

Learn Microsoft®

Kinect API

Rob Miles

Copyright © 2012 by Rob Miles
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-735-66396-1

1 2 3 4 5 6 7 8 9 LSI 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor
its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Kristen Borg

Editorial Production: Tiffany Rupp, S4Carlisle Publishing Services

Technical Reviewer: Peter Robinson

Copyeditor: Heath Lynn Silberfeld

Indexer: WordCo Indexing Services, Inc.

Cover Design: Jake Rae

Cover Composition: Karen Montgomery

Illustrator: S4Carlisle Publishing Services

To Gus

Contents at a Glance

Introduction xiii

PART I GETTInG STARTED

ChAPter 1 An Introduction to Kinect 3

ChAPter 2 Getting Started with Kinect 13

ChAPter 3 Writing Software for Kinect 25

PART II USInG ThE KInECT SEnSoR

ChAPter 4 Your First Kinect Application—Video Snapshots 43

ChAPter 5 Moving Pictures 67

ChAPter 6 Fun with the Depth Sensor 81

ChAPter 7 Fun with the Sound Sensor 103

PART III CREATInG ADvAnCED USER InTERfACES

ChAPter 8 Body tracking with Kinect 123

ChAPter 9 Voice Control with Kinect 145

ChAPter 10 Augmented reality with Kinect 165

PART Iv KInECT In ThE REAl WoRlD

ChAPter 11 real-World Control with Kinect 201

ChAPter 12 taking Kinect Further 229

Index 241

 vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Introduction . xiii

PART I GETTInG STARTED

Chapter 1 An Introduction to Kinect 3
The Kinect Sensor . 3

Getting Inside a Kinect Sensor . 4

Recognizing People with Kinect . 9

Programming the Kinect .10

Kinect for Xbox and Kinect for Windows .10

Summary. .11

Chapter 2 Getting Started with Kinect 13
Kinect for Windows SDK Prerequisites .13

Kinect Device .13

Visual Studio .14

DirectX Studio .14

Installing the Kinect for Windows SDK .14

Connecting the Kinect Sensor Bar . 17

Powering the Kinect Sensor . 17

Installing the Kinect Sensor USB Drivers .18

Testing the Kinect Sensor Bar .18

The Kinect SDK Sample Browser .18

viii Contents

Troubleshooting Your Kinect Installation .21

Remove Old SDK Installations .21

Ensure That Visual Studio 2010 Is Installed but Not Running
During Installation .22

Ensure That There Are No Windows Updates in Progress22

Ensure That the Kinect Is Powered Correctly 22

Remove Any Old USB Drivers. .22

Summary. .24

Chapter 3 Writing Software for Kinect 25
Making a Kinect Video Camera .25

Creating a New Visual Studio Project for Kinect 25

Getting the Kinect Sensor Working .28

Displaying a Video Frame .33

Adding Error Handling .38

Summary. .39

PART II USInG ThE KInECT SEnSoR

Chapter 4 Your first Kinect Application—video Snapshots 43
Image Storage in Computers .43

Getting the Kinect Image Data onto the Screen 44

Controlling the Color of the Pixels .47

Creating a Color Adjustment Program .49

Improving the Speed by Writing Unsafe Code50

Saving the Image to a File .57

Improving Video Quality .59

Improving Performance by Waiting for Each Kinect Frame 61

Creating a Video Display Thread .62

Updating the Image from a Different Thread63

Stopping the Background Thread .65

Summary. .66

 Contents ix

Chapter 5 Moving Pictures 67
Detecting Movement in Video Images .67

Storing a Video Image in Program Memory .68

Detecting Changes in Video Images .69

Sounding the Alarm .72

A Complete Alarm Program . 74

Switching to Black and White .77

Summary. .80

Chapter 6 fun with the Depth Sensor 81
Visualizing Kinect Depth Information .81

The Kinect Depth Sensor .81

Obtaining Depth Information from the Sensor 82

Visualizing Depth Information .84

Using the Depth Information to Detect Intruders. .89

Using the Depth and Video Sensors at the Same Time89

Drawing in the Air .90

Detecting Objects .92

Counting Depth Values .93

Making You into the Controller .96

Using the Kinect Sensor with an XNA Game .97

Summary. .101

Chapter 7 fun with the Sound Sensor 103
Capturing Sound Using Kinect .103

Sound and Computers .103

Receiving Sound Signals from Kinect .106

Playing Sound Using XNA .108

Sound Signals and Latency .111

Visualizing a Sound Signal in XNA .112

Storing Sound Data in a File and Replaying It .115

Creating a WAV File .116

Playing a Recorded Sound .118

Summary. .120

x Contents

PART III CREATInG ADvAnCED USER InTERfACES

Chapter 8 Body Tracking with Kinect 123
Kinect Body Tracking .123

Kinect Skeleton Information .124

A Head Tracking Program .126

The Joints Collection and C# Dictionaries .128

Using Format Strings to Build a Message .130

Skeleton Information Quality .131

Joint Tracking State .132

Drawing a Skeleton .133

Drawing Lines in WPF .133

Converting Joint Positions to Image Coordinates134

Clearing the Canvas .136

Drawing a Complete Skeleton .136

Detecting Gestures .139

Calculating the Distance Between Two Points in Space139

Using a Gesture to Trigger an Action .140

Biometric Recognition with Kinect .141

Creating a “Kiss-Detecting” Program .141

Finding Two Skeletons That Are Being Tracked141

Summary. .143

Chapter 9 voice Control with Kinect 145
Using the Microsoft Speech Platform .145

Testing Voice Recognition .146

Creating a Program That Recognizes Color Names147

Adding the Speech Platform SDK Assemblies to a Project147

Creating a Speech Recognition Engine .147

Building the Commands .151

Creating a Grammar .151

Getting Audio into the Speech Recognizer .152

Responding to Recognized Words .153

 Contents xi

Creating a Voice-Controlled Painting Program .154

Speech Commands .155

Drawing a Skeleton Cursor .157

Drawing Using the Artist’s Hand .158

Saving the Drawing Canvas to a File .158

Tidying Up When the Program Ends .160

Improving the Drawing Program .162

Adding Speech Output to Programs .162

Feedback Problems. .163

Summary. .164

Chapter 10 Augmented Reality with Kinect 165
An Augmented-Reality Game .165

Creating Sprites .166

Creating Augmented Reality .175

Isolating the Player Image from the Background182

Putting the Whole Game Together .192

The Kinect Manager Class .193

Improving the Game .196

Summary. .196

PART Iv KInECT In ThE REAl WoRlD

Chapter 11 Real-World Control with Kinect 201
Controlling MIDI Devices with Kinect .201

The MIDI Protocol .201

Creating a Class to Manage a MIDI Connection203

Constructing a MIDI Connection Class .204

Creating a MIDIControl Instance .205

Creating MIDI Messages .206

Sending MIDI Messages .207

Making a Multi-Note Piano .210

Playing a Proper Scale .214

Creating a Human MIDI Keyboard .214

Developing the MIDI Program. .219

xii Contents

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Using the Kinect with a Serial Port. .219

Linking a Kinect Program to a Serial Port .221

Summary. .227

Chapter 12 Taking Kinect further 229
Adjusting the Sensor Angle .229

Using Kinect to Track Multiple People .230

Identifying Particular People in a Scene .230

Combining Skeleton and Person Depth Information 232

Sound Location with the Kinect Microphone Array234

Using Kinect with the Microsoft Robotics Development Studio 236

Mobile Autonomous Reference Using Kinect236

Emulating a Robot Environment .237

Robots and Kinect in the Future .238

Taking Kinect Further .239

Mount the Sensor in Different Orientations239

Use Multiple Sensors .239

Move the Sensor Around .239

Use Skeleton Tracking to Measure Things .239

Investigate TransformSmoothParameters . 239

Use Voice Response to Do Anything .240

Have Fun Playing with Video .240

Make More of MIDI .240

Good Luck and Have Fun! .240

Summary. .240

Index 241

About the Author 251

 xiii

Introduction

The Kinect sensor provides a genuinely new way for a computer to make some sense
of the world around it. The fusion of a camera, a directional microphone system,

and a depth sensor into a single, mass-market device provides an opportunity for
software developers to advance the field of computer interaction in all kinds of exciting
ways.

It is now possible to create programs that use the Kinect sensor to create a computer
interface with the ability to recognize users and understand their intentions using a
“natural” user interface consisting of gestures and spoken commands. In addition, the
device’s capabilities have a huge range of possible applications, from burglar alarms to
robot controllers.

Start Here! Learn the Kinect™ API gives you an overview of how the Kinect sensor
works and how the Kinect for Windows SDK exposes each of the data sources. The book
introduces each of the sensors in the context of solving a well-defined problem. The full
source code is provided for each example program. You will also find plenty of ideas for
further development of both the sample programs and your own applications.

