

JavaScript Step by Step,
Third Edition

Steve Suehring

Copyright © 2013 by Steve Suehring
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6593-4

3 4 5 6 7 8 9 10 11 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Melanie Yarbrough

Editorial Production: nSight, Inc.

Technical Reviewer: John Grieb

Copyeditor: nSight, Inc.

Indexer: nSight, Inc.

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrator: nSight, Inc.

[2013-09-09]

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

I would like to dedicate this book to Mom and Dad.
—Steve Suehring

Contents at a glance

Introduction xix

PART I JAVAWHAT? THE WHERE, WHY, AND HOW OF JAVASCRIPT

ChapTEr 1 JavaScript is more than you might think 3

ChapTEr 2 Developing in JavaScript 17

ChapTEr 3 JavaScript syntax and statements 29

ChapTEr 4 Working with variables and data types 41

ChapTEr 5 Using operators and expressions 79

ChapTEr 6 Controlling flow with conditionals and loops 93

ChapTEr 7 Working with functions 119

ChapTEr 8 Objects in JavaScript 133

ChapTEr 9 The Browser Object Model 151

ChapTEr 10 an introduction to JavaScript libraries and frameworks 169

ChapTEr 11 an introduction to jQuery 173

PART II INTEGRATING JAVASCRIPT INTO DESIGN

ChapTEr 12 The Document Object Model 193

ChapTEr 13 JavaScript events and the browser 215

ChapTEr 14 Working with images in JavaScript 235

ChapTEr 15 Using JavaScript with web forms 257

ChapTEr 16 JavaScript and CSS 277

ChapTEr 17 jQuery effects and plug-ins 289

ChapTEr 18 Mobile development with jQuery Mobile 307

ChapTEr 19 Getting data into JavaScript 327

PART III AJAX AND SERVER-SIDE INTEGRATION

ChapTEr 20 Using aJaX 335

ChapTEr 21 Developing for Windows 8 353

vi Contents at a Glance

PART IV JAVASCRIPT AND WINDOWS 8

ChapTEr 22 Using Visual Studio for Windows 8 development 363

ChapTEr 23 Creating a Windows app 381

appEnDiX a answer key to exercises 403

appEnDiX B Writing JavaScript with other tools 425

Index 439

 vii

Contents

Introduction . xix

PART I JAVAWHAT? THE WHERE, WHY,
 AND HOW OF JAVASCRIPT

Chapter 1 JavaScript is more than you might think 3
A brief history of JavaScript. 3

Enter Internet Explorer 3.0 . 4

And then came ECMAScript . 4

So many standards... 5

The DOM . 5

What’s in a JavaScript program? . 6

JavaScript placement on your webpage . 7

What JavaScript can do .10

What JavaScript can’t do .10

JavaScript can’t be forced on a client .10

JavaScript can’t guarantee data security .11

JavaScript can’t cross domains .11

JavaScript doesn’t do servers .12

Tips for using JavaScript .12

Where JavaScript fits .14

Which browsers should the site support? .15

And then came Windows 8 .15

Exercises .16

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Chapter 2 Developing in JavaScript 17
JavaScript development options . 17

Configuring your environment .18

Writing JavaScript with Visual Studio 2012 .19

Your first web (and JavaScript) project with Visual Studio 2012 . . .19

Using external JavaScript files with Visual Studio 201223

Debugging JavaScript .27

Exercises .27

Chapter 3 JavaScript syntax and statements 29
A bit of housekeeping .29

Case sensitivity .29

White space .30

Comments .31

Semicolons .32

Line breaks .33

Placing JavaScript correctly .33

JavaScript statements .34

What’s in a statement? .34

The two types of JavaScript statements .35

Reserved words in JavaScript .35

A quick look at functions .36

JavaScript’s strict mode .38

Exercises .39

Chapter 4 Working with variables and data types 41
Data types in JavaScript . 41

Working with numbers .42

Working with strings .47

Booleans .50

Null . 50

Undefined . 50

 Contents ix

Objects .51

Arrays .51

Defining and using variables .52

Declaring variables .52

Variable types .53

Variable scope .53

The Date object .61

Using the RegExp object .70

The syntax of regular expressions .71

References and garbage collection .75

Learning about type conversions . 76

Number conversions . 76

String conversions . 76

Boolean conversions . 76

Exercises .77

Chapter 5 Using operators and expressions 79
Meet the operators .79

Additive operators .80

Multiplicative operators .80

Bitwise operators .81

Equality operators .81

Relational operators .83

The in operator .84

The instanceof operator .85

Unary operators .85

Incrementing and decrementing. .85

Converting to a number with the plus sign .86

Creating a negative number with the minus sign 86

Negating with bitwise not and logical not . 86

Using the delete operator .87

Returning variable types with the typeof operator88

x Contents

Assignment operators .90

The comma operator .91

Exercises .92

Chapter 6 Controlling flow with conditionals and loops 93
If (and how) .93

Syntax for if statements. .94

The prompt() function in Internet Explorer .95

Compound conditions .98

Using else if and else statements .101

Working with ternary conditionals .106

Testing with switch .106

Looping with while .108

The while statement .108

The do...while statement .110

Using for loops .111

The for loop .111

The for...in loop .113

The for each...in loop .115

Validating forms with conditionals .116

Exercises .118

Chapter 7 Working with functions 119
What’s in a function? .119

Function parameters .120

Variable scoping revisited .121

Return values .123

More on calling functions .124

Anonymous/unnamed functions (function literals)126

Closures .126

Methods .127

A look at dialog functions .127

Exercises .131

 Contents xi

Chapter 8 Objects in JavaScript 133
Object-oriented development .133

Objects .133

Properties .134

Methods .134

Classes .134

Creating objects .137

Adding properties to objects .138

Adding methods to objects .141

Finding out more about arrays .141

The length property .142

Array methods .142

Taking advantage of built-in objects .148

Making URIs safe .148

Using the eval() method .149

Exercises .149

Chapter 9 The Browser Object Model 151
Introducing the browser .151

The browser hierarchy .151

Events .152

A sense of self .152

Getting information about the screen .154

Using the navigator object .156

The location object .160

The history object .166

Exercises .167

Chapter 10 An introduction to JavaScript libraries
and frameworks 169

Understanding programming libraries .169

Defining your own JavaScript library .169

xii Contents

Looking at popular JavaScript libraries and frameworks171

jQuery .171

Modernizr .171

Yahoo! User Interface .171

MooTools .172

Other libraries .172

Exercises .172

Chapter 11 An introduction to jQuery 173
jQuery primer .173

Using jQuery .173

The two jQuery downloads .173

Including jQuery . 174

Basic jQuery syntax .175

Connecting jQuery to the load event .175

Using selectors .177

Selecting elements by ID .177

Selecting elements by class .177

Selecting elements by type .178

Selecting elements by hierarchy .178

Selecting elements by position .179

Selecting elements by attribute. .181

Selecting form elements .182

More selectors .183

Functions .183

Traversing the DOM .183

Working with attributes .188

Changing text and HTML .188

Inserting elements .189

Callback functions .190

More jQuery .190

Exercises .190

 Contents xiii

PART II INTEGRATING JAVASCRIPT INTO DESIGN

Chapter 12 The Document Object Model 193
The Document Object Model defined .193

DOM Level 0: The legacy DOM .194

DOM Levels 1 through 3 .194

The DOM as a tree .194

Working with nodes .196

Retrieving elements .196

Retrieving elements by ID .196

Retrieving by tag name .200

HTML collections .203

Working with siblings .203

Working with attributes .204

Viewing attributes .204

Setting attributes .206

Creating elements .208

Adding text .208

Adding an element and setting an ID .209

Deleting elements .210

Exercises .213

Chapter 13 JavaScript events and the browser 215
Understanding window events .215

The event models .215

A generic event handler .219

jQuery event handling .220

Binding and unbinding .220

Detecting visitor information .222

A brief look at the userAgent property .222

Feature testing .223

Keeping JavaScript away from older browsers224

Other navigator properties and methods .226

xiv Contents

Opening, closing, and resizing windows .226

Window opening best practices .228

Opening tabs: no JavaScript necessary .228

Resizing and moving windows. .228

Timers .229

Events .231

Mouse events and hover .231

Many more event handlers. .233

Exercises .233

Chapter 14 Working with images in JavaScript 235
Working with image hovers .235

A simple hover .235

Modern hovers with jQuery .237

A closer look at the exercise .240

Preloading images .242

Working with slide shows .244

Creating a slide show .244

Moving backward .247

A jQuery slide show .250

Working with image maps .251

Exercises .255

Chapter 15 Using JavaScript with web forms 257
JavaScript and web forms .257

Validation with JavaScript .257

Validation with jQuery. .260

Working with form information .261

Working with select boxes .261

Working with check boxes .265

Working with radio buttons .268

Pre-validating form data .269

 Contents xv

Hacking JavaScript validation .270

Validating a text field .273

Exercises .275

Chapter 16 JavaScript and CSS 277
What is CSS? .277

Using properties and selectors .278

Applying CSS .279

The relationship between JavaScript and CSS .280

Setting element styles by ID .280

Setting element styles by type .284

Setting CSS classes with JavaScript .285

Retrieving element styles with JavaScript .287

Exercises .288

Chapter 17 jQuery effects and plug-ins 289
Installing jQuery UI .289

Obtaining jQuery UI .289

Installing jQuery UI .290

Building a jQuery UI demonstration page .290

Creating a jQuery UI calendar .294

Customizing the calendar .296

Adding a dialog box .299

Creating a modal dialog .301

Adding buttons .302

More JQuery UI .305

Exercises .305

Chapter 18 Mobile development with jQuery Mobile 307
A walkthrough of jQuery Mobile .307

Getting jQuery Mobile .310

Downloading jQuery Mobile .310

Testing jQuery Mobile .311

xvi Contents

Linking with jQuery Mobile .313

Creating a link .314

Changing the page transition .315

Linking without AJAX .316

Enhancing the page with toolbars .317

Adding a navigation bar .318

Adding a footer navigation bar .319

Adding buttons to toolbars .321

Other toolbar enhancements .322

Even more jQuery Mobile .326

Exercises .326

Chapter 19 Getting data into JavaScript 327
JavaScript application architecture .327

The big three: display, behavior, data .327

JavaScript and web interfaces .329

Introduction to AJAX .329

AJAX with jQuery .330

AJAX without the X .330

What’s Next? .331

PART III AJAX AND SERVER-SIDE INTEGRATION

Chapter 20 Using AJAX 335
The XMLHttpRequest object .335

Instantiating the XMLHttpRequest object .335

Sending an AJAX request .337

Processing an AJAX response .339

Processing XML responses .343

Working with JSON .344

Processing headers .345

Using the POST method .346

AJAX and jQuery .348

 Contents xvii

AJAX errors and time-outs .351

Sending data to the server .351

Other important options .352

Exercise .352

Chapter 21 Developing for Windows 8 353
Windows 8 apps .353

Developing Windows 8 apps .354

Development guidelines .354

The development process .354

Distributing Windows apps .358

Distributing in the Windows Store .358

Distributing in an enterprise .359

Summary. .359

PART IV JAVASCRIPT AND WINDOWS 8

Chapter 22 Using Visual Studio for Windows 8 development 363
Installing Visual Studio 2012 .363

Installing Visual Studio 2012 Express for Windows 8364

Windows 8 app templates .370

Blank App template .372

Grid App template .375

Split App template .377

Setting app details in the App Manifest .377

Packaging apps for the Windows Store .379

Certification requirements .379

The technical process .380

Exercises .380

Chapter 23 Creating a Windows app 381
The app development process .381

Starting the app design and programming .382

xviii Contents

Customizing the app .385

Customize the JavaScript .385

Customize the main HTML .390

Customize the detail HTML .391

Customize the CSS .393

Finalizing the app .394

Customizing the Package Manifest .396

Adding a splash screen, logo, and tile image396

Defining capabilities .397

Testing the app .398

Summary. .402

Appendix A Answer key to exercises 403

Appendix B Writing JavaScript with other tools 425

Index 439

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xix

introduction

Much has changed since the first edition of JavaScript Step by Step was written in
2007: the underlying JavaScript specification received a major update; Microsoft

released new versions of Internet Explorer and Windows; the Chrome browser came of
age, as did mobile web usage; and JavaScript development frameworks have matured
and are now ubiquitous.

This third edition of JavaScript Step by Step builds on the foundation laid down by
the first two editions. While the underlying architecture of the JavaScript language has
remained largely the same, use of JavaScript has become pervasive, with huge year-
over-year increases and an expanded importance to developers. With that in mind,
the layout and coverage of the book have also remained largely the same, with some
notable exceptions. The book now places extra emphasis on JavaScript event handling
and the use of jQuery to speed development. The book also includes a final section on
Windows 8 development using JavaScript. However, this book is most definitely not
Microsoft-centric.

One of the first things I asked prior to accepting the offer to write JavaScript Step
by Step was whether it had to focus on Microsoft products. The answer was a firm “no.”
The book was and is intended to be a general tutorial on using JavaScript, including
best practices for using JavaScript on the web.

The biggest influence Microsoft has had on this book was to make sure that I
used the term “Internet Explorer” when referring to IE. You’ll see this absence of bias
reflected throughout the book, which includes exercises built using plain text editors
as well as full-featured development tools. While it’s true that most of the screen shots
show Internet Explorer (I almost said IE), the code was also tested across several other
browsers, including Chrome and Firefox. In fact, much of the book’s code was written in
Vim, and tested in a cross-browser fashion.

Throughout the book, you’ll find highlights and additions for the new features in
the latest version of JavaScript. Also, the examples used in the book received greater
scrutiny in multiple browsers to reflect the reality of today’s web landscape. Reader
feedback from the earlier editions is reflected in the content of this edition and was the
impetus for adding jQuery and emphasizing event handling.

Housekeeping aside, this book provides an introductory look at JavaScript, includ-
ing some of its core functions as well as features and paradigms such as Asynchronous
JavaScript and XML (AJAX).

xx introduction

The first part of the book examines JavaScript and helps you get started developing
JavaScript applications. You don’t need any specific tools for JavaScript development, so
you’ll see how to create JavaScript files in Microsoft Visual Studio, and in Appendix B, in
Eclipse and in Notepad (or any other text editor). The book examines JavaScript func-
tions and the use of JavaScript in the browser, along with the aforementioned jQuery.
Finally, the book provides coverage of Windows 8 app development using HTML, CSS,
and JavaScript.

Who should read this book
This book is for beginning JavaScript programmers or people who are interested in
learning the basics of modern JavaScript programming: the language syntax, how it
works in browsers, what the common cross-browser problems are, and how to take
advantage of AJAX and third-party libraries such as jQuery to add interactivity to your
webpages.

assumptions
This book expects that you have at least a minimal understanding of concepts sur-
rounding web development. You should be at least somewhat familiar with HTML. CSS
is also helpful to know, but neither HTML nor CSS are required prerequisite knowledge
for completing this book. The examples shown provide all the HTML and CSS whenever
necessary.

Who should not read this book
This book isn’t meant for experienced JavaScript programmers.

Organization of this book
This book is divided into four sections, each of which focuses on a different aspect of
JavaScript programming. Part I, “Javawhat? The where, why, and how of JavaScript,”
provides the foundation upon which JavaScript is programmed. Included in this part
are chapters to get you up to speed creating JavaScript programs as well as chapters
discussing the syntax of JavaScript. Part II, “Integrating JavaScript into design,” looks
closely at the interactions between JavaScript and its primary role of web programming.

 introduction xxi

Part III, “AJAX and server-side integration,” shows the use of JavaScript to retrieve and
parse information from web services. Finally, Part IV, “JavaScript and Windows 8,” shows
how to create a Windows 8 app with HTML, CSS, and JavaScript.

Conventions and features in this book
This book takes you step by step through the process of learning the JavaScript pro-
gramming language. Starting at the beginning of the book and following each of the
examples and exercises will provide the maximum benefit to help you gain knowledge
about the JavaScript programming language.

If you already have some familiarity with JavaScript, you might be tempted to skip
the first chapter of this book. However, Chapter 1, “JavaScript is more than you might
think,” details some of the background history of JavaScript as well as some of the
underlying premise for this book, both of which might be helpful in framing the discus-
sion for the remainder of the book. Chapter 2, “Developing in JavaScript,” shows you
how to get started with programming in JavaScript. If you’re already familiar with web
development, you might already have a web development program, and therefore you
might be tempted to skip Chapter 2 as well. Nevertheless, you should become familiar
with the pattern used in Chapter 2 to create JavaScript programs.

The book contains a Table of Contents that will help you to locate a specific section
quickly. Each chapter contains a detailed list of the material that it covers.

The coverage of Windows 8 app development is limited to the final section of the
book, so if you’re not interested in making a Windows 8 app (it’s really easy) then you
can safely skip that last section without missing any of the valuable information neces-
sary to program in JavaScript for the web. If you’re looking for a more comprehensive
book on Windows 8 development with HTML5 and JavaScript, a beginner’s book, Start
Here! Build Windows 8 Apps with HTML5 and JavaScript will be available from Microsoft
Press in May (pre-order here: http://oreil.ly/build-w8-apps-HTML5-JS).

In addition, you can download the source code for many of the examples shown
throughout the book.

