

Learn

JavaScript

Steve Suehring

Copyright © 2012 by Steve Suehring
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6674-0

1 2 3 4 5 6 7 8 9 LSI 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Rachel Steely

Editorial Production: Dianne Russell, Octal Publishing, Inc.

Technical Reviewer: John Paul Mueller

Copyeditor: Roger LeBlanc

Indexer: Stephen Ingle

Cover Design: Jake Rae

Cover Composition: Zyg Group, LLC

Illustrator: Robert Romano and Rebecca Demarest

I dedicate this book to Rebecca, Jakob, and Owen
—Steve Suehring

Contents at a Glance

Introduction xiii

Chapter 1 What Is JavaScript? 1
Chapter 2 JavaScript programming Basics 23
Chapter 3 Building JavaScript programs 45
Chapter 4 JavaScript in a Web Browser 73
Chapter 5 handling events with JavaScript 105
Chapter 6 Getting Data into JavaScript 133
Chapter 7 Styling with JavaScript 157
Chapter 8 Using JavaScript with Microsoft Windows 8 187

Index 207

 vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Introduction . xiii

Chapter 1 What Is JavaScript? 1
A First JavaScript Program . 2

Where JavaScript Fits . 3

HTML, CSS, and JavaScript . 4

JavaScript in Windows 8 . 9

Placing JavaScript in a Webpage . 9

Writing Your First JavaScript Program .11

Writing JavaScript in Visual Studio 11 .12

JavaScript’s Limitations .20

Summary. .22

Chapter 2 JavaScript Programming Basics 23
JavaScript Placement: Revisited .23

Basic JavaScript Syntax .26

JavaScript Statements and Expressions .26

Names and Reserved Words .27

Spacing and Line Breaks .28

Comments .29

Case Sensitivity .30

Operators .31

JavaScript Variables and Data Types .32

Variables. .32

Data Types .35

viii Contents

Looping and Conditionals in JavaScript .39

Loops in JavaScript .40

Conditionals in JavaScript . 41

Summary. .44

Chapter 3 Building JavaScript Programs 45
Functions .45

Function Overview .46

Function Arguments .46

Calling Functions .48

Return Values .49

Function Examples .50

Scoping Revisited .54

Objects in JavaScript .56

What Does an Object Look Like? .56

Properties .56

Methods .58

Object Enumeration .61

Classes .63

Debugging JavaScript .67

Debugging as a Process .67

Debugging in Internet Explorer .68

Summary. .71

Chapter 4 JavaScript in a Web Browser 73
JavaScript Libraries . 74

Getting jQuery . 74

Using a Local Copy of jQuery .75

Using a CDN-Hosted jQuery Library .78

Testing jQuery. .79

Getting jQuery UI .81

Adding jQuery UI to a Project .82

Testing jQuery UI .86

 Contents ix

The Browser Object Model .89

Events and the window Object .90

The screen Object .90

The navigator Object .92

The location Object .93

The DOM .95

DOM Versions .95

The DOM Tree. .96

Retrieving Elements with JavaScript and jQuery .98

Using jQuery, Briefly .99

Retrieving Elements by ID .100

Retrieving Elements by Class .102

Retrieving Elements by HTML Tag Name .102

Summary. .104

Chapter 5 Handling Events with JavaScript 105
Common Events with JavaScript .105

Handling Mouse Events .106

Preventing the Default Action .110

Attaching to an Element with On . 112

Validating Web Forms with jQuery .113

Validating on Submit .113

Regular Expressions .118

Finding the Selected Radio Button or Check Box.121

Determining the Selected Drop-Down Element 122

The click Event Revisited .125

Keyboard Events and Forms .129

Summary. .131

Chapter 6 Getting Data into JavaScript 133
AJAX in Brief .133

On Servers, GETs, and POSTs .134

Building a Server Program .135

x Contents

AJAX and JavaScript .139

Retrieving Data with jQuery .139

Using get() and post() . 140

Building an Interactive Page .141

Error Handling .144

Using JSON for Efficient Data Exchange .146

Using getJSON() . 147

Sending Data to the Server .148

Sending Data with getJSON . 148

Sending Post Data .153

Summary. .156

Chapter 7 Styling with JavaScript 157
Changing Styles with JavaScript .157

CSS Revisited .157

Changing CSS Properties .159

Working with CSS Classes .163

Determining Classes with hasClass() . 163

Adding and Removing Classes .164

Advanced Effects with jQuery UI .167

Using Effects to Enhance a Web Application 167

Using jQuery UI Widgets .172

Other Helpful jQuery UI Widgets .176

Putting It All Together: A Space Travel Demo .176

Summary. .186

 Contents xi

Chapter 8 Using JavaScript with Microsoft Windows 8 187
JavaScript Is Prominent in Windows 8 .187

A Stroll Through a Windows 8 Application .190

Building a Windows 8 App .193

Building the Application .193

Code Analysis .199

Defining a Splash Screen, Logos, and a Tile 202

Summary. .204

Index 207

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xiii

Introduction

JavaScript is a popular web programming language. Oops. I wrote that sentence five years ago.
JavaScript is now much more than just a popular web programming language. In addition to

web, JavaScript is now a central language for programming Windows 8 Apps. Using JavaScript, you
can now not only write powerful applications for the web, but you can also write native Windows
applications.

Now more than ever, people are looking to learn JavaScript—and not just developers—people
who haven’t programmed before, or who may have created a web page or two along the way, are
recognizing the importance of JavaScript. It’s a great time to learn JavaScript, and this book can help.

This book covers not only JavaScript programming for the web but also covers beginning Win-
dows 8 programming with JavaScript. Even though programming or running JavaScript code doesn’t
require Microsoft tools, this book is noticeably Microsoft-centric. The one exception to not requiring
Microsoft tools surrounds programming of Windows 8 Apps. If you’re looking for a more generalized
JavaScript programming book, please see my JavaScript Step by Step book, which, although more
advanced, looks at JavaScript programming through a wider lens.

Who Should Read This Book

This book is intended for readers who want to learn JavaScript but who don’t have a formal back-
ground in programming. This characterization includes people who have perhaps created a web
page, or simply been interested enough to view the source of a web page. It also includes people who
are familiar with another programming language, but want to learn JavaScript.

Regardless of your background, if you’re reading this, you’re likely at the point where you want to
learn JavaScript with some structure behind it. You’d like to write JavaScript code for practical applica-
tions, and also learn why it works.

In this book, you’ll create the code for the examples, and test that code in one or more web brows-
ers. You can write JavaScript in any text editor, but the book will use a free version of Microsoft Visual
Studio as the JavaScript editor.

assumptions
This book assumes that you’re familiar with basic computing tasks such as typing and saving files, as
well as working with programs on the computer. The meaning of terms such as “web browser” should
be clear to you as meaning programs such as Internet Explorer, Firefox, Chrome, Safari, Opera, and
the like. A term like “text editor” shouldn’t scare you away; hopefully you’ve fired up something like
Notepad in Microsoft Windows before.

xiv Introduction

Who Should Not Read This Book

This book is not intended for readers who already have extensive JavaScript programming experience.
Additionally, if you’re completely new to computers and aren’t comfortable with the Internet and
using computer software, this book might go somewhat fast for you.

Finally, if you’re looking for a book to solve a specific problem with JavaScript or a book that shows
JavaScript programs in a recipe-like manner, then this book isn’t for you. Similarly, if you’re not really
interested in programming, and just want to learn how to add a counter or some other JavaScript
widget to your page, there are plenty of free tutorials on the web that can help. Remember: this book
shows not only how things work but also explains why things work as they do. Making something
work once is easy, but explaining it and helping you understand why it works will help you for years
to come.

Organization of This Book

The book is organized into eight chapters that build upon each other. Early in the book you will see
working code. While you can cut and paste, or use examples from the sample companion code, you’ll
have the most success if you enter the examples by hand, typing the code yourself. See the section
“Code Samples” later in this Introduction for more information on working with the code samples.

Conventions and Features in This Book

This book presents information using conventions designed to make the information readable and
easy to follow.

■■ The book includes several exercises that help you learn JavaScript.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2, and so on) listing
each action you must take to complete the exercise.

■■ Boxed elements with labels such as “Note” provide additional information or alternative meth-
ods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at the same
time. For example, “Press Alt+Tab” means that you hold down the Alt key while you press the
Tab key.

■■ A vertical bar between two or more menu items (for example, File | Close), means that you
should select the first menu or menu item, then the next, and so on.

 Introduction xv

System Requirements

Writing JavaScript doesn’t technically require any specialized software beyond a web browser and a
text editor of some kind. You will need the following hardware and software to complete the practice
exercises in this book:

■■ While any modern operating system will work, you’ll find it easier if you’re on a later version of
Windows, such as Windows 7 or Windows 8. Additionally, you’ll need Windows 8 in order to
follow some of the examples in the book that build Windows 8 Apps.

■■ Any text editor will suffice, but you’ll find it easier to work through examples if you use Visual
Studio 11, any edition (multiple downloads may be required if using Express Edition products)

■■ A computer that has a 1.6GHz or faster processor (2GHz recommended).

■■ 1 GB (32 Bit) or 2 GB (64 Bit) RAM (Add 512 MB if running in a virtual machine or SQL Server
Express Editions, more for advanced SQL Server editions).

■■ 3.5GB of available hard disk space.

■■ 5400 RPM hard disk drive.

■■ DirectX 9 capable video card running at 1024 x 768 or higher-resolution display.

■■ DVD-ROM drive (if installing Visual Studio from DVD).

■■ Internet connection to download software or chapter examples.

Depending on your Windows configuration, you might require Local Administrator rights to install
or configure Visual Studio 11.

Code Samples

There are numerous code samples throughout the book. As previously stated, you’ll learn the most
by typing these in manually. However, I realize that process can become mundane (and I’ll even admit
that I don’t type in many examples when I read development books).

To help take the pain out of typing in code examples, this book reuses as much code as pos-
sible, so if you type it in once, in most cases you’ll be able to reuse at least some of that code in later
examples. This is both a blessing and a curse, because if you type it in incorrectly the first time—and
don’t get it working—then that problem will continue in later examples.

For simplicity, you’ll concentrate most of your work on a single HTML and single JavaScript file
within the book. This means that you won’t need to create new files repeatedly; instead, you will reuse
the files you already have by deleting or replacing code to create the new examples.

xvi Introduction

To help minimize errors you might make when creating the example code by hand, much of the
code shown in the book (and all the formal examples) are included with the companion content for
this book. These code examples, and indeed all of the code in the book, have been tested in Internet
Explorer 10 and Firefox 10, along with a selection of other browsers such as Chrome and Safari in
certain areas.

http://www.microsoftpressstore.com/title/9780735666740

Follow the instructions to download the 9780735666740_files.zip file.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use them with the
exercises in this book:

1. Unzip the 9780735666740_files.zip file that you downloaded from the book’s website (name a
specific directory along with directions to create it, if necessary).

2. If prompted, review the displayed end user license agreement. If you accept the terms, select
the accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access it from the same web page
from which you downloaded the 9780735666740_files.zip file.

Using the Code Samples
The code is organized into several subfolders corresponding to each chapter. Code samples are refer-
enced by name in the book. You can load a code file and other files into a project in Visual Studio. or
open the file and copy and paste the contents into the files that you’ll build as part of the book.

Acknowledgments

I’ve written a few books now and I’m thinking I should start an advertising program for the acknowl-
edgements section. (Your name here for $25.) Thanks to Russell Jones and Neil Salkind for making this
book possible. Since I wrote my last acknowledgements section, Owen Suehring was born and joins
his brother Jakob in trying to distract me from the business of writing books. Speaking of distractions,
follow me on Twitter: @stevesuehring.