In addition to an overview of the Kinect for Windows SDK, this book explores the
fundamentals of the signals being processed: how video, audio, depth, and 3D skeleton
information can be represented in a program. Also included is coverage of specific
programming issues that are highly relevant to the creation of programs that deal with
large streams of data from sensors, including memory allocation, creating unmanaged
code to improve performance, and threading. If you want to learn more about these
aspects of program development, you will find good coverage and sample code that
works. Although this book doesn’t cover every Kinect for Windows SDK, it provides a
solid starting point for experimentation and further development.

Who Should Read This Book

This book is intended to be read by C# developers who have a Kinect sensor, either
from an Xbox 360 or a Kinect for Windows device, and want to find out how to use the
Kinect for Windows SDK to create programs that can process video, sound, and depth
views and perform skeleton tracking. If you have an idea for a product based on the
Kinect sensor, you can use this book to get a solid grounding in the technology—and
you might even be able to use some of the sample code as the basis of your first steps
along the road to a working solution.

xiv Introduction

Assumptions
This book expects that you have a reasonable understanding of .NET development
 using the C# programming language. You should be familiar with the Visual Studio
2010 development environment and object-oriented programming development.

All the examples are provided in the C# language. It will be helpful (although not
required) if you have some experience with Windows Presentation Foundation (WPF)
development. In addition, some examples make use of the XNA game development
framework. The key development principles important to the development of Kinect
software are explained in some detail, so you can use the text to broaden your
 programming knowledge.

Who Should Not Read This Book

If you have never programmed before, you will not find sufficient background on the
C# language to be able to understand the examples. If you want to learn how to use
the language, you might consider reading John Mueller’s Start Here!™ Learn Microsoft®
Visual C#® 2010 (Microsoft Press, 2011) and/or John Sharp’s Microsoft® Visual C#®
2010 Step by Step (Microsoft Press, 2011).

The text of this book provides coverage of the managed code Application
 Programmer Interface (API) supported by the Kinect for Windows SDK. So if you are
a C++ developer who wishes to learn how to interact with the Kinect sensor from
 unmanaged C++ programs, you will find that the code samples supplied will not
 provide this information.

organization of This Book

This book is divided into four sections, each of which builds on the previous section
to give you an overview of the Kinect sensor, the Kinect for Windows SDK, and how
to create programs that make use of the data. Part I, “Getting Started,” provides an
overview of how the sensor works and how you can get a Kinect sensor connected to
and working with your computer. Part II, “Using the Kinect Sensor in Programs,” covers
the fundamentals of sensor initialization and then introduces each of the data sources,
video, depth, and sound. Part III, “Creating Advanced User Interfaces,” shows how the
Kinect SDK performs body tracking and how a program can use this information. It
also shows how data from the sensors can be combined to produce augmented-reality
 applications. Finally, Part IV, “Kinect in the Real World,” shows how you can use the

 Introduction xv

Kinect to interact with external devices. This section provides additional programming
insight and identifies future directions for exploring this fascinating new sensor.

Conventions and features in This Book

This book presents information using conventions designed to make the information
readable and easy to follow:

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (e.g. File | Close), means that
you should select the first menu or menu item, then the next, and so on.

System Requirements

You will need the following hardware and software to complete the practice exercises in
this book:

■■ Windows 7, 32- or 64-bit version

■■ Visual Studio 2010, any edition (multiple downloads may be required if using
Express Edition products)

■■ The Kinect for Windows SDK

■■ Computer that has a 1 GHz or faster processor (2 GHz recommended)

■■ 1 GB (32 bit) or 2 GB (64 bit) RAM

■■ 3.5 GB of available hard disk space

■■ 5,400 RPM hard disk drive

■■ DirectX 9 capable video card running at 1024 x 768 or higher-resolution display

■■ DVD-ROM drive (if installing Visual Studio 2010 from DVD)

■■ Internet connection to download software or chapter examples

xvi Introduction

Depending on your Windows configuration, you might require local administrator
rights to install or configure Visual Studio 2010 and SQL Server 2008 products.

Code Samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All the sample projects can be downloaded from the
following page:

http://www.microsoftpressstore.com/title/9780735663961

Follow the instructions to download the KinectStartHereCompanionContent.zip file.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book:

1. Unzip the KinectStartHereCompanionContent.zip file that you downloaded
from the book’s website to a directory on your hard drive. It’s best to create a
 directory near the root of your drive, such as C:\KinectExamples.

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access it from
the same webpage from which you downloaded the KinectStartHere
CompanionContent.zip file.

Using the Code Samples
The folder created by the Setup.exe program contains a subfolder for each chapter.
In turn, these subfolders contain a number of subfolders, one for each example.
The examples have the folder names provided in this book’s text. Each contains the
 complete Visual Studio project and all the source code and resources required to
build them. (To reduce the size of the download file, the examples do not contain the
 executable programs themselves; you will have to compile the example programs using
Visual Studio run them.)

http://www.microsoftpressstore.com/title/9780735663961

 Introduction xvii

Note Some of the folder paths created by Visual Studio 2010 can be quite
“deep”—that is, a folder may contain a subfolder and so on for a number
of levels. Installing the sample code in a folder that is already deep in the
folder hierarchy on your disk may lead to problems when you try to build
the program, because some file systems in use on Windows PC systems
have a restriction on the maximum length of a path to a file. If you encoun-
ter problems running the example programs, you may be able to solve the
 problem by moving the examples folder closer to the root of the drive you are
using.

Acknowledgments

I’d like to thank the following people: Russell Jones for being such a patient and
 constructive editor, Peter Robinson for sterling duty on the technical editing front, and
Tiffany Timmerman and Kristen Borg for breathing on the text and making it so much
nicer to read. Finally, I’d like to thank the Kinect team for making such a fascinating
product that is such fun to play with!

Errata and Book Support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site:

http://www.microsoftpressstore.com/title/ 9780735663961

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, please email Microsoft Press Book Support at mspin-
put@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoftpressstore.com/title/ 9780735663961

xviii Introduction

We Want to hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter:

http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

Part I

Getting Started

ChAPTER 1 An Introduction to Kinect. 3

ChAPTER 2 Getting Started with Kinect .13

ChAPTER 3 Writing Software for Kinect .25

In this section you will learn what happens inside the Kinect
sensor and how it collects data that lets it see and hear the
 environment around it. You’ll also find out how the signals that
it collects are sent over to your computer or Xbox 360. Finally,
you will install the Kinect SDK and work with the software to
build your first programs that use data from the sensor.

 3

Chapter 1

An Introduction to Kinect

After completing this chapter, you will:

■■ Understand how the Kinect sensor generates data about the world around it

■■ Identify the key components of the Kinect sensor and how they work

■■ Appreciate how the sensors and the Kinect provide useful signals to a connected computer or
console

The Kinect Sensor

until recently computers had a very restricted view of the world around them, and users had very
 limited ways of communicating with computers. Over the years, computers have acquired cameras
and audio inputs, but these have been used mostly for unrecognized input; computers can store and
play such content, but it has been very difficult to make computers understand input in these forms.

For example, when people hear a sound, they can make judgments about the distance and
 direction of the sound source relative to their own position. Until recently, computers had more
 trouble making such judgments. Audio information from a number of microphones does provide
considerable information about the distance and direction of the audio source, but determining
this information is difficult for programs to do. Similarly, a video picture provides an image of
the environment for the computer to analyze, but a computer has to work very hard to extract
 information about the objects in pictures or video because an image shows a flat, two-dimensional
representation of a three-dimensional world.

Kinect changes all this. The Kinect sensor bar contains two cameras, a special infrared light source,
and four microphones. It also contains a stack of signal processing hardware that is able to make sense
of all the data that the cameras, infrared light, and microphones can generate. By combining the
output from these sensors, a program can track and recognize objects in front of it, determine the
direction of sound signals, and isolate them from background noise.

4 PArt 1 Getting Started

Getting Inside a Kinect Sensor
To get an idea of how the Kinect sensor works, you could take one apart and look inside. (Don’t do
that. There are many reasons why taking your Kinect apart is a bad idea: it’s hard to do, you will invali-
date your warranty, and you might not be able to restore it to working condition. But perhaps the
best reason not to take it apart is that I’ve already done it for you!)

Figure 1-1 shows a Kinect sensor when it is “fully dressed.”

fIGURE 1-1 A Kinect sensor.

Figure 1-2 shows a Kinect with the cover removed. You can see the two cameras in the middle
and the special light source on the left. The four microphones are arranged along the bottom of the
 sensor bar. Together, these devices provide the “view” the Kinect has of the world in front of it.

Infrared Projector Infrared Camera

Video Camera

Microphones

fIGURE 1-2 A Kinect sensor unwrapped.

Figure 1-3 shows all the hardware inside the Kinect that makes sense of the information being
 supplied from all the various devices.

 ChAPTER 1 An Introduction to Kinect 5

fIGURE 1-3 The Kinect sensor data processing hardware.