System requirements
You will need the following hardware and software to complete the practice exercises in
this book:

http://oreil.ly/build-w8-apps-HTML5-JS

xxii introduction

■■ An operating system capable of running a web server. For the section on
Windows 8 development, you’ll need Windows 8, but none of the other
examples require Windows.

■■ A text editor such as Notepad, Vim, or an Integrated Development Environment
(IDE) such as Visual Studio or Eclipse. For Windows 8 development, you’ll specifi-
cally need Visual Studio 2012 for Windows.

■■ An Internet connection so you can download software and chapter examples.

Code Samples
Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. The code for those exercises and many other exam-
ples can be downloaded from:

http://aka.ms/JavaScriptSbS/files

Follow the instructions to download the 9780735665934_files file.

installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. Unzip the 9780735665934_files.zip file that you downloaded from the book’s
website to a location that is accessible by your web server.

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

note If the license agreement doesn’t appear, you can access it from the
same webpage from which you downloaded the 9780735665934_files.zip file.

Using the Code Samples
Unzipping the sample code creates several subfolders, one for each chapter of the
book. These subfolders may contain additional subfolders, based on the layout neces-
sary for a given chapter.

http://aka.ms/JavaScriptSbS/files

 introduction xxiii

Acknowledgments
There are so many people that help in the book writing process. I’d like to first thank
Russell Jones at Microsoft Press. He has provided excellent guidance and is always a
pleasure to work with. Thanks to John Grieb for providing excellent technical feedback
for this edition. I should also thank Jim Oliva and John Eckendorf, if for no other reason
than I do so in every other book I write.

I’d also like to thank Terry Rapp for being understanding about my scheduling
conflicts. Thanks to Chris Tuescher for years of friendship and support. Many people
have helped me through the years, and it all led to me sitting here, writing this sen-
tence. Duff Damos, Kent Laabs, Pat Dunn, and the entire Nightmare Productions Ltd
and Capitol Entertainment crews are just as responsible for getting me here as anyone.
Thanks to Dave, Sandy, Joel, and the gang at Ski’s. Thanks also to Mrs. Mehlberg and
Mrs. Jurgella for extra attention and just being great.

Finally, thank you, dear reader. This book has been highly successful (at least by my
standards) and your feedback and contact over the years has been helpful. Please fol-
low me on Twitter @stevesuehring or drop me a line by going to my website at http://
www.braingia.org.

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://aka.ms/JavaScriptSbS/errata

If you find an error that is not already listed, you can report it to us through the
same page.

http://www.braingia.org
http://www.braingia.org
http://aka.ms/JavaScriptSbS/errata

xxiv introduction

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

PART I

Javawhat? The where,
why, and how of
JavaScript

CHAPTER 1 JavaScript is more than you might think 3

CHAPTER 2 Developing in JavaScript. .17

CHAPTER 3 JavaScript syntax and statements29

CHAPTER 4 Working with variables and data types41

CHAPTER 5 Using operators and expressions79

CHAPTER 6 Controlling flow with conditionals and loops93

CHAPTER 7 Working with functions .119

CHAPTER 8 Objects in JavaScript .133

CHAPTER 9 The Browser Object Model151

CHAPTER 10 An introduction to JavaScript libraries
 and frameworks .169

CHAPTER 11 An introduction to jQuery .173

The first section of the book, by far the largest, includes just about
everything you need to know about basic JavaScript syntax. You'll
start things off by learning some of the background and history of
JavaScript. It may sound boring, but Chapter 1 will help to frame
the discussion and tone of the remainder of the book.

Chapter 2 gets you started with JavaScript development
by showing how to create a page with JavaScript using Visual
Studio. See Appendix B for information about using Eclipse or a
text editor such as Notepad.

The discussion of JavaScript syntax begins in Chapter 3 and
continues for the remainder of the first part of the book. You'll
learn about conditionals, operators, functions, loops, and even
get an introduction to jQuery.

 3

C H A P T E R 1

JavaScript is more than you
might think

After completing this chapter, you will be able to

■■ Understand the history of JavaScript.

■■ Recognize the parts of a JavaScript program.

■■ Use the javascript pseudo-protocol.

■■ Understand where JavaScript fits within a webpage.

■■ Understand what JavaScript can and cannot do.

■■ Understand how JavaScript is used in Windows 8.

A brief history of JavaScript

JavaScript isn’t Java. There! With that clarification out of the way, you can move on to bigger, more
important learning, like how to make cool sliders. In all seriousness, JavaScript is one implementation
of a specification known as ECMAScript. You’ll learn more about ECMAScript later in this chapter.

Where did JavaScript come from? You might not know the rich and storied history of JavaScript—
and you might not really care much about it, either. If that’s the case, you might be tempted to jump
ahead to the next chapter and begin coding JavaScript. Doing so, of course, would be a mistake—
you’d miss all the wonderful information that follows in this chapter. And understanding a bit about
the history of JavaScript is important to understanding how the language is implemented in various
environments today.

JavaScript was originally developed by Brendan Eich at Netscape sometime in 1995–1996. Back
then, the language was called LiveScript. That was a great name for a new language—and the story
could have ended there. However, in an unfortunate decision, the folks in marketing had their way,
and the language was renamed to JavaScript. Confusion soon ensued. You see, Java was the exciting
new language at the time, and someone decided to try to capitalize on Java’s popularity by using
its name. As a result, JavaScript found itself associated with the Java language. This was a disadvan-
tage for JavaScript, because Java, although popular in the sense that it was frequently used, was also
unpopular because it had earned a fairly bad reputation—developers used Java in websites to present

4 parT i Javawhat? The where, why, and how of JavaScript

data or to add useless enhancements (such as annoying scrolling text). The user experience suffered
because Java required a plug-in to load into the web browser, slowing down the browsing process
and causing grief for visitors and accessibility problems. Only in recent years has JavaScript begun to
separate from this negative Java association, but, almost weekly, I still hear people confuse Java and
JavaScript. You’ll hopefully no longer do that!

JavaScript is not a compiled language, which makes it look and feel like a language that lacks
power. But programmers new to JavaScript soon came to realize its strengths and usefulness for both
simulating and creating interactivity on the World Wide Web. Up until that realization, program-
mers developed many websites using only simple Hypertext Markup Language (HTML) and graphics
that often lacked both visual appeal and the ability to interact with the site’s content. With Microsoft
Windows 8, JavaScript now has an avenue for creating full-fledged applications that don’t rely on the
web browser.

Early JavaScript concentrated on client-side form validation and working with images on webpages
to provide rudimentary, although helpful, interactivity and feedback to the visitor. When a visitor
to a website filled in a form, JavaScript instantly validated the contents of the web form rather than
 making a round-trip to the server. Especially in the days before broadband was pervasive, prevent-
ing the round-trip to the server was a great way to help applications seem a little quicker and more
responsive—and it still is.

Enter internet Explorer 3.0
With the release of Microsoft Internet Explorer 3.0 in 1996, Microsoft included support for core
JavaScript, known in Internet Explorer as JScript, and support for another scripting language called
Microsoft Visual Basic, Scripting Edition, or VBScript. Although JavaScript and JScript were similar,
their implementations weren’t exactly the same. Therefore, methods were developed to detect which
browser the website visitor was using and respond with appropriate scripting. This process is known
as browser detection, and is discussed in Chapter 11, “An introduction to jQuery.” Although it is con-
sidered undesirable for most applications, you’ll still see browser detection used, especially with the
advent of mobile devices that have their own special look and feel.

and then came ECMaScript
In mid-1997, Microsoft and Netscape worked with the European Computer Manufacturers Association
(ECMA) to release the first version of a language specification known as ECMAScript, more formally
known as ECMA-262. Since that time, all browsers from Microsoft have implemented versions of the
ECMAScript standard. Other popular browsers, such as Firefox, Safari, and Opera, have also imple-
mented the ECMAScript standard.

ECMA-262 edition 3 was released in 1999. The good news is that browsers such as Microsoft
Internet Explorer 5.5 and Netscape 6 supported the edition 3 standard, and every major browser
since then has supported the version of JavaScript formalized in the ECMA-262 edition 3 standard.
The bad news is that each browser applies this standard in a slightly different way, so incompatibilities
still plague developers who use JavaScript.

 CHAPTER 1 JavaScript is more than you might think 5

The latest version of ECMAScript, as formalized in the standard known as ECMA-262, was released
in late 2009 and is known as ECMA-262 edition 5. Version 4 of the specification was skipped for a
variety of reasons and to avoid confusion among competing proposals for the standard. ECMA-262
edition 5.1 is becoming more widely supported as of this writing and will likely (I’m hopeful) be in
versions of popular browsers such as Internet Explorer, Chrome, Firefox, Opera, and Safari by the time
you read this book.

It’s important to note that as a developer who is incorporating JavaScript into web applications,
you need to account for the differences among the versions of ECMA-262, and among the many
implementations of JavaScript. Accounting for these differences might mean implementing a script
in slightly different ways, and testing, testing, and testing again in various browsers and on various
platforms. On today’s Internet, users have little tolerance for poorly designed applications that work
in only one browser.

Accounting for those differences has become much easier in the last few years, and there are two
primary reasons. First, web browsers have consolidated around the specifications for HTML, CSS, and
JavaScript, and the vendors have worked to bring their interpretation of the specifications closer to
one another. The second reason that accounting for differences has become easier is that JavaScript
libraries have become more popular. Throughout the book, I’ll show the use of the jQuery library to
make JavaScript easier.

important It is imperative that you test your websites in multiple browsers—including web
applications that you don’t think will be used in a browser other than Internet Explorer.
Even if you’re sure that your application will be used only in Internet Explorer or if that’s
all you officially support, you still should test in other browsers. This is important both for
security and because it shows that you’re a thorough developer who understands today’s
Internet technologies.

So many standards...
If you think the standards of JavaScript programming are loosely defined, you’re right. Each browser
supports JavaScript slightly differently, making your job—and my job—that much more difficult.
Trying to write about all these nuances is more challenging than writing about a language that is
implemented by a single, specific entity, like a certain version of Microsoft Visual Basic or Perl. Your
job (and mine) is to keep track of these differences and account for them as necessary, and to try to
find common ground among them as much as possible.

The DOM
Another evolving standard relevant to the JavaScript programmer is the Document Object Model
(DOM) standard developed by the World Wide Web Consortium (W3C). The W3C defines the DOM
as “a platform- and language-neutral interface that allows programs and scripts to dynamically access
and update the content, structure, and style of documents.” What this means for you is that you can

6 parT i Javawhat? The where, why, and how of JavaScript

work with a specification to which web browsers adhere to develop a webpage in a dynamic man-
ner. The DOM creates a tree structure of objects for HTML and Extensible Markup Language (XML)
documents and enables scripting of those objects. JavaScript interacts heavily with the DOM for many
important functions.

Like JavaScript, the DOM is interpreted differently by every browser, making life for a JavaScript
programmer more interesting. Internet Explorer 4.0 and earlier versions of Netscape included support
for an early DOM, known as Level 0. If you use the Level 0 DOM, you can be pretty sure that you’ll
find support for the DOM in those browsers and in all the browsers that came after.

Microsoft Internet Explorer 5.0 and Internet Explorer 5.5 included some support for the Level 1
DOM, whereas Windows Internet Explorer 6.0 and later versions include some support for the Level
2 DOM. The latest versions of Internet Explorer, Chrome, Firefox, Safari, and Opera support the Level
3 DOM in some form. Safari provides a representation of the WebKit rendering engine. The WebKit
rendering engine is also used as the basis for the browser on devices such as the iPhone and iPad and
on Android-based devices.

If there’s one lesson that you should take away while learning about JavaScript standards and the
related DOM standards, it’s that you need to pay particular attention to the code that you write (no
surprise there) and the syntax used to implement that code. If you don’t, JavaScript can fail miser-
ably and prevent your page from rendering in a given browser. Chapter 12, “The Document Object
Model,” covers the DOM in much greater detail.

Tip The W3C has an application that can test the modules specified by the various DOM
levels that your web browser claims to support. This application can be found at http://
www.w3.org/2003/02/06-dom-support.html.

What’s in a JavaScript program?

A JavaScript program consists of statements and expressions formed from tokens of various catego-
ries, including keywords, literals, separators, operators, and identifiers placed together in an order that
is meaningful to a JavaScript interpreter, which is contained in most web browsers. That sentence is a
mouthful, but these statements are really not all that complicated to anyone who has programmed in
just about any other language. An expression might be:

var smallNumber = 4;

In that expression, a token, or reserved word—var—is followed by other tokens, such as an identi-
fier (smallNumber), an operator (=), and a literal (4). (You learn more about these elements through-
out the rest of the book.) The purpose of this expression is to set the variable named smallNumber
equal to the integer 4.

Like in any programming language, statements get put together in an order that makes a program
perform one or more functions. JavaScript defines functions in its own way, which you read much

http://www.w3.org/2003/02/06-dom-support.html
http://www.w3.org/2003/02/06-dom-support.html

 CHAPTER 1 JavaScript is more than you might think 7

more about in Chapter 7, “Working with functions.” JavaScript defines several built-in functions that
you can use in your programs.

Using the javascript pseudo-protocol and a function

1. Open a web browser.

2. In the address bar, type the following code and press Enter:

javascript:alert("Hello World");

After you press Enter, you see a dialog box similar to this one:

Congratulations! You just programmed your first (albeit not very useful) bit of JavaScript code.
However, in just this little bit of code, are two important items that you are likely to use in your
JavaScript programming endeavors: the javascript pseudo-protocol identifier in a browser and, more
importantly, the alert function. You'll examine these items in more detail in later chapters; for now, it
suffices that you learned something that you’ll use in the future!

note Internet Explorer 10 in Windows 8 sometimes doesn’t display or use the javascript
pseudo-protocol correctly.

JavaScript is also event-driven, meaning that it can respond to certain events or “things that hap-
pen,” such as a mouse click or text change within a form field. Connecting JavaScript to an event is
central to many common uses of JavaScript. In Chapter 11, you see how to respond to events by using
JavaScript.

JavaScript placement on your webpage

If you’re new to HTML, all you need to know about it for now is that it delineates elements in a web-
page using a pair of matching tags enclosed in brackets. The closing tag begins with a slash char-
acter (/). Elements can be nested within one another. JavaScript fits within <SCRIPT> tags inside the
<HEAD> </HEAD> and/or <BODY> </BODY> tags of a webpage, as in the following example:

<!doctype html>
<html>
<head>

8 parT i Javawhat? The where, why, and how of JavaScript

<title>A Web Page Title</title>
<script type="text/javascript">
// JavaScript Goes Here
</script>
</head>
<body>
<script type="text/javascript">
// JavaScript can go here too
</script>
</body>
</html>

JavaScript placed within the <BODY> tags executes as it is encountered by the browser, which is
helpful when you need to write to the document by using a JavaScript function, as follows (the func-
tion calls are shown in boldface type):

<!doctype html>
<html>
<head>
<title>A Web Page Title</title>
<script type="text/javascript">
// JavaScript Goes Here
</script>
</head>
<body>
<script type="text/javascript">
document.write("hello");
document.write(" world");
</script>
</body>
</html>

Because of the way browsers load JavaScript, the current best practice for placing JavaScript in
your HTML is to position the <SCRIPT> tags at the end of the <BODY> element rather than in the
<HEAD> element. Doing so helps to ensure that the content of the page is rendered if the browser
blocks input while the JavaScript files are being loaded.

When you’re using JavaScript on an Extensible Hypertext Markup Language (XHTML) page, the
less-than sign (<) and the ampersand character (&) are interpreted as XML, which can cause problems
for JavaScript. To get around this, use the following syntax in an XHTML page:

<script type="text/javascript">
<![CDATA[
 // JavaScript Goes Here
]]>
</script>

Browsers that aren’t XHTML-compliant don’t interpret the CDATA section correctly. You can work
around that problem by placing the CDATA section inside a JavaScript comment—a line or set of lines
prefaced by two forward slashes (//), as shown here:

<script type="text/javascript">

 CHAPTER 1 JavaScript is more than you might think 9

//<![CDATA[
 // JavaScript Goes Here
//]]>
</script>

Yes, the code really is that ugly. However, there’s an easy fix for this: use external JavaScript files. In
Chapter 2, “Developing in JavaScript,” you learn exactly how to accomplish this simple task.

Document types
If you’ve been programming for the web for any length of time, you’re probably familiar with
Document Type declarations, or DOCTYPE declarations, as they’re sometimes called. One of
the most important tasks you can do when designing your webpages is to include an accurate
and syntactically correct DOCTYPE declaration section at the top of the page. The DOCTYPE
declaration, frequently abbreviated as DTD, lets the browser (or other parsing program) know
the rules that will be followed when parsing the elements of the document.

An example of a DOCTYPE declaration for HTML 4.01 looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">

If you’re using a Microsoft Visual Studio version earlier than version 2012 to create a web
project, each page is automatically given a DOCTYPE declaration for the XHTML 1.0 standard,
like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR
/xhtml1/DTD/xhtml1-transitional.dtd">

HTML version 5 uses a much simpler DOCTYPE:

<!DOCTYPE html>

If you fail to declare a DOCTYPE, the browser interprets the page by using a mode known
as Quirks Mode. Falling back to Quirks Mode means that the document might end up looking
different from your intention, especially when viewed through several browsers.

