
 

  
   

 

  
   

 

 

  

 

   

   

 

  
   

About the Author
Charles Petzold has been writing 
about Windows programming 
for 25 years. A Windows Pioneer 
Award winner, Petzold is author 

of the classic Programming Windows, the 
widely acclaimed Code: The Hidden  
Language of Computer Hardware and  
Software, Programming Windows Phone 7, 
and more than a dozen other books.

 

  
   

 

  
   

 

 

  

 

   

   

 

  
   

About the Sixth Edition
• Completely rewritten for Windows 8
• Focuses on creating apps using C#,  
 XAML, and the Windows Runtime
• Expertly teaches essential skills in Part 1:  
 Elementals
• Rounds out your Windows 8 education  
 in Part 2: Specialties
• Provides code samples in both C#  
 and C++

Foreword by Jeffrey Richter, Wintellect

Petzold

W
indow

s  
Runtim

e via C# 

Windows  
Runtime via C#

Paul Mehner

Developing  
Cloud Applications 
with Windows  
Azure Storage  

Pr
of

es
sio

na
l

microsoft.com/mspress

Certification/ 
Windows Server0 000000 000000

ISBN: 978-0-7356-xxxx-x

9 0 0 0 0 U.S.A. $39.99
Canada  $41.99

[Recommended ]

spine = 2.07”



PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2013 by Paul Mehner

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any 
means without the written permission of the publisher.

Library of Congress Control Number: 2012948864
ISBN: 978-0-7356-6798-3

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related 
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of 
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies.  All other marks are property of 
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and 
events depicted herein are fictitious. No association with any real company, organization, product, domain name, 
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without 
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or 
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by 
this book.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editor: Rosemary Caperton 
Editorial Production: Online Training Solutions, Inc. (OTSI) 
Copyeditor: Victoria Thulman 
Indexer: Jan Bednarczuk 
Cover: Twist Creative • Seattle



To my wife Shelley, who tolerated my many absences from family 
life while I worked on this book and trained and consulted on other 
projects. I love you! Thanks to my son Austin and my daughter 
Taryn for being the truly awesome kids that they are! I love you 
both, too! Thanks to our pet Rotsky (Rottweiler/Husky) Bella, our 
deceased black lab Codey (RIP), and our Bearded Dragon Uri, 
who made their own loving and memorable contributions.

Thanks to my friend and mentor Jeffrey Richter for the many 
hours of assistance that he gave me with this book, and for al-
lowing me to use the source code from Wintellect’s Windows 
Azure class as the basis for most of the code samples provided.

—Paul Mehner





Contents at a glance

Foreword xiii

Introduction xv

PART I ARCHITECTURE AND USE

CHAPTER 1 Understanding data storage 3

CHAPTER 2 Windows Azure data storage overview 13

CHAPTER 3 Windows Azure data storage accounts 27

CHAPTER 4 Accessing Windows Azure data storage 53

PART II BLOBS, TABLES, AND QUEUES

CHAPTER 5 Blobs 71

CHAPTER 6 Tables 119

CHAPTER 7 Queues 159

PART III ANALYTICS

CHAPTER 8 Analytics, logging, and transaction metrics 179

Index 195





  vii

Contents
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv

PART I ARCHITECTURE AND USE

Chapter 1 Understanding data storage 3
Database types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Flat file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

File-based relational databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Relational . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Hierarchical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Federated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

NoSQL (Not Only SQL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Data storage types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Chapter 2 Windows Azure data storage overview 13
Feature-rich data storage for almost any application . . . . . . . . . . . . . . . . .13

Data storage abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Windows Azure data centers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Storage topology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. To participate in a brief online survey, please visit: 

microsoft.com/learning/booksurvey



viii Contents

Failure management and durability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Front-end layer failure mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Partition layer failure mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Distributed File System layer failure mitigation . . . . . . . . . . . . . . . . .20

Fault and upgrade domains  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Fault domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Upgrade domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21

Replication, geo-replication, and reliability . . . . . . . . . . . . . . . . . . . . . . . . . .22

Dynamic scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

RESTful APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Software development kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24

Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Analytics and metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

Chapter 3 Windows Azure data storage accounts 27
Set up your Windows Azure subscription . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

IDs, subscriptions, and storage accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Subscription certificates for authentication . . . . . . . . . . . . . . . . . . . . . . . . . .30

Primary and secondary access keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

Service management API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

Data storage service management URL . . . . . . . . . . . . . . . . . . . . . . . .33

HTTP request headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Certificate authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Create a new storage account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Retrieve account properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

Update account properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Retrieve storage account keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Regenerate storage account keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

Delete storage accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

HTTP and data storage return codes . . . . . . . . . . . . . . . . . . . . . . . . . .45

Affinity groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

Storage emulator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46



 Contents ix

Multi-tenancy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Separate Windows Azure subscription per tenant . . . . . . . . . . . . . . .49

One subscription, separate storage accounts per tenant . . . . . . . . .50

One subscription, one storage account, separate blob  
containers, tables, and queues per tenant  . . . . . . . . . . . . . . . . . . . . . 51

One subscription, one storage account, shared blob  
containers, tables, and queues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

Chapter 4 Accessing Windows Azure data storage 53
Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Constructing the signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54

The Windows Azure SDK for the .NET Framework . . . . . . . . . . . . . . . . . . . .55

Connection string formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

Segmented reads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Blob container list continuation tokens . . . . . . . . . . . . . . . . . . . . . . . .59

Queue list continuation tokens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Blob storage continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Table storage continuation HTTP headers . . . . . . . . . . . . . . . . . . . . . .61

Windows Azure client library support for continuation tokens . . . .62

Cloud reliability concerns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Performance targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Failure conditions and strategies for recovery . . . . . . . . . . . . . . . . . .65

Recovery code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65

Failure mitigation strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

The transient fault handling application block . . . . . . . . . . . . . . . . . .67

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

PART II BLOBS, TABLES, AND QUEUES

Chapter 5 Blobs 71
Blob basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Block blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72

Page blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72



x Contents

Blob containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Blob addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Business use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Blob storage structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Navigating blob container hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Storage Client library blob types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Container and blob naming rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

Performing create, read, update, and delete blob operations . . . . . . . . . .81

Blob container security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81

Anonymous (public) read-only blob access  . . . . . . . . . . . . . . . . . . . .82

Setting blob container permissions  . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Shared Access Signatures and shared access policies  . . . . . . . . . . . . . . . . .88

Shared Access Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

Creating a shared access policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Applying a shared access policy to a blob container  . . . . . . . . . . . .90

Storing access policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

Revoking SAS permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Blob attributes and metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Conditional operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

Conditional operations using REST . . . . . . . . . . . . . . . . . . . . . . . . . . . .96

Conditional operations using the Windows Azure client library . . .96

Blob leases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Using block blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Using page blobs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Blob snapshots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

Creating the original blob  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Creating the blob’s snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Listing snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Deleting snapshots  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

Continuation tokens and blobs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117



 Contents xi

Chapter 6 Tables 119
Table basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

Table storage structure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

Table addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

Entity properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Entity partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

PartitionKey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

RowKey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Timestamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Custom properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Entity Group Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

Table and property naming rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

Windows Azure client library table types . . . . . . . . . . . . . . . . . . . . .124

Visualizing table entities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

Creating tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

The Table service and the Open Data Protocol  . . . . . . . . . . . . . . . . . . . . .130

Serializing and deserializing entities with CloudTable  . . . . . . . . . . . . . . . 131

Data operation options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Table queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Table queries by primary key . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Table queries using the RESTful API . . . . . . . . . . . . . . . . . . . . . . . . . .135

Table queries using the Windows Azure client library. . . . . . . . . . .136

Table entity ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

Storing multiple entity types in a single table . . . . . . . . . . . . . . . . . . . . . . .142

Selecting good partition keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

Segmented queries and continuation tokens . . . . . . . . . . . . . . . . . . . . . . .150

Cross-table consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

Table operation concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Optimistic concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Last update wins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155

Pessimistic concurrency  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157



xii Contents

Chapter 7 Queues 159
Queue storage overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

Business use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160
Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160

Load leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

Disjointed work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

Long-running work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

Distributed work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

Publish/subscribe messaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

Queue addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Creating a message queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163

Posting a message into a queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164

Retrieving messages from a queue . . . . . . . . . . . . . . . . . . . . . . . . . . .166

Peek messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Retrieving metadata  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

Deleting messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

Poison messages and handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173

Deleting a message queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

PART III ANALYTICS

Chapter 8 Analytics, logging, and transaction metrics 179
Request logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

Metrics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183
Transaction metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186

Capacity metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

Enabling the analytics services via the REST interface . . . . . . . . . . . . . . . .193

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194

Index 195

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. To participate in a brief online survey, please visit: 

microsoft.com/learning/booksurvey



  xiii

Foreword

To my fellow Data Lover,

The most important part of any application is its data. Data is used for user accounts, 
orders, game scores, news items, status updates, documents, photos, music, images—
the list goes on and on. It used to be that data was all about bytes stored on a hard 
disk and how quickly our applications could access these bytes. But for today’s modern 
cloud-based applications, topics related to data now include:

■■ The geo-location of the data center storing the data, which impacts latency and 
geopolitical boundaries.

■■ Security and confidentiality of the data.

■■ Redundancy and high availability of the data.

■■ Performance and scalability when accessing the data.

■■ Optimistic concurrency patterns, transactions, and atomicity.

■■ Historical copies, or versioning of the data.

■■ Pricing (of course) related to all of the above.

Yes, data and everything associated with it has become a complex web of topics and 
issues that many applications must manage today. Fortunately, Microsoft has built a 
world-class, cloud-based data storage service that can easily be incorporated into many 
existing applications. This system addresses all of the issues I just mentioned and more. 
This book helps you understand what this service can do and how to use the service ef-
fectively. The book offers guidance, design patterns, and tips and tricks along the way.

And, dear reader, you are quite lucky to have Paul Mehner as the author of this 
book. I met Paul at a .NET user group meeting many years ago and was immediately 
impressed with him. I watched in admiration as he presented complex topics to the 
 audience in such a way that they immediately grasped what he was saying. In fact, I 
was so impressed with Paul that I asked him to be a part of my company, Wintellect, 
and he has been working with us for many years now. 



xiv Foreword

Furthermore, Paul has been working with Windows Azure long before it officially 
shipped. Through Wintellect, he teaches various Windows Azure topics (including 
storage) to Microsoft’s own employees. And, he has also worked on many consulting 
engagements related to Windows Azure. This book is filled with insight from Paul’s real-
world experiences.

Today, just about everyone is interested in learning the best ways possible to manage 
their data, and this book is the best place to start on your journey.

— Jeffrey Richter (http://Wintellect.com/)



  xv

Introduction

Windows Azure storage provides independent data management services to your ap-
plication, that is, data storage for any application, on any platform capable of making 
an HTTP request, written in any programming language, and deployed to the cloud or 
hosted in your own data center. Windows Azure storage provides a rich set of features 
that your applications can take advantage of to achieve operating characteristics that 
might otherwise be unobtainable because these characteristics were too complex, cum-
bersome, time-consuming, or expensive to implement. Not every application will re quire  
this set of features offered by the data management service; however, most will bene-
fit from at least a few of them. It’s hard to imagine an application that would not 
benefit from improved data reliability.

Developing Cloud Applications with Windows Azure Storage provides detailed 
information about the Windows Azure data management services platform. The book 
approaches the subject from the perspective of an open and RESTful data storage 
platform that can be used independent of any other Microsoft technology. The book 
focuses on the RESTful API of Windows Azure data management services to provide 
you with a much deeper understanding of how the storage platform works. Each REST 
example is also supplemented with an example that uses the Windows Azure client 
library (also referred to as Windows Azure storage library), which is available on many 
platforms, including the Microsoft .NET Framework. The Windows Azure client library 
eases some of the mundane and repetitive tasks such as attaching security and other 
custom HTTP headers to your storage requests. This gives you a much more complete, 
top-to-bottom understanding of the technology.

Who should read this book

This book will help existing Microsoft Visual Basic and Microsoft Visual C# developers 
understand the core concepts of Windows Azure data management services and re-
lated technologies. It is especially useful for programmers looking to manage database-
hosted information in their new or existing .NET applications. Although most readers 
will have no prior experience with Windows Azure data management services, the book 
is also useful for those familiar with building applications against a relational database 
such as Microsoft SQL Server.



xvi Introduction

Assumptions
This book is written with the assumption that you have a minimal understanding of the 
HTTP protocol in addition to .NET development and object-oriented programming con-
cepts for the Windows Azure client library code samples. Although the Windows Azure 
client library is available for many platforms and languages, this book includes examples 
in C# only. You should also have a basic understanding of database concepts, and per-
haps some experience with relational database systems such as SQL Server.

Who should not read this book

Because the focus of this book is on software development on the Windows Azure plat-
form, it is not intended for the information technology (IT) professional. It is also not 
intended for novice developers, because you will need intermediate software develop-
ment experience.

Organization of this book

This book is divided into three parts:

■■ Part I: Architecture and use This part covers the architecture and use of 
 Windows Azure data management services and how they are accessed. 

■■ Part II: Blobs, tables, and queues This part covers specifics about blob, table, 
and queue storage and the scenarios that lend themselves to their use. 

■■ Part III: Analytics This part focusses on how to collect and analyze Windows 
Azure data management service consumption logs and metrics for blobs, tables, 
and queues. 

Conventions and features in this book

This book presents information using conventions designed to make the information 
readable and easy to follow:

■■ Boxed elements with labels such as “Note” provide additional information or 
alternative methods for completing a step successfully.



 Introduction xvii

■■ A plus sign (+) between two key names means that you must press those keys at 
the same time. For example, “Press Alt+Tab” means that you hold down the Alt 
key while you press the Tab key. 

System requirements

You will need the following hardware and software to complete the practice exercises in 
this book:

■■ One of the following: Windows 7, Windows 8, Windows Server 2003 with Service 
Pack 2, Windows Server 2003 R2, Windows Server 2008 with Service Pack 2, or 
Windows Server 2008 R2

■■ Microsoft Visual Studio 2012, any edition (multiple downloads may be required 
if using Express Edition products)

■■ SQL Server 2008 R2 Express Edition or later, with SQL Server Management 
Studio 2008 Express or later (included with Visual Studio; Express Editions 
require separate download)

■■ Windows Azure client library appropriate for your client application platform 
(the book assumes you are using the .NET Framework) 

■■ Microsoft Internet Information Services (IIS) or IIS Express version 7.5 or newer.

■■ Computer that has a 1.6 gigahertz (GHz) or faster processor (2 GHz recom-
mended)

■■ 1 gigabyte (GB), 32-bit; or 2 GB (64-bit) RAM (add 512 MB if running in a virtual 
machine or SQL Server Express Editions, more for advanced SQL Server editions)

■■ 3.5 GB of available hard disk space

■■ 5400 RPM hard disk drive

■■ DirectX 9 capable video card running at 1024 x 768 or higher resolution display

■■ DVD-ROM drive (if installing Visual Studio from DVD)

■■ Internet connection to download software or chapter examples

Depending on your Windows configuration, you might require Local Administrator 
rights to install or configure Visual Studio 2010 and SQL Server 2008 R2 products.



xviii Introduction

Code samples

Most of the chapters in this book include examples that let you interactively try out 
new material learned in the main text. All sample projects can be downloaded from the 
following page:

http://aka.ms/DevCloudApps/files

Follow the instructions to download the DevCloudApps_667983_CompanionContent.zip 
file.

Note In addition to the code samples, your system should have Visual 
Studio 2010 and SQL Server 2008 R2 (any edition) installed to support the 
Windows Azure storage emulator. Alternatively, you can run all examples 
against Windows Azure data management services without using the stor-
age emulator. 

Installing the code samples 
Follow these steps to install the code samples on your computer so that you can use 
them with the exercises in this book.

1. Unzip the DevCloudApps_667983_CompanionContent.zip file that you down-
loaded from the book’s website.

2. If prompted, review the displayed end user license agreement. If you accept the 
terms, select the accept option, and then click Next.

3. Install the Wintellect Windows Azure Power Library NuGet package. You can 
do this from the NuGet Package Manager by searching for Wintellect, clicking 
Wintellect.WindowsAzure.dll (Wintellect Power Azure Library), and then clicking 
Install, as shown in the following figure.



 Introduction xix

Note If the license agreement doesn’t appear, you can access 
it from the same webpage from which you downloaded the 
DevCloudApps_667983_CompanionContent.zip file.

4. You’ll be prompted for the project that you want to add the Wintellect Power 
Azure Library to. Click the Wintellect.DevCloudAppsAzureStorage project and 
click OK, as shown in the following figure.



xx Introduction

5. After the library is installed, you may need to close the package manager by 
clicking Close.

Note You can also download the Wintellect Windows Azure Power Library 
package directly from the following URL: https://nuget.org/packages 
/Wintellect.WindowsAzure.dll.

Using the code samples
Locate the AzureSecrets.txt file in the root directory of the folder you expanded the 
zip file into. Modify this file with your own Windows Azure subscription, management 
certificate thumbprint, the name of your storage account, and its key.

# The projects in this solution require the use of your personal Azure account 
# information which you supply below. 
# You do not need to enter all the values; you only need to enter values for the 
# projects that require the specific information. 
# If you run a project that requires a value that you did not supply, an exception 
# will be thrown and this file will open automatically in Notepad so that you can 
# add the missing value. After adding the value, you must re-run the 
# project so that it picks-up the new value. 
 
ManagementSubscriptionId= 
ManagementCertificateThumbprint= 
 
# http://msdn.microsoft.com/en-us/library/windowsazure/gg432983.aspx 



 Introduction xxi

StorageAccountName=devstoreaccount1 
StorageAccountKey= 
Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tqeksoGMGw==

The unzipped contents will contain a Visual Studio 2012 solution file named Dev-
CloudAppsWindowsAzureStorage.sln and a project folder. Load the DevCloudApps-
WindowsAzureStorage.sln solution into Visual Studio 2012, and go to the Storage-
Patterns.cs. file located in the Wintellect.DevCloudAppsAzureStorage project folder. 
All examples shown in this book are located in this file. The Main() routine in the 
following code calls five categories of examples: the code examples beginning with 
AzureManagement are for Chapter 3, “Windows Azure data storage”; BlobPatterns are 
for Chapter 5, “Blobs”; TablePatterns are for Chapter 6, “Tables”; QueuePatterns are for 
Chapter 7, “Queues”; and AnalyticPatterns are for Chapter 8, “Analytics, logging, and 
transaction metrics.” 

public static class AzureBookStoragePatterns { 
   private static readonly Boolean c_SpawnStorageKiller = false; 
   private static CloudStorageAccount m_account = null; 
   private static CloudStorageAccount Account { 
      [DebuggerStepThrough] 
      get { 
         if (m_account != null) return m_account; 
         // Chose the default account to execute these demos against: 
         m_account = 
       //GetStorageAccount(FiddlerPrompt(StorageAccountType.DevStorage, true)); 
       //GetStorageAccount(FiddlerPrompt(StorageAccountType.DevStorageWithFiddler, 
true)); 
       GetStorageAccount(FiddlerPrompt(StorageAccountType.AzureStorage, true)); 
         return m_account; 
      } 
   } 
 
   private const String c_tableName = "Demo"; 
 
   static string s_storageAccountLabel1 = 
       
"StagingAAAStagingAAAStagingAAAStagingAAAStagingAAAStagingAAAStagingZZZABCDE"; 
   static string s_storageAccountDesc1 = "Wintellect Demo Staging"; 
   static string s_storageAccountLocation1 = "West US"; 
 
   static string s_storageAccountName1 = "contosocohovinyard"; 
   static string s_storageAccountName2 = "contosotailspintoys"; 
 
   static string s_subscriptionId = AzureSecrets.ManagementSubscriptionId; 
   static string s_certThumbprint = AzureSecrets.ManagementCertificateThumbprint; 
   static string s_MsVersion = "2011-06-01"; 
 
   public static void Main() { 
      Management.Rest(); 



xxii Introduction

      StorageAccountsEndpoints(); 
 
      AzureManagement.CreateAccount(s_storageAccountName1, s_storageAccountLabel1, 
           s_storageAccountDesc1, null, s_storageAccountLocation1); 
      AzureManagement.GetAccountProperties(s_storageAccountName1); 
      AzureManagement.GetAccountKeys(s_storageAccountName1); 
      AzureManagement.RegenerateAccountKeys(s_storageAccountName1, "Primary"); 
      AzureManagement.UpdateAccount(s_storageAccountName1, Convert.ToBase64String( 
           Encoding.UTF8.GetBytes(s_storageAccountName2)), "Label Changed"); 
      AzureManagement.GetAccountProperties(s_storageAccountName1); 
      AzureManagement.DeleteAccount(s_storageAccountName1); 
 
      BlobPatterns.Basics(Account); 
      BlobPatterns.RootContainer(Account); 
      BlobPatterns.Attributes(Account); 
      BlobPatterns.ConditionalOperations(Account); 
      BlobPatterns.SignedAccessSignatures(Account); 
      BlobPatterns.BlockBlobs(Account); 
      BlobPatterns.PageBlobs(Account); 
      BlobPatterns.Snapshots(Account); 
      BlobPatterns.Leases(Account); 
      BlobPatterns.DirectoryHierarchies(Account); 
      BlobPatterns.Segmented(Account); 
 
      TablePatterns.Basics(Account); 
      TablePatterns.OptimisticConcurrency(Account); 
      TablePatterns.LastUpdateWins(Account); 
      TablePatterns.QueryFilterStrings(Account); 
      TablePatterns.Segmented(Account); 
      TablePatterns.MultipleKinds(Account); 
 
      QueuePatterns.Basics(Account); 
      QueuePatterns.Segmented(Account); 
 
      AnalyticPatterns.AnalyticsLogs(Account); 
      AnalyticPatterns.AnalyticsBlobMetrics(Account); 
      AnalyticPatterns.AnalyticsCapacityBlob(Account); 
 
 
      Console.WriteLine("===== finished ====="); 
      Console.ReadLine(); 
   } 
 
   [DebuggerStepThrough] 
   private static StorageAccountType FiddlerPrompt(StorageAccountType accountType, 
       Boolean prompt = true) { 
      const MessageBoxOptions MB_TOPMOST = (MessageBoxOptions)0x00040000; 
      if (prompt && (accountType == StorageAccountType.DevStorage)) { 
         if (MessageBox.Show( 
          "Drag Fiddler's Process Filter cursor on this window.\n" + 
          "Are you using Fiddler?", 
          "Wintellect's Windows Azure Data Storage Demo", 



 Introduction xxiii

          MessageBoxButtons.YesNo, MessageBoxIcon.Information, 
          MessageBoxDefaultButton.Button1, MB_TOPMOST) == DialogResult.Yes) 
            accountType = StorageAccountType.DevStorageWithFiddler; 
      } 
      return accountType; 
   } 
 
   public enum StorageAccountType { 
      AzureStorage, 
      DevStorage, 
      DevStorageWithFiddler 
   } 
 
   [DebuggerStepThrough] 
   private static CloudStorageAccount GetStorageAccount(StorageAccountType 
accountType) { 
       switch (accountType) { 
           default: 
           case StorageAccountType.DevStorage: 
               return CloudStorageAccount.DevelopmentStorageAccount; 
           case StorageAccountType.DevStorageWithFiddler: 
               return CloudStorageAccount.Parse( 
    "UseDevelopmentStorage=true;DevelopmentStorageProxyUri=http://ipv4.fiddler"); 
           case StorageAccountType.AzureStorage: 
               String accountName = AzureSecrets.StorageAccountName; 
               String accountKey = AzureSecrets.StorageAccountKey; 
               return new CloudStorageAccount(new StorageCredentials(accountName, 
                    accountKey), false); 
       } 
   } 
 
   private static void StorageAccountsEndpoints() { 
       Console.Clear(); 
 
       Console.WriteLine("Azure storage endpoints:"); 
       String accountName = AzureSecrets.StorageAccountName; 
       String accountKey = AzureSecrets.StorageAccountKey; 
       CloudStorageAccount account = new CloudStorageAccount( 
            new StorageCredentials(accountName, accountKey), true); 
       Console.WriteLine("   BlobEndpoint:  " + account.BlobEndpoint); 
       Console.WriteLine("   TableEndpoint: " + account.TableEndpoint); 
       Console.WriteLine("   QueueEndpoint: " + account.QueueEndpoint); 
       Console.WriteLine(); 
 
       Console.WriteLine("Storage emulator endpoints:"); 
       account = CloudStorageAccount.DevelopmentStorageAccount; 
       Console.WriteLine("   BlobEndpoint:  " + account.BlobEndpoint); 
       Console.WriteLine("   TableEndpoint: " + account.TableEndpoint); 
       Console.WriteLine("   QueueEndpoint: " + account.QueueEndpoint); 
       Console.WriteLine(); 
   }



xxiv Introduction

To use the samples, set a breakpoint on the line AzureManagement CreateAccount 
method and run the sample with your debugger attached. When the debugger stops 
on the breakpoint, you can set the next line to execute by clicking Set Next Statement 
from the context menu (or the hotkey sequence Ctrl+Shift+F10) in Visual Studio to set 
the next statement to execute to the example you want to see, and then pressing F11 
to step into the code.

