

Microsoft SQL Server
2012 Internals

Kalen Delaney
Bob Beauchemin
Conor Cunningham
Jonathan Kehayias
Benjamin Nevarez
Paul S. Randal

Copyright © 2013 by Kalen Delaney
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-5856-1

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Michael Bolinger

Production Editor: Kara Ebrahim

Editorial Production: Box 12 Communications

Technical Reviewers: Benjamin Nevarez and Jonathan Kehayias

Copyeditor: Box 12 Communications

Indexer: Box 12 Communications

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrator: Rebecca Demarest

mailto:mspinput%40microsoft.com?subject=
http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents at a glance

Introduction xix

ChaPteR 1 SQL Server 2012 architecture and configuration 1

ChaPteR 2 the SQLOS 35

ChaPteR 3 Databases and database files 99

ChaPteR 4 Special databases 139

ChaPteR 5 Logging and recovery 171

ChaPteR 6 table storage 203

ChaPteR 7 Indexes: internals and management 297

ChaPteR 8 Special storage 381

Chapter 9 Special indexes 457

ChaPteR 10 Query execution 513

ChaPteR 11 the Query Optimizer 611

ChaPteR 12 Plan caching and recompilation 703

ChaPteR 13 transactions and concurrency 765

ChaPteR 14 DBCC internals 837

Index 903

 v

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. to participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Introduction . xix

Chapter 1 SQL Server 2012 architecture and configuration 1
SQL Server editions . 1

SQL Server installation and tools . 2

SQL Server metadata . 3

Compatibility views . 3

Catalog views . 4

Dynamic Management Objects . 6

Other metadata . 7

Components of the SQL Server engine .10

Protocols .11

Query processor .12

The storage engine .14

SQL Server 2012 configuration . 17

Using SQL Server Configuration Manager .18

Managing services .19

SQL Server system configuration .21

Operating system configuration .21

Trace flags .23

SQL Server configuration settings .24

Conclusion .33

vi Contents

Chapter 2 The SQLOS 35
NUMA architecture .36

The scheduler .37

Understanding SQL Server schedulers .38

Binding schedulers to CPUs . 41

Observing scheduler internals .42

Understanding the Dedicated Administrator Connection (DAC) . .45

Memory .47

The buffer pool and the data cache .47

Column store object pool .48

Access to in-memory data pages .48

Page management in the data cache .48

The free buffer list and the lazywriter .49

Checkpoints .50

Memory management in other caches .52

The Memory Broker .54

Memory sizing .54

Buffer pool sizing .55

SQL Server Resource Governor .61

Resource Governor overview .61

Resource Governor controls .70

Resource Governor metadata .71

Extended Events .73

Extended Events architecture .73

Event execution life cycle .73

Core concepts .75

Extended Events DDL and querying .83

Extended Events UI .86

Conclusion .97

Chapter 3 Databases and database files 99
Working with sample databases .100

AdventureWorks .100

pubs .101

 Contents vii

Northwind .101

Understanding database files .101

Creating a database .104

Using CREATE DATABASE: an example .106

Expanding or shrinking a database .106

Automatic file expansion .106

Manual file expansion .107

Fast file initialization .107

Automatic shrinkage .108

Manual shrinkage .108

Using database filegroups .109

The default filegroup .110

A FILEGROUP CREATION example .112

Filestream filegroups .113

Altering a database .114

ALTER DATABASE examples .115

Databases under the hood .116

Space allocation .116

Setting database options .119

State options .122

Cursor options .125

Auto options .125

SQL options .126

Database recovery options .128

Other database options .129

Understanding database security .129

Database access .130

Database security .132

Databases vs. schemas .133

Principals and schemas .133

Default schemas .134

Moving or copying a database .134

Detaching and reattaching a database .135

Backing up and restoring a database .136

viii Contents

Understanding compatibility levels .137

Conclusion .138

Chapter 4 Special databases 139
System databases .139

Understanding the master database .139

Understanding the model database .140

Introducing the tempdb database .140

Understanding the resource database .140

Understanding the msdb database .141

Moving system databases .142

Moving the master database .143

The tempdb database .144

Objects in tempdb .144

Optimizations in tempdb .146

Best practices .147

tempdb contention .148

tempdb space monitoring .153

Database snapshots .155

Creating a database snapshot .156

Understanding space used by database snapshots159

Managing your snapshots .161

Partially contained databases .162

Configuring a contained database .162

Creating contained users .163

Understanding database collation changes166

Detecting uncontained features .168

Conclusion .169

Chapter 5 Logging and recovery 171
Transaction log internals .171

Phases of recovery . 174

Page LSNs and recovery .175

Log reading .176

 Contents ix

The log cache .177

Changes in log size .178

Understanding virtual log files .178

Maintaining a recoverable log .185

Automatically shrinking the log .187

Viewing the log file size .188

Database backup and restore .188

Understanding the types of backups .189

Understanding recovery models .190

Choosing a backup type .194

Restoring a database .195

Conclusion .201

Chapter 6 Table storage 203
Table creation .203

Naming tables and columns .204

Avoiding reserved keywords .205

Using delimited identifiers .206

Understanding naming conventions .207

Choosing a data type .208

The NULL problem .233

User-defined data types .235

IDENTITY property .237

Sequence object .240

Internal storage .243

The sys.indexes catalog view .244

Data storage metadata .245

Catalog view queries .246

Data pages .248

The structure of data rows .257

How to find a physical page .259

Storage of fixed-length rows .262

Storage of variable-length rows .265

NULLS and variable-length columns .267

x Contents

Storage of date and time data .270

Storage of sql_variant data .273

Constraints .276

Constraint names and catalog view information277

Constraint failures in transactions and multiple-row data
modifications .278

Altering a table .279

Changing a data type .280

Adding a new column .281

Adding, dropping, disabling, or enabling a constraint281

Dropping a column .283

Internals of altering tables .283

Heap modification internals .286

Allocation structures .286

Inserting rows .288

Deleting rows .288

Updating rows .292

Conclusion .295

Chapter 7 Indexes: internals and management 297
Overview .298

SQL Server B-tree indexes .299

Example 1: An index with a large key column 300

Example 2: An index with a very narrow key column 301

Tools for analyzing indexes .302

Using the dm_db_index_physical_stats DMV302

Using sys.dm_db_database_page_allocations 306

Understanding B-tree index structures .308

Clustering key dependency .308

Nonclustered B-tree indexes .311

Constraints and indexes .312

Index creation options .313

IGNORE_DUP_KEY .313

STATISTICS_NORECOMPUTE .314

 Contents xi

MAXDOP .314

Index placement .314

Physical index structures for B-trees .315

Index row formats .315

Clustered index structures .316

Non-leaf level(s) of a clustered index .317

Analyzing a clustered index structure .317

Nonclustered index structures .322

Indexes on computed columns and indexed views 333

SET options .333

Permissible functions .334

Schema binding .335

Indexes on computed columns .335

Implementation of a computed column .336

Persisted columns .337

Indexed views .338

Additional requirements .338

Creating an indexed view .339

Using an indexed view .340

Data modification internals .341

Inserting rows .342

Splitting pages .342

Deleting rows .346

Updating rows .354

Table-level vs. index-level data modification357

Logging .358

Locking .358

Fragmentation .359

Managing B-tree index structures .360

Dropping indexes .360

Using the ALTER INDEX command .361

Detecting fragmentation .363

Removing fragmentation .364

Rebuilding an index .366

Online index building .367

xii Contents

Columnstore indexes .370

Creation of columnstore indexes .370

Storage of columnstore indexes .371

Columnstore index metadata .376

Conclusion .380

Chapter 8 Special storage 381
Large object storage .381

Restricted-length large object data (row-overflow data)382

Unrestricted-length large object data .386

FILESTREAM and FileTable data .394

Enabling FILESTREAM data for SQL Server .395

Creating a FILESTREAM-enabled database .397

Creating a table to hold FILESTREAM data .397

Manipulating FILESTREAM data .399

Exploring metadata with FILESTREAM data404

Creating a FileTable .406

Considering performance for FILESTREAM data 409

Summarizing FILESTREAM and FileTable .410

Sparse columns .411

Management of sparse columns .411

Column sets and sparse column manipulation414

Physical storage .416

Metadata .419

Storage savings with sparse columns .420

Data compression .423

Vardecimal .423

Row compression .424

Page compression .433

Table and index partitioning . 444

Partition functions and partition schemes. 444

Metadata for partitioning .446

The sliding window benefits of partitioning450

 Contents xiii

Partitioning a columnstore index .452

Conclusion .455

Chapter 9 Special indexes 457
Special indexes vs. ordinary indexes .457

XML indexes .458

Creating and maintaining XML indexes .459

Using XQuery in SQL Server: internals .463

Understanding how a query plan uses an XML index465

Using secondary XML indexes .468

Working with XML indexes and schema-validated columns469

Using XML-specific information in query plans 470

Spatial indexes .471

Purpose of spatial indexes .472

Composition of the spatial index. .475

How a spatial query uses a spatial index .477

How to ensure that your spatial index is being used478

Spatial query plans and spatial indexes .479

Nearest neighbor optimization in SQL Server 2012 481

Spatial index diagnostic stored procedures 484

Diagnostics with the SQL Server 2012 spatial functions491

Full-text indexes .492

Internal tables created by the full-text index494

Full-text index metadata views .497

Full-text index creation .498

Maintenance of a full-text index .499

Full-text status metadata, configuration, and diagnostic
information .500

How a full-text index is used in a query .501

A full-text query plan .502

Extended event information for full-text queries503

Semantic indexes .505

Conclusion .511

xiv Contents

Chapter 10 Query execution 513
Introducing query processing and execution .513

Iterators .513

Properties of iterators .515

Reading query plans .517

Graphical plans .517

Text plans .518

XML plans .518

Estimated vs. actual query plans .518

Query plan display options .520

Analyzing plans .525

Scans and seeks .526

Seekable predicates and covered columns .528

Bookmark lookup .531

Joins .533

Aggregations .545

Unions .555

Advanced index operations .560

Subqueries .566

Parallelism .580

Inserts, updates, and deletes .598

Understanding data warehouses .599

Using columnstore indexes and batch processing603

Adding new data .607

Hints .609

Conclusion .610

Chapter 11 The Query Optimizer 611
Overview .611

Understanding the tree format .612

Understanding optimization .613

Search space and heuristics .614

Rules .614

Properties .614

 Contents xv

Storage of alternatives: the Memo .617

Operators .617

Optimizer architecture .624

Before optimization .625

Simplification .625

Trivial plan/auto-parameterization .625

Limitations .627

The Memo: exploring multiple plans efficiently627

Statistics, cardinality estimation, and costing .630

Statistics design .631

Density/frequency information .634

Filtered statistics .636

String statistics .637

Cardinality estimation details. .638

Limitations .642

Costing .643

Index selection .645

Filtered indexes .648

Indexed views .649

Partitioned tables .654

Partition-aligned index views .658

Windowing functions .658

Data warehousing .659

Columnstore indexes .660

Batch mode processing .662

Plan shape .667

Columnstore limitations and workarounds .670

Updates .670

Halloween Protection .674

Split/Sort/Collapse .674

Merge .676

Wide update plans .679

Non-updating updates .681

Sparse column updates .681

xvi Contents

Partitioned updates .682

Locking .685

Partition-level lock escalation .686

Distributed query .687

Extended indexes .689

Plan hinting .689

Debugging plan issues .691

{HASH | ORDER} GROUP .692

{MERGE | HASH | CONCAT} UNION .693

FORCE ORDER, {LOOP | MERGE | HASH} JOIN693

INDEX=<indexname> | <indexid> .694

FORCESEEK .695

FAST <number_rows> .695

MAXDOP <N> .696

OPTIMIZE FOR .696

PARAMETERIZATION {SIMPLE | FORCED} .698

NOEXPAND .699

USE PLAN .699

Hotfixes .700

Conclusion .701

Chapter 12 Plan caching and recompilation 703
The plan cache .703

Plan cache metadata .704

Clearing plan cache .704

Caching mechanisms .705

Ad hoc query caching .706

Optimizing for ad hoc workloads .708

Simple parameterization .711

Prepared queries .717

Compiled objects .719

Causes of recompilation .722

Plan cache internals .732

Cache stores .732

 Contents xvii

Compiled plans .734

Execution contexts .734

Plan cache metadata .735

Cache size management .740

Costing of cache entries .743

Objects in plan cache: the big picture .744

Multiple plans in cache .746

When to use stored procedures and other caching
mechanisms .747

Troubleshooting plan cache issues .748

Optimization hints and plan guides .752

Optimization hints .752

Purpose of plan guides .754

Types of plan guides .755

Managing plan guides. .758

Plan guide considerations .759

Conclusion .764

Chapter 13 Transactions and concurrency 765
Concurrency models. .765

Pessimistic concurrency .766

Optimistic concurrency .766

Transaction processing .766

ACID properties .767

Transaction dependencies .768

Isolation levels .770

Locking .774

Locking basics .774

Spinlocks .775

Lock types for user data .775

Viewing locks .786

Locking examples .789

Lock compatibility .794

Internal locking architecture .796

xviii Contents

Row-level locking vs. page-level locking .803

Lock escalation .804

Deadlocks .806

Row versioning .811

Row versioning details .811

Snapshot-based isolation levels .813

Choosing a concurrency model .830

Controlling locking .832

Lock hints .832

Conclusion .836

Chapter 14 DBCC internals 837
Shrinking files and databases .837

Data file shrinking .838

Log file shrinking .840

DBCC SHRINKFILE .840

AUTO_SHRINK .841

Consistency checking .841

Getting a consistent view of the database .842

Processing the database efficiently .845

Performing primitive system catalog consistency checks.855

Performing allocation consistency checks .856

Performing per-table logical consistency checks860

Processing columns .866

Performing cross-table consistency checks .881

Understanding DBCC CHECKDB output .885

Reviewing DBCC CHECKDB options .890

Performing database repairs .893

Using consistency-checking commands other than
DBCC CHECKDB .898

Conclusion .901

Index 903

 xix

Introduction

The book you are now holding is the evolutionary successor to the Inside SQL Server
series, which included Inside SQL Server 6.5, Inside SQL Server 7, Inside SQL Server

2000, and Inside SQL Server 2005 (in four volumes) and the SQL Server 2008 Internals
book. The name was changed for SQL Server 2008 because the Inside series was be-
coming too unfocused, and the name “Inside” had been usurped by other authors and
even other publishers. I needed a title that was much more indicative of what this book
is really about.

SQL Server 2012 Internals tells you how SQL Server, Microsoft’s flagship relational
database product, works. Along with that, I explain how you can use the knowledge of
how it works to help you get better performance from the product, but that is a side
effect, not the goal. There are dozens of other books on the market that describe tun-
ing and best practices for SQL Server. This one helps you understand why certain tuning
practices work the way they do, and it helps you determine your own best practices as
you continue to work with SQL Server as a developer, data architect, or DBA.

Who should read this book

This book is intended to be read by anyone who wants a deeper understanding of what
SQL Server does behind the scenes. The focus of this book is on the core SQL Server
engine—in particular, the query processor and the storage engine. I expect that you
have some experience with both the SQL Server engine and with the T-SQL language.
You don’t have to be an expert in either, but it helps if you aspire to become an expert
and would like to find out all you can about what SQL Server is actually doing when you
submit a query for execution.

This series doesn’t discuss client programming interfaces, heterogeneous queries,
business intelligence, or replication. In fact, most of the high-availability features are
not covered, but a few, such as mirroring, are mentioned at a high level when we dis-
cuss database property settings. I don’t drill into the details of some internal operations,
such as security, because that’s such a big topic it deserves a whole volume of its own.

My hope is that you’ll look at the cup as half full instead of half empty and appre-
ciate this book for what it does include. As for the topics that aren’t included, I hope
you’ll find the information you need in other sources.

xx Introduction

Organization of this book

SQL Server 2012 Internals provides detailed information on the way that SQL Server
processes your queries and manages your data. It starts with an overview of the ar-
chitecture of the SQL Server relational database system and then continues looking at
aspects of query processing and data storage in 13 additional chapters. The content
from the SQL Server 2008 Internals book has been enhanced to cover changes and
relevant new features of SQL Server 2012. In addition, it contains an entire chapter on
the SQLOS, drawn from and enhanced from sections in the previous book, and a whole
chapter on system databases, also drawn from and enhanced from content in the SQL
Server 2008 book. There is also a brand new chapter on special indexes, including spa-
tial indexes, XML indexes, fulltext indexes, and semantic indexes. Finally, the chapter on
query execution from my Inside SQL Server 2005: Query Tuning and Optimization book
has been include and updated for SQL Server 2012.

Companion content

This book features a companion website that makes available to you all the code used
in the book, organized by chapter. The companion content also includes an extra chap-
ter from my previous book, as well as the “History of SQL Server” chapter from my book
Inside Microsoft SQL Server 2000 (Microsoft Press, 2000). The site also provides extra
scripts and tools to enhance your experience and understanding of SQL Server inter-
nals. As errors are found and reported, they will also be posted online. You can access
this content from the companion site at this address: http://www.SQLServerInternals.
com/companion.

System requirements

To use the code samples, you’ll need Internet access and a system capable of running
SQL Server 2012 Enterprise or Developer edition. To get system requirements for SQL
Server 2012 and to obtain a trial version, go to http://www.microsoft.com/en-us/down-
load/details.aspx?id=29066.

http://www.SQLServerInternals.com/companion
http://www.SQLServerInternals.com/companion
http://www.microsoft.com/en-us/download/details.aspx%3Fid%3D29066
http://www.microsoft.com/en-us/download/details.aspx%3Fid%3D29066

 Introduction xxi

Acknowledgments

As always, a work like this is not an individual effort, and for this current volume, it is
truer than ever. I was honored to have five other SQL Server experts join me in writ-
ing SQL Server 2012 Internals, and I truly could not have written this book alone. I am
grateful to Benjamin Nevarez, Paul Randal, Conor Cunningham, Jonathan Kehayias, and
Bob Beauchemin for helping to make this book a reality. In addition to my brilliant co-
authors, this book could never have seen the light of day without help and encourage-
ment from many other people.

First on my list is you, the reader. Thank you to all of you for reading what I have
written. Thank you to those who have taken the time to write to me about what you
thought of the book and what else you want to learn about SQL Server. I wish I could
answer every question in detail. I appreciate all your input, even when I’m unable to
send you a complete reply. One particular reader of one of my previous books, In-
side Microsoft SQL Server 2005: The Storage Engine (Microsoft Press, 2006), deserves
particular thanks. I came to know Ben Nevarez as a very astute reader who found some
uncaught errors and subtle inconsistencies and politely and succinctly reported them
to me through my website. Ben is now my most valued technical reviewer, and for this
new edition, he is also an author!

As usual, the SQL Server team at Microsoft has been awesome. Although Lubor Kol-
lar and Sunil Agarwal were not directly involved in much of the research for this book,
I always knew they were there in spirit, and both of them always had an encouraging
word whenever I saw them. Kevin Liu volunteered for the daunting task of coordinat-
ing my contracts with the SQL team, and always found me the right engineer to talk to
when I had specific questions that needed to be answered.

Ryan Stonecipher, Kevin Farlee, Peter Byrne, Srini Acharya, and Susan Price met with
me and responded to my (sometimes seemingly endless) emails. Fabricio Voznika, Peter
Gvozdjak, Jeff East, Umachandar Jayachandran, Arkadi Brjazovski, Madhan Ramakrish-
nan, Cipri Clinciu, and Srikumar Rangarajan also offered valuable technical insights and
information when responding to my emails. I hope they all know how much I appreci-
ated every piece of information I received.

I am also indebted to Bob Ward, Bob Dorr, and Keith Elmore of the SQL Server Prod-
uct Support team, not just for answering occasional questions but for making so much
information about SQL Server available through white papers, conference presenta-
tions, and Knowledge Base articles. I am grateful to Alan Brewer and Gail Erickson for
the great job they and their User Education team did putting together the SQL Server
documentation in SQL Server Books Online.

xxii Introduction

I would like to extend my heartfelt thanks to all of the SQL Server MVPs, but most
especially Erland Sommarskog. Erland wrote the section in Chapter 6 on collations just
because he thought it was needed, and that someone who has to deal with only the 26
letters of the English alphabet could never do it justice. Also deserving of special men-
tion are Ben Miller, Tibor Karaszi, and John Paul Cook, for all the personal support and
encouragement they gave me. Other MVPs who inspired me during the writing of this
volume are Hugo Kornelis, Rob Farley, and Allen White. Being a part of the SQL Server
MVP team continues to be one of the greatest honors and privileges of my professional
life.

I am deeply indebted to my students in my “SQL Server Internals” classes, not only
for their enthusiasm for the SQL Server product and for what I have to teach and share
with them, but for all they have to share with me. Much of what I have learned has been
inspired by questions from my curious students. Some of my students, such as Cindy
Gross and Lara Rubbelke, have become friends (in addition to becoming Microsoft
employees) and continue to provide ongoing inspiration.

Most important of all, my family continues to provide the rock-solid foundation I
need to do the work that I do. I am truly blessed to have my husband, Dan, my daugh-
ter, Melissa, and my three sons, Brendan, Kyle (aka Rickey), and Connor.

—Kalen Delaney

Thanks to Kalen for persisting even when it didn’t look like this book would ever be
published. I’d also like to thank the chapter reviewers: Joe Sack and Kalen Delaney (yes,
she personally reviewed all of it). Thanks to product designers who reviewed the parts
in their area of expertise: Ed Katibah, Shankar Pal (who reviewed my original XML index
material), and the entire full-text and semantic search team: Mahadevan Venkatra-
man, Elnata Degefa, Shantanu Kurhekar, Chuan Liu, Ivan Mitic, Todd Porter, and Artak
Sukhudyan, who reviewed the final prose, as well as Naveen Garg, Kunal Mukerjee, and
others from the original full-text/semantic team. Thank you, one and all.

Special thanks to Mary, without whose encouragement, help, and the ability to
provide me the space I needed to work in solitude, I’d never have written anything at
all. Finally, special thanks to Ed Katibah, who taught me almost everything I know about
spatial concepts and representing spatial data in databases.

—Bob Beauchemin

I’d like to thank my wife Shannon and daughter Savannah for allowing me the late
nights and weekend days to complete the work for this book. I could not do it without
you both.

—Conor Cunningham

 Introduction xxiii

When Kalen asked me to contribute to this book it was a great honor, and I owe a
debt of gratitude to her for the opportunity to work on this project. While working on
the SQLOS and Extended Events updates for this book, I spent a lot of time discuss-
ing changes to the internals of SQLOS with Jerome Halmans at Microsoft. Jerome was
also one the primary developers for Extended Events in SQL Server 2008, and has been
incredibly gracious in answering my questions for the last four years.

I’d also like to acknowledge my wife, Sarah, and kids, Charlotte and Michael, and
their ability and willingness to put up with the late hours at night, spent locked in our
home office, as well as the weekends spent sitting on my laptop when there were so
many other things we could have been doing. Sarah has spent many nights wondering
if I was actually going to make it to bed or not while writing and editing portions of this
book. Additional recognition goes out to all of the mentors I’ve had over the years, the
list of which is incredibly long. Without the commitment of SQL Server MVPs like Arnie
Rowland, Paul Randal, Aaron Bertrand, Louis Davidson, and countless others, I would
have never made it as far as I have with SQL Server.

—Jonathan Kehayias

First of all I would like to thank Kalen for first offering me the opportunity to work as
technical reviewer of this and her previous three books and later as co-author of two
of the chapters of this book, “Special databases” and “Query execution.” It is truly an
honor to work on her books as it was her Inside SQL Server books, which helped me to
learn SQL Server in the first place. It is an honor to be updating Craig Freedman’s work
as well; his chapter and blog have always been one of my all-time favorites. I also would
like to thank Jonathan Kehayias for doing the technical review of my two chapters as he
provided invaluable feedback to improve their quality.

Finally, on the personal side, I would like to thank my family: my wife, Rocio, my
three boy-scout sons, Diego, Benjamin, and David, and my parents, Guadalupe and
Humberto; thanks all for your unconditional support and patience.

—Benjamin Nevarez

By the time we wrote SQL Server 2008 Internals, I’d been itching to write a complete
description of what DBCC CHECKDB does for many years. When Kalen asked me to
write the consistency checking chapter for that book, I jumped at the chance, and for
that my sincere thanks go to Kalen. I’m very pleased to have been able to update that
chapter for SQL Server 2012 in this book and to add a section on the internals of the
shrink functionality as well. I’d like to reaffirm my special gratitude to two people from
Microsoft, among the many great folks I worked with there. The first is Ryan Stoneci-
pher, who I hired away from being an Escalation Engineer in SQL Product Support in
late 2003 to work with me on DBCC, and who was suddenly thrust into complete

xxiv Introduction

ownership of 100K+ lines of DBCC code when I become the team manager two months
later. I couldn’t have asked for more capable hands to take over my precious DBCC,
and I sincerely appreciate the time he took to explore the 2012 changes with me. The
second is Bob Ward, who heads up the SQL Product Support team and has been a great
friend since my early days at Microsoft. We must have collaborated on many hundreds
of cases of corruption over the years and I’ve yet to meet someone with more drive for
solving customer problems and improving SQL Server. Thanks must also go to Steve
Lindell, the author of the original online consistency checking code for SQL Server
2000, who spent many hours patiently explaining how it worked in 1999. Finally, I’d like
to thank my wife, Kimberly, and our daughters, Katelyn and Kiera, who are the other
passions in my life apart from SQL Server.

—Paul Randal

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed at:

http://aka.ms/SQL2012Internals/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

http://aka.ms/SQL2012Internals/errata

 Introduction xxv

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

 1

C H A P T E R 1

SQL Server 2012 architecture
and configuration

Kalen Delaney

Microsoft SQL Server is Microsoft’s premier database management system, and SQL Server 2012 is
the most powerful and feature-rich version yet. In addition to the core database engine, which

allows you to store and retrieve large volumes of relational data, and the world-class Query Opti-
mizer, which determines the fastest way to process your queries and access your data, dozens of other
components increase the usability of your data and make your data and applications more available
and more scalable. As you can imagine, no single book could cover all these features in depth. This
book, SQL Server 2012 Internals, covers only the main features of the core database engine.

This book delves into the details of specific features of the SQL Server Database Engine. This first
chapter provides a high-level view of the components of that engine and how they work together.
The goal is to help you understand how the topics covered in subsequent chapters fit into the overall
operations of the engine.

SQL Server editions

Each version of SQL Server comes in various editions, which you can think of as a subset of the
product features, with its own specific pricing and licensing requirements. Although this book doesn’t
discuss pricing and licensing, some of the information about editions is important because of the
features available with each edition. SQL Server Books Online describes in detail the editions available
and the feature list that each supports, but this section lists the main editions. You can verify what
edition you are running with the following query:

SELECT SERVERPROPERTY('Edition');

You can also inspect a server property known as EngineEdition:

SELECT SERVERPROPERTY('EngineEdition');

The EngineEdition property returns a value of 2 through 5 (1 isn’t a valid value in versions after SQL
Server 2000), which determines what features are available. A value of 3 indicates that your SQL Serv-
er edition is either Enterprise, Enterprise Evaluation, or Developer. These three editions have exactly

2 Microsoft SQL Server 2012 Internals

the same features and functionality. If your EngineEdition value is 2, your edition is either Standard,
Web, or Business Intelligence, and fewer features are available. The features and behaviors discussed
in this book are available in one of these two engine editions. The features in Enterprise edition (as
well as in Developer and Enterprise Evaluation editions) that aren’t in Standard edition generally relate
to scalability and high-availability features, but other Enterprise-only features are available, as will be
explained. For full details on what is in each edition, see the SQL Server Books Online topic, “Features
Supported by the Editions of SQL Server 2012.”

A value of 4 for EngineEdition indicates that your SQL Server edition is Express, which includes
SQL Server Express, SQL Server Express with Advanced Services, and SQL Server Express with Tools.
None of these versions are discussed specifically.

Finally, a value of 5 for EngineEdition indicates that you are running SQL Azure, a version of SQL Serv-
er that runs as a cloud-based service. Although many SQL Server applications can access SQL Azure with
only minimum modifications because the language features are very similar between SQL Azure and a
locally installed SQL Server (called an on-premises SQL Server), almost all the internal details are differ-
ent. For this reason, much of this book’s content is irrelevant for SQL Azure.

A SERVERPROPERTY property called EditionID allows you to differentiate between the specific
editions within each of the different EngineEdition values—that is, it allows you to differentiate among
Enterprise, Enterprise Evaluation, and Developer editions.

SQL Server installation and tools

Although installation of SQL Server 2012 is usually relatively straightforward, you need to make many
decisions during installation, but this chapter doesn’t cover all the details of every decision. You need
to read the installation details, which are fully documented. Presumably, you already have SQL Server
installed and available for use.

Your installation doesn’t need to include every single feature because the focus in this book is
on the basic SQL Server engine, although you should at least have installed a client tool such as SQL
Server Management Studio that you can use for submitting queries. This chapter also refers to op-
tions available in the Object Explorer pane of the SQL Server Management Studio.

As of SQL Server 2012, you can install SQL Server on Windows Server 2008 R2 Server Core SP1
(referred to simply as Server Core). The Server Core installation provides a minimal environment for
running specific server roles. It reduces the maintenance and management requirements and reduces
the attack surface area. However, because Server Core provides no graphical interface capabilities,
SQL Server must be installed using the command line and configuration file. Refer to the Books Online
topic, “Install SQL Server 2012 from the Command Prompt,” for details.

Also, because graphical tools aren’t available when using Server Core, you can’t run SQL Server
Management Studio on a Server Core box. Your communications with SQL Server can be through
a command line using the SQLCMD tool or by using SQL PowerShell. Alternatively, you can access
your SQL Server running on Server Core from another machine on the network that does have the
graphical tools available.

 CHAPTER 1 SQL Server 2012 architecture and configuration 3

SQL Server metadata

SQL Server maintains a set of tables that store information about all objects, data types, constraints,
configuration options, and resources available to SQL Server. In SQL Server 2012, these tables are
called the system base tables. Some of the system base tables exist only in the master database and
contain system-wide information; others exist in every database (including master) and contain infor-
mation about the objects and resources belonging to that particular database. Beginning with SQL
Server 2005, the system base tables aren’t always visible by default, in master or any other database.
You won’t see them when you expand the tables node in the Object Explorer in SQL Server Manage-
ment Studio, and unless you are a system administrator, you won’t see them when you execute the
sp_help system procedure. If you log on as a system administrator and select from the catalog view
called sys.objects (discussed shortly), you can see the names of all the system tables. For example, the
following query returns 74 rows of output on my SQL Server 2012 instance:

USE master;
SELECT name FROM sys.objects
WHERE type_desc = 'SYSTEM_TABLE';

But even as a system administrator, if you try to select data from one of the tables returned by the
preceding query, you get a 208 error, indicating that the object name is invalid. The only way to see
the data in the system base tables is to make a connection using the dedicated administrator con-
nection (DAC), which Chapter 2, “The SQLOS,” explains in the section titled “The scheduler.” Keep in
mind that the system base tables are used for internal purposes only within the Database Engine and
aren’t intended for general use. They are subject to change, and compatibility isn’t guaranteed. In
SQL Server 2012, three types of system metadata objects are intended for general use: Compatibility
Views, Catalog Views, and Dynamic Management Objects.

Compatibility views
Although you could see data in the system tables in versions of SQL Server before 2005, you weren’t
encouraged to do so. Nevertheless, many people used system tables for developing their own
troubleshooting and reporting tools and techniques, providing result sets that aren’t available us-
ing the supplied system procedures. You might assume that due to the inaccessibility of the system
base tables, you would have to use the DAC to utilize your homegrown tools when using SQL Server
2005 or later. However, you still might be disappointed. Many names and much of the content of
the SQL Server 2000 system tables have changed, so any code that used them is completely unus-
able even with the DAC. The DAC is intended only for emergency access, and no support is provided
for any other use of it. To save you from this problem, SQL Server 2005 and later versions offer a set
of compatibility views that allow you to continue to access a subset of the SQL Server 2000 system
tables. These views are accessible from any database, although they are created in a hidden resource
database that Chapter 4, “Special databases,” covers.

Some compatibility views have names that might be quite familiar to you, such as sysobjects, sysin-
dexes, sysusers, and sysdatabases. Others, such as sysmembers and sysmessages, might be less familiar.
For compatibility reasons, SQL Server 2012 provides views that have the same names as many of the

4 Microsoft SQL Server 2012 Internals

system tables in SQL Server 2000, as well as the same column names, which means that any code that
uses the SQL Server 2000 system tables won’t break. However, when you select from these views,
you’re not guaranteed to get exactly the same results that you get from the corresponding tables in
SQL Server 2000. The compatibility views also don’t contain any metadata related to features added
after SQL Server 2000, such as partitioning or the Resource Governor. You should consider the com-
patibility views to be for backward compatibility only; going forward, you should consider using other
metadata mechanisms, such as the catalog views discussed in the next section. All these compatibility
views will be removed in a future version of SQL Server.

More info You can find a complete list of names and the columns in these views in
SQL Server Books Online.

SQL Server also provides compatibility views for the SQL Server 2000 pseudotables, such as syspro-
cesses and syscacheobjects. Pseudotables aren’t based on data stored on disk but are built as needed
from internal structures and can be queried exactly as though they are tables. SQL Server 2005 re-
placed these pseudotables with Dynamic Management Objects, which are discussed shortly.

Catalog views
SQL Server 2005 introduced a set of catalog views as a general interface to the persisted system
metadata. All catalog views (as well as the Dynamic Management Objects and compatibility views)
are in the sys schema, which you must reference by name when you access the objects. Some of the
names are easy to remember because they are similar to the SQL Server 2000 system table names. For
example, in the sys schema is a catalog view called objects, so to reference the view, the following can
be executed:

SELECT * FROM sys.objects;

Similarly, catalog views are named sys.indexes and sys.databases, but the columns displayed for
these catalog views are very different from the columns in the compatibility views. Because the out-
put from these types of queries is too wide to reproduce, try running these two queries on your own
and observe the difference:

SELECT * FROM sys.databases;
SELECT * FROM sysdatabases;

The sysdatabases compatibility view is in the sys schema, so you can reference it as sys.sysdatabases.
You can also reference it using dbo.sysdatabases. But again, for compatibility reasons, the schema name
isn’t required as it is for the catalog views. (That is, you can’t simply select from a view called databases;
you must use the schema sys as a prefix.)

When you compare the output from the two preceding queries, you might notice that many more
columns are in the sys.databases catalog view. Instead of a bitmap status field that needs to be de-
coded, each possible database property has its own column in sys.databases. With SQL Server 2000,

 CHAPTER 1 SQL Server 2012 architecture and configuration 5

running the system procedure sp_helpdb decodes all these database options, but because sp_helpdb
is a procedure, it is difficult to filter the results. As a view, sys.databases can be queried and filtered.
For example, if you want to know which databases are in simple recovery model, you can run the
following:

SELECT name FROM sys.databases
WHERE recovery_model_desc = 'SIMPLE';

The catalog views are built on an inheritance model, so you don’t have to redefine internally sets
of attributes common to many objects. For example, sys.objects contains all the columns for attributes
common to all types of objects, and the views sys.tables and sys.views contain all the same columns
as sys.objects, as well as some additional columns that are relevant only to the particular type of
objects. If you select from sys.objects, you get 12 columns, and if you then select from sys.tables, you
get exactly the same 12 columns in the same order, plus 16 additional columns that aren’t applicable
to all types of objects but are meaningful for tables. Also, although the base view sys.objects contains
a subset of columns compared to the derived views such as sys.tables, it contains a superset of rows
compared to a derived view. For example, the sys.objects view shows metadata for procedures and
views in addition to that for tables, whereas the sys.tables view shows only rows for tables. So the
relationship between the base view and the derived views can be summarized as follows: The base
views contain a subset of columns and a superset of rows, and the derived views contain a superset of
columns and a subset of rows.

Just as in SQL Server 2000, some metadata appears only in the master database and keeps track of
system-wide data, such as databases and logins. Other metadata is available in every database, such
as objects and permissions. The SQL Server Books Online topic, “Mapping System Tables to System
Views,” categorizes its objects into two lists: those appearing only in master and those appearing in all
databases. Note that metadata appearing only in the msdb database isn’t available through catalog
views but is still available in system tables, in the schema dbo. This includes metadata for backup and
restore, replication, Database Maintenance Plans, Integration Services, log shipping, and SQL Server
Agent.

As views, these metadata objects are based on an underlying Transact-SQL (T-SQL) definition. The
most straightforward way to see the definition of these views is by using the object_definition func-
tion. (You can also see the definition of these system views by using sp_helptext or by selecting from
the catalog view sys.system_sql_modules.) So to see the definition of sys.tables, you can execute the
following:

SELECT object_definition (object_id('sys.tables'));

If you execute this SELECT statement, notice that the definition of sys.tables references several
completely undocumented system objects. On the other hand, some system object definitions refer
only to documented objects. For example, the definition of the compatibility view syscacheobjects
refers only to three fully documented Dynamic Management Objects (one view, sys.dm_exec_cached_
plans, and two functions, sys.dm_exec_sql_text and sys.dm_exec_plan_attributes).

6 Microsoft SQL Server 2012 Internals

Dynamic Management Objects
Metadata with names starting with sys.dm_, such as the just-mentioned sys.dm_exec_cached_plans,
are considered Dynamic Management Objects. Although Dynamic Management Objects include both
views and functions, they are usually referred to by the abbreviation DMV.

DMVs allow developers and database administrators to observe much of the internal behavior
of SQL Server. You can access them as though they reside in the sys schema, which exists in every
SQL Server database, but they aren’t real objects. They are similar to the pseudotables used in SQL
Server 2000 for observing the active processes (sysprocesses) or the contents of the plan cache
(syscacheobjects).

Note A one-to-one correspondence doesn’t always occur between SQL Server 2000
pseudotables and Dynamic Management Objects. For example, for SQL Server 2012 to
retrieve most of the information available in sysprocesses, you must access three Dynamic
Management Objects: sys.dm_exec_connections, sys.dm_exec_sessions, and sys.dm_exec_
requests. Even with these three objects, information is still available in the old sysprocesses
pseudotable that’s not available in any of the new metadata.

The pseudotables in SQL Server 2000 don’t provide any tracking of detailed resource usage and
can’t always be used to detect resource problems or state changes. Some DMVs allow tracking of
detailed resource history, and you can directly query and join more than 175 such objects with T-SQL
SELECT statements. The DMVs expose changing server state information that might span multiple
sessions, multiple transactions, and multiple user requests. These objects can be used for diagnostics,
memory and process tuning, and monitoring across all sessions in the server.

The DMVs aren’t based on real tables stored in database files but are based on internal server
structures, some of which are discussed in Chapter 2. More details about DMVs are discussed
throughout this book, where the contents of one or more of the objects can illuminate the topics
being discussed. The objects are separated into several categories based on the functional area of
the information they expose. They are all in the sys schema and have a name that starts with dm_,
followed by a code indicating the area of the server with which the object deals. The main categories
are:

■■ dm_exec_* This category contains information directly or indirectly related to the execution
of user code and associated connections. For example, sys.dm_exec_sessions returns one row
per authenticated session on SQL Server. This object contains much of the same information
that sysprocesses contains in SQL Server 2000 but has even more information about the oper-
ating environment of each sessions

■■ dm_os_* This category contains low-level system information such as memory and schedul-
ing. For example, sys.dm_os_schedulers is a DMV that returns one row per scheduler. It’s used
primarily to monitor the condition of a scheduler or to identify runaway tasks.

 CHAPTER 1 SQL Server 2012 architecture and configuration 7

■■ dm_tran_* This category contains details about current transactions. For example, sys.dm_
tran_locks returns information about currently active lock resources. Each row represents a
currently active request to the lock management component for a lock that has been granted
or is waiting to be granted. This object replaces the pseudotable syslockinfo in SQL Server
2000.

■■ dm_logpool* This category contains details about log pools used to manage SQL Server
2012’s log cache, a new feature added to make log records more easily retrievable when
needed by features such as AlwaysOn. (The new log-caching behavior is used whether or not
you’re using the AlwaysOn features. Logging and log management are discussed in Chapter 5,
“Logging and recovery.”)

■■ dm_io_* This category keeps track of input/output activity on network and disks. For ex-
ample, the function sys.dm_io_virtual_file_stats returns I/O statistics for data and log files. This
object replaces the table-valued function fn_virtualfilestats in SQL Server 2000.

■■ dm_db_* This category contains details about databases and database objects such as
indexes. For example, the sys.dm_db_index_physical_stats function returns size and fragmenta-
tion information for the data and indexes of the specified table or view. This function replaces
DBCC SHOWCONTIG in SQL Server 2000.

SQL Server 2012 also has dynamic management objects for many of its functional components, in-
cluding objects for monitoring full-text search catalogs, service broker, replication, availability groups,
transparent data encryption, Extended Events, and the Common Language Runtime (CLR).

Other metadata
Although catalog views are the recommended interface for accessing the SQL Server 2012 catalog,
other tools are also available.

Information schema views
Information schema views, introduced in SQL Server 7.0, were the original system table-independent
view of the SQL Server metadata. The information schema views included in SQL Server 2012 comply
with the SQL-92 standard, and all these views are in a schema called INFORMATION_SCHEMA. Some
information available through the catalog views is available through the information schema views,
and if you need to write a portable application that accesses the metadata, you should consider using
these objects. However, the information schema views show only objects compatible with the SQL-92
standard. This means no information schema view exists for certain features, such as indexes, which
aren’t defined in the standard. (Indexes are an implementation detail.) If your code doesn’t need to
be strictly portable, or if you need metadata about nonstandard features such as indexes, filegroups,
the CLR, and SQL Server Service Broker, using the Microsoft-supplied catalog views is suggested. Most
examples in the documentation, as well as in this and other reference books, are based on the catalog
view interface.

8 Microsoft SQL Server 2012 Internals

System functions
Most SQL Server system functions are property functions, which were introduced in SQL Server 7.0
and greatly enhanced in subsequent versions. Property functions provide individual values for many
SQL Server objects as well as for SQL Server databases and the SQL Server instance itself. The values
returned by the property functions are scalar as opposed to tabular, so they can be used as values
returned by SELECT statements and as values to populate columns in tables. The following property
functions are available in SQL Server 2012:

■■ SERVERPROPERTY

■■ COLUMNPROPERTY

■■ DATABASEPROPERTYEX

■■ INDEXPROPERTY

■■ INDEXKEY_PROPERTY

■■ OBJECTPROPERTY

■■ OBJECTPROPERTYEX

■■ SQL_VARIANT_PROPERTY

■■ FILEPROPERTY

■■ FILEGROUPPROPERTY

■■ FULLTEXTCATALOGPROPERTY

■■ FULLTEXTSERVICEPROPERTY

■■ TYPEPROPERTY

■■ CONNECTIONPROPERTY

■■ ASSEMBLYPROPERTY

The only way to find out what the possible property values are for the various functions is to check
SQL Server Books Online.

