

Microsoft Visual Basic
2013 Step by Step

Michael Halvorson

Copyright © 2013 by Michael Halvorson
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6704-4

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, O’Reilly Media, Inc., Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Kristen Brown

Editorial Production: Zyg Group, LLC

Technical Reviewer: Tim Patrick

Copyeditor: Richard Carey

Indexer: Bob Pfahler

Cover Design: Twist Creative • Seattle

Cover Composition: Randy Comer

Illustrator: Rebecca Demarest

Third Printing: December 2014

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents at a glance

Introduction	 xvii

Part I	 INTRODUCTION TO VISUAL STUDIO DEVELOPMENT

Chapter 1	 Visual Basic 2013 development opportunities
	 and the Windows Store	 3

Chapter 2	 The Visual Studio Integrated Development Environment	 17

Chapter 3	 Creating your first Windows Store application	 43

Chapter 4	 Windows desktop apps: A walkthrough
	 using Windows Forms	 79

Part II	 DESIGNING THE USER INTERFACE

Chapter 5	 Working with Windows Store app controls	 111

Chapter 6	 Working with Windows Forms controls	 147

Chapter 7	 XAML markup step by step	 191

Chapter 8	 Using XAML styles	 215

Chapter 9	 Exploring Windows 8.1 design features:
	 Command bar, flyout, tiles, and touch	 235

Chapter 10	 Creating console applications	 267

Part III	 VISUAL BASIC PROGRAMMING TECHNIQUES

Chapter 11	 Mastering data types, operators, and string processing	 291

Chapter 12	 Creative decision structures and loops	 341

Chapter 13	 Trapping errors by using structured error handling	 375

Chapter 14	 Using arrays, collections, and generics to manage data	 397

Chapter 15	 Innovative data management with LINQ	 435

Chapter 16	 Object-oriented programming techniques	 459

Part IV	 DATABASE AND WEB PROGRAMMING

Chapter 17	 Database controls for Windows desktop apps	 489

Chapter 18	 Data access for Windows Store apps	 515

Chapter 19	 Visual Studio web development with ASP.NET	 543

iv	 Contents at a glance

Part V	 MICROSOFT WINDOWS PHONE PROGRAMMING

Chapter 20	 Introduction to Windows Phone 8 development	 587

Chapter 21	 Creating your first Windows Phone 8 application	 607

Index	 641

About the author	 671

		 v

Contents

Introduction. xvii

Part I	 INTRODUCTION TO VISUAL STUDIO DEVELOPMENT

Chapter 1	 Visual Basic 2013 development opportunities and the
Windows Store	 3

Visual Basic 2013 products and opportunities . 4

An impressive range of development opportunities
and platforms. 5

Taking a multiplatform approach to learning Visual Basic. 7

Evaluating the Windows Store. 8

What is the Windows Store?. 8

Accessing the Windows Store . 9

Sales information and price tiers. 10

Or your application could be free…. 11

Planning ahead for certification. 12

Windows Store requirements checklist . 12

It’s all in the details . 15

Summary. .16

Chapter 2	 The Visual Studio Integrated Development
Environment	 17

Getting started. 18

The Visual Studio development environment. 19

Important tools in the IDE. 22

Organizing tools in the IDE . 24

The Designer and XAML markup . 25

Running and testing Windows Store apps. 30

Working with the Properties window. 33

vi	 Contents

Organizing the programming tools. 36

Moving and docking tools. 37

Hiding tool windows. 38

Configuring the IDE for step-by-step exercises. 39

Exiting Visual Studio. 42

Summary. .42

Chapter 3	 Creating your first Windows Store application	 43
Lucky Seven: A Visual Basic app for the Windows Store. 44

Programming step by step. 44

Designing the user interface. 45

Final property settings and adjustments. 61

Writing the code. 63

A look at the SpinButton_Click event handler. 67

Running Windows Store apps. 68

Creating a splash screen for your app. 70

Building an executable file . 74

Summary. .78

Chapter 4	 Windows desktop apps: A walkthrough using
Windows Forms	 79

Inside Windows desktop apps . 80

Visual Basic and Windows desktop apps. 81

Creating a Windows desktop app. 83

Setting properties. 93

The picture box properties. 97

Naming objects for clarity. 98

Writing the code. 99

Behind the scenes in the SpinButton_Click event handler. 101

Running the Lucky Seven desktop app. 103

Building an executable file . 104

	 Contents	 vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Publishing a Windows desktop app . 105

Summary. .107

Part II	 DESIGNING THE USER INTERFACE

Chapter 5	 Working with Windows Store app controls	 111
Understanding Windows Store app controls. 112

Roots in Windows Presentation Foundation and XAML 112

Designing for Windows 8.1 . 113

Using the TextBox control to receive input . 113

Assigning TextBox contents to a variable. 118

Multiline TextBox controls. .120

Check spelling in a TextBox control . 124

Using the FlipView control to display a series of images. 127

Using the MediaElement control to play entertainment media. 133

Use the WebView control to display live web content. 141

Summary. .146

Chapter 6	 Working with Windows Forms controls	 147
Using the DateTimePicker control. 148

Controls for gathering input. 154

Using the CheckBox control. 155

Using group boxes and radio buttons. 159

Processing input with list boxes. 164

Adding menus by using the MenuStrip control. 169

Menu features. 170

Adding access keys to menu commands. 172

Processing menu choices. 175

Adding toolbars with the ToolStrip control . 180

viii	 Contents

Using dialog box controls. 183

Event handlers that manage common dialog boxes 185

Summary. .190

Chapter 7	 XAML markup step by step	 191
Introduction to XAML . 192

XAML in the Visual Studio IDE. 192

XAML in Blend for Visual Studio. 193

XAML elements . 194

Namespaces in XAML markup. 196

Examining XAML project files. 196

Adding XAML elements using the Code Editor. 202

Summary. .213

Chapter 8	 Using XAML styles	 215
Introduction to XAML styles. 215

Where did StandardStyles.xaml go?. 216

Creating new XAML styles. 217

Considering the scope of a style. 218

Sample markup for a new XAML style. 219

Referencing a style. 220

Using explicit and implicit styles. 220

Practicing XAML styles. 221

Building new styles from existing styles. 228

IDE shortcuts for applying styles. 231

Summary. .233

Chapter 9	 Exploring Windows 8.1 design features:
Command bar, flyout, tiles, and touch	 235

Creating a command bar to manage common tasks. 236

Command bar features. 237

Designing your command bar. 238

Command bar practice step by step. 240

	 Contents	 ix

Using the Flyout control to collect input and display information. 243

Designing custom tiles for your app. 249

The Assets folder. 249

Required tiles and uses. 249

Programming live tiles . 257

Planning for touch input. 259

XAML controls handle touch automatically 259

Common gestures. 260

Usability considerations . 262

Security and permissions settings. 263

Summary. .266

Chapter 10	 Creating console applications	 267
Console applications in Visual Studio. 268

Creating a console application . 268

Modules and procedures. 270

The Sub Main() procedure. 271

Interactive math games. 275

Find the number. 275

Simulating dice. 280

Building, publishing, and running console apps. 284

Summary. .288

Part III	 VISUAL BASIC PROGRAMMING TECHNIQUES

Chapter 11	 Mastering data types, operators, and
string processing	 291

Strategies for declaring variables and constants. 292

The Dim statement . 292

Defining constants. 295

Guidelines for naming variables and constants. 296

Data types and the ListBox control . 297

x	 Contents

Operators and formulas. 304

Arithmetic operators. 305

Advanced arithmetic operators. 308

Shortcut operators. 313

How Visual Basic calculates formulas. 314

Converting data types. 315

The ToString method. 316

The Parse method. 316

The Convert class. 318

Older type conversion functions and their uses. 319

Processing strings with the String class. 320

Common tasks. 320

Sorting text. 322

Working with ASCII codes . 323

Sorting strings in a text box. 325

Examining the Sort Text program code. 328

Protecting text with basic encryption. 331

Using the Xor operator. 334

Examining the encryption program code. 336

Summary. .339

Chapter 12	 Creative decision structures and loops	 341
Event-driven programming. 342

Using conditional expressions. 343

If…Then decision structures. 344

Testing several conditions in an If…Then decision structure. 344

Using logical operators in conditional expressions. 349

Short-circuiting by using AndAlso and OrElse. 352

Mastering Select Case decision structures. 353

Using comparison operators with a Select Case structure. 355

Mastering For…Next loops . 361

Using a loop to fill a TextBox with string data. 362

	 Contents	 xi

Complex For…Next loops. 363

The Exit For statement. 367

Writing Do loops. 368

Avoiding an endless loop. 369

Converting temperatures. 370

Using the Until keyword in Do loops. 372

Summary. .373

Chapter 13	 Trapping errors by using structured error handling	 375
Processing errors by using the Try…Catch statement. 376

When to use error handlers. 376

Setting the trap: the Try…Catch code block 377

Path name and drive errors. 378

Windows Store apps and built-in exception handling. 383

Writing a flash drive error handler. 384

Using the Finally clause to perform cleanup tasks. 385

More complex Try…Catch error handlers. 387

The Exception object. 387

Specifying a retry period . 390

Using nested Try…Catch blocks. 392

Comparing error handlers with defensive programming techniques. . . 393

The Exit Try statement. 394

Summary. .395

Chapter 14	 Using arrays, collections, and generics to
manage data	 397

Working with arrays of variables. 398

Creating an array. 398

Declaring an array with set elements. 399

Setting aside memory. 400

Working with array elements. 401

Declaring an array and assigning initial values. 402

Creating an array to hold temperatures . 404

The GetUpperBound and GetLowerBound methods 404

xii	 Contents

Setting an array’s size at runtime. 409

Preserving array contents by using ReDim Preserve. 414

Using ReDim for three-dimensional arrays. 415

Processing large arrays by using methods in the Array class. 416

The Array class. 416

Get your sort on. 422

Working with collections. 422

Creating collections and generic lists. 423

Declaring generic collections. 424

Sample app with generic list and background image. 425

Summary. .433

Chapter 15	 Innovative data management with LINQ	 435
LINQ tools and techniques. 435

Fundamental query syntax. 436

Extracting information from arrays. 437

Using LINQ with collections . 450

Using LINQ with XML documents. 454

Summary. .458

Chapter 16	 Object-oriented programming techniques	 459
Inheriting a form by using the Inheritance Picker. 460

Creating your own base classes. 466

Adding a new class to your project. 467

Inheriting a base class . 476

Polymorphism. 480

Syntax for overriding methods and properties. 480

Referring to the base class with MyBase . 481

Experimenting with polymorphism . 481

Summary. .486

	 Contents	 xiii

Part IV	 DATABASE AND WEB PROGRAMMING

Chapter 17	 Database controls for Windows desktop apps	 489
Database programming with ADO.NET. 490

Database terminology. 490

Working with an Access database. 492

The Data Sources window . 501

Using toolbox controls to display database information. 506

SQL statements and filtering data. 509

Summary. .514

Chapter 18	 Data access for Windows Store apps	 515
Data binding in XAML. 516

A variety of data sources . 516

Binding elements. 516

Binding a control to a class . 517

Using a collection as a source of data. 522

Accessing data in XML documents . 526

Reading an XML file. 526

Searching for items in an XML file. .533

Writing to an XML file. 536

A user interface for data entry. 540

Summary. .541

Chapter 19	 Visual Studio web development with ASP.NET	 543
Inside ASP.NET. 544

Web Forms . 545

ASP.NET MVC. 546

Web Pages (with Razor) . 547

HTML5 and JavaScript. 548

Building a Web Forms website with ASP.NET. .550

Software requirements for ASP.NET development 550

Essential steps. 551

Webpages vs. Windows Forms . 552

xiv	 Contents

Using the Web Designer. 557

Adding server controls to a website . 561

Writing event handlers for webpage controls. 563

Customizing the website template . 570

Displaying database records on a webpage . 573

Editing document and site master properties. 581

Summary. .584

Part V	 MICROSOFT WINDOWS PHONE PROGRAMMING

Chapter 20	 Introduction to Windows Phone 8 development	 587
Opportunities in the Windows Phone 8 platform. 588

Key Windows Phone 8 features. 589

Hardware requirements . 590

Integration and collaboration. 590

The Windows Phone Store . 591

What is the Windows Phone Store?. 591

Accessing the Windows Phone Store. 591

How much money do developers make?. 595

Planning ahead for certification. 595

Working with Windows Phone SDK 8.0 . 596

Downloading the SDK. 598

Comparing Windows Phone 8 and Windows Store platforms. 600

Differences . 601

Similarities. 603

Summary. .605

Chapter 21	 Creating your first Windows Phone 8 application	 607
Creating a Windows Phone project. 608

Designing the Golf Caddy user interface. 614

Writing the code. 617

Testing Windows Phone apps. 620

	 Contents	 xv

Application life cycle considerations. 626

Closing or deactivating?. 626

The PhoneApplicationSerivce class . 628

Life cycle management with the IsolatedStorageSettings class. . . 636

Setting options in the Window Phone manifest file. 637

Summary. .639

Index	 641

About the author	 671

		 xvii

Introduction

Microsoft Visual Basic 2013 is an important upgrade and enhancement of the popu-
lar Visual Basic programming language and compiler, a technology that enjoys an

installed base of millions of programmers worldwide. Visual Basic 2013 is not a stand-
alone product but a key component of Microsoft Visual Studio 2013—a comprehensive
development system that allows you to create powerful applications for Microsoft
Windows 8.1, the Windows desktop, the web, Windows Phone 8, and a host of other
environments.

Whether you purchase one of the commercial editions of Visual Studio 2013 or you
download Visual Basic Express 2013 for a free test-drive of the software, you are in for
an exciting experience. The latest features of Visual Basic will increase your productivity
and programming prowess, especially if you enjoy using and integrating information
from databases, entertainment media, webpages, and websites. In addition, an impor-
tant benefit of learning Visual Basic and the Visual Studio Integrated Development
Environment (IDE) is that you can use many of the same tools to write programs for
Microsoft Visual C# 2013, Microsoft Visual C++ 2013, HTML5 and JavaScript, and other
popular languages.

Microsoft Visual Basic 2013 Step by Step is a comprehensive introduction to Visual
Basic programming using the Visual Basic 2013 software and Windows 8.1. I’ve
designed this practical, hands-on tutorial with a variety of skill levels in mind. In my
opinion, the best way to master a complex technology like Visual Basic is to follow the
premise that programmers learn by doing. Therefore, by reading this book and working
through the examples, you’ll learn essential programming techniques through carefully
prepared tutorials that you can complete on your own schedule and at your own pace.

Although I have significant experience with college teaching and corporate proj-
ect management, this book is not a dry textbook or an “A to Z” programmer’s refer-
ence; instead, it is a practical hands-on programming tutorial that puts you in charge
of your learning, developmental milestones, and achievements. By using this book,
programmers who are new to this topic will learn Visual Basic software development
fundamentals in the context of useful, real-world applications; and intermediate Visual
Basic programmers can quickly master the essential tools and techniques offered in the
Visual Basic 2013 and Windows 8.1 upgrades.

I’ve taken a multiplatform approach in this book, so in addition to learning Visual
Basic programming skills you’ll learn to create a wide variety of applications, including
Windows Store apps, Windows Forms (Windows desktop) apps, console apps, web apps

xviii   Introduction

(ASP.NET), and Windows Phone 8 apps. Each of these application types has a place and
a purpose in real-world development.

To complement this comprehensive approach, the book is structured into 5 topically
organized parts, 21 chapters, and dozens of step-by-step exercises and sample pro-
grams. By using this book, you’ll quickly learn how to create professional-quality Visual
Basic 2013 applications for the Windows operating system, Windows Phone 8 platform,
and a variety of web browsers. You’ll also have fun!

Who should read this book

This is a step-by-step programming tutorial for readers who enjoy learning to do new
things by doing them. My assumption is that you already have some experience with
programming, possibly even an earlier version of Visual Basic, and that you are ready to
learn about the Visual Studio 2013 product in the context of building applications that
you can market in the Windows Store, Windows Forms (Windows desktop) for personal
and enterprise purposes, web (ASP.NET) applications that run in browsers, and apps for
the Windows Phone 8 platforms.

This book’s content will supply you with concrete Visual Basic coding techniques as
well as a broad overview of programming strategies suitable for Visual Basic develop-
ment. The book’s extensive collection of step-by-step exercises has a broad focus; they
are written for technical people who understand programming and are not simply
targeted toward hobbyists or absolute beginners. In addition, you will learn about the
capabilities of the Windows 8.1 operating system and the specific design guidelines that
Microsoft recommends for Windows 8.1 and Windows Phone 8 applications.

Assumptions
This book is designed to teach readers how to use the Visual Basic programming
language. You will also learn how to use the Visual Studio 2013 IDE and development
tools. This book assumes no previous experience with Visual Studio 2013, but it is
written for readers who understand programming and are not absolute beginners. I
assume that you are familiar with programming basics or have studied some version of
BASIC or Visual Basic in the past and are now ready to move beyond elementary skills
to platform-specific techniques.

If you have no prior knowledge of programming or Visual Basic, you might want to
fill in some of the gaps with my introduction to Visual Basic 2012 and Windows Store
development, Start Here! Learn Visual Basic 2012 (Microsoft Press, 2012). From time

	 Introduction   xix

to time, I will refer to the exercises in that book to give you additional resources for
your learning.

Microsoft Visual Basic 2013 Step by Step also assumes that you have acquired and
are running the Windows 8.1 operating system and that you want to learn how to
create applications for the Windows Store platform and other environments. To make
the most of your programming practice, you will need to know a little about how to
perform common tasks in Windows 8.1, how to customize the Start page and user
interface, how to work with information on the web, and how to adjust basic system
settings. If you also have Windows 8.1 installed on a tablet or touchpad device, all the
better, because a fundamental design emphasis of Windows 8.1 is to make touch and
gestures a natural way to manipulate content. You can build your applications on a
laptop or desktop running Visual Studio 2013 and Windows 8.1 and then test out the
applications on your tablet or touchpad.

In terms of the Visual Studio software, I assume that you are using one of the full,
retail versions of Visual Studio 2013, such as Visual Studio Professional, Premium, or
Ultimate. This will enable you to create the full range of application types that I describe
in this book, including Windows Store apps, Windows Forms (Windows desktop) apps,
console apps, Web Forms (ASP.NET) apps, and Windows Phone 8 apps.

If you don’t have access to a full, retail version of Visual Studio 2013, you can experi-
ment with the Visual Studio 2013 software by downloading free versions of the suite
designed for specific platforms. These limited-feature or “Express” versions of Visual
Studio 2013 are called Express for Windows, Express for Windows Desktop, Express for
Windows Phone, and Express for Web. The Visual Studio website (http://www.microsoft.
com/visualstudio) provides access to the retail and Express versions of Visual Studio, and
it explains the differences among all of the available versions.