Acknowledgments

I’d like to thank Jeffrey Richter for the sample code included in this book, and the 
 Wintellect Windows Azure Power Library, which the code uses heavily. The code 
and the library are part of Wintellect’s training class materials for Windows Azure. 
Jeffrey also reviewed several chapters and provided a lot of useful suggestions.

I’d also like to thank Victoria Thulman for her editorial review and suggestions, and 
Marc Young for his technical review. I could not have completed this endeavor without 
their care and dedication to this project. Scott Seely, Julie Lerman, and Sharyn Mehner 
also reviewed various chapters, and I would like to thank them as well.

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on 
our Microsoft Press site:

http://aka.ms/DevCloudApps/errata

If you find an error that is not already listed, you can report it to us through the 
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the 
preceding addresses.

http://aka.ms/DevCloudApps/errata
http://aka.ms/DevCloudApps/errata
mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com


 Introduction xxv

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most 
valuable asset. Please tell us what you think of this book at: 

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in 
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress


  13

C H A P T E R  2

Windows Azure data storage 
overview

In this chapter:
Feature-rich data storage for almost any application . . . . . . . . . 13
Data storage abstractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Windows Azure data centers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Storage topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Failure management and durability . . . . . . . . . . . . . . . . . . . . . . . . . 19
Fault and upgrade domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Replication, geo-replication, and reliability . . . . . . . . . . . . . . . . . . 22
Dynamic scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
RESTful APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Software development kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Analytics and metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

The objective of this chapter is to provide you with an infrastructural understanding of Windows 
Azure data storage to facilitate strategic and architectural decisions regarding its use in your applica-
tions. A primary byproduct of achieving this objective is establishment of the versatility of Windows 
Azure storage for use as an autonomous data management service independent of your application’s 
platform or your deployment choices.

Feature-rich data storage for almost any application

Windows Azure storage provides independent data management services to your application, that 
is, data storage for any application, on any platform capable of making an HTTP request, written in 
any programming language, and deployed to the cloud or hosted in your own data center. Windows 
Azure storage provides a rich set of features that your applications can take advantage of to achieve 
operating characteristics that might otherwise be unobtainable because these characteristics were 
too complex, cumbersome, time-consuming, or expensive to implement. Not every application will 
require this set of features offered by the data management service; however, most will benefit from 
at least a few of them. It’s hard to imagine an application that would not benefit from improved data 
reliability.



14 PART I Architecture and use

Before exploring what Windows Azure storage is, it is useful to clearly identify what it is not. 
Windows Azure storage is not a relational database. Relational databases eliminate (or significantly 
reduce) redundant data through a process called normalization. A single entity is stored in the 
database one time, where it is indexed by a unique identifier (called a primary key), which is used to 
make reference to that single entity wherever duplication of that information would occur in other 
entities. This is a powerful feature because data needs to be updated in only one place. Data stored 
in relational databases is also strongly typed and constrained to ensure that only strictly conformant 
data can be inserted into entities, reducing the collection of bogus data and the numerous bugs 
encountered when processing unanticipated data. If you need the features of a relational database, 
you likely need Windows Azure SQL Database. In Chapter 6, “Tables,” you tackle the problem of how 
to structure your data for transactional storage in Windows Azure table storage. If you’re a developer 
who has worked with Microsoft SQL Server (or other relational databases) most of your career, it’s 
enough to simply state that Windows Azure table storage is significantly different from what you’re 
likely familiar with.

The following list describes a few of the high-level Windows Azure storage features that your 
 application might use and that you delve into in this chapter:

■■ Independence and interoperability Windows Azure storage is a service designed to be 
used independent of the applications that might utilize it. Because access to data manage-
ment services is done with a simple REST API, Windows Azure storage can be used indepen-
dent of your application’s platform, programming language, or deployment model.

■■ Geo-location An application might use the geo-location feature of Windows Azure stor-
age to store and retrieve data local to where it is being most used. Sometimes there are legal 
requirements for data storage as well. For example, some types of data must be stored in data 
centers that are physically located in a particular country.

■■ Replication Windows Azure storage maintains three replicas of your data at all times, provid-
ing a high degree of confidence in the safety of your data. Replication also improves the scal-
ability of reading data, because data being read can be served from all replicas simultaneously.

■■ Geo-replication Windows Azure data is replicated from the data center that you select as 
your primary data to a secondary data center within the same geographical region but hun-
dreds of miles away, further increasing your confidence in the safety of your data in the event 
of data center disaster.

■■ The illusion of infinite storage A sudden increase in storage capacity for your application or 
service can be accommodated without costly infrastructural changes to your own data center. 
Data storage capacity is allocated on demand in units of logical servers called storage nodes.

■■ Automatic and on-demand scalability A sudden increase in demand for your data will be 
automatically accommodated by Windows Azure storage without costly infrastructural changes 
to your own data center. The scalability capabilities of Windows Azure are truly astounding. 
Windows Azure will dedicate an entire storage node to a single partition of data if that’s what 
is required to meet Microsoft’s scalability objectives, which are introduced later in this chapter.



 CHAPTER 2 Windows Azure data storage overview  15

■■ Data consistency Windows Azure storage maintains a fully consistent data model. When a 
write operation completes, all subsequent read operations will return the updated value. This 
is different from other eventually consistent data models such as Amazon’s S3, where data is 
eventually consistent. In the eventually consistent model, read operations that happen after a 
write operation may or may not return the updated value. All read operations will eventually 
return the updated value.

■■ ISO 27001 certification Windows Azure storage received ISO 27001 certification, which 
may be useful in helping your own application meet certification requirements for sensitive 
data. The Windows Azure core services of Cloud Services, data management services, Virtual 
Network, and Virtual Machines are all covered by this certification, which was conducted in 
2011 by BSI Americas. A copy of this certification can be found online at the following URL:

http://www.bsigroup.com/en/Assessment-and-certification-services/Client-directory 
/CertificateClient-Directory-Search-Results/?searchkey=companyXeqXmicrosoft

■■ Pay as you go and pay only for what you need No upfront expenditures to purchase 
equipment, space, and bandwidth are necessary to meet peak demand in your data center. 
You pay as you go and only for what you consume today. As your storage capacity and scal-
ability needs change, so does your bill. This helps to keep your fixed costs in alignment with 
your revenues.

That’s a very compelling list of features. The following sections explore what you need to know to 
use and have confidence in these capabilities.

Data storage abstractions

To provide context for some of the features of Windows Azure storage, you must first have an un-
derstanding of the types and characteristics of the data you will be storing. Windows Azure storage 
provides three major storage types. In Chapter 5, “Blobs,” Chapter 6, and Chapter 7, “Queues,” you 
will delve into these three types and learn when to use each one as well as the value that each brings 
to your applications. For the purposes of this chapter, a short and high-level description of the three 
major data storage types is adequate.

The abstractions of Windows Azure storage are considered forms of NoSQL data storage. The 
characteristics of NoSQL are that the database does not use the Structured Query Language (SQL), 
and the ACID-style transaction guarantees (ACID stands for atomicity, consistency, isolation, and 
durability) are either not supported or are supported only in a limited way. They may employ 
techniques such as eventual consistency, which is the notion that the data will eventually arrive at a 
con sistent state across all storage nodes, but that brief periods of data inconsistency are anticipated 
and tolerable. NoSQL database management systems are useful when working with extremely 
large data stores because they improve performance and high availability of data. The emphasis in 
NoSQL database systems is on the ability to store and retrieve large quantities of data quickly rather 
than on the relationships between elements of data.



16 PART I Architecture and use

Blobs
The Windows Azure Blob service provides a simple RESTful API for storing and retrieving unstructured 
data (for example, documents, pictures, videos, and music), including a small amount of metadata 
about the contents. Blobs are organized into containers (which are very similar to directories), and you 
can store several hundred gigabytes (GB) in a single blob. Blobs and blob containers are accessible as 
unique URLs, and they can be created, read, updated, and deleted using simple HTTP verbs against 
their URLs. Blob containers may be set to allow public accessibility, allowing anonymous read-only 
access to the blob’s contents. Blobs are ideal for the storage of web content. The primary purpose of 
publicly accessible read-only containers is to allow direct consumption of such content by unauthen-
ticated web browsers. This is a convenient way of augmenting your on-premise web servers with 
content delivered from Windows Azure storage. This not only saves you the cost of making additional 
upfront capital investments, but it also allows you some flexibility in not having to purchase server 
and network capacity for planned peaks in advance of demand. In the real world, the demand may 
never materialize; or potentially even worse, the demand might materialize but your resources are 
inadequate to meet the demand and you miss opportunities. You’ll learn more about the Blob service 
in Chapter 5.

Tables
The Windows Azure Table service provides a simple RESTful API for storing massive amounts of semi-
structured data. Windows Azure tables are not at all like relational database tables, and you should 
avoid making such a correlation. Rows, which are called entities, consist of properties, which are like 
columns.

Different rows stored in the same table can often have different sets of properties. You can per-
form queries on individual tables just as you might do with a relational database, but queries cannot 
span tables. Of course, relationships are what a relational database is all about, and queries that span 
multiple tables are the bread and butter of what relational databases do, and how normalized data 
becomes denormalized for consumption by your applications and reports. You should therefore avoid 
making any kind of direct correlation between relational database tables and Windows Azure tables. 
You’ll learn more about the Table service in Chapter 6.

Queues
Unlike blobs and tables, queues do not provide permanent storage of the messages they handle. In 
fact, messages are quietly deleted from queues if they are not processed within seven days. Windows 
Azure queues are a means of transmitting messages between different server roles and instances 
when your application runs on Windows Azure Cloud services. Like all of Windows Azure storage, 
queues are exposed through a RESTful API that could potentially be used by on-premise and non-
Microsoft platforms. The queued message data management service provides durable fire-and-forget 
message storage and reliable delivery to your applications. You’ll learn more about the Windows 
Azure Queue service in Chapter 7.



 CHAPTER 2 Windows Azure data storage overview  17

Windows Azure data centers

Windows Azure data centers are located in three major geographic regions: the United States, 
Europe, and Asia. Each geographic region is further subdivided into subregions. As depicted in the 
world map in Figure 2-1, the United States is divided into South Central, North Central, East, and 
West. Europe is divided into North and West, and Asia is divided into Southeast and East. You select 
the primary subregion where you want to store your data.

FIGURE 2-1 This world map shows where Windows Azure data centers are located.

Inside each data center are shipping containers packed full of servers with appropriate cooling and 
electrical supplies. You can take an interesting tour of one of the Microsoft data centers by visiting the 
following YouTube link, which was created by the Microsoft Cloud Infrastructure Team (MSGFST):

http://www.youtube.com/watch?v=hOxA1l1pQIw

You can then continue the tour to facilitate a more detailed view of the assembly of the individual 
shipping containers that house the servers by going to this MSGFST-prepared YouTube link:

http://www.youtube.com/watch?v=nIliMskAHro

Your data in one data center will be replicated again to another data center within the same geo-
graphical region. For example, if your data is stored in the North Central US data center, that data will 
be replicated to the South Central US data center. Having three replicas of your data stored in two 
distinct data centers means that there will be at least six copies of your data, making the specter of 
cataclysmic data loss because of a natural disaster extremely unlikely.



18 PART I Architecture and use

Microsoft publishes a dashboard (shown in Figure 2-2) to allow convenient monitoring of the 
health of the data centers worldwide at the following URL:

http://www.windowsazure.com/en-us/support/service-dashboard/

FIGURE 2-2 Windows Azure Service dashboards enable monitoring of data management service health.

Each Windows Azure service has a convenient RSS feed for each geographical subregion. This al-
lows you an opportunity to provide custom notification implementations or create automated adjust-
ments to your application based on the health of any particular part of Windows Azure.

Storage topology

As depicted in Figure 2-3, the Windows Azure storage architecture consists of a front-end Virtual IP 
and three basic layers: a front-end (FE) layer, a partition layer, and a Distributed File System (DFS) layer. 
In this chapter, you’re going to drill down into these three layers to gain a clear understanding of and 
confidence in exactly how this architecture is used. Doing so will help you achieve the 99.9 percent 
level of reliability in your applications that Microsoft guarantees in its Service Level Agreement (SLA).

Virtual IP

Front-end server Front-end server

Distributed file system

Partition
server

Partition
server

Partition
server

Partition
server

Partition
server

Partition master

Front-end server

FIGURE 2-3 Windows Azure storage architecture consists of a front-end Virtual IP and three basic layers.



 CHAPTER 2 Windows Azure data storage overview  19

The following list describes the Windows Azure architecture:

■■ Virtual IP Requests for data storage operations enter through a Virtual IP (VIP) address, 
where they are routed to an available server in the front-end layer. The VIP balances the load 
of incoming requests by evenly distributing these requests to the front-end servers.

■■ Front-end layer The front-end (FE) layer accepts incoming requests and routes them to an 
appropriate partition server in the partition layer based on a partition map. It maintains this 
map to keep track of which servers are servicing which partitions.

■■ Partition layer The partition layer manages the partitioning of blob, table, and queue data. 
A data object belongs to a single partition identified by a partition key, and each partition is 
served by only one partition server. The partition layer manages what partition is served on 
what partition server and provides automatic load balancing of partitions across servers to 
meet the traffic requirements. A single partition server can serve the data for many partitions 
at one time.

■■ Distributed File System layer The DFS layer stores the data on disk and distributes and 
replicates the data across many servers. Data is stored by the DFS layer, but all data stored in 
servers managed by the DFS layer are accessible from any of the partition servers in the parti-
tion layer.

The DFS layer provides Windows Azure storage with redundant durability because all data is 
replicated multiple times. The DFS layer spreads your data out over potentially hundreds of 
storage nodes. All of the replicas of your data are accessible from all the partition servers as 
well as from other DFS servers.

Failure management and durability

Hardware failure management and recovery is handled by the storage system according to the layer 
it occurs on. The following sections describe how failures are mitigated at each of the three layers.

Front-end layer failure mitigation
The load balancer monitors the responsiveness of each of the front-end servers. If one of the servers 
becomes unresponsive, the load balancer removes it from the available server pool so that incoming 
requests are no longer dispatched to it. This ensures that requests arriving at the VIP get sent only to 
healthy front-end servers.

Partition layer failure mitigation
If one of the partition servers is unavailable, the storage system immediately reassigns any partitions 
it was serving to other available partition servers and updates the front-end server partition maps to 
reflect this change. This allows the front-end servers to continue to correctly locate the partitioned 



20 PART I Architecture and use

data. When this reassignment is made, no data is moved on disk because all of the partition data is 
stored in the DFS layer and is accessible from any partition server. The storage system ensures that 
data partitions are always available to be served.

Distributed File System layer failure mitigation
If the storage system determines that one of the DFS servers is unavailable, the partition layer will 
direct the request instead to one of the other available DFS servers containing replicas of the data. 
The partition layer will resume usage of the DFS server when it is available again, but if a DFS server 
remains unavailable too long, the storage system generates an additional replica of the data to ensure 
an adequate number of durable replicas are maintained.

Data is stored in the DFS in basic units of storage called extents, which range in size from 100 MB 
to 1 GB in size. Each extent is spread randomly and replicated multiple times over multiple DFS serv-
ers. Data in a blob, entities in a table, or messages in a queue are all stored in one or more of these 
extents. A 10-GB blob may be stored across 10 1-GB extents, with three replicas for each extent, 
which potentially means that storage of this single blob is spread out over 30 DFS servers. The spread-
ing and duplication of the data over multiple extents is what gives the DFS such resiliency against 
failure, and its inherent parallelism significantly increases the number of I/O operations that can be 
performed.

Each extent has a primary server and multiple DFS secondary servers. All writes to the extent are 
routed through the extent’s primary DFS server. The writes are then forwarded to the secondary serv-
ers and success is returned back from the primary DFS server to the requestor once the data has been 
written to at least three DFS servers. If one of the DFS servers is unreachable, the DFS layer will select 
different DFS servers to write to until the data for the extent has been written at least three times. 
Once the third write has occurred, success is returned from the primary DFS server to the requestor. 
The other replicas will be updated asynchronously resulting in them being eventually consistent. When 
a subsequent read occurs on the same extent, the DFS layer will serve that data from any up-to-date 
extent replica.

To ensure high availability, no two replicas for an extent are ever placed on the same fault domain 
or upgrade domain (defined in the next section). If one fault domain goes down, or when an upgrade 
is occurring, there will always be healthy replicas from which the data can be accessed from. The data 
storage system automatically keeps the number of available replicas at a healthy level by replacing 
unavailable extent replicas. It does this by re-replicating to healthy servers when necessary.

Dynamic replication reduces the mean-time-to-recovery of healthy data extents when failures 
occur. If a DFS server fails for any reason, all extents that had a replica on that server are re-replicated 
to another server as quickly as possible; thus, a healthy number of replicas of every extent are always 
available. While re-replication is taking place, the other healthy replicas are used to service data re-
quests and are used as data sources for re-replication. Because the extents are distributed randomly, 
network availability is also spread out to prevent hotspots.



 CHAPTER 2 Windows Azure data storage overview  21

The DFS layer also provides detection and repair of random errors (so-called bit-rot). It does this by 
computing and storing a checksum with the extent data. When data is read, this checksum is recom-
puted and verified against the stored checksum. In the rare event that the checksums do not match 
(indicating bit rot has occurred), the DFS discards the replica and re-replicates to another DFS server 
to bring the extent back to a healthy level of replication.

Fault and upgrade domains

As mentioned earlier in the chapter, the Microsoft Service Level Agreement guarantees that Windows 
Azure storage will successfully process add, update, read, and delete requests 99.9 percent of the 
time. Imagine the planning and expense necessary to achieve this level of reliability for your applica-
tion within your own data center. To achieve your 99.9 percent objective, you would need to keep 
your downtime for all hardware, network access, electricity, HVAC, and software to fewer than nine 
hours per year! That’s a pretty daunting task when you consider that even a single hardware failure, 
network outage, or software defect could exceed your entire SLA for the year. Achieving a 99.9 per-
cent level of reliability for your application would require considerable investment in infrastructural 
software and redundant hardware, and so is yet another compelling argument for how cloud com-
puting benefits your application.

To achieve the level of reliability promised in its SLA, Microsoft configures their hardware and soft-
ware assets into two arrangements called fault domains and upgrade domains. These configurations 
boost the reliability to the promised level in ways that you will learn about in more detail later in this 
chapter, but first you need to learn exactly what these configurations are.

Fault domains
The term fault domain describes a unit of hardware components that share a single point of failure. 
One technique for maintaining high availability of your data during hardware failures is to spread 
your data out across multiple fault domains, thereby limiting the impact of a single hardware com-
ponent failure. Windows Azure applies fault domain strategies to three layers of hardware in each 
data center: the server rack, the network switch, and the power supply. The Windows Azure SLA 
guarantees that at least two fault domains will be utilized at all three of these layers, meaning that if 
one rack, network switch, or power supply fails, at least one of these components will still be operat-
ing. The data stored on each storage node is replicated onto two other storage nodes across two or 
more fault domains at all hardware layers.

Upgrade domains
Upgrade domains represent another form of potential outage because storage nodes may not 
be available during application upgrades or operating system patches. To minimize the impact of 
upgrades, servers for each of the three layers (for example, the front-end layer, partition layer, and 
DFS layer) are spread evenly across upgrade domains in a similar fashion to the way data is spread 



22 PART I Architecture and use

over fault domains. Upgrades are performed through a rolling upgrade process, where only a small 
percentage of available servers are taken offline for upgrades to the data management service. Once 
upgraded, storage nodes are brought back up and then checked for health before being rolled back 
online.

Replication, geo-replication, and reliability

There are three replicas within the same data center in three separate racks, giving you robust resil-
ience against hardware failures within a single data center. To add an even higher margin of safety 
against data loss, your data in your primary data center is replicated to another data center within the 
same geographical location. This provides you with one original and five current backups of your data 
in six separate server racks located in two separate geographical locations.

At the time of this writing, the geo-location displayed in the Windows Azure Management Por-
tal, which you will see more of in the next chapter, is your primary geo-location. According to the 
September 15, 2011, post on the Windows Azure Storage Team Blog (http://blogs.msdn.com/b 
/windowsazurestorage), the secondary location will eventually be shown in a future version of the 
Management Portal (described a bit later in this book).

Geo-replication is included at no additional charge and is on by default. You can turn the feature 
on or off from the storage account’s configuration pane of the Windows Azure portal. There is no 
cost savings in turning off the geo-replication. Replication to your secondary data center is handled 
asynchronously so that there is no load or performance impact on your applications.

When you perform data-modifying updates or deletes on your data, these changes are fully repli-
cated on three separate and distinct storage nodes across three fault domains and upgrade domains 
within that data center.

After the transaction has been committed, a successful status is returned to the caller and the 
changes are asynchronously replicated to the secondary data center. The transaction is made durable 
in that data center by replicating itself across three storage nodes in different fault and upgrade do-
mains. Because the updates are asynchronously geo-replicated, there is no impact on performance.

