

NOTE
Part 2 available Fall 2012
See Table of Contents inside

Part 2

Windows® Internals

Russinovich
Solomon
Ionescu

Operating Systems/
Windows

ISBN: 978-0-7356-4873-9

About the Authors
Mark Russinovich is a Technical Fellow in
the Windows Azure™ group at Microsoft.
He is coauthor of Windows Sysinternals
Administrator’s Reference, co-creator of the
Sysinternals tools available from Microsoft
TechNet, and coauthor of the Windows Internals
book series.

David A. Solomon is coauthor of the
Windows Internals book series and has taught
his Windows internals class to thousands of
developers and IT professionals worldwide,
including Microsoft staff. He is a regular speaker
at Microsoft conferences, including TechNet
and PDC.

Alex Ionescu is a chief software architect and
consultant expert in low-level system software,
kernel development, security training, and
reverse engineering. He teaches Windows
internals courses with David Solomon, and is
active in the security research community.

The definitive guide—fully updated for Windows 7
and Windows Server 2008 R2
Delve inside Windows architecture and internals—and see how core
components work behind the scenes. Led by a team of internationally
renowned internals experts, this classic guide has been fully updated
for Windows 7 and Windows Server® 2008 R2—and now presents its
coverage in two volumes.

As always, you get critical, insider perspectives on how Windows
operates. And through hands-on experiments, you’ll experience its
internal behavior firsthand—knowledge you can apply to improve
application design, debugging, system performance, and support.

In Part 2, you will:
• Understand how core system and management mechanisms
 work—including object manager, synchronization, Wow64,
 Hyper-V®, and the registry
• Examine the data structures and activities behind processes,
 threads, and jobs
• Go inside the Windows security model to see how it manages
 access, auditing, and authorization
• Explore the Windows networking stack from top to bottom—
 including APIs, BranchCache, protocol and NDIS drivers, and
 layered services
• Dig into internals hands-on using the kernel debugger,
 performance monitor, and other tools

W
indow

s
® Internals

PA RT 2

microsoft.com/mspress

U.S.A. $39.99
Canada $41.99

[Recommended]

See inside cover

DEVELOPER ROADMAP

Step by Step
• For experienced developers learning a
 new topic
• Focus on fundamental techniques and tools
• Hands-on tutorial with practice files plus
 eBook

Start Here!
• Beginner-level instruction
• Easy to follow explanations and examples
• Exercises to build your first projects

Developer Reference
• Professional developers; intermediate to
 advanced
• Expertly covers essential topics and
 techniques
• Features extensive, adaptable code examples

S I X T H E D I T I O N

6
S

IX
T

H
E

D
IT

IO
N

Focused Topics
• For programmers who develop
 complex or advanced solutions
• Specialized topics; narrow focus; deep
 coverage
• Features extensive, adaptable code examples

Windows®

Internals
Part 2

6
S I X T H

E D I T I O N

Mark Russinovich
David A. Solomon

Alex Ionescu

spine = 1.2”

Cyan Magenta Yellow Black

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2012 by David Solomon and Mark Russinovich

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number: 2012933511
ISBN: 978-0-7356-6587-3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fi ctitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the authors’ views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Carol Dillingham
Editorial Production: Curtis Philips
Technical Reviewer: Christophe Nasarre; Technical Review services provided by Content Master,

a member of CM Group, Ltd.
Copyeditor: John Pierce
Indexer: Jan Wright
Cover: Twist Creative • Seattle

Third Printing: December 2014

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

To our parents, who guided and inspired us to follow our dreams

Contents at a Glance

Windows Internals, Sixth Edition, Part 1 (available separately)

CHAPTER 1 Concepts and Tools

CHAPTER 2 System Architecture

CHAPTER 3 System Mechanisms

CHAPTER 4 Management Mechanisms

CHAPTER 5 Processes, Threads, and Jobs

CHAPTER 6 Security

CHAPTER 7 Networking

Windows Internals, Sixth Edition, Part 2

CHAPTER 8 I/O System 1

CHAPTER 9 Storage Management 125

CHAPTER 10 Memory Management 187

CHAPTER 11 Cache Manager 355

CHAPTER 12 File Systems 391

CHAPTER 13 Startup and Shutdown 499

CHAPTER 14 Crash Dump Analysis 547

 vii

Contents

Windows Internals, Sixth Edition, Part 1
(See appendix for Part 1’s table of contents)

Windows Internals, Sixth Edition, Part 2
Introduction . xv

Chapter 8 I/O System 1
I/O System Components . 1

The I/O Manager . 3
Typical I/O Processing . 4

Device Drivers . 5
Types of Device Drivers . 5
Structure of a Driver .12
Driver Objects and Device Objects .14
Opening Devices .19

I/O Processing .25
Types of I/O .25
I/O Request to a Single-Layered Driver .33
I/O Requests to Layered Drivers .40
I/O Cancellation .48
I/O Completion Ports .53
I/O Prioritization .58
Container Notifications .65
Driver Verifier .65

Kernel-Mode Driver Framework (KMDF) .68
Structure and Operation of a KMDF Driver .68
KMDF Data Model .70
KMDF I/O Model . 74

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

User-Mode Driver Framework (UMDF) .78
The Plug and Play (PnP) Manager .81

Level of Plug and Play Support .82
Driver Support for Plug and Play .82
Driver Loading, Initialization, and Installation 84
Driver Installation .94

The Power Manager .98
Power Manager Operation .100
Driver Power Operation .101
Driver and Application Control of Device Power105
Power Availability Requests .105
Processor Power Management (PPM) .108

Conclusion .123

Chapter 9 Storage Management 125
Storage Terminology .125
Disk Devices .126

Rotating Magnetic Disks .126
Solid State Disks .128

Disk Drivers .131
Winload .132
Disk Class, Port, and Miniport Drivers .132
Disk Device Objects .136
Partition Manager .138

Volume Management .138
Basic Disks .139
Dynamic Disks .141
Multipartition Volume Management .147
The Volume Namespace .153
Volume I/O Operations .159
Virtual Disk Service .160

Virtual Hard Disk Support .162
Attaching VHDs .163
Nested File Systems .163

BitLocker Drive Encryption .163
Encryption Keys .165
Trusted Platform Module (TPM) .168
BitLocker Boot Process .170
BitLocker Key Recovery .172

 Contents ix

Full-Volume Encryption Driver .173
BitLocker Management . 174
BitLocker To Go .175

Volume Shadow Copy Service .177
Shadow Copies .177
VSS Architecture .177
VSS Operation .178
Uses in Windows .181

Conclusion .186

Chapter 10 Memory Management 187
Introduction to the Memory Manager .187

Memory Manager Components .188
Internal Synchronization .189
Examining Memory Usage .190

Services Provided by the Memory Manager .193
Large and Small Pages .193
Reserving and Committing Pages .195
Commit Limit .199
Locking Memory .199
Allocation Granularity .199
Shared Memory and Mapped Files .200
Protecting Memory .203
No Execute Page Protection .204
Copy-on-Write .209
Address Windowing Extensions .210

Kernel-Mode Heaps (System Memory Pools) .212
Pool Sizes .213
Monitoring Pool Usage .215
Look-Aside Lists .219

Heap Manager .220
Types of Heaps .221
Heap Manager Structure .222
Heap Synchronization .223
The Low Fragmentation Heap .223
Heap Security Features .224
Heap Debugging Features .225
Pageheap .226
Fault Tolerant Heap .227

x Contents

Virtual Address Space Layouts .228
x86 Address Space Layouts .229
x86 System Address Space Layout .232
x86 Session Space .233
System Page Table Entries .235
64-Bit Address Space Layouts .237
x64 Virtual Addressing Limitations .240
Dynamic System Virtual Address Space Management242
System Virtual Address Space Quotas .245
User Address Space Layout .246

Address Translation .251
x86 Virtual Address Translation .252
Translation Look-Aside Buffer .259
Physical Address Extension (PAE) .260
x64 Virtual Address Translation .265
IA64 Virtual Address Translation .266

Page Fault Handling .267
Invalid PTEs .268
Prototype PTEs .269
In-Paging I/O .271
Collided Page Faults .272
Clustered Page Faults .272
Page Files .273
Commit Charge and the System Commit Limit 275
Commit Charge and Page File Size .278

Stacks .279
User Stacks .280
Kernel Stacks .281
DPC Stack .282

Virtual Address Descriptors .282
Process VADs .283
Rotate VADs .284

NUMA .285
Section Objects .286
Driver Verifier .292
Page Frame Number Database .297

Page List Dynamics .300
Page Priority .310
Modified Page Writer .314

 Contents xi

PFN Data Structures .315
Physical Memory Limits .320

Windows Client Memory Limits .321
Working Sets .324

Demand Paging .324
Logical Prefetcher .324
Placement Policy .328
Working Set Management .329
Balance Set Manager and Swapper .333
System Working Sets .334
Memory Notification Events .335

Proactive Memory Management (Superfetch) .338
Components .338
Tracing and Logging .341
Scenarios .342
Page Priority and Rebalancing .342
Robust Performance .344
ReadyBoost .346
ReadyDrive .348
Unified Caching .348
Process Reflection .351

Conclusion .354

Chapter 11 Cache Manager 355
Key Features of the Cache Manager .355

Single, Centralized System Cache .356
The Memory Manager .356
Cache Coherency .356
Virtual Block Caching .358
Stream-Based Caching .358
Recoverable File System Support .359

Cache Virtual Memory Management .360
Cache Size. .361

Cache Virtual Size .361
Cache Working Set Size .361
Cache Physical Size .363

Cache Data Structures .364
Systemwide Cache Data Structures .365
Per-File Cache Data Structures .368

xii Contents

File System Interfaces .373
Copying to and from the Cache .374
Caching with the Mapping and Pinning Interfaces374
Caching with the Direct Memory Access Interfaces 375

Fast I/O .375
Read-Ahead and Write-Behind .377

Intelligent Read-Ahead .378
Write-Back Caching and Lazy Writing .379
Write Throttling .388
System Threads .390

Conclusion .390

Chapter 12 File Systems 391
Windows File System Formats .392

CDFS .392
UDF .393
FAT12, FAT16, and FAT32 .393
exFAT .396
NTFS .397

File System Driver Architecture .398
Local FSDs .398
Remote FSDs .400
File System Operation .407
File System Filter Drivers .413

Troubleshooting File System Problems .415
Process Monitor Basic vs. Advanced Modes415
Process Monitor Troubleshooting Techniques416

Common Log File System .416
NTFS Design Goals and Features .424

High-End File System Requirements .424
Advanced Features of NTFS .426

NTFS File System Driver .439
NTFS On-Disk Structure .442

Volumes .442
Clusters .442
Master File Table .443
File Record Numbers .447
File Records .447
File Names .449

 Contents xiii

Resident and Nonresident Attributes .453
Data Compression and Sparse Files .456
The Change Journal File .461
Indexing .464
Object IDs .466
Quota Tracking .466
Consolidated Security .467
Reparse Points .469
Transaction Support .469

NTFS Recovery Support .477
Design .478
Metadata Logging .479
Recovery .483
NTFS Bad-Cluster Recovery .487
Self-Healing .490

Encrypting File System Security .491
Encrypting a File for the First Time .494
The Decryption Process .496
Backing Up Encrypted Files .497
Copying Encrypted Files .497

Conclusion .498

Chapter 13 Startup and Shutdown 499
Boot Process .499

BIOS Preboot. .499
The BIOS Boot Sector and Bootmgr .502
The UEFI Boot Process .512
Booting from iSCSI .514
Initializing the Kernel and Executive Subsystems514
Smss, Csrss, and Wininit .522
ReadyBoot .527
Images That Start Automatically .528

Troubleshooting Boot and Startup Problems .529
Last Known Good .530
Safe Mode .530
Windows Recovery Environment (WinRE) .534
Solving Common Boot Problems .537

Shutdown .542
Conclusion .545

xiv Contents

Chapter 14 Crash Dump Analysis 547
Why Does Windows Crash? .547
The Blue Screen .548

Causes of Windows Crashes .549
Troubleshooting Crashes .551
Crash Dump Files. .553

Crash Dump Generation .559
Windows Error Reporting .561
Online Crash Analysis .563
Basic Crash Dump Analysis .564

Notmyfault .564
Basic Crash Dump Analysis .565
Verbose Analysis .567

Using Crash Troubleshooting Tools .569
Buffer Overruns, Memory Corruption, and Special Pool 569
Code Overwrite and System Code Write Protection573

Advanced Crash Dump Analysis .574
Stack Trashes .575
Hung or Unresponsive Systems .577
When There Is No Crash Dump .581

Analysis of Common Stop Codes .585
0xD1 - DRIVER_IRQL_NOT_LESS_OR_EQUAL585
0x8E - KERNEL_MODE_EXCEPTION_NOT_HANDLED586
0x7F - UNEXPECTED_KERNEL_MODE_TRAP588
0xC5 - DRIVER_CORRUPTED_EXPOOL .590
Hardware Malfunctions .593

Conclusion .594

Appendix: Contents of Windows Internals, Sixth Edition, Part 1 595

Index 603

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xv

Introduction

W indows Internals, Sixth Edition is intended for advanced computer professionals
(both developers and system administrators) who want to understand how the

core components of the Microsoft Windows 7 and Windows Server 2008 R2 operating
systems work internally. With this knowledge, developers can better comprehend the
rationale behind design choices when building applications specific to the Windows
platform. Such knowledge can also help developers debug complex problems. System
administrators can benefit from this information as well, because understanding how
the operating system works “under the covers” facilitates understanding the perfor-
mance behavior of the system and makes troubleshooting system problems much
easier when things go wrong. After reading this book, you should have a better under-
standing of how Windows works and why it behaves as it does.

Structure of the Book

For the first time, the book has been divided in two parts. This was done to get the
information out more quickly since it takes considerable time to update the book for
each release of Windows.

Part 1 begins with two chapters that define key concepts, introduce the tools used in
the book, and describe the overall system architecture and components. The next two
chapters present key underlying system and management mechanisms. Part 1 wraps
up by covering three core components of the operating system: processes, threads, and
jobs; security; and networking.

Part 2 covers the remaining core subsystems: I/O, storage, memory management,
the cache manager, and file systems. Part 2 concludes with a description of the startup
and shutdown processes and a description of crash-dump analysis.

xvi Introduction

History of the Book

This is the sixth edition of a book that was originally called Inside Windows NT
(Microsoft Press, 1992), written by Helen Custer (prior to the initial release of Microsoft
Windows NT 3.1). Inside Windows NT was the first book ever published about Windows
NT and provided key insights into the architecture and design of the system. Inside
Windows NT, Second Edition (Microsoft Press, 1998) was written by David Solomon. It
updated the original book to cover Windows NT 4.0 and had a greatly increased level
of technical depth.

Inside Windows 2000, Third Edition (Microsoft Press, 2000) was authored by David
Solomon and Mark Russinovich. It added many new topics, such as startup and shut-
down, service internals, registry internals, file-system drivers, and networking. It also
covered kernel changes in Windows 2000, such as the Windows Driver Model (WDM),
Plug and Play, power management, Windows Management Instrumentation (WMI),
encryption, the job object, and Terminal Services. Windows Internals, Fourth Edition was
the Windows XP and Windows Server 2003 update and added more content focused
on helping IT professionals make use of their knowledge of Windows internals, such as
 using key tools from Windows Sysinternals (www.microsoft.com/technet/sysinternals)
and analyzing crash dumps. Windows Internals, Fifth Edition was the update for
Windows Vista and Windows Server 2008. New content included the image loader,
user-mode debugging facility, and Hyper-V.

Sixth Edition Changes

This latest edition has been updated to cover the kernel changes made in Windows 7
and Windows Server 2008 R2. Hands-on experiments have been updated to reflect
changes in tools.

Hands-on Experiments

Even without access to the Windows source code, you can glean much about Windows
internals from tools such as the kernel debugger and tools from Sysinternals and
 Winsider Seminars & Solutions. When a tool can be used to expose or demonstrate
some aspect of the internal behavior of Windows, the steps for trying the tool yourself
are listed in “EXPERIMENT” boxes. These appear throughout the book, and we encour-
age you to try these as you’re reading—seeing visible proof of how Windows works
internally will make much more of an impression on you than just reading about it will.

www.microsoft.com/technet/sysinternals

 Introduction xvii

Topics Not Covered

Windows is a large and complex operating system. This book doesn’t cover everything
relevant to Windows internals but instead focuses on the base system components. For
example, this book doesn’t describe COM+, the Windows distributed object-oriented
programming infrastructure, or the Microsoft .NET Framework, the foundation of man-
aged code applications.

Because this is an internals book and not a user, programming, or system administra-
tion book, it doesn’t describe how to use, program, or configure Windows.

A Warning and a Caveat

Because this book describes undocumented behavior of the internal architecture and
the operation of the Windows operating system (such as internal kernel structures and
functions), this content is subject to change between releases. (External interfaces, such
as the Windows API, are not subject to incompatible changes.)

By “subject to change,” we don’t necessarily mean that details described in this book
will change between releases, but you can’t count on them not changing. Any soft-
ware that uses these undocumented interfaces might not work on future releases of
Windows. Even worse, software that runs in kernel mode (such as device drivers) and
uses these undocumented interfaces might experience a system crash when running on
a newer release of Windows.

Acknowledgments

First, thanks to Jamie Hanrahan and Brian Catlin of Azius, LLC for joining us on this
 project—the book would not have been finished without their help. They did the bulk
of the updates on the “Security” and “Networking” chapters and contributed to the
update of the “Management Mechanisms” and “Processes and Threads” chapters. Azius
provides Windows-internals and device-driver training. See www.azius.com for more
information.

We want to recognize Alex Ionescu, who for this edition is a full coauthor. This is a
reflection of Alex’s extensive work on the fifth edition, as well as his continuing work on
this edition.

www.azius.com

xviii Introduction

Also thanks to Daniel Pearson, who updated the “Crash Dump Analysis” chapter.
His many years of dump analysis experience helped to make the information more
 practical.

Thanks to Eric Traut and Jon DeVaan for continuing to allow David Solomon access
to the Windows source code for his work on this book as well as continued develop-
ment of his Windows Internals courses.

Three key reviewers were not acknowledged for their review and contributions
to the fifth edition: Arun Kishan, Landy Wang, and Aaron Margosis—thanks again to
them! And thanks again to Arun and Landy for their detailed review and helpful input
for this edition.

This book wouldn’t contain the depth of technical detail or the level of accuracy it
has without the review, input, and support of key members of the Microsoft Windows
development team. Therefore, we want to thank the following people, who provided
technical review and input to the book:

 ■ Greg Cottingham

 ■ Joe Hamburg

 ■ Jeff Lambert

 ■ Pavel Lebedinsky

 ■ Joseph East

 ■ Adi Oltean

 ■ Alexey Pakhunov

 ■ Valerie See

 ■ Brad Waters

 ■ Bruce Worthington

 ■ Robin Alexander

 ■ Bernard Ourghanlian

Also thanks to Scott Lee, Tim Shoultz, and Eric Kratzer for their assistance with the
“Crash Dump Analysis” chapter.

For the “Networking” chapter, a special thanks to Gianluigi Nusca and Tom Jolly,
who really went beyond the call of duty: Gianluigi for his extraordinary help with
the BranchCache material and the amount of suggestions (and many paragraphs of

 Introduction xix

 material he wrote), and Tom Jolly not only for his own review and suggestions (which
were excellent), but for getting many other developers to assist with the review. Here
are all those who reviewed and contributed to the “Networking” chapter:

 ■ Roopesh Battepati

 ■ Molly Brown

 ■ Greg Cottingham

 ■ Dotan Elharrar

 ■ Eric Hanson

 ■ Tom Jolly

 ■ Manoj Kadam

 ■ Greg Kramer

 ■ David Kruse

 ■ Jeff Lambert

 ■ Darene Lewis

 ■ Dan Lovinger

 ■ Gianluigi Nusca

 ■ Amos Ortal

 ■ Ivan Pashov

 ■ Ganesh Prasad

 ■ Paul Swan

 ■ Shiva Kumar Thangapandi

Amos Ortal and Dotan Elharrar were extremely helpful on NAP, and Shiva Kumar
Thangapandi helped extensively with EAP.

Thanks to Gerard Murphy for reviewing the shutdown mechanisms in Windows 7
and clarifying Group Policy behaviors.

Thanks to Tristan Brown from the Power Management team at Microsoft for spend-
ing a few late hours at the office with Alex going over core parking’s algorithms and
behaviors, as well as for the invaluable diagram he provided.

xx Introduction

Thanks to Apurva Doshi for sending Alex a detailed document of cache manager
changes in Windows 7, which was used to capture some of the new behaviors and
changes described in the book.

Thanks to Matthieu Suiche for his kernel symbol file database, which allowed Alex to
discover new and removed fields from core kernel data structures and led to the inves-
tigations to discover the underlying functionality changes.

Thanks to Cenk Ergan, Michel Fortin, and Mehmet Iyigun for their review and input
on the Superfetch details.

The detailed checking Christophe Nasarre, overall technical reviewer, performed
contributed greatly to the technical accuracy and consistency in the book.

We would like to again thank Ilfak Guilfanov of Hex-Rays (www.hex-rays.com) for the
IDA Pro Advanced and Hex-Rays licenses they granted to Alex so that he could speed
up his reverse engineering of the Windows kernel.

Finally, the authors would like to thank the great staff at Microsoft Press behind
turning this book into a reality. Devon Musgrave served double duty as acquisitions
editor and developmental editor, while Carol Dillingham oversaw the title as its project
editor. Editorial and production manager Curtis Philips, copy editor John Pierce, proof-
reader Andrea Fox, and indexer Jan Wright also contributed to the quality of this book.

Last but not least, thanks to Ben Ryan, publisher of Microsoft Press, who continues
to believe in the importance of continuing to provide this level of detail about Windows
to their readers!

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://www.microsoftpressstore.com/title/ 9780735665873

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

www.hex-rays.com
mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoftpressstore.com/title/ 9780735665873

 Introduction xxi

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 187

C H A P T E R 1 0

Memory Management

In this chapter, you’ll learn how Windows implements virtual memory and how it manages the subset
of virtual memory kept in physical memory. We’ll also describe the internal structure and com-

ponents that make up the memory manager, including key data structures and algorithms. Before
examining these mechanisms, we’ll review the basic services provided by the memory manager and
key concepts such as reserved memory versus committed memory and shared memory.

Introduction to the Memory Manager

By default, the virtual size of a process on 32-bit Windows is 2 GB. If the image is marked specifically
as large address space aware, and the system is booted with a special option (described later in this
chapter), a 32-bit process can grow to be 3 GB on 32-bit Windows and to 4 GB on 64-bit Windows.
The process virtual address space size on 64-bit Windows is 7,152 GB on IA64 systems and 8,192 GB
on x64 systems. (This value could be increased in future releases.)

As you saw in Chapter 2, “System Architecture,” in Part 1 (specifically in Table 2-2), the maximum
amount of physical memory currently supported by Windows ranges from 2 GB to 2,048 GB, depend-
ing on which version and edition of Windows you are running. Because the virtual address space
might be larger or smaller than the physical memory on the machine, the memory manager has two
primary tasks:

 ■ Translating, or mapping, a process’s virtual address space into physical memory so that when
a thread running in the context of that process reads or writes to the virtual address space, the
correct physical address is referenced. (The subset of a process’s virtual address space that is
physically resident is called the working set. Working sets are described in more detail later in
this chapter.)

 ■ Paging some of the contents of memory to disk when it becomes overcommitted—that is,
when running threads or system code try to use more physical memory than is currently avail-
able—and bringing the contents back into physical memory when needed.

In addition to providing virtual memory management, the memory manager provides a core set
of services on which the various Windows environment subsystems are built. These services include
memory mapped files (internally called section objects), copy-on-write memory, and support for ap-
plications using large, sparse address spaces. In addition, the memory manager provides a way for a
process to allocate and use larger amounts of physical memory than can be mapped into the process

188 Windows Internals, Sixth Edition, Part 2

virtual address space at one time (for example, on 32-bit systems with more than 3 GB of physical
memory). This is explained in the section “Address Windowing Extensions” later in this chapter.

Note There is a Control Panel applet that provides control over the size, number, and loca-
tions of the paging files, and its nomenclature suggests that “virtual memory” is the same
thing as the paging file. This is not the case. The paging file is only one aspect of virtual
memory. In fact, even if you run with no page file at all, Windows will still be using virtual
memory. This distinction is explained in more detail later in this chapter.

Memory Manager Components
The memory manager is part of the Windows executive and therefore exists in the file Ntoskrnl.exe.
No parts of the memory manager exist in the HAL. The memory manager consists of the following
components:

 ■ A set of executive system services for allocating, deallocating, and managing virtual memory,
most of which are exposed through the Windows API or kernel-mode device driver interfaces

 ■ A translation-not-valid and access fault trap handler for resolving hardware-detected memory
management exceptions and making virtual pages resident on behalf of a process

 ■ Six key top-level routines, each running in one of six different kernel-mode threads in the Sys-
tem process (see the experiment “Mapping a System Thread to a Device Driver,” which shows
how to identify system threads, in Chapter 2 in Part 1):

• The balance set manager (KeBalanceSetManager, priority 16). It calls an inner routine, the
working set manager (MmWorkingSetManager), once per second as well as when free
memory falls below a certain threshold. The working set manager drives the overall mem-
ory management policies, such as working set trimming, aging, and modified page writing.

• The process/stack swapper (KeSwapProcessOrStack, priority 23) performs both process
and kernel thread stack inswapping and outswapping. The balance set manager and the
thread-scheduling code in the kernel awaken this thread when an inswap or outswap op-
eration needs to take place.

• The modified page writer (MiModifiedPageWriter, priority 17) writes dirty pages on the
modified list back to the appropriate paging files. This thread is awakened when the size of
the modified list needs to be reduced.

• The mapped page writer (MiMappedPageWriter, priority 17) writes dirty pages in mapped
files to disk (or remote storage). It is awakened when the size of the modified list needs
to be reduced or if pages for mapped files have been on the modified list for more than
5 minutes. This second modified page writer thread is necessary because it can generate
page faults that result in requests for free pages. If there were no free pages and there was
only one modified page writer thread, the system could deadlock waiting for free pages.

 CHAPTER 10 Memory Management 189

• The segment dereference thread (MiDereferenceSegmentThread, priority 18) is responsible
for cache reduction as well as for page file growth and shrinkage. (For example, if there is
no virtual address space for paged pool growth, this thread trims the page cache so that
the paged pool used to anchor it can be freed for reuse.)

• The zero page thread (MmZeroPageThread, base priority 0) zeroes out pages on the free
list so that a cache of zero pages is available to satisfy future demand-zero page faults.
Unlike the other routines described here, this routine is not a top-level thread function but
is called by the top-level thread routine Phase1Initialization. MmZeroPageThread never
returns to its caller, so in effect the Phase 1 Initialization thread becomes the zero page
thread by calling this routine. Memory zeroing in some cases is done by a faster func-
tion called MiZeroInParallel. See the note in the section “Page List Dynamics” later in this
chapter.

Each of these components is covered in more detail later in the chapter.

Internal Synchronization
Like all other components of the Windows executive, the memory manager is fully reentrant and sup-
ports simultaneous execution on multiprocessor systems—that is, it allows two threads to acquire re-
sources in such a way that they don’t corrupt each other’s data. To accomplish the goal of being fully
reentrant, the memory manager uses several different internal synchronization mechanisms, such as
spinlocks, to control access to its own internal data structures. (Synchronization objects are discussed
in Chapter 3, “System Mechanisms,” in Part 1.)

Some of the systemwide resources to which the memory manager must synchronize access
include:

 ■ Dynamically allocated portions of the system virtual address space

 ■ System working sets

 ■ Kernel memory pools

 ■ The list of loaded drivers

 ■ The list of paging files

 ■ Physical memory lists

 ■ Image base randomization (ASLR) structures

 ■ Each individual entry in the page frame number (PFN) database

Per-process memory management data structures that require synchronization include the
working set lock (held while changes are being made to the working set list) and the address space
lock (held whenever the address space is being changed). Both these locks are implemented using
pushlocks.

190 Windows Internals, Sixth Edition, Part 2

Examining Memory Usage
The Memory and Process performance counter objects provide access to most of the details about
system and process memory utilization. Throughout the chapter, we’ll include references to specific
performance counters that contain information related to the component being described. We’ve
included relevant examples and experiments throughout the chapter. One word of caution, how-
ever: different utilities use varying and sometimes inconsistent or confusing names when displaying
memory information. The following experiment illustrates this point. (We’ll explain the terms used in
this example in subsequent sections.)

EXPERIMENT: Viewing System Memory Information
The Performance tab in the Windows Task Manager, shown in the following screen shot, dis-
plays basic system memory information. This information is a subset of the detailed memory
information available through the performance counters. It includes data on both physical and
virtual memory usage.

The following table shows the meaning of the memory-related values.

Task Manager Value Definition

Memory bar histogram Bar/chart line height shows physical memory in use by Windows (not
available as a performance counter). The remaining height of the
graph is equal to the Available counter in the Physical Memory section,
described later in the table. The total height of the graph is equal to the
Total counter in that section. This represents the total RAM usable by
the operating system, and does not include BIOS shadow pages, device
memory, and so on.

 CHAPTER 10 Memory Management 191

Task Manager Value Definition

Physical Memory (MB): Total Physical memory usable by Windows

Physical Memory (MB): Cached Sum of the following performance counters in the Memory object:
Cache Bytes, Modified Page List Bytes, Standby Cache Core Bytes,
Standby Cache Normal Priority Bytes, and Standby Cache Reserve Bytes
(all in Memory object)

Physical Memory (MB):
Available

Amount of memory that is immediately available for use by the
operating system, processes, and drivers. Equal to the combined size of
the standby, free, and zero page lists.

Physical Memory (MB): Free Free and zero page list bytes

Kernel Memory (MB): Paged Pool paged bytes. This is the total size of the pool, including both free
and allocated regions

Kernel Memory (MB):
Nonpaged

Pool nonpaged bytes. This is the total size of the pool, including both
free and allocated regions

System: Commit (two numbers
shown)

Equal to performance counters Committed Bytes and Commit Limit,
respectively

To see the specific usage of paged and nonpaged pool, use the Poolmon utility, described in
the “Monitoring Pool Usage” section.

The Process Explorer tool from Windows Sysinternals (http://www.microsoft.com/technet/
sysinternals) can show considerably more data about physical and virtual memory. On its main
screen, click View and then System Information, and then choose the Memory tab. Here is an
example display from a 32-bit Windows system:

We will explain most of these additional counters in the relevant sections later in this chapter.

http://www.microsoft.com/technet/sysinternals
http://www.microsoft.com/technet/sysinternals

192 Windows Internals, Sixth Edition, Part 2

Two other Sysinternals tools show extended memory information:

 ■ VMMap shows the usage of virtual memory within a process to an extremely fine level of
detail.

 ■ RAMMap shows detailed physical memory usage.

These tools will be featured in experiments found later in this chapter.

Finally, the !vm command in the kernel debugger shows the basic memory management in-
formation available through the memory-related performance counters. This command can be
useful if you’re looking at a crash dump or hung system. Here’s an example of its output from a
4-GB Windows client system:

1: kd> !vm

*** Virtual Memory Usage ***
 Physical Memory: 851757 (3407028 Kb)
 Page File: \??\C:\pagefile.sys
 Current: 3407028 Kb Free Space: 3407024 Kb
 Minimum: 3407028 Kb Maximum: 4193280 Kb

 Available Pages: 699186 (2796744 Kb)

 ResAvail Pages: 757454 (3029816 Kb)

 Locked IO Pages: 0 (0 Kb)

 Free System PTEs: 370673 (1482692 Kb)

 Modified Pages: 9799 (39196 Kb)

 Modified PF Pages: 9798 (39192 Kb)

 NonPagedPool Usage: 0 (0 Kb)

 NonPagedPoolNx Usage: 8735 (34940 Kb)

 NonPagedPool Max: 522368 (2089472 Kb)

 PagedPool 0 Usage: 17573 (70292 Kb)

 PagedPool 1 Usage: 2417 (9668 Kb)

 PagedPool 2 Usage: 0 (0 Kb)

 PagedPool 3 Usage: 0 (0 Kb)

 PagedPool 4 Usage: 28 (112 Kb)

 PagedPool Usage: 20018 (80072 Kb)

 PagedPool Maximum: 523264 (2093056 Kb)

 Session Commit: 6218 (24872 Kb)

 Shared Commit: 18591 (74364 Kb)

 Special Pool: 0 (0 Kb)

 Shared Process: 2151 (8604 Kb)

 PagedPool Commit: 20031 (80124 Kb)

 Driver Commit: 4531 (18124 Kb)

 Committed pages: 179178 (716712 Kb)

 Commit limit: 1702548 (6810192 Kb)

 Total Private: 66073 (264292 Kb)

 0a30 CCC.exe 11078 (44312 Kb)

 0548 dwm.exe 6548 (26192 Kb)

 091c MOM.exe 6103 (24412 Kb)

 ...

We will describe many of the details of the output of this command later in this chapter.

 CHAPTER 10 Memory Management 193

Services Provided by the Memory Manager

The memory manager provides a set of system services to allocate and free virtual memory, share
memory between processes, map files into memory, flush virtual pages to disk, retrieve information
about a range of virtual pages, change the protection of virtual pages, and lock the virtual pages into
memory.

Like other Windows executive services, the memory management services allow their caller to
supply a process handle indicating the particular process whose virtual memory is to be manipulated.
The caller can thus manipulate either its own memory or (with the proper permissions) the memory
of another process. For example, if a process creates a child process, by default it has the right to
manipulate the child process’s virtual memory. Thereafter, the parent process can allocate, deallocate,
read, and write memory on behalf of the child process by calling virtual memory services and pass-
ing a handle to the child process as an argument. This feature is used by subsystems to manage the
memory of their client processes. It is also essential for implementing debuggers because debuggers
must be able to read and write to the memory of the process being debugged.

Most of these services are exposed through the Windows API. The Windows API has three groups
of functions for managing memory in applications: heap functions (Heapxxx and the older interfaces
Localxxx and Globalxxx, which internally make use of the Heapxxx APIs), which may be used for allo-
cations smaller than a page; virtual memory functions, which operate with page granularity (Virtual-
xxx); and memory mapped file functions (CreateFileMapping, CreateFileMappingNuma, MapViewOf-
File, MapViewOfFileEx, and MapViewOfFileExNuma). (We’ll describe the heap manager later in this
chapter.)

The memory manager also provides a number of services (such as allocating and deallocating
physical memory and locking pages in physical memory for direct memory access [DMA] transfers) to
other kernel-mode components inside the executive as well as to device drivers. These functions be-
gin with the prefix Mm. In addition, though not strictly part of the memory manager, some executive
support routines that begin with Ex are used to allocate and deallocate from the system heaps (paged
and nonpaged pool) as well as to manipulate look-aside lists. We’ll touch on these topics later in this
chapter in the section “Kernel-Mode Heaps (System Memory Pools).”

Large and Small Pages
The virtual address space is divided into units called pages. That is because the hardware memory
management unit translates virtual to physical addresses at the granularity of a page. Hence, a page
is the smallest unit of protection at the hardware level. (The various page protection options are
described in the section “Protecting Memory” later in the chapter.) The processors on which Windows
runs support two page sizes, called small and large. The actual sizes vary based on the processor
architecture, and they are listed in Table 10-1.

194 Windows Internals, Sixth Edition, Part 2

TABLE 10-1 Page Sizes

Architecture Small Page Size Large Page Size Small Pages per Large Page

x86 4 KB 4 MB (2 MB if Physical Address
Extension (PAE) enabled (PAE is
described later in the chapter)

1,024 (512 with PAE)

x64 4 KB 2 MB 512

IA64 8 KB 16 MB 2,048

Note IA64 processors support a variety of dynamically configurable page sizes, from 4 KB
up to 256 MB. Windows on Itanium uses 8 KB and 16 MB for small and large pages, respec-
tively, as a result of performance tests that confirmed these values as optimal. Additionally,
recent x64 processors support a size of 1 GB for large pages, but Windows does not use
this feature.

The primary advantage of large pages is speed of address translation for references to other data
within the large page. This advantage exists because the first reference to any byte within a large
page will cause the hardware’s translation look-aside buffer (TLB, described in a later section) to have
in its cache the information necessary to translate references to any other byte within the large page.
If small pages are used, more TLB entries are needed for the same range of virtual addresses, thus
increasing recycling of entries as new virtual addresses require translation. This, in turn, means having
to go back to the page table structures when references are made to virtual addresses outside the
scope of a small page whose translation has been cached. The TLB is a very small cache, and thus
large pages make better use of this limited resource.

To take advantage of large pages on systems with more than 2 GB of RAM, Windows maps with
large pages the core operating system images (Ntoskrnl.exe and Hal.dll) as well as core operat-
ing system data (such as the initial part of nonpaged pool and the data structures that describe the
state of each physical memory page). Windows also automatically maps I/O space requests (calls by
device drivers to MmMapIoSpace) with large pages if the request is of satisfactory large page length
and alignment. In addition, Windows allows applications to map their images, private memory, and
 page-file-backed sections with large pages. (See the MEM_LARGE_PAGE flag on the VirtualAlloc,
Virtual AllocEx, and VirtualAllocExNuma functions.) You can also specify other device drivers to be
mapped with large pages by adding a multistring registry value to HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory Management\LargePageDrivers and specifying the names of the
drivers as separately null-terminated strings.

Attempts to allocate large pages may fail after the operating system has been running for an
extended period, because the physical memory for each large page must occupy a significant number
(see Table 10-1) of physically contiguous small pages, and this extent of physical pages must further-
more begin on a large page boundary. (For example, physical pages 0 through 511 could be used as
a large page on an x64 system, as could physical pages 512 through 1,023, but pages 10 through 521
could not.) Free physical memory does become fragmented as the system runs. This is not a problem
for allocations using small pages but can cause large page allocations to fail.

 CHAPTER 10 Memory Management 195

It is not possible to specify anything but read/write access to large pages. The memory is also
always nonpageable, because the page file system does not support large pages. And, because the
memory is nonpageable, it is not considered part of the process working set (described later). Nor are
large page allocations subject to job-wide limits on virtual memory usage.

There is an unfortunate side effect of large pages. Each page (whether large or small) must be
mapped with a single protection that applies to the entire page (because hardware memory protec-
tion is on a per-page basis). If a large page contains, for example, both read-only code and read/
write data, the page must be marked as read/write, which means that the code will be writable. This
means that device drivers or other kernel-mode code could, as a result of a bug, modify what is sup-
posed to be read-only operating system or driver code without causing a memory access violation.
If small pages are used to map the operating system’s kernel-mode code, the read-only portions of
Ntoskrnl.exe and Hal.dll can be mapped as read-only pages. Using small pages does reduce efficiency
of address translation, but if a device driver (or other kernel-mode code) attempts to modify a read-
only part of the operating system, the system will crash immediately with the exception information
pointing at the offending instruction in the driver. If the write was allowed to occur, the system would
likely crash later (in a harder-to-diagnose way) when some other component tried to use the cor-
rupted data.

If you suspect you are experiencing kernel code corruptions, enable Driver Verifier (described later
in this chapter), which will disable the use of large pages.

Reserving and Committing Pages
Pages in a process virtual address space are free, reserved, committed, or shareable. Committed
and shareable pages are pages that, when accessed, ultimately translate to valid pages in physical
memory.

Committed pages are also referred to as private pages. This reflects the fact that committed pages
cannot be shared with other processes, whereas shareable pages can be (but, of course, might be in
use by only one process).

Private pages are allocated through the Windows VirtualAlloc, VirtualAllocEx, and VirtualAlloc-
ExNuma functions. These functions allow a thread to reserve address space and then commit portions
of the reserved space. The intermediate “reserved” state allows the thread to set aside a range of con-
tiguous virtual addresses for possible future use (such as an array), while consuming negligible system
resources, and then commit portions of the reserved space as needed as the application runs. Or, if
the size requirements are known in advance, a thread can reserve and commit in the same function
call. In either case, the resulting committed pages can then be accessed by the thread. Attempting to
access free or reserved memory results in an exception because the page isn’t mapped to any storage
that can resolve the reference.

If committed (private) pages have never been accessed before, they are created at the time of first
access as zero-initialized pages (or demand zero). Private committed pages may later be automati-
cally written to the paging file by the operating system if required by demand for physical memory.
“Private” refers to the fact that these pages are normally inaccessible to any other process.

196 Windows Internals, Sixth Edition, Part 2

Note There are functions, such as ReadProcessMemory and WriteProcessMemory, that
apparently permit cross-process memory access, but these are implemented by running
kernel-mode code in the context of the target process (this is referred to as attaching to
the process). They also require that either the security descriptor of the target process grant
the accessor the PROCESS_VM_READ or PROCESS_VM_WRITE right, respectively, or that
the accessor holds SeDebugPrivilege, which is by default granted only to members of the
Administrators group.

Shared pages are usually mapped to a view of a section, which in turn is part or all of a file, but
may instead represent a portion of page file space. All shared pages can potentially be shared with
other processes. Sections are exposed in the Windows API as file mapping objects.

When a shared page is first accessed by any process, it will be read in from the associated mapped
file (unless the section is associated with the paging file, in which case it is created as a zero-initialized
page). Later, if it is still resident in physical memory, the second and subsequent processes accessing
it can simply use the same page contents that are already in memory. Shared pages might also have
been prefetched by the system.

Two upcoming sections of this chapter, “Shared Memory and Mapped Files” and “Section Objects,”
go into much more detail about shared pages. Pages are written to disk through a mechanism called
modified page writing. This occurs as pages are moved from a process’s working set to a systemwide
list called the modified page list; from there, they are written to disk (or remote storage). (Working
sets and the modified list are explained later in this chapter.) Mapped file pages can also be written
back to their original files on disk as a result of an explicit call to FlushViewOfFile or by the mapped
page writer as memory demands dictate.

You can decommit private pages and/or release address space with the VirtualFree or VirtualFreeEx
function. The difference between decommittal and release is similar to the difference between reser-
vation and committal—decommitted memory is still reserved, but released memory has been freed;
it is neither committed nor reserved.

Using the two-step process of reserving and then committing virtual memory defers commit-
ting pages—and, thereby, defers adding to the system “commit charge” described in the next sec-
tion—until needed, but keeps the convenience of virtual contiguity. Reserving memory is a relatively
inexpensive operation because it consumes very little actual memory. All that needs to be updated
or constructed is the relatively small internal data structures that represent the state of the process
address space. (We’ll explain these data structures, called page tables and virtual address descriptors,
or VADs, later in the chapter.)

One extremely common use for reserving a large space and committing portions of it as needed is
the user-mode stack for each thread. When a thread is created, a stack is created by reserving a con-
tiguous portion of the process address space. (1 MB is the default; you can override this size with the

 CHAPTER 10 Memory Management 197

CreateThread and CreateRemoteThread function calls or change it on an imagewide basis by using the
/STACK linker flag.) By default, the initial page in the stack is committed and the next page is marked
as a guard page (which isn’t committed) that traps references beyond the end of the committed por-
tion of the stack and expands it.

EXPERIMENT: Reserved vs. Committed Pages
The TestLimit utility (which you can download from the Windows Internals book webpage) can
be used to allocate large amounts of either reserved or private committed virtual memory, and
the difference can be observed via Process Explorer. First, open two Command Prompt win-
dows. Invoke TestLimit in one of them to create a large amount of reserved memory:

C:\temp>testlimit -r 1 -c 800

Testlimit v5.2 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Process ID: 1544

Reserving private bytes 1 MB at a time ...
Leaked 800 MB of reserved memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

In the other window, create a similar amount of committed memory:

C:\temp>testlimit -m 1 -c 800

Testlimit v5.2 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Process ID: 2828

Leaking private bytes 1 KB at a time ...
Leaked 800 MB of private memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

Now run Task Manager, go to the Processes tab, and use the Select Columns command on
the View menu to include Memory—Commit Size in the display. Find the two instances of Test-
Limit in the list. They should appear something like the following figure.

198 Windows Internals, Sixth Edition, Part 2

Task Manager shows the committed size, but it has no counters that will reveal the reserved
memory in the other TestLimit process.

Finally, invoke Process Explorer. Choose View, Select Columns, select the Process Memory
tab, and enable the Private Bytes and Virtual Size counters. Find the two TestLimit processes in
the main display:

Notice that the virtual sizes of the two processes are identical, but only one shows a value
for Private Bytes comparable to that for Virtual Size. The large difference in the other TestLimit
process (process ID 1544) is due to the reserved memory. The same comparison could be made
in Performance Monitor by looking at the Process | Virtual Bytes and Process | Private Bytes
counters.

 CHAPTER 10 Memory Management 199

Commit Limit
On Task Manager’s Performance tab, there are two numbers following the legend Commit. The
memory manager keeps track of private committed memory usage on a global basis, termed commit-
ment or commit charge; this is the first of the two numbers, which represents the total of all commit-
ted virtual memory in the system.

There is a systemwide limit, called the system commit limit or simply the commit limit, on the
amount of committed virtual memory that can exist at any one time. This limit corresponds to the
current total size of all paging files, plus the amount of RAM that is usable by the operating system.
This is the second of the two numbers displayed as Commit on Task Manager’s Performance tab. The
memory manager can increase the commit limit automatically by expanding one or more of the pag-
ing files, if they are not already at their configured maximum size.

Commit charge and the system commit limit will be explained in more detail in a later section.

Locking Memory
In general, it’s better to let the memory manager decide which pages remain in physical memory.
However, there might be special circumstances where it might be necessary for an application or
device driver to lock pages in physical memory. Pages can be locked in memory in two ways:

 ■ Windows applications can call the VirtualLock function to lock pages in their process working
set. Pages locked using this mechanism remain in memory until explicitly unlocked or until the
process that locked them terminates. The number of pages a process can lock can’t exceed
its minimum working set size minus eight pages. Therefore, if a process needs to lock more
pages, it can increase its working set minimum with the SetProcessWorkingSetSizeEx function
(referred to in the section “Working Set Management”).

 ■ Device drivers can call the kernel-mode functions MmProbeAndLockPages, MmLockPagable-
CodeSection, MmLockPagableDataSection, or MmLockPagableSectionByHandle. Pages locked
using this mechanism remain in memory until explicitly unlocked. The last three of these APIs
enforce no quota on the number of pages that can be locked in memory because the resident
available page charge is obtained when the driver first loads; this ensures that it can never
cause a system crash due to overlocking. For the first API, quota charges must be obtained or
the API will return a failure status.

Allocation Granularity
Windows aligns each region of reserved process address space to begin on an integral boundary
defined by the value of the system allocation granularity, which can be retrieved from the Windows
GetSystemInfo or GetNativeSystemInfo function. This value is 64 KB, a granularity that is used by the
memory manager to efficiently allocate metadata (for example, VADs, bitmaps, and so on) to support
various process operations. In addition, if support were added for future processors with larger page
sizes (for example, up to 64 KB) or virtually indexed caches that require systemwide physical-to-virtual

200 Windows Internals, Sixth Edition, Part 2

page alignment, the risk of requiring changes to applications that made assumptions about allocation
alignment would be reduced.

Note Windows kernel-mode code isn’t subject to the same restrictions; it can reserve
memory on a single-page granularity (although this is not exposed to device drivers for
the reasons detailed earlier). This level of granularity is primarily used to pack TEB alloca-
tions more densely, and because this mechanism is internal only, this code can easily be
changed if a future platform requires different values. Also, for the purposes of supporting
16-bit and MS-DOS applications on x86 systems only, the memory manager provides the
MEM_DOS_LIM flag to the MapViewOfFileEx API, which is used to force the use of single-
page granularity.

Finally, when a region of address space is reserved, Windows ensures that the size and base of
the region is a multiple of the system page size, whatever that might be. For example, because x86
systems use 4-KB pages, if you tried to reserve a region of memory 18 KB in size, the actual amount
reserved on an x86 system would be 20 KB. If you specified a base address of 3 KB for an 18-KB
region, the actual amount reserved would be 24 KB. Note that the VAD for the allocation would then
also be rounded to 64-KB alignment/length, thus making the remainder of it inaccessible. (VADs will
be described later in this chapter.)

Shared Memory and Mapped Files
As is true with most modern operating systems, Windows provides a mechanism to share memory
among processes and the operating system. Shared memory can be defined as memory that is vis-
ible to more than one process or that is present in more than one process virtual address space. For
example, if two processes use the same DLL, it would make sense to load the referenced code pages
for that DLL into physical memory only once and share those pages between all processes that map
the DLL, as illustrated in Figure 10-1.

Each process would still maintain its private memory areas in which to store private data, but the
DLL code and unmodified data pages could be shared without harm. As we’ll explain later, this kind of
sharing happens automatically because the code pages in executable images (.exe and .dll files, and
several other types like screen savers (.scr), which are essentially DLLs under other names) are mapped
as execute-only and writable pages are mapped as copy-on-write. (See the section “Copy-on-Write”
for more information.)

The underlying primitives in the memory manager used to implement shared memory are called
section objects, which are exposed as file mapping objects in the Windows API. The internal structure
and implementation of section objects are described in the section “Section Objects” later in this
chapter.

This fundamental primitive in the memory manager is used to map virtual addresses, whether in
main memory, in the page file, or in some other file that an application wants to access as if it were in

 CHAPTER 10 Memory Management 201

memory. A section can be opened by one process or by many; in other words, section objects don’t
necessarily equate to shared memory.

Process 1
virtual memory

Physical
memory

Process 2
virtual memory

DLL code

FIGURE 10-1 Sharing memory between processes

A section object can be connected to an open file on disk (called a mapped file) or to committed
memory (to provide shared memory). Sections mapped to committed memory are called page-file-
backed sections because the pages are written to the paging file (as opposed to a mapped file) if
demands on physical memory require it. (Because Windows can run with no paging file, page-file-
backed sections might in fact be “backed” only by physical memory.) As with any other empty page
that is made visible to user mode (such as private committed pages), shared committed pages are
always zero-filled when they are first accessed to ensure that no sensitive data is ever leaked.

To create a section object, call the Windows CreateFileMapping or CreateFileMappingNuma
function, specifying the file handle to map it to (or INVALID_HANDLE_VALUE for a page-file-backed
section) and optionally a name and security descriptor. If the section has a name, other processes
can open it with OpenFileMapping. Or you can grant access to section objects through either handle
inheritance (by specifying that the handle be inheritable when opening or creating the handle) or
handle duplication (by using DuplicateHandle). Device drivers can also manipulate section objects
with the ZwOpenSection, ZwMapViewOfSection, and ZwUnmapViewOfSection functions.

A section object can refer to files that are much larger than can fit in the address space of a pro-
cess. (If the paging file backs a section object, sufficient space must exist in the paging file and/or
RAM to contain it.) To access a very large section object, a process can map only the portion of the
section object that it requires (called a view of the section) by calling the MapViewOfFile, MapViewOf-
FileEx, or MapViewOfFileExNuma function and then specifying the range to map. Mapping views

202 Windows Internals, Sixth Edition, Part 2

permits processes to conserve address space because only the views of the section object needed at
the time must be mapped into memory.

Windows applications can use mapped files to conveniently perform I/O to files by simply making
them appear in their address space. User applications aren’t the only consumers of section objects:
the image loader uses section objects to map executable images, DLLs, and device drivers into
memory, and the cache manager uses them to access data in cached files. (For information on how
the cache manager integrates with the memory manager, see Chapter 11, “Cache Manager.”) The
implementation of shared memory sections, both in terms of address translation and the internal data
structures, is explained later in this chapter.

EXPERIMENT: Viewing Memory Mapped Files
You can list the memory mapped files in a process by using Process Explorer from Sysinternals.
To view the memory mapped files by using Process Explorer, configure the lower pane to show
the DLL view. (Click on View, Lower Pane View, DLLs.) Note that this is more than just a list of
DLLs—it represents all memory mapped files in the process address space. Some of these are
DLLs, one is the image file (EXE) being run, and additional entries might represent memory
mapped data files.

For example, the following display from Process Explorer shows a WinDbg process using
several different memory mappings to access the memory dump file being examined. Like most
Windows programs, it (or one of the Windows DLLs it is using) is also using memory mapping
to access a Windows data file called Locale.nls, which is part of the internationalization support
in Windows.

You can also search for memory mapped files by clicking Find, DLL. This can be useful when
trying to determine which process(es) are using a DLL or a memory mapped file that you are
trying to replace.

 CHAPTER 10 Memory Management 203

Protecting Memory
As explained in Chapter 1, “Concepts and Tools,” in Part 1, Windows provides memory protection so
that no user process can inadvertently or deliberately corrupt the address space of another process or
of the operating system. Windows provides this protection in four primary ways.

First, all systemwide data structures and memory pools used by kernel-mode system components
can be accessed only while in kernel mode—user-mode threads can’t access these pages. If they
attempt to do so, the hardware generates a fault, which in turn the memory manager reports to the
thread as an access violation.

Second, each process has a separate, private address space, protected from being accessed by any
thread belonging to another process. Even shared memory is not really an exception to this because
each process accesses the shared regions using addresses that are part of its own virtual address
space. The only exception is if another process has virtual memory read or write access to the process
object (or holds SeDebugPrivilege) and thus can use the ReadProcessMemory or WriteProcessMemory
function. Each time a thread references an address, the virtual memory hardware, in concert with the
memory manager, intervenes and translates the virtual address into a physical one. By controlling
how virtual addresses are translated, Windows can ensure that threads running in one process don’t
inappropriately access a page belonging to another process.

Third, in addition to the implicit protection virtual-to-physical address translation offers, all proces-
sors supported by Windows provide some form of hardware-controlled memory protection (such as
read/write, read-only, and so on); the exact details of such protection vary according to the proces-
sor. For example, code pages in the address space of a process are marked read-only and are thus
protected from modification by user threads.

Table 10-2 lists the memory protection options defined in the Windows API. (See the Virtual-
Protect, VirtualProtectEx, VirtualQuery, and VirtualQueryEx functions.)

TABLE 10-2 Memory Protection Options Defined in the Windows API

Attribute Description

PAGE_NOACCESS Any attempt to read from, write to, or execute code in this region causes an access
violation.

PAGE_READONLY Any attempt to write to (and on processors with no execute support, execute code
in) memory causes an access violation, but reads are permitted.

PAGE_READWRITE The page is readable and writable but not executable.

PAGE_EXECUTE Any attempt to write to code in memory in this region causes an access violation,
but execution (and read operations on all existing processors) is permitted.

PAGE_EXECUTE_READ* Any attempt to write to memory in this region causes an access violation, but
executes and reads are permitted.

PAGE_EXECUTE_READWRITE* The page is readable, writable, and executable—any attempted access will succeed.

PAGE_WRITECOPY Any attempt to write to memory in this region causes the system to give the
process a private copy of the page. On processors with no-execute support,
attempts to execute code in memory in this region cause an access violation.

204 Windows Internals, Sixth Edition, Part 2

Attribute Description

PAGE_EXECUTE_WRITECOPY Any attempt to write to memory in this region causes the system to give the
process a private copy of the page. Reading and executing code in this region is
permitted. (No copy is made in this case.)

PAGE_GUARD Any attempt to read from or write to a guard page raises an EXCEPTION_GUARD_
PAGE exception and turns off the guard page status. Guard pages thus act as
a one-shot alarm. Note that this flag can be specified with any of the page
protections listed in this table except PAGE_NOACCESS.

PAGE_NOCACHE Uses physical memory that is not cached. This is not recommended for general
usage. It is useful for device drivers—for example, mapping a video frame buffer
with no caching.

PAGE_WRITECOMBINE Enables write-combined memory accesses. When enabled, the processor does
not cache memory writes (possibly causing significantly more memory traffic
than if memory writes were cached), but it does try to aggregate write requests
to optimize performance. For example, if multiple writes are made to the same
address, only the most recent write might occur. Separate writes to adjacent
addresses may be similarly collapsed into a single large write. This is not typically
used for general applications, but it is useful for device drivers—for example,
mapping a video frame buffer as write combined.

* No execute protection is supported on processors that have the necessary hardware support (for example, all x64 and
IA64 processors) but not in older x86 processors.

And finally, shared memory section objects have standard Windows access control lists (ACLs) that
are checked when processes attempt to open them, thus limiting access of shared memory to those
processes with the proper rights. Access control also comes into play when a thread creates a sec-
tion to contain a mapped file. To create the section, the thread must have at least read access to the
underlying file object or the operation will fail.

Once a thread has successfully opened a handle to a section, its actions are still subject to the
memory manager and the hardware-based page protections described earlier. A thread can change
the page-level protection on virtual pages in a section if the change doesn’t violate the permissions
in the ACL for that section object. For example, the memory manager allows a thread to change the
pages of a read-only section to have copy-on-write access but not to have read/write access. The
copy-on-write access is permitted because it has no effect on other processes sharing the data.

No Execute Page Protection
No execute page protection (also referred to as data execution prevention, or DEP) causes an attempt
to transfer control to an instruction in a page marked as “no execute” to generate an access fault.
This can prevent certain types of malware from exploiting bugs in the system through the execu-
tion of code placed in a data page such as the stack. DEP can also catch poorly written programs
that don’t correctly set permissions on pages from which they intend to execute code. If an attempt
is made in kernel mode to execute code in a page marked as no execute, the system will crash with
the ATTEMPTED_EXECUTE_OF_NOEXECUTE_MEMORY bugcheck code. (See Chapter 14, “Crash
Dump Analysis,” for an explanation of these codes.) If this occurs in user mode, a STATUS_ACCESS_
VIOLATION (0xc0000005) exception is delivered to the thread attempting the illegal reference.
If a process allocates memory that needs to be executable, it must explicitly mark such pages by

 CHAPTER 10 Memory Management 205

specifying the PAGE_EXECUTE, PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE, or PAGE_
EXECUTE_WRITECOPY flags on the page granularity memory allocation functions.

On 32-bit x86 systems that support DEP, bit 63 in the page table entry (PTE) is used to mark a page
as nonexecutable. Therefore, the DEP feature is available only when the processor is running in Physi-
cal Address Extension (PAE) mode, without which page table entries are only 32 bits wide. (See the
section “Physical Address Extension (PAE)” later in this chapter.) Thus, support for hardware DEP on
32-bit systems requires loading the PAE kernel (%SystemRoot%\System32\Ntkrnlpa.exe), even if that
system does not require extended physical addressing (for example, physical addresses greater than
4 GB). The operating system loader automatically loads the PAE kernel on 32-bit systems that support
hardware DEP. To force the non-PAE kernel to load on a system that supports hardware DEP, the BCD
option nx must be set to AlwaysOff, and the pae option must be set to ForceDisable.

On 64-bit versions of Windows, execution protection is always applied to all 64-bit processes
and device drivers and can be disabled only by setting the nx BCD option to AlwaysOff. Execution
protection for 32-bit programs depends on system configuration settings, described shortly. On
64-bit Windows, execution protection is applied to thread stacks (both user and kernel mode), user-
mode pages not specifically marked as executable, kernel paged pool, and kernel session pool (for a
description of kernel memory pools, see the section “Kernel-Mode Heaps (System Memory Pools).”
However, on 32-bit Windows, execution protection is applied only to thread stacks and user-mode
pages, not to paged pool and session pool.

The application of execution protection for 32-bit processes depends on the value of the BCD nx
option. The settings can be changed by going to the Data Execution Prevention tab under Computer,
Properties, Advanced System Settings, Performance Settings. (See Figure 10-2.) When you configure
no execute protection in the Performance Options dialog box, the BCD nx option is set to the appro-
priate value. Table 10-3 lists the variations of the values and how they correspond to the DEP settings
tab. The registry lists 32-bit applications that are excluded from execution protection under the key
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\AppCompatFlags\Layers, with the value
name being the full path of the executable and the data set to “DisableNXShowUI”.

On Windows client versions (both 64-bit and 32-bit) execution protection for 32-bit processes
is configured by default to apply only to core Windows operating system executables (the nx BCD
option is set to OptIn) so as not to break 32-bit applications that might rely on being able to execute
code in pages not specifically marked as executable, such as self-extracting or packed applications.
On Windows server systems, execution protection for 32-bit applications is configured by default to
apply to all 32-bit programs (the nx BCD option is set to OptOut).

Note To obtain a complete list of which programs are protected, install the Windows
Application Compatibility Toolkit (downloadable from www.microsoft.com) and run the
Compatibility Administrator Tool. Click System Database, Applications, and then Windows
Components. The pane at the right shows the list of protected executables.

www.microsoft.com

206 Windows Internals, Sixth Edition, Part 2

FIGURE 10-2 Data Execution Prevention tab settings

TABLE 10-3 BCD nx Values

BCD nx Value Option on DEP Settings Tab Meaning

OptIn Turn on DEP for essential Windows
programs and services only

Enables DEP for core Windows system images. Enables 32-bit
processes to dynamically configure DEP for their lifetime.

OptOut Turn on DEP for all programs and
services except those I select

Enables DEP for all executables except those specified.
Enables 32-bit processes to dynamically configure DEP for
their lifetime. Enables system compatibility fixes for DEP.

AlwaysOn No dialog box option for this
setting

Enables DEP for all components with no ability to exclude
certain applications. Disables dynamic configuration for 32-bit
processes, and disables system compatibility fixes.

AlwaysOff No dialog box option for this
setting

Disables DEP (not recommended). Disables dynamic
configuration for 32-bit processes.

Even if you force DEP to be enabled, there are still other methods through which applications can
disable DEP for their own images. For example, regardless of the execution protection options that
are enabled, the image loader (see Chapter 3 in Part 1 for more information about the image loader)
will verify the signature of the executable against known copy-protection mechanisms (such as
SafeDisc and SecuROM) and disable execution protection to provide compatibility with older copy-
protected software such as computer games.

 CHAPTER 10 Memory Management 207

EXPERIMENT: Looking at DEP Protection on Processes
Process Explorer can show you the current DEP status for all the processes on your system,
including whether the process is opted in or benefiting from permanent protection. To look at
the DEP status for processes, right-click any column in the process tree, choose Select Columns,
and then select DEP Status on the Process Image tab. Three values are possible:

 ■ DEP (permanent) This means that the process has DEP enabled because it is a “neces-
sary Windows program or service.”

 ■ DEP This means that the process opted in to DEP. This may be due to a systemwide
policy to opt in all 32-bit processes, an API call such as SetProcessDEPPolicy, or setting the
linker flag /NXCOMPAT when the image was built.

 ■ Nothing If the column displays no information for this process, DEP is disabled, either
because of a systemwide policy or an explicit API call or shim.

The following Process Explorer window shows an example of a system on which DEP is set to
OptOut, Turn On DEP For All Programs And Services Except Those That I Select. Note that two
processes running in the user’s login, a third-party sound-card manager and a USB port moni-
tor, show simply DEP, meaning that DEP can be turned off for them via the dialog box shown in
Figure 10-2. The other processes shown are running Windows in-box programs and show DEP
(Permanent), indicating that DEP cannot be disabled for them.

Additionally, to provide compatibility with older versions of the Active Template Library (ATL)
framework (version 7.1 or earlier), the Windows kernel provides an ATL thunk emulation environ-
ment. This environment detects ATL thunk code sequences that have caused the DEP exception and
emulates the expected operation. Application developers can request that ATL thunk emulation not
be applied by using the latest Microsoft C++ compiler and specifying the /NXCOMPAT flag (which

208 Windows Internals, Sixth Edition, Part 2

sets the IMAGE_DLLCHARACTERISTICS_NX_COMPAT flag in the PE header), which tells the system
that the executable fully supports DEP. Note that ATL thunk emulation is permanently disabled if the
AlwaysOn value is set.

Finally, if the system is in OptIn or OptOut mode and executing a 32-bit process, the SetProcess-
DEPPolicy function allows a process to dynamically disable DEP or to permanently enable it. (Once
enabled through this API, DEP cannot be disabled programmatically for the lifetime of the process.)
This function can also be used to dynamically disable ATL thunk emulation in case the image wasn’t
compiled with the /NXCOMPAT flag. On 64-bit processes or systems booted with AlwaysOff or
 AlwaysOn, the function always returns a failure. The GetProcessDEPPolicy function returns the 32-bit
per-process DEP policy (it fails on 64-bit systems, where the policy is always the same— enabled),
while GetSystemDEPPolicy can be used to return a value corresponding to the policies in Table 10-3.

Software Data Execution Prevention
For older processors that do not support hardware no execute protection, Windows supports limited
software data execution prevention (DEP). One aspect of software DEP reduces exploits of the ex-
ception handling mechanism in Windows. (See Chapter 3 in Part 1 for a description of structured
exception handling.) If the program’s image files are built with safe structured exception handling (a
feature in the Microsoft Visual C++ compiler that is enabled with the /SAFESEH flag), before an excep-
tion is dispatched, the system verifies that the exception handler is registered in the function table
(built by the compiler) located within the image file.

The previous mechanism depends on the program’s image files being built with safe structured ex-
ception handling. If they are not, software DEP guards against overwrites of the structured exception
handling chain on the stack in x86 processes via a mechanism known as Structured Exception Handler
Overwrite Protection (SEHOP). A new symbolic exception registration record is added on the stack
when a thread first begins user-mode execution. The normal exception registration chain will lead
to this record. When an exception occurs, the exception dispatcher will first walk the list of exception
handler registration records to ensure that the chain leads to this symbolic record. If it does not, the
exception chain must have been corrupted (either accidentally or deliberately), and the exception dis-
patcher will simply terminate the process without calling any of the exception handlers described on
the stack. Address Space Layout Randomization (ASLR) contributes to the robustness of this method
by making it more difficult for attacking code to know the location of the function pointed to by the
symbolic exception registration record, and so to construct a fake symbolic record of its own.

To further validate the SEH handler when /SAFESEH is not present, a mechanism called Image
 Dispatch Mitigation ensures that the SEH handler is located within the same image section as the
function that raised an exception, which is normally the case for most programs (although not neces-
sarily, since some DLLs might have exception handlers that were set up by the main executable, which
is why this mitigation is off by default). Finally, Executable Dispatch Mitigation further makes sure that
the SEH handler is located within an executable page—a less strong requirement than Image Dis-
patch Mitigation, but one with fewer compatibility issues.

 CHAPTER 10 Memory Management 209

Two other methods for software DEP that the system implements are stack cookies and pointer en-
coding. The first relies on the compiler to insert special code at the beginning and end of each poten-
tially exploitable function. The code saves a special numerical value (the cookie) on the stack on entry
and validates the cookie’s value before returning to the caller saved on the stack (which would have
now been corrupted to point to a piece of malicious code). If the cookie value is mismatched, the ap-
plication is terminated and not allowed to continue executing. The cookie value is computed for each
boot when executing the first user-mode thread, and it is saved in the KUSER_SHARED_DATA struc-
ture. The image loader reads this value and initializes it when a process starts executing in user mode.
(See Chapter 3 in Part 1 for more information on the shared data section and the image loader.)

The cookie value that is calculated is also saved for use with the EncodeSystemPointer and
 DecodeSystemPointer APIs, which implement pointer encoding. When an application or a DLL has
static pointers that are dynamically called, it runs the risk of having malicious code overwrite the
pointer values with code that the malware controls. By encoding all pointers with the cookie value
and then decoding them, when malicious code sets a nonencoded pointer, the application will still
attempt to decode the pointer, resulting in a corrupted value and causing the program to crash. The
EncodePointer and DecodePointer APIs provide similar protection but with a per-process cookie (cre-
ated on demand) instead of a per-system cookie.

Note The system cookie is a combination of the system time at generation, the stack value
of the saved system time, the number of page faults, and the current interrupt time.

Copy-on-Write
Copy-on-write page protection is an optimization the memory manager uses to conserve physical
memory. When a process maps a copy-on-write view of a section object that contains read/write
pages, instead of making a process private copy at the time the view is mapped, the memory man-
ager defers making a copy of the pages until the page is written to. For example, as shown in Figure
10-3, two processes are sharing three pages, each marked copy-on-write, but neither of the two
processes has attempted to modify any data on the pages.

Page 1

Page 2

Page 3

Physical memory

Original data

Process
address
space

Original data

Process
address
space

FIGURE 10-3 The “before” of copy-on-write

210 Windows Internals, Sixth Edition, Part 2

If a thread in either process writes to a page, a memory management fault is generated. The
memory manager sees that the write is to a copy-on-write page, so instead of reporting the fault as
an access violation, it allocates a new read/write page in physical memory, copies the contents of the
original page to the new page, updates the corresponding page-mapping information (explained
later in this chapter) in this process to point to the new location, and dismisses the exception, thus
causing the instruction that generated the fault to be reexecuted. This time, the write operation suc-
ceeds, but as shown in Figure 10-4, the newly copied page is now private to the process that did the
writing and isn’t visible to the other process still sharing the copy-on-write page. Each new process
that writes to that same shared page will also get its own private copy.