If you do declare a DOCTYPE, making sure that the resulting HTML, cascading style sheet
(also known as CSS), and JavaScript also adhere to web standards is important so that the
document can be viewed as intended by the widest possible audience, no matter which inter-
face or browser is used. The W3C makes available an online validator at http://validator.w3.org/,
which you can use to validate any publicly available webpage.

Tip Use the Markup Validator regularly until you’re comfortable with coding to standards,
and always check for validity before releasing your web project to the public.

http://validator.w3.org/

10 parT i Javawhat? The where, why, and how of JavaScript

What JavaScript can do

JavaScript is largely a complementary language, meaning that it’s uncommon for an entire applica-
tion to be written solely in JavaScript without the aid of other languages like HTML and without
presentation in a web browser. Some Adobe products support JavaScript, and Windows 8 begins to
change this, but JavaScript’s main use is in a browser.

JavaScript is also the J in the acronym AJAX (Asynchronous JavaScript and XML), the darling of
the Web 2.0 phenomenon. However, beyond that, JavaScript is an everyday language providing the
interactivity expected, maybe even demanded, by today’s web visitors.

JavaScript can perform many tasks on the client side of the application. For example, it can add
the needed interactivity to a website by creating drop-down menus, transforming the text on a page,
adding dynamic elements to a page, and helping with form entry.

Before learning about what JavaScript can do—the focus of this book—you need to understand
what JavaScript can’t do, but note that neither discussion is comprehensive.

What JavaScript can’t do

Many of the operations JavaScript can’t perform are the result of JavaScript’s usage being somewhat
limited to a web browser environment. This section examines some of the tasks JavaScript can’t per-
form and some that JavaScript shouldn’t perform.

JavaScript can’t be forced on a client
JavaScript relies on another interface or host program for its functionality. This host program is usu-
ally the client’s web browser, also known as a user agent. Because JavaScript is a client-side language,
it can do only what the client allows it to do.

Some people are still using older browsers that don’t support JavaScript at all. Others won’t be
able to take advantage of many of JavaScript’s fancy features because of accessibility programs, text
readers, and other add-on software that assists the browsing experience. And some people might
just choose to disable JavaScript because they can, because of security concerns (whether perceived
or real), or because of the poor reputation JavaScript received as a result of certain annoyances like
pop-up ads.

Regardless of the reason, you need to perform some extra work to ensure that the website you’re
designing is available to those individuals who don’t have JavaScript. I can hear your protests already:
“But this feature is really [insert your own superlative here: cool, sweet, essential, nice, fantastic].”
Regardless of how nice your feature might be, the chances are you will benefit from better interoper-
ability and more site visitors. In the “Tips for using JavaScript” section later in this chapter, I offer some
pointers that you can follow for using JavaScript appropriately on your website.

 CHAPTER 1 JavaScript is more than you might think 11

It might be helpful to think of this issue another way. When you build a web application that gets
served from Microsoft Internet Information Services (IIS) 6.0, you can assume that the application will
usually work when served from an IIS 6.0 server anywhere. Likewise, when you build an application for
Apache 2, you can be pretty sure that it will work on other Apache 2 installations. However, the same
assumption cannot be made for JavaScript. When you write an application that works fine on your
desktop, you can’t guarantee that it will work on somebody else’s. You can’t control how your applica-
tion will work after it gets sent to the client.

JavaScript can’t guarantee data security
Because JavaScript is run wholly on the client, the developer must learn to let go. As you might
expect, letting go of control over your program has serious implications. After the program is on the
client’s computer, the client can do many undesirable things to the data before sending it back to the
server. As with any other web programming, you should never trust any data coming back from the
client. Even if you’ve used JavaScript functions to validate the contents of forms, you still must validate
this input again when it gets to the server. A client with JavaScript disabled might send back garbage
data through a web form. If you believe, innocently enough, that your client-side JavaScript function
has already checked the data to ensure that it is valid, you might find that invalid data gets back to
the server, causing unforeseen and possibly dangerous consequences.

important Remember that JavaScript can be disabled on your visitor’s computer. You can-
not rely on cute tricks to be successful, such as using JavaScript to disable right-clicks or
to prevent visitors from viewing the page source, and you shouldn’t use them as security
measures.

JavaScript can’t cross domains
The JavaScript developer also must be aware of the Same-Origin Policy, which dictates that scripts
running from within one domain neither have access to the resources from another Internet domain,
nor can they affect the scripts and data from another domain. For example, JavaScript can be used to
open a new browser window, but the contents of that window are somewhat restricted to the calling
script. When a page from my website (braingia.org) contains JavaScript, that page can’t access any
JavaScript executed from a different domain, such as microsoft.com. This is the essence of the Same-
Origin Policy: JavaScript has to be executed in or originate from the same location.

The Same-Origin Policy is frequently a restriction to contend with in the context of frames and
AJAX’s XMLHttpRequest object, where multiple JavaScript requests might be sent to different web
servers. With the introduction of Windows Internet Explorer 8, Microsoft introduced support for the
XDomainRequest object, which allows limited access to data from other domains.

12 parT i Javawhat? The where, why, and how of JavaScript

JavaScript doesn’t do servers
When developing server-side code such as Visual Basic .NET or PHP (a recursive acronym that stands
for PHP: Hypertext Preprocessor), you can be fairly sure that the server will implement certain func-
tions, such as talking to a database or giving access to modules necessary for the web application.
JavaScript doesn’t have access to server-side variables. For example, JavaScript cannot access data-
bases that are located on the server. JavaScript code is limited to what can be done inside the plat-
form on which the script is running, which is typically the browser.

Another shift you need to make in your thinking, if you’re familiar with server-side programming,
is that with JavaScript, you have to test the code on many different clients to know what a particular
client is capable of. When you’re programming server-side, if the server doesn’t implement a given
function, you know it right away because the server-side script fails when you test it. Naughty admin-
istrators aside, the back-end server code implementation shouldn’t change on a whim, and thus,
you more easily know what you can and cannot code. But you can’t anticipate JavaScript code that is
intended to run on clients, because these clients are completely out of your control.

note There are server-side implementations of JavaScript, but they are beyond the scope
of this book.

Tips for using JavaScript

Several factors go into good web design, and really, who arbitrates what is and is not considered
good anyway? One visitor to a site might call the site an ugly hodgepodge of colors and text created
as if those elements were put in a sack and shaken until they fell out onto the page; the next visitor
might love the design and color scheme.

Because you’re reading this book, I assume that you’re looking for some help with using JavaScript
to enhance your website. I also assume that you want to use this programming language to help
people use your site and to make your site look, feel, and work better.

The design of a website is not and will never be an entirely objective process. The goal of one web-
site might be informational, which would dictate one design approach, whereas the goal of another
website might be to connect to an application, thus requiring specialized design and functionality.
That said, many popular and seemingly well-designed sites have certain aspects in common. I try to
break down those aspects here, although I ask you to remember that I didn’t create a comprehensive
list and that the items reflect only one person’s opinions.

A well-designed website does the following:

■■ Emphasizes function over form When a user visits a website, she usually wants to obtain
information or perform a task. The more difficult your site is to browse, the more likely the
user is to move to another site with better browsing.

 CHAPTER 1 JavaScript is more than you might think 13

Animations and blinking bits come and go, but what remain are sites that have basic informa-
tion presented in a professional, easily accessible manner. Using the latest cool animation soft-
ware or web technology makes me think of the days of the HTML <BLINK> tag. The <BLINK>
tag, for those who never saw it in action, caused the text within it to disappear and reappear
on the screen. Nearly all web developers seem to hate the <BLINK> tag and what it does to a
webpage. Those same developers would be wise to keep in mind that today’s exciting feature
or special effect on a webpage will be tomorrow’s <BLINK> tag. Successful websites stick to
the basics and use these types of bits only when the content requires them.

Use elements like a site map, alt tags, and simple navigation tools, and don’t require special
software or plug-ins for viewing the site’s main content. Too often, I visit a website only to
be stopped because I need a plug-in or the latest version of this or that player (which I don’t
have) to browse it.

Although site maps, alt tags, and simple navigation might seem quaint, they are indispensable
items for accessibility. Text readers and other such technologies that enable sites to be read
aloud or browsed by individuals with disabilities use these assistive features and frequently
have problems with complex JavaScript.

■■ Follows standards Web standards exist to be followed, so ignore them at your own peril.
Using a correct DOCTYPE declaration and well-formed HTML helps ensure that your site will
display correctly to your visitors. Validation using the W3C’s Markup Validator tool is highly
recommended. If your site is broken, fix it!

■■ Renders correctly in multiple browsers Even when Internet Explorer had 90 percent
market share, it was never a good idea for programmers to ignore other browsers. Doing so
usually meant that accessibility was also ignored, so people with text readers or other add-ons
couldn’t use the site. People using operating systems other than Microsoft Windows might
also be out of luck visiting those sites.

Although Internet Explorer is still the leader among browsers used by web visitors, it isn't the
only browser your web visitors will use. Somewhere around 3 or 4 of every 10 visitors will be
using a different web browser.

You never want to turn away visitors because of their browser choice. Imagine the shopkeeper
who turned away 3 of every 10 potential customers just because of their shoes. That shop
wouldn’t be in business too long—or at the very least, it wouldn’t be as successful.

If you strive to follow web standards, chances are that you’re already doing most of what you
need to do to support multiple browsers. Avoiding the use of proprietary plug-ins for your
website is another way to ensure that your site renders correctly. You need to look only as
far as the iPad to see a device that is popular but whose use is restricted because it doesn’t
natively support Flash. For this reason, creating sites that follow standards and avoid propri-
etary plug-ins ensures that your site is viewable by the widest possible audience.

■■ Uses appropriate technologies at appropriate times Speaking of plug-ins, a well-
designed website doesn’t overuse or misuse technology. On a video site, playing videos is

14 parT i Javawhat? The where, why, and how of JavaScript

appropriate. Likewise, on a music site, playing background music is appropriate. On other
sites, these features might not be so appropriate. If you feel that your site needs to play back-
ground music, go back to the drawing board and examine why you want a website in the first
place! I still shudder when I think of an attorney’s website that I once visited. The site started
playing the firm’s jingle in the background, without my intervention. Friends don’t let friends
use background music on their sites.

Where JavaScript fits
Today’s web is still evolving. One of the more popular movements is known as unobtrusive scripting.
The unobtrusive scripting paradigm contains two components, progressive enhancement and behav-
ioral separation. Behavioral separation calls for structure to be separated from style, and for both of
these elements to be separated from behavior. In this model, HTML or XHTML provides the structure,
whereas the CSS provides the style and JavaScript provides the behavior. Progressive enhancement
means adding more features to the page as the browser’s capabilities are tested; enhancing the user
experience when possible but not expecting that JavaScript or a certain JavaScript function will always
be available. In this way, the JavaScript is unobtrusive; it doesn’t get in the way of the user experi-
ence. If JavaScript isn’t available in the browser, the website still works because the visitor can use the
website in some other way.

When applied properly, unobtrusive scripting means that JavaScript is not assumed to be available
and that JavaScript will fail in a graceful manner. Graceful degradation helps the page function with-
out JavaScript or uses proper approaches to make JavaScript available when it’s required for the site.

I’m a proponent of unobtrusive scripting because it means that standards are followed and the
resulting site adheres to the four recommendations shared in the previous section. Unfortunately, this
isn’t always the case. You could separate the HTML, CSS, and JavaScript and still end up using proprie-
tary tags, but when you program in an unobtrusive manner, you tend to pay closer attention to detail
and care much more about the end result being compliant with standards.

Throughout this book, I strive to show you not only the basics of JavaScript but also the best way
to use JavaScript effectively and, as much as possible, unobtrusively.

a note on JScript and JavaScript and this book
This book covers JavaScript as defined by the ECMA standard, in versions all the way through
the latest edition 5. This is distinct from Microsoft’s implementation of JScript, which is not
 covered in this book. For an additional reference on only JScript, I recommend the follow-
ing site: JScript (Windows Script Technologies) at http://msdn.microsoft.com/en-us/library/
hbxc2t98.aspx.

http://msdn.microsoft.com/en-us/library/hbxc2t98.aspx
http://msdn.microsoft.com/en-us/library/hbxc2t98.aspx

 CHAPTER 1 JavaScript is more than you might think 15

Which browsers should the site support?
Downward compatibility has been an issue for the web developer for a long time. Choosing which
browser versions to support becomes a trade-off between using the latest functionality available in
the newest browsers and the compatible functionality required for older browsers. There is no hard
and fast rule for which browsers you should support on your website, so the answer is: it depends.

Your decision depends on what you’d like to do with your site and whether you value visits by
people using older hardware and software more than you value the added functionality available in
later browser versions. Some browsers are just too old to support because they can’t render CSS cor-
rectly, much less JavaScript. A key to supporting multiple browser versions is to test with them. All of
this means that you need to develop for and test in an appropriate set of browsers before releasing a
website for public consumption.

Obtaining an MSDN account from Microsoft will give you access to both new and older
verions of products, including Internet Explorer. Additional resources are the Application
Compatibility Virtual PC Images, available for free from Microsoft. These allow you to
use a time-limited version of Microsoft Windows containing older versions of Internet
Explorer, too. For more information, see http://www.microsoft.com/downloads/details.
aspx?FamilyId=21EABB90-958F-4B64-B5F1-73D0A413C8EF&displaylang=en.

Many web designs and JavaScript functions don’t require newer versions of web browsers.
However, as already explained, verifying that your site renders correctly in various browsers is always
a good idea. See http://browsers.evolt.org/ for links to archives of many historical versions of web
browsers. Even if you can’t conduct extensive testing in multiple browsers, you can design the site so
that it fails in a graceful manner. You want the site to render appropriately regardless of the browser
being used.

And then came Windows 8

Microsoft Windows 8 represents a paradigm shift for JavaScript programmers. In Windows 8,
Microsoft has elevated JavaScript to the same level as other client-side languages, such as Visual
Basic and C#, for developing Windows 8 applications. Before Windows 8, if you wanted to create an
application that ran on the desktop, you’d need to use Visual Basic, C#, or a similar language. With
Windows 8, you need only use HTML and JavaScript to create a full-fledged Windows 8–style app.

Windows 8 exposes an Application Programming Interface (API), providing a set of functions that
enable the JavaScript programmer to natively access behind-the-scenes areas of the operating sys-
tem. This means that programming for Windows 8 is slightly different from programming JavaScript
for a web browser.

http://www.microsoft.com/downloads/details.aspx?FamilyId=21EABB90-958F-4B64-B5F1-73D0A413C8EF&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=21EABB90-958F-4B64-B5F1-73D0A413C8EF&displaylang=en
http://browsers.evolt.org/

16 parT i Javawhat? The where, why, and how of JavaScript

Of course, your web applications will still work in Internet Explorer, which comes with Windows 8.
These web applications are distinct and separate from the Windows 8 native applications.

This book will show how to develop for Windows 8 using JavaScript. Before you get there, you’ll
see how to create JavaScript programs that run in web browsers.

Exercises

1. True or False: JavaScript is defined by a standards body and is supported on all web browsers.

2. True or False: When a visitor whose machine has JavaScript disabled comes to your website,
you should block his access to the site because there’s no valid reason to have JavaScript
disabled.

3. Create a JavaScript definition block that would typically appear on an HTML page within the
<HEAD> or <BODY> block.

4. True or False: It’s important to declare the version of JavaScript being used within the
DOCTYPE definition block.

5. True or False: JavaScript can appear in the <HEAD> block and within the <BODY> text of an
HTML page.

 41

C H A P T E R 4

Working with variables and
data types

After completing this chapter, you will be able to

■■ Understand the primitive data types used in JavaScript.

■■ Use functions associated with the data types.

■■ Create variables.

■■ Define objects and arrays.

■■ Understand the scope of variables.

■■ Debug JavaScript using Firebug.

Data types in JavaScript

The data types of a language describe the basic elements that can be used within that language.
You’re probably already familiar with data types, such as strings or integers, from other languages.
Depending on who you ask, JavaScript defines anywhere from three to six data types. (The answer
depends largely on the definition of a data type.) You work with all these data types regularly, some
more than others.

The six data types in JavaScript discussed in this chapter are as follows:

■■ Numbers

■■ Strings

■■ Booleans

■■ Null

■■ Undefined

■■ Objects

42 parT i Javawhat? The where, why, and how of JavaScript

The first three data types—numbers, strings, and Booleans—should be fairly familiar to program-
mers in any language. The latter three—null, undefined, and objects—require some additional expla-
nation. I examine each of the data types in turn and explain objects further in Chapter 8, “Objects in
JavaScript.”

Additionally, JavaScript has several reference data types, including the Array, Date, and RegExp
types. The Date and RegExp types are discussed in this chapter, and the Array type is discussed in
Chapter 8.

Working with numbers
Numbers in JavaScript are just what you might expect them to be: numbers. However, what might be
a surprise for programmers who are familiar with data types in other languages like C is that integers
and floating point numbers do not have special or separate types. All these are perfectly valid num-
bers in JavaScript:

4
51.50
-14
0xd

The last example, 0xd, is a hexadecimal number. Hexadecimal numbers are valid in JavaScript, and
you won’t be surprised to learn that JavaScript allows math to be performed using all of the listed
number formats. Try the following exercise.

performing hexadecimal math with JavaScript

1. Using Microsoft Visual Studio, Eclipse, or another editor, edit the file example1.html in the
Chapter04 sample files folder in the companion content.