Microsoft’s goal is to keep the data durable at both the primary and secondary locations. They 
accomplish this goal by keeping enough replicas in both locations to ensure that each location is ca-
pable of recovering itself from common failures such as a hard drive failure, storage node failure, rack 
failure, Top of the Rack (TOR) switch failure, and so on, without having to talk to the other location. 
The two locations talk to each other only to recover data in the event of common failures. If you had 
to failover to a secondary storage account then all the data that had been committed to the second-
ary location would already be there.

At the time of this writing, there was no SLA for how long it takes to asynchronously geo-replicate 
the data, but transactions are typically geo-replicated within a matter of a few minutes after the pri-
mary location has been updated.



 CHAPTER 2 Windows Azure data storage overview  23

Dynamic scalability

A significant factor to Microsoft in meeting the SLA obligations for data storage is scalability. The data 
service must scale so that 99.9 percent of the data operations can be executed successfully. In addi-
tion, Microsoft has established scalability targets per storage accounts. At the time of this writing, the 
following targets are in place:

■■ Capacity Up to 100 terabytes

■■ Transactions Up to 5,000 entities, messages, or blobs per second

■■ Bandwidth Up to 3 GB per second

At the time of this writing, all objects stored in Windows Azure storage have a partition key, which 
the data management service uses in allocating resources. One or more storage nodes will be allo-
cated to your data dynamically. The partition key is your way of indicating your preferences for how 
this allocation is performed. A single partition key can have an entire storage node devoted to it if 
the data management service determines that is what is necessary to meet these scalability targets.

Every storage object (blobs, table entities, and queue messages) has a partition key that is used to 
locate the object in the data management service. The partition key is also used to load balance and 
dynamically partition the objects across storage nodes to meet storage request traffic in accordance 
with the scalability objectives. The partition keys used by storage type are given in Table 2-1.

TABLE 2-1 Storage types and partition keys

Storage type Full partition key

Blobs Container name + blob name

Table entities Table name + partition key

Queue messages Queue name

As you might infer from the differences in full partition keys shown in Table 2-1, the scalability 
characteristic of the three data storage types is significantly different. Blobs use the name of the blob 
within a container, but the partition level for queues is at the queue name level (not at the individual 
message level). Table entities are special in the sense that the data for the partition key is part of the 
data being stored, where blobs and queues are at the level of name (regardless of the data contained 
in the blob or message).

A blob always lives in one partition; two blobs could be on separate partitions. A queue also lives 
on one partition; two queues may live on separate partitions. A set of entities from a table could 
live on one partition; different sets from the same table could be on different partitions. Of course, 
different tables could be on separate partitions.



24 PART I Architecture and use

RESTful APIs

The data management services are exposed through an open and RESTful API, which can be used 
from any platform (including many non-Microsoft platforms). The RESTful API is covered through-
out the book. These APIs are accessible from anywhere on the public Internet, allowing you to use 
the data management services from any kind of application, even applications not written using 
Microsoft technologies. Your applications might be running on-premises but storing and retrieving 
data from Windows Azure storage in order to take advantage of its multiple geographical locations, 
reliability, redundancy, and dynamic scalability characteristics. You might even have your application 
deployed to a competitive cloud platform but use Windows Azure storage instead of the competitor’s 
equivalent. The reasons for hybrid configurations are abundant, but certainly the features offered 
by storage platforms such as performance, location, reliability, and their pricing structure are almost 
always going to be factors.

Software development kits

The RESTful API of Windows Azure storage requires the use of HTTP verbs against the Windows Azure 
storage endpoints. This includes repetitively populating the required HTTP headers and providing se-
curity credentials. Of course, this pattern quickly emerges to any application developer making use of 
data management services. Most application developers tend to work at a higher layer of abstraction 
than the HTTP transport layer by using object oriented programming paradigms. To formalize these 
patterns, Microsoft has provided several client library software development kits (SDKs) for Microsoft 
.NET languages, Node.js, Java, and PHP. There is also an oddly named “other” SDK which contains the 
storage and compute emulators as well as package and deployment tools for developers running on 
a Windows machine.

Storage library ports are available on other platforms as well, including Python, Ruby, Perl, and 
JavaScript. Steve Marx published a blog on many of these libraries that you can find at this URL:

http://blog.smarx.com/posts/windows-azure-storage-libraries-in-many-languages

There is also source code available on the Windows Azure site, which might prove useful in devel-
oping ports to other platforms:

https://www.windowsazure.com/en-us/develop/downloads/

In the chapters that follow, you will see many transcripts of HTTP traffic that were gathered using 
a diagnostic tool called Fiddler. Fiddler is a free tool for inspecting, diagnosing, and replaying HTTP 
web traffic. It is installed as an HTTP proxy that runs on port 8888 of your development workstation. 
WinINET-based applications such as Windows Internet Explorer will automatically use Fiddler as an 
HTTP Proxy when the Capture Traffic check box is selected on Fiddler’s File menu. You can debug 
the traffic of any application that is capable of being configured to use an HTTP Proxy. It is highly 
recommended that you download and install a copy of Fiddler on your own development machine, 
because this tool will likely save you hours of diagnostic time by allowing you to directly monitor 



 CHAPTER 2 Windows Azure data storage overview  25

and debug your own application’s requests against the Windows Azure data management service. 
You can read more about Fiddler and download a free copy from http://www.fiddler2.com.

Pricing

In the world of cloud computing and storage, it is impossible to not take pricing into account when 
making architectural decisions. Unfortunately, specific prices for Windows Azure are under constant 
review and adjustment based on a wide variety of factors. Variable prices that can change rapidly are 
a result of the commodification of computing and storage resources. The latest pricing information is 
available online at:

http://www.microsoft.com/windowsazure/pricing/

Although subject to change, at the time of publication, the following statements were true:

■■ Data storage utilized (including metadata) is 12.5 cents per gigabyte per month.

■■ Data transfer into a data center is free, but outbound data egress is billable at 12.5 cents per 
gigabyte per month. Transfer within the same subregion is free.

■■ Transactions are billable based on the number of I/O transactions completed at 1 cent per 
10,000 per month.

If you are using a client library to assist you with development, you should be aware that some cli-
ent library methods make multiple I/O requests to the data center to complete a single logical call.

Analytics and metrics

Windows Azure Storage Analytics provides metrics and logging of your storage account activity. Logs 
provide tracing of requests, and metrics provide capacity and request statistics. This information can 
be very useful in analyzing usage trends and in diagnosing storage account issues. Logging and met-
rics are controlled independently of one another and target each type of storage: blobs, tables, and 
queues. You will be introduced to the specifics of each in Chapters 5, 6, and 7, respectively.

Conclusion

The purpose of this chapter was to acquaint you with the Windows Azure storage platform. In par-
ticular, the chapter familiarized you with the features of the platform, which add valuable data avail-
ability, reliability, and protection assurances to your applications, as well as the tools for gathering 
analysis and metrics.

Although Windows Azure is built on Windows servers, it should be apparent that this data manage-
ment service is sold piecemeal and may be used in any heterogeneous application that requires NoSQL 
type storage. In Chapter 4, “Accessing Windows Azure data storage,” you will explore the Windows 
Azure SDKs for leveraging Windows Azure storage from Microsoft and non-Microsoft platforms.



  71

C H A P T E R  5

Blobs

In this chapter:
Blob basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Blob containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Blob addressing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Business use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Blob storage structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Navigating blob container hierarchies . . . . . . . . . . . . . . . . . . . . . . 76
Storage Client library blob types . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Container and blob naming rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Performing create, read, update, and delete  
blob operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Shared Access Signatures and shared access policies . . . . . . . . . 88
Blob attributes and metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Conditional operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Blob leases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Using block blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Using page blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Blob snapshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Continuation tokens and blobs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

In this chapter, you learn about Windows Azure blob storage. First you examine the characteristics of 
this kind of data storage, including the kinds of real-world data and storage scenarios that lend them-
selves well to blob storage. You then learn about the organizational structure of this storage type, in-
cluding the naming conventions and other rules that must be followed. This chapter discusses how to 
perform common create, read, update, and delete (CRUD) operations on blobs and their containers. 
To deepen your understanding, you tackle the advanced and valuable but often overlooked features 
of blobs, such as metadata, snapshots, and granular security access, which allow CRUD operations to 
be performed only by authorized parties. Finally, you learn how to write applications for robustness 
and resiliency in the cloud.



72 PART II Blobs, tables, and queues

Blob basics

BLOB is an acronym for Binary Large Object, but the uppercase convention is generally ignored in 
favor of the more colloquial lowercase blob, which I use throughout the book. A blob holds arbitrarily 
structured data, which the blob has no knowledge of. To the blob, the data it contains is just a bunch 
of random bytes that may be read or written to either sequentially or in randomly accessed chunks 
(called blocks, or pages). Although the data contained in a blob may have a structure and may even 
adhere to a schema, the blob itself, as just mentioned, has no knowledge of what this structure might 
be. Blobs are often used to store documents such as Microsoft Word, Microsoft Excel, and XML docu-
ments; pictures; audio clips; videos; and backups of file systems. Files that might be stored on your 
computer’s hard drive, or content that you might publish on a website, can alternatively be stored in 
blob storage.

In addition to the data contained within a blob, a blob also stores its own name, a small amount of 
metadata—8 kilobytes (KB) at the time of this writing—and an MD5 hash that can be used to validate 
a blob’s integrity.

The cloud fabric manages the dynamic scaling of your data to meet demand. If a particular set of 
blobs are receiving a high volume of traffic, the cloud fabric will move those blobs to their own stor-
age node. In a more extreme circumstance, an individual blob could potentially be on its own storage 
node. An individual blob cannot float around on its own anywhere it pleases, however; it must be 
stored in a structure called a blob container, which you will learn about later in this chapter. Windows 
Azure storage provides two distinct types of blob: the block blob and the page blob. You’ll examine 
the block blob first.

Block blobs
Block blobs are useful in sequential access scenarios when storage and consumption of the data can 
begin at the first byte and end at the last. These blobs can be uploaded in equal-sized chunks re-
ferred to as blocks. This characteristic makes them well suited for applications requiring recovery from 
transmission failures, because transmission can be simply resumed from the last successfully transmit-
ted block. Blocks in a blob may also be uploaded in parallel to increase throughput. An individual 
block blob can be any size up to 200 gigabytes (GB). When on-demand access to arbitrary locations 
within a blob is required, a better option may be the page blob, which is covered next.

Page blobs
Page blobs are useful when storage and consumption of the data may occur in any order. When on-
demand access to arbitrary locations within a blob is required, the page blob is often the best option. 
An individual page blob can be any size up to 1 terabyte. Page blobs may also be sparsely populated, 
which is useful when implementing certain kinds of data structures and algorithms. Microsoft uses 
the sparsely populated page blob as the basis for drive storage, which is a virtual VHD—and for those 
paying careful attention, that would be a Virtually Virtual Hard Drive! Microsoft charges only for the 



 CHAPTER 5 Blobs  73

pages that are occupied, so if you had a 1-terabyte blob with only 2 GB of population, you would pay 
only for the 2 GB of actual storage space used. This cost does not include fees for egress out-of- 
data-center and transaction fees, which are not impacted by a page blob’s ability to be sparsely 
populated.

Blob containers

The structures used to store blobs are called blob containers. Blob containers provide a unit of organ-
ization and also of privacy sharing. By default, all blobs stored in a container share the same level of 
sharing, either private or public. Private containers require credentials to perform operations, whereas 
public containers allow anonymous read-only access to all blobs stored in the container. Creation, 
deletion, and update of the blobs stored in a container always require an authenticated request, 
 irrespective of the privacy settings you assigned to the container.

An individual blob container can hold anywhere from zero to an infinite number of individual 
blobs. There is a limit, of course, on the total amount of storage capacity available with your account 
(not to mention the likely constraints you have on the money available to pay for your storage), but 
the limit is placed on your storage capacity, not on the number of blobs that can be placed in a single 
blob container. Because the capacity restrictions on an account are so large, in most situations, this 
number is virtually limitless.

No limit is placed on the number of containers that you can have in a single Windows Azure stor-
age account, but just like individual blobs, the actual numerical limit is determined indirectly by the 
storage capacity of your Windows Azure storage account.

Blob containers allow access policies to be applied, which control access and operations performed 
against the individual blobs that the containers encapsulate. You’ll learn more about access policies 
later in this chapter.

Blob addressing

Blob resources are located in data storage via URLs that match this pattern: http://<account>.blob.
core.windows.net/<container>/<blobname>. The <account> placeholder is the Windows Azure ac-
count name, <container> is the blob’s container name, and <blobname> is the name of the blob (for 
example, http://wintellect.blob.core.windows.net/pictures/Employee.jpg).

When using the local development storage emulator, the URL pattern is slightly different. The 
hostname becomes the IP address of the loopback adapter (that is, 127.0.0.1), to which the port 
number 10000 and the hardcoded literal account name devstorageaccount1 are appended to form 
the complete base address, as depicted in the Storage Emulator window shown in Figure 5-1. The 
container name and blob name are appended to this base address to form the full URL of a resource 
(for example, http://127.0.0.1:10000/devstorageaccount1/pictures/Employee.jpg).



74 PART II Blobs, tables, and queues

FIGURE 5-1 The IP address is shown in the Windows Azure Storage Emulator window.

Business use cases

Much of the nontextual content displayed by web browsers is blob data. This kind of content tends 
to be significantly larger in size than the markup that references it, making it more demanding on 
servers and networks to deliver. Images, documents, audio, and video files are all good examples of 
this kind of bulky data. Because of size or demand (or both), some of this data will inevitably require 
greater server and network capacity to deliver, and this creates challenges for redistributing the data 
to meet demand.

Of course, blob data is not generally sent to the browser with the HTML markup of a website ap-
plication; instead, URLs to the resources are embedded in the HTML tags that the browser receives 
and then uses to retrieve the referenced resources and render them locally on the user’s machine. 
Because each resource is referenced by a URL, it makes no difference to the client’s browser whether 
the resource is located on the same server that the HTML was retrieved from, or in another location in 
an entirely different domain. It is therefore quite easy to take advantage of the massive and dynamic 
scalability of Windows Azure blob storage to supplement on-premise and cloud-deployed applica-
tions by storing this content there. The same thing is true for other kinds of free-standing content 
accessed by a URL, such as Word, Excel, and PDF documents.

Blob storage structure

Figure 5-2 shows the hierarchical relationships between storage accounts, blob containers, blobs, and 
pages. A Windows Azure storage account encapsulates zero or more blob containers, and each blob 
container can in turn encapsulate a set of zero or more blobs. The final column of Figure 5-2 shows 
the encapsulation of the individual blocks or pages of a blob.



 CHAPTER 5 Blobs  75

Account Containers

$root

Blobs

Employee.jpg

Building.jpg

Foo.docx

Policy.xml

Blocks/
(Pages)

Block1/
(page1)

Block2/
(page2)

Block3/
(page3)

wintellect

documents

pictures

Bar.pptx

FIGURE 5-2 The blob storage structure is a hierarchical relationship between storage accounts, blob containers, 
blobs, and pages.

A storage account can be visualized as being similar to the root directory of your computer’s hard 
drive, where the blob containers are like directory folders. Individual blobs can be thought of like 
files placed in a directory. Furthering this analogy, blobs are frequently named with common suffixes 
matching their content type ( just as files are named with extensions that reflect their types, such as 
the .jpg or .png file extensions for image files, and the .docx extension for a Word file). Unlike the 
directory structure on your computer’s hard drive, which can contain nested subfolders, blob contain-
ers cannot contain subcontainers. The way that subfolder-like behavior can be simulated is discussed 
a little later in this chapter.

For security and architectural reasons, there may be requirements for a blob to be physically lo-
cated in the base address of a URL. For example, a cross-domain policy file is an XML document that 
adheres to a specification published by Adobe. This kind of file is used to grant web clients such as 
Microsoft Silverlight, Adobe Flash Player, and Adobe Reader permission to handle data across multiple 
domain boundaries. When a client running from one domain makes a request for a resource located 
in a secondary domain, the secondary domain must have a cross-domain policy file granting access 
to the requested resources in order for the web client to continue with the request. The specification 
requires that the file be named policy.xml and that it be located in the root directory of the secondary 
domain.

Because blobs must be stored in a blob container, a special hidden blob container named $root 
was created. The $root container is aliased to the base address of the domain. Any blob placed in the 
$root container will be accessible both by its physical URL (including its $root container name) and by 
its alias URL off the base address of the domain. The following two URLs are equivalent:

http://www.wintellect.com/$root/Policy.xml 
http://www.wintellect.com/Policy.xml



76 PART II Blobs, tables, and queues

Navigating blob container hierarchies

As suggested earlier, a rough analogy of blob storage is your file system. Actually, when developing 
your cloud-deployable software, your file system may be used in some circumstances as an adequate 
on-premise substitute for blob storage (without a few of the advanced features such as snapshots and 
shared access signatures). You may even consider implementing a provider model in your software to 
facilitate this kind of convenient on-premise abstraction.

In your file system, files are placed within directories, and those directories are stored within other 
directories to create an extensive organizational hierarchy. All directories can be traversed back to 
a single root directory that houses the entire tree structure. Blob containers are like directories that 
live within the root directory of blob storage, but the analogy begins to weaken at this point because 
blob containers may not be embedded within other blob containers. If that were the end of the story, 
you would be left with a very flat file system. Fortunately, this is not the case. The Windows Azure cli-
ent library provides support for accessing blobs by using a simulation of a nested file system, thus al-
lowing directory-style navigation over delimiters used in your blob names, such as the slash character.

To see how to navigate flat blob storage as if it were hierarchical, you’ll first create a set of blobs in 
a container that uses a path delimiter. In this case, you will use the default delimiter of a slash (/).

The following code creates a container called demo and then populates this container with eight 
blobs named FileA, FileB, Dir1/FileC, Dir1/FileD, Dir1/Dir2/FileE, Dir3/FileF, Dir3/FileG, and Dir4/FileH 
by uploading an empty string as the content of each blob. The UseFlatBlobListing property of an 
instance of the BlobRequestOptions class is used as a parameter to control whether the container is 
navigated. You set this property to true when you want each blob in the container to be navigated 
without regard to the delimiter, and to false when you want navigation to behave as if the container 
were a file system style directory.

public static void DirectoryHierarchies(CloudStorageAccount account) { 
    Console.Clear(); 
    CloudBlobClient client = account.CreateCloudBlobClient(); 
    Console.WriteLine("Default delimiter={0}", client.DefaultDelimiter /* settable */); 
    Console.WriteLine(); 
 
    // Create the virtual directory 
    const String virtualDirName = "demo"; 
    CloudBlobContainer virtualDir =  
    client.GetContainerReference(virtualDirName).EnsureExists(true); 
 
    // Create some file entries under the virtual directory 
    String[] virtualFiles = new String[] { 
    "FileA", "FileB", // Avoid  $&+,/:=?@ in blob names 
    "Dir1/FileC", "Dir1/FileD", "Dir1/Dir2/FileE", 
    "Dir3/FileF", "Dir3/FileG", 
    "Dir4/FileH" 
   }; 
    foreach (String file in virtualFiles) { 
        virtualDir.GetBlockBlobReference("Root/" + file).UploadText(String.Empty); 
    } 
 



 CHAPTER 5 Blobs  77

    // Show the blobs in the virtual directory container 
    ShowContainerBlobs(virtualDir);   // Same as UseFlatBlobListing = false 
    Console.WriteLine(); 
    ShowContainerBlobs(virtualDir, true); 
 
    // CloudBlobDirectory (derived from IListBlobItem) is for traversing  
    // and accessing blobs with names structured in a directory hierarchy. 
    CloudBlobDirectory root = virtualDir.GetDirectoryReference("Root"); 
    WalkBlobDirHierarchy(root, 0); 
 
    // Show just the blobs under Dir1 
    Console.WriteLine(); 
    String subdir = virtualDir.Name + "/Root/Dir1/"; 
    foreach (var file in client.ListBlobs(subdir)) 
        Console.WriteLine(file.Uri); 
} 
 
private static void ShowContainerBlobs(CloudBlobContainer container,  
     Boolean useFlatBlobListing = false, BlobListingDetails details = BlobListingDetails.None, 
          BlobRequestOptions options = null, OperationContext operationContext = null) { 
    Console.WriteLine("Container: " + container.Name); 
    for (BlobResultSegment brs = null; brs.HasMore(); ) { 
        brs = container.ListBlobsSegmented(null, useFlatBlobListing, details, 1000, 
              brs.SafeContinuationToken(), options, operationContext); 
        foreach (var blob in brs.Results) Console.WriteLine("   " + blob.Uri); 
    } 
} 
 
private static void WalkBlobDirHierarchy(CloudBlobDirectory dir, Int32 indent) { 
    // Get all the entries in the root directory 
    IListBlobItem[] entries = dir.ListBlobs().ToArray(); 
    String spaces = new String(' ', indent * 3); 
 
    Console.WriteLine(spaces + dir.Prefix + " entries:"); 
    foreach (var entry in entries.OfType<ICloudBlob>()) 
        Console.WriteLine(spaces + "   " + entry.Name); 
 
     foreach (var entry in entries.OfType<CloudBlobDirectory>()) { 
        String[] segments = entry.Uri.Segments; 
        CloudBlobDirectory subdir = dir.GetSubdirectoryReference(segments[segments.Length - 1]); 
        WalkBlobDirHierarchy(subdir, indent + 1); // Recursive call 
    } 
} 
 
private static void ShowContainer(CloudBlobContainer container, Boolean showBlobs) { 
    Console.WriteLine("Blob container={0}", container); 
 
    BlobContainerPermissions permissions = container.GetPermissions(); 
    String[] meanings = new String[] { 
    "no public access",  
    "anonymous clients can read container & blob data",  
    "anonymous readers can read blob data only" 
   }; 
    Console.WriteLine("Container's public access={0} ({1})", 
       permissions.PublicAccess, meanings[(Int32)permissions.PublicAccess]); 
 



78 PART II Blobs, tables, and queues

    // Show collection of access policies; each consists of name & SharedAccesssPolicy 
    // A SharedAccesssBlobPolicy contains: 
    //    SharedAccessPermissions enum (None, Read, Write, Delete, List) &  
    //    SharedAccessStartTime/SharedAccessExpireTime 
    Console.WriteLine("   Shared access policies:"); 
    foreach (var policy in permissions.SharedAccessPolicies) { 
        Console.WriteLine("   {0}={1}", policy.Key, policy.Value); 
    } 
 
    container.FetchAttributes(); 
    Console.WriteLine("   Attributes: Name={0}, Uri={1}", container.Name, container.Uri); 
    Console.WriteLine("   Properties: LastModified={0}, ETag={1},", 
         container.Properties.LastModified, container.Properties.ETag); 
    ShowMetadata(container.Metadata); 
 
    if (showBlobs) 
        foreach (ICloudBlob blob in container.ListBlobs()) 
            ShowBlob(blob); 
} 
 
private static void ShowBlob(ICloudBlob blob) { 
    // A blob has attributes: Uri, Snapshot DateTime?, Properties & Metadata 
    // The CloudBlob Uri/SnapshotTime/Properties/Metadata properties return these 
    // You can set the properties & metadata; not the Uri or snapshot time 
    Console.WriteLine("Blob Uri={0}, Snapshot time={1}", blob.Uri, blob.SnapshotTime); 
    BlobProperties bp = blob.Properties; 
    Console.WriteLine("BlobType={0}, CacheControl={1}, Encoding={2}, Language={3}, 
         MD5={4}, ContentType={5}, LastModified={6}, Length={7}, ETag={8}", 
       bp.BlobType, bp.CacheControl, bp.ContentEncoding, bp.ContentLanguage, 
            bp.ContentMD5, bp.ContentType, bp.LastModified, bp.Length, bp.ETag); 
    ShowMetadata(blob.Metadata); 
} 
 
private static void ShowMetadata(IDictionary<String, String> metadata) { 
    foreach (var kvp in metadata) 
        Console.WriteLine("{0}={1}", kvp.Key, kvp.Value); 
}

Executing this code produces the following results.