To make everything fit into the slim bar form, the designers had to stack the circuit boards on top
of each other. Some of these components produce quite a bit of heat, so a tiny fan that can be seen
on the far right of Figure 1-3 sucks air along the circuits to keep them cool. The base contains an
 electric motor and gear assembly that lets the Kinect adjust its angle of view vertically.

Now that you have seen inside the device, you can consider how each component helps the Kinect
do what it does, starting with the “3D” camera.

the Depth Sensor
Kinect has the unique ability to “see” in 3D. Unlike most other computer vision systems, the Kinect
system is able to build a “depth map” of the area in front of it. This map is produced entirely within
the sensor bar and then transmitted down the USB cable to the host in the same way as a typical
camera image would be transferred—except that rather than color information for each pixel in an
image, the sensor transmits distance values.

You might think that the depth sensor uses some kind of radar or ultrasonic sound transmitter to
measure how far things are from the sensor bar, but actually it doesn’t. This would be difficult to do
over a short distance. Instead, the sensor uses a clever technique consisting of an infrared projector
and a camera that can see the tiny dots that the projector produces.

Figure 1-4 shows the arrangement of the infrared projector and sensor.

fIGURE 1-4 The Kinect infrared projector and camera.

6 PArt 1 Getting Started

The projector is the left-hand item in the Figure 1-4. It looks somewhat like a camera, but in fact
it is a tiny infrared projector. The infrared camera is on the right side of Figure 1-4. In between the
projector and the camera is an LED that displays the Kinect device status, and a camera that captures
a standard 2D view of the scene. To explain how the Kinect sensor works, I’ll start by showing an
 ordinary scene in my house. Figure 1-5 shows my sofa as a person (okay, a camera) might see it in a
room.

fIGURE 1-5 My sofa.

In contrast, Figure 1-6 shows how the Kinect infrared sensor sees the same view.

fIGURE 1-6 The sofa as the Kinect infrared sensor sees it.

 ChAPTER 1 An Introduction to Kinect 7

The Kinect infrared sensor sees the sofa as a large number of tiny dots. The Kinect sensor constantly
projects these dots over the area in its view. If you want to view the dots yourself, it’s actually very easy; all
you need is a video camera or camcorder that has a night vision mode. A camera in night vision mode is
sensitive to the infrared light spectrum that the Kinect distance sensor uses.

Figure 1-6, for example, was taken in complete darkness, with the sofa lit only by the Kinect. The
infrared sensor in the Kinect is fitted with a filter that keeps out ordinary light, which is how it can see
just the infrared dots, even in a brightly lit room. The dots are arranged in a pseudo-random pattern
that is hardwired into the sensor. You can see some of the pattern in Figure 1-7.

fIGURE 1-7 The dot pattern on the sofa arm.

A pseudo-random sequence is one that appears to be random, but it is actually mechanically
 generated and easy to repeat. What’s important to remember here is that the Kinect sensor “knows”
what the pattern looks like and how it is drawn. It can then compare the image from the camera with
the pattern it knows it is displaying, and can use the difference between the two to calculate the
distance of each point from the sensor.

To understand how the Kinect does this, you can perform a simple experiment involving a
 darkened room, a piece of paper, a flashlight, and a helpful friend. You need to adjust the flashlight
beam so it’s tightly focused and makes a small spot. Now, get your friend to stand about 5 feet
(1.5 meters) away from you, slightly to your right. Ask your friend to hold the paper to the front of
you, holding the torch in your left hand, shine the torch dot onto the piece of paper. Now ask your
friend to move forward toward you. As the person comes closer, you will see that the dot on the
paper moves a little to the left because it now hits the paper before it has traveled quite as far to the
right.

8 PArt 1 Getting Started

Figure 1-8 shows how this works. If you know the place you are aiming the dot, you can work
out how far away your friend is by the position of the dot on the paper. The impressive thing about
the Kinect sensor is that it performs that calculation for thousands of dots, many times a second.
The infrared camera in the Kinect allows it to “see” where the dot appears in the image. Because the
software knows the pattern that the infrared transmitter is drawing, the hardware inside the Kinect
does all the calculations that are required to produce the “depth image” of the scene that is sent to
the computer or Xbox.

Your
Friend

You

fIGURE 1-8 Showing how the Kinect distance sensor works.

This technique is interesting because it is completely different from the way that humans see
 distance. Each human eye gets a slightly different view of a scene, which means that the closer an
object is to a human, the greater the difference between the images seen by each eye. The brain
identifies the objects in the scene, determines how much difference there is between the image from
each eye, and then assigns a distance value to each object.

In contrast, the Kinect sensor shines a tightly focused spot of light on points in the scene and
then works out how far away that point is from the sensor by analyzing the spot’s reflection. The
Kinect itself doesn’t identify any objects in a scene; that task is performed by software in an Xbox or
 computer, as you’ll see later.

the Kinect Microphones
The Kinect sensor also contains four microphones arranged along the bottom of the bar. You can see
them in Figure 1-2: two on the left and right ends, and two more on the right side of the unit. The
Kinect uses these microphones to help determine from where in a room a particular voice is coming.
This works because sound takes time to travel through air. Sound travels much more slowly than light,
which is why you often hear a thunderclap long after seeing the corresponding bolt of lightning.

When you speak to the Kinect sensor, your voice will arrive at each microphone at different times,
because each microphone is a slightly different distance away from the sound source. Software can
then extract your voice waveform from the sound signal produced by each microphone and—using

 ChAPTER 1 An Introduction to Kinect 9

the timing information—calculate where the sound source is in the room. If several people are in a
room with the Kinect, it can even work out which person is talking by calculating the direction from
which their voice is coming, and can then “direct” the microphone array to listen to that area of the
room. It can then remove “unwanted” sounds from that signal to make it easier to understand the
speech content.

From a control point of view, when a program knows where the speech is coming from (perhaps
by using the distance sensor), it can direct the microphone array in that direction, essentially creating
a software version of the directional microphones that are physically pointed at actors to record their
voices when filming motion pictures.

Recognizing People with Kinect

One very popular use for the Kinect sensor is recognizing and tracking people standing in front of
it. The Kinect sensor itself does not recognize people; it simply sends the depth image to the host
device, such as an Xbox or computer. Software running on the host device contains logic to decode
the information and recognize elements in the image with characteristic human shapes. The software
has been “trained” with a wide variety of body shapes. It uses the alignment of the various body parts,
along with the way that they move, to identify and track them.

Figure 1-9 shows the output produced by the body-tracking software as a “stick figure” with lines
joining the various elements.

fIGURE 1-9 Skeleton information retrieved using the Kinect software.

10 PArt 1 Getting Started

The Kinect software can also recognize the height and proportions of a particular person. For
example, this feature lets Xbox Live users “train” their Xbox so it recognizes them when they walk into
a room.

Programming the Kinect

The software described in the previous sections, and which you’ll see more of in this book, is called
the Kinect for Windows Software Development Kit (SDK). Installing the SDK lets you write programs
that use the power of the Kinect at different levels. You can obtain direct access to the low-level
video and depth signals and create applications that use that low-level data, or you can make use of
the powerful library features built into the SDK that make it easy for a program to identify and track
 users.

You can download the Kinect for Windows SDK for free. The SDK provides a set of libraries that
you can add to your own programs and games so they can use the sensor. The SDK also contains all
the drivers that you need to link a Kinect to your computer.

You can use the Kinect SDK from a managed code programming language (such as C# or Visual
Basic.NET) or from unmanaged C++. The SDK provides a set of objects that expose properties and
methods you can use in your programs. The following chapters explore how you can write programs
that use these objects to create some novel and fun programs that support completely new ways of
interacting with a computer.

The next chapter describes how to install the SDK on your computer and get it connected and
talking to the Kinect.

Kinect for Xbox and Kinect for Windows

You can write programs that use either the Kinect for Xbox sensor or the Kinect for Windows sensor.
The Kinect for Xbox sensor has been set up to allow it to be most effective when tracking the figures
of game players. This means that it can track objects that are up to 12 feet (4.0 meters) away from the
sensor but cannot track any objects that are closer than 24 inches (80 cm). The Kinect for Windows
sensor has been set up to allow it to track a single user of a computer, and it has much better short-
range performance as it is able to track objects as close to the sensor as 12 inches (40 cm).

The Kinect for Windows SDK was, as the name implies, primarily created for use with the Kinect
for Windows sensor, but it will also work with an Xbox 360 Kinect sensor. Microsoft engineers will
provide support into the future for Xbox Kinect from this SDK, but for best results, particularly if you
want to track objects very close to the sensor bar, you should invest in a Kinect for Windows sensor
device. The Kinect for Windows device can even track individual finger movements and gestures of
the computer user.