2. Within the webpage, replace the TODO comment with the boldface code shown here:

<!doctype html>
<html>
<head>
<title>Hexadecimal Numbers</title>
<script type="text/javascript">
var h = 0xe;
var i = 0x2;
var j = h * i;
alert(j);
</script>
</head>
<body>
</body>
</html>

 CHAPTER 4 Working with variables and data types 43

3. View the webpage in a browser. You should see a dialog box similar to this one:

The preceding script first defines two variables (you learn about defining variables later in this
chapter) and sets them equal to two hexadecimal numbers, 0xe (14 in base 10 notation) and 0x2,
respectively:

var h = 0xe;
var i = 0x2;

Then a new variable is created and set to the product of the previous two variables, as follows:

var j = h * i;

The resulting variable is then passed to the alert() function, which displays the dialog box in the
preceding step 3. It’s interesting to note that even though you multiplied two hexadecimal numbers,
the output in the alert dialog box is in base 10 format.

numeric functions
JavaScript has some built-in functions (and objects, too, which you learn about soon) for working with
numeric values. The European Computer Manufacturers Association (ECMA) standard defines several
of them. One more common numeric function is the isNaN() function. By common, I mean that
isNaN() is a function that I use frequently in JavaScript programming. Your usage might vary, but an
explanation follows nonetheless.

NaN is an abbreviation for Not a Number, and it represents an illegal number. You use the isNaN()
function to determine whether a number is legal or valid according to the ECMA-262 specifica-
tion. For example, a number divided by zero would be an illegal number in JavaScript. The string
value “This is not a number” is obviously also not a number. Although people might have a different
interpretation of what is and isn’t a number, the string “four” is not a number to the isNaN() func-
tion, whereas the string “4” is. The isNaN() function requires some mental yoga at times because
it attempts to prove a negative—that the value in a variable is not a number. Here are a couple of
examples that you can try to test whether a number is illegal.

Testing the isNaN() function (test 1)

1. In Microsoft Visual Studio, Eclipse, or another editor, create a new HTML file or edit the
 isnan. html file in the companion content.

44 parT i Javawhat? The where, why, and how of JavaScript

2. In the file, place the following markup. If you’ve created a new file with Vision Studio, delete
any existing contents first.

<!doctype html>
<html>
<head>
<title>isNaN</title>
</head>
<body>
<script type="text/javascript">
document.write("Is Not a Number: " + isNaN("4"));
</script>
</body>
</html>

3. View this page in a browser. In Visual Studio, press F5. You’ll see a page like this one:

The function isNaN() returns false from this expression because the integer value 4 is a number.
Remember that the meaning of this function is, “Is 4 Not a Number?” Well, 4 is a number, so the result
is false.

Now consider the next example.

Testing the isNaN() function (test 2)

1. If you’re running through Microsoft Visual Studio, stop the project. For those not running
Visual Studio, close the web browser.

2. Edit isnan.html.

3. Change the isNaN() function line to read:

document.write("Is Not a Number: " + isNaN("four"));

 CHAPTER 4 Working with variables and data types 45

View the page in a browser, or rerun the project in Visual Studio. You’ll now see a page like this:

In second test case, because the numeral 4 is represented as a string of nonnumeric characters
(four), the function returns true: the string four is not a number. I purposefully used double quotation
marks in each code example (that is, “4” and “four”) to show that the quotation marks don’t matter for
this function. Because JavaScript is smart enough to realize that “4” is a number, JavaScript does the
type conversion for you. However, this conversion can sometimes be a disadvantage, such as when
you’re counting on a variable or value to be a certain type.

The isNaN() function is used frequently when validating input to determine whether something—
maybe a form variable—was entered as a number or as text.

numeric constants
Other numeric constants are available in JavaScript, some of which are described in Table 4-1.
These constants might or might not be useful to you in your JavaScript programming, but they
exist if you need them.

TABLE 4-1 Selected numeric constants

Constant Description

Infinity Represents positive infinity

Number.MAX_VALUE The largest number able to be represented in JavaScript

Number.MIN_VALUE The smallest or most negative number able to be represented in JavaScript

Number.NEGATIVE_INFINITY A value representing negative infinity

Number.POSITIVE_INFINITY A value representing positive infinity

The Math object
The Math object is a special built-in object used for working with numbers in JavaScript, and it has
several properties that are helpful to the JavaScript programmer, including properties that return
the value of pi, the square root of a number, a pseudo-random number, and an absolute value.

46 parT i Javawhat? The where, why, and how of JavaScript

Some properties are value properties, meaning they return a value, whereas others act like func-
tions and return values based on the arguments sent into them. Consider this example of the Math.PI
value property. Place this code between the opening <SCRIPT TYPE=”text/javascript”> and closing
 </ SCRIPT> tags in your sample page:

document.write(Math.PI);

The result is shown in Figure 4-1.

FIGURE 4-1 Viewing the value of the Math.PI property.

Dot notation
Dot notation is so named because a single period, or dot, is used to access the members of
an object. The single dot (.) creates an easy visual delineator between elements. For example,
to access a property that you might call the “length of a variable room,” you would write
 room. length. The dot operator is used similarly in many programming languages.

Several other properties of the Math object can be helpful to your program. Some of them act
as functions or methods on the object, several of which are listed in Table 4-2. You can obtain a
 complete list of properties for the Math object in the ECMA-262 specification at http://www.ecma-
international.org/publications/files/ECMA-ST/Ecma-262.pdf.

TABLE 4-2 Select function properties of the Math object

Property Definition

Math.random() Returns a pseudo-random number

Math.abs(x) Returns the absolute value of x

Math.pow(x,y) Returns x to the power of y

Math.round(x) Returns x rounded to the nearest integer value

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

 CHAPTER 4 Working with variables and data types 47

Working with strings
Strings are another basic data type available in JavaScript. They consist of one (technically zero) or
more characters surrounded by quotation marks. The following examples are strings:

■■ “Hello world”

■■ “B”

■■ “This is ‘another string’”

The last example in the preceding list requires some explanation. Strings are surrounded by either
single or double quotation marks. Strings enclosed in single quotation marks can contain double
quotation marks. Likewise, a string enclosed in double quotation marks, like the ones you see in the
preceding example, can contain single quotation marks. So basically, if the string is surrounded by
one type of quotation mark, you can use the other type within it. Here are some more examples:

■■ ‘The cow says “moo”.’

■■ ‘The talking clock says the time is “Twelve Noon”.’

■■ “‘Everyone had a good time’ was the official slogan.”

Escaping quotation marks
If you use the same style of quotation mark both within the string and to enclose the string, the
quotation marks must be escaped so that they won’t be interpreted by the JavaScript engine. A single
backslash character (\) escapes the quotation mark, as in these examples:

■■ ‘I\’m using single quotation marks both outside and within this example. They\’re neat.’

■■ “This is a \”great\” example of using \”double quotes\” within a string that’s enclosed with
\”double quotes\” too.”

Other escape characters
JavaScript enables other characters to be represented with specific escape sequences that can appear
within a string. Table 4-3 shows those escape sequences.

TABLE 4-3 Escape sequences in JavaScript

Escape character Sequence value

\b Backspace

\t Tab

\n Newline

\v Vertical tab

\f Form feed

\r Carriage return

\\ Literal backslash

48 parT i Javawhat? The where, why, and how of JavaScript

Here’s an example of some escape sequences in action.

Using escape sequences

1. In Visual Studio, Eclipse, or another editor, open your sample page.

2. Within the <SCRIPT> section, place the following line of JavaScript:

document.write("hello\t\t\"hello\"goodbye");

3. View the page in a browser. You’ll see a page like the following. Notice that the tab characters
don’t show through because the browser interprets HTML and not tab characters.

This rather contrived example shows escape sequences in action. In the code, the word hello is fol-
lowed by two tabs, represented by their escape sequence of \t, followed by an escaped double-quote
\” and then the word hello followed by another escaped double-quote \”, finally followed by the word
goodbye.

String methods and properties
JavaScript defines several properties and methods for working with strings. These properties and
methods are accessed using dot notation (“.”), explained earlier in this chapter and familiar to many
programmers.

note In the same way I describe only some of the elements of JavaScript in this book, I
cover only a subset of the string properties and methods available in the ECMA-262 specifi-
cation. Refer to the ECMA specification for more information.

The length property on a string object gives the length of a string, not including the enclosing
quotation marks. The length property can be called directly on a string literal, as in this example:

alert("This is a string.".length);

 CHAPTER 4 Working with variables and data types 49

However, it’s much more common to call the length property on a variable, like this:

var x = "This is a string.";
alert(x.length);

Both examples give the same result.

Some commonly used string methods, besides substring, include slice, substr, concat, toUpperCase,
toLowerCase, and the pattern matching methods of match, search, and replace. I discuss each of these
briefly.

Methods that change strings include slice, substring, substr, and concat. The slice and substring
methods return string values based on another string. They accept two arguments: the beginning
position and an optional end position. Here are some examples:

var myString = "This is a string.";
alert(myString.substring(3)); //Returns "s is a string."
alert(myString.substring(3,9)); //Returns "s is a"
alert(myString.slice(3)); //Returns "s is a string."
alert(myString.slice(3,9)); //Returns "s is a"

A subtle difference between slice and substring is how they handle arguments with negative values.
The substring method will convert any negative values to 0, while slice will treat negative arguments
as the starting point from the end of the string (counting backwards from the end, essentially).

The substr method also accepts two arguments: the first is the beginning position to return, and, in
contrast to substring/slice, the second argument is the number of characters to return, not the stop-
ping position. Therefore, the code examples for substring/slice work a little differently with substr:

var myString = "This is a string.";
alert(myString.substr(3)); //Returns "s is a string." (The same as substring/slice)
alert(myString.substr(3,9)); //Returns "s is a st" (Different from substring/slice)

The concat method concatenates two strings together:

var firstString = "Hello ";
var finalString = firstString.concat("World");
alert(finalString); //Outputs "Hello World"

It’s somewhat more common to use the plus sign (+) for concatenation, so the same output could
be accomplished with this:

var finalString = firstString + "World";

The toUpperCase and toLowerCase methods, and their brethren toLocaleUpperCase and
 toLocaleLowerCase, convert a string to all uppercase or all lowercase, respectively:

var myString = "this is a String";
alert(myString.toUpperCase()); // "THIS IS A STRING"
alert(myString.toLowerCase()); // "this is a string"

50 parT i Javawhat? The where, why, and how of JavaScript

note The toLocale methods perform conversions in a locale-specific manner.

As I stated, numerous string properties and methods exist. The remainder of the book features
other string properties and methods, and you can always find a complete list within the ECMA specifi-
cation at http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf.

Booleans
Booleans are kind of a hidden, or passive, data type in JavaScript. By hidden, or passive, I mean that
you don’t work with Booleans in the same way that you work with strings and numbers; you can
define and use a Boolean variable, but typically you just use an expression that evaluates to a Boolean
value. Booleans have only two values, true and false, and in practice, you rarely set variables as such.
Rather, you use Boolean expressions within tests, such as an if/then/else statement.

Consider this statement:

If (myNumber > 18) {
 //do something
}

A Boolean expression is used within the if statement’s condition to determine whether the code
within the braces will be executed. If the content of the variable myNumber is greater than the integer
18, the Boolean expression evaluates to true; otherwise, the Boolean evaluates to false.

Null
Null is another special data type in JavaScript (as it is in most languages). Null is, simply, nothing. It
represents and evaluates to false. When a value is null, it is nothing and contains nothing. However,
don’t confuse this nothingness with being empty. An empty value or variable is still full; it’s just full of
emptiness. Emptiness is different from null, which is just plain nothing. For example, defining a vari-
able and setting its value to an empty string looks like this:

var myVariable = '';

The variable myVariable is empty, but it is not null.

Undefined
Undefined is a state, sometimes used like a value, to represent a variable that hasn’t yet contained a
value. This state is different from null, although both null and undefined can evaluate the same way.
You’ll learn how to distinguish between a null value and an undefined value in Chapter 5, “Using
operators and expressions.”

http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

 CHAPTER 4 Working with variables and data types 51

Objects
Like functions, objects are special enough to get their own chapter (Chapter 8, to be exact). But I
still discuss objects here briefly. JavaScript is an object-based language, as opposed to a full-blown
object-oriented language. JavaScript implements some functionality similar to object-oriented func-
tionality, and for most basic usages of JavaScript, you won’t notice the difference.

Objects in JavaScript are a collection of properties, each of which can contain a value. These prop-
erties—think of them as keys—enable access to values. Each value stored in the properties can be a
value, another object, or even a function. You can define your own objects with JavaScript, or you can
use the several built-in objects.

Objects are created with curly braces, so the following code creates an empty object called
myObject:

var myObject = {};

Here’s an object with several properties:

var dvdCatalog = {
 "identifier": "1",
 "name": "Coho Vineyard"
};

The preceding code example creates an object called dvdCatalog, which holds two properties: one
called identifier and the other called name. The values contained in each property are 1 and “Coho
Vineyard”, respectively. You could access the name property of the dvdCatalog object like this:

alert(dvdCatalog.name);

Here’s a more complete example of an object, which can also be found in the sample code in the
file object.txt:

// Create four new objects
var star = {};
// Create properties for each of four stars.
star["Polaris"] = new Object;
star["Deneb"] = new Object;
star["Vega"] = new Object;
star["Altair"] = new Object;

Examples later in the book show how to add properties to these objects and how to access prop-
erties. There’s much more to objects, and Chapter 8 gives that additional detail.

arrays
You’ve seen in the previous example how to create an object with a name. You can also use array
elements that are accessed by a numbered index value. These are the traditional arrays, familiar to
programmers in many languages. You just saw several objects, each named for a star. The following
code creates an array with four elements.

52 parT i Javawhat? The where, why, and how of JavaScript

var star = new Array();
star[0] = "Polaris";
star[1] = "Deneb";
star[2] = "Vega";
star[3] = "Altair";

The same code can also be written like this, using literal notation, represented by square brackets:

var star = ["Polaris", "Deneb", "Vega", "Altair"];

Arrays can contain nested values, creating an array of arrays, as in this example that combines the
star name with the constellation in which it appears:

var star = [["Polaris", "Ursa Minor"],["Deneb","Cygnus"],["Vega","Lyra"],
["Altair","Aquila"]];

Finally, although less common, you can call the Array() constructor with arguments:

var star = new Array("Polaris", "Deneb", "Vega", "Altair");

note Calling the Array() constructor with a single numeric argument sets the length of the
array rather than the value of the first element, which is what you might expect.

The new ECMA-262 edition 5 specification added several new methods for iterating and working
with arrays. Arrays, including methods that iterate through them and work with them, are covered in
more detail in Chapter 8.

Defining and using variables

Variables should be familiar to programmers in just about any language. Variables store data that
might change during the program’s execution lifetime. You’ve seen several examples of declaring
variables throughout the previous chapters of this book. This section formalizes the use of variables in
JavaScript.

Declaring variables
Variables are declared in JavaScript with the var keyword. The following are all valid variable
declarations:

var x;
var myVar;
var counter1;

Variable names can contain uppercase and lowercase letters as well as numbers, but they cannot
start with a number. Variables cannot contain spaces or other punctuation, with the exception of the
underscore character (_). The following variable names are invalid:

 CHAPTER 4 Working with variables and data types 53

var 1stCounter;
var new variable;
var new.variable;
var var;

Take a look at the preceding example. Whereas the first three variable names are invalid because
characters are used that aren’t valid at all (or aren’t valid in that position, as is the case with the first
example), the last variable name, var, is invalid because it uses a keyword. For more information about
keywords or reserved words in JavaScript, refer to Chapter 3, “JavaScript syntax and statements.”

You can declare multiple variables on the same line of code, as follows:

var x, y, zeta;

These can be initialized on the same line, too:

var x = 1, y = "hello", zeta = 14;

Variable types
Variables in JavaScript are not strongly typed. It’s not necessary to declare whether a given variable
will hold an integer, a floating point number, or a string. You can also change the type of data being
held within a variable through simple reassignment. Consider this example, where the variable x first
holds an integer but then, through another assignment, it changes to hold a string:

var x = 4;
x = "Now it's a string.";

Variable scope
A variable’s scope refers to the locations from which its value can be accessed. Variables are globally
scoped when they are used outside a function. A globally scoped variable can be accessed throughout
your JavaScript program. In the context of a webpage—or a document, as you might think of it—you
can access and use a global variable throughout.

Variables defined within a function are scoped solely within that function. This effectively means
that the values of those variables cannot be accessed outside the function. Function parameters are
scoped locally to the function as well.

Here are some practical examples of scoping, which you can also find in the companion code in
the scope1.html file:

<script type="text/javascript">
var aNewVariable = "I'm Global.";
function doSomething(incomingBits) {
 alert(aNewVariable);
 alert(incomingBits);
}
doSomething("An argument");
</script>

54 parT i Javawhat? The where, why, and how of JavaScript

The code defines two variables: a global variable called aNewVariable and a variable called
 incomingBits, which is local to the doSomething() function. Both variables are passed to respective
alert() functions within the doSomething() function. When the doSomething() function is called, the
contents of both variables are sent successfully and displayed on the screen, as depicted in Figures
4-2 and 4-3.