Who should not read this book

You might be disappointed with this book if you are already a knowledgeable Visual
Basic programmer and are just looking to explore the new features of Visual Studio
2013. The Step By Step series is targeted toward readers who are professional develop-
ers but who have little to no previous experience with the topic at hand. If you are an
advanced Visual Basic developer, you are likely to grow weary of the step by step exer-
cises that introduce essential features such as decision structures, XAML markup, data
access strategies, or using the .NET Framework.

http://www.microsoft.com/visualstudio
http://www.microsoft.com/visualstudio

xx   Introduction

Developers who have a lot of experience will feel that I’m exploring the obvious—
but what is obvious to experienced programmers often isn’t obvious at all to someone
who is learning to use a new development platform. If Windows Store or Windows
Phone programming with Visual Basic is a new concept for you, this is the place to start.

Organization of this book

This book is divided into five sections, each of which focuses on a different aspect
or technology within the Visual Studio software and the Visual Basic programming
language. Part I, “Introduction to Visual Studio development,” provides an overview of
the Visual Studio 2013 IDE and its fundamental role in .NET application creation and
then moves into step-by-step development walkthroughs on the Windows Store and
Windows Forms (Windows desktop) platforms.

Part II, “Designing the user interface,” continues the focus on application creation in
the Visual Studio IDE, emphasizing the construction of Windows Store apps, Windows
Forms (Windows desktop) apps, and console apps. In particular, you’ll learn how to
work with XAML markup, XAML styles, important controls, and new Windows 8.1
design features, including command bar, flyout, tiles on the Windows Start page, and
touch input.

Part III, “Visual Basic programming techniques,” covers core Visual Basic program-
ming skills, including managing data types, using the .NET Framework, structured error
handling, working with collections and generics, data management with LINQ, and
fundamental object-oriented programming skills.

Part IV, “Database and web programming,” introduces data management tech-
niques in Windows desktop and Windows Store applications, including binding data to
controls and working with XML documents and Microsoft Access data sources. You’ll
also get an overview of ASP.NET web development strategies, along with a complete
walkthrough of web development on the Web Forms (ASP.NET) platform.

Finally, Part V, “Microsoft Windows Phone programming,” provides an overview
of the features and capabilities presented by the Windows Phone 8 platform. You’ll
identify key hardware characteristics in the Windows Phone ecosystem, the market-
ing opportunities tendered by the Windows Phone Store, and you’ll create a complete
Windows Phone 8 app step by step.

	 Introduction   xxi

Finding your best starting point in this book
This book is designed to help you build skills in a number of essential areas. You can use
it if you’re new to programming, switching from another programming language, or
upgrading from Visual Studio 2010 or Visual Basic 2012. Use the following table to find
your best starting point in this book.

If you are … Follow these steps

New to Visual Basic programming 1.	 Install the sample projects as described in
the section “Installing the code samples,”
later in this Introduction.

2.	 Learn essential skills for using Visual
Studio and Visual Basic by working
sequentially from Chapter 1 through
Chapter 21.

3.	 Use the companion book Start Here!
Learn Microsoft Visual Basic 2012 for
additional instruction as your level of
experience dictates.

Upgrading from Visual Basic 2010 or 2012 1.	 Install the sample projects as described in
the section “Installing the code samples.”

2.	 Read Chapter 1, skim Chapters 2 through
4, and complete Chapters 5 through 21.

Interested primarily in creating Windows
Store apps for Windows 8.1

1.	 Install the sample projects as described in
the section “Installing the code samples.”

2.	 Complete Chapters 1 through 3, Chapter
5, Chapters 7 through 16, and Chapter
18.

Interested primarily in creating Windows
Forms (Windows desktop) apps for
Windows 8.1, Windows 8, or Windows 7

1.	 Install the sample projects as described in
the section “Installing the code samples.”

2.	 Complete Chapters 1 through 2, Chapter
4, Chapter 6, Chapter 10, and Chapters 11
through 17.

xxii   Introduction

Conventions and features in this book

This book presents information using the following conventions designed to make the
information readable and easy to follow:

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

■■ The names of all program elements—controls, objects, methods, functions,
properties, classes, variable names, and so on—appear in italics.

■■ As you work through steps, you’ll occasionally see tables with lists of properties
that you’ll set in Visual Studio. Text properties appear within quotes, but you
don’t need to type the quotes.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (including some code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (for example, File | Close)
means that you should select the first menu or menu item, then the next, and
so on.

System requirements

You will need the following hardware and software to work through the examples in
this book:

■■ The Windows 8.1 operating system. (Depending on your Windows configura-
tion, you might also require Local Administrator rights to install or configure
Visual Studio 2013.) Note that while the full versions of Visual Studio 2013 do
support earlier versions of Windows, such as Windows 8 and Windows 7 SP1,
the features described in this book require Windows 8.1, and the screen shots
will all show this environment.

	 Introduction   xxiii

■■ A full retail edition of Visual Studio 2013, required for completing all of the
exercises in this book (Visual Studio 2013 Professional, Premium, or Ultimate).
The Visual Studio website (http://www.microsoft.com/visualstudio) explains the
differences among these versions. Alternatively, you can experiment with the
Visual Studio 2013 software by downloading free versions of the suite designed
for specific platforms. The limited-feature versions of Visual Studio 2013 are
called Express for Windows, Express for Windows Desktop, Express for Windows
Phone, and Express for Web. You will need to download all four of these
Express versions to get the necessary software to complete the book’s exercises.
(However, even with these Express editions, there will be a few gaps; for exam-
ple, you will be unable to complete Chapter 10, “Creating console applications.”)

■■ An Internet connection to view Visual Studio help files, try out the Windows
Store and Windows Phone Store, and download this book’s sample files.

■■ A computer with 1.6 GHz or faster processor.

■■ 1 GB RAM (32-bit) or 2 GB RAM (64-bit).

■■ 16 GB available hard disk space (32-bit) or 20 GB (64-bit) for Windows 8.1.

■■ DirectX 9 graphics device with WDDM 1.0 or higher driver.

■■ 1024 × 768 minimum screen resolution.

If you want to use touch for user input, you’ll need a multitouch-capable laptop,
tablet, or display. A multitouch-capable device is optional for the exercises in this book,
although one is useful if you want to understand what such devices are capable of.
Typically, a programmer will develop software on a desktop or laptop computer and
then test multitouch functionality on a multitouch-capable device.

Although this book develops applications for Windows Phone 8, a Windows Phone is
not required to complete the book’s step-by-step exercises.

http://www.microsoft.com/visualstudio

xxiv   Introduction

Code samples

Most of the chapters in this book include step-by-step exercises that let you interac-
tively try out new material learned in the main text. All sample projects can be down-
loaded from the following page:

http://aka.ms/VB2013_SbS/files

Follow the instructions to download the Visual_Basic_2013_SBS_Sample_Code.zip file.

Installing the code samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book:

1.	 Unzip the Visual_Basic_2013_SBS_Sample_Code.zip file that you downloaded
from the book’s website. (Name a specific directory along with directions to
create it, if necessary.) I recommend My Documents\Visual Basic 2013 SBS for
the files.

2.	 If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

Using the code samples
The code samples .zip file for this book creates a folder named Visual Basic 2013 SBS
that contains 19 subfolders—one for each of the chapters in the book that have exer-
cises. To find the examples associated with a particular chapter, open the appropriate
chapter folder. You’ll find the examples for that chapter in separate subfolders. The
subfolder names have the same names as the examples in the book. For example, you’ll
find an example called Music Trivia in the My Documents\Visual Basic 2013 SBS\Chapter
02 folder on your hard drive. If your system is configured to display file extensions of
the Visual Basic project files, look for .sln as the file extension. Depending on how your
system is configured, you might see a Documents folder rather than a My Documents
folder.

	 Introduction   xxv

Acknowledgments

This book is a very substantial revision of an earlier Visual Basic Step by Step book
published by Microsoft Press. In fact, in almost every way, it is an entirely new book,
and it is the first programming title that I have written specifically to be a multiplatform
guidebook, covering Visual Basic development on the Windows Store, Windows Forms,
Web Forms, and Windows Phone platforms. I am very grateful to the many talented
programmers and editors who offered their ideas and contributions to this volume.

At Microsoft Press, I would like to thank Devon Musgrave for his early enthusiasm
for the project and for connecting me to team members in the Visual Studio product
group. At O’Reilly Media, I would like to thank again Russell Jones, who discussed many
of the topics in this book with me and offered technical and practical suggestions for
completing the work on schedule. I am also grateful to Tim Patrick, a technical reviewer
and experienced author and developer, who worked on both this Step by Step volume
and the companion book, Start Here! Learn Microsoft Visual Basic 2012. (Perhaps we
will work on a history book someday as well, Tim!)

Within the editorial group at O’Reilly Media, I would like to thank Kristen Brown, for
scheduling the editorial review and answering questions about the design; and Richard
Carey, for his skillful copy editing and managing all style and localization issues that
arose. (It is good to work with you again, Richard!) I would also like to thank Rebecca
Demarest, Kim Burton-Weisman, and Linda Weidemann for their important artistic,
editorial, and technical contributions.

I am also most grateful to the Microsoft Visual Studio 2013 development team for
providing me with the preview and release candidate software to work with. In addi-
tion, I would like to thank the Microsoft Windows 8.1 team for their support and offer
my special thanks to the many MSDN forum contributors who asked and answered
questions about Visual Basic and Windows programming.

Finally, I offer thanks and admiration to my immediate family for their continued
support of my writing projects and various academic pursuits. Once again I was able
to involve my son, Henry Halvorson, with the creation of electronic music and artwork,
and his contributions appear in Chapters 3, 4, 5, and 9.

xxvi   Introduction

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://aka.ms/VB2013_SbS/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback is our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

You can also learn more about Michael Halvorson’s books and ideas at
http://michaelhalvorsonbooks.com.

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress
http://michaelhalvorsonbooks.com

		 43

C H A P T E R 3

Creating your first Windows Store
application

After completing this chapter, you will be able to

■■ Design the user interface for a Windows Store app.

■■ Use XAML controls in the Toolbox.

■■ Work with random numbers, digital photos, and sound effects.

■■ Write Visual Basic program code for an event handler.

■■ Create a splash screen for your Windows Store app.

■■ Save, test, and build a Windows Store app.

As you learned in Chapter 2, "The Visual Studio Integrated Development Environment," the
Microsoft Visual Studio 2013 IDE is ready to help you build your Visual Basic applications. In this

chapter, you'll dive right in and create a Visual Basic program for the Windows Store. As a complete
walkthrough exercise, this chapter describes the essential steps that you will complete each time that
you create a Visual Basic application in the Visual Studio 2013 IDE. In future chapters, you'll learn
more about the diversity of application types that you can create with Visual Studio, including apps
for the Windows Store, the Windows desktop, the console, the web, and Windows Phone. After you
learn the core Visual Basic programming skills, you'll find that all of these application types have much
in common.

In this chapter, you'll learn how to create a Las Vegas-style slot machine for the Windows Store.
You'll design the user interface for the program with XAML controls in the Toolbox, and you'll adjust
property settings and resize objects on the page with tools in the IDE. As part of the process, you'll
use the TextBlock control to display random numbers, the Image control to insert a digital photo-
graph, and the MediaElement control to play a sound effect when the user spins the number 7. To
create the core functionality of the Windows Store app, you'll write Visual Basic program code for an
event handler. Finally, you'll create a splash screen for the app, save and test the app in the IDE, and
build an executable file that can be launched from the Windows Start page.

44   PART I  Introduction to Visual Studio Development

Lucky Seven: A Visual Basic app for the Windows Store

The Windows Store app that you're going to construct is Lucky Seven, a game program that simulates
a lucky number slot machine. Lucky Seven has a simple user interface and can be created and com-
piled in just a few minutes by using Visual Studio 2013. Here's what your program will look like when
it's finished:

Programming step by step

The Lucky Seven user interface contains one button, three text block objects to display lucky num-
bers, a digital photo depicting cash winnings, and a text block containing the title "Lucky Seven." I
produced these elements by creating five visible objects on the Lucky Seven page and then changing
several properties for each object. I also added a MediaElement control to the page, which is not vis-
ible at runtime, to play a special sound effect when the user wins the game.

After I designed the basic user interface, I added program code for the Spin button to process the
user's button clicks and to display random numbers on the page. Finally, I created a splash screen for
the app and prepared it for distribution by using tools in the Visual Studio IDE.

To re-create Lucky Seven, you'll follow five essential programming steps that will be the same for
most of the projects that you create with Visual Studio. You'll design the user interface with Toolbox

	 Chapter 3  Creating your first Windows Store application    45

controls, adjust important property settings, write Visual Basic code, prepare a splash screen and
other required elements, test the program, and build an executable file.

Designing the user interface

In this exercise, you'll start building Lucky Seven by first creating a new project and then using XAML
controls for Windows Store apps to construct the user interface.

Create a new project

1.	 Start Visual Studio 2013.

2.	 On the Visual Studio File menu, click New Project.

The New Project dialog box opens, as shown here:

The New Project dialog box provides access to the major template types available for creating
applications with Visual Studio. On the left side of the dialog box is a list of the many template
types available. Because the most recent language selection I made in this dialog box was
Visual Basic, the Visual Basic templates are currently visible, but other programming templates
and resources are also offered, including those for Visual C#, Visual C++, and JavaScript.

46   PART I  Introduction to Visual Studio Development

3.	 In the Visual Basic template group, click the Blank App (XAML) project if it is not already
selected.

When you use the Blank App template, Visual Studio will create a basic Windows Store app
project with default tiles, splash screen, manifest, and startup code, but no predefined con-
trols or layout. Note that other app types are available (which we'll get to later), including
Windows (that is, Windows desktop), Web, and Windows Phone.

4.	 In the Name text box, type My Lucky Seven.

Visual Studio assigns the name My Lucky Seven to your project. (You'll specify a folder loca-
tion for the project later.)

Important  I'm recommending the "My" prefix here so that you don't confuse your
new app with the Lucky Seven project I've created for you on disk. However, you'll
see that I don't use the "My" prefix myself in the instructions, sample projects, or
screen shots in the book—I am leaving that for your use.

If the New Project dialog box contains Location and Solution Name text boxes, you need to
specify a folder location and solution name for your new programming project now. Refer
to Chapter 2, in the section "Configuring the IDE for step-by-step exercises," to learn how to
adjust when these text boxes appear. As I noted in Chapter 2, I will be asking you to specify
a location when you first save your project—a step that is typically near the end of each
exercise.

5.	 Click OK to create the new project in Visual Studio.

Visual Studio prepares the IDE for a new programming project and displays Visual Basic code
associated with the blank application template. Your screen will look like this:

	 Chapter 3  Creating your first Windows Store application    47

What you see here is standard startup code for a Windows Store app created in Visual Studio
2013, and the code is stored in the file App.xaml.vb within the project. Although each project
contains an App.xaml file, your work in this chapter will begin with the app's user interface,
which is stored in the MainPage.xaml file.

Note  The section beginning #If DEBUG Then near the center of this illustration dis-
plays debugging information on the screen when the Windows Store app is executed
in debugging mode, and it is designed for testing purposes. This code was present
in the final Visual Studio 2013 software release and displays information about how
long various tasks are taking during the execution of the Visual Studio app, including
the frame rate for the user interface thread and how long it took (in milliseconds) to
load the user interface. If you want to suppress the debugging information, remove
the code between the #If DEBUG and #End If statements. For more information
about the meaning of the debugging counters that appear at the top of the screen
during testing, see EnableFrameRateCounter on http://msdn.microsoft.com.

You'll display that user interface now in the Designer and enhance it with Toolbox controls.

http://msdn.microsoft.com

48   PART I  Introduction to Visual Studio Development

Navigate the Designer

1.	 Open Solution Explorer if it is not currently visible, and then double-click the file MainPage.xaml.

Visual Studio opens MainPage.xaml in a Designer window and shows the upper-left corner of
the app's main page. Below this page, you'll see the Code Editor with several lines of XAML
markup associated with the user interface page in the Designer. As you add controls to the
app page in the Designer, the Code Editor reflects the changes by displaying the XAML state-
ments that will create the user interface. Your screen should look like this:

Each time that you create a Windows Store app with Visual Basic and Visual Studio, you'll
use Toolbox controls and XAML markup to design the user interface. This technique will be
new to Visual Basic programmers who have primarily created Windows applications by using
the technology known as Windows Forms. (You will have used the Toolbox but not XAML
markup.) However, XAML will be somewhat familiar to programmers who have created
Windows applications using Windows Presentation Foundation (WPF) or Windows Phone.

Now let's review how the Designer works.

2.	 Click the scroll box in the Designer's vertical scroll bar, and drag it down.

When you drag a scroll box in the Designer window, you can see more of the user interface
you are working on.

	 Chapter 3  Creating your first Windows Store application    49

3.	 Click the scroll box in the Designer's horizontal scroll bar, and drag it right. (Likewise, when
you drag a horizontal scroll box, you can see hidden parts of the user interface.)

Near the lower-left corner of the Designer, you'll see a Zoom tool, which allows you to zoom
in on the current application page (to see more detail) or zoom out (to see more of the page).
The current value of the Zoom tool is 67%. You can select a different value by clicking the
Zoom tool's drop-down button.

4.	 Click the Zoom drop-down button, and then click Fit All.

The entire application page now fits within the Designer. Depending on your screen resolu-
tion and the amount of screen space you have designated for the other IDE tools, you'll see a
somewhat smaller version of the page.

Tip  If your mouse has a mouse wheel, you can move quickly from one zoom setting
to the next by holding down the Ctrl key and rotating the mouse wheel. This feature
works whenever the Designer is active.

It is important to be able to quickly view different parts of the application page in different
sizes while you build it. Sometimes you want to see the entire page to consider the layout of
controls or other elements, and sometimes you need to view portions of the page up close.
It's up to you to adjust the Designer window so that you can see the user interface clearly as
you work with it.

Now set the Designer to its full-size setting.

5.	 Click the Zoom drop-down button, and then click 100%.

6.	 Adjust the Designer's vertical and horizontal scroll bars so that you can see the upper-left
edge of the page.

Seeing the edge of the page will help you orient yourself to the application window that the
user sees.

Now you'll add a Toolbox control to the page.

Open the Toolbox and use the TextBlock control

1.	 If the Toolbox is not currently visible, click the Toolbox tab or click the Toolbox command on
the View menu.

The Toolbox window contains a large collection of user interface controls that you can add to
your application. Because you are building a Windows Store app for Windows 8.1, the types
of controls that are displayed in the Toolbox are so-called XAML controls—that is, structured
elements that control the look and feel of an application and can be successfully organized on
a page by the XAML parser within Visual Studio.