 ChAPTER 1 An Introduction to Kinect 11

The bottom line is that if you have an Xbox 360 with a Kinect device attached to it, you can use
that sensor to have some fun learning how to create programs that can see, measure distance, and
hear users. However, if you want to get serious about providing a product of your own that is based
on the Kinect sensor, you should target the Kinect for Windows device. If you want complete details
of how this all works, read the detailed End User License here:

http://www.microsoft.com/en-us/kinectforwindows/develop/sdk-eula.aspx

Summary

This chapter gave you a look inside the Kinect sensor so you could see (without having to take your
own Kinect apart) how complex it is. You saw that the Kinect contains two cameras (one infrared
 camera and one video camera) and a special infrared transmitter that produces a grid of dots that
measure the distance of objects from the Kinect and to compose a “depth map” of the image.
You also learned that the Kinect sensor contains four microphones that can be used to remove
 background noise from an audio signal and to listen to sound from particular parts of a room.

You also saw that the Kinect sensor sends this data to a host device (Xbox or computer), which
then processes the data in various ways, including recognizing the position, movement, and even the
identity of people in front of the Kinect.

You also found out that two Kinect sensor bars are available, both of which can be used with
the Kinect for Windows Software Development Kit (SDK). The Kinect for Xbox device has a good
 long-range performance for tracking game players, and the Kinect for Windows device has been
 optimized for shorter-range tracking so that a single computer user can use it to interact with a
 system that is nearby.

 13

Chapter 2

Getting Started with
Kinect

After completing this chapter, you will:

■■ Identify any prerequisites to work with Kinect on your computer

■■ Have installed the Kinect for Windows SDK on your computer

■■ Have connected the Kinect sensor bar and tested it on your machine

Kinect for Windows SDK Prerequisites

the kinect for windows sdk fits alongside an installation of Visual Studio 2010 on your Windows
 computer. It works on Windows 7. In this section we will look at the things you need to have to get
the best out of your Kinect sensor.

Kinect Device
It should come as no surprise that you will need a Kinect device and its power supply along with a
USB port so you can plug it into your computer. You can use either of two Kinect sensor bars with the
Kinect for Windows SDK. You can use a Kinect sensor from an Xbox console, or you can use a Kinect
for Windows sensor that has been optimized for computer use. The examples in this book will work
with either sensor bar.

It is best if the Kinect is given exclusive use of a USB connection—that is, if you have a USB hub
with your webcam, printer, and external hard disk plugged into it, you should not add the Kinect to
the hub as well. The Kinect sensor can produce a lot of data, and it works best if it has exclusive use of
its own USB connection.

14 PArt 1 Getting Started

Note You should plug the Kinect sensor into your computer after you have installed the
Kinect for Windows SDK. When the SDK is installed, it also adds the USB drivers needed for
Kinect; these are not provided as part of a standard Windows 7 installation.

Visual Studio
Before you install the Kinect for Windows SDK, you must make sure that you have Visual Studio 2010
installed on your machine. The SDK can be used with either C++, C#, or Visual Basic .NET. This text will
focus on the use of C# to create managed applications that use the sensor, but the fundamentals of
the way the libraries present data to your programs are the same. You can use any version of Visual
Studio 2010, including those that are available for free from the Visual Studio Express website:

http://www.microsoft.com/express

DirectX Studio
Some of the C++ examples that are supplied with the Kinect SDK make use of the DirectX graphics
SDK. If you want to compile and run these programs, you will need to have the DirectX SDK installed.
You can download the SDK from here:

http://msdn.microsoft.com/en-us/directx

There is no need to install this SDK if you only plan to use the Kinect SDK from C# and Visual Basic .NET.

Installing the Kinect for Windows SDK

The Kinect for Windows SDK is a free download. The SDK also contains the USB drivers for the various
elements inside the Kinect sensor itself. You can find the Kinect for Windows SDK at the Kinect for
Windows website:

http://kinectforwindows.org

This site also contains links to detailed descriptions of the Kinect and other useful resources.

Note Although the SDK is provided free of charge, this does not mean that it is free
for commercial purposes. Using the Kinect SDK for personal experimentation is not a
 commercial purpose. It is also not a commercial purpose to use the Kinect SDK in the
 process of teaching or academic research, even if you are regularly employed as a teacher
or professor or if you intend to apply for research grants through such research. However,
if you intend to sell a product based on the Kinect device, you should read the License
Agreement.

 ChAPTER 2 Getting Started with Kinect 15

Installing the Kinect SDK

You should make sure that any older Kinect drivers that are not part of the Kinect system are removed
from your system before you install the Kinect SDK. You should also make sure that Visual Studio 2010 is
installed on your Windows computer (but not actually open) when you perform the install. If you have any
problems you should check out the “Troubleshooting Your Kinect Installation” section at the end of this
chapter. To install the Kinect SDK on your PC follow this sequence:

1. You can perform the installation of the Kinect SDK directly from the download webpage:

http://www.microsoft.com/en-us/kinectforwindows/develop

2. To do this you should click on the Download link to select the appropriate version for your
system.

3. Your browser will ask you if you want to run or save the install file. You should select the Run
option, as shown above. Click Run to start the installer, which will display the Welcome Screen
as shown below.

16 PArt 1 Getting Started

4. When the Install program starts, you will first see the Welcome Screen as shown previously.
Select the tick box to accept the terms of the licensing conditions, and then click Install to
begin installation.

5. Because this is a software installation on your computer, you may see a User Account Control
dialog box confirming that you are going to allow the installer to make changes to the
 computer. Click Yes to continue.

6. The installation will now begin. During the installation it might be necessary to install some
 Visual C++ runtime components, as shown above. Just confirm the installation of each
 element in turn. Eventually you will see the completion dialog box, as shown below.

 ChAPTER 2 Getting Started with Kinect 17

7. Once the installation has completed, you can create programs that use the Kinect for
 Windows SDK. You can also run programs that have been built using the Kinect SDK.

If you want to send your programs to Windows computer owners who will not be developing
 Kinect applications, the recipients must install the runtime version of Kinect for Windows. This
 contains the Kinect libraries and USB drivers, but it cannot be used to create new Kinect for Windows
applications. The runtime version can be downloaded from the following website:

http://download.microsoft.com/download/E/E/2/EE2D29A1-2D5C-463C-B7F1-40E4170F5E2C/
KinectRuntime-v1.0-Setup.exe

Connecting the Kinect Sensor Bar

After you have installed the Kinect SDK, you can connect the sensor bar to your computer. The Kinect
sensor bar works with any Windows computer that has a USB connection.

Note Although you may not be using the Kinect sensor for playing games, you should still
be mindful of how the sensor should be positioned and used. If you are using the sensor to
detect movement and gestures, allow plenty of space around the device for operators to
interact with the sensor. The sensor itself is not able to register depth information of objects
that are closer than about 24 inches (800 mm), so make sure that it has a bit of breathing
room in front of it.

Powering the Kinect Sensor
The Kinect sensor bar uses more power than is available from a standard USB connection. It needs about
1.5 amps of current, whereas a standard USB port on a computer is only able to supply 0.5 amp. A Kinect
sensor bar can get the extra power in either of two ways. The newer, small Xbox 360 consoles have a
specially modified USB connection on the back that can provide extra current. Owners of the older, larger
Xbox 360s must use the Kinect power supply that is connected between the sensor bar and the console.
The Kinect power supply allows use of the Kinect sensor bar with any device that has a standard USB
 connection.

The plug on the end of the wire coming from the Kinect sensor bar looks a bit like a USB plug, but
in fact it is special and has one corner cut off so that it will not fit directly into a USB port in a desktop
computer or laptop. If you force the Kinect plug into a standard USB socket, you will break the socket
and do expensive damage to your system. Instead, use the Kinect power supply that is connected
between the Kinect plug and the USB connection on your computer. The cable from the power supply
includes a USB plug that can be fitted safely into a computer.

http://download.microsoft.com/download/E/E/2/EE2D29A1-2D5C-463C-B7F1-40E4170F5E2C/KinectRuntime-v1.0-Setup.exe
http://download.microsoft.com/download/E/E/2/EE2D29A1-2D5C-463C-B7F1-40E4170F5E2C/KinectRuntime-v1.0-Setup.exe

18 PArt 1 Getting Started

Note If you obtained your Kinect as part of an Xbox 360 and Kinect bundle, you might not
have a Kinect power supply. In this case you will need to purchase a Kinect power supply to
use the sensor on your computer.

Once you have positioned your sensor bar and connected it to a power source, you are ready to
connect it to your computer.

Installing the Kinect Sensor USB Drivers
The very first time that you plug the Kinect sensor bar into your Windows computer, it will
 automatically install all the USB drivers that are required. To ensure that you get the latest version of
the drivers, your Windows computer will contact Windows Update during the install. It is therefore
a good idea to connect the sensor bar for the first time when your computer has a working Internet
connection.

Figure 2-1 shows the results of a successful Kinect installation. If the drivers do not install
 successfully, this may be because you have older drivers on your machine that need to be removed.
Take a look in the “Troubleshooting Your Kinect Installation” section at the end of this chapter for
details of how to search for and remove these drivers.

fIGURE 2-1 A successful driver installation.