FIGURE 4-2 The variable aNewVariable is globally scoped.

FIGURE 4-3 The variable incomingBits is locally scoped to the function.

Here’s a more complex example for you to try.

Examining variable scope

1. Using Visual Studio, Eclipse, or another editor, edit the file scoping.html in the Chapter04
sample files folder, which you can find in the companion content.

2. Within the page, replace the TODO comment with the boldface code shown here (the new
code can be found in the scoping.txt file in the companion content):

<!doctype html>
<html>
<head>
 <title>Scoping Example</title>
 <script type="text/javascript">
 var aNewVariable = "is global.";
 function doSomething(incomingBits) {
 alert("Global variable within the function: " + aNewVariable);
 alert("Local variable within the function: " + incomingBits);
 }
 </script>

</head>
<body>
<script type="text/javascript">

 CHAPTER 4 Working with variables and data types 55

 doSomething("is a local variable");
 alert("Global var outside the function: " + aNewVariable);
 alert("Local var outside the function: " + incomingBits);

</script>
</body>
</html>

3. Save the file.

4. View the file in a web browser. The result is three alerts on the screen.

The first alert is this:

The second alert is this:

The third alert looks like this:

But wait a minute—examine the code. How many calls to the alert() function do you see? Hint: two
are in the <HEAD> portion, and another two are within the <BODY> portion, for a total of four calls
to the alert() function. So why are there only three alerts on the screen when four calls are made to
the alert() function in the script?

Because this is a section on variable scoping (and I already explained the answer), you might
already have figured it out. But this example demonstrates well how to troubleshoot JavaScript prob-
lems when the result isn’t what you expect.

56 parT i Javawhat? The where, why, and how of JavaScript

The next procedure requires the use of the Firebug add-on to the Mozilla Firefox web browser. If
you don’t yet have Firefox, download it from http://www.mozilla.com/firefox/.

installing Firebug

This first procedure walks you through installing Firebug in Firefox. Firebug is very powerful and
flexible.

1. With Firefox installed, it’s time to get the Firebug add-on. Accomplish this task by going to
http://www.getfirebug.com/. On that site, click the Install Firebug link. When you do so, you’ll
be asked to choose the version of Firebug to install. Install the version that corresponds to
your version of Firefox (or is as close as possible to the version of Firefox that you have).

2. When you click the install link, you’ll be sent to Mozilla’s site, where you get to click another
button, this one labeled “Add To Firefox.” A Software Installation dialog box opens, as shown
in the following screen. Click Install Now.

3. The installation completes when you restart Firefox, so click Restart Firefox after the add-on
finishes downloading.

http://www.mozilla.com/firefox/
http://www.getfirebug.com/

 CHAPTER 4 Working with variables and data types 57

4. Firefox closes and opens again, showing the installed add-on. Congratulations! Firebug is
installed. Notice a small icon in the upper-right corner of the Firefox browser window. (The
Firefox development team keeps moving buttons around, so the Firebug button might not be
in the upper right when you read this.) Click the icon to open the Firebug console, shown here:

5. Firebug’s JavaScript console is disabled, but don’t worry—the next procedure walks you
through enabling and using it. Feel free to experiment with Firebug by enabling it.

With Firebug installed, you can troubleshoot the earlier problem you encountered in the scoping
example of only three of the four expected alerts being displayed.

Troubleshooting with Firebug

1. Open Firefox and open the scoping.html example that was created earlier in this chapter. The
JavaScript code again executes as before, showing the three alerts. Close all three alerts. You
end up with a blank page loaded in Firefox.

58 parT i Javawhat? The where, why, and how of JavaScript

2. Click the Firebug icon in Firefox browser window so that Firebug opens.

3. Click the Script tab to open the Script pane, and notice that it is disabled. Click the arrow/triangle
next to the word Script, and click Enabled.

 CHAPTER 4 Working with variables and data types 59

4. Click the Console tab, click the arrow/triangle next to the word Console, and click Enabled. You
can see here that the Console is now activated:

60 parT i Javawhat? The where, why, and how of JavaScript

5. With both the Console and Script panes enabled, click the Reload button on the main Firefox
toolbar. The page reloads, and the JavaScript executes again. All three alerts are displayed
again, but notice now that Firebug has discovered an error, denoted by the red X indication in
the Firebug Console:

6. The error, as you can see, is that the variable incomingBits isn’t defined. This window also
shows the line number at which the problem occurred. However, notice that because of the
way the document is parsed, the line number in your original source code might not always be
accurate. Regardless, you can see that incomingBits is not defined within the <BODY> section
of the webpage because its scope is limited to the doSomething() function.

This procedure demonstrated not only the use of Firebug but also the effect of local versus global
scoping of variables. Firebug is an integral part of JavaScript (and webpage) debugging. I invite you
to spend some time with Firebug on just about any site to see how JavaScript, CSS, and HTML all
interact.

In this procedure, the fix would be to define the variable incomingBits so that it gets instantiated
outside the function call. (This new line of code follows and is in the file scoping-fixed.html in the
Chapter04 folder in the companion content.) Because this variable was defined only as part of the
function definition, the variable didn’t exist outside the function’s scope.

<!doctype html>
<html>
<head>
 <title>Scoping Example</title>
 <script type="text/javascript">

 CHAPTER 4 Working with variables and data types 61

 var aNewVariable = "is global.";
 function doSomething(incomingBits) {
 alert("Global variable within the function: " + aNewVariable);
 alert("Local variable within the function: " + incomingBits);
 }

 </script>

</head>
<body>
<script type="text/javascript">
 var incomingBits = " must be defined if necessary.";
 doSomething("is a local variable");
 alert("Global var outside the function: " + aNewVariable);
 alert("Local var outside the function: " + incomingBits);

</script>
</body>
</html>

You can find more information about functions in Chapter 7, “Working with functions.”

The Date object
The Date object includes many methods that are helpful when working with dates in JavaScript—too
many, in fact, to examine in any depth in a broad-based book such as this—but I do show you some
examples that you might incorporate in your projects.

One of the unfortunate aspects of the Date object in JavaScript is that the implementation of its
methods varies greatly depending on the browser and the operating system. For example, consider
this code to return a date for the current time, adjusted for the local time zone and formatted auto-
matically by the toLocaleDateString() method:

var myDate = new Date();
alert(myDate.toLocaleDateString());

When run in Internet Explorer 10 on a computer running Windows 8, the code results in a date like
that shown in Figure 4-4.

FIGURE 4-4 The toLocaleString() method of the Date object in Internet Explorer 8.

62 parT i Javawhat? The where, why, and how of JavaScript

Figure 4-5 shows what happens when that same code is executed in Firefox 12 on a Mac.

FIGURE 4-5 The toLocaleString() method of the Date object displays the message differently in Firefox on Mac.

The difference between these two dialog boxes might seem trivial, but if you were expecting to
use the day of the week in your code (Monday, in the examples), you’d be in for a surprise. And don’t
be fooled into thinking that the implementation issues are merely cross-operating system problems.
Differences in the implementation of the Date object and its methods exist in browsers on products
running Microsoft Windows as well.

The only way to resolve these and other implementation differences in your JavaScript applica-
tion is to perform both cross-browser and cross-platform tests. Doing so adds time to the application
development cycle, but finding and fixing a problem during development is probably less costly than
finding and fixing the problem after users discover it in a production environment.

The Date object can be handed a number of arguments, ranging from zero arguments to up to
seven arguments. When the Date object constructor is passed a single string argument, the string is
assumed to contain the date. When it is passed a number type of argument, the argument is assumed
to be the date in milliseconds since January 1, 1970, and when it is passed seven arguments, they’re
assumed to be the following:

new Date(year, month, day, hours, minutes, seconds, milliseconds)

note Only year and month are required arguments; the others are optional.

Remember the following points when using a Date object:

■■ The year should be given with four digits unless you want to specify a year between the year
1900 and the year 2000, in which case you’d just send in the two-digit year, 0 through 99,
which is then added to 1900. So, 2008 equals the year 2008, but 98 is turned into 1998.

■■ The month is represented by an integer 0 through 11, with 0 being January and 11 being
December.

■■ The day is an integer from 1 to 31.

■■ Hours are represented by 0 through 23, where 23 represents 11 P.M.

■■ Minutes and seconds are both integers ranging from 0 to 59.

■■ Milliseconds are an integer from 0 to 999.

 CHAPTER 4 Working with variables and data types 63

Although the following procedure uses some items that won’t be covered until later chapters,
you’re looking at the Date object now, so it’s a good time learn how to write the date and time to a
webpage—a popular operation.

Writing the date and time to a webpage

1. Using Visual Studio, Eclipse, or another editor, edit the file writingthedate.html in the
Chapter04 sample files folder in the companion content.

2. Within the page, add the code in boldface type shown here:

<!doctype html>
<html>
<head>
 <title>the date</title>
</head>
<body>
 <p id="dateField"> </p>
 <script type = "text/javascript">
 var myDate = new Date();
 var dateString = myDate.toLocaleDateString() + " " + myDate.toLocaleTimeString();
 var dateLoc = document.getElementById("dateField");
 dateLoc.innerHTML = "Hello - Page Rendered on " + dateString;
 </script>
</body>
</html>

3. When saved and viewed in a web browser, you should receive a page like this (although the
date you see will be different from what’s shown here):

The relevant JavaScript from the preceding steps is repeated here:

var myDate = new Date();
var dateString = myDate.toLocaleDateString() + " " + myDate.toLocaleTimeString();
var dateLoc = document.getElementById("dateField");
dateLoc.innerHTML = "Hello - Page Rendered on " + dateString;

64 parT i Javawhat? The where, why, and how of JavaScript

The JavaScript related to the Date object is rather simple. It takes advantage of the
 toLocaleDateString() method, which you’ve already seen, and its cousin, toLocaleTimeString(), which
returns the local time. These two methods are concatenated together with a single space and placed
into the dateString variable, like this:

var dateString = myDate.toLocaleDateString() + " " + myDate.toLocaleTimeString();

The remainder of the code writes the contents of the dateString variable to the webpage, which is
covered in more detail in Part 2.

Counting down to a certain date in the future

1. Using Visual Studio, Eclipse, or another editor, edit the file countdown.html in the Chapter04
sample files folder, which you can find in the companion content.

2. Add the following code shown in boldface type to the page:

<!doctype html>
<html>
<head>
 <title>the date</title>
</head>
<body>
 <p id="dateField"> </p>
 <script type = "text/javascript">
 var today = new Date();
 var then = new Date();
 // January 1, 2014
 then.setFullYear(2014,0,1);
 var diff = then.getTime() - today.getTime();
 diff = Math.floor(diff / (1000 * 60 * 60 * 24));
 var dateLoc = document.getElementById("dateField");
 dateLoc.innerHTML = "There are " + diff + " days until 1/1/2014";
 </script>

</body>

</html>

 CHAPTER 4 Working with variables and data types 65

3. Save the page, and view it in a web browser. Depending on the date on your computer, the
number of days represented will be different, but the general appearance of the page should
look like this:

Tip Be careful when using JavaScript dates for anything other than displaying them.
Because the dates are dependent on the visitor’s time, don’t rely on them when an accurate
time might be important—for example, in an ordering process.

The exercise you just completed used some additional functions of both the Math and Date
objects, namely floor() and getTime(). While this book covers a lot of ground, it’s not a complete
JavaScript language reference. For that and even more information, refer to the ECMA-262 standard
at http://www.ecma-international.org/publications/standards/Ecma-262.htm.

The next procedure shows how to calculate (or better yet, roughly estimate) the time it takes for a
webpage to load in a person’s browser.

note The next procedure isn’t accurate because it doesn’t take into consideration the
time required for the loading and rendering of images (or other multimedia items), which
are external to the text of the webpage. A few more bits load after the script is finished
running.

http://www.ecma-international.org/publications/standards/Ecma-262.htm

66 parT i Javawhat? The where, why, and how of JavaScript

Calculating render time

1. Using Visual Studio, Eclipse, or another editor, edit the file render.html in the Chapter04
sample files folder, which you can find in the companion content.

2. Add the following code shown in boldface type to the page:

<!doctype html>
<html>
<head>
 <title>the date</title>
 <script type = "text/javascript">
 var started = new Date();
 var now = started.getTime();
 </script>
</head>
<body>
 <p id="dateField"> </p>
 <script type = "text/javascript">
 var bottom = new Date();
 var diff = (bottom.getTime() - now)/1000;
 var finaltime = diff.toPrecision(5);
 var dateLoc = document.getElementById("dateField");
 dateLoc.innerHTML = "Page rendered in " + finaltime + " seconds.";
 </script>

</body>
</html>

3. Save the page, and view it in a web browser. Depending on the speed of your computer, web
server, and network connection, you might receive a page that indicates only 0 seconds for
the page load time, like this:

 CHAPTER 4 Working with variables and data types 67

4. If your page takes 0.0000 seconds, as mine did, you can introduce a delay into the page so
that you can test it. (I’d never recommend doing this on a live site because I can’t think of
a reason you’d want to slow down the rendering of your page! But introducing a delay can
come in handy for testing purposes.) Using a for loop is a cheap and easy way to slow down
the JavaScript execution:

for (var i = 0; i < 1000000; i++) {
 //delay

}

The value I chose, 1000000, is arbitrary. You might need to choose a larger or smaller number
to cause the desired delay. The final code looks like this:

<!doctype html>
<html>
<head>
 <title>the date</title>
 <script type = "text/javascript">
 var started = new Date();
 var now = started.getTime();
 for (var i = 0; i < 1000000; i++) {
 //delay
 }
 </script>
</head>
<body>
 <p id="dateField"> </p>
 <script type = "text/javascript">
 var bottom = new Date();
 var diff = (bottom.getTime() - now)/1000;
 var finaltime = diff.toPrecision(5);
 var dateLoc = document.getElementById("dateField");
 dateLoc.innerHTML = "Page rendered in " + finaltime + " seconds.";
 </script>

</body>
</html>

68 parT i Javawhat? The where, why, and how of JavaScript

5. Save the page, and view it again in a web browser. You should see some delay in the page
load, which causes the value to be a positive number:

When using this or similar functions to determine the page load times, to calculate the most
accurate value, place the initial variable near the top of the page or script, and then place
another one near the bottom of the page.

note The now() method of the Date() object can also be used as a substitute for getTime().

You just learned about a few of the more than 40 methods of the Date object. Many of these
methods have UTC (Coordinated Universal Time) counterparts, meaning that they can get or set the
date and time in UTC rather than local time. Table 4-4 lists the methods that return dates. With the
exception of getTime() and getTimezoneOffset(), all these methods have UTC counterparts that are
called using the format getUTCDate(), getUTCDay(), and so on.

TABLE 4-4 The get methods of the Date object

Method Description

getDate() Returns the day of the month

getDay() Returns the day of the week

getFullYear() Returns the four-digit year and is recommended in most circumstances over the getYear() method

getHours() Returns the hours of a date

getMilliseconds() Returns the milliseconds of a date

getMinutes() Returns the minutes of a date

getMonth() Returns the month of a date

getSeconds() Returns the seconds of a date

getTime() Returns the milliseconds since January 1, 1970

getTimezoneOffset() Returns the number of minutes calculated as the difference between UTC and local time

 CHAPTER 4 Working with variables and data types 69

Many of the get...() methods have siblings prefixed with set, as shown in Table 4-5. And like their
get brethren, most of the set...() methods have UTC counterparts, except for setTime().

TABLE 4-5 The set methods of the Date object

Method Description

setDate() Sets the day of the month of a date

setFullYear() Sets the four-digit year of a date; also accepts the month and day-of-month integers

setHours() Sets the hour of a date

setMilliseconds() Sets the milliseconds of a date

setMinutes() Sets the minutes of a date

setMonth() Sets the month as an integer of a date

setSeconds() Sets the seconds of a date

setTime() Sets the time using milliseconds since January 1, 1970

The Date object also has several methods for converting the date to a string in a different format.
You already reviewed some of these methods, such as toLocaleDateString(). Other similar methods
include toLocaleString(), toLocaleTimeString(), toString(), toISOString(), toDateString(), toUTCString(),
and toTimeString(). Feel free to experiment with these, noting that toISOString() is a new method in
the ECMA-262 version 5 specification and support for it might not be available in all browsers. (It’s
notably missing from most versions of Internet Explorer.) The following simple one-line code exam-
ples will get you started experimenting. Try typing them in the address bar of your browser:

javascript:var myDate = new Date(); alert(myDate.toLocaleDateString());

javascript:var myDate = new Date(); alert(myDate.toLocaleString());

javascript:var myDate = new Date(); alert(myDate.toGMTString());

javascript:var myDate = new Date(); alert(myDate.toLocaleTimeString());

javascript:var myDate = new Date(); alert(myDate.toString());

javascript:var myDate = new Date(); alert(myDate.toISOString());

javascript:var myDate = new Date(); alert(myDate.toDateString());

javascript:var myDate = new Date(); alert(myDate.toUTCString());

javascript:var myDate = new Date(); alert(myDate.toTimeString());

You can also write these code samples without creating the myDate variable, like so:

javascript: alert(new Date().toUTCString());

70 parT i Javawhat? The where, why, and how of JavaScript

Using the RegExp object

Regular expressions are the syntax you use to match and manipulate strings. If you’ve heard of or
worked with regular expressions before, don’t be alarmed. Regular expressions have an unnecessarily
bad reputation solely because of their looks. And, lucky for me, we shouldn’t judge things solely on
looks alone. With that said, if you’ve had a bad experience with regular expressions, I’d ask that you
read through this section with an open mind and see whether my explanation helps clear up some
confusion.