Default delimiter=/ 
 
Container: demo, UseFlatBlobListing: False 
   http://azureinsiders.blob.core.windows.net/demo/Dir1/ 
   http://azureinsiders.blob.core.windows.net/demo/Dir3/ 
   http://azureinsiders.blob.core.windows.net/demo/Dir4/ 
   http://azureinsiders.blob.core.windows.net/demo/FileA 
   http://azureinsiders.blob.core.windows.net/demo/FileB 
 
Container: demo, UseFlatBlobListing: True 
   http://azureinsiders.blob.core.windows.net/demo/Dir1/Dir2/FileE 
   http://azureinsiders.blob.core.windows.net/demo/Dir1/FileC 



 CHAPTER 5 Blobs  79

   http://azureinsiders.blob.core.windows.net/demo/Dir1/FileD 
   http://azureinsiders.blob.core.windows.net/demo/Dir3/FileF 
   http://azureinsiders.blob.core.windows.net/demo/Dir3/FileG 
   http://azureinsiders.blob.core.windows.net/demo/Dir4/FileH 
   http://azureinsiders.blob.core.windows.net/demo/FileA 
   http://azureinsiders.blob.core.windows.net/demo/FileB 
 
demo entries: 
   FileA 
   FileB 
   Dir1 entries: 
      FileC 
      FileD 
      Dir2 entries: 
         FileE 
   Dir3 entries: 
      FileF 
      FileG 
   Dir4 entries: 
      FileH 
 
http://azureinsiders.blob.core.windows.net/demo/Dir1/Dir2/FileE 
http://azureinsiders.blob.core.windows.net/demo/Dir1/FileC 
http://azureinsiders.blob.core.windows.net/demo/Dir1/FileD

After printing the delimiter being used, the blob container named demo is iterated by using the 
UseFlatBlobListing property of an instance of BlobRequestOptions set to false. This option suppresses 
the iterator’s descent into the blob names beyond the first occurrence of the delimiter character, 
providing you with a high-level listing of all of the simulated directories in the root of the container. 
The next section of code performs the same operation, with the UseFlatBlobListing property of an 
instance of BlobRequestOptions set to true. You’ll see more on this class later in this chapter. With this 
option set, the container’s ListBlobsSegmented method recursively returns the subdirectories in each 
directory (using the segmented technique described in Chapter 4, “Accessing Windows Azure data 
storage”), providing a flattened view of the blobs in the container.

Occasionally, because of business requirements, you may have to traverse all of the blobs in a 
container as if they were files in a file system tree. The next section of code calls the WalkBlobDir-
Hierarchy routine, which recursively calls itself to list the contents of each segment of the delimited 
blob names. The CloudBlobDirectory class (which derives from CloudBlob) provides the abstraction of 
a blob directory. You traverse the entire tree by calling the GetSubdirectory method on each directory 
to retrieve a list of subdirectories and then use that list to recursively call back into the WalkBlob Dir-
Hierarchy routine.

In some situations, it may be desirable to locate all blobs that are contained in a single simulated 
directory structure. This can be accomplished using the ListBlobsWithPrefix method of your instance 
of CloudBlobClient, as shown in the preceding section of the code.



80 PART II Blobs, tables, and queues

Storage Client library blob types

The Storage Client library provides abstractions for blobs and containers, making them easy to work 
with in the Microsoft .NET Framework code. The following alphabetized list explains the most impor-
tant types, methods, and properties used in the topics covered later in this chapter:

■■ CloudBlob provides a convenient object-oriented abstraction for working with an indi-
vid ual blob.

■■ CloudBlobContainer provides a convenient object-oriented abstraction for working with 
a blob storage container.

■■ CopyFromBlob copies an existing blob’s contents, properties, and metadata to a new blob.

■■ Create[IfNotExist] creates a blob container or optionally creates the container only if the con-
tainer does not already exist.

■■ Delete deletes a blob container and its contents.

■■ FetchAttributes returns the container’s attributes, including its system properties and any user-
defined metadata.

■■ Get/SetPermissions gets or sets the permission settings for the container.

■■ GetBlobReference returns a reference to a blob in the container.

■■ GetSharedAccessSignature returns a shared access signature for the container.

■■ ListBlobs[Segmented] returns an enumerable collection of the blobs in the container, or a seg-
mented enumerable collection of the blobs in the container.

■■ Metadata returns the user-defined metadata for the blob or blob container.

■■ Name returns the name of the blob or blob container.

■■ OpenWrite/Read opens a stream for reading or writing the blob’s contents.

■■ Properties returns the blob’s system properties.

■■ SnapshotTime returns the DateTime value that uniquely identifies the snapshot (only when the 
blob is a snapshot).

■■ Upload(ByteArray/File/FromStream/Text) uploads data from a byte array, file, stream, or string 
to a blob.

■■ Uri returns the blob or container’s address.



 CHAPTER 5 Blobs  81

Container and blob naming rules

You should be aware of several naming rules for blobs and their containers. A blob container name 
must be between 3 and 63 characters in length; start with a letter or number; and contain only letters, 
numbers, and the hyphen. All letters used in blob container names must be lowercase. Lowercase is 
required because using mixed-case letters in container names may be problematic. Locating trouble 
in a failing application related to the incorrect use of mixed-case letters might result in a lot of wasted 
time and endless amounts of frustration and confusion.

To make matters a bit confusing, blob names can use mixed-case letters. In fact, a blob name can 
contain any combination of characters as long as the reserved URL characters are properly escaped. 
The length of a blob name can range from as short as 1 character to as long as 1024 characters.

If you inadvertently violate any of these naming rules, you receive an HTTP 400 (Bad Request) er-
ror code from the data storage service, resulting in a StorageClientException being thrown if you are 
accessing blob storage using the Windows Azure software development kit (SDK).

You are not prohibited from using mixed casing in code, though, but some irregularities may ad-
versely impact you when you do use it. For example, if you create a container properly in lowercase, 
but then later attempt to use that container in mixed-cased requests, your requests will all succeed 
because the mixed case container name is silently matched with the lowercase container name. This 
silent but menacing casing coercion can lead you to really scratch your head during debugging, so 
I strongly urge you to commit to memory the rule that blob container names must not contain up-
percase letters.

Performing create, read, update, and delete blob operations

Blobs contain many operations for saving and retrieving data to and from storage. You’ll begin with 
the simple operation of creating a new blob container and populating it with your first blob.

Blob container security
It is useful for you to organize your blobs into storage containers by grouping data with the same 
security requirements into the same containers (or sets of identically secured containers, as may be 
appropriate). This strategy should include grouping blobs that your application requires anonymous 
(public) read-only access to (which is our next topic). Because each blob can be referenced directly 
from the Internet using its URI, delivery of anonymous public read-only content to web browsers 
is one of the most useful purposes of blob storage. If blobs in the same container have differing 
security requirements, you probably want to re-factor your design until they don’t. Blob containers 
are full-access when the request is made with the Windows Azure account key or public read-only 
(where anyone with the URL to the blob or blob container can read its contents and its metadata), or 
they might be more granular when the request is made with a Shared Access Signature. Each of these 
security models is covered in this chapter.



82 PART II Blobs, tables, and queues

The Windows Azure account key should generally be kept secret, because it’s really the key to 
the entire data fiefdom controlled by a single Windows Azure data storage account. Your applica-
tion using the account key is similar to Microsoft SQL Server using an account with database owner 
authority. This trusted application model is generally adequate for many on-premise applications and 
services. However, you may want to give some attention and analysis to the security ramifications of 
using the trusted application model in your cloud architectures. The risks go up considerably when 
you’re no longer operating behind the safety and protection of your corporate firewall, where identi-
ties are managed and under the careful control and scrutiny of your corporate personnel department, 
IT staff, and infrastructure team. You may also want to give some thought to using different storage 
accounts for different applications (or sets of applications) in order to compartmentalize your data so 
that the leak of one application’s credentials is not a threat to the data of other applications.

Anonymous (public) read-only blob access
In the business use-case section of this chapter, I suggested that blob web content could be placed in 
Windows Azure blob storage, which the markup code could simply reference. To enable this scenario, 
the content must be publicly accessible via an unauthenticated web request. Most content on the web 
is public read-only data, but by default, blob containers do not allow public access, so to enable this 
business use-case, you have to set your permissions on your blob containers to grant the desired level 
of access to anonymous users. Blob storage is the only type of data storage in Windows Azure that al-
lows public read-only access. (Unauthenticated public access is not available for Windows Azure table 
or queue storage.)

By default, no public access is granted to a blob container or the blobs it encapsulates. You will 
learn later in this chapter how you can change this setting to Blob to allow public access to indi-
vidual blobs stored in the container or to Container, which grants public read-only access to the blob 
container and all the blobs contained therein. It is not possible to set public read-only access on an 
individual blob—only on its container.

Creating the blob container
You can create a new blob container named demo by sending an HTTP PUT request to the URI of the 
blob container location. The following request creates a new container called demo in the azureinsiders 
storage account.

PUT http://azureinsiders.blob.core.windows.net/demo?restype=container&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-date: Mon, 17 Dec 2012 05:32:31 GMT 
Authorization: SharedKey azureinsiders:+TRYhpqkDgZ6WlgG37l0qa+d/5tfvZXyYqpEKjaDs9w= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 0

The preceding code results in an HTTP status code 201 (Created) upon its successful completion.



 CHAPTER 5 Blobs  83

HTTP/1.1 201 Created 
Transfer-Encoding: chunked 
Last-Modified: Mon, 17 Dec 2012 05:32:31 GMT 
ETag: "0x8CFAA2F0B3FF8C8" 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: 79eea64c-7f01-4193-a6a5-1d918868dac8 
x-ms-version: 2012-02-12 
Date: Mon, 17 Dec 2012 05:32:31 GMT 
0

In the Wintellect.DevCloudAppsAzureStorage project in the sample code, locate the Blob -
Patterns.Basics method in StoragePatterns.cs. The Basics method, part of which is shown in the 
following code, accepts a CloudStorageAccount, which is a container around security credentials 
and storage endpoint addresses. You create a container named demo if one doesn’t already exist.

// Use an OperationContext for debugging and to estimate billing 
OperationContext oc = new OperationContext(); 
oc.SendingRequest += (Object s, RequestEventArgs e) => { 
     HttpWebRequest request = e.Request; 
}; 
oc.ResponseReceived += (Object s, RequestEventArgs e) => { 
    HttpWebRequest request = e.Request; 
    HttpWebResponse response = e.Response; 
    RequestResult rr = e.RequestInformation; 
}; 
 
CloudBlobClient client = account.CreateCloudBlobClient(); 
 
// Create a container: 
CloudBlobContainer container = client.GetContainerReference("demo"); 
Boolean created = container.CreateIfNotExists(null, oc);

Listing storage account containers
After the blob container demo has been created in the storage account, you should be able to see it 
in storage. The following HTTP request against the azureinsiders storage account augments the URI 
with the query string parameter ?comp=list, which in turn causes Windows Azure storage service to 
return a list of all blob containers for the storage account specified by the URI.

GET http://azureinsiders.blob.core.windows.net/?comp=list&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-date: Mon, 17 Dec 2012 05:55:22 GMT 
Authorization: SharedKey azureinsiders:7QR/PWux3s6anFSQR2gSV5UPUvPInEuh+jeO8R3sflk= 
Host: azureinsiders.blob.core.windows.net

The preceding code returns a response containing an enumeration of blob containers for the 
 storage account.



84 PART II Blobs, tables, and queues

HTTP/1.1 200 OK 
Transfer-Encoding: chunked 
Content-Type: application/xml 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: 7e1a5018-0080-472a-b817-33df3bb82f09 
x-ms-version: 2012-02-12 
Date: Mon, 17 Dec 2012 05:55:21 GMT 
 
2F5 
<?xml version="1.0" encoding="utf-8"?> 
  <EnumerationResults AccountName="http://azureinsiders.blob.core.windows.net/"> 
    <Containers> 
      <Container> 
        <Name>demo</Name> 
        <Url>http://azureinsiders.blob.core.windows.net/demo</Url> 
        <Properties> 
          <Last-Modified>Mon, 17 Dec 2012 05:32:31 GMT</Last-Modified> 
          <Etag>"0x8CFAA2F0B3FF8C8"</Etag> 
          <LeaseStatus>unlocked</LeaseStatus> 
          <LeaseState>available</LeaseState> 
        </Properties> 
      </Container> 
      <Container> 
        <Name>manyblobs</Name> 
        <Url>http://azureinsiders.blob.core.windows.net/manyblobs</Url> 
        <Properties> 
          <Last-Modified>Tue, 05 Jun 2012 00:14:02 GMT</Last-Modified> 
          <Etag>"0x8CF10C73F0E2A12"</Etag> 
          <LeaseStatus>unlocked</LeaseStatus> 
          <LeaseState>available</LeaseState> 
        </Properties> 
      </Container> 
    </Containers> 
  <NextMarker /> 
</EnumerationResults> 
0

If you’re using the Windows Azure storage client, the ListContainers method of the storage client 
will return an IEnumerable<CloudBlobContainer>.

// Show this account's containers: 
foreach (var c in client.ListContainers(null, ContainerListingDetails.None,  
operationContext: oc)) 
    Console.WriteLine(c.Uri);

At this point, you have an empty blob container. The following code creates and populates two 
empty blobs in that blob container.

// Create 2 blobs in the container: 
CloudBlockBlob blob = container.GetBlockBlobReference("SomeData.txt"); 
using (var stream = new MemoryStream(("Some data created at " + DateTime.Now).Encode())) { 
    blob.UploadFromStream(stream, operationContext: oc); 
} 



 CHAPTER 5 Blobs  85

using (var stream = new MemoryStream()) { 
    blob.DownloadToStream(stream, operationContext: oc); 
    stream.Seek(0, SeekOrigin.Begin); 
    Console.WriteLine(new StreamReader(stream).ReadToEnd());   // Read the blob data back 
}

With the blob container and blobs created, you are ready to explore permissions settings.

Setting blob container permissions
Container permissions control public read-only access (public access) to a blob container and the 
blobs it contains. It is not possible to set public access permission on an individual blob. This permis-
sion is applicable only to blob containers. An individual blob inherits its public access characteristic by 
virtue of the container’s permission. To control public access to the blob container and its contents, 
perform an HTTP PUT operation against the URI of the blob container, setting the x-ms-blob-public-
access header to one of three values listed in Table 5-1. (Note that the header is all lowercase letters, 
whereas the object model of the API depicted in Table 5-1 is Pascal-cased.) A value of container grants 
anonymous public read-only access to a blob container and its contents, a value of blob grants the 
same access but only to the blobs in the container, and a value of off prohibits any anonymous access.

In the following example, you are indicating that public access is being granted to the container 
and all of the blobs that it may contain.

PUT http://azureinsiders.blob.core.windows.net/demo? 
    restype=container&comp=acl&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-blob-public-access: container 
x-ms-date: Mon, 17 Dec 2012 06:54:11 GMT 
Authorization: SharedKey azureinsiders:NYvUlXRWqZCFXhtPQu/o80FiKe8aKOlOSXAbHeyEOUY= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 62 
 
<?xml version="1.0" encoding="utf-8"?><SignedIdentifiers />

Successful execution of the preceding HTTP PUT request will result in an HTTP status code 200 (OK).

HTTP/1.1 200 OK 
Transfer-Encoding: chunked 
Last-Modified: Mon, 17 Dec 2012 06:54:11 GMT 
ETag: "0x8CFAA3A745859B4" 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: 54cea7b5-26b7-444c-b3a5-10a251e779ad 
x-ms-version: 2012-02-12 
Date: Mon, 17 Dec 2012 06:54:10 GMT

Public access may be granted through the Windows Azure client library, too. A BlobContainer-
Permissions object is used to control public access to a blob container and the blobs it contains. An 
instance of BlobContainerPermissions has a PublicAccess property, which can be set to one of three 
values, as shown in Table 5-1.



86 PART II Blobs, tables, and queues

TABLE 5-1 Blob container public access permission settings

Setting Public read-only access

Off Grant no public access to the container or the blobs stored in the container.

Blob Grant public read-only access to all of the blobs stored in the container, but not to the container itself.

Container Grant public read-only access to the container and all of the blobs stored in the container.

To grant public access permissions to the blob container and its blob contents, you create an 
instance of BlobContainerPermissions and set its PublicAccess property to BlobContainerPublicAccess-
Type.Container. You then call the container’s SetPermissions method, passing in the permission object. 
There are three values to the BlobContainerPublicAccessType: Off (the default) prohibits public read-
only access to the container and its blobs; Blob grants access to the blobs in the container (but not the 
container itself); and Container grants access to read the container and the blobs it encapsulates. The 
next bit of code illustrates this.

// Change container's security to allow read access to its blobs: 
BlobContainerPermissions permissions = new BlobContainerPermissions { 
    PublicAccess = BlobContainerPublicAccessType.Container 
}; 
container.SetPermissions(permissions, operationContext: oc); 
 
// Attempt to access a blob from browser & in code (succeeds): 
Process.Start("IExplore", container.Uri.ToString()).WaitForExit(); 
using (var stream = new MemoryStream()) { 
    anonymous.GetContainerReference("demo").GetBlockBlobReference("SomeData.txt") 
       .DownloadToStream(stream, operationContext: oc); 
    Console.WriteLine("Download result: " + stream.GetBuffer().Decode()); 
    Console.WriteLine(); 
} 
 
// Show the container's blobs via REST: 
Process.Start("IExplore", container.Uri + "?comp=list").WaitForExit();

The blob container demo has the default public read-only permission of off, meaning that any at-
tempt to read the blobs located in this container without credentials will fail. To test this assertion and 
prove this point, you launch a web browser to the URL of the blob you uploaded. You then attempt to 
access one of the blobs using code to demonstrate that this also fails.

// Change container's security to allow read access to its blobs: 
BlobContainerPermissions permissions = new BlobContainerPermissions { 
    PublicAccess = BlobContainerPublicAccessType.Container 
}; 
container.SetPermissions(permissions, operationContext: oc); 
 
// Attempt to access a blob from browser & in code (succeeds): 
Process.Start("IExplore", container.Uri.ToString()).WaitForExit(); 
using (var stream = new MemoryStream()) { 
    anonymous.GetContainerReference("demo").GetBlockBlobReference("SomeData.txt") 
       .DownloadToStream(stream, operationContext: oc); 
    Console.WriteLine("Download result: " + stream.GetBuffer().Decode()); 
    Console.WriteLine(); 
} 
 



 CHAPTER 5 Blobs  87

           // Show the container's blobs via REST: 
           Process.Start("IExplore", container.Uri + "?comp=list").WaitForExit();

Now when you launch Windows Internet Explorer on the blob’s URL, the contents of the blob are 
displayed. Because the container is now set to allow public read access, you can launch a browser 
directly against the blob container’s URL, passing the filtration criteria (?comp=list) in the query string 
to list the contents of the blob container, as shown in Figure 5-3.

FIGURE 5-3 A list of the blob container contents is shown here.

You’re going to set the PublicAccess property of the blob container to BlobContainerPublicAccess-
Type.Off in the code that follows. This step may seem superfluous because Off is the default setting, 
but you want to ensure clarity of the demonstration, and you also want to ensure that the resulting 
access you observe is verifiably a result of the Shared Access Signature (SAS) and not a side-effect 
of anonymous access being granted. (You learn more about SAS in the next sections.) You use the 
SetPermissions method of the blob container to apply the BlobContainerPermission object to re-
move public access to the blob container and its contents. As mentioned earlier, this is equivalent to 
executing an HTTP PUT operation against the URI of the blob container with the x-ms-blob-public-
access header set to a value of off. Attempting to show the contents of the container or blob in a web 
browser after applying the permissions results in an HTTP 403 (Forbidden) error code, which proves 
that no anonymous access is allowed to your blob container. The following code demonstrates this.

container.SetPermissions(new BlobContainerPermissions { 
   PublicAccess = BlobContainerPublicAccessType.Off }); 
CloudBlob blob = container.GetBlobReference("test.txt"); 
blob.UploadText("Data accessed!"); 
// This fails 
Process.Start("IExplore", blob.Uri.ToString()).WaitForExit();



88 PART II Blobs, tables, and queues

Shared Access Signatures and shared access policies

So what do you do when you want to grant to another party more granular control over blobs in a 
container without providing your private account key? This is where Shared Access Signatures are 
useful. A Shared Access Signature is a bit of cryptographic data that is appended to the query string 
of the URL that is used by Windows Azure storage to grant more granular control to blobs or their 
containers for a short period of time. After issued, an SAS is good for 60 minutes by default. This time 
can be extended by applying a Shared Access Policy to the Shared Access Signature, which will be in-
troduced shortly; however, it is important to keep in mind that the shorter the duration the signature 
is valid, and the more minimal the authorization granted by the SAS, the stronger the effectiveness of 
the security the policy provides.

When you execute the following code to create a blob called test.txt in the blob container demo, 
and then attempt to access the contents of that blob using its address in your web browser, the at-
tempt fails because the blob container is not public by default.

         // Create a container (with no access) & upload a blob 
 
// Create a container (with no access) & upload a blob 
CloudBlobContainer container = account.CreateCloudBlobClient() 
    .GetContainerReference("demo").EnsureExists(); 
container.SetPermissions(new BlobContainerPermissions {  
     PublicAccess = BlobContainerPublicAccessType.Off  
}); 
CloudBlockBlob blob = container.GetBlockBlobReference("test.txt"); 
blob.UploadText("Data accessed!"); 
Process.Start("IExplore", blob.Uri.ToString()).WaitForExit(); // This fails

In the following sections, you will grant granular permission to the blob for a specified period 
of time.

Shared Access Signature
An SAS can be thought of as a security permission filter of your blob or blob container’s URI, with 
many segments providing the data necessary to establish the validity and duration of the signature 
provided in the sig field. The following is an example of what an SAS looks like.

http://account.blob.core.windows.net/container/blob 
    ? st=2011-01-04T00:06:22Z 
    & se=2011-01-04T01:06:22Z  
    & sr=b 
    & sp=r 
    & si=Managers 
    & sig=KKW…ldw=

The meaning of each segment of the SAS is described in Table 5-2.