Testing the Kinect Sensor Bar

The Kinect for Windows SDK is provided with some sample applications that you can use to demon-
strate that the Kinect sensor is working correctly. Later in this book, we will take a look inside these
applications to find out how they work.

the Kinect SDK Sample Browser
This sample allows you to demonstrate that the video and infrared cameras are working properly.
It also gives a very good demonstration of the body-tracking abilities of the Kinect system. The
 program is supplied as part of the SDK and will be copied onto your computer when you install the

 ChAPTER 2 Getting Started with Kinect 19

Kinect for Windows SDK on it. You can find the program on the Windows Start Menu in All Programs |
Microsoft Kinect SDK v1.0 | Kinect SDK Sample Browser (Figure 2-2).

fIGURE 2-2 The Kinect SDK Sample Browser.

When you run the program, it displays a number of options that allow you to view documentation
and run a number of sample programs, including the Kinect Explorer program (Figure 2-3).

fIGURE 2-3 Selecting the Kinect Explorer program.

20 PArt 1 Getting Started

If you click on the Kinect Explorer program, you get the option to read the documentation, install
the sample code on your machine, and run the program.

Figure 2-4 shows the main screen displayed by Kinect Explorer. On the left is the image from
the video camera, with the bones of any tracked skeletons displayed on top of it. On the right is the
 image from the “depth” camera. Points in the depth view that are different distances from the sensor
are given different colors. The viewer also adds color to those parts of the depth view that have been
identified as being part of a person in the scene. The display also shows the rate at which the display
is being updated in frames per second (FPS). The sensors generate 30 frames per second. If the
 computer running Kinect Explorer is not fast enough to process and display each frame, this number
will be lower.

fIGURE 2-4 The Kinect Explorer main screen.

By clicking the down arrow at the bottom right of the screen, you can open the Settings menu,
which allows you to configure the sensors in the Kinect device.

Figure 2-5 shows the options display. You can change the resolution of the color and depth
 cameras and also select the type of skeleton tracking that the program uses. You can also use the
slider at the right side of the options to adjust the elevation angle of the sensor. This controls the
motor in the base of the Kinect sensor and allows for adjustment of the angle of the sensor to get the
best view of the scene.

 ChAPTER 2 Getting Started with Kinect 21

fIGURE 2-5 Kinect Explorer with option screen.

The Kinect Explorer program also shows how Kinect uses the four microphones in the sensor bar
to locate sound. It displays the angle from the sensor to any sound source that it detects as well as the
angle of the audio beam that it has directed at the sound. If you make a noise in front of the sensor,
you will see that the display changes to display where in front of the sensor the sound came from.
In the display in Figure 2-5, the indicator underneath the right-hand “30 FPS” shows the direction in
which the microphone is being aimed, with the broader area underneath giving the broad area from
where the sound is coming.

Kinect Explorer provides a very good introduction to the capabilities of the sensor. You will
 discover how each part of the Kinect sensor works and how to use it from your programs in the
 coming chapters of this book.

Troubleshooting Your Kinect Installation

Most of my installations of the Kinect for Windows SDK and the sensor bar have had no problems.
However, you might find the following troubleshooting tips useful.

remove Old SDK Installations
Ensure that you have removed all the previous Kinect Beta SDKs. These can be removed using the
Control Panel at Control Panel\Programs\Programs and Features.

22 PArt 1 Getting Started

ensure that Visual Studio 2010 Is Installed but Not running
During Installation
During the Kinect SDK installation the installer will add some environment settings that are picked
up by Visual Studio 2010. For this to complete successfully, it is important that Visual Studio is not
 running on the computer when the Kinect SDK is installed.

ensure that there Are No Windows Updates in Progress
The installation process will modify some system files that might be in use during a Windows Update.
Before you start the Kinect SDK installation, you should check in the Control Panel at Control Panel |
System and Security | Windows Update to make sure that no updates are in progress. You also should
check to see if any updates are waiting to perform a reboot.

ensure that the Kinect Is Powered Correctly
If Kinect fails to install all the USB drivers when it is plugged into the Windows computer for the first
time, it may be because the sensor bar is not receiving any power. Make sure that the Kinect power
supply is plugged in and that the green light on the power connector is lit.

If the Kinect is showing a steady red light, this may mean that the power supply is not correctly
connected. When the Kinect is working correctly, the indicator light on the front of the sensor bar
should flash green.

remove Any Old USB Drivers
Make sure that any older Kinect drivers that are not part of the Kinect system are removed from your
system before you install the Kinect SDK. If you have any problems with the Kinect device not being
properly recognized because you have used other drivers, you can do the following:

1. Ensure that the Kinect sensor is not connected to your computer.

2. Open up a new command prompt running as an Administrator user. The best way to do this
is to click the Start button, type CMD into the search box that appears, and then hold down
CTRL+SHIFT and press Enter. If you get this right you will be rewarded with a User Account
Control dialog box asking for permission to allow the Command Processor to make changes
to this computer. Click OK.

3. Next, you need to set an environment variable to tell the Device Manager that you want to
see all the hardware devices registered for this computer, not just the ones that are active at
the moment. In the Command box, give the following command:

SET DEVMGR_SHOW_NONPRESENT_DEVICES=1

 ChAPTER 2 Getting Started with Kinect 23

Note If you type this command incorrectly, you won’t see an error of any kind,
but the process won’t work correctly as the Device Manager will not show you
 non-present devices.

4. Now you can give the command to start the Device Manager:

devmgmt.msc

5. Next, open the View menu and select Show Hidden Devices. This is actually quite fun, as now
you will see every device that has ever been connected to your computer.

Note Your computer installation will look slightly different from this one.

6. If you use your machine like I use mine, you will see 50 or so different disk drives: one for
every memory key that has been plugged in over the years. Look through the device tree for
items with the word Kinect in the name, or the name of the package you are removing. Look
in the “Human Interface Devices,” “Sound, Video and Game Controllers,” and “Universal Serial
Bus Controllers” parts. To remove a driver, right-click on it in the list and then select Uninstall
from the properties menu for that driver, as shown above. If the dialog that appears has a
checkbox marked “Remove Driver Software Files,” then you should select this so that the
 driver files are no longer on the machine.

24 PArt 1 Getting Started

Note You must be careful to remove drivers only for the Kinect sensor bar. If you
are not sure which drivers are being loaded, you could plug the Kinect sensor in
 before you remove the driver and note what happens in the Device Manager when
you do this. Drivers that become active at this point should be removed.

7. Once you have removed all the drivers, exit Device Manager and close the command prompt.
Now you can plug in the sensor bar and the latest versions of the drivers should be loaded.

Summary

In this chapter you have seen how to get a Kinect sensor bar working with a Windows 7 computer and
had a quick glimpse of its capabilities. In the next chapter you will write some code of your own to use
the signals that the sensor bar produces.

 241

depth information and, 186–189
display masks, using, 183–184
Falling Bugs on a Video Image sample, 176
Falling Bugs sample, 175
frame rates for, 172
game image, setting up, 190–191
human MIDI keyboard, creating, 214–218
Kinect-Controlled Piano sample, 218
MapDepthToColorImagePoint method

(KinectSensor class), 187–188
player image, isolating from background, 182–191
player pixels, finding, 184–186
player position, using to control applications, 218
screen/depth coordinates, matching, 176–177
sprites. See sprites

averaging of images, 59–61

B
background threads, stopping, 65–66
BeamAngleMode values (Microsoft Speech

Platform), 153
BGR32 (data format), 47
biometric recognition, 141
bitmap element (WPF)

creating, 36
rendering from canvas element, 158–159
saving to a file, 159–160

BitmapSource object
memory usage of, 45
when to use, 46

Black and White Motion Detector sample, 78
BlockCopy method, 69
Body Drawing sample, 154
Body Drawing with Speech Output sample, 164
body tracking. See skeleton tracking
Bug Drawing sample, 169

Index

Symbols
.NET Input/Output library

Stream class, 107
.NET Micro Framework, 220–221

A
actions, triggering with gestures, 140–143
Action type, 64
AdditionalInfo property (RecognizerInfo class), 149
Adjustable Sound Alarm sample, 119
Allow Unsafe Code checkbox (Microsoft Visual

Studio), 52
alpha value of pixel data, 183
application(s), 25–40

camera images, displaying, 35–38
error handling, 38–39
sensor bar, connecting to, 28–33
sensor initialization in, 31
sound, adding to, 72–73
speech recognition, required libraries for, 147
video frame, displaying, 33–38
Visual Studio Project, creating, 25–28
WPF image display elements, creating, 33–34

Audacity, 72
audioCaptureActive flag, 116, 117
audio data vs. video or depth data, 106
AudioSource property (KinectAudioSource type), 106–