You also can see some information returned by the property functions by using the catalog views.
For example, the DATABASEPROPERTYEX function has a Recovery property that returns the recovery
model of a database. To view the recovery model of a single database, you can use the following
property function:

SELECT DATABASEPROPERTYEX('msdb', 'Recovery');

To view the recovery models of all your databases, you can use the sys.databases view:

SELECT name, recovery_model, recovery_model_desc
FROM sys.databases;

 CHAPTER 1 SQL Server 2012 architecture and configuration 9

Note Columns with names ending in _desc are known as the “friendly name” columns, and
they are always paired with another column that is much more compact, but cryptic. In
this case, the recovery_model column is a tinyint with a value of 1, 2, or 3. Both columns are
available in the view because different consumers have different needs. For example, inter-
nally at Microsoft, the teams building the internal interfaces wanted to bind to more com-
pact columns, whereas DBAs running ad hoc queries might prefer the friendly names.

In addition to the property functions, the system functions include functions that are merely short-
cuts for catalog view access. For example, to find out the database ID for the AdventureWorks2012
database, you can either query the sys.databases catalog view or use the DB_ID() function. Both of
the following SELECT statements should return the same result:

SELECT database_id
FROM sys.databases
WHERE name = 'AdventureWorks2012';

SELECT DB_ID('AdventureWorks2012');

System stored procedures
System stored procedures are the original metadata access tool, in addition to the system tables
themselves. Most of the system stored procedures introduced in the very first version of SQL Server
are still available. However, catalog views are a big improvement over these procedures: You have
control over how much of the metadata you see because you can query the views as though they
were tables. With the system stored procedures, you have to accept the data that it returns. Some
procedures allow parameters, but they are very limited. For the sp_helpdb procedure, for example,
you can pass a parameter to see just one database’s information or not pass a parameter and see
information for all databases. However, if you want to see only databases that the login sue owns, or
just see databases that are in a lower compatibility level, you can’t do so using the supplied stored
procedure. Through the catalog views, these queries are straightforward:

SELECT name FROM sys.databases
WHERE suser_sname(owner_sid) ='sue';

SELECT name FROM sys.databases
WHERE compatibility_level < 110;

Metadata wrap-up
Figure 1-1 shows the multiple layers of metadata available in SQL Server 2012, with the lowest layer
being the system base tables (the actual catalog). Any interface that accesses the information con-
tained in the system base tables is subject to the metadata security policies. For SQL Server 2012,
that means that no users can see any metadata that they don’t need to see or to which they haven’t
specifically been granted permissions. (The few exceptions are very minor.) “Other Metadata” refers
to system information not contained in system tables, such as the internal information provided by

10 Microsoft SQL Server 2012 Internals

the Dynamic Management Objects. Remember that the preferred interfaces to the system metadata
are the catalog views and system functions. Although not all the compatibility views, INFORMATION_
SCHEMA views, and system procedures are actually defined in terms of the catalog views; thinking
conceptually of them as another layer on top of the catalog view interface is useful.

FIGURE 1-1 Layers of metadata in SQL Server 2012.

Components of the SQL Server engine

Figure 1-2 shows the general architecture of SQL Server and its four major components: the proto-
col layer, the query processor (also called the relational engine), the storage engine, and the SQLOS.
Every batch submitted to SQL Server for execution, from any client application, must interact with
these four components. (For simplicity, some minor omissions and simplifications have been made
and certain “helper” modules have been ignored among the subcomponents.)

FIGURE 1-2 The major components of the SQL Server Database Engine.

The protocol layer receives the request and translates it into a form that the relational engine
can work with. It also takes the final results of any queries, status messages, or error messages and

 CHAPTER 1 SQL Server 2012 architecture and configuration 11

translates them into a form the client can understand before sending them back to the client. The
query processor accepts T-SQL batches and determines what to do with them. For T-SQL queries and
programming constructs, it parses, compiles, and optimizes the request and oversees the process
of executing the batch. As the batch is executed, if data is needed, a request for that data is passed
to the storage engine. The storage engine manages all data access, both through transaction-based
commands and bulk operations such as backup, bulk insert, and certain Database Console Commands
(DBCCs). The SQLOS layer handles activities normally considered to be operating system responsibili-
ties, such as thread management (scheduling), synchronization primitives, deadlock detection, and
memory management, including the buffer pool.

The next section looks at the major components of the SQL Server Database Engine in more detail.

Protocols
When an application communicates with the Database Engine, the application programming inter-
faces (APIs) exposed by the protocol layer formats the communication using a Microsoft-defined
format called a tabular data stream (TDS) packet. The SQL Server Network Interface (SNI) protocol
layer on both the server and client computers encapsulates the TDS packet inside a standard com-
munication protocol, such as TCP/IP or Named Pipes. On the server side of the communication, the
network libraries are part of the Database Engine. On the client side, the network libraries are part of
the SQL Native Client. The configuration of the client and the instance of SQL Server determine which
protocol is used.

You can configure SQL Server to support multiple protocols simultaneously, coming from different
clients. Each client connects to SQL Server with a single protocol. If the client program doesn’t know
which protocols SQL Server is listening on, you can configure the client to attempt multiple protocols
sequentially. The following protocols are available:

■■ Shared Memory The simplest protocol to use, with no configurable settings. Clients using
the Shared Memory protocol can connect to only a SQL Server instance running on the same
computer, so this protocol isn’t useful for most database activity. Use this protocol for trouble-
shooting when you suspect that the other protocols are configured incorrectly. Clients using
MDAC 2.8 or earlier can’t use the Shared Memory protocol. If such a connection is attempted,
the client is switched to the Named Pipes protocol.

■■ Named Pipes A protocol developed for local area networks (LANs). A portion of memory
is used by one process to pass information to another process, so that the output of one is
the input of the other. The second process can be local (on the same computer as the first) or
remote (on a network computer).

■■ TCP/IP The most widely used protocol over the Internet. TCP/IP can communicate across
interconnected computer networks with diverse hardware architectures and operating sys-
tems. It includes standards for routing network traffic and offers advanced security features.
Enabling SQL Server to use TCP/IP requires the most configuration effort, but most networked
computers are already properly configured.

12 Microsoft SQL Server 2012 Internals

tabular Data Stream endpoints
SQL Server 2012 also allows you to create a TDS endpoint, so that SQL Server listens on an ad-
ditional TCP port. During setup, SQL Server automatically creates an endpoint for each of the
three protocols supported by SQL Server, and if the protocol is enabled, all users have access to
it. For disabled protocols, the endpoint still exists but can’t be used. An additional endpoint is
created for the DAC, which only members of the sysadmin fixed server role can use. (Chapter 2
discusses the DAC in more detail.)

Query processor
As mentioned earlier, the query processor is also called the relational engine. It includes the SQL
Server components that determine exactly what your query needs to do and the best way to do it. In
Figure 1-2, the query processor is shown as two primary components: Query Optimization and query
execution. This layer also includes components for parsing and binding (not shown in the figure). By
far the most complex component of the query processor—and maybe even of the entire SQL Server
product—is the Query Optimizer, which determines the best execution plan for the queries in the
batch. Chapter 11, “The Query Optimizer,” discusses the Query Optimizer in great detail; this section
gives you just a high-level overview of the Query Optimizer as well as of the other components of the
query processor.

The query processor also manages query execution as it requests data from the storage engine
and processes the results returned. Communication between the query processor and the stor-
age engine is generally in terms of Object Linking and Embedding (OLE) DB rowsets. (Rowset is the
OLE DB term for a result set.)

Parsing and binding components
The parser processes T-SQL language events sent to SQL Server. It checks for proper syntax and spell-
ing of keywords. After a query is parsed, a binding component performs name resolution to convert
the object names into their unique object ID values. After the parsing and binding is done, the com-
mand is converted into an internal format that can be operated on. This internal format is known as
a query tree. If the syntax is incorrect or an object name can’t be resolved, an error is immediately
raised that identifies where the error occurred. However, other types of error messages can’t be ex-
plicit about the exact source line that caused the error. Because only parsing and binding components
can access the source of the statement, the statement is no longer available in source format when
the command is actually executed.

the Query Optimizer
The Query Optimizer takes the query tree and prepares it for optimization. Statements that can’t be
optimized, such as flow-of-control and Data Definition Language (DDL) commands, are compiled
into an internal form. Optimizable statements are marked as such and then passed to the Query

 CHAPTER 1 SQL Server 2012 architecture and configuration 13

Optimizer. The Query Optimizer is concerned mainly with the Data Manipulation Language (DML)
statements SELECT, INSERT, UPDATE, DELETE, and MERGE, which can be processed in more than one
way; the Query Optimizer determines which of the many possible ways is best. It compiles an entire
command batch and optimizes queries that are optimizable. The query optimization and compilation
result in an execution plan.

The first step in producing such a plan is to normalize each query, which potentially breaks down
a single query into multiple, fine-grained queries. After the Query Optimizer normalizes a query,
it optimizes it, which means that it determines a plan for executing that query. Query optimization
is cost-based; the Query Optimizer chooses the plan that it determines would cost the least based
on internal metrics that include estimated memory requirements, CPU utilization, and number of
required I/Os. The Query Optimizer considers the type of statement requested, checks the amount
of data in the various tables affected, looks at the indexes available for each table, and then looks at
a sampling of the data values kept for each index or column referenced in the query. The sampling
of the data values is called distribution statistics. (Chapter 11 discusses statistics in detail.) Based on
the available information, the Query Optimizer considers the various access methods and processing
strategies that it could use to resolve a query and chooses the most cost-effective plan.

The Query Optimizer also uses pruning heuristics to ensure that optimizing a query doesn’t take
longer than required to simply choose a plan and execute it. The Query Optimizer doesn’t necessarily
perform exhaustive optimization; some products consider every possible plan and then choose the
most cost-effective one. The advantage of this exhaustive optimization is that the syntax chosen for a
query theoretically never causes a performance difference, no matter what syntax the user employed.
But with a complex query, it could take much longer to estimate the cost of every conceivable plan
than it would to accept a good plan, even if it’s not the best one, and execute it.

After normalization and optimization are completed, the normalized tree produced by those
processes is compiled into the execution plan, which is actually a data structure. Each command in-
cluded in it specifies exactly which table is affected, which indexes are used (if any), and which criteria
(such as equality to a specified value) must evaluate to TRUE for selection. This execution plan might
be considerably more complex than is immediately apparent. In addition to the actual commands,
the execution plan includes all the steps necessary to ensure that constraints are checked. Steps for
calling a trigger are slightly different from those for verifying constraints. If a trigger is included for
the action being taken, a call to the procedure that comprises the trigger is appended. If the trigger
is an instead-of trigger, the call to the trigger’s plan replaces the actual data modification command.
For after triggers, the trigger’s plan is branched to right after the plan for the modification statement
that fired the trigger, before that modification is committed. The specific steps for the trigger aren’t
compiled into the execution plan, unlike those for constraint verification.

A simple request to insert one row into a table with multiple constraints can result in an execu-
tion plan that requires many other tables to be accessed or expressions to be evaluated. Also, the
existence of a trigger can cause many more steps to be executed. The step that carries out the actual
INSERT statement might be just a small part of the total execution plan necessary to ensure that all
actions and constraints associated with adding a row are carried out.

14 Microsoft SQL Server 2012 Internals

the query executor
The query executor runs the execution plan that the Query Optimizer produced, acting as a dispatch-
er for all commands in the execution plan. This module goes through each command of the execu-
tion plan until the batch is complete. Most commands require interaction with the storage engine to
modify or retrieve data and to manage transactions and locking. You can find more information on
query execution and execution plans in Chapter 10, “Query execution.”

the storage engine
The SQL Server storage engine includes all components involved with the accessing and managing of
data in your database. In SQL Server 2012, the storage engine is composed of three main areas: access
methods, locking and transaction services, and utility commands.

access methods
When SQL Server needs to locate data, it calls the access methods code, which sets up and requests
scans of data pages and index pages and prepares the OLE DB rowsets to return to the relational
engine. Similarly, when data is to be inserted, the access methods code can receive an OLE DB rowset
from the client. The access methods code contains components to open a table, retrieve qualified
data, and update data. It doesn’t actually retrieve the pages; instead, it makes the request to the buf-
fer manager, which ultimately serves up the page in its cache or reads it to cache from disk. When
the scan starts, a look-ahead mechanism qualifies the rows or index entries on a page. The retrieving
of rows that meet specified criteria is known as a qualified retrieval. The access methods code is used
not only for SELECT statements but also for qualified UPDATE and DELETE statements (for example,
UPDATE with a WHERE clause) and for any data modification operations that need to modify index
entries. The following sections discuss some types of access methods.

Row and index operations You can consider row and index operations to be components of the ac-
cess methods code because they carry out the actual method of access. Each component is respon-
sible for manipulating and maintaining its respective on-disk data structures—namely, rows of data or
B-tree indexes, respectively. They understand and manipulate information on data and index pages.

The row operations code retrieves, modifies, and performs operations on individual rows. It
performs an operation within a row, such as “retrieve column 2” or “write this value to column 3.” As
a result of the work performed by the access methods code, as well as by the lock and transaction
management components (discussed shortly), the row is found and appropriately locked as part of
a transaction. After formatting or modifying a row in memory, the row operations code inserts or
deletes a row. The row operations code needs to handle special operations if the data is a large object
(LOB) data type—text, image, or ntext—or if the row is too large to fit on a single page and needs to
be stored as overflow data. Chapter 6, “Table storage”; Chapter 7, “Indexes: internals and manage-
ment”; and Chapter 8, "Special storage," look at the different types of data-storage structures.

The index operations code maintains and supports searches on B-trees, which are used for SQL
Server indexes. An index is structured as a tree, with a root page and intermediate-level and lower-
level pages. (A very small tree might not have intermediate-level pages.) A B-tree groups records

 CHAPTER 1 SQL Server 2012 architecture and configuration 15

with similar index keys, thereby allowing fast access to data by searching on a key value. The B-tree’s
core feature is its ability to balance the index tree (B stands for balanced). Branches of the index tree
are spliced together or split apart as necessary so that the search for any particular record always
traverses the same number of levels and therefore requires the same number of page accesses.

Page allocation operations The allocation operations code manages a collection of pages for each
database and monitors which pages in a database have already been used, for what purpose they
have been used, and how much space is available on each page. Each database is a collection of 8 KB
disk pages spread across one or more physical files. (Chapter 3, “Databases and database files,” goes
into more detail about the physical organization of databases.)

SQL Server uses 13 types of disk pages. The ones this book discusses are data pages, two types of
Large Object (LOB) pages, row-overflow pages, index pages, Page Free Space (PFS) pages, Global Al-
location Map and Shared Global Allocation Map (GAM and SGAM) pages, Index Allocation Map (IAM)
pages, Minimally Logged (ML) pages, and Differential Changed Map (DIFF) pages. Another type, File
Header pages, won’t be discussed in this book.

All user data is stored on data, LOB, or row-overflow pages. Index rows are stored on index pages,
but indexes can also store information on LOB and row-overflow pages. PFS pages keep track of
which pages in a database are available to hold new data. Allocation pages (GAMs, SGAMs, and IAMs)
keep track of the other pages; they contain no database rows and are used only internally. BCM and
DCM pages are used to make backup and recovery more efficient. Chapter 5 explains these page
types in more detail.

Versioning operations Another type of data access, which was added to the product in SQL Server
2005, is access through the version store. Row versioning allows SQL Server to maintain older versions
of changed rows. The row-versioning technology in SQL Server supports snapshot isolation as well
as other features of SQL Server 2012, including online index builds and triggers, and the versioning
operations code maintains row versions for whatever purpose they are needed.

Chapters 3, 4, 6, 7, and 8 deal extensively with the internal details of the structures that the access
methods code works with databases, tables, and indexes.

transaction services
A core feature of SQL Server is its ability to ensure that transactions are atomic—that is, all or nothing.
Also, transactions must be durable, which means that if a transaction has been committed, it must be
recoverable by SQL Server no matter what—even if a total system failure occurs one millisecond after
the commit was acknowledged. Transactions must adhere to four properties, called the ACID proper-
ties: atomicity, consistency, isolation, and durability. Chapter 13, “Transactions and concurrency,” covers
all four properties in a section on transaction management and concurrency issues.

In SQL Server, if work is in progress and a system failure occurs before the transaction is commit-
ted, all the work is rolled back to the state that existed before the transaction began. Write-ahead
logging makes possible the ability to always roll back work in progress or roll forward committed
work that hasn’t yet been applied to the data pages. Write-ahead logging ensures that the re-
cord of each transaction’s changes is captured on disk in the transaction log before a transaction

16 Microsoft SQL Server 2012 Internals

is acknowledged as committed, and that the log records are always written to disk before the data
pages where the changes were actually made are written. Writes to the transaction log are always
synchronous—that is, SQL Server must wait for them to complete. Writes to the data pages can be
asynchronous because all the effects can be reconstructed from the log if necessary. The transaction
management component coordinates logging, recovery, and buffer management, topics discussed
later in this book; this section looks just briefly at transactions themselves.

The transaction management component delineates the boundaries of statements that must be
grouped to form an operation. It handles transactions that cross databases within the same SQL
Server instance and allows nested transaction sequences. (However, nested transactions simply
execute in the context of the first-level transaction; no special action occurs when they are commit-
ted. Also, a rollback specified in a lower level of a nested transaction undoes the entire transaction.)
For a distributed transaction to another SQL Server instance (or to any other resource manager), the
transaction management component coordinates with the Microsoft Distributed Transaction Coordi-
nator (MS DTC) service, using operating system remote procedure calls. The transaction management
component marks save points that you designate within a transaction at which work can be partially
rolled back or undone.

The transaction management component also coordinates with the locking code regarding when
locks can be released, based on the isolation level in effect. It also coordinates with the versioning
code to determine when old versions are no longer needed and can be removed from the version
store. The isolation level in which your transaction runs determines how sensitive your application is
to changes made by others and consequently how long your transaction must hold locks or maintain
versioned data to protect against those changes.

Concurrency models SQL Server 2012 supports two concurrency models for guaranteeing the ACID
properties of transactions:

■■ Pessimistic concurrency This model guarantees correctness and consistency by locking
data so that it can’t be changed. Every version of SQL Server prior to SQL Server 2005 used
this currency model exclusively; it’s the default in both SQL Server 2005 and later versions.

■■ Optimistic currency SQL Server 2005 introduced optimistic concurrency, which provides
consistent data by keeping older versions of rows with committed values in an area of tempdb
called the version store. With optimistic concurrency, readers don’t block writers and writers
don’t block readers, but writers still block writers. The cost of these non-blocking operations
must be considered. To support optimistic concurrency, SQL Server needs to spend more time
managing the version store. Administrators also have to pay close attention to the tempdb
database and plan for the extra maintenance it requires.

Five isolation-level semantics are available in SQL Server 2012. Three of them support only pes-
simistic concurrency: Read Uncommitted, Repeatable Read, and Serializable. Snapshot isolation level
supports optimistic concurrency. The default isolation level, Read Committed, can support either
optimistic or pessimistic concurrency, depending on a database setting.

 CHAPTER 1 SQL Server 2012 architecture and configuration 17

The behavior of your transactions depends on the isolation level and the concurrency model you
are working with. A complete understanding of isolation levels also requires an understanding of lock-
ing because the topics are so closely related. The next section gives an overview of locking; you’ll find
more detailed information on isolation, transactions, and concurrency management in Chapter 10.

Locking operations Locking is a crucial function of a multiuser database system such as SQL Server,
even if you are operating primarily in the snapshot isolation level with optimistic concurrency. SQL
Server lets you manage multiple users simultaneously and ensures that the transactions observe the
properties of the chosen isolation level. Even though readers don’t block writers and writers don’t
block readers in snapshot isolation, writers do acquire locks and can still block other writers, and if
two writers try to change the same data concurrently, a conflict occurs that must be resolved. The
locking code acquires and releases various types of locks, such as share locks for reading, exclusive
locks for writing, intent locks taken at a higher granularity to signal a potential “plan” to perform
some operation, and extent locks for space allocation. It manages compatibility between the lock
types, resolves deadlocks, and escalates locks if needed. The locking code controls table, page, and
row locks as well as system data locks.

Note Concurrency management, whether with locks or row versions, is an important
aspect of SQL Server. Many developers are keenly interested in it because of its potential
effect on application performance. Chapter 13 is devoted to the subject, so this chapter
won’t go into further detail here.

Other operations
Also included in the storage engine are components for controlling utilities such as bulk-load, DBCC
commands, full-text index population and management, and backup and restore operations. Chapter
14, “DBCC internals,” covers DBCC in detail. The log manager makes sure that log records are written
in a manner to guarantee transaction durability and recoverability. Chapter 5 goes into detail about
the transaction log and its role in backup-and-restore operations.

SQL Server 2012 configuration

This half of the chapter looks at the options for controlling how SQL Server 2012 behaves. Some op-
tions might not mean much until you’ve read about the relevant components later in the book, but
you can always come back and reread this section. One main method of controlling the behavior of
the Database Engine is to adjust configuration option settings, but you can configure behavior in
a few other ways as well. First, look at using SQL Server Configuration Manager to control network
protocols and SQL Server–related services. Then, look at other machine settings that can affect the
behavior of SQL Server. Finally, you can examine some specific configuration options for controlling
server-wide settings in SQL Server.

18 Microsoft SQL Server 2012 Internals

Using SQL Server Configuration Manager
Configuration Manager is a tool for managing the services associated with SQL Server, configuring
the network protocols used, and managing the network connectivity configuration from client com-
puters connecting to SQL Server. Configuration Manager is accessed by selecting All Programs on the
Windows Start menu, and then selecting Microsoft SQL Server 2012 | Configuration Tools | SQL Server
Configuration Manager.

Configuring network protocols
A specific protocol must be enabled on both the client and the server for the client to connect and
communicate with the server. SQL Server can listen for requests on all enabled protocols at once.
The underlying operating system network protocols (such as TCP/IP) should already be installed on
the client and the server. Network protocols are typically installed during Windows setup; they aren’t
part of SQL Server setup. A SQL Server network library doesn’t work unless its corresponding network
protocol is installed on both the client and the server.

On the client computer, the SQL Native Client must be installed and configured to use a network
protocol enabled on the server; this is usually done during Client Tools Connectivity setup. The SQL
Native Client is a standalone data-access application programming interface (API) used for both OLE
DB and Open Database Connectivity (ODBC). If the SQL Native Client is available, you can config-
ure any network protocol for use with a particular client connecting to SQL Server. You can use SQL
Server Configuration Manager to enable a single protocol or to enable multiple protocols and specify
an order in which they should be attempted. If the Shared Memory protocol setting is enabled, that
protocol is always tried first, but, as mentioned earlier in this chapter, it’s available for communication
only when the client and the server are on the same machine.

The following query returns the protocol used for the current connection, using the DMV
sys.dm_exec_connections:

SELECT net_transport
FROM sys.dm_exec_connections
WHERE session_id = @@SPID;

Implementing a default network configuration
The network protocols used to communicate with SQL Server 2012 from another computer aren’t all
enabled for SQL Server during installation. To connect from a particular client computer, you might
need to enable the desired protocol. The Shared Memory protocol is enabled by default on all instal-
lations, but because it can be used to connect to the Database Engine only from a client application
on the same computer, its usefulness is limited.

TCP/IP connectivity to SQL Server 2012 is disabled for new installations of the Developer, Evalu-
ation, and SQL Express editions. OLE DB applications connecting with MDAC 2.8 can’t connect to
the default instance on a local server using “.” (period), “(local)”, or (<blank>) as the server name.
To resolve this, supply the server name or enable TCP/IP on the server. Connections to local named

 CHAPTER 1 SQL Server 2012 architecture and configuration 19

instances aren’t affected, nor are connections using the SQL Native Client. Installations in which a
previous installation of SQL Server is present might not be affected.

Table 1-1 describes the default network configuration settings.

TABLE 1-1 SQL Server 2012 default network configuration settings

SQL Server
edition

Type of
installation

Shared
memory TCP/IP Named pipes

Enterprise New Enabled Enabled Disabled (available only locally)

Enterprise
(clustered)

New Enabled Enabled Enabled

Developer New Enabled Disabled Disabled (available only locally)

Standard New Enabled Enabled Disabled (available only locally)

Workgroup New Enabled Enabled Disabled (available only locally)

Evaluation New Enabled Disabled Disabled (available only locally)

Web New Enabled Enabled Disabled (available only locally)

SQL Server
Express

New Enabled Disabled Disabled (available only locally)

All editions Upgrade or side-by-
side installation

Enabled Settings preserved
from the previous
installation

Settings preserved from the previous
installation

Managing services
You can use Configuration Manager to start, pause, resume, or stop SQL Server–related services.
The services available depend on the specific components of SQL Server you have installed, but you
should always have the SQL Server service itself and the SQL Server Agent service. Other services
might include the SQL Server Full-Text Search service and SQL Server Integration Services (SSIS). You
can also use Configuration Manager to view the current properties of the services, such as whether
the service is set to start automatically.

Configuration Manager, rather than the Windows service management tools, is the preferred tool
for changing service properties. When you use a SQL Server tool such as Configuration Manager to
change the account used by either the SQL Server or SQL Server Agent service, the tool automatically
makes additional configurations, such as setting permissions in the Windows Registry so that the new
account can read the SQL Server settings. Password changes using Configuration Manager take effect
immediately without requiring you to restart the service.

20 Microsoft SQL Server 2012 Internals

SQL Server Browser
One related service that deserves special attention is the SQL Server Browser service, particu-
larly important if you have named instances of SQL Server running on a machine. SQL Server
Browser listens for requests to access SQL Server resources and provides information about the
various SQL Server instances installed on the computer where the Browser service is running.

Prior to SQL Server 2000, only one installation of SQL Server could be on a machine at one
time, and the concept of an “instance” really didn’t exist. SQL Server always listened for incom-
ing requests on port 1433, but any port can be used by only one connection at a time. When
SQL Server 2000 introduced support for multiple instances of SQL Server, a new protocol called
SQL Server Resolution Protocol (SSRP) was developed to listen on UDP port 1434. This listener
could reply to clients with the names of installed SQL Server instances, along with the port
numbers or named pipes used by the instance. SQL Server 2005 replaced SSRP with the SQL
Server Browser service, which is still used in SQL Server 2012.

If the SQL Server Browser service isn’t running on a computer, you can’t connect to
SQL Server on that machine unless you provide the correct port number. Specifically, if the
SQL Server Browser service isn’t running, the following connections won’t work:

■■ Connecting to a named instance without providing the port number or pipe

■■ Using the DAC to connect to a named instance or the default instance if it isn’t us-
ing TCP/IP port 1433

■■ Enumerating servers in SQL Server Management Studio

You are recommended to have the Browser service set to start automatically on any
machine on which SQL Server will be accessed using a network connection.

 CHAPTER 1 SQL Server 2012 architecture and configuration 21

SQL Server system configuration

You can configure the machine that SQL Server runs on, as well as the Database Engine itself, in sev-
eral ways and through various interfaces. First, look at some operating system–level settings that can
affect the behavior of SQL Server. Next, you can see some SQL Server options that can affect behavior
that aren’t especially considered to be configuration options. Finally, you can examine the configura-
tion options for controlling the behavior of SQL Server 2012, which are set primarily using a stored
procedure interface called sp_configure.

Operating system configuration
For your SQL Server to run well, it must be running on a tuned operating system on a machine that
has been properly configured to run SQL Server. Although discussing operating system and hardware
configuration and tuning is beyond the scope of this book, a few issues are very straightforward but
can have a major effect on the performance of SQL Server.

task management
The Windows operating system schedules all threads in the system for execution. Each thread of every
process has a priority, and the operating system executes the next available thread with the highest
priority. By default, it gives active applications a higher priority, but this priority setting might not be
appropriate for a server application running in the background, such as SQL Server 2012. To remedy
this situation, the SQL Server installation program modifies the priority setting to eliminate the favor-
ing of foreground applications.

Periodically double-checking this priority setting is a good idea, in case someone has set it back.
You’ll need to use the Advanced tab in the Performance Options dialog box. If you’re using Windows
Server 2008 or Windows 7, click the Start menu, right-click Computer, and choose Properties. In the
System information screen, select Advanced System Settings from the list on the left to open the
System Properties sheet. Click the Settings button in the Performance section and then select the
Advanced tab. Figure 1-3 shows the Performance Options dialog box.

22 Microsoft SQL Server 2012 Internals

FIGURE 1-3 Configuration of priority for background services.

The first set of options specifies how to allocate processor resources, and you can adjust for
the best performance of programs or background services. Select Background Services so that all
programs (background and foreground) receive equal processor resources. If you plan to connect to
SQL Server 2012 from a local client—that is, a client running on the same computer as the server—
you can use this setting to improve processing time.

System paging file location
If possible, you should place the operating system paging file on a different drive than the files
used by SQL Server. This is vital if your system will be paging. However, a better approach is to add
memory or change the SQL Server memory configuration to effectively eliminate paging. In general,
SQL Server is designed to minimize paging, so if your memory configuration values are appropriate
for the amount of physical memory on the system, such a small amount of page-file activity will occur
that the file’s location is irrelevant.

 CHAPTER 1 SQL Server 2012 architecture and configuration 23

Nonessential services
You should disable any services that you don’t need. In Windows Server 2008, you can click the Start
menu, right-click Computer, and choose Manage. Expand the Services and Applications node in the
Computer Management tool, and click Services. In the right-hand pane is a list of all services available
on the operating system. You can change a service’s startup property by right-clicking its name and
choosing Properties. Unnecessary services add overhead to the system and use resources that could
otherwise go to SQL Server. No unnecessary services should be marked for automatic startup. Avoid
using a server that runs SQL Server as a domain controller, the group’s file or print server, the Web
server, or the Dynamic Host Configuration Protocol (DHCP) server.

Connectivity
You should run only the network protocols that you actually need for connectivity. You can use the
SQL Server Configuration Manager to disable unneeded protocols, as described earlier in this chapter.

Firewall setting
Improper firewall settings are another system configuration issue that can inhibit SQL Server connec-
tivity across your network. Firewall systems help prevent unauthorized access to computer resources
and are usually desirable, but to access an instance of SQL Server through a firewall, you’ll need to
configure the firewall on the computer running SQL Server to allow access. Many firewall systems are
available, and you’ll need to check the documentation for your system for the exact details of how to
configure it. In general, you need to follow these steps:

1. Configure the SQL Server instance to use a specific TCP/IP port. Your default SQL Server uses
port 1433 by default, but you can change that. Named instances use dynamic ports by default,
but you can also change that through the SQL Server Configuration Manager.

2. Configure your firewall to allow access to the specific port for authorized users or computers.

3. As an alternative to configuring SQL Server to listen on a specific port and then opening
that port, you can list the SQL Server executable (Sqlservr.exe) and the SQL Browser execut-
able (Sqlbrowser.exe) when requiring a connection to named instances as exceptions to the
blocked programs. You can use this method when you want to continue to use dynamic ports.

trace flags
SQL Server Books Online lists only 17 trace flags that are fully supported. You can think of trace flags
as special switches that you can turn on or off to change the behavior of SQL Server. Many dozens,
if not hundreds, of trace flags exist, but most were created for the SQL Server development team’s
internal testing of the product and were never intended for use by anybody outside Microsoft.

You can toggle trace flags on or off by using the DBCC TRACEON and DBCC TRACEOFF com-
mands or by specifying them on the command line when you start SQL Server using Sqlservr.exe. You
can also use the SQL Server Configuration Manager to enable one or more trace flags every time the
SQL Server service is started. (You can read about how to do that in SQL Server Books Online.) Trace

24 Microsoft SQL Server 2012 Internals

flags enabled with DBCC TRACEON are valid only for a single connection unless you specified an ad-
ditional parameter of –1, in which case they are active for all connections, even ones opened before
you ran DBCC TRACEON. Trace flags enabled as part of starting the SQL Server service are enabled
for all sessions.

A few of the trace flags are particularly relevant to topics covered in this book, and specific ones
are discussed with topics they are related to.

Caution Because trace flags change the way SQL Server behaves, they can actually cause
trouble if used inappropriately. Trace flags aren’t harmless features that you can experiment
with just to see what happens, especially on a production system. Using them effectively
requires a thorough understanding of SQL Server default behavior (so that you know exact-
ly what you’ll be changing) and extensive testing to determine whether your system really
will benefit from the use of the trace flag.

SQL Server configuration settings
If you choose to have SQL Server automatically configure your system, it dynamically adjusts the most
important configuration options for you. It’s best to accept the default configuration values unless
you have a good reason to change them. A poorly configured system can destroy performance. For
example, a system with an incorrectly configured memory setting can break an application.

In certain cases, tweaking the settings rather than letting SQL Server dynamically adjust them
might lead to a tiny performance improvement, but your time is probably better spent on application
and database designing, indexing, query tuning, and other such activities, which is covered later in
this book. You might see only a 5 percent improvement in performance by moving from a reason-
able configuration to an ideal configuration, but a badly configured system can kill your application’s
performance.

SQL Server 2012 has 69 server configuration options that you can query, using the catalog view
sys.configurations.

You should change configuration options only when you have a clear reason for doing so and
closely monitor the effects of each change to determine whether the change improved or degraded
performance. Always make and monitor changes one at a time. The server-wide options discussed
here can be changed in several ways. All of them can be set via the sp_configure system stored proce-
dure. However, of the 69 options, all but 17 are considered advanced options and aren’t manageable
by default using sp_configure. You first need to change the show advanced options setting to be 1:

EXEC sp_configure 'show advanced options', 1; RECONFIGURE;
GO

To see which options are advanced, you can query the sys.configurations view and examine a
column called is_advanced, which lets you see which options are considered advanced:

 CHAPTER 1 SQL Server 2012 architecture and configuration 25

SELECT * FROM sys.configurations
WHERE is_advanced = 1;
GO

You also can set many configuration options from the Server Properties sheet in the Object
Explorer pane of SQL Server Management Studio, but you can’t see or change all configuration set-
tings from just one dialog box or window. Most of the options that you can change from the Server
Properties sheet are controlled from one of the property pages that you reach by right-clicking the
name of your SQL Server instance in Management Studio. You can see the list of property pages in
Figure 1-4.

FIGURE 1-4 List of server property pages in SQL Server Management Studio.

If you use the sp_configure stored procedure, no changes take effect until the RECONFIGURE
command runs. In some cases, you might have to specify RECONFIGURE WITH OVERRIDE if you are
changing an option to a value outside the recommended range. Dynamic changes take effect im-
mediately on reconfiguration, but others don’t take effect until the server is restarted. If after running
RECONFIGURE an option’s run_value and config_value as displayed by sp_configure are different, or if
the value and value_in_use in sys.configurations are different, you must restart the SQL Server service
for the new value to take effect. You can use the sys.configurations view to determine which options
are dynamic:

SELECT * FROM sys.configurations
WHERE is_dynamic = 1;
GO

26 Microsoft SQL Server 2012 Internals

This chapter doesn’t look at every configuration option here—only the most interesting ones
or ones related to SQL Server performance. In most cases, options that you shouldn’t change are
discussed. Some of these are resource settings that relate to performance only in that they con-
sume memory, but if they are configured too high, they can rob a system of memory and degrade
performance. Configuration settings are grouped by functionality. Keep in mind that SQL Server sets
almost all these options automatically, and your applications can work well without you ever looking
at them.

Memory options
Memory management involves a lot more than can be described in a few short paragraphs, and for
the most part, you can do little to control how SQL Server uses the available memory. Chapter 2 goes
into a lot more detail on how SQL Server manages memory, so this section will mention just the con-
figuration options that deal directly with memory usage.

Min Server Memory and Max Server Memory By default, SQL Server adjusts the total amount of
the memory resources it will use. However, you can use the Min Server Memory and Max Server
Memory configuration options to take manual control. The default setting for Min Server Memory is 0
MB, and the default setting for Max Server Memory is 2147483647. If you use the sp_configure stored
procedure to change both of these options to the same value, you basically take full control and tell
SQL Server to use a fixed memory size. The absolute maximum of 2147483647 MB is actually the larg-
est value that can be stored in the integer field of the underlying system table. It’s not related to the
actual resources of your system.

The Min Server Memory option doesn’t force SQL Server to acquire a minimum amount of mem-
ory at startup. Memory is allocated on demand based on the database workload. However, when the
Min Server Memory threshold is reached, SQL Server does not release memory if it would be left with
less than that amount. To ensure that each instance has allocated memory at least equal to the Min
Server Memory value, therefore, you might consider executing a database server load shortly after
startup. During normal server activity, the memory available per instance varies, but each instance
never has less than the Min Server Memory value.

Set working set size This configuration option is from earlier versions and has been deprecated. It’s
ignored in SQL Server 2012, even though you don’t receive an error message when you try to use this
value.

User connections SQL Server 2012 dynamically adjusts the number of simultaneous connections to
the server if this configuration setting is left at its default of 0. Even if you set this value to a different
number, SQL Server doesn’t actually allocate the full amount of memory needed for each user con-
nection until a user actually connects. When SQL Server starts, it allocates an array of pointers with as
many entries as the configured value for User Connections.

If you must use this option, don’t set the value too high because each connection takes approxi-
mately 28 KB of overhead whether or not the connection is being used. However, you also don’t want
to set it too low because if you exceed the maximum number of user connections, you receive an
error message and can’t connect until another connection becomes available. (The exception is the

 CHAPTER 1 SQL Server 2012 architecture and configuration 27

DAC connection, which can always be used.) Keep in mind that the User Connections value isn’t the
same as the number of users; one user, through one application, can open multiple connections to
SQL Server. Ideally, you should let SQL Server dynamically adjust the value of the User Connections
option.

Locks This configuration option is a setting from earlier versions and has been deprecated. SQL
Server 2012 ignores this setting, even though you don’t receive an error message when you try to use
this value.

Scheduling options
As you will see in detail in Chapter 2, SQL Server 2012 has a special algorithm for scheduling user
processes using the SQLOS, which manages one scheduler per logical processor and ensures that only
one process can run on a scheduler at any specific time. The SQLOS manages the assignment of user
connections to workers to keep the number of users per CPU as balanced as possible. Five configura-
tion options affect the behavior of the scheduler: Lightweight Pooling, Affinity Mask, Affinity64 Mask,
Priority Boost, and Max Worker Threads.

Lightweight Pooling By default, SQL Server operates in thread mode, which means that the work-
ers processing SQL Server requests are threads. As described earlier, SQL Server also lets user connec-
tions run in fiber mode. Fibers are less expensive to manage than threads. The Lightweight Pooling
option can have a value of 0 or 1; 1 means that SQL Server should run in fiber mode.

Using fibers can yield a minor performance advantage, particularly when you have eight or more
CPUs and all available CPUs are operating at or near 100 percent. However, the tradeoff is that certain
operations, such as running queries on linked servers or executing extended stored procedures, must
run in thread mode and therefore need to switch from fiber to thread. The cost of switching from
fiber to thread mode for those connections can be noticeable and in some cases offsets any benefit of
operating in fiber mode.

If you’re running in an environment that uses a high percentage of total CPU resources, and if
System Monitor shows a lot of context switching, setting Lightweight Pooling to 1 might yield some
performance benefit.

Max Worker Threads SQL Server uses the operating system’s thread services by keeping a pool of
workers (threads or fibers) that take requests from the queue. It attempts to divide the worker threads
evenly among the SQLOS schedulers so that the number of threads available to each scheduler is the
Max Worker Threads setting divided by the number of CPUs. Having 100 or fewer users means having
usually as many worker threads as active users (not just connected users who are idle). With more
users, having fewer worker threads than active users often makes sense. Although some user requests
have to wait for a worker thread to become available, total throughput increases because less context
switching occurs.

The Max Worker Threads default value of 0 means that the number of workers is configured by
SQL Server, based on the number of processors and machine architecture. For example, for a four-way
32-bit machine running SQL Server, the default is 256 workers. This doesn’t mean that 256 workers are

28 Microsoft SQL Server 2012 Internals

created on startup. It means that if a connection is waiting to be serviced and no worker is available,
a new worker is created if the total is now below 256. If, for example, this setting is configured to 256
and the highest number of simultaneously executing commands is 125, the actual number of work-
ers won’t exceed 125. It might be even smaller than that because SQL Server destroys and trims away
workers that are no longer being used.

You should probably leave this setting alone if your system is handling 100 or fewer simultaneous
connections. In that case, the worker thread pool won’t be greater than 100.

Table 1-2 lists the default number of workers, considering your machine architecture and number
of processors. (Note that Microsoft recommends 1,024 as the maximum for 32-bit operating systems.)

TABLE 1-2 Default settings for Max Worker Threads

CPU 32-bit computer 64-bit computer

Up to 4 processors 256 512

8 processors 288 576

16 processors 352 704

32 processors 480 960

Even systems that handle 5,000 or more connected users run fine with the default setting. When
thousands of users are simultaneously connected, the actual worker pool is usually well below the
Max Worker Threads value set by SQL Server because from the perspective of the database, most
connections are idle even if the user is doing plenty of work on the client.

Disk I/O options
No options are available for controlling the disk read behavior of SQL Server. All tuning options to
control read-ahead in previous versions of SQL Server are now handled completely internally. One
option is available to control disk write behavior; it controls how frequently the checkpoint process
writes to disk.

Recovery interval This option can be configured automatically. SQL Server setup sets it to 0, which
means autoconfiguration. In SQL Server 2012, this means that the recovery time should be less than
one minute.

This option lets database administrators control the checkpoint frequency by specifying the maxi-
mum number of minutes that recovery should take, per database. SQL Server estimates how many
data modifications it can roll forward in that recovery time interval. SQL Server then inspects the log
of each database (every minute, if the recovery interval is set to the default of 0) and issues a check-
point for each database that has made at least that many data modification operations since the last
checkpoint. For databases with relatively small transaction logs, SQL Server issues a checkpoint when
the log becomes 70 percent full, if that is less than the estimated number.

 CHAPTER 1 SQL Server 2012 architecture and configuration 29

The Recovery Interval option doesn’t affect the time it takes to undo long-running transactions.
For example, if a long-running transaction takes two hours to perform updates before the server
becomes disabled, the actual recovery takes considerably longer than the Recovery Interval value.

The frequency of checkpoints in each database depends on the amount of data modifications
made, not on a time-based measure. So a database used primarily for read operations won’t have
many checkpoints issued. To avoid excessive checkpoints, SQL Server tries to ensure that the value set
for the recovery interval is the minimum amount of time between successive checkpoints.