Of course, it wouldn’t be an acknowledgments section if I didn’t thank Rob and Tim from Partners,
and Jim Oliva and John Eckendorf. Thanks to Chris Tuescher. Pat Dunn and Kent Laabs: this is what I’ve
been doing instead of updating your websites; I hope you enjoy the book more than updates to your
sites.

http://www.microsoftpressstore.com/title/9780735666740

 Introduction xvii

Errata and Book Support

We’ve made every effort to ensure the accuracy of this book and its companion content. Any errors
that have been reported since this book was published are listed on our Microsoft Press site:

http://www.microsoftpressstore.com/title/9780735666740

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.
Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance for
your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

 1

Chapter 1

What Is JavaScript?

after completing this chapter, you will be able to

■■ Understand JavaScript’s role in a webpage

■■ Create a simple webpage

■■ Create a JavaScript program

WeLCoMe to the WorLD of JavaScript programming. This book provides an introduction to Java-
Script programming both for the web and for Microsoft Windows 8. Like other books on JavaScript
programming, this book shows the basics of how to create a program in JavaScript. However, unlike
other introductory books on JavaScript, this book shows not only how something works but also why
it works. If you’re looking merely to copy and paste JavaScript code into a webpage there are plenty
of tutorials on the web to help solve those specific problems.

Beyond the basics of how and why things work as they do with JavaScript, the book also shows
best practices for JavaScript programming and some of the real-world scenarios you’ll encounter as a
JavaScript programmer.

Programming for the web is different than programming in other languages or for other plat-
forms. The JavaScript programs you write will run on the visitor’s computer. This means that when
programming for the web, you have absolutely no control over the environment within which your
program will run.

While JavaScript has evolved over the years, not everyone’s computer has evolved along with
it. The practical implication is that you need to account for the different computers and different
situations on which your program might run. Your Java Script program might find itself running on a
computer from 1996 with Internet Explorer 5.5 through a dial-up modem just as easily as a shiny new
computer running Internet Explorer 10 or the latest version of Firefox. Ultimately, this comes down to
you, the JavaScript programmer, testing your programs in a bunch of different web browsers.

With that short introduction, it’s time to begin looking at JavaScript. The chapter begins with code.
I’m doing this not to scare you away but to blatantly pander to the side of your brain that learns by
seeing an example. After this short interlude, the chapter examines where JavaScript fits within the
landscape of programming for the web and beyond. Then you’ll write your first JavaScript program.

2 Start here! Learn JavaScript

A First JavaScript Program

Later in this chapter, you’ll see how to create your own program in JavaScript, but in the interest of
getting you thinking about code right away, here’s a small webpage with an embedded JavaScript
program:

<!doctype html>

<html>

<head>

<title>Start Here</title>

</head>

<body>

<script type="text/javascript">

document.write("<h1>Start Here!</h1>");

</script>

</body>

</html>

You’ll see later how to create a page like the one shown here. When viewed in a browser, the page
looks like Figure 1-1. I’ll show you how to create such a page later in the chapter.

FIGURE 1-1 A basic JavaScript program to display content.

The bulk of the code shown in the preceding listing is standard HTML (HyperText Markup Lan-
guage) and will be explained later. For now, you can safely ignore the code on the page except for the
three lines beginning with <script type=”text/javascript”>.

The opening and closing script tags tell the web browser that the upcoming text is in the form of
a script—in this case, it is of the type text/javascript. The browser sees that opening script tag and
hands off processing to its internal JavaScript interpreter, which then executes the JavaScript. In this
case, the entire code is merely contained on a single line: a call to the write method of the document
object, which then places some HTML into the document.

The actual JavaScript comprises a single line:

 CHAPTER 1 What Is JavaScript? 3

document.write("<h1>Start Here!</h1>");

That line is enclosed within the opening and closing <script> tags. Each line of JavaScript is typi-
cally terminated by a semi-colon (;), and JavaScript gets executed from the top down. Each line is read
in, then parsed and run, by the browser. The practical implication of the top-down execution is that if
you have an error at the top, nothing below it will be executed by the browser. This can lead to some
confusion when you’re expecting something to happen, like having words appear on the screen when
in fact an error occurred near the top of the program that prevented the code from ever being run.
Luckily, there are tools and techniques for troubleshooting JavaScript, which are discussed later on.
The one exception to this top-down execution is in the area of functions, and you’ll see that later on,
as well.

If you’re already feeling a bit lost, don’t worry. I’m going to back up and start from the beginning
on JavaScript and describe its place on the web and among other programming languages.

Note The document.write usage shown here isn’t always the preferred method for getting
content onto a page. It works, but there are other ways to do it, though they can be more
difficult to explain. For now, simpler is better.

Where JavaScript Fits

JavaScript plays a key role in modern application development, but JavaScript comes from humble
beginnings. A common misconception that new JavaScript programmers (and many other people)
have is that JavaScript is somehow related to the Java programming language. Here’s the first learn-
ing opportunity of this book: JavaScript is not related to Java. JavaScript was first built to enhance the
web-browsing experience, but it’s grown well beyond the browser to become an important program-
ming language in Microsoft Windows 8.

JavaScript programs are made up of text, just like the text that makes up a page of this book. The
text for JavaScript programs is created in a certain order and placed within a certain area so that a
web browser will do something with it. In much the same way, the text in this book is sequenced: right
now, you’re reading this text, parsing its words, and producing results such as learning, validating
your knowledge, or falling asleep.

In the world of computing, there is a model called client-server, where the client (think: web
browser) requests resources (think: webpage) from a server, which is a different computer discover-
able through a URL (Uniform Resource Locator, such as http://www.microsoft.com). When you request
something from http://www.microsoft.com, your web browser is the client. It contacts the server for
the webpage. The server sends the webpage (consisting of HTML, CSS, and JavaScript) back to the
browser. The browser then shows, or renders, the page for your enjoyment.

The most common place that JavaScript runs is in the client web browser. This client-side execu-
tion should be differentiated from server-based languages such as C#, which run on the server. In the

4 Start here! Learn JavaScript

webpage example already discussed, the Microsoft site is likely running a server-based language such
as Microsoft Visual Basic or C# to create the webpages. JavaScript also runs in desktop widgets (nota-
bly in Windows 8), in PDF documents, and in other similar places. This section explores how JavaScript
interacts with other client languages to provide a rich application experience.

Note JavaScript is also used as a server-side language with frameworks such as Node.js,
but JavaScript’s primary use remains as a client-side language.

htML, CSS, and JavaScript
The languages of front-end web development consist of HTML, CSS (Cascading Style Sheets), and
JavaScript. HTML provides the descriptive elements that surround content to define the layout of the
page. CSS provides the styling to make the marked-up content visually appealing. JavaScript provides
the functional and behavioral aspects to both the content and the styling. These front-end languages
are typically combined with back-end, server-side languages such as PHP, Visual Basic/C#, Java, or
Python to create a full web application.

htML
HTML is the language of the web. It’s the language developers use to create webpages. You can
create working webpages and web applications with nothing more than just HTML; however, to
today’s sophisticated users, such pages would be boring and look horrible—but they would be
webpages nonetheless. HTML is a standard or specification (two terms that are used relatively inter-
changeably, in this case) defined by the World Wide Web Consortium (W3C). There are several itera-
tions of the HTML specification. The most current is version 5, known simply as HTML5.

HTML consists of elements enclosed in angle brackets (< and >). You already saw examples of
HTML elements in the first tutorial in the chapter. HTML elements, also called tags, describe the con-
tent they enclose and how that content should be rendered by the browser. For example, an HTML
tag for an image element is . When the browser’s rendering engine encounters that tag, it
knows the contents of that tag should be a reference to an image file. Similarly, the <p> tag denotes
a paragraph. Most tags, like <p>, also have a closing or matching tag used to denote the end of that
element. In the case of <p>, the closing tag is </p>. Other tags use a similar syntax, with a forward-
slash (/) used to denote the end of the tag.

Tags can contain other content, called attributes, within their angle brackets. Attributes provide
additional information about the content. Some attributes are generic and can be used with all tags,
while others are specific to particular elements, such as the tag. For example, the tag
uses the src attribute to specify the location of the image file that the browser will load and render.
Here’s an tag that references an image called “SteveSuehring.jpg”:

 CHAPTER 1 What Is JavaScript? 5

Pages that adhere to the HTML standard (and every page you write should adhere to the stan-
dard) have certain elements that appear in a certain order. First among these is the Document Type
Declaration, or doctype. (See the related sidebar for more information.) The HTML5 doctype is used
throughout this book and looks like this:

<!DOCTYPE html>

An opening <html> tag follows the doctype. This <html> tag is then followed by the page’s head-
ing section. The heading section starts with a <head> tag and ends with the closing </head> tag.
The <head> section is sort of a housekeeping area where information about the page itself is stored,
such as the page’s title. Additionally, the <head> section is where you find references to other files the
page uses, such as files containing Cascading Style Sheets (CSS), and files containing JavaScript. You
might also find CSS and JavaScript code placed directly into this heading section rather than in other
referenced files.

tip Don’t confuse the <head> section with the heading or other visible elements on the
page. The <head> section is used for housekeeping information about the page itself, not
for display. The <title> is the only thing that displays from the <head> section, and that dis-
plays in the browser’s title or tab bar only, not in the page itself.

Document types: DoCtYpe Declarations
Document Type Declarations, sometimes called DOCTYPE Declarations or DTDs, inform the
parsing program (usually a web browser) what rules the webpage will follow for its syntax. If
you fail to declare a DOCTYPE or use an incorrect DOCTYPE, the browser renders the page us-
ing its best guess, sometimes called Quirks Mode. In Quirks Mode, the browser chooses how to
interpret elements and the resulting page might end up looking different than you intended.

The DTD used by some versions of Visual Studio is XHTML, though that varies widely among
the versions and editions of Virtual Studio. The XHTML DTD looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.

w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

As you’ve seen, today’s webpages should use HTML5 as a DOCTYPE so that they can take
advantages of the advanced features offered by HTML5. The DTD for HTML5 is much simpler:

<!DOCTYPE html>

This book uses the HTML5 DTD exclusively for its projects.

The body of the webpage follows the closing </head> tag. A page’s body begins with a <body>
tag and ends with the corresponding </body> tag. Within the body of the webpage, you find the
actual content, such as the text and images that make up what you see when you view the page in a

6 Start here! Learn JavaScript

browser. The HTML to identify or mark up that content is also contained in the body. JavaScript code
can also appear within the body of a webpage.

After the closing </body> tag, the page itself is closed by the </html> closing tag that matches
the <html> tag that opened the webpage, way back up on the top. Here’s a simple example that
concisely shows you what I just spent five paragraphs explaining:

<!doctype html>

<html>

<head>

 <title>My Web Page</title>

</head>

<body>

 <div>My first content, in a div element</div>

</body>

</html>

Rendering this simple page in a browser results in a page similar to Figure 1-2.

FIGURE 1-2 A basic webpage.

More Info HTML is an expansive subject. There are countless books on the subject. This
book won’t cover the underlying HTML in much detail, but all of the examples will be ex-
plained as they pertain to JavaScript. For further reading on HTML, see the book HTML5
Step by Step by Faithe Wempen (Microsoft Press, 2011).

CSS
HTML is frequently paired with CSS to help browsers deliver a visually appealing webpage. In
essence, HTML describes the function of content, while CSS is responsible for providing the look and
feel of that content. CSS enables page creators to define such things as colors, backgrounds (includ-
ing background images), sizes of elements, and much more. For example, by adding some CSS to the

 CHAPTER 1 What Is JavaScript? 7

previous HTML example, I can change the size and add a border to the <h1> element. The CSS code
is shown here in bold:

<!doctype html>

<html>

<head>

 <title>My Web Page</title>

</head>

<body>

 <h1 style="border: 1px solid black; font-size: 0.8em;">My first content,

 in an h1 tag</h1>

</body>

</html>

The result is shown in Figure 1-3. You can find this code as basic.html in the companion content.

FIGURE 1-3 Applying a bit of style with CSS.