107
augmented reality, 165–198

Bug Drawing sample, 169
Bug Moving sample, 174
Bug Positioning sample, 171
Bugs and a Mallet sample, 180, 182
BugSplat with Player Masking sample, 192
Depth and Player Display sample, 186

Bug Moving sample

242 Index

Bug Moving sample, 174
Bug Positioning sample, 171
Bugs and a Mallet sample, 180, 182
BugSplat with Player Masking sample, 192
byte arrays, manipulating, 68–69

C
C#

classes, user-defined, 203–219
constructor methods, 204–205
C++ vs., 52
dictionaries, 128–130
fixed (keyword), 54
garbage collection in, 53
Microsoft Visual C# 2010 Step by Step

(Sharp), xiv, 26
Start Here! Learn Microsoft Visual C# 2010

(Mueller), xiv
C++, xiv, 10, 52
camera images

displaying in applications, 35–39
improving quality of through averaging, 59

Canvas element(s) (WPF)
clearing, 136
defined, 133
rendering into bitmap, 158–159
SetLeft method, 170
SetTop method, 170
using multiple at once, 157

change thresholds
noise filtering with, 70–71
size thresholds, setting, 71

Choices class (Microsoft Speech Platform), 151
chroma-key effect, 183
classes, user-defined

communicating with Kinect Sensor
through, 193–196

constructor, creating a, 204
creating an instance of, 205–219
creating instances of, 193–194
creating, to manage devices, 203–204
Single Note Piano sample, 210

ClippedEdges property (FrameEdges type), 131
code samples, downloading/installing, xvi–xviii
color data. See also pixel format

Kinect Camera with Extra Blue sample code, 48
pixel format, when stored in array, 47–49
solarization, avoiding, 48–49
storing, 44–45

Colored Skeletons sample, 232
ColorFrameReady event (KinectSensor class), 35, 44

ColorImageFrameReadyEventArgs type, 44
ColorImageFrame class, 36

CopyPixelDataTo method, 36
PixelDataLength property, 36

ColorImageFrameReadyEventArgs class, 35, 44
ColorImageFrame type, 44–45

CopyPixelDataTo method, 45
OpenNextFrame method, 61
PixelDataLength property, 45

ColorImageStream type, 61
Color Motion Detector sample, 74–77
Color Tweaker Program sample, 50
COM ports vs. Universal Serial Bus (USB), 219
constructor methods (C#), 204–205
CopyPixelDataTo method (ColorImageFrame

class), 36, 45

D
Depth-Activated Camera sample, 90
Depth and Player Display sample, 186
DepthFrameReady event (KinectSensor class), 82–83
depth information

Skeleton and Depth Data sample, 233
skeleton information, combining to identify

players, 232–234
depth map, 5

building, by sensors, 7–8
viewing in Kinect Explorer, 20

depth sensor (Kinect), 81–102
anatomy of, 5–6
configuring with Kinect Explorer, 20
data values from, confirming, 84
Depth-Activated Camera sample, 90
depth map and, 5–8
depth values, counting, 93–96
detecting movement with, 89
detecting objects with, 92–100
Kinect-Controlled BlockBuster sample, 100
limiting sensor range for, 90–92
limits on distance readings, 82
Object Detection sample, 96
obtaining information from, 82–84
player bit data from, 83
player data bits, removing, 83–84
players, finding, 96–97
short data type and, 83
Simple Finger Painting sample, 92

 high Performance Image Tweaker sample

 Index 243

video sensors, using at the same time, 89–90
video sensor vs., 81
visualizing information from, 84–88
XNA games and, 97–100

depth values
converting to XNA gamepad value, 99
counting, 93–96
Depth and Player Display sample, 186
display masks and, 186–189
grouping to detect objects, 93–96, 100
MapDepthToColorImagePoint method

(KinectSensor class), 187–188
player data, use of in augmented reality

programs, 184–186
detecting objects (depth sensor), 92–100

depth values, counting, 93–96
humans, detecting, 96–97
Object Detection sample, 96

devices. See also MIDI devices
creating classes to manage, 203–204
receiving messages from, through serial

ports, 226–227
sending messages to, using serial ports, 222
serial ports and, 219–221

digital vs. analog signals and image noise, 70
DirectX Studio SDK, 14
Dispatcher.Invoke method, 76–78
displayActive flag (threading), 65
Display Manager, 64–65
display masks, 182–191

depth information, using to make, 186–189
drawing, 190
game image, setting up, 190–191
player pixels, finding, 184–186
using, 183–184

distance readings, limits on, 82
drivers (Kinect sensor bar)

included in Kinect for Windows SDK, 14
installing, 18
removing, 22–24
Windows Update and, 18

DynamicSoundEffectInstance class (XNA Game
Framework), 108–109

E
ElevationAngle property (KinectSensor class), 229
Enable method (SkeletonStream class), 127

error handling, 38–39
device errors, detecting, 38
setup errors, 39

event handlers
implementing, 212–215
mouse events, triggering actions with, 209–210

f
Falling Bugs on a Video Image sample, 176
Falling Bugs sample, 175
FEZ Mini processor (robot controller), 220
filename manipulation, 78–80
fileNameTextBox object (Path class), 78
fixed (C# keyword), 54
fixed memory locations, 51–52
Format method (string class), 130

Head Tracker sample, 130
FrameEdges type, 131
frame rates, 172

G
Game class, 110
game image, setting up, 190–197
Garbage Collector process, 53

video snapshots and, 45
gestures

calculating distance between two points, 139–
140

detecting, 139–141
Tin Head sample, 139–141
triggering actions with, 140–141

Global Positioning System (GPS) receiver, 219
GrammarBuilder class (Microsoft Speech

Platform), 152
grammar (speech recognition)

creating, 151–152
GrammarBuilder class (MSP), 152

h
Head Tracker sample, 126–133, 130
Head Tracker with Backbone Drawing sample, 136
Head Tracker with Skeleton Drawing sample, 138
Head Tracker with Status Display sample, 133
High Performance Image Tweaker sample, 66

image manipulation

244 Index

I
image manipulation

augmented reality programs and, 175–182
display masks, 183–184
Falling Bugs on a Video Image sample, 176
overlaying computer graphics on video

image, 175–176
player pixels, finding, 184–186
transparency, file formats that support, 166

image noise
averaging multiple frames to remove, 59–61
change thresholds as filter for, 70–71
source of, 70

image(s)
adding to project, 167–169
displaying in applications, from camera, 35
improving quality of through averaging, 59

images, manipulating
black and white images, converting to, 77
Color Tweaker Program sample, 49
High Performance Image Tweaker sample, 66
solarization, avoiding, 48–49

Image Tweaker and Ghost Camera sample, 60
InstalledRecognizers method

(SpeechRecognitionEngine class), 148
InteropServices namespace, 203

J
JointCollection dictionary, 129
Joint Photographic Experts Group (JPEG), 166
joints (skeleton)

converting positions to coordinates, 134–136,
176–177

JointsCollection dictionary, 128
positions of, in space, 125
tracking state of, 132–133

JointType type (JointCollection dictionary), 129

K
keyboards and velocity value of MIDI

messages, 207–227
Kinect Angle Adjust sample, 229
KinectAudioSource class, 235
Kinect Camera with Extra Blue sample code, 48
Kinect-Controlled BlockBuster sample, 100

Kinect-Controlled Piano sample, 218
KinectController class (XNA framework), 97–100

drawing Kinect depth image in, 100
getting control value from, 99–101

Kinect Explorer, 18–21
display, format of, 20–21
microphones, configuring with, 21
sensor bar, configuring with, 20

Kinect for Windows device, 10
Kinect for Windows Software Development Kit

(SDK), 10, 13–24
behavior when no Kinect sensor attached, 38
device, requirements for, 13–14
DirectX Studio SDK and, 14
download, location of, 14, 17
End User License for, 11
installing, 14–17
Kinect SDK Sample Browser, 18–21
removing older versions of, before installing, 15,

21–24
sensor setup for Xbox vs. Windows, 10–11
supported languages for, 14
support for multiple sensors in, 239
Visual Studio and, during install, 22–24
Visual Studio, requirement for, 14
Windows Update and, during install, 22

Kinect for Xbox device, 10
Kinect Kiss Detector sample, 141–143
KinectManager class (user-defined), 193–196

events generated by, 194
instance of, creating, 193–194
polling the sensor, 195
starting/stopping, 195–196
status, displaying, 194–195

Kinect namespace
SkeletonStream class, 127
TransformSmoothParameters method, 239–240