SQL Server provides a new feature called indirect checkpoints that allow the configuration of
checkpoint frequency at the database level using a database option called TARGET_RECOVERY_TIME.
Chapter 3 discusses this option, and Chapter 5 discusses both the server-wide option and the data-
base setting in the sections about checkpoints and recovery. As you’ll see, most writing to disk doesn’t
actually happen during checkpoint operations. Checkpoints are just a way to guarantee that all dirty
pages not written by other mechanisms are still written to the disk in a timely manner. For this reason,
you should keep the checkpoint options at their default values.

Affinity I/O Mask and Affinity64 I/O Mask These two options control the affinity of a processor for
I/O operations and work in much the same way as the two options for controlling processing affinity
for workers. Setting a bit for a processor in either of these bitmasks means that the corresponding
processor is used only for I/O operations.

You’ll probably never need to set these options. However, if you do decide to use them, perhaps
just for testing purposes, you should do so with the Affinity Mask or Affinity64 Mask option and make
sure that the bit sets don’t overlap. You should thus have one of the following combinations of set-
tings: 0 for both Affinity I/O Mask and Affinity Mask for a CPU, 1 for the Affinity I/O Mask option and
0 for Affinity Mask, or 0 for Affinity I/O Mask and 1 for Affinity Mask.

Backup Compression DEFAULT SQL Server 2008 added Backup Compression as a new feature, and
for backward compatibility the default value is 0, meaning that backups aren’t compressed. Although
only Enterprise edition instances can create a compressed backup, any edition of SQL Server 2012 can
restore a compressed backup. When Backup Compression is enabled, the compression is performed
on the server before writing, so it can greatly reduce the size of the backups and the I/O required to
write the backups to the external device. The amount of space reduction depends on many factors,
including the following.

■■ The type of data in the backup For example, character data compresses more than other
types of data.

■■ Whether the data is encrypted Encrypted data compresses significantly less than equiva-
lent unencrypted data. If transparent data encryption is used to encrypt an entire database,
compressing backups might not reduce their size by much, if at all.

After the backup is performed, you can inspect the backupset table in the msdb database to deter-
mine the compression ratio, using a statement like the following:

SELECT backup_size/compressed_backup_size FROM msdb..backupset;

30 Microsoft SQL Server 2012 Internals

Although compressed backups can use significantly fewer I/O resources, it also can significantly
increase CPU usage when performing the compression. This additional load can affect other opera-
tions occurring concurrently. To minimize this effect, you can consider using the Resource Governor
to create a workload group for sessions performing backups and assign the group to a resource pool
with a limit on its maximum CPU utilization.

The configured value is the instance-wide default for Backup Compression, but it can be overridden
for a particular backup operation by specifying WITH COMPRESSION or WITH NO_COMPRESSION. You
can use compression for any type of backup: full, log, differential, or partial (file or filegroup).

Note The algorithm used for compressing backups varies greatly from the database com-
pression algorithms. Backup Compression uses an algorithm very similar to zip, where it’s
just looking for patterns in the data. Chapter 8 discusses data compression.

Filestream access level This option integrates the Database Engine with your NTFS file system by
storing binary large object (BLOB) data as files on the file system and allowing you to access this data
either using T-SQL or Win32 file system interfaces to provide streaming access to the data. Filestream
uses the Windows system cache for caching file data to help reduce any effect that filestream data
might have on SQL Server performance. The SQL Server buffer pool isn’t used so that filestream
doesn’t reduce the memory available for query processing.

Before setting this configuration option to indicate the access level for filestream data, you must
enable Filestream externally using the SQL Server Configuration Manager (if you haven’t enabled
Filestream during SQL Server setup). In the SQL Server Configuration Manager, right-click the name of
the SQL Server service and choose Properties. The properties sheet has a separate tab for Filestream
options. You must check the top box to enable Filestream for T-SQL access, and then you can choose
to enable Filestream for file I/O streaming if you want.

After enabling Filestream for your SQL Server instance, you then set the configuration value. The
following values are allowed:

■■ 0 Disables FILESTREAM support for this instance

■■ 1 Enables FILESTREAM for T-SQL access

■■ 2 Enables FILESTREAM for T-SQL and Win32 streaming access

Databases that store filestream data must have a special filestream filegroup. Chapter 3 discusses
filegroups; Chapter 8 provides more details about filestream storage.

 CHAPTER 1 SQL Server 2012 architecture and configuration 31

Query processing options
SQL Server has several options for controlling the resources available for processing queries. As with
all the other tuning options, your best bet is to leave the default values unless thorough testing indi-
cates that a change might help.

Min Memory Per Query When a query requires additional memory resources, the number of pages
that it gets is determined partly by the this option. This option is relevant for sort operations that you
specifically request using an ORDER BY clause; it also applies to internal memory needed by merge-
join operations and by hash-join and hash-grouping operations.

This configuration option allows you to specify a minimum amount of memory (in kilobytes) that
any of these operations should be granted before they are executed. Sort, merge, and hash opera-
tions receive memory very dynamically, so you rarely need to adjust this value. In fact, on larger ma-
chines, your sort and hash queries typically get much more than the Min Memory Per Query setting,
so you shouldn’t restrict yourself unnecessarily. If you need to do a lot of hashing or sorting, however,
and have few users or a lot of available memory, you might improve performance by adjusting this
value. On smaller machines, setting this value too high can cause virtual memory to page, which hurts
server performance.

Query wait This option controls how long a query that needs additional memory waits if that mem-
ory isn’t available. A setting of –1 means that the query waits 25 times the estimated execution time
of the query, but it always waits at least 25 seconds with this setting. A value of 0 or more specifies the
number of seconds that a query waits. If the wait time is exceeded, SQL Server generates error 8645:

Server: Msg 8645, Level 17, State 1, Line 1
A time out occurred while waiting for memory resources to execute the query. Re-run the query.

Even though memory is allocated dynamically, SQL Server can still run out of memory if the
memory resources on the machine are exhausted. If your queries time out with error 8645, you can
try increasing the paging file size or even adding more physical memory. You can also try tuning the
query by creating more useful indexes so that hash or merge operations aren’t needed. Keep in mind
that this option affects only queries that have to wait for memory needed by hash and merge opera-
tions. Queries that have to wait for other reasons aren’t affected.

Blocked Process Threshold This option allows administrators to request a notification when a user
task has been blocked for more than the configured number of seconds. When Blocked Process
Threshold is set to 0, no notification is given. You can set any value up to 86,400 seconds.

When the deadlock monitor detects a task that has been waiting longer than the configured value,
an internal event is generated. You can choose to be notified of this event in one of two ways. You
can create an Extended Events session to capture events of type blocked_process_report. As long as a
resource stays blocked on a deadlock-detectable resource, the event is raised every time the deadlock
monitor checks for a deadlock. (Chapter 2 discusses Extended Events.)

Alternatively, you can use event notifications to send information about events to a service broker
service. You also can use event notifications, which execute asynchronously, to perform an action
inside a SQL Server 2012 instance in response to events, with very little consumption of memory

32 Microsoft SQL Server 2012 Internals

resources. Because event notifications execute asynchronously, these actions don’t consume any
resources defined by the immediate transaction.

Index Create Memory The Min Memory Per Query option applies only to sorting and hashing used
during query execution; it doesn’t apply to the sorting that takes place during index creation. Another
option, Index Create Memory, lets you allocate a specific amount of memory (in kilobytes) for index
creation.

Query Governor Cost Limit You can use this option to specify the maximum number of seconds that
a query can run. If you specify a non-zero, non-negative value, SQL Server disallows execution of any
query that has an estimated cost exceeding that value. Specifying 0 (the default) for this option turns
off the query governor, and all queries are allowed to run without any time limit.

Note that the value set for seconds isn’t clock-based. It corresponds to seconds on a specific hard-
ware configuration used during product development, and the actual limit might be higher or lower
on your machine.

Max Degree Of Parallelism and Cost Threshold For Parallelism SQL Server 2012 lets you run certain
kinds of complex queries simultaneously on two or more processors. The queries must lend them-
selves to being executed in sections; the following is an example:

SELECT AVG(charge_amt), category
FROM charge
GROUP BY category

If the charge table has 1 million rows and 10 different values for category, SQL Server can split the
rows into groups and have only a subset of them processed on each processor. For example, with
a four-CPU machine, categories 1 through 3 can be averaged on the first processor, categories 4
through 6 can be averaged on the second processor, categories 7 and 8 can be averaged on the third,
and categories 9 and 10 can be averaged on the fourth. Each processor can come up with averages
for only its groups, and the separate averages are brought together for the final result.

During optimization, the Query Optimizer always finds the cheapest possible serial plan before
considering parallelism. If this serial plan costs less than the configured value for the Cost Threshold
For Parallelism option, no parallel plan is generated. Cost Threshold For Parallelism refers to the cost
of the query in seconds; the default value is 5. (As in the preceding section, this isn’t an exact clock-
based number of seconds.) If the cheapest serial plan costs more than this configured threshold, a
parallel plan is produced based on assumptions about how many processors and how much memory
will actually be available at runtime. This parallel plan cost is compared with the serial plan cost, and
the cheaper one is chosen. The other plan is discarded.

A parallel query execution plan can use more than one thread; a serial execution plan, used by a
nonparallel query, uses only a single thread. The actual number of threads used by a parallel query is
determined at query plan execution initialization and is the Degree of Parallelism (DOP). The decision
is based on many factors, including the Affinity Mask setting, the Max Degree Of Parallelism setting,
and the available threads when the query starts executing.

 CHAPTER 1 SQL Server 2012 architecture and configuration 33

You can observe when SQL Server is executing a query in parallel by querying the DMV sys.dm_os_
tasks. A query running on multiple CPUs has one row for each thread, as follows:

SELECT
 task_address,
 task_state,
 context_switches_count,
 pending_io_count,
 pending_io_byte_count,
 pending_io_byte_average,
 scheduler_id,
 session_id,
 exec_context_id,
 request_id,
 worker_address,
 host_address
FROM sys.dm_os_tasks
ORDER BY session_id, request_id;

Be careful when you use the Max Degree Of Parallelism and Cost Threshold For Parallelism op-
tions. They affect the whole server.

Miscellaneous options Most of the other configuration options that haven’t been mentioned deal
with aspects of SQL Server that are beyond the scope of this book. These include options for con-
figuring remote queries, replication, SQL Agent, C2 auditing, and full-text search. A Boolean option
allows use of the Common Language Runtime (CLR) in programming SQL Server objects; it is off (0)
by default.

A few configuration options deal with programming issues, which this book doesn’t cover. These
options include ones for dealing with recursive and nested triggers, cursors, and accessing objects
across databases.

Conclusion

This chapter looked at the general workings of the SQL Server engine, including the key components
and functional areas that make up the engine. By necessity, the chapter has been simplified some-
what, but the information should provide some insight into the roles and responsibilities of the major
components in SQL Server and the interrelationships among components.

This chapter also covered the primary tools for changing the behavior of SQL Server. The primary
means of changing the behavior is by using configuration options, so you saw the options that can
have the biggest impact on SQL Server behavior, especially its performance. To really know when
changing the behavior is a good idea, you must understand how and why SQL Server works the way
it does. This chapter has laid the groundwork for you to make informed decisions about configuration
changes.

 381

C H A P T E R 8

Special storage

Kalen Delaney

Earlier chapters discussed the storage of “regular rows” for both data and index information. (Chap-
ter 7, “Indexes: internals and management,” also looked at a completely different way of storing

indexes: using columnstores, which aren’t stored in rows at all.) Chapter 6, “Table storage,” explained
that regular rows are in a format called FixedVar. SQL Server provides ways of storing data in another
format, called Column Descriptor (CD). It also can store special values in either the FixedVar or CD
format that don’t fit on the regular 8 KB pages.

This chapter describes data that exceeds the typical row size limitations and is stored as either row-
overflow or Large Object (LOB) data. You’ll learn about two additional methods for storing data on
the actual data pages, introduced in Microsoft SQL Server 2008: one that uses a new type of complex
column with a regular data row (sparse columns), and one that uses the new CD format (compressed
data). This chapter also discusses FILESTREAM data, a feature introduced in SQL Server 2008 that al-
lows you to access data from operating system files as though it were part of your relational tables,
and FileTables, a new feature in SQL Server 2012 that allows you to create a table containing both
FILESTREAM data and Windows file attribute metadata.

Finally, this chapter covers the ability of SQL Server to separate data into partitions. Although this
doesn’t change the data format in the rows or on the pages, it does change the metadata that keeps
track of what space is allocated to which objects.

Large object storage

SQL Server 2012 has two special formats for storing data that doesn’t fit on the regular 8 KB data
page. These formats allow you to store rows that exceed the maximum row size of 8,060 bytes. As
discussed in Chapter 6, this maximum row size value includes several bytes of overhead stored with
the row on the physical pages, so the total size of all the table’s defined columns must be slightly less
than this amount. In fact, the error message that you get if you try to create a table with more bytes

382 Microsoft SQL Server 2012 Internals

than the allowable maximum is very specific. If you execute the following CREATE TABLE statement
with column definitions that add up to exactly 8,060 bytes, you’ll get the error message shown here:

USE testdb;
GO
CREATE TABLE dbo.bigrows_fixed
(a char(3000),
 b char(3000),
 c char(2000),
 d char(60)) ;

Msg 1701, Level 16, State 1, Line 1
Creating or altering table 'bigrows' failed because the minimum row size would be 8067,
including 7 bytes of internal overhead. This exceeds the maximum allowable table row size of
8060 bytes.

In this message, you can see the number of overhead bytes (7) that SQL Server wants to store with
the row itself. An additional 2 bytes is used for the row-offset information at the end of the page, but
those bytes aren’t included in this total.

restricted-length large object data (row-overflow data)
One way to exceed this size limit of 8,060 bytes is to use variable-length columns because for
variable-length data, SQL Server 2005 and later versions can store the columns in special row-
overflow pages, as long as all the fixed-length columns fit into the regular in-row size limit. So you
need to look at a table with all variable-length columns. Notice that although my example uses all
varchar columns, columns of other data types can also be stored on row-overflow data pages. These
other data types include varbinary, nvarchar, and sqlvariant columns, as well as columns that use
CLR user-defined data types. The following code creates a table with rows whose maximum defined
length is much longer than 8,060 bytes:

USE testdb;
CREATE TABLE dbo.bigrows
 (a varchar(3000),
 b varchar(3000),
 c varchar(3000),
 d varchar(3000));

In fact, if you ran this CREATE TABLE statement in SQL Server 7.0, you would get an error, and the
table wouldn’t be created. In SQL Server 2000, the table was created, but you got a warning that
inserts or updates might fail if the row size exceeds the maximum.

With SQL Server 2005 and later, not only could the preceding dbo.bigrows table be created, but
you also could insert a row with column sizes that add up to more than 8,060 bytes with a simple
INSERT:

INSERT INTO dbo.bigrows
 SELECT REPLICATE('e', 2100), REPLICATE('f', 2100),
 REPLICATE('g', 2100), REPLICATE('h', 2100);

 CHAPTER 8 Special storage 383

To determine whether SQL Server is storing any data in row-overflow data pages for a particular
table, you can run the following allocation query from Chapter 5, “Logging and recovery”:

SELECT object_name(object_id) AS name,
 partition_id, partition_number AS pnum, rows,
 allocation_unit_id AS au_id, type_desc as page_type_desc,
 total_pages AS pages
FROM sys.partitions p JOIN sys.allocation_units a
 ON p.partition_id = a.container_id
WHERE object_id=object_id('dbo.bigrows');

This query should return output similar to that shown here:

name partition_id pnum rows au_id page_type_desc pages
---- ----------------- ---- ---- ----------------- ---------------- -----
bigrows 72057594039238656 1 1 72057594043957248 IN_ROW_DATA 2
bigrows 72057594039238656 1 1 72057594044022784 ROW_OVERFLOW_DATA 2

You can see that there are two pages for the one row of regular in-row data and two pages for the
one row of row-overflow data. Alternatively, you can use the sys.dm_db_database_page_allocations
function and see the four pages individually:

SELECT allocated_page_file_id as PageFID, allocated_page_page_id as PagePID,
 object_id as ObjectID, partition_id AS PartitionID,
 allocation_unit_type_desc as AU_type, page_type as PageType
FROM sys.dm_db_database_page_allocations
 (db_id('testdb'), object_id('bigrows'), null, null, 'DETAILED');

You should see the four rows, one for each page, looking similar to the following:

PageFID PagePID ObjectID PartitionID AU_type PageType
------- ----------- ----------- ----------- ------------------- -----------
1 303 1653580929 1 IN_ROW_DATA 10
1 302 1653580929 1 IN_ROW_DATA 1
1 297 1653580929 1 ROW_OVERFLOW_DATA 10
1 296 1653580929 1 ROW_OVERFLOW_DATA 3

Of course, your actual ID values will be different, but the AU-type and PageType values should be
the same, and you should have four rows returned indicating four pages belong to the bigrows table.
Two pages are for the row-overflow data, and two are for the in-row data. As you saw in Chapter 7,
the PageType values have the following meanings.

■■ PageType = 1, Data page

■■ PageType = 2, Index page

■■ PageType = 3, LOB or row-overflow page, TEXT_MIXED

■■ PageType = 4, LOB or row-overflow page, TEXT_DATA

■■ PageType = 10, IAM page

384 Microsoft SQL Server 2012 Internals

You learn more about the different types of LOB pages in the next section, “Unrestricted-length
large object data.”

You can see one data page and one IAM page for the in-row data, and one data page and one
IAM page for the row-overflow data. With the results from sys.dm_db_database_page_allocations, you
could then look at the page contents with DBCC PAGE. On the data page for the in-row data, you
would see three of the four varchar column values, and the fourth column would be stored on the
data page for the row-overflow data. If you run DBCC PAGE for the data page storing the in-row data
(page 1:302 in the preceding output), notice that it isn’t necessarily the fourth column in the column
order that is stored off the row. (I won’t show you the entire contents of the rows because the single
row fills almost the entire page.) Look at the in-row data page using DBCC PAGE and notice the col-
umn with e, the column with g, and the column with h. The column with f has moved to the new row.
In the place of that column, you can see the bytes shown here:

65020000 00010000 00c37f00 00340800 00280100 00010000 0067

Included are the last byte with e (ASCII code hexadecimal 65) and the first byte with g (ASCII
code hexadecimal 67), and in between are 24 other bytes (boldfaced). Bytes 16 through 23 (the 17th
through the 24th bytes) of those 24 bytes are treated as an 8-byte numeric value: 2801000001000000
(bold italic). You need to reverse the byte order and break it into a 2-byte hex value for the slot
number, a 2-byte hex value for the file number, and a 4-byte hex value for the page number. So the
slot number is 0x0000 for slot 0 because this overflowing column is the first (and only) data on the
row-overflow page. You have 0x0001 (or 1) for the file number and 0x00000128 (or 296) for the
page number. You saw these the same file and page numbers when using sys.dm_db_database_page_
allocations.

Table 8-1 describes the first 16 bytes in the row.

TABLE 8-1 The first 16 bytes of a row-overflow pointer

Bytes Hex value Decimal value Meaning

0 0x02 2 Type of special field: 1 = LOB2 = overflow

1–2 0x0000 0 Level in the B-tree (always 0 for overflow)

3 0x00 0 Unused

4–7 0x00000001 1 Sequence: a value used by optimistic concurrency control for cursors
that increases every time a LOB or overflow column is updated

8–11 0x00007fc3 32707 Timestamp: a random value used by DBCC CHECKTABLE that remains
unchanged during the lifetime of each LOB or overflow column

12–15 0x00000834 2100 Length

SQL Server stores variable-length columns on row-overflow pages only under certain conditions.
The determining factor is the row length itself. How full the regular page is into which SQL Server is
trying to insert the new row doesn’t matter; SQL Server constructs the row as usual and stores some
of its columns on overflow pages only if the row itself needs more than 8,060 bytes.

Each column in the table is either completely on the row or completely off the row. This means
that a 4,000-byte variable-length column can’t have half its bytes on the regular data page and half

 CHAPTER 8 Special storage 385

on a row-overflow page. If a row is less than 8,060 bytes and the page on which SQL Server is trying
to insert the row has no room, regular page-splitting algorithms (described in Chapter 7) are applied.

One row can span many row-overflow pages if it contains many large variable-length columns. For
example, you can create the table dbo.hugerows and insert a single row into it as follows:

CREATE TABLE dbo.hugerows
 (a varchar(3000),
 b varchar(8000),
 c varchar(8000),
 d varchar(8000));

INSERT INTO dbo.hugerows
 SELECT REPLICATE('a', 3000), REPLICATE('b', 8000),
 REPLICATE('c', 8000), REPLICATE('d', 8000);

Substituting hugerows for bigrows for the allocation query shown earlier yields the following
results:

name partition_id pnum rows au_id page_type_desc pages
-------- ----------------- ---- ---- ----------------- ----------------- -----
hugerows 72057594039304192 1 1 72057594044088320 IN_ROW_DATA 2
hugerows 72057594039304192 1 1 72057594044153856 ROW_OVERFLOW_DATA 4

The output shows four pages for the row-overflow information, one for the row-overflow IAM
page, and three for the columns that didn’t fit in the regular row. The number of large variable-length
columns that a table can have isn’t unlimited, although it is quite large. A table is limited to 1,024 col-
umns, which can be exceeded when you are using sparse columns, as discussed later in this chapter.
However, another limit is reached before that. When a column must be moved off a regular page
onto a row-overflow page, SQL Server keeps a pointer to the row-overflow information as part of the
original row, which you saw in the DBCC output earlier as 24 bytes, and the row still needs 2 bytes in
the column-offset array for each variable-length column, whether or not the variable-length column
is stored in the row. So 308 turns out to be the maximum number of overflowing columns you can
have, and such a row needs 8,008 bytes just for the 26 overhead bytes for each overflowing column in
the row.

Note Just because SQL Server can store many large columns on row-overflow pages
doesn’t mean that doing so is always a good idea. This capability does allow you more flex-
ibility in the organization of your tables, but you might pay a heavy performance price if
many additional pages need to be accessed for every row of data. Row-overflow pages are
intended to be a solution in the situation where most rows fit completely on your data pag-
es and you have row-overflow data only occasionally. By using row-overflow pages, SQL
Server can handle the extra data effectively, without requiring a redesign of your table.

In some cases, if a large variable-length column shrinks, it can be moved back to the regular row.
However, for efficiency, if the decrease is just a few bytes, SQL Server doesn’t bother checking. Only
when a column stored in a row-overflow page is reduced by more than 1,000 bytes does SQL Server

386 Microsoft SQL Server 2012 Internals

even consider checking to see whether the column can now fit on the regular data page. You can
observe this behavior if you previously created the dbo.bigrows table for the earlier example and
inserted only the one row with 2,100 characters in each column.

The following update reduces the size of the first column by 500 bytes and reduces the row size to
7,900 bytes, which should all fit on one data page:

UPDATE bigrows
SET a = replicate('a', 1600);

However, if you rerun the allocation query, you’ll still see two row-overflow pages: one for the row-
overflow data and one for the IAM page. Now reduce the size of the first column by more than 1,000
bytes and rerun the allocation query:

UPDATE bigrows
SET a = 'aaaaa';

You should see only three pages for the table now, because there is no longer a row-overflow data
page. The IAM page for the row-overflow data pages hasn’t been removed, but you no longer have a
data page for row-overflow data.

Keep in mind that row-overflow data storage applies only to columns of variable-length data,
which are defined as no longer than the usual variable-length maximum of 8,000 bytes per col-
umn. Also, to store a variable-length column on a row-overflow page, you must meet the following
conditions.

■■ All the fixed-length columns, including overhead bytes, must add up to no more than 8,060
bytes. (The pointer to each row-overflow column adds 24 bytes of overhead to the row.)

■■ The actual length of the variable-length column must be more than 24 bytes.

■■ The column must not be part of the clustered index key.

If you have single columns that might need to store more than 8,000 bytes, you should use either
LOB (text, image, or ntext) columns or the MAX data types.

Unrestricted-length large object data
If a table contains the deprecated LOB data types (text, ntext, or image types), by default the actual
data isn’t stored on the regular data pages. Like row-overflow data, LOB data is stored in its own set
of pages, and the allocation query shows you pages for LOB data as well as pages for regular in-row
data and row-overflow data. For LOB columns, SQL Server stores a 16-byte pointer in the data row
that indicates where the actual data can be found. Although the default behavior is to store all the
LOB data off the data row, SQL Server allows you to change the storage mechanism by setting a
table option to allow LOB data to be stored in the data row itself if it is small enough. Note that no
database or server setting is available to control storing small LOB columns on the data pages; it’s
managed as a table option.

 CHAPTER 8 Special storage 387

The 16-byte pointer points to a page (or the first of a set of pages) where the data can be found.
These pages are 8 KB in size, like any other page in SQL Server, and individual text, ntext, and image
pages aren’t limited to storing data for only one occurrence of a text, ntext, or image column. A text,
ntext, or image page can hold data from multiple columns and from multiple rows; the page can
even have a mix of text, ntext, and image data. However, one text or image page can hold only text or
image data from a single table. (Even more specifically, one text or image page can hold only text or
image data from a single partition of a table, which should become clear when partitioning metadata
is discussed at the end of this chapter.)

The collection of 8 KB pages that make up a LOB column aren’t necessarily located next to each
other. The pages are logically organized in a B-tree structure, so operations starting in the middle
of the LOB string are very efficient. The structure of the B-tree varies slightly depending on whether
the amount of data is less than or more than 32 KB. (See Figure 8-1 for the general structure.) B-trees
were discussed in detail when describing indexes in Chapter 7.

FIGURE 8-1 A text column pointing to a B-tree that contains the blocks of data.

388 Microsoft SQL Server 2012 Internals

Note Although the acronym LOB can be expanded to mean “large object,” these two terms
will be used in this chapter to mean two different things. LOB is used only when referring to
the data using the special storage format shown in Figure 8-1. The term large object is used
when referring to any method for storing data that might be too large for a regular data
page. This includes row-overflow columns, the actual LOB data types, the MAX data types,
and FILESTREAM data.

If the amount of LOB data is less than 32 KB, the text pointer in the data row points to an 84-
byte text root structure. This forms the root node of the B-tree structure. The root node points to
the blocks of text, ntext, or image data. Although the data for LOB columns is arranged logically in a
B-tree, both the root node and the individual blocks of data are spread physically throughout LOB
pages for the table. They’re placed wherever space is available. The size of each block of data is de-
termined by the size written by an application. Small blocks of data are combined to fill a page. If the
amount of data is less than 64 bytes, it’s all stored in the root structure.

If the amount of data for one occurrence of a LOB column exceeds 32 KB, SQL Server starts build-
ing intermediate nodes between the data blocks and the root node. The root structure and the data
blocks are interleaved throughout the text and image pages. The intermediate nodes, however, are
stored in pages that aren’t shared between occurrences of text or image columns. Each page storing
intermediate nodes contains only intermediate nodes for one text or image column in one data row.

SQL Server can store the LOB root and the actual LOB data on two different types of pages. One
of these, referred to as TEXT_MIXED, allows LOB data from multiple rows to share the same pages.
However, when your text data gets larger than about 40 KB, SQL Server starts devoting whole pages
to a single LOB value. These pages are referred to as TEXT_DATA pages.

You can see this behavior by creating a table with a text column, inserting a value of less than
40 KB and then one greater than 40 KB, and finally examining information returned by sys.dm_db_
database_page_allocations (see Listing 8-1).

LISTING 8-1 Storing LOB data on two types of pages

IF OBJECT_ID('textdata') IS NOT NULL
 DROP TABLE textdata;
GO
CREATE TABLE textdata
 (bigcol text);
GO
INSERT INTO textdata
 SELECT REPLICATE(convert(varchar(MAX), 'a'), 38000);
GO
SELECT allocated_page_file_id as PageFID, allocated_page_page_id as PagePID,
 object_id as ObjectID, partition_id AS PartitionID,
 allocation_unit_type_desc as AU_type, page_type as PageType
FROM sys.dm_db_database_page_allocations(db_id('testdb'), object_id('textdata'),
 null, null, 'DETAILED');

GO

 CHAPTER 8 Special storage 389

INSERT INTO textdata
 SELECT REPLICATE(convert(varchar(MAX), 'a'), 41000);
GO
SELECT allocated_page_file_id as PageFID, allocated_page_page_id as PagePID,
 object_id as ObjectID, partition_id AS PartitionID,
 allocation_unit_type_desc as AU_type, page_type as PageType
FROM sys.dm_db_database_page_allocations(db_id('testdb'), object_id('textdata'),
 null, null, 'DETAILED');
GO

The INSERT statements in Listing 8-1 convert a string value into the data type varchar(MAX)
because this is the only way to generate a string value longer than 8,000 bytes. (The next section
discusses varchar(MAX) in more detail.) The first time you select from sys.dm_db_database_page_
allocations, you should have PageType values of 1, 3, and 10. The second time after data greater
than 40 KB in size is inserted, you should also see PageType values of 4. PageType 3 indicates a TEXT_
MIXED page, and PageType 4 indicates a TEXT_DATA page.

Storing LOB data in the data row
If you store all your LOB data type values outside your regular data pages, SQL Server needs to per-
form additional page reads every time you access that data, just as it does for row-overflow pages.
In some cases, you might notice a performance improvement by allowing some of the LOB data to
be stored in the data row. You can enable a table option called text in row for a particular table by
setting the option to ‘ON’ (including the single quotation marks) or by specifying a maximum number
of bytes to be stored in the data row. The following command enables up to 500 bytes of LOB data to
be stored with the regular row data in a table called employee:

EXEC sp_tableoption employee, 'text in row', 500;

Notice that the value is in bytes, not characters. For ntext data, each character needs 2 bytes so
that any ntext column is stored in the data row if it’s less than or equal to 250 characters. When you
enable the text in row option, you never get just the 16-byte pointer for the LOB data in the row, as is
the case when the option isn’t ‘ON’. If the data in the LOB field is more than the specified maximum,
the row holds the root structure containing pointers to the separate chunks of LOB data. The mini-
mum size of a root structure is 24 bytes, and the possible range of values that text in row can be set to
is 24 to 7,000 bytes. (If you specify the option ‘ON’ instead of a specific number, SQL Server assumes
the default value of 256 bytes.)

To disable the text in row option, you can set the value to either ‘OFF’ or 0. To determine whether a
table has the text in row property enabled, you can inspect the sys.tables catalog view as follows:

SELECT name, text_in_row_limit
FROM sys.tables
WHERE name = 'employee';

This text_in_row_limit value indicates the maximum number of bytes allowed for storing LOB data
in a data row. If a 0 is returned, the text in row option is disabled.

390 Microsoft SQL Server 2012 Internals

Now create a table very similar to the one that looks at row structures, but change the var-
char(250) column to the text data type. You’ll use almost the same INSERT statement to insert one
row into the table:

CREATE TABLE HasText
(
Col1 char(3) NOT NULL,
Col2 varchar(5) NOT NULL,
Col3 text NOT NULL,
Col4 varchar(20) NOT NULL
);

INSERT HasText VALUES
 ('AAA', 'BBB', REPLICATE('X', 250), 'CCC');

Now use the allocation query to find the basic information for this table and look at the sys.dm_
db_database_page_allocations information for this table (see Listing 8-2).

LISTING 8-2 Finding basic information for the HasText table

SELECT convert(char(7), object_name(object_id)) AS name,
 partition_id, partition_number AS pnum, rows,
 allocation_unit_id AS au_id, convert(char(17), type_desc) as page_type_desc,
 total_pages AS pages
FROM sys.partitions p JOIN sys.allocation_units a
 ON p.partition_id = a.container_id
WHERE object_id=object_id('dbo.HasText');

SELECT allocated_page_file_id as PageFID, allocated_page_page_id as PagePID,
 object_id as ObjectID, partition_id AS PartitionID, allocation_unit_type_desc as AU_Type,
 page_type as PageType
FROM sys.dm_db_database_page_allocations(db_id('testdb'),
 object_id('textdata'), null, null, 'DETAILED')

name partition_id pnum rows au_id page_type_desc pages
------- ----------------- ---- ----- ----------------- --------------- -----
HasText 72057594039435264 1 1 72057594044350464 IN_ROW_DATA 2
HasText 72057594039435264 1 1 72057594044416000 LOB_DATA 2

PageFID PagePID ObjectID PartitionID AU_Type PageType
------- ------- -------- ----------------- -------------- --------
1 2197 133575514 72057594039435264 LOB data 3
1 2198 133575514 72057594039435264 LOB data 10
1 2199 133575514 72057594039435264 In-row data 1
1 2200 133575514 72057594039435264 In-row data 10

You can see two LOB pages (the LOB data page and the LOB IAM page) and two pages for the
in-row data (again, the data page and the IAM page). The data page for the in-row data is 2199, and
the LOB data is on page 2197. The following output shows the data section from running DBCC PAGE
on page 2199. The row structure is very similar to the row structure shown in Chapter 6, in Figure 6-6,
except for the text field itself. Bytes 21 to 36 are the 16-byte text pointer, and you can see the value
9508 starting at offset 29. When the bytes are reversed, it becomes 0x0895, or 2197 decimal, which is
the page containing the text data, as you saw in the output in Listing 8-2.

 CHAPTER 8 Special storage 391

FIGURE 8-2 A row containing a text pointer.

Now let’s enable text data in the row, for up to 500 bytes:

EXEC sp_tableoption HasText, 'text in row', 500;

Enabling this option doesn’t force the text data to be moved into the row. You have to update the
text value to actually force the data movement:

UPDATE HasText
SET col3 = REPLICATE('Z', 250);

If you run DBCC PAGE on the original data page, notice that the text column of 250 z’s is now in
the data row, and that the row is practically identical in structure to the row containing varchar data
that you saw in Figure 6-6.

Note Although enabling text in row doesn’t move the data immediately, disabling the op-
tion does. If you turn off text in row, the LOB data moves immediately back onto its own
pages, so you must be sure not to turn this off for a large table during heavy operations.

A final issue when working with LOB data and the text in row option is dealing with the situation
in which text in row is enabled but the LOB is longer than the maximum configured length for some
rows. If you change the maximum length for text in row to 50 for the HasText table you’ve been work-
ing with, this also forces the LOB data for all rows with more than 50 bytes of LOB data to be moved
off the page immediately, just as when you disable the option completely:

EXEC sp_tableoption HasText, 'text in row', 50;

However, setting the limit to a smaller value is different from disabling the option in two ways.
First, some of the rows might still have LOB data that is under the limit, and for those rows, the LOB
data is stored completely in the data row. Second, if the LOB data doesn’t fit, the information stored
in the data row itself isn’t simply the 16-byte pointer, as it would be if text in row were turned off.
Instead, for LOB data that doesn’t fit in the defined size, the row contains a root structure for a B-tree
that points to chunks of the LOB data. As long as the text in row option isn’t ‘OFF’ (or 0), SQL Server
never stores the simple 16-byte LOB pointer in the row. It stores either the LOB data itself (if it fits) or
the root structure for the LOB data B-tree.

392 Microsoft SQL Server 2012 Internals

A root structure is at least 24 bytes long (which is why 24 is the minimum size for the text in row
limit), and the meaning of the bytes is similar to the meaning of the 24 bytes in the row-overflow
pointer. The main difference is that no length is stored in bytes 12–15. Instead, bytes 12–23 constitute
a link to a chunk of LOB data on a separate page. If multiple LOB chucks are accessed via the root,
multiple sets of 12 bytes can be here, each pointing to LOB data on a separate page.

As indicated earlier, when you first enable text in row, no data movement occurs until the text data
is actually updated. The same is true if the limit is increased—that is, even if the new limit is large
enough to accommodate the LOB data that was stored outside the row, the LOB data isn’t moved
onto the row automatically. You must update the actual LOB data first.

Keep in mind that even if the amount of LOB data is less than the limit, the data isn’t necessarily
stored in the row. You’re still limited to a maximum row size of 8,060 bytes for a single row on a data
page, so the amount of LOB data that can be stored in the actual data row might be reduced if the
amount of non-LOB data is large. Also, if a variable-length column needs to grow, it might push LOB
data off the page so as not to exceed the 8,060-byte limit. Growth of variable-length columns always
has priority over storing LOB data in the row. If no variable-length char fields need to grow during
an update operation, SQL Server checks for growth of in-row LOB data, in column offset order. If one
LOB needs to grow, others might be pushed off the row.

Finally, you should be aware that SQL Server logs all movement of LOB data, which means that
reducing the limit of or turning ‘OFF’ the text in row option can be a very time-consuming operation
for a large table.

Although large data columns using the LOB data types can be stored and managed very effi-
ciently, using them in your tables can be problematic. Data stored as text, ntext, or image can’t always
be manipulated with the usual data-manipulation commands and, in many cases, you need to resort
to using the operations readtext, writetext, and updatetext, which require dealing with byte offsets
and data-length values. Prior to SQL Server 2005, you had to decide whether to limit your columns to
a maximum of 8,000 bytes or to deal with your large data columns by using different operators than
you used for your shorter columns. Starting with version 2005, SQL Server provides a solution that
gives you the best of both worlds, as you’ll see in the next section.

Storing MaX-length data
SQL Server 2005 and later versions give you the option of defining a variable-length field with the
MAX specifier. Although this functionality is frequently described by referring only to varchar(MAX),
the MAX specifier can also be used with nvarchar and varbinary. You can indicate the MAX specifier
instead of an actual size when you use one of these types to define a column, variable, or parameter.
By using the MAX specifier, you leave it up to SQL Server to determine whether to store the value as a
regular varchar, nvarchar, or varbinary value or as a LOB. In general, if the actual length is 8,000 bytes
or less, the value is treated as though it were one of the regular variable-length data types, including
possibly overflowing onto row-overflow pages. However, if the varchar(MAX) column does need to
spill off the page, the extra pages required are considered LOB pages and show the IAM_chain_type
LOB when examined using DBCC IND. If the actual length is greater than 8,000 bytes, SQL Server
stores and treats the value exactly as though it were text, ntext, or image. Because variable-length

 CHAPTER 8 Special storage 393

columns with the MAX specifier are treated either as regular variable-length columns or as LOB
columns, no special discussion of their storage is needed.

The size of values specified with MAX can reach the maximum size supported by LOB data, which
is currently 2 GB. By using the MAX specifier, however, you are indicating that the maximum size
should be the maximum the system supports. If you upgrade a table with a varchar(MAX) column to
a future version of SQL Server, the MAX length becomes whatever the new maximum is in the new
version.

tip Because the MAX data types can store LOB data as well as regular row data, you are
recommended to use these data types in future development in place of the text, ntext, or
image types, which Microsoft has indicated will be removed in a future version.

appending data into a LOB column
In the storage engine, each LOB column is broken into fragments of a maximum size of 8,040 bytes
each. When you append data to a large object, SQL Server finds the append point and looks at the
current fragment where the new data will be added. It calculates the size of the new fragment (includ-
ing the newly appended data). If the size is more than 8,040 bytes, SQL Server allocates new large
object pages until a fragment is left that is less than 8,040 bytes, and then it finds a page that has
enough space for the remaining bytes.

When SQL Server allocates pages for LOB data, it has two allocation strategies:

■■ For data that is less than 64 KB in size, it randomly allocates a page. This page comes from an
extent that is part of the large object IAM, but the pages aren’t guaranteed to be continuous.

■■ For data that is more than 64 KB in size, it uses an append-only page allocator that allocates
one extent at a time and writes the pages continuously in the extent.

From a performance standpoint, writing fragments of 64 KB at a time is beneficial. Allocating 1
MB in advance might be beneficial if you know that the size will be 1 MB, but you also need to take
into account the space required for the transaction log. If you a create a 1 MB fragment first with any
random contents, SQL Server logs the 1 MB, and then all the changes are logged as well. When you
perform large object data updates, no new pages need to be allocated, but the changes still need to
be logged.

As long as the large object values are small, they can be in the data page. In this case, some pre-
allocation might be a good idea so that the large object data doesn’t become too fragmented. A gen-
eral recommendation might be that if the amount of data to be inserted into a large object column in
a single operation is relatively small, you should insert a large object value of the final expected value,
and then replace substrings of that initial value as needed. For larger sizes, try to append or insert in
chunks of 8 * 8,040 bytes. This way, a whole extent is allocated each time, and 8,040 bytes are stored
on each page.

394 Microsoft SQL Server 2012 Internals

If you do find that your large object data is becoming fragmented, you can use ALTER INDEX RE-
ORGANIZE to defragment that data. In fact, this option (WITH LOB_COMPACTION) is on by default,
so you just need to make sure that you don’t set it to ‘OFF’.

FILESTREAM and FileTable data

Although the flexible methods that SQL Server uses to store large object data in the database give
you many advantages over data stored in the file system, they also have many disadvantages. Some
of the benefits of storing large objects in your database include the following.

■■ Transactional consistency of your large object data can be guaranteed.

■■ Your backup and restore operations include the large object data, allowing you integrated,
point-in-time recovery of your large objects.

■■ All data can be stored using a single storage and query environment.

Some of the disadvantages of storing large objects in your database include the following.

■■ Large objects can require a very large number of buffers in cache.

■■ The upper limit on the size of any large object value is 2 GB.

■■ Updating large objects can cause extensive database fragmentation.

■■ Database files can become extremely large.

■■ Read or write streaming operations from varchar(MAX) and varbinary(MAX) columns are
significantly slower than streaming from NTFS files.

SQL Server allows you to manage file system objects as though they were part of your database to
provide the benefits of having large objects in the database while minimizing the disadvantages. The
data stored in the file system can be FILESTREAM or FileTable data. As you start evaluating whether
FILESTREAM or FileTable data is beneficial for your applications, consider both the benefits and the
drawbacks. Some benefits of both FILESTREAM and FileTable data include the following.

■■ The large object data is stored in the file system but rooted in the database as a 48-byte file
pointer value in the column that contains the FILESTREAM data.

■■ The large object data is accessible through both Transact-SQL (T-SQL) and the NTFS streaming
APIs, which can provide great performance benefits.

■■ The large object size is limited only by the NTFS volume size, not the old 2 GB limit for large
object data stored within a database.

 CHAPTER 8 Special storage 395

FILESTREAM data has the following additional benefits.

■■ The large object data is kept transactionally consistent with structured data.

■■ Databases containing FILESTREAM data can participate in the SQL Server 2012 AlwaysOn
availability groups.

FileTable data has these additional benefits.

■■ The data is available through any Wind32 application without any modification of the
application.

■■ FileTables allow you to support a hierarchy of directories and files.

Some drawbacks of using FILESTREAM or FileTable data include the following.

■■ Database snapshots can’t include the FILESTREAM filegroups, so the FILESTREAM data is
unavailable. A SELECT statement in a database snapshot that requests a FILESTREAM column
generates an error.

■■ SQL Server can’t encrypt FILESTREAM data natively.