Page 1

Page 2

Page 3

Copy of page 2

Physical memory

Original data

Process
address
space

Modified data

Process
address
space

FIGURE 10-4 The “after” of copy-on-write

One application of copy-on-write is to implement breakpoint support in debuggers. For example,
by default, code pages start out as execute-only. If a programmer sets a breakpoint while debug-
ging a program, however, the debugger must add a breakpoint instruction to the code. It does this
by first changing the protection on the page to PAGE_EXECUTE_READWRITE and then changing the
instruction stream. Because the code page is part of a mapped section, the memory manager cre-
ates a private copy for the process with the breakpoint set, while other processes continue using the
unmodified code page.

Copy-on-write is one example of an evaluation technique known as lazy evaluation that the
memory manager uses as often as possible. Lazy-evaluation algorithms avoid performing an expen-
sive operation until absolutely required—if the operation is never required, no time is wasted on it.

To examine the rate of copy-on-write faults, see the performance counter Memory: Write
Copies/sec.

Address Windowing Extensions
Although the 32-bit version of Windows can support up to 64 GB of physical memory (as shown in
Table 2-2 in Part 1), each 32-bit user process has by default only a 2-GB virtual address space. (This
can be configured up to 3 GB when using the increaseuserva BCD option, described in the upcoming
section “User Address Space Layout.”) An application that needs to make more than 2 GB (or 3 GB) of
data easily available in a single process could do so via file mapping, remapping a part of its address

 CHAPTER 10 Memory Management 211

space into various portions of a large file. However, significant paging would be involved upon each
remap.

For higher performance (and also more fine-grained control), Windows provides a set of functions
called Address Windowing Extensions (AWE). These functions allow a process to allocate more physical
memory than can be represented in its virtual address space. It then can access the physical memory
by mapping a portion of its virtual address space into selected portions of the physical memory at
various times.

Allocating and using memory via the AWE functions is done in three steps:

1. Allocating the physical memory to be used. The application uses the Windows functions
 AllocateUserPhysicalPages or AllocateUserPhysicalPagesNuma. (These require the Lock Pages
In Memory user right.)

2. Creating one or more regions of virtual address space to act as windows to map views of the
physical memory. The application uses the Win32 VirtualAlloc, VirtualAllocEx, or Virtual Alloc-
ExNuma function with the MEM_PHYSICAL flag.

3. The preceding steps are, generally speaking, initialization steps. To actually use the memory,
the application uses MapUserPhysicalPages or MapUserPhysicalPagesScatter to map a portion
of the physical region allocated in step 1 into one of the virtual regions, or windows, allocated
in step 2.

Figure 10-5 shows an example. The application has created a 256-MB window in its address space
and has allocated 4 GB of physical memory (on a system with more than 4 GB of physical memory).
It can then use MapUserPhysicalPages or MapUserPhysicalPagesScatter to access any portion of the
physical memory by mapping the desired portion of memory into the 256-MB window. The size of
the application’s virtual address space window determines the amount of physical memory that the
application can access with any given mapping. To access another portion of the allocated RAM, the
application can simply remap the area.

The AWE functions exist on all editions of Windows and are usable regardless of how much physi-
cal memory a system has. However, AWE is most useful on 32-bit systems with more than 2 GB of
physical memory because it provides a way for a 32-bit process to access more RAM than its virtual
address space would otherwise allow. Another use is for security purposes: because AWE memory is
never paged out, the data in AWE memory can never have a copy in the paging file that someone
could examine by rebooting into an alternate operating system. (VirtualLock provides the same guar-
antee for pages in general.)

Finally, there are some restrictions on memory allocated and mapped by the AWE functions:

 ■ Pages can’t be shared between processes.

 ■ The same physical page can’t be mapped to more than one virtual address in the same
process.

 ■ Page protection is limited to read/write, read-only, and no access.

212 Windows Internals, Sixth Edition, Part 2

System
address
space

User
address
space

AWE window

Server application
address space

Physical memory

2 GB

0

0

4 GB 64 GB

AWE memory

FIGURE 10-5 Using AWE to map physical memory

AWE is less useful on x64 or IA64 Windows systems because these systems support 8 TB or 7 TB
(respectively) of virtual address space per process, while allowing a maximum of only 2 TB of RAM.
Therefore, AWE is not necessary to allow an application to use more RAM than it has virtual address
space; the amount of RAM on the system will always be smaller than the process virtual address
space. AWE remains useful, however, for setting up nonpageable regions of a process address space.
It provides finer granularity than the file mapping APIs (the system page size, 4 KB or 8 KB, versus
64 KB).

For a description of the page table data structures used to map memory on systems with more
than 4 GB of physical memory, see the section “Physical Address Extension (PAE).”

Kernel-Mode Heaps (System Memory Pools)

At system initialization, the memory manager creates two dynamically sized memory pools, or heaps,
that most kernel-mode components use to allocate system memory:

 ■ Nonpaged pool Consists of ranges of system virtual addresses that are guaranteed to reside
in physical memory at all times and thus can be accessed at any time without incurring a page
fault; therefore, they can be accessed from any IRQL. One of the reasons nonpaged pool is
required is because of the rule described in Chapter 2 in Part 1: page faults can’t be satisfied at

 CHAPTER 10 Memory Management 213

DPC/dispatch level or above. Therefore, any code and data that might execute or be accessed
at or above DPC/dispatch level must be in nonpageable memory.

 ■ Paged pool A region of virtual memory in system space that can be paged into and out of
the system. Device drivers that don’t need to access the memory from DPC/dispatch level or
above can use paged pool. It is accessible from any process context.

Both memory pools are located in the system part of the address space and are mapped in the vir-
tual address space of every process. The executive provides routines to allocate and deallocate from
these pools; for information on these routines, see the functions that start with ExAllocatePool and
ExFreePool in the WDK documentation.

Systems start with four paged pools (combined to make the overall system paged pool) and one
nonpaged pool; more are created, up to a maximum of 64, depending on the number of NUMA
nodes on the system. Having more than one paged pool reduces the frequency of system code
blocking on simultaneous calls to pool routines. Additionally, the different pools created are mapped
across different virtual address ranges that correspond to different NUMA nodes on the system. (The
different data structures, such as the large page look-aside lists, to describe pool allocations are also
mapped across different NUMA nodes. More information on NUMA optimizations will follow later.)

In addition to the paged and nonpaged pools, there are a few other pools with special attributes
or uses. For example, there is a pool region in session space, which is used for data that is common to
all processes in the session. (Sessions are described in Chapter 1 in Part 1.) There is a pool called, quite
literally, special pool. Allocations from special pool are surrounded by pages marked as no-access to
help isolate problems in code that accesses memory before or after the region of pool it allocated.
Special pool is described in Chapter 14.

Pool Sizes
Nonpaged pool starts at an initial size based on the amount of physical memory on the system and
then grows as needed. For nonpaged pool, the initial size is 3 percent of system RAM. If this is less
than 40 MB, the system will instead use 40 MB as long as 10 percent of RAM results in more than 40
MB; otherwise 10 percent of RAM is chosen as a minimum.

Windows dynamically chooses the maximum size of the pools and allows a given pool to grow
from its initial size to the maximums shown in Table 10-4.

TABLE 10-4 Maximum Pool Sizes

Pool Type Maximum on 32-Bit Systems Maximum on 64-Bit Systems

Nonpaged 75% of physical memory or 2 GB,
whichever is smaller

75% of physical memory or 128 GB,
whichever is smaller

Paged 2 GB 128 GB

Four of these computed sizes are stored in kernel variables, three of which are exposed as per-
formance counters, and one is computed only as a performance counter value. These variables and
counters are listed in Table 10-5.

214 Windows Internals, Sixth Edition, Part 2

TABLE 10-5 System Pool Size Variables and Performance Counters

Kernel Variable Performance Counter Description

MmSizeOfNonPagedPoolInBytes Memory: Pool
Nonpaged Bytes

Size of the initial nonpaged pool. This can be
reduced or enlarged automatically by the system
if memory demands dictate. The kernel variable
will not show these changes, but the performance
counter will.

MmMaximumNonPagedPoolInBytes Not available Maximum size of nonpaged pool

Not available Memory: Pool Paged
Bytes

Current total virtual size of paged pool

WorkingSetSize (number of pages)
in the MmPagedPoolWs struct (type
_MMSUPPORT)

Memory: Pool Paged
Resident Bytes

Current physical (resident) size of paged pool

MmSizeOfPagedPoolInBytes Not available Maximum (virtual) size of paged pool

EXPERIMENT: Determining the Maximum Pool Sizes
You can obtain the pool maximums by using either Process Explorer or live kernel debugging
(explained in Chapter 1 in Part 1). To view pool maximums with Process Explorer, click on View,
System Information, and then click the Memory tab. The pool limits are displayed in the Kernel
Memory middle section, as shown here:

Note that for Process Explorer to retrieve this information, it must have access to the symbols
for the kernel running on your system. (For a description of how to configure Process Explorer
to use symbols, see the experiment “Viewing Process Details with Process Explorer” in Chapter 1
in Part 1.)

 CHAPTER 10 Memory Management 215

To view the same information by using the kernel debugger, you can use the !vm command
as shown here:

kd> !vm

1: kd> !vm

*** Virtual Memory Usage ***
 Physical Memory: 851757 (3407028 Kb)
 Page File: \??\C:\pagefile.sys
 Current: 3407028 Kb Free Space: 3407024 Kb
 Minimum: 3407028 Kb Maximum: 4193280 Kb

 Available Pages: 699186 (2796744 Kb)

 ResAvail Pages: 757454 (3029816 Kb)

 Locked IO Pages: 0 (0 Kb)

 Free System PTEs: 370673 (1482692 Kb)

 Modified Pages: 9799 (39196 Kb)

 Modified PF Pages: 9798 (39192 Kb)

 NonPagedPool Usage: 0 (0 Kb)

 NonPagedPoolNx Usage: 8735 (34940 Kb)

 NonPagedPool Max: 522368 (2089472 Kb)

 PagedPool 0 Usage: 17573 (70292 Kb)

 PagedPool 1 Usage: 2417 (9668 Kb)

 PagedPool 2 Usage: 0 (0 Kb)

 PagedPool 3 Usage: 0 (0 Kb)

 PagedPool 4 Usage: 28 (112 Kb)

 PagedPool Usage: 20018 (80072 Kb)

 PagedPool Maximum: 523264 (2093056 Kb)

 ...

On this 4-GB, 32-bit system, nonpaged and paged pool were far from their maximums.

You can also examine the values of the kernel variables listed in Table 10-5. The following
were taken from a 32-bit system:

lkd> ? poi(MmMaximumNonPagedPoolInBytes)
Evaluate expression: 2139619328 = 7f880000

lkd> ? poi(MmSizeOfPagedPoolInBytes)
Evaluate expression: 2143289344 = 7fc00000

From this example, you can see that the maximum size of both nonpaged and paged pool
is approximately 2 GB, typical values on 32-bit systems with large amounts of RAM. On the
system used for this example, current nonpaged pool usage was 35 MB and paged pool usage
was 80 MB, so both pools were far from full.

Monitoring Pool Usage
The Memory performance counter object has separate counters for the size of nonpaged pool and
paged pool (both virtual and physical). In addition, the Poolmon utility (in the WDK) allows you to
monitor the detailed usage of nonpaged and paged pool. When you run Poolmon, you should see a
display like the one shown in Figure 10-6.

216 Windows Internals, Sixth Edition, Part 2

FIGURE 10-6 Poolmon output

The highlighted lines you might see represent changes to the display. (You can disable the high-
lighting feature by typing a slash (/) while running Poolmon. Type / again to reenable highlighting.)
Type ? while Poolmon is running to bring up its help screen. You can configure which pools you want
to monitor (paged, nonpaged, or both) and the sort order. For example, by pressing the P key until
only nonpaged allocations are shown, and then the D key to sort by the Diff (differences) column, you
can find out what kind of structures are most numerous in nonpaged pool. Also, the command-line
options are shown, which allow you to monitor specific tags (or every tag but one tag). For example,
the command poolmon –iCM will monitor only CM tags (allocations from the configuration manager,
which manages the registry). The columns have the meanings shown in Table 10-6.

TABLE 10-6 Poolmon Columns

Column Explanation

Tag Four-byte tag given to the pool allocation

Type Pool type (paged or nonpaged pool)

Allocs Count of all allocations (The number in parentheses shows the difference in the Allocs
column since the last update.)

Frees Count of all Frees (The number in parentheses shows the difference in the Frees column
since the last update.)

Diff Count of Allocs minus Frees

Bytes Total bytes consumed by this tag (The number in parentheses shows the difference in the
Bytes column since the last update.)

Per Alloc Size in bytes of a single instance of this tag

For a description of the meaning of the pool tags used by Windows, see the file \Program Files\
Debugging Tools for Windows\Triage\Pooltag.txt. (This file is installed as part of the Debugging Tools
for Windows, described in Chapter 1 in Part 1.) Because third-party device driver pool tags are not
listed in this file, you can use the –c switch on the 32-bit version of Poolmon that comes with the WDK
to generate a local pool tag file (Localtag.txt). This file will contain pool tags used by drivers found on

 CHAPTER 10 Memory Management 217

your system, including third-party drivers. (Note that if a device driver binary has been deleted after it
was loaded, its pool tags will not be recognized.)

Alternatively, you can search the device drivers on your system for a pool tag by using the
Strings.exe tool from Sysinternals. For example, the command

strings %SYSTEMROOT%\system32\drivers*.sys | findstr /i "abcd"

will display drivers that contain the string “abcd”. Note that device drivers do not necessarily have to
be located in %SystemRoot%\System32\Drivers—they can be in any folder. To list the full path of all
loaded drivers, open the Run dialog box from the Start menu, and then type Msinfo32. Click Soft-
ware Environment, and then click System Drivers. As already noted, if a device driver has been loaded
and then deleted from the system, it will not be listed here.

An alternative to view pool usage by device driver is to enable the pool tracking feature of Driver
Verifier, explained later in this chapter. While this makes the mapping from pool tag to device driver
unnecessary, it does require a reboot (to enable Driver Verifier on the desired drivers). After rebooting
with pool tracking enabled, you can either run the graphical Driver Verifier Manager (%SystemRoot%\
System32\Verifier.exe) or use the Verifier /Log command to send the pool usage information to a file.

Finally, you can view pool usage with the kernel debugger !poolused command. The command
!poolused 2 shows nonpaged pool usage sorted by pool tag using the most amount of pool. The
command !poolused 4 lists paged pool usage, again sorted by pool tag using the most amount of
pool. The following example shows the partial output from these two commands:

lkd> !poolused 2
 Sorting by NonPaged Pool Consumed
 Pool Used:
 NonPaged Paged
 Tag Allocs Used Allocs Used
 Cont 1669 15801344 0 0 Contiguous physical memory allocations for
 device drivers
 Int2 414 5760072 0 0 UNKNOWN pooltag 'Int2', please update
 pooltag.txt
 LSwi 1 2623568 0 0 initial work context
 EtwB 117 2327832 10 409600 Etw Buffer , Binary: nt!etw
 Pool 5 1171880 0 0 Pool tables, etc.

lkd> !poolused 4
 Sorting by Paged Pool Consumed
 Pool Used:
 NonPaged Paged
 Tag Allocs Used Allocs Used
 CM25 0 0 3921 16777216 Internal Configuration manager allocations ,
 Binary: nt!cm
 MmRe 0 0 720 13508136 UNKNOWN pooltag 'MmRe', please update
 pooltag.txt
 MmSt 0 0 5369 10827440 Mm section object prototype ptes ,
 Binary: nt!mm
 Ntff 9 2232 4210 3738480 FCB_DATA , Binary: ntfs.sys
 AlMs 0 0 212 2450448 ALPC message , Binary: nt!alpc
 ViMm 469 440584 608 1468888 Video memory manager , Binary: dxgkrnl.sys

218 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Troubleshooting a Pool Leak
In this experiment, you will fix a real paged pool leak on your system so that you can put to
use the techniques described in the previous section to track down the leak. The leak will be
generated by the Notmyfault tool from Sysinternals. When you run Notmyfault.exe, it loads the
device driver Myfault.sys and presents the following dialog box:

1. Click the Leak tab, ensure that Leak/Second is set to 1000 KB, and click the Leak Paged
button. This causes Notmyfault to begin sending requests to the Myfault device driver
to allocate paged pool. Notmyfault will continue sending requests until you click the
Stop Paged button. Note that paged pool is not normally released even when you
close a program that has caused it to occur (by interacting with a buggy device driver);
the pool is permanently leaked until you reboot the system. However, to make test-
ing easier, the Myfault device driver detects that the process was closed and frees its
allocations.

2. While the pool is leaking, first open Task Manager and click on the Performance tab.
You should notice Kernel Memory (MB): Paged climbing. You can also check this with
Process Explorer’s System Information display. (Click View, System Information, and
then the Memory tab.)

3. To determine the pool tag that is leaking, run Poolmon and press the B key to sort
by the number of bytes. Press P twice so that Poolmon is showing only paged pool.
You should notice the pool tag “Leak” climbing to the top of the list. (Poolmon shows
changes to pool allocations by highlighting the lines that change.)

 CHAPTER 10 Memory Management 219

4. Now press the Stop Paged button so that you don’t exhaust paged pool on your
system.

5. Using the technique described in the previous section, run Strings (from Sysinternals)
to look for driver binaries that contain the pool tag “Leak”:

Strings %SystemRoot%\system32\drivers*.sys | findstr Leak

This should display a match on the file Myfault.sys, thus confirming it as the driver us-
ing the “Leak” pool tag.

Look-Aside Lists
Windows also provides a fast memory allocation mechanism called look-aside lists. The basic dif-
ference between pools and look-aside lists is that while general pool allocations can vary in size, a
look-aside list contains only fixed-sized blocks. Although the general pools are more flexible in terms
of what they can supply, look-aside lists are faster because they don’t use any spinlocks.

Executive components and device drivers can create look-aside lists that match the size of fre-
quently allocated data structures by using the ExInitializeNPagedLookasideList and ExInitialize-
PagedLookasideList functions (documented in the WDK). To minimize the overhead of multiproces-
sor synchronization, several executive subsystems (such as the I/O manager, cache manager, and
object manager) create separate look-aside lists for each processor for their frequently accessed data
structures. The executive also creates a general per-processor paged and nonpaged look-aside list for
small allocations (256 bytes or less).

If a look-aside list is empty (as it is when it’s first created), the system must allocate from paged or
nonpaged pool. But if it contains a freed block, the allocation can be satisfied very quickly. (The list
grows as blocks are returned to it.) The pool allocation routines automatically tune the number of
freed buffers that look-aside lists store according to how often a device driver or executive subsys-
tem allocates from the list—the more frequent the allocations, the more blocks are stored on a list.
Look-aside lists are automatically reduced in size if they aren’t being allocated from. (This check hap-
pens once per second when the balance set manager system thread wakes up and calls the function
ExAdjustLookasideDepth.)

220 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing the System Look-Aside Lists
You can display the contents and sizes of the various system look-aside lists with the kernel
debugger !lookaside command. The following excerpt is from the output of this command:

lkd> !lookaside

Lookaside "nt!IopSmallIrpLookasideList" @ 81f47c00 "Irps"
 Type = 0000 NonPagedPool
 Current Depth = 3 Max Depth = 4
 Size = 148 Max Alloc = 592
 AllocateMisses = 930 FreeMisses = 780
 TotalAllocates = 13748 TotalFrees = 13601
 Hit Rate = 93% Hit Rate = 94%

Lookaside "nt!IopLargeIrpLookasideList" @ 81f47c80 "Irpl"
 Type = 0000 NonPagedPool
 Current Depth = 4 Max Depth = 4
 Size = 472 Max Alloc = 1888
 AllocateMisses = 16555 FreeMisses = 15636
 TotalAllocates = 59287 TotalFrees = 58372
 Hit Rate = 72% Hit Rate = 73%

Lookaside "nt!IopMdlLookasideList" @ 81f47b80 "Mdl "
 Type = 0000 NonPagedPool
 Current Depth = 4 Max Depth = 4
 Size = 96 Max Alloc = 384
 AllocateMisses = 16287 FreeMisses = 15474
 TotalAllocates = 72835 TotalFrees = 72026
 Hit Rate = 77% Hit Rate = 78%
...

Total NonPaged currently allocated for above lists = 0
Total NonPaged potential for above lists = 3280
Total Paged currently allocated for above lists = 744
Total Paged potential for above lists = 1536

Heap Manager

Most applications allocate smaller blocks than the 64-KB minimum allocation granularity possible
using page granularity functions such as VirtualAlloc and VirtualAllocExNuma. Allocating such a large
area for relatively small allocations is not optimal from a memory usage and performance standpoint.
To address this need, Windows provides a component called the heap manager, which manages al-
locations inside larger memory areas reserved using the page granularity memory allocation func-
tions. The allocation granularity in the heap manager is relatively small: 8 bytes on 32-bit systems, and
16 bytes on 64-bit systems. The heap manager has been designed to optimize memory usage and
performance in the case of these smaller allocations.

 CHAPTER 10 Memory Management 221

The heap manager exists in two places: Ntdll.dll and Ntoskrnl.exe. The subsystem APIs (such as
the Windows heap APIs) call the functions in Ntdll, and various executive components and device
drivers call the functions in Ntoskrnl. Its native interfaces (prefixed with Rtl) are available only for use
in internal Windows components or kernel-mode device drivers. The documented Windows API inter-
faces to the heap (prefixed with Heap) are forwarders to the native functions in Ntdll.dll. In addition,
legacy APIs (prefixed with either Local or Global) are provided to support older Windows applications,
which also internally call the heap manager, using some of its specialized interfaces to support legacy
behavior. The C runtime (CRT) also uses the heap manager when using functions such as malloc, free,
and the C++ new operator. The most common Windows heap functions are:

 ■ HeapCreate or HeapDestroy Creates or deletes, respectively, a heap. The initial reserved and
committed size can be specified at creation.

 ■ HeapAlloc Allocates a heap block.

 ■ HeapFree Frees a block previously allocated with HeapAlloc.

 ■ HeapReAlloc Changes the size of an existing allocation (grows or shrinks an existing block).

 ■ HeapLock or HeapUnlock Controls mutual exclusion to the heap operations.

 ■ HeapWalk Enumerates the entries and regions in a heap.

Types of Heaps
Each process has at least one heap: the default process heap. The default heap is created at process
startup and is never deleted during the process’s lifetime. It defaults to 1 MB in size, but it can be
made bigger by specifying a starting size in the image file by using the /HEAP linker flag. This size
is just the initial reserve, however—it will expand automatically as needed. (You can also specify the
initial committed size in the image file.)

The default heap can be explicitly used by a program or implicitly used by some Windows internal
functions. An application can query the default process heap by making a call to the Windows func-
tion GetProcessHeap. Processes can also create additional private heaps with the HeapCreate function.
When a process no longer needs a private heap, it can recover the virtual address space by calling
HeapDestroy. An array with all heaps is maintained in each process, and a thread can query them with
the Windows function GetProcessHeaps.

A heap can manage allocations either in large memory regions reserved from the memory man-
ager via VirtualAlloc or from memory mapped file objects mapped in the process address space.
The latter approach is rarely used in practice, but it’s suitable for scenarios where the content of
the blocks needs to be shared between two processes or between a kernel-mode and a user-mode
component. The Win32 GUI subsystem driver (Win32k.sys) uses such a heap for sharing GDI and User
objects with user mode. If a heap is built on top of a memory mapped file region, certain constraints
apply with respect to the component that can call heap functions. First, the internal heap structures

222 Windows Internals, Sixth Edition, Part 2

use pointers, and therefore do not allow remapping to different addresses in other processes. Second,
the synchronization across multiple processes or between a kernel component and a user process
is not supported by the heap functions. Also, in the case of a shared heap between user mode and
kernel mode, the user-mode mapping should be read-only to prevent user-mode code from corrupt-
ing the heap’s internal structures, which would result in a system crash. The kernel-mode driver is also
responsible for not putting any sensitive data in a shared heap to avoid leaking it to user mode.

Heap Manager Structure
As shown in Figure 10-7, the heap manager is structured in two layers: an optional front-end layer and
the core heap. The core heap handles the basic functionality and is mostly common across the user-
mode and kernel-mode heap implementations. The core functionality includes the management of
blocks inside segments, the management of the segments, policies for extending the heap, commit-
ting and decommitting memory, and management of the large blocks.

Windows heap APIs
(HeapAlloc, HeapFree, LocalAlloc, GlobalAlloc, etc.)

Application

Front-end heap layer
(optional)

Core heap layer

 Memory manager

Heap manager

FIGURE 10-7 Heap manager layers

For user-mode heaps only, an optional front-end heap layer can exist on top of the existing core
functionality. The only front-end supported on Windows is the Low Fragmentation Heap (LFH). Only
one front-end layer can be used for one heap at one time.

 CHAPTER 10 Memory Management 223

Heap Synchronization
The heap manager supports concurrent access from multiple threads by default. However, if a process
is single threaded or uses an external mechanism for synchronization, it can tell the heap manager to
avoid the overhead of synchronization by specifying HEAP_NO_SERIALIZE either at heap creation or
on a per-allocation basis.

A process can also lock the entire heap and prevent other threads from performing heap opera-
tions for operations that would require consistent states across multiple heap calls. For instance, enu-
merating the heap blocks in a heap with the Windows function HeapWalk requires locking the heap if
multiple threads can perform heap operations simultaneously.

If heap synchronization is enabled, there is one lock per heap that protects all internal heap struc-
tures. In heavily multithreaded applications (especially when running on multiprocessor systems), the
heap lock might become a significant contention point. In that case, performance might be improved
by enabling the front-end heap, described in an upcoming section.

The Low Fragmentation Heap
Many applications running in Windows have relatively small heap memory usage (usually less than
1 MB). For this class of applications, the heap manager’s best-fit policy helps keep a low memory
footprint for each process. However, this strategy does not scale for large processes and multiproces-
sor machines. In these cases, memory available for heap usage might be reduced as a result of heap
fragmentation. Performance can suffer in scenarios where only certain sizes are often used concur-
rently from different threads scheduled to run on different processors. This happens because several
processors need to modify the same memory location (for example, the head of the look-aside list for
that particular size) at the same time, thus causing significant contention for the corresponding cache
line.

The LFH avoids fragmentation by managing allocated blocks in predetermined different block-size
ranges called buckets. When a process allocates memory from the heap, the LFH chooses the bucket
that maps to the smallest block large enough to hold the required size. (The smallest block is 8 bytes.)
The first bucket is used for allocations between 1 and 8 bytes, the second for allocations between 9
and 16 bytes, and so on, until the thirty-second bucket, which is used for allocations between 249
and 256 bytes, followed by the thirty-third bucket, which is used for allocations between 257 and 272
bytes, and so on. Finally, the one hundred twenty-eighth bucket, which is the last, is used for alloca-
tions between 15,873 and 16,384 bytes. (This is known as a binary buddy system.) Table 10-7 summa-
rizes the different buckets, their granularity, and the range of sizes they map to.

224 Windows Internals, Sixth Edition, Part 2

TABLE 10-7 Buckets

Buckets Granularity Range

1–32 8 1–256

33–48 16 257–512

49–64 32 513–1,024

65–80 64 1,025–2,048

81–96 128 2,049–4,096

97–112 256 4,097–8,194

113–128 512 8,195–16,384

The LFH addresses these issues by using the core heap manager and look-aside lists. The Windows
heap manager implements an automatic tuning algorithm that can enable the LFH by default under
certain conditions, such as lock contention or the presence of popular size allocations that have
shown better performance with the LFH enabled. For large heaps, a significant percentage of alloca-
tions is frequently grouped in a relatively small number of buckets of certain sizes. The allocation
strategy used by LFH is to optimize the usage for these patterns by efficiently handling same-size
blocks.

To address scalability, the LFH expands the frequently accessed internal structures to a number of
slots that is two times larger than the current number of processors on the machine. The assignment
of threads to these slots is done by an LFH component called the affinity manager. Initially, the LFH
starts using the first slot for heap allocations; however, if a contention is detected when accessing
some internal data, the LFH switches the current thread to use a different slot. Further contentions will
spread threads on more slots. These slots are controlled for each size bucket to improve locality and
minimize the overall memory consumption.

Even if the LFH is enabled as a front-end heap, the less frequent allocation sizes may still continue
to use the core heap functions to allocate memory, while the most popular allocation classes will be
performed from the LFH. The LFH can also be disabled by using the HeapSetInformation API with the
HeapCompatibilityInformation class.

Heap Security Features
As the heap manager has evolved, it has taken an increased role in early detection of heap usage
errors and in mitigating effects of potential heap-based exploits. These measures exist to lessen the
security effect of potential vulnerabilities in applications. The metadata used by the heap for internal
management is packed with a high degree of randomization to make it difficult for an attempted
exploit to patch the internal structures to prevent crashes or conceal the attack attempt. These blocks
are also subject to an integrity check mechanism on the header to detect simple corruptions such as
buffer overruns. Finally, the heap also uses a small degree of randomization of the base address (or
handle). By using the HeapSetInformation API with the HeapEnableTerminationOnCorruption class,
processes can opt in for an automatic termination in case of detected inconsistencies to avoid execut-
ing unknown code.

 CHAPTER 10 Memory Management 225

As an effect of block metadata randomization, using the debugger to simply dump a block header
as an area of memory is not that useful. For example, the size of the block and whether it is busy or
not are not easy to spot from a regular dump. The same applies to LFH blocks; they have a different
type of metadata stored in the header, partially randomized as well. To dump these details, the !heap
–i command in the debugger does all the work to retrieve the metadata fields from a block, flag-
ging checksum or free list inconsistencies as well if they exist. The command works for both the LFH
and regular heap blocks. The total size of the blocks, the user requested size, the segment owning
the block, as well as the header partial checksum are available in the output, as shown in the follow-
ing sample. Because the randomization algorithm uses the heap granularity, the !heap –i command
should be used only in the proper context of the heap containing the block. In the example, the heap
handle is 0x001a0000. If the current heap context was different, the decoding of the header would be
incorrect. To set the proper context, the same !heap –i command with the heap handle as an argu-
ment needs to be executed first.

0:000> !heap -i 001a0000
Heap context set to the heap 0x001a0000
0:000> !heap -i 1e2570
Detailed information for block entry 001e2570
Assumed heap : 0x001a0000 (Use !heap -i NewHeapHandle to change)
Header content : 0x1570F4EC 0x0C0015BE (decoded : 0x07010006 0x0C00000D)
Owning segment : 0x001a0000 (offset 0)
Block flags : 0x1 (busy)
Total block size : 0x6 units (0x30 bytes)
Requested size : 0x24 bytes (unused 0xc bytes)
Previous block size: 0xd units (0x68 bytes)
Block CRC : OK - 0x7
Previous block : 0x001e2508
Next block : 0x001e25a0

Heap Debugging Features
The heap manager leverages the 8 bytes used to store internal metadata as a consistency checkpoint,
which makes potential heap usage errors more obvious, and also includes several features to help
detect bugs by using the following heap functions:

 ■ Enable tail checking The end of each block carries a signature that is checked when the
block is released. If a buffer overrun destroyed the signature entirely or partially, the heap will
report this error.

 ■ Enable free checking A free block is filled with a pattern that is checked at various points
when the heap manager needs to access the block (such as at removal from the free list to
satisfy an allocate request). If the process continued to write to the block after freeing it, the
heap manager will detect changes in the pattern and the error will be reported.

 ■ Parameter checking This function consists of extensive checking of the parameters passed
to the heap functions.

226 Windows Internals, Sixth Edition, Part 2

 ■ Heap validation The entire heap is validated at each heap call.

 ■ Heap tagging and stack traces support This function supports specifying tags for alloca-
tion and/or captures user-mode stack traces for the heap calls to help narrow the possible
causes of a heap error.

The first three options are enabled by default if the loader detects that a process is started under
the control of a debugger. (A debugger can override this behavior and turn off these features.) The
heap debugging features can be specified for an executable image by setting various debugging
flags in the image header using the Gflags tool. (See the section “Windows Global Flags” in Chapter
3 in Part 1.) Or, heap debugging options can be enabled using the !heap command in the standard
Windows debuggers. (See the debugger help for more information.)

Enabling heap debugging options affects all heaps in the process. Also, if any of the heap debug-
ging options are enabled, the LFH will be disabled automatically and the core heap will be used (with
the required debugging options enabled). The LFH is also not used for heaps that are not expandable
(because of the extra overhead added to the existing heap structures) or for heaps that do not allow
serialization.

Pageheap
Because the tail and free checking options described in the preceding sections might be discover-
ing corruptions that occurred well before the problem was detected, an additional heap debug-
ging capability, called pageheap, is provided that directs all or part of the heap calls to a different
heap manager. Pageheap is enabled using the Gflags tool (which is part of the Debugging Tools for
Windows). When enabled, the heap manager places allocations at the end of pages and reserves the
immediately following page. Since reserved pages are not accessible, if a buffer overrun occurs it will
cause an access violation, making it easier to detect the offending code. Optionally, pageheap allows
placing the blocks at the beginning of the pages, with the preceding page reserved, to detect buffer
underrun problems. (This is a rare occurrence.) The pageheap also can protect freed pages against
any access to detect references to heap blocks after they have been freed.

Note that using the pageheap can result in running out of address space because of the signifi-
cant overhead added for small allocations. Also, performance can suffer as a result of the increase of
references to demand zero pages, loss of locality, and additional overhead caused by frequent calls to
validate heap structures. A process can reduce the impact by specifying that the pageheap be used
only for blocks of certain sizes, address ranges, and/or originating DLLs.

For more information on pageheap, see the Debugging Tools for Windows Help file.

 CHAPTER 10 Memory Management 227

Fault Tolerant Heap
Corruption of heap metadata has been identified by Microsoft as one of the most common causes of
application failures. Windows includes a feature called the fault tolerant heap, or FTH, in an attempt to
mitigate these problems and to provide better problem-solving resources to application developers.
The fault tolerant heap is implemented in two primary components: the detection component, or FTH
server, and the mitigation component, or FTH client.

The detection component is a DLL, Fthsvc.dll, that is loaded by the Windows Security Center
service (Wscsvc.dll, which in turn runs in one of the shared service processes under the local service
account). It is notified of application crashes by the Windows Error Reporting service.

When an application crashes in Ntdll.dll, with an error status indicating either an access violation
or a heap corruption exception, if it is not already on the FTH service’s list of “watched” applications,
the service creates a “ticket” for the application to hold the FTH data. If the application subsequently
crashes more than four times in an hour, the FTH service configures the application to use the FTH
client in the future.

The FTH client is an application compatibility shim. This mechanism has been used since Windows
XP to allow applications that depend on particular behavior of older Windows systems to run on later
systems. In this case, the shim mechanism intercepts the calls to the heap routines and redirects them
to its own code. The FTH code implements a number of “mitigations” that attempt to allow the ap-
plication to survive despite various heap-related errors.

For example, to protect against small buffer overrun errors, the FTH adds 8 bytes of padding and
an FTH reserved area to each allocation. To address a common scenario in which a block of heap is
accessed after it is freed, HeapFree calls are implemented only after a delay: ”freed” blocks are put
on a list, and only freed when the total size of the blocks on the list exceeds 4 MB. Attempts to free
regions that are not actually part of the heap, or not part of the heap identified by the heap handle
argument to HeapFree, are simply ignored. In addition, no blocks are actually freed once exit or
RtlExitUserProcess has been called.

The FTH server continues to monitor the failure rate of the application after the mitigations have
been installed. If the failure rate does not improve, the mitigations are removed.

The activity of the fault tolerant heap can be observed in the Event Viewer. Type eventvwr.msc
at a Run prompt, and then navigate in the left pane to Event Viewer, Applications And Services Logs,
Microsoft, Windows, Fault-Tolerant-Heap. Click on the Operational log. It may be disabled completely
in the registry: in the key HKLM\Software\Microsoft\FTH, set the value Enabled to 0.

The FTH does not normally operate on services, only applications, and it is disabled on Windows
server systems for performance reasons. A system administrator can manually apply the shim to an
application or service executable by using the Application Compatibility Toolkit.

228 Windows Internals, Sixth Edition, Part 2

Virtual Address Space Layouts

This section describes the components in the user and system address space, followed by the specific
layouts on 32-bit and 64-bit systems. This information helps you to understand the limits on process
and system virtual memory on both platforms.

Three main types of data are mapped into the virtual address space in Windows: per-process pri-
vate code and data, sessionwide code and data, and systemwide code and data.

As explained in Chapter 1 in Part 1, each process has a private address space that cannot be ac-
cessed by other processes. That is, a virtual address is always evaluated in the context of the current
process and cannot refer to an address defined by any other process. Threads within the process can
therefore never access virtual addresses outside this private address space. Even shared memory is
not an exception to this rule, because shared memory regions are mapped into each participating
process, and so are accessed by each process using per-process addresses. Similarly, the cross-process
memory functions (ReadProcessMemory and WriteProcessMemory) operate by running kernel-mode
code in the context of the target process.

The information that describes the process virtual address space, called page tables, is described
in the section on address translation. Each process has its own set of page tables. They are stored in
kernel-mode-only accessible pages so that user-mode threads in a process cannot modify their own
address space layout.

Session space contains information that is common to each session. (For a description of sessions,
see Chapter 2 in Part 1.) A session consists of the processes and other system objects (such as the
window station, desktops, and windows) that represent a single user’s logon session. Each session
has a session-specific paged pool area used by the kernel-mode portion of the Windows subsystem
(Win32k.sys) to allocate session-private GUI data structures. In addition, each session has its own
copy of the Windows subsystem process (Csrss.exe) and logon process (Winlogon.exe). The session
manager process (Smss.exe) is responsible for creating new sessions, which includes loading a session-
private copy of Win32k.sys, creating the session-private object manager namespace, and creating the
session-specific instances of the Csrss and Winlogon processes. To virtualize sessions, all sessionwide
data structures are mapped into a region of system space called session space. When a process is
created, this range of addresses is mapped to the pages associated with the session that the process
belongs to.

Finally, system space contains global operating system code and data structures visible by kernel-
mode code regardless of which process is currently executing. System space consists of the following
components:

 ■ System code Contains the operating system image, HAL, and device drivers used to boot
the system.

 ■ Nonpaged pool Nonpageable system memory heap.

 CHAPTER 10 Memory Management 229

 ■ Paged pool Pageable system memory heap.

 ■ System cache Virtual address space used to map files open in the system cache. (See Chap-
ter 11 for detailed information.)

 ■ System page table entries (PTEs) Pool of system PTEs used to map system pages such as
I/O space, kernel stacks, and memory descriptor lists. You can see how many system PTEs are
available by examining the value of the Memory: Free System Page Table Entries counter in
Performance Monitor.

 ■ System working set lists The working set list data structures that describe the three system
working sets (the system cache working set, the paged pool working set, and the system PTEs
working set).

 ■ System mapped views Used to map Win32k.sys, the loadable kernel-mode part of the
Windows subsystem, as well as kernel-mode graphics drivers it uses. (See Chapter 2 in Part 1
for more information on Win32k.sys.)

 ■ Hyperspace A special region used to map the process working set list and other per-process
data that doesn’t need to be accessible in arbitrary process context. Hyperspace is also used
to temporarily map physical pages into the system space. One example of this is invalidating
page table entries in page tables of processes other than the current one (such as when a page
is removed from the standby list).

 ■ Crash dump information Reserved to record information about the state of a system crash.

 ■ HAL usage System memory reserved for HAL-specific structures.

Now that we’ve described the basic components of the virtual address space in Windows, let’s
examine the specific layout on the x86, IA64, and x64 platforms.

x86 Address Space Layouts
By default, each user process on 32-bit versions of Windows has a 2-GB private address space; the
operating system takes the remaining 2 GB. However, the system can be configured with the increase-
userva BCD boot option to permit user address spaces up to 3 GB. Two possible address space layouts
are shown in Figure 10-8.

The ability for a 32-bit process to grow beyond 2 GB was added to accommodate the need for
32-bit applications to keep more data in memory than could be done with a 2-GB address space. Of
course, 64-bit systems provide a much larger address space.

230 Windows Internals, Sixth Edition, Part 2

Application code
Global variables

Per-thread stacks
DLL code

3-GB user space

Kernel and executive
HAL

Boot drivers

1-GB system space

Process page tables

System cache
Paged pool

Nonpaged pool

BFFFFFFF

C0000000

FFFFFFFF

FFC00000

C0000000

C0800000 (x86)
C0C00000 (x86 pae)

80000000

7FFFEFFF

00000000

7FFFF000
64-KB no access area

C0400000 (x86)
C0800000 (x86 pae) Hyperspace

00000000

FFFFFFFF

Reserved for
HAL usage

Dynamic kernel space

Dynamic kernel space

Kernel and executive
HAL

Boot drivers

Dynamic kernel space

Reserved for
HAL usage

FIGURE 10-8 x86 virtual address space layouts

For a process to grow beyond 2 GB of address space, the image file must have the IMAGE_FILE_
LARGE_ADDRESS_AWARE flag set in the image header. Otherwise, Windows reserves the additional
address space for that process so that the application won’t see virtual addresses greater than
0x7FFFFFFF. Access to the additional virtual memory is opt-in because some applications have as-
sumed that they’d be given at most 2 GB of the address space. Since the high bit of a pointer ref-
erencing an address below 2 GB is always zero, these applications would use the high bit in their
pointers as a flag for their own data, clearing it, of course, before referencing the data. If they ran with
a 3-GB address space, they would inadvertently truncate pointers that have values greater than 2 GB,
causing program errors, including possible data corruption. You set this flag by specifying the linker
flag /LARGEADDRESSAWARE when building the executable. This flag has no effect when running the
application on a system with a 2-GB user address space.

 CHAPTER 10 Memory Management 231

Several system images are marked as large address space aware so that they can take advantage of
systems running with large process address spaces. These include:

 ■ Lsass.exe The Local Security Authority Subsystem

 ■ Inetinfo.exe Internet Information Server

 ■ Chkdsk.exe The Check Disk utility

 ■ Smss.exe The Session Manager

 ■ Dllhst3g.exe A special version of Dllhost.exe (for COM+ applications)

 ■ Dispdiag.exe The display diagnostic dump utility

 ■ Esentutl.exe The Active Directory Database Utility tool

EXPERIMENT: Checking If an Application Is Large Address Aware
You can use the Dumpbin utility from the Windows SDK to check other executables to see if
they support large address spaces. Use the /HEADERS flag to display the results. Here’s a sample
output of Dumpbin on the Session Manager:

C:\Program Files\Microsoft SDKs\Windows\v7.1>dumpbin /headers c:\windows\system32\smss.exe
Microsoft (R) COFF/PE Dumper Version 10.00.40219.01
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file c:\windows\system32\smss.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES
 8664 machine (x64)
 5 number of sections
 4A5BC116 time date stamp Mon Jul 13 16:19:50 2009
 0 file pointer to symbol table
 0 number of symbols
 F0 size of optional header
 22 characteristics
 Executable
 Application can handle large (>2GB) addresses

Finally, because memory allocations using VirtualAlloc, VirtualAllocEx, and VirtualAllocExNuma
start with low virtual addresses and grow higher by default, unless a process allocates a lot of virtual
memory or it has a very fragmented virtual address space, it will never get back very high virtual
addresses. Therefore, for testing purposes, you can force memory allocations to start from high ad-
dresses by using the MEM_TOP_DOWN flag or by adding a DWORD registry value, HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management\AllocationPreference, and setting
it to 0x100000.

232 Windows Internals, Sixth Edition, Part 2

Figure 10-9 shows two screen shots of the TestLimit utility (shown in previous experiments) leaking
memory on a 32-bit Windows machine booted with and without the increaseuserva option set to
3 GB.

Note that in the second screen shot, TestLimit was able to leak almost 3 GB, as expected. This is
only possible because TestLimit was linked with /LARGEADDRESSAWARE. Had it not been, the results
would have been essentially the same as on the system booted without increaseuserva.

FIGURE 10-9 TestLimit leaking memory on a 32-bit Windows computer, with and without increaseuserva
set to 3 GB

x86 System Address Space Layout
The 32-bit versions of Windows implement a dynamic system address space layout by using a virtual
address allocator (we’ll describe this functionality later in this section). There are still a few specifically
reserved areas, as shown in Figure 10-8. However, many kernel-mode structures use dynamic address
space allocation. These structures are therefore not necessarily virtually contiguous with themselves.
Each can easily exist in several disjointed pieces in various areas of system address space. The uses of
system address space that are allocated in this way include:

 ■ Nonpaged pool

 ■ Special pool

 ■ Paged pool

 ■ System page table entries (PTEs)

 ■ System mapped views

 ■ File system cache

 CHAPTER 10 Memory Management 233

 ■ File system structures (metadata)

 ■ Session space

x86 Session Space
For systems with multiple sessions, the code and data unique to each session are mapped into system
address space but shared by the processes in that session. Figure 10-10 shows the general layout of
session space.

Win32k.sys &
video drivers

MM_SESSION_SPACE
& session WSLs

Mapped views for this session

Paged pool for this session

FIGURE 10-10 x86 session space layout (not proportional)

The sizes of the components of session space, just like the rest of kernel system address space, are
dynamically configured and resized by the memory manager on demand.

EXPERIMENT: Viewing Sessions
You can display which processes are members of which sessions by examining the session ID.
This can be viewed with Task Manager, Process Explorer, or the kernel debugger. Using the ker-
nel debugger, you can list the active sessions with the !session command as follows:

lkd> !session
Sessions on machine: 3
Valid Sessions: 0 1 3
Current Session 1

Then you can set the active session using the !session –s command and display the address
of the session data structures and the processes in that session with the !sprocess command:

lkd> !session -s 3
Sessions on machine: 3
Implicit process is now 84173500

234 Windows Internals, Sixth Edition, Part 2

Using session 3

lkd> !sprocess
Dumping Session 3

_MM_SESSION_SPACE 9a83c000
_MMSESSION 9a83cd00
PROCESS 84173500 SessionId: 3 Cid: 0d78 Peb: 7ffde000 ParentCid: 0e80
 DirBase: 3ef53500 ObjectTable: 8588d820 HandleCount: 76.
 Image: csrss.exe

PROCESS 841a6030 SessionId: 3 Cid: 0c6c Peb: 7ffdc000 ParentCid: 0e80
 DirBase: 3ef53520 ObjectTable: 85897208 HandleCount: 94.
 Image: winlogon.exe

PROCESS 841d9cf0 SessionId: 3 Cid: 0d38 Peb: 7ffd6000 ParentCid: 0c6c
 DirBase: 3ef53540 ObjectTable: 8589d248 HandleCount: 165.
 Image: LogonUI.exe

...

To view the details of the session, dump the MM_SESSION_SPACE structure using the dt
command, as follows:

lkd> dt nt!_MM_SESSION_SPACE 9a83c000
 +0x000 ReferenceCount : 0n3
 +0x004 u : <unnamed-tag>
 +0x008 SessionId : 3
 +0x00c ProcessReferenceToSession : 0n4
 +0x010 ProcessList : _LIST_ENTRY [0x841735e4 - 0x841d9dd4]
 +0x018 LastProcessSwappedOutTime : _LARGE_INTEGER 0x0
 +0x020 SessionPageDirectoryIndex : 0x31fa3
 +0x024 NonPagablePages : 0x19
 +0x028 CommittedPages : 0x867
 +0x02c PagedPoolStart : 0x80000000 Void
 +0x030 PagedPoolEnd : 0xffbfffff Void
 +0x034 SessionObject : 0x854e2040 Void
 +0x038 SessionObjectHandle : 0x8000020c Void
 +0x03c ResidentProcessCount : 0n3
 +0x040 SessionPoolAllocationFailures : [4] 0
 +0x050 ImageList : _LIST_ENTRY [0x8519bef8 - 0x85296370]
 +0x058 LocaleId : 0x409
 +0x05c AttachCount : 0
 +0x060 AttachGate : _KGATE
 +0x070 WsListEntry : _LIST_ENTRY [0x82772408 - 0x97044070]
 +0x080 Lookaside : [25] _GENERAL_LOOKASIDE
...

 CHAPTER 10 Memory Management 235

EXPERIMENT: Viewing Session Space Utilization
You can view session space memory utilization with the !vm 4 command in the kernel debug-
ger. For example, the following output was taken from a 32-bit Windows client system with the
default two sessions created at system startup:

lkd> !vm 4
.
.
 Terminal Server Memory Usage By Session:

 Session ID 0 @ 9a8c7000:
 Paged Pool Usage: 2372K
 Commit Usage: 4832K

 Session ID 1 @ 9a881000:
 Paged Pool Usage: 14120K
 Commit Usage: 16704K

System Page Table Entries
System page table entries (PTEs) are used to dynamically map system pages such as I/O space, kernel
stacks, and the mapping for memory descriptor lists. System PTEs aren’t an infinite resource. On 32-
bit Windows, the number of available system PTEs is such that the system can theoretically describe
2 GB of contiguous system virtual address space. On 64-bit Windows, system PTEs can describe up to
128 GB of contiguous virtual address space.

EXPERIMENT: Viewing System PTE Information
You can see how many system PTEs are available by examining the value of the Memory: Free
System Page Table Entries counter in Performance Monitor or by using the !sysptes or !vm com-
mand in the debugger. You can also dump the _MI_SYSTEM_PTE_TYPE structure associated with
the MiSystemPteInfo global variable. This will also show you how many PTE allocation failures
occurred on the system—a high count indicates a problem and possibly a system PTE leak.

0: kd> !sysptes

System PTE Information
 Total System Ptes 307168

 starting PTE: c0200000

 free blocks: 32 total free: 3856 largest free block: 542

236 Windows Internals, Sixth Edition, Part 2

Kernel Stack PTE Information
Unable to get syspte index array - skipping bins

 starting PTE: c0200000

 free blocks: 165 total free: 1503 largest free block: 75

0: kd> ? nt!MiSystemPteInfo
Evaluate expression: -2100014016 = 82d45440

0: kd> dt _MI_SYSTEM_PTE_TYPE 82d45440
nt!_MI_SYSTEM_PTE_TYPE
 +0x000 Bitmap : _RTL_BITMAP
 +0x008 Flags : 3
 +0x00c Hint : 0x2271f

 +0x010 BasePte : 0xc0200000 _MMPTE

 +0x014 FailureCount : 0x82d45468 -> 0

 +0x018 Vm : 0x82d67300 _MMSUPPORT

 +0x01c TotalSystemPtes : 0n7136

 +0x020 TotalFreeSystemPtes : 0n4113

 +0x024 CachedPteCount : 0n0

 +0x028 PteFailures : 0

 +0x02c SpinLock : 0

 +0x02c GlobalMutex : (null)

If you are seeing lots of system PTE failures, you can enable system PTE tracking by creat-
ing a new DWORD value in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\
Memory Management key called TrackPtes and setting its value to 1. You can then use
!sysptes 4 to show a list of allocators, as shown here:

lkd>!sysptes 4
0x1ca2 System PTEs allocated to mapping locked pages

VA MDL PageCount Caller/CallersCaller
ecbfdee8 f0ed0958 2 netbt!DispatchIoctls+0x56a/netbt!NbtDispatchDevCtrl+0xcd
f0a8d050 f0ed0510 1 netbt!DispatchIoctls+0x64e/netbt!NbtDispatchDevCtrl+0xcd
ecef5000 1 20 nt!MiFindContiguousMemory+0x63
ed447000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
ee1ce000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
ed9c4000 1 ca nt!MiFindContiguousMemory+0x63
eda8e000 1 ca nt!MiFindContiguousMemory+0x63
efb23d68 f8067888 2 mrxsmb!BowserMapUsersBuffer+0x28
efac5af4 f8b15b98 2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566
f0ac688c f848ff88 1 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566
efac7b7c f82fc2a8 2 ndisuio!NdisuioRead+0x54/nt!NtReadFile+0x566
ee4d1000 1 38 nt!MiFindContiguousMemory+0x63
efa4f000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
efa53000 0 2 Ntfs!NtfsInitializeVcb+0x30e/Ntfs!NtfsInitializeDevice+0x95
eea89000 0 1 TDI!DllInitialize+0x4f/nt!MiResolveImageReferences+0x4bc
ee798000 1 20 VIDEOPRT!pVideoPortGetDeviceBase+0x1f1
f0676000 1 10 hal!HalpGrowMapBuffers+0x134/hal!HalpAllocateAdapterEx+0x1ff
f0b75000 1 1 cpqasm2+0x2af67/cpqasm2+0x7847
f0afa000 1 1 cpqasm2+0x2af67/cpqasm2+0x6d82

 CHAPTER 10 Memory Management 237

64-Bit Address Space Layouts
The theoretical 64-bit virtual address space is 16 exabytes (18,446,744,073,709,551,616 bytes, or
approximately 18.44 billion billion bytes). Unlike on x86 systems, where the default address space is
divided in two parts (half for a process and half for the system), the 64-bit address is divided into a
number of different size regions whose components match conceptually the portions of user, system,
and session space. The various sizes of these regions, listed in Table 10-8, represent current imple-
mentation limits that could easily be extended in future releases. Clearly, 64 bits provides a tremen-
dous leap in terms of address space sizes.

TABLE 10-8 64-Bit Address Space Sizes

Region IA64 x64

Process Address Space 7,152 GB 8,192 GB

System PTE Space 128 GB 128 GB

System Cache 1 TB 1 TB

Paged Pool 128 GB 128 GB

Nonpaged Pool 75% of physical memory 75% of physical memory

Also, on 64-bit Windows, another useful feature of having an image that is large address space aware
is that while running on 64-bit Windows (under Wow64), such an image will actually receive all 4 GB of
user address space available—after all, if the image can support 3-GB pointers, 4-GB pointers should
not be any different, because unlike the switch from 2 GB to 3 GB, there are no additional bits involved.
Figure 10-11 shows TestLimit, running as a 32-bit application, reserving address space on a 64-bit
Windows machine, followed by the 64-bit version of TestLimit leaking memory on the same machine.

FIGURE 10-11 32-bit and 64-bit TestLimit reserving address space on a 64-bit Windows computer

Note that these results depend on the two versions of TestLimit having been linked with the
/LARGEADDRESSAWARE option. Had they not been, the results would have been about 2 GB for each.
64-bit applications linked without /LARGEADDRESSAWARE are constrained to the first 2 GB of the
process virtual address space, just like 32-bit applications.

238 Windows Internals, Sixth Edition, Part 2

The detailed IA64 and x64 address space layouts vary slightly. The IA64 address space layout is
shown in Figure 10-12, and the x64 address space layout is shown in Figure 10-13.

..

0000000000000000

000006FBFFFEFFFF
000006FBFFFF0000 64KB no access region
000006FC00000000 Alternate 4KB-page mappings

for x86 process emulation. Spans
8MB to allow for 4GB VA space.

000006FC00800000

000006FFFFFFFFFF

Hyperspace: working set lists
and per process memory

management structures mapped
in this 16GB region.

0000070000000000

000007FFFFFFFFFF

Page table self-mapping structures

1FFFFF0000000000
8GB leaf-level page table map

for user space
1FFFFF01FFFFFFFF

1FFFFFFFFFF00000 8KB parent directory (1st level)

1FFFFFFFC0000000

1FFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for user space

..

..
2000000000000000

Win32k.sys
Session data structures.
This is an 8TB region.

3FFFFF0000000000

3FFFFF01FFFFFFFF

8GB leaf-level page table map
for session space

3FFFFFFFFFF00000
8KB parent directory (1st level)

8000000000000000
Physically addressable memory

for 50 bits of address space
mapped with VHPT 8KB pages

8004000000000000

E000000080000000 The HAL, kernel, initial drivers,
NLS data, and registry load in
this region, which physically

addresses memory

Kernel mode access only

9FFFFF0000000000 VHPT 64KB page for KSEG3 space
(not used)

3FFFFFFFC0000000

3FFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for session space

..

..

E0000000FF002000

E0000000FFFFFFFF

Reserved for the HAL

E000000200000000

E000000E00000000

The system cache working set
information resides in this

16GB region.

E000002E00000000

Start of paged system area.
Kernel mode access only.

128GB.

E000012600000000

MM_SYSTEM_SPACE_START
for a length of

MI_DYNAMIC_KERNEL_VA_BYTES
is managed by the

MISystemVaBitMap. This is
typically 1TB and is used

for the system cache, system
PTEs, and special pool.

Initial and expansion nonpaged
pool. Kernel mode access only.

Up to 128GB.

8GB leaf-level page table map
for kernel space

FFFFFF0000000000

FFFFFF01FFFFFFFF

FFFFFFFFC0000000

FFFFFFFFC07FFFFF

8MB page directory (2nd level)
table map for kernel space

FFFFFFFFFFF00000 8KB parent directory (1st level)

Shared system pageE0000000FFFE0000

..

Note: MM_SYSTEM_SPACE_START was
deliberately assigned far apart from the top
of virtual memory so a machine with a large
number of bits of physical addressing that
has RAM present at the very top can fit (i.e.,
a PFN database virtual span of ~6TB is
required for 50-bit physical addressing using
an 8KB page size with 8-byte PTEs).

..

..
PFN database

Note: There is actually no gap between
MM_SYSTEM_SPACE_END and the PTE_KBASE
because only the low 43 bits of the VA
are decoded.

..

..

E000070000000000

E000000000000000

FIGURE 10-12 IA64 address space layout

User mode addresses: 0TB – 7TB

 CHAPTER 10 Memory Management 239

Start of system space

0000000000000000
User mode addresses: 8TB minus 64KB

000007FFFFFF0000

000007FFFFFEFFFF

000007FFFFFFFFFF
64KB no access region

FFFFF68000000000 512GB four-level page table map
FFFFF70000000000 Hyperspace: working set lists and per

process memory management struc-
tures mapped in this 512GB region

FFFFF80000000000
Mappings initialized by the loader.

This is a 512GB region.
FFFFF88000000000 Start of system PTEs area.

Kernel mode access only. 128GB.

FFFFF78000000000 Shared system page
FFFFF78000001000 The system cache working set

information resides in this
512GB – 4K region

FFFF080000000000

..

Note: The ranges below are sign-extended for >43 bits and therefore can be
used with interlocked slists. The system address space above is NOT...

..

FFFFF98000000000

Win32k.sys. Session data structures.
This is a 512GB region.

PFN database

MM_SYSTEM_SPACE_START for a length
of MI_DYNAMIC_KERNEL_VA_BYTES is
managed by the MiSystemVaBitMap.

This is typically 1TB and is used for the
system cache, system PTEs,

and special pool.
FFFFFA8000000000

FFFFFFFF00C00000

Initial and expansion nonpaged pool.
Kernel mode access only.

Up to 128GB.

FFFFFFFFFFFFFFFF

Minimum 4MB reserved for the HAL.
Loader/HAL can consume additional
virtual accesss memory by leaving it

mapped at kernel bootup.

Note: A large VA range is deliberately reserved here to support machines with
a large number of bits of physical addressing with RAM present at the very
top (i.e., a PFN database virtual span of ~6TB is required for 49-bit physical
addressing using a 4KB page size with 8 byte PTEs)...

..

..

FFFFF90000000000

FFFFF8A000000000 Start of paged system area.
Kernel mode access only. 128GB.

FIGURE 10-13 x64 address space layout

240 Windows Internals, Sixth Edition, Part 2

x64 Virtual Addressing Limitations
As discussed previously, 64 bits of virtual address space allow for a possible maximum of 16 exabytes
(EB) of virtual memory, a notable improvement over the 4 GB offered by 32-bit addressing. With such
a copious amount of memory, it is obvious that today’s computers, as well as tomorrow’s foreseeable
machines, are not even close to requiring support for that much memory.

Accordingly, to simplify chip architecture and avoid unnecessary overhead, particularly in address
translation (to be described later), AMD’s and Intel’s current x64 processors implement only 256 TB of
virtual address space. That is, only the low-order 48 bits of a 64-bit virtual address are implemented.
However, virtual addresses are still 64 bits wide, occupying 8 bytes in registers or when stored in
memory. The high-order 16 bits (bits 48 through 63) must be set to the same value as the highest
order implemented bit (bit 47), in a manner similar to sign extension in two’s complement arithmetic.
An address that conforms to this rule is said to be a “canonical” address.

Under these rules, the bottom half of the address space thus starts at 0x0000000000000000,
as expected, but it ends at 0x00007FFFFFFFFFFF. The top half of the address space starts at
0xFFFF800000000000 and ends at 0xFFFFFFFFFFFFFFFF. Each “canonical” portion is 128 TB. As
newer processors implement more of the address bits, the lower half of memory will expand up-
ward, toward 0x7FFFFFFFFFFFFFFF, while the upper half of memory will expand downward, toward
0x8000000000000000 (a similar split to today’s memory space but with 32 more bits).

Windows x64 16-TB Limitation
Windows on x64 has a further limitation: of the 256 TB of virtual address space available on x64 pro-
cessors, Windows at present allows only the use of a little more than 16 TB. This is split into two 8-TB
regions, the user mode, per-process region starting at 0 and working toward higher addresses (end-
ing at 0x000007FFFFFFFFFF), and a kernel-mode, systemwide region starting at “all Fs” and working
toward lower addresses, ending at 0xFFFFF80000000000 for most purposes. This section describes
the origin of this 16-TB limit.

A number of Windows mechanisms have made, and continue to make, assumptions about usable
bits in addresses. Pushlocks, fast references, Patchguard DPC contexts, and singly linked lists are com-
mon examples of data structures that use bits within a pointer for nonaddressing purposes. Singly
linked lists, combined with the lack of a CPU instruction in the original x64 CPUs required to “port”
the data structure to 64-bit Windows, are responsible for this memory addressing limit on Windows
for x64.

Here is the SLIST_HEADER, the data structure Windows uses to represent an entry inside a list:

typedef union _SLIST_HEADER {
 ULONGLONG Alignment;
 struct {
 SLIST_ENTRY Next;
 USHORT Depth;
 USHORT Sequence;
 } DUMMYSTRUCTNAME;
} SLIST_HEADER, *PSLIST_HEADER;

 CHAPTER 10 Memory Management 241

Note that this is an 8-byte structure, guaranteed to be aligned as such, composed of three ele-
ments: the pointer to the next entry (32 bits, or 4 bytes) and depth and sequence numbers, each 16
bits (or 2 bytes). To create lock-free push and pop operations, the implementation makes use of an
instruction present on Pentium processors or higher—CMPXCHG8B (Compare and Exchange 8 bytes),
which allows the atomic modification of 8 bytes of data. By using this native CPU instruction, which
also supports the LOCK prefix (guaranteeing atomicity on a multiprocessor system), the need for a
spinlock to combine two 32-bit accesses is eliminated, and all operations on the list become lock free
(increasing speed and scalability).

On 64-bit computers, addresses are 64 bits, so the pointer to the next entry should logically be
64 bits. If the depth and sequence numbers remain within the same parameters, the system must
provide a way to modify at minimum 64+32 bits of data—or better yet, 128 bits, in order to increase
the entropy of the depth and sequence numbers. However, the first x64 processors did not imple-
ment the essential CMPXCHG16B instruction to allow this. The implementation, therefore, was written
to pack as much information as possible into only 64 bits, which was the most that could be modified
atomically at once. The 64-bit SLIST_HEADER thus looks like this:

struct { // 8-byte header
 ULONGLONG Depth:16;
 ULONGLONG Sequence:9;
 ULONGLONG NextEntry:39;
} Header8;

The first change is the reduction of the space for the sequence number to 9 bits instead of 16
bits, reducing the maximum sequence number the list can achieve. This leaves only 39 bits for the
pointer, still far from 64 bits. However, by forcing the structure to be 16-byte aligned when allocated,
4 more bits can be used because the bottom bits can now always be assumed to be 0. This gives 43
bits for addresses, but there is one more assumption that can be made. Because the implementation
of linked lists is used either in kernel mode or user mode but cannot be used across address spaces,
the top bit can be ignored, just as on 32-bit machines. The code will assume the address to be kernel
mode if called in kernel mode and vice versa. This allows us to address up to 44 bits of memory in the
 NextEntry pointer and is the defining constraint of the addressing limit in Windows.

Forty-four bits is a much better number than 32. It allows 16 TB of virtual memory to be described
and thus splits Windows into two even chunks of 8 TB for user-mode and kernel-mode memory.
Nevertheless, this is still 16 times smaller than the CPU’s own limit (48 bits is 256 TB), and even farther
still from the maximum that 64 bits can describe. So, with scalability in mind, some other bits do
exist in the SLIST_HEADER that define the type of header being dealt with. This means that when
the day comes when all x64 CPUs support 128-bit Compare and Exchange, Windows can easily take

242 Windows Internals, Sixth Edition, Part 2

advantage of it (and to do so before then would mean distributing two different kernel images).
Here’s a look at the full 8-byte header:

struct { // 8-byte header
 ULONGLONG Depth:16;
 ULONGLONG Sequence:9;
 ULONGLONG NextEntry:39;
 ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte
 ULONGLONG Init:1; // 0: uninitialized; 1: initialized
 ULONGLONG Reserved:59;
 ULONGLONG Region:3;
} Header8;

Note how the HeaderType bit is overlaid with the Depth bits and allows the implementation to deal
with 16-byte headers whenever support becomes available. For the sake of completeness, here is the
definition of the 16-byte header:

struct { // 16-byte header
 ULONGLONG Depth:16;
 ULONGLONG Sequence:48;
 ULONGLONG HeaderType:1; // 0: 8-byte; 1: 16-byte
 ULONGLONG Init:1; // 0: uninitialized; 1: initialized
 ULONGLONG Reserved:2;
 ULONGLONG NextEntry:60; // last 4 bits are always 0’s
} Header16;

Notice how the NextEntry pointer has now become 60 bits, and because the structure is still 16-
byte aligned, with the 4 free bits, leads to the full 64 bits being addressable.

Conversely, kernel-mode data structures that do not involve SLISTs are not limited to the 8-TB
address space range. System page table entries, hyperspace, and the cache working set all occupy
virtual addresses below 0xFFFFF80000000000 because these structures do not use SLISTs.

Dynamic System Virtual Address Space Management
Thirty-two-bit versions of Windows manage the system address space through an internal kernel
virtual allocator mechanism that we’ll describe in this section. Currently, 64-bit versions of Windows
have no need to use the allocator for virtual address space management (and thus bypass the cost),
because each region is statically defined as shown in Table 10-8 earlier.

When the system initializes, the MiInitializeDynamicVa function sets up the basic dynamic ranges
(the ranges currently supported are described in Table 10-9) and sets the available virtual address to
all available kernel space. It then initializes the address space ranges for boot loader images, process
space (hyperspace), and the HAL through the MiIntializeSystemVaRange function, which is used to set
hard-coded address ranges. Later, when nonpaged pool is initialized, this function is used again to re-
serve the virtual address ranges for it. Finally, whenever a driver loads, the address range is relabeled
to a driver image range (instead of a boot loaded range).

After this point, the rest of the system virtual address space can be dynamically requested and
released through MiObtainSystemVa (and its analogous MiObtainSessionVa) and MiReturnSystemVa.

 CHAPTER 10 Memory Management 243

Operations such as expanding the system cache, the system PTEs, nonpaged pool, paged pool, and/or
special pool; mapping memory with large pages; creating the PFN database; and creating a new ses-
sion all result in dynamic virtual address allocations for a specific range. Each time the kernel virtual
address space allocator obtains virtual memory ranges for use by a certain type of virtual address, it
updates the MiSystemVaType array, which contains the virtual address type for the newly allocated
range. The values that can appear in MiSystemVaType are shown in Table 10-9.

TABLE 10-9 System Virtual Address Types

Region Description Limitable

MiVaSessionSpace (0x1) Addresses for session space Yes

MiVaProcessSpace (0x2) Addresses for process address space No

MiVaBootLoaded (0x3) Addresses for images loaded by the boot loader No

MiVaPfnDatabase (0x4) Addresses for the PFN database No

MiVaNonPagedPool (0x5) Addresses for the nonpaged pool Yes

MiVaPagedPool (0x6) Addresses for the paged pool Yes

MiVaSpecialPool (0x7) Addresses for the special pool No

MiVaSystemCache (0x8) Addresses for the system cache Yes

MiVaSystemPtes (0x9) Addresses for system PTEs Yes

MiVaHal (0xA) Addresses for the HAL No

MiVaSessionGlobalSpace (0xB) Addresses for session global space No

MiVaDriverImages (0xC) Addresses for loaded driver images No

Although the ability to dynamically reserve virtual address space on demand allows better man-
agement of virtual memory, it would be useless without the ability to free this memory. As such, when
paged pool or the system cache can be shrunk, or when special pool and large page mappings are
freed, the associated virtual address is freed. (Another case is when the boot registry is released.) This
allows dynamic management of memory depending on each component’s use. Additionally, compo-
nents can reclaim memory through MiReclaimSystemVa, which requests virtual addresses associated
with the system cache to be flushed out (through the dereference segment thread) if available virtual
address space has dropped below 128 MB. (Reclaiming can also be satisfied if initial nonpaged pool
has been freed.)