50   PART I  Introduction to Visual Studio Development

There are also other collections of Toolbox controls for other types of applications (Windows
Forms controls, HTML controls for web applications, Windows Phone controls, and so on),
but you don't have to worry about that now—Visual Studio automatically loads the proper
controls into the Toolbox when you open a new solution.

Your screen should look like this:

For convenience, the Toolbox controls have been organized into several groups: Advertising,
Common XAML Controls (those controls that appear in many applications), and All XAML
Controls (a list of all the XAML controls for Windows Store apps that are configured for use
with Visual Studio).

Remember that the Toolbox window is like any other tool window in the Visual Studio IDE. You
can move it, resize it, or pin it as needed. You can choose to keep the Toolbox open while you
add controls to a new page (pinning it to the side of the IDE), or you can choose to use the
Toolbox window's autohide feature so that the Toolbox collapses after each control has been
selected.

2.	 Click the TextBlock control in the Toolbox, and move the mouse pointer to the Designer window.

The mouse pointer changes to crosshairs. The crosshairs are designed to help you draw the
rectangular shape of the TextBlock control on the page. You can also create a TextBlock with
the default size by double-clicking the control in the Toolbox.

	 Chapter 3  Creating your first Windows Store application    51

3.	 Click and drag to create a large rectangle-sized text block object that fills the top-left corner
of the page.

When you release the mouse button, Visual Studio creates a XAML text block object. TextBlock
is designed to display text on your page and, in this case, can create a welcoming banner for
your Windows Store app. You can update the text stored in the TextBlock object on your page
by setting the Text property, either with the Properties window, XAML markup, or program
code.

4.	 In the Properties window, change the Text property of the text block object to Lucky Seven
and press Enter.

Visual Studio displays "Lucky Seven" in the Properties window and in the Designer window.
Now you'll increase the point size of the title and apply other formatting effects.

5.	 In the Properties window, in the Text category, click the Font Size text box, type 98, and press
Enter.

The Font Size text box offers a variety of font sizes up to 72, but in this case, you're typing a
larger number to create a big impact on the screen.

Tip  At any time, you can delete an object and start over again by selecting the ob-
ject on the page and then pressing Delete. Feel free to create and delete objects to
practice creating your user interface.

6.	 In the Properties window, in the Brush category, click the Foreground property, if it is not
already selected.

The Foreground property controls the color of the text in the text block.

7.	 Click the Solid Color Brush button.

The Solid Color Brush button is the second tile from the left near the top of the dialog box.
(This button might also be the default selection, but it will cause no harm if you click it again.)

When the Solid Color Brush button is selected, you'll see the Color Resources editor.

8.	 If you'd like more room to see the content of the Properties window, enlarge the window or
configure the tool as a floating window so that you can see the Color Resources editor clearly.

9.	 Near the bottom of the editor, select the number containing the pound (#) sign.

This eight-digit number is known as a hexadecimal color value—that is, a number expressed
in base-16 arithmetic that specifies color by using RGBA values. When you specify a new color
for text, you can specify individual values for red, green, and blue (R, G, and B), or you can use
a standardized name, such as Red, DarkRed, White, Black, Purple, Lime, or Aquamarine.

52   PART I  Introduction to Visual Studio Development

10.	 Type DarkRed and press Enter.

Note that after you press Enter in the Color Resources editor, Visual Studio converts "DarkRed"
to the hexadecimal value #FF8B0000, as shown in the following screen:

11.	 Return the Properties window to its docked position if you moved or enlarged it.

Now you'll add three TextBlock controls below the Lucky Seven banner to display the randomly
chosen numbers in the game. Each time that the user clicks Lucky Seven's Spin button, three new
numbers will appear in these text blocks. If one of the numbers is a 7, the user wins and a sound is
played.

Add text blocks for the random numbers

1.	 Double-click the TextBlock control in the Toolbox.

Visual Studio creates a text block object on the page. In this case, the text block object is quite
small, but you can resize it.

2.	 In the Properties window, click the Text category, click the FontSize box, type 72, and then
press Enter.

Visual Studio expands the text block object to accommodate text in 72-point font.

	 Chapter 3  Creating your first Windows Store application    53

3.	 In the Properties window, click the Common category, click the Text box, type 0, and press
Enter.

0 will be an initial value for the first lucky number in the program.

4.	 At the top of the Properties window, change the Name property of the text block object to
FirstNum.

It is not required that all objects be named in your user interface, but it is important to name
objects that will be referenced in program code. Because you'll be controlling the value of this
lucky number in a Visual Basic event handler, you'll give it the name FirstNum here.

5.	 Drag the FirstNum text block object below the "u" in Lucky Seven.

Your page should look something like this:

6.	 Double-click the TextBlock control in the Toolbox to create another text block object.

This object will hold the second lucky number on the page.

7.	 Using the Properties window, set the Name property of the object to SecondNum, set the
FontSize property to 72, and set the Text property to 0.

54   PART I  Introduction to Visual Studio Development

8.	 Move the new SecondNum object to the right of the FirstNum object, directly below the "y" in
Lucky Seven.

Now you'll create the third lucky number for the page.

9.	 Double-click the TextBlock control in the Toolbox to create the last text block object.

10.	 Using the Properties window, set the Name property of the object to ThirdNum, set FontSize
to 72, and set Text to 0.

11.	 Move the ThirdNum object to the right of the SecondNum object, directly below the first "e" in
Lucky Seven.

When you've finished, your four text block objects should look like those in this screen shot.
(You can move your objects if they don't look quite right.)

Now you'll add a button control to the page.

Add a button control

1.	 Click the Button control in the Toolbox, and then move the mouse pointer over the application
page.

2.	 Drag the pointer down and to the right. Release the mouse button to complete the button.

	 Chapter 3  Creating your first Windows Store application    55

3.	 In the Properties window, in the Common category, change the Content property to Spin and
press Enter.

Note that a button object's contents are set via the Content property, rather than Text (like a
text block object), because buttons can contain artwork and other data.

4.	 In the Properties window, change the button object's Name property to SpinButton.

5.	 In the Properties window, in the Text category, change the FontSize property to 24.

6.	 Resize the SpinButton object so that it is 81 pixels high and 95 pixels wide.

7.	 Move the button object so that it is to the right of the third lucky number on the page. Snap
lines will appear again as you move the object, and the top edge of the button will snap to the
top edge of the three numbers when aligned.

Your screen should look like this:

Now you'll add an image to the page to graphically display the payout you'll receive when you
draw a 7 and hit the jackpot. An Image control is designed to display bitmaps, icons, digital photos,
and other artwork—a major design feature of most Windows Store apps. One of the most common
uses for an Image control is to display a PNG or JPEG file.

56   PART I  Introduction to Visual Studio Development

Add an image

1.	 Click the Image control in the Toolbox.

2.	 Using the control's drawing pointer, create a large rectangular box below the lucky numbers
and the Spin button on the page.

3.	 If necessary, adjust the Zoom setting in the Designer window so that you can see more of the
page in the Designer. For example, a Zoom setting of 50% might be useful.

It would be good if the image object covered most of the remaining area of the page below
the numbers and the Spin button. Sometimes it is useful to reduce the size of a page in the
Designer with the Zoom control to make these types of operations easier.

Now you'll add a suitable photo to the project by using Solution Explorer and the Assets
folder, a special container for resource files in your project.

4.	 If Solution Explorer is not visible now, open it by clicking Solution Explorer on the View menu.

As you've already learned, Solution Explorer provides access to most of the files in your
project, and prominently listed in Solution Explorer is the Assets folder, a container for your
project's logo, splash screen, and other files. You'll add a digital photo to the Assets folder in
the following step, which will make it available to your program.

5.	 Right-click the Assets folder in Solution Explorer to display a shortcut menu of useful Visual
Studio commands.

6.	 Point to the Add command, and then click Existing Item.

7.	 In the Add Existing Item dialog box, browse to the My Documents\Visual Basic 2013 SBS\
Chapter 03 folder and click Coins.jpg, a JPEG file containing coins from around the world—a
visual representation of winnings in the Lucky Seven app.

	 Chapter 3  Creating your first Windows Store application    57

8.	 Click Add to add the photo to your project in the Assets folder.

Visual Studio inserts the file, and it appears now in Solution Explorer under Assets, as shown in
the following illustration:

When a file has been added to the Assets folder, it becomes part of the project you are work-
ing on, and it can be referenced via the Properties window. Most importantly, it becomes part
of the project when the project is compiled for distribution—there is no need to remember
where the file was originally located on your hard disk, because a copy will now travel with the
project.

9.	 Select the image object (if it is not already selected) so that its properties are visible in the
Properties windows.

10.	 In the Properties window, in the Common category, click the Source text box, and then click
Coins.jpg.

You might need to expand the Properties window a little to see the drop-down list box arrow
in the Source text box.

After the file has been selected, a photo of coins from around the world fills the image object
in the Designer.

58   PART I  Introduction to Visual Studio Development

11.	 Adjust the spacing of the image so that it takes up much of the left side of the page in the
Designer.

When you've finished, your page should look like this:

12.	 In the Properties window, change the Name property of the image object to CoinImage.

Naming the image object is an important step, because you'll be referring to this object in
Visual Basic code. Often you'll see me include the name of the control at the end of an object
name so that its object type is clear.

Now you'll add a sound effect to the program so that the game plays a sound when the user spins
a 7. You'll add this sound effect with the MediaElement control, which plays audio and video files in a
Windows Store app. The sound you'll play is stored in a short WAV file named ArcadeRiff, created by
Henry Halvorson.

	 Chapter 3  Creating your first Windows Store application    59

Play audio media with the MediaElement control

1.	 In the Toolbox, expand the All XAML Controls category and double-click the
MediaElement control.

Visual Studio places a new media player object in the upper-left corner of the page. Like other
new objects in the Designer, you can now move the object to a new location and customize it
with property settings. However, the MediaElement control is essentially a behind-the-scenes
tool; it is not visible to the user unless the control is displaying a video clip. For now, you can
leave the media element object where it is.

The Source property of the MediaElement control specifies the name of the media file that will
be loaded into the control for playback. Before you can assign this property, you need to add
a valid media file to the Assets folder, just as you did for the image control.

2.	 Right-click the Assets folder in Solution Explorer to display the shortcut menu.

3.	 Point to the Add command, and then click Existing Item.

4.	 In the Add Existing Item dialog box, browse to the My Documents\Visual Basic 2013 SBS\
Chapter 03 folder and click ArcadeRiff.wav.

5.	 Click Add to add the music file to your project in the Assets folder.

Visual Studio inserts the file, and it appears now in Solution Explorer under Assets.

Now you're ready to name the media element object and assign it a music asset by using the
Source property.

6.	 Click the media element object in the Designer window. (Zoom in on the Designer if neces-
sary—remember that the object is invisible but it can be selected. You can always find it by
clicking the MediaElement entry in the XAML tab of the Code Editor.)

7.	 In the Properties window, change the Name property to CoinSound.

8.	 Expand the Media category, scroll down to the Source property, and click the Source list box.

Your new media file (ArcadeRiff.wav) appears in the list.

Click the ArcadeRiff.wav file to link it to the CoinSound object.

Your screen will look like this (notice the entries in Solution Explorer and the Properties
window):

60   PART I  Introduction to Visual Studio Development

The Properties window exposes a few other important media element properties that you can
examine and adjust if desired.

For example, the AutoPlay check box is enabled by default, which directs the media control to
automatically play the specified media file when the page loads. Because you don't want the
sound to play until it is needed, disable that now.

9.	 Remove the check mark from the AutoPlay check box.

There are some other options you might notice now (but not adjust). The Position property
specifies the location within the media file where playback will begin; this option is very useful
if there is a specific place in the song or video where you want to start.

The IsLooping property is a Boolean value that allows you to run the media file over and over
again if you like. Finally, Volume allows you to set an initial volume level for the media play-
back, which you can adjust with property settings in an event handler while the program is
running.

	 Chapter 3  Creating your first Windows Store application    61

Final property settings and adjustments

Your Lucky Seven page is almost complete. You just need to make a few final property settings, write
the Visual Basic code, and design a splash screen that runs when your project starts.

Before you begin these tasks, let's think a little more specifically about how the program will oper-
ate when it runs. The game starts when the user opens the program and clicks the Spin button. When
the Spin button is clicked, the app generates three random numbers and displays them in text block
objects on the page. If and when the player hits the jackpot (that is, when at least one 7 appears in
the text block objects), the object containing the photo of coins appears, and then the media element
control plays a "celebration" sound.

Although the flow of events is pretty straightforward, the program needs to continue operating
after the first "win." So, when the user clicks the Spin button, the coins image needs to disappear and
remain hidden until another 7 appears, at which point the image is displayed again and the sound
effect also run.

To get this behavior to work correctly, you need to find a mechanism to make the image object
visible and invisible when you want. That can be accomplished by setting the image object's Visibility
property, which is assigned Visible or Collapsed (invisible) values as needed. In fact, most objects in
a Windows Store app can be made visible or invisible if you set this property—it is a built-in tool to
control what appears on the screen. Give it a try here.

Set the Visibility property

1.	 Click the image object on the page.

2.	 In the Properties window, click the Appearance category, and then click the Visibility property.

3.	 In the drop-down list box that appears, click the Collapsed property.

The image object on the page disappears. Don't worry—this is the desired effect. The object
is not gone, it is just currently invisible. You'll make it reappear by using program code in an
event handler.

Now you'll adjust the background color for the page. The default color value for Windows Store
apps is Black, but a more colorful value can make the game more appealing. You can adjust this color
by selecting the Grid object on the page and adjusting values in the Brush category by using the
Properties window.

62   PART I  Introduction to Visual Studio Development

Set the page's background color

1.	 Select the Grid object by clicking the background page in the Designer (not one of the objects
that you've just added).

You can tell when you've selected the Grid object because its properties will fill the Properties
window.

As you'll learn in Chapter 7, "XAML markup step by step," each of the objects in a Windows
Store app is defined by XAML markup codes and data that can be entered or adjusted in the
Code Editor. The Grid object is the base layout element for a page, and all of the elements
on a page are nested within this Grid object. In addition to serving as a useful container for
objects, the Grid object also has settings that you can adjust, such as the background color
that appears for your app. You'll set this now.

2.	 Click the Brush category, click the Background property, and then click the Solid Color Brush
button.

3.	 Near the bottom of the Color Resources editor, select the number containing the pound (#)
sign, replace the contents with Green, and press Enter.

The alphanumeric value for green (#FF0080000) appears in the text box, and the background
color of the Grid object changes to green. Feel free to experiment with other color values if
you like.

OK—that's it for the user interface design walkthrough. Save your work now, before you write
the program code.

Save changes

1.	 Click the Save All command on the File menu to save all your additions to the Lucky Seven
project.

The Save All command saves everything in your project—the project file, the pages, the code-
behind files, the assets, the package manifest, and other related components in your applica-
tion. Because this is the first time that you have saved your project, the Save Project dialog
box opens, prompting you for the name and location of the project. (If your copy of Visual
Studio is configured to prompt you for a location when you first create your project, you won't
see the Save Project dialog box now—Visual Studio just saves your changes.)

2.	 Browse and select a location for your files. I recommend that you use the My Documents\
Visual Basic 2013 SBS\Chapter 03 folder (the location of the book's sample files), but the loca-
tion is up to you. Because you used the "My" prefix when you originally opened your project,
this version won't overwrite the practice file that I built for you on disk.

	 Chapter 3  Creating your first Windows Store application    63

3.	 Clear the Create Directory For Solution check box.

When this check box is selected, it creates a second folder for your program's solution files,
which is not necessary for solutions that contain only one project (the situation for most pro-
grams in this book).

4.	 Click Save to save your files.

Tip  If you want to save just the item you are currently working on (the page, the
code module, or something else), you can use the Save command on the File menu.
If you want to save the current item with a different name, you can use the Save As
command.

Writing the code

Now you're ready to write the code for the Lucky Seven program. Because most of the objects you've
created already "know" how to work when the program runs, they're ready to receive input from the
user and process it. The inherent functionality of objects is one of the great strengths of Visual Studio
and Visual Basic—after objects are placed on a page and their properties are set, they're ready to run
without any additional programming.

However, the "meat" of the Lucky Seven game—the code that actually calculates random numbers,
displays them in boxes, and detects a jackpot—is still missing from the program. This computing logic
can be built into this Windows Store app only by using program statements—code that clearly spells
out what the program should do at each step of the way. Because the Spin button drives the program,
you'll associate the code for the game with an event handler designed for that button.

In the following steps, you'll enter the Visual Basic code for Lucky Seven in the Code Editor.

Use the Code Editor

1.	 In the Visual Studio Designer, click the SpinButton object.

2.	 Open the Properties window, and close the Brush category.

3.	 Near the top of the Properties window and to the right of the Name property and the
Properties button, click the Event Handler button (a square button displaying a lightning bolt
icon).

A collection of actions or events that a button object can respond to fills the Properties win-
dow. Typical events that a button might recognize include Click (a mouse click), DragOver (an
object being dragged over a button), Tapped (a button being touched by a finger), and Drop
(an object being dragged over and dropped on a button).

64   PART I  Introduction to Visual Studio Development

Because Visual Basic is, at its core, an event-driven programming language, much of what you
do as a software developer is create user interfaces that respond to various types of input
from the user, and then you write event handlers that manage the input. Most of the time,
you will need to write event handlers only for a few events associated with the objects in your
programs. (However, the list of events is quite comprehensive to give you many options.)

To create an event handler for a particular event, you double-click the text box next to the
event in the Properties window. Because you want to generate three random numbers each
time that the user clicks the Spin button in your program, you'll write an event handler for the
button's Click event.

4.	 Double-click the text box next to the Click event in the Properties window.

Visual Studio inserts an event handler named SpinButton_Click in the Click text box, and opens
the MainPage.xaml.vb code-behind file in the Code Editor. Your screen should look like this:

Inside the Code Editor are program statements associated with the MainPage template that
you opened when you started this project. This is Visual Basic program code, and you might
notice right away that some of the code is organized into concise units, known as procedures.
Near the bottom of the file is a new event handler procedure that you just created, called
SpinButton_Click.

	 Chapter 3  Creating your first Windows Store application    65

The Sub and End Sub keywords designate a procedure, and the keywords Protected and
Private indicate how the procedure will be used. You'll learn more about these keywords later.

When you double-clicked the Click text box in the Properties window, Visual Studio automati-
cally added the first and last lines of the SpinButton_Click event procedure, as the following
code shows. (Your event procedure will not wrap as this one does. In print, I need to respect
the book's margins.)

