas class, 307
SetX modifier, 350
shared fields, 181
Share Target contract, 711
Shift+F11 shortcut, 84

shift operator

800 Index

shift operator, 215
ShipOrder method, 469, 473
Shipper class, 468, 473, 482
ShippingCompleteDelegate delegate, 483
ShipProcessingComplete event, 483
short-circuiting, 98
short keyword, 219
Show All Files toolbar button, 13
showBoolValue method, 51
showDoubleValue method, 51
showFloatValue method, 49
showIntValue method, 50
showResult method, 71, 73
Show Steps button, 127
showStepsClick method, 127, 133
Shutdown method, 463
shutdown methods, 462
side1Length field, 365
side2Length field, 365
side3Length field, 365
SideLength property, 367
SignalAndWait method, 610
signatures of methods, 277, 280
Simulator, testing Windows Store apps using, 647
single characters, data type for, 44
single quotation mark ('), 112
single string parameter, 366
Sin method, 180
SizeChanged event, 667, 736
sizing. See resizing
SkipAheadAppBarButtonStyle style, 736
SkipBackAppBarButtonStyle style, 736
Skip method, 503
slates, 18
"slide" gesture, 629
.sln suffix, 45
slowMethod method, 587, 589
Snapped view, 27, 554, 644, 659, 662–665, 688
SolidColorBrush object, 307, 362
Solution Explorer pane, Visual Studio 2012

files in, 7–8
overview, 6–7

Solution ‘TestHello’ file, 7
SomeBehavior method, 336
SortedDictionary<TKey, TValue> collection class, 428
SortedDictionary<TKey, TValue> object, 428
SortedList<TKey, TValue> collection class, 420,

428–429

SortedSet<T> collection type, 431
sorting data. See binary trees
Sort method, 417, 421
source parameter, 495
Source property, 551
space character, 40
SpinWait method, 601
Split method, 603
SQL SELECT commands, 735
SQL (Structured Query Language), 492
Sqrt method, 178, 180
square brackets ([]), 60, 234
Square class, 304–305, 309–312, 318–319, 326
Square.cs file, 304
src variable, 120
stack memory, 203
StackOverflowException exception, 353
StackPanel control, 636, 708
stacks, 202–204, 205
Stack<T> class, 419, 420, 426
StandardSmallIcon70ItemTemplate style, 715
StandardStyles.xaml file, 20, 671, 708, 715
StartCheckoutProcessing method, 471
Start Debugging command, 13
StartEngine method, 283
Start method, 546
StartNew method, 550
StartupUri property, 34
Start Visual Studio button, 4
Start Without Debugging command, DEBUG

menu, 29
statements

checked, 150
explanation of, 39–40
grouping, 100–101
in methods, 68

static classes, 182
static fields, 180–181, 182, 187
static methods, 180–181, 184, 187
static properties, 354
StaticResource keyword, 670
static void method, 410
Status property, Task object, 572
Step Out command, debugger, 83
Step Over command, debugger, 83
Stop Debugging option, 28
StopEngine method, 283
StopFolding method, 474

 System.Single structure

 Index 801

stopMachinery delegate, 474
StopMachineryDelegate delegate, 477
stopMachinery variable, 464
Stop method, 573
Stopwatch object, 550
StorageFile class, 597
Stream interface, 597
StreamReader class, 331, 334
String class, 226, 412, 603
string data type, 44
String.IsNullOrEmpty(personsPhoneNumber.Text)

expression, 384
string keyword, 219, 407
StringReader class, 331
strings of characters, 42
StructsAndEnums.Date string, 226
StructsAndEnums namespace, 216
Structured Query Language (SQL), 492
structures

vs. classes, 221–222
creating and using, 224–227
declaring, 220
declaring variables, 222–223
inheritance not applicable to, 274
initialization, 223–224
operators in, vs. in classes, 521–522
overview, 218
types of, 219
variables, copying, 227–228
vs. classes, 221–222, 228–230