 CHAPTER 5 Blobs  89

TABLE 5-2 Shared Access Signature query string segments

Segment Query string segment purpose

st Signed start time (optional) provided in UTC format (for example, 2011-01-04T00:06:22Z).

se Expiry time provided in UTC format (for example, 2011-01-04T00:06:22Z).

sr Resource (container’s blob or blobs).

sp Permissions (r)ead/(w)rite/(d)elete/(l)ist. Permissions are supplied as single letters, and must be supplied 
in this order: rwdl. Any combination of these permissions is acceptable as long as they are supplied in 
the proper order (for example, rw, rd, rl, wd, wl, and dl). Specifying a permission designation more than 
once is not allowed.

si Signature identifier (optional) relates an SAS to a container’s shared access policies. The signature iden-
tifier must be 64 characters or fewer.

sig Shared Access Signature. The URL parameters are signed (HMACSHA256) with the account’s key.

The permissions that may be applied to a blob container using the sp segment are provided in 
Table 5-3.

TABLE 5-3 Allowable shared access signature permissions

Permission Description

Read Read content, properties, metadata, block list for blob (any blob in the container).

Write Write content, properties, metadata, and block list for blob (any blob in container); copy blob is not supported.

Delete Delete blob (any blob in the container).

List Lists blobs in container. (This permission can be granted only to blob containers.)

It is important to note that the generation of a Shared Access Signature is a client-side crypto-
graphic activity that makes use of the storage account key. There are no network requests made  
of the storage service in order to create one. To create an SAS, you simply take all of the signed  
query string parameter values delimited by newline characters and then hash this value using the 
HMACSHA256 algorithm to create the sig parameter. Any request received by the storage service 
bearing an appropriately formatted and cryptographically intact signature will be granted the access 
defined in the sp (permissions) parameter.

Because the security signature and related parameters are provided in the URL, it’s very important 
to pay careful attention to the fact that they are subject to snooping and replay attacks if they are 
leaked to unintended parties, hijacked by someone sniffing traffic on the wire, or emailed to or from 
an employee who is ignorant of the security ramifications. You should use an SAS only in a production 
environment over HTTPS. You should also not use an SAS to expose blobs in a web browser, because 
the unexpired SAS will be cached in the browser history and hard drive of the client’s machine and 
could be used by an unauthorized party to perform data operations. Similar precautions should be 
taken to keep applications from storing the SAS in a persistent data store, or from exposing the SAS 
directly or inadvertently in its clear text form. If the SAS must be stored, you should consider encrypt-
ing it. If a user can see the SAS, it’s probably not secure enough and you may want to rethink your 
approach.



90 PART II Blobs, tables, and queues

If you are using the Windows Azure SDK client libraries for the .NET Framework, the GetShared-
AccessSignature method of a blob instance will ease your pain in manually constructing an SAS, 
saving you from having to fool around with a lot of messy URL string manipulations. The following 
code demonstrates how to create an SAS that is valid for a period of one hour beginning immediately, 
which will grant its bearer read, write, and delete permissions. You will see more on the SharedAccess-
Policy and SharedAccessPermission classes shortly.

Creating a shared access policy
In the preceding code, you used an instance of a SharedAccessPolicy to create an SAS. The policy 
controls the usage characteristics of the SAS, for example, when it takes effect and how long it is 
valid. The policy also encapsulates, to the resource being protected, the permission set that you 
want to grant to the bearer of the SAS.

SharedAccessPermissions is an enumeration of bit flags that can be OR’d together to create the 
permission set necessary to meet your blob’s permission requirements. In the following code, you 
select a permission set comprising the desired combination of read, write, and delete permissions.

Permissions perms = SharedAccessPermissions.Read | 
    SharedAccessPermissions.Write | 
    SharedAccessPermissions.Delete

There is also a List permission for use with blob containers.

Applying a shared access policy to a blob container
To apply a shared access policy to a blob, you first must create an instance of SharedAccessPolicy and 
then set its permissions and the effective start and end time properties (given in coordinated uni-
versal time, or UTC), as shown in the next bit of code. You can then call the blob’s GetSharedAccess-
Signature method, passing the shared access policy object as an argument to retrieve a signed shared 
access URL that can be used by callers to perform subsequent CRUD operations granted on the blob 
(as specified in the shared access policy).

// Create an SAS for the blob 
var now = DateTime.UtcNow; 
SharedAccessPolicy sap = new SharedAccessPolicy { 
   // Max=1 hr after start 
   SharedAccessStartTime = now, 
   SharedAccessExpiryTime = now.AddHours(1), 
   Permissions = SharedAccessPermissions.Read | 
                 SharedAccessPermissions.Write | 
                 SharedAccessPermissions.Delete 
}; 
String sas = blob.GetSharedAccessSignature(sap); 
String sasUri = blob.Uri + sas; 
// This succeeds (in Internet Explorer, modify URL and show failure) 
Process.Start("IExplore", sasUri).WaitForExit();



 CHAPTER 5 Blobs  91

Alternatively, you can protect the blob and other blobs in the container by adding the Shared 
 Access Policy to the container’s collection of shared access policies.

Storing access policies
What if you have more stringent data access requirements than the SAS provides? For example, what 
if you require additional constraints on the starting or ending times that the SAS will be valid, or you 
require more granular control over the set of permissions being granted to a data storage item by an 
SAS? What if you require a means of revoking an SAS after it has been issued?

All of these tighter data access requirements can be met by augmenting a SharedAccessSignature 
with a stored access policy (SAP). Instead of being supplied as part of the query string parameters 
of the URL, the values that you select for your policy are stored with the data on the storage service. 
This decouples the SAS from the policy, thus allowing you to modify the parameters without having 
to re-issue another SAS. You can also revoke access granted to an SAS. The SAP is referenced by the 
signedidentifier field of the URL provided in Table 5-2. A signed identifier is a string containing 64 
characters or fewer. You’ll see these classes shortly, but first it’s a good idea to review how to create a 
shared access policy through the RESTful API. In order to add new policies to the blob container, you 
must first retrieve the policies that are already present, as shown in the following HTTP GET request.

GET http://azureinsiders.blob.core.windows.net/demo 
     ?restype=container&comp=acl&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-date: Tue, 18 Dec 2012 06:13:06 GMT 
Authorization: SharedKey azureinsiders:vB79RzKYOVkhdJ9NgMonq7OU4fI9DE40H0pxipiVQOQ= 
Host: azureinsiders.blob.core.windows.net 
 
Authorization: SharedKey azureinsiders:N6SZp4XX6NaC3ZOXHqVC94jTSnoUBQrgDV/By2+0HRU= 
Host: azureinsiders.blob.core.windows.net

This code returns the collection of policies in the body of the response. In this case, the Signed-
Identifiers element is empty, showing that you have no stored access policies currently assigned to 
this blob storage container.

HTTP/1.1 200 OK 
Transfer-Encoding: chunked 
Content-Type: application/xml 
Last-Modified: Tue, 18 Dec 2012 06:09:29 GMT 
ETag: "0x8CFAAFD5FEF12F7" 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: a34d3e7d-29a5-4742-8efa-7acab29aff4c 
x-ms-version: 2012-02-12 
Date: Tue, 18 Dec 2012 06:13:05 GMT 
 
3E 
<?xml version="1.0" encoding="utf-8"?> 
<SignedIdentifiers /> 
0

http://azureinsiders.blob.core.windows.net/demo
http://azureinsiders.blob.core.windows.net/demo


92 PART II Blobs, tables, and queues

To add a policy, you execute an HTTP PUT request against the blob container’s URI with the 
comp=acl query string parameter set. The body of the request contains a payload of signed identi-
fiers. These signed identifiers represent the policies to be applied on the Windows Azure storage 
service side of the network for the blob container that is specified as the target of the request, as 
shown in the next code. Notice the SignedIdentifier ID is Managers and the Permission element has a 
value of rw.

PUT http://azureinsiders.blob.core.windows.net/demo 
     ?restype=container&comp=acl&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-date: Tue, 18 Dec 2012 06:28:02 GMT 
Authorization: SharedKey azureinsiders:Oya7S8vBgOqBTBaKU3AMSL8ljnpiE9XAJrLq7kD1HYA= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 232 
 
<?xml version="1.0" encoding="utf-8"?> 
<SignedIdentifiers> 
  <SignedIdentifier> 
    <Id>Revokable-12/18/2012 6:28:00 AM</Id> 
    <AccessPolicy> 
    <Start /> 
    <Expiry /> 
    <Permission>rw</Permission> 
    </AccessPolicy> 
  </SignedIdentifier> 
</SignedIdentifiers>

Like the preceding example, the following code snippet creates a shared access policy—with the 
Windows Azure client library—that grants read and write permissions on a blob container that has a 
signature identifier of Managers. The signature identifier is allowed to be any string up to 64 charac-
ters in length.

// Alternatively, we can add the SAP policies to the container with a name: 
String signatureIdentifier = "Revokable-" + DateTime.UtcNow; 
var permissions = container.GetPermissions(); 
// NOTE: A container can have up to 5 SAP policies 
permissions.SharedAccessPolicies.Add(signatureIdentifier, 
   new SharedAccessBlobPolicy { 
       Permissions = SharedAccessBlobPermissions.Read | 
                     SharedAccessBlobPermissions.Write 
   }); 
container.SetPermissions(permissions);

Note A blob container can have a maximum of five policies assigned to it at one time. If 
you attempt to create more than five access policies, the sixth will result in the service re-
turning status code 400 (Bad Request).

http://azureinsiders.blob.core.windows.net/demo
http://azureinsiders.blob.core.windows.net/demo


 CHAPTER 5 Blobs  93

The SharedAccessPolicy cannot specify what is already present in the signature identifier.

// This SharedAccessPolicy CAN'T specify what is already present in the Signature Identifier 
sas = blob.GetSharedAccessSignature(new SharedAccessBlobPolicy { 
    SharedAccessStartTime = start, 
    SharedAccessExpiryTime = start.AddYears(10) 
}, signatureIdentifier); 
sasUri = blob.Uri + sas; 
Process.Start("IExplore", sasUri);

Revoking SAS permissions
After the SAS has served its useful purpose, it may be necessary or desirable (as a precautionary 
measure) to revoke the granted permissions. This is accomplished by simply removing the Signature-
Identifier from the collection and performing another HTTP PUT operation against the blob contain-
er’s URI. There is really no difference between adding or deleting a stored SAS policy because they 
are both accomplished in an identical fashion: by simply providing a complete list of the permissions.

PUT http://azureinsiders.blob.core.windows.net/demo 
     ?restype=container&comp=acl&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-date: Tue, 18 Dec 2012 06:28:06 GMT 
Authorization: SharedKey azureinsiders:jwtmE3xzpCu7xo/TTqJVWCZVJeO19MnXwNoPQMYdbCI= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 62 
 
<?xml version="1.0" encoding="utf-8"?> 
<SignedIdentifiers />

With the Windows Azure client library, the container’s signature identifier can be used to revoke the 
SAS permission as follows.

// We can now revoke access on the container: 
permissions.SharedAccessPolicies.Remove(signatureIdentifier); 
container.SetPermissions(permissions); 
Process.Start("IExplore", sasUri); // This fails now

Blob attributes and metadata

Containers and blobs support two types of ancillary data: system properties and user-defined meta-
data. System properties exist on every blob and blob container. Some properties are read-only, 
whereas others can be set. A few of them correspond to specific standard HTTP headers, which the 
Windows Azure SDK will maintain for you. User-defined metadata allows you to define supplemen-
tary name-value dictionary information about the blob container or the blob. As its name implies, 
metadata should be used to store data about your data (not the data itself). This can sometimes be 
a matter of perspective.

http://azureinsiders.blob.core.windows.net/demo
http://azureinsiders.blob.core.windows.net/demo


94 PART II Blobs, tables, and queues

Blob containers have attributes that describe both the containers’ URI and Name. Each container 
has two read-only properties: LastModifiedUtc, which is the UTC time that the blob container was 
last updated; and ETag, which is a version number used for optimistic concurrency. Blob containers 
also provide 8 KB of customizable metadata in the form of a name-value pair dictionary, which you 
can use for your own purposes. Metadata should be used to store information about the blob or the 
blob’s container. For example, you might store the name of the person who last read the contents of 
a blob in its metadata, and possibly the date and time the access was made.

The following HTTP PUT request demonstrates how to set metadata values. The query string 
comp=metadata sets up the operation. The values for the metadata are transmitted via HTTP x-ms-
meta-<name> headers, where <name> is the name you are giving your metadata, and the value of 
the HTTP header is the value of your named metadata. The following example shows this.

PUT http://azureinsiders.blob.core.windows.net/demo/ReadMe.txt?comp=metadata&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-meta-CreatedBy: Paul 
x-ms-meta-SourceMachine: DILITHIUM 
x-ms-date: Tue, 18 Dec 2012 07:05:23 GMT 
Authorization: SharedKey azureinsiders:02TWst4Dx5Qgr0zq31w7AvENcc+OezO6+HobJ4qZMlY= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 0

The following code demonstrates how to use the Windows Azure client library to store metadata 
containing the person’s name and the machine that person was using when they created the blob.

container.SetPermissions(new BlobContainerPermissions() { 
PublicAccess = BlobContainerPublicAccessType.Container }); 
CloudBlob blob = container.GetBlobReference("ReadMe.txt"); 
blob.UploadText("This is some text"); 
blob.Attributes.Metadata["CreatedBy"] = "Paul"; 
blob.Metadata["SourceMachine"] = Environment.MachineName; 
blob.SetMetadata(); 
// NOTE: SetMetadata & SetProperties update the blob's ETag & LastModifiedUtc

When you launch Internet Explorer on the blob’s URL, the contents of the blob are displayed. 
Similar to what you did previously, you can launch a browser directly against the blob container’s 
URL, passing the filtration criteria ?restype=container&comp=list&include=metadata in the query 
string. The following code will launch Internet Explorer to list the contents of the blob container, 
including its properties and any metadata.

// Get blobs in container showing each blob's properties & metadata 
// See http://msdn.microsoft.com/en-us/library/dd135734.aspx for more options 
Process.Start("IExplore", container.Uri + 
          "?restype=container&comp=list&include=metadata").WaitForExit();



 CHAPTER 5 Blobs  95

You can also retrieve a list of blobs, including properties and metadata, programmatically using 
the Windows Azure client library. First, pass an instance of BlobRequestOptions with its BlobListing-
Details property set to BlobListingDetails.Metadata. Then call the FetchAttributes method on the blob 
proxy. The FetchAttributes method will include properties and metadata.

container.ListBlobs(new BlobRequestOptions { 
    BlobListingDetails = BlobListingDetails.Metadata }); 
blob.FetchAttributes();

The following code then loops through the collection of the blob’s properties and metadata and 
displays the corresponding value for each.

// Read the blob's attributes (which include properties & metadata) 
blob.FetchAttributes(); 
BlobProperties p = blob.Properties; 
Console.WriteLine("Blob's metadata (LastModifiedUtc={0}, ETag={1})",  
         p.LastModifiedUtc, p.ETag);

Console.WriteLine("   Content Type={0}, Encoding={1}, Language={2}, MD5={3}", 
   p.ContentType, p.ContentEncoding, p.ContentLanguage, p.ContentMD5); 
Console.WriteLine(); 
foreach (String keyName in blob.Metadata.Keys) 
   Console.WriteLine("   {0} = {1}", keyName, blob.Metadata[keyName]);

Conditional operations

It is often desirable to perform an operation on data only when particular conditions can be satis-
fied. It’s better still when such operations can be conditionally performed by the data storage service 
rather than burden the client application, because doing so reduces the time and costs associated 
with transporting data to the application. Filtration operations limit the consumable data to a subset 
of the complete set of data available, so transporting all of the data across the wire simply to discard 
portions of that data upon evaluation wastes time, bandwidth, and ultimately money.

Although the evaluation can often be done by the application on the client side of the wire, mul-
tiple requests may be necessary to retrieve and evaluate data. In addition to the cost and time of 
transmitting large volumes of unnecessary data, the elapsed time also increases the probability of a 
data collision when one application attempts to perform an operation on an entity, but before that 
operation can take place, another application performs a successful operation on it, which renders 
the first application’s copy of the entity as stale. Most blob operations can be performed conditionally 
based on their date of modification, or their ETag.



96 PART II Blobs, tables, and queues

Conditional operations using REST
Conditional operations are implemented in blob storage by including one of four optional HTTP 
headers in the request, including a corresponding date and time or ETag value, as shown in Table 5-4.

TABLE 5-4 Conditional operation HTTP headers

HTTP header Specified value

If-Modified-Since DateTime

If-Unmodified-Since DateTime

If-Match ETag or wildcard (*)

If-None-Match ETag or wildcard (*)

Reading data conditionally using the If-Modified-Since header can save unnecessary network 
bandwidth and data processing time (as well as associated costs for data transmission) by only trans-
mitting the data when it’s modified. When the condition cannot be met, an HTTP status code is 
returned that indicates the reason the condition was not met. Table 5-5 lists these HTTP status codes.

TABLE 5-5 HTTP response codes returned for unsatisfied conditions

Conditional header HTTP response codes when condition is not met

If-Modified-Since 304 Not Modified

If-Unmodified-Since 412 Precondition Failed

If-Match 412 Precondition Failed

If-None-Match 304 Not Modified

Conditional operations using the Windows Azure client library
The Windows Azure client library provides a convenient programming grammar for performing con-
ditional operations. This grammar abstracts the setting of the underlying HTTP header to give a more 
comfortable and intuitive programming model to the developer. To explore conditional operations, 
you first need a blob in storage. Given a CloudStorageAccount credential object, the following code 
snippet sets up a proxy to blob storage, creates a blob named Data.txt, and uploads some data (the 
string “Data”) into that blob. It also sets up a retry policy, which you will see later in this chapter, and 
establishes timeouts.

// Create a blob and attach some metadata to it: 
CloudBlobClient client = account.CreateCloudBlobClient(); 
 
// No retry for 306 (Unused), 4xx, 501 (Not Implemented), 505 (HTTP Version Not Supported) 
client.RetryPolicy = new ExponentialRetry(); 
 
// Time server can process a request (default = 90 secs) 
client.ServerTimeout = TimeSpan.FromSeconds(90); 
 



 CHAPTER 5 Blobs  97

// Time client can wait for response across all retries (default = disabled) 
client.MaximumExecutionTime = TimeSpan.FromSeconds(5); 
 
CloudBlobContainer container = client.GetContainerReference("demo").EnsureExists(); 
CloudBlockBlob blob = container.GetBlockBlobReference("Data.txt"); 
using (var stream = new MemoryStream("Data".Encode())) { 
    blob.UploadFromStream(stream); 
}

Conditional reads
Now that your test blob has been uploaded to storage, you can create an instance of BlobRequest-
Options and set its AccessCondition property to an appropriate value to try various conditional 
means of retrieving it. The values of this property correspond directly with the HTTP headers shown 
in Table 5-4. Let’s say that you want to retrieve the contents of the blob but only if that content 
has been updated. You may have a copy of the blob you’ve cached, and you don’t want to waste 
valuable resources continuously re-fetching the same data you already have. You want to expend re-
sources only when there is something new to retrieve. You can accomplish this using the IfModified-
Since method. First, you want to simulate what happens when the blob has not been updated by 
another party, so you pass the LastModifiedUtc property of the blob to the IfModifiedSince method, 
knowing that this condition could never be met and that you will deliberately fail, as depicted in the 
following code.

// Download blob content if newer than what we have: 
try { 
    blob.DownloadText( 
        AccessCondition.GenerateIfModifiedSinceCondition( 
            blob.Properties.LastModified.Value)); // Fails 
} 
catch (StorageException ex) { 
    Console.WriteLine(String.Format("Failure: Status={0}({0:D}), Msg={1}", 
       (HttpStatusCode)ex.RequestInformation.HttpStatusCode, 
        ex.RequestInformation.HttpStatusMessage)); 
}

You can do the inverse of the previous example by reading a blob only if its contents have not been 
modified since a specified date using the IfNotModifiedSince static method of the AccessCondition 
class. You might do this as part of a process for archiving an older date. Here is the code for this.

// Download blob content if more than 1 day old: 
try { 
    blob.DownloadText( 
        AccessCondition.GenerateIfNotModifiedSinceCondition( 
            DateTimeOffset.Now.AddDays(-1))); // Fails 
} 
catch (StorageException ex) { 
    Console.WriteLine(String.Format("Failure: Status={0}({0:D}), Msg={1}", 
       (HttpStatusCode)ex.RequestInformation.HttpStatusCode, 
        ex.RequestInformation.HttpStatusMessage)); 
}



98 PART II Blobs, tables, and queues

Conditional updates
You can perform updates conditionally, too. For example, many applications require optimistic con-
currency when updating data. You want to replace an existing blob’s contents, but only if someone 
hasn’t updated the blob since you last retrieved it. If the blob was updated by another party, consider 
your copy of the blob to be stale and handle it according to your application’s business logic for a 
concurrency collision. You accomplish this by using the static IfMatch method of the Access Condition 
class to conditionally perform an action only if the properties match. If no updates are made to the 
target blob, the ETag properties of two blobs are identical and the update succeeds. If an update 
has occurred to the targeted blob (for example, the ETag properties do not match), a StorageClient-
Exception exception is thrown.

// Upload new content if the blob wasn't changed behind your back: 
try { 
    blob.UploadText("Succeeds", 
        AccessCondition.GenerateIfMatchCondition(blob.Properties.ETag)); // Succeeds 
} 
catch (StorageException ex) { 
    Console.WriteLine(String.Format("Failure: Status={0}({0:D}), Msg={1}", 
         (HttpStatusCode)ex.RequestInformation.HttpStatusCode, 
          ex.RequestInformation.HttpStatusMessage)); 
}

When contention is encountered in an optimistic concurrency scenario, the usual countermeasure 
is to catch the exception, notify the requesting user or application of the contention, and then offer 
the option of fetching a fresh copy of the data. Generally, this means that the user has lost his revi-
sions and must reapply his edits to the fresh copy before re-attempting to save his changes.

Another common application requirement is to create a blob in storage, but only if the blob 
doesn’t already exist. You can use the asterisk wildcard character to match on any value. In the fol-
lowing code, when no properties match anything (for example, the blob does not already exist), you 
proceed with uploading. If the blob already exists, a StorageClientException is thrown. Generally, in 
production code, you should catch this exception and handle the situation according to the specific 
requirements of your application.

// Upload your content if it doesn't already exist: 
try { 
    // Fails 
    blob.UploadText("Fails", AccessCondition.GenerateIfNoneMatchCondition("*")); 
} 
catch (StorageException ex) { 
    Console.WriteLine(String.Format("Failure: Status={0}({0:D}), Msg={1}", 
        (HttpStatusCode)ex.RequestInformation.HttpStatusCode, 
         ex.RequestInformation.HttpStatusMessage)); 
}



 CHAPTER 5 Blobs  99

Blob leases

Windows Azure storage provides a locking mechanism called a lease for preventing multiple parties 
from attempting to write to the same blob. A blob lease provides exclusive write access to the blob. 
After a lease is acquired, a client must include the active lease ID with the write request. The client has 
a one-minute window from the time the lease is acquired to complete the write; however, the lease 
can be continuously renewed to extend this time indefinitely to meet your application’s needs.

A lease request may be performed in one of four modes:

■■ Acquire Request a new lease.