Private Sub SpinButton_Click(sender As Object, e As RoutedEventArgs) Handles SpinButton_
Click

End Sub

The body of a procedure fits between these lines and is executed whenever a user activates
the interface element associated with the procedure. In this case, the event is a mouse click,
but as you'll see later in the book, it could also be a different type of event. Programmers refer
to this sequence as "triggering" or "firing" an event.

Tip  You might also notice lines of text with green type in the Code Editor. In the
default settings, green type indicates that the text is a comment, or an explanatory
note written by the creator of the program, so that it might be better understood
or used by others. The Visual Basic compiler does not execute, or evaluate, program
comments.

5.	 Type the following program code, and press the Enter key after the last line:

Dim generator As New Random
CoinImage.Visibility = Windows.UI.Xaml.Visibility.Collapsed

FirstNum.Text = generator.Next(0, 9)
SecondNum.Text = generator.Next(0, 9)
ThirdNum.Text = generator.Next(0, 9)

If (FirstNum.Text = "7") Or (SecondNum.Text = "7") Or
 (ThirdNum.Text = "7") Then
 CoinImage.Visibility = Windows.UI.Xaml.Visibility.Visible
 CoinSound.Play()
End If

As you enter the program code, Visual Studio formats the text and displays different parts of
the code in color to help you identify the various elements. When you begin to type the name
of an object property, Visual Basic also displays the available properties for the object that
you're using in a list box, so you can click the property or keep typing to enter it yourself.

66   PART I  Introduction to Visual Studio Development

Your screen should now look like this:

Note  If Visual Basic displays an additional error message, you might have misspelled
a program statement. Check the offending line against the text in this book, make
the necessary correction, and continue typing. (You can also delete a line and type it
again from scratch.)

In Visual Studio, program statements can be composed of keywords, properties, object
names, variables, numbers, special symbols, and other values. As you enter these items in the
Code Editor, Visual Studio uses a feature known as IntelliSense to help you write the code.
With IntelliSense, as Visual Studio recognizes language elements, it will automatically com-
plete many expressions.

6.	 Click the Save All button to save your changes.

	 Chapter 3  Creating your first Windows Store application    67

A look at the SpinButton_Click event handler

The SpinButton_Click event handler is executed when the user clicks the Spin button on the page.
Essentially, the event handler performs four main tasks:

1.	 It declares a random number generator named generator in the program.

2.	 It hides the digital photo.

3.	 It creates three random numbers and displays them in text block objects.

4.	 It displays the Coins.jpg photo and plays a sound when the number 7 appears.

Let's look at each of these steps individually.

The random number generator is declared by this line of code:

Dim generator As New Random

You've probably declared and used variables before in programs. But notice the variable type
here—the generator is declared using the type Random, which has been specifically designed to
support the creation of so-called "pseudo-random" numbers—that is, numbers that don't follow a
particular pattern and appear in a specific range. You'll use random numbers often in this book, and
you'll learn much more about data types and conversion in Chapter 11, "Mastering data types, opera-
tors, and string processing."

Hiding the photo is accomplished by the following line:

CoinImage.Visibility = Windows.UI.Xaml.Visibility.Collapsed

As you learned earlier, the Visibility property determines whether or not an object on a page is vis-
ible. This specific syntax uses the objects in the .NET Framework to collapse (or hide) the photo of the
coins. (This line is designed to restore the program to a neutral state if a previous spin had displayed
the coins.)

The next three lines handle the random number computations. Does this concept sound strange?
You can actually make Visual Basic generate unpredictable numbers within specific guidelines—that
is, you can create random numbers for lottery contests, dice games, or other statistical patterns. The
generator instance's Next method in each line creates a random number between 0 and 9—just what
you need for this particular slot machine application.

effect to announce the winnings.

FirstNum.Text = generator.Next(0, 10)

The last group of statements in the program checks whether any of the random numbers is 7. If

SecondNum.Text = generator.Next(0, 10)

one or more of them is, the program displays the graphical depiction of a payout and plays the sound

ThirdNum.Text = generator.Next(0, 10)

68   PART I  Introduction to Visual Studio Development

If (FirstNum.Text = "7") Or (SecondNum.Text = "7") Or
 (ThirdNum.Text = "7") Then
 CoinImage.Visibility = Windows.UI.Xaml.Visibility.Visible
 CoinSound.Play()
End If

Each time the user clicks the Spin button, the SpinButton_Click event handler is executed, or called,
and the program statements in the handler are run again. However, if you click the Spin button many
times in rapid succession, you might miss one or more of the sound effects, because the media ele-
ment object can play only one sound effect at a time.

Running Windows Store apps

Congratulations! You're ready to run your first Windows Store app. To run a Visual Basic program
from the IDE, you can do any of the following:

■■ Click Start Debugging on the Debug menu.

■■ Click the Start Debugging button on the Standard toolbar. (You'll typically see "Local Machine"
next to this button, because you debug on the local computer by default.)

■■ Press F5.

Try running your Lucky Seven program now. If Visual Basic displays an error message, you might
have a typing mistake or two in your program code. Try to fix it by comparing the printed version in
this book with the one you typed, or load Lucky Seven from your hard disk and run it.

Note  I assume that you have named your project My Lucky Seven, but the instructions and
screen shots below will show Lucky Seven because you might be running the sample proj-
ect that I created.

Run the Lucky Seven program

1.	 Click the Start Debugging button on the Standard toolbar.

The Lucky Seven program compiles and runs. After a few seconds, the user interface appears,
just as you designed it.

2.	 Click the Spin button.

The program picks three random numbers and displays them in the labels on the page. When
a 7 appears, your screen will look like this:

	 Chapter 3  Creating your first Windows Store application    69

The presence of a 7 also triggers the sound effect, which lasts a few seconds and sounds a bit
like an electronic slot machine. You win!

3.	 Click the Spin button 15 or 16 more times, watching the results of the spins in the number text
blocks.

About half the time you spin, you hit the jackpot—pretty easy odds. (The actual odds are
about 2.8 times out of 10; you're just lucky at first.) Later on, you might want to make the
game tougher by displaying the photo only when two or three 7s appear, or by creating a run-
ning total of winnings.

4.	 When you've finished experimenting with your new creation, close the Windows Store app.

The program stops, and the IDE reappears on your screen. Click the Stop Debugging button
on the toolbar to end the program. Now you'll add a splash screen to the project.

70   PART I  Introduction to Visual Studio Development

Creating a splash screen for your app

A splash screen is a transitional image that appears when your app first launches. Every Windows
Store app must have a splash screen, which consists of an image (or text) and a surrounding back-
ground color. The splash screen is stored in the Assets folder within Solution Explorer, and every new
Windows Store app has a basic splash screen that is created by default. You'll also see tile images in
the Assets folder, which you'll learn to customize in Chapter 9, "Exploring Windows 8.1 design features:
Command bar, flyout, tiles, and touch."

Although you can create a splash screen with Microsoft Paint or another third-party graphics
program, you can also create a simple splash screen within Visual Studio. Just remember that a splash
screen appears very briefly when you first launch your app. Accordingly, this is not the place to put
elaborate program instructions or copyright information. You'll want to avoid placing advertisements
or version information on a splash screen.

Instead, use the splash screen to offer a preview of the functionality of your app in some unique
way. Consider an image or photo that will be easily adapted to other countries and cultures (that is,
easily localizable) and that can be displayed effectively in different screen resolutions. Notice that
Portable Network Graphics (.png) format is used because this file type is capable of displaying alpha
transparency and 24-bit color images. When part of an image is formatted as transparent, the back-
ground color will be displayed behind it. (You'll see this in most splash screens and tiles in Windows
Store and Windows Phone apps.)

Create a Lucky Seven splash screen

1.	 In Solution Explorer, open the Assets folder, and then double-click the file SplashScreen.scale-
100.png.

2.	 This action opens the Image Editor Designer in Visual Studio, and loads the SplashScreen.
scale-100.png file into the editor. Your screen looks like this:

	 Chapter 3  Creating your first Windows Store application    71

The Solution Explorer and Properties windows are still visible. However, the Image Editor is
active, and the design canvas is surrounded by graphics editing tools. The "X" shape in the
center of the canvas is simply the default image for the SplashScreen.scale-100.png file. This is
the image that you want to replace now.

3.	 Click the Selection tool in the upper-left corner of the Image Editor, select the entire "X"
shape, and press Delete.

You now have a blank canvas on which to create your splash screen image. The alpha checker-
board pattern that you see is a color scheme that allows you to more easily see the transpar-
ent portions of your image—that is, what you see displayed as the checkerboard now will be
replaced by the background when your splash screen is actually displayed on the screen.

4.	 Click the Ellipse tool on the left side of the Designer, and then create a circle shape in the
middle of the splash screen.

You can use the X- and Y-axis indicators in the lower-right corner of the screen to create your
circle if you like. You can also use the Selection tool to move your shape to the center of the
screen if you like.

72   PART I  Introduction to Visual Studio Development

Your Image Editor will look like this:

5.	 Use the Ellipse tool to add four or five smaller circles around the edge of the circle that you
have created.

Typical splash screens show simple geometric shapes like this. Consider using a simplified ver-
sion of your company logo.

Your simple splash screen now looks like this:

	 Chapter 3  Creating your first Windows Store application    73

You could add additional effects to this splash screen, embellishing it with colors, images, text,
or animation. However, for this first walkthrough, you have something that will work just fine.

6.	 Click the Save All command on the File menu to save your changes.

7.	 Press F5 to run the project, and examine your splash screen.

Notice that the splash screen comes and goes in just a few moments. Did you notice the
ellipse shapes and the black background color?

8.	 Close the program, and then close the Image Editor Designer.

Now your project is complete—it is time to test and deploy the app by adding it to the Windows
Start page on your local computer. However, note that if this were a commercial Windows Store app
being prepared for distribution to other users via the Windows Store, you would now add additional
items to your app as described in Table 1-1. For more information, see Chapter 1, "Visual Basic 2013
development opportunities and the Windows Store."

74   PART I  Introduction to Visual Studio Development

Sample projects on disk
If you didn't build the My Lucky Seven project from scratch (or if you did build the project and
want to compare what you created to what I built for you as I wrote the chapter), take a mo-
ment to open and run the completed Lucky Seven project, which is located in the Visual Basic
2013 SBS\Chapter 03 folder on your hard disk (the default location for the practice files for this
chapter). If you need a refresher course on opening projects, see the detailed instructions in
Chapter 2.

This book is a step-by-step tutorial, so you will benefit most from building the projects on
your own and experimenting with them. But after you have completed the projects, it is often a
good idea to compare what you have with the practice file "solution" that I provide, especially if
you have unexpected results. To make this easy, I will give you the name of the solution files on
disk before you run the completed program in most of the step-by-step exercises.

After you have compared the My Lucky Seven project to the Lucky Seven solution files on
disk, reopen My Lucky Seven and prepare to compile it as an executable file. If you didn't cre-
ate My Lucky Seven, use my solution file to complete the exercise.

Building an executable file

Your last task in this chapter is to complete the development process and create an application for
Windows, or an executable file. Windows applications created with Visual Studio have the file name
extension .exe and can be run on any system that contains Windows and the necessary support files.
If you end up distributing your application via the Windows Store, the complete deployment pack-
age will be posted securely in the Store and made available to customers who would like to download
it. However, you can also deploy your application to individual computers running Windows directly
from within Visual Studio.

Because you just created a Windows Store app that targets the Windows 8.1 operating system, you
need to be running Windows 8.1 to run this particular program. You won't post the sample app to the
Windows Store yet, because it has not been registered or thoroughly tested. But you can deploy the
app on your own computer, which does not have as many registration requirements as the Windows
Store interface.

To assist in the testing and compilation process, Visual Studio allows you to create two types of
executable files for your Windows application project: a debug build and a release build.

	 Chapter 3  Creating your first Windows Store application    75

Debug builds are created automatically by Visual Studio when you create and test your program.
They are stored in a folder called bin\Debug within your project folder. The debug executable file
contains debugging information that makes the program run slightly slower.

Release builds are optimized executable files stored in the bin\Release folder within your project.
To customize the settings for your release build, you click the ProjectName Properties command on
the Project menu, and then click the Compile tab, where you'll see a list of compilation options that
looks like the following screen. The Solution Configurations drop-down list box on the Standard
Visual Studio toolbar indicates whether the executable is a debug build or a release build.

The process of preparing an executable file for a specific computer is called deploying the application.
As noted, when you deploy an application with Visual Studio, the IDE handles the process of copying
all the executable and support files that you will need to register the program with the operating sys-
tem and run it. Visual Studio allows you to deploy applications locally (on the computer you are using)
or remotely (on a computer attached to the network or Internet).

In the following steps, you'll deploy a release build for the My Lucky Seven application locally and
create an application icon for the program on the Windows Start page.

76   PART I  Introduction to Visual Studio Development

Deploy a release build for the Lucky Seven app

1.	 Click the Solution Configurations drop-down list box on the Standard toolbar, and then click
the Release option. Visual Studio will prepare your project for a release build, with the debug-
ging information removed. The build output path is set to bin\Release\.

2.	 On the Build menu, click the Deploy Lucky Seven command.

The Build command creates a bin\Release folder in which to store your project (if the folder
doesn't already exist) and compiles the source code in your project. The Output window
appears to show you milestones in the assembly and deployment process. The result is an
executable file named Lucky Seven.exe, which Visual Studio registers with the operating sys-
tem on your computer.

Visual Studio deploys the application locally because Local Machine is currently selected on
the toolbar next to the Start button. This is the desired behavior here, but you can also deploy
applications on a remote machine (that is, a computer attached to yours via a network or the
Internet) by selecting the Remote Machine option. If you select this option, you'll be presented
with a dialog box asking for more information about the remote connection. Remember that
remote deploying is mostly designed for testing purposes. The best way to install completed
applications via the Internet is through the Windows Store.

When you deploy an application built for the Windows 8.1 user interface, Windows automati-
cally creates a new program icon for the application on the Start page. You can use this icon
to launch the program whenever you want to run it. Try running My Lucky Seven now from
the Start page on your computer.

3.	 Open the Windows Start page, and browse to the list of applications that are currently
installed.

4.	 There are two possible locations for your new app: the main Start page, or the secondary Start
page containing a longer list of app tiles. (This is where my Windows 8.1 system put the new
Lucky Seven program.)

	 Chapter 3  Creating your first Windows Store application    77

Because you didn't create a colorful Start page tile for your app, the default (gray) tile is
shown. Your screen will look similar to this (note the Lucky Seven app in the second column):

5.	 Click the Lucky Seven application icon, and the Lucky Seven program will load and run in
Windows.

6.	 Test the application again, clicking Spin several times and building up a few wins. When you
are finished, close the app.

7.	 Return to Visual Studio, and close the Output window and the Lucky Seven properties page.
Note that you can view and change compilation options whenever you want—the properties
page is always available.

8.	 On the File menu, click Exit to close Visual Studio and the My Lucky Seven project.

9.	 Click Save if you are prompted to, and the Visual Studio IDE will close.

Congratulations on completing your first Windows Store app!

78   PART I  Introduction to Visual Studio Development

Summary

This chapter described how to create a Windows Store app named Lucky Seven by using Visual Studio
2013. The development process has much in common with earlier versions of Visual Basic and Visual
Studio. You add Toolbox controls to a page, set properties, write program code, test the application,
and prepare it for deployment. However, the XAML Toolbox for Windows Store apps is significantly
different than the Toolbox used to create Windows Forms apps for the Windows desktop. In this
chapter, we reviewed how to use XAML controls step by step. In the next chapter, you'll review how
to use the Windows Forms Toolbox to create a desktop application for Windows 8.1, Windows 8, or
Windows 7.

While creating the Lucky Seven slot machine game, you practiced using the TextBlock control, the
Button control, the Image control, the MediaElement control, and setting the Grid control's back-
ground color. You also learned how to create a splash screen with the Visual Studio Image Editor.
Finally, you tested and deployed your application to the Windows Start page. With a little more work,
you'll also be able to deploy applications like Lucky Seven to the Windows Store.