Kinect Photo Booth sample, 59
Kinect SDK Sample Browser

audio examples in, 146
video examples in, 18–19

Kinect sensor bar. See sensor bar
KinectSensor class, 28–30

AudioSource property (KinectAudioSource
type), 106–107

ColorFrameReady event, 35
DepthFrameReady event, 82–83
ElevationAngle property, 229
MainWindow class, creating instance in, 29

 midi.org

 Index 245

MapDepthToColorImagePoint method, 187–188
MapSkeletonPointToColor method, 135,

176–178
MapSkeletonPointToDepth method, 135

Kinect Software Development Kit (SDK)
body tracking and, 123–126
Microsoft Speech Platform and, 145
skeleton information in, 230–232

l
language support in speech recognition, 148
latency (sound)

defined, 111
performance considerations and, 112

LEGO Mindstorms technology, 236
LoadContent method (XNA framework), 98

M
MainWindow class (application), 29
managed code vs. unsafe code, 51–66
manipulating images. See images, manipulating
MapDepthToColorImagePoint method (KinectSensor

class), 187–188
MapSkeletonPointToColor method (KinectSensor

class), 135, 176–178
MapSkeletonPointToDepth method (KinectSensor

class), 135
Math class, 140
MediaElement class

Adjustable Sound Alarm sample, 119
SoundPlayer class vs., 118

microphones
configuring with Kinect Explorer, 21
sensitivity to voice(s), 8–9
sounds, locating sources of with, 234–236

Microsoft Robotics, 236
Microsoft Robotics Development Studio, 236–238
Microsoft Speech Platform, 145–154

adding to project, 147
BeamAngleMode values, 153
Choices class, 151
creating grammar for voice commands, 151–152
feedback and, 163–164
getting audio into a speech recognizer, 152
GrammarBuilder class, 152
install requirements for, 147

language support, 148
recognizing spoken words with, 147
required libraries for, 147
SDK download source, 146
source for language packs, 145
speech output, adding to programs, 162–163
SpeechRecognitionEngine class, 147–150
speech recognition engine, creating, 147–150

Microsoft Visual C# 2010 Step by Step (Sharp), xiv,
26

Microsoft Visual Studio
Allow Unsafe Code checkbox, 52
images, adding to project, 167–169
images, adding to projects in, 167–169
Kinect for Windows SDK and, 14
Kinect SDK, adding to project in, 26
new project, creating, 25–28
sound, adding to a project, 72–73
Speech Platform SDK, adding to project, 147

Microsoft XNA Game Studio 4.0: Learn Programming
Now! (Miles), 97

MIDI command byte, 206–207
note value, 207
velocity value, 207

MIDI devices
connection class, constructing, 204–205
controlling, 201–219
creating classes to manage, 203–204
creating list of note keys for, 215–216
development of, 202
MIDI protocol, 201–202
note playback in, 216–218
playing a proper scale with, 214
sockets for, 201–202
Windows PC programs, use in, 203–204
WPF application, controlling from, 210–213

MIDI messages
creating, 206–207
creating connections for, 208–209
MIDI command byte, 206–207. See also MIDI

command byte
MIDI notes. See MIDI notes
sending, 207–210
sending note, 209–210

MIDI notes
playing, 208
releasing, 208
sending messages, 209–210

midi.org, 202

MIDI protocols

246 Index

MIDI protocols, 201–202
C# compatibility problems with, 203
Kinect-Controlled Piano sample, 218
Multi-Note Piano sample, 210–213
Multi-Note Scale Piano sample, 214
musical instruments and, 202
semitones, 214
Single Note Piano sample, 210

Mobile Autonomous Robot using Kinect (MARK)
platform, 236–237

motion detection
defeating, in video detector, 71
depth sensor, with, 89–90
video camera, with, 67–80

Motion Detector Camera sample, 79, 80
Multi-Note Piano sample, 210–213
Multi-Note Scale Piano sample, 214
musical instruments, 202

n
NET Input/Output library. See .NET Input/Output

library
NET Micro Framework. See .NET Micro Framework
noise (in images). See image noise
note value (MIDI command byte), 207

o
Object Detection sample, 93–96
OpenColorImageFrame method

(ColorImageFrameReadyEventArgs class), 35, 44
OpenNextFrame method (ColorImageStream

type), 61
OpenSkeletonFrame method

(SkeletonFrameReadyEventArgs type), 128
oscilloscope, creating in XNA, 112–115

P
Paint.NET, 166
Path class (System.IO namespace), 78
performance

image averaging and, 59–60
improving in image processing programs, 50–57
Performance Color Tweaker sample, 55
sound latency and, 112

threads and, 62–66
unsafe code, improving with, 50–57

Performance Color Tweaker sample, 55
PixelDataLength property (ColorImageFrame

class), 36, 45
pixel format

alpha value, use of, 183
color data and, 47–50
PixelFormats.Pbgra32, 159

PixelFormats.Pbgra32 (pixel data format), 159
playback (sound), 118–119

management of, 119
triggering, 118

player(s), 230–234
identifying, in a scene, 230–232
isolating image of, 182–191
replacing with another, 231
skeleton/depth information, combining to

identify, 232–234
using position to control application, 218

pointers, 52–57
declaring, 53
type casting of, 56

Portable Network Graphics (PNG), 166
power supply requirements for sensor bar, 17
Programming Microsoft Robotics Studio Developer

Reference (Morgan), 238

R
Read method (Stream class), 107
RecognizerInfo class (SpeechRecognitionEngine

class), 148
AdditionalInfo property, 149

refactoring (of code), 181
Reference Platform Design. See Mobile Autonomous

Robot using Kinect (MARK) platform
robotics, 236–238

emulating environments for, 237–238
and Kinect in the future, 238
LEGO Mindstorms technology, 236
Microsoft Robotics Developer Studio 4.0

platform, 238
.NET Micro Framework and, 220–221
Programming Microsoft Robotics Studio

Developer Reference (Morgan), 238
RS232 serial connections, 219

 solarization, avoiding in images

 Index 247

S
sensor bar, 3–9, 17–18, 28

adjusting angle of, 229–230
anatomy of, 4–11
configuring with Sample Browser, 20
connecting to, 28–33
depth sensor, 5–8
device, requirements for, 13–14
Kinect Angle Adjust sample, 229
microphones, 8–9
multiple sensors, support for, 239
power requirements of, 17–18
power, troubleshooting, 22
testing, 18–21
USB drivers, installing, 14, 18
USB drivers, troubleshooting, 22–24
USB hubs and, 13

sensor(s), 4–11
connecting to in applications, 28–33
depth sensor, 5–8
initializing in applications, 31
layout of, in Kinect bar, 4–11
microphones, 8
setup for Windows vs. Xbox, 10–11

SerialPort class (System.IO.Ports namespace), 221–
222

serial port(s), 219–227
creating port connections, 221–222
devices and, 219–221
linking to, 221–227
receiving messages from devices through, 226–

227
RS232 serial connections, 219
sending messages to devices using, 222
SerialPort class, 221–222
USB vs. COM ports, 219

SetLeft method (Canvas element), 170
SetTop method (Canvas element), 170
SetupKinect method (XNA framework), 98
short (data type), 83
Showing the Sound Direction of a Source

sample, 236
Simple Audio Oscilloscope sample, 114
Simple Depth Camera sample, 85–88
Simple Finger Painting sample, 92
Simple Sound Processor sample, 111
Single Note Piano sample, 210
Skeleton and Depth Data sample, 233

SkeletonFrameReadyEventArgs type, 128
OpenSkeletonFrame method, 128

SkeletonFrameReady event/method (SkeletonStream
class), 127

skeleton information
Colored Skeletons sample, 232
depth information, combining to identify

players, 232–234
Skeleton and Depth Data sample, 233
sprites, drawing based on, 176–180

skeleton (Kinect), 124–126
ClippedEdges property (FrameEdges type), 131
drawing with WPF, 133–138
information, quality of, 131–132
joint positions, 125–126
Tracked property, 128, 131
tracking state of, 128

SkeletonStream class (Microsoft.Kinect
namespace), 127

Enable method, 127
SkeletonFrameReady event, 127
SkeletonFrameReady method, 127

skeleton tracking, 123–144
augmented reality, in, 216–218
biometric recognition with, 141
building messages with data from, 130–131
C# dictionaries, 128–130
depth sensor and, 123–124
gestures, detecting, 139–141
Head Tracker sample, 126–133, 130
Head Tracker with Backbone Drawing

sample, 136
Head Tracker with Skeleton Drawing

sample, 138
Head Tracker with Status Display sample, 133
joint positions, 125–126, 134–136
Joints collection, 128–130
joint tracking state, 132–133
Kinect Kiss Detector sample, 141–143
Kinect SDK and, 123–126
limits on, 124
performing, 126–133
skeleton information, 124–126
Tin Head sample, 139–141
tracking two skeletons at once, 141–143
triggering actions with gestures, 140–141

Sleep method (Thread class), 171
sliders, creating, 49
solarization, avoiding in images, 48–49

SoundPlayer class (System.Media namespace)