In addition to better proportioning and better management of virtual addresses dedicated to dif-
ferent kernel memory consumers, the dynamic virtual address allocator also has advantages when it
comes to memory footprint reduction. Instead of having to manually preallocate static page table en-
tries and page tables, paging-related structures are allocated on demand. On both 32-bit and 64-bit
systems, this reduces boot-time memory usage because unused addresses won’t have their page ta-
bles allocated. It also means that on 64-bit systems, the large address space regions that are reserved
don’t need to have their page tables mapped in memory, which allows them to have arbitrarily large
limits, especially on systems that have little physical RAM to back the resulting paging structures.

244 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Querying System Virtual Address Usage
You can look at the current usage and peak usage of each system virtual address type by using
the kernel debugger. For each system virtual address type described in Table 10-9, the Mi-
System VaTypeCount, MiSystemVaTypeCountFailures, and MiSystemVaTypeCountPeak arrays in
the kernel contain the sizes, count failures, and peak sizes for each type. Here’s how you can
dump the usage for the system, followed by the peak usage (you can use a similar technique for
the failure counts):

lkd> dd /c 1 MiSystemVaTypeCount l c
81f4f880 00000000
81f4f884 00000028
81f4f888 00000008
81f4f88c 0000000c
81f4f890 0000000b
81f4f894 0000001a
81f4f898 0000002f
81f4f89c 00000000
81f4f8a0 000001b6
81f4f8a4 00000030
81f4f8a8 00000002
81f4f8ac 00000006
lkd> dd /c 1 MiSystemVaTypeCountPeak l c
81f4f840 00000000
81f4f844 00000038
81f4f848 00000000
81f4f84c 00000000
81f4f850 0000003d
81f4f854 0000001e
81f4f858 00000032
81f4f85c 00000000
81f4f860 00000238
81f4f864 00000031
81f4f868 00000000
81f4f86c 00000006

Theoretically, the different virtual address ranges assigned to components can grow arbitrarily in
size as long as enough system virtual address space is available. In practice, on 32-bit systems, the
kernel allocator implements the ability to set limits on each virtual address type for the purposes
of both reliability and stability. (On 64-bit systems, kernel address space exhaustion is currently
not a concern.) Although no limits are imposed by default, system administrators can use the reg-
istry to modify these limits for the virtual address types that are currently marked as limitable (see
Table 10-9).

If the current request during the MiObtainSystemVa call exceeds the available limit, a failure is
marked (see the previous experiment) and a reclaim operation is requested regardless of available
memory. This should help alleviate memory load and might allow the virtual address allocation to
work during the next attempt. (Recall, however, that reclaiming affects only system cache and non-
paged pool).

 CHAPTER 10 Memory Management 245

EXPERIMENT: Setting System Virtual Address Limits
The MiSystemVaTypeCountLimit array contains limitations for system virtual address usage that
can be set for each type. Currently, the memory manager allows only certain virtual address
types to be limited, and it provides the ability to use an undocumented system call to set limits
for the system dynamically during run time. (These limits can also be set through the registry,
as described at http://msdn.microsoft.com/en-us/library/bb870880(VS.85).aspx.) These limits can
be set for those types marked in Table 10-9.

You can use the MemLimit utility (http://www.winsid erss.com/tools/memlimit.html) from
Winsider Seminars & Solutions to query and set the different limits for these types, and also
to see the current and peak virtual address space usage. Here’s how you can query the current
limits with the –q flag:

C:\ >memlimit.exe -q

MemLimit v1.00 - Query and set hard limits on system VA space consumption
Copyright (C) 2008 Alex Ionescu
www.alex-ionescu.com

System Va Consumption:

Type Current Peak Limit
Non Paged Pool 102400 KB 0 KB 0 KB
Paged Pool 59392 KB 83968 KB 0 KB
System Cache 534528 KB 536576 KB 0 KB
System PTEs 73728 KB 75776 KB 0 KB
Session Space 75776 KB 90112 KB 0 KB

As an experiment, use the following command to set a limit of 100 MB for paged pool:

memlimit.exe -p 100M

And now try running the testlimit –h experiment from Chapter 3 (in Part 1) again, which
attempted to create 16 million handles. Instead of reaching the 16 million handle count, the
process will fail, because the system will have run out of address space available for paged pool
allocations.

System Virtual Address Space Quotas
The system virtual address space limits described in the previous section allow for limiting systemwide
virtual address space usage of certain kernel components, but they work only on 32-bit systems when
applied to the system as a whole. To address more specific quota requirements that system admin-
istrators might have, the memory manager also collaborates with the process manager to enforce
either systemwide or user-specific quotas for each process.

The PagedPoolQuota, NonPagedPoolQuota, PagingFileQuota, and WorkingSetPagesQuota values
in the HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management key can
be configured to specify how much memory of each type a given process can use. This information is

http://msdn.microsoft.com/en-us/library/bb870880(VS.85).aspx
http://www.winsid-erss.com/tools/memlimit.html

246 Windows Internals, Sixth Edition, Part 2

read at initialization, and the default system quota block is generated and then assigned to all system
processes (user processes will get a copy of the default system quota block unless per-user quotas
have been configured as explained next).

To enable per-user quotas, subkeys under the registry key HKLM\SYSTEM\CurrentControlSet\
Session Manager\Quota System can be created, each one representing a given user SID. The values
mentioned previously can then be created under this specific SID subkey, enforcing the limits only for
the processes created by that user. Table 10-10 shows how to configure these values, which can be
configured at run time or not, and which privileges are required.

TABLE 10-10 Process Quota Types

Value Name Description Value Type Dynamic Privilege

PagedPoolQuota Maximum size of
paged pool that can
be allocated by this
process

Size in MB Only for
processes
running with the
system token

SeIncreaseQuotaPrivilege

NonPagedPoolQuota Maximum size of
nonpaged pool that
can be allocated by
this process

Size in MB Only for
processes
running with the
system token

SeIncreaseQuotaPrivilege

PagingFileQuota Maximum number of
pages that a process
can have backed by
the page file

Pages Only for
processes
running with the
system token

SeIncreaseQuotaPrivilege

WorkingSetPagesQuota Maximum number
of pages that a
process can have in
its working set (in
physical memory)

Pages Yes SeIncreaseBasePriorityPrivilege
unless operation is a purge
request

User Address Space Layout
Just as address space in the kernel is dynamic, the user address space is also built dynamically—the
addresses of the thread stacks, process heaps, and loaded images (such as DLLs and an application’s
executable) are dynamically computed (if the application and its images support it) through a mecha-
nism known as Address Space Layout Randomization, or ASLR.

At the operating system level, user address space is divided into a few well-defined regions of
memory, shown in Figure 10-14. The executable and DLLs themselves are present as memory mapped
image files, followed by the heap(s) of the process and the stack(s) of its thread(s). Apart from these
regions (and some reserved system structures such as the TEBs and PEB), all other memory alloca-
tions are run-time dependent and generated. ASLR is involved with the location of all these run-time-
dependent regions and, combined with DEP, provides a mechanism for making remote exploitation of
a system through memory manipulation harder to achieve. Since Windows code and data are placed
at dynamic locations, an attacker cannot typically hardcode a meaningful offset into either a program
or a system-supplied DLL.

 CHAPTER 10 Memory Management 247

Thread stack

Dynamic-base DLLs

Executable
Randomly chosen
executable load address

Process heapUser
address

space

Kernel
address

space

Randomly chosen
image load address

Thread stack

Thread stack

FIGURE 10-14 User address space layout with ASLR enabled

EXPERIMENT: Analyzing User Virtual Address Space
The VMMap utility from Sysinternals can show you a detailed view of the virtual memory being
utilized by any process on your machine, divided into categories for each type of allocation,
summarized as follows:

 ■ Image Displays memory allocations used to map the executable and its dependencies
(such as dynamic libraries) and any other memory mapped image (portable executable
format) files

 ■ Private Displays memory allocations marked as private, such as internal data structures,
other than the stack and heap

 ■ Shareable Displays memory allocations marked as shareable, typically including shared
memory (but not memory mapped files, which are either Image or Mapped File)

 ■ Mapped File Displays memory allocations for memory mapped data files

 ■ Heap Displays memory allocated for the heap(s) that this process owns

248 Windows Internals, Sixth Edition, Part 2

 ■ Stack Displays memory allocated for the stack of each thread in this process

 ■ System Displays kernel memory allocated for the process (such as the process object)

The following screen shot shows a typical view of Explorer as seen through VMMap.

Depending on the type of memory allocation, VMMap can show additional information,
such as file names (for mapped files), heap IDs (for heap allocations), and thread IDs (for stack
allocations). Furthermore, each allocation’s cost is shown both in committed memory and work-
ing set memory. The size and protection of each allocation is also displayed.

ASLR begins at the image level, with the executable for the process and its dependent DLLs.
Any image file that has specified ASLR support in its PE header (IMAGE_DLL_CHARACTERISTICS_
DYNAMIC_BASE), typically specified by using the /DYNAMICBASE linker flag in Microsoft Visual
 Studio, and contains a relocation section will be processed by ASLR. When such an image is found,
the system selects an image offset valid globally for the current boot. This offset is selected from a
bucket of 256 values, all of which are 64-KB aligned.

Image Randomization
For executables, the load offset is calculated by computing a delta value each time an executable is
loaded. This value is a pseudo-random 8-bit number from 0x10000 to 0xFE0000, calculated by tak-
ing the current processor’s time stamp counter (TSC), shifting it by four places, and then performing
a division modulo 254 and adding 1. This number is then multiplied by the allocation granularity of

 CHAPTER 10 Memory Management 249

64 KB discussed earlier. By adding 1, the memory manager ensures that the value can never be 0, so
executables will never load at the address in the PE header if ASLR is being used. This delta is then
added to the executable’s preferred load address, creating one of 256 possible locations within 16 MB
of the image address in the PE header.

For DLLs, computing the load offset begins with a per-boot, systemwide value called the image
bias, which is computed by MiInitializeRelocations and stored in MiImageBias. This value corresponds
to the time stamp counter (TSC) of the current CPU when this function was called during the boot
cycle, shifted and masked into an 8-bit value, which provides 256 possible values. Unlike executables,
this value is computed only once per boot and shared across the system to allow DLLs to remain
shared in physical memory and relocated only once. If DLLs were remapped at different locations
inside different processes, the code could not be shared. The loader would have to fix up address
references differently for each process, thus turning what had been shareable read-only code into
process-private data. Each process using a given DLL would have to have its own private copy of the
DLL in physical memory.

Once the offset is computed, the memory manager initializes a bitmap called the MiImageBitMap.
This bitmap is used to represent ranges from 0x50000000 to 0x78000000 (stored in MiImage-
BitMapHighVa), and each bit represents one unit of allocation (64 KB, as mentioned earlier). When-
ever the memory manager loads a DLL, the appropriate bit is set to mark its location in the system;
when the same DLL is loaded again, the memory manager shares its section object with the already
relocated information.

As each DLL is loaded, the system scans the bitmap from top to bottom for free bits. The MiImage-
Bias value computed earlier is used as a start index from the top to randomize the load across differ-
ent boots as suggested. Because the bitmap will be entirely empty when the first DLL (which is always
Ntdll.dll) is loaded, its load address can easily be calculated: 0x78000000 – MiImageBias * 0x10000.
Each subsequent DLL will then load in a 64-KB chunk below. Because of this, if the address of Ntdll.dll
is known, the addresses of other DLLs could easily be computed. To mitigate this possibility, the order
in which known DLLs are mapped by the Session Manager during initialization is also randomized
when Smss loads.

Finally, if no free space is available in the bitmap (which would mean that most of the region de-
fined for ASLR is in use, the DLL relocation code defaults back to the executable case, loading the DLL
at a 64-KB chunk within 16 MB of its preferred base address.

Stack Randomization
The next step in ASLR is to randomize the location of the initial thread’s stack (and, subsequently, of
each new thread). This randomization is enabled unless the flag StackRandomizationDisabled was
enabled for the process and consists of first selecting one of 32 possible stack locations separated
by either 64 KB or 256 KB. This base address is selected by finding the first appropriate free memory

250 Windows Internals, Sixth Edition, Part 2

region and then choosing the xth available region, where x is once again generated based on the cur-
rent processor’s TSC shifted and masked into a 5-bit value (which allows for 32 possible locations).

Once this base address has been selected, a new TSC-derived value is calculated, this one 9 bits
long. The value is then multiplied by 4 to maintain alignment, which means it can be as large as 2,048
bytes (half a page). It is added to the base address to obtain the final stack base.

Heap Randomization
Finally, ASLR randomizes the location of the initial process heap (and subsequent heaps) when created
in user mode. The RtlCreateHeap function uses another pseudo-random, TSC-derived value to deter-
mine the base address of the heap. This value, 5 bits this time, is multiplied by 64 KB to generate the
final base address, starting at 0, giving a possible range of 0x00000000 to 0x001F0000 for the initial
heap. Additionally, the range before the heap base address is manually deallocated in an attempt to
force an access violation if an attack is doing a brute-force sweep of the entire possible heap address
range.

ASLR in Kernel Address Space
ASLR is also active in kernel address space. There are 64 possible load addresses for 32-bit drivers
and 256 for 64-bit drivers. Relocating user-space images requires a significant amount of work area
in kernel space, but if kernel space is tight, ASLR can use the user-mode address space of the System
process for this work area.

Controlling Security Mitigations
As we've seen, ASLR and many of the other security mitigations in Windows are optional because of
their potential compatibility effects: ASLR applies only to images with the IMAGE_DLL_CHARACTER-
ISTICS_DYNAMIC_BASE bit in their image headers, hardware no-execute (data execution protection)
can be controlled by a combination of boot options and linker options, and so on. To allow both
enterprise customers and individual users more visibility and control of these features, Microsoft
publishes the Enhanced Mitigation Experience Toolkit (EMET). EMET offers centralized control of the
mitigations built into Windows and also adds several more mitigations not yet part of the Windows
product. Additionally, EMET provides notification capabilities through the Event Log to let admin-
istrators know when certain software has experienced access faults because mitigations have been
applied. Finally, EMET also enables manual opt-out for certain applications that might exhibit compat-
ibility issues in certain environments, even though they were opted in by the developer.

 CHAPTER 10 Memory Management 251

EXPERIMENT: Looking at ASLR Protection on Processes
You can use Process Explorer from Sysinternals to look over your processes (and, just as impor-
tant, the DLLs they load) to see if they support ASLR. Note that even if just one DLL loaded by a
process does not support ASLR, it can make the process much more vulnerable to attacks.

To look at the ASLR status for processes, right-click on any column in the process tree,
choose Select Columns, and then check ASLR Enabled on the Process Image tab. Notice that
not all in-box Windows programs and services are running with ASLR enabled, and there is one
visible example of a third-party application that does not have ASLR enabled either.

In the example, we have highlighted the Notepad.exe process. In this case, its load address is
0xFE0000. If you were to close all instances of Notepad and then start another, you would find
it at a different load address. If you shut down and reboot the system and then try the experi-
ment again, you would find that the ASLR-enabled DLLs are at different load addresses after
each boot.

Address Translation

Now that you’ve seen how Windows structures the virtual address space, let’s look at how it maps
these address spaces to real physical pages. User applications and system code reference virtual
addresses. This section starts with a detailed description of 32-bit x86 address translation (in both
non-PAE and PAE modes) and continues with a brief description of the differences on the 64-bit IA64
and x64 platforms. In the next section, we’ll describe what happens when such a translation doesn’t
resolve to a physical memory address (paging) and explain how Windows manages physical memory
via working sets and the page frame database.

252 Windows Internals, Sixth Edition, Part 2

x86 Virtual Address Translation
Using data structures the memory manager creates and maintains called page tables, the CPU trans-
lates virtual addresses into physical addresses. Each page of virtual address space is associated with a
system-space structure called a page table entry (PTE), which contains the physical address to which
the virtual one is mapped. For example, Figure 10-15 shows how three consecutive virtual pages
might be mapped to three physically discontiguous pages on an x86 system. There may not even be
any PTEs for regions that have been marked as reserved or committed but never accessed, because
the page table itself might be allocated only when the first page fault occurs.

Virtual
pages

Page table
entries

Physical memory

FFFFFFFF

C1000000

C0000000

80000000
7FFFFFFF

00000000

FIGURE 10-15 Mapping virtual addresses to physical memory (x86)

The dashed line connecting the virtual pages to the PTEs in Figure 10-15 represents the indirect
relationship between virtual pages and physical memory.

Note Even kernel-mode code (such as device drivers) cannot reference physical memory
addresses directly, but it may do so indirectly by first creating virtual addresses mapped
to them. For more information, see the memory descriptor list (MDL) support routines de-
scribed in the WDK documentation.

 CHAPTER 10 Memory Management 253

As mentioned previously, Windows on x86 can use either of two schemes for address translation:
non-PAE and PAE. We’ll discuss the non-PAE mode first and cover PAE in the next section. The PAE
material does depend on the non-PAE material, so even if you are primarily interested in PAE, you
should study this section first. The description of x64 address translation similarly builds on the PAE
information.

Non-PAE x86 systems use a two-level page table structure to translate virtual to physical ad-
dresses. A 32-bit virtual address mapped by a normal 4-KB page is interpreted as two fields: the
virtual page number and the byte within the page, called the byte offset. The virtual page number is
further divided into two subfields, called the page directory index and the page table index, as illus-
trated in Figure 10-16. These two fields are used to locate entries in the page directory and in a page
table.

The sizes of these bit fields are dictated by the structures they reference. For example, the byte
offset is 12 bits because it denotes a byte within a page, and pages are 4,096 bytes (212 = 4,096). The
other indexes are 10 bits because the structures they index have 1,024 entries (210 = 1,024).

31
Page directory

index

Virtual page number

Page table
index Byte offset

31

10 bits 10 bits 12 bits

0 (LSB)

FIGURE 10-16 Components of a 32-bit virtual address on x86 systems

The job of virtual address translation is to convert these virtual addresses into physical addresses—
that is, addresses of locations in RAM. The format of a physical address on an x86 non-PAE system is
shown in Figure 10-17.

0000.0000.0000.0000.0000 0000.0000.0000

31 12 11 0

Physical page number
(also known as

“page frame number”)

Byte offset

FIGURE 10-17 Components of a physical address on x86 non-PAE systems

As you can see, the format is very similar to that of a virtual address. Furthermore, the byte offset
value from a virtual address will be the same in the resulting physical address. We can say, then, that
address translation involves converting virtual page numbers to physical page numbers (also referred
to as page frame numbers, or PFNs). The byte offset does not participate in, and does not change as a
result of, address translation. It is simply copied from the virtual address to the physical address,

254 Windows Internals, Sixth Edition, Part 2

Figure 10-18 shows the relationship of these three values and how they are used to perform ad-
dress translation.

KPROCESS

Page directory
index

Page table
index

Byte offset

Physical address

Virtual address

CR3

Page directory
(one per process, 1,024 entries)

Page tables
(up to 512 per process

plus up to 512 systemwide,
1,024 entries per table)

Physical address
space

Desired byte

Desired page

PFN

PFN

PTE

Index

PDE

Index

FIGURE 10-18 Translating a valid virtual address (x86 non-PAE)

The following basic steps are involved in translating a virtual address:

1. The memory management unit (MMU) uses a privileged CPU register, CR3, to obtain the
physical address of the page directory.

2. The page directory index portion of the virtual address is used as an index into the page
directory. This locates the page directory entry (PDE) that contains the location of the page
table needed to map the virtual address. The PDE in turn contains the physical page number,
also called the page frame number, or PFN, of the desired page table, provided the page table
is resident—page tables can be paged out or not yet created, and in those cases, the page
table is first made resident before proceeding. If a flag in the PDE indicates that it describes a
large page, then it simply contains the PFN of the target large page, and the rest of the virtual
address is treated as the byte offset within the large page.

3. The page table index is used as an index into the page table to locate the PTE that describes
the virtual page in question.

 CHAPTER 10 Memory Management 255

4. If the PTE’s valid bit is clear, this triggers a page fault (memory management fault). The oper-
ating system’s memory management fault handler (pager) locates the page and tries to make
it valid; after doing so, this sequence continues at step 5. (See the section “Page Fault Han-
dling.”) If the page cannot or should not be made valid (for example, because of a protection
fault), the fault handler generates an access violation or a bug check.

5. When the PTE describes a valid page (whether immediately or after page fault resolution), the
desired physical address is constructed from the PFN field of the PTE, followed by the byte
offset field from the original virtual address.

Now that you have the overall picture, let’s look at the detailed structure of page directories, page
tables, and PTEs.

Page Directories
On non-PAE x86 systems, each process has a single page directory, a page the memory manager cre-
ates to map the location of all page tables for that process. The physical address of the process page
directory is stored in the kernel process (KPROCESS) block, but it is also mapped virtually at address
0xC0300000 on x86 non-PAE systems. (For more detailed information about the KPROCESS and other
process data structures, refer to Chapter 5, “Processes, Threads, and Jobs” in Part 1.)

The CPU obtains the location of the page directory from a privileged CPU register called CR3.
It contains the page frame number of the page directory. (Since the page directory is itself always
page-aligned, the low-order 12 bits of its address are always zero, so there is no need for CR3 to sup-
ply these.) Each time a context switch occurs to a thread that is in a different process than that of the
currently executing thread, the context switch routine in the kernel loads this register from a field in
the KPROCESS block of the new process. Context switches between threads in the same process don’t
result in reloading the physical address of the page directory because all threads within the same
process share the same process address space and thus use the same page directory and page tables.

The page directory is composed of page directory entries (PDEs), each of which is 4 bytes long.
The PDEs in the page directory describe the state and location of all the possible page tables for the
process. As described later in the chapter, page tables are created on demand, so the page directory
for most processes points only to a small set of page tables. (If a page table does not yet exist, the
VAD tree is consulted to determine whether an access should materialize it.) The format of a PDE isn’t
repeated here because it’s mostly the same as a hardware PTE, which is described shortly.

To describe the full 4-GB virtual address space, 1,024 page tables are required. The process page
directory that maps these page tables contains 1,024 PDEs. Therefore, the page directory index needs
to be 10 bits wide (210 = 1,024).

256 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Examining the Page Directory and PDEs
You can see the physical address of the currently running process’s page directory by examining
the DirBase field in the !process kernel debugger output:

lkd> !process -1 0
PROCESS 857b3528 SessionId: 1 Cid: 0f70 Peb: 7ffdf000 ParentCid: 0818
 DirBase: 47c9b000 ObjectTable: b4c56c48 HandleCount: 226.
 Image: windbg.exe

You can see the page directory’s virtual address by examining the kernel debugger output
for the PTE of a particular virtual address, as shown here:

lkd> !pte 10004
 VA 00010004
PDE at C0300000 PTE at C0000040
contains 6F06B867 contains 3EF8C847
pfn 6f06b ---DA--UWEV pfn 3ef8c ---D---UWEV

The PTE part of the kernel debugger output is defined in the section “Page Tables and Page
Table Entries.” We will describe this output further in the section on x86 PAE translation.

Because Windows provides a private address space for each process, each process has its own
page directory and page tables to map that process’s private address space. However, the page tables
that describe system space are shared among all processes (and session space is shared only among
processes in a session). To avoid having multiple page tables describing the same virtual memory,
when a process is created, the page directory entries that describe system space are initialized to
point to the existing system page tables. If the process is part of a session, session space page tables
are also shared by pointing the session space page directory entries to the existing session page
tables.

Page Tables and Page Table Entries
Each page directory entry points to a page table. A page table is a simple array of PTEs. The virtual
address’s page table index field (as shown in Figure 10-18) indicates which PTE within the page table
corresponds to and describes the data page in question. The page table index is 10 bits wide, allow-
ing you to reference up to 1,024 4-byte PTEs. Of course, because x86 provides a 4-GB virtual address
space, more than one page table is needed to map the entire address space. To calculate the num-
ber of page tables required to map the entire 4-GB virtual address space, divide 4 GB by the virtual
memory mapped by a single page table. Recall that each page table on an x86 system maps 4 MB of
data pages. Thus, 1,024 page tables (4 GB / 4 MB) are required to map the full 4-GB address space.
This corresponds with the 1,024 entries in the page directory.

You can use the !pte command in the kernel debugger to examine PTEs. (See the experiment
“Translating Addresses.”) We’ll discuss valid PTEs here and invalid PTEs in a later section. Valid PTEs
have two main fields: the page frame number (PFN) of the physical page containing the data or of the
physical address of a page in memory, and some flags that describe the state and protection of the
page, as shown in Figure 10-19.

 CHAPTER 10 Memory Management 257

Software field (write)
Software field (prototype PTE)
Software field (copy-on-write)
Global
Reserved (large page if PDE)
Dirty
Accessed
Cache disabled
Write through
Owner
Write
Valid

Page frame number U P Cw Gl L D A Cd Wt O W V

31 01112 10 9 8 7 6 5 4 3 2 1

FIGURE 10-19 Valid x86 hardware PTEs

As you’ll see later, the bits labeled “Software field” and “Reserved” in Figure 10-19 are ignored by
the MMU, whether or not the PTE is valid. These bits are stored and interpreted by the memory man-
ager. Table 10-11 briefly describes the hardware-defined bits in a valid PTE.

TABLE 10-11 PTE Status and Protection Bits

Name of Bit Meaning

Accessed Page has been accessed.

Cache disabled Disables CPU caching for that page.

Copy-on-write Page is using copy-on-write (described earlier).

Dirty Page has been written to.

Global Translation applies to all processes. (For example, a translation buffer flush won’t affect
this PTE.)

Large page Indicates that the PDE maps a 4-MB page (or 2 MB on PAE systems). See the section
“Large and Small Pages” earlier in the chapter.

Owner Indicates whether user-mode code can access the page or whether the page is limited to
kernel-mode access.

Prototype The PTE is a prototype PTE, which is used as a template to describe shared memory
associated with section objects.

Valid Indicates whether the translation maps to a page in physical memory.

Write through Marks the page as write-through or (if the processor supports the page attribute table)
write-combined. This is typically used to map video frame buffer memory.

Write Indicates to the MMU whether the page is writable.

On x86 systems, a hardware PTE contains two bits that can be changed by the MMU, the Dirty bit
and the Accessed bit. The MMU sets the Accessed bit whenever the page is read or written (provided
it is not already set). The MMU sets the Dirty bit whenever a write operation occurs to the page. The
operating system is responsible for clearing these bits at the appropriate times; they are never cleared
by the MMU.

258 Windows Internals, Sixth Edition, Part 2

The x86 MMU uses a Write bit to provide page protection. When this bit is clear, the page is read-
only; when it is set, the page is read/write. If a thread attempts to write to a page with the Write bit
clear, a memory management exception occurs, and the memory manager’s access fault handler (de-
scribed later in the chapter) must determine whether the thread can be allowed to write to the page
(for example, if the page was really marked copy-on-write) or whether an access violation should be
generated.

Hardware vs. Software Write Bits in Page Table Entries
The additional Write bit implemented in software (as mentioned in Table 10-11) is used to force
updating of the Dirty bit to be synchronized with updates to Windows memory management data.
In a simple implementation, the memory manager would set the hardware Write bit (bit 1) for any
writable page, and a write to any such page will cause the MMU to set the Dirty bit in the page table
entry. Later, the Dirty bit will tell the memory manager that the contents of that physical page must
be written to backing store before the physical page can be used for something else.

In practice, on multiprocessor systems, this can lead to race conditions that are expensive to
resolve. The MMUs of the various processors can, at any time, set the Dirty bit of any PTE that has its
hardware Write bit set. The memory manager must, at various times, update the process working set
list to reflect the state of the Dirty bit in a PTE. The memory manager uses a pushlock to synchronize
access to the working set list. But on a multiprocessor system, even while one processor is holding the
lock, the Dirty bit might be changed by MMUs of other CPUs. This raises the possibility of missing an
update to a Dirty bit.

To avoid this, the Windows memory manager initializes both read-only and writable pages with
the hardware Write bit (bit 1) of their PTEs set to 0 and records the true writable state of the page
in the software Write bit (bit 11). On the first write access to such a page, the processor will raise a
memory management exception because the hardware Write bit is clear, just as it would be for a true
read-only page. In this case, though, the memory manager learns that the page actually is writable
(via the software Write bit), acquires the working set pushlock, sets the Dirty bit and the hardware
Write bit in the PTE, updates the working set list to note that the page has been changed, releases the
working set pushlock, and dismisses the exception. The hardware write operation then proceeds as
usual, but the setting of the Dirty bit is made to happen with the working set list pushlock held.

On subsequent writes to the page, no exceptions occur because the hardware Write bit is set. The
MMU will redundantly set the Dirty bit, but this is benign because the “written-to” state of the page is
already recorded in the working set list. Forcing the first write to a page to go through this exception
handling may seem to be excessive overhead. However, it happens only once per writable page as
long as the page remains valid. Furthermore, the first access to almost any page already goes through
memory management exception handling because pages are usually initialized in the invalid state
(PTE bit 0 is clear). If the first access to a page is also the first write access to the page, the Dirty bit
handling just described will occur within the handling of the first-access page fault, so the additional
overhead is small. Finally, on both uniprocessor and multiprocessor systems, this implementation al-
lows flushing of the translation look-aside buffer (described later) without holding a lock for each page
being flushed.

 CHAPTER 10 Memory Management 259

Byte Within Page
Once the memory manager has determined the physical page number, it must locate the requested
data within that page. This is the purpose of the byte offset field. The byte offset from the original
virtual address is simply copied to the corresponding field in the physical address. On x86 systems,
the byte offset is 12 bits wide, allowing you to reference up to 4,096 bytes of data (the size of a page).
Another way to interpret this is that the byte offset from the virtual address is concatenated to the
physical page number retrieved from the PTE. This completes the translation of a virtual address to a
physical address.

Translation Look-Aside Buffer
As you’ve learned so far, each hardware address translation requires two lookups: one to find the right
entry in the page directory (which provides the location of the page table) and one to find the right
entry in the page table. Because doing two additional memory lookups for every reference to a vir-
tual address would triple the required bandwidth to memory, resulting in poor performance, all CPUs
cache address translations so that repeated accesses to the same addresses don’t have to be repeat-
edly translated. This cache is an array of associative memory called the translation look-aside buffer, or
TLB. Associative memory is a vector whose cells can be read simultaneously and compared to a target
value. In the case of the TLB, the vector contains the virtual-to-physical page mappings of the most
recently used pages, as shown in Figure 10-20, and the type of page protection, size, attributes, and
so on applied to each page. Each entry in the TLB is like a cache entry whose tag holds portions of the
virtual address and whose data portion holds a physical page number, protection field, valid bit, and
usually a dirty bit indicating the condition of the page to which the cached PTE corresponds. If a PTE’s
global bit is set (as is done by Windows for system space pages that are visible to all processes), the
TLB entry isn’t invalidated on process context switches.

Virtual page 5 Page frame 290

Virtual page 64 Invalid

Page frame
1004Virtual page 17

Virtual page 7

Virtual page 6

Virtual page 65

Invalid

Page frame 14

Page frame 801

Simultaneous read
and compare

Virtual page number: 17

Virtual address
Match

TLB

.

.

.

FIGURE 10-20 Accessing the translation look-aside buffer

260 Windows Internals, Sixth Edition, Part 2

Virtual addresses that are used frequently are likely to have entries in the TLB, which provides
extremely fast virtual-to-physical address translation and, therefore, fast memory access. If a virtual
address isn’t in the TLB, it might still be in memory, but multiple memory accesses are needed to find
it, which makes the access time slightly slower. If a virtual page has been paged out of memory or if
the memory manager changes the PTE, the memory manager is required to explicitly invalidate the
TLB entry. If a process accesses it again, a page fault occurs, and the memory manager brings the
page back into memory (if needed) and re-creates its PTE entry (which then results in an entry for it
in the TLB).

Physical Address Extension (PAE)
The Intel x86 Pentium Pro processor introduced a memory-mapping mode called Physical Address
Extension (PAE). With the proper chipset, the PAE mode allows 32-bit operating systems access to up
to 64 GB of physical memory on current Intel x86 processors (up from 4 GB without PAE) and up to
1,024 GB of physical memory when running on x64 processors in legacy mode (although Windows
currently limits this to 64 GB due to the size of the PFN database required to describe so much
memory). When the processor is running in PAE mode, the memory management unit (MMU) divides
virtual addresses mapped by normal pages into four fields, as shown in Figure 10-21. The MMU still
implements page directories and page tables, but under PAE a third level, the page directory pointer
table, exists above them.

One way in which 32-bit applications can take advantage of such large memory configurations is
described in the earlier section “Address Windowing Extensions.” However, even if applications are
not using such functions, the memory manager will use all available physical memory for multiple
processes’ working sets, file cache, and trimmed private data through the use of the system cache,
standby, and modified lists (described in the section “Page Frame Number Database”).

PAE mode is selected at boot time and cannot be changed without rebooting. As explained in
Chapter 2 in Part 1, there is a special version of the 32-bit Windows kernel with support for PAE
called Ntkrnlpa.exe. Thirty-two-bit systems that have hardware support for nonexecutable memory
(described earlier, in the section “No Execute Page Protection”) are booted by default using this PAE
kernel, because PAE mode is required to implement the no-execute feature. To force the loading of
the PAE-enabled kernel, you can set the pae BCD option to ForceEnable.

Note that the PAE kernel is installed on the disk on all 32-bit Windows systems, even systems with
small memory and without hardware no-execute support. This is to allow testing of PAE-related code,
even on small memory systems, and to avoid the need for reinstalling Windows should more RAM be
added later. Another BCD option relevant to PAE is nolowmem, which discards memory below 4 GB
(assuming you have at least 5 GB of physical memory) and relocates device drivers above this range.
This guarantees that drivers will be presented with physical addresses greater than 32 bits, which
makes any possible driver sign extension bugs easier to find.

 CHAPTER 10 Memory Management 261

CR3

PFN

Page directory
(up to 4 per process,
512 entries per table,

8 bytes wide)

Page tables
(512 entries per
table, 8 bytes

wide)

Physical address
space

Page directory pointer table
(one per process, 4 entries)

Page directory
pointer index

Page directory
index

Page table
index

Byte
offset

KPROCESS

Physical address

Index

Desired
page

Desired
byte

Index Index Index

PFN
PFN

PDE

PDE
PTE

31 29 20 11

Virtual address

FIGURE 10-21 Page mappings with PAE

To understand PAE, it is useful to understand the derivation of the sizes of the various structures
and bit fields. Recall that the goal of PAE is to allow addressing of more than 4 GB of RAM. The 4-GB
limit for RAM addresses without PAE comes from the 12-bit byte offset and the 20-bit page frame
number fields of physical addresses: 12 + 20 = 32 bits of physical address, and 232 bytes = 4 GB. (Note
that this is due to a limit of the physical address format and the number of bits allocated for the PFN
within a page table entry. The fact that virtual addresses are 32 bits wide on x86, with or without PAE,
does not limit the physical address space.)

Under PAE, the PFN is expanded to 24 bits. Combined with the 12-bit byte offset, this allows ad-
dressing of 224 + 12 bytes, or 64 GB, of memory.

To provide the 24-bit PFN, PAE expands the PFN fields of page table and page directory entries
from 20 to 24 bits. To allow room for this expansion, the page table and page directory entries are
8 bytes wide instead of 4. (This would seem to expand the PFN field of the PTE and PDE by 32 bits
rather than just 4, but in x86 processors, PFNs are limited to 24 bits. This does leave a large number of
bits in the PDE unused—or, rather, available for future expansion.)

Since both page tables and page directories have to fit in one page, these tables can then have
only 512 entries instead of 1,024. So the corresponding index fields of the virtual address are accord-
ingly reduced from 10 to 9 bits.

262 Windows Internals, Sixth Edition, Part 2

This then leaves the two high-order bits of the virtual address unaccounted for. So PAE expands
the number of page directories from one to four and adds a third-level address translation table,
called the page directory pointer table, or PDPT. This table contains only four entries, 8 bytes each,
which provide the PFNs of the four page directories. The two high-order bits of the virtual address are
used to index into the PDPT and are called the page directory pointer index.

As before, CR3 provides the location of the top-level table, but that is now the PDPT rather than
the page directory. The PDPT must be aligned on a 32-byte boundary and must furthermore reside in
the first 4 GB of RAM (because CR3 on x86 is only a 32-bit register, even with PAE enabled).

Note that PAE mode can address more memory than the standard translation mode not directly
because of the extra level of translation, but because the physical address format has been expanded.
The extra level of translation is required to allow processing of all 32 bits of a virtual address.

EXPERIMENT: Translating Addresses
To clarify how address translation works, this experiment shows a real example of translat-
ing a virtual address on an x86 PAE system, using the available tools in the kernel debugger
to examine the PDPT, page directories, page tables, and PTEs. (It is common for Windows on
today’s x86 processors, even with less than 4 GB of RAM, to run in PAE mode because PAE
mode is required to enable no-execute memory access protection.) In this example, we’ll work
with a process that has virtual address 0x30004, currently mapped to a valid physical address. In
later examples, you’ll see how to follow address translation for invalid addresses with the kernel
debugger.

First let’s convert 0x30004 to binary and break it into the three fields that are used to trans-
late an address. In binary, 0x30004 is 11.0000.0000.0000.0100. Breaking it into the component
fields yields the following:

0.0011.000000.0000.000 0000.0000.0100

31 30 29 21 20 12 11 0

Page directory
index (0)

Page
directory
pointer
index (0)

Page table index
(0x30 or 48 decimal)

Byte offset
 (4)

00

To start the translation process, the CPU needs the physical address of the process’s page
directory pointer table, found in the CR3 register while a thread in that process is running. You
can display this address by looking at the DirBase field in the output of the !process command,
as shown here:

lkd> !process -1 0
PROCESS 852d1030 SessionId: 1 Cid: 0dec Peb: 7ffdf000 ParentCid: 05e8
 DirBase: ced25440 ObjectTable: a2014a08 HandleCount: 221.
 Image: windbg.exe

 CHAPTER 10 Memory Management 263

The DirBase field shows that the page directory pointer table is at physical address
0xced25440. As shown in the preceding illustration, the page directory pointer table index field
in our example virtual address is 0. Therefore, the PDPT entry that contains the physical address
of the relevant page directory is the first entry in the PDPT, at physical address 0xced25440.

As under x86 non-PAE systems, the kernel debugger !pte command displays the PDE and
PTE that describe a virtual address, as shown here:

lkd> !pte 30004
 VA 00030004
PDE at C0600000 PTE at C0000180
contains 000000002EBF3867 contains 800000005AF4D025
pfn 2ebf3 ---DA--UWEV pfn 5af4d ----A--UR-V

The debugger does not show the page directory pointer table, but it is easy to display given
its physical address:

lkd> !dq ced25440 L 4

#ced25440 00000000`2e8ff801 00000000`2c9d8801

#ced25450 00000000`2e6b1801 00000000`2e73a801

Here we have used the debugger extension command !dq. This is similar to the dq command
(display as quadwords—“quadwords” being a name for a 64-bit field; this came from the day
when “words” were often 16 bits), but it lets us examine memory by physical rather than virtual
address. Since we know that the PDPT is only four entries long, we added the L 4 length argu-
ment to keep the output uncluttered.

As illustrated previously, the PDPT index (the two most significant bits) from our example
virtual address equal 0, so the PDPT entry we want is the first displayed quadword. PDPT entries
have a format similar to PD entries and PT entries, so we can see by inspection that this one
contains a PFN of 0x2e8ff, for a physical address of 2e8ff000. That’s the physical address of the
page directory.

The !pte output shows the PDE address as a virtual address, not physical. On x86 systems
with PAE, the first process page directory starts at virtual address 0xC0600000. The page direc-
tory index field of our example virtual address is 0, so we’re looking at the first PDE in the page
directory. Therefore, in this case, the PDE address is the same as the page directory address.

As with non-PAE, the page directory entry provides the PFN of the needed page table; in
this example, the PFN is 0x2ebf3. So the page table starts at physical address 0x2ebf3000. To
this the MMU will add the page table index field (0x30) from the virtual address, multiplied by 8
(the size of a PTE in bytes; this would be 4 on a non-PAE system). The resulting physical address
of the PTE is then 0x2ebf3180.

264 Windows Internals, Sixth Edition, Part 2

The debugger shows that this PTE is at virtual address 0xC0000180. Notice that the byte
offset portion (0x180) is the same as that from the physical address, as is always the case in
address translation. Because the memory manager maps page tables starting at 0xC0000000,
adding 0x180 to 0xC0000000 yields the virtual address shown in the kernel debugger output:
0xC0000180. The debugger shows that the PFN field of the PTE is 0x5af4d.

Finally, we can consider the byte offset from the original address. As described previously,
the MMU will concatenate the byte offset to the PFN from the PTE, giving a physical address
of 0x5af4d004. This is the physical address that corresponds to the original virtual address of
0x30004—at the moment.

The flags bits from the PTE are interpreted to the right of the PFN number. For example,
the PTE that describes the page being referenced has flags of --A--UR-V. Here, A stands for
accessed (the page has been read), U for user-mode accessible (as opposed to kernel-mode
accessible only), R for read-only page (rather than writable), and V for valid (the PTE represents
a valid page in physical memory).

To confirm our calculation of the physical address, we can look at the memory in question
via both its virtual and its physical addresses. First, using the debugger’s dd command (display
dwords) on the virtual address, we see the following:

lkd> dd 30004

00030004 00000020 00000001 00003020 000000dc

00030014 00000000 00000020 00000000 00000014

00030024 00000001 00000007 00000034 0000017c

00030034 00000001 00000000 00000000 00000000

00030044 00000000 00000000 00000002 1a26ef4e

00030054 00000298 00000044 000002e0 00000260

00030064 00000000 f33271ba 00000540 0000004a

00030074 0000058c 0000031e 00000000 2d59495b

And with the !dd command on the physical address just computed, we see the same
contents:

lkd> !dd 5af4d004
#5af4d004 00000020 00000001 00003020 000000dc
#5af4d014 00000000 00000020 00000000 00000014

#5af4d024 00000001 00000007 00000034 0000017c

#5af4d034 00000001 00000000 00000000 00000000

#5af4d044 00000000 00000000 00000002 1a26ef4e

#5af4d054 00000298 00000044 000002e0 00000260

#5af4d064 00000000 f33271ba 00000540 0000004a

#5af4d074 0000058c 0000031e 00000000 2d59495b

We could similarly compare the displays from the virtual and physical addresses of the PTE
and PDE.

 CHAPTER 10 Memory Management 265

x64 Virtual Address Translation
Address translation on x64 is similar to x86 PAE, but with a fourth level added. Each process has a top-
level extended page directory (called the page map level 4 table) that contains the physical locations
of 512 third-level structures, called page parent directories. The page parent directory is analogous
to the x86 PAE page directory pointer table, but there are 512 of them instead of just 1, and each
page parent directory is an entire page, containing 512 entries instead of just 4. Like the PDPT, the
page parent directory’s entries contain the physical locations of second-level page directories, each
of which in turn contains 512 entries providing the locations of the individual page tables. Finally, the
page tables (each of which contain 512 page table entries) contain the physical locations of the pages
in memory. (All of the “physical locations” in the preceding description are stored in these structures
as page frame numbers, or PFNs.)

Current implementations of the x64 architecture limit virtual addresses to 48 bits. The components
that make up this 48-bit virtual address are shown in Figure 10-22. The connections between these
structures are shown in Figure 10-23. Finally, the format of an x64 hardware page table entry is shown
in Figure 10-24.

9 bits

47 39 38 30 29 21 20 12 11 0

9 bits 12 bits

Page table
selector

Page table
entry selector

Byte within
page

x64 64-bit (48-bit in today’s processors)

Page directory
pointer selector

Page map level
4 selector

9 bits9 bits

FIGURE 10-22 x64 virtual address

Page table
selector

Page directory
pointer selector

Page table
entry selector

Byte within
page

Page map
level 4 selector

Page map
level 4

Page directory
pointers

Page
directories

Page
tables

Physical pages
(up to 248)CR3

PFN 0

1

2

3

4

5

6

7

8

9

10

11

12
.
.
.

47 0

FIGURE 10-23 x64 address translation structures

266 Windows Internals, Sixth Edition, Part 2

U P Cw Gl L DNX A Cd Wt O W V

63 62 5152 40 39 12 91011 8 7 6 5 4 23 1 0

Software field (copy-on-write)

Page frame
number

Global

Accessed

Large page
Dirty

Cache disabled

Owner
Write
Valid

Write through

Software field (write)
No execute

Software
(working
set index)

Reserved

Software field (prototype PTE)

x64 PTE

FIGURE 10-24 x64 hardware page table entry

IA64 Virtual Address Translation
The virtual address space for IA64 is divided into eight regions by the hardware. Each region can have
its own set of page tables. Windows uses five of the regions, three of which have page tables. Table
10-12 lists the regions and how they are used.

TABLE 10-12 The IA64 Regions

Region Use

0 User code and data

1 Session space code and data

2 Unused

3 Unused

4 Kseg3, which is a cached, 1-to-1 mapping of physical memory. No page tables are needed
for this region because the necessary TLB inserts are done directly by the memory
manager.

5 Kseg4, which is a noncached, 1-to-1 mapping for physical memory. This is used only in a
few places for accessing I/O locations such as the I/O port range. There are no page tables
needed for this region.

6 Unused

7 Kernel code and data

Address translation by 64-bit Windows on the IA64 platform uses a three-level page table scheme.
Each process has a page directory pointer structure that contains 1,024 pointers to page directories.
Each page directory contains 1,024 pointers to page tables, which in turn point to physical pages.
Figure 10-25 shows the format of an IA64 hardware PTE.

 CHAPTER 10 Memory Management 267

Cw W NX O D A V

4963 53 52

E

13 101112 9 8 7 6 5 24 1 0

Write

Page frame
number
(37 bits)

Execute

Dirty
Owner

Accessed

Reserved
Valid

Cache

Copy-on-write
Reserved

Software
(working
set index)

Reserved

IA64 PTE

Exception

FIGURE 10-25 IA64 page table entry

Page Fault Handling

Earlier, you saw how address translations are resolved when the PTE is valid. When the PTE valid bit is
clear, this indicates that the desired page is for some reason not currently accessible to the process.
This section describes the types of invalid PTEs and how references to them are resolved.

Note Only the 32-bit x86 PTE formats are detailed in this section. PTEs for 64-bit systems
contain similar information, but their detailed layout is not presented.

A reference to an invalid page is called a page fault. The kernel trap handler (introduced in the
section “Trap Dispatching” in Chapter 3 in Part 1) dispatches this kind of fault to the memory manager
fault handler (MmAccessFault) to resolve. This routine runs in the context of the thread that incurred
the fault and is responsible for attempting to resolve the fault (if possible) or raise an appropriate
exception. These faults can be caused by a variety of conditions, as listed in Table 10-13.

TABLE 10-13 Reasons for Access Faults

Reason for Fault Result

Accessing a page that isn’t resident in memory but is
on disk in a page file or a mapped file

Allocate a physical page, and read the desired page
from disk and into the relevant working set

Accessing a page that is on the standby or modified list Transition the page to the relevant process, session,
or system working set

Accessing a page that isn’t committed (for example,
reserved address space or address space that isn’t
allocated)

Access violation

Accessing a page from user mode that can be accessed
only in kernel mode

Access violation

Writing to a page that is read-only Access violation

268 Windows Internals, Sixth Edition, Part 2

Reason for Fault Result

Accessing a demand-zero page Add a zero-filled page to the relevant working set

Writing to a guard page Guard-page violation (if a reference to a user-mode
stack, perform automatic stack expansion)

Writing to a copy-on-write page Make process-private (or session-private) copy of
page, and replace original in process, session, or
system working set

Writing to a page that is valid but hasn’t been written
to the current backing store copy

Set Dirty bit in PTE

Executing code in a page that is marked as no execute Access violation (supported only on hardware
platforms that support no execute protection)

The following section describes the four basic kinds of invalid PTEs that are processed by the ac-
cess fault handler. Following that is an explanation of a special case of invalid PTEs, prototype PTEs,
which are used to implement shareable pages.

Invalid PTEs
If the valid bit of a PTE encountered during address translation is zero, the PTE represents an invalid
page—one that will raise a memory management exception, or page fault, upon reference. The MMU
ignores the remaining bits of the PTE, so the operating system can use these bits to store information
about the page that will assist in resolving the page fault.

The following list details the four kinds of invalid PTEs and their structure. These are often referred
to as software PTEs because they are interpreted by the memory manager rather than the MMU.
Some of the flags are the same as those for a hardware PTE as described in Table 10-11, and some of
the bit fields have either the same or similar meanings to corresponding fields in the hardware PTE.

 ■ Page file The desired page resides within a paging file. As illustrated in Figure 10-26, 4 bits
in the PTE indicate in which of 16 possible page files the page resides, and 20 bits (in x86 non-
PAE; more in other modes) provide the page number within the file. The pager initiates an in-
page operation to bring the page into memory and make it valid. The page file offset is always
non-zero and never all 1s (that is, the very first and last pages in the page file are not used for
paging) in order to allow for other formats, described next.

0

31 412 5 091011 1

Page file offset Protection Page file number

Prototype
Transition

Valid

FIGURE 10-26 A page table entry representing a page in a page file

 CHAPTER 10 Memory Management 269

 ■ Demand zero This PTE format is the same as the page file PTE shown in the previous entry,
but the page file offset is zero. The desired page must be satisfied with a page of zeros. The
pager looks at the zero page list. If the list is empty, the pager takes a page from the free list
and zeroes it. If the free list is also empty, it takes a page from one of the standby lists and
zeroes it.

 ■ Virtual address descriptor This PTE format is the same as the page file PTE shown previ-
ously, but in this case the page file offset field is all 1s. This indicates a page whose definition
and backing store, if any, can be found in the process’s virtual address descriptor (VAD) tree.
This format is used for pages that are backed by sections in mapped files. The pager finds the
VAD that defines the virtual address range encompassing the virtual page and initiates an
in-page operation from the mapped file referenced by the VAD. (VADs are described in more
detail in a later section.)

 ■ Transition The desired page is in memory on either the standby, modified, or modified-no-
write list or not on any list. As shown in Figure 10-27, the PTE contains the page frame number
of the page. The pager will remove the page from the list (if it is on one) and add it to the
process working set.

31 12 5 091011 1234

Page frame number Protection

Prototype
Transition

Valid

1 1 0

Protection
Cache disable
Write through
Owner
Write

FIGURE 10-27 A page table entry representing a page in transition

 ■ Unknown The PTE is zero, or the page table doesn’t yet exist (the page directory entry
that would provide the physical address of the page table contains zero). In both cases, the
memory manager pager must examine the virtual address descriptors (VADs) to determine
whether this virtual address has been committed. If so, page tables are built to represent the
newly committed address space. (See the discussion of VADs later in the chapter.) If not (if the
page is reserved or hasn’t been defined at all), the page fault is reported as an access violation
exception.

Prototype PTEs
If a page can be shared between two processes, the memory manager uses a software structure
called prototype page table entries (prototype PTEs) to map these potentially shared pages. For
 page-file-backed sections, an array of prototype PTEs is created when a section object is first created;

270 Windows Internals, Sixth Edition, Part 2

for mapped files, portions of the array are created on demand as each view is mapped. These proto-
type PTEs are part of the segment structure, described at the end of this chapter.

When a process first references a page mapped to a view of a section object (recall that the VADs
are created only when the view is mapped), the memory manager uses the information in the proto-
type PTE to fill in the real PTE used for address translation in the process page table. When a shared
page is made valid, both the process PTE and the prototype PTE point to the physical page containing
the data. To track the number of process PTEs that reference a valid shared page, a counter in its PFN
database entry is incremented. Thus, the memory manager can determine when a shared page is no
longer referenced by any page table and thus can be made invalid and moved to a transition list or
written out to disk.

When a shareable page is invalidated, the PTE in the process page table is filled in with a special
PTE that points to the prototype PTE entry that describes the page, as shown in Figure 10-28.

0

31 11 078910 1
PTE address

(bits 7 through 27)
PTE address

(bits 0 through 6)

Prototype
Valid

FIGURE 10-28 Structure of an invalid PTE that points to the prototype PTE

Thus, when the page is later accessed, the memory manager can locate the prototype PTE using
the information encoded in this PTE, which in turn describes the page being referenced. A shared
page can be in one of six different states as described by the prototype PTE entry:

 ■ Active/valid The page is in physical memory as a result of another process that accessed it.

 ■ Transition The desired page is in memory on the standby or modified list (or not on any list).

 ■ Modified-no-write The desired page is in memory and on the modified-no-write list. (See
Table 10-19.)

 ■ Demand zero The desired page should be satisfied with a page of zeros.

 ■ Page file The desired page resides within a page file.

 ■ Mapped file The desired page resides within a mapped file.

Although the format of these prototype PTE entries is the same as that of the real PTE entries de-
scribed earlier, these prototype PTEs aren’t used for address translation—they are a layer between the
page table and the page frame number database and never appear directly in page tables.

By having all the accessors of a potentially shared page point to a prototype PTE to resolve faults,
the memory manager can manage shared pages without needing to update the page tables of each
process sharing the page. For example, a shared code or data page might be paged out to disk at
some point. When the memory manager retrieves the page from disk, it needs only to update the
prototype PTE to point to the page’s new physical location—the PTEs in each of the processes sharing

 CHAPTER 10 Memory Management 271

the page remain the same (with the valid bit clear and still pointing to the prototype PTE). Later, as
processes reference the page, the real PTE will get updated.

Figure 10-29 illustrates two virtual pages in a mapped view. One is valid, and the other is invalid.
As shown, the first page is valid and is pointed to by the process PTE and the prototype PTE. The
second page is in the paging file—the prototype PTE contains its exact location. The process PTE (and
any other processes with that page mapped) points to this prototype PTE.

Page directory Page table

Prototype page
table

Physical
memory

PFN database
entry

Valid – PFN n

Invalid – points
to prototype

PTE

Segment
structure

Valid – PFN 5

Invalid – in
page file

PFN n

PFN n

PTE address

Share count=1

PFN

FIGURE 10-29 Prototype page table entries

In-Paging I/O
In-paging I/O occurs when a read operation must be issued to a file (paging or mapped) to satisfy a
page fault. Also, because page tables are pageable, the processing of a page fault can incur additional
I/O if necessary when the system is loading the page table page that contains the PTE or the proto-
type PTE that describes the original page being referenced.

The in-page I/O operation is synchronous—that is, the thread waits on an event until the I/O com-
pletes—and isn’t interruptible by asynchronous procedure call (APC) delivery. The pager uses a spe-
cial modifier in the I/O request function to indicate paging I/O. Upon completion of paging I/O, the
I/O system triggers an event, which wakes up the pager and allows it to continue in-page processing.

While the paging I/O operation is in progress, the faulting thread doesn’t own any critical memory
management synchronization objects. Other threads within the process are allowed to issue virtual
memory functions and handle page faults while the paging I/O takes place. But a number of interest-
ing conditions that the pager must recognize when the I/O completes are exposed:

 ■ Another thread in the same process or a different process could have faulted the same page
(called a collided page fault and described in the next section).

 ■ The page could have been deleted (and remapped) from the virtual address space.

272 Windows Internals, Sixth Edition, Part 2

 ■ The protection on the page could have changed.

 ■ The fault could have been for a prototype PTE, and the page that maps the prototype PTE
could be out of the working set.

The pager handles these conditions by saving enough state on the thread’s kernel stack before
the paging I/O request such that when the request is complete, it can detect these conditions and, if
necessary, dismiss the page fault without making the page valid. When and if the faulting instruction
is reissued, the pager is again invoked and the PTE is reevaluated in its new state.

Collided Page Faults
The case when another thread in the same process or a different process faults a page that is cur-
rently being in-paged is known as a collided page fault. The pager detects and handles collided page
faults optimally because they are common occurrences in multithreaded systems. If another thread
or process faults the same page, the pager detects the collided page fault, noticing that the page
is in transition and that a read is in progress. (This information is in the PFN database entry.) In this
case, the pager may issue a wait operation on the event specified in the PFN database entry, or it can
choose to issue a parallel I/O to protect the file systems from deadlocks (the first I/O to complete
“wins,” and the others are discarded). This event was initialized by the thread that first issued the I/O
needed to resolve the fault.

When the I/O operation completes, all threads waiting on the event have their wait satisfied. The
first thread to acquire the PFN database lock is responsible for performing the in-page completion
operations. These operations consist of checking I/O status to ensure that the I/O operation com-
pleted successfully, clearing the read-in-progress bit in the PFN database, and updating the PTE.

When subsequent threads acquire the PFN database lock to complete the collided page fault, the
pager recognizes that the initial updating has been performed because the read-in-progress bit is
clear and checks the in-page error flag in the PFN database element to ensure that the in-page I/O
completed successfully. If the in-page error flag is set, the PTE isn’t updated and an in-page error
exception is raised in the faulting thread.

Clustered Page Faults
The memory manager prefetches large clusters of pages to satisfy page faults and populate the
system cache. The prefetch operations read data directly into the system’s page cache instead of
into a working set in virtual memory, so the prefetched data does not consume virtual address
space, and the size of the fetch operation is not limited to the amount of virtual address space that
is available. (Also, no expensive TLB-flushing Inter-Processor Interrupt is needed if the page will be
repurposed.) The prefetched pages are put on the standby list and marked as in transition in the PTE.
If a prefetched page is subsequently referenced, the memory manager adds it to the working set.
However, if it is never referenced, no system resources are required to release it. If any pages in the
prefetched cluster are already in memory, the memory manager does not read them again. Instead, it
uses a dummy page to represent them so that an efficient single large I/O can still be issued, as Figure
10-30 shows.

 CHAPTER 10 Memory Management 273

Pages Y and Z are already in memory, so
the corresponding MDL entries point to
the systemwide dummy page.

Virtual address space

A
Y
Z
B

MDL 1 . . . n

A
X (replaces Y)
X (replaces Z)

B

Header

Physical memory

A

Y

Z

B

Systemwide
dummy page X

FIGURE 10-30 Usage of dummy page during virtual address to physical address mapping in an MDL

In the figure, the file offsets and virtual addresses that correspond to pages A, Y, Z, and B are
logically contiguous, although the physical pages themselves are not necessarily contiguous. Pages A
and B are nonresident, so the memory manager must read them. Pages Y and Z are already resident
in memory, so it is not necessary to read them. (In fact, they might already have been modified since
they were last read in from their backing store, in which case it would be a serious error to overwrite
their contents.) However, reading pages A and B in a single operation is more efficient than perform-
ing one read for page A and a second read for page B. Therefore, the memory manager issues a
single read request that comprises all four pages (A, Y, Z, and B) from the backing store. Such a read
request includes as many pages as make sense to read, based on the amount of available memory,
the current system usage, and so on.

When the memory manager builds the memory descriptor list (MDL) that describes the request, it
supplies valid pointers to pages A and B. However, the entries for pages Y and Z point to a single sys-
temwide dummy page X. The memory manager can fill the dummy page X with the potentially stale
data from the backing store because it does not make X visible. However, if a component accesses the
Y and Z offsets in the MDL, it sees the dummy page X instead of Y and Z.

The memory manager can represent any number of discarded pages as a single dummy page, and
that page can be embedded multiple times in the same MDL or even in multiple concurrent MDLs
that are being used for different drivers. Consequently, the contents of the locations that represent
the discarded pages can change at any time.

Page Files
Page files are used to store modified pages that are still in use by some process but have had to be
written to disk (because they were unmapped or memory pressure resulted in a trim). Page file space
is reserved when the pages are initially committed, but the actual optimally clustered page file loca-
tions cannot be chosen until pages are written out to disk.

When the system boots, the Session Manager process (described in Chapter 13, “Startup and
Shutdown”) reads the list of page files to open by examining the registry value HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management\PagingFiles. This multistring

274 Windows Internals, Sixth Edition, Part 2

registry value contains the name, minimum size, and maximum size of each paging file. Windows
supports up to 16 paging files. On x86 systems running the normal kernel, each page file can be a
maximum of 4,095 MB. On x86 systems running the PAE kernel and x64 systems, each page file can
be 16 terabytes (TB) while the maximum is 32 TB on IA64 systems. Once open, the page files can’t
be deleted while the system is running because the System process (described in Chapter 2 in Part 1)
maintains an open handle to each page file. The fact that the paging files are open explains why the
built-in defragmentation tool cannot defragment the paging file while the system is up. To defrag-
ment your paging file, use the freeware Pagedefrag tool from Sysinternals. It uses the same approach
as other third-party defragmentation tools—it runs its defragmentation process early in the boot
process before the page files are opened by the Session Manager.

Because the page file contains parts of process and kernel virtual memory, for security reasons the
system can be configured to clear the page file at system shutdown. To enable this, set the registry
value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\ClearPage-
FileAtShutdown to 1. Otherwise, after shutdown, the page file will contain whatever data happened
to have been paged out while the system was up. This data could then be accessed by someone who
gained physical access to the machine.

If the minimum and maximum paging file sizes are both zero, this indicates a system-managed
paging file, which causes the system to choose the page file size as follows:

 ■ Minimum size: set to the amount of RAM or 1 GB, whichever is larger.

 ■ Maximum size: set to 3 * RAM or 4 GB, whichever is larger.

As you can see, by default the initial page file size is proportional to the amount of RAM. This
policy is based on the assumption that machines with more RAM are more likely to be running work-
loads that commit large amounts of virtual memory.

EXPERIMENT: Viewing Page Files
To view the list of page files, look in the registry at HKLM\SYSTEM\CurrentControlSet\Control\
Session Manager\Memory Management\PagingFiles. This entry contains the paging file con-
figuration settings modified through the Advanced System Settings dialog box. Open Control
Panel, click System And Security, and then System. This is the System Properties dialog box, also
reachable by right-clicking on Computer in Explorer and selecting Properties. From there, click
Advanced System Settings, then Settings in the Performance area. In the Performance Options
dialog box, click the Advanced tab, and then click Change in the Virtual Memory area.

To add a new page file, Control Panel uses the (internal only) NtCreatePagingFile system service
defined in Ntdll.dll. Page files are always created as noncompressed files, even if the directory they are
in is compressed. To keep new page files from being deleted, a handle is duplicated into the System
process so that even after the creating process closes the handle to the new page file, a handle is
nevertheless always open to it.

 CHAPTER 10 Memory Management 275

Commit Charge and the System Commit Limit
We are now in a position to more thoroughly discuss the concepts of commit charge and the system
commit limit.

Whenever virtual address space is created, for example by a VirtualAlloc (for committed memory)
or MapViewOfFile call, the system must ensure that there is room to store it, either in RAM or in
backing store, before successfully completing the create request. For mapped memory (other than
sections mapped to the page file), the file associated with the mapping object referenced by the
MapViewOfFile call provides the required backing store.

All other virtual allocations rely for storage on system-managed shared resources: RAM and the
paging file(s). The purpose of the system commit limit and commit charge is to track all uses of these
resources to ensure that they are never overcommitted—that is, that there is never more virtual
address space defined than there is space to store its contents, either in RAM or in backing store
(on disk).

Note This section makes frequent references to paging files. It is possible, though not gen-
erally recommended, to run Windows without any paging files. Every reference to paging
files here may be considered to be qualified by “if one or more paging files exist.”

Conceptually, the system commit limit represents the total virtual address space that can be
created in addition to virtual allocations that are associated with their own backing store—that is,
in addition to sections mapped to files. Its numeric value is simply the amount of RAM available to
Windows plus the current sizes of any page files. If a page file is expanded, or new page files are cre-
ated, the commit limit increases accordingly. If no page files exist, the system commit limit is simply
the total amount of RAM available to Windows.

Commit charge is the systemwide total of all “committed” memory allocations that must be kept in
either RAM or in a paging file. From the name, it should be apparent that one contributor to commit
charge is process-private committed virtual address space. However, there are many other contribu-
tors, some of them not so obvious.

Windows also maintains a per-process counter called the process page file quota. Many of the
allocations that contribute to commit charge contribute to the process page file quota as well. This
represents each process’s private contribution to the system commit charge. Note, however, that this
does not represent current page file usage. It represents the potential or maximum page file usage,
should all of these allocations have to be stored there.

The following types of memory allocations contribute to the system commit charge and, in many
cases, to the process page file quota. (Some of these will be described in detail in later sections of this
chapter.)

 ■ Private committed memory is memory allocated with the VirtualAlloc call with the COMMIT
option. This is the most common type of contributor to the commit charge. These allocations
are also charged to the process page file quota.

276 Windows Internals, Sixth Edition, Part 2

 ■ Page-file-backed mapped memory is memory allocated with a MapViewOfFile call that refer-
ences a section object, which in turn is not associated with a file. The system uses a portion
of the page file as the backing store instead. These allocations are not charged to the process
page file quota.

 ■ Copy-on-write regions of mapped memory, even if it is associated with ordinary mapped files.
The mapped file provides backing store for its own unmodified content, but should a page in
the copy-on-write region be modified, it can no longer use the original mapped file for back-
ing store. It must be kept in RAM or in a paging file. These allocations are not charged to the
process page file quota.

 ■ Nonpaged and paged pool and other allocations in system space that are not backed by ex-
plicitly associated files. Note that even the currently free regions of the system memory pools
contribute to commit charge. The nonpageable regions are counted in the commit charge,
even though they will never be written to the page file because they permanently reduce the
amount of RAM available for private pageable data. These allocations are not charged to the
process page file quota.

 ■ Kernel stacks.

 ■ Page tables, most of which are themselves pageable, and they are not backed by mapped files.
Even if not pageable, they occupy RAM. Therefore, the space required for them contributes to
commit charge.

 ■ Space for page tables that are not yet actually allocated. As we’ll see later, where large areas of
virtual space have been defined but not yet referenced (for example, private committed virtual
space), the system need not actually create page tables to describe it. But the space for these
as-yet-nonexistent page tables is charged to commit charge to ensure that the page tables can
be created when they are needed.

 ■ Allocations of physical memory made via the Address Windowing Extension (AWE) APIs.

For many of these items, the commit charge may represent the potential use of storage rather
than the actual. For example, a page of private committed memory does not actually occupy either a
physical page of RAM or the equivalent page file space until it’s been referenced at least once. Until
then, it is a demand-zero page (described later). But commit charge accounts for such pages when the
virtual space is first created. This ensures that when the page is later referenced, actual physical stor-
age space will be available for it.

A region of a file mapped as copy-on-write has a similar requirement. Until the process writes
to the region, all pages in it are backed by the mapped file. But the process may write to any of the
pages in the region at any time, and when that happens, those pages are thereafter treated as private
to the process. Their backing store is, thereafter, the page file. Charging the system commit for them
when the region is first created ensures that there will be private storage for them later, if and when
the write accesses occur.

A particularly interesting case occurs when reserving private memory and later committing it.
When the reserved region is created with VirtualAlloc, system commit charge is not charged for the

 CHAPTER 10 Memory Management 277

actual virtual region. It is, however, charged for any new page table pages that will be required to de-
scribe the region, even though these might not yet exist. If the region or a part of it is later commit-
ted, system commit is charged to account for the size of the region (as is the process page file quota).

To put it another way, when the system successfully completes (for example) a VirtualAlloc or
MapViewOfFile call, it makes a “commitment” that the needed storage will be available when needed,
even if it wasn’t needed at that moment. Thus, a later memory reference to the allocated region
can never fail for lack of storage space. (It could fail for other reasons, such as page protection, the
region being deallocated, and so on.) The commit charge mechanism allows the system to keep this
commitment.

The commit charge appears in the Performance Monitor counters as Memory: Committed Bytes.
It is also the first of the two numbers displayed on Task Manager’s Performance tab with the legend
Commit (the second being the commit limit), and it is displayed by Process Explorer’s System Informa-
tion Memory tab as Commit Charge—Current.

The process page file quota appears in the performance counters as Process: Page File Bytes. The
same data appears in the Process: Private Bytes performance counter. (Neither term exactly describes
the true meaning of the counter.)