The primary reason that I have confidence in your ability to understand regular expressions is that
you’re a programmer, and programmers use logic to reduce problems to small and simple pieces.
When writing or reading a regular expression, the key is to reduce the problem to small pieces and
work through each.

Another reason to have confidence is that you’ve probably worked with something close to regular
expressions before, so all you need to do is extend what you already know. If you’ve worked with a
command prompt in Microsoft Windows or with the shell in Linux/Unix, you might have looked for
files by trying to match all files using an asterisk, or star (*) character, as in:

dir *.*

or:

dir *.txt

If you’ve used a wildcard character such as the asterisk, you’ve used an element akin to a regular
expression. In fact, the asterisk is also a character used in regular expressions.

In JavaScript, regular expressions are used with the RegExp object and some syntax called regular
expression literals. These elements provide a powerful way to work with strings of text or alphanumer-
ics. The ECMA-262 implementation of regular expressions is largely borrowed from the Perl 5 regular
expression parser. Here’s a regular expression to match the word JavaScript:

var myRegex = /JavaScript/;

The regular expression shown would match the string “JavaScript” anywhere that it appeared
within another string. For example, the regular expression would match in the sentence “This is a book
about JavaScript,” and it would match in the string “ThisIsAJavaScriptBook,” but it would not match
“This is a book about javascript,” because regular expressions are case sensitive. (You can change this,
as you’ll see later in this chapter.)

With that short introduction you’re now prepared to look at regular expressions in more detail.
The knowledge you gain here will prepare you for the remainder of the book, helping you not only
understand how to work with strings in JavaScript but also understand how to use regular expres-
sions in other languages. This section provides a reference for regular expression syntax and shows a
couple simple examples.

 CHAPTER 4 Working with variables and data types 71

The syntax of regular expressions
Regular expressions have a terse—and some would argue cryptic—syntax. But don’t let terse syntax
scare you away from regular expressions, because in that syntax is power. This is a brief introduction
to regular expressions. It’s not meant to be exhaustive. (There are entire books on regular expres-
sions.) However, you’ll find that this gentle introduction will serve you well for the remainder of the
book. Don’t worry if this material doesn’t sink in on the first read through. There are multiple tables
that make it easy to use as a reference later.

The syntax of regular expressions includes several characters that have special meaning, includ-
ing characters that anchor the match to the beginning or end of a string, a wildcard, and groups of
characters, among others.

Table 4-6 shows several of the special characters.

TABLE 4-6 Common special characters in JavaScript regular expressions

Character Description

^ Sets an anchor to the beginning of the input.

$ Sets an anchor to the end of the input.

. Matches any character.

* Matches the previous character zero or more times. Think of this as a wildcard.

+ Matches the previous character one or more times.

? Matches the previous character zero or one time.

() Places any matching characters inside the parentheses into a group. This group can then be referenced
later, such as in a replace operation.

{n, } Matches the previous character at least n times.

{n,m} Matches the previous character at least n but no more than m times.

[] Defines a character class to match any of the characters contained in the brackets. This character can use
a range like 0–9 to match any number or like a–z to match any letter.

[̂] The use of a caret within a character class negates that character class, meaning that the characters in
that class cannot appear in the match.

\ Typically used as an escape character, and meaning that whatever follows the backslash is treated as a
literal character instead of as having its special meaning. Can also be used to define special character
sets, which are shown in Table 4-7.

In addition to the special characters, several sequences exist to match groups of characters or
 nonalphanumeric characters. Some of these sequences are shown in Table 4-7.

TABLE 4-7 Common character sequences in JavaScript regular expressions

Character Match

\b Word boundary.

\B Nonword boundary.

\c Control character when used in conjunction with another character. For example, \cA is the escape
sequence for Control-A.

\d Digit.

72 parT i Javawhat? The where, why, and how of JavaScript

Character Match

\D Nondigit.

\n Newline.

\r Carriage return.

\s Single whitespace character such as a space or tab.

\S Single nonwhitespace character.

\t Tab.

\w Any alphanumeric character, whether number or letter.

\W Any nonalphanumeric character.

And finally, in addition to the characters in Table 4-7, you can use the modifiers i, g, and m. The i
modifier specifies that the regular expression should be parsed in a case-insensitive manner, while the
g modifier indicates that the parsing should continue after the first match, sometimes called global or
greedy (thus the g). The m modifier is used for multiline matching. You’ll see an example of modifier
use in an upcoming example.

The RegExp object has its own methods, including exec and test, the latter of which tests a regular
expression against a string and returns true or false based on whether the regular expression matches
that string. However, when working with regular expressions, using methods native to the String type,
such as match, search, split, and replace, is just as common.

The exec() method of the RegExp object is used to parse the regular expression against a string
and return the result. For example, parsing a simple URL and extracting the domain might look like
this:

var myString = "http://www.braingia.org";
var myRegex = /http:\/\/\w+\.(.*)/i;
var results = myRegex.exec(myString);
alert(results[1]);

The output from this code is an alert showing the domain portion of the address, as shown in
Figure 4-6.

FIGURE 4-6 Parsing a typical web URL using a regular expression.

A breakdown of this code is helpful. First you have the string declaration:

var myString = "http://www.braingia.org";

 CHAPTER 4 Working with variables and data types 73

This is followed by the regular expression declaration and then a call to the exec() method, which
parses the regular expression against the string found in myString and places the results into a vari-
able called results.

var myRegex = /http:\/\/\w+\.(.*)/i;
var results = myRegex.exec(myString);

The regular expression contains several important elements. It begins by looking for the literal
string http:. The two forward slashes follow, but because forward slashes (/) are special characters in
regular expressions, you must escape them by using backslashes (\),making the regular expression
http:\/\/ to this point.

The next part of the regular expression, \w, looks for any single alphanumeric character. Web
addresses are typically www, so don’t be confused into thinking that the expression is looking for
three literal ws—the host in this example could be called web, host1, myhost, or www, as shown in
the code you’re examining. Because \w matches any single character, and web hosts typically have
three characters (www), the regular expression adds a special character + to indicate that the regu-
lar expression must find an alphanumeric character at least once and possibly more than once. So
now the code has http:\/\/\w+, which matches the address http://www right up to the .braingia.org
portion.

You need to account for the dot character between the host name (www) and the domain name
(braingia.org). You accomplish this by adding a dot character (.), but because the dot is also a special
character, you need to escape it with \.. You now have http:\/\/\w+\., which matches all the elements
of a typical address right up to the domain name.

Finally, you need to capture the domain and use it later, so place the domain inside parentheses.
Because you don’t care what the domain is or what follows it, you can use two special characters: the
dot, to match any character; and the asterisk, to match any and all of the previous characters, which is
any character in this example. You’re left with the final regular expression, which is used by the exec()
method. The result is placed into the results variable. Also note the use of the i modifier, to indicate
that the regular expression will be parsed in a case-insensitive manner.

If a match is found, the output from the exec() method is an array containing the last characters
matched as the first element of the array and an index for each captured portion of the expression.

In the example shown, the second element of the array (1) is sent to an alert, which produces the
output shown in Figure 4-6.

alert(results[1]);

That’s a lot to digest, and I admit this regular expression could be vastly improved with the addi-
tion of other characters to anchor the match and to account for characters after the domain as well
as non-alphanumerics in the host name portion. However, in the interest of keeping the example
somewhat simpler, the less-strict match is shown.

The String object type contains three methods for both matching and working with strings and
uses regular expressions to do so. The match, replace, and search methods all use regular expression

74 parT i Javawhat? The where, why, and how of JavaScript

pattern matching. Because you’ve learned about regular expressions, it’s time to introduce these
methods.

The match method returns an array with the same information as the Regexp data type’s exec()
method. Here’s an example:

var emailAddr = "suehring@braingia.com";
var myRegex = /\.com/;
var checkMatch = emailAddr.match(myRegex);
alert(checkMatch[0]); //Returns .com

This can be used in a conditional to determine whether a given email address contains the string
.com:

var emailAddr = "suehring@braingia.com";
var myRegex = /\.com/;
var checkMatch = emailAddr.match(myRegex);
if (checkMatch !== null) {
 alert(checkMatch[0]); //Returns .com
}

The search method works in much the same way as the match method but sends back only the
index (position) of the first match, as shown here:

var emailAddr = "suehring@braingia.com";
var myRegex = /\.com/;
var searchResult = emailAddr.search(myRegex);
alert(searchResult); //Returns 17

If no match is found, the search method returns -1.

The replace method does just what its name implies—it replaces one string with another when a
match is found. Assume in the email address example that I want to change any .com email address to
a .net email address. You can accomplish this by using the replace method, like so:

var emailAddr = "suehring@braingia.com";
var myRegex = /\.com$/;
var replaceWith = ".net";
var result = emailAddr.replace(myRegex,replaceWith);
alert(result); //Returns suehring@braingia.net

If the pattern doesn’t match, the original string is placed into the result variable; if it does, the new
value is returned.

note You can use several special characters to help with substitutions. Please see the
ECMA-262 specification for more information about these methods.

Later chapters show more examples of string methods related to regular expressions. Feel free to
use this chapter as a reference for the special characters used in regular expressions.

 CHAPTER 4 Working with variables and data types 75

references and garbage collection
Some types of variables or the values they contain are primitive, whereas others are reference types.
The implications of this might not mean much to you at first glance—you might not even think you’ll
ever care about this. But you’ll change your mind the first time you encounter odd behavior with a
variable that you just copied.

First, some explanation: objects, arrays, and functions operate as reference types, whereas num-
bers, Booleans, null, and undefined are known as primitive types. According to the ECMA-262 speci-
fication, other primitive types exist, such as Numbers and Strings, but Strings aren’t relevant to this
discussion.

When a number is copied, the behavior is what you’d expect: The original and the copy both get
the same value. However, if you change the original, the copy is unaffected. Here’s an example:

// Set the value of myNum to 20.
var myNum = 20;
// Create a new variable, anotherNum, and copy the contents of myNum to it.
// Both anotherNum and myNum are now 20.
var anotherNum = myNum;
// Change the value of myNum to 1000.
myNum = 1000;
// Display the contents of both variables.
// Note that the contents of anotherNum haven't changed.
alert(myNum);
alert(anotherNum);

The alerts display 1000 and 20, respectively. When the variable anotherNum gets a copy of
myNum’s contents, it holds on to the contents no matter what happens to the variable myNum after
that. The variable does this because numbers are primitive types in JavaScript.

Contrast that example with a variable type that’s a reference type, as in this example:

// Create an array of three numbers in a variable named myNumbers.
var myNumbers = [20, 21, 22];
// Make a copy of myNumbers in a newly created variable named copyNumbers.
var copyNumbers = myNumbers;
// Change the first index value of myNumbers to the integer 1000.
myNumbers[0] = 1000;
// Alert both.
alert(myNumbers);
alert(copyNumbers);

In this case, because arrays are reference types, both alerts display 1000,21,22, even though only
myNumbers was directly changed in the code. The moral of this story is to be aware that object, array,
and function variable types are reference types, so any change to the original changes all copies.

Loosely related to this discussion of differences between primitive types and reference types is
the subject of garbage collection. Garbage collection refers to the destruction of unused variables by
the JavaScript interpreter to save memory. When a variable is no longer used within a program, the
interpreter frees up the memory for reuse. It also does this for you if you’re using Java Virtual machine
or .NET Common Language Runtime.

76 parT i Javawhat? The where, why, and how of JavaScript

This automatic freeing of memory in JavaScript is different from the way in which other languages,
such as C++, deal with unused variables. In those languages, the programmer must perform the gar-
bage collection task manually. This is all you really need to know about garbage collection.

Learning about type conversions

Before finishing the discussion on data types and variables, you should know a bit about type conver-
sions, or converting between data types. JavaScript usually performs implicit type conversion for you,
but in many cases, you can explicitly cast, or convert, a variable from one type to another.

number conversions
You’ve already seen a conversion between two number formats, hexadecimal to base 10, in the
example discussed in the section “Data types in JavaScript” earlier in this chapter. However, you can
convert numbers to strings as well. JavaScript implicitly converts a number to a string when the num-
ber is used in a string context.

To explicitly convert a number to a string, cast the number as a string, as in this example:

// Convert myNumString as a string with value of 100
var myNumString = String(100);

String conversions
In the same way that you can convert numbers to strings, you can convert strings to numbers. You do
this by casting the string as a number.

var myNumString = "100";
var myNum = Number(myNumString);

Tip JavaScript converts strings to numbers automatically when those strings are used in a
numeric context. However, in practice, I’ve had hit-or-miss luck with this implicit conver-
sion, so I usually just convert to a number whenever I want to use a number. The downside
of doing this is that you have to execute some extra code, but doing that is better than the
uncertainty inherent in leaving it up to a JavaScript interpreter.

Boolean conversions
Booleans are converted to numbers automatically when used in a numeric context. The value of true
becomes 1, and the value of false becomes 0. When used in a string context, true becomes “true”,
and false becomes “false”. The Boolean() function exists if you need to explicitly convert a number or
string to a Boolean value.

 CHAPTER 4 Working with variables and data types 77

Exercises

1. Declare three variables—one number and two strings. The number should be 120, and the
strings should be “5150” and “Two Hundred Thirty”.

2. Create a new array with three numbers and two strings or words.

3. Use the alert() function to display the following string, properly escaped: Steve’s response was
“Cool!”

4. Use Internet Explorer to examine three of your favorite websites, and debug the errors using
Interne Explorer tools. Look closely for any JavaScript errors reported. Bonus: Try using
Firebug to examine those same three websites.

 439

ActiveXObject object, 335
addClass() function (jQuery), 286
addEventListener() method, 153, 217
additive operators, 80
add() method, 220
Add New Item dialog box (Visual Studio), 20, 24
addNumbers() function, 122
.after() function (jQuery), 189–190
AJAX (Asynchronous JavaScript and XML), 10, 18, 327,

335–352
basics, 329–330
eval() method in, 149
jQuery and, 330, 348–352
jQuery Mobile linking without, 316–317
for loading jQuery Mobile links, 314
POST method and, 346–348
processing headers, 345–346
processing response, 339
processing XML responses, 343–344
sending data to server, 351–352
sending request, 337–338
without XML, 330–331
XMLHttpRequest object, 335–348

instantiating, 335–337
.ajax() function (jQuery), 330, 348–349, 351

data parameter, 351
options, 352

alert() function, 7, 21, 23, 25, 43, 429, 431, 433, 436
for debugging, 27
for feedback during form validation, 257
scope and, 55

alt tags, 13
anchor (<A>) elements, target attribute of, 228
anonymous functions, 126, 238
appendChild() method, 208
.append() function (jQuery), 189
Application Compatibility Virtual PC Images, 15

index

Symbols
$.ajax() function, 330
$(), as jquery() function shortcut, 175
$, in regular expressions, 71
$(this) selector, 240
/* and */, for multiline comment, 31
* (asterisk)

as multiplication operator, 80
in regular expressions, 71

\ (backslash), for escaping character, 47
~ (bitwise NOT operator), 86
^ character, in regular expressions, 71
{ } (curly braces), for objects, 51, 137
. (dot) in regular expressions, 71
! (exclamation point), as logical NOT operator, 86
(hash symbol), for ID selectors, 279
- (minus sign), to create negative number, 86
% (percent sign), as modulo operator, 81
| (pipe character), for logical OR, 105
+ (plus sign)

for concatenation, 49
converting to number with, 86
in regular expressions, 71

? (question mark)
in regular expressions, 71
as ternary operator, 106

; (semicolon), to delineate expressions, 32–33, 34
// (slashes) for single-line comment, 31

A
about:blank page, opening default, 227
abs function property of Math object, 46
action attribute of <form> element, 23
Active Server Pages (ASP) page, for server-side

program, 341

Application Programming Interface (API)

440 index

Application Programming Interface (API), 15
app package, creating, 398
<AREA> tag of an image map, 253
arguments for functions, 23
arguments object, 120
Array() constructor, 52
arrays, 51–52, 141–148

converting elements to joined string, 144–145
deleting index of, 87
for...in loops to iterate through, 115
of images, 246
iterating through, 147–148
length property, 142
methods, 142–148
push and pop methods to add and remove

elements, 145
shift and unshift to add and remove

elements, 145–146
slice() to return parts, 146
sorting elements, 146–147
using for loop with, 112–113
for weather app, 388

ASP.NET Development Server, 18
starting, 22

assignment operators, 90–91
asynchronous AJAX requests, 337–338

processing response, 340
async option, for .ajax() function, 352
attachEvent() method, 153, 217, 218
attr() function (jQuery), 208
attributes