	 641

> (greater than) sign
comparison operator,  343
relational operator,  324

#If DEBUG statements,  47, 117
<= (less than or equal to) sign

comparison operator,  343
relational operator,  324

< (less than) sign
comparison operator,  343
relational operator,  324

.mdb format (Microsoft Access), XML documents
vs.,  454

- (minus) sign
arithmetic operator,  305
formulas evaluated using,  314

<> (not equal to) sign
comparison operator,  343
relational operators,  324

@ Page directive,  559
() (parentheses), formulas evaluated using,  314
| (pipe symbol), adding items to Filter List using,  186
+ - (plus and minus) signs, formulas evaluated

using,  314
+ (plus) sign

arithmetic operator,  305
shortcut operator,  313

A
Abs (absolute value) function,  564
Access

establishing data base connection using Data Source
Configuration Wizard,  492–501

working with databases using ADO.NET,  492–505
XML documents vs. .mdb format in,  454

access keys, adding to menu commands,  172–174

Index

Symbols
& (ampersand)

advanced arithmetic operator,  308
arithmetic operator,  305
shortcut operator,  313
using with String class,  320

< (angle bracket), in XAML markup,  195
* (asterisk)

arithmetic operator,  305
shortcut operator,  313

* / (asterisk and backslash), formulas evaluated
using,  314

\ (back slash)
arithmetic operator,  305
shortcut operator,  313

^ (caret)
advanced arithmetic operator,  308
arithmetic operator,  305
formulas evaluated using,  314

' (comment character), in Visual Basic program
code,  272

{ } (curly braces), indicator for markup extension,  517
= (equal) sign

assignment operator,  293
comparison operator,  343
relational operator,  324

/ (forward slash)
advanced arithmetic operator,  308–312
arithmetic operator,  305
shortcut operator,  313

/> (forward slash and a closing bracket), in XAML
markup,  195

>= (greater than or equal to) sign
comparison operator,  343
relational operator,  324

Acquire Developer License command

642   Index

Acquire Developer License command,  12
AddButton_Click event handler,  406, 413, 427–428,

451
Add Class command,  467
Add Connection dialog box,  494–495
Add Existing Item dialog box,  59
addition

arithmetic operator,  305
shortcut operator,  313

Add method,  423, 428, 537
Add New Data Source command,  493
Add New Item dialog box

Inherited Form template in,  461–462
naming classes,  469

Add ToolStripButton arrow,  182
ADO.NET, database programming with

about,  490
building database app in Data Sources

window,  501–505
database terminology,  490–492
establishing connection using Data Source

Configuration Wizard,  492–501
working with Access database,  492–505

All Windows Forms category, Button control in,  86
All XAML Controls category, in Toolbox tool,  59
Always Show Solution option,  21, 40
American National Standards Institute (ANSI),

character set,  323
American Standard Code for Information

Interchange (ASCII)
character set,  323
protecting text with encryption using,  331–339
working with,  323–325

ampersand (&)
advanced arithmetic operator,  308
arithmetic operator,  305
shortcut operator,  313
using with String class,  320

AndAlso conditional statements,  352–353
And, logical operator

about,  349–350
adding password protection using,  350–352

angle bracket (<), in XAML markup,  195
ANSI (American National Standards Institute),

character set,  323
AppBarButton control,  236–238
AppBar control,  236
AppBarToggleButton control,  236, 238, 242
Appearance category, in Properties window,  61

Application_Activated event handler,  632–633, 636
Application_Deactivated event handler,  632, 636
app listing page, of Windows Store,  10
apps.  See desktop apps; See Windows Phone apps;

See Windows Store apps
App.xaml

creating style for,  222–227
examining,  197–200

ArcadeRiff.wav file,  58–59
ArgumentException object,  387
ArgumentOutOfRangeException object,  387
ArithmeticException object,  387
arithmetic operators,  305–313
Array class, processing large arrays using methods

in,  416–422
ArrayList class,  423
array literal,  402
array name, syntax element in array declaration,  398
arrays

about,  398
assigning initial values,  402–403
creating,  398–399
declaring multidimensional,  403
declaring with set elements,  399–400
extracting information using LINQ from

about,  437–438
extracting numeric information,  438–441

processing large,  416–422
setting aside memory for,  400–401
setting size at runtime of,  409–414
using LINQ locating overlapping elements

of,  448–449
using one-dimensional,  404–409
using ReDim Preserve to preserve contents

of,  414–416
working with elements of,  401–402

Artboard, Blend,  193
As Boolean clause,  346
Asc function,  325
ASCII (American Standard Code for Information

Interchange)
character set,  323
protecting text with encryption using,  331–339
working with,  323–325

AscW method,  325
ASP.NET

about,  544
binding datasets to web applications via,  492
building web forms website with,  550–556

	 Button1_Click event handler

	 Index   643

customizing website template,  570–572
displaying database records on webpage,  573–

580
editing document and site master

properties,  581–583
hosting web applications,  569
server controls

about,  552–553
adding to website,  561–563

software requirements for developing in,  550–
551

tags,  559
using Web Designer,  557–560
WebMatrix and,  547
writing event handlers for webpage

controls,  563–569
ASP.NET Development Server,  551, 561–563, 565
ASP.NET MVC

creating web applications using,  546
Web Pages with Razor and,  547–548

ASP.NET Web Forms
about,  545
ASP.NET Web Forms,  552
building website with,  550–556

ASP. NET Web Pages (with Razor)
about,  547
make up of,  559

assembly,  31
Assets folder

adding images to,  128–129
creating splash screen from,  70–73
for designing custom tiles for apps,  249
in Solution Explorer,  56–57

assignment operator (=),  293
asterisk (*)

arithmetic operator,  305
shortcut operator,  313

asterisk and backslash (* /), formulas evaluated
using,  314

attributes, as properties,  196
audio media, using MediaElement control for

playing,  58–60
Audio Playback template, Windows Phone,  607
Auto Hide command,  38
Auto Hide pushpin button,  37–39
AutoPlay check box,  60
AutoSize property, in Properties window,  95

B
background color, setting page,  62
background image, app with generic list and,  425–

432
back slash (\)

advanced arithmetic operator,  308
arithmetic operator,  305
formulas evaluated using,  314
shortcut operator,  313

badge notification, appearing in Lock screen,  250
base class

creating,  466–476
inheriting,  476–479
referencing,  481

BaseDiscount class,  481, 483–484
BasedOn property, using to inherit style,  228–231
binary operators,  350
binding

about,  516–517
elements for data,  516–517
to XAML controls,  516–526

Binding class, binding objects using,  517
Birthday program, creating using DateTimePicker

control,  152–154
BitArray class,  423
blank lines, in LINQ code blocks,  439
Blend,  202

add controls in,  202
XAML in,  193

blog for developers, preparing for Windows
Store,  12

Boolean
data type

about,  298
ListBox control and,  300–301

expressions,  346
IsChecked property,  204
IsCompact property,  237
IsMuted property,  137
setting properties,  98
ToggleButton control as,  203

bound controls,  502
browsers, web, creating,  142–146
Brush category, in Properties window,  51, 62
Build command,  76
Build My Form Inheritance command,  461
Button1_Click event handler,  350–351

button controls

644   Index

button controls
adding to desktop apps,  86–88
adding to phone app,  614, 616
adding to program,  54–55
adding to toolbar,  181–182
adding to website,  562–563
AppBarButton,  236–238
AppBarToggleButton,  236, 238, 242
controlling music playback with,  135–138
for opening flyout on page,  245–248
in list app,  425
in phone app,  614, 616
looping,  243
navigate to web address in browser,  142
setting properties of,  93–94
using with date time picker,  150

buttons
Auto Hide pushpin,  37–39
Categorized,  93
Check Drive,  379–381, 385, 389
Collapse Pane/Expand Pane,  30
Debugging,  116–117
Expand Pane/Collapse Pane,  30
Fill Array,  419
Horizontal Split,  30
looping,  243
New Connection,  494
Publish Now,  106
Solid Color Brush,  51
Sort Array,  420
Start Debugging,  103
Stop Debugging,  382
Test Connection,  495
Vertical Split,  30
Zoom drop-down,  49

Byte data type
about,  298
ListBox control and,  300–301

C
CalculateButton_Click event handler,  564–565
Calculate_Click event handler,  307
Calendar app (Windows Phone 8),  590
calendar information

running Birthday program,  152–154
using DateTimePicker control for gathering,  148–

152

camel-casing style, when declaring variables,  272,
293

Canvas control,  209
caret (̂)

advanced arithmetic operator,  308
arithmetic operator,  305
formulas evaluated using,  314
shortcut operator,  313

Categorized button, in Properties window,  93
CDbl function,  564
certification, planning for Windows Store

developer,  12
Change Data Source dialog box,  494
Char data type

about,  298
ListBox control and,  300–301

charms vs. command bars,  239
CheckBox control

creating,  155–158
running Checkbox program,  158–159

CheckButton_Click event handler,  379, 384, 386, 391
Check Drive button,  379–381, 385, 389
CheckedChanged event handler,  163
checklists, Windows Store requirements,  12–15
child element, in XAML,  196
Choose Data Source dialog box,  494
“chrome” (persistent user interface) features,

presenting users in Windows Store app
with,  236

ChrW method,  325
classes

binding control to,  517–521
binding objects using Binding class,  517
creating base,  466–476
for maintaining lists in System namespace,  423
identifying in Designer,  460
inheriting base,  476–479
Inherits statement in,  467
in polymorphism,  482
referencing base,  481

Class View tool,  24
Clear method, Array class,  416
Click event, in Properties window,  64–65
ClickOnce Security and Deployment, publishing

desktop app using,  105–107
cloud, Windows Azure applications for,  6
CLR (Common Language Runtime), Windows,  544
Code Editor

buttons,  30
displaying XAML markup in Designer,  25–30

	 controls

	 Index   645

docking as tabbed document,  37
green type in,  65
IntelliSense feature,  204, 500
keyword indicator in,  100
using for desktop apps,  99–101
using for Windows Phone apps,  617–620
using for Windows Store apps,  63–66
using LINQ with,  437
XAML tab of

about,  23
adding elements using,  202–212
adjusting Background property in,  201–202
displaying markup in Designer,  23
examining XAML project files,  198–200
setting property for text box object,  196

Collapsed (invisible) property,  61, 67
Collapse Pane/Expand Pane button,  30
collections

about,  422–423
app with generic list and background

image,  425–432
generic

about,  423–424
binding to ListBox control,  522–526
declaring,  424–425
LINQ retrieving data from,  451–453

using LINQ with,  450–451
ColorDialog control,  184, 187
Color Resources editor,  51
color value, hexadecimal,  51
columns (fields),  491
command bar

creating to manage tasks,  236–243
vs. charms,  239

CommandBar control,  236–238, 240–243
commas (,), displaying with data types using

Format() function,  299
comment character ('), in Visual Basic program

code,  272
Comment-out,  530
comments, in Code Editor,  65
Common category, in Properties window,  53, 55
Common Controls tab (Toolbox tool),  502, 506
Common Language Runtime (CLR), Windows,  544
comparison operators

about,  343
using with Select Case structure,  355–361

component tray pane, non-visible objects displayed
in,  171

concatenation (combination), string
advanced arithmetic operator,  308
arithmetic operator,  305
shortcut operator,  313
using with String class,  320

conditional expressions
order in decision structure of,  345
using,  343–344
using logical operators in,  349–352

conditional statement, in Do loop,  369
console applications

about,  267
Console object in,  272
creating in Visual Studio

about,  268–275
modules and procedures,  270–271
opening Console Application template,  269–

270
Roll-The-Dice application,  271–275
Sub Main() procedure,  271–275
temperature conversion application,  271–275

math games, interactive,  275–284
Visual Basic opportunities for,  6

Console class
in Find-The-Number console application,  276–

277
in simulate rolling dice console application,  280–

281
constants

about declaring,  292
defining,  295–296
guidelines for naming,  295–296

Const keyword,  295
constructor,  481, 520
Contains method,  122–124, 321, 443, 445
controls

about,  111
adding controls using Toolbox tool,  49–52
AppBar,  236
AppBarButton,  236–238
AppBarToggleButton,  236, 238, 242
bound,  502
button

adding to desktop apps,  86–88
adding to program,  54–55
adding to toolbar,  181–182
adding to website,  562–563
controlling music playback with,  135–138
for opening flyout on page,  245–248
in list app,  425

conversion functions

646   Index

in phone app,  614, 616
looping,  243
navigate to web address in browser,  142
setting properties of,  93–94
using with date time picker,  150

Canvas,  209–212
CheckBox,  155–159
ColorDialog,  184
ColorDialog, properties,  187
CommandBar,  236–238, 240–243
DateTimePicker control,  148–154
dialog box,  183–185
displaying database information using

toolbox,  506–509
FlipView,  127–132
FolderBrowserDialog,  184
FontDialog,  184
Grid,  201
GridView,  574–578
GroupBox,  159–164
HTML,  553–554
HyperLink,  578–579
Image

about,  55
adding images to program,  56–58
adding to phone app page,  612–614
ceating,  205
style set for,  219

in Windows Phone Store,  601, 603
Label

adding to form,  175
adding to website,  562–563
in Windows Forms Toolbox,  88–89
setting properties,  95–97

ListBox,  164–168, 297–304, 355, 522–526
MaskedTextBox,  346–348, 350–351, 506–509
MediaElement

about,  133
controlling playback,  135–138
in Toolbox tool,  58–60
playing music using,  133–135
playing videos using,  139–141
Source property of,  59, 134
using with CommandBar control,  240–243
using with Flyout control,  245

MenuStrip
about,  169–170
adding access keys to menu commands,  172–

174
changing order of menu items,  175

creating menu,  170–172
processing menu choices,  175–180

OpenFileDialog,  184
PageSetupDialog,  184
PictureBox

creating rectangle above check box,  155
creating rectangle beneath group box

with,  161
drawing square object on form,  184
in Windows Forms Toolbox,  89–90

PrintDialog,  184
PrintDocument,  183
Print-PreviewControl,  183
PrintPreviewDialog,  184
ProgressBar,  416–417
RadioButton,  159–164
RangeValidator,  570
RequiredFieldValidator,  570
SaveFileDialog,  184
server,  552–553
TextBlock

adding text blocks for random numbers,  52–
54

in list app,  425
in phone app,  614–617
using,  50–52

TextBox
adding to website,  561–562
assigning to variable,  118–120
binding control to class using,  517–521
check spelling in,  124–127
holding web address in browser,  142
in Data Sources window,  502–503
in list app,  425
multiline,  120–124
opening and displaying contents of XML

documents,  517–521
receiving input using,  113–118
using loop to fill text box with string

data,  362
ToggleButton,  203–206
ToolStrip,  180–183
understanding,  112–113
webpage validator,  570
WebView, displaying live web content using,  141–

146
conversion functions,  319–320
Convert class, converting data types using,  318–319
Copy method, Array class,  416

	 Debug menu, Start Debugging command on

	 Index   647

core definition (root) element, in XAML
documents,  198

counter variables, data types for loops using,  362
Count method,  428
crashes, program,  376, 383
CreateArrayButton_Click event handler,  412
CreateButton_Click event handler,  365
Create Directory For Solution check box,  63
“Cryptographic Tasks” (MSDN),  339
CSS (Cascading Style Sheet) information in

websites,  552
curly braces ({ }), indicator for markup extension,  517

D
data access, TwoWay,  517
database app, building in Data Sources

window,  501–505
database objects,  498
databases

about,  490
backward compatibility of,  490
combining,  498
commercial application that uses,  497
displaying records on webpage,  573–580
relationship to datasets,  505
terminology used about,  490–492
using part of,  498
using toolbox controls to display

information,  506–509
data binding

elements for,  516–517
to XAML controls,  516–526

DataBindings property settings, about,  492
data entry, user interface for,  540–541
DataException exception object,  387
data, managing

about,  397
preserving array contents using ReDim

Preserve,  414–416
processing large arrays,  416–422
with LINQ

about,  435–436
debugging strategies,  450
extracting information from arrays,  437–449
using with collections,  450–453
using with XML documents,  454–458

working with arrays of variables,  398–409
working with Collections,  422–432

data navigator,  491–492
Dataset Designer,  500–501
dataset objects, binding masked text box control

to,  506–509
datasets

about,  492
database objects and,  498
disconnected data sources in,  498
displayed in Data Sources window,  501
relationship to databases,  505
typed,  500

Data Source Configuration Wizard
about,  491–492
connecting datasets to,  492
establishing data base connection using,  492–

501
filtering data with,  509
in adding GridView control using,  574–575
writing Windows Forms app in,  492

data sources
binding to Texbox control,  518–520
for Windows Store apps,  516

Data Sources window
about,  23, 501–502
binding datasets to controls,  492
creating database objects on form using,  502–

505
Data Source Configuration Wizard,  493

DataTypeListBox_SelectionChanged event
handler,  303–304

data types
converting,  315–320
ListBox control and,  297–304

data type, syntax element in array declaration,  398
DateButton_Click event handler,  151–152
Date data type

about,  298
ListBox control and,  300–301

DateString property,  177
DateTimePicker control

about,  148
creating,  148–152
running Birthday program,  152–154

DateToolStripMenuItem_Click event handler,  177
debug build executable file,  75, 104
Debugging button,  116–117
debugging counters,  47
Debugging Not Enabled dialog box,  565–566
debugging strategies, LINQ,  450
Debug menu, Start Debugging command on,  30

Debug toolbar, Step Into button on

648   Index

Debug toolbar, Step Into button on,  450
Debug windows,  24
Decimal data type

about,  298
ListBox control and,  300–301
using in loops with counter variables,  362

decision structures,  344
declaring arrays

about,  398–399
assigning initial values,  402–403
setting array size at runtime,  409–414
setting aside memory for,  400–401
using one-dimensional arrays,  404–409
with set elements,  399–400
working with array elements,  401–402

defensive programming logic,  393–394
deploying applications

desktop apps,  105–107
on web server,  569
Windows Store,  75

derived class,  480
derived classes,  467
Designer

about,  23–24
add controls in,  202
buttons,  30
displaying XAML markup in,  25–30
docking as tabbed document,  37
Ellipse tool in,  71–72
Fit All option in,  129
identifying classes in,  460
media element object in,  59
navigating,  48–49

“Designing UX for apps” (MSDN article),  236
design mode, Visual Basic,  87
Design tab (Web Designer)

about,  556
adding text,  557–558, 573
editing text,  581–582

desktop apps
about,  79
building executable file,  104–105
ColorDialog control properties,  187
controls

CheckBox,  155
DateTimePicker,  148–154
GroupBox,  159–164
ListBox,  164–168, 297–304
MenuStrip,  169–183

creating
adding number labels,  88–89
adding .wav file to Resources folder,  92–93
naming objects for clarity,  98
new project for,  83–85
picture box properties,  97–98
setting button properties,  93–94
setting descriptive label properties,  96–97
setting number labels properties,  95–96
setting title bar text of form,  97
SpinButton_Click event handler,  101–103
user interface,  85–87
using PictureBox control,  89–90
writing code,  99–101

database controls for
about,  489
displaying database information using toolbox

controls,  506–509
programming with ADO.NET,  490–505
SQL statements and filtering data,  509–514

dialog box controls,  184–185
event handlers managing common dialog

boxes,  185–190
MaxLength property of TextBox controls,  363
program crashes in,  383
publishing,  105–107
running,  103–105
starting,  80–81
Visual Studio 2013 and,  81–82

Details page, Windows Store,  15
developers

annual registration fee for Windows Phone,  596
getting license for Windows,  18
Windows Phone Store

planning for certification,  595–596
selling apps in,  595

developers, Windows Store
planning for certification,  12
registering as,  11
Windows Store requirements checklist,  12–15

Device charms,  239
device drivers, Visual Basic opportunities for,  6
Device window,  23–24
dialog box controls,  183–185
dialog boxes, managing with event handlers

common,  185–190
Dictionary class,  423
Dim statements

Boolean variables created by,  346
creating generic collection,  427

	 event handlers

	 Index   649

declaring variables with,  292–294
for data types,  301
in LINQ queries,  436, 439

DirectoryNotFoundException object,  387
disconnected data sources,  498
DisplayArray_Click event handler,  413
DisplayButton_Click event handler,  407
DisplayImageCheckBox_CheckedChanged event

handler,  157–158
DisplayToggleBtn_Click event handler,  206, 208
DivideByZeroException object,  387
division sign

advanced arithmetic operator,  308–312
arithmetic operator,  305
formulas evaluated using,  314
shortcut operator,  313

.dll file format, inheriting form using,  463
docking

Code Editor or Designer as tabbed
documents,  37–38

programming tools manually,  37–38
Document Outline window,  23–24
Do loops

avoiding endless loop,  369
converting temperatures using,  370–372
using Until keyword in,  372–373

Double data type
about,  298
in math program,  307
ListBox control and,  300–301

Do...Until Loop, in Find-The-Number console
application,  276–277

Do...While structure,  549
drive and path name errors,  378–382

E
Ease Of Access Center, displaying underline or small

box for access keys using,  173
Element method,  532–533, 536–537
Ellipse tool, in Designer,  71–72
Else conditional statements,  344
ElseIf conditional statements,  344
encryption, protecting text with,  331–339
End as keyword, in Visual Studio 2013,  100
End Class statements,  477
End If conditional statements,  344
endless loop, avoiding,  369
EndOfStreamException object,  387