This example adds a border to the element and changes the font size. Both of these changes were
accomplished using CSS properties. A CSS property is a style attribute you want to change, such as
the color or font of an element. CSS operates via rules, where you select items and then apply style
rules to those selected items.

The properties available are dependent on both the browser and on the element being changed.

Warning Some browsers don’t support all the features of CSS, so you need to make sure
that the browsers that will view the page support the CSS properties you use in your pages.

The CSS in this example uses what’s known as an inline style to change the element on which the
style is applied. An inline style is CSS written directly into a tag, and it’s perfectly OK to do that. How-
ever, it’s more typical to use styles placed in an external CSS file and referenced by your HTML page.
You’ll see an example of external CSS later in this chapter. The main reason to use an external file is
that CSS written for an element type can be applied across all elements of that type in a page. For
example, if this page contained more than one <h1> tag, you could style all those in one sweeping
line of CSS.

8 Start here! Learn JavaScript

You can target CSS to only certain elements by using identifiers or ids. An id applies only to a
single element on a page. CSS also uses the concept of classes. A class defines certain HTML elements
that have common characteristics. For instance, you could create a class that includes only HTML
elements in a certain section of a page. Collectively, tag names, ids, and class names are known as
selectors. The essential syntax for CSS is as follows:

selector: { rule; }

Don’t worry if all of this seems a bit hard to understand at the moment. Both the HTML and CSS
should come into focus as you progress through the book.

More Info As with HTML, this book won’t cover CSS in much detail beyond the scope of
learning JavaScript. If you feel you need additional information or tutorials on CSS and how
to use it, I invite you to take a look at http://www.w3schools.com/css.

JavaScript
While HTML describes the function of content and CSS describes how to style that content, JavaScript
is a programming language that’s responsible for much of the behavioral or interactive elements seen
on webpages and in web applications. This includes everything from drag-and-drop form elements to
navigational menus to sliders, spinning graphics, and other enhancements (and sometimes annoy-
ances) on websites. JavaScript is also frequently used to provide immediate, client-side form validation
to check for errors and show feedback to the user.

Deploying a website or web application is a mix of designer, usability, and developer skills. Design
skills provide the look and feel of elements, usability skills ensure that the look and feel works for the
way end users will interact with the site or application, and finally, development skills make all of it
work. Of course, one person can have more than one of these skills, or a team of people working on
a web project might be needed in order to cover all these skills. Because you are reading a develop-
ment book, it’s safe for me to assume you want to learn or enhance that third web programming skill:
development.

JavaScript in Windows 8
Until recently, JavaScript was used primarily for client-side web applications, but that’s changing.
Windows 8 elevates JavaScript to a prominent role within the application development life cycle. For
example, you can use JavaScript to create a fully functional application in Windows 8. These Java-
Script programs have access to the file system and can interact with Windows itself through a library
called Windows 8 Runtime (Windows RT). In other words, JavaScript is an equal partner in Windows 8
alongside more traditional application-level languages such as Visual Basic, C#, and so on. Much of
JavaScript’s power in Windows 8 comes through another library, called WinJS, which this book will
cover in detail in Chapter 8, “Using JavaScript with Microsoft Windows 8.”

 CHAPTER 1 What Is JavaScript? 9

placing JavaScript in a Webpage
The overall title for this section is “Where JavaScript Fits,” but so far I’ve discussed only the conceptual
environment in which JavaScript operates. It’s time to fix that by discussing the literal location for
JavaScript code on a webpage.

Just as you need to use an HTML tag to inform the browser it should expect an image, you
use the <script> tag to inform the browser it will be reading a script of some sort. There are a few dif-
ferent kinds or types of scripts web browsers can read; JavaScript is one of them.

You place JavaScript within the <head> or <body> section (or both) of an HTML document and
you can place multiple scripts on a given page.

The browser executes JavaScript as it is encountered during the page-parsing process. This has
practical implications for JavaScript developers. If your JavaScript program attempts to work with
some elements of the HTML document before those elements have been loaded, the program will
fail. For example, if you place JavaScript in the <head> section of a page and that code attempts to
work with an HTML element that’s all the way down at the bottom of the page, the program might
fail because the browser doesn’t yet have that element fully loaded. Unfortunately, the program will
probably fail in subtle and difficult to troubleshoot ways; one time the program will work, and the
next time it won’t. That happens because one time the browser will have loaded that HTML element
by the time it executes the JavaScript code, but the next time it won’t. An even more fun (not really)
failure scenario is when everything works in your local development environment on your com-
puter but fails when deployed in real-world (and real slow network) conditions. One especially good
method for solving this problem is with the jQuery ready() function, as you’ll see later.

The basis of JavaScript’s close coupling with a webpage is through the Document Object Model
(DOM). Just as your perception of the elements on the page comes through a text editor or Visual
Studio, the DOM represents the programmatic or browser view of the elements on a page. Much of
what you do as a JavaScript programmer is work with the DOM. Unfortunately, the DOM works in
slightly different ways depending on the web browser being used to render the page. Of course, if
you’ve done any HTML and CSS work, you’re already familiar with the different and nuanced ways
in which browsers render pages. The same is true for JavaScript. You’ll spend a nontrivial amount of
time either writing for various browsers or troubleshooting why something isn’t working in a given
browser.

For anything but the most basic scripts, you should use external JavaScript files. This has the ad-
vantage of providing reusability, ease of programming, and separation of HTML from programming
logic. When using an external script (which is how most of this book’s examples will be constructed
in later chapters), you use the src attribute of the <script> tag to point the browser at a particular
Java Script file, in much the same way you use the src attribute of an tag to specify the loca-
tion of an image in an HTML page. You’ll see how to specify external scripts in more detail later in this
chapter, but here’s an example:

<script type="text/javascript" src="js/external.js"></script>

10 Start here! Learn JavaScript

Script types
While we’re discussing the <script> tag, it’s a good time to discuss the type attribute, which
you can see in the previous example. The type attribute specifies the Multipurpose Internet
Mail Extensions (MIME) type of the script. There is a good deal of discussion as to whether
the type attribute should even be used—and if it should, what it should contain for JavaScript.
Some developers don’t use the type attribute at all, while others use a language attribute in-
stead. Some developers use both a language attribute and a type attribute.

There’s also confusion as to whether to use text/javascript, text/ecmascript, or the newer
application/javascript or application/ecmascript as the value for the type attribute. As a Java-
Script programmer, be prepared to see variations of the type attribute, to see the type attribute
missing, to see the language attribute, or to see some combination thereof.

The value I’ll use throughout this book is text/javascript because, as of this writing, it enjoys
the most compatibility and support across browsers. I’ve had the most success using the type
attribute.

No JavaScript? No problem.
Sometimes JavaScript isn’t available in your visitor’s web browser. The user might be using assistive
technologies or maybe she just disabled JavaScript manually. Whatever the case, the <noscript> tag
helps if JavaScript isn’t available in the browser. The <noscript> tag is used by most web browsers
when scripting is unavailable. The content between the opening <noscript> and closing </noscript>
tags displays for the user, typically informing the user (politely, of course) that JavaScript needs to be
enabled in order for the site to function properly.

See Also See http://www.w3schools.com/tags/tag_noscript.asp for more information about using the
<noscript> tag.

Writing Your First JavaScript Program

In this section, you create your first JavaScript program. As a side effect of doing so, you also create
your first webpage with HTML.

JavaScript is tool-agnostic, meaning you can use any text editor or Integrated Development Envi-
ronment (IDE) to write JavaScript. For example, Microsoft Visual Studio provides a powerful develop-
ment experience for writing JavaScript. The same can be said for Eclipse, the open-source IDE. How-
ever, an IDE is certainly not a requirement for creating and maintaining JavaScript. You can also use a
simple text editor such as Notepad or a more powerful text editor such as Vim to write JavaScript.

You’re only a few pages into this book and you already have an important decision to make: What
tool should you use to write JavaScript? The guidance I can offer for this choice is limited because I
believe you should use whatever tool you’re comfortable with for programming. If JavaScript required

 CHAPTER 1 What Is JavaScript? 11

a specialized IDE, the choice would be easy: you’d have to use that IDE. However, you can write Java-
Script in anything from a simple text editor to a full programming IDE such as Eclipse or Visual Studio,
so some might even argue that it’s easier to just use a text editor.

For much of the independent web development and JavaScript writing that I do, I use Vim, be-
cause it’s lightweight and gets out of the way. However, I also use Eclipse and Visual Studio for devel-
opment, depending largely on the platform for which I’m writing code. The choice is yours as to how
you prefer to develop JavaScript. Although this book shows examples in Visual Studio, you shouldn’t
feel that you must use that IDE to work with the code in this book. The one area where Visual Studio
makes your life easier is when writing Windows 8 Apps. I’ll stop short of saying that Visual Studio is
required when writing JavaScript-based applications for Windows 8, but for the purposes of this book,
Visual Studio is the platform you should expect to see for the Windows 8 chapter.

If you choose to not use Visual Studio, I’ll assume you have a way (and the knowledge) to view the
HTML pages you produce in a web browser. Many of the early examples won’t require a web server,
but the later chapters do require a web server. (Visual Studio includes a suitable web server.)

This book uses the Express Edition of Visual Studio 11 throughout. Visual Studio 11 Express Edition
is available at no cost from Microsoft as explained in the following sidebar. No prior knowledge of
Visual Studio is required for this book. Additionally, and just as importantly, writing JavaScript for the
browser doesn’t require the advanced features of Visual Studio. What you need to know will be shown
along the way to complete a task, but you do need to have Visual Studio installed first.

Getting Visual Studio 11 express edition
Visual Studio 11 Express Edition is available as a free download at http://www.microsoft.com/
visualstudio/11/downloads#express, along with other tools related to development. For the
purposes of the book, you want both the Express for Windows 8 and Express for Web. The first
portion of this book uses the Express Edition for Web, while Chapter 8 requires the use of the
templates specific to Windows 8 development. Installation of Visual Studio is typically a matter
of executing the downloaded file from Microsoft, but you should refer to the documentation
for the latest information at the time of installation.

Writing JavaScript in Visual Studio 11
Writing JavaScript in Visual Studio 11 involves setting up a new project and writing the script or scripts
to be used on the page or pages involved in your web application. If you’re using a text editor or a
different IDE, you can follow these examples and simply view the resulting file within a web browser
locally. For this example, you create a simple webpage that displays text using JavaScript, in the same
way that the first example showed earlier in the chapter.

12 Start here! Learn JavaScript

The first step in programming JavaScript with Visual Studio is to create a new project. As a de-
veloper, you have a choice of several templates for beginning a project. For this example and most
examples in this book, you’ll use the ASP.NET Empty Web Application template, which is found in the
Web category. The ASP.NET Empty Web Application template avoids much of the proprietary ASP.
NET-related material that’s not necessary for creating a JavaScript web application. Here are the steps:

1. Within Visual Studio, choose File, New Web Site.

2. In the New Web Site dialog that appears (shown in Figure 1-4), select the ASP.NET Empty Web
Site. In the Web location text box, type StartHere as the name, (you might need to scroll to
the right to get to the end of the File System and then click OK to create the website).

FIGURE 1-4 Creating an ASP.NET Empty Web Application project in Visual Studio 11.

A blank, empty project opens, like the one shown in Figure 1-5.

Now it’s time to add a file to the project.

 CHAPTER 1 What Is JavaScript? 13

FIGURE 1-5 An empty web project in Visual Studio 11.

3. For this first example, add an HTML file. On the File menu, select New File.

The New File dialog box appears, such as the one shown in Figure 1-6.

FIGURE 1-6 The New File dialog within Visual Studio 11 is where you add new files to your project.

14 Start here! Learn JavaScript

4. Click HTML Page, change the name to index.html, and then click Add.

Depending on the version of Visual Studio you’re using, you might see a basic HTML page that
uses an XHTML document type similar to that in Figure 1-7. Some versions of Visual Studio use
an HTML5 doctype as you’ve seen throughout the chapter, so your screen might look differ-
ent than this.