If the commit charge ever reaches the commit limit, the memory manager will attempt to increase
the commit limit by expanding one or more page files. If that is not possible, subsequent attempts
to allocate virtual memory that uses commit charge will fail until some existing committed memory
is freed. The performance counters listed in Table 10-14 allow you to examine private committed
memory usage on a systemwide, per-process, or per-page-file, basis.

TABLE 10-14 Committed Memory and Page File Performance Counters

Performance Counter Description

Memory: Committed Bytes Number of bytes of virtual (not reserved) memory that has been committed.
This number doesn’t necessarily represent page file usage because it includes
private committed pages in physical memory that have never been paged
out. Rather, it represents the charged amount that must be backed by page
file space and/or RAM.

Memory: Commit Limit Number of bytes of virtual memory that can be committed without having to
extend the paging files; if the paging files can be extended, this limit is soft.

Process: Page File Quota The process’s contribution to Memory: Committed Bytes.

Process: Private Bytes Same as Process: Page File Quota

Process: Working Set—Private The subset of Process: Page File Quota that is currently in RAM and can be
referenced without a page fault. Also a subset of Process: Working Set.

Process: Working Set The subset of Process: Virtual Bytes that is currently in RAM and can be
referenced without a page fault.

Process: Virtual Bytes The total virtual memory allocation of the process, including mapped regions,
private committed regions, and private reserved regions.

Paging File: % Usage Percentage of the page file space that is currently in use.

Paging File: % Usage Peak The highest observed value of Paging File: % Usage

278 Windows Internals, Sixth Edition, Part 2

Commit Charge and Page File Size
The counters in Table 10-14 can assist you in choosing a custom page file size. The default policy
based on the amount of RAM works acceptably for most machines, but depending on the workload it
can result in a page file that’s unnecessarily large, or not large enough.

To determine how much page file space your system really needs based on the mix of applica-
tions that have run since the system booted, examine the peak commit charge in the Memory tab
of Process Explorer’s System Information display. This number represents the peak amount of page
file space since the system booted that would have been needed if the system had to page out the
majority of private committed virtual memory (which rarely happens).

If the page file on your system is too big, the system will not use it any more or less—in other
words, increasing the size of the page file does not change system performance, it simply means the
system can have more committed virtual memory. If the page file is too small for the mix of applica-
tions you are running, you might get the “system running low on virtual memory” error message. In
this case, first check to see whether a process has a memory leak by examining the process private
bytes count. If no process appears to have a leak, check the system paged pool size—if a device
driver is leaking paged pool, this might also explain the error. (See the “Troubleshooting a Pool Leak”
experiment in the “Kernel-Mode Heaps (System Memory Pools)” section for how to troubleshoot a
pool leak.)

EXPERIMENT: Viewing Page File Usage with Task Manager
You can also view committed memory usage with Task Manager by clicking its Performance
tab. You’ll see the following counters related to page files:

 CHAPTER 10 Memory Management 279

The system commit total is displayed in the lower-right System area as two numbers. The
first number represents potential page file usage, not actual page file usage. It is how much
page file space would be used if all of the private committed virtual memory in the system had
to be paged out all at once. The second number displayed is the commit limit, which displays
the maximum virtual memory usage that the system can support before running out of virtual
memory (it includes virtual memory backed in physical memory as well as by the paging files).
The commit limit is essentially the size of RAM plus the current size of the paging files. It there-
fore does not account for possible page file expansion.

Process Explorer’s System Information display shows an additional item of information about
system commit usage, namely the percentage of the peak as compared to the limit and the cur-
rent usage as compared to the limit:

Stacks

Whenever a thread runs, it must have access to a temporary storage location in which to store func-
tion parameters, local variables, and the return address after a function call. This part of memory
is called a stack. On Windows, the memory manager provides two stacks for each thread, the user
stack and the kernel stack, as well as per-processor stacks called DPC stacks. We have already de-
scribed how the stack can be used to generate stack traces and how exceptions and interrupts store
structures on the stack, and we have also talked about how system calls, traps, and interrupts cause

280 Windows Internals, Sixth Edition, Part 2

the thread to switch from a user stack to its kernel stack. Now, we’ll look at some extra services the
memory manager provides to efficiently use stack space.

User Stacks
When a thread is created, the memory manager automatically reserves a predetermined amount
of virtual memory, which by default is 1 MB. This amount can be configured in the call to the
CreateThread or CreateRemoteThread function or when compiling the application, by using the
/STACK:reserve switch in the Microsoft C/C++ compiler, which will store the information in the image
header. Although 1 MB is reserved, only the first page of the stack will be committed (unless the PE
header of the image specifies otherwise), along with a guard page. When a thread’s stack grows large
enough to touch the guard page, an exception will occur, causing an attempt to allocate another
guard. Through this mechanism, a user stack doesn’t immediately consume all 1 MB of committed
memory but instead grows with demand. (However, it will never shrink back.)

EXPERIMENT: Creating the Maximum Number of Threads
With only 2 GB of user address space available to each 32-bit process, the relatively large
memory that is reserved for each thread’s stack allows for an easy calculation of the maximum
number of threads that a process can support: a little less than 2,048, for a total of nearly 2 GB
of memory (unless the increaseuserva BCD option is used and the image is large address space
aware). By forcing each new thread to use the smallest possible stack reservation size, 64 KB, the
limit can grow to about 30,400 threads, which you can test for yourself by using the TestLimit
utility from Sysinternals. Here is some sample output:

C:\>testlimit -t
Testlimit - tests Windows limits
By Mark Russinovich

Creating threads ...
Created 30399 threads. Lasterror: 8

If you attempt this experiment on a 64-bit Windows installation (with 8 TB of user address
space available), you would expect to see potentially hundreds of thousands of threads created
(as long as sufficient memory were available). Interestingly, however, TestLimit will actually cre-
ate fewer threads than on a 32-bit machine, which has to do with the fact that Testlimit.exe is
a 32-bit application and thus runs under the Wow64 environment. (See Chapter 3 in Part 1 for
more information on Wow64.) Each thread will therefore have not only its 32-bit Wow64 stack
but also its 64-bit stack, thus consuming more than twice the memory, while still keeping only
2 GB of address space. To properly test the thread-creation limit on 64-bit Windows, use the
Testlimit64.exe binary instead.

Note that you will need to terminate TestLimit with Process Explorer or Task Manager— using
Ctrl+C to break the application will not function because this operation itself creates a new
thread, which will not be possible once memory is exhausted.

 CHAPTER 10 Memory Management 281

Kernel Stacks
Although user stack sizes are typically 1 MB, the amount of memory dedicated to the kernel stack is
significantly smaller: 12 KB on x86 and 16 KB on x64, followed by another guard PTE (for a total of
16 or 20 KB of virtual address space). Code running in the kernel is expected to have less recursion
than user code, as well as contain more efficient variable use and keep stack buffer sizes low. Because
kernel stacks live in system address space (which is shared by all processes), their memory usage has a
bigger impact of the system.

Although kernel code is usually not recursive, interactions between graphics system calls handled
by Win32k.sys and its subsequent callbacks into user mode can cause recursive re-entries in the ker-
nel on the same kernel stack. As such, Windows provides a mechanism for dynamically expanding and
shrinking the kernel stack from its initial size of 16 KB. As each additional graphics call is performed
from the same thread, another 16-KB kernel stack is allocated (anywhere in system address space; the
memory manager provides the ability to jump stacks when nearing the guard page). Whenever each
call returns to the caller (unwinding), the memory manager frees the additional kernel stack that had
been allocated, as shown in Figure 10-31.

This mechanism allows reliable support for recursive system calls, as well as efficient use of system
address space, and is also provided for use by driver developers when performing recursive callouts
through the KeExpandKernelStackAndCallout API, as necessary.

Unwind when nested
callback is complete

16 KB kernel-mode stack

Additional 16 KB stack

Additional 16 KB stack

FIGURE 10-31 Kernel stack jumping

282 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing Kernel Stack Usage
You can use the MemInfo tool from Winsider Seminars & Solutions to display the physical mem-
ory currently being occupied by kernel stacks. The –u flag displays physical memory usage for
each component, as shown here:

C:\>MemInfo.exe -u | findstr /i "Kernel Stack"
 Kernel Stack: 980 (3920 kb)

Note the kernel stack after repeating the previous TestLimit experiment:

C:\>MemInfo.exe -u | findstr /i "Kernel Stack"
 Kernel Stack: 92169 (368676 kb)

Running TestLimit a few more times would easily exhaust physical memory on a 32-bit sys-
tem, and this limitation results in one of the primary limits on systemwide 32-bit thread count.

DPC Stack
Finally, Windows keeps a per-processor DPC stack available for use by the system whenever DPCs
are executing, an approach that isolates the DPC code from the current thread’s kernel stack (which
is unrelated to the DPC’s actual operation because DPCs run in arbitrary thread context). The DPC
stack is also configured as the initial stack for handling the SYSENTER or SYSCALL instruction during
a system call. The CPU is responsible for switching the stack when SYSENTER or SYSCALL is executed,
based on one of the model-specific registers (MSRs), but Windows does not want to reprogram the
MSR for every context switch, because that is an expensive operation. Windows therefore configures
the per-processor DPC stack pointer in the MSR.

Virtual Address Descriptors

The memory manager uses a demand-paging algorithm to know when to load pages into memory,
waiting until a thread references an address and incurs a page fault before retrieving the page from
disk. Like copy-on-write, demand paging is a form of lazy evaluation—waiting to perform a task until
it is required.

The memory manager uses lazy evaluation not only to bring pages into memory but also to
construct the page tables required to describe new pages. For example, when a thread commits a
large region of virtual memory with VirtualAlloc or VirtualAllocExNuma, the memory manager could
immediately construct the page tables required to access the entire range of allocated memory. But
what if some of that range is never accessed? Creating page tables for the entire range would be a
wasted effort. Instead, the memory manager waits to create a page table until a thread incurs a page
fault, and then it creates a page table for that page. This method significantly improves performance
for processes that reserve and/or commit a lot of memory but access it sparsely.

The virtual address space that would be occupied by such as-yet-nonexistent page tables is
charged to the process page file quota and to the system commit charge. This ensures that space will

 CHAPTER 10 Memory Management 283

be available for them should they be actually created. With the lazy-evaluation algorithm, allocating
even large blocks of memory is a fast operation. When a thread allocates memory, the memory man-
ager must respond with a range of addresses for the thread to use. To do this, the memory manager
maintains another set of data structures to keep track of which virtual addresses have been reserved
in the process’s address space and which have not. These data structures are known as virtual address
descriptors (VADs). VADs are allocated in nonpaged pool.

Process VADs
For each process, the memory manager maintains a set of VADs that describes the status of the
process’s address space. VADs are organized into a self-balancing AVL tree (named after its inventors,
Adelson-Velskii and Landis) that optimally balances the tree. This results in, on average, the fewest
number of comparisons when searching for a VAD corresponding with a virtual address. There is one
virtual address descriptor for each virtually contiguous range of not-free virtual addresses that all
have the same characteristics (reserved versus committed versus mapped, memory access protection,
and so on). A diagram of a VAD tree is shown in Figure 10-32.

Range: 20000000 through 2000FFFF
Protection: Read/write
Inheritance: Yes

Range: 00002000 through 0000FFFF
Protection: Read-only
Inheritance: No

Range: 4E000000 through 4F000000
Protection: Copy-on-write
Inheritance: Yes

Range: 32000000 through 3300FFFF
Protection: Read-only
Inheritance: No

Range: 7AAA0000 through 7AAA00FF
Protection: Read/write
Inheritance: No

FIGURE 10-32 Virtual address descriptors

When a process reserves address space or maps a view of a section, the memory manager creates
a VAD to store any information supplied by the allocation request, such as the range of addresses
being reserved, whether the range will be shared or private, whether a child process can inherit the
contents of the range, and the page protection applied to pages in the range.

When a thread first accesses an address, the memory manager must create a PTE for the page
containing the address. To do so, it finds the VAD whose address range contains the accessed address
and uses the information it finds to fill in the PTE. If the address falls outside the range covered by the
VAD or in a range of addresses that are reserved but not committed, the memory manager knows
that the thread didn’t allocate the memory before attempting to use it and therefore generates an
access violation.

284 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing Virtual Address Descriptors
You can use the kernel debugger’s !vad command to view the VADs for a given process. First
find the address of the root of the VAD tree with the !process command. Then specify that ad-
dress to the !vad command, as shown in the following example of the VAD tree for a process
running Notepad.exe:

lkd> !process 0 1 notepad.exe
PROCESS 8718ed90 SessionId: 1 Cid: 1ea68 Peb: 7ffdf000 ParentCid: 0680
 DirBase: ce2aa880 ObjectTable: ee6e01b0 HandleCount: 48.
 Image: notepad.exe
 VadRoot 865f10e0 Vads 51 Clone 0 Private 210. Modified 0. Locked 0.

lkd> !vad 865f10e0
VAD level start end commit
8a05bf88 (6) 10 1f 0 Mapped READWRITE
88390ad8 (5) 20 20 1 Private READWRITE
87333740 (6) 30 33 0 Mapped READONLY
86d09d10 (4) 40 41 0 Mapped READONLY
882b49a0 (6) 50 50 1 Private READWRITE
...
Total VADs: 51 average level: 5 maximum depth: 6

Rotate VADs
A video card driver must typically copy data from the user-mode graphics application to various
other system memory, including the video card memory and the AGP port’s memory, both of which
have different caching attributes as well as addresses. In order to quickly allow these different views
of memory to be mapped into a process, and to support the different cache attributes, the memory
manager implements rotate VADs, which allow video drivers to transfer data directly by using the
GPU and to rotate unneeded memory in and out of the process view pages on demand. Fig ure 10-33
shows an example of how the same virtual address can rotate between video RAM and virtual
memory.

Virtual address space
Page table

Video RAM or AGP

User’s data

User’s virtual
address

Entry for user’s
virtual address

Page-file-backed page

User’s data

FIGURE 10-33 Rotate virtual address descriptors

 CHAPTER 10 Memory Management 285

NUMA

Each new release of Windows provides new enhancements to the memory manager to better make
use of Non Uniform Memory Architecture (NUMA) machines, such as large server systems (but also
Intel i7 and AMD Opteron SMP workstations). The NUMA support in the memory manager adds intel-
ligent knowledge of node information such as location, topology, and access costs to allow applica-
tions and drivers to take advantage of NUMA capabilities, while abstracting the underlying hardware
details.

When the memory manager is initializing, it calls the MiComputeNumaCosts function to perform
various page and cache operations on different nodes and then computes the time it took for those
operations to complete. Based on this information, it builds a node graph of access costs (the distance
between a node and any other node on the system). When the system requires pages for a given
operation, it consults the graph to choose the most optimal node (that is, the closest). If no memory is
available on that node, it chooses the next closest node, and so on.

Although the memory manager ensures that, whenever possible, memory allocations come
from the ideal processor’s node (the ideal node) of the thread making the allocation, it also pro-
vides functions that allow applications to choose their own node, such as the VirtualAllocExNuma,
 CreateFileMappingNuma, MapViewOfFileExNuma, and AllocateUserPhysicalPagesNuma APIs.

The ideal node isn’t used only when applications allocate memory but also during kernel op-
eration and page faults. For example, when a thread is running on a nonideal processor and
takes a page fault, the memory manager won’t use the current node but will instead allocate
memory from the thread’s ideal node. Although this might result in slower access time while the
thread is still running on this CPU, overall memory access will be optimized as the thread mi-
grates back to its ideal node. In any case, if the ideal node is out of resources, the closest node to
the ideal node is chosen and not a random other node. Just like user-mode applications, how-
ever, drivers can specify their own node when using APIs such as MmAllocatePagesforMdlEx or
MmAllocateContiguousMemorySpecifyCacheNode.

Various memory manager pools and data structures are also optimized to take advantage of
NUMA nodes. The memory manager tries to evenly use physical memory from all the nodes on the
system to hold the nonpaged pool. When a nonpaged pool allocation is made, the memory man-
ager looks at the ideal node and uses it as an index to choose a virtual memory address range inside
nonpaged pool that corresponds to physical memory belonging to this node. In addition, per-NUMA
node pool freelists are created to efficiently leverage these types of memory configurations. Apart
from nonpaged pool, the system cache and system PTEs are also similarly allocated across all nodes,
as well as the memory manager’s look-aside lists.

Finally, when the system needs to zero pages, it does so in parallel across different NUMA nodes
by creating threads with NUMA affinities that correspond to the nodes in which the physical memory
is located. The logical prefetcher and Superfetch (described later) also use the ideal node of the target
process when prefetching, while soft page faults cause pages to migrate to the ideal node of the
faulting thread.

286 Windows Internals, Sixth Edition, Part 2

Section Objects

As you’ll remember from the section on shared memory earlier in the chapter, the section object,
which the Windows subsystem calls a file mapping object, represents a block of memory that two or
more processes can share. A section object can be mapped to the paging file or to another file on
disk.

The executive uses sections to load executable images into memory, and the cache manager
uses them to access data in a cached file. (See Chapter 11 for more information on how the cache
manager uses section objects.) You can also use section objects to map a file into a process address
space. The file can then be accessed as a large array by mapping different views of the section object
and reading or writing to memory rather than to the file (an activity called mapped file I/O). When
the program accesses an invalid page (one not in physical memory), a page fault occurs and the
memory manager automatically brings the page into memory from the mapped file (or page file). If
the application modifies the page, the memory manager writes the changes back to the file during its
normal paging operations (or the application can flush a view by using the Windows FlushViewOfFile
function).

Section objects, like other objects, are allocated and deallocated by the object manager. The
object manager creates and initializes an object header, which it uses to manage the objects; the
memory manager defines the body of the section object. The memory manager also implements
services that user-mode threads can call to retrieve and change the attributes stored in the body of
section objects. The structure of a section object is shown in Figure 10-34.

Object type

Object body attributes

Services

Section

Maximum size
Page protection
Paging file/Mapped file
Based/Not based

Create section
Open section
Extend section
Map/Unmap view
Query section

FIGURE 10-34 A section object

Table 10-15 summarizes the unique attributes stored in section objects.

 CHAPTER 10 Memory Management 287

TABLE 10-15 Section Object Body Attributes

Attribute Purpose

Maximum size The largest size to which the section can grow in bytes; if mapping a file, the
maximum size is the size of the file.

Page protection Page-based memory protection assigned to all pages in the section when it is
created.

Paging file/Mapped file Indicates whether the section is created empty (backed by the paging file—as
explained earlier, page-file-backed sections use page-file resources only when the
pages need to be written out to disk) or loaded with a file (backed by the mapped
file).

Based/Not based Indicates whether a section is a based section, which must appear at the same
virtual address for all processes sharing it, or a nonbased section, which can
appear at different virtual addresses for different processes.

EXPERIMENT: Viewing Section Objects
With the Object Viewer (Winobj.exe from Sysinternals), you can see the list of sections that have
names. You can list the open handles to section objects with any of the tools described in the
“Object Manager” section in Chapter 3 in Part 1 that list the open handle table. (As explained
in Chapter 3, these names are stored in the object manager directory \Sessions\x\BaseNamed-
Objects, where x is the appropriate Session directory. Unnamed section objects are not visible.

As mentioned earlier, you can use Process Explorer from Sysinternals to see files mapped
by a process. Select DLLs from the Lower Pane View entry of the View menu, and enable the
Mapping Type column in the DLL section of View | Select Columns. Files marked as “Data” in the
Mapping column are mapped files (rather than DLLs and other files the image loader loads as
modules). We saw this example earlier:

288 Windows Internals, Sixth Edition, Part 2

The data structures maintained by the memory manager that describe mapped sections are shown
in Figure 10-35. These structures ensure that data read from mapped files is consistent, regardless of
the type of access (open file, mapped file, and so on).

For each open file (represented by a file object), there is a single section object pointers structure.
This structure is the key to maintaining data consistency for all types of file access as well as to provid-
ing caching for files. The section object pointers structure points to one or two control areas. One
control area is used to map the file when it is accessed as a data file, and one is used to map the file
when it is run as an executable image.

A control area in turn points to subsection structures that describe the mapping information for
each section of the file (read-only, read/write, copy-on-write, and so on). The control area also points
to a segment structure allocated in paged pool, which in turn points to the prototype PTEs used to
map to the actual pages mapped by the section object. As described earlier in the chapter, process
page tables point to these prototype PTEs, which in turn map the pages being referenced.

File object

File object

VAD
Section
object

Segment

Prototype
PTEs

PFN
database

entry
Next

subsection

Subsection

Data section
control area

Image section control area
(if file is an executable image)

Page
directory Page table

Section object
pointers

FIGURE 10-35 Internal section structures

Although Windows ensures that any process that accesses (reads or writes) a file will always see the
same, consistent data, there is one case in which two copies of pages of a file can reside in physical
memory (but even in this case, all accessors get the latest copy and data consistency is maintained).
This duplication can happen when an image file has been accessed as a data file (having been read
or written) and then run as an executable image (for example, when an image is linked and then

 CHAPTER 10 Memory Management 289

run—the linker had the file open for data access, and then when the image was run, the image loader
mapped it as an executable). Internally, the following actions occur:

1. If the executable file was created using the file mapping APIs (or the cache manager), a data
control area is created to represent the data pages in the image file being read or written.

2. When the image is run and the section object is created to map the image as an executable,
the memory manager finds that the section object pointers for the image file point to a data
control area and flushes the section. This step is necessary to ensure that any modified pages
have been written to disk before accessing the image through the image control area.

3. The memory manager then creates a control area for the image file.

4. As the image begins execution, its (read-only) pages are faulted in from the image file (or cop-
ied directly over from the data file if the corresponding data page is resident).

Because the pages mapped by the data control area might still be resident (on the standby list),
this is the one case in which two copies of the same data are in two different pages in memory.
However, this duplication doesn’t result in a data consistency issue because, as mentioned, the data
control area has already been flushed to disk, so the pages read from the image are up to date (and
these pages are never written back to disk).

EXPERIMENT: Viewing Control Areas
To find the address of the control area structures for a file, you must first get the address of the
file object in question. You can obtain this address through the kernel debugger by dumping
the process handle table with the !handle command and noting the object address of a file
object. Although the kernel debugger !file command displays the basic information in a file
object, it doesn’t display the pointer to the section object pointers structure. Then, using the dt
command, format the file object to get the address of the section object pointers structure. This
structure consists of three pointers: a pointer to the data control area, a pointer to the shared
cache map (explained in Chapter 11), and a pointer to the image control area. From the section
object pointers structure, you can obtain the address of a control area for the file (if one exists)
and feed that address into the !ca command.

For example, if you open a PowerPoint file and display the handle table for that process
 using !handle, you will find an open handle to the PowerPoint file as shown here. (For informa-
tion on using !handle, see the “Object Manager” section in Chapter 3 in Part 1.)

lkd> !handle 1 f 86f57d90 File
.
.
0324: Object: 865d2768 GrantedAccess: 00120089 Entry: c848e648
Object: 865d2768 Type: (8475a2c0) File
 ObjectHeader: 865d2750 (old version)
 HandleCount: 1 PointerCount: 1
 Directory Object: 00000000 Name: \Users\Administrator\Documents\Downloads\
SVR-T331_WH07 (1).pptx {HarddiskVolume3}

290 Windows Internals, Sixth Edition, Part 2

Taking the file object address (865d2768) and formatting it with dt results in this:

lkd> dt nt!_FILE_OBJECT 865d2768
 +0x000 Type : 5
 +0x002 Size : 128
 +0x004 DeviceObject : 0x84a62320 _DEVICE_OBJECT
 +0x008 Vpb : 0x84a60590 _VPB
 +0x00c FsContext : 0x8cee4390
 +0x010 FsContext2 : 0xbf910c80
 +0x014 SectionObjectPointer : 0x86c45584 _SECTION_OBJECT_POINTERS

Then taking the address of the section object pointers structure (0x86c45584) and format-
ting it with dt results in this:

lkd> dt 0x86c45584 nt!_SECTION_OBJECT_POINTERS
 +0x000 DataSectionObject : 0x863d3b00
 +0x004 SharedCacheMap : 0x86f10ec0
 +0x008 ImageSectionObject : (null)

Finally, use !ca to display the control area using the address:

lkd> !ca 0x863d3b00

ControlArea @ 863d3b00
 Segment b1de9d48 Flink 00000000 Blink 8731f80c
 Section Ref 1 Pfn Ref 48 Mapped Views 2
 User Ref 0 WaitForDel 0 Flush Count 0
 File Object 86cf6188 ModWriteCount 0 System Views 2
 WritableRefs 0
 Flags (c080) File WasPurged Accessed

 No name for file

Segment @ b1de9d48
 ControlArea 863d3b00 ExtendInfo 00000000
 Total Ptes 100
 Segment Size 100000 Committed 0
 Flags (c0000) ProtectionMask

Subsection 1 @ 863d3b48
 ControlArea 863d3b00 Starting Sector 0 Number Of Sectors 100
 Base Pte bf85e008 Ptes In Subsect 100 Unused Ptes 0
 Flags d Sector Offset 0 Protection 6
 Accessed
 Flink 00000000 Blink 8731f87c MappedViews 2

 CHAPTER 10 Memory Management 291

Another technique is to display the list of all control areas with the !memusage command.
The following excerpt is from the output of this command:

lkd> !memusage
 loading PFN database
loading (100% complete)
Compiling memory usage data (99% Complete).
 Zeroed: 2654 (10616 kb)
 Free: 584 (2336 kb)
 Standby: 402938 (1611752 kb)
 Modified: 12732 (50928 kb)
 ModifiedNoWrite: 3 (12 kb)
 Active/Valid: 431478 (1725912 kb)
 Transition: 1186 (4744 kb)
 Bad: 0 (0 kb)
 Unknown: 0 (0 kb)
 TOTAL: 851575 (3406300 kb)
 Building kernel map
 Finished building kernel map
Scanning PFN database - (100% complete)

 Usage Summary (in Kb):
Control Valid Standby Dirty Shared Locked PageTables name
86d75f18 0 64 0 0 0 0 mapped_file(netcfgx.dll)
8a124ef8 0 4 0 0 0 0 No Name for File
8747af80 0 52 0 0 0 0 mapped_file(iebrshim.dll)
883a2e58 24 8 0 0 0 0 mapped_file(WINWORD.EXE)
86d6eae0 0 16 0 0 0 0 mapped_file(oem13.CAT)
84b19af8 8 0 0 0 0 0 No Name for File
b1672ab0 4 0 0 0 0 0 No Name for File
88319da8 0 20 0 0 0 0 mapped_file(Microsoft-Windows-MediaPlayer-
Package~31bf3856ad364e35~x86~en-US~6.0.6001.18000.cat)
8a04db00 0 48 0 0 0 0 mapped_file(eapahost.dll)

The Control column points to the control area structure that describes the mapped file. You
can display control areas, segments, and subsections with the kernel debugger !ca command.
For example, to dump the control area for the mapped file Winword.exe in this example, type
the !ca command followed by the Control number, as shown here:

lkd> !ca 883a2e58

ControlArea @ 883a2e58
 Segment ee613998 Flink 00000000 Blink 88a985a4
 Section Ref 1 Pfn Ref 8 Mapped Views 1
 User Ref 2 WaitForDel 0 Flush Count 0
 File Object 88b45180 ModWriteCount 0 System Views ffff
 WritableRefs 80000006
 Flags (40a0) Image File Accessed

 File: \PROGRA~1\MICROS~1\Office12\WINWORD.EXE

292 Windows Internals, Sixth Edition, Part 2

Segment @ ee613998
 ControlArea 883a2e58 BasedAddress 2f510000
 Total Ptes 57
 Segment Size 57000 Committed 0
 Image Commit 1 Image Info ee613c80
 ProtoPtes ee6139c8
 Flags (20000) ProtectionMask

Subsection 1 @ 883a2ea0
 ControlArea 883a2e58 Starting Sector 0 Number Of Sectors 2
 Base Pte ee6139c8 Ptes In Subsect 1 Unused Ptes 0
 Flags 2 Sector Offset 0 Protection 1

Subsection 2 @ 883a2ec0
 ControlArea 883a2e58 Starting Sector 2 Number Of Sectors a
 Base Pte ee6139d0 Ptes In Subsect 2 Unused Ptes 0
 Flags 6 Sector Offset 0 Protection 3

Subsection 3 @ 883a2ee0
 ControlArea 883a2e58 Starting Sector c Number Of Sectors 1
 Base Pte ee6139e0 Ptes In Subsect 1 Unused Ptes 0
 Flags a Sector Offset 0 Protection 5

Subsection 4 @ 883a2f00
 ControlArea 883a2e58 Starting Sector d Number Of Sectors 28b
 Base Pte ee6139e8 Ptes In Subsect 52 Unused Ptes 0
 Flags 2 Sector Offset 0 Protection 1

Subsection 5 @ 883a2f20
 ControlArea 883a2e58 Starting Sector 298 Number Of Sectors 1
 Base Pte ee613c78 Ptes In Subsect 1 Unused Ptes 0
 Flags 2 Sector Offset 0 Protection 1

Driver Verifier

As introduced in Chapter 8, “I/O System,” Driver Verifier is a mechanism that can be used to help find
and isolate commonly found bugs in device driver or other kernel-mode system code. This section
describes the memory management–related verification options Driver Verifier provides (the options
related to device drivers are described in Chapter 8).

The verification settings are stored in the registry under HKLM\SYSTEM\CurrentControlSet\
Control\Session Manager\Memory Management. The value VerifyDriverLevel contains a bitmask that
represents the verification types enabled. The VerifyDrivers value contains the names of the drivers to
validate. (These values won’t exist in the registry until you select drivers to verify in the Driver Verifier
Manager.) If you choose to verify all drivers, VerifyDrivers is set to an asterisk (*) character. Depending
on the settings you have made, you might need to reboot the system for the selected verification to
occur.

 CHAPTER 10 Memory Management 293

Early in the boot process, the memory manager reads the Driver Verifier registry values to deter-
mine which drivers to verify and which Driver Verifier options you enabled. (Note that if you boot
in safe mode, any Driver Verifier settings are ignored.) Subsequently, if you’ve selected at least one
driver for verification, the kernel checks the name of every device driver it loads into memory against
the list of drivers you’ve selected for verification. For every device driver that appears in both places,
the kernel invokes the VfLoadDriver function, which calls other internal Vf* functions to replace the
driver’s references to a number of kernel functions with references to Driver Verifier–equivalent ver-
sions of those functions. For example, ExAllocatePool is replaced with a call to VerifierAllocatePool. The
windowing system driver (Win32k.sys) also makes similar changes to use Driver Verifier–equivalent
functions.

Now that we’ve reviewed how Driver Verifier is set up, we’ll examine the six memory-related verifi-
cation options that can be applied to device drivers: Special Pool, Pool Tracking, Force IRQL Checking,
Low Resources Simulation, Miscellaneous Checks, and Automatic Checks

Special Pool The Special Pool option causes the pool allocation routines to bracket pool allocations
with an invalid page so that references before or after the allocation will result in a kernel-mode ac-
cess violation, thus crashing the system with the finger pointed at the buggy driver. Special pool also
causes some additional validation checks to be performed when a driver allocates or frees memory.

When special pool is enabled, the pool allocation routines allocate a region of kernel memory for
Driver Verifier to use. Driver Verifier redirects memory allocation requests that drivers under verifica-
tion make to the special pool area rather than to the standard kernel-mode memory pools. When a
device driver allocates memory from special pool, Driver Verifier rounds up the allocation to an even-
page boundary. Because Driver Verifier brackets the allocated page with invalid pages, if a device
driver attempts to read or write past the end of the buffer, the driver will access an invalid page, and
the memory manager will raise a kernel-mode access violation.

Figure 10-36 shows an example of the special pool buffer that Driver Verifier allocates to a device
driver when Driver Verifier checks for overrun errors.

Page 0

Page 2

Page 1 Random signature

Invalid page

Invalid page

Driver buffer

FIGURE 10-36 Layout of special pool allocations

By default, Driver Verifier performs overrun detection. It does this by placing the buffer that the
device driver uses at the end of the allocated page and fills the beginning of the page with a random

294 Windows Internals, Sixth Edition, Part 2

pattern. Although the Driver Verifier Manager doesn’t let you specify underrun detection, you can
set this type of detection manually by adding the DWORD registry value HKLM\SYSTEM\Current-
ControlSet\Control\Session Manager\Memory Management\PoolTagOverruns and setting it to 0 (or
by running the Gflags utility and selecting the Verify Start option instead of the default option, Verify
End). When Windows enforces underrun detection, Driver Verifier allocates the driver’s buffer at the
beginning of the page rather than at the end.

The overrun-detection configuration includes some measure of underrun detection as well. When
the driver frees its buffer to return the memory to Driver Verifier, Driver Verifier ensures that the pat-
tern preceding the buffer hasn’t changed. If the pattern is modified, the device driver has underrun
the buffer and written to memory outside the buffer.

Special pool allocations also check to ensure that the processor IRQL at the time of an allocation
and deallocation is legal. This check catches an error that some device drivers make: allocating page-
able memory from an IRQL at DPC/dispatch level or above.

You can also configure special pool manually by adding the DWORD registry value HKLM\SYSTEM\
CurrentControlSet\Control\Session Manager\Memory Management\PoolTag, which represents the
allocation tags the system uses for special pool. Thus, even if Driver Verifier isn’t configured to verify
a particular device driver, if the tag the driver associates with the memory it allocates matches what
is specified in the PoolTag registry value, the pool allocation routines will allocate the memory from
special pool. If you set the value of PoolTag to 0x0000002a or to the wildcard (*), all memory that
drivers allocate is from special pool, provided there’s enough virtual and physical memory. (The driv-
ers will revert to allocating from regular pool if there aren’t enough free pages—bounding exists, but
each allocation uses two pages.)

Pool Tracking If pool tracking is enabled, the memory manager checks at driver unload time
whether the driver freed all the memory allocations it made. If it didn’t, it crashes the system, indicat-
ing the buggy driver. Driver Verifier also shows general pool statistics on the Driver Verifier Manager’s
Pool Tracking tab. You can also use the !verifier kernel debugger command. This command shows
more information than Driver Verifier and is useful to driver writers.

Pool tracking and special pool cover not only explicit allocation calls, such as ExAllocatePoolWith-
Tag, but also calls to other kernel APIs that implicitly allocate pool: IoAllocateMdl, IoAllocateIrp, and
other IRP allocation calls; various Rtl string APIs; and IoSetCompletionRoutineEx.

Another driver verified function enabled by the Pool Tracking option has to do with pool quota
charges. The call ExAllocatePoolWithQuotaTag charges the current process’s pool quota for the num-
ber of bytes allocated. If such a call is made from a deferred procedure call (DPC) routine, the process
that is charged is unpredictable because DPC routines may execute in the context of any process. The
Pool Tracking option checks for calls to this routine from DPC routine context.

Driver Verifier can also perform locked memory page tracking, which additionally checks for pages
that have been left locked after an I/O operation and generates the DRIVER_LEFT_LOCKED_PAGES_
IN_PROCESS instead of the PROCESS_HAS_LOCKED_PAGES crash code—the former indicates the
driver responsible for the error as well as the function responsible for the locking of the pages.

 CHAPTER 10 Memory Management 295

Force IRQL Checking One of the most common device driver bugs occurs when a driver accesses
pageable data or code when the processor on which the device driver is executing is at an elevated
IRQL. As explained in Chapter 3 in Part 1, the memory manager can’t service a page fault when the
IRQL is DPC/dispatch level or above. The system often doesn’t detect instances of a device driver
accessing pageable data when the processor is executing at a high IRQL level because the pageable
data being accessed happens to be physically resident at the time. At other times, however, the data
might be paged out, which results in a system crash with the stop code IRQL_NOT_LESS_OR_EQUAL
(that is, the IRQL wasn’t less than or equal to the level required for the operation attempted—in this
case, accessing pageable memory).

Although testing device drivers for this kind of bug is usually difficult, Driver Verifier makes it easy.
If you select the Force IRQL Checking option, Driver Verifier forces all kernel-mode pageable code
and data out of the system working set whenever a device driver under verification raises the IRQL.
The internal function that does this is MiTrimAllSystemPagableMemory. With this setting enabled,
whenever a device driver under verification accesses pageable memory when the IRQL is elevated, the
system instantly detects the violation, and the resulting system crash identifies the faulty driver.

Another common driver crash that results from incorrect IRQL usage occurs when synchronization
objects are part of data structures that are paged and then waited on. Synchronization objects should
never be paged because the dispatcher needs to access them at an elevated IRQL, which would
cause a crash. Driver Verifier checks whether any of the following structures are present in pageable
memory: KTIMER, KMUTEX, KSPIN_LOCK, KEVENT, KSEMAPHORE, ERESOURCE, FAST_MUTEX.

Low Resources Simulation Enabling Low Resources Simulation causes Driver Verifier to randomly
fail memory allocations that verified device drivers perform. In the past, developers wrote many de-
vice drivers under the assumption that kernel memory would always be available and that if memory
ran out, the device driver didn’t have to worry about it because the system would crash anyway.
However, because low-memory conditions can occur temporarily, it’s important that device drivers
properly handle allocation failures that indicate kernel memory is exhausted.

The driver calls that will be injected with random failures include the ExAllocatePool*, MmProbe-
AndLockPages, MmMapLockedPagesSpecifyCache, MmMapIoSpace, MmAllocateContiguousMemory,
MmAllocatePagesForMdl, IoAllocateIrp, IoAllocateMdl, IoAllocateWorkItem, IoAllocateErrorLogEntry,
IOSetCompletionRoutineEx, and various Rtl string APIs that allocate pool. Additionally, you can specify
the probability that allocation will fail (6 percent by default), which applications should be subject to
the simulation (all are by default), which pool tags should be affected (all are by default), and what
delay should be used before fault injection starts (the default is 7 minutes after the system boots,
which is enough time to get past the critical initialization period in which a low-memory condition
might prevent a device driver from loading).

After the delay period, Driver Verifier starts randomly failing allocation calls for device drivers it
is verifying. If a driver doesn’t correctly handle allocation failures, this will likely show up as a system
crash.

296 Windows Internals, Sixth Edition, Part 2

Miscellaneous Checks Some of the checks that Driver Verifier calls “miscellaneous” allow Driver
Verifier to detect the freeing of certain system structures in the pool that are still active. For example,
Driver Verifier will check for:

 ■ Active work items in freed memory (a driver calls ExFreePool to free a pool block in which one
or more work items queued with IoQueueWorkItem are present).

 ■ Active resources in freed memory (a driver calls ExFreePool before calling ExDeleteResource to
destroy an ERESOURCE object).

 ■ Active look-aside lists in freed memory (a driver calls ExFreePool before calling
 ExDeleteNPagedLookasideList or ExDeletePagedLookasideList to delete the look-aside list).

Finally, when verification is enabled, Driver Verifier also performs certain automatic checks that
cannot be individually enabled or disabled. These include:

 ■ Calling MmProbeAndLockPages or MmProbeAndLockProcessPages on a memory descriptor list
(MDL) having incorrect flags. For example, it is incorrect to call MmProbeAndLockPages for an
MDL setup by calling MmBuildMdlForNonPagedPool.

 ■ Calling MmMapLockedPages on an MDL having incorrect flags. For example, it is incorrect to
call MmMapLockedPages for an MDL that is already mapped to a system address. Another
example of incorrect driver behavior is calling MmMapLockedPages for an MDL that was not
locked.

 ■ Calling MmUnlockPages or MmUnmapLockedPages on a partial MDL (created by using
IoBuildPartialMdl).

 ■ Calling MmUnmapLockedPages on an MDL that is not mapped to a system address.

 ■ Allocating synchronization objects such as events or mutexes from NonPagedPoolSession
memory.

Driver Verifier is a valuable addition to the arsenal of verification and debugging tools available to
device driver writers. Many device drivers that first ran with Driver Verifier had bugs that Driver Veri-
fier was able to expose. Thus, Driver Verifier has resulted in an overall improvement in the quality of
all kernel-mode code running in Windows.

 CHAPTER 10 Memory Management 297

Page Frame Number Database

In several previous sections, we’ve concentrated on the virtual view of a Windows process—page
tables, PTEs, and VADs. In the remainder of this chapter, we’ll explain how Windows manages physical
memory, starting with how Windows keeps track of physical memory. Whereas working sets describe
the resident pages owned by a process or the system, the page frame number (PFN) database de-
scribes the state of each page in physical memory. The page states are listed in Table 10-16.

TABLE 10-16 Page States

Status Description

Active (also called Valid) The page is part of a working set (either a process working set, a session
working set, or a system working set), or it’s not in any working set (for
example, nonpaged kernel page) and a valid PTE usually points to it.

Transition A temporary state for a page that isn’t owned by a working set and isn’t on any
paging list. A page is in this state when an I/O to the page is in progress. The
PTE is encoded so that collided page faults can be recognized and handled
properly. (Note that this use of the term “transition” differs from the use of the
word in the section on invalid PTEs; an invalid transition PTE refers to a page on
the standby or modified list.)

Standby The page previously belonged to a working set but was removed (or was
prefetched/clustered directly into the standby list). The page wasn’t modified
since it was last written to disk. The PTE still refers to the physical page but is
marked invalid and in transition.

Modified The page previously belonged to a working set but was removed. However, the
page was modified while it was in use and its current contents haven’t yet been
written to disk or remote storage. The PTE still refers to the physical page but is
marked invalid and in transition. It must be written to the backing store before
the physical page can be reused.

Modified no-write Same as a modified page, except that the page has been marked so that the
memory manager’s modified page writer won’t write it to disk. The cache
manager marks pages as modified no-write at the request of file system drivers.
For example, NTFS uses this state for pages containing file system metadata
so that it can first ensure that transaction log entries are flushed to disk before
the pages they are protecting are written to disk. (NTFS transaction logging is
explained in Chapter 12, “File Systems.”)

Free The page is free but has unspecified dirty data in it. (These pages can’t be given
as a user page to a user process without being initialized with zeros, for security
reasons.)

Zeroed The page is free and has been initialized with zeros by the zero page thread (or
was determined to already contain zeros).

Rom The page represents read-only memory

Bad The page has generated parity or other hardware errors and can’t be used.

The PFN database consists of an array of structures that represent each physical page of memory
on the system. The PFN database and its relationship to page tables are shown in Figure 10-37. As this
figure shows, valid PTEs usually point to entries in the PFN database, and the PFN database entries
(for nonprototype PFNs) point back to the page table that is using them (if it is being used by a page
table). For prototype PFNs, they point back to the prototype PTE.

298 Windows Internals, Sixth Edition, Part 2

Process 2
page table

.

.

.

Process 3
page table

.

.

.

Process 1
page table

Valid

Invalid:
disk address

Invalid:
transition

Valid

Invalid:
disk address

Valid

Valid

Invalid:
transition
Invalid:

disk address

.

.

.

PFN database

In use

Standby list

In use

In use

Modified list

Prototype PTE

Forward pointer

.

.

.

Backward pointer

FIGURE 10-37 Page tables and the page frame number database

 CHAPTER 10 Memory Management 299

Of the page states listed in Table 10-16, six are organized into linked lists so that the memory man-
ager can quickly locate pages of a specific type. (Active/valid pages, transition pages, and overloaded
“bad” pages aren’t in any systemwide page list.) Additionally, the standby state is actually associated
with eight different lists ordered by priority (we’ll talk about page priority later in this section). Figure
10-38 shows an example of how these entries are linked together.

.

.

.

PFN database

Active

Zeroed

Free

Standby

Bad

Modified no-
write

Read only
memory

Modified

Active

Active

FIGURE 10-38 Page lists in the PFN database

In the next section, you’ll find out how these linked lists are used to satisfy page faults and how
pages move to and from the various lists.

300 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: Viewing the PFN Database
You can use the MemInfo tool from Winsider Seminars & Solutions to dump the size of the vari-
ous paging lists by using the –s flag. The following is the output from this command:

C:\>MemInfo.exe -s

MemInfo v2.10 - Show PFN database information
Copyright (C) 2007-2009 Alex Ionescu
www.alex-ionescu.com

Initializing PFN Database... Done

PFN Database List Statistics
 Zeroed: 487 (1948 kb)
 Free: 0 (0 kb)
 Standby: 379745 (1518980 kb)
 Modified: 1052 (4208 kb)
 ModifiedNoWrite: 0 (0 kb)
 Active/Valid: 142703 (570812 kb)
 Transition: 184 (736 kb)
 Bad: 0 (0 kb)
 Unknown: 2 (8 kb)
 TOTAL: 524173 (2096692 kb)

Using the kernel debugger !memusage command, you can obtain similar information, al-
though this will take considerably longer and will require booting into debugging mode.

Page List Dynamics
Figure 10-39 shows a state diagram for page frame transitions. For simplicity, the modified-no-write
list isn’t shown.

Page frames move between the paging lists in the following ways:

 ■ When the memory manager needs a zero-initialized page to service a demand-zero page
fault (a reference to a page that is defined to be all zeros or to a user-mode committed private
page that has never been accessed), it first attempts to get one from the zero page list. If the
list is empty, it gets one from the free page list and zeroes the page. If the free list is empty, it
goes to the standby list and zeroes that page.

One reason zero-initialized pages are required is to meet various security requirements, such
as the Common Criteria. Most Common Criteria profiles specify that user-mode processes
must be given initialized page frames to prevent them from reading a previous process’s
memory contents. Therefore, the memory manager gives user-mode processes zeroed page
frames unless the page is being read in from a backing store. If that’s the case, the memory
manager prefers to use nonzeroed page frames, initializing them with the data off the disk or
remote storage.

 CHAPTER 10 Memory Management 301

Demand-zero
page faults

Page read from
disk or kernel
allocations

Standby
page list

ROM
page list

Process
working

sets

Working set
replacement

Modified
page list

“Soft”
page
faults

Free
page
list

Zero
page
list

Bad
page
list

Zero
page

thread

Modified
page
writer

FIGURE 10-39 State diagram for page frames

The zero page list is populated from the free list by a system thread called the zero page
thread (thread 0 in the System process). The zero page thread waits on a gate object to signal
it to go to work. When the free list has eight or more pages, this gate is signaled. However, the
zero page thread will run only if at least one processor has no other threads running, because
the zero page thread runs at priority 0 and the lowest priority that a user thread can be set
to is 1.

Note Because the zero page thread actually waits on an event dispatcher object,
it receives a priority boost (see the section “Priority Boosts” in Chapter 5 in Part
1), which results in it executing at priority 1 for at least part of the time. This is a
bug in the current implementation.

302 Windows Internals, Sixth Edition, Part 2

Note When memory needs to be zeroed as a result of a physical page alloca-
tion by a driver that calls MmAllocatePagesForMdl or MmAllocatePagesForMdlEx,
by a Windows application that calls AllocateUserPhysicalPages or
AllocateUserPhysicalPagesNuma, or when an application allocates large pages,
the memory manager zeroes the memory by using a higher performing func-
tion called MiZeroInParallel that maps larger regions than the zero page thread,
which only zeroes a page at a time. In addition, on multiprocessor systems, the
memory manager creates additional system threads to perform the zeroing in
parallel (and in a NUMA-optimized fashion on NUMA platforms).

 ■ When the memory manager doesn’t require a zero-initialized page, it goes first to the free list.
If that’s empty, it goes to the zeroed list. If the zeroed list is empty, it goes to the standby lists.
Before the memory manager can use a page frame from the standby lists, it must first back-
track and remove the reference from the invalid PTE (or prototype PTE) that still points to the
page frame. Because entries in the PFN database contain pointers back to the previous user’s
page table page (or to a page of prototype PTE pool for shared pages), the memory manager
can quickly find the PTE and make the appropriate change.

 ■ When a process has to give up a page out of its working set (either because it referenced a
new page and its working set was full or the memory manager trimmed its working set), the
page goes to the standby lists if the page was clean (not modified) or to the modified list if the
page was modified while it was resident.

 ■ When a process exits, all the private pages go to the free list. Also, when the last reference to
a page-file-backed section is closed, and the section has no remaining mapped views, these
pages also go to the free list.

EXPERIMENT: The Free and Zero Page Lists
You can observe the release of private pages at process exit with Process Explorer’s System
Information display. Begin by creating a process with a large number of private pages in its
working set. We did this in an earlier experiment with the TestLimit utility:

C:\temp>testlimit -d 1 -c 800

Testlimit v5.1 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Leaking private bytes 1 MB at a time ...
Leaked 800 MB of private memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

 CHAPTER 10 Memory Management 303

The –d option causes TestLimit to not only allocate the memory as private committed, but to
“touch” it—that is, to access it. This causes physical memory to be allocated and assigned to the
process to realize the area of private committed virtual memory. If there is sufficient available
RAM on the system, the entire 800 MB should be in RAM for the process.

This process will now wait until you cause it to exit or terminate (perhaps by using Ctrl+C in
its command window). Open Process Explorer and select View, System Information. Observe the
Free and Zeroed list sizes.

Now terminate or exit the TestLimit process. You may see the free page list briefly increase in
size:

We say “may” because the zero page thread is awakened as soon as there are only eight
pages on the zero list, and it acts very quickly. Notice that in this example, we freed 800 MB of
private memory but only about 138 MB appear here on the free list. Process Explorer updates
this display only once per second, and it is likely that the rest of the pages were already zeroed
and moved to the zeroed page list before it happened to “catch” this state.

If you are able to see the temporary increase in the free list, you will then see it drop to zero,
and a corresponding increase will occur in the zeroed page list. If not, you will simply see the
increase in the zeroed list.

304 Windows Internals, Sixth Edition, Part 2

EXPERIMENT: The Modified and Standby Page Lists
The movement of pages from process working set to the modified page list and then to the
standby page list can also be observed with the Sysinternals tools VMMap and RAMMap and
the live kernel debugger.

The first step is to open RAMMap and observe the state of the quiet system:

This is an x86 system with about 3.4 GB of RAM usable by Windows. The columns in this
display represent the various page states shown in Figure 10-39. (A few of the columns not
important to this discussion have been narrowed for ease of reference.)

The system has about 1.2 GB of RAM free (sum of the free and zeroed page lists). About
1,700 MB is on the standby list (hence part of “available,” but likely containing data recently lost
from processes or being used by Superfetch). About 448 MB is “active,” being mapped directly
to virtual addresses via valid page table entries.

Each row further breaks down into page state by usage or origin (process private, mapped
file, and so on). For example, at the moment, of the active 448 MB, about 138 MB is due to
process private allocations.

Now, as in the previous experiment, use the TestLimit utility to create a process with a large
number of pages in its working set. Again we will use the –d option to cause TestLimit to write
to each page, but this time we will use it without a limit, so as to create as many private modi-
fied pages as possible:

 CHAPTER 10 Memory Management 305

C:\Users\user1>testlimit –d

Testlimit v5.21 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - www.sysinternals.com

Process ID: 1000

Leaking private bytes with touch (MB) ...

Leaked 2017 MB of private memory (2017 MB total leaked). Lasterror: 8

Not enough storage is available to process this command.

TestLimit has now created 2,017 allocations of 1 MB each.

In RAMMap, use the File, Refresh command to update the display (because of the cost of
gathering its information, RAMMap does not update continuously).

You will see that over 2 GB are now active and in the Process Private row. This is due to the
memory allocated and accessed by the TestLimit process. Note also that the standby, zeroed,
and free lists are now much smaller. Most of the RAM allocated to TestLimit came from these
lists.

Next, in RAMMap, check the process’s physical page allocations. Change to the Physical
Pages tab, and set the filter at the bottom to the column Process and the value Testlimit.exe.
This display shows all the physical pages that are part of the process working set.

http://www.sysinternals.com

306 Windows Internals, Sixth Edition, Part 2

We would like to identify a physical page involved in the allocation of virtual address space
done by TestLimit’s –d option. RAMMap does not give an indication about which virtual alloca-
tions are associated with RAMMap’s VirtualAlloc calls. However, we can get a good hint of this
through the VMMap tool. Using VMMap on the same process, we find the following:

 CHAPTER 10 Memory Management 307

In the lower part of the display, we find hundreds of allocations of process private data,
each 1 MB in size and with 1 MB committed. These match the size of the allocations done by
TestLimit. The first of these is highlighted in the preceding screen shot. Note the starting virtual
address, 0x580000.

Now go back to RAMMap’s physical memory display. Arrange the columns to make the Vir-
tual Address column easily visible, click on it to sort by that value, and you can find that virtual
address:

This shows that the virtual page starting at 0x01340000 is currently mapped to physical ad-
dress 0x97D78000.

TestLimit’s –d option writes the program’s own name to the first bytes of each allocation. We
can demonstrate this with the !dc (display characters using physical address) command in the
local kernel debugger:

lkd> !dc 0x97d78000
#97d78000 74736554 696d694c 00000074 00000000 TestLimit.......
#97d78010 00000000 00000000 00000000 00000000
#97d78020 00000000 00000000 00000000 00000000
...

For the final leg of the experiment, we will demonstrate that this data remains intact (for a
while, anyway) after the process working set is reduced and this page is moved to the modified
and then the standby page list.

308 Windows Internals, Sixth Edition, Part 2

In VMMap, having selected the TestLimit process, use the View, Empty Working Set com-
mand to reduce the process’s working set to the bare minimum. VMMap’s display should now
look like this:

Notice that the Working Set bar graph is practically empty. In the middle section, the process
shows a total working set of only 9 MB, and almost all of it is in page tables, with a tiny 32 KB
total paged in of image files and private data. Now return to RAMMap. On the Use Counts tab,
you will find that active pages have been reduced tremendously, with a large number of pages
on the modified list and a significant number on the standby list:

 CHAPTER 10 Memory Management 309

RAMMap’s Processes tab confirms that the TestLimit process contributed most of those
pages to those lists:

Still in RAMMap, show the Physical Pages tab. Sort by Physical Address, and find the page
previously examined (in this case, physical address 0xc09fa000). RAMMap will almost certainly
show that it is on the standby or modified list.

Note that the page is still associated with the TestLimit process and with its virtual address.

310 Windows Internals, Sixth Edition, Part 2

Finally, we can again use the kernel debugger to verify the page has not been overwritten:

lkd> !dc 0x97d78000
#97d78000 74736554 696d694c 00000074 00000000 TestLimit.......
#97d78010 00000000 00000000 00000000 00000000
#97d78020 00000000 00000000 00000000 00000000
...

We can also use the local kernel debugger to show the page frame number, or PFN, entry for
the page. (The PFN database is described earlier in the chapter.)

lkd> !pfn 97d78
 PFN 00097D78 at address 84E9B920
 flink 000A0604 blink / share count 000A05C1 pteaddress C0002C00
 reference count 0000 Cached color 0 Priority 5
 restore pte 00000080 containing page 097D60 Modified M
 Modified

Note that the page is still associated with the TestLimit process and with its virtual address.

Page Priority
Every physical page in the system has a page priority value assigned to it by the memory manager.
The page priority is a number in the range 0 to 7. Its main purpose is to determine the order in which
pages are consumed from the standby list. The memory manager divides the standby list into eight
sublists that each store pages of a particular priority. When the memory manager wants to take a
page from the standby list, it takes pages from low-priority lists first, as shown in Figure 10-40.

Pages removed Prioritized
standby lists

1

0

7

6

5

4

3

2

Pages added

FIGURE 10-40 Prioritized standby lists

Each thread and process in the system is also assigned a page priority. A page’s priority usually
reflects the page priority of the thread that first causes its allocation. (If the page is shared, it reflects

 CHAPTER 10 Memory Management 311

the highest page priority among the sharing threads.) A thread inherits its page-priority value from
the process to which it belongs. The memory manager uses low priorities for pages it reads from disk
speculatively when anticipating a process’s memory accesses.

By default, processes have a page-priority value of 5, but functions allow applications and the
system to change process and thread page-priority values. You can look at the memory priority of
a thread with Process Explorer (per-page priority can be displayed by looking at the PFN entries, as
you’ll see in an experiment later in the chapter). Figure 10-41 shows Process Explorer’s Threads tab
displaying information about Winlogon’s main thread. Although the thread priority itself is high, the
memory priority is still the standard 5.

FIGURE 10-41 Process Explorer’s Threads tab.

The real power of memory priorities is realized only when the relative priorities of pages are un-
derstood at a high level, which is the role of Superfetch, covered at the end of this chapter.

EXPERIMENT: Viewing the Prioritized Standby Lists
You can use the MemInfo tool from Winsider Seminars & Solutions to dump the size of each
standby paging list by using the –c flag. MemInfo will also display the number of repurposed
pages for each standby list—this corresponds to the number of pages in each list that had to be
reused to satisfy a memory allocation, and thus thrown out of the standby page lists. The fol-
lowing is the relevant output from the following command.

312 Windows Internals, Sixth Edition, Part 2

C:\Windows\system32>meminfo -c
MemInfo v2.10 - Show PFN database information
Copyright (C) 2007-2009 Alex Ionescu
www.alex-ionescu.com

Initializing PFN Database... Done

Priority Standby Repurposed
0 - Idle 0 (0 KB) 0 (0 KB)
1 - Very Low 41352 (165408 KB) 0 (0 KB)
2 - Low 7201 (28804 KB) 0 (0 KB)
3 - Background 2043 (8172 KB) 0 (0 KB)
4 - Background 24715 (98860 KB) 0 (0 KB)
5 - Normal 7895 (31580 KB) 0 (0 KB)
6 - Superfetch 23877 (95508 KB) 0 (0 KB)
7 - Superfetch 8435 (33740 KB) 0 (0 KB)
TOTAL 115518 (462072 KB) 0 (0 KB)

You can add the –i flag to MemInfo to continuously display the state of the standby page
lists and repurpose counts, which is useful for tracking memory usage as well as the follow-
ing experiment. Additionally, the System Information panel in Process Explorer (choose View,
System Information) can also be used to display the live state of the prioritized standby lists, as
shown in this screen shot:

On the recently started x64 system used in this experiment (see the previous MemInfo
output), there is no data cached at priority 0, about 165 MB at priority 1, and about 29 MB at
priority 2. Your system probably has some data in those priorities as well.

 CHAPTER 10 Memory Management 313

The following shows what happens when we use the TestLimit tool from Sysinternals to com-
mit and touch 1 GB of memory. Here is the command you use (to leak and touch memory in 20
chunks of 50 MB):

testlimit –d 50 –c 20

Here is the output of MemInfo just before the run:

Priority Standby Repurposed
0 - Idle 0 (0 KB) 2554 (10216 KB)
1 - Very Low 92915 (371660 KB) 141352 (565408 KB)
2 - Low 35783 (143132 KB) 0 (0 KB)
3 - Background 50666 (202664 KB) 0 (0 KB)
4 - Background 15236 (60944 KB) 0 (0 KB)
5 - Normal 34197 (136788 KB) 0 (0 KB)
6 - Superfetch 2912 (11648 KB) 0 (0 KB)
7 - Superfetch 5876 (23504 KB) 0 (0 KB)
TOTAL 237585 (950340 KB) 143906 (575624 KB)

And here is the output after the allocations are done but the TestLimit process still exists:

Priority Standby Repurposed
0 - Idle 0 (0 KB) 2554 (10216 KB)
1 - Very Low 5 (20 KB) 234351 (937404 KB)
2 - Low 0 (0 KB) 35830 (143320 KB)
3 - Background 9586 (38344 KB) 41654 (166616 KB)
4 - Background 15371 (61484 KB) 0 (0 KB)
5 - Normal 34208 (136832 KB) 0 (0 KB)
6 - Superfetch 2914 (11656 KB) 0 (0 KB)
7 - Superfetch 5881 (23524 KB) 0 (0 KB)
TOTAL 67965 (271860 KB) 314389 (1257556 KB)

Note how the lower-priority standby page lists were used first (shown by the repurposed
count) and are now depleted, while the higher lists still contain valuable cached data.

314 Windows Internals, Sixth Edition, Part 2

Modified Page Writer
The memory manager employs two system threads to write pages back to disk and move those
pages back to the standby lists (based on their priority). One system thread writes out modified pages
(MiModifiedPageWriter) to the paging file, and a second one writes modified pages to mapped files
(MiMappedPageWriter). Two threads are required to avoid creating a deadlock, which would occur if
the writing of mapped file pages caused a page fault that in turn required a free page when no free
pages were available (thus requiring the modified page writer to create more free pages). By having
the modified page writer perform mapped file paging I/Os from a second system thread, that thread
can wait without blocking regular page file I/O.

Both threads run at priority 17, and after initialization they wait for separate objects to trigger
their operation. The mapped page writer waits on an event, MmMappedPageWriterEvent. It can be
signaled in the following cases:

 ■ During a page list operation (MiInsertPageInLockedList or MiInsertPageInList). These routines
signal this event if the number of file-system-destined pages on the modified page list has
reached more than 800 and the number of available pages has fallen below 1,024, or if the
number of available pages is less than 256.

 ■ In an attempt to obtain free pages (MiObtainFreePages).

 ■ By the memory manager’s working set manager (MmWorkingSetManager), which runs as part
of the kernel’s balance set manager (once every second). The working set manager signals this
event if the number of file-system-destined pages on the modified page list has reached more
than 800.

 ■ Upon a request to flush all modified pages (MmFlushAllPages).

 ■ Upon a request to flush all file-system-destined modified pages (MmFlushAllFilesystemPages).
Note that in most cases, writing modified mapped pages to their backing store files does not
occur if the number of mapped pages on the modified page list is less than the maximum
“write cluster” size, which is 16 pages. This check is not made in MmFlushAllFilesystemPages or
MmFlushAllPages.

The mapped page writer also waits on an array of MiMappedPageListHeadEvent events associated
with the 16 mapped page lists. Each time a mapped page is dirtied, it is inserted into one of these 16
mapped page lists based on a bucket number (MiCurrentMappedPageBucket). This bucket number
is updated by the working set manager whenever the system considers that mapped pages have
gotten old enough, which is currently 100 seconds (the MiWriteGapCounter variable controls this and
is incremented whenever the working set manager runs). The reason for these additional events is
to reduce data loss in the case of a system crash or power failure by eventually writing out modified
mapped pages even if the modified list hasn’t reached its threshold of 800 pages.

 CHAPTER 10 Memory Management 315

The modified page writer waits on a single gate object (MmModifiedPageWriterGate), which can be
signaled in the following scenarios:

 ■ A request to flush all pages has been received.

 ■ The number of available pages (MmAvailablePages) drops below 128 pages.

 ■ The total size of the zeroed and free page lists has dropped below 20,000 pages, and the
number of modified pages destined for the paging file is greater than the smaller of one-
sixteenth of the available pages or 64 MB (16,384 pages).

 ■ When a working set is being trimmed to accommodate additional pages, if the number of
pages available is less than 15,000.

 ■ During a page list operation (MiInsertPageInLockedList or MiInsertPageInList). These rou-
tines signal this gate if the number of page-file-destined pages on the modified page list has
reached more than 800 and the number of available pages has fallen below 1,024, or if the
number of available pages is less than 256.

Additionally, the modified page writer waits on an event (MiRescanPageFilesEvent) and an internal
event in the paging file header (MmPagingFileHeader), which allows the system to manually request
flushing out data to the paging file when needed.

When invoked, the mapped page writer attempts to write as many pages as possible to disk with
a single I/O request. It accomplishes this by examining the original PTE field of the PFN database ele-
ments for pages on the modified page list to locate pages in contiguous locations on the disk. Once a
list is created, the pages are removed from the modified list, an I/O request is issued, and, at success-
ful completion of the I/O request, the pages are placed at the tail of the standby list corresponding to
their priority.

Pages that are in the process of being written can be referenced by another thread. When this
happens, the reference count and the share count in the PFN entry that represents the physical page
are incremented to indicate that another process is using the page. When the I/O operation com-
pletes, the modified page writer notices that the reference count is no longer 0 and doesn’t place the
page on any standby list.

PFN Data Structures
Although PFN database entries are of fixed length, they can be in several different states, depend-
ing on the state of the page. Thus, individual fields have different meanings depending on the state.
Figure 10-42 shows the formats of PFN entries for different states.

316 Windows Internals, Sixth Edition, Part 2

PFN for a page in a
working set

PFN for a page on the standby
or the modified list

PFN for a page with
an I/O in progress

PFN for a page belonging
to a kernel stack

Kernel stack owner Link to next stack PFN

PTE address | Lock

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Event address

PTE address | Lock

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Forward link

PTE address | Lock

Backward link

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

Working set index

PTE address | Lock

Share count

Original PTE contents

Flags Type

Reference count

Priority

Caching attributes

Page colorFlagsPFN of PTE

FIGURE 10-42 States of PFN database entries. (Specific layouts are conceptual)

Several fields are the same for several PFN types, but others are specific to a given type of PFN.
The following fields appear in more than one PFN type:

 ■ PTE address Virtual address of the PTE that points to this page. Also, since PTE addresses
will always be aligned on a 4-byte boundary (8 bytes on 64-bit systems), the two low-order
bits are used as a locking mechanism to serialize access to the PFN entry.

 ■ Reference count The number of references to this page. The reference count is incremented
when a page is first added to a working set and/or when the page is locked in memory for I/O
(for example, by a device driver). The reference count is decremented when the share count
becomes 0 or when pages are unlocked from memory. When the share count becomes 0, the
page is no longer owned by a working set. Then, if the reference count is also zero, the PFN
database entry that describes the page is updated to add the page to the free, standby, or
modified list.

 ■ Type The type of page represented by this PFN. (Types include active/valid, standby, modi-
fied, modified-no-write, free, zeroed, bad, and transition.)

 ■ Flags The information contained in the flags field is shown in Table 10-17.

 ■ Priority The priority associated with this PFN, which will determine on which standby list it
will be placed.

 CHAPTER 10 Memory Management 317

 ■ Original PTE contents All PFN database entries contain the original contents of the PTE that
pointed to the page (which could be a prototype PTE). Saving the contents of the PTE allows
it to be restored when the physical page is no longer resident. PFN entries for AWE allocations
are exceptions; they store the AWE reference count in this field instead.

 ■ PFN of PTE Physical page number of the page table page containing the PTE that points to
this page.

 ■ Color Besides being linked together on a list, PFN database entries use an additional field to
link physical pages by “color,” which is the page’s NUMA node number.

 ■ Flags A second flags field is used to encode additional information on the PTE. These flags
are described in Table 10-18.

TABLE 10-17 Flags Within PFN Database Entries

Flag Meaning

Write in progress Indicates that a page write operation is in progress. The first DWORD contains the
address of the event object that will be signaled when the I/O is complete.

Modified state Indicates whether the page was modified. (If the page was modified, its contents must
be saved to disk before removing it from memory.)

Read in progress Indicates that an in-page operation is in progress for the page. The first DWORD
contains the address of the event object that will be signaled when the I/O is complete.

Rom Indicates that this page comes from the computer’s firmware or another piece of read-
only memory such as a device register.

In-page error Indicates that an I/O error occurred during the in-page operation on this page. (In this
case, the first field in the PFN contains the error code.)

Kernel stack Indicates that this page is being used to contain a kernel stack. In this case, the PFN
entry contains the owner of the stack and the next stack PFN for this thread.

Removal requested Indicates that the page is the target of a remove (due to ECC/scrubbing or hot
memory removal).

Parity error Indicates that the physical page contains parity or error correction control errors.

TABLE 10-18 Secondary Flags Within PFN Database Entries

Flag Meaning

PFN image verified The code signature for this PFN (contained in the cryptographic signature catalog for
the image being backed by this PFN) has been verified.

AWE allocation This PFN backs an AWE allocation.

Prototype PTE Indicates that the PTE referenced by the PFN entry is a prototype PTE. (For example,
this page is shareable.)

The remaining fields are specific to the type of PFN. For example, the first PFN in Figure 10-42 rep-
resents a page that is active and part of a working set. The share count field represents the number
of PTEs that refer to this page. (Pages marked read-only, copy-on-write, or shared read/write can be
shared by multiple processes.) For page table pages, this field is the number of valid and transition
PTEs in the page table. As long as the share count is greater than 0, the page isn’t eligible for removal
from memory.

318 Windows Internals, Sixth Edition, Part 2

The working set index field is an index into the process working set list (or the system or session
working set list, or zero if not in any working set) where the virtual address that maps this physi-
cal page resides. If the page is a private page, the working set index field refers directly to the entry
in the working set list because the page is mapped only at a single virtual address. In the case of a
shared page, the working set index is a hint that is guaranteed to be correct only for the first process
that made the page valid. (Other processes will try to use the same index where possible.) The process
that initially sets this field is guaranteed to refer to the proper index and doesn’t need to add a work-
ing set list hash entry referenced by the virtual address into its working set hash tree. This guarantee
reduces the size of the working set hash tree and makes searches faster for these particular direct
entries.