Because the FileTable feature is built on top of the FILESTREAM technology, I’ll first tell you about
FILESTREAM (which was introduced in SQL Server 2008) and then about what has been added in SQL
Server 2012 to enable FileTables.

enabling FILeStReaM data for SQL Server
The capability to access FILESTREAM data must be enabled both outside and inside your SQL Server
instance, as mentioned in Chapter 1 when discussing configuration. Through the SQL Server Configu-
ration Manager, you must enable T-SQL access to FILESTREAM data, and if that has been enabled, you
can also enable file I/O streaming access. If file I/O streaming access is allowed, you can allow remote
clients to have access to the streaming data if you want. When the SQL Server Configuration Manager
is opened, make sure that you have selected SQL Server Services in the left pane. In the right pane,
right-click the SQL instance that you want to configure and select Properties from the drop-down
menu. The Properties sheet has six tabs, including one labeled FILESTREAM. You can see the details of
the FILESTREAM tab of the SQL Server Properties sheet in Figure 8-3.

396 Microsoft SQL Server 2012 Internals

FIGURE 8-3 Configuring a SQL Server instance to allow FILESTREAM access.

After the server instance is configured, you need to use sp_configure to set your SQL Server in-
stance to the level of FILESTREAM access that you require. Three values are possible.

■■ 0 (the default) means that no FILESTREAM access is allowed.

■■ 1 means that you can use T-SQL to access FILESTREAM data.

■■ 2 means that you can use both T-SQL and the Win32 API for FILESTREAM access.

As with all configuration options, don’t forget to run the RECONFIGURE command after changing
a setting:

EXEC sp_configure 'filestream access level', 2; RECONFIGURE;

 CHAPTER 8 Special storage 397

Creating a FILeStReaM-enabled database
To store FILESTREAM data, a database must have at least one filegroup that was created to allow
FILESTREAM data. When creating a database, a filegroup that allows FILESTREAM data is specified dif-
ferently from a filegroup containing row data in several different ways.

■■ The path specified for the FILESTREAM filegroup must exist only up to the last folder name.
The last folder name must not exist but is created when SQL Server creates the database.

■■ The size and filegrowth properties don’t apply to FILESTREAM filegroups.

■■ If no FILESTREAM-containing filegroup is specified as DEFAULT, the first FILESTREAM-
containing filegroup listed is the default. (Therefore, you have one default filegroup for row
data and one default filegroup for FILESTREAM data.)

Look at the following code, which creates a database called MyFilestreamDB with two
FILESTREAM-containing filegroups. The path c:\Data2 must exist, but it must not contain either the
filestream1 or the filestream2 folders:

CREATE DATABASE MyFilestreamDB ON PRIMARY
 (NAME = N'Rowdata1', FILENAME = N'c:\data\Rowdata1.mdf' , SIZE = 2304KB ,
 MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB),
FILEGROUP FileStreamGroup1 CONTAINS FILESTREAM DEFAULT(NAME = FSData1,
 FILENAME = 'c:\Data2\FileStreamGroup1'),
FILEGROUP FileStreamGroup2 CONTAINS FILESTREAM (NAME = FSData2,
 FILENAME = 'c:\Data2\FileStreamGroup2')
LOG ON
 (NAME = N'FSDBLOG', FILENAME = N'c:\data\FSDB_log.ldf' , SIZE = 1024KB ,
 MAXSIZE = 2048GB , FILEGROWTH = 10%);

When the preceding MyFilestreamDB database is created, SQL Server creates the two folders,
FileStreamGroup1 and FileStreamGroup2, in the C:\Data2 directory. These folders are referred to as
the FILESTREAM containers. Initially, each container contains an empty folder called $FSLOG and
a header file called filestream.hdr. As tables are created to use FILESTREAM space in a container, a
folder for each partition or each table containing FILESTREAM data is created in the container.

An existing database can be altered to have a FILESTREAM filegroup added, and then a subse-
quent ALTER DATABASE command can add a file to the FILESTREAM filegroup. Note that you can’t
add FILESTREAM filegroups to the master, model, and tempdb databases.

Creating a table to hold FILeStReaM data
To specify that a column is to contain FILESTREAM data, it must be defined as type varbinary(MAX)
with a FILESTREAM attribute. The database containing the table must have at least one filegroup
defined for FILESTREAM. Your table creation statement can specify which filegroup its FILESTREAM
data is stored in, and if none is specified, the default FILESTREAM filegroup is used. Finally, any
table that has FILESTREAM columns must have a column of the uniqueidentifier data type with the
ROWGUIDCOL attribute specified. This column must not allow NULL values and must be guaran-
teed to be unique by specifying either the UNIQUE or PRIMARY KEY single-column constraint. The

398 Microsoft SQL Server 2012 Internals

ROWGUIDCOL column acts as a key that the FILESTREAM agent can use to locate the actual row
in the table to check permissions, obtain the physical path to the file, and possibly lock the row if
required.

Now look at the files that are created within the container. When created in the MyFilestreamDB
database, the following table adds several folders to the FileStreamGroup1 container:

CREATE TABLE MyFilestreamDB.dbo.Records
(
 [Id] [uniqueidentifier] ROWGUIDCOL NOT NULL UNIQUE,
 [SerialNumber] INTEGER UNIQUE,
 [Chart_Primary] VARBINARY(MAX) FILESTREAM NULL,
 [Chart_Secondary] VARBINARY(MAX) FILESTREAM NULL)
FILESTREAM_ON FileStreamGroup1;

Because this table is created on FileStreamGroup1, the container located at C:\Data2\
FileStreamGroup1 is used. One subfolder is created within FileStreamGroup1 for each table or
partition created in the FileStreamGroup1 filegroup, and those filenames are GUIDs. Each file has a
subfolder for each column within the table or partition which holds FILESTREAM data, and again, the
names of those subfolders are GUIDs. Figure 8-4 shows the structure of the files on my disk right after
the MyFilestreamDB.dbo.Records table is created. The FileStreamGroup2 folder has only the $FSLOG
subfolder, and no subfolders for any tables. The FileStreamGroup1 folder has a GUID-named subfolder
for the dbo.Records table and, within that, a GUID-named subfolder for each of the two FILESTREAM
columns in the table. No files exist except for the original filestream.hdr file. Files aren’t added until
FILESTREAM data is actually inserted into the table.

FIGURE 8-4 The operating system file structure after creating a table with two FILESTREAM data columns.

 CHAPTER 8 Special storage 399

Warning When the table is dropped, the folders, subfolders, and files they contain are
not removed from the file system immediately. Instead, they are removed by a Garbage
Collection thread, which fires regularly as well as when the SQL Server service stops and re-
starts. You can delete the files manually, but be careful: You might delete folders for a col-
umn or table that still exists in the database, even while the database is online. Subsequent
access to that table generates an error message containing the text “Path not found.”

You might think that SQL Server would prevent any file that is part of the database from
being deleted. However, to absolutely prevent the file deletions, SQL Server has to hold
open file handles for every single file in all the FILESTREAM containers for the entire data-
base, and for large tables that wouldn’t be practical.

Manipulating FILeStReaM data
FILESTREAM data can be manipulated with either T-SQL or the Win32 API. When using T-SQL, you
can process the data exactly as though it were varbinary(MAX). Using the Win32 API requires that you
first obtain the file path and current transaction context. You can then open a WIN32 handle and use
it to read and write the large object data. All the examples in this section use T-SQL; you can get the
details of Win32 manipulation from SQL Server Books Online.

As you add data to the table, files are added to the subfolders for each column. INSERT operations
that fail with a runtime error (for example, due to a uniqueness violation) still create a file for each
FILESTREAM column in the row. Although the row is never accessible, it still uses file system space.

Inserting FILeStReaM data
You can insert data by using regular T-SQL INSERT statements. You must insert FILESTREAM
data by using the varbinary(MAX) data type but can convert any string data in the INSERT state-
ment. The following statement adds one row to the dbo.Records table, created earlier with two
FILESTREAM columns. The first FILESTREAM column gets a 90,000-byte character string converted to
varbinary(MAX), and the second FILESTREAM column gets an empty binary string.

USE MyFileStreamDB
INSERT INTO dbo.Records
 SELECT newid (), 24,
 CAST (REPLICATE (CONVERT(varchar(MAX), 'Base Data'), 10000)
 AS varbinary(max)),
 0x;

First, the nine-character string Base Data to varchar(MAX) is converted because a regular string
value can’t be more than 8,000 bytes. The REPLICATE function returns the same data type as its first
parameter, so that first parameter should be unambiguously a large object. Replicating the 9-byte
string 10,000 times results in a 90,000-byte string, which is then converted to varbinary(MAX). Notice
that a value of 0x is an empty binary string, which isn’t the same as a NULL. Every row that has a non-
NULL value in a FILESTREAM column has a file, even for zero-length values.

400 Microsoft SQL Server 2012 Internals

Figure 8-5 shows what your file system should look like after running the preceding code to create
a database with two FILESTREAM containers and create a table with two FILESTREAM columns, and
then inserting one row into that table. In the left pane, you can see the two FILESTREAM containers,
FileStreamGroup1 and FileStreamGroup2.

FIGURE 8-5 The operating system file structure after inserting FILESTREAM data.

The FileStreamGroup1 container has a folder with a GUID name for the dbo.Records table that I cre-
ated, and that folder container has two folders, with GUID names, for the two columns in that table.
The right pane shows the file containing the actual data inserted into one of the columns.

Updating FILeStReaM data
Updates to FILESTREAM data are always performed as a DELETE followed by an INSERT, so you see a
new row in the directory for the column(s) updated. Also, the T-SQL “chunked update,” specified with
the .WRITE clause, isn’t supported. So any update to FILESTREAM data results into SQL Server creating
a new copy of the FILESTREAM data file. I recommend that you use file-system streaming access for
manipulation (both inserts and updates) of your FILESTREAM data.

When a FILESTREAM value is set to NULL, the FILESTREAM file associated with that value is deleted
when the Garbage Collection thread runs. (Garbage collection is discussed later in this chapter.) The
Garbage Collection thread also cleans up old versions of the FILESTREAM files after an UPDATE cre-
ates a new file.

Deleting FILeStReaM data
When a row is deleted through the use of a DELETE or a TRUNCATE TABLE statement, any FILESTREAM
file associated with the row is deleted. However, deletion of the file isn’t synchronous with row deletion.
The file is deleted by the FILESTREAM Garbage Collection thread. This is also true for DELETEs that are
generated as part of an UPDATE, as mentioned in the preceding section paragraph.

 CHAPTER 8 Special storage 401

Note The OUTPUT clause for data manipulation operations (INSERT, UPDATE, DELETE, and
MERGE) is supported in the same way it is for column modifications. However, you need to
be careful if you are using the OUTPUT clause to insert into a table with a varbinary(MAX)
column instead without the FILESTREAM specifier. If the FILESTREAM data is larger than 2
GB, the insert of FILESTREAM data into the table can result in a runtime error.

Manipulating FILeStReaM data and transactions
FILESTREAM data manipulation is fully transactional. However, you need to be aware that when you
are manipulating FILESTREAM data, not all isolation levels are supported. Also, some isolation levels
are supported for T-SQL access but not for file-system access. Table 8-2 indicates which isolation lev-
els are available in which access mode.

TABLE 8-2 Isolation levels supported with FILESTREAM data manipulation

Isolation level T-SQL access File-system access

Read uncommitted Supported Not supported

Read committed Supported Supported

Repeatable read Supported Not supported

Serializable Supported Not supported

Read committed snapshot Supported Supported

Snapshot Supported Supported

If two processes trying to access the same FILESTREAM datafile are in incompatible modes, the
file-system APIs fail with an ERROR_SHARING_VIOLATION message rather than just block, as would
happen when using T-SQL. As with all data access, readers and writers within the same transaction
can never get a conflict on the same file but unlike non-FILESTREAM access, two write operations
within the same transaction can end up conflicting with each other when accessing the same file, un-
less the file handle has been previously closed. You can read much more about transactions, isolation
levels, and conflicts in Chapter 13, “Transactions and concurrency.”

Logging FILeStReaM changes
As mentioned previously, each FILESTREAM filegroup has a $FSLOG folder that keeps track of all
FILESTREAM activity that touches that filegroup. The data in this folder is used when you perform
transaction log backup and restore operations in the database (which include the FILESTREAM file-
group) and also during the recovery process.

The $FSLOG folder primarily keeps track of new information added to the FILESTREAM filegroup. A
file gets added to the log folder to reflect each of the following.

■■ A new table containing FILESTREAM data is created.

■■ A FILESTREAM column is defined.

402 Microsoft SQL Server 2012 Internals

■■ A new row is inserted containing non-NULL data in the FILESTREAM column.

■■ A FILESTREAM value is updated.

■■ A COMMIT occurs.

Here are some examples.

■■ If you create a table containing two FILESTREAM columns, four files are added to the $FSLOG
folder—one for the table, two for the columns, and one for the implied COMMIT.

■■ If you insert a single row containing FILESTREAM data in an autocommit transaction, two files
are added to the $FSLOG folder—one for the INSERT and one for the COMMIT.

■■ If you insert five rows in an explicit transaction, six files are added to the $FSLOG folder.

Files aren’t added to the $FSLOG folder when data is deleted or when a table is truncated or
dropped. However, the SQL Server transaction log keeps track of these operations, and a new meta-
data table contains information about the removed data.

Using garbage collection for FILeStReaM data
The FILESTREAM data can be viewed as serving as the live user data, as well as the log of changes to
that data, and as row versions for snapshot operations (discussed in Chapter 13). SQL Server needs
to make sure that the FILESTREAM data files aren’t removed if they might possibly be needed for
any backup or recovery needs. In particular, for log backups, all new FILESTREAM content must be
backed up because the transaction log doesn’t contain the actual FILESTREAM data, and only the
FILESTREAM data has the redo information for the actual FILESTREAM contents. In general, if your
database isn’t in the SIMPLE recovery mode, you need to back up the log twice before the Garbage
Collector can remove unneeded data files from your FILESTREAM folders.

Consider this example: You can start with a clean slate by dropping and re-creating the My-
FilestreamDB database. A DROP DATABASE statement immediately removes all the folders and files
because now doing any subsequent log backups isn’t possible. The script in Listing 8-3 recreates the
database and creates a table with just a single FILESTREAM column. Finally, the script inserts three
rows into the table and backs up the database. If you inspect the FileStreamGroup1 container, you see
that the folder for the columns contains three files for the three rows.

LISTING 8-3 Dropping and recreating a database

USE master;
GO
DROP DATABASE MyFilestreamDB;
GO
CREATE DATABASE MyFilestreamDB ON PRIMARY
 (NAME = N'Rowdata1', FILENAME = N'c:\data\Rowdata1.mdf' , SIZE = 2304KB ,
 MAXSIZE = UNLIMITED, FILEGROWTH = 1024KB),

FILEGROUP FileStreamGroup1 CONTAINS FILESTREAM DEFAULT(NAME = FSData1,
 FILENAME = 'c:\Data2\FileStreamGroup1'),
FILEGROUP FileStreamGroup2 CONTAINS FILESTREAM (NAME = FSData2,

 CHAPTER 8 Special storage 403

 FILENAME = 'c:\Data2\FileStreamGroup2')
 LOG ON
 (NAME = N'FSDBLOG', FILENAME = N'c:\data\FSDB_log.ldf' , SIZE = 1024KB ,
 MAXSIZE = 2048GB , FILEGROWTH = 10%);
GO
USE MyFilestreamDB;
GO
CREATE TABLE dbo.Records
(
 Id [uniqueidentifier] ROWGUIDCOL NOT NULL UNIQUE,
 SerialNumber INTEGER UNIQUE,
 Chart_Primary VARBINARY(MAX) FILESTREAM NULL
)
FILESTREAM_ON FileStreamGroup1;
GO
INSERT INTO dbo.Records
 VALUES (newid(), 1,
 CAST (REPLICATE (CONVERT(varchar(MAX), 'Base Data'),
 10000) as varbinary(max))),
 (newid(), 2,
 CAST (REPLICATE (CONVERT(varchar(MAX), 'New Data'),
 10000) as varbinary(max))),
 (newid(), 3, 0x);
GO
BACKUP DATABASE MyFileStreamDB to disk = 'C:\backups\FBDB.bak';
GO

Now delete one of the rows, as follows:

DELETE dbo.Records
WHERE SerialNumber = 2;
GO

Now inspect the files on disk, and you still see three files.

Back up the log and run a checkpoint. Note that on a real system, enough changes would prob-
ably be made to your data that your database’s log would get full enough to trigger an automatic
CHECKPOINT. However, during testing, when you aren’t putting much into the log at all, you have to
force the CHECKPOINT:

BACKUP LOG MyFileStreamDB to disk = 'C:\backups\FBDB_log.bak';
CHECKPOINT;

Now if you check the FILESTREAM data files, you still see three rows. Wait five seconds for gar-
bage collection, and you’ll still see three rows. You need to back up the log and then force another
CHECKPOINT:

BACKUP LOG MyFileStreamDB to disk = 'C:\backups\FBDB_log.bak';
CHECKPOINT;

Now within a few seconds, you should see one of the files disappear. The reason you need to back
up the log twice before the physical file is available for garbage collection is to make sure that the file
space isn’t reused by other FILESTREAM operations while it still might be needed for restore purposes.

404 Microsoft SQL Server 2012 Internals

You can run some additional tests of your own. For example, if you try dropping the dbo.Records
table, notice that you again have to perform two log backups and CHECKPOINTs before SQL Server
removes the folders for the table and the column.

Note SQL Server 2012 provides a new procedure called sp_filestream_force_garbage_
collection, which forces the garbage collection of unneeded FILESTREAM files. If the gar-
bage collection of unneeded files seems to be delayed frequently, and you want to force
removal of these files, you could schedule regularly executions of this procedure. The
procedure takes database name as a parameter and optionally takes a logical name of a
FILESTREAM container as a second parameter. If the first parameter is missing, the current
database is assumed. If the second parameter is missing, garbage collection is performed
on all FILESTREAM containers in the database.

exploring metadata with FILeStReaM data
Within your SQL Server tables, the storage required for FILESTREAM isn’t particularly complex. In the
row itself, each FILESTREAM column contains a file pointer that is 48 bytes in size. Even if you look at
a data page with the DBCC PAGE command, not much more information about the file is available.
However, SQL Server does provide a new function to translate the file pointer to a path name. The
function is actually a method applied to the column name in the table. So the following code returns
a UNC name for the file containing the actual column’s data in the row inserted previously:

SELECT Chart_Primary, Chart_Primary.PathName()
FROM dbo.Records
WHERE SerialNumber = 3;
GO

The UNC value returned looks like this:

\\<server_name>\<share_name>\v1\<db_name>\<object_schema>\<table_name>\<column_name>\<GUID>

Keep in mind the following points about using the PathName function.

■■ The function name is case-sensitive, even on a server that’s not case-sensitive, so it always
must be entered as PathName.

■■ The default share_name is the service name for your SQL Server instance (so for the default
instance, it is MSSQLSERVER). By using the SQL Server Configuration Manager, you can right-
click your SQL Server instance and choose Properties. The FILESTREAM tab of the SQL Server
Properties sheet allows you to change the share_name to another value of your choosing.

■■ The PathName function can take an optional parameter of 0, 1, or 2, with 0 being the default.
The parameter controls only how the server_name value is returned; all other values in the
UNC string are unaffected. Table 8-3 shows the meanings of the different values.

 CHAPTER 8 Special storage 405

TABLE 8-3 Parameter values for the PathName function

Value Description

0 Returns the server name converted to BIOS format; for example, \\SERVERNAME\MSSQLSERVER\v1\
MyFilestream\dbo\Records\Chart_Primary\A73F19F7-38EA-4AB0-BB89-E6C545DBD3F9

1 Returns the server name without conversion; for example, \\ServerName\MSSQLSERVER\v1\MyFilestream\
Dbo\Records\Chart_Primary\A73F19F7-38EA-4AB0-BB89-E6C545DBD3F9

2 Returns the complete server path; for example, \\ServerName.MyDomain.com\MSSQLSERVER\v1\
MyFilestream\Dbo\Records\Chart_Primary\A73F19F7-38EA-4AB0-BB89-E6C545DBD3F9

Other metadata gives you information about your FILESTREAM data.

■■ sys.database_files returns a row for each of your FILESTREAM files. These files have a type value
of 2 and a type_desc value of FILESTREAM.

■■ sys.filegroups returns a row for each of your FILESTREAM filegroups. These files have a type
value of FD and a type_desc value of FILESTREAM_DATA_FILEGROUP.

■■ sys.data_spaces returns one row for each data space, which is either a filegroup or a partition
scheme. Filegroups holding FILESTREAM data are indicated by the type FD.

■■ sys.tables has a value in the column for filestream_data_space_id, which is the data space ID
for either the FILESTREAM filegroup or the partition scheme that the FILESTREAM data uses.
Tables with no FILESTREAM data have NULL in this column.

■■ sys.columns has a value of 1 in the is_filestream column for columns with the filestream
attribute.

The older metadata, such as the system procedure sp_helpdb <database_name> or sp_help
<object_name>, doesn’t show any information about FILESTREAM data.

Earlier, this chapter mentioned that rows or objects that are deleted don’t generate files in the
$FSLOG folder, but data about the removed data is stored in a system table. No metadata view allows
you to see this table; you can observe it only by using the dedicated administrator connection (DAC).
You can look in a view called sys.internal_tables for an object with TOMBSTONE in its name. Then,
by using the DAC, you can look at the data inside the TOMBSTONE table. If you rerun the preceding
script but don’t back up the log, you can use the following code:

USE MyFilestreamDB;
GO
SELECT name FROM sys.internal_tables
WHERE name like '%tombstone%';

-- I see the table named: filestream_tombstone_2073058421
-- Reconnect using DAC, which puts us in the master database
USE MyFileStreamDB;
GO
SELECT * FROM sys.filestream_tombstone_2073058421;
GO

file:///\\SERVERNAME\MSSQLSERVER\v1\MyFilestream\dbo\Records\Chart_Primary\A73F19F7-38EA-4AB0-BB89-E6C545DBD3F9
file:///\\SERVERNAME\MSSQLSERVER\v1\MyFilestream\dbo\Records\Chart_Primary\A73F19F7-38EA-4AB0-BB89-E6C545DBD3F9
file:///\\ServerName\MSSQLSERVER\v1\MyFilestream\Dbo\Records\Chart_Primary\A73F19F7-38EA-4AB0-BB89-E6C545DBD3F9
file:///\\ServerName\MSSQLSERVER\v1\MyFilestream\Dbo\Records\Chart_Primary\A73F19F7-38EA-4AB0-BB89-E6C545DBD3F9

406 Microsoft SQL Server 2012 Internals

If this table is empty, the login SQL Server and the $FSLOG are in sync, and all unneeded files have
been removed from the FILESTREAM containers on disk.

Creating a Filetable
FileTable storage, introduced in SQL Server 2012, allows you to create special user tables that have a
predefined schema and to extend the capabilities of FILESTREAM data discussed earlier. The two most
important extensions are that FileTables allow full support and compatibility with Win32 applications
and support the hierarchical namespace of directories and files. Each row in a FileTable table repre-
sents an operating system file or directory in a hierarchical structure and contains attributes about the
file or directory, such as created date, modified, date, and the name of the file or directory.

The first step in creating a FileTable is to make sure that the database supports FILESTREAM data
with at least one FILESTREAM filegroup. Also, the database option to allow NON_TRANSACTED_
ACCESS must be set to either FULL or READ_ONLY, and a directory name must be supplied for use
by Windows applications as part of the share name when accessing the FileTable files. These options
can be supplied as part of the initial CREATE DATABASE operation, or the database can be altered to
include these options:

ALTER DATABASE MyFilestreamDB
SET FILESTREAM (NON_TRANSACTED_ACCESS = FULL, DIRECTORY_NAME = N'FileTableData');

By setting NON_TRANSACTED_ACCESS to something other than NONE, you are enabling FileTable
storage within the database. SQL Server 2012 provides a new catalog view, called sys.database_
filestream_options, to examine each database’s readiness for storing FileTable data. The following
query selects from that view showing only rows where non-transacted access has been allowed. A
value of 0 for NON_TRANSACTED_ACCESS means the feature wasn’t enabled, 1 means it has been
enabled for READ_ONLY, and 2 means it has been enabled for FULL access.

SELECT DB_NAME(database_id) as DBNAME, non_transacted_access_desc, directory_name
FROM sys.database_filestream_options
WHERE non_transacted_access > 0;

Enabling the NON_TRANSACTED_ACCESS to the MyFilestreamDB as shown in the preceding ALTER
statement would produce the following results:

DB_NAME non_transacted_access_desc directory_name
--------------- -------------------------- ----------------
MyFilestreamDB FULL FileTableData

After the database is properly configured for FileTable access, you can create a FileTable with a
very simple CREATE TABLE statement. Because the schema is predefined, all you do is specify a name
for your FileTable and a directory name in which all the files stored in this FileTable can be found in
the operating system. Optionally, you can also specify a collation for the data in the files stored in the
FileTable, but if none is specified, the default database collation is used.

CREATE TABLE Documents AS Filetable
 WITH (Filetable_Directory = 'DocumentsData');

 CHAPTER 8 Special storage 407

At this point, you can look at the Windows share that is now available by allowing your database
NON_TRANSACTED_ACCESS. You can see this by opening Windows Explorer on the server machine
and navigating to either \\127.0.0.1 or \\<your machine name>. Along with whatever other shares
have been set up on the machine, you should see a share for your SQL Server instance name, or ms-
sqlserver if your instance is the default instance. You can open up the share and see a directory named
FiletableData, and when you open the directory, you should see the table name DocumentsData. Fig-
ure 8-6 shows you what this structure looks like on my machine, for a SQL Server 2012 instance called
denali. (In SQL Server 2008 and 2008 R2, you also saw share names for your SQL Server instances that
have been configured to allow FILESTREAM access. However, attempting to access the share directly
will result in an error.)

FIGURE 8-6 The FileTable share containing no files.

While exploring the operating system files, you can also revisit the Data2 folder (which was the
default FILESTREAM container for the database), which you saw earlier in the FILESTREAM data
discussion, and see that a GUID now exists for one more table containing FILESTREAM data and one
FILESTREAM column in that table.

As mentioned, the FileTable data is completely available through the share to all Windows applica-
tions, including Windows Explorer. You can copy a file from anywhere on your system and paste it
into the share. Figure 8-7 shows the share now containing a copy of one of my errorlog files.

FIGURE 8-7 The FileTable share after inserting one file.

When a SQL Server instance is enabled for FILESTREAM access, SQL Server installs a component
called an NTFS filter driver. When a Windows application interacts with a FileTable share, the interac-
tion is intercepted by the NTFS filter driver and is redirected to SQL Server to allow these changes that

file:///\\127.0.0.1

408 Microsoft SQL Server 2012 Internals

you make to the share, such as inserting a new file, to be reflected in the table inside SQL Server. From
SQL Server Management Studio, I can also SELECT from my Documents table, and see that it now has
one row in it, to reflect the file that was added to it through Windows.

Some of the columns are returned, but the wide output prevents showing all the columns:

Table 8-4 lists all the column names available in the FileTable.

TABLE 8-4 Predefined columns in a FileTable

File attribute
name Type Description

stream_id [uniqueidentifier]
rowguidcol

A unique ID for the FILESTREAM data.

file_stream varbinary(max)
filestream

Contains the FILESTREAM data.

Name nvarchar(255) The file or directory name.

path_locator hierarchyid The position of this node in the hierarchical FileNamespace. Primary key for
the table.

parent_path_
locator

hierarchyid The hierarchyid of the containing directory. parent_path_locator is a per-
sisted computed column.

file_type nvarchar(255) Represents the type of the file. This column can be used as the TYPE
COLUMN when you create a full-text index. file_type is a persisted com-
puted column based on the file extension.

cached_file_size bigint The size in bytes of the FILESTREAM data. cached_file_size is a persisted
computed column.

creation_time datetime2(4)
not null

The date and time that the file was created.

last_write_time datetime2(4)
not null

The date and time that the file was last updated.

last_access_time datetime2(4)
not null

The date and time that the file was last accessed.

is_directory bit
not null

Indicates whether the row represents a directory. This value is calculated
automatically, and can’t be set.

is_offline bit
not null

Offline file attribute.

is_hidden bit
not null

Hidden file attribute.

is_readonly bit
not null

Read-only file attribute.

is_archive bit
not null

Archive attribute.

 CHAPTER 8 Special storage 409

File attribute
name Type Description

is_system bit
not null

System file attribute.

is_temporary bit
not null

Temporary file attribute.

You can see that many of these column names correspond to attributes that you can see for all
your files through Windows Explorer.

Note All application access to your FileTable data is through the FileTable share. The
FILESTREAM container is the actual physical storage of the FILESTREAM data, and only
database administrators need to be aware of this location. The FILESTREAM containers are
backed up when a database containing FILESTREAM data is backed up.

Considering performance for FILeStReaM data
Although a thorough discussion of performance tuning and troubleshooting is beyond the scope of
this book, I want to provide you with some basic information about setting up your system to get
high performance from FILESTREAM data. Paul Randal, one of the co-authors of this book, has written
a white paper on FILESTREAM that you can access on the MSDN site at http://msdn.microsoft.com/en-
us/library/cc949109.aspx. (This white paper is also available on this book’s companion website, http://
www.SQLServerInternals.com/companion.) This section just briefly mentions some of the main points
Paul makes regarding what you can do to get good performance. All these suggestions are explained
in much more detail in the white paper.

■■ Make sure that you’re storing the right-sized data in the right way. Jim Gray (et al) published
a research paper several years ago titled “To BLOB or Not to BLOB: Large Object Storage in
a Database or a Filesystem?” that gives recommendations for when to store data outside the
database. To summarize the findings, large object data smaller than 256 KB should be stored
in a database, and data that’s 1 MB or larger should be stored in the file system. For data
between these two values, the answer depends on other factors, and you should test your ap-
plication thoroughly. The key point here is that you won’t get good performance if you store
lots of relatively small large objects using FILESTREAM.

■■ Use an appropriate RAID level for the NTFS volume that hosts the FILESTREAM data container.
For example, don’t use RAID 5 for a write-intensive workload.

■■ Use an appropriate disk technology. SCSI is usually faster than SATA/IDE because SCSI drives
usually have higher rotational speeds, which help them have lower latency and seek times.
However, SCSI drives are also more expensive.

■■ Whichever disk technology you choose, if it is SATA, ensure that it supports NCQ, and if SCSI,
ensure that it supports CTQ. Both of these allow the drives to process multiple, interleaved I/
Os concurrently.

http://msdn.microsoft.com/en-us/library/cc949109.aspx
http://msdn.microsoft.com/en-us/library/cc949109.aspx
http://www.SQLServerInternals.com/companion
http://www.SQLServerInternals.com/companion

410 Microsoft SQL Server 2012 Internals

■■ Separate the data containers from each other, and separate the containers from other data-
base data and log files. This avoids contention for the disk heads.

■■ Defragment the NTFS volume, if needed, before setting up FILESTREAM, and defragment peri-
odically to maintain good scan performance.

■■ Turn off 8.3 name generation on the NTFS volume by using the command-line fsutil utility.
This is an order-N algorithm that must check that the new name generated doesn’t collide
with any existing names in the directory. Note, however, that this slows down insert and up-
date performance a lot.

■■ Use fsutil to turn off tracking of last access time.

■■ Set the NTFS cluster size appropriately. For larger objects greater than 1 MB in size, use a clus-
ter size of 64 KB to help reduce fragmentation.

■■ A partial update of FILESTREAM data creates a new file. Batch lots of small updates into one
large update to reduce churn.

■■ When streaming the data back to the client, use a server message block (SMB) buffer size of
approximately 60 KB or multiples thereof. This helps keep the buffers from getting overly
fragmented, because Transmission Control Protocol/Internet Protocol (TCP/IP) buffers are
64 KB.

Taking these suggestions into consideration and performing thorough testing of your application
can give you great performance when working with very large data objects.

Summarizing FILeStReaM and Filetable
When you configure a SQL Server instance to support FILESTREAM storage, you are allowing Win-
dows files to be accessed and manipulated as data in any SQL Server table. When you configure a
database with FILESTREAM filegroups to have non-transacted access, you are allowing FileTables to be
created in the database. A FileTable builds on the FILESTREAM capability by providing a table whose
rows not only contain the Windows file contents but also all the Windows file properties. These files
are accessible through the FileTable share and can be manipulated through any Windows application.

Keep in mind that the FileTable structure is predefined and can’t be altered. If you want to add
your own attributes along with the files in a FileTable, you can create another table with your user-
defined attributes and a foreign key reference to the FileTable column path_locator, which is the
primary key of the FileTable.

Detailed information about how to work with this FileTable data through a Windows application is
beyond the scope of this book. The goal of this section was to present some of the storage internals
of the FILESTREAM data and FileTables, and well as to give you an idea of how SQL Server works with
these constructs.

 CHAPTER 8 Special storage 411

Sparse columns

This section looks at another special storage format, added in SQL Server 2008. Sparse columns are
ordinary columns that have an optimized storage format for NULL values. Sparse columns reduce the
space requirements for NULL values, allowing you to have many more columns in your table defini-
tion, as long as most of them are NULL. Using sparse columns requires more overhead to store and
retrieve non-NULL values.

Sparse columns are intended to be used for tables storing data describing entities with many pos-
sible attributes, in which most of the attributes will be NULL for most rows. For example, a content
management system such as Microsoft Windows SharePoint Services might need to keep track of
many different types of data in a single table. Because different properties apply to different subsets
of rows in the table, only a small subset of the columns is populated with values for each row. Another
way of looking at this is that for any particular property, only a subset of rows has a value for that
property. Sparse columns allow you to store a very large number of possible columns for a single row.
For this reason, the Sparse Columns feature is sometimes also referred to as the wide-table feature.

Management of sparse columns
You shouldn’t consider defining a column as SPARSE unless at least 90 percent of the rows in the table
are expected to have NULL values for that column. This limit isn’t enforced, however, and you can
define almost any column as SPARSE. Sparse columns save space on NULL values.

The Sparse Columns feature allows you to have far more columns that you ever could before. The
limit is now 30,000 columns in a table, with no more than 1,024 of them being non-sparse. (Comput-
ed columns are considered non-sparse.) Obviously, not all 30,000 columns could have values in them.
The number of populated columns you can have depends on the bytes of data in the row. Sparse col-
umns optimize the storage size for NULL values, which take no space at all for sparse columns, unlike
non-sparse columns, which do need space even for NULLs. (As you saw in Chapter 6, a fixed-length
NULL column always uses the whole column width, and a variable-length NULL column uses at least
two bytes in the column offset array.)

Although the sparse columns themselves take no space, some fixed overhead is needed to allow
for sparse columns in a row. As soon as you define even one column with the SPARSE attribute, SQL
Server adds a sparse vector to the end of the row. We’ll see the actual structure of this sparse vector
in the section “Physical storage,” later in this chapter, but to start, you should be aware that even with
sparse columns, the maximum size of a data row (excluding LOB and row-overflow) remains at 8,060,
including overhead bytes. Because the sparse vector includes additional overhead, the maximum
number of bytes for the rest of the rows decreases. Also, the size of all fixed-length non-NULL sparse
columns in a row is limited to 8,023 bytes.

412 Microsoft SQL Server 2012 Internals

Creating a table
Creating a table with sparse columns is very straightforward, as you can just add the attribute
SPARSE to any column of any data type except text, ntext, image, geography, geometry, timestamp,
or any user-defined data type. Also, sparse columns can’t include the IDENTITY, ROWGUIDCOL, or
FILESTREAM attributes. A sparse column can’t be part of a clustered index or part of the primary key.
Tables containing sparse columns can’t be compressed, either at the row level or the page level. (The
next section discusses compression in detail.) A few other restrictions are enforced, particularly if you
are partitioning a table with sparse columns, so you should check the documentation for full details.

The examples in this section are necessarily very simple because it would be impractical to print
code examples with enough columns to make sparse columns really useful. The following example
shows the creation of two very similar tables: one that doesn’t allow sparse columns and another that
does. I attempt to insert the same rows into each table. Because a row allowing sparse columns has a
smaller maximum length, it fails when trying to insert a row that the table with no sparse columns has
no problem with:

USE testdb;
GO
IF OBJECT_ID('test_nosparse') IS NOT NULL
 DROP TABLE test_nosparse;
GO
CREATE TABLE test_nosparse
(
 col1 int,
 col2 char(8000),
 col3 varchar(8000)
);
GO
INSERT INTO test_nosparse
 SELECT null, null, null;
INSERT INTO test_nosparse
 SELECT 1, 'a', 'b';
GO

These two rows can be inserted with no error. Now, build the second table:

IF OBJECT_ID('test_sparse') IS NOT NULL
 DROP TABLE test_sparse;
GO

CREATE TABLE test_sparse
(
 col1 int SPARSE,
 col2 char(8000) SPARSE,
 col3 varchar(8000) SPARSE
);
GO

INSERT INTO test_sparse
 SELECT NULL, NULL, NULL;
INSERT INTO test_sparse
 SELECT 1, 'a', 'b';
GO

 CHAPTER 8 Special storage 413

The second INSERT statement generates the following error:

Msg 576, Level 16, State 5, Line 2
Cannot create a row that has sparse data of size 8046 which is greater than the
allowable maximum sparse data size of 8023.

Although the second row inserted into the test_sparse table looks just like a row that was inserted
successfully into the test_nosparse table, internally it’s not. The total of the sparse columns is 4 bytes
for the int, plus 8,000 bytes for the char and 24 bytes for the row-overflow pointer, which is greater
than the 8,023-byte limit.

altering a table
You can alter tables to convert a non-sparse column into a sparse column, or vice versa. Be careful,
however, because if you are altering a very large row in a table with no sparse columns, changing one
column to be sparse reduces the number of bytes of data that are allowed on a page. This can result
in an error being thrown in cases where an existing column is converted into a sparse column. For ex-
ample, the following code creates a table with large rows, but the INSERT statements, with or without
NULLs, are accepted. However, when you try to make one of the columns SPARSE—even a relatively
small column like the 8-byte datetime column—the extra overhead makes the existing rows too large
and the ALTER fails:

IF OBJECT_ID('test_nosparse_alter') IS NOT NULL
 DROP TABLE test_nosparse_alter;
GO
GO
CREATE TABLE test_nosparse_alter
(
c1 int,
c2 char(4020) ,
c3 char(4020) ,
c4 datetime
);
GO
INSERT INTO test_nosparse_alter SELECT NULL, NULL, NULL, NULL;
INSERT INTO test_nosparse_alter SELECT 1, 1, 'b', GETDATE();
GO
ALTER TABLE test_nosparse_alter
 ALTER COLUMN c4 datetime SPARSE;

This error is received:

Msg 1701, Level 16, State 1, Line 2
Creating or altering table 'test_nosparse_alter' failed because the minimum row size
would be 8075, including 23 bytes of internal overhead. This exceeds the maximum
allowable table row size of 8060 bytes.

In general, you can treat sparse columns just like any other column, with only a few restrictions. In
addition to the restrictions mentioned earlier on the data types that can’t be defined as SPARSE, you
need to keep in mind the following limitations.

414 Microsoft SQL Server 2012 Internals

■■ A sparse column can’t have a default value.

■■ A sparse column can’t be bound to a rule.

■■ Although a computed column can refer to a sparse column, a computed column can’t be
marked as SPARSE.

■■ A sparse column can’t be part of a clustered index or a unique primary key index. However,
both persisted and non-persisted computed columns that refer to sparse columns can be part
of a clustered key.

■■ A sparse column can’t be used as a partition key of a clustered index or heap. However, a
sparse column can be used as the partition key of a nonclustered index.

Except for the requirement that sparse columns can’t be part of the clustered index or primary key,
building indexes on sparse columns has no other restrictions. However, if you’re using sparse columns
the way they are intended to be used and the vast majority of your rows have NULL for the sparse
columns, any regular index on a sparse column is very inefficient and might have limited usefulness.
Sparse columns are really intended to be used with filtered indexes, which are discussed in Chapter 7.

Column sets and sparse column manipulation
If sparse columns are used as intended, only a few columns in each row have values, and your INSERT
and UPDATE statements are relatively straightforward. For INSERT statements, you can specify
a column list and then specify values only for those few columns in the column list. For UPDATE
statements, values can be specified for just a few columns in each row. The only time you need to
be concerned about how to deal with a potentially very large list of columns is if you are selecting
data without listing individual columns—that is, using a SELECT *. Good developers know that using
SELECT * is never a good idea, but SQL Server needs a way of dealing with a result set with potentially
thousands (or tens of thousands) of columns. The mechanism to help deal with SELECT * is a construct
called COLUMN_SET, which is an untyped XML representation that combines multiple columns of a
table into a structured output. You can think of a COLUMN_SET as a nonpersisted computed column
because the COLUMN_SET isn’t physically stored in the table. In this release of SQL Server, the only
possible COLUMN_SET contains all the sparse columns in the table. Future versions might allow us to
define other COLUMN_SET variations.

A table can only have one COLUMN_SET defined, and when a table has a COLUMN_SET defined,
SELECT * no longer returns individual sparse columns. Instead, it returns an XML fragment containing
all the non-NULL values for the sparse columns. For example, the code in Listing 8-4 builds a table
containing an identity column, 25 sparse columns, and a column set.

LISTING 8-4 Building a table with an identity column, sparse columns, and a column set

USE testdb;
GO
IF EXISTS (SELECT * FROM sys.tables WHERE name = 'lots_of_sparse_columns')
 DROP TABLE lots_of_sparse_columns;
GO

 415

CREATE TABLE lots_of_sparse_columns
(ID int IDENTITY,
 col1 int SPARSE,
 col2 int SPARSE,
 col3 int SPARSE,
 col4 int SPARSE,
 col5 int SPARSE,
 col6 int SPARSE,
 col7 int SPARSE,
 col8 int SPARSE,
 col9 int SPARSE,
 col10 int SPARSE,
 col11 int SPARSE,
 col12 int SPARSE,
 col13 int SPARSE,
 col14 int SPARSE,
 col15 int SPARSE,
 col16 int SPARSE,
 col17 int SPARSE,
 col18 int SPARSE,
 col19 int SPARSE,
 col20 int SPARSE,
 col21 int SPARSE,
 col22 int SPARSE,
 col23 int SPARSE,
 col24 int SPARSE,
 col25 int SPARSE,
 sparse_column_set XML COLUMN_SET FOR ALL_SPARSE_COLUMNS);
 GO

Next, values are inserted into 3 of the 25 columns, specifying individual column names:

INSERT INTO lots_of_sparse_columns (col4, col7, col12) SELECT 4,6,11;

You can also insert directly into the COLUMN_SET, specifying values for columns in an XML frag-
ment. The capability to update the COLUMN_SET is another feature that differentiates COLUMN_SETs
from computed columns:

INSERT INTO lots_of_sparse_columns (sparse_column_set)
 SELECT '<col8>42</col8><col17>0</col17><col22>30000</col22>';

Here are my results when I run SELECT * from this table:

SELECT * FROM lots_of_sparse_columns;
Results:
ID sparse_column_set
------- ---
1 <col4>4</col4><col7>6</col7><col12>11</col12>
2 <col8>42</col8><col17>0</col17><col22>30000</col22>

You can still select from individual columns, either instead of or in addition to selecting the entire
COLUMN_SET. So the following SELECT statements are both valid:

416 Microsoft SQL Server 2012 Internals

SELECT ID, col10, col15, col20
 FROM lots_of_sparse_columns;
SELECT *, col11
 FROM lots_of_sparse_columns;

Keep the following points in mind if you decide to use sparse columns in your tables.