Document Object Model and, 204–208
of HTML elements, 195
selecting elements by, 181–182

auto-initialization event, global change to
transitions, 315

availHeight property of screen object, 155
availWidth property of screen object, 155

B
back-end server-side data components, 328
background music, 14
back() method, 166
backslash (\), for escaping character, 47
backspace, 47
.before() function (jQuery), 189
behavioral separation, 14
behavior component in web application, 327, 328

binding event handlers, 220–222
Bing Maps, 329
bitwise NOT operator (~), 85, 86
bitwise operators, 81
Blank App template (Visual Studio), 372–374
<BLINK> tag (HTML), 13
blocked content, Internet Explorer alert about

viewing, 435
blur() method, 153
<BODY> tag (HTML), JavaScript within, 7, 33
bookmark page

CSS for, 309
HTML for, 309
jQuery Mobile for, 308

Boolean data type, 50
conversions, 76

Boolean expressions, for if statement, 94
Boolean() function, 76
border, CSS to create, 296
break statement, 107
Browser Object Model, 151–168

hierarchy of objects, 151–152
history object, 166–167
location object, 160–166
navigator object, 156–160
screen object, 154–156

browsers
avoiding JavaScript in older, 224–225
for debugging JavaScript, 27
decision to support, 15
detection, 4, 222
detection problems, 156
feature testing, 223–224
using multiple, 13
viewing web page in, 430, 434

built-in functions, 36
user-defined vs., 127

built-in objects, 148–149
buttons

adding to calendar, 297
adding to dialog, 302–305
adding to toolbar, 321–322

byte conservation, 91

C
cache option, for .ajax() function, 352
caching, external JavaScript file and, 34
calendar

 currentStyle array property

 index 441

customizing, 296–299
adding buttons, 297
adding month and year drop-down lists, 298
displaying multiple months, 297–298
limiting date range, 298

jQuery UI for creating, 294–299
callAJAX function, 386
callback functions (jQuery), 190
camelCase, 280
cancelBubble property, 219
carriage return, 33, 47

in regular expressions, 72
Cascading Style Sheets (CSS)

applying, 279–280
basics, 277–280
customizing in weather app, 393–394
for bookmark page, 309
in Grid App templates, 376
for jQuery UI demonstration file, 292
properties and selectors, 278–279
property names, vs. JavaScript, 281
relationship between JavaScript and, 280–288
retrieving styles with JavaScript, 287–288
selectors in, 177
setting classes with JavaScript, 285–287
setting element styles by type, 284–285
web standards for, 9

case sensitivity
of JavaScript, 29–30
of regular expressions, 70

catch clause, 336
CDATA section, in JavaScript comment, 8, 33
certification requirements for Microsoft

approval, 379
chaining, 187
change() function (jQuery), 262
changetext() function, 198
check boxes on web forms, 265–268
:checkbox selector, 182
:checked selector, 182
children() function, 203
Chrome

DOM support, 6
class attribute for CSS, 278–279
classes, 134–137

setting with JavaScript, 285–287
className property, 286
click event, opening dialog with, 304–305
client-side form validation, 4, 257

client-side language, JavaScript as, 10
client-side tasks, 10
closed property of window object, 153
close() method of window object, 153, 227–228
closures, 126
collections in HTML, 203
color of toolbar, 322–323
comma operator, 91
comments, 31, 388

in HTML, 225
in JavaScript, for CDATA section, 8

compound assignment operators, 90–92
compound conditionals, 98–101
compound statement, 35
concatenating strings, 80
concat() method, 49

to add elements to end of array, 142–144
conditionals

for checking graphic as hover, 240
compound, 98–101
else if and else statements, 101–108
if statement, 93–101

syntax, 94–95
multiple levels of, 102–105
semicolon (;) and, 32
ternary, 106
testing

switch statement for, 106–108
for testing end of slide show, 246
validating forms with, 116–118

confirm() function, 128–131
constructor pattern, 137
content compliance, 380
Content Delivery Network (CDN)

for accessing jQuery, 173
for jQuery Mobile, 309

Control character, in regular expressions, 71
cookies, 338
counting down to future date, 64
Create App Packages wizard, 398–402
createElement() method of document object, 208
createTextNode() method, 208
Create Your Package Wizard, 356–358
.css() function (jQuery), 185, 280
cubeme() function, 36–38
curly braces ({ }), for objects, 51, 137
current object, 183
currentStyle array property, 287

databases

442 index

D
databases, 12
data component in web application, 327, 328
data-id attribute, for footer, 325
data-position attribute, for footer, 325
data-role attributes (HTML), 308

footer, 319
navbar, 318

data-roles, 313
data security, 11
data-theme attribute (HTML), 322
data-transition attribute, for link, 315
data types, 41–52

Boolean, 50
conversions, 76
Null, 50
numbers, 42–46
strings, 47–50

data-win-bind attribute, of img element, 390
date

converting to string, 69
counting down to future date, 64
writing to webpage, 63–64

Date object, 61–69
get methods, 68
now() method of, 68
set methods, 69
toLocaleString() method of, 61

datepicker page, HTML to create, 295–296
debugging JavaScript, 27
Debug menu (Visual Studio), Start Debugging, 22,

373, 384, 389
declaration

of functions, 37, 431
of variables, 52–53

decrementing, 85–86
defaultStatus property of window object, 153
delay in pageload for testing, 67
delete operator, 87–88
delete unary operator, 85
deleting DOM elements, 210–212
descendants of DOM tree node, 196
detachEvent() method of window object, 153
developer account, 399
developer license for Windows 8 development, 368
development version of jQuery, 173
dialog box

adding, 299–305

adding buttons, 302–305
alert() function to display, 7
modal, creating, 301–302

dialog() function, 299, 303
dialog functions, 127–131
digit, in regular expressions, 71
directories. See folders
display component in web application, 327, 328
distributing Windows 8 apps, 358–359

in enterprise, 359
division operator, 80
DOCTYPE declarations, 9
document child of window object, 152
document object, 236

anchors collection, 203
createElement() method, 208
forms collection, 203
images collection, 203
links collection, 203
to create HTML, 159

Document Object Model (DOM), 5–6
attributes in, 204–208
creating elements, 208–210
defined, 193–196

as tree, 194
level 0, 194
levels 1-3, 194

deleting elements, 210–212
and hover, 237
methods to process XML response, 343
nodes in tree structure, 196
retrieving elements, 196–203

by ID, 196–200
by tag name, 200–203

setting ID, 209–213
siblings, 203
traversing with jQuery, 183–188

DOM 0 event model, 216
domains, JavaScript and, 11
dot notation, 46, 48
dot operator (“.”), for methods, 127
do...while statement, 110–111
Download Builder, for jQuery Mobile, 310
downloading

jQuery, 173–174
jQuery Mobile, 310–311
Visual Studio Express for Windows 8

installer, 364
downward compatibility, 15
drop-downs, 261. See also select boxes

 <FORM> elements

 index 443

Extensible Hypertext Markup Language (XHTML)
JavaScript and, 8
JavaScript declaration within, 33

Extensible Markup Language (XML), 6
AJAX without, 330–331

external CSS file, 279
external JavaScript files

advantages, 34
using without IDE, 436–438
Visual Studio and, 23–27

F
fade page transition, 315
File menu (Visual Studio)

New File, 20, 24
New Project, 370, 383
New Web Site, 19
Open Project, 24

file names in Notepad, 435
filter() method, 148
finally statement (JavaScript), 337
Firebug add-on, 27, 56

Console tab, 59
installing, 56–57
Script tab, 58
troubleshooting with, 57–61

Firefox, 4
DOM support, 6
navigation object properties for, 158
User Agent Switcher add-on, 157

firstChild property, 203
floor() function, 65
focus() method, 153
folders

for jQuery Mobile, 311
in jQuery UI download, 290

footer navigation bar, 319–321
for each...in loop, 115–116
forEach loop, in weather app, 386, 388
forEach() method, array iteration with, 147
for...in loop, 113–115

for displaying properties, 138–139
for loop, 111–116

to slow down JavaScript execution, 67
using with arrays, 112–113

<form> elements
selecting, 182

<FORM> elements, 23

DTD (DOCTYPE declaration), 9

E
.each() function (jQuery), 183, 185
Eclipse

external JavaScript files in, 431–434
writing JavaScript with, 425–434

Eclipse Classic, 425
ECMA-262 specification, 4, 65, 142
ECMAScript, 3, 4–5, 335
effect() function, 294
EHandler.add() method, 246
ehandler.js script, 243, 245, 259
Eich, Brendan, 3
else if statements, 101–108
else statements, 101–108
empty() function (jQuery), 212
empty string, null vs., 50
encodeURIComponent() method, 149
encodeURI() method, 148, 149
endless loop, 109
enterprise, Windows 8 app distribution, 359
equality operators, 81–83
error handling, .ajax() function for, 351
escape sequences, 47–48
escaping characters, in AJAX request, 338
European Computer Manufacturers Association

(ECMA), 4
eval() function, 38, 39, 149
Event Bubbling, 217
Event Capture, 217
event-driven, JavaScript as, 7
event handlers

binding and unbinding, 220–222
generic, 219–220
registering, 167

event models, 215–219
DOM 0, 216
W3C and Internet Explorer, 216

events, 152
in jQuery, 220, 231–233
of window object, 215–222

every() method, 148
exceptions, try/catch block and, 336–337
exclamation point (!), as logical NOT operator, 86
exec method, of RegExp object, 72
expressions, 6

; (semicolon) to delineate, 32–33

for() method, array iteration with

444 index

for() method, array iteration with, 147
form feed, 47
form, function vs., 12
form validation

client-side, 4
with conditionals, 116–118
with jQuery, 260–275

formValid() function, 259
forward() method, 166
function, form vs., 12
function keyword, 119
function literals, 126
functions, 6–7, 36–38

anonymous/unnamed, 126
basics, 119
calling, 124–125
declaring, 23, 37, 431
dialog, 127–131
in jQuery, 183–190

for attributes, 188
methods and, 127
parameters, 120–121
return keyword, 123–124
user-defined vs. built-in, 127

G
garbage collection, 75–76
generateSampleData() function, 385
getAllResponseHeaders() method, for

XMLHttpRequest object, 345
getAttribute() method, 204–206
getComputedStyle() method, 287
getDate() method, 68
getDay() method, 68
getElementById() function, 177, 196, 280

testing for, 224
getElementsByTagName() method, 285
getFullYear() method, 68
.get() function (jQuery), 348
getHours() method, 68
.getJSON() function (jQuery), 349
GET method (HTTP), 338

POST method vs., 346
getMilliseconds() method, 68
getMinutes() method, 68
getMonth() method, 68
getSeconds() method, 68
getTime() function, 65, 68

getTimezoneOffset() method, 68
getWXData() function, 386, 388
global object, window object as, 152
global scope, 53
go() method, 166
Google, hosting of jQuery, 173
graceful degradation, 14
Grid App template (Visual Studio), 375–377

H
hacking validation, 270
hash symbol (#), for ID selectors, 279
HEAD method (HTTP), 345
<HEAD> tag (HTML), JavaScript within, 7, 33
height feature of window object, 227
height property of screen object, 155
hexadecimal numbers, 42
.hide() function (jQuery), 233
history object, 166–167
Host header, 338
hover, 235
hover() function, 233, 238, 240
hovers

modern with jQuery, 237–239
portable, 238–241
preloading images for, 242–244

HTML
applying style directly to element, 279
basics, 7
collections, 203
document object to create, 159
in Grid App template, 376
setting element styles by type, 284–285

HTML 4.01, DOCTYPE declaration for, 9
HTML 5, DOCTYPE declaration for, 9
.html() function, 188
HTTP HEAD method, 345
Hypertext Transfer Protocol (HTTP), 338

I
id attribute

for CSS, 278–279
DOM element retrieval by, 196–200
of element, 250

if statement, 32, 93–101
Boolean expression in, 50
compound conditions, 98

 jQuery

 index 445

for decisions about program flow, 96–98
syntax, 94–95

image hovers, 235–241
image maps, 251–255
image rollover, 235
images

adding to tiles, 396–397
preloading for hovers, 242–244

 tag (HTML)
data-win-bind attribute of, 390
mouseover and mouseout event handlers in, 235
name and id attributes of, 250

i modifier, for regular expressions, 73
implicit array constructor, 141
incrementing, 85–86

in while loop, 109
indenting JavaScript code, 30
index.html file, with external JavaScript file, 433
index of array, deleting, 87
indexOf() method, 148
infinity, 45
innerHTML property, 198
in operator, 84–92

testing for property with, 139–140
:input selector, 182
input, validating with conditional statement, 116–

118
inserting elements in page, jQuery for, 189–190
installing

Firebug, 56–57
jQuery UI, 289–294
Visual Studio 2012, 363–364
Visual Studio 2012 Express, 364–370

instanceof operator, 84, 85
instantiating XMLHttpRequest object, 335–337
Internet Explorer

access to older versions, 15
alert about viewing blocked content, 435
navigation object properties for, 158
prevent Default() method and, 260
prompt() function and, 95–98
XMLHttpRequest object and, 335

Internet Explorer 3.0, 4
Internet Explorer 5.0/5.5, 6
Internet Explorer 10, pseudo-protocol and, 7
Internet Options dialog box

Security tab, 95
invoking functions, 124–125
isNaN() function, 37, 38, 43, 99

testing, 43–45

iteration
through arrays, 147–148
through child nodes set, 203
jQuery functions for, 183

J
Java, 3–4

detection with navigator object, 159
JavaScript

avoiding in older browsers, 224–225
capabilities, 10
correct placement, 33–34
customizing for weather app, 385–390
debugging, 27
development options, 17–18
disabling, 10
in Grid App template, 376
history, 3–6
limitations, 10–12
placement on webpage, 7–9
program contents, 6–7
property names, vs. CSS, 281
relationship between CSS and, 280–288
samples in Visual Studio 2012, 371
strict mode, 38–39
syntax rules, 29–34
testing for availability, 223
tips for using, 12–15
for Windows 8 apps, 355
writing

with Eclipse, 425–434
with Notepad, 434–438
with Visual Studio, 19–27

JavaScript language reference, 65
JavaScript Object Notation (JSON), 331, 344–345
javascript pseudo-protocol, 7
join() method, 144
jQuery, 171

AJAX and, 330, 348–352
basics, 173
callback functions, 190
connecting to load event, 175–177
downloads, 173–174
event handling with, 220
events, 231–233
form validation with, 260–275
functions, 183–190
including in webpage, 174

jQuery Cycle plug-in

446 index

for inserting elements in page, 189–190
modern hovers with, 237–239
selectors, 177–183

by class, 177–178
by ID, 177

syntax, 175
tabular data and, 180

jQuery Cycle plug-in, 251
jquery() function, 175
jQuery Mobile, 307–326

basics, 307–310
downloading, 310–311
linking with, 313–317
resources for, 326
testing, 311–313
for toolbars, 317–325
troubleshooting, 313

jQuery UI
building demonstration page, 290–294
calendar creation, 294–299
dialog box, 299–305
installing, 289–294
obtaining, 289–290
troubleshooting, 293

JScript, 4, 14
.js extension, 25
JSON (JavaScript Object Notation), 331, 344
json.php file, 349

K
keyboard, DOM 0 events, 216
key=value pairs, 351
keywords, case sensitivity and, 29

L
landing page, Solution Explorer to view HTML, 373
lastChild property, 203
lastIndexOf() method, 148
Launch Windows App Certification Kit, 401
left feature of window object, 227
length property

of array, 142
of string object, 48

lexical structure, 29
libraries, 169

defining personal, 169–171

line breaks, 33
return keyword and, 32

Line Terminators, 33
linking with jQuery Mobile, 313–317

changing page transition, 315
without AJAX, 316–317

literal backslash, 47
literals, 6
LiveScript, 3
load event

connecting jQuery to, 175–177
of window object, 240

load event of window object, 237
load() function (jQuery), 231, 348
local scope, 38
location feature of window object, 227
location object, 160–166
logical NOT operator, 85

! (exclamation point) as, 86
logical OR operator, 99
logo, adding to app, 396–397
looping

do...while statement, 110–111
for each...in loop, 115–116
for...in loop, 113–115

for displaying properties, 138–139
for loop, 111–116
jQuery functions for, 183
semicolon (;) and, 32
while statement for, 108–109

M
malware, app security testing for, 380
map() method, 148
Markup Validator, 9
match() function, 102

regular expressions in, 105
match method, of String object, 74
Math object, 45–46

PI value property of, 46
pow method of, 37
properties, 46

MAX_VALUE, 45
memory

consumption, 91
garbage collection to free, 75

menubar feature of window object, 227
methods, 134

adding to objects, 141

 objects

 index 447

of arrays, 142–148
functions and, 127
of window object, 153–154

Microsoft. See also Windows 8
Bing Maps, 329
guidelines for Windows apps, 354

Microsoft Developer Network, 330
Microsoft Visual Basic, Scripting Edition, 4
minification, 91
minus sign (-), to create negative number, 86
MIN_VALUE, 45
modal dialog box, 128–131

creating, 301–302
modern hovers, 237
Modernizr, 171
modifiers, for regular expressions, 72
modulo operator, 81
months

adding drop-down list to calendar, 298
displaying multiple in calendar, 297–298

MooTools, 172
mouse, DOM 0 events, 216
mouseout event, 231–233

handlers, 235–237
image map support, 253

mouseover event, 231–233
image map support, 253

mouseover event handlers, 235–237
moving backward in slide show, 247–250
moving window object, 154, 228–229
MSDN account, 15
MSDN Magazine, 141
multiline comment, 31
multiplicative operators, 80–81
music, background, 14