FIGURE 1-7 A beginning page with Visual Studio 11.

5. If your version of Visual Studio has the XHTML doctype as shown, the first thing you need
to do is switch the DOCTYPE for the page. If your doctype is already the HTML5 doctype
(<!DOCTYPE html>), there’s nothing to change and you can skip this step. If you need to
change it, highlight the entire DOCTYPE declaration in Visual Studio and delete it. Replace
that long (and ugly) DTD with the following:

<!DOCTYPE html>

6. Within the <html> declaration, remove the xmlns namespace attribute. This applies only if it’s
present. Some versions of Visual Studio don’t have this attribute present. If it’s not there in
yours, you don’t need to change it.

Regardless of the version of Visual Studio you have, you need to change the <title> tag so
that it contains the words Start Here. With those three changes (which you can find in the
companion content as index.html), the page should look like this:

<!DOCTYPE html>

<html>

<head>

 <title>Start Here</title>

</head>

<body>

 CHAPTER 1 What Is JavaScript? 15

</body>

</html>

The file is still unsaved and will have the default name chosen by Visual Studio, as seen in
Figure 1-8. It’s time to save the file and view it in a web browser.

FIGURE 1-8 Making basic edits on your first webpage through Visual Studio.

7. If you haven’t already saved the file, save it now. On the File menu, click Save or use the Ctrl+S
keyboard shortcut. In some versions of Visual Studio, you’ll see a Save File As dialog, as shown
in Figure 1-9. Save the file within your project, and name it index.html. Note that you might
not see this dialog at all if you’re using Visual Studio Express Edition for Web.

FIGURE 1-9 Saving the webpage as index.html within the project.

16 Start here! Learn JavaScript

tip Make sure you save the file within the project itself, as shown in this dialog. Visual
Studio might attempt to save the file outside of the project. (Note the two “StartHere”
directories in Figure 1-9.)

8. With the file saved, the next step is to view it in a browser. The easiest way to do this in Visual
Studio is to click the Run button on the toolbar or select Start Debugging from the Debug
menu. When you do so, Visual Studio performs some background tasks, starts a web server
(Internet Information Services, or IIS), and launches your default web browser. Note that you
might see a dialog indicating that debugging isn’t enabled. Accept the default, and click OK to
modify the web.config to enable debugging.

If all goes well, you eventually see a page like that shown in Figure 1-10.

FIGURE 1-10 A successful run of your first webpage.

If you see a screen like that in Figure 1-10, your project ran successfully. Even though the page
itself is blank, notice that the title bar reads “Start Here,” thanks to the change you made to
the <title> tag in the page.

9. Close your web browser.

Closing your browser has the effect of stopping the project from running, and you’ll be back
at the source window for your index.html page.

10. Within index.html, add the following code between the opening <body> tag and the closing
</body> tag (saved as index-wjs.html in the companion content):

 CHAPTER 1 What Is JavaScript? 17

 <script type="text/javascript">

 document.write("<h1>Start Here!</h1>");

 </script>

The code for the final page will look like this:

<!DOCTYPE html>

<html>

<head>

 <title>Start Here</title>

</head>

<body>

 <script type="text/javascript">

 document.write("<h1>Start Here!</h1>");

 </script>

</body>

</html>

11. To run that code, on the Debug menu, click Start Debugging, or on the toolbar, click the green
Run button.

You’ll now see a webpage like the one in Figure 1-11.

FIGURE 1-11 Running your first JavaScript program.

Congratulations! You successfully created your first JavaScript program with Visual Studio.
Prior to closing Visual Studio, you’ll add two folders in preparation for future chapters.

12. In the Solution Explorer (normally on the right), right-click the name of the site, StartHere, click
Add, and then click New Folder. Name the folder js.

18 Start here! Learn JavaScript

13. Add another folder by using the same process: in Solution Explorer, right-click the StartHere
project, click Add, and then click New Folder. Call this folder css. Your final Solution Explorer
should look like Figure 1-12.

FIGURE 1-12 The final Solution Explorer with two folders added.

What If Your Code Didn’t Work?
You might receive an error when attempting to run your program or view the webpage. Often,
entering that error into your favorite search engine yields helpful results. However, here are
some troubleshooting ideas that might help you along.

■■ Check the syntax JavaScript is case sensitive. Ensure that the case used in your code
matches the example exactly. Also, ensure that your <script> tags are properly formatted
and show up between the opening <body> and closing </body> tags.

■■ Check the file location If you save the webpage in the wrong location, the web server
won’t be able to find it, and you’ll receive an error indicating that no default page was
found. Move the file within the project, and run it again to solve this issue.

■■ View Debug Output Visual Studio displays output from its compile and readiness
checks in the Output pane. You might find that your browser won’t run or see other use-
ful tidbits of information in the Output pane that will help solve the problem.

JavaScript’s Limitations
Prior to wrapping up the chapter you should see some of the limitations of JavaScript. Some of these
are subtle and might not be obvious. JavaScript’s largely client-side role means that there are some
inherent issues you need to consider when developing with the language.

 CHAPTER 1 What Is JavaScript? 19

Don’t rely on JavaScript for Data Security
JavaScript executes on the client. This means that anything—including data, or even the program
itself—can be manipulated by users in any way they deem necessary. Users will try to send bad data
back (for example, changing item prices in a shopping cart or anything they can get their virtual
hands on), and they’ll also try to inject scripts or their own programs into your code so that it gets
executed by your server.

You should always assume that data is incorrect when it arrives back at your server, whether it’s
from a web form or through JavaScript. Only after proving, within your server-side programs, that the
data is valid should you proceed to use it within an application. Under no circumstances should you
use data without validating it on the server side, when it is under your control.

This warning specifically includes any JavaScript-based validation of form data. For example, Java-
Script is frequently used to provide instant feedback to a user typing into a web form. However, just
because there is JavaScript validation in place to ensure that data is properly formatted in the browser
doesn’t mean that it’s actually formatted correctly. This data needs to be checked again on the server.

This is an area where I’ve seen developers attempt all sorts of trickery to make sure that the Java-
Script’s validation occurs rather than just check the data within the server program. None of the tricks
work, so the time is better spent validating in your server-side program rather than attempting to add
another layer of complexity.

One common misconception is that using a POST request rather than a GET request will keep the
data secure. This is not true. Data sent by using POST is just as vulnerable as that sent through a GET
(where the parameters show up in the address bar). So what can you do? Check the data in the server
program.

You Can’t Force JavaScript on Clients
A visitor’s web browser might not run JavaScript, or it might not run the version of JavaScript your
program needs. As a developer, you must consider the case where JavaScript isn’t available on the
client, whether by their choice, due to accessibility, because of a device limitation, or for any reason.
Your pages should work without JavaScript by providing an alternative means for accomplishing the
task or interacting with your application and content.

However, today’s advanced applications sometimes do require JavaScript. In such cases, you should
detect which features are and aren’t available and provide messaging to the user indicating that
JavaScript is required for the application.

In essence, the only way you can fail is by assuming JavaScript will always be available and, hence,
neglecting to create a way to handle its absence.

More Info For more information on feature detection and browser detection in general,
see my more advanced book, JavaScript Step by Step (Microsoft Press, 2011).

20 Start here! Learn JavaScript

A variation of this problem is that the versions of JavaScript and their implementations vary widely
between web browsers and between versions of the browsers. JavaScript is defined in the ECMA-262
specification, but each browser vendor interprets that specification slightly differently, in much the
same way that those same browser vendors interpret HTML and CSS standards differently. The good
news is that there’s always work for people who understand these browser differences; the bad news
is that it can be very frustrating and time consuming to allow for such differences in your code so that
it works in whatever browser your visitors are using.

This problem is slowly becoming less and less important. Inside organizations that standardize on
specific browsers and versions, it’s a minor problem. However, if your application will be used on the
Internet, you need to accommodate differences between web browsers. The primary way to find out
if your page works in other browsers is to test it in other browsers. This is not terribly difficult to do,
but recently it has become even more cumbersome with the advent of mobile devices, which have
their own browser implementations.

Microsoft provides free Application Compatibility images for Virtual PC. These are full operat-
ing systems with various versions of Internet Explorer installed on them. The current link for these is
http://www.microsoft.com/download/details.aspx?id=11575, but if that link changes, an Internet search
for “Internet Explorer Application Compatibility VPC” should result in the updated location for those
images.

Other browsers such as Chrome, Firefox, and Safari are free downloads. I recommend that you
acquire them and test your applications in those browsers, as well.

Summary

This chapter introduced the basics of JavaScript, including what it can and can’t do, and how it relates
to other programming and markup languages. Within the chapter, you saw that JavaScript frequently
works closely with the markup languages HTML and CSS to provide the interactivity that today’s web
users have come to expect. Windows 8 introduces a new level of importance for JavaScript by making
it an equal partner in the application development life cycle.

You saw how to create a project in Visual Studio as well as how to create a simple JavaScript pro-
gram. Part of that program involved learning where to place JavaScript code on a page. You also saw
some key concepts about JavaScript, including that you can’t always rely on JavaScript being available
on the user’s browser and that you should never rely on JavaScript for data security.

In the next chapter, you’ll look at some specifics of the syntax of JavaScript—including mundane
yet important details about spacing, comments, and case sensitivity—before getting into more fun
details like looping and conditionals. That will set a brief, yet firm foundation upon which you can
build complex programs in later chapters.

 21

Chapter 2

JavaScript
programming Basics

after completing this chapter, you will be able to

■■ Know where to place JavaScript in a webpage

■■ Understand basic JavaScript syntax

■■ Create JavaScript variables and understand common data types

■■ Use looping and conditional constructs in your JavaScript code

NoW that YoU haVe a taSte of what JavaScript can do, it’s time to look at JavaScript’s inner work-
ings. Admittedly, the chapter won’t get too far into the inner workings—just far enough to make you
proficient but not overwhelmed. Between this chapter and the next, you’ll have a firm foundation
with which you’ll be able to build programs and troubleshoot existing JavaScript programs.

In this chapter, you’ll look at the syntax and rules of the language. This includes things as simple
as how to place a comment in a program to how to create a variable and perform conditional logic.
This material is largely condensed while still providing what you need to know. Like Chapter 1, “What
Is Java Script?” this chapter will also focus primarily on JavaScript and its use in web applications. How-
ever, the information applies to JavaScript for Microsoft Windows 8, as well.

JavaScript Placement: Revisited

You learned in Chapter 1 that JavaScript programs are placed within the <head> or <body> sections
of a webpage. For external scripts such as jQuery, it’s common to place the reference in the <head>
section, but there’s nothing preventing you from placing the reference to the external script in either
the head or body of the page. This section expands on the placement of JavaScript by creating a
base page and an external JavaScript file. The files created here will be used as the basis for examples
throughout the book.

22 Start here! Learn JavaScript

The basic HTML page that will be used should look familiar if you’ve just come from Chapter 1. In
fact, this chapter will use the project created in Chapter 1—specifically the structured layout as shown
in Chapter 1—with css and js folders created in the project or document root. See Figure 2-1 for an
example of this structure.

FIGURE 2-1 The folder structure for development for the book should include css and js folders within the project.

Create a new file, or alter your existing index.html to match the code in the following sample. If you
create a new file, save it as index.html (which you can find in the companion content as index.html).

<!DOCTYPE html>

<html>

<head>

<title>Listing 1-1</title>

<script type="text/javascript" src="js/external.js"></script>

</head>

<body>

</body>

</html>

With index.html created, it’s time to create an external JavaScript file. Within Microsoft Visual
Studio, in Solution Explorer, right-click the js folder, click Add, and then click Add New Item. The Add
New Item dialog box opens. Click JavaScript File and then in the Name text box, type external.js, as
shown in Figure 2-2.

 CHAPTER 2 JavaScript Programming Basics 23

FIGURE 2-2 Creating a new JavaScript file.