■■ When defined, the COLUMN_SET can’t be altered. To change a COLUMN_SET, you must drop
and re-create the COLUMN_SET column.

■■ A COLUMN_SET can be added to a table that doesn’t include any sparse columns. If sparse
columns are later added to the table, they appear in the column set.

■■ A COLUMN_SET is optional and isn’t required to use sparse columns.

■■ Constraints or default values can’t be defined on a COLUMN_SET.

■■ Distributed queries aren’t supported on tables that contain COLUMN_SETs.

■■ Replication doesn’t support COLUMN_SETs.

■■ The Change Data Capture feature doesn’t support COLUMN_SETs.

■■ A COLUMN_SET can’t be part of any kind of index. This includes XML indexes, full-text in-
dexes, and indexed views. A COLUMN_SET also can’t be added as an included column in any
index.

■■ A COLUMN_SET can’t be used in the filter expression of a filtered index or filtered statistics.

■■ When a view includes a COLUMN_SET, the COLUMN_SET appears in the view as an XML
column.

■■ XML data has a size limit of 2 GB. If the combined data of all the non-NULL sparse columns in
a row exceeds this limit, the operation produces an error.

■■ Copying all columns from a table with a COLUMN_SET (using either SELECT * INTO or INSERT
INTO SELECT *) doesn’t copy the individual sparse columns. Only the COLUMN_SET, as data
type XML, is copied.

Physical storage
At a high level, you can think of sparse columns as being stored much as they are displayed using the
COLUMN_SET—that is, as a set of (column-name, value) pairs. So if a particular column has no value,
it’s not listed and no space at all is required. If a column has a value, not only does SQL Server need
to store that value but it also needs to store information about which column has that value. As a
result, non-NULL sparse columns take more space than their NULL counterparts. To see the difference
graphically, you can compare Tables 8-5 and 8-6.

Table 8-5 represents a table with non-sparse columns. You can see a lot of wasted space when
most of the columns are NULL. Table 8-6 shows what the same table looks like if all the columns

 CHAPTER 8 Special storage 417

except the ID are defined as SPARSE. All that is stored are the names of all the non-NULL columns and
their values.

TABLE 8-5 Representation of a table defined with non-sparse columns, with many NULL values

ID sc1 sc2 sc3 sc4 sc5 sc6 sc7 sc8 sc9

1 1 9

2 2 4

3 6 7

4 1 5

5 4 8

6 3 9

7 5 7

8 2 8

9 3 6

TABLE 8-6 Representation of a table defined with sparse columns, with many NULL values

ID <sparse columns>

1 (sc1,sc9)(1,9)

2 (sc2,sc4)(2,4)

3 (sc6,sc7)(6,7)

4 (sc1,sc5)(1,5)

5 (sc4,sc8)(4,8)

6 (sc3,sc9)(3,9)

7 (sc5,sc7)(5,7)

8 (sc2,sc8)(2,8)

9 (sc3,sc6)(3,6)

SQL Server keeps track of the physical storage of sparse columns with a structure within a row
called a sparse vector. Sparse vectors are present only in the data records of a base table that has at
least one sparse column declared, and each data record of these tables contains a sparse vector. A
sparse vector is stored as a special variable-length column at the end of a data record. It’s a special
system column, and no metadata about this column appears in sys.columns or any other view. The
sparse vector is stored as the last variable-length column in the row. The only thing after the sparse
vector would be versioning information, used primarily with Snapshot isolation, as is discussed in
Chapter 13. The NULL bitmap has no bit for the sparse vector column (if a sparse vector exists, it’s
never NULL), but the count in the row of the number of variable-length columns includes the sparse
vector. You might want to revisit Figure 6-5 in Chapter 6 at this time to familiarize yourself with the
general structure of data rows.

418 Microsoft SQL Server 2012 Internals

Table 8-7 lists the meanings of the bytes in the sparse vector.

TABLE 8-7 Bytes in a sparse vector

Name Number of bytes Meaning

Complex Column
Header

2 Value of 05 indicates that the complex column is a sparse
vector.

Sparse Column Count 2 Number of sparse columns.

Column ID Set 2 * the number of sparse
columns

Two bytes for the column ID of each column in the table with
a value stored in the sparse vector.

Column Offset Table 2 * the number of sparse
columns

Two bytes for the offset of the ending position of each sparse
column.

Sparse Data Depends on actual values Data

Now look at the bytes of a row containing sparse columns. First, build a table containing two
sparse columns, and populate it with three rows:

USE testdb;
GO
IF OBJECT_ID ('sparse_bits') IS NOT NULL
 DROP TABLE sparse_bits;
GO
CREATE TABLE sparse_bits
(
c1 int IDENTITY,
c2 varchar(4),
c3 char(4) SPARSE,
c4 varchar(4) SPARSE
);
GO
INSERT INTO sparse_bits SELECT 'aaaa', 'bbbb', 'cccc';
INSERT INTO sparse_bits SELECT 'dddd', null, 'eeee';
INSERT INTO sparse_bits SELECT 'ffff', null, 'gg';
GO

Now you can use sys.dm_db_database_page_allocations to find the page number for the data page
storing these three rows and then use DBCC PAGE to look at the bytes on the page:

SELECT allocated_page_file_id as PageFID, allocated_page_page_id as PagePID,
 object_id as ObjectID, partition_id AS PartitionID,
 allocation_unit_type_desc as AU_type, page_type as PageType
FROM sys.dm_db_database_page_allocations
 (db_id('testdb'), object_id('sparse_bits'), null, null, 'DETAILED');
-- The output indicated that the data page for my table was on page 289;
DBCC TRACEON(3604);
DBCC PAGE(testdb, 1, 289, 1);

Only the output for the first data row, which is spread over three lines of DBCC PAGE output, is
shown here:

00000000: 30000800 01000000 02000002 00150029 80616161 0..............).aaa
00000014: 61050002 00030004 00100014 00626262 62636363 a bbbbccc
00000020: 63 c

 CHAPTER 8 Special storage 419

The boldfaced bytes are the sparse vector. You can find it easily because it starts right after the last
non-sparse variable-length column, which contained aaaa, or 61616161, and continues to the end of
the row. Figure 8-8 translates the sparse vector according to the meanings from Table 8-7. Don’t for-
get that you need to byte-swap numeric fields before translating. For example, the first two bytes are
05 00, which need to be swapped to get the hex value 0x0005. Then you can convert it to decimal.

FIGURE 8-8 Interpretation of the actual bytes in a sparse vector.

You can apply the same analysis to the bytes in the other two rows on the page. Here are some
things to note:

■■ No information about columns with NULL values appears in the sparse vector.

■■ No difference exists in storage between fixed-length and variable-length strings within the
sparse vector. However, that doesn’t mean you should use the two interchangeably. A sparse
varchar column that doesn’t fit in the 8,060 bytes can be stored as row-overflow data; a sparse
char column can’t be.

■■ Because only 2 bytes are used to store the number of sparse columns, this sets the limit on the
maximum number of sparse columns.

■■ The 2 bytes for the complex column header indicate that there might be other possibilities for
complex columns. At this time, the only other type of complex column that can be stored is
one storing a back-pointer, as SQL Server does when it creates a forwarded record. (Chapter 6
briefly discussed forwarded records when discussing updates to heaps.)

Metadata
Very little extra metadata is needed to support sparse columns. The catalog view sys.columns contains
two columns to keep track of sparse columns in your tables: is_sparse and is_column_set. Each column
has only two possible values, 0 or 1.

420 Microsoft SQL Server 2012 Internals

Corresponding to these column properties in sys.columns, the property function COLUMNPROP-
ERTY() also has the following properties related to sparse columns: IsSparse and IsColumnSet.

To inspect all tables with “sparse” in their name and determine which of their columns are SPARSE,
which are column sets, and which are neither, you can run the following query:

SELECT OBJECT_NAME(object_id) as 'Table', name as 'Column', is_sparse, is_column_set
FROM sys.columns
WHERE OBJECT_NAME(object_id) like '%sparse%';

To see just the table and column names for all COLUMN_SET columns, you can run the following
query:

SELECT OBJECT_NAME(object_id) as 'Table', name as 'Column'
FROM sys.columns
WHERE COLUMNPROPERTY(object_id, name, 'IsColumnSet') = 1;

Storage savings with sparse columns
The sparse column feature is designed to save you considerable space when most of your values are
NULL. In fact, as mentioned earlier, columns that aren’t NULL but are defined as SPARSE take up more
space than if they weren’t defined as SPARSE because the sparse vector has to store a couple of extra
bytes to keep track of them. To start to see the space differences, you can run the script in Listing 8-5,
which creates four tables with relatively short, fixed-length columns. Two have sparse columns and
two don’t. Rows are inserted into each table in a loop, which inserts 100,000 rows. One table with
sparse columns is populated with rows with NULL values, and the other is populated with rows that
aren’t NULL. One table with no sparse columns is populated with rows with NULL values; the other is
populated with rows that aren’t NULL.

LISTING 8-5 Saving space with sparse columns

USE testdb;
GO
SET NOCOUNT ON;
GO

IF OBJECT_ID('sparse_nonulls_size') IS NOT NULL
 DROP TABLE sparse_nonulls_size;
GO
CREATE TABLE sparse_nonulls_size
(col1 int IDENTITY,
 col2 datetime SPARSE,
 col3 char(10) SPARSE
);
GO
IF OBJECT_ID('nonsparse_nonulls_size') IS NOT NULL
 DROP TABLE nonsparse_nonulls_size;
GO
GO
CREATE TABLE nonsparse_nonulls_size
(col1 int IDENTITY,

 CHAPTER 8 Special storage 421

 col2 datetime,
 col3 char(10)
);
GO
IF OBJECT_ID('sparse_nulls_size') IS NOT NULL
 DROP TABLE sparse_nulls_size;
GO
GO
CREATE TABLE sparse_nulls_size
(col1 int IDENTITY,
 col2 datetime SPARSE,
 col3 char(10) SPARSE
);
GO
IF OBJECT_ID('nonsparse_nulls_size') IS NOT NULL
 DROP TABLE nonsparse_nulls_size;
GO
GO
CREATE TABLE nonsparse_nulls_size
(col1 int IDENTITY,
 col2 datetime,
 col3 char(10)
);
GO
DECLARE @num int
SET @num = 1
WHILE @num < 100000
BEGIN
 INSERT INTO sparse_nonulls_size
 SELECT GETDATE(), 'my message';
 INSERT INTO nonsparse_nonulls_size
 SELECT GETDATE(), 'my message';
 INSERT INTO sparse_nulls_size
 SELECT NULL, NULL;
 INSERT INTO nonsparse_nulls_size
 SELECT NULL, NULL;
 SET @num = @num + 1;
END;
GO

Now look at the number of pages in each table. The following metadata query looks at the num-
ber of data pages in the sys.allocation_units view for each of the four tables:

SELECT object_name(object_id) as 'table with 100K rows', data_pages
FROM sys.allocation_units au
 JOIN sys.partitions p
 ON p.partition_id = au.container_id
WHERE object_name(object_id) LIKE '%sparse%size';

And here are my results:

table with 100K rows data_pages
------------------------ ----------
sparse_nonulls_size 610
nonsparse_nonulls_size 402
sparse_nulls_size 169
nonsparse_nulls_size 402

422 Microsoft SQL Server 2012 Internals

Note that the smallest number of pages is required when the table has NULL sparse columns. If
the table has no sparse columns, the space usage is the same whether or not the columns have NULLs
because the data was defined as fixed length. This space requirement is more than twice as much
as needed for the sparse columns with NULL. The worst case is if the columns have been defined as
SPARSE but have no NULL values.

Of course, the previous examples are edge cases, where all the data is either NULL or non-NULL,
and is of all fixed-length data types. So although you can say that sparse columns require more stor-
age space for non-NULL values than is required for identical data that’s not declared as SPARSE, the
actual space savings depends on the data types and the percentage of rows that are NULL. Table
8-8—reprinted from SQL Server Books Online—shows the space usage for each data type. The NULL
Percentage column indicates what percent of the data must be NULL to achieve a net space savings
of 40 percent.

TABLE 8-8 Storage requirements for sparse columns

Data type
Storage bytes when
not SPARSE

Storage bytes when
SPARSE and bot NULL NULL percentage

Fixed-length data types

Bit 0.125 5 98 percent

Tinyint 1 5 86 percent

Smallint 2 6 76 percent

Int 4 8 64 percent

Bigint 8 12 52 percent

Real 4 8 64 percent

Float 8 12 52 percent

smallmoney 4 8 64 percent

Money 8 12 52 percent

smalldatetime 4 8 64 percent

Datetime 8 12 52 percent

uniqueidentifier 16 20 43 percent

Date 3 7 69 percent

Precision-dependent–length data types

datetime2(0) 6 10 57 percent

datetime2(7) 8 12 52 percent

time(0) 3 7 69 percent

time(7) 5 9 60 percent

datetimetoffset(0) 8 12 52 percent

datetimetoffset (7) 10 14 49 percent

decimal/numeric(1,s) 5 9 60 percent

decimal/numeric(38,s) 17 21 42 percent

 CHAPTER 8 Special storage 423

Data type
Storage bytes when
not SPARSE

Storage bytes when
SPARSE and bot NULL NULL percentage

Data-dependent–length data types

sql_variant Varies

varchar or char 2+avg. data 4+avg. data 60 percent

nvarchar or nchar 2+avg. data 4+avg. data 60 percent

varbinary or binary 2+avg. data 4+avg. data 60 percent

Xml 2+avg. data 4+avg. data 60 percent

hierarchyId 2+avg. data 4+avg. data 60 percent

The general recommendation is that you should consider using sparse columns when you antici-
pate that they provide a space savings of at least 20 to 40 percent.

Data compression

SQL Server provides the capability of data compression, a feature introduced in SQL Server 2008 and
available in the Enterprise edition only. Compression can reduce the size of your tables by exploiting
existing inefficiencies in the actual data. These inefficiencies can be grouped into two general
categories.

■■ The first category relates to storage of individual data values when they are stored in columns
defined using the maximum possible size. For example, a table might need to define a quan-
tity column as int because occasionally you could be storing values larger than 32,767, which
is the maximum smallint value. However, int columns always need 4 bytes, and if most of your
quantity values are less than 100, those values could be stored in tinyint columns, which need
only 1 byte of storage. The Row Compression feature of SQL Server can compress individual
columns of data to use only the actual amount of space required.

■■ The second type of inefficiency in the data storage occurs when the data on a page con-
tains duplicate values or common prefixes across columns and rows. This inefficiency can be
minimized by storing the repeating values only once and then referencing those values from
other columns. The Page Compression feature of SQL Server can compress the data on a page
by maintaining entries containing common prefixes or repeating values. Note that when you
choose to apply page compression to a table or index, SQL Server always also applies Row
Compression.

Vardecimal
SQL Server 2005 SP2 introduced a simple form of compression, which could be applied only to col-
umns defined using the decimal data type. (Keep in mind that the data type numeric is completely
equivalent to decimal, and anytime I mention decimal, it also means numeric.) In SQL Server 2005, the
option must be enabled at both the database level (using the procedure sp_db_vardecimal_storage_
format) and at the table level (using the procedure sp_tableoption). In SQL Server 2008, SQL Server

424 Microsoft SQL Server 2012 Internals

2008 R2, and SQL Server 2012, all user databases are enabled automatically for the vardecimal stor-
age format, so vardecimal must be enabled only for individual tables. Like data compression, which
this section looks at in detail, the vardecimal storage format is available only in SQL Server Enterprise
edition.

In SQL Server 2005, when both of these stored procedures were run, decimal data in the tables
enabled for vardecimal were stored differently. Rather than be treated as fixed-length data, decimal
columns are stored in the variable section of the row and use only the number of bytes required.
(Chapter 6 looked at the difference between fixed-length data and variable-length data storage.) In
addition to all the table partitions that use the vardecimal format for all decimal data, all indexes on
the table automatically use the vardecimal format.

Decimal data values are defined with a precision of between 1 and 38 and, depending on the
defined precision, they use between 5 and 17 bytes. Fixed-length decimal data uses the same number
of bytes for every row, even if the actual data could fit into far fewer bytes. When a table doesn’t use
the vardecimal storage format, every entry in the table consumes the same number of bytes for each
defined decimal column, even if the value of a row is 0, NULL, or some value that can be expressed
in a smaller number of bytes, such as the number 3. When vardecimal storage format is enabled for a
table, the decimal columns in each row use the minimum amount of space required to store the speci-
fied value. Of course, as you saw in Chapter 6, every variable-length column has 2 bytes of additional
overhead associated with it, but when storing very small values in a column defined as decimal with a
large precision, the space saving can more than make up for those additional 2 bytes. For vardecimal
storage, both NULLs and zeros are stored as zero-length data and use only the 2 bytes of overhead.

Although SQL Server 2012 supports the vardecimal format, I recommend that you use row com-
pression when you want to reduce the storage space required by your data rows. Both the table op-
tion and the database option for enabling vardecimal storage have been deprecated.

Row compression
You can think of row compression as an extension of the vardecimal storage format. In many situa-
tions, SQL Server uses more space than needed to store data values, and without the Row Compres-
sion feature, the only control you have is to use a variable-length data type. Any fixed-length data
types always use the same amount of space in every row of a table, even if space is wasted.

As mentioned earlier, you can declare a column as type int because occasionally you might need
to store values greater than 32,767. An int needs 4 bytes of space, no matter what number is stored,
even if the column is NULL. Only character and binary data can be stored in variable-length columns
(and, of course, decimal, when that option is enabled). Row compression allows integer values to use
only the amount of storage space required, with the minimum being 1 byte. A value of 100 needs
only a single byte for storage, and a value of 1,000 needs 2 bytes. The storage engine also includes an
optimization that allows zero and NULL to use no storage space for the data itself.

Later, this section provides the details about compressed data storage. Starting in SQL Server 2008
R2, row compression also can compress Unicode data. Rather than each Unicode character always be
stored in two bytes, if the character needs only a single byte, it is stored only in a single byte.

 CHAPTER 8 Special storage 425

enabling row compression
You can enable compression when creating a table or index, or when using the ALTER TABLE or ALTER
INDEX command. Also, if the table or index is partitioned, you can choose to compress just a subset
of the partitions. (You’ll look at partitioning later in this chapter.)

The script in Listing 8-6 creates two copies of the dbo.Employees table in the AdventureWorks2012
database. When storing row-compressed data, SQL Server treats values that can be stored in 8 bytes
or fewer (that is, short columns) differently than it stores data that needs more than 8 bytes (long
columns). For this reason, the script updates one of the rows in the new tables so that none of the
columns in that row contains more than 8 bytes. The Employees_rowcompressed table is then enabled
for row compression, and the Employees_uncompressed table is left uncompressed. A metadata query
examining pages allocated to each table is executed against each table so that you can compare the
sizes before and after row compression.

LISTING 8-6 Comparing two tables to show row compression

USE AdventureWorks2012;
GO
IF OBJECT_ID('Employees_uncompressed') IS NOT NULL
 DROP TABLE Employees_uncompressed;
GO
GO
SELECT e.BusinessEntityID, NationalIDNumber, JobTitle,
 BirthDate, MaritalStatus, VacationHours,
 FirstName, LastName
 INTO Employees_uncompressed

 FROM HumanResources.Employee e
 JOIN Person.Person p
 ON e.BusinessEntityID = p.BusinessEntityID;
GO
UPDATE Employees_uncompressed
SET NationalIDNumber = '1111',
 JobTitle = 'Boss',
 LastName = 'Gato'
WHERE FirstName = 'Ken'
AND LastName = 'Sánchez';
GO
ALTER TABLE dbo.Employees_uncompressed
 ADD CONSTRAINT EmployeeUn_ID
 PRIMARY KEY (BusinessEntityID);
GO
SELECT OBJECT_NAME(object_id) as name,
 rows, data_pages, data_compression_desc
FROM sys.partitions p JOIN sys.allocation_units au
 ON p.partition_id = au.container_id
WHERE object_id = object_id('dbo.Employees_uncompressed');

IF OBJECT_ID('Employees_rowcompressed') IS NOT NULL
 DROP TABLE Employees_rowcompressed;
GO
SELECT BusinessEntityID, NationalIDNumber, JobTitle,
 BirthDate, MaritalStatus, VacationHours,

426 Microsoft SQL Server 2012 Internals

 FirstName, LastName
 INTO Employees_rowcompressed
 FROM dbo.Employees_uncompressed
GO
ALTER TABLE dbo.Employees_rowcompressed
 ADD CONSTRAINT EmployeeR_ID
 PRIMARY KEY (BusinessEntityID);
GO
ALTER TABLE dbo.Employees_rowcompressed
REBUILD WITH (DATA_COMPRESSION = ROW);
GO
SELECT OBJECT_NAME(object_id) as name,
 rows, data_pages, data_compression_desc
FROM sys.partitions p JOIN sys.allocation_units au
 ON p.partition_id = au.container_id
WHERE object_id = object_id('dbo.Employees_rowcompressed');
GO

The dbo.Employees_rowcompressed table is referred to again later in this section, or you can exam-
ine it on your own as the details of compressed row storage are covered.

Now you can start looking at the details of row compression, but keep these points in mind:

■■ Row compression is available only in SQL Server 2008, SQL Server 2008 R2, and SQL Server
2012 Enterprise and Developer editions.

■■ Row compression doesn’t change the maximum row size of a table or index.

■■ Row compression can’t be enabled on a table with any columns defined as SPARSE.

■■ If a table or index has been partitioned, row compression can be enabled on all the partitions
or on a subset of the partitions.

New row format
Chapter 6 looked at the format for storing rows that has been used since SQL Server 7.0 and is still
used in SQL Server 2012 if you haven’t enabled compression. That format is referred to as the Fixed-
Var format because it has a fixed-length data section separate from a variable-length data section. A
completely new row format was introduced in SQL Server 2008 for storing compressed rows, and this
format is referred to as CD format. The term CD, which stands for “column descriptor,” refers to every
column having description information contained in the row itself.

You might want to re-examine Figure 6-6 in Chapter 6 as a reminder of what the FixedVar format
looks like and compare it to the new CD format. Figure 8-9 shows an abstraction of the CD format. It’s
difficult to be as specific as Figure 6-6 is because except for the header, the number of bytes in each
region is completely dependent on the data in the row.

FIGURE 8-9 General structure of a CD record.

 CHAPTER 8 Special storage 427

Each of these sections is described in detail.

Header The row header is always a single byte and roughly corresponds to what Chapter 6 referred
to as Status Bits A. The bits have the following meanings.

■■ Bit 0 This bit indicates the type of record; it’s 1 for the new CD record format.

■■ Bit 1 This bit indicates that the row contains versioning information.

■■ Bits 2 through 4 Taken as a 3-bit value, these bits indicate what kind of information is
stored in the row. The possible values are as follows:

000 Primary record

001 Ghost empty record

010 Forwarding record

011 Ghost data record

100 Forwarded record

101 Ghost forwarded record

110 Index record

111 Ghost index record

■■ Bit 5 This bit indicates that the row contains a long data region (with values greater than 8
bytes in length).

■■ Bits 6 and 7 These bits are not used in SQL Server 2012.

The CD region The CD region is composed of two parts. The first part is either 1 or 2 bytes, indicat-
ing the number of short columns. If the most significant bit of the first byte is set to 0, it’s a 1-byte
field with a maximum value of 127. If a table has more than 127 columns, the most significant bit is 1,
and SQL Server uses 2 bytes to represent the number of columns, which can be up to 32,767.

Following the 1 or 2 bytes for the number of columns is the CD array, which uses 4 bits for each
column in the table to represent information about the length of the column. Four bits can have 16
different possible values, but in SQL Server 2012, only 13 of them are used.

■■ 0 (0x0) indicates that the corresponding column is NULL.

■■ 1 (0x1) indicates that the corresponding column is a 0-byte short value.

■■ 2 (0x2) indicates that the corresponding column is a 1-byte short value.

■■ 3 (0x3) indicates that the corresponding column is a 2-byte short value.

■■ 4 (0x4) indicates that the corresponding column is a 3-byte short value.

■■ 5 (0x5) indicates that the corresponding column is a 4-byte short value.

428 Microsoft SQL Server 2012 Internals

■■ 6 (0x6) indicates that the corresponding column is a 5-byte short value.

■■ 7 (0x7) indicates that the corresponding column is a 6-byte short value.

■■ 8 (0x8) indicates that the corresponding column is a 7-byte short value.

■■ 9 (0x9) indicates that the corresponding column is an 8-byte short value.

■■ 10 (0xa) indicates that the corresponding column is long data value and uses no space in the
short data region.

■■ 11 (0xb) is used for columns of type bit with the value of 1. The corresponding column takes
no space in the short data region.

■■ 12 (0xc) indicates that the corresponding column is a 1-byte symbol, representing a value in
the page dictionary. (Later, the section “Page compression” talks about the dictionary).

The short data region The short data region doesn’t need to store the length of each short data
value because that information is available in the CD region. However, if table has hundreds of col-
umns, accessing the last columns can be expensive. To minimize this cost, columns are grouped into
clusters of 30 columns each and at the beginning of the short data region is an area called the short
data cluster array. Each array entry is a single-byte integer and indicates the sum of the sizes of all the
data in the previous cluster in the short data region, so that the value is basically a pointer to the first
column of the cluster. The first cluster of short data starts right after the cluster array, so no cluster
offset is needed for it. A cluster might not have 30 data columns, however, because only columns with
a length less than or equal to 8 bytes are stored in the short data region.

As an example, consider a row with 64 columns, and columns 5, 10, 15, 20, 25, 30, 40, 50, and 60
are long data, and the others are short. The CD region contains the following.

■■ A single byte containing the value 64, the number of columns in the CD region.

■■ A CD array of 4 * 64 bits, or 32 bytes, containing information about the length of each col-
umn. It has 55 entries with values indicating an actual data length for the short data, and 8
entries of 0xa, indicating long data.

The short data region contains the following.

■■ A short data cluster offset array containing the two values, each containing the length of a
short data cluster. In this example, the first cluster, which is all the short data in the first 30 col-
umns, has a length of 92, so the 92 in the offset array indicates that the second cluster starts
92 bytes after the first. The number of clusters can be calculated as (Number of columns – 1)
/30. The maximum value for any entry in the cluster array is 240, if all 30 columns were short
data of 8 bytes in length.

■■ All the short data values.

Figure 8-10 illustrates the CD region and the short data region with sample data for the row de-
scribed previously. The CD array is shown in its entirety, with a symbol indicating the length of each
of the 64 values. (So the depiction of this array can fit on a page of this book, the actual data values

 CHAPTER 8 Special storage 429

aren’t shown.) The first cluster has 24 values in the short data region (6 are long values), the second
cluster has 27 (3 are long), and the third cluster has the remaining 4 columns (all short).

FIGURE 8-10 The CD region and short data region in a CD record.

To locate the entry for a short column value in the short data region, the short data cluster array
is first examined to determine the start address of the containing cluster for the column in the short
data region.

The long data region Any data in the row longer than 8 bytes is stored in the long data region.
This includes complex columns, which don’t contain actual data but instead contain information
necessary to locate data stored off the row. This can include large object data and row overflow data
pointers. Unlike short data, where the length can be stored simply in the CD array, long data needs an
actual offset value to allow SQL Server to determine the location of each value. This offset array looks
very similar to the offset array discussed in Chapter 6 for the FixedVar records.

The long data region is composed of three parts: an offset array, a long data cluster array, and the
long data.

The offset array is composed of the following.

■■ A 1-byte header in which currently only the first two bits are used Bit 0 indicates
whether the long data region contains any 2-byte offset values. Currently, this value is always
1, because all offsets are always 2 bytes. Bit 1 indicates whether the long data region contains
any complex columns.

■■ A 2-byte value indicating the number of offsets to follow The most significant bit in the
first byte of the offset value indicates whether the corresponding entry in the long data region
is a complex column. The rest of the bits/bytes in the array entry store the ending offset value
for the corresponding entry in the long data region.

Similar to the cluster array for the short data, the long data cluster array is used to limit the cost
of finding columns near the end of a long list of columns. It has one entry for each 30-column cluster
(except the last one). Because the offset of each long data column is already stored in the offset array,
the cluster array just needs to keep track of how many of the long data values are in each cluster. Each
value is a 1-byte integer representing the number of long data columns in that cluster. Just as for the
short data cluster, the number of entries in the cluster array can be computed as (Number of columns
in the table – 1)/30.

430 Microsoft SQL Server 2012 Internals

Figure 8-11 illustrates the long data region for the row described previously, with 64 columns,
nine of which are long. Values for the offsets aren’t included for space considerations. The long data
cluster array has two entries indicating that six of the values are in the first cluster and two are in the
second. The remaining values are in the last cluster.

FIGURE 8-11 The long data region of a CD record.

Special information The end of the row contains three optional pieces of information. The exis-
tence of any or all of this information is indicated by bits in the 1-byte header at the very beginning of
the row.

■■ Forwarding pointer This value is used when a heap contains a forwarding stub that points
to a new location to which the original row has been moved. Chapter 6 discussed forwarding
pointers. The forwarding pointer contains three header bytes and an 8-byte row ID.

■■ Back pointer This value is used in a row that has been forwarded to indicate the original
location of the row. It’s stored as an 8-byte Row ID.

■■ Versioning info When a row is modified under one of the snapshot-based isolation levels,
SQL Server adds 14 bytes of versioning information to the row. Chapter 13 discusses row ver-
sioning and Snapshot isolation.

Now look at the actual bytes in two of the rows in the dbo.Employees_rowcompressed table cre-
ated earlier in Listing 8-6. The DBCC PAGE command gives additional information about compressed
rows and pages. In particular, before the bytes for the row are shown, DBCC PAGE displays the CD
array. For the first row returned on the first page in the dbo.Employees_rowcompressed table, all the
columns contain short data. The row has the data values shown here:

For short data, the CD array contains the actual length of each of the columns, and you can see the
following information for the first row in the DBCC PAGE output:

 CHAPTER 8 Special storage 431

CD array entry = Column 1 (cluster 0, CD array offset 0): 0x02 (ONE_BYTE_SHORT)
CD array entry = Column 2 (cluster 0, CD array offset 0): 0x06 (FIVE_BYTE_SHORT)
CD array entry = Column 3 (cluster 0, CD array offset 1): 0x06 (FIVE_BYTE_SHORT)
CD array entry = Column 4 (cluster 0, CD array offset 1): 0x04 (THREE_BYTE_SHORT)
CD array entry = Column 5 (cluster 0, CD array offset 2): 0x02 (ONE_BYTE_SHORT)
CD array entry = Column 6 (cluster 0, CD array offset 2): 0x02 (ONE_BYTE_SHORT)
CD array entry = Column 7 (cluster 0, CD array offset 3): 0x04 (THREE_BYTE_SHORT)
CD array entry = Column 8 (cluster 0, CD array offset 3): 0x06 (FIVE_BYTE_SHORT)

So the first column has a CD code of 0x02, which indicates a 1-byte value, and, as you can see in
the data row, is the integer 1. The second column contains a 5-byte value and is the Unicode string
1111. Notice that compressed Unicode strings are always an odd number of bytes. This is how SQL
Server determines that the string has actually been compressed, because an uncompressed Unicode
string—which needs 2 bytes for each character—will always be an even number of bytes. Because the
Unicode string has an even number of characters, SQL Server adds a single byte 0x01 as a termina-
tor. In Figure 8-12, which shows the DBCC PAGE output for the row contents, you can see that three
strings have the 0x01 terminator to make their length odd: ‘1111’, ‘Boss’, and ‘Gato’. I’ll leave it to you
to inspect the codes for the remaining columns.

FIGURE 8-12 A compressed row with eight short data columns.

432 Microsoft SQL Server 2012 Internals

Now look at a row with some long columns. The 22nd row on the page (Slot 21) has three long
columns in the data values shown here:

The CD array for this row looks like the following:

CD array entry = Column 1 (cluster 0, CD array offset 0): 0x02 (ONE_BYTE_SHORT)
CD array entry = Column 2 (cluster 0, CD array offset 0): 0x0a (LONG)
CD array entry = Column 3 (cluster 0, CD array offset 1): 0x0a (LONG)
CD array entry = Column 4 (cluster 0, CD array offset 1): 0x04 (THREE_BYTE_SHORT)
CD array entry = Column 5 (cluster 0, CD array offset 2): 0x02 (ONE_BYTE_SHORT)
CD array entry = Column 6 (cluster 0, CD array offset 2): 0x02 (ONE_BYTE_SHORT)
CD array entry = Column 7 (cluster 0, CD array offset 3): 0x08 (SEVEN_BYTE_SHORT)
CD array entry = Column 8 (cluster 0, CD array offset 3): 0x0a (LONG)

Figure 8-13 shows the bytes that DBCC PAGE returns for this data row. The bytes in the long data
region are boldfaced.

FIGURE 8-13 A compressed row with five short data columns and three long.

Notice the following in the first part of the row, before the long data region.

■■ The first byte in the row is 0x21, indicating that not only is this row in the new CD record for-
mat, but also that the row contains a long data region.

■■ The second byte indicates eight columns in the table, just as for the first row.

■■ The following 4 bytes for the CD array has three values of a, which indicate long values not
included in the short data region.

■■ The short data values are listed in order after the CD array and are as follows:

• The BusinessEntityID is 1 byte, with the value 0x96, or +22.

• The Birthdate is 3 bytes.

• The MaritalStatus is 1 byte, with the value 0x0053, or ‘S’.

• The VacationHours is 1 byte, with the value 0xad, or +45.

• The FirstName is 7 bytes, with the value 53617269796110 or ‘Sariya’.

 CHAPTER 8 Special storage 433

The Long Data Region Offset Array is 8 bytes long, as follows.

■■ The first byte is 0x01, which indicates that the row-offset positions are 2 bytes long.

■■ The second byte is 0x03, which indicates three columns in the long data region.

■■ The next 6 bytes are the 2-byte offsets for each of the three values. Notice that the offset
refers to position the column ends with the Long Data area itself.

• The first 2-byte offset is 0x0009, which indicates that the first long value is 9 bytes long.

• The second 2-byte offset is 001e, or 30, which indicates that the second long value ends 21
bytes after the first. The second value is Marketing Specialist, which is a 21-byte string.

• The third 2-byte offset is 0x002f, or 47, which indicates the third value, Harnpadoungsataya,
ends 17 bytes after the second long value.

Fewer than 30 columns means no Long Data Cluster Array, but the data values are stored immedi-
ately after the Long Data Region Offset Array.

Because of space constraints, this chapter won’t show you the details of a row with multiple
column clusters (that is, more than 30 columns), but you should have enough information to start
exploring such rows on your own.

Page compression
In addition to storing rows in a compressed format to minimize the space required, SQL Server 2012
can compress whole pages by isolating and reusing repeating patterns of bytes on the page.

Unlike row compression, page compression is applied only after a page is full, and only if SQL
Server determines that compressing the page saves a meaningful amount of space. (You’ll find out
what that amount is later in this section.) Keep the following points in mind when planning for page
compression.

■■ Page compression is available only in the SQL Server 2008, SQL Server 2008 R2, and SQL
Server 2012 Enterprise and Developer editions.

■■ Page compression always includes row compression—that is, if you enable page compression
for a table, row compression is automatically enabled.

■■ When compressing a B-tree, only the leaf level can be page compressed. For performance
reasons, the node levels are left uncompressed.

■■ If a table or index has been partitioned, page compression can be enabled on all the parti-
tions or on a subset of the partitions.

434 Microsoft SQL Server 2012 Internals

The code in Listing 8-7 makes another copy of the dbo.Employees table and applies page com-
pression to it. It then captures the page location and linkage information from DBCC IND for the
three tables: dbo.Employees_uncompressed, dbo.Employees_rowcompressed, and dbo. Employees_
pagecompressed. The code then uses the captured information to report on the number of data pages
in each of the three tables.

LISTING 8-7 Applying page compression to a table

USE AdventureWorks2012;
GO
IF OBJECT_ID('Employees_pagecompressed') IS NOT NULL
 DROP TABLE Employees_pagecompressed;
GO
SELECT BusinessEntityID, NationalIDNumber, JobTitle,
 BirthDate, MaritalStatus, VacationHours,
 FirstName, LastName
 INTO Employees_pagecompressed
 FROM dbo.Employees_uncompressed
GO
ALTER TABLE dbo.Employees_pagecompressed
 ADD CONSTRAINT EmployeeP_ID
 PRIMARY KEY (BusinessEntityID);
GO
ALTER TABLE dbo.Employees_pagecompressed
REBUILD WITH (DATA_COMPRESSION = PAGE);
GO
SELECT OBJECT_NAME(object_id) as name,
 rows, data_pages, data_compression_desc
FROM sys.partitions p JOIN sys.allocation_units au
 ON p.partition_id = au.container_id
WHERE object_id = object_id('dbo.Employees_pagecompressed');
GO

SELECT object_name(object_id) as Table_Name, count(*) as Page_Count
FROM sys.dm_db_database_page_allocations(db_id('AdventureWorks2012'), null, null, null,
'DETAILED')
WHERE object_name(object_id) like ('Employees%compressed')
AND page_type_desc = 'DATA_PAGE'
GROUP BY object_name(object_id);

If you run this script, notice in the output that row compression reduced the size of this small table
from five pages to three, and then page compression further reduced the size from three pages to
two.

SQL Server can perform two different operations to try to compress a page by using common
values: column prefix compression and dictionary compression.

 CHAPTER 8 Special storage 435

Column prefix compression
As the name implies, column prefix compression works on data columns in the table being com-
pressed, but it looks only at the column values on a single page. For each column, SQL Server chooses
a common prefix that can be used to reduce the storage space required for values in that column.
The longest value in the column that contains that prefix is chosen as the anchor value. Each column
is then stored—not as the actual data value, but as a delta from the anchor value. Suppose that you
have the following character values in a column of a table to be page-compressed:

DEEM
DEE
FFF
DEED
DEE
DAN

SQL Server might note that DEE is a useful common prefix, so DEED is chosen as the anchor value.
Each column would be stored as the difference between its value and the anchor value. This differ-
ence is stored as a two-part value: the number of characters from the anchor to use and the ad-
ditional characters to append. So DEEM is stored as <3><M>, meaning the value uses the first three
characters from the common prefix and appends a single character, M, to it. DEED is stored as an
empty string (but not null) to indicate it matched the prefix exactly. DEE is stored as <3>, with the
second part empty, because no additional characters can be appended. The list of column values is
replaced by the values shown here:

DEEM -> <3><M>
DEE -> <3><>
FFF -> <><FFF>
DEED -> <><>
DEE -> <3><>
DAN -> <1><AN>

Keep in mind that the compressed row is stored in the CD record format, so the CD array value has
a special encoding to indicate the value is actually NULL. If the replacement value is <><>, and the
encoding doesn’t indicate NULL, the value matches the prefix exactly.

SQL Server applies the prefix detection and value replacement algorithm to every column and cre-
ates a new row called an anchor record to store the anchor values for each column. If no useful prefix
can be found, the value in the anchor record is NULL, and then all the values in the column are stored
just as they are.

Figure 8-14 shows an image of six rows in a table page compression, and then shows the six rows
after the anchor record has been created and the substitutions have been made for the actual data
values.

436 Microsoft SQL Server 2012 Internals

FIGURE 8-14 Before and after column prefix compression.

Dictionary compression
After prefix compression is applied to every column individually, the second phase of page compres-
sion looks at all values on the page to find duplicates in any column of any row, even if they have
been encoded to reflect prefix usage. You can see in the bottom part of Figure 8-16 that two of the
values occur multiple times: <3><> occurs three times and <1><AN> occurs twice. The process of
detecting duplicate values is data type–agnostic, so values in completely different columns could
be the same in their binary representation. For example, a 1-byte character is represented in hex as
0x54, and it would be seen as a duplicate of the 1-byte integer 84, which is also represented in hex
as 0x54. The dictionary is stored as a set of symbols, each of which corresponds to a duplicated value
on the data page. After the symbols and data values are determined, each occurrence of one of the
duplicated values is replaced by the symbol. SQL Server recognizes that the value actually stored in
the column is a symbol and not a data value by examining the encoding in the CD array. Values which
have been replaced by symbols have a CD array value of 0xc. Figure 8-15 shows the data from Figure
8-14 after replacing the five values with symbols.

 CHAPTER 8 Special storage 437

FIGURE 8-15 A page compressed with dictionary compression.

Not every page in a compressed table has both an anchor record for prefixes and a dictionary. If
no useful prefix values are available, the page might have just a dictionary. If no values repeat often
enough that replacing them with symbols saves space, the page might have just an anchor record. Of
course, some pages might have neither an anchor record nor a dictionary if the data on the page has
no patterns at all.

Physical storage
When a page is compressed, only one main structural change occurs. SQL Server adds a hidden row
right after the page header (at byte offset 96, or 0x60) called the compression information (CI) record.
Figure 8-16 shows the structure of the CI record.

FIGURE 8-16 Structure of a CI record.

The CI record doesn’t have an entry in the slot array for the page, but it’s always at the same loca-
tion. Also, a bit in the page header indicates that the page is page-compressed, so SQL Server looks
for the CI record. If you use DBCC PAGE to dump a page, the page header information contains a
value called m_typeFlagBits. If this value is 0x80, the page is compressed.

You can run the following script to use the sys.dm_db_database_page_allocations function to find
the page ID (PID) of the first page and the file ID (FID) of the first page for each of the three tables
that you’ve been exploring. You can use this information to examine the page with DBCC PAGE. No-
tice that only the page for Employees_pagecompressed has the m_typeFlagBits value set to 0x80.

USE AdventureWorks2012;
GO
SELECT object_name(object_id) as Table_Name, allocated_page_file_id as First_Page_FID,
 allocated_page_page_id as First_Page_PID

438 Microsoft SQL Server 2012 Internals

FROM sys.dm_db_database_page_allocations(db_id('AdventureWorks2012'),
 null, null, null, 'DETAILED')
WHERE object_name(object_id) like ('Employees%compressed')
AND page_type_desc = 'DATA_PAGE'
AND previous_page_page_id IS NULL;

Using DBCC PAGE to look at a page-compressed page does provide information about the con-
tents of the CI record, and you’ll look at some of that information after examining what each section
means.