styles, applying to user interface, 669–678
<Style> tag, 709
subscribing to events, 478, 488
Subtitle control, 720
subtraction (-) operator, 98
subtractValues method, 58, 71, 149
subtrees, 396
SuckleYoung method, 272
Suit.cs file, 246
Suit parameter, 249
suit variable, 436
summary methods, 499
Sum method, 263, 263–266, 267, 460
sumTotal variable, 265
SuppressFinalize method, 336, 341, 342
Swap<T> method, 409
Swim method, 273
switch statements, 114

break statements and, 110
overview, 107–108
rules, 109–110
syntax, 108–109
writing, 111–112

symmetric operators, 517, 518–519, 532–533
synchronizing concurrent access to data. See

also concurrent collection classes
cancelling synchronization, 611
concurrent collection classes

list of, 612
locking data, 608
overview, 608–610
synchronization primitives for coordinating

tasks, 608–611
syntax rules, 40
System.Array class, 238, 241, 442
System.Boolean structure, 219
System.Byte structure, 219
System.Collections.Concurrent namespace, 620
System.Collections.Generic namespace, 395, 396,

417, 419, 428, 442
System.Collections.Generics namespace, 395
System.Collections.IEnumerable interface, 441
System.Collections.IEnumerator.Current, 446
System.Collections.IEnumerator interface, 442
System.Console class, 15
System.Data.Services.Client namespace, 749
System.Decimal structure, 219
System.Double structure, 219
System.Exception exception, 589
SystemException family, 141
System.Generic.Concurrent namespace, 420
System.IComparable interface, 400, 401
System.IComparable<T> interface, 401
System.Int16 structure, 219
System.Int32 structure, 219, 288, 407
System.Int64 structure, 219
System.InvalidCastException, 392
System.IO namespace, 120, 331
System.Linq namespace, 495, 501
System.Math class, 178
System namespace, 297, 461
System.Numerics namespace, 524
System.Object class, 204–205, 219, 274, 276
System.Object namespace, 523
System.Random class, 236
System.SByte structure, 219
System.Single structure, 219

System.String class

802 Index

System.String class, 190, 219
System.Threading.CancellationToken parameter, 566
System.Threading.CancellationTokenSource

object, 567
System.Threading namespace, 544, 608, 609
System.Threading.Tasks namespace, 544, 559
System.Threading.Tasks.TaskStatus enumeration, 572
System.UInt16 structure, 219
System.UInt32 structure, 219
System.UInt64 structure, 219
System.ValueType class, 274
System.Windows.Controls, 34
System.Windows.Media namespace, 304
System.Windows namespace, 36, 320
System.Windows.Shapes namespace, 305

T
tablet computers, 18
Take method, 503
TakeOff method, 284
Tan method, 180
TappedRoutedEventArgs parameter, 310
Task class, 544, 544–545, 605, 748

implementing parallelism using
modifying application to use Task objects,

555–559
running single-threaded application, 548–555

Task constructor, 545
TaskContinuationOptions type, 547
TaskCreationOptions enumeration, 546
TaskFactory class, 599, 755
Task<int> type, 595
Task List window, 173
Task Manager window, 29, 554
Task objects, 544

creating, 545–546
running, 546

Task Parallel Library, 748
tasks. See also parallel processing

abstracting, using Parallel task, 559–563
cooperative cancellation of

acknowledging cancellation, 576–578
adding cancellation functionality to applica-

tion, 568–572
displaying status of tasks, 574–576
overview, 566–568

using continuations with canceled/faulted
tasks, 581–582

coordinating, synchronization primitives for, 608–
611

exceptions generated by, 579
using continuations with, 581–582

TaskScheduler class, 546
TaskScheduler object, 546
Task<TResult> class, 595
Task type, 587
Task.WaitAll method, 570, 579
Task.WaitAny method, 579
TemperatureMonitor class, 477, 478
templates, 18
tempMonitor.MachineOverheating event, 478
Test1 method, 601
Test2 method, 603
TestHello.csproj file, 7
TestHello.exe file, 14
TestHello file, 7
TestHello.Greeting class, 15
TestHello.sln file, 7
TestIfTrue method, 601
testing