248 Index

SoundPlayer class (System.Media namespace), 73
SoundPlayer class vs. MediaElement class, 118
sound(s), 103–120

adding to a project, 72–73
Adjustable Sound Alarm sample, 119
audioCaptureActive flag, 116, 117
digitization of, 103–106
locating sources of, 234–236
playing back recorded, 118–119
playing with XNA, 108–111
receiving signals from Kinect, 106–107
Showing the Sound Direction of a Source

sample, 236
signals and latency, 111–120
Simple Audio Oscilloscope sample, 114
Simple Sound Processor sample, 111
SoundSourcePosition property, 235
storing and replaying, 115–119
threading and, 109–110
visualizing the signal in XNA, 112–115
visual representations of, 104
WAV files, creating, 116–117

sound sampler, 105
SoundSourcePosition property (KinectAudioSource

class), 235
speech output

adding to programs, 162–163
Body Drawing with Speech Output, 164
feedback and, 163–164
System.Speech.Synthesis namespace, 162

speech recognition
Body Drawing with Speech Output, 164
language support, 148
Microsoft Speech Platform and, 145–154
SpeechRecognitionEngine class, 147–150
Word Recognition sample, 154

SpeechRecognitionEngine class, 147–150
InstalledRecognizers method, 148
RecognizerInfo class, 148

SpeechRecognized event (SpeechRecognizer
class), 154

sprites
adding image to project, 167–169
checking position of, 174–175
creating, 166–175
drawing, based on skeleton data, 176–180
drawing image in the application, 169–170
interacting with other sprites, 180–182
moving, 171–175
setting position of, 170–171

Sqrt method (Math class), 140
Start Here! Learn Microsoft Visual C# 2010

(Mueller), xiv
Stream class (.NET Input/Output library), 107

Read method, 107
string class, 130
System.IO namespace, 78
System.IO.Ports namespace, 221–222
System.Media namespace, 73
system requirements, xv–xviii
System.Threading namespace, 62, 171

T
Texture2D (data type), 100
threading, 62–66

background thread, stopping, 65–66
Bug Moving sample, 174
communicating between threads, 63–65
Dispatcher.Invoke method, 76–77
displayActive flag, 65
High Performance Image Tweaker sample, 66
locking buffers, 115
sharing data between, 115
Simple Sound Processor sample, 111
Sleep method (Thread class), 171
sound streams and, 109–110
sprites, using to move, 171–174
System.Threading namespace, 62
ThreadStart class, 110

ThreadStart class (delegate type), 110
Tin Head sample, 139–141
tracking software (Kinect), 9–10
TrackingState property (skeleton), 132
TransferSmoothParameters value (Kinect

namespace), 239–240
transparency

alpha value (pixel data) and, 183
file formats that support, 166

U
Universal Serial Bus (USB) vs. COM ports, 219
unsafe code, 50–57

managed code vs., 51–52
operating systems that do not allow, 52
pointers/fixed memory locations and, 53–55
references/pointers and, 52–53

Update method (Game class), 110
user-defined classes. See classes, user-defined

 Word Recognition sample

 Index 249

v
var (variable type), 148–149
vectors, use in drawing based on skeleton

information, 178–180
velocity value (MIDI command byte), 207
video frame, displaying, 33–38
video images, detecting movement in, 67–80

Black and White Motion Detector sample, 78
capturing multiple frames, 79–80
change thresholds and, 70–71
Color Motion Detector sample, 74–77
detecting changes in, 69–71
image noise and, 70
Motion Detector Camera sample, 79, 80
storing in program memory, 68–69

video sensors
ColorFrameReady event, 44
depth sensor, using at the same time, 89–90
depth sensor vs., 81
detecting movement with, vs. depth sensor, 89

video snapshots, 43–66
32-bit integer pointers, using, 55–57
array, using to store image, 44–45
BGR32 (data format), 47
color control, 47–49
color data and, 44–45
ColorFrameReady event, 44
ColorImageFrame type, 44–45
Color Tweaker Program sample, 49–60
displaying on the screen, 44–47
display thread, creating, 62–63
garbage collection and, 45
High Performance Image Tweaker sample, 66
Image Tweaker and Ghost Camera sample, 60
Kinect Camera with Extra Blue sample code, 48
Kinect Photo Booth sample, 59
memory usage and, 45
Performance Color Tweaker sample, 55
performance, improving with threads, 61–66
performance, improving with unsafe code, 50–

57
saving to a file, 57–59
solarization, avoiding, 48–49
storing, 43–49
video quality, improving, 59–60
Writeable Bitmap Demo, 47

Visual Basic.NET, 10
Visual Studio. See Microsoft Visual Studio

voice commands, 145–164
adding to application, 155
building, 151
creating a program with, 154–162
creating grammar for, 151–152
Microsoft Speech Platform, 145–154
responding to recognized, 153–155
shutting down an application with, 160–161
speech recognition engine, creating, 147–150
testing, 146
Word Recognition sample, 154

W
WAV files, 116–117

required headers for, 116
WriteWavHeader method, 117

Window_Closing event, attaching a method to, 160
Window_Loaded event (MainWindow class)

Kinect sensor, using to connect to, 29
window manager (WPF), 76–77

Dispatcher.Invoke method, 76–77
Windows Phone 7, 52
Windows Presentation Foundation (WPF)

canvas, clearing, 136
canvas element, using multiple, 157
drawing a skeleton with, 133–138
drawing lines with, 133–134
elements, rendering, 158–160
naming elements in, 170
performance issues with drawing in, 138
Resources in, 168
skeleton joint positions, converting to image

coordinates, 134–136
WriteableBitmap type, 46–47

Windows Presentation Foundation (WPF)
applications

command touch areas, creating, 223–226
creating bitmap in, 36
creating display elements for, 210–212
creating with the Kinect SDK, 25–28
event handling in, 212–213
image display element, creating for Kinect, 33–

34
MIDI devices, controlling from, 210–213
Multi-Note Piano sample, 210–213

Windows Update, installing Kinect drivers with, 18
Word Recognition sample, 154

Writeable Bitmap Demo

250 Index

Writeable Bitmap Demo, 47
WriteableBitmap type (WPF classes), 46–47
WriteWavHeader method, 117

X
Xbox 360

gamepad, connecting to PC, 111
Kinect Sensor, using with, 97–100
sensor bar, powering with, 17
unsafe code and, 52

XNA Game Framework
depth sensor and, 97–100
drawing Kinect depth image in, 100
DynamicSoundEffectInstance class, 108–109

gamepad values, converting to depth data, 99
image handling in, 100
Kinect-Controlled BlockBuster sample, 100
LoadContent method, 98
Microsoft XNA Game Studio 4.0: Learn

Programming Now! (Miles), 97
oscilloscope, creating, 112–115
playing sound with, 108–111
Simple Audio Oscilloscope sample, 114
stopping the program in, 110–111
Texture2D (data type), 100
unsafe code and, 52
Update method (Game class), 110
visualizing sound signals in, 112–115

XNA texture, memory arrangement of, 100

About the Author

Rob Miles wrote his first computer game on the original
 Commodore PET in Microsoft Basic, after learning to program
some time before that at school, where he began by writing
his first programs on cards using a hand punch, posting them
off to a distant mainframe and getting a message back two
weeks later that he’d omitted a semicolon. A good many years
have gone by since then. He’s still omitting semicolons, but the
turnaround has improved quite a bit.

Rob has been at the University of Hull in the United
 Kingdom for over 30 years now, moving from the Computer Center to Electronic
 Engineering to Computer Science, where he teaches programming (in C# of course) and
software engineering, among other things. He also had a hand in quite a few industrial
projects, and considers it a matter of great personal pride to be the man who wrote
the software that puts the date stamps on Budweiser beer cans, as well as many other
products. Rob has also been known to turn out bad verse, the highlight of this being a
whole page of poetry for The Independent (a British newspaper). He is a Microsoft Most
Valuable Professional (MVP) for Windows Phone and has been a judge and competition
captain for the Imagine Cup Software Design Challenge for a few years.

Rob lives happily in East Yorkshire in the United Kingdom with number one wife
Mary (she calls him “husband zero”) and a pinball machine. His kids, David and Jenny,
return every now and then so that they can play happy families properly. You can find
out more about Rob’s interesting times at www.robmiles.com.

http://www.robmiles.com

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

	Introduction
	An Introduction to Kinect
	The Kinect Sensor
	Getting Inside a Kinect Sensor

	Recognizing People with Kinect
	Programming the Kinect
	Kinect for Xbox and Kinect for Windows
	Summary

	Getting Started with Kinect
	Kinect for Windows SDK Prerequisites
	Kinect Device
	Visual Studio
	DirectX Studio

	Installing the Kinect for Windows SDK
	Connecting the Kinect Sensor Bar
	Powering the Kinect Sensor
	Installing the Kinect Sensor USB Drivers

	Testing the Kinect Sensor Bar
	The Kinect SDK Sample Browser

	Troubleshooting Your Kinect Installation
	Remove Old SDK Installations
	Ensure That Visual Studio 2010 Is Installed but Not Running During Installation
	Ensure That There Are No Windows Updates in Progress
	Ensure That the Kinect Is Powered Correctly
	Remove Any Old USB Drivers

	Summary

	Index