The second PFN in Figure 10-42 is for a page on either the standby or the modified list. In this
case, the forward and backward link fields link the elements of the list together within the list. This
linking allows pages to be easily manipulated to satisfy page faults. When a page is on one of the
lists, the share count is by definition 0 (because no working set is using the page) and therefore can
be overlaid with the backward link. The reference count is also 0 if the page is on one of the lists. If it
is nonzero (because an I/O could be in progress for this page—for example, when the page is being
written to disk), it is first removed from the list.

The third PFN in Figure 10-42 is for a page that belongs to a kernel stack. As mentioned earlier,
kernel stacks in Windows are dynamically allocated, expanded, and freed whenever a callback to user
mode is performed and/or returns, or when a driver performs a callback and requests stack expan-
sion. For these PFNs, the memory manager must keep track of the thread actually associated with the
kernel stack, or if it is free it keeps a link to the next free look-aside stack.

The fourth PFN in Figure 10-42 is for a page that has an I/O in progress (for example, a page read).
While the I/O is in progress, the first field points to an event object that will be signaled when the I/O
completes. If an in-page error occurs, this field contains the Windows error status code representing
the I/O error. This PFN type is used to resolve collided page faults.

In addition to the PFN database, the system variables in Table 10-19 describe the overall state of
physical memory.

TABLE 10-19 System Variables That Describe Physical Memory

Variable Description

MmNumberOfPhysicalPages Total number of physical pages available on the system

MmAvailablePages Total number of available pages on the system—the sum of the pages on
the zeroed, free, and standby lists

MmResidentAvailablePages Total number of physical pages that would be available if every process
was trimmed to its minimum working set size and all modified pages were
flushed to disk

 CHAPTER 10 Memory Management 319

EXPERIMENT: Viewing PFN Entries
You can examine individual PFN entries with the kernel debugger !pfn command. You need
to supply the PFN as an argument. (For example, !pfn 1 shows the first entry, !pfn 2 shows the
second, and so on.) In the following example, the PTE for virtual address 0x50000 is displayed,
followed by the PFN that contains the page directory, and then the actual page:

lkd> !pte 50000
 VA 00050000
PDE at 00000000C0600000 PTE at 00000000C0000280
contains 000000002C9F7867 contains 800000002D6C1867
pfn 2c9f7 ---DA--UWEV pfn 2d6c1 ---DA--UW-V

lkd> !pfn 2c9f7
 PFN 0002C9F7 at address 834E1704
 flink 00000026 blink / share count 00000091 pteaddress C0600000
 reference count 0001 Cached color 0 Priority 5
 restore pte 00000080 containing page 02BAA5 Active M
 Modified

lkd> !pfn 2d6c1
 PFN 0002D6C1 at address 834F7D1C
 flink 00000791 blink / share count 00000001 pteaddress C0000280
 reference count 0001 Cached color 0 Priority 5
 restore pte 00000080 containing page 02C9F7 Active M
 Modified

You can also use the MemInfo tool to obtain information about a PFN. MemInfo can some-
times give you more information than the debugger’s output, and it does not require being
booted into debugging mode. Here’s MemInfo’s output for those same two PFNs:

C:\>meminfo -p 2c9f7

PFN: 2c9f7
PFN List: Active and Valid
PFN Type: Page Table
PFN Priority: 5
Page Directory: 0x866168C8
Physical Address: 0x2C9F7000

C:\>meminfo -p 2d6c1

PFN: 2d6c1
PFN List: Active and Valid
PFN Type: Process Private
PFN Priority: 5
EPROCESS: 0x866168C8 [windbg.exe]
Physical Address: 0x2D6C1000

MemInfo correctly recognized that the first PFN was a page table and that the second PFN
belongs to WinDbg, which was the active process when the !pte 50000 command was used in
the debugger.

320 Windows Internals, Sixth Edition, Part 2

Physical Memory Limits

Now that you’ve learned how Windows keeps track of physical memory, we’ll describe how much of
it Windows can actually support. Because most systems access more code and data than can fit in
physical memory as they run, physical memory is in essence a window into the code and data used
over time. The amount of memory can therefore affect performance, because when data or code that
a process or the operating system needs is not present, the memory manager must bring it in from
disk or remote storage.

Besides affecting performance, the amount of physical memory impacts other resource limits.
For example, the amount of nonpaged pool, operating system buffers backed by physical memory,
is obviously constrained by physical memory. Physical memory also contributes to the system virtual
memory limit, which is the sum of roughly the size of physical memory plus the current configured
size of any paging files. Physical memory also can indirectly limit the maximum number of processes.

Windows support for physical memory is dictated by hardware limitations, licensing, operating
system data structures, and driver compatibility. Table 10-20 lists the currently supported amounts of
physical memory across the various editions of Windows along with the limiting factors.

TABLE 10-20 Physical Memory Support

Version 32-Bit Limit 64-Bit Limit Limiting Factors

Ultimate, Enterprise, and
Professional

4 GB 192 GB Licensing on 64-bit; licensing, hardware
support, and driver compatibility on 32-bit

Home Premium 4 GB 16 GB Licensing on 64-bit; licensing, hardware
support, and driver compatibility on 32-bit

Home Basic 4 GB 8 GB Licensing on 64-bit; licensing, hardware
support, and driver compatibility on 32-bit

Starter 2 GB 2 GB Licensing

Server Datacenter, Enterprise,
and Server for Itanium

N/A 2 TB Testing and available systems

Server Foundation N/A 8 GB Licensing

Server Standard and
Web Server

N/A 32 GB Licensing

Server HPC Edition N/A 128 GB Licensing

The maximum 2-TB physical memory limit doesn’t come from any implementation or hardware
limitation, but because Microsoft will support only configurations it can test. As of this writing, the
largest tested and supported memory configuration was 2 TB.

 CHAPTER 10 Memory Management 321

Windows Client Memory Limits
64-bit Windows client editions support different amounts of memory as a differentiating feature, with
the low end being 2 GB for Starter Edition, increasing to 192 GB for the Ultimate, Enterprise, and Pro-
fessional editions. All 32-bit Windows client editions, however, support a maximum of 4 GB of physical
memory, which is the highest physical address accessible with the standard x86 memory management
mode.

Although client SKUs support PAE addressing modes on x86 systems in order to provide hardware
no-execute protection (which would also enable access to more than 4 GB of physical memory), test-
ing revealed that systems would crash, hang, or become unbootable because some device drivers,
commonly those for video and audio devices found typically on clients but not servers, were not
programmed to expect physical addresses larger than 4 GB. As a result, the drivers truncated such ad-
dresses, resulting in memory corruptions and corruption side effects. Server systems commonly have
more generic devices, with simpler and more stable drivers, and therefore had not generally revealed
these problems. The problematic client driver ecosystem led to the decision for client editions to
ignore physical memory that resides above 4 GB, even though they can theoretically address it. Driver
developers are encouraged to test their systems with the nolowmem BCD option, which will force the
kernel to use physical addresses above 4 GB only if sufficient memory exists on the system to allow it.
This will immediately lead to the detection of such issues in faulty drivers.

32-Bit Client Effective Memory Limits
While 4 GB is the licensed limit for 32-bit client editions, the effective limit is actually lower and de-
pendent on the system’s chipset and connected devices. The reason is that the physical address map
includes not only RAM but device memory, and x86 and x64 systems typically map all device memory
below the 4 GB address boundary to remain compatible with 32-bit operating systems that don’t
know how to handle addresses larger than 4 GB. Newer chipsets do support PAE-based device remap-
ping, but client editions of Windows do not support this feature for the driver compatibility problems
explained earlier (otherwise, drivers would receive 64-bit pointers to their device memory).

If a system has 4 GB of RAM and devices such as video, audio, and network adapters that imple-
ment windows into their device memory that sum to 500 MB, 500 MB of the 4 GB of RAM will reside
above the 4 GB address boundary, as seen in Figure 10-43.

The result is that if you have a system with 3 GB or more of memory and you are running a 32-bit
Windows client, you may not be getting the benefit of all of the RAM. You can see how much RAM
Windows has detected as being installed in the System Properties dialog box, but to see how much
memory is actually available to Windows, you need to look at Task Manager’s Performance page or
the Msinfo32 and Winver utilities. On one particular 4-GB laptop, when booted with 32-bit Windows,
the amount of physical memory available is 3.5 GB, as seen in the Msinfo32 utility:

Installed Physical Memory (RAM) 4.00 GB
Total Physical Memory 3.50 GB

322 Windows Internals, Sixth Edition, Part 2

0

RAM

Device memory

Device memory

4 GB

4.5 GB

RAM

RAM

Inaccessible
RAM

FIGURE 10-43 Physical memory layout on a 4-GB system

You can see the physical memory layout with the MemInfo tool from Winsider Seminars & Solu-
tions. Figure 10-44 shows the output of MemInfo when run on a 32-bit system, using the –r switch to
dump physical memory ranges:

FIGURE 10-44 Memory ranges on a 32-bit Windows system

Note the gap in the memory address range from page 9F0000 to page 100000, and another gap
from DFE6D000 to FFFFFFFF (4 GB). When the system is booted with 64-bit Windows, on the other
hand, all 4 GB show up as available (see Figure 10-45), and you can see how Windows uses the re-
maining 500 MB of RAM that are above the 4-GB boundary.

FIGURE 10-45 Memory ranges on an x64 Windows system

You can use Device Manager on your machine to see what is occupying the various reserved
memory regions that can’t be used by Windows (and that will show up as holes in MemInfo’s output).
To check Device Manager, run Devmgmt.msc, select Resources By Connection on the View menu, and

 CHAPTER 10 Memory Management 323

then expand the Memory node. On the laptop computer used for the output shown in Figure 10-46,
the primary consumer of mapped device memory is, unsurprisingly, the video card, which consumes
256 MB in the range E0000000-EFFFFFFF.

FIGURE 10-46 Hardware-reserved memory ranges on a 32-bit Windows system

Other miscellaneous devices account for most of the rest, and the PCI bus reserves additional
ranges for devices as part of the conservative estimation the firmware uses during boot.

The consumption of memory addresses below 4 GB can be drastic on high-end gaming systems
with large video cards. For example, on a test machine with 8 GB of RAM and two 1-GB video cards,
only 2.2 GB of the memory was accessible by 32-bit Windows. A large memory hole from 8FEF0000
to FFFFFFFF is visible in the MemInfo output from the system on which 64-bit Windows is installed,
shown in Figure 10-47.

FIGURE 10-47 Memory ranges on a 64-bit Windows system

Device Manager revealed that 512 MB of the more than 2-GB gap is for the video cards (256 MB
each) and that the PCI bus driver had reserved more either for dynamic mappings or alignment
requirements, or perhaps because the devices claimed larger areas than they actually needed. Finally,
even systems with as little as 2 GB can be prevented from having all their memory usable under 32-bit
Windows because of chipsets that aggressively reserve memory regions for devices.

324 Windows Internals, Sixth Edition, Part 2

Working Sets

Now that we’ve looked at how Windows keeps track of physical memory, and how much memory it
can support, we’ll explain how Windows keeps a subset of virtual addresses in physical memory.

As you’ll recall, the term used to describe a subset of virtual pages resident in physical memory is
called a working set. There are three kinds of working sets:

 ■ Process working sets contain the pages referenced by threads within a single process.

 ■ System working sets contains the resident subset of the pageable system code (for example,
Ntoskrnl.exe and drivers), paged pool, and the system cache.

 ■ Each session has a working set that contains the resident subset of the kernel-mode ses-
sion-specific data structures allocated by the kernel-mode part of the Windows subsystem
(Win32k.sys), session paged pool, session mapped views, and other session-space device
drivers.

Before examining the details of each type of working set, let’s look at the overall policy for de-
ciding which pages are brought into physical memory and how long they remain. After that, we’ll
explore the various types of working sets.

Demand Paging
The Windows memory manager uses a demand-paging algorithm with clustering to load pages into
memory. When a thread receives a page fault, the memory manager loads into memory the faulted
page plus a small number of pages preceding and/or following it. This strategy attempts to mini-
mize the number of paging I/Os a thread will incur. Because programs, especially large ones, tend
to execute in small regions of their address space at any given time, loading clusters of virtual pages
reduces the number of disk reads. For page faults that reference data pages in images, the cluster size
is three pages. For all other page faults, the cluster size is seven pages.

However, a demand-paging policy can result in a process incurring many page faults when its
threads first begin executing or when they resume execution at a later point. To optimize the startup
of a process (and the system), Windows has an intelligent prefetch engine called the logical prefetcher,
described in the next section. Further optimization and prefetching is performed by another compo-
nent, called Superfetch, that we’ll describe later in the chapter.

Logical Prefetcher
During a typical system boot or application startup, the order of faults is such that some pages are
brought in from one part of a file, then perhaps from a distant part of the same file, then from a
different file, perhaps from a directory, and then again from the first file. This jumping around slows
down each access considerably and, thus, analysis shows that disk seek times are a dominant factor in
slowing boot and application startup times. By prefetching batches of pages all at once, a more sen-
sible ordering of access, without excessive backtracking, can be achieved, thus improving the overall

 CHAPTER 10 Memory Management 325

time for system and application startup. The pages that are needed can be known in advance because
of the high correlation in accesses across boots or application starts.

The prefetcher tries to speed the boot process and application startup by monitoring the data
and code accessed by boot and application startups and using that information at the beginning of
a subsequent boot or application startup to read in the code and data. When the prefetcher is active,
the memory manager notifies the prefetcher code in the kernel of page faults, both those that require
that data be read from disk (hard faults) and those that simply require data already in memory be
added to a process’s working set (soft faults). The prefetcher monitors the first 10 seconds of applica-
tion startup. For boot, the prefetcher by default traces from system start through the 30 seconds fol-
lowing the start of the user’s shell (typically Explorer) or, failing that, up through 60 seconds following
Windows service initialization or through 120 seconds, whichever comes first.

The trace assembled in the kernel notes faults taken on the NTFS master file table (MFT) meta-
data file (if the application accesses files or directories on NTFS volumes), on referenced files, and on
referenced directories. With the trace assembled, the kernel prefetcher code waits for requests from
the prefetcher component of the Superfetch service (%SystemRoot%\System32\Sysmain.dll), running
in a copy of Svchost. The Superfetch service is responsible for both the logical prefetching component
in the kernel and for the Superfetch component that we’ll talk about later. The prefetcher signals the
event \KernelObjects\PrefetchTracesReady to inform the Superfetch service that it can now query
trace data.

Note You can enable or disable prefetching of the boot or application startups by editing
the DWORD registry value HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\
Memory Management\PrefetchParameters\EnablePrefetcher. Set it to 0 to disable
prefetching altogether, 1 to enable prefetching of only applications, 2 for prefetching of
boot only, and 3 for both boot and applications.

The Superfetch service (which hosts the logical prefetcher, although it is a completely separate
component from the actual Superfetch functionality) performs a call to the internal NtQuerySystem-
Information system call requesting the trace data. The logical prefetcher post-processes the trace
data, combining it with previously collected data, and writes it to a file in the %SystemRoot%\Prefetch
folder, which is shown in Figure 10-48. The file’s name is the name of the application to which the
trace applies followed by a dash and the hexadecimal representation of a hash of the file’s path. The
file has a .pf extension; an example would be NOTEPAD.EXE-AF43252301.PF.

There are two exceptions to the file name rule. The first is for images that host other components,
including the Microsoft Management Console (%SystemRoot%\System32\Mmc.exe), the Service
Hosting Process (%SystemRoot%\System32\Svchost.exe), the Run DLL Component (%SystemRoot%\
System32\Rundll32.exe), and Dllhost (%SystemRoot%\System32\Dllhost.exe). Because add-on compo-
nents are specified on the command line for these applications, the prefetcher includes the command
line in the generated hash. Thus, invocations of these applications with different components on the
command line will result in different traces.

326 Windows Internals, Sixth Edition, Part 2

The other exception to the file name rule is the file that stores the boot’s trace, which is always
named NTOSBOOT-B00DFAAD.PF. (If read as a word, “boodfaad” sounds similar to the English words
boot fast.) Only after the prefetcher has finished the boot trace (the time of which was defined earlier)
does it collect page fault information for specific applications.

FIGURE 10-48 Prefetch folder

EXPERIMENT: Looking Inside a Prefetch File
A prefetch file’s contents serve as a record of files and directories accessed during the boot or
an application startup, and you can use the Strings utility from Sysinternals to see the record.
The following command lists all the files and directories referenced during the last boot:

C:\Windows\Prefetch>Strings –n 5 ntosboot-b00dfaad.pf

Strings v2.4
Copyright (C) 1999-2007 Mark Russinovich
Sysinternals - www.sysinternals.com

4NTOSBOOT
\DEVICE\HARDDISKVOLUME1\$MFT
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNNEL.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\TUNMP.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\I8042PRT.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\KBDCLASS.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\VMMOUSE.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\MOUCLASS.SYS
\DEVICE\HARDDISKVOLUME1\WINDOWS\SYSTEM32\DRIVERS\PARPORT.SYS
...

 CHAPTER 10 Memory Management 327

When the system boots or an application starts, the prefetcher is called to give it an opportunity
to perform prefetching. The prefetcher looks in the prefetch directory to see if a trace file exists for
the prefetch scenario in question. If it does, the prefetcher calls NTFS to prefetch any MFT metadata
file references, reads in the contents of each of the directories referenced, and finally opens each file
referenced. It then calls the memory manager function MmPrefetchPages to read in any data and
code specified in the trace that’s not already in memory. The memory manager initiates all the reads
asynchronously and then waits for them to complete before letting an application’s startup continue.

EXPERIMENT: Watching Prefetch File Reads and Writes
If you capture a trace of application startup with Process Monitor from Sysinternals on a client
edition of Windows (Windows Server editions disable prefetching by default), you can see the
prefetcher check for and read the application’s prefetch file (if it exists), and roughly 10 seconds
after the application started, see the prefetcher write out a new copy of the file. Here is a cap-
ture of Notepad startup with an Include filter set to “prefetch” so that Process Monitor shows
only accesses to the %SystemRoot%\Prefetch directory:

Lines 1 through 4 show the Notepad prefetch file being read in the context of the Notepad
process during its startup. Lines 5 through 11, which have time stamps 10 seconds later than
the first three lines, show the Superfetch service, which is running in the context of a Svchost
process, write out the updated prefetch file.

To minimize seeking even further, every three days or so, during system idle periods, the Super-
fetch service organizes a list of files and directories in the order that they are referenced during a
boot or application start and stores the list in a file named %SystemRoot%\Prefetch\Layout.ini, shown
in Figure 10-49. This list also includes frequently accessed files tracked by Superfetch.

328 Windows Internals, Sixth Edition, Part 2

FIGURE 10-49 Prefetch defragmentation layout file

Then it launches the system defragmenter with a command-line option that tells the defragmenter
to defragment based on the contents of the file instead of performing a full defrag. The defragmenter
finds a contiguous area on each volume large enough to hold all the listed files and directories that
reside on that volume and then moves them in their entirety into the area so that they are stored one
after the other. Thus, future prefetch operations will even be more efficient because all the data read
in is now stored physically on the disk in the order it will be read. Because the files defragmented for
prefetching usually number only in the hundreds, this defragmentation is much faster than full vol-
ume defragmentations. (See Chapter 12 for more information on defragmentation.)

Placement Policy
When a thread receives a page fault, the memory manager must also determine where in physi-
cal memory to put the virtual page. The set of rules it uses to determine the best position is called a
placement policy. Windows considers the size of CPU memory caches when choosing page frames to
minimize unnecessary thrashing of the cache.

If physical memory is full when a page fault occurs, a replacement policy is used to determine
which virtual page must be removed from memory to make room for the new page. Common
replacement policies include least recently used (LRU) and first in, first out (FIFO). The LRU algorithm
(also known as the clock algorithm, as implemented in most versions of UNIX) requires the virtual
memory system to track when a page in memory is used. When a new page frame is required, the
page that hasn’t been used for the greatest amount of time is removed from the working set. The
FIFO algorithm is somewhat simpler; it removes the page that has been in physical memory for the
greatest amount of time, regardless of how often it’s been used.

 CHAPTER 10 Memory Management 329

Replacement policies can be further characterized as either global or local. A global replacement
policy allows a page fault to be satisfied by any page frame, whether or not that frame is owned by
another process. For example, a global replacement policy using the FIFO algorithm would locate the
page that has been in memory the longest and would free it to satisfy a page fault; a local replace-
ment policy would limit its search for the oldest page to the set of pages already owned by the
process that incurred the page fault. Global replacement policies make processes vulnerable to the
behavior of other processes—an ill-behaved application can undermine the entire operating system
by inducing excessive paging activity in all processes.

Windows implements a combination of local and global replacement policy. When a working set
reaches its limit and/or needs to be trimmed because of demands for physical memory, the memory
manager removes pages from working sets until it has determined there are enough free pages.

Working Set Management
Every process starts with a default working set minimum of 50 pages and a working set maximum
of 345 pages. Although it has little effect, you can change the process working set limits with the
Windows SetProcessWorkingSetSize function, though you must have the “increase scheduling prior-
ity” user right to do this. However, unless you have configured the process to use hard working set
limits, these limits are ignored, in that the memory manager will permit a process to grow beyond its
maximum if it is paging heavily and there is ample memory (and conversely, the memory manager
will shrink a process below its working set minimum if it is not paging and there is a high demand for
physical memory on the system). Hard working set limits can be set using the SetProcessWorkingSet-
SizeEx function along with the QUOTA_LIMITS_HARDWS_MIN_ENABLE flag, but it is almost always
better to let the system manage your working set instead of setting your own hard working set
minimums.

The maximum working set size can’t exceed the systemwide maximum calculated at system ini-
tialization time and stored in the kernel variable MiMaximumWorkingSet, which is a hard upper limit
based on the working set maximums listed in Table 10-21.

TABLE 10-21 Upper Limit for Working Set Maximums

Windows Version Working Set Maximum

x86 2,047.9 MB

x86 versions of Windows booted with increaseuserva 2,047.9 MB+ user virtual address increase (MB)

IA64 7,152 GB

x64 8,192 GB

When a page fault occurs, the process’s working set limits and the amount of free memory on
the system are examined. If conditions permit, the memory manager allows a process to grow to its
working set maximum (or beyond if the process does not have a hard working set limit and there are
enough free pages available). However, if memory is tight, Windows replaces rather than adds pages
in a working set when a fault occurs.

330 Windows Internals, Sixth Edition, Part 2

Although Windows attempts to keep memory available by writing modified pages to disk, when
modified pages are being generated at a very high rate, more memory is required in order to meet
memory demands. Therefore, when physical memory runs low, the working set manager, a routine
that runs in the context of the balance set manager system thread (described in the next section),
initiates automatic working set trimming to increase the amount of free memory available in the sys-
tem. (With the Windows SetProcessWorkingSetSizeEx function mentioned earlier, you can also initiate
working set trimming of your own process—for example, after process initialization.)

The working set manager examines available memory and decides which, if any, working sets
need to be trimmed. If there is ample memory, the working set manager calculates how many pages
could be removed from working sets if needed. If trimming is needed, it looks at working sets that are
above their minimum setting. It also dynamically adjusts the rate at which it examines working sets
as well as arranges the list of processes that are candidates to be trimmed into an optimal order. For
example, processes with many pages that have not been accessed recently are examined first; larger
processes that have been idle longer are considered before smaller processes that are running more
often; the process running the foreground application is considered last; and so on.

When it finds processes using more than their minimums, the working set manager looks for pages
to remove from their working sets, making the pages available for other uses. If the amount of free
memory is still too low, the working set manager continues removing pages from processes’ working
sets until it achieves a minimum number of free pages on the system.

The working set manager tries to remove pages that haven’t been accessed recently. It does this by
checking the accessed bit in the hardware PTE to see whether the page has been accessed. If the bit
is clear, the page is aged, that is, a count is incremented indicating that the page hasn’t been refer-
enced since the last working set trim scan. Later, the age of pages is used to locate candidate pages to
remove from the working set.

If the hardware PTE accessed bit is set, the working set manager clears it and goes on to examine
the next page in the working set. In this way, if the accessed bit is clear the next time the working set
manager examines the page, it knows that the page hasn’t been accessed since the last time it was
examined. This scan for pages to remove continues through the working set list until either the num-
ber of desired pages has been removed or the scan has returned to the starting point. (The next time
the working set is trimmed, the scan picks up where it left off last.)

 CHAPTER 10 Memory Management 331

EXPERIMENT: Viewing Process Working Set Sizes
You can use Performance Monitor to examine process working set sizes by looking at the per-
formance counters shown in the following table.

Counter Description

Process: Working Set Current size of the selected process’s working set in bytes

Process: Working Set Peak Peak size of the selected process’s working set in bytes

Process: Page Faults/sec Number of page faults for the process that occur each second

Several other process viewer utilities (such as Task Manager and Process Explorer) also dis-
play the process working set size.

You can also get the total of all the process working sets by selecting the _Total process
in the instance box in Performance Monitor. This process isn’t real—it’s simply a total of the
process-specific counters for all processes currently running on the system. The total you see is
larger than the actual RAM being used, however, because the size of each process working set
includes pages being shared by other processes. Thus, if two or more processes share a page,
the page is counted in each process’s working set.

EXPERIMENT: Working Set vs. Virtual Size
Earlier in this chapter, we used the TestLimit utility to create two processes, one with a large
amount of memory that was merely reserved, and the other in which the memory was private
committed, and examined the difference between them with Process Explorer. Now we will cre-
ate a third TestLimit process, one that not only commits the memory but also accesses it, thus
bringing it into its working set:

C:\temp>testlimit -d 1 -c 800

Testlimit v5.2 - test Windows limits
Copyright (C) 2012 Mark Russinovich
Sysinternals - wwww.sysinternals.com

Process ID: 700

Leaking private bytes 1 MB at a time...
Leaked 800 MB of private memory (800 MB total leaked). Lasterror: 0
The operation completed successfully.

Now, invoke Process Explorer. Under View, Select Columns, choose the Process Memory tab
and enable the Private Bytes, Virtual Size, Working Set Size, WS Shareable Bytes, and WS Private
Bytes counters. Then find the three instances of TestLimit as shown in the display.

332 Windows Internals, Sixth Edition, Part 2

The new TestLimit process is the third one shown, PID 700. It is the only one of the three that
actually referenced the memory allocated, so it is the only one with a working set that reflects
the size of the test allocation.

Note that this result is possible only on a system with enough RAM to allow the process to
grow to such a size. Even on this system, not quite all of the private bytes (822,064 K) are in the
WS Private portion of the working set. A small number of the private pages have either been
pushed out of the process working set due to replacement or have not been paged in yet.

EXPERIMENT: Viewing the Working Set List in the Debugger
You can view the individual entries in the working set by using the kernel debugger !wsle com-
mand. The following example shows a partial output of the working set list of WinDbg.

lkd> !wsle 7

Working Set @ c0802000
 FirstFree 209c FirstDynamic 6
 LastEntry 242e NextSlot 6 LastInitialized 24b9
 NonDirect 0 HashTable 0 HashTableSize 0

Reading the WSLE data ..

Virtual Address Age Locked ReferenceCount
 c0600203 0 1 1
 c0601203 0 1 1
 c0602203 0 1 1
 c0603203 0 1 1
 c0604213 0 1 1
 c0802203 0 1 1
 2865201 0 0 1
 1a6d201 0 0 1
 3f4201 0 0 1
 707ed101 0 0 1
 2d27201 0 0 1
 2d28201 0 0 1

 CHAPTER 10 Memory Management 333

 772f5101 0 0 1
 2d2a201 0 0 1
 2d2b201 0 0 1
 2d2c201 0 0 1
 779c3101 0 0 1
 c0002201 0 0 1
 7794f101 0 0 1
 7ffd1109 0 0 1
 7ffd2109 0 0 1
 7ffc0009 0 0 1
 7ffb0009 0 0 1
 77940101 0 0 1
 77944101 0 0 1
 112109 0 0 1
 320109 0 0 1
 322109 0 0 1
 77949101 0 0 1
 110109 0 0 1
 77930101 0 0 1
 111109 0 0 1

Notice that some entries in the working set list are page table pages (the ones with ad-
dresses greater than 0xC0000000), some are from system DLLs (the ones in the 0x7nnnnnnn
range), and some are from the code of Windbg.exe itself.

Balance Set Manager and Swapper
Working set expansion and trimming take place in the context of a system thread called the bal-
ance set manager (routine KeBalanceSetManager). The balance set manager is created during system
initialization. Although the balance set manager is technically part of the kernel, it calls the memory
manager’s working set manager (MmWorkingSetManager) to perform working set analysis and
adjustment.

The balance set manager waits for two different event objects: an event that is signaled when a
periodic timer set to fire once per second expires and an internal working set manager event that the
memory manager signals at various points when it determines that working sets need to be adjusted.
For example, if the system is experiencing a high page fault rate or the free list is too small, the mem-
ory manager wakes up the balance set manager so that it will call the working set manager to begin
trimming working sets. When memory is more plentiful, the working set manager will permit faulting
processes to gradually increase the size of their working sets by faulting pages back into memory, but
the working sets will grow only as needed.

When the balance set manager wakes up as the result of its 1-second timer expiring, it takes the
following five steps:

1. It queues a DPC associated to a 1-second timer. The DPC routine is the KiScanReadyQueues
routine, which looks for threads that might warrant having their priority boosted because they
are CPU starved. (See the section “Priority Boosts for CPU Starvation” in Chapter 5 in Part 1.)

334 Windows Internals, Sixth Edition, Part 2

2. Every fourth time the balance set manager wakes up because its 1-second timer has expired,
it signals an event that wakes up another system thread called the swapper (KiSwapperThread)
(routine KeSwapProcessOrStack).

3. The balance set manager then checks the look-aside lists and adjusts their depths if necessary
(to improve access time and to reduce pool usage and pool fragmentation).

4. It adjusts IRP credits to optimize the usage of the per-processor look-aside lists used in IRP
completion. This allows better scalability when certain processors are under heavy I/O load.

5. It calls the memory manager’s working set manager. (The working set manager has its own
internal counters that regulate when to perform working set trimming and how aggressively
to trim.)

The swapper is also awakened by the scheduling code in the kernel if a thread that needs to run
has its kernel stack swapped out or if the process has been swapped out. The swapper looks for
threads that have been in a wait state for 15 seconds (or 3 seconds on a system with less than 12 MB
of RAM). If it finds one, it puts the thread’s kernel stack in transition (moving the pages to the modi-
fied or standby lists) so as to reclaim its physical memory, operating on the principle that if a thread’s
been waiting that long, it’s going to be waiting even longer. When the last thread in a process has
its kernel stack removed from memory, the process is marked to be entirely outswapped. That’s why,
for example, processes that have been idle for a long time (such as Winlogon is after you log on) can
have a zero working set size.

System Working Sets
Just as processes have working sets that manage pageable portions of the process address space, the
pageable code and data in the system address space is managed using three global working sets, col-
lectively known as the system working sets:

 ■ The system cache working set (MmSystemCacheWs) contains pages that are resident in the
system cache.

 ■ The paged pool working set (MmPagedPoolWs) contains pages that are resident in the paged
pool.

 ■ The system PTEs working set (MmSystemPtesWs) contains pageable code and data from
loaded drivers and the kernel image, as well as pages from sections that have been mapped
into the system space.

You can examine the sizes of these working sets or the sizes of the components that contribute
to them with the performance counters or system variables shown in Table 10-22. Keep in mind that
the performance counter values are in bytes, whereas the system variables are measured in terms of
pages.

 CHAPTER 10 Memory Management 335

You can also examine the paging activity in the system cache working set by examining the
Memory: Cache Faults/sec performance counter, which describes page faults that occur in the system
cache working set (both hard and soft). MmSystemCacheWs.PageFaultCount is the system variable
that contains the value for this counter.

TABLE 10-22 System Working Set Performance Counters

Performance Counter (in Bytes) System Variable (in Pages) Description

Memory: Cache Bytes, also
Memory: System Cache Resident
Bytes

MmSystemCacheWs.
WorkingSetSize

Physical memory consumed by the file
system cache.

Memory: Cache Bytes
Peak

MmSystemCacheWs.Peak Peak system working set size.

Memory: System Driver Resident
Bytes

MmSystemDriverPage Physical memory consumed by pageable
device driver code.

Memory: Pool Paged Resident Bytes MmPagedPoolWs.
WorkingSetSize

Physical memory consumed by paged pool.

Memory Notification Events
Windows provides a way for user-mode processes and kernel-mode drivers to be notified when
physical memory, paged pool, nonpaged pool, and commit charge are low and/or plentiful. This in-
formation can be used to determine memory usage as appropriate. For example, if available memory
is low, the application can reduce memory consumption. If available paged pool is high, the driver
can allocate more memory. Finally, the memory manager also provides an event that permits notifica-
tion when corrupted pages have been detected.

User-mode processes can be notified only of low or high memory conditions. An application can
call the CreateMemoryResourceNotification function, specifying whether low or high memory notifi-
cation is desired. The returned handle can be provided to any of the wait functions. When memory
is low (or high), the wait completes, thus notifying the thread of the condition. Alternatively, the
QueryMemoryResourceNotification can be used to query the system memory condition at any time
without blocking the calling thread.

Drivers, on the other hand, use the specific event name that the memory manager has set up in
the \KernelObjects directory, since notification is implemented by the memory manager signaling one
of the globally named event objects it defines, shown in Table 10-23.

336 Windows Internals, Sixth Edition, Part 2

TABLE 10-23 Memory Manager Notification Events

Event Name Description

HighCommitCondition This event is set when the commit charge is near the maximum commit limit. In
other words, memory usage is very high, very little space is available in physical
memory or paging files, and the operating system cannot increase the size of its
paging files.

HighMemoryCondition This event is set whenever the amount of free physical memory exceeds the defined
amount.

HighNonPagedPoolCondition This event is set whenever the amount of nonpaged pool exceeds the defined
amount.

HighPagedPoolCondition This event is set whenever the amount of paged pool exceeds the defined amount.

LowCommitCondition This event is set when the commit charge is low, relative to the current commit
limit. In other words, memory usage is low and a lot of space is available in physical
memory or paging files.

LowMemoryCondition This event is set whenever the amount of free physical memory falls below the
defined amount.

LowNonPagedPoolCondition This event is set whenever the amount of free nonpaged pool falls below the
defined amount.

LowPagedPoolCondition This event is set whenever the amount of free paged pool falls below the defined
amount.

MaximumCommitCondition This event is set when the commit charge is near the maximum commit limit. In
other words, memory usage is very high, very little space is available in physical
memory or paging files, and the operating system cannot increase the size or
number of paging files.

MemoryErrors A bad page (non-zeroed zero page) has been detected.

When a given memory condition is detected, the appropriate event is signaled, thus waking up any
waiting threads.

Note The high and low memory values can be overridden by adding a DWORD reg-
istry value, LowMemoryThreshold or HighMemoryThreshold, under HKLM\SYSTEM\
CurrentControlSet\Session Manager\Memory Management that specifies the number of
megabytes to use as the low or high threshold. The system can also be configured to crash
the system when a bad page is detected, instead of signaling a memory error event, by
setting the PageValidationAction DWORD registry value in the same key.

 CHAPTER 10 Memory Management 337

EXPERIMENT: Viewing the Memory Resource Notification Events
To see the memory resource notification events, run Winobj from Sysinternals and click on the
KernelObjects folder. You will see both the low and high memory condition events shown in the
right pane:

If you double-click either event, you can see how many handles and/or references have been
made to the objects.

To see whether any processes in the system have requested memory resource notification,
search the handle table for references to “LowMemoryCondition” or “HighMemoryCondition.”
You can do this by using Process Explorer’s Find menu and choosing the Handle capability or
by using WinDbg. (For a description of the handle table, see the section “Object Manager” in
Chapter 3 in Part 1.)

338 Windows Internals, Sixth Edition, Part 2

Proactive Memory Management (Superfetch)

Traditional memory management in operating systems has focused on the demand-paging model
we’ve shown until now, with some advances in clustering and prefetching so that disk I/Os can be
optimized at the time of the demand-page fault. Client versions of Windows, however, include a sig-
nificant improvement in the management of physical memory with the implementation of Superfetch,
a memory management scheme that enhances the least-recently accessed approach with historical
file access information and proactive memory management.

The standby list management of previous Windows versions has had two limitations. First, the pri-
oritization of pages relies only on the recent past behavior of processes and does not anticipate their
future memory requirements. Second, the data used for prioritization is limited to the list of pages
owned by a process at any given point in time. These shortcomings can result in scenarios in which
the computer is left unattended for a brief period of time, during which a memory-intensive system
application runs (doing work such as an antivirus scan or a disk defragmentation) and then causes
subsequent interactive application use (or launch) to be sluggish. The same situation can happen
when a user purposely runs a data and/or memory intensive application and then returns to use other
programs, which appear to be significantly less responsive.

This decline in performance occurs because the memory-intensive application forces the code and
data that active applications had cached in memory to be overwritten by the memory-intensive ac-
tivities—applications perform sluggishly as they have to request their data and code from disk. Client
versions of Windows take a big step toward resolving these limitations with Superfetch.

Components
Superfetch is composed of several components in the system that work hand in hand to proactively
manage memory and limit the impact on user activity when Superfetch is performing its work. These
components include:

 ■ Tracer The tracer mechanisms are part of a kernel component (Pf) that allows Superfetch
to query detailed page usage, session, and process information at any time. Superfetch also
makes use of the FileInfo driver (%SystemRoot%\System32\Drivers\Fileinfo.sys) to track file
usage.

 ■ Trace collector and processor This collector works with the tracing components to provide
a raw log based on the tracing data that has been acquired. This tracing data is kept in mem-
ory and handed off to the processor. The processor then hands the log entries in the trace to
the agents, which maintain history files (described next) in memory and persist them to disk
when the service stops (such as during a reboot).

 CHAPTER 10 Memory Management 339

 ■ Agents Superfetch keeps file page access information in history files, which keep track of
virtual offsets. Agents group pages by attributes, such as:

• Page access while the user was active

• Page access by a foreground process

• Hard fault while the user was active

• Page access during an application launch

• Page access upon the user returning after a long idle period

 ■ Scenario manager This component, also called the context agent, manages the three
 Superfetch scenario plans: hibernation, standby, and fast-user switching The kernel-mode part
of the scenario manager provides APIs for initiating and terminating scenarios, managing cur-
rent scenario state, and associating tracing information with these scenarios.

 ■ Rebalancer Based on the information provided by the Superfetch agents, as well as the
current state of the system (such as the state of the prioritized page lists), the rebalancer,
a specialized agent that is located in the Superfetch user-mode service, queries the PFN
database and reprioritizes it based on the associated score of each page, thus building the
prioritized standby lists. The rebalancer can also issue commands to the memory manager
that modify the working sets of processes on the system, and it is the only agent that actually
takes action on the system—other agents merely filter information for the rebalancer to use
in its decisions. Other than reprioritization, the rebalancer also initiates prefetching through
the prefetcher thread, which makes use of FileInfo and kernel services to preload memory with
useful pages.

Finally, all these components make use of facilities inside the memory manager that allow querying
detailed information about the state of each page in the PFN database, the current page counts for
each page list and prioritized list, and more. Figure 10-50 displays an architectural diagram of Super-
fetch’s multiple components. Superfetch components also make use of prioritized I/O (see Chapter 8
for more information on I/O priority) to minimize user impact.

340 Windows Internals, Sixth Edition, Part 2

Page access
trace

File Info
trace

Memory
prioritizer

Prefetch
thread

Working set
complement

Rebalancer
core

Rebalancer

Core
propagation

PFN database
User data

User data

User data

User data

Core

Core

Core

Agent

Agent

Agent

Trace processor

Trace
collector

Section info
database

Log
entries

PFN reprioritizer

Memory
manager

SuperFetch tracer FileInfo
minifilter

File name – key
information

Page access
buffers

Prefetch
requests

Prefetch
requests

PFN
query

requests

PFN set
requests

Completed
page access
and FileInfo

traces

User mode

SuperFetch
prefetcher

Page access
trace

FileInfo
trace

Trace list

Page
access
traces

File key
lookup

PFN
query/set
requests

Kernel mode

FIGURE 10-50 Superfetch architectural diagram

 CHAPTER 10 Memory Management 341

Tracing and Logging
Superfetch makes most of its decisions based on information that has been integrated, parsed, and
post-processed from raw traces and logs, making these two components among the most critical.
Tracing is similar to ETW in some ways because it makes use of certain triggers in code throughout
the system to generate events, but it also works in conjunction with facilities already provided by the
system, such as power manager notification, process callbacks, and file system filtering. The tracer
also makes use of traditional page aging mechanisms that exist in the memory manager, as well as
newer working set aging and access tracking implemented for Superfetch.

Superfetch always keeps a trace running and continuously queries trace data from the system,
which tracks page usage and access through the memory manager’s access bit tracking and work-
ing set aging. To track file-related information, which is as critical as page usage because it allows
prioritization of file data in the cache, Superfetch leverages existing filtering functionality with the
addition of the FileInfo driver. (See Chapter 8 for more information on filter drivers.) This driver sits
on the file system device stack and monitors access and changes to files at the stream level (for more
information on NTFS data streams, see Chapter 12), which provides it with fine-grained understand-
ing of file access. The main job of the FileInfo driver is to associate streams (identified by a unique key,
currently implemented as the FsContext field of the respective file object) with file names so that the
user-mode Superfetch service can identify the specific file steam and offset with which a page in the
standby list belonging to a memory mapped section is associated. It also provides the interface for
prefetching file data transparently, without interfering with locked files and other file system state.
The rest of the driver ensures that the information stays consistent by tracking deletions, renaming
operations, truncations, and the reuse of file keys by implementing sequence numbers.

At any time during tracing, the rebalancer might be invoked to repopulate pages differently. These
decisions are made by analyzing information such as the distribution of memory within working sets,
the zero page list, the modified page list and the standby page lists, the number of faults, the state of
PTE access bits, the per-page usage traces, current virtual address consumption, and working set size.

A given trace can be either a page access trace, in which the tracer keeps track (by using the access
bit) of which pages were accessed by the process (both file page and private memory), or a name
logging trace, which monitors the file-name-to-file-key-mapping updates (which allow Superfetch to
map a page associated with a file object) to the actual file on disk.

Although a Superfetch trace only keeps track of page accesses, the Superfetch service processes
this trace in user mode and goes much deeper, adding its own richer information such as where the
page was loaded from (such as resident memory or a hard page fault), whether this was the initial
access to that page, and what the rate of page access actually is. Additional information, such as the
system state, is also kept, as well as information about in which recent scenarios each traced page was
last referenced. The generated trace information is kept in memory through a logger into data struc-
tures, which identify, in the case of page access traces, a virtual-address-to-working-set pair or, in the
case of a name logging trace, a file-to-offset pair. Superfetch can thus keep track of which range of
virtual addresses for a given process have page-related events and which range of offsets for a given
file have similar events.

342 Windows Internals, Sixth Edition, Part 2

Scenarios
One aspect of Superfetch that is distinct from its primary page repriorization and prefetching mecha-
nisms (covered in more detail in the next section) is its support for scenarios, which are specific ac-
tions on the machine for which Superfetch strives to improve the user experience. These scenarios are
standby and hibernation as well as fast user switching. Each of these scenarios has different goals, but
all are centered around the main purpose of minimizing or removing hard faults.

 ■ For hibernation, the goal is to intelligently decide which pages are saved in the hibernation file
other than the existing working set pages. The goal is to minimize the amount of time that it
takes for the system to become responsive after a resume.

 ■ For standby, the goal is to completely remove hard faults after resume. Because a typical
system can resume in less than 2 seconds, but can take 5 seconds to spin-up the hard drive
after a long sleep, a single hard fault could cause such a delay in the resume cycle. Superfetch
prioritizes pages needed after a standby to remove this chance.

 ■ For fast user switching, the goal is to keep an accurate priority and understanding of each
user’s memory, so that switching to another user will cause the user’s session to be immedi-
ately usable, and not require a large amount of lag time to allow pages to be faulted in.

Scenarios are hardcoded, and Superfetch manages them through the NtSetSystemInformation and
NtQuerySystemInformation APIs that control system state. For Superfetch purposes, a special infor-
mation class, SystemSuperfetchInformation, is used to control the kernel-mode components and to
generate requests such as starting, ending, and querying a scenario or associating one or more traces
with a scenario.

Each scenario is defined by a plan file, which contains, at minimum, a list of pages associated with
the scenario. Page priority values are also assigned according to certain rules we’ll describe next.
When a scenario starts, the scenario manager is responsible for responding to the event by generat-
ing the list of pages that should be brought into memory and at which priority.

Page Priority and Rebalancing
We’ve already seen that the memory manager implements a system of page priorities to define from
which standby list pages will be repurposed for a given operation and in which list a given page
will be inserted. This mechanism provides benefits when processes and threads can have associated
priorities—such that a defragmenter process doesn’t pollute the standby page list and/or steal pages
from an interactive, foreground process—but its real power is unleashed through Superfetch’s page
prioritization schemes and rebalancing, which don’t require manual application input or hardcoded
knowledge of process importance.

Superfetch assigns page priority based on an internal score it keeps for each page, part of which is
based on frequency-based usage. This usage counts how many times a page was used in given rela-
tive time intervals, such as an hour, a day, or a week. Time of use is also kept track of, which records
for how long a given page has not been accessed. Finally, data such as where this page comes from
(which list) and other access patterns are used to compute this final score, which is then translated

 CHAPTER 10 Memory Management 343

into a priority number, which can be anywhere from 1 to 6 (7 is used for another purpose described
later). Going down each level, the lower standby page list priorities are repurposed first, as shown in
the Experiment “Viewing the Prioritized Standby Lists.” Priority 5 is typically used for normal applica-
tions, while priority 1 is meant for background applications that third-party developers can mark as
such. Finally, priority 6 is used to keep a certain number of high-importance pages as far away as pos-
sible from repurposing. The other priorities are a result of the score associated with each page.

Because Superfetch “learns” a user’s system, it can start from scratch with no existing histori-
cal data and slowly build up an understanding of the different page usage accesses associated with
the user. However, this would result in a significant learning curve whenever a new application, user,
or service pack was installed. Instead, by using an internal tool, Microsoft has the ability to pretrain
Superfetch to capture Superfetch data and then turn it into prebuilt traces. Before Windows shipped,
the Superfetch team traced common usages and patterns that all users will probably encounter, such
as clicking the Start menu, opening Control Panel, or using the File Open/Save dialog box. This trace
data was then saved to history files (which ship as resources in Sysmain.dll) and is used to prepopulate
the special priority 7 list, which is where the most critical data is placed and which is very rarely repur-
posed. Pages at priority 7 are file pages kept in memory even after the process has exited and even
across reboots (by being repopulated at the next boot). Finally, pages with priority 7 are static, in that
they are never reprioritized, and Superfetch will never dynamically load pages at priority 7 other than
the static pretrained set.

The prioritized list is loaded into memory (or prepopulated) by the rebalancer, but the actual act
of rebalancing is actually handled by both Superfetch and the memory manager. As shown earlier,
the prioritized standby page list mechanism is internal to the memory manager, and decisions as to
which pages to throw out first and which to protect are innate, based on the priority number. The
rebalancer actually does its job not by manually rebalancing memory but by reprioritizing it, which
will cause the operation of the memory manager to perform the needed tasks. The rebalancer is also
responsible for reading the actual pages from disk, if needed, so that they are present in memory
(prefetching). It then assigns the priority that is mapped by each agent to the score for each page,
and the memory manager will then ensure that the page is treated according to its importance.

The rebalancer can also take action without relying on other agents; for example, if it notices that
the distribution of pages across paging lists is suboptimal or that the number of repurposed pages
across different priority levels is detrimental. The rebalancer also has the ability to cause working set
trimming if needed, which might be required for creating an appropriate budget of pages that will be
used for Superfetch prepopulated cache data. The rebalancer will typically take low-utility pages—
such as those that are already marked as low priority, pages that are zeroed, and pages with valid
contents but not in any working set and have been unused—and build a more useful set of pages in
memory, given the budget it has allocated itself.

Once the rebalancer has decided which pages to bring into memory and at which priority level
they need to be loaded (as well as which pages can be thrown out), it performs the required disk
reads to prefetch them. It also works in conjunction with the I/O manager’s prioritization schemes so
that the I/Os are performed with very low priority and do not interfere with the user. It is important
to note that the actual memory consumption used by prefetching is all backed by standby pages—as

344 Windows Internals, Sixth Edition, Part 2

described earlier in the discussion of page dynamics, standby memory is available memory because it
can be repurposed as free memory for another allocator at any time. In other words, if Superfetch is
prefetching the “wrong data,” there is no real impact to the user, because that memory can be reused
when needed and doesn’t actually consume resources.

Finally, the rebalancer also runs periodically to ensure that pages it has marked as high priority
have actually been recently used. Because these pages will rarely (sometimes never) be repurposed, it
is important not to waste them on data that is rarely accessed but may have appeared to be fre-
quently accessed during a certain time period. If such a situation is detected, the rebalancer runs
again to push those pages down in the priority lists.

In addition to the rebalancer, a special agent called the application launch agent is also involved in
a different kind of prefetching mechanism, which attempts to predict application launches and builds
a Markov chain model that describes the probability of certain application launches given the exis-
tence of other application launches within a time segment. These time segments are divided across
four different periods—morning, noon, evening, and night; roughly 6 hours each—and are also kept
track of separately as weekdays or weekends. For example, if on Saturday and Sunday evening a user
typically launches Outlook (to send email) after having launched Word (to write letters), the applica-
tion launch agent will probably have prefetched Outlook based on the high probability of it running
after Word during weekend evenings.

Because systems today have sufficiently large amounts of memory, on average more than 2 GB
(although Superfetch works well on low-memory systems, too), the actual real amount of memory
that frequently used processes on a machine need resident for optimal performance ends up be-
ing a manageable subset of their entire memory footprint, and Superfetch can often fit all the pages
required into RAM. When it can’t, technologies such as ReadyBoost and ReadyDrive can further avoid
disk usage.

Robust Performance
A final performance enhancing functionality of Superfetch is called robustness, or robust performance.
This component, managed by the user-mode Superfetch service, but ultimately implemented in the
kernel (Pf routines), watches for specific file I/O access that might harm system performance by popu-
lating the standby lists with unneeded data. For example, if a process were to copy a large file across
the file system, the standby list would be populated with the file’s contents, even though that file
might never be accessed again (or not for a long period of time). This would throw out any other data
within that priority (and if this was an interactive and useful program, chances are its priority would’ve
been at least 5).

Superfetch responds to two specific kinds of I/O access patterns: sequential file access (going
through all the data in a file) and sequential directory access (going through every file in a directory).
When Superfetch detects that a certain amount of data (past an internal threshold) has been popu-
lated in the standby list as a result of this kind of access, it applies aggressive deprioritization (robus-
tion) to the pages being used to map this file, within the targeted process only (so as not to penalize
other applications). These pages, so-called robusted, essentially become reprioritized to priority 2.

 CHAPTER 10 Memory Management 345

Because this component of Superfetch is reactive and not predictive, it does take some time
for the robustion to kick in. Superfetch will therefore keep track of this process for the next time it
runs. Once Superfetch has determined that it appears that this process always performs this kind of
sequential access, Superfetch remembers it and robusts the file pages as soon as they’re mapped, in-
stead of waiting on the reactive behavior. At this point, the entire process is now considered robusted
for future file access.

Just by applying this logic, however, Superfetch could potentially hurt many legitimate applications
or user scenarios that perform sequential access in the future. For example, by using the Sysinternals
Strings.exe utility, you can look for a string in all executables that are part of a directory. If there are
many files, Superfetch would likely perform robustion. Now, next time you run Strings with a different
search parameter, it would run just as slowly as it did the first time, even though you’d expect it to run
much faster. To prevent this, Superfetch keeps a list of processes that it watches into the future, as well
as an internal hard-coded list of exceptions. If a process is detected to later re-access robusted files,
robustion is disabled on the process in order to restore expected behavior.

The main point to remember when thinking about robustion, and Superfetch optimizations in gen-
eral, is that Superfetch constantly monitors usage patterns and updates its understanding of the sys-
tem, so that it can avoid fetching useless data. Although changes in a user’s daily activities or applica-
tion startup behavior might cause Superfetch to incorrectly “pollute” the cache with irrelevant data or
to throw out data that Superfetch might think is useless, it will quickly adapt to any pattern changes.
If the user’s actions are erratic and random, the worst that can happen is that the system behaves in a
similar state as if Superfetch was not present at all. If Superfetch is ever in doubt or cannot track data
reliably, it quiets itself and doesn’t make changes to a given process or page.

RAM Optimization Software
While Superfetch provides valuable and realistic optimization of memory usage for the various
scenarios it aims to support, many third-party software manufacturers are involved in the distri-
bution of so-called “RAM Optimization” software, which aims to significantly increase available
memory on a user’s system. These memory optimizers typically present a user interface that
shows a graph labeled “Available Memory,” and a line typically shows the amount of memory
that the optimizer will try to free when it runs. After the optimization job runs, the utility’s avail-
able memory counter often goes up, sometimes dramatically, implying that the tool is actually
freeing up memory for application use. RAM optimizers work by allocating and then freeing
large amounts of virtual memory. The following illustration shows the effect a RAM optimizer
has on a system.

346 Windows Internals, Sixth Edition, Part 2

Before:

Word Explorer File cache Available

During:

Avail. RAM optimizer

Available

After:

Word

File cacheExplorer

Standby
pages

Standby pages

The Before bar depicts the process and system working sets, the pages in standby lists, and
free memory before optimization. The During bar shows that the RAM optimizer creates a high
memory demand, which it does by incurring many page faults in a short time. In response, the
memory manager increases the RAM optimizer’s working set. This working-set expansion oc-
curs at the expense of free memory, followed by standby pages and—when available memory
becomes low—at the expense of other process working sets. The After bar illustrates how, after
the RAM optimizer frees its memory, the memory manager moves all the pages that were as-
signed to the RAM optimizer to the free page list (which ultimately get zeroed by the zero page
thread and moved to the zeroed page list), thus contributing to the free memory value.

Although gaining more free memory might seem like a good thing, gaining free memory
in this way is not. As RAM optimizers force the available memory counter up, they force other
processes’ data and code out of memory. If you’re running Microsoft Word, for example, the
text of open documents and the program code that was part of Word’s working set before the
optimization (and was therefore present in physical memory) must be reread from disk as you
continue to edit your document. Additionally, by depleting the standby lists, valuable cached
data is lost, including much of Superfetch’s cache. The performance degradation can be espe-
cially severe on servers, where the trimming of the system working set causes cached file data
in physical memory to be thrown out, causing hard faults the next time it is accessed.

ReadyBoost
Although RAM today is somewhat easily available and relatively cheap compared to a decade ago, it
still doesn’t beat the cost of secondary storage such as hard disk drives. Unfortunately, hard disks to-
day contain many moving parts, are fragile, and, more importantly, relatively slow compared to RAM,
especially during seeking, so storing active Superfetch data on the drive would be as bad as paging
out a page and hard faulting it inside memory. (Solid state disks offset some of these disadvantages,
but they are pricier and still slow compared to RAM.) On the other hand, portable solid state media

 CHAPTER 10 Memory Management 347

such as USB flash disk (UFD), CompactFlash cards, and Secure Digital cards provide a useful compro-
mise. (In practice, CompactFlash cards and Secure Digital cards are almost always interfaced through
a USB adapter, so they all appear to the system as USB flash disks.) They are cheaper than RAM and
available in larger sizes, but they also have seek times much shorter than hard drives because of the
lack of moving parts.

Random disk I/O is especially expensive because disk head seek time plus rotational latency for
typical desktop hard drives total about 13 milliseconds—an eternity for today’s 3-GHz processors.
Flash memory, however, can service random reads up to 10 times faster than a typical hard disk.
Windows therefore includes a feature called ReadyBoost to take advantage of flash memory storage
devices by creating an intermediate caching layer on them that logically sits between memory and
disks.

ReadyBoost is implemented with the aid of a driver (%SystemRoot%\System32\Drivers\
Rdyboost.sys) that is responsible for writing the cached data to the NVRAM device. When you insert
a USB flash disk into a system, ReadyBoost looks at the device to determine its performance charac-
teristics and stores the results of its test in HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\
Emdmgmt, as shown in Figure 10-51. (Emd is short for External Memory Device, the working name for
ReadyBoost during its development.)

FIGURE 10-51 ReadyBoost device test results in the registry

If the new device is between 256 MB and 32 GB in size, has a transfer rate of 2.5 MB per second
or higher for random 4-KB reads, and has a transfer rate of 1.75 MB per second or higher for random
512-KB writes, then ReadyBoost will ask if you’d like to dedicate some of the space for disk caching. If
you agree, ReadyBoost creates a file named ReadyBoost.sfcache in the root of the device, which it will
use to store cached pages.

After initializing caching, ReadyBoost intercepts all reads and writes to local hard disk volumes
(C:\, for example) and copies any data being read or written into the caching file that the service cre-
ated. There are exceptions such as data that hasn’t been read in a long while, or data that belongs to
Volume Snapshot requests. Data stored on the cached drive is compressed and typically achieves a
2:1 compression ratio, so a 4-GB cache file will usually contain 8 GB of data. Each block is encrypted

348 Windows Internals, Sixth Edition, Part 2

as it is written using Advanced Encryption Standard (AES) encryption with a randomly generated per-
boot session key in order to guarantee the privacy of the data in the cache if the device is removed
from the system.

When ReadyBoost sees random reads that can be satisfied from the cache, it services them from
there, but because hard disks have better sequential read access than flash memory, it lets reads that
are part of sequential access patterns go directly to the disk even if the data is in the cache. Likewise,
when reading the cache, if large I/Os have to be done, the on-disk cache will be read instead.

One disadvantage of depending on flash media is that the user can remove it at any time, which
means the system can never solely store critical data on the media (as we’ve seen, writes always go
to the secondary storage first). A related technology, ReadyDrive, covered in the next section, offers
additional benefits and solves this problem.

ReadyDrive
ReadyDrive is a Windows feature that takes advantage of hybrid hard disk drives (H-HDDs). An
H-HDD is a disk with embedded nonvolatile flash memory (also known as NVRAM). Typical H-HDDs
include between 50 MB and 512 MB of cache, but the Windows cache limit is 2 TB.

Under ReadyDrive, the drive’s flash memory does not simply act as an automatic, transparent
cache, as does the RAM cache common on most hard drives. Instead, Windows uses ATA-8 com-
mands to define the disk data to be held in the flash memory. For example, Windows will save boot
data to the cache when the system shuts down, allowing for faster restarting. It also stores portions of
hibernation file data in the cache when the system hibernates so that the subsequent resume is faster.
Because the cache is enabled even when the disk is spun down, Windows can use the flash memory
as a disk-write cache, which avoids spinning up the disk when the system is running on battery power.
Keeping the disk spindle turned off can save much of the power consumed by the disk drive under
normal usage.

Another consumer of ReadyDrive is Superfetch, since it offers the same advantages as ReadyBoost
with some enhanced functionality, such as not requiring an external flash device and having the
ability to work persistently. Because the cache is on the actual physical hard drive (which typically a
user cannot remove while the computer is running), the hard drive controller typically doesn’t have
to worry about the data disappearing and can avoid making writes to the actual disk, using solely the
cache.

Unified Caching
For simplicity, we have described the conceptual functionality of Superfetch, ReadyBoost, and
ReadyDrive independently. Their storage allocation and content tracking functions, however, are
implemented in unified code in the operating system and are integrated with each other. This unified
caching mechanism is often referred to as the Store Manager, although the Store Manager is really
only one component.

 CHAPTER 10 Memory Management 349

Unified caching was developed to take advantage of the characteristics of the various types of
storage hardware that might exist on a system. For example, Superfetch can use either the flash
memory of a hybrid hard disk drive (if available) or a USB flash disk (if available) instead of using
system RAM. Since an H-HDD’s flash memory can be better expected to be preserved across system
shutdown and bootstrap cycles, it would be preferable for cache data that could help optimize boot
times, while system RAM might be a better choice for other data. (In addition to optimizing boot
times, a hybrid hard disk drive’s NVRAM, if present, is generally preferred as a cache location to a
UFD. A UFD may be unplugged at any time, hence disappearing; thus cache on a UFD must always be
handled as write-through to the actual hard drive. The NVRAM in an H-HDD can be allowed to work
in write-back mode because it is not going to disappear unless the hard drive itself also disappears.)

The overall architecture of the unified caching mechanism is shown in Figure 10-52.

NVRAM on
motherboard

Storemgr.sys
(physical caching)

(filter driver in
disk driver stack)

Stores

Store population
and eviction

SuperFetch service
(sysmain.dll)

Page access histories
and long-term history

User mode
Kernel mode

Store population
 and eviction

Store log

NtosKrnl.exe
(virtual caching)

Memory
management Prefetch Store

manager
Virtual RAM

cache

Virtual cache
Physical cache

Static Volatile

Virtual cache
Physical cache

Static Volatile

Virtual cache
Physical cache

Static Volatile

NVRAM on
hybrid hard drive

USB flash drive

FIGURE 10-52 Architecture of the unified caching mechanism

The fundamental component that implements caching is called a “store.” Each store implements
the functions of adding data to the backing storage (which may be in system RAM or in NVRAM),
reading data from it, or removing data from it.

All data in a store is managed in terms of store pages (often called simply pages). The size of a
store page is the system’s physical and virtual memory page size (4 KB, or 8KB on Itanium platforms),
regardless of the “block size” (sometimes called “sector size”) presented by the underlying storage

350 Windows Internals, Sixth Edition, Part 2

device. This allows store pages to be mapped and moved efficiently between the store, system RAM,
and page files (which have always been organized in blocks of the same size). The recent move toward
“advanced format” hard drives, which export a block size of 4 KB, is a good fit for this approach. Store
pages within a store are identified by “store keys,” whose interpretation is up to the individual store.

When writing to a store, the store is responsible for buffering data so that the I/O to the actual
storage device uses large buffers. This improves performance, as NVRAM devices as well as physical
hard drives perform poorly with small random writes. The store may also perform compression and
encryption before writing to the storage device.

The Store Manager component manages all of the stores and their contents. It is implemented
as a component of the Superfetch service in Sysmain.dll, a set of executive services (SmXxx, such as
SmPageRead) within Ntoskrnl.exe, and a filter driver in the disk storage stack, Storemgr.sys. Logically,
it operates at the level just above all of the stores. Only the Store Manager communicates with stores;
all other components interact with the Store Manager. Requests to the Store Manager look much like
requests from the Store Manager to a store: requests to store data, retrieve data, or remove data from
a store. Requests to the Store Manager to store data, however, include a parameter indicating which
stores are to be written to.

The Store Manager keeps track of which stores contain each cached page. If a cached page is in
one or more stores, requests to retrieve that page are routed by the Store Manager to one store or
another according to which stores are the fastest or the least busy.

The Store Manager categorizes stores in the following ways. First, a store may reside in system
RAM or in some form of nonvolatile RAM (either a UFD or the NVRAM of an H-HDD). Second,
NVRAM stores are further divided into “virtual” and “physical” portions, while a store in system RAM
acts only as a virtual store.

Virtual stores contain only page-file-backed information, including process-private memory and
page-file-backed sections. Physical caches contain pages from disk, with the exception that physical
caches never contain pages from page files. A store in system RAM can, however, contain pages from
page files.

Physical caches are further divided into “static” and “volatile” (or “dynamic”) regions. The contents
of the static region are completely determined by the user-mode Store Manager service. The Store
Manager uses logs of historical access to data to populate the static region. The volatile or dynamic
region of each store, on the other hand, populates itself based on read and write requests that pass
through the disk storage stack, much in the manner of the automatic RAM cache on a traditional hard
drive. Stores that implement a dynamic region are responsible for reporting to the Store Manager any
such automatically cached (and dropped) contents.

This section has provided a brief description of the organization and operation of the unified cach-
ing mechanism. As of this writing, there are no Performance Monitor counters or other means in the
operating system to measure the mechanism’s operation, other than the counters under the Cache
object, which long predate the Store Manager.

 CHAPTER 10 Memory Management 351

Process Reflection
There are often cases where a process exhibits problematic behavior, but because it’s still providing
service, suspending it to generate a full memory dump or interactively debug it is undesirable. The
length of time a process is suspended to generate a dump can be minimized by taking a minidump,
which captures thread registers and stacks along with pages of memory referenced by registers, but
that dump type has a very limited amount of information, which many times is sufficient for diagnos-
ing crashes but not for troubleshooting general problems. With process reflection, the target process
is suspended only long enough to generate a minidump and create a suspended cloned copy of the
target, and then the larger dump that captures all of a process’s valid user-mode memory can be
generated from the clone while the target is allowed to continue executing.

Several Windows Diagnostic Infrastructure (WDI) components make use of process reflection
to capture minimally intrusive memory dumps of processes their heuristics identify as exhibiting
suspicious behavior. For example, the Memory Leak Diagnoser component of Windows Resource
Exhaustion Detection and Resolution (also known as RADAR), generates a reflected memory dump
of a process that appears to be leaking private virtual memory so that it can be sent to Microsoft via
Windows Error Reporting (WER) for analysis. WDI’s hung process detection heuristic does the same
for processes that appear to be deadlocked with one another. Because these components use heuris-
tics, they can’t be certain the processes are faulty and therefore can’t suspend them for long periods
of time or terminate them.

Process reflection’s implementation is driven by the RtlCreateProcessReflection function in Ntdll.dll.
Its first step is to create a shared memory section, populate it with parameters, and map it into the
current and target processes. It then creates two event objects and duplicates them into the target
process so that the current process and target process can synchronize their operations. Next, it
injects a thread into the target process via a call to RtlpCreateUserThreadEx. The thread is directed to
begin execution in Ntdll’s RtlpProcessReflectionStartup function. Because Ntdll.dll is mapped at the
same address, randomly generated at boot, into every process’s address space, the current process
can simply pass the address of the function it obtains from its own Ntdll.dll mapping. If the caller of
RtlCreateProcessReflection specified that it wants a handle to the cloned process, RtlCreateProcess-
Reflection waits for the remote thread to terminate, otherwise it returns to the caller.

The injected thread in the target process allocates an additional event object that it will use to
synchronize with the cloned process once it’s created. Then it calls RtlCloneUserProcess, passing
parameters it obtains from the memory mapping it shares with the initiating process. If the RtlCreate-
ProcessReflection option that specifies the creation of the clone when the process is not executing in
the loader, performing heap operations, modifying the process environment block (PEB), or modify-
ing fiber-local storage is present, then RtlCreateProcessReflection acquires the associated locks before
continuing. This can be useful for debugging because the memory dump’s copy of the data structures
will be in a consistent state.

RtlCloneUserProcess finishes by calling RtlpCreateUserProcess, the user-mode function responsible
for general process creation, passing flags that indicate the new process should be a clone of the cur-
rent one, and RtlpCreateUserProcess in turn calls ZwCreateUserProcess to request the kernel to create
the process.

352 Windows Internals, Sixth Edition, Part 2

When creating a cloned process, ZwCreateUserProcess executes most of the same code paths as
when it creates a new process, with the exception that PspAllocateProcess, which it calls to create the
process object and initial thread, calls MmInitializeProcessAddressSpace with a flag specifying that the
address should be a copy-on-write copy of the target process instead of an initial process address
space. The memory manager uses the same support it provides for the Services for Unix Applica-
tions fork API to efficiently clone the address space. Once the target process continues execution,
any changes it makes to its address space are seen only by it, not the clone, which enables the clone’s
address space to represent a consistent point-in-time view of the target process.

The clone’s execution begins at the point just after the return from RtlpCreateUserProcess. If the
clone’s creation is successful, its thread receives the STATUS_PROCESS_CLONED return code, whereas
the cloning thread receives STATUS_SUCCESS. The cloned process then synchronizes with the target
and, as its final act, calls a function optionally passed to RtlCreateProcessReflection, which must be
implemented in Ntdll.dll. RADAR, for instance, specifies RtlDetectHeapLeaks, which performs heuristic
analysis of the process heaps and reports the results back to the thread that called RtlCreateProcess-
Reflection. If no function was specified, the thread suspends itself or terminates, depending on the
flags passed to RtlCreateProcessReflection.