End Sub and Sub keywords,  65
End Sub statement,  483–484
EndsWith method,  325
End Try statement,  384
EnterButton_Click event handler,  478
Entity Framework,  490
equal (=) sign

assignment operator,  293
comparison operator,  343
relational operator,  324

error handlers
about,  375
comparing with defensive programming

techniques,  393–394
Exception objects,  387
Exit Try statement,  394
processing errors using Try…Catch

statement,  376–384
specifying retry period,  390–392
using Finally clause to perform cleanup

tasks,  385
using nested Try…Catch blocks,  391–392
writing flash drive error handler,  384–385

error messages
correcting,  66
Unrecognized Database Format,  496

errors (exceptions)
raising your own,  390
unhandled,  377, 382
Windows Store apps built-in handling of,  383

event-driven programming,  342
event handlers

AddButton_Click,  406, 427–428, 451
Application_Activated,  632–633
Application_Deactivated,  632
Button1_Click,  350–351
CalculateButton_Click event handler,  564–565
Calculate_Click,  307
CheckButton_Click,  379, 384, 386, 391
CheckedChanged,  163
CreateArrayButton_Click,  412
CreateButton_Click,  365
creating,  64, 136, 205–208
DataTypeListBox_SelectionChanged,  303–304
DateButton_Click,  151–152
DateToolStripMenuItem_Click,  177
DisplayArray_Click,  413
DisplayImageCheckBox_CheckedChanged,  157–

158
DisplayToggleBtn_Click,  206, 208

events, supported by Visual Basic objects

650   Index

EnterButton_Click,  478
FillButton_Click,  419
Form1_Load,  370–371, 417–418, 422
in Windows Store app,  67–68
managing common dialog boxes with,  185–190
NavigateButton_Click,  143
OpenItem_Click,  333–334, 336
OpenToolStripButton_Click,  185
OpenTool-StripMenuItem_Click,  330
PauseButton_Click,  137
RecordScoreButton_Click,  619, 620
ReverseButton_Click,  421
RunQuery_ Click,  439, 442–444, 446, 448, 451,

455–457
SaveAsItem_Click,  333, 336–337
ShowButton_Click,  428
SortButton_Click,  420–421
SortTextToolStripMenu-Item_Click,  328
SpinButton_Click,  101–103
StopButton_Click,  137
Sub procedure and,  270–271
TestButton_Click,  116, 481–482, 484
TimeToolStripMenuItem_Click,  176–177
ToolStripButton1_Click,  186–187
writing for webpage controls,  563–569
XmlTestButton_Click,  530

events, supported by Visual Basic objects,  342
exception handling,  383
Exception objects,  376, 387–390
exceptions (errors)

about,  311, 313
raising your own,  390
unhandled,  377, 382
Windows Store apps built-in handling of,  383

executable file, building
console applications using release build,  271–275
for destop app,  104–105
for Windows Store app,  74–77

Exit For statement,  367–368
Exit Try statement,  377–378, 394
Expand Pane/Collapse Pane button,  30
explicitly declaring variables,  292–293
exponentiation (raising to a power) operator

advanced arithmetic operator,  308–312
arithmetic operator,  305
shortcut operator,  313

Express for Web,  4
Express for Windows,  4
Express for Windows Desktop,  4
Express for Windows Phone,  4

Extensible Application Markup Language (XAML)
about,  191–192
All XAML Controls category,  59
as root of Windows Store app controls,  112–113
data binding expressed as markup extension,  517
defining list box using,  357–361
elements

about,  194–196
adding using tab of Code Editor,  202–212

examining project files,  196–202
Grid element,  201
introduction to,  192–202
markup to define FlipView control,  129–131
namespaces in,  196, 199
resource dictionary,  218
root element in documents,  198
styles

about,  215–216
building new styles from existing styles,  228–

231
creating,  217–221
IDE shortcuts for applying,  231–232
practicing,  221–227
referencing,  220
StandardStyles.xaml,  216–217
using explicit and implicit,  220–221

tab of Code Editor
about,  23
adding elements using,  202–212
adjusting Background property in,  201–202
displaying markup in Designer window,  25–

30
examining XAML project files,  198–200
setting property for text box object,  196

< tag and /> tag in markup,  195
Toolbox controls

about,  49
AppBar,  236
AppBarButton,  236–238
AppBarToggleButton,  236, 238, 242
binding to data using,  516–526
Canvas,  209–212
CommandBar,  236–238, 240–243
Flyout,  243–248
gesture support using,  259–260
Grid,  201
Image,  205, 612–613
in Windows Phone Store,  600, 603
ListBox,  522–526
ProgressRing,  417

	 gathering input, controls for

	 Index   651

TextBlock,  425, 614–617
TextBox,  425
ToggleButton,  203–206

WPF and,  26, 82, 112
Extensible Markup Language (XML)

about,  454, 490
documents

about,  515, 526
accessing data in,  526–540
adding node with data to,  538–540
locating child elements in XML

hierarchy,  532–533
modifying element in,  537–538
opening and displaying contents of,  527–530
reading selection of tagged elements,  530–

532
searching for items in file,  533–536

elements
locating in XML hierarchy child,  530–532
modifying,  537–538
reading selection of tagged,  530–532

files
about,  526
reading,  526–533
searching for items in,  533–536
writing to,  536–540

using LINQ with,  454–458
vs. Microsoft Access .mdb format,  454

F
FahrenheitTemp variable,  272
fields (columns),  491
FileNotFoundException object,  387
files, selecting contiguous or noncontiguous,  129
Fill Array button,  419
FillButton_Click event handler,  419
Filter List, using pipe symbol (|) for adding items

to,  186
Finally statement,  377–378, 385–386
FindDiscount method,  481–484
Find method, Array class,  416
Find-The-Number console application,  275–280
firing (triggering) events,  65
Fit All option, in Designer,  129
flash drives, writing error handler for,  384–385
FlipView control,  127–132
Flyout control,  243–248

Focus method,  413, 428
FolderBrowserDialog control,  184
FontDialog control,  184
Font property, in Properties window,  96
Font Size text box,  51
For Each...Next loop,  428, 440–441
ForeColor property, in Properties window,  96–97
ForegroundColor property,  276–277
Foreground property,  51
Form1_Load event handler,  370–371, 417–418, 422
Format function, displaying commas with data types

using,  299
formulas,  304, 314–315
For...Next loop

counter variables,  326, 330
in arrays,  407–410, 420
in simulate rolling dice console application,  280–

281
mastering

about,  361
complex loops,  363–368
Exit For statement,  367–368
using to convert distances,  364–367
using to fill Textbox with string data,  362–363

placing Stop statement for,  450
forward slash (/)

advanced arithmetic operator,  308–312
arithmetic operator,  305
shortcut operator,  313

forward slash and a closing bracket (/>), in XAML
markup,  195

free
offering apps as,  11
versions of Visual Studio 2013 development

suite,  4
From clause, in LINQ queries,  436, 443, 448, 456, 535
FromFile method,  379
FromFile statement,  384
Function procedures, in Visual Basic

application,  270–271
functions, conversion,  319–320

G
gathering input, controls for

CheckBox,  155
GroupBox and RadioButton,  159–164
ListBox,  164–168

generic collections

652   Index

generic collections
about,  423–424
binding to ListBox control,  522–526
declaring,  424–425
LINQ retrieving data from,  451–453

gestures
common,  260–262
on phone app development,  619
support for,  259–260

Get block,  470
GetLowerBound method,  404–409
GetUpperBound method,  404–410, 418
Global.asax files (global web application

information),  551
greater than or equal to (>=) sign

comparison operator,  343
relational operator,  324

greater than (>) sign
comparison operator,  343
relational operator,  324

green type, in Code Editor,  65
Grid element, in XAML,  201
Grid object,  62
GridView control,  574–578
GroupBox control

about,  158–159
gathering input with RadioButton control

and,  160–163
running Radio Button program,  160–163

Group method,  470–472, 475, 478

H
Hashtable class,  423
hexadecimal color value,  51
Horizontal Split button,  30
.htm (HTML page files),  551
HTML

tags,  559
viewing markup for webpage,  559–560

HTML5 and JavaScript programming,  548–550
HTML controls,  553–554
HyperLink control,  578–579

I
IDE (Integrated Development Environment)

about,  5, 17
about development environment,  19–21

component tray displaying non-visible
objects,  171

configuring for step-by-step exercises,  39–42
editing Windows form app with,  460–464
exploring Windows Phone,  609–610
in deploying application,  75
menu commands pertaining to Windows

store,  12
running program from,  67–68
shortcuts for applying styles,  231–232
tools for

important,  22–24
organizing tools,  24

XAML in,  192–193
If...Else structure,  549
If...Then...ElseIf structure,  431
If...Then...Else structure,  407
If...Then structure,  122, 186, 207, 308, 344–353, 393,

413
IIS (Internet Information Services), Microsoft,  544,

569
Image control

about,  55
adding images to program,  56–58
adding to phone app page,  612–614
creating,  205
style set for,  219

Image Editor tool, using to design custom tiles,  251–
253

Image Gallery program, using FlipView control
in,  130–132

image objects
naming in program,  58
setting Visibility property,  61

images
adding to Assets folder,  128–129
adding to Resources folder,  90–92
hiding,  67
splash screen,  70

implicitly declaring variables,  292
IndexOutOfRangeException object,  387
inheritance

about,  460
polymorphism as type of,  480

inheritance picker,  460–466
Inheritance Picker dialog box,  462–463
Inherited Form template,  462
Inherits statement

about,  467
using for inheriting base class,  476–479

	 lists

	 Index   653

input gestures, on touch-enabled screen,  261
Input Mask dialog box,  347
InputScope property,  616
Integer data type

about,  297
displaying commas with,  299
ListBox control and,  299–301
using in loops with counter variables,  362

integer (whole number) division
arithmetic operator,  305
shortcut operator,  313

Integrated Development Environment (IDE)
about,  5, 17
about development environment,  19–21
component tray displaying non-visible

objects,  171
configuring for step-by-step exercises,  39–42
editing Windows form app with,  460–464
exploring Windows Phone,  609–610
in deploying application,  75
menu commands pertaining to Windows

store,  12
running program from,  67–68
shortcuts for applying styles,  231–232
tools for

important,  22–24
organizing tools,  24

XAML in,  192–193
IntelliSense feature, Code Editor,  500
Internet Explorer, intranet settings are turned off

warning in,  567
Internet Information Services (IIS), Microsoft,  544, 569
intranet settings are turned off warning,  567
IOException object,  388
IsChecked property,  204
IsCompact property,  237
IsEnabled property,  452
IsLooping property,  60, 242
IsMuted property,  137
IsolatedStorageSettings class,  617, 636
IsSpellCheckEnabled property,  124–127
Items Collection Editor (Properties window),  504

J
JavaScript

about,  549
and HTML5 programming,  548–550
Windows Store apps designed with,  549

JPEG file, displaying,  55

K
keyboard shortcuts

displaying Properties window,  34
moving from one zoom setting to another,  49
Open Project dialog box,  20
selecting contiguous or noncontiguous files,  129

L
Label controls

adding to form,  175
in Windows Forms Toolbox,  88–89
setting properties,  95–97

Layout category, AutoSize property in,  95
Length property, using with String data,  116–117
less than or equal to (<=) sign

comparison operator,  343
relational operator,  324

less than (<) sign
comparison operator,  343
relational operator,  324

LINQ (Language Integrated Query).  See also queries,
LINQ

about,  435–436
blank lines in code blocks,  439
debugging strategies,  450
extracting information from arrays,  437–438
extracting string data,  443–447
query syntax for,  436
using Code Editor with,  437
using complex Where clause,  441–443
using with collections,  450–458
using with XML documents,  454–458, 526,

530–536
ListBox control

about,  164–165
binding generic collection to,  522–526
creating,  165–168
data types and,  297–304
running ListBox program,  168–169
using with Select Case structure,  355

List class,  423
lists

classes for maintaining,  423
creating collections and generic,  423–424,

451–453
using LINQ with XML document,  454–458

live tiles

654   Index

live tiles
about,  257
in Microsoft Weather application,  251
pinning on Start Page,  590
programming,  257–259
receiving notification,  258

local deployment of apps,  75–77
local machine, running program on,  31
local notification,  258
Lock screen, badge notification appearing in,  250
logical operators, using in conditional

expressions,  349
Long data type

about,  298
displaying commas with,  299
ListBox control and,  300–301
using in loops with counter variables,  362

looping button,  243
Lucky Seven app, Windows desktop

about,  79–80, 82–83
adding number labels,  88–89
adding .wav file to Resources folder,  92–93
building executable file,  104–105
creating user interface,  85–87
naming objects for clarity,  98
new project for creating,  83–85
picture box properties,  97–98
publishing,  105–107
running,  103–105
setting button properties,  93–94
setting descriptive label properties,  96–97
setting number labels properties,  95–96
setting title bar text of form,  97
SpinButton_Click event handler,  101–103
using PictureBox control,  89–90
writing code,  99–101

Lucky Seven app, Windows Store
about,  44–45
building executable file,  74–77
creating splash screen,  70–73
designing user interface

adding button control,  54–55
adding image,  56–58
adding text blocks for random numbers,  49–

50
creating new project,  45–47
navigating Designer,  48–49
opening Toolbox,  49–50
playing audio media,  58–60
using TextBlock control,  50–52

running program,  67–68
setting background color of page,  62
setting Visibility property,  61
SpinButton_Click event handler,  67–68
using Code Editor,  63–66
using Save All command,  62–63

M
MainPage.xaml, edit XAML markup in,  197–200
managed provider (provider), in database

connection string,  496
managing data

about,  397
preserving array contents using ReDim

Preserve,  414–416
processing large arrays,  416–422
with LINQ

about,  435–436
debugging strategies,  450
extracting information from arrays,  437–449
using with collections,  450–453
using with XML documents,  454–458

working with arrays of variables,  398–409
working with Collections,  422–432

Manifest Designer
adjusting tile options in,  254–257
setting options in Windows Phone manifest

file,  637–638
markup extension

XAML data binding expressed as,  517
MaskedTextBox control,  346–348, 350–351,

506–509
Math class,  272
math games, interactive,  275–284
MaxLength property, of TextBox control,  363
MediaElement control

about,  133
controlling playback,  135–138
in Toolbox tool,  58–60
playing music using,  133–135
playing videos using,  139–141
Source property of,  59, 134
using with CommandBar control,  240–243
using with Flyout control,  245

media element object, in Designer,  59
menu commands

Acquire Developer License,  12
adding access keys to,  172–174

	 MyBase syntax

	 Index   655

Auto Hide,  38
Open Developer Account,  12
Reserve App Name,  12
Start Debugging,  30

menu conventions,  173
menu items, changing order of,  175
MenuStrip control

about,  169–170
adding access keys to menu commands,  172–174
changing order of menu items,  175
creating menu,  170–172
processing menu choices,  175–180

Merry-go-round video file,  139
Message property, Exception object,  387
methods

syntax for overriding,  480–481
system clock,  180
vs. properties,  151

Microsoft Access
establishing data base connection using Data

Source Configuration Wizard,  492–501
working with databases using ADO.NET,  492–505
XML documents vs. .mdb format in,  454

Microsoft Calendar app,  590
Microsoft Developer Network (MSDN), Windows

Phone Development Center,  595
Microsoft IntelliSense feature, Code Editor,  204, 500
Microsoft Internet Information Services (IIS),  544,

569
Microsoft .NET Framework

specify version of,  84
Windows Forms and,  81

Microsoft OLE DB, as database provider,  496
Microsoft Silverlight, Windows Phone 8 and,  112
Microsoft user experience (UX),  236
Microsoft Visual Studio.  See Visual Studio
Microsoft Visual Studio 2013.  See Visual Studio 2013
Microsoft Visual Studio Express for Web,  4
Microsoft Visual Studio Express for Windows,  4
Microsoft Visual Studio Express for Windows

Desktop,  4
Microsoft Visual Studio Express for Windows

Phone,  4
Microsoft Visual Studio website,  4
Microsoft Weather application, tiles in,  250–251
minus (-) sign

formulas evaluated using,  314
shortcut operator,  313

mobile phone programming
about,  587
app life cycle considerations,  626–636
closing apps,  626–627
creating apps

about,  607
adding Image control,  612–614
adjusting settings in

PhoneApplicationPage,  611
creating new project,  607–608
designing user interface,  614–617
exploring IDE,  609–610
mouse input,  619
writing code,  617–620

deactivating apps,  627
features of Phone 8,  589–592
hardware requirements for,  590
IsolatedStorageSettings class,  636
opportunities in platform,  588
PhoneApplicationService class,  628–635
registering apps,  620–621
setting options in Windows Phone manifest

file,  637–638
testing apps,  620–626

Mod
advanced arithmetic operator,  308
arithmetic operator,  305
formulas evaluated using,  314

Model-View-Controller (MVC) architecture,  546
mouse input, on phone apps,  619
Movie Maker, Windows,  141
MSDN (Microsoft Developer Network), Windows

Phone Development Center,  595
MsgBox statement,  384
multidimensional arrays, declaring,  403
multiline TextBox controls,  120–124
multiplication sign

arithmetic operator,  305
shortcut operator,  313

multiproject solution, opening,  22
multitasking, in phone environment,  627
music

playing using MediaElement control,  133–135,
240–243

using with Flyout control,  245
MustOverride keyword,  481
MVC (Model-View-Controller) architecture,  546
MyBase syntax,  481

Name property, in Properties window

656   Index

N
Name property, in Properties window,  87–88, 98,

115–116
namespaces

in Visual Studio programming terminology,  199
in XAML,  196

NavigateButton_Click event handler,  143
Navigate method,  143
navigation toolbar,  504
.NET Framework

manipulating strings using,  320
Math class of,  272
specify version of,  84
Windows Forms and,  81

New Connection button,  494
New Project dialog box,  45, 83–85, 128–129
New Web Site command,  554
New Web Site dialog box,  547–548, 555
Next method

in Find-The-Number console application,  276–
277

in Lucky Seven app,  67
in simulate rolling dice console application,  280–

281
not equal to (<>) sign

comparison operator,  343
relational operators,  324

notification
live tiles receiving,  258
Start page tile as,  258

Not, logical operator,  349
NotOverridable keyword,  481
number of dimensions, syntax element in array

declaration,  399
number of elements, syntax element in array

declaration,  399

O
Object Browser tool,  23–24
Object data type,  298
Object list, switching between objects using,  94
Object-Oriented Programming (OOP)

about,  459
constructor,  481, 520
create properties statement,  470
creating base classes,  466–476
creating method statement,  471
creating objects statement,  473

inheriting base classes,  476–479
inheriting form using inheritance picker,  460–