N
name attribute of element, 250
name property of window object, 153
names

CSS vs. JavaScript, 281
of DOM events, 218
for JavaScript style properties, 280
for libraries, 171
for variables, 52, 122, 123

case sensitivity and, 29
NaN (Not a Number), 43

navigation bar, 318–319
footer, 319–321

navigation tools, 13
navigator object, 156–160

Java detection with, 159
properties and methods, 226
userAgent property, 222

negation operator, 94
NEGATIVE_INFINITY, 45
negative numbers, 86
nested functions, 126
nested if statements, 100

regular expressions in, 105
new Array() explicit constructor, 141
New File dialog box (Eclipse), 428, 432
new keyword, 137
newline, 47

in regular expressions, 72
New Project dialog box (Eclipse), 425
New Project dialog box (Visual Studio), 370–371
New Web Site dialog box (Visual Studio), 19
next() function, 203
nextImage() function, 246
nextSibling property, 203
night sky graphic, image map for, 252
nodes in DOM tree structure, 196
nondigit, in regular expressions, 72
<NOSCRIPT> tag (HTML), 225
Not a Number (NaN), 43
Notepad

external JavaScript file created in, 437
writing JavaScript in, 434–436

not equal operator, 81
now() method of Date() object, 68
null data type, 50
Number() function, 80, 86
numbers, 42–46

converting strings to, 76
converting to strings, 76
converting to, with plus sign, 86
incrementing and decrementing, 85

numeric constants, 45
numeric functions, 43–45

O
object-oriented development, 133–137
objects, 51, 133–134. See also methods

adding methods to, 141
built-in, 148–149
creating, 137–141

.off() function

448 index

{ } (curly braces) for, 51
current, 183
detection, 223
properties of, 134

adding, 138–140
deleting, 87

.off() function, 221
onblur() event, 216
onchange() event, 216
onclick event, 202, 216

handler, 167
ondblclick() event, 216
onfocus() event, 216
.on() function, 220
onkeydown() event, 216
onkeypress() event, 216
onkeyup() event, 216
onload() event, 216
onmousedown() event, 216
onmousemove() event, 216
onmouseout() event, 216
onmouseover() event, 216
onmouseup() event, 216
onreadystatechange event, 340
onreset() event, 216
onresize() event, 216
onselect() event, 216
onsubmit() event, 216
onunload() event, 216
opener property of window object, 153
open() method, 154

of window object, 227
of XMLHttpRequest object, 337, 340

Opera, 4
DOM support, 6

operators, 6, 79
additive, 80
assignment, 90–91
bitwise, 81
comma, 91
division, 80
equality, 81–83
multiplicative, 80–81
relational, 83, 83–85
subtraction, 80
typeof, 88–89
unary, 85–89

P
package.appxmanifest file, 378, 396
package manifest, customizing, 396–398
Package Manifest editor

Capabilities tab, 378, 397
Declarations tab, 397

packaging Windows 8 apps, 356–358
for Windows Store, 379

PageControlNavigator attribute, 376
page load times, functions to determine, 68
parameters of functions, 120–121
parameter/value pair, 162
.parent() function (jQuery), 187
parent node in DOM tree, 196
parentNode property, 203
parent property of window object, 153
parseWXData() function, 387–388
:password selector, 182
paths, for files in jQuery, 293
percent sign (%), as modulo operator, 81
persistent toolbar, 323–325
PHP (PHP: Hypertext Preprocessor), 12

server-side program and, 341
pipe character (|), for logical OR, 105
PI value property, of Math object, 46
plus sign (+)

for concatenation, 49
converting to number with, 86

pop() method, 145
pop-up windows, 226
portable hovers, 238–241
.POSITIVE_INFINITY, 45
postfix operator, 85, 109
.post() function (jQuery), 348
POST method (HTTP), AJAX and, 346–348
pow function property of Math object, 46
pow method of Math object, 37
preloading images for hovers, 242–244
pre-validating form data, 269–275
preventDefault() method, 260
prev() function, 203
prevImage() function, 249
previous button, creating for slide show, 247
previousSibling property, 203
primitive types, 75
print() method, 154
production version of jQuery, 173
product key, for Visual Studio Express, 367

 search method, of String object

 index 449

program flow, if statement for decisions about, 96–
98

programming libraries, 169
programming paradigms, 133
progressive enhancement, 14
promise objects, 386, 390
prompt() function, 95–98, 98
properties

in CSS, 278–279
of objects, 51, 134

adding, 138–140
deleting, 87
looking for, 139–140

unary operator to remove, 85
proprietary plug-ins, 13
prototype pattern, 137
pseudo-class for object, 136–137
push() method, 145

Q
query string, 351

exercise to examine, 161–166
question mark (?)

in regular expressions, 71
as ternary operator, 106

Quirks Mode, 9
QuirksMode website, 36
quotation marks

escaping, 47
as selectors within jQuery, 175
for strings, 47

R
radio buttons on web forms, 268–269
:radio selector, 182
random function property of Math object, 46
readable code

line breaks and, 33
white space and, 30

readyAJAX() function, 338, 340
ready() function (jQuery), 261, 262, 293, 294
readyState property, of event, 340
.ready() utility function, 175
reference data types, 42
references, 75–76
RegExp object, 70–76
registerContentHandler() method, 167

registered events, 217
registering event handlers, 167
registerProtocolHandler() method, 167
registration of Visual Studio Express, 367
regular expression literals, 70
regular expressions, 70–76

multiple levels of conditionals and, 102–105
for removing class name, 286
syntax, 71–74

relational operators, 83–85
in if statement, 95

removeChild() method, 210
removeClass() function, 286
removeEventListener() method, 154, 218
remove() function (jQuery), 212
render time, calculating, 66–68
replace() method, 286
replace method, of String object, 74
requestObj variable, 339
reserved words, 6, 35–36
:reset selector, 182
resizing window object, 154, 227, 228–229
responseText method, 339
responseXML method, 343
return keyword, 123–124

line breaks and, 32
return value of function, 119
reverse() method, 148
RFC (Request for Comments)

2616, on HTTP, 338
RFC (Request For Comments)

2396, on URI generic syntax, 148
Rhino, 151

S
Safari, 4

DOM support, 6
same-origin policy, 11, 341

HEAD method and, 346
Save As dialog box (Notepad), 435
scope of variables, 53–61, 121–123
screen object, 154–156
<script> tag (HTML), to include jQuery, 174
<SCRIPT> tag (HTML), 7–8, 23

for external JavaScript file, 26, 433, 437
src attribute, 23, 34

scrollbars feature of window object, 227
search method, of String object, 74

search property

450 index

search property, 163
security warning, from Internet Explorer, 95
select boxes, 261–265
:selected selector, 182
selectors in CSS, 278–279
selectors in jQuery, 177–183

by attribute, 181–182
by class, 177–178
by element type, 178
form elements, 182
by hierarchy, 178
by ID, 177
by position, 179–181

self, 152–154
semicolon (;), to delineate expressions, 32–33, 34
sendAlert() function, 230
send() method, of XMLHttpRequest object, 337
servers, for JavaScript development, 18–19
server-side applications

Active Server Pages (ASP) page for, 341
resources on, 330
XML responses from, 343

server-side validation, 257
hacking, 270–273

servers, JavaScript and, 12
setAttribute() method, 206–208
setDate() method, 69
setFullYear() method, 69
setHours() method, 69
setInterval() function, 229
setMilliseconds() method, 69
setMinutes() method, 69
setMonth() method, 69
setSeconds() method, 69
setTime() method, 69
setTimeout() function, 229, 230
shift() method, 145
showattribs() function, 204
.show() function, 233
siblings in DOM, 196, 203
sideloading, 358, 359
simple assignment, 90
simple statement, 35
single-line comment, 31
site maps, 13
slashes (//) for single-line comment, 31
slice method, 49, 146
slide shows, 244–251

creating, 244–246
jQuery for, 250–255

moving backward, 247–250
SlidesJS, 251
Software Installation dialog box, for Firebug, 56
Solution Explorer, 25

to view HTML for landing page, 373
some() method, 148
sort() method, 146–147
splash screen, 396
splice() method, 148
Split App template, 377, 394
src attribute of <script> tag (HTML), 34
src attribute of <SCRIPT> tag (HTML), 23
src() property of image object, 242
Start screen for Windows 8, 353
startTimer() function, 230
statements in JavaScript, 6, 34–35
status property of window object, 153, 227
stopPropagation() method, 219
Store menu (Visual Studio), Create App

Packages, 398
strict mode, 38–39
string object

length property, 48
methods, 73

strings, 47–50
concatenating, 80
converting array elements to joined string, 144–

145
converting date to, 69
converting numbers to, 76
converting to numbers, 76
methods and properties, 48–50

style attribute (CSS), 278
<STYLE> element, 279
submit event handler, 294
:submit selector, 182
substring method, 49, 164
substr method, 49
subtraction operators, 80
switch statement, testing with, 106–108
synchronous AJAX requests, 337–338

response to, 340

T
tab, 47

in regular expressions, 72
tabular data, and jQuery, 180
target attribute of anchor (<A>) elements, 228

 variables

 index 451

technology, overuse, 13
templates for Windows 8 apps, 370–377
ternary conditionals, 106, 130
ternary operator, 224
testing

browser features, 223–224
conditionals for end of slide show, 246
delay in pageload for, 67
else if and else for, 102
equality operators, 82–83
for getElementById() method, 224
for JavaScript availability, 223
jQuery Mobile, 311–313
in multiple browsers, 5
for property with in operator, 139–140
switch statement for, 106–108
weather app, 398–402
Windows 8 apps, 356–358

test method, of RegExp object, 72
text editor, 17, 434
text field, validation of, 273–275
.text() function, 188
Textpad, 438
text readers, 13
:text selector, 182
themes, in jQuery Mobile, 310
this keyword, 134
$(this) selector, 183
tiles in Windows 8 interface, 353

adding image, 396–397
time-outs, .ajax() function for, 351
timers, 229–231
time, writing to webpage, 63–64
toDateString() method, 69
toggleClass() function, 287
toISOString() method, 69
tokens, 6
toLocaleDateString() method, 64
toLocaleLowerCase method, 49
toLocaleString() method, 61, 69
toLocaleTimeString() method, 64, 69
toLocaleUpperCase method, 49
toLowerCase method, 49
toolbar

adding buttons, 321–322
color change, 322–323
jQuery Mobile for creating, 317–325
window object feature, 227

top feature of window object, 227

top property of window object, 153
toString() method, 69
toTimeString() method, 69
touch experience. See jQuery Mobile
toUpperCase method, 49
toUTCString() method, 69
transition, changing for link in jQuery Mobile, 315
traversing DOM with jQuery, 183–188
trigger() function, 221–222
troubleshooting

Firebug add-on for, 57–61
jQuery Mobile, 313
jQuery UI, 293
undefined variables, 60

try/catch blocks, 336
.txt extension, 435
typeof operator, 85–92, 223

U
ui-btn-active class, 325
ui-state-persistent class, 325
unary operators, 85–89
unbinding event handlers, 220–222
undeclared variables, prevention of, 38
undefined state, 50
Uniform Resource Identifier (URI), safety of, 148
unnamed functions, 126
unobtrusive scripting, 14
unshift() method, 145
user agent, 10
userAgent property of navigator object, 222
user-defined functions, 36

built-in vs., 127
U.S. National Weather Service data feeds, 381

V
val() function, 188, 261
validation

client-side vs. server-side, 257
hacking, 270
of text field, 273–275
of web forms

with conditionals, 116–118
CSS and JavaScript for, 282–283

validator from W3C, 9
variables, 52–69

declaration, 52–53

452 index

var keyword

destruction of unused, 75
names of, 122, 123
prevention of undeclared, 38
returning type, 88–89
scope of, 53–61, 121–123
troubleshooting undefined, 60
types, 53

var keyword, 35, 38, 52, 122
VBScript, 4
Venkman, 27
vertical tab, 47
Vim, 434, 438
Virtual Earth web server, 329
virus, app security testing for, 380
visitors, detecting information, 222–226
Visual Basic .NET, 12
Visual Studio, 17

for app development, 355
external JavaScript files in, 23–27
jQuery Mobile file in project, 312

Visual Studio 2012
installing, 363–364
JavaScript samples in, 371
for writing JavaScript, 19–27

Visual Studio 2012 Express, 18, 19
downloading installer, 364
installing, 364–370

void operator, 85

W
weather app

customizing, 385–396
CSS, 393–394
HTML, 390–392
JavaScript, 385–390

design and programming, 382–385
development process, 381–382
finalizing, 394–396
testing, 398–402

web applications
architecture, 327–328
JavaScript and interface, 329

web browsers. See browsers
web.config, debugging enabled, 22
web forms, 257–261

accessing elements of, 261–269
check boxes, 265–268
CSS and JavaScript for validation, 282–283
pre-validating data, 269–275

radio buttons, 268–269
select boxes, 261–265
selecting option, 263–265
validating text field, 273–275

WebKit rendering engine, 6
webpage

changing text and HTML, 188–189
jQuery included in, 174
writing date and time to, 63–64

website design, 12–15
web standards, 13
while statement, 108–109
white space, 30–31

line breaks and, 33
in regular expressions, 72

width feature of window object, 227
width property of screen object, 155
wildcard selectors in jQuery, 182
window object, 127–131, 148. See also document

object
child objects as properties, 153
child objects of, 151–152
events, 215–222
load event, 240
load event of, 237
methods, 153–154
moving and resizing, 154, 228–229
opening, best practices, 228
opening, closing, and resizing, 226–229
opening tabs, 228

Windows 8, 15–16
opening Notepad in, 434
Start screen, 353

Windows 8 apps, 353. See also weather app
defining capabilities, 397–398
development, 354–358

guidelines, 354
packaging and testing, 356–358
planning and design, 355

distribution, 358–359
in enterprise, 359

helper applications for creating, 17
package manifest, 377–378
packaging for Windows Store, 379–380
templates, 17, 370–377

Blank App, 372–374
Grid App, 375–377
Split App, 377, 383, 394

Windows 8 Software Development Kit (SDK), 355

 zip file

 index 453

Windows App Certification Kit, 356–358, 359, 380,
398, 400–401

Windows Store
app distribution in, 358–359
app submission for approval, 354
packaging Windows 8 apps for, 379–380
pricing models for apps, 379

WinJS library, 382
word boundary, in regular expressions, 71
World Wide Web, 338–339
World Wide Web Consortium (W3C), 5, 193, 335

application for testing modules, 6
event model, 216
for CSS properties, 278
online validator from, 9

X
XDomainRequest object, 11
XHR function, 386
XHTML 1.0 standard, DOCTYPE declaration for, 9
XHTML (Extensible Hypertext Markup Language)

JavaScript and, 8
JavaScript declaration within, 33

xmldocument object, getElementsByTagName()
method, 344

XML (Extensible Markup Language), 6
AJAX without, 330–331
processing responses, 343–344

XMLHttpRequest object (AJAX), 11, 329, 335–348,
340

getAllResponseHeaders() method for, 345
instantiating, 335–337
obtaining response headers from, 345
sending AJAX request, 337
sending and receiving with, 342–343

Y
Yahoo! User Interface (YUI), 171
year, adding drop-down list to calendar, 298

Z
zip file

for jQuery Mobile, 311
for jQuery UI, 290

about the author

STEVE SUEHRING is a technology architect who specializes in finding simple solutions
to complex problems and complex solutions to simple problems. When not writing
technology books, Steve enjoys playing several musical instruments. You can follow
Steve on Twitter, @stevesuehring.

SurvPage_Corp_b&w.indd 1 4/24/13 12:45 PM

Now that
you’ve
read the
book...

Tell us what you think!
Was it useful?

Did it teach you what you wanted to learn?

Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

http://aka.ms/tellpress

	Introduction
	Chapter 1: JavaScript is more than you might think
	A brief history of JavaScript
	Enter Internet Explorer 3.0
	And then came ECMAScript
	So many standards...
	The DOM

	What’s in a JavaScript program?
	JavaScript placement on your webpage
	What JavaScript can do
	What JavaScript can’t do
	JavaScript can’t be forced on a client
	JavaScript can’t guarantee data security
	JavaScript can’t cross domains
	JavaScript doesn’t do servers

	Tips for using JavaScript
	Where JavaScript fits
	Which browsers should the site support?

	And then came Windows 8
	Exercises

	Chapter 4: Working with variables and data types
	Data types in JavaScript
	Working with numbers
	Working with strings
	Booleans
	Null
	Undefined
	Objects
	Arrays

	Defining and using variables
	Declaring variables
	Variable types
	Variable scope
	The Date object

	Using the RegExp object
	The syntax of regular expressions
	References and garbage collection

	Learning about type conversions
	Number conversions
	String conversions
	Boolean conversions

	Exercises

	Index