When RADAR and WDI use process reflection, they call RtlCreateProcessReflection, asking for
the function to return a handle to the cloned process and for the clone to suspend itself after it has
initialized. Then they generate a minidump of the target process, which suspends the target for the
duration of the dump generation, and next they generate a more comprehensive dump of the cloned
process. After they finish generating the dump of the clone, they terminate the clone. The target
process can execute during the time window between the minidump’s completion and the creation
of the clone, but for most scenarios any inconsistencies do not interfere with troubleshooting. The
Procdump utility from Sysinternals also follows these steps when you specify the –r switch to have it
create a reflected dump of a target process.

EXPERIMENT: Using Preflect to Observe the Behavior
of Process Reflection
You can use the Preflect utility, which you can download from the Windows Internals book web-
page, to see the effects of process reflection. First, launch Notepad.exe and obtain its process
ID in a process management utility like Process Explorer or Task Manager. Next, open a com-
mand prompt and execute Preflect with the process ID as the command-line argument. This
creates a cloned copy using process reflection. In Process Explorer, you will see two instances of
Notepad: the one you launched and the cloned child instance that’s highlighted in gray (gray
indicates that all the process’s threads are suspended):

 CHAPTER 10 Memory Management 353

Open the process properties for each instance, switch to the Performance page, and put
them side by side for comparison:

The two instances are easily distinguishable because the target process has been executing
and therefore has a significantly higher cycle count and larger working set, and the clone has
no references to any kernel or window manager objects, as evidenced by its zero kernel handle,
GDI handle, and USER handle counts. Further, if you look at the Threads tab and have config-
ured the Process Explorer symbol options to obtain operating system symbols, you’ll see that
the target process’s thread began executing in Notepad.exe code, whereas the clone’s thread is
the one injected by the target to execute RtlpProcessReflectionStartup.

354 Windows Internals, Sixth Edition, Part 2

Conclusion

In this chapter, we’ve examined how the Windows memory manager implements virtual memory
management. As with most modern operating systems, each process is given access to a private
address space, protecting one process’s memory from another’s but allowing processes to share
memory efficiently and securely. Advanced capabilities, such as the inclusion of mapped files and the
ability to sparsely allocate memory, are also available. The Windows environment subsystem makes
most of the memory manager’s capabilities available to applications through the Windows API.

The next chapter covers a component tightly integrated with the memory manager, the cache
manager.

Index

 603

Symbols and
Numbers
. (periods in file names), 449
3DES algorithm, 495
16-bit applications, 200, 450
16-bit real mode components, 500
16-bit Unicode characters, 428
32-bit protected mode, 500
32-bit real mode components, 500
32-bit systems

crash dump paging files, 550
driver verification, 569
file names, 450
kernel address space, 250
numbers of threads, 280
PAE support, 260
page faults. See page faults and fault

handling
physical memory support, 321–323
troubleshooting, 569
UEFI support, 513
VDM support, 521

32-bit virtual addresses, 253–254
32-bit Windows

address space layouts, 229–232
AWE, 210, 211
execution protection, 205, 206
no-execute page protection, 205
process size, 187
system address space layouts,

232–233
system PTEs, 235
virtual address spaces, 244, 245
virtual allocator mechanism, 242

64-bit address space layouts, 237–239
64-bit protected mode, 500
64-bit systems

client memory limitations, 321
crash dump paging files, 550
driver verification, 569
dynamic address spaces, 242–245
execution protection, 205
kernel address space, 250

numbers of threads and, 280
UEFI support, 513
virtual address allocation, 244

64-bit Windows, 187, 235, 240–242
512e emulation, 127
1394 ports, 578

A
abort records, 477
absolute paths, 430
abstraction (I/O system), 1
access bit tracking (Superfetch), 341
access control lists. See ACLs (access

control lists)
access-denied errors, 416
Accessed bit (PTEs), 257, 264, 330
access fault trap handler, 188
access violations

crashes, 547, 550
heap-related, 226–227
page faults, 267–268
protecting memory, 203–204
special pool, 293
VADs and, 283

ACLs (access control lists)
exFAT file system, 397
I/O process and, 21
section objects, 204
tokens in, 440–441
UDF format, 393
Windows Resource Protection, 538

ACPI (Advanced Configuration and
Power Interface), 86, 92, 98–100,
511

Action Center, 561–562, 563–564
Active Directory, 174, 231, 530
active pages, 270, 316, 339
Active PFN state, 297, 299
Active Template Library (ATL), 207
Active Template Library thunk

emulation, 207–208
active threads, 54, 55

active VACBs, 366, 367
adapters, initializing, 519
add-device routines, 12, 69, 82–83, 98
AddiSNSSever command, 133
Add Recovery Agent Wizard, 495
address space

64-bit address space layouts,
237–239

commit charge, 275–277
commit limits, 275–277
dynamic address space, 232–233,

242–245
increasing, 229
locks, 189
mapping to physical pages. See

address translation
memory management, 189
paged and nonpaged pools, 213
status, 283
switching for processes, 555
system PTEs, 235–236
user layouts, 246–251
views, 360
virtual address space layouts. See

virtual address space layouts
virtual address space quotas,

245–246
x64 virtual address limitations,

240–242
x86 layouts, 229–232, 232–233
x86 session space, 233–235

Address Space Layout Randomization.
See ASLR (Address Space Layout
Randomization)

address translation
AS64 translation, 266–267
IA64 systems, 266–267
overview, 251
PAE, 260–264
page sizes and, 194
translation look-aside buffer,

259–260
x64 translation, 265–266
x86 translation, 252–259

Address Windowing Extensions

604

Address Windowing Extensions (AWE),
210–212, 276, 317

AddTarget command, 134
AddTargetPortal command, 134
AddUsersToEncryptedFile API, 492, 497
Adelson-Velskii and Landis (AVL), 283
“A disk read error occurred” error, 538
administrator privileges, 95
Advanced Configuration and Power

Interface (ACPI), 86, 92,
98–100, 511

Advanced Encryption Standard. See
AES (Advanced Encryption
Standard)

advanced format (disks), 126–127, 350
advanced local procedure calls (ALPC),

78, 520, 523
advancedoptions element, 506
AES (Advanced Encryption Standard)

AES128-CBC encryption, 165
AES256-CBC encryption, 165
AES-CCM keys, 172
authentication schemes and, 166
BitLocker To Go, 175
EFS usage, 492
ReadyBoost, 348

affinitized cores, 119
affinity counts, 113
affinity history policies, 115
affinity manager, 224
aged pages, 330, 341
agents (Superfetch), 339
AGP ports, 284
Algorithm for Recovery and Isolation

Exploiting Semantics (ARIES),
417

AllocateUserPhysicalPages function,
211, 302

AllocateUserPhysicalPagesNuma
function, 211, 302

allocation
explicit and implicit, 294
Low Fragmentation Heap, 222,

223–224
master file table entries, 445
pool, 216, 569
PTE failures, 235
states, 445

allocation granularity
defined, 199–200
in load offset number, 248–249
Low Fragmentation Heap (LFH),

223–224
no execute page protection, 205
smaller blocks (heaps), 220

ALPC (advanced local procedure calls),
78, 520, 523

alternate data streams, 393, 428, 474,
498

ALUA (asymmetrical logical unit
arrays), 134

AlwaysOff or AlwaysOn mode, 206,
208

analysis pass (recovery), 484–485
!analyze command, 567–568, 580, 585
APCs (asynchronous procedure calls),

30, 37–38, 271
APIC (Advanced Programmable

Interrupt Controller), 506,
509, 510

APIs
defragmentation, 436
EFI, 513
transactions, 472–473
Windows native, 522

Apple Macintosh machines, 513
application launch agent, 344
applications

cache coherency, 356
calling functions, 4–5
default heap, 221
failed, traces, 416
hung program screens, 543
large-address-space aware, 187
large page sizes, 194
locking pages in memory, 199
memory management, 193
page priority, 311, 343
power management control, 105
safe mode boots, 532
shadow copies, 180
Superfetch agents, 339
UMDF interaction, 79

application threads, 4–5
Application Verifier, 65
archival utilities, 427
archived files, 448
areal density (disk), 126–128
ARIES (Algorithm for Recovery and

Isolation Exploiting Semantics),
417

AS64 address translation, 266–267
ASLR (Address Space Layout

Randomization)
heap randomization, 250
kernel address space, 250
load offset numbers, 248–249
memory manager, 189
overview, 246–248
security mitigations, 250
stack randomization, 249–250
symbolic exception registration

records, 208
viewing processes, 251

ASR (Automated System Recovery),
534

assembly language, 14
ASSERT macros, 588
Assign API, 70
associated IRPs, 44, 46, 159
asymmetrical logical unit arrays

(ALUA), 134

asymmetric encryption. See private
keys; public key cryptography

asymmetric key pair certificate hashes,
494

asynchronous callbacks, 65
asynchronous I/O

APC calls, 38
cancellation, 49, 50
checking drivers’ handling, 68
completion, 37
completion context, 56
defined, 25–26
file object attributes, 19
layered drivers, 40
optimizing, 20
packet-based I/O, 1
scalability, 4
scatter/gather I/O, 28
testing status, 26
write throttling, 388

asynchronous procedures calls (APCs),
30, 37–38, 271

asynchronous read or write, 376, 378
ATA (AT attachment), 60
ATA-8, 348
ATAPI-based IDE devices, 133
Atapi.sys driver, 133
Ataport.sys driver, 132, 133
ATL (Active Template Library), 207
ATL thunk emulation, 207–208
atomic transactions, 424–425
attaching memory to processes, 196
Attachment Execution Service, 427
attachments, web or mail, 427
$AttDef metadata file, 449
ATTEMPTED_EXECUTE_OF_

NOEXECUTE_MEMORY code,
204

attribute definition table (AttrDef),
446

$ATTRIBUTE_LIST attribute, 448
attributes

files, list, 448–449
resident and nonresident, 453–456

attribute streams, 447
audio adapters, 321
auditing, 519
authentication schemes (BitLocker),

166, 174
authorization (NTFS security), 425
Autochk.exe, 158, 523
automated crash analysis, 563
Automated System Recovery (ASR),

534
automatic rebooting, 508, 579
auto-recovery BCD element behavior,

506
Autoruns tool, 528, 529
auto-start device drivers, 501, 525
auto-start (2) value, 85, 88
auxiliary displays, 78

 Boot Manager

 605

available memory, 190, 191
available pages, 315, 318
average frequency (processors), 110
AVL trees, 283
avoidlowmemory element, 504
“away-mode” power requests, 106
AWE (Address Windowing Extensions),

210–212, 276, 317

B
background activity priority, 58
background application page priority,

343
background priority mode, 63
backing store, 275–277, 349, 576
backing up encrypted files, 497
Backup and Restore utility, 539
backup applications

change logging, 433
data streams, 427
file system filter drivers, 413
shadow copies, 180, 181–182
shadow copy service and, 178

backup components (VSS writers), 178
backups, 130, 538
bad-cluster files ($BadClus), 445–446,

488
bad clusters, 429, 487–490
badmemoryaccess element, 504
badmemorylist element, 504
bad pages, 316, 336, 504
Bad PFN state, 297, 299
BAD_POOL_CALLER stop code, 550
BAD_POOL_HEADER stop code, 550,

570
bad-sector remapping, 487
balanced trees, 465
balance set manager and swapper

defined, 188
look-aside lists, 219
page writer events, 314
trimming working sets, 330
working sets, 333–334

bandwidth reservations, 20, 64
Base Cryptographic Provider, 495
based sections, 287
base file records, 443–444
base-log files, 420, 474
base LSNs, 476
basic disks

defined, 138
GUID partition table partitioning,

139–140
MBR-style partitioning, 139
multipartition volumes on, 139
registry information, 153
storage management, 139–141
volume manager, 141

batching log records, 478

batch oplocks, 401–402
BAT files, 401
baudrate element, 504
baud rates, 504, 507, 582
BCD (Boot Configuration Database)

BitLocker encryption, 166, 173
BitLocker volumes, 145
boot application options, 504–506
Bootmgr options, 504
boot process, 500, 503
boot volumes, 132
corruption and startup issues, 538
debug option, 578
increaseuserva configuration, 229,

280, 329, 557
increasing virtual memory, 210
installing, 502
loading non-PAE kernel, 205
nolowmem option, 260, 321
NVRAM code, 512–513
nx values, 205, 206
pae options, 260
safe mode options, 531
Winload options, 506–511

bcddevice element, 504
BCDEdit tool, 503, 538, 582
bcdfilepath element, 504
binary buddy systems, 223–224
BIOS

BIOS vs. EFI, 499
boot process components,

500–501
bootstrap data, 445
emulation code, 517
loading, 502
partitioning, 139
passwords, 163
preboot, 499–502

BIOS boot sector, 502–512
BIOS-detected disk drives, 511
BitLocker

BitLocker To Go, 164, 175–176
boot process, 170–172
Control Panel applet, 171, 175
Crashdump Filter driver, 559
encryption keys, 165–168
full-volume encryption driver,

173–174, 435
key rings, 504
management, 174–175
overview, 163–165
recovery keys, 172–173
storage management, 163–176
suspending, 171
system volumes and, 145
Trusted Platform Module, 168–170

BitLocker To Go, 164, 175–176
$BITMAP attribute, 448
bitmap attributes, 455, 465
bitmap files, 148, 249, 443, 445
black screens, 537

blanket boosting, 61
BLF (base-log file), 420, 474
blocking

completion ports, 54
control block data structures,

56–57
thread, 53

block metadata randomization, 225
block offsets, 421
blocks

addresses, 126
block-level access, 514
core heap, 222
logical, 127
NAND-type flash memory, 129
store page size, 349
updating sectors, 130

block size, 349
block-storage devices, 133
“blue screen of death”

faked crash screen saver, 594
overview, 548–549
post-splash-screen hangs,

540–542
system file corruption, 538
top 20 stop codes, 549–551
troubleshooting without crash

dumps, 581
Bluetooth, 78
Blu-ray drives, 125, 393
body (IRPs), 29
boosting I/O priority, 62–64
bootable partitions, 139
boot applications, BCD and, 504–506
boot code (MBR), 501
Boot Configuration Database. See BCD

(Boot Configuration Database)
boot data, 164, 348
bootdebug element, 504
boot device drivers, 511–512
boot disks, 503
boot drivers

boot process, 132
crashes in, 550
listing, 515
loading, 512
loading failures, 507
system code write protection, 574

bootems element, 505
boot entropy values, 522
boot files ($Boot), 445
boot graphics library, 520
boot loader (Winload.exe). See

Winload.exe
bootlog element, 506
boot logging, 520, 533–534, 542
bootlog option, 533–534
Boot Manager (Bootmgr)

BCD options, 504
BitLocker code in, 164
BitLocker encryption, 166

“BOOTMGR is compressed” error

606

Boot Manager, continued
BitLocker volumes, 145
boot process tasks, 500
boot volumes, 132
installing, 502
options editor, 509
overview, 502–503
post-crash functions, 551

“BOOTMGR is compressed” error, 538
“BOOTMGR is missing” error, 538
boot parameter block (BPB), 444
boot partition paths, 514
boot partitions, 502
boot preloaded hives, 507
boot process

BIOS boot sector and Bootmgr,
502–512

BIOS preboot, 499–502
BitLocker, 170–172
boot logging, 533–534
boot-time caching (ReadyBoot),

527–528
changes to encrypted

components, 170
common boot problems, 537–542
Csrss.exe, 522–526
driver loading, 529–532
image autoruns, 528–529
iSCSI booting, 514
kernel and executive subsystems,

514–522
last known good (LKG), 529
overview, 499
preboot process, 171
ReadyBoot, 527–528
repairing installations, 535–537
safe mode, 529–534
safe-mode-aware programs, 532
Smss.exe, 522–526
successful boots, 551
troubleshooting, 529–534,

537–542
UEFI boot process, 512–513
verification chain, encryption,

170–171
virtual hard disks, 162
Windows Recovery Environment,

534–537
Wininit.exe, 522–526

bootrec command, 537–542
boot-sector code, 166, 502
boot sectors

boot process tasks, 500
corruption and startup issues, 538
defined, 139, 502
duplicated, 490
file system drivers and, 399

boot-selection menu, 503
bootsequence element, 504
boot-start drivers, 87, 517, 534
boot-start (0) value, 84, 85

boot status files (bootstat.dat), 150,
537

bootstatuspolicy element, 506
bootstrap data, 443, 445
boot-time caching (ReadyBoot),

527–528
boot traces, 326
bootux element, 506
boot video driver (Bootvid.dll), 500,

517, 519
boot volumes

defined, 145
encrypting, 164
loading process, 511–512
mirroring, 150
partitioning, 145

bottom dirty page threshold, 389
boundary operations, 66
bound traps, 588
BPB (boot parameter block), 444
breaking into hung systems, 578–581
break on symbol load option, 517
breakpoints

copy-on-write process and, 210
drivers compiled in debug

environment, 587
HAL initialization, 507
host computers, 584

broken oplocks, 402
BSOD. See “blue screen of death”
BTG (BitLocker To Go), 164, 175–176
B-trees, 448, 455, 465, 468
bucket IDs (crash analysis), 563
buckets, 223–224, 314
buffered I/O, 29, 32
buffer overflows, 416, 572
buffer overruns, 569–572, 575–577
buffers and buffer management

DMA and caching, 375
FILE_FLAG_NO_BUFFERING flag,

377
invalid, 410
I/O manager, 4
IRPs, 32–33
look-aside lists, 219
mapping and pinning interfaces,

375
marshalling log records, 417
pool-tracking structures, 570
scatter/gather I/O, 28
sparse files, 432–433
stores, 350
thread-agnostic I/O, 48

buffer underruns, 226, 569, 575–577
bugcheck callbacks, 548
bugchecks. See stop codes

(bugchecks)
Bugcodes.h file, 549
BUGCODE_USB_DRIVER stop code,

550
bugs, 204–209

bumps (I/O priority), 62–64
burnmemory boot option, 516
bus drivers

defined, 2, 6
KMDF IRP processing, 74
PnP manager, 81, 82
power states, 101
role in I/O, 7

bus filter drivers, 27, 89
bus filters, 6
busparams element, 505
busy thresholds (processors), 114,

115, 120
byte offsets, 148, 253, 259, 264

C
C language, 14
C++ language, 14, 207–208
C processor state, 108–109, 120
C runtime (CRT), 221
!ca command, 289, 290, 291
cables, 578, 582
cache. See also cache manager

address space, 360
bypassing, 412
cached address translations,

259–260
CLFS operations, 418
coherency, 401
core parking and, 109
decompressing files, 460
dynamic address space, 232
file caching, 27–28
flushes, 387–388, 478
forcing write-through, 387
leases, 404–407
opened files, 410
oplocks, 401
optimizing boot process, 527–528
physical size, 363–364
prefetch operations, 272
ReadyBoost, 347
reduction routines, 189
remote FSDs, 401
spatial locality, 412
system space, 229
temporal locality, 412
tunneling, 452
virtual memory management, 360
virtual size, 360
VSS writers, 178
working set size, 360–361
write-through, 478

cache buffers, 373
cache bytes, 191
cached I/O, 19
cache directory, 540
Cache disabled bit (PTEs), 257
cached read operations, 373, 381

 CNG

 607

cache manager
cache coherency, 356–358
cache size, 361–364
centralized system caching, 356
client-side remote FSDs, 400
data structures, 364–373
defined, 355
fast dispatch routines, 13
fast I/O, 373–377
file system drivers, 398, 399
file system interfaces, 373–375
initializing, 520
intelligent read-ahead, 378–379
I/O prioritization strategies, 59
lazy writing, 379–380, 386, 412
look-aside lists, 219
mapped file I/O, 27–28
memory manager operations, 356
NTFS file system driver, 440
opening files, 409
read-ahead and write-behind,

377–390
read-ahead thread, 412–413
recoverable file system support,

359
section objects, 286
sector size, 128
stream-based caching, 358
Superfetch, 412–413
system threads, 390
viewing operations, 380–386
virtual block caching, 358
virtual memory management,

359–360
write-back caching, 379–380
write throttling, 388–389

cache misses, 440, 460
callbacks

container notifications, 65
fast dispatch routines, 13
KMDF drivers, 69, 74
KMDF queues, 75
synchronization scope object

attributes, 76
call stacks, 553
cameras, 78
CancelIo function, 49
cancel I/O routines, 13, 51, 52
CancelSynchronousIo function, 49
canonical addresses, 240
case-sensitive file names, 436
catalog files, 96, 97
CAT files, 3, 97
\Catroot directory, 97
CcAdjustThrottle function, 389
CCBs (context control blocks), 418
CcCanIWrite function, 388
CcCopyRead interface, 373–374, 381,

410–411, 413
CcCopyWrite interface, 373–374, 411,

413

CcDeferWrite function, 388
CcFastCopyRead interface, 373–374,

411–412
CcFastCopyWrite interface, 411–412
CcInitializeCacheMap function, 373,

410
CcNumberOfFreeVacbs variable, 367
CcReadAheadIos variable, 378
CcSetDirtyPageThreshold function,

389
CcTotalDirtyPages function, 389
CcVacArrays variable, 365, 367
CcWriteBehind variable, 390
CDFS (CD-ROM file system), 2, 392,

398, 451, 503
CD-ROM drives, 125, 153
CD-R/RW format, 393
cell phones, 78
Certificate Manager (Certmgr.msc),

492
certificates, 174
certificate stores, 492
CfgMgr32.dll, 95
change journal files, 433, 446, 461–464
change logging, 433
change records, 433
channel element, 505
characters in file names, 449, 451
“Check boot path and disk hardware”

error, 538
Check Disk. See Chkdsk.exe (Check

Disk)
check phases (processor power), 116,

117–118
checkpoint records, 481, 482–483
checkpoints (virtual machines), 162
checksums (encryption keys), 172
child devices, 87
child list objects (KMDF), 71
child objects (KMDF), 72
child processes, 193
chips (TPM), 164, 168
chipsets, 321, 323
chkdsk command, 540
Chkdsk.exe (Check Disk)

bad clusters, 489
bad sectors, 487
boot-time version, 158
large-address-space awareness,

231
NTFS usage vs. FAT, 489–490
repairing after failures, 477
system file corruption, 538

CIFS (Common Internet File System),
400

cipher block chaining, 496
cipher command, 494
Cipher.exe, 492
circular buffer logging, 432
class drivers, 7, 89, 131, 132–136
ClassGUID value, 91, 93

class keys, 94, 96
cleanup requests, 76
clear keys, 171
CLFS (Common Log File System)

ClfsMgmtPolicy policies, 424
log blocks, 421
log file layout, 420
log layout, 420
log sequence numbers, 420–421
log types, 418–419
management policies, 423–424
marshalling, 417
overview, 416–417
owner pages, 421–422
resource managers, 474
transactions, 469, 476
translating virtual LSNs to physical,

422–423
TxF component, 470

ClfsMgmtPolicy policies, 424
client applications, 205
client-side remote FSDs, 400–407
client systems, 557
client Windows editions, 321
clock algorithm (LRU), 328
clock generator crystals, 109
clock sources, 510
clone shadow copies, 177
cloning processes, 351–353
C-LOOK algorithm, 132
CloseEncryptedFileRaw function, 497
CloseHandle API, 473
close requests (KMDF), 76
CLRs (compensating log records), 476
clustered page faults, 272–273, 383
cluster factor, 442–443
clustermodeaddressing element, 506
clusters

bad-cluster recovery, 487–490
cluster factor, 442–443
compressed files, 458, 459
defined, 391–392
defragmentation, 436
demand paging, 324
disk attributes, 138
disk storage, 128
exFAT file system, 396–397
FAT formats, 393, 394–396
free and in-use, 437
noncompressed files, 457
NTFS on-disk structure, 442
offsets, translating from bytes, 148
remapping bad, 429
runs, 454
sectors and, 391–392
size, 391–397, 442–443
unused, 394

CMOS settings, 511
CMPXCHG8B instruction, 241
CNG (Cryptography Next Generation),

492, 493

code integrity

608

code integrity, 167, 505
code overwrites (crash dumps),

573–574
coherent caching schemes, 356–358
collection objects (KMDF), 71
collided page faults, 271, 272
color (PFN entries), 317
COM1 device name, 523
COM+ applications, 231
COM class IDs, 160
COM components, 78
Command Prompt, 508, 530, 534
Command Server Thread, 522
commit charge

defined, 196, 199
memory notification events,

335–337
overview, 275–277
page fault handling, 275–277,

278–279
page file size, 278–279
viewing totals, 279
virtual address space, 282

commit limits, 191, 199, 275–277
commitment, 199
commit phase (VSS), 178
commit records, 477
committed bytes, 191
committed memory

commit charge. See commit charge
core heap and, 222
section objects, 201

committed pages
copy-on-write process, 210
defined, 195
memory manager, 195–198
page faults, 267, 269
stack’s pages, 280
viewing, 197–198
working set index field, 318

committed transactions, 473, 481, 484
Common Criteria profiles, 300
Common Internet File System (CIFS),

400
Common Log File System. See CLFS

(Common Log File System)
common logs (CLFS), 418–419
CompactFlash cards, 347
Compare and Exchange 8 Bytes

(CMPXCHG8B), 241
Compatibility Administrator tool, 205
compatible IDs (drivers), 95
compensating log records (CLRs), 476
complete memory dumps, 553–554,

555, 579
Complete PC Restore (System Image

Recover), 534
completing IRPs, 33–34
CompletionContext field, 56
CompletionKey parameter, 56
completion packets, 54, 55, 56

completion ports. See also I/O
completion

completion packets, 55
creating and operating, 56–58
IoCompletion executive object, 54
port notifications, 57–58
processes, 54–55
thread-agnostic I/O, 55

completion routines, 13
compliance logging (CLFS), 417
component entries (LDM), 142–143
COM ports. See serial ports
compressed files, 462
compression, 347, 432–433, 457–461
compression units, 459
computers, lost or stolen, 164
COM quota interfaces, 434
COM TxF components, 470
concurrency (KMDF), 75, 76
concurrency values, 54, 55, 56
configaccesspolicy element, 505
configflags element, 506
configuration changes, PnP, 81
configuration manager

CfgMgr32.dll, 95
core registry hives, 522
initializing, 520
loading registry hives, 523
memory allocations, 216
PnP hardware installation, 95
shutting down, 545
SMP system processors, 521

connections
breaking into hung systems, 578
container notifications, 65

conserving energy, 105
console applications, 544
consolidated security, 465, 467–469
container IDs, 91–92
container indexes, 421
container notifications, 65
containers, 417, 420, 424, 494
content indexing, 58
contention, resources under, 581
context agent (scenario manager), 339
context control blocks (CCBs), 418
CONTEXT structure, 510
context switching, 53, 255
control areas (section objects), 288,

289–292
control backoff, 59
control block data structures, 56–57
controller objects, 519
control sets, 530, 541
control vectors, 517
converting leases, 405
cookies, 12, 209, 576
copy APIs, 472
copying files, 374, 380–386, 497–498
copy method, 373

copy-on-write
cloned processes, 352
commit charge, 276
differential copies, 179–181
dynamic partitioning, 438–439
files not copied, 180
memory manager, 187
overview, 209–210
page faults, 268
Previous Versions feature, 184
Shadow Copy Provider, 179–181
volume copies, 177, 180, 184

Copy-on-write bit (PTEs), 257
copy protection mechanisms, 206
core heap, 222, 224
core parking

defined, 108–109
generic utility measurement, 113
increase/decrease actions, 113–114
overriding, 109, 113, 115
policies, 109–110, 115
PPM parking and unparking, 119
thresholds and policy settings,

114–116
viewing, 121–122
viewing processor history, 112

CORE_PARKING_POLICY_CHANGE_
IDEAL value, 113

CORE_PARKING_POLICY_CHANGE_
ROCKET value, 114

CORE_PARKING_POLICY_CHANGE_
STEP value, 114

Core Root of Trust of Measurement
(CRTM), 170

corruption
bad clusters, 489
BCD elements, 505
boot problems, 537–542
cache management, 359
crash dump tools, 569–572
driver synchronization, 39
fault tolerant disk systems, 489
fault tolerant heap, 227
heap manager, 224
kernel code, 195
large physical addresses, 321
Myfault.sys driver, 564
Notmyfault.exe, 564
pageheap, 226
pool, 569–572, 590–592
protecting memory, 203–204
self-healing volumes, 490–491
size of, 570
VSS shadow copies, 178

costs, computing for nodes, 285
“Could not read from selected boot

disk” error, 538
cover files (BitLocker To Go), 176
!cpuinfo command, 574
CPUs. See processors
CR3 register, 255

 debugging mode

 609

crash buttons, 578
.crash command, 579
CrashControl registry key, 551
Crashdmp.sys driver, 559
crash dump drivers, 559
crash dumps

advanced analysis, 574–581
basic analysis, 564–567
blue screen crashes, 548–551
breaking into hung systems, 579
buffer overruns, 569–572
capturing data in dump files,

553–561
code overwrites, 573–574
complete memory dumps,

553–554
dedicated dump files, 551
defined, 547
displaying VACBs, 367
drivers, 559
generating files, 559–561
hardware malfunctions, 593
high IRQL faults, 565–567
hung/unresponsive systems,

577–581
kernel memory dumps, 554
listing drivers, 11
memory corruption, 569–572
memory information, 192
no dump file available, 581–584
Notmyfault.exe, 564–565
not on VHDs, 163
online analysis, 563–564
overview, 547
reasons for crashes, 547–548
sending to Microsoft, 561–562
special pool, 569–572
stack trashes, 575–577
stop code analysis, 585–590. See

also stop codes (bugchecks)
system code write protection,

573–574
in system space, 229
temporary dump file names, 550
top 20 stop codes, 549–551
troubleshooting crashes, 551–553
troubleshooting tools, 569–574
troubleshooting without files,

581–584
verbose analysis, 567–568
viewing, 558–559
Windows Error Reporting, 561–562

crashes
BCD elements, 505
blue screen crashes, 548–551
boot problems, 537–542
capturing data in dump files,

553–561
crash dumps. See crash dumps
hardware malfunctions, 593
manual system crashes, 556

Notmyfault manual crashes,
564–565

online analysis, 563–564
reasons for, 547–548
recovery and, 478
top 20 stop codes, 549–551
troubleshooting, 551–553
Windows Error Reporting, 561–562

CRC (cyclic redundancy checksums),
140

create APIs, 472
CreatedFileMapping function, 193
CreateFile function

active files, 360
asynchronous I/O, 25
handles, 15, 20, 409
opening disks, 137
opening file objects, 21, 408
sequential file access, 378
temporary files, 386
write-through, 387

CreateFileMapping function, 27, 201,
473

CreateFileMappingNuma function,
193, 201

CreateHardLink function, 429
CreateIoCompletionPort function,

54, 56
CreateMemoryResourceNotification

function, 335
create operations, 49, 76
CreateRemoteThread function, 197,

280
CreateThread function, 197, 280
credential providers, 525
Critical I/O priority, 58, 59, 60
critical object crashes, 550–551
CRITICAL_OBJECT_TERMINATION stop

code, 550–551
critical processes, 522, 525
critical threads, 522
cross-process memory access, 196, 228
CR-R format, 393
CRT (C runtime), 221
CRTM (Core Root of Trust of

Measurement), 170
Cryptography Next Generation (CNG),

492, 493
Csrss.exe (Windows subsystem

process)
boot process, 501, 522–526
initialization tasks, 524
paged pool area, 228
shutdown functions, 542–543

CTRL_LOGOFF_EVENT event, 544
CTRL_SHUTDOWN_EVENT event, 544
current byte offsets, 19, 23
current threads, 574
customactions element, 504
cyclic redundancy checksums (CRC),

140

D
D0 (fully on) power state, 100, 101
D1 device power state, 100, 101
D2 device power state, 100, 101
D3 (fully off) power state, 100, 101
$DATA attribute, 448, 449
database records (LDM), 142
databases. See specific databases (BCD,

CLFS, etc.)
data caching. See cache; cache

manager
data compression. See compression
data decryption field (DDF), 494, 495,

496
data execution prevention. See no-

execute page protection (DEP)
data execution protection. See no-

execute page protection (DEP)
“data read” errors, 488
data recovery. See recovery
Data Recovery Agent (DRA), 174
data recovery field (DRF), 494–495,

496
data redundancy, 147, 425
data streams. See streams
data structures

caching, 364–373
NTFS. See NTFS file system
physical memory support, 320
protecting memory, 203

data transfers, 12
dates, 511, 548
DbgLoadImageSymbols function, 517
dbgtransport element, 506
DC2WMIparser tool, 68
dc command, 591
!dc command, 307, 310
dd command, 64
!dd command, 264
DDF (data decryption field), 494, 495,

496
deadlock detection, 577
deadlocks

!analyze command, 580
defined, 577
detection, 577
modified page writer, 314
preventing, 272
process reflection, 351

death, blue screen of. See “blue screen
of death”

debugaddress element, 505
debug BCD option, 578
debug command, 173
debug element, 506
debug environments, 587
debugger, 505, 554, 559, 574–575
Debugger Extension APIs, 559
debugging. See troubleshooting
debugging mode, 578–581

Debugging Tools for Windows

610

Debugging Tools for Windows,
574–575

debugport element, 505
debugstart element, 505
debugtype element, 505
DecodeSystemPointer API, 209
decommitting memory, 222
decommitting pages, 196
decompressing files, 460
decreasing thresholds (processors),

114, 115
DecryptFile function, 436
decryption, 496
dedicated dump files, 551
dedicated logs, 418–419, 422
Default BCD element, 504
default core parking, 109
default process heaps, 221
default resource manager

($RmMetadata), 446, 473,
474–475

deferred procedure calls. See DPCs
(deferred procedure calls)

DefineDosDevice function, 23
Defrag.exe, 437
defragmentation

NTFS design goals, 436–437
page files, 274
prefetch operations, 328
priorities, 58
shadow copies, 180
SSDs, 130

defragmentation APIs, 436
!defwrites command, 389
delayed file deleting, 523
delayed file renaming, 523
delete APIs, 472
deleted files, 130–131, 473
deleted partitions, 141
delete operations, 408, 525
demand paging, 282, 324
demand-start (3) value, 85
demand-zero pages

in commit charge, 276
page faults, 269
page faults and, 268
page list dynamics, 300–302
private committed pages, 195
shared pages, 270

demotion (performance states), 114
DEP (data execution prevention). See

no-execute page protection
(DEP)

DependOnGroup value, 84
DependOnService value, 84
deprioritization (robust performance),

344
desktops

initializing objects, 525
post-splash-screen hangs or

crashes, 540–542

DESX encryption, 495
detecthal element, 507
detection component (FTH), 227
\Device directory, 15, 16–17, 409
device drivers

access violations, 550
associated IRPs, 46–47
blue screen information, 548. See

also “blue screen of death”
boot process, 499, 500
breakpoints in, 587
corruption and startup issues,

538–540
deadlock detection, 577
deciphering names, 552
defined, 2
disabling, 541–542
disk drivers, 131–138. See also disk

drivers
driver and device objects, 14–19
Driver Verifier. See Driver Verifier
high IRQL faults, 565–567, 580,

585, 590–592
IRP processing, 28–29, 33–39
kernel-mode, 6, 10–11, 80,

335–337, 547–548
large page sizes, 194
layered drivers. See layered drivers
listing, 510
locking pages in memory, 199
look-aside lists, 219
new, crashing, 551–552
opening devices, 19–24
physical memory support and, 320
pool tags, 216–217
post-splash-screen crashes,

541–542
problematic updates, 542
routines, 11–14
safe mode booting, 530–534
section objects and, 201
servicing interrupts, 34–36
stressing and testing, 67
in system space, 228
system-start, 550
troubleshooting, 292–296,

530–534
types of, 5–11
“unknown driver” solutions, 564
updating, 568
user mode, 6, 78–81
version information, 568
viewing loaded drivers list, 10–11
virtual address and, 252

device IDs, 90, 91, 504
device instance IDs (DIIDs), 91, 94
device interrupt request level (DIRQL),

13, 35
DeviceIoControl function, 32, 431, 432,

433, 456, 564
device IRQL (DIRQL), 13, 35

Device Manager (Devmgmt.msc)
devnode information, 93
disabling drivers, 541–542
driver power mappings, 102
listing devices, 86–87
updating drivers, 568
viewing memory regions, 322–323

device objects
add-device routines, 12
defined, 14
deleting, 67
device stacks, 89–90
drive letters, 153–158
hints, 20
initializing, 519, 521
in I/O process, 14–19
listing, 16–17
pointers, 19
sessions, 65
storage management, 136–137
viewing for IRPs, 43
volume’s, 399, 409

DEVICE_OBJECT structure, 71
devices

driver power control, 105
I/O cancellation, 48
KMDF objects, 71
listing for crash analysis, 563
name mappings, 24
names, 23
PnP manager, 81
power management, 98–123
power states, 100
protocol device classes, 78
synchronizing access, 23
virtual, 78

device-specific modules (DSMs), 134
device stacks, 41, 79, 80, 89–90
device stacks (DevStack), 163
device trees, 86, 88–89
!devnode command, 88–89
devnodes, 86, 87, 91–92
!devobj command, 18, 43, 181
!devstack command, 41
difference data, 180
differences area, 177
differencing (virtual hard disks), 162
differential copies. See copy-on-write
diffuser (encryption), 165, 167, 174
digital signatures, 3, 95–96
DIIDs (device instance IDs), 91, 94
dir command, 428, 450, 471
direct I/O, 32
direct memory access. See DMA (direct

memory access)
directories

change logging, 433
compression, 432–433, 456–461
encrypting, 435–436, 491–498, 492
file-allocation chains, 394–395
indexing, 464–465

 DRIVER_POWER_STATE_FAILURE stop code

 611

missing, 415
new, 461
nonresident attributes, 455
resident attributes, 454
symbolic links, 430
synchronizing access, 23
transaction resource managers,

473–474
as virtual files, 4
Windows Resource Protection, 538

directory junctions, 20, 430–432
Directory Services Restore, 530, 531
DirectX drivers, 7
DIRQL (device interrupt request level),

13, 35
dirty bits, 257, 258, 268, 377
dirty pages

Free PFN state, 297
lazy writer, 379, 386, 412
modified page writer, 188
multiple process mapped files, 387
standby and modified lists, 363

dirty page table recovery, 483, 484
dirty page threshold, 388–389
disconnections (containers), 65
discovery mechanisms, 133–134
discovery volumes, 175–176
Disk2VHD utility, 162
disk allocations, 460
Disk Defragment utility (Dfrgul.exe),

437
disk device objects, 136–137, 138
disk devices, 126–131, 138
disk drivers

disk class, 132–136
disk device objects, 136–137
disk I/O operations, 159
file system drivers, 47
miniport, 132–136
overview, 131
partition manager, 138
port, 132–136
storage stacks, 131
WINLOAD, 132

disk entries (LDM), 142–143
“disk full” error, 434
disk groups, 142
Disk Management MMC snap-in

cluster size, 442–443
creating mirrored volumes, 151
creating volumes, 442
formatting FAT volumes, 393
mount points, 155
“partition,” 140
VDS APIs, 160
virtual hard disk operations, 163
volume manager, 146–147

disk miniport drivers, 132–136, 559
Diskmon utility, 136
disk offsets, 147, 153
diskpart command, 442

DiskPart utility, 155, 163
disk port drivers, 132–133
disks, 125, 126–131, 160. See also hard

disks; SSDs (solid state disks)
disk scheduling algorithms, 132
disk sector formats, 126–128
disk signatures, 153, 510
Disk.sys driver, 134
dismount operations, 399
dispatch entry points, 30
dispatcher data structures, 519
dispatch functions, 68
DISPATCH_LEVEL IRQL, 37, 39
dispatch levels, 37, 39, 549
dispatch methods (KMDF queues), 76
dispatch routines, 12, 29, 30, 74, 82
Dispdiag.exe (display diagnostic dump

utility), 231
“display as quadwords,” 263
displaybootmenu element, 504
display diagnostic dump utility

(Dispdiag.exe), 231
display drivers, 550
displayorder element, 504
displays

auxiliary, 78
drivers, 550
power requests, 106

distributed link-tracking, 435
Distributed Transaction Coordinator,

473
distribute lists, 456
dl command, 106
Dllhost (Dllhost.exe), 325
Dllhst3g.exe, 231
DLLs (dynamic link libraries)

address space, 246, 247
corruption and startup issues,

538–540
initializing, 524
load offset numbers, 249
sharing, 200
UMDF drivers, 78
VDS hardware providers, 160

DMA (direct memory access)
caching processes, 375
common buffer objects, 71
defined, 32
DMA-aware devices, 32
enabler objects, 71
IRP processing, 44
KMDF objects, 71
pool corruption, 570
transaction objects, 71
UMDF, 78
verifying functions and buffers, 67

DMA-aware devices, 32
DMA Checking option, 67
DMA common buffer objects, 71
DMA enabler objects, 71
DMA transaction objects, 71

DMDiskManager, 146–147
domains, 109, 120, 174
DO_PRIORITY_CALLBACK_ENABLED

flag, 61
double errors, 489
double faults, 588, 589
double-freeing memory, 66
DPC/dispatch levels, 295, 549,

565–567, 580. See also IRQLs
(interrupt request levels)

DPC routines, 13
DPCs (deferred procedure calls)

hung systems, 577
interrupt processing, 35–36
in I/O process, 13
KMDF objects, 71
layered drivers and, 44
pool quotas and, 294
power domain masters, 120
routines, 13
stacks, 279, 282, 518
thread context, 37

DPC stacks, 279, 282, 518
dps command, 577, 589
!dq command, 263
DRA (Data Recovery Agent), 174
DRF (data recovery field), 494–495,

496
drive letters

dynamic disks, 142
hints, 154
registry information, 153
restoring, 526
symbolic links, 409
volume manager, 141
volume namespaces, 153–158

driver callbacks, 581
DRIVER_CORRUPTED_EXPOOL stop

code, 550, 590–592
driver entry points, 17
DriverEntry routine, 12, 14, 68
driver groups, 531, 569
driver host processes, 78
driver images, 243
driver installation files. See INF files
DRIVER_IRQL_NOT_LESS_OR_EQUAL

stop code, 549, 585–586
driverloadfailurepolicy element, 507
driver manager, 79–80
driver objects

defined, 14
device stacks, 89–90
dumping, 156
functional diagram, 18
initializing, 519
in I/O process, 14–19
IRP processing, 28–29

DRIVER_OVERRAN_STACK_BUFFER
stop code, 576

DRIVER_POWER_STATE_FAILURE stop
code, 549

drivers

612

drivers. See also specific types of drivers
(bus drivers, device drivers,
miniport drivers, etc.)

buffer management, 32–33
callbacks, 581
calling other drivers, 4
corruption and startup issues,

538–540
deadlock detection, 577
deciphering names, 552
disabling, 541–542
disk drivers, 131–138. See also disk

drivers
dispatch routines, 30
entry points, 17
finding, 95
groups, 531, 569
host processes, 78
images, 243
installation files. See INF files.
I/O system and, 1
IRPs, 4
KMDF objects, 71
layered, 40–47, 439–440. See also

layered drivers
listing for crash analysis, 563
loading, 81
loading in safe mode, 529–532
lower order, 575
major function codes, 29
matching for minidumps, 556
memory manager, 189
new, crashing, 551–552
non–Plug and Play, 82
physical memory support and, 320
PnP initialization, 84–94
PnP installation, 84–98
PnP loading, 84–94
PnP support, 82–84
pool tags, 216–217
power management control, 105
power mappings, 101–102
problematic updates, 542
protected driver lists, 98
registry keys, 84–85
signed and unsigned, 96, 97, 98
synchronizing data and hardware

access, 38–39
“unknown driver” solutions, 564
unsigned, 569
updating, 568
version information, 568

driver-signing policies, 96, 97, 98
Driver Verifier

disabling large pages, 195
driver errors, 569
enabling special pool, 571–572
initializing, 519
IRQL checking, 295
low resources simulation, 295
memory manager, 292–296

miscellaneous checks, 296
No Reboot option, 572
overview, 65–68, 292–293
phase 0 initialization, 517
pool tracking, 217, 294
special pool verification, 293–294,

571, 590–592
Driver Verifier Manager, 65, 294,

571–572
Drvinst.exe process, 95
!drvobj command, 18, 27, 30, 156
DSM (device-specific modules), 134
dt command, 115, 121, 234, 289, 290,

515
dual-boot environments, 155
dummy pages, 272–273
Dumpanalysis.org website, 594
Dumpbin utility, 231
.dump command, 556, 579, 582
dump counts (BLF), 420
.dumpdebug command, 558
DUMP files, 559
Dumpfve.sys driver, 559
dump pointer with symbols command,

577
dumps. See crash dumps
duplicate data in memory, 288–289
DuplicateHandle function, 23, 201
DVD drives, 125
DVD formats, 393
Dxgport/Videoprt driver, 7
dynamic address space, 232–233,

242–245
dynamic bad-cluster remapping, 429,

487
dynamic disks

configuring, 146–147
defined, 138, 141
multipartition disk support, 138
overview, 141–145
partitioning, 145–146
registry information, 153
storage management, 141–147
volume manager, 146–147

dynamic interrupt redirection, 132
dynamic loading and unloading, 1
dynamic page sizes, 194
dynamic partitioning, 437–439
dynamic physical NVRAM cache, 350
dynamic system virtual address space

management, 242–245
dynamic virtual hard disks, 162

E
$EA attribute, 448
$EA_INFORMATION attribute, 448
ECC (error correcting code), 126, 129,

317
echo command, 428, 471

ECP (extended create parameters), 20
EFI (Extensible Firmware Interface)

APIs, 513
BCD in, 132
boot process, 499
file extensions, 513
partitioning and, 139–140
Unified EFI (EFI 2.0), 499

EFI Boot Manager, 513
EFI system partition, 513
EFS (Encrypting File System), 163,

435–436, 449, 491–499
EFSDump utility, 497
EISA devices, 511
eject events, 69
EKU (enhanced key usage), 496
Elephant diffuser, 167, 174
El Torito CDFS, 503
email attachments, 427
embedded links (OLE), 434
embedded spaces (file names), 450
emd (External Memory Device), 347
emergency hibernation files, 99
Emergency Management Services

(EMS), 504, 507, 517
EMET (Enhanced Mitigation

Experience Toolkit), 250
empty pages, 201
EMS (Emergency Management

Services), 504, 507, 517
emsbaudrate element, 505
ems element, 507
emsport element, 505
emulation (advanced format disks),

127
EncodeSystemPointer API, 209
Encrypted Data Recovery Agents

policy, 495
EncryptFile function, 436, 492, 494
Encrypting File System (EFS), 163,

435–436, 449, 491–499
encryption

backing up files, 497
BitLocker Drive Encryption,

163–176
BitLocker To Go, 175–176
change journal and, 462
copying files, 497–498
decryption, 496
EFS, 163, 435–436, 449, 491–499
file attributes, 449
file system filter drivers and, 413
keys, 165–168
NTFS design goals, 435–436
ReadyBoost, 347–348

encryption keys, 165–168
energy conservation, 105
enhanced key usage (EKU), 496
Enhanced Mitigation Experience

Toolkit (EMET), 250
enlistment objects, 519

 experiments

 613

enumeration
device interfaces, 15
device keys, 94, 96
DIIDs, 91
enumeration-based loading, 84
heap entries and regions, 221, 223
indexing interactions, 465
initializing, 521
nonenumerable devices, 88
PnP loading and initialization

process, 87–88
PnP manager, 81, 82, 85–89
power management capabilities,

100
registry keys, 89, 91
reparse points, 469
shadow copy writers, 178
volume manager, 141

enumeration-based loading, 84
enumeration keys, device, 94, 96
.enumtag command, 559
environment subsystems, 4
environment variables, 523, 526
EPROCESS structure, 554
ERESOURCE structure, 61, 295, 296
errata manager, 520
error correcting code (ECC), 126, 129,

317
“Error loading operating system” error,

537
error-logging routines, 14
error messages (boot problems),

537–542
error-reporting servers, 561–562
Esentutl.exe (Active Directory

Database Utility tool), 231
Ethernet, 514
ETHREAD structure, 61, 554
ETW (Event Tracing for Windows),

136, 521
event dispatcher objects, 301
events

CLFS, 417
in-paging I/O, 271
KDMF runtime states, 69
KDMF drivers, 69
listing for crash analysis, 563
logging, 417
memory notification events,

335–337
object types, 519
synchronization objects, 296

Event Tracing for Windows (ETW),
136, 521

Event Viewer, 227
evstore element, 507
EvtDeviceFileCreate event, 76
EvtDriverDeviceAdd callback, 69
EvtDriverDeviceAdd event, 69
EvtFileCleanup callback, 76
EvtFileClose callback, 76

EvtIoDefault callback, 76
EvtIo routines, 69
ExAdjustLookasideDepth function, 219
ExAllocatePool functions, 295
ExAllocatePoolWithTag function, 294
exception codes, 208, 549–550. See

also stop codes (bugchecks)
EXCEPTION_DOUBLE_FAULT

exception, 588
exception handlers, 208
exceptions, 188, 208, 547, 584,

586–588
exclusive access locks, 401–402
exclusive leases, 405
ExDelete functions, 296
ExDeleteResource function, 296
Executable Dispatch Mitigation, 208
executables

address space, 246, 247
corruption and startup issues,

538–540
duplicate data in memory,

288–289
execute-only, 200
execution protection, 205
image randomization, 248–249
PAGE attributes and, 203–204

execution protection, 205
executive components, 219, 286, 517,

520, 545
executive objects, 519
executive resource locks, 581
executive subsystems, 188, 500,

514–522, 545
executive worker threads, 390
exFAT file system, 396–397
Exfat.sys, 398
ExFreePool function, 296
Ex functions, 193
ExInitializeNPagedLookasideList

function, 219
ExInitializePagedLookasideList

function, 219
ExitWindowsEx function, 542, 544
expanding

partitions, 437–439
working sets, 333–334

experiments
ASLR protection, 251
Autoruns tool, 529
cache flushing, 387–388
cache manager operations,

380–386
cache working set, 362
catalog files, 97
change journal, 462–463
core parking policies, 115–116
DEP protection, 207
device handles, 22–23
device name mappings, 24
device objects, 16–17, 18

device stacks, 41
device trees, 88–89
devnode information, 93
driver dispatch routines, 30
driver objects, 18
driver power mappings, 102
dump file analysis, 558–559
EFS encryption, 497
fast I/O routines, 27
free and zero page lists, 302–303
hard links, 430
history, processor utility and

frequency, 112
hung program timeouts, 544
idle system activity, 415
INF files, 96
I/O priorities, 62–64
IRPs, 42–44
kernel debugging, 582–584
kernel stack usage, 282
KMDF drivers, 69–70
large address aware applications,

231
LDM database, 143–145
loaded driver lists, 10–11
loader parameter blocks, 515–516
mapping volume shadow device

objects, 185–186
maximum number of threads, 280
maximum pool sizes, 214–215
memory mapped files, 202
memory notification events, 337
mirrored volume I/O, 150–151
NTFS volume information, 446
PAE and addresses, 262–264
page directories and PDEs, 256
page files, 274
PFN database, 300
PFN entries, 319
physical disk I/O, 136
pool leaks, 218–219
power availability requests,

106–107, 108
PPM check information, 121–122
prefetch files, 326, 327
prioritized standby lists, 311–313
priority boosting/bumping, 64
Process Monitor’s filter driver, 414
processor utility and frequency,

111–112
process reflection, 352–353
process working sets, 331
reserved and committed pages,

197–198
resource manager information,

474–475
restore points and previous

versions, 183
sessions, 233–235
session space utilization, 235
shadow copy device objects, 181

explicit device driver loading

614

experiments, continued
shadow volume device objects,

182
shared and private cache maps,

371–373
special pool, 571–572
streams, 428
symbolic links, 432
system look-aside lists, 220
system memory information,

190–192
system power and policies,

103–104
system PTEs, 235–236
system virtual address usage, 244
thread IRPs, 31
transactions, 471–472
tunneling, 452
unkillable processes, 51–53
user virtual address space, 247–248
VACBs, 367
viewing registered file systems,

403–404
virtual address descriptors, 284
virtual address limits, 245
VPBs, 156–157
working set lists, 332–333
working sets vs. virtual size,

331–332
write throttling, 389

explicit device driver loading, 84
explicit file I/O, 408–412
explicit memory allocation, 294
exportascd element, 507
exporting control sets, 541
express queues (cache), 390
extended attributes, 448, 461
extended console input, 505
extended create parameters (ECP), 20
Extended File Allocation Table file

system (exFat), 396–397
extendedinput element, 505
extended partitions, 139, 500, 501
extending data, 461
extensibility, 1
Extensible Firmware Interface. See EFI

(Extensible Firmware Interface)
extents (runs), 444–458, 459
external disk storage management,

125
External Memory Device (emd), 347

F
F8 key, 530, 551, 578
F10 key, 578
failed control sets, 541
fail fast policy, 548
faked crash screen saver, 594

fake symbolic records, 208
fast dispatch routines, 13
Fastfat.sys driver, 393, 398
fast I/O

bypassing file system, 358
caching methods, 355
defined, 26–27
entry points, 26–27
file system drivers, 411–412
operations, 375–377
port notification, 58
routines, 3

fast lookups, 17
fast mutexes, 295, 577
FAST_MUTEX structure, 295
fast references, 240
fast teardown queues, 390
fast user switching, 339, 342
FAT12, FAT16, FAT32 file systems

bad sectors, 487
BitLocker To Go, 164, 175–176
Bootmgr support, 503
EFI system partitions, 513
extending volumes, 148
FAT directory entries, 394–395
I/O system and, 2
overview, 393–396
root directories, 395
short file names, 451
volumes, 395, 442

FAT64 file system (exFAT), 396–397
FAT volumes, 395, 442
fault handler (pager), 255
fault injection, 295
fault tolerance, 152, 425, 489, 490
fault tolerant heap (FTH), 227
FCBs (file control blocks), 405, 418,

422, 441, 475
FDOs (functional device objects),

89–90
feedback handler, 110, 111
FEK (File Encryption Key), 492–493,

495, 496
fiber-local storage, 351
Fibre Channel devices, 60, 132
FiDOs (filter device objects), 89–90,

141
FIFO (first in, first out), 328
file-allocation chains, 394–395
file-allocation tables, 394
FILE_ATTRIBUTE_COMPRESSED flag,

432
FILE_ATTRIBUTE_ENCRYPTED flag, 436
FILE_ATTRIBUTE_REPARSE_POINT

flag, 431
FILE_ATTRIBUTE_TEMPORARY flag,

386
!filecache command, 362, 371
file caching, 27. See also cache
File classes, 473

FileCompletionInformation class, 56
file control blocks (FCBs), 405, 418,

422, 441, 475
file drivers, 28–29
File Encryption Key (FEK), 492–493,

495
FileEncryptionStatus function, 436
FILE_FLAG_NO_BUFFERING flag, 377,

410
FILE_FLAG_OVERLAPPED flag, 25
FILE_FLAG_RANDOM_ACCESS flag,

360, 377, 378
FILE_FLAG_SEQUENTIAL_SCAN flag,

360, 378
FILE_FLAG_WRITE_THROUGH flag, 387
FileInfo driver (Fileinfo.sys), 338, 341
file I/O, 373–374, 407
file mapping objects. See section

objects (control areas)
$FILE_NAME attribute, 448, 449
file name indexes, 465
file names

associated with streams, 341
as attributes, 447
cache processes, 358
case-sensitive, 436
device objects in, 23
FAT volumes, 395, 449
file object attributes, 19
hard links, 429–430
indexing, 464–465
kernel image, 508
long, 395, 449, 451, 453
mapped files, 248
multiple, 451
NTFS on-disk structure, 449–453
pending file rename operations,

525
prefetched data, 325
short, 448, 450, 451, 453
tunneling, 452
UDF format, 393

file namespaces, 449–450
file-name-to-file-key mapping, 341
!fileobj command, 371
file object extensions, 19
file object pointers, 371, 409
file objects

attributes, 19
completion ports and, 56
creating, 409
defined, 19
extension fields, 20
extensions, 19
handles, 23, 368, 409, 440–441
initializing, 519
I/O functions, 19–24
IRP stack locations, 29
pointers, 371, 409
section object pointers, 288
security descriptors, 425

 format command

 615

thread-agnostic I/O, 48
viewing handles, 22–23

file record numbers, 429, 447, 466,
473, 475

file records, 443–444, 447–449,
453–456

files
attributes, 426
attributes list, 448–449
change logging, 433
change notifications, 415
compression, 432–433, 456–461
copying encrypted, 497–498
decrypting, 496
defragmentation. See

defragmentation
deleted, 130–131
distributed link-tracking, 435
encrypting. See encryption
file-allocation chains, 394–395
file objects. See file objects
handles, 201, 440–441
hard links, 429–430
indexing, 429, 464–465
KMDF objects, 71
large file sizes, 370
locking, 401–407
mapped file I/O, 27
missing, 415
multiple names, 451
names. See file names
new, 461
NTFS security, 425
open instances of, 20, 409
paging. See paging files
prefetching, 412–413
previous versions, 182
quotas, 466–467
read-ahead and write-behind,

377–390
resident and nonresident

attributes, 453–456
security descriptors, 21
setting up for cache access,

373–375
sparse files, 393, 432–433, 456–458
streams, 358
synchronizing access, 23
temporary, 386
usage patterns, 412–413
viewing device handles, 22–23
virtual, 4
virtual block caching, 358

file sizes, 391, 393, 465
FILE_SUPPORTS_TRANSACTIONS

value, 473
file system cache, 232, 373–375. See

also cache
file system control interface codes. See

FSCTL control codes

file system drivers. See FSDs (file
system drivers)

file system filter drivers, 154, 413–414
file system formats, 157, 158, 391
file system metadata, 356, 359, 366,

374–375
file system minifilters, 412
FILE_SYSTEM_RECOGNITION_

STRUCTURE type, 398
File System Recognizer, 158
file systems

cache manager and, 355
CDFS, 392
CLFS, 416–424
corruption, 178. See also

corruption
deleting files, 130–131
dismounts, 399
EFS, 491–498
exFAT, 396–397
explicit file I/O, 408–412
FAT12, FAT16, FAT32, 393–396
file system driver architecture,

398–414
filter drivers, 413–414
instances, mounting, 155
I/O system and, 2
lazy writer. See lazy writer
local FSDs, 398–399
nested, 163
NTFS, 397–398
NTFS advanced features, 428–439
NTFS file system driver, 439–441
NTFS high-end file system

requirements, 424–425
NTFS on-disk structure, 442–477
NTFS recovery support, 477–490
operations, 407–413
overview, 391–392
page fault handler. See page faults

and fault handling
page writers. See page writers
read-ahead operations. See read-

ahead operations
recoverable, 478–479
registered, viewing, 403–404
registering, 155
remote FSDs, 400–407
troubleshooting, 415–416
UDF, 393
VSS shadow copies, 178
Windows file systems, 392–398

file-to-offset pairs, 341
filter device objects (FiDOs), 89–90,

141
filter drivers

BitLocker, 164
defined, 6–7
file associations, 20
file system drivers and, 47
file system filter drivers, 413–414

FVE drivers, 173–174
KMDF IRP processing, 74
PnP manager, 82–83
Process Monitor, 413–414
setting, 20
UMDF reflectors, 79

Filter Manager (Fltmc.exe), 42, 413, 414
filter miniport drivers, 413
filters, IRPs and, 42
find APIs, 472
FindFirstChangeNotification function,

415, 433
FindNextChangeNotification function,

415
FindNextFile API, 473
FireWire. See IEEE 1394 buses

(FireWire)
FireWire cables, 578
first in, first out (FIFO), 328
firstmegabytepolicy element, 505
fixed disks, 139, 162
flash disks. See also SSDs (solid state

disks); USB flash devices
BitLocker encryption, 164, 166
BitLocker To Go, 175–176
exFAT file system, 396–397
FAT formats, 393
I/O prioritization strategy, 60
ReadyBoost, 347–348
storage management, 125

flash drivers, 80
flash memory, 128–130, 348
floppy disk drive letters, 153
floppy disks, 125
Fltmc.exe (Filter Manager), 42, 413, 414
FlushFileBuffers function, 387
flushing caches

lazy write systems, 478
LFS operations, 480
in recovery passes, 484, 485
shutdown process, 545
threads explicitly flushing, 387
VSS writers, 178
write-behind operations, 385, 386
write operations, 379

flushing mapped files, 387–388
flushing modified pages, 314, 315
flush queues (CLFS), 418–419
FlushViewOfFile function, 196, 286
folders. See directories
fontpath element, 505
fonts, 505, 511
fopen function, 20, 21
FO_RANDOM_ACCESS flag, 377
forced affinitization, 113, 119
Force Pending I/O Requests option, 68
forcing IRQL checks, 295
!for_each_module command, 592
foreground processes, 339
foreign volume recovery keys, 173
format command, 393, 442, 443, 445

format, disk

616

format, disk, 126–128
Format utility, 487
fragmentation, 222, 223–224, 394,

436–437, 443, 460
free blocks, 221, 225, 226, 227
freed buffers, 219
freed memory, 243, 294, 296, 336
freed object referencing, 66
freed pool, 565–567, 570
free function, 221
free lists, 189, 191, 285, 305, 333
free page lists

page list dynamics, 300–302
page writer, 315
PFNs, 316
RAM optimization software, 346
reference counts, 316
viewing processes, 302–303

free pages, 195, 314, 316
Free PFN state, 297, 299
free pool tag, 216
free space, 424
freezes, VSS writers and, 177, 178
frequency (processors), 110, 111–112,

114, 120
front-end heap, 222, 224
frozen systems. See crashes; hung or

unresponsive systems
FSCTL control codes

cluster usage, 437
compression, 432, 456, 459
link tracking, 435
partitioning, 437–439
repairing volumes, 491
reparse points, 431
sparse files, 433
transactions, 469
TxF recovery process, 477
TxF resource managers, 473

FSCTL_QUERY_FILE_SYSTEM_
RECOGNITION code, 399

Fsdepends.sys driver, 163
FSDs (file system drivers)

associated IRPs, 46–47
cached files, 373
cache manager, 398
client and server-side remote FSDs,

400–407
defined, 6
disk devices, 126
disk I/O operations, 159–160
fast I/O, 27, 411–412
file I/O operations, 373–374
file system filter drivers, 413–414
file system operations, 407–413
functions, 29
lazy writer, 380
loading, 512
local FSDs, 398–399
locking, 401–407

mapping and pinning interfaces,
374–375

memory manager, 398
mounting volumes, 157
named pipe file system drivers,

523
NTFS file system driver, 439–441
overview, 398–414
registering, 155, 398
remote FSDs, 400–407
reparse points, 154
shrinking partitions, 438
storage stacks, 131
volume manager and disk drivers,

47
Fs_rec.sys driver, 158
FsRtlXxx functions, 401
fsutil command, 430, 491
Fsutil.exe utility, 446, 462, 472,

474–475
FTH (fault tolerant heap), 227
Fthsvc.dll, 227
full-volume encryption (FVE), 173–174
full-volume encryption key (FVEK),

165–168
fully provisioned virtual hard disks,

162
fully reentrant functionality, 189
functional device objects (FDOs),

89–90
function codes (IRP stack locations), 29
function drivers

class/port drivers, 89
defined, 6
enumeration and class keys, 96
FDOs, 89
KMDF IRP processing, 74
miniport drivers, 89
order of loading, 93
PnP driver installation, 94
PnP manager, 82–83
PnP state transitions, 83–84
role in I/O, 7

function filters, 6
functions (user-mode applications),

4–5
FVE (full-volume encryption), 173–174
FVEK (full-volume encryption keys),

165–168
Fvevol.sys driver, 164, 173–174

G
gaming system memory limits, 323
gate objects, 301, 315
GDI (Graphics Device Interface), 221
generic extensions (file objects), 20
generic KMDF objects, 71
generic utility measurement

(processors), 113, 119, 120

Get API, 70
GetCompressedFileSize function, 456
GetFileAttributes function, 431, 432
GetFileSizes API, 473
GetInformationByHandle API, 473
GetNativeSystem function, 199
GetProcessDEPPolicy function, 208
GetProcessHeap function, 221
GetQueuedCompletionStatus(Ex)

functions, 26, 54
GetSystemDEPPolicy function, 208
GetSystemInfo function, 199
GetSystemMetrics function, 532
GetTickCount function, 555
GetVolumeInformation function, 456,

473
Gflags tool, 226
Gigabit Ethernet, 133
Global bit (PTEs), 257
\Global?? directory, 15, 23, 24, 137,

409, 519
GlobalDosDevicesDirectory field, 409
global file system driver data

structures, 520
global I/O queue, 59
global look-aside lists, 28, 390
global memory manager, 361–362
global replacement policies, 329
Globalxxx functions, 193
GPT (GUID Partition Table)

headers, 140
LDM partitioning, 145–146
partitioning, 139–140
sector-level disk I/O, 138
UEFI systems, 513

graphical interface, 500, 506
graphical shell, 509
Graphics Device Interface (GDI), 221
graphics mode (BCD), 505
graphicsmodedisabled element, 505
graphicsresolution element, 505
graphics systems, 281, 284
groupaware element, 507
Group Policy

BitLocker, 174, 175
BitLocker To Go, 175
encryption, 163–164
logon tasks, 526
Platform Validation Profile (TPM),

170
groups (drivers), 531, 569
group seeds (BCD), 507
groupsize element, 507
Group value (driver loading), 84
GsDriverEntry routine, 12
/GS flag, 576
guard pages, 197, 204, 268, 280, 281
guard PTEs, 281
guests, running, 579–580
GUID Partition Table. See GPT (GUID

Partition Table)

 hierarchy chains

 617

GUID_PROCESSOR... policies, 114, 115
GUIDs (globally unique identifiers)

defined, 15
device interfaces, 15
dynamic disks, 142
Mount Manager assigned, 154
resource managers, 474
UEFI partitioning, 139–140

H
HAL (hardware abstraction layer)

BCD elements, 504
BIOS emulation code, 517
boot process tasks, 500
crashes, 550
defined, 3
detecting, 507
Driver Verifier, 65
initializing, 516
I/O processing, 4–5
large page sizes, 194
loading, 511
Root driver, 85
system code write protection, 574
system memory reserved for, 229
in system space, 228
virtual addresses, 243

HalAllProcessorsStarted function, 519
halbreakpoint element, 507
hal element, 507
HalInitializeBIOS function, 517
HalInitializeProcessor function, 516
HalInitSystem function, 516, 519
HalQueryRealTimeClock function, 519
handle caching, 401
!handle command, 289
handles

APCs, 37
change journal, 462
child and parent processes, 23
closing, 473
completion ports, 56
duplication, 201
file objects, 19, 23, 368, 440–441
files, 201
inheritance, 201
I/O cancellation, 49
I/O process, 20, 21
KMDF objects, 70
leases, 405, 407
multiple, 406, 407
network endpoints, 54
object handle tracing, 519
obtaining for devices, 15
opening files, 409
oplocks, 406
page files, 274
per-handle caching information,

19

port notification, 58
removing devices, 83
supplied to memory manager, 193
synchronization objects, 25
transacted operations, 472–473
viewing for devices, 22–23

hanging machines. See hung or
unresponsive systems

hard disks
ACPI BIOS information, 511
failures, 550
quotas, 433–434, 466–467
ReadyBoost and, 346–348
rotating magnetic, 126–128
sector size, 391
solid state, 128–130
storage management, 125
virtual, 162–163

hard faults, 325, 339, 342
hard links, 429–430, 436, 448, 451, 462
hard partitions, 146
hardware

bound traps or double faults, 588
crash stop codes, 550
detection, 513
device drivers, 2
diagnostic tools, 593
feedback, 111
latency, 98
malfunctions, 593
memory protection, 203
mirroring, 177
new, crashing, 551–552
physical memory support, 320
ports, 507
resource allocation, 81
virtualization, 516

hardware abstraction layer. See HAL
(hardware abstraction layer)

hardware attacks, 166
hardware DEP, 205
hardware-detected memory

exceptions, 188
HARDWARE hive, 515, 520
hardware IDs, 95
Hardware Installation Wizard, 95
hardware keys, 94. See also

enumeration
hardware providers, 160
hardware PTE accessed bit, 330
hardware PTEs, 257, 259–260, 265–266
hardware tree, 514
hardware Write bits, 258
hard working set limits, 329
hash entries (working sets), 318
hashes, 96, 97, 467–468
HasOverlappedIoCompleted macro,