Click Add and a new JavaScript file appears.

Some versions of Visual Studio don’t allow you to set the name of the file on creation, as in the
previous example. If this is the case, the file will be named JavaScript1.js. However, the file referenced
in the HTML file is external.js within the js folder. Therefore, the default JavaScript1.js file name will
need to change.

Within Visual Studio, click File and then click Save As. The Save File As dialog box opens. Open the
js folder and then enter external.js in the File Name text box, as shown in Figure 2-3. (Note that your
screen shot might be slightly different than mine, and again, you only need to do this if your version
of Visual Studio didn’t allow you to set the name when you added the file.)

24 Start here! Learn JavaScript

FIGURE 2-3 Saving the external.js file into the js folder.

You now have a basic HTML page and an external JavaScript file. From here, the remainder of the
chapter (and indeed the book) will use these files to show examples.

Basic JavaScript Syntax

In much the same way that learning a foreign language requires studying the grammar and sentence
structure of the language, programming in JavaScript (or any other computer language) requires
learning the grammar and structure of a program. In this section, you’ll learn some of the syntax of
JavaScript.

JavaScript Statements and expressions
JavaScript is built around statements and expressions, where statements are simple lines of code and
expressions produce or return values. Consider these two examples:

■■ Statement:

if (true) { }

■■ Expression:

var myVariable = 4;

 CHAPTER 2 JavaScript Programming Basics 25

In these examples, myVariable is the result, thus making it an expression, whereas nothing is
returned from the if (true) conditional. While this admittedly is somewhat nuanced, what you need to
know is that JavaScript has a certain structure that’s made up of statements and expressions.

Lines of code are typically terminated with a semi-colon. The exceptions to this rule include condi-
tionals, looping, and function definitions, all of which will be explained later.

One or more JavaScript statements and expressions make up a JavaScript program or script. (These
two terms, program and script, are used interchangeably.) You saw examples of JavaScript programs
in the previous chapter.

Names and reserved Words
JavaScript statements and expressions are made up of valid names (known as identifiers in the ECMA-
262 specification) and words reserved for JavaScript itself. You saw several reserved words used
already in the book. In JavaScript, the following are reserved words and therefore should be used
only for their intended purpose; you can’t use these as a variable or function name, for example.

More Info You can see the full ECMA-262 specification at http://www.ecma-international.
org/publications/standards/Ecma-262.htm.

break delete if this while

case do in throw with

catch else instanceof try

continue finally new typeof

debugger for return var

default function switch void

Several other words are reserved for future use; therefore, you shouldn’t use these in your pro-
grams for your own purposes either.

class extends let public

const implements package static

enum import private super

export interface protected yield

When using JavaScript, you must use certain naming conventions. Valid names begin with a letter,
a dollar sign ($), or an underscore (_) and cannot be a reserved word.

Note A backslash escape character (\) is also valid to begin names with, but its use is rather
uncommon.

26 Start here! Learn JavaScript

The following are valid names:

■■ myVariable

■■ EMAILADDR

■■ SongName

■■ data49

The following are invalid names:

■■ var

■■ 3address

■■ deci#

The first example, var, is a reserved word and therefore cannot be used to name your own vari-
ables or functions. The second, 3address, begins with a number, and the final example, deci#, contains
a special character.

tip Though not required, it’s common to see variable and function names begin with a
lowercase letter (such as myVariable). When variables begin with a lowercase letter and
then use capital letters for other words, it’s called camelCase. Other capitalization conven-
tions exist. See http://msdn.microsoft.com/library/ms229043.aspx for more information.

Spacing and Line Breaks
JavaScript largely ignores white space, or the space between elements and statements. Obviously, you
need to separate words within a line by at least one space, but if you use two or more spaces, Java-
Script typically won’t care. That said, you’ll spend less time chasing down difficult bugs if you just stick
to standard single spacing. For example, this is valid:

var myVariable = 1209;

In this example, there’s a single space between the keyword var and the name of the variable,
myVariable. That space is required for the JavaScript interpreter to run the code.

Closely related to white space are line breaks or carriage returns, officially known in the JavaScript
specification as line terminators. In general, line breaks are not required. In fact, you’ll sometimes see
JavaScript programs with no line breaks whatsoever. This is called minification; it reduces the size of
the JavaScript downloaded by the visitor. However, I recommend that when you develop your pro-
grams, you use standard line breaks after each JavaScript statement and expression.

 CHAPTER 2 JavaScript Programming Basics 27

Comments
Comments are lines within programs that aren’t executed. Comments are frequently used to docu-
ment code behavior within the code itself. Consider this code:

// myVariable is used to count characters

// Generate an alert when myVariable has more than 10 characters

// because this indicates we've exceeded some business rule.

if (myVariable > 10) {

In this example, there are three lines of comments prior to the if statement.

Comment Style
The comment shown in the example indicates not only what myVariable does, but also why
we’re testing it. This is an important point to consider when using comments to document
code. The time you spend writing the code is short relative to the time you spend maintain-
ing it. It’s quite obvious by looking at the code if (myVariable > 10) that it’s testing to see if
myVariable is greater than 10. However, what isn’t clear from the code itself is why it’s testing
to see whether myVariable is greater than 10. In other words: What’s the significance of 10?
In this example, I commented that the “greater than 10 condition” means that the variable’s
content violates a business rule. Ideally, I’d also include which business rule was violated in the
comment.

JavaScript comments come in two forms: single-line comments with a double slash (//), as you’ve
seen, and the C-style multiline comment syntax (/* */), so named because of the C programming
language. The double slash you saw in the first example is a single-line comment that indicates to the
JavaScript interpreter that everything following the two slashes up to the next line break should be
ignored.

The multiline comment structure indicates that everything beginning with the opening /* up to
the closing */ should be ignored, as in this example:

/* myVariable is used to count characters

 Generate an alert when myVariable has more than 10 characters

 because this indicates we've exceeded some business rule.*/

if (myVariable > 10) {

28 Start here! Learn JavaScript

One important point with multiline comment syntax is that multiline comments can’t be nested.
For example, this is invalid:

/* A comment begins here

 /*

 myVariable is used to count characters

 Generate an alert when myVariable has more than 10 characters

 because this indicates we've exceeded some business rule.

 */

 if (myVariable > 10) {

*/

In this example, the interpreter will happily begin the comment where you want it to, but once it
encounters the first closing */ sequence it will just as happily close the comment. Things will go hay-
wire when the interpreter encounters the final closing */ sequence, and an error will be the result.

tip In practice, I find that I use the double slash convention most often. I do this for two
reasons. First, it’s easier to type two slashes. Second, the double slash comment syntax also
allows me to comment out large sections of code using the multiline syntax and conve-
niently gets around the problem of multiple nested multiline comments shown in the previ-
ous example.

Case Sensitivity
JavaScript is case sensitive. This fact alone trips up many programmers, experienced and new alike.
When working with the language, the variable name MYVARIABLE is completely different than
myVariable. The same goes for reserved words, and really everything else in the language. If you
receive errors about variables not being defined, check the case.

Additionally, case sensitivity is essential for accessing elements from HTML pages with JavaScript.
You’ll frequently use the HTML id attribute to access the element with that id through JavaScript. The
case of the id in your code needs to match the case of the id as written in HTML. Consider this HTML,
which creates a link to an example website:

Example Site

The HTML itself could be written in any case you want—all uppercase, all lowercase, or any com-
bination you’d like. The web browser will show the page the same. However, you’re now a JavaScript

 CHAPTER 2 JavaScript Programming Basics 29

programmer, and one thing you’ll do frequently is access HTML from JavaScript. You might do this
to change the HTML, create new parts of pages, change colors, change text, and so on. When you
access HTML from within JavaScript, the case you use in the HTML suddenly becomes important.
For example, you get access to that element in JavaScript with a special JavaScript function called
getElementById, which, as the name suggests, retrieves an element using its id attribute, like so:

document.getElementById("myExample");

In this example code, the case of the id attribute’s value (myExample) is essential. Trying to access
the element using MYEXAMPLE or myexample or MyExample will not work. Just as important, the
JavaScript function getElementById is itself case sensitive. Using GETELEMENTBYID or the more subtle
getElementByID won’t work. If you didn’t care about case before, now’s the time to start!

While we’re on the subject of case, it’s good practice to keep case sensitivity going throughout
your code, whether it’s JavaScript or something else. This is true both within code and for URLs and
file names.

operators
JavaScript has operators to perform addition, subtraction, and other math operations, as well as oper-
ators to test for equality. The math-related operators are the same as those you learned in elementary
school math class. You use the plus sign (+) for addition, a minus sign (–) for subtraction, an asterisk (*)
for multiplication, and a forward slash (/) for division. Here are some examples:

// Addition

var x = 5 + 3.29;

// Subtraction

var number = 4901 - 943;

// Multiplication

var multiplied = 3.14 * 3;

//Division

var divide = 20 / 4;

Some important operators for programming are equality operators. These are used within condi-
tionals to test for equality. Table 2-1 shows these equality operators.

TABlE 2-1 Equality operators in JavaScript

Operator Meaning

== Equal

!= Not equal

=== Equal, using a more strict version of equality

!== Not equal, using a more strict version of inequality

30 Start here! Learn JavaScript

The difference between the normal equality operator (==) and the strict equality operator (===)
is important. The strict equality test requires not only that the values match, but also that the types
match. Consider this example:

var x= 42;

var y = "42";

x == y // True

x === y // False

Later in the chapter, you’ll create a sample program that tests these operators.

Relational operators test how a given expression relates to another. This can include simple things
such as greater than (>) or less than (<), as well as the in operator and instanceof operator. You’ll see
examples and explanations of the in and instanceof operators as they’re used.

There are also operators known as unary operators. These include the increment operator (++), the
decrement operator (––), the delete operator, and the typeof operator. As with other operators used
in this book, when it’s not obvious, their use will be explained as you encounter them.

JavaScript Variables and Data Types

Variables and data types define how a programming language works with user information to do
something useful. This section will look at how JavaScript defines variables and the data types within
the language.

Variables
Variables contain data that might change during the course of a program’s lifetime. Variables are
declared with the var keyword. You’ve seen several examples of this throughout the book already, but
here are a few more:

var x = 19248;

var sentence = "This is a sentence.";

var y, variable2, newVariable;

Note The third statement declares three variables at once but doesn’t initialize them.
Initializing a variable includes setting a value for that variable—the part with the equals
sign (=).

Variable values are set or initialized by using the equals sign (=) or equals operator.

 CHAPTER 2 JavaScript Programming Basics 31

Two items are used in a similar fashion to variables: arrays and objects. Objects are discussed in the
next chapter. In JavaScript, arrays are actually an object that acts like an array. For our purposes, we’ll
treat them as standard arrays, though, because the differences aren’t important at this stage.

But wait, what’s an array? Arrays are collections of items arranged by a numerical index. Put
another way, think of the email messages in your inbox. If you’re like me, that inbox is stacked with
hundreds of emails. In programming terms, this is an array of emails. The emails in my inbox begin at
1 and continue through 163. In programming, however, it’s typical for arrays to start at the number 0
and continue on—so rather than having emails 1 through 163, I’d have 0 through 162. When I want to
access an item in the email inbox array, I would do so by using its numbered index.

In JavaScript, arrays are created with something called the array literal notation, [], like this:

var myArray = [];

That syntax indicates that a variable called myArray will be an array. The line of code shown merely
declares that this variable will be an array instead of a string or number, sort of like an empty email
inbox.

Rather than declaring an empty array, you can also populate an array as you create it, such as in
this example that creates an array containing the types of trees outside of my house:

var myArray = ['Pine','Birch','Maple','Oak','Elm'];

Arrays can contain values of any type, such as numbers and strings, mixed within the array, as in
this example:

var anotherArray = [32.4,"A string value",4, -98, "Another string!"];

Arrays have a special property, length, that returns the length of the array. In JavaScript, the length
represents the number of the final index that has been defined, which might or might not be the
same as the number of elements defined. This calls for an example! This example uses the sample
page created earlier in this chapter, along with the external JavaScript file created earlier.