Header The header is a 1-byte value keeping track of information about the CI. Bit 0 indicates the
version, which in SQL Server 2012 is always 0. Bit 1 indicates whether the CI has an anchor record, and
bit 2 indicates whether the CI has a dictionary. The rest of the bits are unused.

PageModCount The PageModCount value keeps track of the changes to this particular page and
is used when determining whether the compression on the page should be reevaluated, and a new CI
record built. The next section, “Page compression analysis,” talks more about how this value is used.

Offsets The offsets contain values to help SQL Server find the dictionary. It contains a value indicat-
ing the page offset for the end of the anchor record and a value indicating the page offset for the
end of the CI record itself.

Anchor Record The anchor record looks exactly like a regular CD record on the page, including
the record header, the CD array, and both a short data area and a long data area. The values stored in
the data area are the common prefix values for each column, some of which might be NULL.

Dictionary The dictionary area is composed of three sections.

■■ A 2-byte field containing a numeric value representing the number of entries in the dictionary

■■ An offset array of 2-byte entries, indicating the end offset of each dictionary entry relative to
the start of the dictionary data section

■■ The actual dictionary data entries

Remember that each dictionary entry is a byte string that is replaced in the regular data rows by
a symbol. The symbol is simply an integer value from 0 to N. Also, remember that the byte strings
are data type–independent—that is, they are just bytes. After SQL Server determines what recurring
values are stored in the dictionary, it sorts the list first by data length, then by data value, and then
assigns the symbols in order. So suppose that the values to be stored in the dictionary are these:

0x 53 51 4C
0x FF F8
0x DA 15 43 77 64
0x 34 F3 B6 22 CD
0x 12 34 56

Table 8-9 shows the sorted dictionary, along with the length and symbol for each entry.

 CHAPTER 8 Special storage 439

TABLE 8-9 Values in a page compression dictionary

Value Length Symbol

0x FF F8 2 bytes 0

0x 12 34 56 3 bytes 1

0x 53 51 4C 3 bytes 2

0x 34 F3 B6 22 CD 4 bytes 3

0x DA 15 43 77 64 4 bytes 4

The dictionary area would then resemble Figure 8-17.

FIGURE 8-17 Dictionary area in a compression information record.

Note that the dictionary never actually stores the symbol values. They are stored only in the data
records that need to use the dictionary. Because they are simply integers, they can be used as an
index into the offset list to find the appropriate dictionary replacement value. For example, if a row
on the page contains the dictionary symbol [2], SQL Server looks in the offset list for the third entry,
which in Figure 8-17 ends at offset 0800 from the start of the dictionary. SQL Server then finds the
value that ends at that byte, which is 0x 53 51 4C. If this byte string was stored in a char or varchar
column—that is, a single-byte character string—it would correspond to the character string SQL.

Earlier in this chapter, you saw that the DBCC PAGE output displays the CD array for compressed
rows. For compressed pages, DBCC PAGE shows the CI record and details about the anchor record
within it. Also, with format 3, DBCC PAGE shows details about the dictionary entries. When I captured
the DBCC PAGE in format 3 for the first page of my Employees_pagecompressed table and copied it
to a Microsoft Office Word document, it needed 384 pages. Needless to say, I won’t show you all that
output (just copying the CI record information required 10 pages, which is still too much to show in
this book). You can explore the output of DBCC PAGE for the tables with compressed pages on your
own.

440 Microsoft SQL Server 2012 Internals

Page compression analysis
This section covers some of the details regarding how SQL Server determines whether to compress
a page and what values it uses for the anchor record and the dictionary. Row compression is always
performed when requested, but page compression depends on the amount of space that can be
saved. However, the actual work of compressing the rows has to wait until after page compression
is performed. Because both types of page compression—prefix substitution and dictionary symbol
substitution—replace the actual data values with encodings, the row can’t be compressed until SQL
Server determines what encodings will replace the actual data.

When page compression is first enabled for a table or partition, SQL Server goes through every
full page to determine the possible space savings. (Any pages that aren’t full aren’t considered for
compression.) This compression analysis actually creates the anchor record, modifies all the columns
to reflect the anchor values, and generates the dictionary. Then it compresses each row. If the new
compressed page can hold at least five more rows, or 25 percent more rows than the current page
(whichever is larger), the compressed page replaces the uncompressed page. If compressing the page
doesn’t result in this much savings, the compressed page is discarded.

When determining what values to use for the anchor record on a compressed page, SQL Server
needs to look at every byte in every row, one column at a time. As it scans the column, it also keeps
track of possible dictionary entries that can be used in multiple columns. The anchor record values
can be determined for each column in a single pass—that is, by the time all the bytes in all the rows
for the first column are examined once, SQL Server has determined the anchor record value for that
column or has determined that no anchor record value will save sufficient space.

As SQL Server examines each column, it collects a list of possible dictionary entries. As discussed
earlier, the dictionary contains values that occur enough times on the page so that replacing them
with a symbol is cost-effective in terms of space. For each possible dictionary entry, SQL Server keeps
track of the value, its size, and the count of occurrences. If (size_of_data_value –1) * (count–1) –2
is greater than zero, it means the dictionary replacement saves space, and the value is considered
eligible for the dictionary. Because the dictionary symbols are single-byte integers, SQL Server tries
can’t store more than 255 entries in the dictionary on any page, so if more dictionary entries might be
used based on the data on the page, they are sorted by number of occurrences during the analysis,
and only the most frequently occurring values are used in the dictionary.

CI record rebuilding
If a table is enabled for either page or row compression, new rows are always compressed before they
are inserted into the table. However, the CI record containing the anchor record and the dictionary is
rebuilt on an all-or-nothing basis—that is, SQL Server doesn’t just add some new entry to the diction-
ary when new rows are inserted. SQL Server evaluates whether to rebuild the CI record when the
page has been changed a sufficient number of times. It keeps track of changes to each page in the
PageModCount field of the CI record, and that value is updated every time a row is inserted, updated,
or deleted.

If a full page is encountered during a data modification operation, SQL Server examines the
PageModCount value. If the PageModCount value is greater than 25 or the value PageModCount/

 CHAPTER 8 Special storage 441

<number of rows on the page> is greater than 25 percent, SQL Server applies the compression analy-
sis as it does when it first compresses a page. Only when recompressing the page makes room for at
least five more rows (or 25 percent more rows than the current page) does the new compressed page
replace the old page.

Page compression in a B-tree and page compression in a heap each have important differences.

Compression of B-tree pages For B-trees, only the leaf level is page compressed. When inserting
a new row into a B-tree, if the compressed row fits on the page, it is inserted, and nothing more is
done. If it doesn’t fit, SQL Server tries to recompress the page, according to the conditions described
in the preceding section. A successful recompression means that the CI record changed, so the new
row must be recompressed and then SQL Server tries to insert it into the page. Again, if it fits, it is
simply inserted; if the new compressed row doesn’t fit on the page, even after possibly recompressing
the page, the page needs to be split. When splitting a compressed page, the CI record is copied to a
new page exactly as is, except that the PageModCount value is set to 25. This means that the first time
the page gets full, it gets a full analysis to determine whether it should be recompressed. B-tree pages
are also checked for possible recompression during index rebuilds (either online or offline) and during
shrink operations.

Compression of heap pages Pages in a heap are checked for possible compression only during
rebuild and shrink operations. Also, if you drop a clustered index on a table so that it becomes a heap,
SQL Server runs compression analysis on any full pages. To make sure that the RowID values stay the
same, heaps aren’t recompressed during typical data modification operations. Although the Page-
ModCount value is maintained, SQL Server never tries to recompress a page based on the PageMod-
Count value.

Compression metadata
An enormous amount of metadata information relating to data compression doesn’t exist. The
catalog view sys.partitions has a data_compression column and a data_compression_desc col-
umn. The data_compression column has possible values of 0, 1, 2, and 3 corresponding to
data_compression_desc values of NONE, ROW, PAGE, and COLUMNSTORE. (Only ROW and PAGE
compression are discussed here.) Keep in mind that although row compression is always performed if
enabled, page compression isn’t. Even if sys.partitions indicates that a table or partition is page com-
pressed, that just means that page compression is enabled. Each page is analyzed individually, and if a
page isn’t full, or if compression won’t save enough space, the page isn’t compressed.

You can also inspect the dynamic management function sys.dm_db_index_operational_stats. This
table-valued function returns the following compression-related columns.

■■ page_compression_attempt_count The number of pages evaluated for PAGE-level com-
pression for specific partitions of a table, index, or indexed view. This includes pages that
weren’t compressed because significant savings couldn’t be achieved.

■■ page_compression_success_count The number of data pages that were compressed by us-
ing PAGE compression for specific partitions of a table, index, or indexed view.

442 Microsoft SQL Server 2012 Internals

SQL Server also provides a stored procedure called sp_estimate_data_compression_savings, which
can give you some idea of whether compression provides a large space savings. This procedure
samples up to 5,000 pages of the table and creates an equivalent table with the sampled pages in
tempdb. Using this temporary table, SQL Server can estimate the new table size for the requested
compression state (NONE, ROW, or PAGE). Compression can be evaluated for whole tables or parts of
tables, including heaps, clustered indexes, nonclustered indexes, indexed views, and table and index
partitions.

Keep in mind that the result is only an estimate and your actual savings can vary widely based on
the fill factor and the size of the rows. If the procedure indicates that you can reduce your row size by
40 percent, you might not actually get a 40 percent space savings for the whole table. For example, if
you have a row that’s 8,000 bytes long and you reduce its size by 40 percent, you still can fit only one
row on a data page, and your table still needs the same number of pages.

Running sp_estimate_data_compression_savings might yield results that indicate that the table will
grow. This can happen when many rows in the table use almost the whole maximum size of the data
types, and the addition of the overhead needed for the compression information is more than the
savings from compression.

If the table is already compressed, you can use this procedure to estimate the size of the table (or
index) if it were to be uncompressed.

Performance issues
The main motivation for compressing your data is to save space with extremely large tables, such
as data warehouse fact tables. A second goal is to increase performance when scanning a table for
reporting purposes, because far fewer pages need to be read. Keep in mind that compression comes
at a cost: You see a tradeoff between the space savings and the extra CPU overhead to compress the
data for storage and then uncompress the data when it needs to be used. On a CPU-bound system,
you might find that compressing your data can actually slow down your system considerably.

Page compression provides the most benefit for I/O-bound systems, with tables for which the data
is written once and then read repeatedly, as in the situations mentioned in the preceding paragraph:
data warehousing and reporting. For environments with heavy read and write activity, such as online
transaction processing (OLTP) applications, you might want to consider enabling row compression
only and avoid the costs of analyzing the pages and rebuilding the CI record. In this case, the CPU
overhead is minimal. In fact, row compression is highly optimized so that it’s visible only at the stor-
age engine layer. The relational engine (query processor) doesn’t need to deal with compressed rows
at all. The relational engine sends uncompressed rows to the storage engine, which compresses them
if required. When returning rows to the relational engine, the storage engine waits as long as it can
before uncompressing them. In the storage engine, comparisons can be done on compressed data, as
internal conversions can convert a data type to its compressed form before comparing to data in the
table. Also, only columns requested by the relational engine need to be uncompressed, as opposed to
uncompressing an entire row.

 CHAPTER 8 Special storage 443

Compression and logging In general, SQL Server logs only uncompressed data because the log
needs to be read in an uncompressed format. This means that logging changes to compressed re-
cords has a greater performance impact because each row needs to be uncompressed and decoded
(from the anchor record and dictionary) before writing to the log. This is another reason compression
gives you more benefit on primarily read-only systems, where logging is minimal.

SQL Server writes compressed data to the log in a few situations. The most common situation is
when a page is split. SQL Server writes the compressed rows as it logs the data movement during the
split operation.

Compression and the version store Chapter 13 covers the version store during a discussion about
Snapshot isolation, but I want to mention briefly here how the version store interacts with compres-
sion. SQL Server can write compressed rows to the version store, and the version store processing can
traverse older versions in their compressed form. However, the version store doesn’t support page
compression, so the rows in the version store can’t contain encodings of the anchor record prefixes
and the page dictionary. So anytime any row from a compressed page needs to be versioned, the
page must be uncompressed first.

The version store is used for both varieties of Snapshot isolation (full snapshot and read-commit-
ted snapshot) and is also used for storing the before-and-after images of changed data when triggers
are fired. (These images are visible in the logical tables inserted and deleted.) Keep this in mind when
evaluating the costs of compression. Snapshot isolation has lots of overhead already, and adding page
compression into the mix affects performance even more.

Backup compression
Chapter 1, “SQL Server 2012 architecture and configuration,” briefly mentioned backup compression
when discussing configuration options. It’s worth repeating that the algorithm used for compressing
backups is very different than the database compression algorithms discussed in this chapter. Backup
compression uses an algorithm very similar to zipping, where it’s just looking for patterns in the data.
Even after tables and indexes are compressed by using the data compression techniques, they still can
be compressed further by using the backup compression algorithms.

Page compression looks only for prefix patterns and can still leave other patterns uncompressed,
including common suffixes. Page compression eliminates redundant strings, but in most cases plenty
of strings aren’t redundant, and string data compresses very well using zip-type algorithms.

Also, a fair amount of space in a database constitutes overhead, such as unallocated slots on pages
and unallocated pages in allocated extents. Depending on whether Instant File Initialization was used,
and what was on the disk previously if it was, the background data can actually compress very well.

Thus, making a compressed backup of a database that has many compressed tables and indexes
can provide additional space savings for the backup set.

444 Microsoft SQL Server 2012 Internals

Table and index partitioning

As you’ve already seen when looking at the metadata for table and index storage, partitioning is an
integral feature of SQL Server space organization. Figure 6-3 in Chapter 6 illustrated the relationship
between tables and indexes, partitions, and allocation units. Tables and indexes that are built without
any reference to partitions are considered to be stored on a single partition. One of the more use-
ful metadata objects for retrieving information about data storage is the sys.dm_db_partition_stats
dynamic management view, which combines information found in sys.partitions, sys.allocation_units
and sys.indexes.

A partitioned object is split internally into separate physical units that can be stored in different lo-
cations. Partitioning is invisible to the users and programmers, who can use T-SQL code to select from
a partitioned table exactly the same way they select from a nonpartitioned table. Creating large ob-
jects on multiple partitions improves the manageability and maintainability of your database system
and can greatly enhance the performance of activities such as purging historic data and loading large
amounts of data. In SQL Server 2000, partitioning was available only by manually creating a view that
combines multiple tables—a functionality that’s referred to as partitioned views. SQL Server 2005
introduced built-in partitioning of tables and indexes, which has many advantages over partitioned
views, including improved execution plans and fewer prerequisites for implementation.

This section focuses primarily on physical storage of partitioned objects and the partitioning
metadata. Chapter 11, “The Query Optimizer,” examines query plans involving partitioned tables and
partitioned indexes.

Partition functions and partition schemes
To understand the partitioning metadata, you need a little background into how partitions are de-
fined, using an example based on the SQL Server samples. You can find my Partition.sql script on the
companion website. This script defines two tables, TransactionHistory and TransactionHistoryArchive,
along with a clustered index and two nonclustered indexes on each. Both tables are partitioned on
the TransactionDate column, with each month of data in a separate partition. Initially, TransactionHis-
tory has 12 partitions and TransactionHistoryArchive has two.

Before you create a partitioned table or index, you must define a partition function, which is used
to define the partition boundaries logically. When a partition function is created, you must specify
whether the partition should use a LEFT-based or RIGHT-based boundary point. Simply put, this
defines whether the boundary value itself is part of the left-hand or right-hand partition. Another way
to consider this is to ask this question: Is it an upper boundary of one partition (in which case it goes
to the LEFT), or a lower boundary point of the next partition (in which case it goes to the RIGHT)? The
number of partitions created by a partition function with n boundaries will be n+1. Here is the parti-
tion function being used for this example:

CREATE PARTITION FUNCTION [TransactionRangePF1] (datetime)
AS RANGE RIGHT FOR VALUES ('20111001', '20111101', '20111201',
 '20120101', '20120201', '20120301', '20120401',
 '20120501', '20120601', '20120701', '20120801');

 CHAPTER 8 Special storage 445

Notice that the table name isn’t mentioned in the function definition because the partition func-
tion isn’t tied to any particular table. The TransactionRangePF1 function divides the data into 12 parti-
tions because 11 datetime boundaries exist. The keyword RIGHT specifies that any value that equals
one of the boundary points goes into the partition to the right of the endpoint. So for this function,
all values less than October 1, 2011 go in the first partition and values greater than or equal to Octo-
ber 1, 2011 and less than November 1, 2011 go in the second partition. LEFT (the default) could also
have been specified, in which case the value equal to the endpoint goes in the partition to the left.
After you define the partition function, you define a partition scheme, which lists a set of filegroups
onto which each range of data is placed. Here is the partition schema for my example:

CREATE PARTITION SCHEME [TransactionsPS1]
AS PARTITION [TransactionRangePF1]
TO ([PRIMARY], [PRIMARY], [PRIMARY]
, [PRIMARY], [PRIMARY], [PRIMARY]
, [PRIMARY], [PRIMARY], [PRIMARY]
, [PRIMARY], [PRIMARY], [PRIMARY]);
GO

To avoid having to create 12 files and filegroups, I have put all the partitions on the PRIMARY
filegroup, but for the full benefit of partitioning, you should probably have each partition on its own
filegroup. The CREATE PARTITION SCHEME command must list at least as many filegroups as parti-
tions, but it can list one more filegroup, which is considered the “next used” filegroup. If the partition
function splits, the new boundary point is added in the filegroup used next. If you don’t specify an
extra filegroup at the time you create the partition scheme, you can alter the partition scheme to set
the next-used filegroup before modifying the function.

As you’ve seen, the listed filegroups don’t have to be unique. In fact, if you want to have all the
partitions on the same filegroup, as I have here, you can use a shortcut syntax:

CREATE PARTITION SCHEME [TransactionsPS1]
AS PARTITION [TransactionRangePF1]
ALL TO ([PRIMARY]);
GO

Note that putting all the partitions on the same filegroup is usually done just for the purpose of
testing your code.

Additional filegroups are used in order as more partitions are added, which can happen when a
partition function is altered to split an existing range into two. If you don’t specify extra filegroups at
the time you create the partition scheme, you can alter the partition scheme to add another filegroup.

The partition function and partition scheme for a second table are shown here:

CREATE PARTITION FUNCTION [TransactionArchivePF2] (datetime)
AS RANGE RIGHT FOR VALUES ('20110901');
GO

CREATE PARTITION SCHEME [TransactionArchivePS2]
AS PARTITION [TransactionArchivePF2]
TO ([PRIMARY], [PRIMARY]);
GO

446 Microsoft SQL Server 2012 Internals

The script then creates two tables and loads data into them. I will not include all the details here.
To partition a table, you must specify a partition scheme in the CREATE TABLE statement. I create a
table called TransactionHIstory that includes this line as the last part of the CREATE TABLE statement
as follows:

ON [TransactionsPS1] (TransactionDate)

The second table, TransactionHistoryArchive, is created using the TransactionsPS2 partitioning
scheme. The script then loads data into the two tables, and because the partition scheme has already
been defined, each row is placed in the appropriate partition as the data is loaded. After the tables
are loaded, you can examine the metadata.

Metadata for partitioning
Figure 8-18 shows most of the catalog views for retrieving information about partitions. Along the
left and bottom edges, you can see the sys.tables, sys.indexes, sys.partitions, and sys.allocation_units
catalog views that were discussed earlier in this chapter.

FIGURE 8-18 Catalog views containing metadata for partitioning and data storage.

Some of the queries use the undocumented sys.system_internals_allocation_units view instead of
sys.allocation_units to retrieve page address information. The following are the most relevant columns
of each of these views.

■■ sys.data_spaces has a primary key called data_space_id, which is either a partition ID or a
filegroup ID. Each filegroup has one row, and each partition scheme has one row. One column
in sys.data_spaces specifies to which type of data space the row refers. If the row refers to a
partition scheme, data_space_id can be joined with sys.partition_schemes.data_space_id. If
the row refers to a filegroup, data_space_id can be joined with sys.filegroups.data_space_id.
The sys.indexes view also has a data_space_id column to indicate how each heap or B-tree

 CHAPTER 8 Special storage 447

stored in sys.indexes is stored. So, if you know that a table is partitioned, you can join it
directly with sys.partition_schemes without going through sys.data_spaces. Alternatively,
you can use the following query to determine whether a table is partitioned by replacing
dboTransactionHistoryArchive with the name of the table in which you’re interested:

SELECT DISTINCT object_name(object_id) as TableName,
 ISNULL(ps.name, 'Not partitioned') as PartitionScheme
 FROM (sys.indexes i LEFT JOIN sys.partition_schemes ps
 ON (i.data_space_id = ps.data_space_id))
 WHERE (i.object_id = object_id(dbo.TransactionHistoryArchive'))
 AND (i.index_id IN (0,1));

■■ sys.partition_schemes has one row for each partition scheme. In addition to the data_space_
id and the name of the partition scheme, it has a function_id column to join with sys.partition_
functions.

■■ sys.destination_data_spaces is a linking table because sys.partition_schemes and sys.
filegroups are in a many-to-many relationship with each other. For each partition scheme,
there is one row for each partition. The partition number is in the destination_id column, and
the filegroup ID is stored in the data_space_id column.

■■ sys.partition_functions contains one row for each partition function, and its primary key
function_id is a foreign key in sys.partition_schemes.

■■ sys.partition_range_values (not shown) has one row for each endpoint of each partition
function. Its function_id column can be joined with sys.partition_functions, and its bound-
ary_id column can join with either partition_id in sys.partitions or with destination_id in
sys.destination_data_spaces.

These views have other columns not mentioned here, and additional views provide additional
information, such as the columns and their data types that the partitioning is based on. However, the
preceding information should be sufficient to understand Figure 8-18 and the view shown in Listing
8-8. This view returns information about each partition of each partitioned table. The WHERE clause
filters out partitioned indexes (other than the clustered index), but you can change that condition if
you desire. I first create a function to return an index name, with an object ID and an index ID given,
so that the view can easily return any index names. When selecting from the view, you can add your
own WHERE clause to find information about just the table you’re interested in.

LISTING 8-8 View returning data about each partition of each partitioned table

CREATE FUNCTION dbo.index_name (@object_id int, @index_id tinyint)
RETURNS sysname
AS
BEGIN
 DECLARE @index_name sysname
 SELECT @index_name = name FROM sys.indexes
 WHERE object_id = @object_id and index_id = @index_id
 RETURN(@index_name)
END;

448 Microsoft SQL Server 2012 Internals

GO

CREATE VIEW Partition_Info AS
 SELECT OBJECT_NAME(i.object_id) as ObjectName,
 dbo.INDEX_NAME(i.object_id,i.index_id) AS IndexName,
 object_schema_name(i.object_id) as SchemaName,
 p.partition_number as PartitionNumber, fg.name AS FilegroupName, rows as Rows,
 au.total_pages as TotalPages,
 CASE boundary_value_on_right
 WHEN 1 THEN 'less than'
 ELSE 'less than or equal to'
 END as 'Comparison'
 , rv.value as BoundaryValue,
 CASE WHEN ISNULL(rv.value, rv2.value) IS NULL THEN 'N/A'
 ELSE
 CASE
 WHEN boundary_value_on_right = 0 AND rv2.value IS NULL
 THEN 'Greater than or equal to'
 WHEN boundary_value_on_right = 0
 THEN 'Greater than'
 ELSE 'Greater than or equal to' END + ' ' +
 ISNULL(CONVERT(varchar(15), rv2.value), 'Min Value')
 + ' ' +
 +
 CASE boundary_value_on_right
 WHEN 1 THEN 'and less than'
 ELSE 'and less than or equal to'
 END + ' ' +
 + ISNULL(CONVERT(varchar(15), rv.value),
 'Max Value')
 END as 'TextComparison'
 FROM sys.partitions p
 JOIN sys.indexes i
 ON p.object_id = i.object_id and p.index_id = i.index_id
 LEFT JOIN sys.partition_schemes ps
 ON ps.data_space_id = i.data_space_id
 LEFT JOIN sys.partition_functions f
 ON f.function_id = ps.function_id
 LEFT JOIN sys.partition_range_values rv
 ON f.function_id = rv.function_id
 AND p.partition_number = rv.boundary_id
 LEFT JOIN sys.partition_range_values rv2
 ON f.function_id = rv2.function_id
 AND p.partition_number - 1= rv2.boundary_id
 LEFT JOIN sys.destination_data_spaces dds
 ON dds.partition_scheme_id = ps.data_space_id
 AND dds.destination_id = p.partition_number
 LEFT JOIN sys.filegroups fg
 ON dds.data_space_id = fg.data_space_id
 JOIN sys.allocation_units au
 ON au.container_id = p.partition_id
WHERE i.index_id <2 AND au.type =1;

The LEFT JOIN operator is needed to get all the partitions because the sys.partition_range_values
view has a row only for each boundary value, not for each partition. LEFT JOIN gives the last partition
with a boundary value of NULL, which means that the value of the last partition has no upper limit. A

 CHAPTER 8 Special storage 449

derived table groups together all the rows in sys.allocation_units for a partition, so the space used for
all the types of storage (in-row, row-overflow, and LOB) is aggregated into a single value. This query
uses the preceding view to get information about my TransactionHistory table’s partitions:

SELECT ObjectName, PartitionNumber, Rows, TotalPages, Comparison, BoundaryValue
FROM Partition_Info
WHERE ObjectName = 'TransactionHistory' AND SchemaName = 'dbo'
ORDER BY ObjectName, PartitionNumber ;

Here are my results for the TransactionHistory object:

Object_Name Partitionnumber Rows Totalpages Comparison BoundaryValue

TransactionHistory 1 11155 89 Less than 2011-10-01

TransactionHistory 2 9339 74 Less than 2011-11-01

TransactionHistory 3 10169 81 Less than 2011-12-01

TransactionHistory 4 12181 97 Less than 2012-01-01

TransactionHistory 5 9558 74 Less than 2012-02-01

TransactionHistory 6 10217 81 Less than 2012-03-01

TransactionHistory 7 10703 89 Less than 2012-04-01

TransactionHistory 8 10640 89 Less than 2012-05-01

TransactionHistory 9 12508 90 Less than 2012-06-01

TransactionHistory 10 12585 97 Less than 2012-07-01

TransactionHistory 11 3380 33 Less than 2012-08-01

TransactionHistory 12 1008 17 Less than NULL

This view contains details about the boundary point of each partition, as well as the filegroup that
each partition is stored on, the number of rows in each partition, and the amount of space used. It
also contains a few additional columns that aren’t shown here, just to keep the output from being too
wide. In particular, I didn’t return the FilegroupName value, because in my example, all the partitions
are on the same filegroup. Anytime your partitions are on different filegroups, you most likely will
want to see that value for each partition. Note that although the comparison indicates that the values
in the partitioning column for the rows in a particular partition are less than the specified value, you
should assume that it also means that the values are greater than or equal to the specified value in
the preceding partition. However, this view doesn’t provide information about where in the particu-
lar filegroup the data is located. The next section looks at a metadata query that provides location
information.

Note If a partitioned table contains FILESTREAM data, you should partition the
FILESTREAM data by using the same partition function as the non-FILESTREAM data.
Because the regular data and the FILESTREAM data are on separate filegroups, the
FILESTREAM data needs its own partition scheme. However, the partition scheme for the
FILESTREAM data can use the same partition function to make sure the same partitioning is
used for both FILESTREAM and non-FILESTREAM data.

450 Microsoft SQL Server 2012 Internals

the sliding window benefits of partitioning
One of the main benefits of partitioning your data is that you can move data from one partition to
another as a metadata-only operation; the data itself doesn’t have to move. As mentioned earlier, this
isn’t intended to be a complete how-to guide to SQL Server 2012 partitioning; instead, it’s a descrip-
tion of the internal storage of partitioning information.

Note For a complete description of designing, setting up, and managing partitioned tables
and indexes, read Ron Talmage’s white paper at http://msdn.microsoft.com/en-us/library/
dd578580.aspx.

To understand the internals of rearranging partitions, you need to look at additional partitioning
operations.

The main operation you use when working with partitions is the SWITCH option to the ALTER
TABLE command. This option allows you to

■■ Assign a table as a partition of an already-existing partitioned table

■■ Switch a partition from one partitioned table to another

■■ Reassign a partition to form a single table

In all these operations, no data is moved. Instead, the metadata is updated in the sys.partitions and
sys.system_internals_allocation_units views to indicate that a particular allocation unit now is part of
a partition in a different object. For example, the following query returns information about each al-
location unit in the first two partitions of the TransactionHistory and TransactionHistoryArchive tables,
including the number of rows, the number of pages, the type of data in the allocation unit, and the
page where the allocation unit starts:

SELECT convert(char(25),object_name(object_id)) AS name,
 rows, convert(char(15),type_desc) as page_type_desc,
 total_pages AS pages, first_page, index_id, partition_number
FROM sys.partitions p JOIN sys.system_internals_allocation_units a
 ON p.partition_id = a.container_id
WHERE (object_id=object_id('[dbo].[TransactionHistory]')
 OR object_id=object_id('[dbo].[TransactionHistoryArchive]'))
 AND index_id = 1 AND partition_number <= 2;

Here is the data I get back. (I left out the page_type_desc because all the rows are of type IN_
ROW_DATA.)

name rows pages first_page index_id partition_number
------------------------- ------- ---------- -------------- ----------- -----------------
TransactionHistory 11155 89 0xD81B00000100 1 1
TransactionHistory 9339 74 0xA82200000100 1 2
TransactionHistoryArchive 89253 633 0x981B00000100 1 1
TransactionHistoryArchive 0 0 0x000000000000 1 2

http://msdn.microsoft.com/en-us/library/dd578580.aspx
http://msdn.microsoft.com/en-us/library/dd578580.aspx

 CHAPTER 8 Special storage 451

Now you can move one of the partitions. The ultimate goal is to add a new partition to Transac-
tionHistory to store a new month’s worth of data and to move the oldest month’s data into Transac-
tionHistoryArchive. The partition function used by my TransactionHistory table divides the data into
12 partitions, and the last one contains all dates greater than or equal to August 1, 2012. You can alter
the partition function to put a new boundary point in for September 1, 2012, so the last partition is
split. Before doing that, you must ensure that the partition scheme using this function knows what fi-
legroup to use for the newly created partition. With this command, some data movement occurs and
all data from the last partition of any tables using this partition scheme is moved to a new allocation
unit. Refer to SQL Server Books Online for complete details about each of the following commands:

ALTER PARTITION SCHEME TransactionsPS1
NEXT USED [PRIMARY];
GO

ALTER PARTITION FUNCTION TransactionRangePF1()
SPLIT RANGE ('20120901');
GO

Next, you can do something similar for the function and partition scheme used by TransactionHis-
toryArchive. In this case, add a new boundary point for October 1, 2011:

ALTER PARTITION SCHEME TransactionArchivePS2
NEXT USED [PRIMARY];
GO

ALTER PARTITION FUNCTION TransactionArchivePF2()
SPLIT RANGE ('20111001');
GO

Now move all data from TransactionHistory with dates earlier than October 1, 2011, to the sec-
ond partition of TransactionHistoryArchive. However, the first partition of TransactionHistory techni-
cally has no lower limit; it includes everything earlier than October 1, 2011. The second partition of
TransactionHistoryArchive does have a lower limit, which is the first boundary point, or September 1,
2011. To SWITCH a partition from one table to another, you must guarantee that all the data to be
moved meets the requirements for the new location, so you need to add a CHECK constraint that
guarantees that no data in TransactionHistory is earlier than September 1, 2011. After adding the
CHECK constraint, I run the ALTER TABLE command with the SWITCH option to move the data in
partition 1 of TransactionHistory to partition 2 of TransactionHistoryArchive. (For testing purposes, you
could try leaving out the next step that adds the constraint and try just executing the ALTER TABLE/
SWITCH command. You get an error message. After that, you can add the constraint and run the
ALTER TABLE/SWITCH command again.)

ALTER TABLE [dbo].[TransactionHistory]
ADD CONSTRAINT [CK_TransactionHistory_DateRange]
CHECK ([TransactionDate] >= '20110901');
GO
ALTER TABLE [dbo].[TransactionHistory]
SWITCH PARTITION 1
TO [dbo].[TransactionHistoryArchive] PARTITION 2;
GO

452 Microsoft SQL Server 2012 Internals

Now run the metadata query that examines the size and location of the first two partitions of each
table:

SELECT convert(char(25),object_name(object_id)) AS name,
 rows, convert(char(15),type_desc) as page_type_desc,
 total_pages AS pages, first_page, index_id, partition_number
FROM sys.partitions p JOIN sys.system_internals_allocation_units a
 ON p.partition_id = a.container_id
WHERE (object_id=object_id('[dbo].[TransactionHistory]')
 OR object_id=object_id('[dbo].[TransactionHistoryArchive]'))
 AND index_id = 1 AND partition_number <= 2;

RESULTS:
name rows pages first_page index_id partition_number
-------------------- ------- ---------- -------------- ----------- ----------------
TransactionHistory 0 0 0x000000000000 1 1
TransactionHistory 9339 74 0xA82200000100 1 2
TransactionHistoryAr 89253 633 0x981B00000100 1 1
TransactionHistoryAr 11155 89 0xD81B00000100 1 2

Notice that the second partition of TransactionHistoryArchive now has exactly the same informa-
tion that the first partition of TransactionHistory had in the first result set. It has the same number
of rows (11,155), the same number of pages (89), and the same starting page (0xD81B00000100, or
file 1, page 7,128). No data was moved; the only change was that the allocation unit starting at file 1,
page 7,128 isn’t recorded as belonging to the second partition of the TransactionHistoryArchive table.

Although my partitioning script created the indexes for the partitioned tables by using the same
partition scheme used for the tables themselves, this isn’t always necessary. An index for a partitioned
table can be partitioned using the same partition scheme or a different one. If you don’t specify a
partition scheme or filegroup when you build an index on a partitioned table, the index is placed in
the same partition scheme as the underlying table, using the same partitioning column. Indexes built
on the same partition scheme as the base table are called aligned indexes.

However, an internal storage component is associated with automatically aligned indexes. As men-
tioned earlier, if you build an index on a partitioned table and don’t specify a filegroup or partitioning
scheme on which to place the index, SQL Server creates the index using the same partitioning scheme
that the table uses. However, if the partitioning column isn’t part of the index definition, SQL Server
adds the partitioning column as an extra included column in the index. If the index is clustered, add-
ing an included column isn’t necessary because the clustered index already contains all the columns.
Another case in which SQL Server doesn’t add an included column automatically is when you create
a unique index, either clustered or nonclustered. Because unique partitioned indexes require that the
partitioning column is contained in the unique key, a unique index for which you haven’t explicitly
included the partitioning key isn’t partitioned automatically.

Partitioning a columnstore index
To end this section, look at an example that combines partitioning with columnstore indexes, which
Chapter 7 described. If you still have the dbo.FactInternetSalesBig table, you can follow the examples
here.

 CHAPTER 8 Special storage 453

First, create a very simple partition function and partition scheme. The partition function splits
the data into five partitions, which eventually are mapped to the SalesTerritoryKey column of the big
table. Then define a partition scheme that puts all the partitions on the PRIMARY filegroup:

USE AdventureWorksDW2012
GO
CREATE PARTITION FUNCTION [PF_TerritoryKey](int) AS RANGE LEFT FOR VALUES (2, 4, 6, 8)
GO
CREATE PARTITION SCHEME [PS_TerritoryKey] AS PARTITION [PF_TerritoryKey] ALL TO ([PRIMARY]);
GO

Now you can rebuild the clustered index to use this partitioning scheme, but you should get an
error message initially, because if a table has a columnstore index, it must be partitioned aligned with
the table. So you have to drop the columnstore index before you can rebuild the clustered index, and
then you can rebuild the columnstore index using the same partitioning scheme.

DROP INDEX dbo.FactInternetSalesBig.csi_FactInternetSalesBig;
GO
CREATE CLUSTERED INDEX clus_FactInternetSalesBig ON dbo.FactInternetSalesBig
(SalesTerritoryKey)
ON PS_TerritoryKey (SalesTerritoryKey)
GO

Now you can rebuild the columnstore index on the same partitioning scheme, as shown in Listing
8-9.

LISTING 8-9 Rebuilding the columnstore index on the same partitioning scheme

CREATE NONCLUSTERED COLUMNSTORE INDEX csi_FactInternetSalesBig
ON dbo.FactInternetSalesBig (
 ProductKey,
 OrderDateKey,
 DueDateKey,
 ShipDateKey,
 CustomerKey,
 PromotionKey,
 CurrencyKey,
 SalesTerritoryKey,
 SalesOrderNumber,
 SalesOrderLineNumber,
 RevisionNumber,
 OrderQuantity,
 UnitPrice,
 ExtendedAmount,
 UnitPriceDiscountPct,
 DiscountAmount,
 ProductStandardCost,
 TotalProductCost,
 SalesAmount,
 TaxAmt,
 Freight,
 CarrierTrackingNumber,
 CustomerPONumber
) ON PS_TerritoryKey (SalesTerritoryKey)
GO

454 Microsoft SQL Server 2012 Internals

To explore my partitions, you can re-create the Partition_Info view from Listing 8-8 in the Adven-
tureWorksDW2012 database. Then you can determine how many rows are in each partition by look-
ing at just a couple of columns from that view:

select PartitionNumber, Rows from Partition_Info
where ObjectName = 'FactInternetSalesBig';
GO

Here are my results:

PartitionNumber Rows
--------------- --------------------
1 4618240
2 6289920
3 3921408
4 5725696
5 10368512

Now that you have a columnstore index, you can also use the metadata view that Chapter 7 ex-
plored—namely, sys.column_store_segments. The following query groups by column to show you the
total number of segments in the table. If you run this query, you’ll see 24 rows indicating 24 columns.
The index had only 23 columns defined, but because the clustered index wasn’t unique, the uniquifier
is added as a column. The result of this query also shows 41 total segments:

-- GROUP BY COLUMN
SELECT s.column_id, col_name(ic.object_id, ic.column_id) as column_name, count(*) as segment_
count
FROM sys.column_store_segments s join sys.partitions p on s.partition_id = p.partition_id
 LEFT JOIN sys.index_columns ic
 ON p.object_id = ic.object_id AND p.index_id = ic.index_id
 AND s.column_id = ic.index_column_id
WHERE object_name(p.object_id) = 'FactInternetSalesBig'
GROUP BY s.column_id, col_name(ic.object_id, ic.column_id), object_name(p.object_id)
ORDER by 1;
GO

Because of the boundary values used, not every partition has exactly the same number of rows, as
you saw in the data from the Partition_Info view. Each partition could have a different number of seg-
ments, and the following query shows how many segments are created for each partition:

SELECT partition_number, count(segment_id) as NumSegments, sum(row_count) as NumRows
FROM sys.column_store_segments s join sys.partitions p on s.partition_id = p.partition_id
 JOIN sys.index_columns ic
 ON p.object_id = ic.object_id AND p.index_id = ic.index_id
 AND s.column_id = ic.index_column_id
WHERE object_name(p.object_id) = 'FactInternetSalesBig' and index_column_id = 2
GROUP BY partition_number WITH ROLLUP;
GO

 CHAPTER 8 Special storage 455

The results show that partition 5 has more than 10 million rows and 12 segments, whereas parti-
tions 1 and 3 each have only six segments. The grand totals produced by the ROLLUP clause, show
the 41 total segments, and that the total number of rows in the table is 30923776.

partition_number NumSegments NumRows
---------------- ----------- -----------
1 6 4618240
2 8 6289920
3 6 3921408
4 9 5725696
5 12 10368512
NULL 41 30923776

Conclusion

This chapter looked at how SQL Server stores data that doesn’t use the typical FixedVar record format
and data that doesn’t fit into the usual 8 KB data page.

This chapter discussed row-overflow and large object data, which is stored on its own separate
pages, and FILESTREAM data, which is stored outside SQL Server, in files in the file system. You also
read about FileTables, which allow FILESTREAM data to be accessed and manipulated through SQL
Server tables.

Some special storage capabilities in SQL Server 2012 require that you look at row storage in a
completely different way. Sparse columns allow you to have very wide tables of up to 30,000 columns,
as long as most of those columns are NULL in most rows. Each row in a table containing sparse col-
umns has a special descriptor field that provides information about which columns are non-NULL for
that particular row.

This chapter also described the row storage format used with compressed data. Data can be
compressed at either the row level or the page level, and the rows and pages themselves describe the
data that is contained therein. This type of row format is referred to as the CD format.

Finally, you looked at partitioning of tables and indexes. Although partitioning doesn’t really require
a special format for your rows and pages, it does require accessing the metadata in a special way.