26
HBAs (Host Bus Adapters), 133, 134,

514
headers, 453–456

HeadlessInit function, 517
heads (hard disks), 126
head seeks, 378
heap and heap manager

address space, 246, 247
APIs, 221
blocks, 221
core, 222
debugging features, 225–226
fault tolerant, 227
functions (Heapxxx), 193, 221
heap storage, 39
IDs, 248
kernel-mode, 212–220
Low Fragmentation Heap, 223–224
overview, 220–221
pageheap, 226
pointers for processes, 222
randomization, 250
scalability, 224
security features, 224–225
structure, 222
synchronization, 223
types of, 221–222
user-mode, 222

heap blocks, 221
!heap command, 225, 226
HeapCompatibilityInformation class,

224
HeapCreate function, 221
HeapDestroy function, 221
HeapEnableTerminationOnCorruption

class, 224
HeapFree function, 227
Heap functions, 193, 221
heap IDs, 248
Heap interfaces, 221
HEAP linker flag, 221
HEAP_NO_SERIALIZE flag, 223
HeapSetInformation API, 224
heap storage, 39
HeapWalk function, 223
help files (stop codes), 549
H-HDDs (hybrid hard disk drives), 348
Hiberfil.sys (hibernation files), 99, 163,

180, 348, 500
hibernation

BCD information, 504
boot status file information, 537
configuring, 103–104
files, 99
MPIO, 135
non–Plug and Play drivers, 82
resuming from, 503, 509
S4 power state, 98, 99
Superfetch scenario plan, 339
volume encryption, 164

hibernation files (Hiberfil.sys), 99, 163,
180, 348, 500

hibernation scenario (Superfetch), 342
hierarchy chains (KMDF), 72

hierarchy prioritization strategy

618

hierarchy prioritization strategy, 59, 60
high bits (address spaces), 230
HighCommitCondition event, 336
High I/O priority, 58, 59
high IRQL faults, 565–567, 580,

590–592
high-level drivers, 1
highly utilized processor cores, 119
high memory allocation addresses,

231
HighMemoryCondition event, 336
high memory conditions, 335–337
HighNonPagedPoolCondition event,

336
HighPagedPoolCondition event, 336
high priority mapping VACBs, 366
hints, 60, 62, 154, 355
history tracking, 112, 114, 115, 338
hive files, 507, 540. See also

HARDWARE hive; SYSTEM hive
host bus adapters (HBAs), 133, 134,

514
host computers (debugging), 582–584
host processes, 79–80
hotfixes, 525, 538
hot memory, 317
hotpatching technology, 525
hung or unresponsive systems

boot problems, 537–542
breaking into, 578–581
crash dump analysis, 577–581
defined, 577
Notmyfault manual crashes,

564–565
hung program screens, 543
HvInitSystem function, 517
hybrid hard disk drives, 348, 350
hybrid sleep states, 99
hyperspace, 229
Hyper-Threading feature, 109
Hyper-V

booting from VHDs, 162
disk attributes used by, 138
dumping memory, 556, 579–580
kernel debugger, 582–584
loading hypervisor, 507
phase 0 initialization, 517

hypervisor, 517
hypervisorbaudrate element, 507
hypervisor binaries, 507
hypervisorchannel element, 507
hypervisordebug element, 507
hypervisordebugport element, 507
hypervisordebugtype element, 507
hypervisordisableslat element, 507
hypervisorlaunchtype element, 507,

516
hypervisorpath element, 507
hypervisoruselargevtlb element, 507

I
i8042 port driver, 577–578
IA64 systems

address space layouts, 237, 238
address translation, 266–267
AWE functions, 212
page sizes, 194
process virtual address space, 187
system code write protection, 574
working set limits, 329

iBFT (iSCSI Boot Firmware Table), 514
ideal model (PPM), 113, 120
ideal node (NUMA), 285
IDE devices, 60, 64, 132, 503
idempotent operations, 482
idle devices, 105
idle I/Os, 60
idle prioritization strategy, 59, 60, 63
Idle process, 518
idle processor states (C processor

states), 108–109, 120
idle scaling (processors), 120
idle state management policies, 114
idle systems, 339
IEEE 1394 buses (FireWire)

basic disks, 139
debugging channels, 504
debugging devices, 504
drivers, 6
hypervisor debugging, 507
KMDF support, 68
UMDF support, 78

IEEE 1394 (FireWire) cables, 578
IHVs (independent hardware vendors),

79, 177
illegal instruction faults, 573
illegal operations, 66
image activation, 27
image autoruns, 528–529
image base randomization. See

ASLR (Address Space Layout
Randomization)

image bias, 249
Image Dispatch Mitigation, 208
IMAGE_DLL_CHARACTERISTICS_

DYNAMIC_BASE flag, 248, 250
IMAGE_DLLCHARACTERISTICS_NX_

COMPAT flag, 207–208
IMAGE_FILE_LARGE_ADDRESS_AWARE

flag, 230
image loader, 202
image randomization, 248–249
images, 539, 556
ImageX, 162
implicit memory allocation, 294
InbvDriverInitialize function, 517
InbvEnableBootDriver function, 517
increaseuserva configuration, 229,

280, 329, 557
increaseuserva element, 508

increasing thresholds (processors),
114, 115

$INDEX_ALLOCATION attribute, 448
index allocations, 448, 455, 465
index buffers, 465
indexing, 429, 462, 464–465
$INDEX_ROOT attribute, 448
index root attributes, 454, 455, 465
Inetinfo.exe (Internet Information

Server), 231
INF database, 521
\Inf directory, 96
INF files

defined, 2–3
device keys, 91
digital signatures, 95–96
driver groups, 531
function driver files, 96
PnP hardware installation, 95
viewing, 96

infinite loops, 580
InitBootProcessor function, 516, 517,

518
initialconsoleinput element, 505
initialization

KMDF routines, 68, 69
order of, 87–88
routines, 12

Initiator service, 133
InitSafeBoot function, 531
InitSafeBootMode function, 532
injected threads, 351
in-page error PFN flag, 317
in-paging I/O, 271–272
In POSIX function, 429
input buffers, 32–33
input device drivers, 6
installation

driver installation files. See INF files
hotfixes, 538
patches and service packs, 538
PnP manager’s handling, 81, 94–98
repairing, 535–537, 539
well-known installers, 538
Windows boot preparations,

499–500
Windows Update, 538

installation files or scripts. See INF files
instance IDs, 90, 91
instances

DIIDs (device instance IDs), 91, 94
file systems, 155
open files, 20, 409
pool tags, 216
WMI, 72

instruction pointer register, 585
inswapping stacks, 188
INT 3 instruction, 587
integrity check mechanisms, 224, 508,

581
integrityservices element, 505

 IopSafeBootDriverLoad function

 619

intelligent read-ahead (caching), 358,
368, 378–379

Intel Macintosh machines, 513
Interactive Services Detection service

(UIODetect.exe), 525
internal error reporting servers,

561–562
internal synchronization, 189
Internet attachments, 427
Internet Information Server

(Inetinfo.exe), 231
Internet SCSI (iSCSI), 60, 125, 126,

133–134, 514
Internet Storage Name Service (iSNS),

133, 134
interrupt controller, 516
interrupt dispatch table, 35
interrupt-driven devices, 13
interrupt request levels. See IRQLs

(interrupt request levels)
interrupts

diagrammed, 36
initializing, 519
in IRP processing, 33–34
KMDF objects, 71
layered drivers, 44–45
legacy BIOS interrupts, 514
phase 0 initialization, 516
servicing, 34–36
UMDF, 78

interrupt service routines. See ISRs
(interrupt service routines)

interrupt-servicing DPC routines, 13
interval clock timer interrupts, 516
invalid addresses, 585, 590–592
INVALID_HANDLE_VALUE value, 201
invalid IRQL, 66
invalid pages, 293, 571. See also high

IRQL faults
“Invalid partition table” errors, 537
invalid PFN states, 297
invalid PTEs, 268–271, 302. See also

page faults and fault handling
IoAdjustStackStizeForRedirection

API, 42
IoAllocate functions, 294, 295
IoAsynchronousPageWrite function,

412
IoBoostCount function, 61
IoBoostThreadPriority function, 61
IoCallDriver function, 33–34, 68, 409,

410
I/O cancellation, 75
IoCompleteRequest function, 33–34, 36
I/O completion. See also I/O

completion ports
associated IRPs, 47
completion context, 19
completion ports, 53–58
file attributes, 19
layered drivers, 45, 46

port notifications, 57–58
port operation, 56–58
process, 36–38
in processing, 33–34
shortcuts in, 38

IoCompletion executive object, 54, 56
I/O completion ports

completion packets, 55
completion process, 37, 53–58
creating and operating, 56–58
file object attributes, 19
I/O cancellation, 49
IoCompletion executive object, 54
processes, 54–55
testing asynchronous I/O, 26
thread-agnostic I/O, 48, 55

I/O concurrency, 75
I/O control codes, 32
IoCreateDevice function, 14
IoCreateDeviceSecure function, 14
IoCreateFileEx function, 20
IoCreateFile function, 20, 21
IoCreateFileSpecifyDeviceObjectHint

function, 20
IOCTL requests

freezing volumes, 178
KMDF, 76, 77
querying sector size, 128
thawing volumes, 178
trim command and, 130

I/O errors, 317, 318
IofCallDriver function, 576
IoGetTransactionParameterBlock

function, 20
I/O manager and operations. See also

I/O prioritization
atomic transactions, 424–425
buffer management, 32–33
cache manager, 356
canceling IRPs, 50–53
completion, 36–38, 55
completion ports, 53–58
components, 1–3, 439
container notifications, 65
copy engine, 381
defined, 2
device drivers, 19–24
driver and device objects, 14–19
driver initialization, 85
Driver Verifier, 65–68
explicit file I/O, 408–412
fast I/O, 26–27, 375–377
half-completed I/O, 359
initializing, 521
in-paging I/O, 271–272
I/O targets, 71
IRPs, 28–29, 33–34. See also IRPs

(I/O request packets)
Kernel-Mode Driver Framework

(KMDF), 68–77
KMDF model, 74–77

KMDF queues, 75
layered driver processing, 40, 41,

439–440
loading drivers, 531
local file system drivers, 398–399
look-aside lists, 219
mapped file I/O and caching,

27–28
mounted volumes, 157–158
mounting process, 155
not shown in Process Monitor, 415
opening file objects, 21
overview, 1, 3–4
PFNs, 316, 318
phase 1 initialization, 519
PnP loading and initialization

process, 87
PnP manager, 81–98
power manager, 98–123
prioritization, 58–64
queues, 71
reparse points, 154
request processing, 4–5
request types, 25–33. See also I/O

requests
robust performance, 344
scatter/gather I/O, 28
servicing interrupts, 34–36
shutting down, 545
storage stacks, 131
Superfetch rebalancer, 343
synchronization, 75
thread-agnostic I/O, 48
UMDF interaction, 79
User-Mode Driver Framework

(UMDF), 78–81
volume operations, 159–160
writing crash dumps, 559

IoPageRead function, 411, 413
IopBootLog function, 533
IopCancelAlertedRequest function, 53
IopCopyBootLogRegistryToFile

function, 533
IopInvalidDeviceRequest function, 30
IopLoadDriver function, 531
I/O port drivers, 7
IopParseDevice function, 409
I/O prioritization

boosts and bumps, 62–64
file object attributes, 19
inheritance, 61
inversion avoidance, 61
levels of, 58
overview, 58–59
scheduled file I/O, 64
strategies, 59–61

IoPriority.exe, 62–64
I/O priority inheritance, 61
I/O priority inversion avoidance, 61
IopSafeBootDriverLoad function,

531–532

IopSynchronousServiceTail function

620

IopSynchronousServiceTail function,
53

I/O queues, 71
IoReadPartitionTableEx function, 138
IoRegisterContainerNotification

function, 65
IoRegisterDeviceInterface function, 15
IoRegisterFileSystem function, 155
IoRegisterPriorityCallback function, 61
IoRemoveIoCompletion function, 56
I/O request packets. See IRPs (I/O

request packets)
I/O requests. See also IRPs (I/O request

packets)
asynchronous, 25–26
cancellation, 48–53
completing, 36–38
control flow, 26
fast I/O, 26–27
interrupts, 34–36
I/O manager, 3–4
KMDF objects, 71
large pages, 194
layered drivers, 40–47
multiple, 25–26
processing, 25
scatter/gather I/O, 28
synchronization, 38–39
synchronous, 25–26
thread-agnostic I/O, 48
types of, 25–33

IoSessionStateNotification class, 65
IoSetCompletionRoutineEx function,

294, 295
IoSetDeviceInterfaceState function, 15
IoSetIoPriorityHint function, 60
I/O status block ranges, 20
I/O status blocks, 36
IoSynchronousPageWriter function,

412
I/O targets, 71
I/O Verification option, 67
IP networks, 133
!Irp command, 42, 53, 575, 576, 581
IRP credits, 334
IRP dispatches, 576
!Irpfind command, 42
IRP Logging option, 68
IRP look-aside lists, 28, 41
IRP_MJ_CREATE IRPs, 409
IRP_MJ_PNP IRPs, 15
IRP_MJ_READ IRPs, 411
IRP_MJ_WRITE IRPs, 411, 412
IRP_MN_START_DEVICE IRPs, 15
IRP_MU_CREATE command, 413
IRPs (I/O request packets)

adjusting credits, 334
associated groups, 44, 46
body, 29
buffer management, 32–33
cache interactions, 356

cancellation, 48–53
completion, 36–38
creating, 4
debugging, 576
defined, 3–4, 28–29
device tree flow, 88
disk I/O operations, 159
enumerating, 61
errors in dispatches, 576
examining, 42–44
file object interaction, 409
file system drivers, 399, 411
KMDF handling, 74–77
layered driver processing, 40–47
lists, 19, 30–31
look-aside lists, 28, 41
pointers to, 53
priority strategies, 59, 60
processing, 4–5, 28–29
Process Manager and, 414
recording usage, 68
reuse, 28, 41
serializing, 12
single-layered drivers, 33–39
stack locations, 29–31, 41
thread-agnostic I/O, 48
UMDF reflectors, 79
verification, 67

IRP stack locations, 33–39, 41
IRQL_NOT_LESS_OR_EQUAL stop

code, 549, 590
IRQLs (interrupt request levels)

APCs and, 37–38
crashes, 549
drivers executing at elevated, 295
driver synchronization, 39
high IRQL faults, 565–567, 585
in I/O process, 13
KMDF drivers, 74
port drivers, 132
preempting driver execution, 38
special pool allocations and, 294

ISA buses, 68, 511
iSCSI Boot Firmware Table (iBFT), 514
Iscsicli.exe utility, 133, 134
iSCSI Control Panel applet, 134
iSCSI devices, 60, 125, 126, 133–134,

514
iSCSI Host Bus Adapter (HBA), 514
iSCSI Initiator, 133–134, 514
iSNS (Internet Storage Name Service),

133
ISO-9660 format, 392
ISO-13346 format, 393
ISO images, 507
isolating transaction operations,

470–472
ISRs (interrupt service routines)

defined, 13
hung systems, 577
interrupt processing, 35

layered drivers, 44
monitoring keystrokes, 577–578

ISVs (independent software vendors),
177

Itanium firmware, 145, 194, 513

J
$J data stream, 461
Joliet disk format, 392
journaled file systems, 416, 478. See

also change journal files
jumping stacks, 281
junctions, directory, 20, 430–432

K
k command, 574
Kd debugger (Kd.exe), 504, 564,

578–581
KdDebuggerInitialize1 routine, 520
KeAcquireInterruptSpinLock routine,

39
KeBalanceSetManager routine, 188,

333
KeBugCheck2 function, 590
KeBugCheckEx function, 548, 576, 578
KeExpandKernelStackAndCallout

function, 281
Kei386EoiHelper function, 576
KeInitializeQueue function, 56
KeInsertByKeyDeviceQueue function,

133
KeInsertQueue function, 56, 57
KeLoaderBlock variable, 515
KeRegisterBugCheckCallback function,

548
KeRegisterBugCheckReasonCallback

function, 548, 554
KeRemoveByKeyDeviceQueue

function, 133
KeRemoveQueueEx function, 56
kernel (Ntoskrnl.exe, Ntkrnlpa.exe)

boot process, 132, 514
boot process tasks, 500
bumps, 62–64
DLLs, 7
file objects, 20
heap manager, 221
illegal instruction faults, 573
initializing, 514–522
large page sizes, 194
listing modules, 568
loading, 511
matching for minidumps, 556
memory manager components,

188–189
non-PAE kernel, 205
Ntkrnlpa.exe, 260

 lazy writer

 621

phase 0 initialization, 516–518
phase 1 initialization, 518–522
process block (KPROCESS), 255
queues, 56
safe mode switch scanning, 531
servicing interrupts, 34–36
stack. See kernel stack
stack trace database, 518
subsystem crashes, 547
synchronization routines, 39
system code write protection, 574
thread exceptions, 586–588
trap handler, 267
UMDF interaction, 78, 79
updating, 568

kernel address space, 240, 250, 266
kernel bumps, 62–64
kernel code, 195, 266
KERNEL_DATA_INPAGE_ERROR stop

code, 550
kernel debugger

attaching, 582–584
BCD elements, 505, 506
breaking into systems, 577
initializing, 519
listing drivers, 11
transports, 506
troubleshooting without crash

dumps, 581–582
viewing file objects, 22–23

kernel driver stack, 78
kernel element, 508
kernel extensions, 6
kernel image file name, 508
kernel memory

displaying information, 191
low resources simulation, 295
memory manager, 189
paged pool execution protection,

205
pool functions, 66
session pool execution protection,

205
kernel memory dumps, 554, 556–557
kernel mode

access violations, 550
call stacks, 553
DLLs, 7
drivers, 6, 10–11, 80, 335–337,

547–548
heaps, 212–220
memory manager services in, 193
page faults and, 267
paging, 521
protecting memory, 203–204
virtual addresses, 252

Kernel Mode Code Signing (KMCS), 98,
505, 512

Kernel-Mode Driver Framework. See
KMDF (Kernel-Mode Driver
Framework)

kernel-mode drivers, 6, 10–11, 80,
335–337, 547–548

KERNEL_MODE_EXCEPTION_NOT_
HANDLED stop code, 575,
586–588

KERNEL_MODE_EXCEPTION_NOT_
HANDLED with P1... stop code,
550

kernel-mode heaps (system memory
pools), 212–220

kernel-mode pages, 554, 555
kernel-mode thread exceptions,

586–588
kernel process block (KPROCESS), 255
kernel queues, 56
kernel stack

in commit charge, 276
defined, 279
memory dumps, 554
memory management, 281–282
overflows, 588–589
PFNs and, 316, 317, 318
stack trace database, 518
usage, 282

Kernel Transaction Manager (KTM),
446, 469, 474, 476, 477

KeStartAllProcessors routine, 519
KeSwapProcessOrStack routine, 188
KeSynchronizeExecution routine, 39
KEVENT structure, 295
keyboard buffers, 505
keyboard drivers, 577–578
keyboard ISRs, 580
keyboard sequences, 504
key entries (encryption), 494
key escrow services, 174
key number generation, 168
key recovery mode (TPM), 168
keyringaddress element, 504
key rings, 494, 504
KiActivateWaiterQueue function, 57
KiDispatchException function, 584
KiInitializeKernel function, 516, 518
KiPreBugcheckStackSaveArea

function, 576
KiSwapperThead function, 334
KiSystemStartup function, 516
KiUnwaitThread function, 57
KMCS (Kernel Mode Code Signing), 98,

505, 512
KMDF (Kernel-Mode Driver

Framework)
data model, 70–74
driver structure and operation,

68–70
I/O model and processes, 74–77
KMDF objects, 70–74
object attributes, 73–74
object context, 72–73
object hierarchy, 73

object types, 71–72
viewing drivers, 69–70

KMODE_EXCEPTION_NOT_HANDLED
stop code, 549, 575

KMUTEX structure, 295
Knowledge Base, 549
KPRCB structure, 111–112, 120
KPROCESS block, 255
KSEG0 mapping, 506
Kseg3 and 4 addresses, 266
KSEMAPHORE structure, 295
KSPIN_LOCK structure, 295
KTHREAD structure, 56
KTIMER structure, 295
KTM (Kernel Transaction Manager),

446, 469, 474, 476, 477
KtmLog stream, 474, 477
Ktmutil.exe utility, 472
KUSER_SHARED_DATA structure, 209

L
LANMan Redirector, 400
LANMan Server, 400
laptop encryption, 435
large-address-space-aware

applications, 187, 230–231,
237, 243, 280

large-address-space-aware images,
187

large file sizes, 370
large-IRP look-aside lists, 28
Large page bit (PTEs), 257
large pages, 193–195, 574
large scale corruption causes, 570
last known good (LKG)

booting LKG configuration, 508
configuration, troubleshooting

with, 551
post-splash-screen crashes, 541
set, updating, 525–526
troubleshooting, 530

lastknowngood element, 508
latency, 35, 149
layered drivers

data redundancy, 425
device stacks, 90
functionality diagrams, 8, 9
I/O completion, 45, 46
I/O request processing, 40–47,

439–440
I/O system, 1, 7–11
layered device objects, 18

lazy closes, 390
lazy commit algorithm, 486
lazy evaluation algorithms, 210, 282
lazy writer

batching log records, 478
cache interaction, 359
cache manager work requests, 390

LBAs

622

lazy writer, continued
decompressing files, 460
disabling, 386
fast I/O, 377
file system drivers, 408
file system operation, 412
flushing cache contents, 440
overview, 379–380
recovery passes, 485
ticks, 390
write throttling, 388

LBAs (logical block addresses), 132
LCNs (logical cluster numbers)

compressed files, 459
index mapping, 465
noncompressed files, 457
physical locations, 443
in runs, 445
VCN-to-LCN mapping, 444–445,

455–456, 488
LDM (Logical Disk Manager), 141–146
LDMDump utility, 143
leaking memory

debugging, 575
forcing leaks with Myfault.sys, 564
Memory Leak Diagnoser, 351
paged pool, 278
pool, 218–219
prioritized standby lists, 313
processes, 278
system PTEs, 235
TestLimit.exe, 232

leaks, pool, 218–219
lease keys, 405
leases, 401, 404–407
least recently used (LRU)

clock algorithm, 328
replacement policies, 328
VACBs, 366

legacy APIs, 221
legacy applications, 540
legacy BIOS interrupts, 514
legacy devices, 511
legacy disk management utilities, 146
legacy drivers, 82, 132
legacy file formats, 392
legacy mode, 260
legacy naming conventions, 136
legacy operating systems, 127
legacy port drivers, 60, 132
legacy reparse points (junctions),

431–432
levels, oplocks, 401–402
LFH (Low Fragmentation Heap), 222,

223–224
LFS (log file service), 440, 479–480,

483
library calls, KMDF and, 68
licensing, 320, 413, 520, 522
linked lists, 240, 242, 299, 300–302
links, OLE, 434–435

link tracking, 434–435, 448
listing

device objects, 16–17
loaded drivers, 10–11

list modules command option, 568
list shadows command, 185
LiveKd, 556, 579–580
LKG. See last known good (LKG)
lm command, 568, 574, 587
load-balancing policies, 134
loaded drivers

memory dumps, 554
memory manager and, 189
minidumps, 554
viewing list, 10–11

loaded image address space, 246
!loadermemorylist command, 515–516
loader parameter blocks, 514,

515–516, 522
loading drivers, 1, 81, 84–94
loadoptions element, 508
locale element, 505
local FSDs, 398–399
Local Group Policy Editor, 174–175
local pool tag files, 216
local replacement policies, 329
Local Security Authority Subsystem.

See LSASS (Local Security
Authority Subsystem)

Local Security Policy MMC snap-in,
495

local session manager (LSM), 501, 525
Localtag.txt file, 216
local-to-local or -remote links, 431
Localxxx functions, 193
lock contention, 224
locked bytes, 376
locked memory page tracking, 294
LockFile function, 23
locking

address space, 189
byte ranges, 427
client-side remote FSDs, 400–407
file system drivers, 401–407
heap, 223
I/O priority inheritance, 61
memory, 199
pages in memory, 199
portions of files, 23
pushlocks, 189
user-mode buffers, 20
working set locks, 189

LOCK prefix, 241
!locks command, 581
log blocks, 421
log block signature arrays, 421
log container files, 446
log-end LSNs, 422
“log file full” errors, 483, 487
log files

CLFS, 418–419, 420

defragmentation and, 437
NTFS $LogFile, 445
recoverable file systems, 359
recovery, 478, 479–483
recovery passes, 484–487
safe mode, 533–534
size, 482–483
Superfetch service, 338
TxF, 474

log file service (LFS), 440, 479–480,
483

$LOGGED_UTILITY_STREAM attribute,
449, 469, 475–476

logged utility streams, 449
logging

boot process, 506
change logging, 433
CLFS. See CLFS (Common Log File

System)
log tails, 424
metadata, 479–483
NTFS transaction support, 476–477
overhead, 478
proactive memory management,

341
recovery, 478
safe mode booting, 533–534
sequence numbers, 420–421
Superfetch service, 341
transactions, 476–477
update records, 482

logging areas (LFS), 479–480
logical block addresses (LBAs), 132
logical block numbers, 127
logical block offsets, 355
logical blocks, 127
logical cluster numbers. See LCNs

(logical cluster numbers)
logical container identifiers, 420
logical descriptors (TxF), 481
logical disk manager (LDM), 141–146
logical drives, 139
logical ports, 7
logical prefetcher, 285, 324–328,

527–528
logical processors, 507
logical sequence numbers. See LSNs

(logical sequence numbers)
logo animation, 506
logoff notifications, 65
logon manager (Winlogon.exe), 228,

524, 526–527, 542–543
logons, 65, 228, 501, 526–527
log records

CLFS, 416
marshalling, 417
metadata logging, 481–483
recovery mechanisms, 481–483
size, 424
types, 481–483

 memory

 623

log sequence numbers. See LSNs
(logical sequence numbers)

log start LSNs, 421
log tails, 424
long file names, 451, 453
look-aside lists

adjusting, 334
defined, 219
heap allocation, 224
kernel stack PFNs, 318
KMDF objects, 71
NUMA nodes, 285
per-processor cache, 390
verifying, 296

LowCommitCondition event, 336
lowercase characters, 446
lower-level filter drivers, 89, 93
Low Fragmentation Heap (LFH), 222,

223–224
Low I/O priority, 58, 59
LowMemoryCondition event, 336
low memory conditions, 335–337
LowNonPagedPoolCondition event,

336
LowPagedPoolCondition event, 336
low priority mapping VACBs, 366
low-priority page lists, 310
LPT1 device name, 523
LRU. See least recently used (LRU)
LRU VACBs, 366
Lsasrv.exe. See LSASS (Local Security

Authority Subsystem)
LSASS (Local Security Authority

Subsystem)
boot process, 501
Command Server Thread, 522
EFS, 435
encryption services, 494
initializing, 525
large address space aware, 231
shutdowns and, 545

LSM (local session manager), 501, 525
LSNs (logical sequence numbers)

caching, 359
CLFS operations, 420–421
log start LSNs, 421
resource managers and, 474
transactions, 476
translating virtual to physical,

422–423
LZNT1 compression, 456

M
machine checks, 550
MachineCrash key, 550
magneto-optical storage media, 393
mailslots, 4, 523
major function codes (IRP stack

locations), 29

malloc function, 221
malware, 204–209
Manage-bde.exe, 174
manual crash dumps, 577, 578, 593
manual I/Os, 76
manually configured targets (iSCSI),

134
manually crashing systems, 556, 577
MANUALLY_INITIATED_CRASH stop

code, 578
manual restore points, 184
mapped file functions, 193, 399, 413
mapped files

address space, 247
cache coherency, 356–358
copy-on-write mapped memory,

276
I/O, 27–28, 202, 286
memory manager, 200–202
modified page writer, 314–315
objects, 221
page faults, 267
pages, 196, 314
read-ahead and write-behind, 377
section objects, 287
sections, 407
shared pages, 270
viewing, 202
virtual address space, 356

mapped pages, 211, 350. See also
address translation

mapped page writer
cache operations, 375
defined, 188
file system drivers, 407, 412
file system operations, 412
recovery process, 359
write-behind operations, 385, 386

mapped views
cache manager, 360
dynamic address space, 232, 233
in system space, 229
TxF transactions, 473
VACBs, 368
valid and invalid pages, 271

mapped writer threads, 379
mapping

virtual memory into physical, 187
volume shadow device objects,

185–186
mapping interface, 374–375
mapping methods, 373
MapUserPhysicalPages functions, 211
MapViewOfFileEx function, 193, 200,

201
MapViewOfFileExNuma function, 201
MapViewOfFile function

cache coherency issues, 356
committed storage, 277
creating virtual address space, 275
mapped file I/O, 27

memory mapped file functions,
193

page-file-backed mapped
memory, 276

section views, 201
TxF transactions, 473

MapViewOfFileNuma function, 193
Markov chain models, 344
marshalling, 417
marshalling areas, 417
mass storage devices, 6, 60, 64
master boot records. See MBRs (master

boot records)
master file table backup ($MftMirr),

438
master file tables. See MFTs (master

file tables)
$Max data stream, 461
maxgroup element, 508
MaximumCommitCondition event, 336
maximum pool sizes, 213–215
maximum section size, 287
maximum utility (processors), 110
maxproc element, 508
MBRs (master boot records)

boot process, 500, 502
corruption and startup issues, 537
defined, 501
disk signatures, 510
encryption, 166
LDM partitioning, 145–146
multipartition volumes, 150
partitioning style, 139
protective MBR, 140
sector-level disk I/O, 138

MCA (Micro Channel Architecture),
511

MD5 hashes, 495
MDLs (memory descriptor lists), 32,

272–273, 296, 375
media player applications, 105–108
MEM_DOS_LIM flag, 200
Meminfo tool, 300, 311–313, 319, 322
MemLimit utility, 245
memory. See also memory manager

access violations, 195
BCD elements, 504
boot process, 500, 514
core parking, 109
corruption, 569–572
counter objects, 190–192, 215–219
crash dumps, 569–572
crash stop codes, 550
diagnostic tools, 534
double-freeing, 66
dumping with dd, 64
KMDF objects, 71, 72
leaks. See leaking memory
look-aside lists, 219–220
low resources simulation, 295

memory cards

624

memory, continued
memory management faults. See

page faults and fault handling
memory manager. See memory

manager
NAND-type, 128–130
notification events, 335–337
not owned by drivers, 573
physical, maximums, 187
power states, 98
priority, 311
protecting, 203–204
RAM vs. flash, 128
removing from use, 509
third-party optimization software,

345–346
usage, 190–192
working sets, 335–337
zeroing, 189

memory cards, 393
memory description lists (MDLs), 32,

272–273, 296, 375
Memory.dmp file, 557
MemoryErrors event, 336
Memory Leak Diagnoser, 351
memory leaks. See leaking memory
memory management faults. See page

faults and fault handling
MEMORY_MANAGEMENT stop code,

550
memory management unit (MMU),

254, 257, 260
memory manager

64-bit virtual layouts, 237–239
address translation, 251–267
Address Windowing Extensions,

210–212
allocation granularity, 199–200
AS64 translation, 266–267
balance set manager and swapper,

333–334
cache manager, 355
cache misses, 440
caching, 27–28
clustered page faults, 272–273
collided page faults, 272
commit charge, 275–277, 278–279
commit limits, 199, 275–277
components, 188–189
copy-on-write, 209–210
demand paging, 324
Driver Verifier, 65, 292–296
dynamic system virtual address

space, 242–245
fast teardown queues, 390
file I/O operations, 373–374
file system drivers, 398, 399
heap manager, 220–227
in-paging I/O, 271–272
internal synchronization, 189
invalid PTEs, 268–269

I/O priorities, 58
kernel-mode heaps, 212–220
large and small pages, 193–195
locking memory, 199
logical prefetcher, 324–328
management, 187–188, 329–333
mapped files, 27–28, 200–202
mapped file views, 413
mapped page writer, 412
modified page writer, 314–315,

412
no execute page protection,

204–209
notification events, 335–337
NUMA, 285
PAE translation, 260–264
page fault handling, 267–279
page files, 273–274
page file size, 278–279
page list dynamics, 300–310
page priority, 310–313
PFN database, 297–319
phase 0 initialization, 517
physical memory limits, 320–323
placement policies, 328–329
proactive memory management

(Superfetch), 338–350
protecting memory, 203–204
prototype PTEs, 269–271
reserving and committing pages,

195–198
section objects, 286–292
session space, 232–235
shared memory, 200–202
shutting down, 545
stacks, 279–282
standby and modified lists,

363–364
system memory pools, 212–220
system PTEs, 235–236
systemwide resources, 189
system working sets, 334–335
translation look-aside buffer,

259–260
usage, 190–192
user space virtual layouts, 246–251
virtual address descriptors,

282–284
virtual address randomization,

248–250
virtual address space layouts,

228–251
working sets, 324–337
x64 translation, 265–266
x64 virtual limitations, 240–242
x86 translation, 252–259
x86 virtual layouts, 229–232,

232–235
memory-mapped files, 187, 193, 525,

549
memory-mapped I/O, 504

memory mirroring APIs, 556
Memory Test (Memtest.exe), 500
MEM_TOP_DOWN flag, 231
!memusage command, 291
message queues, 417
message signaled interrupts, 508
metadata

CLFS logs, 418, 420
disk availability, 130
dynamic address space, 233
file system metadata, 359, 392
file system structure, 443–444
LFH blocks, 225
logging, 479–483
not in Process Monitor, 415
NTFS extensions directory, 446
transaction resource managers,

473–474
metadata transaction log ($LogFile),

438
$MftMirr (master file table backup),

438, 444
MFT records, 443–444, 447–449, 456,

465
MFTs (master file tables)

compressed files, 458
contiguous disk space, 436
directories, 454
duplicated, 490
file entries, 448
file names, 450
file record numbers, 447
file records, 443–444, 447–449,

465
indexing and, 464–465
multiple records for files, 456
noncompressed files, 457
NTFS on-disk structure, 443–446
resident attributes, 453–456
stream-based caching, 358
traces, 325, 327
$TXF_DATA attribute, 475

mice, legacy, 511
MiComputeNumaCosts function, 285
Micro Channel Architecture (MCA),

511
Microsoft, sending crash dumps to,

561–562
Microsoft Management Console, 325.

See also Disk Management
MMC snap-in

Microsoft Platforms Global Escalation
Service, 594

Microsoft symbol server, 556
Microsoft Windows Hardware Quality

Labs (WHQL), 65, 96
MiCurrentMappedPageBucket routine,

314
MiDereferenceSegmentThread

routine, 189
MiDispatchFault routine, 411

 multiple data streams

 625

MiImageBias routine, 249
MiImageBitmap routine, 249
MiInitializeRelocations routine, 249
MiInsertPage routines, 314, 315
MiIssueHardFault routine, 384
MiMappedPageListHeadEvent event,

314
MiMappedPageWriter routine, 188,

314–315
MiMaximumWorkingSet variable, 329
MiModifiedPageWriter routine, 188,

314–315
miniclass drivers, 7
minidumps, 351, 554–556, 562, 579
minifilter drivers, 413
minifilters, 412
Minimal subkey, 530–531, 532
MiniNT/WinPE registry keys, 521
miniport drivers, 7, 89, 131, 132–136,

159
minor function codes (IRP stack

locations), 29
MiObtain functions, 242, 244, 314
MIPS support, 506
MiReclaimSystemVA function, 243
MiRescanPageFilesEvent event, 315
MiReturn functions, 242
mirrored partitions, 141, 143, 425, 489
mirrored volumes (RAID-1)

bad sector handling, 490
creating, 151
data redundancy, 425
defined, 149–151
I/O operations, 150–151, 159

mirroring
memory mirroring APIs, 556
Volume Shadow Copy Service, 177

“Missing operating system” error, 537
MiSystemPteInfo variable, 235–236
MiSystemVaType arrays, 243
MiSystemVaTypeCount arrays, 244, 245
mitigation component (FTH), 227
MiTrimAllSystemPagableMemory

function, 295
MiVa regions, 243
MiWriteGapCounter variable, 314
MiZeroInParallel function, 189, 302
Mklink.exe utility, 185
MLC (multilevel cell memory), 128–129
mlink utility, 430
MmAccessFault handler, 267, 384,

411, 413
MmAllocate functions, 285, 302
MmAvailablePages variable, 315, 318
MMC snap-in. See Disk Management

MMC snap-in
MmFlushAllFilesystemPages function,

314
MmFlushAllPages function, 314
MmFlushSection function, 412
Mm functions, 193, 295

MmInitializeProcessAddressSpace
function, 352

MmLock functions, 199
MmMapIoSpace function, 194
MmMapLockedPages function, 296
MmMappedPageWriterEvent event,

314
MmMapViewInSystemCache function,

411
MmMaximumNonPagedPoolInBytes

variable, 214
MmModifiedPageWriterGate object,

315
MmNumberOfPhysicalPages variable,

318
MmPagedPoolWs variables, 214, 334,

335
MmPagingFileHeader event, 315
MmPrefetchPages function, 327
MmProbeAndLockPages function,

199, 296
MmProbeAndLockProcessPages

function, 296
MmResidentAvailablePages variable,

318
MM_SESSION_SPACE structure, 233,

234
MmSizeOfNonPagedPoolInBytes

variable, 214
MmSizeOfPagedPoolInBytes variable,

214
MmSystemCacheWs variables, 334,

335
MmSystemDriverPage variable, 335
MmSystemPtesWs variable, 334
MMU (memory management unit),

254, 257, 260
MmUnlockPages function, 296
MmUnmapLockedPages function, 296
MmWorkingSetManager function,

188, 314, 333
MmZeroPageThread routine, 189
model-specific registers (MSRs), 282
modified lists

cache manager write operations,
379

cache physical size, 363
displaying information, 191
mapped page writer, 188
page faults, 267, 269
page writer, 314
PFNs, 316, 318
redistributing memory, 341
shared pages, 270
system cache, 361, 363–364
viewing page allocations, 304–310

modified-no-write lists, 269, 270
modified-no-write pages, 316
Modified no-write PFN state, 297, 299
modified page lists, 196
modified pages, 316, 412

modified page writer
defined, 188, 196
file system drivers, 407, 412
file system operation, 412
PFN database, 314–315

Modified PFN state, 297, 299
modified PFN state flag, 317
monitors, auxiliary, 78
more command, 428
motherboard devices, 85, 578
motherboard driver, 500
mounting volumes, 153–158, 162,

399, 444
Mount Manager, 155
Mount Manager driver, 153–154
mount operations, 141
mount points, 20, 154–155, 469
mount requests, 155
Mountvol.exe tool, 155
mouse devices, legacy, 511
move APIs, 472
MoveFileEx API, 525
moving files, 525
Mpclaim.exe, 135
Mpdev.sys driver, 134
MPIO (Multipath I/O), 134–136, 138
Mpio.sys driver, 134
Msconfig utility, 528
MS-DOS

file names, 449
generating file names, 451
tunneling cache, 452

MS-DOS applications, 200, 503
Msdsm.sys module, 134
msi element, 508
MsInfo32.exe utility, 10–11, 321, 403
Msiscsi.sys driver, 133
MSRs (model-specific registers), 282
MUI files, 175
multiboot systems, 393
multifunction device container IDs,

91–92
multilevel cell memory (MLC), 128–129
multilevel VACB arrays, 370
multipartition volumes

basic disks, 139
defined, 126
dynamic disks, 138, 141
I/O operations, 159
management, 147–152
mirrored, 149–151
RAID-5, 152
spanned, 148
storage management, 147–152
striped, 148–149

Multipath Bus Driver (Mpio.sys), 134
multipathing solutions, 134
multipath I/O (MPIO) drivers, 134–136,

138
multiple data streams, 426–428

Multiple Provider Router

626

Multiple Provider Router, 526
Multiple Universal Naming Convention

(UNC) Provider (MUP) driver,
85

multiplexed logs, 418–419, 422
multiprocessor systems

driver synchronizing, 39
initializing, 519
look-aside lists, 219
memory manager, 189
numbers of CPUs, 508
port drivers, 132

multithreaded applications, 223
MUP (Multiple Universal Naming

Convention Provider), 85
mutexes, 296, 519, 577
mutual exclusion (heap blocks), 221
Myfault.sys driver, 51–53, 564–565,

571

N
named data attributes, 448
Named Pipe File System (Npfs) driver,

31
named pipe file system drivers, 31, 523
named pipes, 54, 582–583
named streams, 393, 426, 441
name logging traces, 341
name resolution, 409
namespaces

session-private object manager,
228

shell, 434–435
volumes, 153–158

namespace subdirectories, 137
naming

devices, 15
disk class drivers, 136
I/O system, 1
section objects, 201

NAND-type flash memory, 128–130
NAS (network-attached storage), 514
National Language System (NLS) files,

511, 516, 517–518, 520
native applications, 501, 522
NDIS (Network Driver Interface

Specification), 7
neither I/O, 32, 33
nested file systems, 163
nested partitions, 140
nesting VHDs, 162
.NET Framework, 473
network adapters, 6, 85, 321
network API drivers, 6
network-attached storage (NAS), 514
network devices, 6, 81, 375
Network Driver Interface Specification

(NDIS), 7
network endpoints, 54

network file system drivers, 49, 440
network interface controller ROM, 514
network protocol drivers, 27
network providers, 526
network redirectors, 358, 389
network storage management, 125
Network subkey, 530–531, 532
new operator, 221
New Simple Volume wizard, 151
NIC ROM, 514
NLS files, 511, 516, 517–518, 520
NLS object directory, 521
NMI (nonmaskable interrupt), 550,

578, 593
NMICrashDump file, 593
“no cache” flag, 373
nocrashautoreboot element, 508
nodes (NUMA), 285
noerrordisplay element, 504
no-execute memory, 508
no execute page protection (DEP)

address space allocation, 246
ASLR, 250
disabling and enabling, 205, 206
memory manager, 204–209
PAE, 205, 260
processors, 204
software data execution

prevention, 208–209
stack cookies and pointer

encoding, 209
viewing, 207

nointegritychecks element, 508
nolowmem element, 508
nolowmen BCD option, 260, 321
nonbased sections, 287
noncached I/O

file object attributes, 19
file objects, 411
IRPs, 412
memory manager and, 374
page writers, 412
scatter/gather I/O and, 28

noncached memory mapping, 204
noncached read operations, 373, 381
noncommitted transactions, 484, 486
nonencoded pointers, 209
non-fault-tolerant volumes, 490
nonmaskable interrupt (NMI), 550,

578, 593
non-PAE kernel, 205
non-PAE systems, 253–254, 255,

256–258
nonpageable memory, 195
nonpaged look-aside lists, 219
nonpaged pool

address space, 237
buffer overruns, 569
commit charge, 276
debugging information, 574–575
defined, 212–213

displaying information, 191
dynamic address space, 232
expanding, 243
large page sizes, 194
leaks, 564
memory notification events,

335–337
memory quotas, 245–246
NUMA nodes, 285
performance counters, 215–219
reclaiming virtual addresses, 244
sizes, 213–214
system space, 228
VADs, 283

nonpaged pool buffers, 32, 78
nonpaged pool session memory, 66,

296
nonpaged system memory, 41
non–Plug and Play drivers

creating device objects, 14
defined, 6
KMDF initialization routines, 68
PnP levels of support, 82
Root driver, 85
Start values, 85

nonpower-managed queues, 75
nonprototype PFNs, 297–298
nonresident attributes (NTFS),

453–456
nonsparse data, 458–461
nontransacted writers and readers,

470–471, 473
Non Uniform Memory Architecture

(NUMA), 132, 213, 285, 317,
506, 518

nonvolatile data, 379
nonvolatile memory, 128
nonvolatile RAM (NVRAM), 348, 350,

512–513
No Reboot (Driver Verifier), 572
Normal I/O priority, 58, 59, 62–64
NOR-type flash memory, 128
Notmyfault.exe, 51–53, 218–219, 556,

564–567, 570, 580
noumex element, 505
novesa element, 505
“no write” log records, 359, 375
Npfs (Named Pipe File System) driver,

31
Nt5.cat file, 97
Nt5ph.cat file, 97
Ntbtlog.txt file, 533
NtCreateFile function, 20, 21, 408–409
NtCreateIoCompletion system service,

56
NtCreatePagingFile service, 274
NtDeviceIoControlFile function, 32
Ntdll.dll, 20, 221, 520
NtfsCopyReadA routine, 27
NTFS file system

alternate data streams, 397

 owner pages

 627

bad-cluster recovery, 487–490
BitLocker encryption, 166
change journal file, 461–464
change logging, 433
clusters, 397, 442
compression, 397, 432–433,

456–461
consolidated security, 467–469
crash codes, 551
data redundancy, 425
data structures, 441
defragmentation, 436–437
dynamic bad-cluster remapping,

429
dynamic partitioning, 437–439
encryption, 397, 435–436. See also

EFS (Encrypting File System)
fault tolerance, 425
file names, 449–453
file record numbers, 447
file records, 447–449
file system driver, 398, 439–441
flash memory, 130–131
hard links, 397, 429–430
high-end requirements, 424–425
indexing, 429, 464–465
I/O system, 2
isolation, 470–472
link tracking, 434–435
master file tables, 443–446
metadata logging, 479–483
mount points, 154–155
multiple data streams, 426–429
object attributes, 426
object IDs, 466
overview, 397–398
per-user volume quotas, 397,

433–434
POSIX support, 436
quota tracking, 466–467
recoverability, 397, 424–425,

477–491
reparse points, 469
resident and nonresident

attributes, 453–456
resource managers, 473–475
security, 397, 425
self-healing, 398, 490–491
spanned volumes, 148
sparse files, 456–461
symbolic links and junctions, 397,

430–432
transactional APIs, 472–473
transaction logging, 476–477
transaction semantics, 397
transaction support, 469–477
Unicode-based names, 428–429
volumes, 442

NTFS file system driver (Ntfs.sys), 398,
439–441

NTFS_FILE_SYSTEM stop code, 551

NtInitializeRegistry function, 523, 533
Ntkrnlpa.exe kernel, 260
Ntoskrnl.exe. See kernel (Ntoskrnl.exe,

Ntkrnlpa.exe)
NtQuerySystemInformation API, 64,

325, 342
NtReadFile function, 25, 32, 409, 410,

411, 573
NtRemoverIoCompletion system

service, 56
NtSetInformationFile system service,

56
NtSetIoCompletion system service, 57
NtSetSystemInformation API, 342
NtShutdownSystem function, 545
_NT_SYMBOL_PATH variable, 582
NtWriteFile function, 32, 33–34, 411
null modem cables, 578, 582
NUMA (Non Uniform Memory

Architecture), 213, 285, 518.
See also NUMA nodes

NUMA I/O, 132
NUMA nodes, 132, 317, 506
numproc element, 508
NVRAM (nonvolatile RAM), 348, 350,

512–513
nx element, 508

O
O index, 466
!object command, 16–17, 106
object context areas, 73, 74
object contexts, 72–73
object handle tracing, 519
object headers, 286
$OBJECT_ID attribute, 448, 466
object identifier files ($ObjId), 446
object IDs

attributes, 448, 466
change journal and, 462
distributed link-tracking, 435
indexing and, 465
NTFS on-disk structure, 466

object linking and embedding (OLE),
434

object manager
directory, 287
initialization, 518
look-aside lists and, 219
name resolution, 409
namespace directories, 519
namespaces, 15
power request objects, 106
reparse points, 154
section objects, 286

object manager directory, 287
Object Viewer (Winobj.exe)

device names, 16

memory resource notifications,
337

power request objects, 106
registered file systems, 403
section objects, 287
shadow volumes, 182
symbolic links, 24

ObjId metadata file, 466
ObOpenObjectByName function, 409
OCA (Online Crash Analysis), 563–564,

585
OEM fonts, 505
OEMs (original equipment

manufacturers), 529, 568
offline storage, 427
offsets

disk I/O operations, 159
file-to-offset pairs, 341

OLE (object linking and embedding),
434

onecpu element, 508
online crash analysis (OCA), 563–564,

585
opaque objects (KMDF), 72
open devices, 19–24
OpenEncryptedFileRaw function, 497
OpenFileMapping function, 201
open files, 201, 409
open mode flags, 19
open operations, 49
operating system errors, 537
operating system files, 509
operating system images, 228
operating system versions, 563
oplock (opportunistic locking),

401–404
optical media, 125, 393
Optical Storage Technology

Association (OSTA), 393
optimization software, 345–346
Optin and Optout modes, 206, 208
optionsedit element, 509
original equipment manufacturers

(OEMs), 505, 529, 568
original volumes, 177
OS/2 applications, 448
osdevice element, 509
OSTA (Optical Storage Technology

Association), 393
output buffers, 32–33
outswapping stacks, 188
overcommitted resources, 275
overlapped flags, 25
overlocking, 199
overrun detection, 293–294
overutilized cores, 113, 115, 119
overwriting data, 461
overwriting flash memory, 128
Owner bit (PTEs), 257
owner pages, 418, 421–423

P processor state

628

P
P processor state, 108–109, 120
package states. See P processor state
packets, 3. See also IRPs (I/O request

packets)
padding files, 176
PAE (Physical Address Extension)

address translation, 260–264
loading kernel, 509
no execute page protection, 205
overview, 260–264
page file size, 274
physical memory support, 321
requiring, 508
viewing components, 262–264

pae element, 509
page access traces, 341
page-aligned buffers, 28
PAGE attributes, 203–204
Pagedefrag tool, 274
page directories, 255–256, 262–264,

265
page directory entries (PDEs), 254,

255, 261
page directory indexes, 253, 254
page directory pointer indexes, 262
page directory pointer structures, 266
page directory pointer tables (PDPTs),

260, 262, 263
paged look-aside lists, 219
paged pool

address space, 237
buffer overruns, 569
commit charge, 276
debugging information, 574–575
defined, 213
dynamic address space, 232, 233
expanding, 243
high IRQL faults, 565–567
leaks, 278, 564
memory notification events,

335–337
memory quotas, 245–246
performance counters, 215–219
pool leaks, 218–219
segment structures, 288
session-specific, 228
sizes, 213–214
in system space, 229

paged pool working sets, 229, 334
PAGEDU64 signature, 550
PAGEDUMP signature, 550
PAGE_EXECUTE flags, 205, 210
PAGE_FAULT_IN_NONPAGED_AREA

stop code, 550
page faults and fault handling

adjusting working sets, 333
buffer overruns, 571
clustered faults, 272–273
collided faults, 271, 272

commit charge and limits, 275–279
copy operations, 411
crashes, 549
defined, 267–268
demand paging, 324
file system drivers, 408
file system operation, 413
hard and soft faults, 325
high IRQL faults, 590–592
in-paging I/O, 271–272
invalid PTEs, 268–269
I/O optimization, 30
manual crashes, 565
modified page writer, 314
nonpaged pools, 212–213
number per seconds, 331
overview, 267–268
page files, 273–274
page file size, 278–279
prefetching pages, 324
prototype PTEs, 269–271
read operations, 373
recursive faults, 584
redistributing memory, 341
standby or modified lists, 318
triple faults, 584
VADs, 411
valid virtual addresses, 255

page-file-backed mapped memory,
276, 350

page-file-backed sections, 194, 201,
269–271, 302

page file headers, 315
page file offsets, 268, 269
page files. See paging files
page frame number database (PFN).

See PFN database
page frame numbers (PFNs), 253, 255,

261, 315–319
page frame transitions, 300–302
page health, 129
pageheap, 226
page lists, 300–302, 314, 315
page map level 4 table, 265
page mappings, 259
page parent directories, 265
page priority, 310–313, 342–344
page protection, 209–210, 287
pager, 255, 269, 271, 272
pages

aging, 341
buffer management, 32
committed, 195–198
demand paging, 282
dummy, 272–273
dynamic page sizes, 194
free, 195
guard, 197, 204, 280
large and small, 193–195
locking in memory, 199

mapping address space to. See
address translation

memory quotas, 246
modified by multiple processes,

387
modified page writer, 196,

314–315
NAND-type flash memory, 129
owner, 418, 421–422
page fault handling. See page

faults and fault handling
PFNs, 253, 255, 261, 315–319
prefetching, 272, 324–328
prioritizing, 310–313, 342–344
private page tables, 387
protection, 195
removing from working sets, 330
reserved, 195–198
reusing, 360
robusted, 344–345
shareable, 195, 269–271
shared memory, 200
store, 349
Superfetch agents, 339
types, 316
updating sectors, 130
usage information, 412–413
views of opened files, 360
zeroing out, 189, 285
zero-initialized, 195

page table entries. See PTEs (page
table entries)

page table indexes, 253, 254, 256
page tables

commit charge, 276
creating, 503
defined, 252
demand paging, 282
entries. See PTEs (page table

entries)
IA64 systems, 266–267
in-paging I/O, 271–272
overview, 256–258
page directories, 255–256
PFN database, 297–298, 317
process address space, 196
processes, 228, 256
session space, 256
size, 261
TLB entries, 194
viewing, 262–264, 319
x64 address translation, 265

page writers
balance set manager/swapper

events, 314
cache operations, 375
deadlocks, 314
dirty pages, 188
file system drivers, 407, 412
file system operations, 412
free page lists, 315

 permissions

 629

mapped files, 314–315
mapped page writer, 188. See also

mapped page writer
memory manager, 314–315, 412
modified lists, 188, 314
modified page writer, 188, 196. See

also modified page writer
noncached I/O, 412
page faults and fault handling, 314
pages, 196, 314–315
paging files, 314–315
PFN database, 314–315
PTEs (page table entries), 315
recovery process, 359
working sets, 315
write-behind operations, 385, 386

paging boosts, 61
paging bumps, 62
paging files

commit charge, 278–279
commit limit, 199
complete memory dumps,

553–554, 555
containing crash dumps, 559
Control Panel applet, 188
copy-on-write avoidance, 180
crashes, 549
creating, 274, 523
defragmentation, 274, 437
file system driver operations, 412
headers, 315
I/O not in Process Monitor, 415
kernel memory dumps, 556–557
lists of, 273–274
memory manager, 189
memory quotas, 245–246
modified page writer, 314–315
not on VHDs, 163
offsets, 268, 269
page faults, 267, 268, 273–274,

278–279
paging bumps, 62
routines, 189
section objects, 287
shadow copies, 179
shared pages, 270
shutdown process, 545
size, 189, 278–279
troubleshooting without, 581
viewing, 274
viewing usage, 278–279
Windows use of, 275

paging I/O IRPs, 30, 411, 412
paging lists, 300–302, 343
paging memory to disk, 187
paging system (memory manager),

27–28
parallel I/Os, 76, 132
parallel ports, 137, 511
parameters

heap checking, 225

minidumps, 554
verbose analysis, 567–568
viewing dump files, 558–559

parent objects (KMDF), 71, 74
parent virtual hard disks, 162
parity bytes, 152
parity errors, 297, 317
parity information, 425
parked cores

check phases, 116, 117–118
defined, 109
frequency settings, 120
increase/decrease actions, 113–114
overriding, 113, 115
parking policies, 115
PPM parking and unparking, 119
viewing, 121–122

parse functions, 409
partial MDLs, 296
partition device objects, 136
partition entries (LDM), 142–143
partition manager, 131, 138, 141
partitions

basic disks, 138
bootable, 502
boot processes, 500, 501
defined, 125
extended, 139
file object pointers, 19
GUID Partition Table style, 139–140
LDM database, 141–145
LDM partitioning, 145–146
MBR style, 139
multipartition volumes, 147–152
nested, 140
NTFS dynamic, 437–439
partition manager, 131, 138, 141
physical sectors, 128
primary, 139
recovery, 535
registry information, 153
software provider interface, 160

partition tables, 125, 139, 501–502
Partmgr.sys (partition manager), 131,

138, 141
passive filter drivers, 413–414
passive IRQL (0), 39
PASSIVE_LEVEL IRQL, 39
passwords, 170, 172–173, 175, 425
patches, installing, 538
Patchguard DPC, 240
path names, 154, 408, 431
paths

hard links, 429–430
multipath drivers, 134–136
operating systems, 510
symbolic links, 20

PC/AT keyboard buffer, 505
PCI buses

ACPI BIOS information, 511
debugging devices, 504

device memory, 323
drivers, 6
dynamic IRQ resources, 510
KMDF support, 68
workarounds, 521

PCI Express buses, 509
pciexpress element, 509
Pciide.sys driver, 133
Pciidex.sys driver, 133
PCMCIA buses, 6, 68
PCRs (platform configuration

registers), 168–169, 170, 174
PDAs (personal digital assistants), 78
PDEs (page directory entries), 254,

255, 261
PDOs (physical device objects), 89–90,

163
PDPT (page directory pointer table),

260, 262, 263
PDRIVE_LAYOUT_INFORMATION_EX

structure, 138
peak commit charge, 278, 279
peak paging file usage, 277
peak working set size, 331
PEBs (process environment blocks),

246, 351
PE headers, 248–249
pending file rename operations, 525
Pendmoves utility, 525
per-file cache data structures, 368–373
perfmem element, 509
performance. See also Performance

Monitor
page files, 278
pageheap, 226
physical memory limits, 320
standby lists, 338

performance check intervals
(processors), 114, 115

performance checks, 116–120,
121–122

performance counters
cache faults, 335
clock sources, 510
pool sizes, 213, 214

performance data logging buffers, 509
Performance Monitor, 150–151, 277,

331, 387–388
performance states, 113–114, 114–116,

120
PERFSTATE_POLICY_CHANGE_IDEAL

state, 113
PERFSTATE_POLICY_CHANGE_ROCKET

state, 114
PERFSTATE_POLICY_CHANGE_STEP

state, 114
per-handle caching information, 19
periods (.), 449
permissions

access-denied errors, 416
file, 435

per-processor look-aside lists

630

permissions, continued
no execute page protection, 204
NTFS security, 425
traversal, 436

per-processor look-aside lists, 390
per-process private code and data,

228
per-user quotas, 246, 433–434
PFAST_IO_DISPATCH pointers, 26–27
PF files, 325
!pfn command, 310, 319
PFN database

memory manager, 189
modified page writer, 314–315
overview, 297–319
page list dynamics, 300–310
page priority, 310–313
PFN data structures, 315–319
Superfetch rebalancer, 339
viewing, 300
viewing entries, 319

PFN data structures
collided page faults and, 272
creating, 243
PFN database, 315–319
viewing, 263
x64 address translation, 265

PFN image verified flag, 317
PFN_LIST_CORRUPT stop code, 550
PFN of PTE numbers, 317
PFNs (page frame numbers), 253, 255,

261, 315–319
Pf routines, 344
phase 0 initialization, 516–518
phase 1 initialization, 518–522
Phase1Initialization routine, 518
physical addresses

BCD elements, 504
DMA interface, 375
physical memory support, 321
reading/writing data to buffers,

373
size, 261
sorting pages, 309

Physical Address Extension. See PAE
(Physical Address Extension)

physical byte offsets, 443
physical client CLFS logs, 418
physical container identifiers, 420
physical descriptions, 481
physical device objects (PDOs), 89–90,

163
physical disk objects, 136
physical LSNs, 422–423
physical memory

Address Windowing Extensions,
210–212

cache flushing operations, 379
cache manager, 355, 356
cache physical size, 363–364
client memory limits, 321–323

complete memory dumps,
553–554

displaying information, 190–192,
510

dumping information about, 362
global memory manager, 361–362
limits, 320–323
lists, 189
locking pages, 199
maximums, 187
notification events, 335–337
system variables, 318
truncating, 506

physical memory access method, 373
physical memory limits, 320–323
physical NVRAM stores, 350
physical page allocations, 305–306,

574
physical page numbers (PFNs), 253,

255, 261, 315–319
physical pages, 318, 504
physical storage devices, 125
PIDs (product IDs), 90
PIN_HIGH_PRIORITY flag, 366
pinning, 366, 373, 374–375
PIN numbers, 166
PipCallDriverAddDevice function, 531
pipes, 4
PKI (public key infrastructure), 496
placement policies, 328–329
plaintext attacks, 173
platform configuration registers

(PCRs), 168–169, 170, 174
Platform Validation Profile (TPM),

168–170
Plug and Play (PnP)

add-device routines, 12
commands, 29
container notifications, 65
drivers, 6, 14, 69
exposing interfaces, 15
I/O system and, 1
Plug and Play manager. See Plug

and Play manager
UMDF reflectors, 79
WDM drivers, 6–7

Plug and Play BIOS, 520
Plug and Play drivers, 6, 14, 69
Plug and Play manager

defined, 2
device enumeration, 85–89
device stack driver loading, 90–94
device stacks, 89–90
device trees, 86
driver installation, 84–98
driver loading, 84–94, 531–532
initialization, 84–94, 518
levels of support, 82
overview, 81
PnP drivers, 6
processing routines, 82–84

replacing CMOS, 511
resource arbitration, 81
shutting down, 545
Start values, 84–85
volume manager, 141

PnP drivers, 6, 14, 69
PnP manager. See Plug and Play

manager
Poavltst.exe utility, 106
!pocaps command, 103
PoClearPowerRequest API, 106
PoCreatePowerRequest API, 106
PoDeletePowerRequestI API, 106
PoEndDeviceBusy API, 105
pointer encoding, 209
pointers

device objects, 19
section object, 19
VPBs, 19

pointer values, 573
polling behavior, 415
pool

allocation, 219, 592
compared to look-aside lists, 219
corruption, 203, 569–572, 590–592
crash stop codes, 550
execution protection, 205
expanding, 243
freelists, 285
leaks, 218–219
look-aside pointers, 516
monitoring usage, 215–219
nonpaged pools, 212–213
NUMA nodes, 285
paged pool, 213
pool manager, 550
Poolmon tags, 216
pool tags, 569
quotas, 294
session space, 213
sizes, 213–214
special, 213
system memory (kernel-mode

heaps), 212–220
tracking, 217, 294
types, 216
verification, 519
verifying allocations, 592

!pool command, 569, 592
pool freelists, 285
pool manager, 550
Poolmon utility, 215–219
pool nonpaged bytes, 191
pool paged bytes, 191
pool quotas, 294
pool tags, 569
Pooltag.txt file, 569–570
pool tracking, 217, 294
!poolused command, 217
!popolicy command, 104, 115
pop operations, 241

 processes

 631

PoRegisterDeviceForIdleDetection
function, 105

PoRequestPowerIrp function, 101
portable music players, 78
port drivers

bandwidth reservation, 64
defined, 7
function drivers, 89
operating system specific, 132
prioritization strategy, 60
storage management, 132–136
storage stacks, 131

porting drivers, 1
port notifications, 57–58
PoSetDeviceBusyEx function, 105
PoSetDeviceBusy function, 105
PoSetPowerRequest function, 106
PoSetSystemPower function, 545
POSIX subsystems, 4–5, 436, 449–450
POST (power-on self test), 537
PoStartDeviceBusy API, 105
PostQueuedCompletionStatus

function, 55, 57
post tick queue, 390
potential page file usage, 279
power and power manager

ACPI power states, 98–100
commands, 29
crashes, 549
defined, 2
driver and application control, 105
driver power management,

101–102
functionality, 100–101
initializing, 519, 521
I/O system, 2
KMDF queues, 75
MPIO, 134
overview, 98–100
PnP dispatch routines, 82
PnP drivers, 6
policies, 100, 103–104, 114–116
power availability requests,

105–108
power domains, 109, 120
powering on, 499
power-managed queues, 75
power request objects, 106–108
processor power management.