Within the external JavaScript file, place the following code:

var myArray = ['Pine','Birch','Maple','Oak','Elm'];

alert(myArray.length);

The external.js JavaScript file should look like Figure 2-4.

32 Start here! Learn JavaScript

FIGURE 2-4 The external.js file should contain the code shown in this example.

Now, view the page (index.html) in a browser. In Visual Studio, on the Debug menu, click Start
Debugging, or press F5. Your browser opens and an alert appears, such as that shown in Figure 2-5,
containing the length of the array.

FIGURE 2-5 The length of the myArray array, thanks to the length property.

Now, replace the code in external.js with this code:

var myArray = [];

myArray[18] = "Whatever";

alert(myArray.length);

Running this script yields an alert like the one shown in Figure 2-6.

FIGURE 2-6 The alert shows that the length of myArray is 19.

 CHAPTER 2 JavaScript Programming Basics 33

The alert shows a length of 19 even though only one element was defined. Therefore, be aware
when using the length property that the number returned might not be the true length of all of the
elements in the array.

Also, note that the example defined index number 18 of the array but the length returned was 19.
Remember, array indexes begin with 0 not 1, so index 18 is really the 19th element in the array, thus
the length of 19.

JavaScript defines several methods for working with arrays. Some highlights are shown in Table 2-2.
They will be discussed further as they are used in the book.

TABlE 2-2 Methods for working with arrays in JavaScript

Method Description

concat Joins two arrays together or appends additional items to an array, creating a new array.

join Creates a string from the values in an array.

pop Removes and returns the last element of an array.

push Adds or appends an element to an array.

reverse Changes the order of the elements in the array so that the elements are backwards. If the elements were
a, b, c, they will be c, b, a after the use of reverse.

shift Removes the first element from the array and returns it.

sort Sorts elements of an array. Note that this method assumes that elements are strings, so it won’t sort num-
bers correctly.

unshift Places an item or items at the beginning of an array.

Additionally, later in this chapter you’ll see how to cycle through each of the elements in an array
using looping constructs in JavaScript.

Data types
The data types of a language are some of the basic elements or building blocks that can be used
within the program. Depending on your definition of data type, JavaScript has either three or six data
types. The main data types in JavaScript include numbers, strings, and Booleans, with three others,
null, undefined, and objects, being special data types. We’ll discuss most of these data types here and
leave the discussion of objects for Chapter 3, “Building JavaScript Programs.”

Numbers
There is one number type in JavaScript, and it can be used to represent both floating-point and inte-
ger values (1.0 and 1, respectively). Additionally, numbers in JavaScript can hold negative values with
the addition of the minus (–) operator, as in –1 or –54.23.

JavaScript has built-in functions or methods for working with numbers. Many of these are accessed
through the Math object, which is discussed in Chapter 3. However, one handy function for work-
ing with numbers is the isNaN() function. The isNaN() function—an abbreviation for “Is Not a

34 Start here! Learn JavaScript

Number”—is used to determine whether a value is a number. This function is helpful when validating
user input to determine if a number was entered. Consider this example:

var userInput = 85713;

alert(isNan(userInput));

In this example, the output will be false, because 85713 is a number. It does take a bit of mental
yoga to think in terms of the negative “not a number” when using this function. It would have been
better for the function to be defined in the affirmative, as in “Is this a number?”

Strings
Strings are sequences of characters (one or more) enclosed in quotation marks. The following are
examples of strings:

"Hello world"

"B"

"Another 'quotable string'"

The last example bears some explanation. Strings can be quoted with either single or double
quotation marks in JavaScript. When you need to include a quoted string within a string, as in the ex-
ample, you should use the opposite type of quotation mark. In the example, double quotes were used
to enclose the string, whereas single quotes were used to encapsulate the quoted string within.

You can also use an escape sequence or escape character to use quotation marks within the same
type of quotation marks. The backslash (\) character is used for this purpose, as in this example:

'I\'m using single quotes within this example because they\'re common characters in

the text.'

Other escape sequences are shown in Table 2-3.

TABlE 2-3 Escape sequences in JavaScript

Escape Character Sequence Value

\b Backspace

\t Tab

\n Newline

\v Vertical tab

\f Form feed

\r Carriage return

\\ Literal backslash

 CHAPTER 2 JavaScript Programming Basics 35

Strings have methods and properties to assist in their use. The length property provides the length of
a string. Here’s a simple example:

"Test".length;

This example returns 4, the length of the word Test. The length property can also be used on vari-
ables, as in this example:

var myString = "Test String";

myString.length; // returns 10

Strings include several other methods, including toUpperCase and toLowerCase, which convert a
string to all uppercase or lowercase, respectively. Additionally, JavaScript allows concatenation or join-
ing together strings and other types by using a plus sign (+). Joining a string can be as simple as this:

var newString = "First String, " + "Second String";

The preceding line of code would produce a variable containing the string “First String, Second
String”. You’ll see this type of concatenation throughout the book.

Other methods for changing strings include charAt, indexOf, substring, substr, and split. Some of
these methods will be used throughout the remainder of this book and will be explained in depth as
they are used.

Booleans
Booleans have only two values, true and false, but you don’t work with Booleans in the same way that
you work with other variables. You can’t create a Boolean variable, but you can set a variable to true
or false. You’ll typically use Boolean types within conditional statements (if/else) and as flags to test
whether something is true or false.

An important point to remember with Booleans is that they are their own special type. When set-
ting a variable to a Boolean, you leave the quotes off, like this:

var myValue = true;

This is wholly different than setting a variable to a string containing the word “true”—in which
case, you include the quotes:

var myValue = "true";

36 Start here! Learn JavaScript

Let’s test that scenario with a code sample. The example uses the index.html page shown earlier,
along with the external JavaScript file, external.js, created in this chapter. Remove any existing code
from within the external.js file and replace it with this code:

var myString = "true";

var myBool = true;

alert("myString is a " + typeof(myString));

alert("myBool is a " + typeof(myBool));

Save external.js. It should look like the example in Figure 2-7.

FIGURE 2-7 The external.js file should contain this JavaScript.

No changes are necessary to the index.html file because external.js is already referenced in that
file. Now view index.html. In Visual Studio, on the Debug menu, click Start Debugging, or press F5.
Two alert dialogs boxes appear, like those shown in Figures 2-8 and 2-9. You can find the code for this
example in bool.html and bool.js in the companion content.

FIGURE 2-8 The variable myString is a string value, even though the string is set to the word true.

 CHAPTER 2 JavaScript Programming Basics 37

FIGURE 2-9 The variable myBool is a true Boolean value.

This difference between the string “true” and the Boolean value true can be important when per-
forming conditional tests. You’ll learn more about conditional tests later in this chapter.

Null
Null is a special data type in JavaScript. Null is nothing; it represents and evaluates to false, but null
is distinctly different than empty, undefined, or Boolean. A variable can be undefined (you haven’t
initialized it yet, for example), or a variable can be empty (you set it to an empty string, for example).
Both are different from null.

Undefined
Undefined is a type that represents a variable or other element that doesn’t contain a value or has not
yet been initialized. This type can be important when trying to determine whether a variable exists or
still remains to be set. You’ll see examples of undefined throughout the book.

looping and Conditionals in JavaScript

In a programming language, loops enable developers to perform some action repeatedly, to execute
code a certain number of times, or to iterate through a list. For example, you might have a list of links
on a webpage that need to have a certain style applied to them. Rather than program each change
individually, you could iterate (loop) through the links and apply the style to each link within the loop
code. This section looks at the common ways for looping or performing iterations in JavaScript.

Conditionals are statements that look for the “truthiness” of a given expression. For example, is the
number 4 greater than the number 2? If so, do something interesting. A conditional is another way of
expressing that same concept programmatically. If a certain condition is met, your program will do
something. There’s also a condition for handling the situation when the specified condition isn’t met,
known as the else condition. Conditionals in this form and related conditionals are also examined in
this section.

38 Start here! Learn JavaScript

Loops in JavaScript
Loops enable actions to be performed multiple times. In JavaScript (or any programming language),
loops are commonly used to iterate through a collection such as an array and perform some action
on each element therein.

 Note You can find all of this code wrapped up into a single file called loop.html in the
companion content.

The for loop is a primary construct for performing loop operations in JavaScript, as in this example:

var treeArray = ['Pine','Birch','Maple','Oak','Elm'];

for (var i = 0; i < treeArray.length; i++) {

 alert("Tree is: " + treeArray[i]);

}

In this example, each element in the array treeArray gets displayed through an alert() dialog.
The code first instantiates a counter variable (i) and initializes it to 0, which (conveniently enough)
is also the first index of a normal array. Next the counter variable i is compared to the length of the
treeArray. Because i is 0 and the length of the treeArray is 5, the code within the braces will be ex-
ecuted. When the code within the braces completes, the counter variable, i, is incremented (thanks to
the i++ within the for loop construct) and the whole process begins again—but this time, the counter
variable is 1. Again, it’s compared to the length of the treeArray, which is still 5, so the code continues.
When the counter variable reaches 5, the loop will end.

A similar looping construct available in JavaScript is the while loop. With a while loop, the pro-
grammer has more flexibility because the test condition that’s used can be changed by the program-
mer within the loop itself. Here’s the previous example written using a while loop. Note the need to
manually increment the counter within the loop:

var treeArray = ['Pine','Birch','Maple','Oak','Elm'];

var i = 0;

while (i < treeArray.length) {

 alert("Tree is: " + treeArray[i]);

 i++;

}

There is also a foreach statement available in JavaScript. However, as of this writing the foreach
statement doesn’t work in many older browsers. Therefore, this book will concentrate on the more
common and widely supported for loop in most places.

Additionally, you can get a slight speed improvement by setting the array length to its own vari-
able outside of the loop construct, in this manner:

 CHAPTER 2 JavaScript Programming Basics 39

var treeArray = ['Pine','Birch','Maple','Oak','Elm'];

var treeArrayLength = treeArray.length;

for (var i = 0; i < treeArrayLength; i++) {

 alert("Tree is: " + treeArray[i]);

}

This change means that the code doesn’t need to examine the length of the treeArray for every
iteration through the loop; instead, the length is examined once, before the loop starts.

Conditionals in JavaScript
Conditionals are tests to determine what should happen when a given condition is met. Here’s an ex-
ample in plain English: “If it’s snowing outside, I’ll need to shovel the sidewalk.” More precisely, “If the
snow depth is greater than two inches, I’ll need to shovel.” Even more precisely, my wife will need to
shovel (she likes to); however, I won’t try to represent that final case programmatically. In JavaScript,
this snow depth condition might be written as such:

if (snowDepth > 2) {

 goShovel();

}

The syntax for an if conditional calls for the test to be placed in parentheses and the code to be
executed within braces, as in the preceding example. This construct is similar to the loop construct
you saw in the previous section.

You can also use conditionals to define an “otherwise” scenario. Going back to the plain-English
example: “If the snow depth is greater than two inches, go shovel; otherwise, watch the game.” In
code, you can represent this scenario with an else statement:

if (snowDepth > 2) {

 goShovel();

}

else {

 enjoyGame();

}

You aren’t limited to evaluating single conditions; you can evaluate multiple condition scenarios, as
well. For example, using the snow example one last time (I promise), I might like to go skiing if there is
more than 10 inches of snow. This is represented in code using the else if statement, as shown here:

if (snowDepth > 10) {

 goSkiing();

}

else if (snowDepth > 2) {

40 Start here! Learn JavaScript

 goShovel();

}

else {

 enjoyGame();

}

Note that the order of these conditionals is vital. For example, if I test whether the snowDepth is
greater than 2 inches first, the code that checks whether the snowDepth is 10 inches would never be
executed because snow that’s 10 inches is also greater than 2 inches.