466
Inherits statement,  467, 476–479
polymorphism,  480–485

objects, naming for clarity,  98
object terminology,  36
Office applications, Visual Basic opportunities for,  6
OLE DB, Microsoft, as database provider,  496
Open Developer Account command,  12
OpenFileDialog control,  184
OpenItem_Click event handler,  333–334, 338
Open Project dialog box, keyboard shortcut for,  20
OpenToolStripButton_Click event handler,  185
OpenTool-StripMenuItem_Click event handler,  330
operators

arithmetic,  305–313
binary,  350
comparison,  343, 355–361
relational,  324
shortcut,  313

Option Explicit,  41
Option Infer,  41
Option Infer statements,  294, 403
Options dialog box,  39–41
Option Strict,  41
OrElse conditional statements,  352–353
organizing tools

in IDE,  24
moving and docking tools,  37–38

Or, logical operator,  349–350
OutOfMemoryException object,  388
OverflowException object,  388
Overridable keyword,  481
Overrides keyword,  481–482

P
Page element, root element and,  200
page-level resource definition,  217
PageSetupDialog control,  184
panning movement, on touch-enabled screen,  260
parentheses (()), formulas evaluated using,  314
Parse method, converting data types using,  316–318
PasswordChar property,  352
password protection, adding using And

operator,  350–352
path name and drive errors,  378–382
PauseButton_Click event handler,  137

	 programming Window Store app

	 Index   657

People hub (Windows Phone 8),  590
periodic notification,  258
persistent user interface (“chrome”) features,

presenting users in Windows Store app
with,  236

Phone 8 development, Windows
about,  587
app life cycle considerations,  626–636
closing apps,  626–627
creating apps

about,  607
adding Image control,  612–614
adjusting settings in

PhoneApplicationPage,  611
creating new project,  607–608
designing user interface,  614–617
exploring IDE,  609–610
mouse input,  619
writing code,  617–620

deactivating apps,  627
hardware requirements for,  590
IsolatedStorageSettings class,  636
opportunities in platform,  588
PhoneApplicationService class,  628–635
registering apps,  620–621
setting options in Windows Phone manifest

file,  637–638
testing apps,  620–626

Phone 8, Windows
features of,  589–592
installing apps,  595
Microsoft Silverlight and,  112
Visual Basic opportunities on,  6
website for,  591

PhoneApplicationPage class,  610–611
PhoneApplicationService class,  628–635
Phone apps, Windows, binding datasets to,  492
Phone Emulator, Windows, using,  621–626
Phone Software Development Kit (SDK)

about,  596
on virtual machine environment,  598
working with version 8.0,  596–599

Phone Store, Windows
about,  590
accessing,  591–596
installing Windows Phone app,  595
planning for certification,  595–596
selling apps in,  595
Windows Phone Store vs.,  600–604

photos (pictures)
adding to Assets folder,  128–129
adding to Resources folder,  90–92
hiding,  67
splash screen,  70

PictureBox control
creating rectangle above check box,  161
creating rectangle beneath group box with,  161
drawing square object on form,  184
in Windows Forms Toolbox,  89–90

picture box properties, in desktop app,  97–98
pinning live tiles, on Start Page,  590
Pin To Start command,  286
pipe symbol (|), adding items to Filter List using,  186
plus and minus (+ -) signs, formulas evaluated

using,  314
plus (+) sign

arithmetic operator,  305
shortcut operator,  313

Pmt function,  564
PNG (Portable Network Graphics) format

displaying file in,  55
for splash screen,  70

polymorphism,  480–485
portable class libraries,  604
Position property, in Properties window,  60
precedence, changing order of,  315
Preserve keyword, using with ReDim statement,  415
price tier, in Windows Store,  10–11
PrintDialog control,  184
PrintDocument control,  183
Print-PreviewControl,  183
PrintPreviewDialog control,  184
Private and Protected keywords,  65
procedures,  64
program crashes,  376, 383
programmers, Windows Store

planning for certification,  12
registering as,  11
Windows Store requirements checklist,  12–15

programming tools
manually docking,  37–38
organizing,  36–39

programming Window Store app
about,  44–45
building executable file,  74–77
creating splash screen,  70–73
designing user interface

adding button control,  54–55
adding image,  56–58

program statements, in Visual Studio

658   Index

adding text blocks for random numbers,  49–
50

creating new project,  45–47
navigating Designer,  48–49
opening Toolbox,  49–52
playing audio media,  58–60
using TextBlock control,  50–52

running program,  67–68
setting background color of page,  62
setting Visibility property,  61
SpinButton_Click event handler,  67–68
using Code Editor,  63–66
using Save All command,  62–63

program statements, in Visual Studio,  66
ProgressBar control,  416–417
ProgressRing controls,  417
Project menu

Add Class command,  467
Add New Item command,  461–462

Project Properties Designer, opening,  92
projects

about,  22
file extension for,  22

Projects folder, default,  20
properties

attributes as,  196
syntax for overriding,  480–481
system clock,  180
vs. methods,  151

Properties window
about,  23–24
Appearance category in,  61
AutoSize property in,  95
Behavior category of,  98
Brush category,  51, 62
Categorized button in,  93
changing Name property of,  87, 88
changing property settings,  35
Click event in,  64–65
Common category in,  53, 55
displaying,  34
Font property in,  96
ForeColor property in,  96–97
identifying classes in,  460
IsLooping property in,  60
Items Collection Editor in,  504
manually docking,  37–38
Name property in,  87, 88, 98, 115–116
Position property in,  60

setting properties in Windows Phone Store
app,  611

TextAlign property in,  95
Text category in,  51–52
Text property in,  94, 116
Visible property in,  98
working with,  33–36

property terminology,  36
Protected and Private keywords,  65
provider (managed provider), in database

connection string,  496
Public Class statements,  477, 483–484
Public keyword,  295, 470
Public Sub New procedure,  520
publishing console apps,  285
publishing desktop app, using ClickOnce Security

and Deployment,  105–107
Publish Now button,  106
push notification,  258

Q
queries, LINQ

extracting numeric information from array,  438–
441

extracting string data,  443–447
From statements in,  436, 443, 448, 456
reading selection of tagged

XML elements,  530–532
retrieving data from XML document,  455–458
searching for items in XML file,  533–536
Select clause in,  437, 448, 450
syntax for,  436
using complex Where clause,  441–443
Where clause in,  437, 440–443, 448, 456,

534–535
Query Builder, Visual Studio, creating SQL statements

with,  509–514
Queue class,  423

R
RadioButton control

about,  159–160
gathering input with GroupBox control and,  160–

163
running Radio Button program,  160–163

RAD (Rapid Application Development), ASP.NET Web
Forms and,  545

	 Server Explorer tool

	 Index   659

random number generator, declaring,  67
RangeValidator control,  570
Rapid Application Development (RAD), ASP.NET Web

Forms and,  545
Razor, ASP. NET Web Pages with

about,  547
make up of,  559

ReadAllText method,  330
ReadKey method,  272

in Find-The-Number console application,  276–
277

in simulate rolling dice console application,  280–
281

ReadLine method,  272
RecordScoreButton_Click event handler,  619, 620
records (rows),  491
ReDim statement

preserving size of array using,  414–415
specifying size of array at runtime using,  410–414
using for three-dimensional arrays,  415–416

registering, as Windows Store developer,  11
relational database,  491
relational operators,  324
release build executable file

about,  75
building executable file,  104–105
creating console applications using,  271–275
deploying,  76–77

remainder division operator
advanced arithmetic operator,  308–312
arithmetic operator,  305

remote deployment of apps,  75
Replace method,  325
RequiredFieldValidator control,  570
requirements checklist, Windows Store,  12–15
Reserve App Name command,  12
resource dictionary file, adding XAML,  218
Resources folder

adding photo to,  90–92
adding sound file to,  92–93

Retries variable,  390–392
ReverseButton_Click event handler,  421
Reverse method, Array class,  416, 420–421
Rnd function, VBMath class,  419
Roll-The-Dice console application,  284–287
root (core definition) element

in XAML documents,  198
Page element and,  200

Round method,  272

rows (records),  491
runningTotal variable,  295
RunQuery_ Click event handler,  439, 442–444, 446,

448, 451, 455–457
run-time errors,  311, 313, 378–382, 391–392

S
sales information, in Windows Store,  10–11
Save All command,  62–63
Save As command,  63
SaveAsItem_Click event handler,  333, 336–337
SaveFileDialog control,  184
Save method,  537
Save New Projects option,  40
SByte data type

about,  298
ListBox control and,  301

scheduled notification,  258
ScheduleTileNotification object,  258
SDK (Software Development Kit), Windows Phone

about,  596
on virtual machine environment,  598
working with version 8.0,  596–599

Search charm,  239
Search Criteria Builder dialog box,  510, 512–513
security and permissions settings,  263–266
SecurityException object,  388
security issues

associating web browser with unknown
websites,  146

in deploying desktop apps,  107
Select Case decision structure

evaluating records with,  476
functions using,  471–472
handling group assignments,  474
in Find-The-Number console application,  276–

277
inputing conditions into,  475
mastering,  353–361

Select clause, in LINQ queries,  437, 448
SelectedIndex property,  165, 302
Select Resource dialog box,  91
SELECT statement, SQL,  509
server controls

about,  552–553
adding to website,  561–563

Server Explorer tool,  23–24

Set block

660   Index

Set block,  470
Settings charms,  239
SetValue method,  536–537
Share charm,  239
ShellSort procedure,  326, 329–330
ShellSort Sub procedure,  325–326
shortcut operators,  313
Short data type

about,  297
displaying commas with,  299
ListBox control and,  300–301

ShowButton_Click event handler,  428
ShowDialog method,  185
Silverlight, Windows Phone 8 and,  112
simulate rolling dice console application,  280–284
Single data type

about,  298
ListBox control and,  300–301

site master page title, editing,  581–583
slide gesture, on touch-enabled screen,  260
.sln (solution file extension),  22
Software Development Kit (SDK), Windows Phone

about,  596
on virtual machine environment,  598
working with version 8.0,  596–599

Solid Color Brush button,  51
Solution Explorer

about,  23–24
Assets folder in

about,  56–57
creating splash screen from,  70–73

creating Resources folder,  90–92
displaying,  26
double-clicking files in,  27
opening,  48

solutions
about,  22
file extension for,  22

Sort Array button,  420
SortButton_Click event handler,  420, 421
SortedList class,  423
Sort method,  416, 420, 428, 432
SortTextToolStripMenu-Item_Click event

handler,  328
sound effect

adding to desktop apps,  92–93
adding to program,  58–60

Source property, of MediaElement control,  59, 134

Source tab (Web Designer)
about,  556–557
viewing HTML and ASP.NET markup for

webpage,  559–560
spelling, checking in TextBox controls,  124–127
SpinButton_Click event handler

in desktop app,  101–103
in Windows Store app,  67–68

splash screen, creating,  70–73
Split method,  326, 329
Spotlight area, of Windows Store,  10
SqlException object,  388
SQL Server, as database provider,  496
SQL (Structured Query Language)

filtering data and,  509–514
LINQ and,  436
SELECT statement,  509

standard charms vs. command bars,  239
StandardStyles.xaml,  216–217
Start Debugging button,  103
Start Debugging command,  30
Start Here! Learn Microsoft Visual Basic 2012

(Microsoft Press),  5, 111
Start Page, pinning live tiles on,  590
Start page tile, as notification,  258
StaticResource dictionary,  517
step-by-step exercises, configuring IDE for,  39–42
Step Into button, on Debug toolbar,  450
StopButton_Click event handler,  137
Stop Debugging button,  382
Stop statements,  450
StreamReader class,  325
StreamWriter class,  325
String class, processing strings with

about,  320
common tasks,  320–322
sorting strings in textbox,  325–330
sorting text,  322
Visual Basic equivalents of elements in,  321–322

string concatenation (combination)
advanced arithmetic operator,  308–312
arithmetic operator,  305
shortcut operator,  313
using with String class,  320

String data type
about,  298
Length property using with,  116
ListBox control and,  300–301

string data, using LINQ to extract,  443–447

	 ToggleButton control

	 Index   661

string keyword, in Dim statement,  293
string variable, using to hold TextBox input,  118–120
structured error handlers,  376
Structured Query Language (SQL)

filtering data and,  509–514
LINQ and,  436
SELECT statement,  509

styles, XAML
about,  215–216
building new styles from existing styles,  228–231
creating,  217–221
IDE shortcuts for applying,  231–232
practicing,  221–227
referencing,  220
StandardStyles.xaml,  216–217
using explicit and implicit,  220–221

Sub and End Sub keywords,  65
Sub Main method, creating console applications

using,  271–275
Sub procedures

adding,  483–484
creating method adding to class,  471
in Visual Basic application,  270–271

Substring method,  325
subtraction sign

advanced arithmetic operator,  308–312
arithmetic operator,  305
formulas evaluated using,  314

system clock, properties and methods,  180
System namespace

classes for maintaining lists in,  423
Collections namespace within,  423

T
tabbed documents

about,  37
docking Code Editor or Designer window as,  37

table adapter,  491–492
tables,  491
tap gesture, on touch-enabled screen,  260
TargetType (control name), assigning styles

matching,  220
temperature conversion console application,

creating,  271–275
TestButton_Click event handler,  116, 481–482, 484
Test Connection button,  495

text
protecting with encryption,  331–339
sorting using String class,  322–323

TextAlign property, in Properties window,  95
TextBlock control

adding text blocks for random numbers,  52–54
in list app,  425
in phone app,  614–617
in Toolbox tool,  50–52

TextBox controls
assigning to variable,  118–120
binding control to class using,  517–521
check spelling in,  124–127
holding web address in browser,  142
in Data Sources window,  502–503
in list app,  425
multiline,  120–124
opening and displaying contents of XML

documents,  517–521
receiving input using,  113–118
using loop to fill text box with string data,  362–

363
text boxes, sorting strings in,  325–330
text box object, XAML setting property for,  196
Text category, in Properties window,  51–52
Text property, in Properties window,  94, 116
ThemeResource,  201
tiles

about,  257
designing for app custom

about,  249
Assets folder for,  249
required tiles for,  249–257

live
about,  257
in Microsoft Weather application,  251
pinning on Start Page,  590
programming,  257–259
receiving notification,  258

programming,  257–259
size of tiles for,  250

“Tiles, badges, and notifications (Windows Store
apps)” (MSDN),  259

TileUpdateManager class,  258
TimeToolStripMenuItem_Click event handler,  176–

177
title bar text, setting,  97
ToggleButton control,  203–206

toggle button object, creating event handler for

662   Index

toggle button object, creating event handler
for,  205–208

tombstoning,  602, 630
Toolbox tool

about,  23–24
adding button control,  54–55
adding controls using,  49–52
All XAML Controls category in,  59
Common Controls tab on,  502, 506
controls as XAML controls,  49
HyperLink control,  578–579
MediaElement control in,  58–60
opening,  49–52
using controls to display database

information,  506–509
using TextBlock control,  50–52

Toolbox, Web Forms
about controls in,  552
Button controls,  562–563
GridView control,  574–578
Label controls,  562–563
RangeValidator control,  570
server controls in,  552–553
TextBox control,  561–562
webpage validator controls,  570

Toolbox, Windows Forms
about,  81
adding button controls,  86–88
adding number labels,  88–89
CheckBox control,  155
Common Controls category of,  149
DateTimePicker control in,  150
dialog box controls,  184–185
displaying,  86
GroupBox control in,  159
Label controls

adding to form,  175
in Windows Forms Toolbox,  88–89
setting properties,  95–97

ListBox control in,  159–164
MaskedTextBox control in,  346–348, 350–351,

506–509
PictureBox control

creating rectangle above check box,  161
creating rectangle beneath group box

with,  161
in Windows Forms Toolbox,  89–90

ProgressBar control in,  416–417
RadioButton control,  160
ToolStrip control,  180–183

Toolbox, Windows Phone
about controls in,  612–614
Button controls,  614, 616
Image control,  612–614
TextBlock control,  614–617

Toolbox, XAML, controls.  See also Windows Store
apps, controls

AppBar,  236
AppBarButton,  236–238
AppBarToggleButton,  236, 238, 242
binding to data,  516–521
Canvas,  209–212
CommandBar,  236–238, 240–243
Flyout,  243–248
gesture support using,  259
Grid,  201
Image,  205
in Windows Phone Store,  601, 603
ListBox control,  522–526
ProgressBar control in,  417
ProgressRing,  417
TextBlock,  425
TextBox,  425, 517–521
ToggleButton,  203–206
Toolbox controls

Image,  612–614
TextBlock,  614–617

ToolStripButton1_Click event handler,  186–187
ToolStrip control,  180–183
tool windows, hiding,  38–39
ToString method,  316, 520, 521
touch input

gestures,  260–262
planning for,  259–263

ToUpper method,  321, 445
trapping errors

about,  375
comparing error handlers with defensive

programming techniques,  393–394
Exception objects,  387–390
Exit Try statement,  394
processing errors using Try…Catch

statement,  376–384
specifying retry period,  390–392
using Finally clause to perform cleanup

tasks,  385
using nested Try…Catch blocks,  391–392
writing flash drive error handler,  384–385

triggering (firing) events,  65
TrimEnd method,  428, 445

	 Visual Studio

	 Index   663

Trim method,  321, 445
Try...Catch statement

comparing error handlers with defensive
programming techniques,  393–394

Exception objects,  387–390
Exit Try statement,  394
nested,  377–378, 392–393
processing errors using,  376–384
specifying retry period,  390–392
writing flash drive error handler,  384–385

TwoWay data access,  517
typed datasets,  500

U
UInteger data type

about,  298
ListBox control and,  301

ULong data type
about,  298
ListBox control and,  301

UnauthorizedAccessException object,  388
uncomment,  530
unhandled errors or exceptions,  377, 382
Unrecognized Database Format message,  496
Until keyword, in Do loop,  372–373
USB flash drives, writing error handler for,  384–385
user experience (UX), Microsoft,  236
user interface, creating for desktop apps,  85–87
user interface, designing

adding button control,  54–55
adding image,  56–58
adding text blocks for random numbers,  49–50
creating console applications

about,  267
in Visual Studio,  268–275

creating new project,  45–47
for data entry,  540–541
for phone apps,  614–617
navigating Designer,  48–49
opening Toolbox,  49–52
playing audio media,  58–60
using TextBlock control,  50–52

users, validate using If...Then decision
structure,  346–349

UShort data type
about,  297
ListBox control and,  301

UX (user experience), Microsoft,  236

V
validate users, using If…Then decision

structure,  346–349
validator controls,  570
variables

about,  118
about declaring,  292
assigning TextBox control to,  118–120
Boolean,  346–348
declaring as constant,  295–296
explicitly declaring,  292–293
guidelines for naming,  295–296
implicitly declaring,  292
measurement of,  297
using assignment operator (=),  293