See PPM (processor power
management)

shutting down, 545
states, 102–104, 108–109, 120, 549
stress tests, 67
UMDF reflectors, 79
WDM drivers, 6–7

power availability requests, 105–108
Powercfg utility, 108
PowerClearRequest API, 106
PowerCreateRequest API, 106
power dispatch routines, 101

power domains, 109, 120
powering on, 499
power-managed queues, 75
power-on self test (POST), 537
power policies, 100, 103–104, 114–116
power request objects, 106–108
PowerSetRequest API, 106
power states, 102–104, 108–109, 120,

549
PPM (processor power management)

algorithm overrides, 113
core parking policies, 109–110
increase/decrease actions, 113–114
performance checks, 116–120
thresholds and policy settings,

114–116
utility function, 110–113
viewing check information,

121–122
!ppmcheck command, 121–122
PpmCheckPhase... processes, 116,

117–118
PpmCheckPhaseInitiate phase, 116,

117
PpmCheckRecordAllUtility process, 118
PpmCheckRun process, 116, 117
PpmCheckStart callbacks, 116, 117
!ppm command, 111
PpmPerfApplyDomainState function,

120
PpmPerfApplyProcessorState routine,

120
PpmPerfChooseCoresToUnpark

function, 119
!ppmperfpolicy extension, 116
PpmPerfRecordUtility function, 118
PpmPerfSelectDomainState function,

120
PpmPerfSelectDomainStates function,

120
PpmPerfSelectProcessorState function,

120
PpmPerfSelectProcessorStates

function, 120
PpmScaleIdleStateValues function, 120
!ppmstate command, 112
PRCBs (processor control blocks), 121
preboot process, 171, 499–502
prefetched shared pages, 196
prefetcher, 324–328, 520
prefetch operations

clustered page faults, 272–273
defragmentation, 328
disabling, 325
files, 412–413
ideal NUMA node, 285
logical prefetcher, 324–328, 520
Superfetch rebalancer, 339
viewing, 326, 327

Preflect utility, 352–353
prepare records, 477

prereading blocks of data, 378, 383
pretransaction data, 470
Previous Versions data, 182–184
primary buses, 86
primary partitions, 138, 139
primitives in memory manager,

200–202
printer drivers, 6
printer mappings, 526
Print Spooler, 106
priorities

I/O. See I/O prioritization
memory, 311
page, 310–313, 342–344
PFN entries, 316
priority boosts, 301
zero page thread, 301

prioritized standby lists, 339
Priority 1–7 pages, 343
private address space, 228, 247
private byte offsets, 23
PrivateCacheMap field, 410
private cache maps

cache data structures, 364
file object attributes, 19
file object pointers, 368
file objects, 410
read requests, 378
viewing, 371–373

private data (physical memory), 260
Private Header (LDM), 142
private heaps, 221
private keys, 97, 436, 491–493, 496
private memory, 194, 275, 276, 277,

303
private pages. See committed pages
private page tables, 387
proactive memory management. See

Superfetch service (proactive
memory management)

ProbeForRead function, 33
ProbeForWrite function, 33
problems. See troubleshooting
Procdump utility, 352
process buffers, 373, 377
!process command

DirBase field, 262
listing processes, 575
minidump data, 554–555
Notmyfault.exe, 52
outstanding IRPs, 31
processor information, 580
viewing processes, 43

Process counter objects, 190–192
process environment blocks (PEBs),

246, 351
processes

address space, 237, 248
attaching to, 196
cache coherency, 356–358

Process Explorer

632

processes, continued
child, 193
copy-on-write, 209–210
cross-process memory access, 196
current, 554
DEP protection, 207
emptying working sets, 307–308
execution protection, 205
heap types, 221–222
hung, 351
increasing address space, 229–231
IRP cancellation, 50–51
lists of running, 554, 575
mapped private code and data,

228
memory limits, 320–323
memory quotas, 245–246
minidumps, 351
page directories, 256
pages modified by, 387
page tables, 256
priorities, 311, 342
private address spaces, 203, 228
process objects, 203
process reflection, 351–353
process/stack swapper, 188
process VADs, 283–284
protecting memory, 203–204
prototype PTEs, 269–271
reparse points, 431
section objects, 286
sessions, 233–235
shared memory, 200–202
shutdown levels, 543
switching address space, 555
termination, 48
troubleshooting, 351–353,

415–416
unkillable, 48–49, 52
viewing for IRPs, 43
virtual size, 187
working sets, 324–329

Process Explorer
ASLR protection, 251
cache size, 364
DEP protection, 207
device handles, 22–23
displaying memory information,

191
listing kernel-mode drivers, 10–11
mapped files, 202, 287
maximum pool sizes, 214–215
power request objects, 106–107
prioritized standby lists, 312
reserved and committed pages,

197–198
threads, 44
UMDF interactions, 80
unkillable processes, 52

process heaps, 221, 246, 247
process manager, 50, 414, 517, 518,

521
Process Monitor (Procmon.exe),

62–64, 327, 380–386, 413–416
process objects, 203
processor control blocks (PRCBs), 121
processor cores

check phases, 116, 117–118
domains, 109
increase/decrease actions, 113–114
PPM parking and unparking, 119
thresholds and policy settings,

114–116
utility, 110–113

processor power management.
See PPM (processor power
management)

processors
APIC clusters, 506
check phases, 116, 117–118
concurrency value, 55
configuration flags, 506
cores. See processor cores
deadlocks, 577
displaying information, 510
DPC stacks, 279, 282
environment variables, 523
groups, 508
initializing, 516
listing compatible, 574
maximum number, 508
no execute page protection, 204
page sizes, 199
performance checking, 121–122
preparing registers, 512
processor power management

(PPM), 108–122
server threading models, 53
single bit corruption, 570
stack traces, 574
states, 120
switching CPU contexts, 580
thresholds and policy settings,

114–116
TPM, 168
utility and frequency, 111–112
x64 system virtual address

limitations, 240–242
processor states, 120
process page file quotas, 275, 277, 282
process reflection, 351–353
process/stack swapper, 188
process VADs, 283–284
PROCESS_VM_READ or WRITE rights,

196
process working set list, 318
process working sets, 324, 329
Procmon.exe (Process Monitor),

62–64, 327, 380–386, 413–416

product IDs (PIDs), 90
programs. See applications
progress bars, 506
promotion (performance states), 114
protected boot mode, 503
protected driver list, 98
protected mode with paging

(processors), 500, 503
protected prefixes, 523
protected processes, 521
protecting memory, 203–204
protection

copy-on-write, 209–210
pages, 193, 195, 272, 287

protective MBR, 140
protocol device classes, 78
protocol drivers, 6
Prototype bit (PTEs), 257
prototype PFNs, 297–298
prototype PTEs, 269–271, 272, 288,

302, 317
PS/2 keyboards, 578
PsBoostThreadIo API, 61
Psexec tool, 594
PspAllocateProcess function, 352
!pte command, 256, 263, 586
PTEs (page table entries)

access bits, 341
addresses, 316
defined, 252
dynamic address space, 232
expanding, 243
hardware or software Write bits,

258
IA64 address translation, 266–267
in-paging I/O, 271–272
invalid, 267–269
nonexecutable pages, 205
original, 317
overview, 256–258
page fault handling, 268–271
page files, 268
page writer, 315
PFN database, 297–298
prototype, 269–271
system, 235–236
system, viewing, 235–236
system space, 229
VADs, 283
valid fields, 256–257
viewing, 235–236, 262–264, 586
virtual addresses, 254

public key cryptography, 97, 164, 436,
491–493

public key infrastructure (PKI), 496
pushlocks, 189, 240, 258
push operations, 241
PXE, 514

 recovery agents

 633

Q
quadwords, 263
quantum expiration, 38
query APIs, 472
QueryDosDevice function, 23
QueryMemoryResourceNotification

function, 335
query remove notification, 83–84
query-stop command, 83–84
QueryUsersOnEncryptedFile function,

497
queue objects, 56
queue pointers, 56
queues, 75, 76
quietboot element, 509
quietboot option, 519
quota control entries, 466–467
Quota Entries tool, 434
quota files ($Quota), 446, 466–467
QUOTA_LIMITS_HARDWS_MIN_

ENABLE flag, 329
quotas

control entries, 466–467
initializing, 526
NTFS per-user, 433–434
processes, 517
quota files, 446, 466–467
virtual address space, 245–246

quota tracking, 465, 466–467

R
R handles, 405
$R index, 469
race conditions, 258, 570
RADAR (Windows Resource Exhaustion

Detection and Resolution),
351, 352

RAID-0 volumes. See striped volumes
RAID-1 volumes. See mirrored volumes

(RAID-1)
RAID-5 volumes, 141, 151, 425, 490
RAID volumes

creating, 442
port drivers, 132

RAM
Address Windowing Extensions,

211, 212
commit charge, 275–277
commit limits, 199, 275–277
corruption, 548
crashes, 548
diagnostic tools, 534
DMA errors, 570
I/O priorities, 58
optimization software, 345–346
optimizing boot process, 527–528
page files, 274, 278–279
physical memory limits, 320–323

pool sizes, 213
single bit corruption, 570
translating address space. See

address translation
usage, 190
viewing working sets, 332
vs. flash memory, 128

ramdiskimagelength element, 509
ramdiskimageoffset element, 509
ramdisks, 507, 509
ramdisksdipath element, 509
ramdisktftpblocksize element, 509
ramdisktftpclientport element, 509
ramdisktftpwindowsize element, 509
RAMMap utility, 192, 304–310
random I/O, 19, 347
randomization (block metadata), 225
random number generation, 168, 510
RAW disks, 510
RAW file system driver, 157, 398
raw traces and logs, 341
RDBSS (Redirected Drive Buffering

Subsystem), 400
Rdyboost.sys (ReadyBoost), 346–350,

397, 527–528
read-ahead operations

asynchronous with history, 378
cache manager work requests,

390, 412–413
compressed files, 460
disabling, 378–379
fast I/O, 377
file system drivers, 408
file system operations, 412–413
intelligent read-ahead, 378–379
oplocks, 401–402
overview, 377
system threads, 390
viewing, 380–386

read-commited isolation, 470–471
ReadDirectoryChanges API, 473
ReadDirectoryChangesW function,

415, 433
ReadEncryptedFileRaw function, 497
ReadFileEx function, 38
ReadFile function, 25, 32, 408, 409, 473
ReadFileScatter function, 28
read-in-progress bits, 272
read-in-progress PFN flag, 317
read-isolation rules, 473
read-modify-write operations, 127
read-only file attributes, 448
read-only memory, 297, 547, 573
read-only status, 195, 211, 258, 264,

267
read operations

active views, 360
buffered I/O, 32
cached and noncached versions,

373, 381
copies of files in memory, 288

crashes, 547
diagrammed, 25, 26
explicit file I/O, 408
fast I/O, 376–377
file attributes, 447
file handles, 473
in-paging I/O, 271–272
KMDF, 76, 77
leases, 405
LFS log files, 480
logical blocks, 127
mirrored volumes, 150–151
PAGE attributes, 203–204
paging files, 62
prefetched pages, 272–273
ReadyBoost, 348
scatter/gather I/O, 28
shadow copies, 179
transacted writers and readers, 470

ReadProcessMemory function, 196,
203

read/write access, 195, 211
ReadyBoost, 346–350, 397, 527–528
ReadyBoot, 527–528
ReadyDrive, 348–350
real boot mode, 502–503
reason callbacks, 548
rebalancer, 339, 341, 342–344
rebooting

automatic, 508
breaking into hung systems, 579
Windows RE, 536

reciprocals, 517
recognizing volumes, 398
recording utility values, 118
record offsets (LSNs), 421
records, NTFS file, 447–449
recoverable file systems, 355, 359,

478–479
recovery

analysis pass, 484–485
bad-cluster recovery, 487–490
disk recovery, 483–487
dynamic bad-cluster remapping,

429
fault tolerance, 425
implementation, 477
log file passes, 484–487
log files ($LogFile), 359, 445
NTFS recoverability, 424–425,

477–491
RAID-5 recoverability, 152
recoverable file systems, 355, 359,

478–479
recovery partitions, 535
redo pass, 485
self-healing, 490–491
striped volumes, 149
TxF process, 477
undo pass, 485–487

recovery agents, 494–495, 496

recoveryenabled element

634

recoveryenabled element, 506
recovery keys, 170, 172–173, 175
recovery partitions, 535
recovery sequence (BCD), 506
recoverysequence element, 506
recursive callouts, 281, 589
recursive faults, 584
Redirected Drive Buffering Subsystem

(RDBSS), 400
redirectors, 400, 401, 440
redo entries, 481, 482
redo pass, 477, 480, 485
redo records, 476
redundant volumes, 488
reference counts, 315, 316, 318
referenced directory traces, 325
referenced file traces, 325
reflectors, 79
Regedit utility, 541
regions

CLFS, 421
FAT, 394

registered device driver bugcheck
callbacks, 581

registered drivers, 10–11, 155, 398,
403–404

registers, 39
registry

boot process, 132
cache virtual size, 361
complete crash dump enabling,

554
crash parameters, 550
deciphering driver names, 552
dedicated dump files, 551
device driver identification and

loading, 90–94, 530–532
Driver Verifier values, 293
dump file names, 550
enumeration keys, 89, 91
errata manager, 520
file rename operations, 525
forcing high memory addresses,

231
high and low memory values, 336
hive files. See registry hive files.
initializing, 522, 523
I/O system, 2
KMDF object keys, 71
large page size key, 194
last known good settings, 530
lists of page files, 273–274
loading drivers and services,

84–85
Memory.dmp file options, 557
mounted device letters, 153
overrun detection, 294
partitions, 138
per-user quotas, 246
prefetch settings, 325

processor thresholds and policy
settings, 114–116

self-healing entries, 491
service configuration keys, 531
subkeys, 89, 91
system code write protection, 574
tracking PTEs, 236
troubleshooting issues, 415
VDS information, 160

registry hive files
encryption, 163
HARDWARE hive, 515, 520
loading, 510, 523
loading user set, 526
SYSTEM hive, 520, 540

regular queues (cache management),
390

rekeying volumes, 165
relative paths, 430
releasing address space, 196
relocatephysical element, 506
remapping bad sectors, 487
remote boot debugging, 504
remote disks, booting from, 514
remote file replication services, 413
remote FSDs, 400–407
removable devices, 153, 158
removal requested PFN flag, 317
remove command, 83–84
remove/eject device utility, 83
removememory element, 509
RemoveUsersFromEncryptedFile

function, 497
rename APIs, 472
renaming files, 461, 525
$Repair (transaction repair directory),

446
repairing

installation, 535–537
self-healing volumes, 490–491

repair installations, 539
reparse data, 431
$REPARSE_POINT attribute, 448
reparse point files ($Reparse), 446, 469
reparse points, 154, 431, 448, 462, 469
reparse tags, 431, 469
replacement policies, 328–329
replication agents, 417
reporting errors, 561–562
repurpose counts, 312
reserve cache, 191
reserved pages, 195, 197–198,

199–200, 226
reserving and committing pages,

195–198
resident attributes (NTFS), 453–456
resident pages, faults, 267
resident shared pages, 196
resident size of paged pool, 214
resolution (BCD elements), 505
resolution settings (video), 524

resource allocation (PnP), 81
resource arbitration (PnP), 81, 83
resource lists (KMDF), 71
resource manager objects, 519
resource managers, 473–475, 477
resource range lists (KMDF), 72
resource requirements lists (KMDF), 72
restart area (LFS), 479–480
restart LSNs, 421, 476, 477
restart records, 476
restore points, 183, 534, 539, 540, 542
restoring previous versions, 182–184
restrictapiccluster element, 509
resumeobject element, 504, 509
Retrieve API, 70
RH (Read-Handle) handles, 405
Rivest-Shamir-Adleman (RSA), 492, 496
RMs (resource managers), 473–475,

477
robusted pages, 344–345
robust performance, 344–346
rocket model (PPM), 114, 120
rollback operations, 425, 481, 485, 542
Rom PFN flag, 317
Rom PFN state, 297, 299
Root bus driver, 85
root directories, 395, 435, 445
rotate VADs, 284
rotating magnetic disks, 126–128
rotational latency, 347
RSA (Rivest-Shamir-Adleman), 492, 496
RtlCloneUserProcess function, 351
RtlCreateProcessReflection function,

351, 352
RtlGenerate8dot3Name function, 451
Rtl interfaces, 221, 250, 294, 295
Rtlp functions, 351, 352
Run DLL Component (Rundll32.exe),

95, 325
runs, 444–458, 459
run-time environments, 78, 80
RW (Read-Write) handles, 405
RWH handles, 405

S
S0 (fully on) power state, 98–99, 101
S1 (sleeping) power state, 98–99, 101
S2 (sleeping) power state, 98–99, 101
S3 (sleeping) power state, 98–99, 101,

106
S4 (hibernating) power state, 98–99,

101
S5 (fully off) power state, 99, 101
safebootalternateshell element, 509
safeboot element, 509
SAFEBOOT variable, 523
safe mode

boot logging, 533–534
boot options, 509

 servers

 635

driver errors, 569
driver loading, 529–532
Driver Verifier settings, 293
registry entries, 521
safe-mode-aware programs, 532
troubleshooting startup, 529
Windows RE alternative, 534–537

safemode BCD option, 531
Safe Mode With Command Prompt,

509, 530
Safe Mode With Networking, 530
safe save programming, 452
safe structured exception handling,

208
salt (encryption keys), 172
SANs (storage area networks), 125,

133, 155
SAS (Serial Attached SCSI), 126, 132
SATA devices, 60, 64, 126, 132
saved system states, 99
scalability

heap functions, 224
I/O system, 1

scaling (performance states), 114, 120
scanning (Startup Repair tool), 536
scatter/gather I/O, 28
SCB (stream control block), 441, 473
scenario manager, 339
scenarios, 342
scheduled file I/O, 64
scheduled file I/O extension, 20
scheduled tasks, 58
scheduler, 113, 519
SCM (service control manager)

boot process, 501
initializing, 525
loading auto-start drivers, 88
safe mode boots, 532
SCM process, 31

screen savers, blue screen, 594
scripting (BitLocker), 164
scripts, user, 526
scrubbing pages, 317
SCSI devices, 60, 126
Scsiport.sys driver, 132, 133
SD cards, 347
SD Client buses, 68
$SDH (Security Descriptor Hash), 467,

468
SDI ramdisks, 509
SD/MMC support, 126
$SDS (Security Descriptor Stream), 425,

467, 468
sealing VMKs, 168, 170
search indexing priorities, 58
secondary dump data, 554
secondary resource managers, 473,

474–475
Second Layer Address Translation

(SLAT), 507
SeCreateSymbolicLink privilege, 431

section object pointers, 19, 288, 289,
368

section objects (control areas)
control areas, 288, 289–292
creating, 520, 524
defined, 286
file mapping objects, 356
increasing virtual memory, 210
memory manager, 200–202,

286–292
memory mapped files, 187, 193,

525, 549
prototype PTEs, 269–270
section objects, 200–202
viewing, 287

sections, 196, 269
sector-level disk I/O, 138
sectors

bad-sector remapping, 487
blocks, 126
defined, 125, 391, 501
disk sector formats, 126–128
encrypting, 173–174
GPT bits, 140
larger sizes, 443
LDM database, 142
NAND-type flash memory, 129
remapping bad clusters, 429
sector to client mapping, 423
signatures, 421
size, 349
trim command, 130
updating, 130

sector signatures, 421
sector size, 349
sector to client mapping, 423
Secure Digital cards, 347
$Secure metafiles, 425, 445, 467, 468,

469
security

AWE memory, 211
BitLocker, 163–176
boot process, 501
consolidated NTFS security,

467–469
encryption recovery agents, 495
heap manager, 224–225
I/O system, 1
NTFS design goals, 425
page files, 274
troubleshooting issues, 415
zero-initialized pages, 300
zones, 427

security contexts, 409
security cookies, 576
$SECURITY_DESCRIPTOR attribute, 448
security descriptor database, 445
Security Descriptor Hash ($SDH), 467,

468
security descriptors

change journal, 461

cross-process memory access, 196
database, 445
file attributes, 448
files, 21
indexing features, 429
section objects, 201
$Secure metadata files, 425, 445,

467, 468, 469
sharing descriptors, 469

Security Descriptor Stream ($SDS), 425,
467, 468

\Security directory, 519
security files ($Secure), 425, 445, 467,

468, 469
Security ID Index ($SII), 467, 468
security IDs (SIDs), 434, 466–467, 468,

494
security mitigations, 250
security reference monitor, 518, 519,

522
SeDebugPrivilege rights, 196, 203
seek times, 324, 347
segment dereference thread, 189
segments, 222, 270
segment structures, 288
SEH handler, 208
SEHOP (Structured Exception Handler

Overwrite Protection), 208
self-healing, 398, 490–491
SE_LOCK_MEMORY privilege, 48
semaphore object, 519
SendTarget portals, 134
sequential I/O, 19, 76, 344
sequentially reading files, 360
sequential read-ahead, 378
Serial Advanced Technology

Attachment (SATA), 60, 64,
126, 132

Serial Attached SCSI (SAS), 126, 132
serial devices, debugging, 504
serial hypervisor debugging, 507
serializing IRPs, 12
serial ports

BCD elements, 504, 505
breaking into hung systems, 578
device objects, 137
hypervisor debugging, 507
kernel debugger, 582

server applications
cache manager, 440
dynamic bad-cluster remapping,

429
execution protection, 205
threading models, 53

server farms (crash analysis), 563
Server Message Block (SMB) protocol,

400–401, 404
servers

crash buttons, 578
internal error reporting servers,

561–562

server-side remote FSDs

636

servers, continued
last known good (LKG) set, 526
Memory.dmp files, 557
physical memory support, 321
shadow copies, 179

server-side remote FSDs, 400–407
service control manager. See SCM

(service control manager)
Service Hosting Process (Svchost.exe),

94, 325
service loading, 84–85
service packs, 525, 538
services, shutting down, 545
Services.exe, 31
Services for Unix Applications, 352
Services registry key, 552
Session 0 window hook, 525
SESSION5_INITIALIZATION_FAILED

code, 522
!session command, 233
Session Manager (Smss.exe)

boot logging in safe mode, 533
boot logs, 542
boot process, 500, 501, 522–526
checking for crash dumps, 550
DLL order, 249
initialization tasks, 522–525
initializing, 522
large address space aware, 231
page file setup, 273–274
process, 228
running Chkdsk, 158
shutdowns and, 545

session manager process, 228
session namespaces, 409
session-private object manager

namespace, 228
sessions

container notifications, 65
defined, 228
dynamic address space, 243
initializing, 524
namespaces, 228, 409
session space utilization, 235
sessionwide code and data, 228
working sets, 324
x86 session space, 233–235

\Sessions directory, 523
session space

64-bit layouts, 237
defined, 228
dynamic address space, 233
IA64 address translation, 266
page tables, 256
pool, 213
utilization, 235
x86 systems, 233–235

Set APIs, 70, 472
SetEndOfFile API, 473
SetFileBandwidthReservation API,

20, 64

SetFileCompletionNotificationModes
API, 57

SetFileInformationByHandle function,
59, 473

SetFileIoOverlappedRange API, 20
SetFileShortName API, 473
SetFileTime API, 473
SetFileToOverlappedRanges API, 48
SetPriorityClass function, 59
SetProcessDEPPolicy function, 208
SetProcessShutdownParameters

function, 543
SetProcessWorkingSetSizeEx function,

199, 329, 330
SetProcessWorkingSetSize function,

329
SET_REPAIR flags, 491
SetThreadExecutionState API, 105
SetThreadPriority function, 59
Setupapi.dll, 95
Setupcl.exe, 524
SetupDiEnumDeviceInterfaces

function, 15
SetupDiGetDeviceInterfaceDetail

function, 15
Sfc.exe utility, 538
SfclsFileProtected API, 538
SfclsKeyProtected API, 538
shadow copies

backup operations, 181–182
operations, 178–181
set IDs, 185
shadow copy volumes, 185
transportable, on servers, 179
Volume Shadow Copy Service,

177–186
Shadow Copies for Shared Folders, 182
shadow copy device objects, 185
Shadow Copy Provider, 179–181
shadow copy volumes, 185
shareable address space, 247
shareable pages, 195, 196
share-access checks, 19
share counts, 315, 316, 317, 318
shared access leases, 405
shared access locks, 401
shared cache maps, 368, 371–373, 411
shared encrypted files, 493
shared heaps, read-only, 222
shared memory, 200–202, 203, 228
shared pages, 211, 269–271, 310
share modes (file objects), 19
shell, 434–435, 526, 563
shell namespace, 434–435
shim mechanisms, 227
short names, 448, 450, 451, 453
ShrinkAbort request, 438
ShrinkCommit request, 438
shrinking engine (partitions), 438
ShrinkPrepare request, 438
shutdown, 66, 537, 542–545

SideShow-compatible devices, 78
SIDs (security IDs), 434, 466–467, 468,

494
signatures

driver signing, 95–96, 97, 98
heap tail checking, 225
verification, 97

$SII (Security ID Index), 467, 468
simple volumes, 126, 151
single bit corruption, 570
single-layered drivers, 33–39
single-level cell (SLC) memory, 128
single-page granularity, 200
singly linked lists, 240, 242
SLAT (Second Layer Address

Translation), 507
SLC (single-level cell) memory, 128
sleep states, 82, 98–100, 101, 105–108
SLIST_HEADER data structure, 240, 241
slots in cache structures, 364
small-IRP look-aside lists, 28
small memory dumps (minidumps),

351, 554–556, 562, 579
small pages, 193–195
smartcards, 174, 175
SMB Server Message Block (SMB)

protocol, 400–401, 404
SmpCheckForCrashDump function,

550
SmpConfigureSharedSession Data

function, 524
SmpCreateDynamicEnvironment-

Variables function, 523
SmpCreateInitialSession function, 524
SmpCreatePagingFiles function, 523
SmpExecuteCommand function, 523
SmpInit function, 523, 524
SmpInitializeDosDevices function, 523
SmpInitializeKnownDlls function, 524
SmpLoadDataFromRegistry function,

523
SmpProcessFileRenames function, 523
SmpStartCsr function, 524
SMP system processors, 521
SmpTranslateSystemPartition-

Information function, 524
Smss.exe. See Session Manager

(Smss.exe)
SMT cores, 109, 110
snapshot devices, 179
snapshots, 162, 177–186
soft faults, 325
soft links, 430–432
soft page faults, 285
soft partitions, 142, 143, 146
software attacks, 166
software data execution prevention,

208–209
software DEP, 208–209
software keys, 94. See also

enumeration

 stop code analysis

 637

software mirroring, 177
software providers, 160
software PTEs, 268–269
software resumption from power

states, 98
software Write bits, 258
solid state disks. See SSDs (solid state

disks)
sos element, 510
space quotas, 245–246
spaces (file names), 449
spanned volumes, 148
spare bits, 129
sparse files, 393, 432–433, 456–458
sparse matrix, 457
sparse multilevel VACB arrays, 370
spatial locality (cache), 412
special agents (prefetch), 344
special pool

crash dumps, 569–572
defined, 213
Driver Verifier option, 571,

590–592
dynamic address space, 232
enabling, 571–572
expanding, 243
registry settings, 294
verification, 293–294
wild-pointer bugs, 573

speed, cluster size and, 443
spinlocks

accessing directly, 39
context areas, 73
detecting, 577
eliminating need for, 241
KMDF objects, 72
pools and, 219

splash screens, hangs and, 540–542
split log blocks, 422
split mirrors (clone shadow copies),

177
Spoolsvc.exe, 106
SRTM (Static Root of Trust

Measurement), 168
SSDs (solid state disks)

file deletion and trim, 130–131
ReadyBoost, 346–348
slowing down, 129
storage management, 125
wearing out, 129
wear-leveling, 129–130

stack bases, 589
stack cookies, 209
stack limits, 589
stack locations

allocating to drivers, 42
I/O request packets (IRPs), 29–31
IRP reuse and, 41
large-IRP look-aside list, 28
managing, 67
request completion, 36–38

stack overflow errors, 12
stack overruns (stack trashes), 575–577
stack pointer register, 576–577, 589
stack randomization, 249–250
StackRandomizationDisabled, 249–250
stacks

address space, 246, 247
analyzing, 576–577
in commit charge, 276
cookies, 209
crash dump analysis, 575–577
defined, 279
DEP stack cookies, 209
DPC, 279, 282
inswapping and outswapping, 188
jumping, 281
kernel, 279, 281–282
memory manager, 279–282
pointer register, 576–577, 589, 599
randomization, 249–250
stack bases, 589
stack trashes, 575–577
swapper, 188
traces. See stack traces
user-mode, 196–197, 279
verifying limits, 589

!stacks command, 581
stack swapper, 188
stack traces

displaying device driver, 585
heap debugging, 226
kernel-mode thread exceptions,

587–588
pool corruption, 590–591
processors, 574
read-ahead operations, 382
verbose analysis, 567–568
write-behind operations, 385, 386

stack trashes, 575–577
stampdisks element, 510
standard BitLocker operation, 164
$STANDARD_INFORMATION attribute,

448, 467, 468
standby cache, 191
standby lists

cache physical size, 363
page faults, 269
page list dynamics, 300–302
page priority, 310
PFNs, 316, 318
prefetched pages, 272
prioritized, 311–313
rebalancer, 339
redistributing memory, 341
shared pages, 270
Superfetch service, 338, 339
system cache, 361, 363–364
viewing page allocations, 304–310

standby mode, 103–104, 339
standby page lists, 191, 267
standby pages, 316

Standby PFN state, 297, 299
standby scenario, 342
start-device command, 83
start-device IRPs, 15
start I/O routines, 12
Startup.com, 502
startup process. See boot process
Startup Repair tool, 534, 536
Start values, 84–85, 88
state-transition table, 83–84
static physical NVRAM cache, 350
Static Root of Trust Measurement

(SRTM), 168
STATUS_ACCESS_ VIOLATION

exception, 204, 586–588
STATUS_BREAKPOINT exception,

586–588
STATUS_INVALID_DEVICE_REQUEST

exception, 74
STATUS_REPARSE code, 431
step model (PPM), 113–114, 120
stolen USB keys, 166
“STOP: 0xC000136” error, 538
stop code analysis

BAD_POOL_CALLER, 550
BAD_POOL_HEADER, 550, 570
BUGCODE_USB_DRIVER, 550
CRITICAL_OBJECT_TERMINATION,

550–551
DRIVER_CORRUPTED_EXPOOL,

550, 590–592
DRIVER_IRQL_NOT_LESS_OR_

EQUAL, 549, 585–586
DRIVER_OVERRAN_STACK_

BUFFER, 576
DRIVER_POWER_STATE_FAILURE,

549
IRQL_NOT_LESS_OR_EQUAL, 549
KERNEL_DATA_INPAGE_ERROR,

550
KERNEL_MODE_EXCEPTION_NOT_

HANDLED, 575, 586–588
KERNEL_MODE_EXCEPTION_NOT_

HANDLED with P1..., 550
KMODE_EXCEPTION_NOT_

HANDLED, 549, 575
MANUALLY_INITIATED_CRASH,

578
MEMORY_MANAGEMENT, 550
NTFS_FILE_SYSTEM, 551
overview, 585
PAGE_FAULT_IN_NONPAGED_

AREA, 550
PFN_LIST_CORRUPT, 550
SYSTEM_SERVICE_EXCEPTION, 549
SYSTEM_THREAD_EXCEPTION_

NOT_HANDLED, 549
UNEXPECTED_KERNEL_MODE_

TRAP, 549, 588–590
verbose analysis, 567–568

stop codes

638

stop code analysis, continued
VIDEO_TDR_FAILURE, 550
WHEA_UNCORRECTABLE_ERROR,

550
stop codes (bugchecks)

blue screen crashes, 549–551
bugcheck parameters, 566, 586
bugcheck screens, 517
Bugcodes.h file, 549
defined, 548
help files, 549
high IRQL faults, 586
illegal instruction fault crashes,

573–574
manual crashes, 566
minidumps, 554
numeric identifiers, 548
viewing, 558–559

stop command, 83–84
storage area networks (SANs), 125,

133, 155
storage devices, 348–350, 514
storage device states, 81
storage drivers

class drivers, 132–136
device drivers, 125, 398–399
disk I/O operations, 159–160
management, 132–136
opening files, 409
port drivers, 60

storage management
basic disks, 139–141
BitLocker, 163–176
BitLocker To Go, 175–176
disk devices, 126–131
disk drivers, 131–138
dynamic disks, 141–147
full-volume encryption driver,

173–174
multipartition volume

management, 147–152
overview, 125
terminology, 125–126
Trusted Platform Module, 168–170
virtual disk service, 160–162
virtual hard disk support, 162–163
volume I/O operations, 159–160
volume management, 138–162
volume namespaces, 153–158
Volume Shadow Copy Service,

177–186
storage stacks, 60–61, 131, 134–136
store keys, 350
Store Manager (unified caching),

348–350, 520
store pages, 349
stores, 349
Storport minidriver, 163
Storport.sys driver, 132, 133
stream-based caching, 358

stream-controlled block (SCB), 155,
441, 473

streaming playback, 58, 64, 105–108
stream names, 358
streams

associated with file names, 341
attributes, 426–427
cache working set, 362
caching, 358
change journal, 461–464
CLFS, 417
defined, 358
multiple, NTFS design goals,

426–428
TxF, 474
viewing, 428

strided data access, 378
strings, 72, 73, 570, 592
Strings utility, 217, 326, 570
striped arrays, 141
striped volumes

data redundancy, 425
defined, 148–149
I/O operations, 159
LDM partition entries, 143
RAID-5 volumes, 141, 151, 425, 490
rotated parity (RAID-5), 141, 151,

425, 490
Structured Exception Handler

Overwrite Protection (SEHOP),
208

subkeys, 89, 91
subst command, 24
Subst.exe utility, 186
subsystem DLLs, 33–34, 524
success codes, 58, 76
successful boots, 551
Superfetch service (proactive memory

management)
components, 338–340
ideal NUMA node, 285
idle I/O, 62
initializing, 520
I/O priorities, 58
logical prefetcher, 325
organizing files, 327
overview, 338
page priority, 342–344
pretraining, 343
process reflection, 351–353
ReadyBoost, 346–348
ReadyDrive, 348
rebalancing, 342–344
robust performance, 344–346
scenarios, 342
tracing and logging, 341
unified caching, 348–350

surprise-remove command, 83–84
suspending

BitLocker, 171

boot status file information, 537
operations, 98–99

Svchost.exe (Service Hosting Process),
94, 325

swapper thread, 334
switching CPU contexts, 580
Swprov.dll (shadow copy provider),

179–181
symbol-file paths, 566, 582
symbol files, 517, 566, 591
symbolic exception registration

records, 208
symbolic links

change journal, 462
device names, 23
device objects, 15
file object extensions, 20
initializing, 519, 520
MS-DOS devices, 523
naming conventions, 136
NTFS design goals, 430–432
reparse points, 154
shadow copies, 185
viewing, 24
volumes, 154, 409

symbols, kernel, 214
symbol server, 556
SymLinkEvaluation option, 431
symmetric encryption, 491
synchronization

heap manager, 223
internal memory, 189
I/O requests, 38–39
KMDF callbacks, 74
KMDF queues, 75
not supported by heap functions,

222
synchronization objects, 25, 271, 295,

296
synchronization primitives, 577. See

also fast mutexes; mutexes;
spinlocks

synchronization scope object
attribute, 76

synchronous I/O
cancellation, 49
completion, 37
defined, 25–26
fast I/O, 376, 377
file object attributes, 19
single-layered drivers, 33–39
Synchronous Paging I/O, 383

Synchronous Paging I/O, 383
SYSCALL instruction, 282
SYSENTER instruction, 282
Sysmain.dll. See Superfetch

service (proactive memory
management)

sysptes command, 235–236
system address space, 228–229, 237,

281

 threads

 639

system cache
address space, 237
copying files, 374
expanding, 243
prefetching pages, 272
reclaiming virtual addresses, 244
in system space, 229

system cache working sets, 229, 334,
361–362

system code, in system space, 228–229
system code write protection, 573–574
system commit limit, 199, 275–277,

279. See also commit limits
system crash dumps, 135. See also

crash dumps
System Deployment Image (SDI), 507
system environment variables, 523
system failures, 359, 379. See also

crashes; hung or unresponsive
systems; recovery

System File Checker (Sfc.exe), 540
system files

backup copies, 538
repairing corruption, 538–540

SYSTEM hive, 510, 511, 515, 520, 540
system identifiers (TPM), 168
System Image Recover (Windows RE),

534
System Image Recovery images, 539
system images, 230–231, 534, 539
“system in a VHD,” 162
System Information tool, 552
system integrity checks (TPM), 168
SystemLowPriorityIoInformation class,

64
system-managed paging files, 274
system-managed shared resources,

275
system mapped views, 229, 232, 233
system memory pools (kernel-mode

heaps), 212–220
system partitions, 502, 524
system paths, 514
system pool size, 214. See also pool
system power policies, 100, 103–104
system power requests, 106
System process, 188–189, 415
system process shutdowns, 544–545
System Properties tool, 553
system PTEs, 229, 232, 235–237, 243
system PTE working sets, 229, 334
System Recovery Options dialog box,

535
system resources, releasing, 13–14
System Restore, 178, 182–184, 534,

540, 542
System Restore Wizard, 542
systemroot element, 510
system root paths, 517
“system running low on virtual

memory” error, 278

system service dispatch tables, 519
SYSTEM_SERVICE_EXCEPTION stop

code, 549
system shutdown notification routines,

14
system start device drivers, 550
system start (1) value, 84, 85
system-start values, 88
system storage class device drivers, 60
SystemSuperFetchInformation class,

342
SYSTEM_THREAD_EXCEPTION_NOT_

HANDLED stop code, 549
system threads, 314–315, 390. See also

threads
system time, 519, 574
system variables, 318
system virtual address spaces, 189,

245–246, 356
system virtual memory limits, 320–323
System Volume Information directory,

180
system volumes, 145, 150, 445, 502,

524
systemwide code and data, 228
systemwide environment variables,

582
system worker threads, 390, 520
system working set lists, 318
system working sets

cache physical size, 363–364
defined, 324, 362
forcing code out of, 295
overview, 334–335
in system space, 229
working sets, 334–335

T
T states (processors), 114, 120
$T stream, 474
T10 SPC4 specification, 134
table of contents area (LDM), 142
tags

heap debugging, 226
pool allocation, 216
precedence, 85

Tag value, 84, 85
tail checking, 225, 226
tamper-resistant processors, 168
target computers, 582–584
targetname element, 506, 510
target portals (iSCSI), 134
task gates, 588
Task Manager

cache values, 364
memory information, 190–192
page file usage, 278–279
pool leaks, 218

reserved and committed pages,
198

unkillable processes, 52
Task Scheduler, 58
TBS (TPM Base Services), 164, 168–170,

174
Tbssvc.dll, 164
TCG (Trusted Computing Group), 168
TCP/IP, 78, 133
TEB allocations, 200, 246
temporal locality (cache), 412
temporary dump file names, 550
temporary files, 386, 525
temporary page states, 297
Terminal Services notifications, 65
termination

processes, 50–51
threads, 50–53

TestLimit64.exe utility, 280
TestLimit utility

creating handles, 245
leaking memory, 232, 313
private pages, 302–303, 304
reserved or committed pages,

197–198
reserving address space, 237
thread creation, 280
working sets vs. virtual size,

331–332
testsigning element, 506
test-signing mode, 506
TFAT (Transaction-Safe FAT), 397
TFTP (Trivial FTP), 509
thaws, VSS writers and, 177, 178
thinly provisioned virtual hard disks,

162
third-party drivers, 216, 556
third-party RAM optimization

software, 345–346
thread-agnostic I/O, 19, 30, 48, 55
!thread command, 31, 43, 574, 576,

580, 581, 589
threaded boosts, 61
thread environment block (TEB)

allocations, 200, 246
threads

activating, 54
asynchronous and synchronous

I/O, 25–26
completion ports, 54, 56
concurrency value, 55
creating, 520
current, 554, 574
deadlocks, 577
file system drivers, 407
heap synchronization, 223
higher-priority, 38
IDs, 248
inactive, 57
injected in cloned processes, 351
I/O completion, 37

thread-scheduling core

640

threads, continued
I/O requests, 4
kernel-mode, 586–588
maximum number, 280
outstanding IRPs, 31
page priority, 311
preempting windowing system

driver, 577
priorities, 62–64, 342
private address space, 228
read-ahead, 412–413
server threading models, 53
shutdown process, 543, 544
stacks, 205, 246, 248, 249–250,

279–282
stack trace analysis, 567–568
synchronizing access to shareable

resources, 23
system, 390
termination, 48, 50–53
thread-scheduling core, 188
thread thrashing, 53
user-initiated I/O cancellation, 49
viewing for IRPs, 43
virtual files, 4–5

thread-scheduling core, 188
thread stacks, 205, 246, 248, 249–250
thread thrashing, 53
thresholds, 114–116
throttle states (processors), 114, 120
throttling (write throttling), 388–389
throughput, 62–64
ticks (lazy writer), 390
time (BIOS information), 511
time-check intervals (processors), 114
time command, 574
Timeout element, 504
timeouts

I/O manager, 4
power options, 104
shutdown process, 543

timers
expiration, 517
idle prioritization strategy, 59
KMDF objects, 72
object types, 519
prefetch operations, 413

time segments (Superfetch), 344
time-slice expiration, 38
time stamps

as attributes, 447
change journal, 462
debugging information, 574
file attributes, 448
indexing, 465
load offset number, 248–249
POSIX standard, 436

timing requirements (UMDF), 78
TLB (translation look-aside buffer),

194, 258, 259–260, 507
toolsdisplayorder element, 504

top dirty page threshold, 389
$TOPS files, 474, 476
torn writes, 421
total memory, displaying, 190
total process working sets, 331
total virtual address space, 275
TPM (Trusted Platform Module)

BitLocker, 164
Boot Entropy policy, 510
boot entropy values, 522
chips, 168, 169, 174
encrypting volume master keys,

166
MMC snap-in, 164, 168, 169
storage management, 168–170
Tpm.sys driver, 164
Windows support, 168

TPM Base Services (TBS), 164, 168–170,
174

tpmbootentropy element, 510
TPM chips, 168, 169, 174
TPM MMC snap-in, 164, 168, 169
Tpm.sys driver, 164
trace collector and processor, 338
trace file names, 325, 326
trace information (ReadyBoot), 527
tracer mechanism (Superfetch), 338
traces

name logging traces, 341
page access traces, 341
prebuilt traces, 343
Process Monitor, 416
Superfetch service, 341
trace file names, 316, 325

traditionalksegmappings element, 506
training Superfetch, 343
Transactdemo.exe tool, 471–472
transacted APIs, 469
transacted writers and readers, 470
transactional APIs, 472–473
transactional NTFS. See TxF

(transactional NTFS)
transactional NTFS library, 470
transaction isolation directory ($Txf),

446
transaction log ($TxfLog), 446, 474
transaction log (CLFS), 417
transaction log (LDM), 142, 143, 144
transaction log records, 359, 480
transaction manager, 519, 521
transaction parameter blocks, 20
transaction parameters, 20
transaction repair directory ($Repair),

446
transactions

after system failures, 477
APIs, 472–473
atomic, 424–425
committed, 481
isolation, 470–472
listing, 471–472

logged information, 482
logging implementation, 476–477
on-disk implementation, 475–476
overview, 469–470
recovery implementation, 477
recovery process, 477
resource managers, 473–475
VSS writers, 178

Transaction-Safe FAT (TFAT), 397
transaction semantics, 397, 416
transaction tables, 477, 483, 484
transition, pages in, 269, 270
transition pages, 316
Transition PFN state, 297, 299
transition PTEs, 317
translation, 188, 203, 422–423. See also

address translation
translation look-aside buffer (TLB),

194, 258, 259–260, 507
translation-not-valid handler, 188
transportable shadow copies, 179
transport layer, 582
transport parameters, 578
trap command, 585–586
trap frames, 585, 588, 589, 591
trap handler, 35
traps, 35, 547, 549–550, 588–590
trap to debugger instruction, 587
traversal permissions, 436
triage dumps (minidumps), 351,

554–556, 562, 579
Triage.ini file, 566–567
trim command, 130–131
trimmed private data, 260
trimmed working sets, 315, 318
trimming

page files, 273
pretraining Superfetch, 343
system working set, 295
working sets, 330, 333–334

Triple DES algorithm (3DES), 495
triple faults, 584
Trivial FTP (TFTP), 509
troubleshooting

Application Verifier, 65
boot logging, 533–534
changes to encrypted system

components, 170
common boot problems, 537–542
crash dump tools. See crash dumps
driver loading, 529–532
Driver Verifier, 65–68, 292–296
file systems, 415–416
heap, 225–226
Knowledge Base, 549
large page allocation failures, 194
last known good. See last known

good (LKG)
processes, 351–353
Process Monitor, 415–416
safe mode, 529–534

 user process address space

 641

safe-mode-aware programs, 532
SSDs, 129
stop code help files, 549
WDK Bugcodes file, 549
Windows Recovery Environment,

534–537
without crash dumps, 581–584

troubleshooting user menus, 506
truncatememory element, 506
truncating data, 461
trusted applications, 522
Trusted Computing Group (TCG), 168
TrustedInstaller account, 538
trusted locations, 427
Trusted Platform Module. See TPM

(Trusted Platform Module)
try/except blocks, 33, 410
tunneling cache, 452
TxF (transactional NTFS), 416

APIs, 472–473
backward compatibility, 469
base log file, 446
change journal, 462
file attributes, 449
log files, 446, 469, 474
log records, 476–477
log stream, 446, 474
old page stream ($Tops), 446, 474
overview, 469–470
recovery, 478
resource managers, 473–475
snapshot device operations, 179
transaction isolation directory, 446
$TxF directory, 473
$TxfLog directory, 474
TxID (TxF file ID), 475–476

$TXF_DATA attribute, 475–476, 477
$TxF directory, 473
TxF file ID (TxID), 475–476
TxF log files ($TxfLog.blf), 446, 469,

474
TxfLog stream, 446, 474
TxF old page stream ($Tops), 446, 474
Txfw32.dll library, 469
TxID (TxF file ID), 475–476
TxR (transactional registry), 416

U
UDF (Universal Disk Format), 2, 392,

393, 398
UDFS (user defined file system), 503
Udfs.sys (UDF driver), 393, 398
UEFI systems, 139–140, 499, 512–513
UFDs. See USB flash devices
UI0Detect.exe (Interactive Services

Detection service), 525
UMDF (User-Mode Driver Framework),

6, 78–81, 79
Umpnpmgr.dll, 94

UNC (Universal Naming Convention),
85

underrun detection, 294
UNDI (Universal Network Device

Interface), 514
undocking, 82
undo entries, 481, 482
undo pass, 477, 480, 485–487
undo records, 476
undo/redo histories, 417
UNEXPECTED_KERNEL_MODE_TRAP

stop code, 549, 588–590
Unicode, 392, 395, 428–429, 448,

449–450
unified caching (Store Manager),

348–350, 520
Unified Extensible Firmware Interface

(UEFI), 139–140, 499, 512–513
unique IDs (partition manager), 138
Universal Disk Format (UDF), 2, 392,

393, 398
Universal Network Device Interface

(UNDI), 514
universal serial bus. See USB (universal

serial bus)
unkillable processes, 48–49, 51–53
“unknown driver” solutions, 564
unknown page fault errors, 269
unloading drivers, 1, 17
unload routines, 13–14
unmapped pages, 273
unnamed data attributes, 447, 448
unnamed file streams, 362, 428
unparked cores, 115, 116, 117–118
unpinning pages, 375
unresponsive systems. See hung or

unresponsive systems
unsigned drivers, 95, 97, 569, 577
untrusted locations, 427
unwinding, 281
update records, 481, 482, 484–485
update sequence numbers (USNs),

433, 461, 476
updating

device drivers, 542, 568
flash memory, 128
kernel, 568
problems with, 542
sectors, 130

uppercase characters, 446
uppercase file ($UpCase), 446
upper-level filter drivers, 90, 93
uptime, listing, 574
USB (universal serial bus)

bandwidth reservation, 64
basic disks, 139
crashes, 550
dongles, 578
drivers, 6
hierarchy prioritization strategy, 60
interfaces, 72

KMDF objects, 72
pipes, 72
ports, 505
support, 126
UMDF support, 78

USB debugger, 506, 510
USB dongles, 578
USB flash devices. See also SSDs (solid

state disks)
BitLocker, 166
BitLocker To Go, 164, 175–176
KMDF objects, 72
ReadyBoost, 347–348
recovery keys, 172–173
startup disks, 164
storage management, 125
stores, 350
UMDF display, 80

USB keyboards, 578
use after free bugs, 570
usefirmwarepcisettings element, 510
uselegacyapicmode element, 510
usephysicaldestination element, 510
useplatformclock element, 510
user address space

64-bit layouts, 237
heap randomization, 250
image randomization, 248–249
kernel address space, 250
layout overview, 246–248
security mitigations, 250
stack randomization, 249–250
viewing, 247–248
virtual address space layouts,

228–229
user buffers, 48
user code address translation, 266
user data stream caching, 356
user defined file system (UDFS), 503
user IDs, 466–467
Userinit.exe, 526, 532
user-initiated I/O cancellation, 49–50
user-mode accessible bit, 264
user-mode applications, 4–5
user-mode buffers, 20
user-mode code, 257
user-mode debugging framework,

518, 519
User-Mode Driver Framework (UMDF),

6, 78–81, 79
user-mode drivers, 6, 78–81
user-mode exceptions, 505
user-mode heaps, 222
user-mode page faults, 267
user-mode pages, 205
user-mode processes, 335–337
user-mode stack, 196–197
user-mode virtual address space, 240
User objects, 221
user process address space, 508

users

642

users
fast-user switching, 342
memory quotas, 246
user IDs, 466–467

user scripts, 526
user space layouts, 246–251
user stacks, 279, 280
Usndump.exe utility, 462
$UsnJrnl files, 446, 461–464
USN_REASON identifiers, 461–462
USNs (update sequence numbers), 433,

461, 476
UTF-16 characters, 428
utility, processor, 110–115, 118, 119,

120
Uuidgen utility, 15

V
VACB arrays, 365
VACB index arrays, 368, 369, 370
VACBs (virtual address control blocks)

cache data structures, 365
cache manager, 360–361
cache slots, 364
displaying, 367
shared cache maps, 411
structure, 366
types, 366

!vad command, 284
VADs (virtual address descriptors)

defined, 282–283
granular allocation, 200
memory manager, 282–284
overview, 282–283
page faults, 269, 270, 411
page table creation, 255
process, 283–284
process address space, 196
rotate, 284
VAD trees, 269
viewing, 284

VAD trees, 269
validation (heap debugging), 226
Valid bit (PTEs), 257
valid pages, 270, 316
Valid (Active) PFN state, 297, 299
valid PTE bits, 264
valid PTE fields, 256–257
valid PTEs, 317
valid shared pages, 270
VBO (virtual byte offset), 379
VBRs (volume boot records), 157, 444,

500, 502
VCNs (virtual cluster numbers)

compressed files, 458, 459–460
defined, 443
index mapping, 465
noncompressed files, 457
runs, 445

VCN-to-LCN mapping, 444–445,
455–456, 488

VDM (Virtual DOS Machine), 521
Vdrvroot driver, 163
VDS (Virtual Disk Service), 141,

160–162
Vdsbas.dll, 160
VDS Basic Provider, 160
VDS Dynamic Provider, 160
Vdsdyn.dll, 160
Vds.exe, 160–162
Vdsldr.exe process, 161
vendor IDs (VIDs), 90
verbose analysis, 567–568, 570, 573,

575
verification

driver errors, 569
Driver Verifier, 292–296
enabling special pool, 571–572
initializing, 519

!verifier command, 294
Verify Image Signatures option, 528
versioning information, 517
version numbers, displaying, 510
Very Low I/O priority, 58, 62–64
VESA display modes, 505
Vf* functions, 293
VfLoadDriver function, 293
VGA display, crashes and, 548
VGA display drivers, 509, 510, 531
vga element, 510
VGA font files, 511
vgaoem.fon file, 511
Vhdmp miniport driver, 163
VHDs (virtual hard disks), 125,

162–163, 503
video adapters, 6, 321, 323, 511
video drivers, 233, 284, 524
video port drivers, 7
VIDEO_TDR_FAILURE stop code, 550
VIDs (vendor IDs), 90
view indexes, 465
views (virtual address space)

cache data structures, 365
cache virtual memory

management, 360
copy-on-write, 209–210
dynamic address space, 232, 233
mapped into cache, 368
preallocated for VACBs, 366
prototype PTEs, 270
reusing, 378
section objects, 201–202
shared page mapping, 196
in system space, 229
valid and invalid pages, 271

virtual address control blocks. See
VACBs (virtual address control
blocks)

virtual address descriptors. See VADs
(virtual address descriptors)

virtual addresses, 242–245, 331–332,
341, 373

virtual address space
commit charge and limits, 275–277
fast allocation, 283
I/O completion, 37
layouts. See virtual address space

layouts
mapping files into, 356
mapping into physical memory,

187
mapping to pages. See address

translation
memory manager, 187
paged and nonpaged pools, 213
pages, 193–195
reserving/committing pages,

195–198
system virtual address spaces, 189
viewing allocations, 306, 307
vs. physical memory, 187

virtual address space layouts
64-bit layouts, 237–239
dynamic address space, 232–233
dynamic management, 242–245
memory manager, 228–251
overview, 228–229
session space, 232–235
space quotas, 245–246
system PTEs, 235–236
user space layouts, 246–251
x64 limitations, 240–242
x86 layouts, 229–232, 232–235

virtual-address-to-working-set pairs,
341

virtual allocator, 242
VirtualAlloc functions

backing stores, 275
committed storage, 276–277
growth in allocations, 231
large memory regions, 221, 282
large pages, 194
mapping views, 211
private pages, 195
viewing allocations, 306

virtual block caching, 355, 358
virtual bus drivers, 85
virtual byte offset (VBO), 379
virtual bytes, 277
virtual clients, 418
virtual cluster numbers. See VCNs

(virtual cluster numbers)
virtual devices, 78
Virtual Disk Service (VDS), 141,

160–162
Virtual DOS Machine (VDM), 521
virtual FCBs, 418
virtual files, 4
VirtualFree functions, 196
virtual hard disks (VHDs), 125,

162–163, 503

 WerFault.exe

 643

VirtualLock function, 199, 211
virtual log LSNs, 422
virtual LSNs, 422–423
Virtual Machine Extensions (VME), 521
virtual machines (VMs), 162, 582–584
virtual memory

Address Windowing Extensions,
210–212

cache manager, 360–361
Control Panel applet, 188
debugging information, 574–575
displaying information, 190–192
fast I/O, 376, 377
functions, 193
limits, 320–323
mapped file I/O, 27
releasing or decommitting pages,

196
scatter/gather I/O, 28

virtual NVRAM stores, 350
virtual page numbers, 253, 254
virtual pages, 188, 328–329
Virtual PC, 162
VirtualProtect functions, 203–204
VirtualQuery functions, 203–204
virtual size

caches, 361
paged pool, 214

virtual storage (SANs), 125, 133, 155
virtual TLB entries, 507
virtual-to-physical memory

translation, 203
Virtualxxx functions, 193
virus scanning, 58, 413
!vm command, 192, 215, 235–236, 574
VME (Virtual Machine Extensions), 521
VMKs (volume master keys), 165–168,

170–171, 172
VMMap utility, 192, 247–248, 304–310
VMs (virtual machines), 162, 582–584
vnodes, 20
volatile data, 379
volatile physical NVRAM cache, 350
VolMgr driver, 141, 146, 147
VolMgr-Internal GUID, 153
VolMgrX driver, 146, 147
Volsnap.sys driver, 179–181
volume book records (VBRs), 157, 444,

500, 502
volume device objects, 141, 155, 156
volume entries (LDM), 142–143
volume file ($Volume), 442, 445–446
$VOLUME_INFORMATION attribute,

448
volume label file ($Volume), 438, 489
volume manager (VolMgr)

associated IRPs, 46–47
bad sector handling, 490
basic disks, 141
disk I/O operations, 159–160

disk offset management, 147
dynamic disks, 146–147
file system drivers, 47, 411
layering drivers, 8
recovery, 487
storage stacks, 131
symbolic links, 136

volume master keys (VMKs), 165–168,
170–171, 172

$Volume metadata file, 438, 489
VOLUME_NAME attribute, 448
volume namespace mechanism,

153–158
volume namespaces, 153–158
volume objects, 159, 409
volume parameter blocks. See VPBs

(volume parameter blocks)
volume quotas, 433–434
volume-recognition process, 155–158,

398
volumes. See also volume manager

(VolMgr)
basic disk partitions, 140
basic disks, 139–141
boot processes, 500, 501
clone and original volumes, 177
compression, 456–461
defined, 442
defragmentation, 436–437
dependent, 163
drive letters, 141
dynamic, 141–147
encryption, 163–176
FAT cluster sizes, 393–394
file object pointers, 19
foreign, 173
indexing, 429
I/O operations, 159–160
label file ($Volume), 438
mounting, 155–158, 444
multipartition, 126, 147–152
names, 155
namespaces, 153–158
NTFS on-disk structure, 442
quotas, 433–434
recovery, 478
recovery keys, 173
redundant, 488
self-healing, 490–491
shadow copy service. See VSS

(Volume Shadow Copy Service)
simple, 126
snapshots, 131, 163
software provider interface, 160
target dump files, 550
VDS subsystem, 160–162
version and labels, 448
virtual disk service, 160–162

volume sets (spanned volumes), 148
Volume Shadow Copy Driver, 179–181

Volume Shadow Copy Service. See VSS
(Volume Shadow Copy Service)

volume snapshots, 131
!vpb command, 156
VPBs (volume parameter blocks)

device objects, 411
file object pointers, 19
file system drivers, 155
I/O manager, 399
mounting process, 155
mount operations, 155
viewing, 156–157

VSS (Volume Shadow Copy Service)
architecture, 177–178
enumeration, 178
operation, 178–181
overview, 177
shrinking volumes, 438–439
storage management, 177–186
VSS providers, 177, 178, 179–181
VSS requestors, 177, 178
VSS writers, 177, 178
Windows backup/restore, 181–186

Vssadmin utility, 185–186

W
WaitForMultipleObjects function, 54
wait functions, 335
wait locks, 72
wait states, 38
waking power state, 99–100
watermarked desktops, 506
WDF (Windows Driver Foundation),

68–77
WdfDeviceCreate function, 71
WDFDEVICE object, 71
WDFDRIVER structure, 71
Wdfkd.dll extension, 69
!wdfkd.wdfldr debugger, 69
WDF_OBJECT_ATTRIBUTES structure,

73–74
WDFQUEUE processing, 75
WDFREQUEST objects, 75
WDI (Windows Diagnostic

Infrastructure), 351
WDK (Windows Driver Kit), 14, 398,

549, 576
WDM (Windows Driver Model), 2, 6–7,

68, 74, 79
wear-leveling, 129–130
web attachments, 427
webcams, 78
websites, crash analysis, 594
weighting (affinity history), 115
well-known installers, 538
WER (Windows Error Reporting), 227,

551–552, 561–562, 563
WerFault.exe, 550–551, 562, 563–564

WHEA_UNCORRECTABLE_ERROR stop code

644

WHEA_UNCORRECTABLE_ERROR stop
code, 550

WHQL (Windows Hardware Quality
Labs), 65, 96

wild-pointer bugs, 573
WIM (Windows Installation Media),

503, 507, 509
Win32_EncryptableVolume interface,

174
Win32 GUI driver, 221
Win32k.sys (windowing system driver)

boot process, 501
Driver Verifier and, 293
graphic system calls, 281
illegal instruction faults, 573
mapping, 229
preempting, 577
session space, 233

Win32_Tpm interface, 174
WinDbg.exe

basic crash analysis, 564
breaking into hung systems,

578–581
connecting to host computer, 583
extracting minidumps, 556
loading symbols, 566
remote boot debugging, 504
unkillable processes, 52

Windiff utility, 541
windowing system driver. See Win32k.

sys (windowing system driver)
Windows

functions, 4–5
I/O manager, 4
native API, 522
object model, 425
processor execution, 501
security, 425
splash screen hangs or crashes,

540–542
Windows 7, 175, 442, 549–551
Windows Application Compatibility

Toolkit, 205
Windows Backup and Restore, 539
Windows boot process. See boot

process
“Windows could not start... “ error,

538, 540
Windows Cryptography Next

Generation (CNG), 492
Windows Defender, 58
Windows Diagnostic Infrastructure

(WDI), 351
Windows directory, 435
Windows Disk Management snap-in.

See Disk Management MMC
snap-in

Windows Driver Foundation (WDF),
68–77

Windows Driver Kit (WDK), 14, 398,
549, 576

Windows Driver Model (WDM), 2, 6–7,
68, 74, 79

Windows Embedded CE, 397
Windows Enterprise, 162, 175, 320, 321
Windows Error Reporting (WER), 227,

551–552, 561–562, 563
Windows file systems

CDFS, 392
exFAT, 396–397
FAT12, FAT16, FAT32, 393–396
NTFS. See NTFS file system
UDF, 393

Windows Hardware Quality Labs
(WHQL), 65, 96

Windows Home Basic, 320
Windows Home Premium, 320
Windows Installation Media (WIM),

503, 507, 509
Windows kernel. See kernel

(Ntoskrnl.exe, Ntkrnlpa.exe)
Windows logo animation, 506
Windows Management

Instrumentation. See WMI
(Windows Management
Instrumentation)

Windows Media Player Network
Sharing Service, 106

Windows Memory Diagnostic Tool,
534

Windows Modules Installer service,
538

Windows NT, 136
Windows PE, 506, 510
Windows Portable Device (WPD), 78
Windows Professional, 320, 321
Windows Recovery Environment

(WinRE), 534–542
Windows Resource Exhaustion

Detection and Resolution
(RADAR), 351, 352

Windows Resource Protection (WRP),
538–539

Windows Server
2008 Datacenter Edition, 155, 320
2008 R2, 134, 175, 442
BitLocker To Go, 175
Enterprise Edition, 155, 320
Foundation, 320
FTH, 227
HPC Edition, 320
for Itanium, 320
MPIO support, 134
NTFS v. 3.1, 442
physical memory support, 320
Standard Edition, 320

Windows Setup, 502, 535–537, 539
Windows Sockets 2 (Winsock2), 54
Windows software trace preprocessor

(WPP), 521
Windows Starter Edition, 320, 321
Windows subsystems, 522

Windows Task Scheduler, 58
Windows Ultimate, 162, 175, 320

physical memory support, 321
Windows Update, 95, 98, 539, 568
Windows Web Server, 320
Wininit.exe (Windows initialization

process), 501, 522–526, 545,
550

Winload.efi, 513
Winload.exe

BCD elements, 504
BCD options, 506–511
boot process tasks, 500
boot volume loading, 511–512
device and configuration

information, 511
iSCSI booting, 514
LDM invisible, 145
loading, 503
loading drivers, 85
multipartition volumes and, 150
NVRAM code, 512–513
storage management, 132
virtual addresses, 243

Winlogon.exe, 228, 524, 526–527,
542–543

Winobj.exe. See Object Viewer
(Winobj.exe)

winpe element, 510
WinPe registry keys, 521
WinRE (Windows Recovery

Environment), 534–542
Winresume.exe, 500, 503
Winsock 2 (Windows Sockets 2), 54
Winver utility, 321
WMI (Windows Management

Instrumentation)
BitLocker interface, 174
initializing, 521
instances, 72
I/O system and, 2
IRP handling, 74
IRP stress tests, 67
KMDF objects, 72
providers, 72, 164, 554
WDM drivers, 6–7
WDM WMI, 2

Wmic.exe, 554
WMI providers, 72, 164, 554
Wmpntwk.exe, 106
WM_QUERYENDSESSION message,

543, 544
worker threads, 520, 545
working set manager, 188, 314, 330,

333
working sets

active pages in, 297
aging, 341
balance set manager/swapper,

333–334
commit charge, 277

 Zw functions

 645

defined, 187
demand paging, 324
Dirty bits, 258
emptying, 307–308
expanding, 333–334
hash trees, 318
index field, 318
limits, 329
locking pages, 199
locks, 189
logical prefetcher, 324–328
management, 329–333
memory manager, 189, 324–337
memory notification events,

335–337
memory quotas, 245–246
moving pages out of, 196
overview, 324
paged pool working set, 334–335
pages trimmed from, 302
page writer, 315
physical memory, 260
placement policies, 328–329
pretraining Superfetch, 343
process working sets, 324
RAM optimization software, 346
redistributing memory, 341
session working sets, 324
share counts, 316
size, 361–362
software and hardware Write bits,

258
system cache working sets,

334–335
system PTEs working sets, 334–335
in system space, 229
system working sets, 324, 334–335
trimming, 330
types, 324
viewing, 331
viewing set lists, 332–333
working set manager, 188, 314,

330, 333
WorkingSetSize variable, 214
work items (KMDF objects), 72
work requests (cache manager), 390
Wow64 environment, 237, 280
WPD (Windows Portable Device), 78
WpdRapi2.dll, 80
WPP (Windows software trace

preprocessor), 521
writable pages, 200, 258
write-behind operations

cache manager work requests, 390
disabling lazy writing, 386
flushing mapped files, 387–388
lazy writer, 379–380
overview, 377

system threads, 390
viewing, 380–386
write-back caching, 379–380
write throttling, 388–389

Write bit (PTEs), 257, 258
write-combined memory access, 204,

257
WriteEncryptedFileRaw function, 497
WriteFileEx function, 38
WriteFile function, 25, 32, 384, 408,

411, 473
WriteFileGather function, 28
write in progress PFN flag, 317
write operations

active views, 360
bad clusters, 488
buffered I/O, 32
copies of files in memory, 288
crashes, 547, 581
explicit file I/O, 408
fast I/O, 376–377
file attributes, 447
file handles, 473
KMDF, 76, 77
large page bugs, 195
leases, 405
LFS log files, 480
logical blocks, 127
mirrored volumes, 150–151
oplocks, 401–402
PAGE attributes and, 203–204
paging files, 62
scatter/gather I/O, 28
torn writes, 421
transacted writers and readers, 470
write throttling, 388–389

WriteProcessMemory function, 196,
203

write protection, 573–574
write throttling, 388–389
Write through bit (PTEs), 257
write-through operations, 377, 387,

478
WRP (Windows Resource Protection),

538–539
!wsle command, 332–333
WUDFHost.exe, 80
WUDFPlatform.dll, 80
WUDFx.dll, 80

X
x2apicpolicy element, 510
x64 systems

address space layouts, 239
address translation, 265–266

AWE functions, 212
device memory support, 321
limitations, 240–242
MBR, 139
PAE, 260
page file size, 274
page sizes, 194
prioritized standby lists, 312
process virtual address space, 187
system code write protection, 574
virtual address limitations,

240–242
working set limits, 329

x86 systems
address translation, 252–259
boot processes, 500, 501
layouts and session space, 232–235
MBR, 139
no execute page protection, 205
non-PAE systems, 253–254
PAE systems, 260–264
page files, 274
page sizes, 194
page tables, 256
physical memory support, 321
real mode, 502–503
SEHOP, 208
session space, 233–235
system code write protection, 574
triple faults, 584
viewing page allocations, 303
virtual address space layouts,

232–235
working set limits, 329

X.509 version 3 certificates, 495, 496
XOR operation, 152
xsaveaddfeature0-7 element, 510
xsavedisable element, 511
XSAVE instruction, 511
xsavepolicy element, 510
XSAVE Policy Resource Driver

(Hwpolicy.sys), 510
xsaveprocessorsmask element, 511
xsaveremovefeature element, 510

Z
zeroed pages, 189, 195, 316
Zeroed PFN state, 297, 299, 300–302
zero-filled pages, 201, 268
zero-length buffers, 76
zero page lists, 191, 300–303, 315,

341, 346
zero page threads, 189, 301, 522
zero-size memory allocations, 66
zones, 427
Zw functions, 201, 351–352)

About the Authors

Mark Russinovich is a Technical Fellow in Windows Azure at
Microsoft, working on Microsoft’s cloud operating system. He is
the author of the cyberthriller Zero Day (Thomas Dunne Books,
2011) and coauthor of Windows Sysinternals Administrator’s
 Reference (Microsoft Press, 2011). Mark joined Microsoft in
2006 when Microsoft acquired Winternals Software, the
company he cofounded in 1996, as well as Sysinternals, where
he still authors and publishes dozens of popular Windows
administration and diagnostic utilities. He is a featured speaker
at major industry conferences. Follow Mark on Twitter at

@markrussinovich and on Facebook at http://facebook.com/markrussinovich.

David Solomon, president of David Solomon Expert Seminars
(www.solsem.com), has focused on explaining the internals of
the Microsoft Windows NT operating system line since 1992. He
has taught his world-renowned Windows internals classes to
thousands of developers and IT professionals worldwide. His
clients include all the major software and hardware companies,
including Microsoft. He was nominated a Microsoft Most
Valuable Professional in 1993 and from 2005 to 2008.

Prior to starting his own company, David worked for nine years as a project leader
and developer in the VMS operating system development group at Digital Equipment
Corporation. His first book was entitled Windows NT for Open VMS Professionals
 (Digital Press/Butterworth Heinemann, 1996). It explained Windows NT to VMS-
knowledgeable programmers and system administrators. His second book, Inside
 Windows NT, Second Edition (Microsoft Press, 1998), covered the internals of Windows
NT 4.0. Since the third edition (Inside Windows 2000) David has coauthored this book
series with Mark Russinovich.

In addition to organizing and teaching seminars, David is a regular speaker at
 technical conferences such as Microsoft TechEd and Microsoft PDC. He has also served
as technical chair for several past Windows NT conferences. When he’s not researching
Windows, David enjoys sailing, reading, and watching Star Trek.

http://facebook.com/markrussinovich
www.solsem.com
Curtis
Cross-Out

Alex Ionescu is the founder of Winsider Seminars & Solutions Inc.,
specializing in low-level system software for administrators and
developers as well as reverse engineering and security training for
government and infosec clients. He also teaches Windows
internals courses for David Solomon Expert Seminars, including at
 Microsoft. From 2003 to 2007, Alex was the lead kernel developer
for ReactOS, an open source clone of Windows XP/Server 2003
written from scratch, for which he wrote most of the Windows
NT-based kernel. While in school and part-time in summers, Alex

worked as an intern at Apple on the iOS kernel, boot loader, firmware, and drivers on
the original core platform team behind the iPhone, iPad, and AppleTV. Returning to his
Windows security roots, Alex is now chief architect at CrowdStrike, a startup based in
Seattle and San Francisco.

Alex continues to be very active in the security research community, discovering
and reporting several vulnerabilities related to the Windows kernel, and presenting
talks at conferences such as Blackhat, SyScan, and Recon. His work has led to the fixing
of many critical kernel vulnerabilities, as well as to fixing over a few dozen nonsecurity
bugs. Previous to his work in the security field, Alex’s early efforts led to the publishing
of nearly complete NTFS data structure documentation, as well as the Visual Basic
metadata and pseudo-code format specifications.

	Cover
	Copyright Page

	Introduction
	Structure of the Book
	History of the Book
	Sixth Edition Changes
	Hands-on Experiments
	Topics Not Covered
	A Warning and a Caveat
	Acknowledgments
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Table of Contents
	Contents at a Glance
	Chapter 10: Memory Management
	Introduction to the Memory Manager
	Memory Manager Components
	Internal Synchronization
	Examining Memory Usage

	Services Provided by the Memory Manager
	Large and Small Pages
	Reserving and Committing Pages
	Commit Limit
	Locking Memory
	Allocation Granularity
	Shared Memory and Mapped Files
	Protecting Memory
	No Execute Page Protection
	Copy-on-Write
	Address Windowing Extensions

	Kernel-Mode Heaps (System Memory Pools)
	Pool Sizes
	Monitoring Pool Usage
	Look-Aside Lists

	Heap Manager
	Types of Heaps
	Heap Manager Structure
	Heap Synchronization
	The Low Fragmentation Heap
	Heap Security Features
	Heap Debugging Features
	Pageheap
	Fault Tolerant Heap

	Virtual Address Space Layouts
	x86 Address Space Layouts
	x86 System Address Space Layout
	x86 Session Space
	System Page Table Entries
	64-Bit Address Space Layouts
	x64 Virtual Addressing Limitations
	Dynamic System Virtual Address Space Management
	System Virtual Address Space Quotas
	User Address Space Layout

	Address Translation
	x86 Virtual Address Translation
	Translation Look-Aside Buffer
	Physical Address Extension (PAE)
	x64 Virtual Address Translation
	IA64 Virtual Address Translation

	Page Fault Handling
	Invalid PTEs
	Prototype PTEs
	In-Paging I/O
	Collided Page Faults
	Clustered Page Faults
	Page Files
	Commit Charge and the System Commit Limit
	Commit Charge and Page File Size

	Stacks
	User Stacks
	Kernel Stacks
	DPC Stack

	Virtual Address Descriptors
	Process VADs
	Rotate VADs

	NUMA
	Section Objects
	Driver Verifier
	Page Frame Number Database
	Page List Dynamics
	Page Priority
	Modified Page Writer
	PFN Data Structures

	Physical Memory Limits
	Windows Client Memory Limits

	Working Sets
	Demand Paging
	Logical Prefetcher
	Placement Policy
	Working Set Management
	Balance Set Manager and Swapper
	System Working Sets
	Memory Notification Events

	Proactive Memory Management (Superfetch)
	Components
	Tracing and Logging
	Scenarios
	Page Priority and Rebalancing
	Robust Performance
	ReadyBoost
	ReadyDrive
	Unified Caching
	Process Reflection

	Conclusion

	Index
	About the Authors
	Survey