Conditions can also be combined into one set of tests, either logically together or as an either-or
scenario. Here are some examples:

if (firstName == "Steve" || firstName == "Jakob") {

 alert("hi");

}

In this example, if the variable firstName is set to either Steve or Jakob, the code will execute. This
code uses the logical OR syntax, represented by two pipe characters (||). Conditions can be joined
with the logical AND syntax, represented by two ampersands (&&), as in this example:

if (firstName == "Steve" && lastName == "Suehring") {

 alert("hi");

}

In this example, if firstName is Steve and the lastName is set to Suehring, the code will execute.

a Conditional example
Earlier in the chapter, you learned about two types of equality operators: the double-equal sign (==)
and the triple-equal sign (===). The triple-equal sign operator tests not only for value equality, but
it also checks that each value is the same type. As promised, here’s a more complete example. To try
this example, use the sample page and external JavaScript file you created earlier in this chapter. This
code can be found within the file cond.html in the companion content.

Within the external.js JavaScript file, place the following code, replacing any code already in the file:

var num = 42.0;

var str = "42";

if (num === str) {

 alert("num and str are the same, even the same type!");

}

else if (num == str) {

 alert("num and str are sort of the same, value-wise at least");

}

 CHAPTER 2 JavaScript Programming Basics 41

else {

 alert('num and str are different');

}

Save that file, and run the project in Visual Studio (press F5). An alert appears, such as the one
shown in Figure 2-10. Note that you should be viewing the index.html page, because that’s the loca-
tion from which external.js is referenced.

FIGURE 2-10 Testing equality operators with a string and number.

Now remove the quotes from the str variable, so that it looks like this:

var str = 42;

View the page again, and you’ll get an alert like the one shown in Figure 2-11.

FIGURE 2-11 Evaluating two numbers in JavaScript, using the strict equality test.

This second example illustrates a nuance of JavaScript that might not be apparent if you’ve pro-
grammed in another language. Notice that the num variable is actually a floating-point number, 42.0,
whereas the str variable now holds an integer. As previously stated, JavaScript doesn’t have separate
types for integers and floating-point numbers; therefore, this test shows that 42.0 and 42 are the
same.

As a final test, change the num variable to this:

var num = 42.1;

View the page one final time. An alert similar to the one shown in Figure 2-12 appears.

42 Start here! Learn JavaScript

FIGURE 2-12 Testing equality with different values.

This final example showed not only how to combine conditional tests, but also how the equality
operators work in JavaScript.

Summary

With this second chapter complete, you should now have a good grasp of the basic rudimentary
syntax of JavaScript. In this chapter, you learned about comments, white space, names and reserved
words, JavaScript statements and expressions, and case sensitivity. You also learned that you use
variables to store data in programs and that JavaScript has several data types that include numbers,
strings, Booleans, null, and undefined. These will be used throughout the book so that you get a bet-
ter feel for their use in practice.

The chapter wrapped up with a look at looping, primarily through the use of for loops, and condi-
tionals, mostly using if/else statements. The next chapter explores some of the more powerful areas of
the language—namely, functions and objects. Both functions and objects are central to most modern
programming languages, including JavaScript.

 203

validating, 123
; (semi-colon), 3
 element (space travel demo), 183
\s (regular expressions), 118
:submit selector (jQuery), 113
@ symbol, 118
:text selector (jQuery), 113
<title>, 5
\w (regular expressions), 118

A
AdCenter (Bing), 203
addClass() function, 164
adding
CSS classes, 164–167
error styling, to form, 164–167

addition, 46
addNumbers() function, 46, 50–52
refactoring, 52–54

AJAX (Asynchronous JavaScript and XML), 133–138,
191, 193

building an interactive page using, 141–143
and building a server program, 135–138
error handling with, 144–146
JavaScript and, 139
as server-side program, 134, 134–135

ajax() function, 200
ajaxSetup() function, 155
alert() function, 67
allbasicvalidation.html, 124
allbasicvalidation.js, 124
ampersands (&&), 42
angle brackets (< and >), 4
Apache, 134, 135, 138
API key (SiteReportr), 193
append() function, 143

Index

Symbols
$(), 99
&& (ampersands), 42
\ (backslash character), 120
<body>, 6
:button selector (jQuery), 113
:checkbox selector (jQuery), 113
:checked filter (jQuery), 113, 121
{} (curly braces), 56
<div> tag, 79, 107
. (dot), 102
! (exclamation point), 119
/ (forward-slash character), 120
<h1>, 7
(hash or pound sign), 102
<head> section, 5, 9
<head> tag, 5
:hidden selector (jQuery), 113
<html>, 5
:image selector (jQuery), 113
, 4, 9, 10
:input selector (jQuery), 113
<link> tag, 158
:password selector (jQuery), 113
| (pipe character), 143
|| (pipe characters), 42
<p> tag, 4
:radio selector (jQuery), 113
:reset selector (jQuery), 113
<script>, 9, 10
<script> declaration, 54
<script> tag, 3, 77, 78, 98, 99
<script type=”text/javascript”>, 2
<select>, 122
:selected filter (jQuery), 113, 123
<select> elements

appendTo function (jQuery)

204 Index

appendTo function (jQuery), 108
Application Compatibility images for Virtual PC, 22
application programming interfaces (APIs), 188
app.start() function, 194
arguments
function, 46–48
types of, 48

arrays, 50
as argument, 47
objects vs., 66
of base data, 65

ASP.NET Empty Web Application template, 12
Asynchronous JavaScript and XML. See AJAX
attributes, 4
availHeight property (screen object), 90
availWidth property (screen object), 90

B
back-end languages, 4
backslash (\) character, 120
base.js, 191
Bing, 203
blur event, 106
Booleans, 37–39
borders
in HTML, 7

Browser Object Model (BOM), 89–95
Document Object Model and, 74
events and window object in, 90
location object in, 93–95
navigator object in, 92–93
screen object in, 90–92

browser(s). See web browser(s)
Budd, Andy, 159

C
C#, 4, 187
C++, 188
calendar (jQuery UI widget), 174–176
calling
functions, 48–49

calls, 3
cascading, 158
Cascading Style Sheets. See CSS (Cascading Style

Sheets)
case sensitivity, 30–31
chaining (error handlers), 144–146

character classes, 118
Characters Remaining counter, 129
charRemain element, 131
charRemaining variable, 131
charTotal variable, 131
checkbox, finding selected, 121–122
Chrome, 22, 67
class attribute, 97
class(es), 63–66
CSS. See CSS classes
retrieving elements by, 102

click event, 106, 125–128
click() function, 109, 110
client computer
unavilability of JavaScript on, 21–22
variations in, 1

client-server model, 3
client-side execution, 4
closing tags, 4
Collision, Simon, 159
colorDepth property (screen object), 90
comments, 29–30
conditionals, 39, 41–44
example, 42–44
order of, 42

constructor patterns, 63
Content Delivery Network (CDN), 74–75
jQuery library hosted on, 78

context of JavaScript, 3–10
CSS (Cascading Style Sheets), 4, 7–22, 157–159
changing properties in, 159–163
in jQuery, 82
in jQuery UI, 86
mouse events and, 107
themes, 74
working with classes in, 163–167

CSS classes, 163–167
adding/removing, 164–167
hasClass() function and, 163–164

css() function, 159
curLength variable, 131
curly braces ({}), 56
customerRegex (variable), 118

D
databases, 65
data retrieval, 133–156
with AJAX, 133–138

 functions

 Index 205

with jQuery, 139–146
JSON and, 146–148
and sending data to server, 148–155

data security as limitation of JavaScript, 20–22
data types, JavaScript, 35–39
Booleans, 37–39
null, 39
numbers, 35–36
strings, 36–37
undefined, 39

datepicker() function, 174–176
dateRegex (variable), 120
date, validation of, 120
dblclick event, 106
debugging, 67–71
in Internet Explorer, 68–71
as process, 67
in Visual Studio, 17

Debug Output viewing, 20
default.css, 193
default.html, 193
default.js, 193, 199
design skills, 8
desktop widgets, 4
developers, web, 8
Developer Tools add-in (Internet Explorer), 81
DOCTYPE declaration in Visual Studio, 16
Document Object Model (DOM), 9, 95–97
Browser Object Model and, 74
trees in, 96–97
versions of, 95–96

document object, write method of, 3
Document Type Declaration (doctype), 5
Document Type Declarations (DOCTYPE

Declarations, DTDs), 5
document.write, 3
dot (.), 102
dot notation, 57
drop-down element, determining selected, 122–125
drop-down lists, radio buttons vs., 122

E
each() function, 102, 122, 123
Eclipse, 11
ECMA-262 specification, 73
effect() function, 170–171
effects, enhancing a web application with, 167–171
elements. See also retrieving elements
HTML, 4

email addresses, validation of, 118
enumeration, object, 61–63
error() function, 145
errorhandler.html, 144
errorhandler.js, 144
errors, 67
AJAX calls, 144–146
in Visual Studio, 20, 80

error styling, adding, 164–167
events (event handling), 105–132
common events, 105–106
in Browser Object Model, 90
keyboard events and forms, 129–131
mouse events, 106–112
web forms, using jQuery to validate, 113–128

exclamation point (!), 119
execution, top-down, 3
expressions, 26–27
external.js, 59, 61, 63, 124
external style sheets, 158

F
F12 developer tools, 68
file location checking, 20
filters, 113
finger touch, 106
Firebug, 67
Firefox, 22, 67
first program in JavaScript, 2–3, 11–22
focus event, 106
font size in HTML, 7
foreach statement, 40
for loop, 40
formerror.css, 164
formerror.html, 164
formerror.js, 164
formError variable, 117
form(s), adding error styling to, 164–167
forward-slash (/) character, 120
front-end languages, 4
function declaration, 46
functions, 45–55
arguments, function, 46–48
calling, 48–49
examples of, 50–54
overview, 46
return values for, 49–50
scoping and, 54–56
top-down execution and, 3

getColor() method

206 Index

G
getColor() method, 61
getElementById() method, 100, 103
getElementsByClassName() function, 102
getElementsByTagName() function, 103
getElementsByTagName() method, 103
get() function, 140, 143, 144, 145, 200
getJSON() function, 147–148, 155
sending data with, 148–153

GET method, 134, 139, 140–141
GET requests, 21
getters, 59
grid-style application (Microsoft Windows 8), 190–

193
groupDetailPage.html, 192
groupedItemsPage.html, 192

H
hasClass() function, 163–164
hash sign (#), 102
heading, 5
height property (screen object), 90
hide() function (jQuery), 89
hosted libraries, using, 75
hover() function, 108
hover function (jQuery), 109
HTML5, 4, 5
HTML (HyperText Markup Language, 2, 4–22
CSS vs., 7

HTML tag name, retrieving elements by, 102–104
Hypertext Transfer Protocol (HTTP), 134

I
ID, retrieving elements by, 100–102
id attribute, 97
identifiers (ids), 8
if, 41
inline styles, 8
Integrated Development Environment (IDE), 11
interactions, 167
Internet Explorer
allowing blocked content with, 77, 78
debugging in, 67, 68–71
Developer Tools add-in, 81
DOM and, 95
standards and, 96

J
Java programming language, JavaScript vs., 3
JavaScript. See also specific topics
about, 8
context of, 3–10
CSS and, 7–22
first program in, 2–3, 11–22
HTML and, 4–22
limitations of, 20–22
retrieving elements with, 98
unavailability of, 10

JavaScript interpreter, 2
jQuery, 74–81
form-related selectors in, 113
get() and post() methods in, 140–141
getting, 74–75
retrieving data with, 139–146
retrieving elements with, 98–104
selectors in, 100
testing, 79–81
using a CDN-hosted jQuery library, 78
using a local copy of, 75–77
web form validation using, 113–128
widgets in, 172–176

jquery() function, 99
jquery.html, 75
jQuery ready() function, 9
jQuery UI, 81–89
adding, to a project, 82–86
advanced styling effects using, 167–176
getting, 81–82
testing, 86–89