Search contract, 721–722
Tree<TItem> class, 406–408

text
aligning, 24
wrapping, 24

TextBlock control, 23, 24, 549, 636
TextBox control, 23
Text Editor window, 556
Text property, 24, 25, 50, 121, 383, 684
TextReader class, 120, 331
TextReader variable, 120
TextWrapping property, 640
ThenByDescending method, 498
ThenBy method, 498
Third label control, 638
Third TextBox control, 639
this keyword, 177, 289, 374, 375, 411
this.stopMachinery() method, 463
Thread class, 544
threading, 544–545
ThreadPool class, 544–545, 545
threads, 330, 545
thread-safe data access

calculating pi using parallel tasks, 619–620
calculating pi using single thread, 615–618

 ushort type

 Index 803

general discussion, 612–614
using thread-safe collection, 621–622

Thread.Sleep method, 566
three-dimensional arrays, 244
ThrowIfCancellationRequested method, 575, 577
throwing exceptions, 154–156, 161
Thrown column for Common Language Runtime

Exceptions option, 153
throw statement, 110, 154
tilde (~) character, 327
Time structure, 222
Time variable, 223
TItem parameter, 447
TItem property, 402
title bars, 27
Title property, 27, 720
ToArray method, 434, 510, 512
TODO comments, 173
token parameter, 569
tokenSource field, 569
tokenSource variable, 569, 571
token variable, 570
ToList method, 510, 512
Toolbars command, 82
Toolbox

keeping visible, 23
use in user interface creation, 23

ToString method, 50, 70, 73, 215, 219, 225, 226, 279,
504, 525

touch-based gestures, 18, 629
transistors, 543
Tree class, 402
TreeEnumerator class, 443, 443–446
TreeEnumerator.cs file, 444
TreeEnumerator<TItem> class, 444
Tree<int> object, 454
Tree<TItem> class, 402

creating, 402–405
defining enumerator for, using iterator, 452–454
implementing IEnumerable<TItem> interface

in, 447–449
querying data in objects, 503–509
testing, 406–408

TResult type parameter, 460, 495
Triangle class, 365
Trot method, 273
try blocks, 138–139

destructors and, 328
exception matching multiple catch handlers at end

of, 142

exception thrown by with no corresponding catch
handler, 139–140

try/catch statement block, writing, 144–147
TSource type parameter, 495
T type parameter, 394
two-dimensional array, 242
two-way data binding, 689–693
TwoWay mode, 690
type parameters, 394–395, 447
types. See data types
typeSelectionChanged method, 47, 48, 49

U
uint keyword, 219
uint type, 216
ulong keyword, 219
ulong type, 216
unary operators, 62, 98, 516, 517
unassigned variables, 44
unboxing, 206–207
unchecked block statements, 150
unchecked keyword, 151
underscore (_) character, 40, 42, 169, 353
unhandled exceptions, 139–140, 158
Union method, 503
UnionWith method, 429
unmanaged applications, 230
unsafe code, 209
unsafe keyword, 209
unsubscribing from events, 478, 489
UPDATE command, 741
UpdateObject method, 754, 762
updates, multiple, 124
usCompanies collection, 510
usComp variable, 497
user-defined constructors, 224
user-defined conversion operators, 531–532
user interface

applying styles to, 669–678
creating, 23–28
events, 479–480
scalable, implementing

adapting layout using Visual State
Manager, 660–669

laying out page, 634–645
tabular layout using Grid control, 650–660

User-unhandled check box, 577
ushort keyword, 219
ushort type, 216

using directive

804 Index

using directive, 15, 17
Util class, 263, 264, 289
Util.cs file, 264
Util.Negate method, 289