■■ Renew Renew an existing lease.

■■ Release Release the lease, which allows another client to immediately acquire a lease on 
the blob.

■■ Break End the lease, but prevent other clients from acquiring a new lease until the current 
lease period expires.

Taking a lease on a blob can also be used as a very convenient and inexpensive locking semantic 
for other cloud operations. For example, one Windows Azure Cloud Services instance might take a 
lease on a blob as means of signaling other instances that the resource is busy. Other instances would 
then be required to check for the existence of a lease before proceeding with a competing opera-
tion. If a lock is present, the competing operation can be held in a loop until the blob lock is released. 
When used in this manner, the blob lease acts as a traffic light. The competing instances stop when 
the traffic light is red (for example, the lock is present) and proceed when it turns green (for example, 
the lock was removed).

The following HTTP PUT request demonstrates how to acquire a lease on a blob. The query string 
comp=lease sets up the operation. The action to be taken on the lease is transmitted via the x-ms-
lease-action HTTP header, as the following example demonstrates.

PUT http://azureinsiders.blob.core.windows.net/demo/test.txt 
    ?comp=lease&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-lease-action: acquire 
x-ms-lease-duration: 30 
x-ms-date: Wed, 26 Dec 2012 08:36:22 GMT 
Authorization: SharedKey azureinsiders:YsBInVJ6NhkAIgkuUk9647JbpEthVnZR1WA0cYRM1Hc= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 0

http://azureinsiders.blob.core.windows.net/demo/test.txt
http://azureinsiders.blob.core.windows.net/demo/test.txt


100 PART II Blobs, tables, and queues

In the following Windows Azure client library code, you call the AcquireLease method on a blob 
and then show the blob’s contents in Internet Explorer to prove you can perform reads against blobs 
that have leases. Immediately after, you attempt to acquire a second lease on the same blob. Always 
wrap your attempts to acquire a lease inside of a try/catch block, and always confirm that the Web-
Exception’s status code is a Conflict status code, because the WebException could have been caused 
by any one of a number of possible conditions.

String leaseId = blob.AcquireLease(TimeSpan.FromSeconds(30), null); 
 
// Succeeds: reads are OK while a lease is obtained  
Process.Start("IExplore", blob.Uri.ToString()).WaitForExit(); 
 
// Try to acquire another lease: 
try {  
    leaseId = blob.AcquireLease(TimeSpan.FromSeconds(30), null); 
} 
catch (StorageException ex) { 
    if ((HttpStatusCode)ex.RequestInformation.HttpStatusCode != 
          HttpStatusCode.Conflict) throw; 
    Console.WriteLine(ex.RequestInformation.HttpStatusMessage); 
}

You next demonstrate that the lease prevents writing to the blob until you supply a valid lease ID.

// Fails: Writes are not OK while a lease is held: 
try { 
    blob.UploadText("Can't upload while lease held without lease ID"); 
} 
catch (StorageException ex) { 
    if ((HttpStatusCode)ex.RequestInformation.HttpStatusCode != 
          HttpStatusCode.Conflict) throw; 
    Console.WriteLine(ex.RequestInformation.HttpStatusMessage); 
} 
// Succeeds: Writes are OK if we specify a lease Id: 
try {  
    leaseId = blob.AcquireLease(TimeSpan.FromSeconds(30), null); 
} 
catch { } // Ensure we have the lease before doing the PUT

To release the lease on a blob via the RESTful API, simply execute another HTTP PUT against the 
blob’s URI by using a query string parameter comp=lease, and set x-ms-lease-action to Release, as 
shown here.

PUT http://azureinsiders.blob.core.windows.net/demo/test.txt 
    ?comp=lease&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-lease-id: a9053786-c96e-4bb9-8711-477fbd7fcb03 
x-ms-lease-action: release 
x-ms-date: Sun, 30 Dec 2012 02:29:22 GMT 
Authorization: SharedKey azureinsiders:LJEakr84hNV6nStrTAgBzZdo3k50GlHy3f2syVuRrEM= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 0

http://azureinsiders.blob.core.windows.net/demo/test.txt
http://azureinsiders.blob.core.windows.net/demo/test.txt
http://azureinsiders.blob.core.windows.net/demo/test.txt


 CHAPTER 5 Blobs  101

To release a blob using the Windows Azure client library, call the ReleaseLease method and pass in 
the lease ID, as shown in this code snippet.

blob.ReleaseLease(AccessCondition.GenerateLeaseCondition(leaseId)); 
Process.Start("IExplore", blob.Uri.ToString()).WaitForExit();

Finally, after you have released your lease on the blob, you can update its contents to demonstrate 
how the lease is no longer preventing writing to the blob. You bring the contents up in the browser to 
visually verify that the contents were updated.

           blob.UploadText("Data uploaded while lease NOT held"); 
           Process.Start("IExplore", blob.Uri.ToString()).WaitForExit();

Using block blobs

As you learned earlier in this chapter, block blobs segment your data into chunks, or blocks. The size 
of one of these chunks is 4 MB or smaller.

When you upload data using the block semantics, you must provide a block ID, which is stored 
with your data; the stream that you are uploading your data from; and an MD5 hash of your data that 
is used to verify the successful transfer but is not stored. Uploaded blocks are stored in an uncommit-
ted state. After uploading all of the blocks and calling the Commit method, the uncommitted blobs 
become committed in an atomic transaction. There is a restriction that the final blob be no greater 
than 200 GB after it is committed. An exception is thrown if this value is exceeded. If you don’t com-
mit an uploaded blob within seven days, Windows Azure storage deletes them.

The block ID is an array of 64 bytes (or fewer) that is base64-encoded for transport over the HTTP 
protocol.

Another useful characteristic of block blobs is that they can be uploaded in parallel to increase 
throughput, providing you have unused CPU power and available network bandwidth.

In the following code, you create an array of three strings (A, B, and C) that represents three dis-
tinct single-character blocks of data that you want to place in blob storage. You encode this array of 
strings into a memory stream using UTF8 encoding and then, for every block, you call the PutBlock 
method, passing your block ID, the stream containing your data, and an MD5 hash of the data being 
put into blob storage.

Hashes must be calculated and blocks must be apportioned before they can be stored, so you will 
start with the Windows Azure client library code for this example, and then look at the RESTful repre-
sentation of this code immediately thereafter.

// Put 3 blocks to the blob verifying data integrity 
String[] words = new[] { "A ", "B ", "C " }; 
var MD5 = new MD5Cng(); 
for (Int32 word = 0; word < words.Length; word++) { 
    Byte[] wordBytes = words[word].Encode(Encoding.UTF8); 



102 PART II Blobs, tables, and queues

    // Azure verifies data integrity during transport; failure=400 (Bad Request) 
    String md5Hash = MD5.ComputeHash(wordBytes).ToBase64String(); 
    blockBlob.PutBlock(word.ToBlockId(), new MemoryStream(wordBytes), md5Hash); 
}

Execution of the preceding code causes three HTTP PUT requests to be made against data stor-
age—one for each of the three blocks containing the data A, B and C. The comp=block parameter 
controls the kind of blob you are updating, and the blockid=<blockid> (where the <blockid> repre-
sents a unique block identifier).

PUT http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt 
    ?comp=block&blockid=MDAwMDA%3D&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
Content-MD5: Z0O5/MV88bFp+072x6lV0g== 
x-ms-date: Sun, 30 Dec 2012 03:02:12 GMT 
Authorization: SharedKey azureinsiders:tM/FIZZnnzdb1fFIjgD+hb/wiHH0FyFvGN1JPx82TPo= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 2 
Connection: Keep-Alive 
 
A

HTTP/1.1 201 Created 
Transfer-Encoding: chunked 
Content-MD5: Z0O5/MV88bFp+072x6lV0g== 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: 34e2df15-088f-46e1-af4e-6c10ef390940 
x-ms-version: 2012-02-12 
Date: Sun, 30 Dec 2012 03:02:15 GMT 
 
0

PUT http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt 
    ?comp=block&blockid=MDAwMDE%3D&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
Content-MD5: CUf4UWGwWRnZaUDz3hSFLg== 
x-ms-date: Sun, 30 Dec 2012 03:02:14 GMT 
Authorization: SharedKey azureinsiders:6edn0FFuqGuoe3qt9cmMtYD6OkLChpFFddBm3BEtx9k= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 2 
 
B

HTTP/1.1 201 Created 
Transfer-Encoding: chunked 
Content-MD5: CUf4UWGwWRnZaUDz3hSFLg== 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: ca5790b6-d889-43d5-ab24-a21a21617fbf 
x-ms-version: 2012-02-12 
Date: Sun, 30 Dec 2012 03:02:16 GMT 
 
0

http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt


 CHAPTER 5 Blobs  103

PUT http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt 
    ?comp=block&blockid=MDAwMDI%3D&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
Content-MD5: Q60OVNgdC/J0zJ/wCXMiQw== 
x-ms-date: Sun, 30 Dec 2012 03:02:15 GMT 
Authorization: SharedKey azureinsiders:uc4Ttlza/fqoi5lYtXpYKqbhTLQoeojDOnvAGFf5OC8= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 2 
 
C

HTTP/1.1 201 Created 
Transfer-Encoding: chunked 
Content-MD5: Q60OVNgdC/J0zJ/wCXMiQw== 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: 90adf2d6-7ea9-4b58-90a9-41d23e47de36 
x-ms-version: 2012-02-12 
Date: Sun, 30 Dec 2012 03:02:18 GMT 
 
0

All three uploaded blocks of your block blob remain in an uncommitted state until you call Commit 
on them. You can verify this by downloading a list of uncommitted block IDs using the DownLoad-
BlockList method and passing in a filter of Uncommitted. Two other values in the BlockListingFilter 
enumeration—All and Committed—allow you to download a list of all blocks or only those blocks 
that have been committed, respectively.

Console.WriteLine("Blob's uncommitted blocks:"); 
foreach (ListBlockItem lbi in blockBlob.DownloadBlockList(BlockListingFilter.Uncommitted)) 
    Console.WriteLine("   Name={0}, Length={1}, Committed={2}", 
       lbi.Name.FromBlockId(), lbi.Length, lbi.Committed); 
// Fails 
try { 
    blockBlob.DownloadText(); 
} 
catch (StorageException ex) { 
    Console.WriteLine(String.Format("Failure: Status={0}({0:D}), Msg={1}", 
        (HttpStatusCode)ex.RequestInformation.HttpStatusCode, 
         ex.RequestInformation.HttpStatusMessage)); 
}

Executing the preceding code demonstrates that the three uploaded blobs all have an uncommit-
ted status and any attempt to download the uncommitted blob will result in failure.

Blob's uncommitted blocks: 
   Name=0, Size=2, Committed=False 
   Name=1, Size=2, Committed=False 
   Name=2, Size=2, Committed=False 
Failure: Status=NotFound, Msg=The specified blob does not exist.

http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt


104 PART II Blobs, tables, and queues

You can request a list of all uncommitted blobs directly by sending an HTTP GET request to 
the blob’s URI, the query string parameter comp=blocklist, and blocklisttype=Uncommitted, as 
shown here.

GET http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt 
    ?comp=blocklist&blocklisttype=Uncommitted&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-date: Sun, 30 Dec 2012 04:28:08 GMT 
Authorization: SharedKey azureinsiders:zKdrwpdnKaQX8UKeq3COblqvMc3BDBhmmmDdWSuS4Wo= 
Host: azureinsiders.blob.core.windows.net

You are not limited to placing blocks in storage one at a time, or even in the same order that you 
have them arranged. In fact, in some applications, it may even be desirable to upload the same block 
multiple times at different positions within the blob, or to completely change the order in which the 
blocks exist. Imagine scenarios in which blocks of data are reorganized based on sorting some ele-
ment of their content.

// Commit the blocks in order (and multiple times): 
blockBlob.PutBlockList(new[] { 0.ToBlockId(), 0.ToBlockId(), 1.ToBlockId(), 2.ToBlockId() }); 
// Succeeds 
try { 
     blockBlob.DownloadText(); 
} 
catch (StorageException ex) { 
    Console.WriteLine(String.Format("Failure: Status={0}({0:D}), Msg={1}", 
         (HttpStatusCode)ex.RequestInformation.HttpStatusCode, 
         ex.RequestInformation.HttpStatusMessage)); 
} 
 
Console.WriteLine("Blob's committed blocks:"); 
foreach (ListBlockItem lbi in blockBlob.DownloadBlockList()) 
    Console.WriteLine("   Name={0}, Length={1}, Committed={2}", 
       lbi.Name.FromBlockId(), lbi.Length, lbi.Committed);

Executing the preceding code commits the changes and produces the following results, confirming 
that the blobs are now all committed and that the A blob was committed twice.

Blob's committed blocks: 
   Name=0, Size=2, Committed=True 
   Name=0, Size=2, Committed=True 
   Name=1, Size=2, Committed=True 
   Name=2, Size=2, Committed=True 
A A B C

As you might anticipate from the pattern that is emerging, you can request a list of all commit-
ted blobs directly by sending an HTTP GET request to the blob’s URI and the query string parameter 
comp=blocklist, and blocklisttype=Committed as follows.

http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt


 CHAPTER 5 Blobs  105

GET http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt 
    ?comp=blocklist&blocklisttype=Committed&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-date: Sun, 30 Dec 2012 21:52:11 GMT 
Authorization: SharedKey azureinsiders:AMEqUfAuSg6oub4/zz+aE5LB3S6qbXxSNLip0oCNOxs= 
Host: azureinsiders.blob.core.windows.net

Blocks might represent discrete segments of data that are organized like scenes in a movie, where 
you want to delete some scenes and change the order of others. The block blob API supports this 
kind of functionality. You can delete blocks just by excluding their BlockIDs from the BlockList body 
of your request, and you can reorder your blocks by changing their order in the list. This is shown in 
the following HTTP request, which deletes block 0 and saves block 2 before block 1. It may be a little 
hard to see this directly, because the BlockIDs are base64-encoded in the BlockList, but you can easily 
modify the sample code shown a little later to see how the body of the message is changed by the 
block order.

PUT http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt 
    ?comp=blocklist&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-blob-content-type: application/octet-stream 
Content-MD5: uO2OSdbs3agLOJthlv1b4w== 
x-ms-date: Sun, 30 Dec 2012 22:03:32 GMT 
Authorization: SharedKey azureinsiders:IcJMoA2vWMPVfWK0f2NzzpqwR5hi1JOuPB8poQef8D4= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 114 
Connection: Keep-Alive 
 
<?xml version="1.0" encoding="utf-8"?> 
<BlockList> 
    <Latest>MDAwMDI=</Latest> 
    <Latest>MDAwMDE=</Latest> 
</BlockList>

The following code snippet shows how you can delete blocks by excluding their BlockIDs when 
you call PutBlockList using the Windows Azure client library. In the following code snippet, you delete 
block 0 and your duplicate block 1, and save block 2 before block 1.

// You can change the block order & remove a block: 
blockBlob.PutBlockList(new[] { 2.ToBlockId(), 1.ToBlockId() }); 
// Succeeds 
try { 
    blockBlob.DownloadText(); 
} 
catch (StorageException ex) { 
    Console.WriteLine(String.Format("Failure: Status={0}({0:D}), Msg={1}", 
        (HttpStatusCode)ex.RequestInformation.HttpStatusCode, 
         ex.RequestInformation.HttpStatusMessage)); 
}

http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt


106 PART II Blobs, tables, and queues

After executing the preceding code, you can verify that block A was deleted and blob C appears 
before block B by executing an HTTP GET against the blob’s URI, as shown here.

GET http://azureinsiders.blob.core.windows.net/demo/MyBlockBlob.txt?timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-date: Mon, 31 Dec 2012 07:04:54 GMT 
Authorization: SharedKey azureinsiders:NhZ/aPp3HEtB6tMyT1NMj4BD4LRvySi8YV5/1BfQAwk= 
Host: azureinsiders.blob.core.windows.net

The full blob as committed is returned as the response to this request. You can see the C B content 
in the body of the message response.

HTTP/1.1 200 OK 
Content-Length: 4 
Content-Type: application/octet-stream 
Last-Modified: Mon, 31 Dec 2012 07:04:53 GMT 
Accept-Ranges: bytes 
ETag: "0x8CFB53C446E71CD" 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: 3523b2a0-1069-4e01-8f7a-8210f4e60612 
x-ms-version: 2012-02-12 
x-ms-lease-status: unlocked 
x-ms-lease-state: available 
x-ms-blob-type: BlockBlob 
Date: Mon, 31 Dec 2012 07:04:54 GMT 
 
C B

When you upload a blob that is greater than 32 MB, the UploadXxx operations automatically 
break your upload up into 4-MB blocks, upload each block with PutBlock, and then commit all blocks 
with the PutBlockList method. The block size can be changed by modifying the WriteBlockSizeInBytes 
property of your client proxy (for example, your instance of CloudBlobClient), as shown in the follow-
ing commented code block.

     // The client library can automatically upload large blobs in blocks: 
     // 1. Define size of "large blob" (range=1MB-64MB, default=32MB) 
     client.SingleBlobUploadThresholdInBytes = 32 * 1024 * 1024; 
 
     // 2. Set individual block size (range=1MB-4MB, default=4MB) 
     client.WriteBlockSizeInBytes = 4 * 1024 * 1024; 
 
         // 3. Set # of blocks to simultaneously upload (range=1-64, default=# CPUs) 
         client.ParallelOperationThreadCount = Environment.ProcessorCount;

Using page blobs

Page blobs add the features of random access and sparse population to the blob storage story, and 
they quintuple the maximum size from 200 MB to 1 terabyte. Page blobs were added to Windows 
Azure storage to enable development of the VHD virtual drive abstraction. They are also useful in 
fixed-length logging scenarios, where rolling overwrite of the oldest data in the log may be desired.



 CHAPTER 5 Blobs  107

The sparse feature is nice because it allows you to allocate a storage amount up to 1 terabyte, but 
you are charged only for the pages that you place in the blob, no matter how much storage space 
you allocate. When reading and writing page blobs, you’re required to read and write your data in 
page-sized chunks that begin on a page boundary.

In the following sample code, you create an array of 5 bytes (integers 1 through 5), and you write 
that data to page 0. Next, you create an array of 5 bytes (descending integers 5 through 1), and you 
write that data to page 2. There is no significance to the integers I selected for this example beyond 
demonstrating that you can read and write data in sparsely populated pages that begin on page 
boundaries.

const Int32 c_BlobPageSize = 512; 
Console.Clear(); 
CloudBlobClient client = account.CreateCloudBlobClient(); 
CloudBlobContainer container = client.GetContainerReference("demo").EnsureExists(); 
CloudPageBlob pageBlob = container.GetPageBlobReference("MyPageBlob.txt"); 
pageBlob.DeleteIfExists(); 
 
// You must create a page blob specifying its size: 
pageBlob.Create(10 * c_BlobPageSize); 
 
Byte[] data = new Byte[1 * c_BlobPageSize];  // Must be multiple of page size 
 
// Write some data to Page 0 (offset 0): 
Array.Copy(new Byte[] { 1, 2, 3, 4, 5 }, data, 5); 
pageBlob.WritePages(new MemoryStream(data), 0 * c_BlobPageSize); // Offset 0 
// Write some data to Page 2 (offset 1024): 
Array.Copy(new Byte[] { 5, 4, 3, 2, 1 }, data, 5); 
pageBlob.WritePages(new MemoryStream(data), 2 * c_BlobPageSize); // Offset 1024 
 
// Show committed pages: 
foreach (PageRange pr in pageBlob.GetPageRanges()) 
    Console.WriteLine("Start={0,6:N0}, End={1,6:N0}", pr.StartOffset, pr.EndOffset); 
 
// Read the whole blob (with lots of 0's): 
using (var stream = new MemoryStream()) { 
    pageBlob.DownloadToStream(stream); 
    data = stream.GetBuffer(); 
} 
Console.WriteLine("Downloaded length={0:N0}", data.Length); 
Console.WriteLine( 
    "  Page 0 data: " + BitConverter.ToString(data, 0 * c_BlobPageSize, 10)); 
Console.WriteLine( 
    "  Page 1 data: " + BitConverter.ToString(data, 1 * c_BlobPageSize, 10)); 
Console.WriteLine( 
    "  Page 2 data: " + BitConverter.ToString(data, 2 * c_BlobPageSize, 10));



108 PART II Blobs, tables, and queues

At this point of execution, you have only two 512-byte pages in a 10-page, sparsely populated 
blob (pages 4–9 would look identical to pages 1 and 3). The first page blob starts at byte 0 and ends 
at byte 511, and the second one starts at byte 1024 and ends at byte 1535. When you loop through 
the pages of the blob and display the bytes that are in each page, you can see that pages 0 and 2 
contain the bytes you uploaded, whereas pages 1, 3, and 4–10 all return zeros. You are being charged 
only for the two pages you stored, but the blob behaves as if all 10 pages were populated.

From this output, you might be tempted to think that uploading a page of zeros would be treated 
as a nonexistent page. Unfortunately, it would be incorrect to make such an assumption. A page must 
be cleared from the collection of pages in a blob in order for it to return to a nonexistent sparse state 
and for you to avoid being billed. You use the ClearPages method of the page blob in the code that 
follows to do this. Pages of zeros are considered part of the blob’s official population, and you will be 
billed for their storage.

Over the network, the data is transmitted as HTTP PUT requests with the query string parameter 
comp=page, the HTTP header x-ms-range indicating the byte range, and x-ms-page-write indicating 
the type of operation being performed (Update in this example).

PUT http://azureinsiders.blob.core.windows.net/demo/MyPageBlob.txt 
?comp=page&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-range: bytes=0-511 
x-ms-page-write: Update 
x-ms-date: Mon, 31 Dec 2012 07:45:32 GMT 
Authorization: SharedKey azureinsiders:MLh8U/RxECpksvMuHdgzn2KDOQ6CSUHlku4NJPb7MJI= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 512<unprintable data>

After writing the pages to blob storage, as shown in the preceding code, there are two 512-byte 
pages in a sparsely populated 5,120-byte page blob.

Start=0, End=511 
Start=1024, End=1535 
Downloaded length=5,120 
  Page 0 data: 01-02-03-04-05-00-00-00-00-00 
  Page 1 data: 00-00-00-00-00-00-00-00-00-00 
  Page 2 data: 05-04-03-02-01-00-00-00-00-00 
  Page 3 data: 00-00-00-00-00-00-00-00-00-00

You can continue modifying blobs by page. The following code shows reading a specific page 
range, clearing a set of pages, and then committing those changes.

http://azureinsiders.blob.core.windows.net/demo/MyPageBlob.txt
http://azureinsiders.blob.core.windows.net/demo/MyPageBlob.txt


 CHAPTER 5 Blobs  109

// Read a specific range from the blob (offset 1024, 10 bytes): 
using (var stream = new MemoryStream()) { 
    pageBlob.DownloadRangeToStream(stream, 2 * c_BlobPageSize, 10); 
    stream.Seek(0, SeekOrigin.Begin); 
    data = new BinaryReader(stream).ReadBytes((Int32)stream.Length); 
    Console.WriteLine("  Page 2 data: " + BitConverter.ToString(data, 0, 10)); 
} 
 
// Clear a range of pages (offset 0, 512 bytes): 
pageBlob.ClearPages(0, 512); 
 
// Show committed pages: 
foreach (PageRange pr in pageBlob.GetPageRanges()) 
    Console.WriteLine("Start={0,6:N0}, End={1,6:N0}", pr.StartOffset, pr.EndOffset);

After clearing the bytes in page 0 with the ClearPages method, only page 2 remains committed in 
this page blob. You use the GetPageRanges method to return a list of pages and then iterate over the 
result to prove that there is only one remaining with a starting position of 1,024 and an ending posi-
tion of 1,535.