JSON (JavaScript Object Notation), 146–148, 202

K
keyboard events and forms, 129–131
keydown events, 106, 129
keypress event, 106, 129
keyup events, 106, 129, 131
keyword function, 46

l
legacy DOM, 95
libraries, 74, 188
hosted vs. local, 75

 programming in JavaScript

 Index 207

limitations of JavaScript, 20–22
data security, 20–22
unavailability on client computer, 21–22

line breaks, 28
literal values, 48
load() method, 99
local libraries, using, 75
location object (Browser Object Model), 93–95
logical AND, 42
logical OR, 42
logo, in Windows 8 Apps, 202–203
loop.html, 40
loops (looping), 40–41

M
matching tags, 4
messageText element, 131
methods, 58–61
Microsoft Advertising, 203
Microsoft Internet Information Services, 134
Microsoft SkyDrive, 204
Microsoft Windows 8, 187–206
building a Windows 8 application in, 193–204
grid-style application in, 190–193
prominence of JavaScript in, 187–189

Moll, Cameron, 159
mousedown event, 106, 107
mouse events, 106–112
mousemove event, 106
mouseout event, 106, 107
mouseover event, 106, 107
mouseup event, 106, 107
MSDN, 187
Multipurpose Internet Mail Extensions (MIME), 10
multiselect lists, 123

N
name collisions, 49
names, 27–28
navigator object (Browser Object Model), 92–93
new projects, creating, 12
Node.js, 4
Notepad, 11
null data type, 39
number, 35–36

O
object enumeration, 61–63
object literals, 56
objects, 56–66
appearance of, 56
arrays vs., 66
classes and, 63–66
methods and, 58–61
properties and, 56–58
this keyword and, 59–61
ways of creating, 56

on() function, 112, 125, 128
onload() method, 99
open() method, 139
operators, 31–32
order
of conditionals, 42
with HTML, 98

P
PageControlNavigator control, 191
parentheses (in functions), 46, 48
parse() function, 202
parsing, 3, 9
PHP, 4
creating a server program using, 138

pipe (|) character, 143
pipe characters (||), 42
pointing devices, 106
post() function, 144, 153, 155, 200
POST method, 134, 139, 140–141
POST requests, 21
pound sign (#), 102
preventDefault() method, 111, 112
programming, for web vs. other platforms, 1
programming in JavaScript, 23–44, 45–72
case sensitivity and, 30–31
comments, 29–30
conditionals, 41–44
data types, 35–39
debugging and, 67–71
expressions, 26–27
functions, 45–55
line breaks, 28
looping, 40–41
names, 27–28
object enumeration and, 61–63

Project Properties pane (StartHere project)

208 Index

objects and, 56–66
operators, 31–32
reserved words, 27–28
scripts and, 23–44
spacing, 28
statements, 26–27
strings, 36–44
syntax, 26–32
variables, 32–35

Project Properties pane (StartHere project), 138
Promise object, 200
properties, 56–58
CSS, 7

prop() function, 125
pseudo-classes, 63, 65
Python, 4

Q
Quirks Mode, 5
quotes, 57

R
radio buttons
drop-down lists vs., 122
finding selected, 121–122

ready() function, 81, 99, 108, 117, 130, 142, 200
redirect() function, 95
refactoring, 47
addNumbers(), 52–54

regular expressions, 118–121
removeClass() function, 164
removing CSS classes, 164–167
rendering, 4
replace() method, 94
Request for Comments (RFC) number 2616, 134
reserved words, 27–28, 57
retrieving elements, 98–104
by class, 102
by HTML tag name, 102–104
by ID, 100–102
with jQuery, 99–100

return false statement, 111, 112
return keyword, 49
return values (for functions), 49–50

S
Safari, 22
saving, in Visual Studio, 17
scoping, 54–56
screen object (Browser Object Model), 90–92
scripts, 2, 9
placing, 23–44
types of, 10

scroll event, 106
security, GET/POST requests and, 141
selectors, 8, 100, 157–158
semi-colon (;), 3
server-based languages, 4
server program. building a, 135–138
server(s), 3
retrieving data from, 133
sending data to, 148–155
sending data to the, 148–155

setColor() method, 61
setters, 59
setTimeout() method, 95
show() function (jQuery), 89
SiteReportr, 193
slider() function, 172–174
slider (jQuery UI widget), 172–174
Software Development Kit (SDK), 187, 189
Solution Explorer, 190
Solution Explorer area (Visual Studio), 19
space travel demo, 176–186
code analysis, 183–186

spacing, 28
special characters, in regular expressions, 119
splash screen, in Windows 8 Apps program, 202–203
splitResp variable, 143
src attribute, 4, 10, 77
statements, 26–27
strings, 36–37
styles and styling, 157–186
changing styles with JavaScript, 157–163
space travel demo, 176–186
using CSS classes to apply, 163–167
using jQuery UI for advanced effects, 167–176

submit button, 113
submit event, 106
submit() event, 117
submit() function, 117
submit, validating on, 113–118

 web developers

 Index 209

syntax
checking, 20
JavaScript, 26–32

T
tag name, retrieving elements by, 102–104
tags, HTML, 4
TCP connections, 75
temperature conversion program, 149–155
template layouts (Windows 8), 189
templates, 12
testing
jQuery, 79–81
jQuery UI, 86–89

test() method, 118, 119
text editors, 11
text, for JavaScript programs, 3
thermostats, 105
this keyword, 59–61
tile images, in Windows 8 Apps, 202–203
tiles, 189
toggle() function, 109
tool-agnosticism, 11
top-down execution, 3
trackpads, 106
transfer effect, 171
trees, in Document Object Model, 96–97
troubleshooting and debugging, 67–71
Twitter, 129
type attribute (<script> tag), 10

U
ui.js, 191
UI page (Windows 8 Apps), 199
ulElm (variable), 103
unavailability of JavaScript, 10
on client computer, 21–22

undefined data types, 39
URL property, 138
urlRegex (variable), 120
URL (Uniform Resource Locator), 3
userAgent property, 93
usernamesLength, 66

V
val() function, 117, 131
validation
of date, 120
of email addresses, 118
error styling for, 164–167
of radio buttons and checkboxes, 122
of web forms, using jQuery. See web forms, using

jQuery to validate
of <select> elements, 123

variable declaration rule, 54
variables, 48
Booleans, 37–39
JavaScript, 32–35
names of, 48

viewing, Debug Output, 20
Vim, 11
Visual Basic, 4
Visual Studio, 5, 11, 67
building a server program with, 135–138
debugging in, 17
development server in, 135
DOCTYPE declaration in, 16
error notification in, 80
errors in, 20
Express Edition of, 11, 12
saving in, 17
Solution Explorer area of, 19
Windows 8 and, 11

Visual Studio 11, 189
writing JavaScript in, 12–20

W
W3C, 95
web applications, enhancing with effects, 167–171
web browser(s), 3, 73–104
Browser Object Model and, 89–95
CSS properties and, 7
DOCTYPE and, 5
Document Object Model and, 95–97
first JavaScript program viewed in, 2
JavaScript libraries and, 74
JavaScript on other, 21
jQuery and, 74–81, 98–104
jQuery UI and, 81–89

web developers, 8

web forms, using jQuery to validate

210 Index

web forms, using jQuery to validate, 113–128
click event and, 125–128
drop-down element, determining selected, 122–

125
radio button or checkbox, finding selected, 121–

122
with regular expressions, 118–121
on submit, 113–118

webpage, placing JavaScript in a, 9–22
webpages, 3
Wempen, Faithe, 6
while loop, 40
widgets, 167
desktop, 4
jQuery, 172–176

widgets, jQuery UI
calendar, 174–176
slider, 172–174

width property (screen object), 90
window object, in Browser Object Model, 90
Windows 8, 9–22
Visual Studio and, 11

Windows 8 Apps, 193–204
building, 193–199
code analysis, 199–202
grid-style, 190–193
logo in, 202–203
splash screen in, 202–203
tile images in, 202–203

Windows 8 Runtime (Windows RT), 9
Windows 8 user interface, 188–189
WinJS, 9
WinJS library, 193
WinJS UI library, 200
words, reserved, 27–28
World Wide Web Consortium (W3C), 4, 73
write method, 3
www.w3schools.com, 8

X
XHTML, 5
XML, AJAX and, 134, 146–147
XMLHttpRequest object, 134, 139, 140
xmlns namespace attribute (<html> tag), 16

Z
zip5Regex (variable), 120
zipRegex (variable), 120

	Introduction
	What Is JavaScript?
	A First JavaScript Program
	Where JavaScript Fits
	HTML, CSS, and JavaScript
	JavaScript in Windows 8
	Placing JavaScript in a Webpage

	Writing Your First JavaScript Program
	Writing JavaScript in Visual Studio 11
	JavaScript’s Limitations

	JavaScript Programming Basics
	JavaScript Placement: Revisited
	Summary

	Basic JavaScript Syntax
	JavaScript Statements and Expressions
	Names and Reserved Words
	Spacing and Line Breaks
	Comments
	Case Sensitivity
	Operators

	JavaScript Variables and Data Types
	Variables
	Data Types

	Looping and Conditionals in JavaScript
	Loops in JavaScript
	Conditionals in JavaScript

	Summary

	Building JavaScript Programs
	Functions
	Function Overview
	Function Arguments
	Calling Functions
	Return Values
	Function Examples
	Scoping Revisited

	Objects in JavaScript
	What Does an Object Look Like?
	Properties
	Methods
	Object Enumeration
	Classes

	Debugging JavaScript
	Debugging as a Process
	Debugging in Internet Explorer

	Summary

	JavaScript in a Web Browser
	JavaScript Libraries
	Getting jQuery
	Using a Local Copy of jQuery
	Using a CDN-Hosted jQuery Library
	Testing jQuery

	Getting jQuery UI
	Adding jQuery UI to a Project
	Testing jQuery UI

	The Browser Object Model
	Events and the window Object
	The screen Object
	The navigator Object
	The location Object

	The DOM
	DOM Versions
	The DOM Tree

	Retrieving Elements with JavaScript and jQuery
	Using jQuery, Briefly
	Retrieving Elements by ID
	Retrieving Elements by Class
	Retrieving Elements by HTML Tag Name

	Summary

	Handling Events with JavaScript
	Common Events with JavaScript
	Handling Mouse Events
	Preventing the Default Action
	Attaching to an Element with On

	Validating Web Forms with jQuery
	Validating on Submit
	Regular Expressions
	Finding the Selected Radio Button or Check Box
	Determining the Selected Drop-Down Element
	The click Event Revisited

	Keyboard Events and Forms
	Summary

	Getting Data into JavaScript
	AJAX in Brief
	On Servers, GETs, and POSTs
	Building a Server Program

	AJAX and JavaScript
	Retrieving Data with jQuery
	Using get() and post()
	Building an Interactive Page
	Error Handling

	Using JSON for Efficient Data Exchange
	Using getJSON()

	Sending Data to the Server
	Sending Data with getJSON
	Sending Post Data

	Summary

	Styling with JavaScript
	Changing Styles with JavaScript
	CSS Revisited
	Changing CSS Properties

	Working with CSS Classes
	Determining Classes with hasClass()
	Adding and Removing Classes

	Advanced Effects with jQuery UI
	Using Effects to Enhance a Web Application
	Using jQuery UI Widgets
	Other Helpful jQuery UI Widgets

	Putting It All Together: A Space Travel Demo
	Summary

	Using JavaScript with Microsoft Windows 8
	JavaScript Is Prominent in Windows 8
	A Stroll Through a Windows 8 Application
	Building a Windows 8 App
	Building the Application
	Code Analysis
	Defining a Splash Screen, Logos, and a Tile

	Summary

	Index