V
ValidateCustomer method, 757, 758, 765, 771
Value.cs file, 246
value keyword, 376
Value method, 192
value parameters, 192–195
Value property, 197, 198, 427
values

assigning
same to several variables, 65
through properties, 356
to variables, 43

associating keys with, 427–429
asynchronous methods returning, 595–596
changing, 65
comparing, 114
determining whether equivalent, 114
infinite, 53
integer, using arithmetic operators on, 54–55
operators and, 52
string, converting to integer, 52

Value text box, 50
value type parameters, 202
value types

copying, 210
structures

creating and using, 224–227
declaring, 220
declaring variables, 222–223
initialization, 223–224
overview, 218
types of, 219
vs. classes, 221–222

vs. reference types, 190
varargs macros, 260
variables. See also values

adding amount to, 135
array

declaring, 234, 255
naming, 234

Boolean
as expression for if statement, 100
declaring, 95–96, 114

declaring, 42–43, 65
defined with type parameter, initializing, 447
enumeration, 214–215
explanation of, 42
global, 138
implicitly typed local, declaring, 63–64
in classes, 167
incrementing and decrementing, 61–62
local, 74–75
naming, 42
nullable, 197
pointers, 208, 209
scope of, 74
static. See static fields
structure variables, copying, 227–228
subtracting amount from, 135
unassigned, 44

Variant type, 63
Variant variables, 63
var keyword, 63, 68, 185, 496
Vehicle class, 283
Vehicle.cs file, 283
Vehicles dialog box, 283
Vehicle variable, 288
VerticalAlignment property, 24, 637, 640, 653, 656
View Detail dialog box, 146
VIEW menu, 31, 32
ViewModel

add and edit functionality, implementing in, 756–
764

adding commands to
ICommand Interface, creating class that imple-

ments, 700–704
ICommand interface, items defined by, 699–700
NextCustomer and PreviousCustomer com-

mands, 704–711
creating, 697–699
error reporting, adding to, 764–766

ViewModel.cs file, 696, 704
virtual keyword, 279, 322, 359
virtual methods

declaring, 279, 293
list of from IntelliSense, 287
polymorphism and, 281
signatures of, 280

Visibility property, 662
Visual C#

arithmetic operators. See also variables
associativity and, 60–61
controlling precedence, 59

 Windows.UI.Xaml.Controls

 Index 805

overview, 52
prefix and postfix forms, 62
types and', 52–53
using on int values, 54–55

as "free format" language, 40
identifiers, 40–41
primitive data types

displaying, 44–47
table of, 43
using in code, 47–52

statements, 39–40
syntax, 39
variables, 42–43

Visual State Manager, 660–669
Visual Studio 2012. See Microsoft Visual Studio 2012
Visual Studio Debugger, 153
void keyword, 69

W
WaitAll method, Task class, 548
WaitAny method, Task class, 548
WaitingToRun status, 572
Wait method, 548, 579, 609
WalkTree method, 405, 407, 412
warnings, turning off, 278
wavy red line, 13
WCF Data Service, 754–764
WCF Data Service template, 741, 773
WCF (Windows Communication Foundation), 741
weddingAnniversaryCopy variable, 229
weddingAnniversary variable, 227, 229
Whale class, 273
Where filter, 510
Where method, 497, 507
while construct, 124
while loop, 117, 121, 202, 436
while statements, 135

purpose of, 117
syntax, 117
terminating, 117
writing, 118–123

white space, 40
whole numbers, data type for, 43
Width property, 640
Win32 APIs, 230
Windows 7. See graphical applications, creating; WPF

applications

Windows 8. See also Windows Store apps
touch-based gestures and, 18
Windows Store apps and, 18
WinRT (Windows Runtime) on, 320

WindowsBase assembly, 320
Windows class, 477
Windows Communication Foundation (WCF), 741
Windows error handling, 143
Windows Forms Application template, 18
WindowSizeChanged method, 667, 724, 736
Windows Presentation Foundation applications.