Blob snapshots

Blob storage supports a very powerful feature called snapshots. Like the name might imply, snapshots 
operate in a manner similar to photographs. You can take as many snapshots of a family member over 
time as you want. The resulting set of photographic snapshots form a chronology of the changes to 
your subject over time. Likewise, a snapshot in blob storage is a record of a blob’s state at a particular 
point in time. To maintain efficient use of storage, Windows Azure storage stores only the delta be-
tween the previous version and the current version of the blob. Although snapshots may be deleted, 
they are immutable and provide an audit trail of the changes as well as a convenient mechanism for 
rolling back changes.

This powerful feature provides a rich and cost-effective versioning mechanism for your documents, 
images, and other artifacts. Consider the number of times that business documents such as sales or-
ders, purchase orders, or contracts might be revised before being agreed to. Consider also the desire 
that business people may have to keep snapshots of those documents for use in mitigating disputes.

In the RESTful API of Windows Azure storage, snapshots are identified by using an opaque value 
supplied as a query string parameter to the blob’s URI. Although the documentation states that this 
is an opaque value and can therefore be changed without notice, it sure looks a lot like a time stamp! 
The following shows an example.

http://.../cotnr/blob.dat?snapshot=2011-05-14T18:25:53.6230000Z



110 PART II Blobs, tables, and queues

Creating the original blob
To create the blob in storage for this example, issue an HTTP PUT request against blob storage as 
 follows.

PUT http://azureinsiders.blob.core.windows.net/demo/Original.txt?timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-blob-type: BlockBlob 
Content-MD5: vfup6ZfBE05+wonANUivGw== 
x-ms-date: Mon, 31 Dec 2012 08:13:20 GMT 
Authorization: SharedKey azureinsiders:7NDtxB5cV0SveodezKGFTe8NFWXGgIHgs294Aq6IrdI= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 13 
 
Original data

Windows Azure storage will respond with an HTTP status code of 201 (Created) to confirm the 
 successful upload of your data.

HTTP/1.1 201 Created 
Transfer-Encoding: chunked 
Content-MD5: vfup6ZfBE05+wonANUivGw== 
Last-Modified: Mon, 31 Dec 2012 08:13:22 GMT 
ETag: "0x8CFB545D5F2B219" 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: 579553cf-d37b-46aa-b1ed-8e4841993c02 
x-ms-version: 2012-02-12 
Date: Mon, 31 Dec 2012 08:13:20 GMT 
 
0

You can perform this action using the Windows Azure client library by uploading contents into 
blob storage after acquiring a reference to the blob, as shown here.

         // Create the original page blob (512 1s & 2s): 
         CloudBlob origBlob = container.GetBlobReference("Original.txt"); 
         origBlob.UploadText("Original data");

Creating the blob’s snapshot
The value of the SnapshotTime property contains the date and time the snapshot was taken. The 
following code retrieves the SnapshotTime value, which you can use to identify this specific blob 
 snapshot later on.

PUT http://azureinsiders.blob.core.windows.net/demo/Original.txt 
    ?comp=snapshot&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-date: Mon, 31 Dec 2012 08:13:20 GMT 
Authorization: SharedKey azureinsiders:h164Br8QbritWbEiDG8OBnUjH8B/hxiFCQ1+ZIPqwRQ= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 0

http://azureinsiders.blob.core.windows.net/demo/Original.txt
http://azureinsiders.blob.core.windows.net/demo/Original.txt
http://azureinsiders.blob.core.windows.net/demo/Original.txt


 CHAPTER 5 Blobs  111

Windows Azure responds to your snapshot request by returning another HTTP 201 (Created) status 
code similar to the following.

HTTP/1.1 201 Created 
Transfer-Encoding: chunked 
Last-Modified: Mon, 31 Dec 2012 08:13:22 GMT 
ETag: "0x8CFB545D5F2B219" 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: 6e88ae98-a68a-46e5-a734-25a76a55e92e 
x-ms-version: 2012-02-12 
x-ms-snapshot: 2012-12-31T08:13:23.0482586Z 
Date: Mon, 31 Dec 2012 08:13:21 GMT 
 
0

You can perform the same action with the client library by calling the blob’s CreateSnapshot 
method, which returns a cloud blob reference, and then caching the snapshot’s SnapshotTime 
property (which returns the value of the HTTP ETag header).

         // Create a snapshot of the original blob & save its timestamp: 
         CloudBlob snapshotBlob = origBlob.CreateSnapshot(); 
         DateTime? snapshotTime = snapshotBlob.SnapshotTime;

You can prove that the snapshot cannot be updated by attempting to upload new data into it and 
noting that it fails.

         // Try to write to the snapshot blob: 
         try { snapshotBlob.UploadText("Fails"); } 
         catch (ArgumentException ex) { Console.WriteLine(ex.Message); }

A similar attempt to upload data into the original blob, however, succeeds.

PUT http://azureinsiders.blob.core.windows.net/demo/Original.txt?timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-blob-type: BlockBlob 
Content-MD5: zgYkAjIEXVBppjaEcT9nLg== 
x-ms-date: Mon, 31 Dec 2012 08:13:21 GMT 
Authorization: SharedKey azureinsiders:sRxSV/eOIdHBsOHSQU6QMmfY1pMZl5LsqNPuQGaQkVs= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 8 
 
New data

Resulting in another HTTP result status code of 201 (Created):

HTTP/1.1 201 Created 
Transfer-Encoding: chunked 
Content-MD5: zgYkAjIEXVBppjaEcT9nLg== 
Last-Modified: Mon, 31 Dec 2012 08:13:23 GMT 
ETag: "0x8CFB545D6138160" 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: f9e86330-6de5-402a-b592-0e65abb75c03 
x-ms-version: 2012-02-12 



112 PART II Blobs, tables, and queues

Date: Mon, 31 Dec 2012 08:13:21 GMT 
 
0

Of course, you can perform this same operation using the client library. You can also add code to 
perform a comparison of the two normal and snapshot blobs for additional verification.

// Modify the original blob & show it: 
origBlob.UploadText("New data"); 
Console.WriteLine(origBlob.DownloadText());      // New data 
Console.WriteLine(); 
 
// Show snapshot blob via original blob URI & snapshot time: 
snapshotBlob = container.GetBlockBlobReference( 
"Original.txt", snapshotTime); 
Console.WriteLine(snapshotBlob.DownloadText());  // Original data

 
// Show all blobs in the container with their snapshots: 
foreach (ICloudBlob b in 
    container.ListBlobs(null, true, BlobListingDetails.Snapshots)) { 
    Console.WriteLine("Uri={0}, Snapshot={1}", b.Uri, b.SnapshotTime); 
}

Listing snapshots
If you’re using snapshots, you might find it necessary in your application to obtain a list of all of the 
snapshots that exist for your blobs. To retrieve a list of all blobs in the container, issue an HTTP GET 
command against the resource, passing the query string parameters restype=container&comp=list& 
include=snapshots&timeout=90.

GET http://azureinsiders.blob.core.windows.net/demo 
    ?restype=container&comp=list&include=snapshots&timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-date: Mon, 31 Dec 2012 08:13:21 GMT 
Authorization: SharedKey azureinsiders:xEkszk1RQ+WTGa7nfZfbP9QDQz8JWh7Fh7fPplxIvuE= 
Host: azureinsiders.blob.core.windows.net

HTTP/1.1 200 OK 
Transfer-Encoding: chunked 
Content-Type: application/xml 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: 3f3d3919-aef4-4289-97c7-4fad8d655747 
x-ms-version: 2012-02-12 
Date: Mon, 31 Dec 2012 08:13:21 GMT 
 
4D2 
<?xml version="1.0" encoding="utf-8"?> 
<EnumerationResults ContainerName="http://azureinsiders.blob.core.windows.net/demo"> 
  <Blobs> 
    <Blob> 
      <Name>Original.txt</Name> 

http://azureinsiders.blob.core.windows.net/demo
http://azureinsiders.blob.core.windows.net/demo


 CHAPTER 5 Blobs  113

      <Snapshot>2012-12-31T08:13:23.0482586Z</Snapshot> 
      <Url>http://azureinsiders.blob.core.windows.net/demo/Original.txt 
          ?snapshot=2012-12-31T08%3a13%3a23.0482586Z</Url> 
      <Properties> 
        <Last-Modified>Mon, 31 Dec 2012 08:13:22 GMT</Last-Modified> 
        <Etag>0x8CFB545D5F2B219</Etag> 
        <Content-Length>13</Content-Length> 
        <Content-Type>application/octet-stream</Content-Type> 
        <Content-Encoding /> 
        <Content-Language /> 
        <Content-MD5>vfup6ZfBE05+wonANUivGw==</Content-MD5> 
        <Cache-Control /> 
        <BlobType>BlockBlob</BlobType> 
      </Properties> 
    </Blob> 
    <Blob> 
      <Name>Original.txt</Name> 
      <Url>http://azureinsiders.blob.core.windows.net/demo/Original.txt</Url> 
      <Properties> 
        <Last-Modified>Mon, 31 Dec 2012 08:13:23 GMT</Last-Modified> 
        <Etag>0x8CFB545D6138160</Etag> 
        <Content-Length>8</Content-Length> 
        <Content-Type>application/octet-stream</Content-Type> 
        <Content-Encoding /> 
        <Content-Language /> 
        <Content-MD5>zgYkAjIEXVBppjaEcT9nLg==</Content-MD5> 
        <Cache-Control /> 
        <BlobType>BlockBlob</BlobType> 
        <LeaseStatus>unlocked</LeaseStatus> 
        <LeaseState>available</LeaseState> 
      </Properties> 
    </Blob> 
  </Blobs> 
<NextMarker /> 
</EnumerationResults> 
0

To retrieve a listing of blob snapshots in a container by using the Windows Azure client library, 
set an instance of the BlobRequestOptions class’s BlobListingDetails property equal to BlobListing-
Details.Snapshots, which is passed to the ListBlobs method of your blob container, as shown in the 
following code snippet.

// Show all blobs in the container with their snapshots: 
foreach (ICloudBlob b in container.ListBlobs(null, true, BlobListingDetails.Snapshots)) 
{ 
    Console.WriteLine("Uri={0}, Snapshot={1}", b.Uri, b.SnapshotTime); 
}

Running the preceding code produces the following output.

Original data 
Uri=http://azureinsiders.blob.core.windows.net/demo/Original.txt, 
    Snapshot=12/31/2012 8:13:23 AM +00:00 
Uri=http://azureinsiders.blob.core.windows.net/demo/Original.txt, Snapshot= 
Original data

http://azureinsiders.blob.core.windows.net/demo/Original.txt
http://azureinsiders.blob.core.windows.net/demo/Original.txt


114 PART II Blobs, tables, and queues

As stated earlier, snapshots are an immutable record of your data taken at a given point in time. 
Snapshots, like photographs, may be read, copied, or deleted, but not altered. And just as you might 
produce an altered copy of an original photograph with a photo editing program, you can produce 
an altered copy of a blob with blob snapshots. Although you cannot update a blob snapshot, you can 
clone the snapshot to make another writeable blob that can then be modified. There is an efficiency 
implemented in the Windows Azure REST API through the use of an HTTP header. This efficiency 
allows creation of the snapshot clone to be done as a single transactional request; this avoids the 
requirement of one trip to fetch the source data and another to create the clone. To use this feature, 
the destination URI establishes the target resource to be updated, and the x-ms-copy-source header 
establishes the source of the data to be copied. The following HTTP PUT request shows an example of 
cloning the Original.txt blob to a blob called Copy.txt:

PUT http://azureinsiders.blob.core.windows.net/demo/Copy.txt?timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-copy-source: http://azureinsiders.blob.core.windows.net/demo/Original.txt 
    ?snapshot=2012-12-31T08%3A13%3A23.0482586Z 
x-ms-date: Mon, 31 Dec 2012 08:13:21 GMT 
Authorization: SharedKey azureinsiders:TEhQVnfZF/kLbbTVYCpzQlCn5UHrF9QRBzSWKB0ohz8= 
Host: azureinsiders.blob.core.windows.net 
Content-Length: 0

Upon successful execution of the PUT operation, Windows Azure returns an HTTP status code 201 
(Created).

HTTP/1.1 202 Accepted 
Transfer-Encoding: chunked 
Last-Modified: Mon, 31 Dec 2012 08:13:23 GMT 
ETag: "0x8CFB545D63BA3D7" 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: 2b087f91-b3eb-4cc6-844f-b45e4de85aeb 
x-ms-version: 2012-02-12 
x-ms-copy-id: ebe42e0e-4094-4aff-a244-32a951f00562 
x-ms-copy-status: success 
Date: Mon, 31 Dec 2012 08:13:21 GMT 
 
0

Using the Windows Azure client library, you can clone a snapshot of the blob by creating the tar-
get blob (in this case, Copy.txt), and then calling the CopyFromBlob method, passing an instance of 
the snapshot blob in as an argument. The following code demonstrates this technique.

// Create writable blob from the snapshot: 
CloudBlockBlob writableBlob = container.GetBlockBlobReference("Copy.txt"); 
writableBlob.StartCopyFromBlob(snapshotBlob); 
Console.WriteLine(writableBlob.DownloadText()); 
writableBlob.UploadText("Success"); 
Console.WriteLine(writableBlob.DownloadText());

http://azureinsiders.blob.core.windows.net/demo/Original.txt
http://azureinsiders.blob.core.windows.net/demo/Original.txt
http://azureinsiders.blob.core.windows.net/demo/Original.txt


 CHAPTER 5 Blobs  115

Deleting snapshots
You can delete a blob and all of its snapshots, or you can delete individual snapshots from a blob; 
however, you are not allowed to delete a blob without also deleting all of its snapshots.

DELETE http://azureinsiders.blob.core.windows.net/demo/Original.txt?timeout=90 HTTP/1.1 
x-ms-version: 2012-02-12 
User-Agent: WA-Storage/2.0.0 
x-ms-delete-snapshots: include 
x-ms-date: Mon, 31 Dec 2012 08:13:21 GMT 
Authorization: SharedKey azureinsiders:IAOrqcWDrjJUTBkM6jg+YKC6gL0CJvTTBVFai+wC8mQ= 
Host: azureinsiders.blob.core.windows.net

Upon successful deletion of your blob and all of its snapshots, the Windows Azure storage service 
returns an HTTP status code 202 (Accepted) response.

HTTP/1.1 202 Accepted 
Transfer-Encoding: chunked 
Server: Windows-Azure-Blob/1.0 Microsoft-HTTPAPI/2.0 
x-ms-request-id: f2c4f4a4-0319-4c27-a16a-e9bb28078fd6 
x-ms-version: 2012-02-12 
Date: Mon, 31 Dec 2012 08:13:21 GMT 
 
0

When using the Windows Azure client library, snapshot deletion behavior is controlled by the 
DeleteSnapshotsOption property of an instance of the BlobRequestOptions class, which is passed as 
an argument to the Delete method of the blob to be deleted. An example of deleting a blob and its 
snapshots follows.

// DeleteSnapshotsOption: None (blob only; throws StorageException if snapshots exist), 
// IncludeSnapshots, DeleteSnapshotsOnly 
origBlob.Delete(DeleteSnapshotsOption.IncludeSnapshots);

Continuation tokens and blobs

A pagination mechanism for data that can be presented in a tabular format is often required be-
cause humans generally cannot digest more than a page of information at one time. Also, you want 
to ensure that the data being requested is appropriate for the query and not a mistake, because you 
are dealing with potentially massive databases in the cloud. It can take a lot of resources to compute 
and transmit billions of rows of data over the wire. Windows Azure must also take into account its 
own scalability; a large query can block or significantly impede many smaller queries, because those 
smaller queries may have to wait or compete for resources. Continuation tokens, as introduced in 
Chapter 4, allow Windows Azure storage to return a smaller subset of your data. A continuation token 
imposes upon you, however, to ask for subsequent pages of your data by passing you back a continu-
ation token that you must then use to call back to retrieve subsequent pages of your query. Windows 
Azure storage refers to these pages of data as segments.



116 PART II Blobs, tables, and queues

Blobs are not tabular data, so you do not have to anticipate continuation tokens when retrieving 
blobs; however, some of the API does return tabular data such as retrieving a list of blobs stored in a 
container. Because a container can have an unlimited number of entries, you should always anticipate 
that you may receive a continuation token back from any request that you make by calling an xxx-
Segmented retrieval method.

Console.Clear(); 
CloudBlobClient client = account.CreateCloudBlobClient(); 
 
// ListContainers/BlobsSegmented return up to 5,000 items 
const Int32 desiredItems = 5000 + 1000;  // Try to read more than the max 
 
// Create a bunch of blobs (this takes a very long time): 
CloudBlobContainer container = client.GetContainerReference("manyblobs"); 
container.EnsureExists(); 
for (Int32 i = 0; i < desiredItems; i++) 
    container.GetBlockBlobReference(String.Format("{0:00000}", i)).UploadText(""); 
 
// Enumerate containers & blobs in segments 
for (ContainerResultSegment crs = null; crs.HasMore(); ) { 
    crs = client.ListContainersSegmented( 
      null, ContainerListingDetails.None, desiredItems, crs.SafeContinuationToken()); 
    foreach (var c in crs.Results) { 
        Console.WriteLine("Container: " + c.Uri); 
        for (BlobResultSegment brs = null; brs.HasMore(); ) { 
            brs = c.ListBlobsSegmented(null, true, BlobListingDetails.None, 
                desiredItems, brs.SafeContinuationToken(), null, null); 
            foreach (var b in brs.Results) Console.WriteLine("   Blob: " + b.Uri); 
        } 
    } 
}

In the preceding code, the value of the ContinuationToken property of the ResultSegment will be 
either a continuation token or null when there are no more results to read. The following extension 
method, which is included in the Wintellect Azure Power Library, was used to simplify the program-
ming model. It does this by supplying a Boolean indicator that controls exiting the for-loop when no 
more result segments are available. 

public static BlobContinuationToken SafeContinuationToken( 
          this ContainerResultSegment crs) { 
   return (crs == null) ? null : crs.ContinuationToken; 
}Blob request options

As used in the preceding code examples, instances of BlobRequestOptions may be passed as argu-
ments to blob operations to augment the behavior of a request. The BlobRequestOptions class is an 
assortment of loosely related properties that are applicable during different kinds of operations. Only 
Timeout and RetryPolicy are used by all data access storage requests. Table 5-6 describes the proper-
ties of BlobRequestOptions.



 CHAPTER 5 Blobs  117

TABLE 5-6 BlobRequestOptions properties and their impact on requests

BlobRequestOptions  
properties

Impact on requests 

Timeout Used for all blob operations. The timespan allowed for a given operation to complete 
before a timeout error condition, which is handled according to the RetryPolicy prop-
erty. See Chapter 4 for more information.

RetryPolicy Used for all blob operations. Controls the retry policy used when accessing data. See 
Chapter 4 for more information.

AccessCondition Used only when performing conditional operations. Controls the conditions for 
selecting data based on an ETag value (for example, If-Match, If-Non-Match, If-
Modified-Since, and If-Not-Modified-Since).

CopySourceAccessCondition Used only when performing conditional copy operations on blobs. Controls the 
conditions for selecting data based on an ETag value (for example, If-Match, 
If-Non-Match, If-Modified-Since, and If-Not-Modified-Since).

DeleteSnapshotsOption Used only when performing delete operations on blobs. IncludeSnapshots deletes the 
blob and all of its snapshots; DeleteSnapshotsOnly deletes the snapshots only (leaving 
the blob); None.

BlobListingDetails Used only when performing blob list operations. Controls the data that is included in 
the list. Options include the following:

All lists all available committed blobs, uncommitted blobs, and snapshots, and returns 
all metadata for those blobs.

■■ Metadata retrieves blob metadata for each blob returned in the listing.
■■ None lists only committed blobs and does not return blob metadata.
■■ Snapshots lists committed blobs and blob snapshots.
■■ UncommittedBlobs lists committed and uncommitted blobs.

UseFlatBlobListing Used only when performing blob list operations.

Conclusion

The purpose of this chapter was to provide you with a thorough understanding of how to securely 
perform data operations against the blob storage service. You were first introduced to how primary 
data operations are accomplished against the two kinds of blobs supported by Windows Azure stor-
age and the organizations container structure that encapsulates them. You learned how to navigate 
this structure as if it was a hierarchical directory using the storage API and about the metadata that 
can be used to augment them.

This chapter then explained the special high-value use of public anonymous containers for sup-
plying Internet-addressable content to your applications. Finally, you learned about many advanced 
features, such as conditional operations, leases, Shared Access Signatures, Shared Access Policies, 
snapshots, and continuation tokens.