VBMath class, Rnd function in,  419
.vbproj (project file extension),  22
.vb (website code module files),  551
Vertical Split button,  30
videos, playing using MediaElement control,  139–

141
virtual machine environment, Windows Phone SDK

8.0 on,  598
Visibility property

setting,  61
setting in desktop app,  98
syntax for,  67

Visual Basic
about,  4–7
about upgrade,  xvii
advanced arithmetic operator,  308
as event-driven programming language,  64
data types in,  297
design mode,  87
events supported by objects in,  342
formulas,  304, 314–315
multiplatform approach to learning,  7
operators

arithmetic,  305–313
binary,  350
comparison,  343, 355–361
relational,  324
shortcut,  313

running program from IDE,  67–68
Visual Basic Blank App (XAML) template,  196–197
Visual Studio

about,  5
about development environment,  19–21

Visual Studio 2013

664   Index

creating console applications in
about,  268
interactive math games,  275–284
modules and procedures,  270–271
opening Console Application template,  269–

270
Roll-The-Dice application,  271–275
Sub Main() procedure,  271–275
temperature conversion application,  271–275

exiting,  42
gesture support in,  259
menu commands pertaining to Windows

store,  12
namespaces in programming terminology,  199
program statements,  66

Visual Studio 2013
about,  4, 79–80
Blend for

add controls in,  202
XAML in,  193

building executable file,  104–105
creating desktop app

adding number labels,  88–89
adding .wav file to Resources folder,  92–93
naming objects for clarity,  98
new project for,  83–85
picture box properties,  97–98
setting button properties,  93–94
setting descriptive label properties,  96–97
setting number labels properties,  95–96
setting title bar text of form,  97
SpinButton_Click event handler,  101–103
user interface,  85–87
using PictureBox control,  89–90
writing code,  99–101

databases and,  490
desktop apps and,  81–82
End as keyword in,  100
free versions of,  4
publishing desktop app,  105–107
running desktop app,  103–105
starting,  18–19

Visual Studio Code Editor.  See Code Editor
Visual Studio Express for Web,  4
Visual Studio Express for Windows,  4
Visual Studio Express for Windows Desktop,  4
Visual Studio Express for Windows Phone,  4
Visual Studio Query Builder, creating SQL statements

with,  509–514
Visual Studio website,  4
volume level, setting for media playback initial,  60

W
.wav file, adding to Resources folder,  92–93
Weather application, tiles in,  250–251
web applications.  See also website, application

binding datasets to,  492
creating Windows Store apps with JavaScript

in,  549–550
hosting ASP.NET web applications,  569
using ASP.NET MVC,  546
using ASP.NET Web Forms application,  545
Windows Store apps and,  548–549

web browsers, creating,  142–146
Web.config files,  551
web content, displaying live,  142–146
Web Designer

about,  552, 556–557
Design tab

about,  556
adding text,  557–558, 573
editing text,  581–582

including information and resources using,  570–
572

inserting controls with,  561–563, 573
Source tab (Web Designer)

about,  556–557
viewing HTML and ASP.NET markup for

webpage,  559–560
using,  557–560

web development, Visual Basic opportunities for,  6
Web Forms

ASP.NET
about,  545
building website with,  550–556
Web Pages vs.,  552

Web Forms Toolbox
about controls in,  552
Button controls,  562–563
GridView control,  574–578
Label controls,  562–563
RangeValidator control,  570
RequiredFieldValidator control,  570
server controls in,  552–553
TextBox control,  561–562
webpage validator controls,  570

WebMatrix,  547
webpage controls

Button controls,  562–563
GridView control,  574–578
inserting,  561–563, 573

	 Windows Forms

	 Index   665

Label controls,  562–563
RangeValidator control,  570
TextBox control,  561–562
validator controls,  570
writing event handlers for,  563–569

Web Pages (with Razor), ASP. NET
about,  547
make up of,  559
Windows Forms vs.,  552

web servers, Windows Azure applications for,  6
website, application.  See also web applications

adding text in Design view (Web Designer),  557–
558

building web forms,  550–556
creating,  554–557
customizing website template,  570–572
deploying application on web server,  569
displaying database records on webpage,  573–

580
editing document and site master

properties,  581–583
validating input fields on webpage,  570
writing event handlers for webpage

controls,  563–569
WebView control, displaying live web content

using,  141–146
Where clause, in LINQ queries,  437, 440–443, 448,

456, 534–535
While keyword, in Do loop,  372–373
Windows 8.1 design

creating command bar to manage tasks,  236–243
designing custom tiles for apps

about,  249
Assets folder for,  249
required tiles for,  249–257

live tiles
about,  257
in Microsoft Weather application,  251
programming,  257–259
receiving notification,  258

Microsoft user experience guidelines for,  236
planning for touch input,  259–263
security and permissions settings,  263–266
using charms,  239

Windows 8.1, Visual Basic opportunities on,  6
Windows 8, Windows 7, and Windows Server, Visual

Basic opportunities on,  6
Windows Azure applications for web servers and

cloud
Visual Basic opportunities for,  6

Windows Common Language Runtime (CLR),  544
Windows desktop apps

about,  79
building executable file,  104–105
ColorDialog control properties,  187
controls

CheckBox,  155–159
DateTimePicker,  148–154
GroupBox,  159–164
ListBox,  164–168, 355
ListBox control,  297–304
MenuStrip,  169–183

creating
adding number labels,  88–89
adding .wav file to Resources folder,  92–93
naming objects for clarity,  98
new project for,  83–85
picture box properties,  97–98
setting button properties,  93–94
setting descriptive label properties,  96–97
setting number labels properties,  95–96
setting title bar text of form,  97
SpinButton_Click event handler,  101–103
user interface,  85–87
using PictureBox control,  89–90
writing code,  99–101

database controls for
about,  489
displaying database information using toolbox

controls,  506–509
programming with ADO.NET,  490–505
SQL statements and fi ltering data,  509–514

dialog box controls,  184–185
event handlers managing common dialog

boxes,  185–190
MaxLength property of TextBox controls,  363
program crashes in,  383
publishing,  105–107
running,  103–105
starting,  80–81
TextBox control, using loop to fill text box with

string data,  362
Visual Studio 2013 and,  81–82

Windows Explorer,  286
Windows Forms

about,  79–80
about Visual Studio and,  81
building executable file,  104–105
ColorDialog control properties,  187

Windows Forms Designer

666   Index

controls
about,  147–154
CheckBox,  155–159
GroupBox,  159–164
ListBox,  164–168, 297–304, 355
MenuStrip,  169–180
ToolStrip,  180–183

creating desktop app
adding number labels,  88–89
adding .wav file to Resources folder,  92–93
naming objects for clarity,  98
new project for,  83–85
picture box properties,  97–98
setting button properties,  93–94
setting descriptive label properties,  96–97
setting number labels properties,  95–96
setting title bar text of form,  97
SpinButton_Click event handler,  101–103
user interface,  85–87
using PictureBox control,  89–90
writing code,  99–101

desktop apps and,  81
dialog box controls,  184–185
editing app with IDE,  460–464
event handlers managing common dialog

boxes,  185–190
limitations of,  107
.NET Framework and,  81
publishing desktop app,  105–107
running desktop app,  103–104, 105
writing apps with Data Source Configuration

Wizard,  492–505
Windows Forms Designer

about,  81
binding masked text box control to dataset

object,  506–509
creating user interface,  85–87
displaying information in dataset with,  501

Windows Forms Toolbox
about,  81
adding button controls,  86–88
adding number labels,  88–89
CheckBox control,  155
Common Controls category of,  149
DateTimePicker control in,  150
dialog box controls,  184–185
displaying,  86
Label controls

adding to form,  175
in Windows Forms Toolbox,  88–89

Label properties, setting,  95–97
ListBox control in,  159–164
MaskedTextBox control in,  346–348, 350–351,

506–509
MenuStrip control,  170
PictureBox control

about,  89–90
creating rectangle above check box,  161
creating rectangle beneath group box

with,  161
drawing square object on form,  184

ProgressBar control in,  416–417
RadioButton control,  160
ToolStrip control,  180–183

Windows, getting license for developers,  18
Windows Library for JavaScript (WinJS),  549
Windows Lock screen, badge notification appearing

in,  250
Windows Movie Maker,  141
Windows Phone 8

features of,  589–592
installing apps,  595
Microsoft Silverlight and,  112
Visual Basic opportunities on,  6
website for,  591

Windows Phone 8 development
about,  587
app life cycle considerations,  626–636
closing apps,  626–627
creating apps

about,  607
adding Image control,  612–614
adjusting settings in

PhoneApplicationPage,  611
creating new project,  607–608
designing user interface,  614–617
exploring IDE,  609–610
mouse input,  619
writing code,  617–620

deactivating apps,  627
hardware requirements for,  590
IsolatedStorageSettings class,  636
opportunities in platform,  588
PhoneApplicationService class,  628–635
registering apps,  620–621
setting options in Windows Phone manifest

file,  637–638
testing apps,  620–626

Windows Phone apps.  See also Windows Phone Store
binding datasets to,  492

	 Windows Store apps

	 Index   667

Windows Phone apps, controls
about,  601
button controls, adding to phone app,  614, 616
Image controls, adding to phone app page,  612–

614
TextBlock control,  614–617

Windows Phone Audio Playback template,  607
Windows Phone Development Center,  595
Windows Phone Emulator, using,  621–626
Windows Phone manifest file, setting options

in,  637–638
Windows Phone Software Development Kit (SDK)

about,  596
on virtual machine environment,  598
working with version 8.0,  596–599

Windows Phone Store
about,  590
accessing,  591–596
installing Windows Phone app,  595
planning for certification,  595–596
selling apps in,  595
setting properties for apps in,  611
Windows Phone Store vs.,  600–604
Windows Store vs.,  600–604

Windows Presentation Foundation (WPF)
ASP.NET Web Forms and,  545
binding datasets to,  492
controls as root of Windows Store app

controls,  112–113
using for desktop apps in Visual Studio 2013

development suite,  82
XAML markup language and,  26, 82, 112

Windows Push Notifi cation Service (WNS),  258
Windows Server and Windows 7, Visual Basic

opportunities on,  6
Windows Store

about,  8
accessing,  9–10
app listing page,  10
connecting datasets to,  492
Details page,  15
installing apps from,  10
offering free apps,  11
planning for certification,  12
price tier in,  10–11
requirements checklist,  12–15
resources for developers preparing for,  12
sales information,  10–11
Spotlight area of,  10
Windows Phone Store vs.,  600–604

Windows Store apps
about,  7
about programming,  44–45
adjusting Background property in,  201–202
binding datasets to,  492
check spelling in,  124–127
creating for web with JavaScript,  549–550
data sources for,  516
designing

custom tiles for,  249–257
live tiles,  257–259
planning for touch input,  259
presenting users with “chrome” features

in,  236
replacing traditional menu bars and

toolbars,  236–243
security and permissions settings,  263–266
size of tiles for,  250

designing custom tiles for
about,  249
Assets folder for,  249
required tiles for,  249–257

edit XAML markup in MainPage.xaml,  200–202
examining App.xaml,  197–200
exception handling,  383
live tiles

about,  257
in Microsoft Weather application,  251
programming,  257–259
receiving notification,  258

planning for touch input,  259
presenting users with “chrome” features in,  236
replacing traditional menu bars and

toolbars,  236–243
running and testing,  30–33
security and permissions settings,  263–266
size of tiles for,  250
TextBox controls, using loop to fill text box with

string data,  362–363
web applications and,  548–549
XAML styles

about,  215–216
building new styles from existing styles,  228–

231
creating,  217–221
IDE shortcuts for applying,  231–232
practicing,  221–227
referencing,  220
StandardStyles.xaml,  216–217
using explicit and implicit,  220–221

Windows Store apps, controls

668   Index

XML documents in
about,  526
locating child elements in XML

hierarchy,  532–533
opening and displaying contents of,  527–530
reading selection of tagged elements,  530–

532
searching for items in file,  533–536

Windows Store apps, controls.  See also Toolbox,
XAML, controls

about,  111, 191
about understanding,  112–113
AppBar,  236
AppBarButton,  236–238
AppBarToggleButton,  236, 238, 242
binding to data using XAML,  516–526
Canvas controls,  209
CommandBar,  236–238, 240–243
displaying live web content using WebView

control,  141–146
FlipView control,  127–132
Flyout,  243–248
gesture support using,  259
Image controls

about,  55
adding images to program,  56–58
creating,  205
style set for,  219

Label controls
in Windows Forms Toolbox,  88–89

Label properties, setting,  95–97
ListBox control,  522–526
MediaElement control

about,  133
controlling playback,  135–138
playing music using,  133–135, 240–243
playing videos using,  139–141
using with Flyout control,  245

PictureBox control, drawing square object on
form,  184

TextBlock controls, adding text blocks for random
numbers,  52–54

TextBox controls
assigning to variable,  118–120
binding control to class using,  517–521
check spelling in,  124–127
multiline,  120–124
opening and displaying contents of XML

documents,  517–521
receiving input using,  113–118

ToggleButton control,  203–206
Windows Store apps, creating

building executable file,  74–77
Canvas controls,  209
creating splash screen,  70–73
designing user interface

adding button control,  54–55
adding image,  56–58
adding text blocks for random numbers,  49–

50
creating new project,  45–47
navigating Designer,  48–49
opening Toolbox,  49–50
playing audio media,  58–60
using TextBlock control,  50–52

Image control,  205
new project for,  197–200
running program,  67–68
setting background color of page,  62
setting Visibility property,  61
SpinButton_Click event handler,  67–68
ToggleButton control,  203–206
using Code Editor,  63–66
using Save All command,  62–63

Windows Store developers
planning for certification,  12
registering as,  11
Windows Store requirements checklist,  12–15

WinJS (Windows Library for JavaScript),  549
WNS (Windows Push Notifi cation Service),  258
WPF (Windows Presentation Foundation)

ASP.NET Web Forms and,  545
binding datasets to,  492
controls as root of Windows Store app

controls,  112–113
using for desktop apps in Visual Studio 2013

development suite,  82
XAML markup language and,  26, 82, 112

WriteLine method,  272
in Find-The-Number console application,  276–

277
in simulate rolling dice console application,  280–

281
Write method

in Find-The-Number console application,  276–
277

in simulate rolling dice console application,  280–
281

Xor operator and,  337
writing code.  See Code Editor

	 Zoom tool, in Designer

	 Index   669

X
XAML (Extensible Application Markup Language)

about,  191–192
All XAML Controls category,  59
as root of Windows Store app controls,  112–113
data binding expressed as markup extension,  517
defining list box using,  357–361
elements

about,  194–196
adding using tab of Code Editor,  202–212

examining project files,  196–202
Grid element,  201
introduction to,  192–202
markup to define FlipView control,  129
namespaces in,  196, 199
resource dictionary,  218
root element in documents,  198
styles

about,  215–216
building new styles from existing styles,  228–

231
creating,  217–221
IDE shortcuts for applying,  231–232
practicing,  221–227
referencing,  220
StandardStyles.xaml,  216–217
using explicit and implicit,  220–221

tab of Code Editor
about,  23
adding elements using,  202–212
adjusting Background property in,  201–202
displaying markup in Designer window,  25–

30
examining XAML project files,  198–200
setting property for text box object,  196

< tag and /> tag in markup,  195
Toolbox controls

about,  49
AppBar,  236
AppBarButton,  236–238
AppBarToggleButton,  236, 238, 242
binding to data using,  516–526
Canvas,  209–212
CommandBar,  236–238, 240–243
Flyout,  243–248
gesture support using,  259–260
Grid,  201
Image,  205, 612–614
in Windows Phone Store,  601, 603

ListBox,  522–526
ProgressRing,  417
TextBlock,  425, 614–617
TextBox,  425, 517–526
ToggleButton,  203–206

WPF and,  26, 82, 112
Xbox 360, Visual Basic opportunities for,  6
x: characters, namespaces prefaced by,  196
XDocument class,  526–527, 529, 532–533, 537
XDocument object,  538
XElement class,  527, 532–533
XElement object,  537, 538
XML (Extensible Markup Language)

about,  454, 490
documents

about,  515, 526
accessing data in,  526–540
adding node with data to,  538–540
locating child elements in XML

hierarchy,  532–533
modifying element in,  537–538
opening and displaying contents of,  527–530
reading selection of tagged elements,  530–

532
searching for items in file,  533–536

elements
locating in XML hierarchy child,  530–532
modifying,  537–538
reading selection of tagged,  530–532

files
about,  526
reading,  526–533
searching for items in,  533–536
writing to,  536–540

using LINQ with,  454–458
vs. Microsoft Access .mdb format,  454

XML schema file,  491–492
XmlTestButton_Click event handler,  530
Xor operator,  334–339, 349–350

Z
Zoom control,  115
Zoom drop-down button,  49
zoom in and out, on touch-enabled screen,  261–262
Zoom tool, in Designer,  49

About the author

MICHAEL HALVORSON is the author or co-author of more than 35 books,
including Start Here! Learn Microsoft Visual Basic 2012, Microsoft Visual Basic
2010 Step by Step, Microsoft Office XP Inside Out, and Microsoft Visual Basic
6.0 Professional Step By Step. He has been the recipient of numerous non-
fiction writing awards, including the Computer Press Best How-to Book Award
(Software category) and the Society for Technical Communication Excellence

Award (Writing category). Halvorson earned a bachelor’s degree in Computer Science
from Pacific Lutheran University in Tacoma, Washington, and master’s and doctoral
degrees in History from the University of Washington in Seattle. He was employed at
Microsoft Corporation from 1985 to 1993, and he has been an advocate for Visual Basic
programming since the product’s original debut at Windows World in 1991. Halvorson
is currently an associate professor at Pacific Lutheran University. You can learn more
about his books and ideas at http://michaelhalvorsonbooks.com.

http://michaelhalvorsonbooks.com

	Contents at a glance
	Contents
	Introduction
	Chapter 3: Creating your first Windows Store application
	Lucky Seven: A Visual Basic app for the Windows Store
	Programming step by step
	Designing the user interface
	Final property settings and adjustments
	Writing the code
	A look at the SpinButton_Click event handler
	Running Windows Store apps
	Creating a splash screen for your app
	Building an executable file
	Summary

	Index
	About the author