See WPF applications
Windows Presentation Foundation Application

template. See WPF Application template
Windows Presentation Foundation (WPF), 18, 172,

303, 585, 702
Windows Runtime (WinRT), 231, 320, 321, 585,

596–597
Windows Store apps, 18. See also Blank App

template
assemblies used with, 34
closing, 29
command buttons on, locating, 245
design features, 628
developer license, 19
displaying code file for page, 31
displaying data in using data binding, 682–689
distribution and deployment of, 630
general explanation of, 628–631
graphical application, creating, 30–33
interactions with other apps, 630. See

also contracts
lifetime of, 630
look and feel of, 628
mobility and, 629
modifying data in using data binding, 689–693
pages in, use of term, 22
portrait mode, viewing in, 27
searching in. See Search charm; Search contract
security constraints on, 630
specifying of initial form to display, 34
testing using Simulator, 647
viewing on various devices, 27
WinRT and, 320

Windows Store style, 18
Windows.UI namespace, 320
Windows.UI.Popups namespace, 36
Windows.UI prefix, 34
Windows.UI.Xaml.Controls, 34

Windows.UI.Xaml.Media.Imaging namespace

806 Index

Windows.UI.Xaml.Media.Imaging namespace, 549
Windows.UI.Xaml namespace, 702
Windows.UI.Xaml.Shapes namespace, 305
window, use of term, 22
WinRT data type, 320
WinRT (Windows Runtime), 231, 320, 321, 585,

596–597
WithCancellation method, 604
Withdraw method, 357
wi variable, 194
WPF Application icon, 21
WPF applications

assemblies used with, 34
graphical application, creating for, 33–34
namespaces used with, 34
specifying of initial form to display, 34

WPF Application template, 18, 21
WPF (Windows Presentation Foundation), 18, 172,

303, 585, 702
WrappedInt class, 194
Wrapper structure, 377
Wrapper<T> class, 413, 414–415
wrapping text, 24
WriteableBitmap object, 549, 550, 551, 597
WriteAsync method, 597
writeFee method, 77, 80
WriteLine method, 76, 80, 258

overloads for, 263
versions of, 10

WriteLine statement, 12
Write method, 597
write-only properties, 355, 362, 364

X
XAML (Extensible Application Markup

Language), 19, 21, 480
XAML pane, 24, 25
x-coordinate, 551
xCoord variable, 616, 622
xDiff variable, 178
x:Name property, 640
XOR (̂) operator, 376
X property, 354

Y
yCoord variable, 616, 622
yDiff variable, 178
yield keyword, 451
Y property, 354

Z
ZIndex property, 753
zooming

gesture for, 629
in and out of Design View window, 47

about the author

JOHN SHARP is a principal technologist working for Content Master Ltd in
the United Kingdom. He gained an honors degree in Computing from Impe-
rial College, London. He has been developing software and writing training
courses, guides, and books for over 25 years. John has experience in a wide
range of technologies, from database systems and UNIX through to C, C++,
and C# applications for the .NET Framework, together with Java and JavaScript

development. Apart from six editions of C# Step By Step, he has authored several other
books, including Windows Communication Foundation Step By Step and the J# Core
Reference.

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

	Table of Contents
	Introduction
	Chapter 1: Welcome to C#
	Beginning Programming with the
Visual Studio 2012 Environment
	Writing Your First Program
	Using Namespaces
	Creating a Graphical Application
	Examining the Windows Store App
	Examining the WPF Application
	Adding Code to the Graphical Application

	Summary
	Chapter 1 Quick Reference

	Chapter 2: Working with Variables, Operators, and Expressions
	Understanding Statements
	Using Identifiers
	Identifying Keywords

	Using Variables
	Naming Variables
	Declaring Variables

	Working with Primitive Data Types
	Unassigned Local Variables
	Displaying Primitive Data Type Values

	Using Arithmetic Operators
	Operators and Types
	Examining Arithmetic Operators
	Controlling Precedence
	Using Associativity to Evaluate Expressions
	Associativity and the Assignment Operator

	Incrementing and Decrementing Variables
	Prefix and Postfix

	Declaring Implicitly Typed Local Variables
	Summary
	Chapter 2 Quick Reference

	Index