Index

 195

Symbols and numbers
$logs container, 179
$root container, 75
4GL support, 6
200 (OK) HTTP status code, 85
201 (Accepted) HTTP status code, 82
201 (Created) HTTP status code, 129
202 (Accepted) HTTP status code, 37
204 (No Content) HTTP status code, 127
304 (Not Modified) HTTP status code, 96
400 (Bad Request) HTTP status code, 45, 81, 164
403 (Forbidden) HTTP status code, 45
404 (Not Found) HTTP status code, 45
409 (Conflict) HTTP status code, 37, 45
412 (Precondition Failed) HTTP status code, 96, 154
440 (Bad Request) HTTP status code, 169
500 (Internal Error) HTTP status code, 45
503 (Service Unavailable) HTTP status code, 45

A
abstraction types, 15
AccessCondition class

IfMatch method, 98
IfNotModifiedSince method 97

AccessCondition property (BlobRequestOptions class), 
97, 117

AccountKey parameter, 56
AccountName parameter, 56
accounts. See storage accounts
ACID transactions, 11
AcquireLease method, 100
AddObject method, 128
addressing queues, 162
addressing tables, 121
affinity groups, 30, 46
AffinityGroup element, 35, 39

analytics, 25
Analytics Services, REST interface activation, 193
anonymous (public) read-only blob access, 81, 82, 85
APIs

RESTful, 24
Service Management. See Service Management API

architecture, 18
components, of 19

arithmetic operators, in table queries, 136
AsTableServiceQuery method, 138
Atom feeds, 190
Atom formats, 130
audience for book, xv
authentication, 53

certificates for, 30, 34
HTTP header, 53
signature, constructing, 54

availability, queues and, 160
Azure data storage. See Windows Azure data storage

B
background needed for book, xv
Basics method, 127
Binary Large Objects. See blobs
bit rot, repairing, 21
blob containers, 72

$logs, 179
$root, 75
creating, 82
displaying all, 180
hierarchies for, 76
limitless nature of, 73
listing contents of, 94
listing, continuation tokens for, 59
listing, for storage account, 83



196

blob containers (continued)
naming, 81
navigating, 76
overview of, 73
permissions for, 85
populating, 84
security and, 81
shared access policies, 90
shared access policies, limit on, 92
Shared Access Signatures, 88
sharing and, 73
storage structure of, 74
system properties, 93

BlobContainerPermissions object, PublicAccess 
property, 85

BlobEndpoint parameter, 57
BlobListingDetails property (BlobRequestOptions 

class), 95, 113, 117
BlobRequestOptions class

AccessCondition property, 97
BlobListingDetails property, 113
DeleteSnapshotsOption property, 115
ListBlobsSegmented method, 79
properties for, 117
UseFlatBlobListing property, 76, 79

blobs
addressing of, 73
anonymous (public) read-only access, 81, 82, 85
in base address of URL, 75
block, 72, 101
blocks in, 72
business use cases for, 74
committed, listing, 104
committing, 103
conditional operations, 95, 97, 117
continuation tokens, 115
cost of storage space in, 73
creating, 110
delimiters in names, 76
extents and, 20
information contained in, 72
leasing, 99
listing, continuation tokens for, 60
list operations, 117
message queues and, 160
metadata, 93
naming, 81
naming conventions for, 75, 181
naming rules, 164
overview of, 16, 72

page, 72, 106
pagination for, 115
partition keys, 23
partitioning, 23
performance targets for, 65
permissions for, 85
reading, conditionally, 97
retrieving list of, 95
retry policy, 117
scalability of, 23, 72, 74
Shared Access Signatures, 88
size restrictions on, 72
snapshots of, 109, 110
snapshots of, cloning, 114
snapshots of, comparing with current, 112
snapshots of, deleting, 115, 117
snapshots of, listing, 112
sparse population, 106
storage structure of, 74
system properties, 93
timeout setting, 117
uncommitted, listing, 104
updating, conditionally, 98
uploading, automatic segmentation when, 106
URLs for, 73
uses for, 72

block blobs, 72, 101
block size, changing, 106
committing, 103
deleting blocks, 105

blockBlob class
DownLoadBlockList method, 103
PutBlock method, 101

blocks, 72
deleting, 105
IDs for, 101

business use cases, for blobs, 74

C
canonicalized resources, 54
capacity metrics, 184, 190
certificates, 30, 34
ClearPages method (blobs), 108
client library table types, 124
client library, Windows Azure. See Windows Azure 

client library,
cloning,

blob snapshots, 114
table entities, 141

BlobContainerPermissions object, PublicAccess property



 197

CloudBlobClient class, ListBlobsWithPrefix  
method, 79

CloudBlobDirectory class, GetSubdirectory  
method, 79

CloudTable type, 132
Code element, 45
code samples

downloading, xviii
installing, xviii

comma-separated values. See CSV format
CompareTo method (String type), 141
compensation code, 152
concurrency in table operations, 153
conditional operations

for blobs, 95
HTTP headers for, 96
reads, 97
settings for, 117
updates, 98
with Windows Azure client library, 96

confidentiality, 49
connection strings

example configuration, 55
for .NET SDK, 55
parameters for, 56

consistency of data. See data consistency
containers, blob. See blob containers
Content Delivery Network (CDN), caching data in 

geographical proximity, 66
Content-Type HTTP header, 33
continuation tokens, 150

for blob container lists, 59
for blob storage, 60
for blobs, 115
client library support for, 62
extension methods for, 64
for queue lists, 60
and segmented reads, 58
for table storage, 61
planning for, 59

CopySourceAccessCondition property 
(BlobRequestOptions class), 117

cost of data transfer, 30
cost of storage space, 73
CreateCloudTableClient method, 127, 130
CreateSnapshot method (blobs), 111
cross-table consistency, 152
CSRun command-line tool, 48
CSV format, 4

D
data centers, 17

geographical affinity groups, 46
monitoring health of, 18
virtual tour of, 17

data confidentiality, 49
data consistency, 15

ensuring, with concurrency, 153
Data Interchange Format (DIF) files. See DIF files
data isolation, 49, 50, 52
data operations, 134
data segment reads. See segmented reads
data storage, types of, 15. See also Windows Azure 

data storage
data storage URL, 33
data transfer cost, 30
databases. See also relational databases

connection strings, 55
federated, 10
flat file, 4
hierarchical, 8
merging data in, 10
network, 10
NoSQL, 10
relational, 7
types of, 3
Windows Azure, 11

date and time, ISO 8601 format, 54
dBase, 6
DefaultEndpointsProtocol parameter, 56
Delete method, 115
DELETE verb (HTTP), 171
DeleteMessage method, 172
DeleteSnapshotsOption property 

(BlobRequestOptions class), 115, 117
deleting

message queues, 175
messages, 171

deleting storage accounts 44
delimiters, commas as, 4
delimiters in blob names, 76
dequeue count of messages, 168, 170, 173
DequeueCount property, 173
Description element, 35, 39
deserializing entities, 131
DevelopmentStorageProxyUri parameter, 57
DIF files 4

example of, 6
format segments, 5
second-line data descriptors, 5

 DIF files



198

disjointed work, queues and, 161
distributed file system (DFS) layers, 19

error detection by, 21
extents in, 20
failure mitigation, 20

distributed file system (DFS) servers, redundancy  
in, 20

distributed work, queues and, 161
DownLoadBlockList method (blockBlob class), 103
downloading, example code, xviii
drive storage, 72
DSInit command-line tool, 46
dynamic replication, 20
dynamic scalability, 58

reliablity concerns and, 64

E
election system, queues as, 162
Endpoint element, 39
entities, 16

casting to class ,147
cloning, 141
creating, 126
custom properties, 123
defined, 120
filtering, 127
mixed, storing together, 124
multiple types, 142
naming, 124
ordering, 141
partitions for, 122
properties of, 122
serializing and deserializing, 131
structure of, 120
updating, 132
updating properties, 127
visualizing, 124

entity group transactions (EGTs), 124
Equals method (String type), 141
error codes. See HTTP status codes
error conditions, retrying 65
escaping characters, 138
ETag property, 94
eventual consistency, 15, 20
example code

downloading, xviii
installing, xviii

expiration time of messages, 168
extents, 20

F
failure conditions, 65
failure mitigation

block blobs and, 72
for distributed file system (DFS) layers, 20
fault domains and, 21
for front-end (FE) layers, 19
for partition layers, 19
strategies, 66

fault domains, overview of, 21
federated databases, 10
FetchAttributes method (blobs), 95, 182
Fiddler, 24
file name extensions

for blobs, 75
for certificates, 34

filePro, 6
FilterBuilder class, 140
filtering

entities, 127
vs. sorting, in tables, 142

flat file databases, 4
front-end (FE) layers, 19

G
geo-location, 14

primary, 22
geo-replication, 14, 22
geographic regions for data centers, 17
geographical areas

affinity groups for, 46
RSS feeds targeted to, 18
selecting for storage accounts, 30

GetDataServiceContext method, 127
GetMessage method, 167
GetSharedAccessSignature method (blobs), 90
GetSubdirectory method (CloudBlobDirectory  

class), 79

H
hardware failure mitigation. See failure mitigation
hashing, 54. See also authentication
hierarchical blob container setup, 76
hierarchical databases, 8

XML documents as, 9

disjointed work, queues and



 199

high availability
fault domains and, 21
replication and, 20

HTTP
DELETE verb, 171
MERGE verb, 127
POST verb, 129, 164
PUT verb, 127, 163

HTTP headers, 33
for authentication, 53
for blob leases, 99
for conditional operations, 96
for listing committed blobs, 104
for metadata, 94
for public blob access, 85
for requesting uncommitted blobs, 104
for table storage continuation, 61

HTTP status codes, 64
200 (OK), 85
201 (Accepted), 82
201 (Created), 129
202 (Accepted), 37
204 (No Content), 127
304 (Not Modified), 96
400 (Bad Request), 45, 81, 164
403 (Forbidden), 45
404 (Not Found), 45
409 (Conflict), 37, 45
412 (Precondition Failed), 96, 154
440 (Bad Request), 169
500 (Internal Error), 45
503 (Service Unavailable), 45
overview of, 45

HTTP traffic, monitoring, 24

I
If-Match HTTP header, 153
If-Modified-Since header, 96
IfMatch method (AccessCondition class), 98
IfModifiedSince method (blobs), 97
IfNotModifiedSince method (AccessCondition  

class), 97
IgnoreMissingProperties property, 133
initializing storage in emulator, 46
installing, sample code, xviii
ISO 27001 certification, 15
ITableEntity interface, 144

J
JSON format, 131

K
keys, primary and secondary. See primary and 

secondary keys
KindTableEntity class, 145, 149

L
Label element, 35, 39
large data stores, NoSQL for, 11
last update wins method of concurrency, 155
LastModifiedUtc property, 94
leasing blobs, 99
library ports, 24
ListBlobsSegmented method (BlobRequestOptions 

class), 79
ListBlobsWithPrefix method (CloudBlobClient  

class), 79
ListContainers method, 84
load leveling, queues and, 161
Location element 35, 39
logging, 25, 179

activating, 193
blob names and, 181
metadata o,n 182
settings for, 179

logical operators, in table queries, 135
logs, viewing all, 180
long-running work, queues and, 161

M
management certificates, 30
MD5 hash, 54. See also authentication
MERGE verb (HTTP), 127
MergeOption enumeration, 134
messages

count, retrieving, 171
creating queues, 163
deleting, 171
deleting queues, 175
extending lifespan of, 161
metadata, retrieving, 171
naming rules, 164
peek, 169

 messages



200

messages (continued)
poison, 170, 173
pop receipts, 169
posting to queues, 164
publish/subscribe, 162
purging unprocessed, 160
querystring parameters for, 165, 167
queue addressing, 162
response properties, 168
retrieving from queue, 166
size limitations on, 160
timeout settings, 167
timeout settings for, 165
URLs to, 163
visibility timeout settings, 167

metadata
attribute values, 183
for blobs, 93
on logs, 182
retrieving from messages, 171

metrics, 25, 183
activating, 193
capacity, 190
for transactions, 186
retrieving, 188
settings for, 185
types of, 185

Microsoft Certificate Manager, file name extensions 
and, 34

Microsoft .NET Framework SDK, 55
Microsoft platform development, 46
Microsoft.WindowsAzure.StorageClient.dll  

assembly, 55
mitigating failure. See failure mitigation
multi-tenancy, 49

complete sharing scenario, 52
separate subscription strategy, 49
Service Management API and, 33
shared subscription and account strategy, 51
shared subscription strategy, 50

N
naming

blob containers, 81
blobs, 75, 76, 81
entities, 124
properties, 124
tables, 124

navigating, blob containers 76
.NET Framework SDK, 55
network databases, 10
normalization, 14
NoSQL data storage, 15
NoSQL databases, 10
NuGet packages, 140

O
OData (Open Data) protocol, 130, 190

entities without properties in, 133
RESTful principles, 130
URI expression operators, 135

optimistic concurrency, 153
organization of book, xvi
orphan collectors, 152

P
page blobs, 72, 106
paginating data, 150
partition keys, 23, 52, 121

creating, 123
defining, 143
selecting, 150
table queries with, 140
table queries without, 139

partition layers, 19
partitions, overview of 122
partition servers, routing for 19
PartitionKey property, 121, 122, 123
passwords. See also primary and secondary keys

generating new, 42
in multi-tenancy scenario, 50

peak workloads, load leveling for 161
peek messages, 169
performance targets, 64
permissions

for blob containers, 85
for blobs. See Shared Access Signatures,
revoking, from Shared Access Signatures, 93
Shared Access Signatures, 88

pessimistic concurrency, 156
poison messages, 170, 173
policies, for shared access. See shared access policies,
pop receipts, 169

outdated, updating/deleting messages with, 174
portal for Windows Azure, 27

metadata



 201

ports, 24
posting messages to queues, 164
POST verb (HTTP), 129, 164
POX format, 131
practice exercises in book, system requirements  

for, xvii
prefixing storage account names, 37
pricing, 25
primary and secondary keys, 32

encrypting, 50
in multi-tenancy scenario, 50
regenerating, 42
retrieving, 41
rotation cycle, 42

primary keys, 14, 123
creating, 150
designing, 141
formation of, 122
queries by, 135

properties, naming 124
public read-only access. See anonymous (public) 

read-only blob access
PublicAccess property (BlobContainerPermissions 

object), 85
publish/subscribe messaging, 162
PUT verb (HTTP), 127, 163
PutBlock method (blockBlob class), 101

Q
queries. See table queries
QueueEndpoint parameter, 57
QueuePatterns class 164
queues, 152

addressing, 162
availability and, 160
business use cases for, 160
creating, 163
deleting, 175
deleting messages from, 171
disjointed work and, 161
distributed work and, 161
as election system, 162
extents and, 20
limitations on, 159
listing, continuation tokens for, 60
load leveling and, 161
long-running work and, 161
naming rules, 164

overview of, 16, 159
partition keys, 23
partitioning, 23
performance targets for, 65
poison messages, 170, 173
pop receipts, 169
posting messages to, 164
publish/subscribe messaging and, 162
purging unprocessed messages from, 160
retrieving messages from, 166
scalability of, 23

R
read-only containers. See blobs
reading blobs conditionally, 97
recovery code, 65
redundancy, relational databases and 7
referential integrity, 152
regenerating primary and secondary keys, 42
relational database tables, 7
relational databases, 3, 7

cloud servers for, 8
file-based, 6
redundancy elimination by, 7
vs. Windows Azure data storage, 14

ReleaseLease method (blobs), 101
releasing blob leases, 100
reliability concerns, 64

failure conditions, 65
failure mitigation strategies, 66
performance targets and, 64
Transient Fault Handling Application Block, 67

reliability concerns, recovery code 65
reliability guarantee, 21
replication, 19, 22

bit rot and, 21
of data, 17. See also data centers
dynamic, 20
fault domains and, 21
geo-replication, 14, 22
high availability and, 20
overview of, 14

request headers, 33
request logging, 179
resource allocation, partition keys and 23
RESTful APIs, 24

Analytics Services and, 193
table queries with, 135

 RESTful APIs



202

RESTful principles, 130
ResultContinuation class, 63
ResultSegment<T> class, 62
retrieving messages from queues, 166
retrying failed operations, 65
RetryPolicy delegate, 65
RetryPolicy property (BlobRequestOptions class), 117
rolling upgrades ,22
row keys

defining, 143
table queries without, 139

RowKey property, 122, 123
rows. See entities
RSS feeds, for Windows Azure services, 18

S
SafeDeleteMessage method, 172, 174
SaveChangesOptions enumeration, 134
SaveChangesWithRetries method, 128
scalability, 14

by storage type, 23
targets for, 23

schema properties 125
schema mixing, 124
secondary keys. See primary and secondary keys
security

Shared Access Signatures, 88
trusted application model, 82

segmented queries, 150
segmented reads, 58

extension methods for, 64
semi-structured data, 120
serializing entities, 131
Service Management API

certificates used by, 30
data storage URL, 33
documentation for, 32
multi-tenancy and, 33
URL structure, 29

ServiceName element, 35, 39
SetPermissions method (BlobContainerPermissions 

class), 86
shared access policies

for blob containers, 90
creating, 90, 91
maximum number, per blob container, 92
storing, 91

Shared Access Signatures, 88
creating, 89
example of, 88
granular control of, 91
permissions allowable with, 89
query string segments, 89
revoking permissions for, 93
security concerns with, 89
stored access policies and, 91

SharedAccessSignature parameter, 57
sharing, blobs and, 73
signed identifiers, 91
snapshots (blob storage), 109

cloning, 114
comparing with current blobs, 112
creating, 110
deleting, 115, 117
listing, 112
time stamps for, 109

SnapshotTime property, 111
software development kits (SDKs), 24
sorting tables, 142

vs. filtering, 142
source code, 24
SQL Azure, 8
status codes, HTTP. See HTTP status codes
Status element, 39
storage accounts, 120

blob structure in, 75
code for, 35
compartmentalizing, for security, 82
creating, 34
deleting, 44
geographical area for, selecting, 30
keys for, 82
listing blob containers for, 83
maximum number of 30
naming, 30, 35, 37
passwords, generating new, 42
performance target for, 65
primary and secondary keys, 32, 41, 42
properties schema, 39
renaming, impossibility of, 39
retrieving properties, 37
separate, in multi-tenancy scenario, 49
sharing, in multi-tenancy scenario, 51
updating properties, 39

RESTful principles



 203

Storage Analytics, 25
metrics, 183
request logging, 179

Storage Client library, 55, 80
storage emulator, 46

initializing data in, 46
shutting down, 48
starting, 48
UI, displaying, 48
URL for, 73

storage library ports, 24
Storage Management API, HTTP headers used by 33
storage nodes, 14

Content Delivery Network (CDN), 66
storage topology. See topology
storage types, 11. See also blobs; queues; tables
stored access policies, signed identifiers, 91
subscribing to Windows Azure, 27, 29
system requirements for practice exercises, xvii

T
table addressing, 121
table containers, defined 120
table entities. See entities
table queries

$filter parameter, 135
by primary key, 135
operators in, 135
overview of, 134
partition keys and, 150
without partition keys/row keys, 139
by RESTful API, 135
segmenting, 150
URI escape constraints, 138
with Windows Azure client library, 136

Table service, 130
TableEndpoint parameter, 57
tables

addressing, 121
concurrency, 153
continuation HTTP headers, 61
creating, 129
cross-table consistency, 152
defined, 120
extents and, 20
multiple entity types in, 142
naming, 124
ordering entities, 141

orphan collectors for, 152
overview of, 16, 120
partitioning, 23
partition keys, 23
performance targets for, 65
queues for, 152
in relational databases, 7
row identifiers, 61
scalability of, 23
sorting, 141, 142
sorting, vs. filtering, 142
storage structure, 120
types of, 124

TableServiceContext class, 143
TableServiceContext type, 131
TableServiceEntity class, 143
TableServiceEntity type, 143
time and date, ISO 8601 format, 54
Timeout property (BlobRequestOptions class), 117
Timestamp property, 122, 123

opaqueness of, 126
topology, 18

components of, 19
transaction metrics, 184, 186
transient errors, 64, 67
Transient Fault Handling Application Block, 67
trusted application security model, 82

U
unauthenticated public access. See anonymous 

(public) read-only blob access
updating blobs conditionally, 98
updating entities, 127, 132
updating storage account properties, 39
upgrade domains, overview of 21
upgrades, mitigating impact of 21
uploading blobs, automatic segmentation of 106
URIs, escape constraints 138
Url element, 39
URLs

for blobs, 73, 75
for data storage, 33
for message queues ,162
for storage emulator, 73

UseDevelopmentStorage parameter, 56
UseFlatBlobListing property (BlobRequestOptions 

class), 76, 79, 117
user-defined metadata. See metadata

 user-defined metadata



204

V
Virtual IP (VIP) addresses, 19
VisiCalc, 4
Visual Studio integration, 46

W
Windows Azure

administrative account, 29
subscribing to, 27, 29
subscription certificates for, 30, 34
table storage, 8

Windows Azure client library
conditional operations using, 96
continuation token support, 62
table queries with, 136

Windows Azure data centers, 17
monitoring health of, 18
virtual tour of, 17

Windows Azure data storage11
abstraction types, 15
advantages of, 13
features of, 14
vs. relational databases, 14

Windows Azure SDKs, for .NET Framework 55
Windows Azure Service Bus queues, 162
Windows Azure Storage Analytics. See Storage 

Analytics
Windows Live ID, associating with Windows Azure, 

28, 29
Wintellect Power Azure Library, 63
Wintellect Windows Azure Power Library NuGet 

package, xviii
WriteBlockSizeInBytes property, 106

X
x.509 authentication certificates, 30, 34
x-ms-blob-public-access header, 85
x-ms-lease-action header, 99
x-ms-range header, 108
x-ms-request-id HTTP header, 37
x-ms-version HTTP header, 33, 37
XML documents, as hierarchical databases 9

Virtual IP (VIP) addresses



About the author

PAUL MEHNER has been a software developer, architect, project manager, consultant, 
speaker, mentor, instructor, and entrepreneur for more than three decades. He is 
cofounder of the South Sound .NET User Group, one of the oldest recorded .NET user 
groups in the world, and was one of the earliest committee members of the Interna-
tional .NET Association (INETA). He also works for Wintellect as a Senior Consultant 
and Trainer.

Currently, Paul specializes in cloud computing on the Windows Azure platform, Service 
Oriented Architectures, Security Token Servers, Windows Communication Foundation, 
Windows Identity Foundation, and Windows Workflow Foundation. Prior to being 
reborn as a .NET protagonist in 2000, Paul’s experience included more than 20 years 
supporting many flavors of the UNIX operating system. Paul began his early computing 
career in 1977 on a homebuilt breadboard computer with 256 bytes of RAM, 12 toggle 
switches, 9 light-emitting diodes, and an RCA CDP1802 microprocessor.





  
  

  
 

  

 

SurvPage_Corp_02.indd   1 5/19/2011   4:18:12 PM

What do 
you think of
this book? 
We want to hear from you! 
To participate in a brief online survey, please visit: 

microsoft.com/learning/booksurvey 

Tell us how well this book meets your needs—what works effectively, and what we can 
do better. Your feedback will help us continually improve our books and learning 
resources for you. 

Thank you in advance for your input! 


	Cover
	Copyright page

	Dedication
	Contents at a glance
	Table of contents
	Foreword
	Introduction
	Who should read this book
	Assumptions

	Who should not read this book
	Organization of this book
	Conventions and features in this book
	System requirements
	Code samples
	Installing the code samples 
	Using the code samples

	Acknowledgments
	Errata & book support
	We want to hear from you
	Stay in touch

	Chapter 2: Windows Azure data storage overview
	Feature-rich data storage for almost any application
	Data storage abstractions
	Blobs
	Tables
	Queues

	Windows Azure data centers
	Storage topology
	Failure management and durability
	Front-end layer failure mitigation
	Partition layer failure mitigation
	Distributed File System layer failure mitigation

	Fault and upgrade domains
	Fault domains
	Upgrade domains

	Replication, geo-replication, and reliability
	Dynamic scalability
	RESTful APIs
	Software development kits
	Pricing
	Analytics and metrics
	Conclusion

	Chapter 5: Blobs
	Blob basics
	Block blobs
	Page blobs

	Blob containers
	Blob addressing
	Business use cases
	Blob storage structure
	Navigating blob container hierarchies
	Storage Client library blob types
	Container and blob naming rules
	Performing create, read, update, and delete blob operations
	Blob container security
	Anonymous (public) read-only blob access
	Setting blob container permissions

	Shared Access Signatures and shared access policies
	Shared Access Signature
	Creating a shared access policy
	Applying a shared access policy to a blob container
	Storing access policies
	Revoking SAS permissions

	Blob attributes and metadata
	Conditional operations
	Conditional operations using REST
	Conditional operations using the Windows Azure client library

	Blob leases
	Using block blobs
	Using page blobs
	Blob snapshots
	Creating the original blob
	Creating the blob’s snapshot
	Listing snapshots
	Deleting snapshots

	Continuation tokens and blobs
	Conclusion

	Index