 903

AdventureWorks2012
security, 132

AdventureWorks2012 database
creating snapshot, 156

affinity
ALTER SERVER CONFIGURATION setting, 38
dynamic, 41
process

binding schedulers to CPUs, 41–42
schedulers, 38
workers, 39

Affinity64 I/O Mask option, 29
Affinity I/O Mask option, 29
Affinity Mask configuration option, 40
affinity (sys.dm_os_threads), 44
AFFINITY value, 63
Aggregate operator, 504
aggregating data

Extended Events UI, 93–95
aggregation, 847
aggregation algorithm, 849
Aggregation dialog box, 94
aggregations, 545–556

hash, 552–556
scalar, 545–548
stream, 548–552

AI/AS (accent sensitivity/insensitivity) tokens, 218
algorithms

aggregation, 849
Backup Compression, 30
depth-first, 846
fact-aggregation, 850
fact-generation, 848
fact-sorting, 850
fact-storing, 850
LRU-K, 49
O(n2), 846
O(n*log(n)), 846

Index

Symbols
3-byte positive number, storing dates, 212
16-byte pointer, 386
$FSLOG folder, 401

A
accent sensitivity/insensitivity (AI/AS) tokens, 218
access

datbase, 130–131
FILESTREAM data, storage, 395–396

access methods
storage engine, 14–15

ACID properties, 15
ACID properties, transaction processing, 767–768
actions

Extended Events, 77
package0.attach_activity_id, 97
package0.attach_activity_id_xfer, 97

active state (VLFs), 178
active_workers_count (sys.dm_os_schedulers), 43
actual execution plans, 519
actual text facts, 847
Actual XML Showplan, 663
adding

columns to tables, 281
constraints (tables), 281–282

ad hoc query caching, 706–711, 747
Adhoc value (objtype columns), 705
admin events, 76
advanced index operations, 560–567

dynamic index seeks, 560–563
index intersections, 565–567
index unions, 562–564

AdventureWorks, 100

ALL_ERRORMSGS option (DBCC CHECKDB)

904 Index

ALL_ERRORMSGS option (DBCC CHECKDB), 891
allocation

pages, 149
regions, 160
tempdb database optimizations, 146–147

allocation bitmaps, 859
allocation consistency checks, 856–860

checking allocation facts, 859–860
collecting allocation facts, 857–858

allocation strategies, LOB data, 393
allocation structures, heap data modifications,

286–288
allocation unit locks, 783
allocation units, 245
ALLOW_PAGE_LOCKS (XML index option), 460
ALLOW_ROW_LOCKS (XML index option), 460
ALLOW_SNAPSHOT_ISOLATION option, 815–817
ALTER ANY USER database permission, 166
ALTER COULMN clause (ALTER TABLE

command), 280–281
ALTER DATABASE command, 107, 109, 115, 140, 813

changing compatibility levels, 137
MODIFY FILE option, 142
switching recovery models, 193

ALTER DATABASE statement, 114–119
FILEGROUP keyword, 110

ALTER EVENT SESSION statement, 83
ALTER FULLTEXT INDEX DDL statement, 499
ALTER INDEX command, 361–364

REORGANIZE option, 365–366
ALTER INDEX REBUILD operation, 190
ALTER INDEX statement

manually controlling unit of locking, 804
altering

databases, 114–119
space allocation, 116–119
user-defined space, 116

altering tables, 279–286
adding columns, 281
changing data types, 280–281
constraints, 281–282
dropping columns, 283
internals, 283–286
sparse columns (storage format), 413–414

alternatives to database snapshots, 844–845
ALTER RESOURCE GOVERNOR DISABLE

command, 71
ALTER SEQUENCE command, 242
ALTER SERVER CONFIGURATION SET PROCESS

AFFINITY CPU, 42–43

ALTER SERVER CONFIGURATION setting, 38
ALTER statement

CONTAINMENT option, 163
ALTER TABLE command, 279–280

ALTER COULMN clause, 280–281
dropping columns, 283–284
manipulating constraints, 281–283
SQL Server execution, 283–286
WITH VALUES clause, 281

ALTER TABLE statement
escalating table locks, 805

AlwaysOn Availability Groups, 156
contained users, 163

analysis
indexes, 302–307

dm_db_database_page_allocations
function, 306–307

dm_db_index_physical_stats DMV, 302–305
page compression, 440–441

analysis phase of recovery, 174
analytic events, 76
analyzing query plans, 525–600

advanced index operations, 560–567
dynamic index seeks, 560–563
index intersections, 565–567
index unions, 562–564

aggregations, 545–556
hash aggregations, 552–556
scalar aggregations, 545–548
stream aggregations, 548–552

bookmark lookup, 531–533
data modification statements, 598–599
joins, 533–544

hash joins, 542–544
merge joins, 539–542
nested loops joins, 534–539
properties, 544

parallelism, 580–598
bitmap filtering, 597–598
broadcast partitioning, 596–597
DOP (degree of parallelism), 582–583
exchange operator, 583–586
hash joins, 595
hash partitioning, 595–596
inner-side parallel execution, 593–594
load balancing, 589–590
merge joins, 594–595
nested loops joins, 590–591, 592–593
round-robin exchange, 592
scan operators, 586–588

 batch processing

 Index 905

scans and seeks, 526–528
seekable predicates and covered columns,

528–531
subqueries, 566–580

CASE expressions, 578–580
correlated scalar subqueries, 570–577
noncorrelated scalar subqueries, 567–569
removing correlations, 576–577

unions, 555–559
anchor record (CI records), 438
ANSI_DEFAULTS database option, 234
ANSI_null_default database option, 234
ANSI_NULL_DEFAULT option, 126
ANSI_NULLS database option, 234
ANSI_NULLS option, 126
ANSI_NULLS (Set option), 724
ANSI_PADDING option, 127
ANSI properties information, 206–207
ANSI_WARNINGS option, 127
anti-semi-join, 537
ANY aggregate, 568
appending LOB data into columns, 393
application event log, DBCC CHECKDB output,

888–889
Apply operators (Query Optimizer), 621–622
approximate numeric data types, 208
architecture

Extended Events, 73
Query Optimizer, 624–630

auto-parameterization, 625–626
before optimization, 625
Memo, 627–630
parameterization limitations, 627–628
Simplification phase, 625
trivial plan, 625–626

ARITHABORT option, 127
assert operator, 568
associated entity ID, lock resources, 784–785
asynchronous statistics update feature, 631
atomicity property (transactions), 767
attributes

plan handle values, 722–723
ROWGUIDCOL, 397

authentication, 130–131
databases, 164–165

AUTO_CLOSE option, 125
AutoCreatedLocal route, 169
auto-create statistics, 630
AUTO_CREATE_STATISTICS option, 126
AUTO_GRID spatial index, 476

auto-grid specification, 473
autogrowing files

tempdb database, 147
automatic file expansion, 106–107
automatic shrinkage, 108
automatic truncation, virtual log files, 184–185
AUTO option (CHANGE_TRACKING

specification), 499
auto options, 125–126
auto-parameterization, Query Optimizer, 625–626
AUTO_SHRINK database option, 841–842
autoshrinking log files, 187–188
autoshrink option

tempdb database and, 147
AUTO_SHRINK option, 126
autotruncate mode, 51
auto-update statistics, 630
AUTO_UPDATE_STATISTICS option, 126
avg_fragmentation_in_percent value, 364
avoidance, deadlocks, 809–811
awe_allocated_kb column (sys.dm_os_memory_

clerks), 58

B
back pointer, 430
Backup Compression DEFAULT, 29
backup page compression, 443
backups

Backup Compression DEFAULT, 29
databases, 136, 188–201

choosing backup type, 194–195
partial backups, 198
partial restore, 200
recovery models, 190–194
restoring files and filegroups, 197–198
restoring pages, 198–200
restoring with standby, 200–201
types of backups, 189–190

balanced tree indexes. See B-tree indexes
batch-based operator model, 618
batches, 67
batches, processing databases, 851–852
batch hash table build operator, 607
batch mode parallelism, 667–669
batch processing, 603–608

Query Optimizer, 662–666
column orientation within batches, 664–665

bcp utility, bulk-loading data

906 Index

grouping rows for repeated operations,
662–663

logical database design best practices, 666
bcp utility, bulk-loading data, 238
best practices

tempdb database, 147–148
BIGINT data type, 496
BIGINT value, 880
BIN2 binary collation, 218
binary collations

Windows collations, character data types
(tables), 223–224

binary data types, 230
binary large object. See BLOB
BIN binary collation, 218
binding

components, 12
schedulers to CPUs, 41–42

bit data types, 230
bitmap filtering, 597–598, 601–602
bitmap operators, 660
@BlobEater variable, 850
BLOB (binary large object)

Filestream Access Level option, 30
blocked_event_fire_time column (sys.dm_xe_

sessions), 97
Blocked Process Threshold option, 31
blocking_exec_context_id (sys.dm_os_waiting_

tasks), 45
blocking iterators, 516
blocking_session_id (sys.dm_os_waiting_tasks), 45
blocking_task_address (sys.dm_os_waiting_tasks), 45
bookmark lookups, 531–533
bottom-up type queries, 470
bounding box, GEOMETRY data type, 472
Bound Trees cache store, 732
bracketed identifiers, 206
broadcast partitioning, parallelism, 596–597
B-tree consistency checks, 872–875
B-tree indexes, 297, 299–302, 457

creating, 313–315
IGNORE_DUP_KEY option, 313–314
MAXDOP option, 314
STATISTICS_NORECOMPUTE, 314

large key column example, 300–301
management, 360–370

ALTER INDEX command, 361–364
detecting fragmentation, 363
dropping indexes, 360
online index building, 367–370

rebuilding indexes, 366–367
removing fragmentation, 364–366

narrow key column example, 301–302
structure, 308–312, 315–332

clustered indexes, 316–322
clustering key dependency, 308–311
constraints, 312
index row formats, 315–316
nonclustered B-tree indexes, 311–312
nonclustered indexes, 322–332

B+ trees, 299
buckets_avg_length column (sys.dm_os_memory_

cache_hash_tables), 58
buckets_avg_scan_hit_length column (sys.dm_os_

memory_cache_hash_tables), 58
buckets_count column (sys.dm_os_memory_cache_

hash_tables), 58
buckets_in_use_count column (sys.dm_os_memory_

cache_hash_tables), 58
buckets_max_length column (sys.dm_os_memory_

cache_hash_tables), 58
buckets_min_length column (sys.dm_os_memory_

cache_hash_tables), 58
Buffer Manager, 172
buffer pool, 47
buffer pools

sizing, 55–57
buffers

dirty, 52
free buffer list, 49–50
page management in data cache, 49

BUFFER section (DBCC PAGE command output), 256
bulk import operations, 190
BULK INSERT command, 190
bulk-loading data, 238
BULK_LOGGED recovery model (databases), 192–193
bulk update locks, 777
bushy hash join tree, 543–544
Business Intelligence edition, 2

C
cacheobjtype column, values, 705
cache optimizations

tempdb database, 146–147
caches

memory management, 52–53
metadata, 53
plan, 53

CACHESTORE_COLUMNSTOREOBJECTPOOL, 48

 CLR Compiled Func value (cacheobjtype columns)

 Index 907

cache stores, 53, 732–733
Cache value property, SEQUENCE objects, 241
caching plan. See plan cache
candidate cells, 480
CAP_CPU_PERCENT value, 63
cardinality estimation, Query Optimizer, 638–643
Cartesian products, 600
CASE expressions, subqueries, 578–580
case sensitivity/insensitivity (CS/CI) tokens, 218
catalog metadata

sessions, 96
catalog views, 4–5
catalog view (tables)

constraints, 277–278
queries, 246–248

CD (column descriptor) row format, 426–432
CDocidRankWtToDocidRankAdaptor iterator, 504
CD Region (CD format), 427
Cell_Attributes, spatial indexes, 458, 476
CellID, spatial indexes, 458, 476
cells-per-object optimization rule, 474
CELLS_PER_OBJECT value, 473
cell tessellation levels, 472
changes in log file size (logging and recovery),

178–188
autoshrinking, 187–188
maintaining recoverable logs, 185–187
viewing log file size, 188
virtual log files, 178–185

automatic truncation, 184–185
observing, 179–181
using multiple files, 181–183

CHANGE_TRACKING parameter, full-text
indexes, 493, 499

changing
table data types, 280–281

character data types (tables), 213–230
collation

selection, 217–218
SQL Server collations, 224–230
viewing options, 218
Windows collations, 218–224

CHECK constraint, 276
CheckIndex function, 850
checking consistency, 841–901

allocation consistency checks, 856–860
checking allocation facts, 859–860
collecting allocation facts, 857–858

alternatives to DBCC CHECKDB, 898–901
consistent view of database, 842–845

cross-table consistency checks, 881–885
cross-catalog consistency checks, 882–883
indexed view consistency checks, 883–885
Service Broker feature, 882

DBCC CHECKDB options, 890–893
DBCC CHECKDB output, 885–890

application event log, 888–889
error reporting to Microsoft, 888–889
progress reporting output, 889–890
regular output, 885–887
SQL Server error log, 888

performing database repairs, 893–897
per-table logical consistency checks, 860–866

data and index page processing, 864–866
metadata consistency checks, 861–862
page audits, 863–864

primitive system catalog consistency
checks, 855–856

processing columns, 866–881
computed columns, 866–869
cross-page consistency checks, 871–881
text page processing, 870–871

processing databases efficiently, 845–855
batches, 851–852
parallelism, 853–855
performing fact generation, 846–848
query processor, 848–851
reading pages to process, 852–853

CHECKPOINT, 403
CHECKPOINT command, 51
checkpoint operations, 173
checkpoints, 50–52

indirect, 29
CHECKSUM option, 128
Check UDX operator, 471
Check value (objtype columns), 706
CI (compression information) records, 437

rebuilding, page compression, 440–441
CI/CS (case sensitivity/insensitivity) tokens, 218
classifier function, 62–63
cleanup function, 826
clearing plan cache, 704–705
clock_hand column (sys.dm_os_memory_cache_

clock_hands), 59
clock_status column (sys.dm_os_memory_cache_

clock_hands), 59
Close method, 514
CLR Compiled Func value (cacheobjtype

columns), 705

CLR Compiled Proc value (cacheobjtype columns)

908 Index

CLR Compiled Proc value (cacheobjtype
columns), 705

clustered indexes, 298, 457, 855
B-tree index structure, 316–322
clustering key dependency, 308–311
rebuilding, 369

clustering key
spatial indexes, 458

clustering key dependency, B-tree indexes, 308–311
CMEMTHREAD waits, 748
code

locking, 16
Resource Governor, 68–70
versioning, 16

cold-cache assumption, costing model, 644–645
Collapse operator, 676
collation

character data types (tables)
selection, 217–218
SQL Server collations, 224–230
viewing options, 218
Windows collations, 218–224

collation behavior
contained databases, 166–168

collecting allocation facts, allocation consistency
checks, 857–858

colmodctr (Column Modification Counters)
values, 727–728

column-based DDL keywords, 493
column descriptor (CD) row format, 426–432
Column Modification Counters (colmodctr)

values, 727–728
column prefix page compression, 435–436
column processing, 866–881

computed columns, 866–869
cross-page consistency checks, 871–881

B-tree consistency checks, 872–875
FILESTREAM consistency checks, 876–881
heap consistency checks, 871–872
LOB linkage consistency checks, 875–877

text pages, 870–871
COLUMNPROPERTYEX function, 501
COLUMNPROPERTY function, 336
columns

cacheobjtype, values, 705
catalog views, 4, 5
DMVs (Dynamic Management Objects), 42–45
events, 76
facts, 848
first_snapshot_sequence_num, 828

first_useful_sequence_num, 828
friendly name, 9
is_read_committed_snapshot_on, 817
last_transaction_sequence_num, 828
max_version_chain_traversed, 830
node tables, 461
objtype, values, 705–706
recovery_model, 9
resource_lock_partition, 798
spatial indexes, 458, 476
syscacheobjects object, 745–746
sys.database_files, 102–103
sys.databases view, 120
sys.dm_db_database_page_allocations

function, 306–307
sys.dm_os_memory_cache_clock_hands, 59
sys.dm_os_memory_cache_counters, 58
sys.dm_os_memory_cache_hash_tables, 58
sys.dm_os_memory_clerks, 57–58
sys.dm_os_process_memory, 56
sys.dm_os_schedulers, 43
sys.dm_os_sys_info, 56
sys.dm_os_tasks, 44–45
sys.dm_os_threads, 44
sys.dm_os_waiting_tasks, 45
sys.dm_os_workers, 44
sys.dm_xe_sessions, 96–97
transaction_id, 827
transaction_is_snapshot, 827
transaction_sequence_num, 827

Columns dialog box, 92
COLUMN_SET constructs, sparse columns, 414–417
columns (tables)

adding to tables, 281
defined, 203
dropping from tables, 283
minlen, 263
xmaxlen, 263

columnstore indexes, 297, 370–380, 603–608
creating, 370–372
metadata, 376–380
partitioning, 452–454
storage, 371–375

columnstore indexes, Query Optimizer, 660–661,
670–671

columnstore index scan operator, 607
column store object pool, 48
columnstore plan shape, 669
column (sys.database_files), 102
combinations of allocation bitmaps, 859

 compression of data

 Index 909

commands. See also operations
ALTER DATABASE, 107, 109, 115, 140, 813

changing compatibility levels, 137
MODIFY FILE option, 142
switching recovery models, 193

ALTER INDEX, 361–364
REORGANIZE option, 365–366

ALTER RESOURCE GOVERNOR DISABLE, 71
ALTER SEQUENCE, 242
ALTER TABLE, 279–280

ALTER COULMN clause, 280–281
dropping columns, 283–284
manipulating constraints, 281–283
SQL Server execution, 283–286
WITH VALUES clause, 281

BULK INSERT, 190
CHECKCONSTRAINTS, 901
CHECKFILEGROUP, 899–900
CHECKPOINT, 51
CREATE DATABASE, 104, 105, 106, 156
CREATE FUNCTION, 260–261
CREATE INDEX, 313–314

DROP_EXISTING option, 360–361, 362–363
FILLFACTOR option, 362
INCLUDE syntax, 312–313, 313–314, 314–315,

332–333, 360–361, 361–362, 362–363,
363–364

SORT_IN_TEMPDB option, 363
CREATE PARTITION SCHEME, 445
DBCC

consistency checking, 841–901
shrinking files and databases, 837–841

DBCC CHECKALLOC, 898–899
DBCC CHECKCATALOG, 883
DBCC CHECKIDENT, 900
DBCC CHECKTABLE, 890
DBCC FREESYSTEMCACHE, 743
DBCC LOG, 177
DBCC LOGINFO, 179
DBCC PAGE, 250, 824
DBCC SHOW_STATISTICS, 632–633
DBCC SHRINKDATABASE, 108, 109, 178, 187, 838
DBCC SHRINKFILE, 107, 108, 109, 840
DBCC SQLPERF(‘logspace’), 188
DBCC TRACEOFF, 23
DBCC TRACEON, 23
DDL

code, 68–70
DELETE, 672–673
DROP DATABASE, 135

DROP INDEX, 360
FREEPROCCACHE, 731
INSERT, 671–672
INSERT INTO . . . SELECT, 190
RECONFIGURE, 25
RESTORE, 161

WITH RECOVERY option, 196
RESTORE DATABASE, 198
ROLLBACK TRAN, 171
SELECT INTO, 190, 277
SET, displaying query plans, 519
SET TRANSACTION ISOLATION LEVEL, 813
T-SQL BULK INSERT, 238
UPDATE, 671
UPDATE STATISTICS, 725

commited_kb column (sys.dm_os_sys_info), 56
commit record, 172
commit_target_kb column (sys.dm_os_sys_info), 56
common subexpression spools, 623
compatability, locks, 794–795
compatibility levels, 137–138
compatibility views, 3–4
compensation log records, 172
compilation

troubleshooting, 751–752
compilation-related context switches, costs, 744
compiled objects, 719–721

functions, 720–721
stored procedures, 719–720

compiled plan cache stores, 734–735
Compiled Plan Stub value (cacheobjtype

columns), 705
Compiled Plan value (cacheobjtype columns), 705
compile memory costs, 744
components

binding, 12
Database Engine, 10–17

protocols, 11–12
query processor, 12–14
storage engine, 14–17

parsing, 12
composite indexes, seekable predicates, 529
composition of spatial indexes, 475–477
compression

spatial indexes, 474
compression information (CI) records, 437

rebuilding, 440–441
compression of data, 423–443

pages, 433–442
analysis, 440–441

compressions

910 Index

backup compression, 443
CI record building, 440–441
column prefix compression, 435–436
dictionary compression, 436–437
metadata, 441
performance issues, 442–443
physical storage, 437–439

rows, 424–432
CD (column descriptor) format, 426–432
enabling, 425–426

vardecimal, 423
compressions

Backup Compression DEFAULT, 29
computed columns, indexes, 333–338

creating, 335–336
implementation, 336
permissible functions, 334–335
persisted columns, 337–338
schema binding, 335
SET options, 333–334

computed columns, processing, 866–869
Compute Scalar operator (Query Optimizer), 618,

659, 683–684
Compute Sequence operator (Query Optimizer), 619
concatenation operator, 556
CONCAT_NULL_YIELDS_NULL database option, 234
CONCAT_NULL_YIELDS_NULL option, 127
concurrency

locking, 774–811, 832–836
basics, 774–775
compatability, 794–795
deadlocks, 806–811
escalation, 804–805
examples, 789–795
hints, 832–836
internal architecture, 796–803
lock types for user data, 775–786
row-locking versus page-locking, 803–805
spinlocks, 775
viewing locks, 786–789

models, 765–766
row versioning, 811–832

choosing concurrency model, 830–832
details, 811–812
snapshot-based isolation levels, 813–830

transaction processing, 766–774
ACID properties, 767–768
dependencies, 768–769
isolation levels, 770–775

concurrency management, 17

concurrency models, 16
Configuration Manager

moving the master database, 143
configuring

full-text indexes, 500–501
network protocols, 18
operating system

connectivity, 23
firewall settings, 23
nonessential services, 23
paging file location, 22
task management, 21–22

partially contained databases, 162–163
SQL Server 2012, 17–20

default network configuration, 18–19
network protocols, 18
system configuration, 21–33

connections
DAC (Dedicated Administrator Connection), 45

connectivity
disabling protocols, 23

consistency checking, 841–901
allocation consistency checks, 856–860

checking allocation facts, 859–860
collecting allocation facts, 857–858

alternatives to DBCC CHECKDB, 898–901
consistent view of database, 842–845
cross-table consistency checks, 881–885

cross-catalog consistency checks, 882–883
indexed view consistency checks, 883–885
Service Broker feature, 882

DBCC CHECKDB options, 890–893
DBCC CHECKDB output, 885–890

application event log, 888–889
error reporting to Microsoft, 888–889
progress reporting output, 889–890
regular output, 885–887

DBCC CKECKDB output
SQL Server error log, 888

performing database repairs, 893–897
per-table logical consistency checks, 860–866

data and index page processing, 864–866
metadata consistency checks, 861–862
page audits, 863–864

primitive system catalog consistency
checks, 855–856

processing columns, 866–881
computed columns, 866–869
cross-page consistency checks, 871–881
text page processing, 870–871

 creating

 Index 911

processing databases efficiently, 845–855
batches, 851–852
parallelism, 853–855
performing fact generation, 846–848
query processor, 848–851
reading pages to process, 852–853

consistency property (transactions), 767
Constant Scan operator, 616, 683
constraints

B-tree indexes, 312
constraints (tables), 276–279

failures in transactions, 278–279
modifying, 281–282
names and catalog view information, 277–278

contained database authentication option, 162
contained databases, 162–169

collation changes, 166–168
configuring, 162–163
creating contained users, 163–166
detecting uncontained features, 168–169

contained users, creating, 162–165
Containment assumption, Query Optimizer, 637
CONTAINMENT option (ALTER and CREATE

DATABASE statements), 163
CONTAINS operator, 501
CONTAINSTABLE function, 502
ContainsTableSSERankForNear iterator, 504
ContainsTableSSERank iterator, 504
Contains UDX operator, 471
contention

tempdb database, 148–152
DDL contention, 153
DML contention, 148–152

context_switches_count (sys.dm_os_tasks), 44
controlling locking, 832–836
control_option values (sp_control_plan_guide

procedure), 758–759
controls

Resource Governor, 70–71
conventions

naming tables, 207–208
conversion deadlocks, 808–809
conversion locks, 777–778
copying

databases, 134–136
copy-on-write operations, 157
core-based licensing

schedulers, 38
correctness-based recompiles, 722–725
correlated parameters, 535

correlated scalar subqueries, 566, 570–577
correlations, subqueries, 576–577
cosine similarity, 508
costing

joins, 538
costing, cache entries, 743–744
costing, Query Optimizer, 643–645
Cost Threshold For Parallelism option, 32, 33
counters, performance, 826–827
COUNT(*) iterator, 514–515
covered columns, 528–531
covering optimization rule, 473
cpu_id (sys.dm_os_schedulers), 43
CPUs

binding schedulers to, 41–42
NUMA nodes, 36, 37
schedulers, 38

crash recovery, 172
crawl, 498
CREATE DATABASE command, 104, 105, 106, 156
CREATE DATABASE...FOR ATTACH DDL

statement, 505
CREATE DATABASE FOR ATTACH syntax, 141
CREATE DATABASE statement

CONTAINMENT option, 163
FILEGROUP keyword, 110

CREATE EVENT SESSION statement, 83
CREATE FULLTEXT CATALOG DDL statement,

492–493
CREATE FUNCTION command, 260–261
CREATE INDEX command, 313–314

DROP_EXISTING option, 360–361, 362–363
FILLFACTOR option, 362
INCLUDE syntax, 332–333
SORT_IN_TEMPDB option, 363

CREATE INDEX operation, 190
CREATE INDEX statement

monitoring space usage in tempdb, 154
CreateLSN column (VLFs), 180
CREATE PARTITION SCHEME command, 445
CREATE PRIMARY XML INDEX statement, 459
CREATE SCHEMA statement, 133
CREATE SEQUENCE permission, 243
CREATE SPATIAL INDEX DDL statement, 472
CREATE TABLE syntax, 203–204
CREATE VIEW statement

WITH SCHEMABINDING option, 335
creating

columnstore indexes, 370–372
contained users, 163–166

creation_time (sys.dm_os_threads)

912 Index

databases, 104–105
multiple files, 111

database snapshots, 156–159
filegroups, 110, 112
FILESTREAM data storage database, 397–398
FILESTREAM data tables, 397–398
full-text indexes, 498–499
indexed views, 339–340
indexes, 313–315

IGNORE_DUP_KEY option, 313–314
index placement, 314
MAXDOP option, 314
STATISTICS_NORECOMPUTE, 314

indexes on computed columns, 335–336
objects

in schemas, 134
tables, 203–204

data types, 208–233
delimited identifiers, 206–207
naming, 204–205
naming conventions, 207–208
NULL values, 233–235
reserved keywords, 205–206
sparse columns (storage format), 412–413
user-defined data types, 235–236

XML indexes, 459–463
primary XML indexes, 460–463
secondary XML indexes, 463

creation_time (sys.dm_os_threads), 44
cross-catalog consistency checks, 882–883
cross joins, 535
cross-page consistency checks, 871–881

B-tree consistency checks, 872–875
FILESTREAM consistency checks, 876–881
heap consistency checks, 871–872
LOB linkage consistency checks, 875–877

cross products, 600
cross-table consistency checks, 881–885

cross-catalog consistency checks, 882–883
indexed view consistency checks, 883–885
Service Broker feature, 882

current_tasks_count (sys.dm_os_schedulers), 43
CURRENT_TIMESTAMP function, 211
current_workers_count (sys.dm_os_schedulers), 43
CURSOR_CLOSE_ON_COMMIT {ON | OFF}

option, 125
CURSOR_DEFAULT {LOCAL | GLOBAL} option, 125
cursor options, 125
cycle deadlocks, 806–807
Cycle property, SEQUENCE objects, 241

D
DAC (dedicated administrator connection). See DAC
DAC (Dedicated Administrator Connection), 45–47,

458
connecting to, 45
scheduler, 46
SQL statements, 46

data
integrity, constraints, 276–279
internal storage, tables, 270–273
modification

indexes, 341–359
row-level versioning

tempdb database, 146
storage

data compression, 423–443
FILESTREAM data, 394–405
FileTable data, 404–410
LOB (large object) data, 381–393
metadata, 245–246
partitioning, 444–455
sparse columns, 411–423
tables, 203–296

database collation, 217
Database Console Commands. See DBCCs
Database Engine

components, 10–17
protocols, 11–12
query processor, 12–14
storage engine, 14–17

database_id parameter (dm_db_database_page_
allocations function), 306

database_id parameter (dm_db_index_physical_stats
DMV), 302

database_id parameter (sys.dm_io_virtual_file_stats
function), 159

database-level authentication, 165
database locks, 782–783
DATABASEPROPERTYEX function, 8, 501
databases, 139–144

AdventureWorks, 100
AdventureWorks2012

creating snapshot, 156
security, 132

altering, 114–119
space allocation, 116–119
user-defined space, 116

authentication, 164–165
backing up, 136

 data compression

 Index 913

backup and restore processes, 188–201
choosing backup type, 194–195
files and filegroups, 197–198
partial backups, 198
partial restore, 200
recovery models, 190–194
restoring pages, 198–200
restoring with standby, 200–201
types of backups, 189–190

copying, 134–136
creating, 104–105

FILESTREAM data storage, 397–398
multiple files, 111

definition, 99
detaching, 135–136
expanding, 106–109

automatic file expansion, 106–107
fast file initialization, 107–108
manual file expansion, 107

features, 99
filegroups, 109–113

default, 110–111
primary, 110

files, 101–106
log, 102
primary data, 101–102
properties, 102
secondary data, 102
sys.database_files, 102–103

instances, 99
master, 139–140
model, 140
moving, 134–136, 142–144
msdb, 141–142
newdb, 185
Northwind, 101
objects, 99
partially contained, 162–169

collation changes, 166–168
configuring, 162–163
creating contained users, 163–166
detecting uncontained features, 168–169

properties, 99
pubs, 101
reattaching, 135–136
recovery

models, 190–194
resource, 140–141
restoring, 136
security, 129–134

default schemas, 134
SemanticsDB, 505
setting options, 119–129

auto options, 125–126
cursor options, 125
database recovery options, 128–129
SQL options, 126–127
state options, 122–125

shrinking, 106–109, 837–841
automatic shrinkage, 108
AUTO_SHRINK option, 841–842
data file shrinking, 838–839
DBCC SHRINKFILE command, 840
log file shrinking, 840
manual shrinkage, 108–109

snapshots, 155–161
alternatives to, 844–845
consistency checks, 843
creating, 156–159
management, 161
space monitoring, 159–161

system base tables, 3
tempdb, 140, 144–156

best practices, 147–148
contention, 148–152
objects, 144–145
optimizations, 146–147
space monitoring, 153–155

truncating, 185
versus schemas, 133

database state
viewing, row versioning, 816–817

Database Tuning Advisor program, 484
database_uncontained_usage extended event

detecting uncontained features in databases, 168
data cache, 47

access to pages in, 48–49
page management, 48–49

data compression, 423–443
pages, 433–442

analysis, 440–441
backup compression, 443
CI record building, 440–441
column prefix compression, 435–436
dictionary compression, 436–437
metadata, 441
performance issues, 442–443
physical storage, 437–439

rows, 424–432
CD (column descriptor) format, 426–432

Data Definition Language (DDL) statements

914 Index

enabling, 425–426
vardecimal, 423

Data Definition Language (DDL) statements
ALTER FULLTEXT INDEX, 499
CREATE DATABASE...FOR ATTACH, 505
CREATE FULLTEXT CATALOG, 492–493
CREATE PRIMARY XML INDEX, 459
CREATE SPATIAL INDEX, 472
mixing with DML statements, 729
snapshot isolation, 819–822

data file shrinking, 838–839
Data Manipulation (DML) statements

mixing with DDL statements, 729
Data Manipulation Language (DML) statements,

13–14
data modification statements, 598–599
data page processing, per-table logical consistency

checks, 864–866
data pages, tables, 248–257

data rows, 249
deallocation, 291
examination of, 250–257
in-row, 245
LOB, 245
page header, 249
row offset array, 249–250
row-overflow, 245

data purity checks, processing columns, 867–869
DATA_PURITY option (DBCC CHECKDB), 893
data rows

unrestricted-length LOB data, storage, 389–392
data rows, tables, 249, 257–259
DATA section (DBCC PAGE command output), 256
data_space_id column (sys.database_files), 102
Data Storage page (Extended Exvents UI), 89
Datatype property, SEQUENCE objects, 240
data types

BIGINT, 496
spatial

GEOGRAPHY, 471
GEOMETRY, 471

tables, 208–233
changing, 280–281
character, 213–230
date and time, 210–213
numeric, 208–210
special data types, 230–233
user-defined, 235–236

UNIQUEIDENTIFIER, 507

XML
built-in SQL methods, 463

Data UDX operator, 471
data warehouses

query execution, 599–603
data warehousing

Query Optimizer, 659–669
batch processing, 662–666
columnstore indexes, 660–661, 670–671
plan shape, 667–670

datbases
security

access, 130–131
date data types, 210–213
datetime2 data type, 210
datetime data type, 210
datetimeoffset data type, 210
DBCC CHECKALLOC command, 898–899
DBCC CHECKCATALOG command, 882, 883
DBCC CHECKCONSTRAINTS command, 901
DBCC CHECKDB

tempdb database, 144
DBCC CHECKDB command

consistency checking
allocation consistency checks, 856–860
alternatives to DBCC CHECKDB, 898–901
cross-table consistency checks, 881–885
getting consistent views of databases,

842–845
options, 890–893
output, 885–890
performing database repairs, 893–897
per-table logical consistency checks, 860–866
primitive system catalog consistency

checks, 855–856
processing columns, 866–881
processing databases efficiently, 845–855

DBCC CHECKFILEGROUP command, 899–900
DBCC CHECKIDENT command, 900
DBCC CHECKIDENT(tablename) statement, 240
DBCC CHECKTABLE command, 889, 890
DBCC commands

consistency checking, 841–901
allocation consistency checks, 856–860
alternatives to DBCC CHECKDB, 898–901
consistent view of database, 842–845
cross-table consistency checks, 881–885
DBCC CHECKDB options, 890–893
DBCC CHECKDB output, 885–890
performing database repairs, 893–897

 Developer edition

 Index 915

per-table logical consistency checks, 860–866
primitive system catalog consistency

checks, 855–856
processing columns, 866–881
processing the database efficiently, 845–855

shrinking files and databases, 837–841
AUTO_SHRINK option, 841–842
data file shrinking, 838–839
DBCC SHRINKFILE command, 840
log file shrinking, 840

DBCC DBREINDEX operation, 190
DBCC FREESYSTEMCACHE command, 743
DBCC LOG command, 177
DBCC LOGINFO command, 179
DBCC MEMORYSTATUS tool, 691
DBCC_MULTIOBJECT_SCANNER latch, 853
DBCC OPTIMIZER_WHATIF statement, 602
DBCC PAGE command, 250, 824
DBCCs (Database Console Commands), 108
DBCC SHOW_STATISTICS command, 632–633
DBCC SHRINKDATABASE, 108
DBCC SHRINKDATABASE command, 109, 178, 187,

838
DBCC SHRINKFILE command, 107, 108, 109, 840
DBCC SQLPERF(‘logspace’) command, 188
DBCC TRACEOFF command, 23
DBCC TRACEON command, 23
dbid-fileno-pageno identifier

hashing, 48
dbo schema, 205
DCM (Differential Changed Map) pages, 857
DDL commands

code, 68–70
DDL contention

tempdb database, 153
DDL (Data Definition Language) statements

ALTER FULLTEXT INDEX, 499
CREATE DATABASE...FOR ATTACH, 505
CREATE FULLTEXT CATALOG, 492–493
CREATE SPATIAL INDEX, 472
mixing with DML statements, 729
snapshot isolation, 819–822

deadlocks, 806–811
conversion deadlocks, 808–809
cycle deadlocks, 806–807
detection, intervention, and avoidance, 809–811
parallel, 586

deallocation
pages, 149

deallocation, data pages, 291

debug events, 76
debugging planning issues, Query Optimizer,

691–692
decimals, exact numeric data types, 209
declarative data integrity, 276–279
decorrelation, subqueries, 576–577
dedicated administrator connection. See DAC
Dedicated Administrator Connection (DAC), 458
deepest cell optimization rule, 473
DEFAULT constraint, 276
default filegroup, 110–111
Default group, 66
Default pool, 64
default schema, 205
default schemas, 134
Default value (objtype columns), 706
deferred drop, 858
deferred drop operations

tempdb database, 147
degree of normalization, data warehouses, 599
degree of parallelism (DOP), 582–583
DELETE command, 672–673
DELETE statement, 598–599
deleting

FILESTREAM data, 400
rows

heap data modifications, 288–292
modifying indexes, 346–353

delimited identifiers
naming tables, 206–207

denormalized dimensional model, data
warehouses, 599

density
spatial indexes, 472

density information, Query Optimizer
statistics, 634–636

multicolumn statistics, 641
dependencies, transactions, 768–769
depth-first algorithm, 846
design

Query Optimizer statistics, 631–634
detaching

databases, 135–136
DETAILED mode (mode parameter), 304
detecting fragmentation, B-tree indexes, 363
detecting uncontained features (partially contained

databases), 168–169
detection, deadlocks, 809–811
deterministic functions, 334
Developer edition, 1–2

diagnostic stored procedures

916 Index

diagnostic stored procedures
full-text indexes, 500–501
spatial indexes, 484–491

dialog boxes
Aggregation, 94
Columns, 92
Grouping, 93
Performance Options, 21–22

dictionary area (CI records), 438
dictionary compression, pages, 436–437
DIFF (Differential Changed Map), 119
DIFF (Differential Changed Map) pages, 189
differential backups, 189, 195
Differential Changed Map (DCM) pages, 857
Differential Changed Map (DIFF), 119
Differential Changed Map (DIFF) pages, 189
dimensional data modeling, data warehouses, 600
dimension tables, 600, 659
dirty buffers, 52
dirty page tables (DPTs), 174
dirty reads, 769
disabling

constraints (tables), 281–282
protocols, 23
Resource Governor, 71

disabling indexes, 361–362
Disk I/O settings, 28–30
disk pages, 15
disk space issues, consistent database view, 844–845
display options, query plans, 520–526
distinct aggregates

hash aggreagation, 554–555
scalar aggregation, 550–551

DISTINCT keyword
scalar aggregate, 547

Distributed Query feature (Query Optimizer),
687–689

distribute streams exchange, 585
dm_db_*, 7
dm_db_database_page_allocations function,

306–307, 319, 329
dm_db_index_operational_stats function, 441
dm_db_index_physical_stats DMV, 302–305, 318,

328
dm_db_index_physical_stats function, 353
dm_exec_*, 6
dm_exec_requests DMV, 366
dm_exec_sessions DMV, 334–335
dm_io_*, 7

DML contention
tempdb database, 148–152

DML (Data Manipulation Language) statements,
13–14

DML (Data Manipulation) statements
mixing with DDL statements, 729

dm_logpool*, 7
dm_os_*, 6
dm_tran_*, 7
dm_tran_locks DMV, 325
DMVs (Dynamic Management Objects), 6–7

dm_db_*, 7
dm_exec_*, 6
dm_io_*, 7
dm_logpool*, 7
dm_os_*, 6
dm_tran_*, 7
log pool, 177
memory internals, 57–59
monitoring space usage in tempdb, 153
schedulers, 42–45
sys.dm_db_uncontained_entities

detecting uncontained features in
databases, 168

sys.dm_exec_cached_plans, 72
sys.dm_exec_connections, 6
sys.dm_exec_query_memory_grants, 72
sys.dm_exec_query_resource_semaphores, 72
sys.dm_exec_requests, 6, 72
sys.dm_exec_sessions, 6, 72
sys.dm_os_memory_brokers, 72
sys.dm_resource_governor_configuration, 72
sys.dm_resource_governor_resource_pools, 72
sys.dm_xe_packages, 75
sys.dm_xe_sessions, 96–97

DMVs (dynamic management views)
full-text indexes, 500

docid map table, 494
DOCUMENT qualifier, 470
Document Similarity Index (DSI) semantic index, 506
domain integrity, 276
DONE value (task_state), 44
DOP (degree of parallelism), 582–583
DPTs (dirty page tables), 174
drawbacks

parameterization, 715–717
DROP DATABASE command, 135
DROP DATABASE operation, 161
DROP_EXISTING option (CREATE INDEX

command), 360–363

 events

 Index 917

DROP INDEX command, 360
DROP INDEX operation, 191
dropped_event_count and dropped_buffer_count

column (sys.dm_xe_sessions), 97
dropping

columns from tables, 283
constraints (tables), 281–282

DSI (Document Similarity Index) semantic index, 506
durability property (transactions), 768
duration, locks, 785
dynamic affinity, 41
dynamic cursor support, iterators, 516–517
dynamic index seeks, 560–563
Dynamic Management Objects (DMVs), 6–7

dm_db_*, 7
dm_exec_*, 6
dm_io_*, 7
dm_logpool*, 7
dm_os_*, 6
dm_tran_*, 7
log pool, 177
monitoring space usage in tempdb, 153
schedulers, 42–45
sys.dm_db_uncontianed_entities

detecting incontained features in
databases, 168

sys.dm_exec_cached_plans, 72
sys.dm_exec_connections, 6
sys.dm_exec_query_memory_grants, 72
sys.dm_exec_query_resource_semaphores, 72
sys.dm_exec_requests, 6, 72
sys.dm_exec_sessions, 6, 72
sys.dm_os_memory_brokers, 72
sys.dm_resource_governor_configuration, 72
sys.dm_resource_governor_resource_pools, 72
sys.dm_resource_governor_workload_groups, 72
sys.dm_xe_packages, 75
sys.dm_xe_sessions, 96–97

dynamic management views (DMVs)
full-text indexes, 500

E
EditionID property, 2
editions

memory configurations, 56
SQL Server, 1–2

efficiently processing databases, 845–855
parallelism, 853–855
performing fact generation, 846–848

processing batches, 851–852
query processor, 848–851
reading pages to process, 852–853

ellipsoidal (round-earth) data, 231
EMERGENCY mode, 122, 123
EMERGENCY mode repair, DBCC CHECKDB, 896–897
enabling

constraints (tables), 281–282
FILESTREAM data storage access, 395–396
Optimize for Ad Hoc Workloads option, 708–709
Resource Governor, 62
row compression, 425–426

endpoints
TDS (tabular data stream), 12

EngineEdition property, 1–2
Enterprise edition, 1–2
Enterprise Evaluation edition, 1–2
entity integrity, 276
entries_count column (sys.dm_os_memory_cache_

counters), 58
entries_in_use_count column (sys.dm_os_memory_

cache_counters), 58
environmental changes, correctness-based

recompilation, 722
equality (equijoin) predicates, 536
equijoin (equality) predicates, 536
error reporting to Microsoft, DBCC CHECKDB

output, 888–889
escalation, locking, 804–805
estimated execution query plans, 518–519
ESTIMATEONLY option (DBCC CHECKDB), 892
etw_classic_sync_target target, 80, 90
ETW (Event Tracing for Windows), 76
Euclidean (flat-earth) data, 231
event_counter target, 81
event data

querying, 84–85
Event Fields tab, 88–89
event_file target, 80
events, 76–77

admin, 76
analytic, 76
columns, 76
database_uncontained_usage extended

detecting uncontained features in
databases, 168

debug, 76
extended, full-text indexes, 501–502, 503–505
operational, 76
sqlserver.latch_suspend_end, 151

event sessions

918 Index

event sessions, 75
catalog metadata, 96
creating, 86–90
Extended Events, 82–83

creating, 83–84
managing, 86–90
removing, 86
session-scoped options, 96–97
stop, 86

Events page (Extended Events UI), 87–88
event_stream target, 81
Event Tracing for Windows (ETW), 76
event_type column (suspect_pages table), 198
exact numeric data types, 208
exchange operator (parallelism), 583–586
Exchange operator (Query Optimizer), 624
exclusive locks, 358, 776
exec_context_id (sys.dm_os_waiting_tasks), 45
execute method, 747, 748
EXECUTE...WITH RECOMPILE option, 719
execution cache plans, 734
execution contexts, 734
execution, queries

analyzing plans, 525–600
advanced index operations, 560–567
aggregations, 545–556
bookmark lookup, 531–533
data modification statements, 598–599
joins, 533–544
parallelism, 580–598
scans and seeks, 526–528
seekable predicates and covered

columns, 528–531
subqueries, 566–580
unions, 555–559

batch processing, 603–608
columnstore indexes, 603–608
data warehouses, 599–603
hints, 609
query processing, 513–517
reading query plans, 517–526

display options, 520–526
estimated vs. actual query plans, 518–519
graphical plans, 517
text plans, 518
XML plans, 518

exist method, 464
EXISTS subqueries, 579
expanding

databases, 106–109

automatic file expansion, 106–107
fast file initialization, 107–108
manual file expansion, 107

Express edition, 2
expression evaluator objects, 867
extended events

full-text indexes, 501–502, 503–505
Extended Events, 73

actions, 77
package0.attach_activity_id, 97
package0.attach_activity_id_xfer, 97

architecture, 73
ETW (Event Tracing for Windows), 76
events, 76–77
event sessions, 75, 82–83

creating, 83–84, 86–90
managing, 86–90
removing, 86
stopping, 86

life cycle, 73–74
maps, 79
object names, 75
packages, 75
predicates, 78–79
querying event data, 84–85
targets, 80–82

viewing content, 90–95
types, 79
User Interface, 86–97

aggregating data, 93–95
Data Storage page, 89
Events page, 87–88
General page, 86–87
grouping data, 93–95
viewing target data, 90–95

extended indexes, Query Optimizer, 689
EXTENDED_LOGICAL_CHECKS option, 884, 885
EXTENDED_LOGICAL_CHECKS option (DBCC

CHECKDB), 891
Extended Proc value (cacheobjtype columns), 705
Extended Stored Procedures cache store, 733
extent fragmentation, 359
extent locks, 782
external fragmentation, 359

F
fact-aggregation algorithm, 850
fact-generation algorithm, 848
fact generation, DBCC CHECKDB, 846–848

 fragmentation

 Index 919

facts
actual text, 847
consistency checking, 847
parent text, 846
sibling, 847

fact-sorting algorithm, 850
fact-storing algorthm, 850
fact tables, 600, 659
fast file initialization, 107–108
FAST N hint, 644–645
FAST <number_rows> hint, Query Optimizer, 695
fast recovery, 174
FDHOST.exe executable, 498
fibers

compared to threads, 40
FILEGROUP keyword

creating filegroups, 110
filegroups, 109–113

backing up and restoring, 189, 197–198
creating, 110, 112
default, 110–111
filestream, 113
indexes, 111
primary, 110
tables, 111

FILEGROUP specification
full-text indexes, 493

FILEGROWTH property, 105
file_guid column (sys.database_files), 102
Fileid column (sys.database_files), 102
FileId column (VLFs), 179
file_id parameter (sys.dm_io_virtual_file_stats

function), 159
files

backing up and restoring, 189, 197–198
databases, 101–106

log, 102
primary data, 101–102
properties, 102
secondary data, 102
sys.database_files, 102–103

log
shrinking, 109

primary, 110
shrinking, 837–841

AUTO_SHRINK option, 841–842
data file shrinking, 838–839
DBCC SHRINKFILE command, 840
log file shrinking, 840

sparse, 156

FileSize column (VLFs), 179
Filestream Access Level option, 30
FILESTREAM consistency checks, 876–881
FILESTREAM data, storage, 394–405

creating database, 397–398
creating tables, 397–398
enabling access, 395–396
manipulating data, 399–404

deleting, 400
garbage collection, 402–404
inserting data, 399
logging changes, 401
transactions, 401–402
updates, 400

metadata, 404–406
performance, 409–410

filestream filegroups, 113
FILESTREAM garbage collection process, 844
FileTable storage, 404–410
FILLFACTOR option (CREATE INDEX command), 362
FILLFACTOR (XML index option), 460
filtered indexes, 332, 342
filtered indexes, Query Optimizer, 648–650
Filtered Statistics feature, Query Optimizer, 636–637
Filter-For-Pid-Level1 iterator, 504
Filtering (Predicate) tab, 88–89
Filter iterator, 480
Filter() method, 488
Filter operator, 504
firewall settings, 23
first_snapshot_sequence_num column, 828
first_useful_sequence_num column, 828
fixed-length columns, tables, 214–215
fixed-length rows, tables, 262–265
FixedVar format, 257
FOR ATTACH_REBUILD_LOG option, 136
forced parameterization, 627, 714, 747
FORCED parameterization model, 698
FORCESEEK hint, Query Optimizer, 695
FOREIGN KEY constraint, 276
formats

index rows, B-tree indexes, 315–316
forwarded records, 363–364
forwarding pointer, 430
forward pointers, 293–294, 356–357
fragmentation

B-tree indexes
detecting, 363
removing, 364–366

index data modification, 359–360

free buffer list

920 Index

free buffer list, 49–50
FREEPROCCACHE command, 731
Free Space in tempdb counter, 826
FREETEXT operator, 501
FreeTextSSETermRank iterator, 504
FREETEXTTABLE function, 502
freezing, plan cache, 763
frequency information, Query Optimizer

statistics, 634–636
friendly name columns, 9
FSeqNo column (VLFs), 179
Fsize row header, 315
full backups, 189
full outer joins, 538
FULL recovery model (databases), 191
fulltext_avdl_[t_objectid] internal table (full-text

indexes), 496
FULLTEXTCATALOGPROPERTY function, 501
full-text catalogs, 492–493
fulltext_docidfilter_[t_objectid] internal table (full-

text indexes), 496–497
full_text_exec_query_stats event, 503–504
fulltext_index_docidmap_[t_objectid] internal table

(full-text indexes), 496
fulltext_index_docidstatus_[t_objectid] internal table

(full-text indexes), 495
fulltext_indexeddocid_[t_objectid] internal table

(full-text indexes), 496
full-text indexes, 492–505

configuring, 500–501
creating, 498–499
diagnostic information, 500–501
extended event information, 503–505
internal tables, 494–497
maintenance, 499–500
metadata views, 497
query plans, 502–503
status metadata, 500–501
use in a query, 501–502

FulltextMatch function, 502
full_text_query_recompile event, 503–504
full-text search daemon launcher service

(MSSQLFDLauncher), 492
fulltext_semantic_document_language extended

event, 506
FULLTEXTSERVICEPROPERTY function, 501
fulltext_thesaurus_metadata_table internal

table, 497
fulltext_thesaurus_phrase_table internal table, 497
fulltext_thesaurus_state_table internal table, 497

functions
CheckIndex, 850
classifier, 62–63
cleanup, 826
COLUMNPROPERTY, 336
COLUMNPROPERTYEX, 501
compiled objects, 720–721
computed columns, indexes, 334–335
CONTAINSTABLE, 502
CURRENT_TIMESTAMP, 211
DATABASEPROPERTYEX, 8, 501
deterministic, 334
dm_db_database_page_allocations, 306–307,

319, 329
dm_db_index_operational_stats, 441
dm_db_index_physical_stats

ghost records, 353
FREETEXTTABLE, 502
FULLTEXTCATALOGPROPERTY, 501
FulltextMatch, 502
FULLTEXTSERVICEPROPERTY, 501
GETANSINULL, 234
IDENT_CURRENT. SCOPE_IDENTITY, 239
IDENT_INCR(tablename), 237–238
IDENT_SEED(tablename), 237–238
indexed views, 334–335
INDEXPROPERTYEX, 501
NEWID, 232
NEWSEQUENTIALID, 232
nondeterministic, 334
object_definition, 5
OBJECTPROPERTY, 335
OBJECTPROPERTYEX, 501
partitioning, 444–446
PathName, 404
property, 8–9
RangePartitionNew, 682
REPLICATE, 266
SCOPE_IDENTITY, 239
SEMANTICKEYPHRASETABLE, 507
SEMANTICSIMILARITYDETAILSTABLE, 509
SEMANTICSIMILARITYTABLE, 508
SERVERPROPERTYEX, 501
SESSIONPROPERTY, 334
STATMAN, 633
sys.dm_exec_cached_plan_dependent_

objects, 738
sys.dm_exec_query_stats, 739–740
sys.dm_exec_sql_text, 736–738
sys.dm_exec_text_query_plan, 737

 hints

 Index 921

sys.dm_fts_index_keywords, 497
sys.dm_fts_index_keywords_by_document, 497
sys.dm_fts_index_keywords_by_property, 497
sys.dm_io_virtual_file_stats, 159
sys.fn_PhysLocFormatter

locating physical pages, tables, 261–262
sys.fn_validate_plan_guide, 763
system, 8–9
TERTIARY_WEIGHTS ', 225

G
GAM (Global Allocation Map) pages, 116, 838, 856
garbage collection

FILESTREAM data, 402–404
gather streams exchange, 585
General page (Extended Events UI), 86–87
geography data type, 231
GEOGRAPHY data type, 471
GEOGRAPHY_GRID spatial index, 476
geometry data type, 231
GEOMETRY data type, 471
GEOMETRY_GRID spatial index, 476
GETANSINULL function, 234
GetRow method, 514
ghost-cleanup thread, 350
ghost records, 350–351, 364, 825–826
global aggregates, 589
Global Allocation Map (GAM) pages, 116, 838, 856
Global Fields (Actions) tab, 88–89
globally unique identifier (GUID) data type, 231
global memory pressure, plan cache, 743
GRANT CREATE TABLE TO statement, 133
granularity, locks, 778–784

additional lock resources, 782
allocation unit locks, 783
associated entity ID, 784–785
database locks, 782–783
extent locks, 782
identifying lock resources, 783–784
key locks, 780–782
partition-level locks, 783

graphical plans (queries), 517
gridding specifications, 473
GROUP BY clause

stream aggregation, 548–552
GROUP BY operator, Query Optimizer, 692–693

cardinality estimation, 640–641
grouping data

Extended Events UI, 93–95

Grouping dialog box, 93
GROUP_MAX_REQUESTS property, 68
groups

Default, 66
Internal, 66
workload

properties, 67–68
growth column (sys.database_files), 103
GUID (globally unique identifier) data type, 231

H
Halloween Protection feature, Query Optimizer

updates, 674–675
handles, plan cache, 735–736
hash aggregations, 552–556
hashing, 48
hash joins, 542–544

parallelism, 595
hash partitioning, parallelism, 595–596
hash tables, 48
hash union operators, 558
header, CI records, 438
heap consistency checks, 871–872
heap data modifications, 286–295

allocation structures, 286–288
deleting rows, 288–292
inserting rows, 288
updating rows, 292–295

Heap or B-Tree (hobt), 245
heaps

deleting rows, 347–350
inserting rows, 342
nonclustered index rows, 322–327

heuristics, detecting star schemas, 600
HighMemoryResourceNotification flag, 50
hints, 609

locking, 832–836
plan cache optimization, 752–754
Query Optimizer, 689–699

debugging planning issues, 691–692
FAST <number_rows> hint, 695
FORCESEEK hint, 695
GROUP BY operation, 692–693
JOIN operations, 693–694
MAXDOP<N> hint, 696
NDEX=<indexname> | <indexid> hint, 694
NOEXPAND hint, 699
OPTIMIZE FOR hint, 696–698

histograms, cardinality estimation

922 Index

PARAMETERIZATION hint, 698
UNION operations, 693–694
USE PLAN hint, 699–700

histograms, cardinality estimation, 639
hobt (Heap or B-Tree), 245
HOLDLOCK hint, 833
hotfixes, Query Optimizer, 700–701
Hungarian-style notation, 208

I
IAM (Index Allocation Map) chains, 838, 857
IAM (Index Allocation Map) page, 148
IAM (Index Allocation Map) pages, 118
IDENT_CURRENT. SCOPE_IDENTITY function, 239
identification

index keys, 529–531
identifying lock resources, 783–784
IDENT_INCR(tablename) function, 237–238
IDENTITYCOL keyword, 238
IDENTITY property (tables), 237–240
IDENT_SEED(tablename) function, 237–238
ifts_comp_fragment_[t_objectid]_[ordinal] internal

table (full-text indexes), 495
IGNORE_DUP_KEY=ON option, 475
IGNORE_DUP_KEY option, creating indexes, 313–314
IGNORE_NONCLUSTERED_COLUMNSTORE_INDEX

hint, 609
implementation

computed columns, indexes, 336
IMPORTANCE property, 67
INCLUDE syntax (CREATE INDEX command), 332–

333
Increment property, SEQUENCE objects, 240
Independence assumption, Query Optimizer, 637
Index Allocation Map (IAM) chains, 838
Index Allocation Map (IAM) page, 148
Index Allocation Map (IAM) pages, 118
index-at-a-time modifications, 358
Index Create Memory option, 32
indexed-view consistency checks, 883–886
indexed views, 333–335, 338–341, 881

creating, 339–340
permissible functions, 334–335
requirements, 338–339
schema binding, 335
SET options, 333–334
uses, 340–341

Indexed Views feature, Query Optimization,
649–653

indexes
advanced index operations, 560–567

dynamic index seeks, 560–563
index intersections, 565–567
index unions, 562–564

analysis, 302–307
dm_db_database_page_allocations

function, 306–307
dm_db_index_physical_stats DMV, 302–305

B-tree, 297, 299–302
large key column example, 300–301
management, 360–370
narrow key column example, 301–302
physical index structure, 315–332
structure, 308–312

clustered, 457. See clustered indexes
columnstore, 297, 370–380, 603–608

creating, 370–372
metadata, 376–380
storage, 371–375

composite, 529
computed columns, 333–338

creating, 335–336
implementation, 336
permissible functions, 334–335
persisted columns, 337–338
schema binding, 335
SET options, 333–334

creating, 313–315
IGNORE_DUP_KEY option, 313–314
index placement, 314
MAXDOP option, 314
STATISTICS_NORECOMPUTE, 314

data modification, 341–359
deleting rows, 346–353
fragmentation, 359–360
inserting rows, 342
locking, 358
logging, 358
splitting pages, 342–346
table-level vs index-level, 357
updating rows, 354–358

filegroups, 111
full-text indexes, 492–505

configuring, 500–501
creating, 498–499
diagnostic information, 500–501
extended event information, 503–505
internal tables, 494–497
maintenance, 499–500

 internal organization, plan cache

 Index 923

metadata views, 497
query plans, 502–503
status metadata, 500–501
use in a query, 501–502

indexed views, 333–335, 338–341
creating, 339–340
permissible functions, 334–335
requirements, 338–339
schema binding, 335
SET options, 333–334
uses, 340–341

nonclustered. See nonclustered indexes
overview, 298–299
partitioning, 444–455

columnstore indexes, 452–454
functions and schemes, 444–446
metadata, 446–449
sliding window benefits, 450–453

semantic indexes, 505–510
single-column, 528
spatial indexes, 471–491

columns, 458
composition of, 475–477
diagnostic stored procedures, 484–491
ensuring use, 478–479
nearest neighbor queries, 481–484
purpose of, 472–476
query plans, 479–480
spatial queries, 477

special indexes versus ordinary indexes, 457–458
XML

creating and maintaining, 459–463
query plans, 465–467, 470–471
schema-validated columns, 469–470
secondary XML indexes, 468–469
XQuery, 463–465

INDEX hint, 609
index_id parameter (dm_db_database_page_

allocations function), 306
index_id parameter (dm_db_index_physical_stats

DMV), 303
index keys

identification, 529–531
index-level data modification, indexes, 357
index merge joins, 540–542
Index metadata objects, 861
index operations, 14, 190
index page processing, per-table logical consistency

checks, 864–866
index population, 498

INDEXPROPERTYEX function, 501
index ranges

read-ahead, 60
index rows, B-tree indexes, 315–316
index seek, 527
index selection, Query Optimization, 645–654

filtered indexes, 648–650
indexed views, 649–653

indirect checkpoints, 29
inequality predicates, 536
INFORMATION_SCHEMA, 7
information schema views, 7
inner-side parallel execution, 593–594
input fraction, 525
in-row data pages, 245
INSERT command, 671–672
inserting

FILESTREAM data, 399
rows

heap data modifications, 288
modifying indexes, 342

INSERT INTO . . . SELECT command, 190
INSERT statement, 598–599
Installation Wizard

SQL Server collations, character data types
(tables), 228

installing
SQL Server 2012, 2

instance-level logins permissions, 163
instance-level objects, 162
instances, 57

databases, 99
multiple, 57

integers, exact numeric data types, 208
integrity (data), constraints, 276–279
intent locks, 776
intermediate index pages

splitting, 344
Internal_Filter_Efficiency property, 487
internal fragmentation, 359
Internal group, 66
internal locking architecture, 796–803
internal objects

tempdb database, 145
internal organization, plan cache, 732–744

cache stores, 732–733
compiled plans, 734–735
costing entries, 743–744
execution contexts, 734
metadata, 735

Internal pool

924 Index

handles, 735–736
sys.dm_exec_cached_plan_dependent_objects

function, 738
sys.dm_exec_cached_plans view, 738–739
sys.dm_exec_procedure_stats view, 740–743
sys.dm_exec_query_stats function, 739–740
sys.dm_exec_requests view, 739–740
sys.dm_exec_sql_text function, 736–738
sys.dm_exec_text_query_plan function, 737

Internal pool, 64
internal queries, parallelism and, 854
internal query optimizations

spatial indexes, 477
internal storage, tables, 243–276

catalog view queries, 246–248
data and time data, 270–273
data pages, 248–257

data rows, 249
examination of, 250–257
page header, 249
row offset array, 249–250

data rows, 257–259
data storage metadata, 245–246
fixed-length rows, 262–265
locating a physical page, 259–262

creating a function to perform
conversion, 260–261

sys.dm_db_database_page_allocations
DMV, 261

sys.fn_PhysLocFormatter function, 261–262
NULL values, 267–270
sql_variant data, 273–276
sys.indexes Catalog view, 244–245
variable-length columns, 267–270
variable-length rows, 265–267

internal tables, full-text indexes, 494–497
intersections, indexes, 565–567
intervention, deadlocks, 809–811
inverted index, full-text, 495–496
I/O costs, 744
ISABOUT clause, full-text index queries, 501
IsAboutSSESum iterator, 504
is_fiber (sys.dm_os_workers), 44
is_media_read_only column (sys.database_files), 103
is_name_reserved column (sys.database_files), 103
isolation levels

FILESTREAM data, 401
snapshot-based, row versioning, 813–830

DDL statements, 819–822

RCSI (read committed snapshot
isolation), 813–814

snapshot isolation, 814–815
snapshot isolation scope, 815–816
summary, 821–822
transaction metadata, 827–830
update conflicts, 817–818
version store, 823–827
viewing database state, 816–817

isolation (transactions), 768, 770–775
Read Committed isolation, 771
Read Uncommitted isolation, 770
Repeatable Read isolation, 771–772
Serializable isolation, 773–774
Snapshot isolation, 772

is_online (sys.dm_os_schedulers), 43
is_percent_growth column (sys.database_files), 103
is_preemptive (sys.dm_os_workers), 44
is_read_committed_snapshot_on column, 817
is_read_only column (sys.database_files), 103
is_sparse column (sys.database_files), 103
iterators, 513–517. See also operators

CDocidRankWtToDocidRankAdaptor, 504
ContainsTableSSERank, 504
ContainsTableSSERankForNear, 504
COUNT(*), 514–515
exchange operator (parallelism), 583–586
Filter, 480
Filter-For-Pid-Level1, 504
FreeTextSSETermRank, 504
IsAboutSSESum, 504
MergeUnion Merger Type HeapMerger, 504
properties

dynamic cursor support, 516
memory consumption, 515–516
non-blocking vs blocking, 516

SingleFragmentDocidFilter, 504
SingleFragmentSeekFilter, 504
Table-Valued Function [XML Reader], 471
Table-Valued Function [XML Reader with XPath

Filter], 470
TopNByRank, 504
TOP N Sort, 482
UDX, 471

J
join associativity, 628–629
join collocation, 656
JOIN operations, Query Optimizer, 693–694

 locking

 Index 925

joins, 533–544
hash, 542–544

parallelism, 595
merge, 539–542

parallelism, 594–595
nested loops, 534–539

parallelism, 590–591, 592–593
properties, 544

K
kanatype sensitivity (KS) tokens, 218
KEEPFIXED PLAN hint, 754
KEEPIDENTITY option (T-SQL BULK INSERT

command), 238
KEEP PLAN hint, 727, 753
key columns, 457
KeyHashValue, 325
key index specification

full-text indexes, 493
key locks, 780–782
key range information, 457
key-range locks, 778, 781–782
keywords

column-based DDL, 493
DISTINCT

scalar aggregate, 547
FILEGROUP

creating filegroups, 110
IDENTITYCOL, 238
LANGUAGE, 493
locking hints, 833–834
LOOKUP, 532
naming tables, 205
SELECT DISTINCT

stream aggregation, 550–551
STATISTICAL_SEMANTICS, 493, 505

-k option, 52
KS (kanatype sensitivity) tokens, 218

L
LANGUAGE keyword, 493
large_page_allocations_kb column (sys.dm_os_

process_memory), 56
last_log_backup_lsn column (sys.database_recovery_

status catalog view), 185
last_transaction_sequence_num column, 828
latches, 152

latches, deadlocks and, 810
Latin1_General_CI_AI collation, 217
lazy spools, 535
lazywriter, 49–50
leaf-level linked-list, 855
leaf-level pages, splitting, 344–347
leaf levels (indexes), 299–300

nonclustered indexes, 322
leaf node level (B-tree indexes), 457
left deep hash join tree, 543–544
LEFT JOIN operator, 448
length check, processing computed columns, 867
life cycles

Extended Events, 73–74
Lightweight Pooling option, 27, 40
limitations

cardinality estimations, 642–643
columnstore indexes, 607
columnstores, 670–671
Query Optimizer parameterization, 627–628

LIMITED mode (mode parameter), 303
load balancing, 589–590
load_factor (sys.dm_os_schedulers), 43
LOB data pages, 245
LOB data types, 230
LOB (large object) data

storage, 381–393
restricted-length/row-overflow, 382–386
unrestricted-length, 386–393

LOB linkage consistency checks, 875–877
local aggregates, 589
locale (sys.dm_os_threads), 44
local memory pressure, plan cache, 742–743
lock blocks, 799–800
lock duration, 785
locked_page_allocations_kb column (sys.dm_os_

process_memory), 56
lock granularity, 778–784

additional lock resources, 782
allocation unit locks, 783
associated entity ID, 784–785
database locks, 782–783
extent locks, 782
identifying lock resources, 783–784
key locks, 780–782
partition-level locks, 783

locking, 774–811
basics, 774–775
compatability, 794–795
control, 832–836

locking code

926 Index

deadlocks, 806–811
conversion deadlocks, 808–809
cycle deadlocks, 806–807
detection, intervention, and avoidance,

809–811
escalation, 804–805
examples, 789–795
hints, 832–836
index data modifications, 358
internal architecture, 796–803
lock types for user data, 775–786

lock duration, 785
lock granularity, 778–784
lock modes, 775–778
lock ownership, 785–786

Query Optimizer updates, 685–686
row-locking versus page-locking, 803–805
spinlocks, 775
viewing locks, 786–789

locking code, 16
locking operations, 17
lock modes, 775–778

bulk update locks, 777
conversion locks, 777–778
exclusive locks, 776
intent locks, 776
key-range locks, 778
schema modification locks, 777
schema stability locks, 777
shared locks, 775–776
update locks, 776

LOCK_MONITOR thread, checking for
deadlocks, 809

lock_owner_address (request_Columns), 788
lock owner blocks, 800
lock ownership, 785–786
Lock Pages in Memory, 55
lock partitioning, 798–799
locks

Shared Table
running DBCC CHECKDB in tempdb

database, 144
viewing

request_Columns, 788–789
resource_Columns, 786–787

Locks option, 27
LOCK_TIMEOUT, setting, 834–836
log backups, 189, 195
log cache

transaction logs and recovery, 177

log files, 102
LSNs (Log Sequence Numbers), 171–172
shrinking, 109
transaction logs, 171–177

changes in log size, 178–188
log cache, 177
page LSNs, 175–176
readable records, 176–177
recovery phases, 174–175

log file shrinking, 840
logging

FILESTREAM data changes, 401
index data modifications, 358

logging optimizations
tempdb database, 146

logical fragmentation, 359
logical operators, spools, 571
logical properties, 616
log marks, 191
log pool, 177
Log Sequence Number (LSN), 158
Log Sequence Numbers (LSNs), 171–172

recovery and, 175–176
long data region (CD format), 429
Longest Transaction Running Time counter, 827
LOOKUP keyword, 532
lost updates, transactioin dependencies, 768–769
LowMemoryResourceNotification flag, 50
LRU-K algorithm, 49
LSN (Log Sequence Number), 158
LSNs (Log Sequence Numbers), 171–172

recovery and, 175–176

M
maintaining recoverable logs, 185–187
maintenance

full-text indexes, 499–500
XML indexes, 459–463

primary XML indexes, 460–463
secondary XML indexes, 463

management
B-tree indexes, 360–370

ALTER INDEX command, 361–364
detecting fragmentation, 363
dropping indexes, 360
online index building, 367–370
rebuilding indexes, 366–367
removing fragmentation, 364–366

plan guides, 758

 memory nodes

 Index 927

sparse columns (storage format), 411–414
altering tables, 413–414
creating tables, 412–413

version store, 826–827
Management Studio, 184
Management Studio Properties sheet, 517
managing

database snapshots, 161
memory

in other caches, 52–53
services

SQL Server Configuration Manager, 19
tasks, 21–22

manipulating
FILESTREAM data, 399–404

deleting, 400
garbage collection, 402–404
inserting data, 399
logging changes, 401
transactions, 401–402
updates, 400

manual file expansion, 107
MANUAL option (CHANGE_TRACKING

specification), 499
manual shrinkage, 108–109
many-to-many merge joins, 539–540
maps

Extended Events, 79
master database, 139–140

moving, 143
master merge, 500
MAX_CELLS parameter, 479
MAX_CPU_PERCENT value, 63
Max Degree Of Parallelism option, 32, 33
MAXDOP<N> hint, Query Optimizer, 696
MAXDOP N query hint, 582
MAXDOP option, creating indexes, 314
MAX_DOP property, 68
Maximum value property, SEQUENCE objects, 241
max-length data, LOB storage, 392–393
MAX_MEMORY_PERCENT value, 64
Max Server Memory option

multiple instances, 57
Max Server Memory setting, 26
max_size column (sys.database_files), 103
MAXSIZE property, 105
MAX values, 63–64
max_version_chain_traversed column, 830
Max Worker Threads option, 27, 28
mechanisms for repairs, DBCC CHECKDB, 894–895

mechanisms, plan cache, 705–732
ad hoc query caching, 706–711
compiled objects, 719–721

functions, 720–721
stored procedures, 719–720

parameterization, 711–717
drawbacks, 715–717
forced, 714

prepared queries, 717–719
caching, 718–719
prepare-and-execute method, 718
sp_executesql procedure, 717–718

recompilation, 722–732
correctness-based recompiles, 722–725
multiple recompilations, 729
optimality-based recompiles, 725–728
removing plans from cache, 729–732
skipping recompile step, 728–729

media recovery, 173, 197
Memo (Query Optimizer), 617, 627–630
memory, 47–61

access to pages in data cache, 48–49
buffer pool, 47
buffer pool sizing, 55–57
checkpoints, 50–52
column store object pool, 48
data cache, 47
DMVs (Dynamic Management Objects), 57–59
free buffer list, 49–50
hash aggregates, 552
hash joins, 543
lazywriter, 49–50
management in other caches, 52–53
Memory Broker, 54
monitoring with

QueryMemoryResourceNotification
API, 50

NUMA (Non-Uniform Memory Access), 59–60
page management in data cache, 48–49
queries, 31
read-ahead, 60
sizing, 54–55
SQL Server 2012 editions, 56
system configuration settings, 26–27
Target Memory, 56
workers, 39

Memory Broker, 54
memory-consuming iterators, 515–516
memory nodes, 37

memory pressure, plan cache

928 Index

memory pressure, plan cache
global, 743
local, 742–743

merge join operator
Properties sheet, 521
ToolTip, 520

merge joins, 539–542
parallelism, 594–595

MERGE operation (Query Optimizer), 676–678
MergeUnion Merger Type HeapMerger iterator, 504
MergeUnion operator, 504
merging exchanges, 585
metadata, 3–10

columnstore indexes, 376–380
data storage, 245–246
FILESTREAM data, 404–406
full-text indexes, 497, 500–501
information schema views, 7
layers, 9–10
page compression, 441
partitions, 446–449
plan cache, 704, 735

handles, 735–736
sys.dm_exec_cached_plan_dependent_objects

function, 738
sys.dm_exec_cached_plans view, 738–739
sys.dm_exec_procedure_stats view, 740–743
sys.dm_exec_query_stats function, 739–740
sys.dm_exec_requests view, 739–740
sys.dm_exec_sql_text function, 736–738
sys.dm_exec_text_query_plan function, 737

Resource Governor, 71–72
security policies, 9
sessions, 96
sparse columns (storage format), 419
system functions, 8–9
system metadata objects

catalog views, 4–5
compatibility views, 3–4
Dynamic Management Objects, 6–7

system stored procedures, 9
transactions

snapshot-based isolation levels, 827–830
metadata cache, 53
metadata consistency checks, 861–862
METADATA subtypes, 787
methods

built-in SQL methods, XML data types, 463
Close, 514
execute, 747, 748

exist, 464
Filter(), 488
GetRow, 514
modify, 464
nodes, 464
Open, 514
prepare, 718, 748
query, 464
STDistance(), 472–473
value, 464

Microsoft Distributed Transaction Coordinator (MS
DTC) service, 16

Microsoft SQL Server. See SQL Server
MIN_CPU_PERCENT value, 63
Minimal Logging Changed Map (ML), 119
minimally logged map (ML map) pages, 192
Minimally Logged Map (ML Map) pages, 857
minimally logged operations, database recovery

models, 190–191
Minimum value property, SEQUENCE objects, 241
minlen columns, 263
MIN_MEMORY_PERCENT value, 64
Min Memory Per Query option, 31, 32
Min Server Memory option

multiple instances, 57
Min Server Memory setting, 26
MIN values, 63–64
ML map (minimally logged map) pages, 192
ML Map (Minimally Logged Map) pages, 857
ML (Minimal Logging Changed Map), 119
m_nextPage field, 345
model database, 140
models

database recovery, 190–194
BULK_LOGGED recovery model, 192–193
FULL recovery model, 191
minimally logged operations, 190–191
SIMPLE recovery model, 193
switching models, 193–194

models, concurrency, 765–766
mode parameter (dm_db_database_page_allocations

function), 306
mode parameter (dm_db_index_physical_stats

DMV), 303
modes, lock. See lock modes
modification counters, optimality-based

recompiles, 727–728
MODIFY FILE option (ALTER DATABASE

command), 142

 Northwind

 Index 929

modifying
constraints (tables), 281–282
data

indexes, 341–359
modify method, 464
moving

databases, 134–136
rows, 292–293

moving databases, 142–144
moving rows, 354–356
msdb database, 141–142
MS DTC (Microsoft Distributed Transaction

Coordinator) service, 16
MSSQLFDLauncher (full-text search daemon

launcher service), 492
mssqlsystemresource database, 140–141
multicolumn indexes, 529
MultiObjectScanner, 852
multi_pages_kb column (sys.dm_os_memory_

clerks), 54
multiple files

creating databases, 111
multiple instances, 57
multiple log files (virtual logs), 181–183
multiple recompilations, 729
multiple-row data (tables), constraints, 278–279
multirow subqueries, 566
MULTI_USER mode, 122

N
name column (sys.database_files), 102
Named Pipes, 11
names

catalog views, 4
compatibility views, 3
objects

Extended Events, 75
namespaces, 133
naming

constraints (tables), 277–278
tables, 204–208

conventions, 207–208
delimited identifiers, 206–207
reserved keywords, 205

Windows collations, character data types
(tables), 218–219

Ncol field, 315
NDEX=<indexname> | <indexid> hint, Query

Optimizer, 694

nearest neighbor queries
spatial indexes, 481–484

nested loops joins, 534–539
parallelism, 590–591, 592–593

network protocols
configuring, 18

New Database window, 104
newdb database, 185
NEWID function, 232
NEWSEQUENTIALID function, 232
New Session window (Extended Events UI), 86–87
NEXT VALUE FOR (sequence objects), 240
nodes method, 464
node tables, 460

columns, 461
NOEXPAND hint, Query Optimizer, 699
NOEXPAND hint, query processor, 884
NOINDEX option (DBCC CHECKDB), 891
NO_INFOMSGS option (DBCC CHECKDB), 887, 892
NOLOCK hint, 834
nonblocking iterators, 516
nonclustered indexes, 298, 855

B-tree index structure, 311–312, 322–332
cross-page consistency checks, 879–881
rebuilding, 368–369

noncorrelated scalar subqueries, 566, 567–569
nondeterministic functions, 334
NONE (No Page Verify Option), 128
nonessential services

configuring, 23
non-key columns, 457
non-leaf levels (indexes), 299–300

clustered indexes, 317
deleting rows, 353

nonmerging exchanges, 585
non-order-preserving exchanges, 585
non-pushable, non-sargable predicates, 647
nonrepeatable reads, transaction dependencies, 769
NON_TRANSACTED_ACCESS option, 406
Non-Uniform Memory Access. See NUMA
Non-Uniform Memory Access (NUMA)

configurations, 798
nonunique nonclustered index rows, 330–331
Non-Updating Updates feature, Query

Optimizer, 681–682
normalized data, data warehouses, 599
normalizing

queries, 13
Northwind, 101

NOTRUNCATE option, shrinking files and databases

930 Index

NOTRUNCATE option, shrinking files and
databases, 839

NO_WAIT option, 125
NTFS volumes

creating snapshots, 159
null bitmap, 315
null checks, processing computed columns, 867
NULL values

tables, 233–235, 267–270
NUMA nodes, 36

CPUs, 37
NUMA (Non-Uniform Memory Access)

memory, 59–60
schedulers, 40–41
SQLOS (SQL Server Operating System), 36–37

NUMA (Non-Uniform Memory Access)
configurations, 798

numeric data types, 208–210
NUMERIC_ROUNDABORT option, 127
nvarchar data, 382

O
object_definition function, 5
Object Explorer in Management Studio

creating databases, 104–105
Object Explorer pane, 2
object_id parameter (dm_db_database_page_

allocations function), 306
object_id parameter (dm_db_index_physical_stats

DMV), 303
Object Linking and Embedding. See OLE
object plan guides, 755–756
Object Plans cache store, 732
OBJECTPROPERTYEX function, 501
OBJECTPROPERTY function, 335
objects

compiled, 719–721
functions, 720–721
stored procedures, 719–720

creating
in schemas, 134

instance-level, 162
limit in databases, 99
names

Extended Events, 75
plan cache, 744–752

multiple plans, 746–747
stored procedures, 747
troubleshooting issues, 748–752

space usage
tempdb database, 153–155

SQLServer:Transactions performance, 826–827
syscacheobjects, 744–746
system metadata

catalog views, 4–5
compatibility views, 3–4
Data Management Objects, 6–7

tempdb database, 144–145
object stores, 53
objtype column, values, 705–706
observing virtual log files, 179–181
OFFLINE mode, 122, 123
OFFLINE setting

schedulers, 38
offset array (long data region), 429
offsets (CI records), 438
OFFSET TABLE section (DBCC PAGE command

output), 257
OLEDB protocol, 851
OLE DB rowsets, 12
OLE (Object Linking and Embedding), 12
OLTP databases vs data warehouses, 599–600
OLTP (Online Transaction Processing), 100
O(n2) algorithm, 846
one-to-many merge joins, 539–540
online index building, 367–370
Online Index rebuild, 475
ONLINE mode, 122, 123
ONLINE setting

schedulers, 38
Online Transaction Processing. See OLTP
O(n*log(n)) algorithm, 846
Open method, 514
operating system

configuring, 21–23
connectivity, 23
firewall settings, 23
nonessential services, 23
paging file location, 22
task management, 21–22

operational events, 76
operations. See also commands

ALTER INDEX REBUILD, 190
bulk import, 190
copy-on-write, 157
CREATE INDEX, 190
DBCC DBREINDEX, 190
DROP DATABASE, 161
DROP INDEX, 191

 page audits, per-table logical consistency checks

 Index 931

index, 190
minimally logged, 190–191
operations that clear cache plans of specific

databases, 730–731
operations that remove the entire plan

cache, 730
read, 157–158
revert

managing snapshots, 161
SELECT INTO, 182

operators. See also iterators
Aggregate, 504
assert, 568
batch hash table build, 607
bitmap, 660
Check UDX, 471
Collapse, 676
columnstore index scan, 607
Compute Scalar, 659, 683–684
concatenation, 556
Constant Scan, 616, 683
CONTAINS, 501
Contains UDX, 471
Data UDX, 471
Filter, 504
FREETEXT, 501
hash union, 558
logical, spools, 571
merge join

Proeprties sheet, 521
ToolTip, 520

MergeUnion, 504
PIVOT, 724
Query Optimizer, 617–624

Apply, 621–622
Compute Scalar, 618
Compute Sequence, 619
Exchange, 624
Se44mi-Join, 619–621
spools, 623

Scalar, 504
scan, 526–528
seek, 526–528
Segment, 659
Serializer UDX, 471
Sort, 675
Split, 675–676
STIntersects() spatial, 480
SWITCH PARTITION, 670
TextAdd UDX, 471

Window Spool, 658
optimality-based recompiles, 725–728

modification counters, 727–728
stale statistics, 725–727
updated statistics, 725

optimistic concurrency, 766, 811, 830–832
optimistic currency, 16
optimization

Query Optimizer, 613
optimization hints

plan cache, 752–754
optimizations

tempdb database, 146–147
optimized bitmap filtering, 601
Optimize for Ad Hoc Workloads option, 708–709
OPTIMIZE FOR hint, 753
OPTIMIZE FOR hint, Query Optimizer, 696–698
Optimizer (Query Optimizer). See Query Optimizer
OPTION (MAXDOP 1) query hint, 559
options, DBCC CHECKDB, 890–893
order, integrity checks, 279
orderly shutdowns, 51
order preserving exchanges, 585
ORDPATH numbering system, 463
output, DBCC CHECKDB, 885–890

application event log, 888–889
error reporting to Microsoft, 888–889
progress reporting output, 889–890
regular output, 885–887
SQL Server error log, 888

output fraction, 525
overview

indexes, 298–299
Query Optimizer, 611–613

tree format, 612–613
ownership, locks, 785–786
owners (tables), 204

P
-P SQL Server startup parameter, 603
package0.attach_activity_id action, 97
package0.attach_activity_id_xfer action, 97
packages

Extended Events, 75
PAD_INDEX (XML index option), 460
page allocation operations, 15
page audits, per-table logical consistency

checks, 863–864

PAGE clause, RESTORE DATABASE statement

932 Index

PAGE clause, RESTORE DATABASE statement, 199
page_compression_attempt_count columns, 441
page-compression information, 864
page_compression_success_count columns, 441
Page Free Space (PFS) pages, 119, 286–288, 838
Page Free Space (PFS) page, tempdb database, 148
PAGE HEADER section (DBCC PAGE command

output), 256
page headers, table data pages, 249
page ID, 847
PAGEIOLATCH waits, 152
PAGELATCH waits

tempdb database, 151
page-locking, 803–805
page LSNs (Log Sequence Numbers)

recovery and, 175–176
page management

in data cache, 48–49
PageModCount value (CI records), 438
pages

data compression, 433–442
analysis, 440–441
backup compression, 443
CI record building, 440–441
column prefix compression, 435–436
dictionary compression, 436–437
metadata, 441
performance issues, 442–443
physical storage, 437–439

DCM (Differential Changed Map), 857
DIFF (Differential Changed Map), 119, 189
GAM, 856
GAM (Global Allocation Map), 116, 838
IAM (Index Allocation Map), 118
ML map (minimally logged map), 192
ML Map (Minimally Logged Map), 857
ML (Minimal Logging), 119
PFS, 856
PFS (Page Free Space), 119, 838
reading, database processing, 852–853
restoring, 198–200
SGAM (Shared Global Allocation Map), 117, 856
splitting, indexes, 342–346

pages_in_use_kb column (sys.dm_os_memory_
cache_counters), 58

pages_kb column (sys.dm_os_memory_cache_
counters), 58

pages_kb column (sys.dm_os_memory_clerks), 58
PageType values, 383
PAGE_VERIFY option, 128

PAGE_VERIFY options, 128
paging file

location, 22
PAGLOCK hint, 833
pair_matching target, 81
parallel deadlocks, 586
parallelism, 580–598

bitmap filtering, 597–598
broadcast partitioning, 596–597
DOP (degree of parallelism), 582–583
exchange operator, 583–586
hash joins, 595
hash partitioning, 595–596
inner-side parallel execution, 593–594
load balancing, 589–590
merge joins, 594–595
nested loops joins, 590–591, 592–593
round-robin exchange, 592
scan operators, 586–588

parallelism, efficiently processing databases,
853–855

parallel query execution plans, 32
parameterization, 711–717

drawbacks, 715–717
forced, 627, 714
Query Optimizer

auto-parameterization, 625–626
limitations, 627–628

simple, 713
PARAMETERIZATION hint, 754
PARAMETERIZATION hint, Query Optimizer, 698
parameters

CHANGE_TRACKING, full-text indexes, 493
correlated, 535
DBCC PAGE command, 250
index-specific, 474
MAX_CELLS, 479
-P SQL Server startup, 603
plan_handle, 731
pool_name, 732
sql_handle, 731

parameter sniffing, 719
parent_node_id (sys.dm_os_schedulers), 43
parent text facts, 846
Parse Tree value (cacheobjtype columns), 705
parsing

components, 12
partial aggregates, 589
partial backups, databases, 198
partially contained databases, 162–169

 plan cache

 Index 933

collation changes, 166–168
configuring, 162–163
creating contained users, 163–166
detecting uncontained features, 168–169

partial restore, databases, 200
partition-aligned index views, Query Optimizer, 658
partitioned parallel scans, 655–656
partitioned tables, Query Optimizer, 654–657

updates, 682–685
Partition_Info view, 454
partitioning checks, processing columns, 869
partitioning, locks, 798–799
partitioning tables/indexes, 444–455

columnstore indexes, 452–454
functions and schemes, 444–446
metadata, 446–449
sliding window benefits, 450–453

partitioning types, parallel queries, 585
partition-level lock escalation, Query Optimizer, 686
partition-level locks, 783
partition_number parameter (dm_db_database_

page_allocations function), 306
partition_number parameter (dm_db_index_

physical_stats DMV), 303
partition switching, 608
PASSTHRU predicates, 579–580
PathName function, 404
PATH secondary XML index, 463, 468–469
PAUSE full-text operation, 500
pending_disk_io_count (sys.dm_os_schedulers), 43
pending_io_byte_average (sys.dm_os_tasks), 45
pending_io_byte_count (sys.dm_os_tasks), 44
pending_io_count (sys.dm_os_tasks), 44
PENDING value (task_state), 44
performance

FILESTREAM data, 409–410
page compression, 442–443

performance considerations
SQL Server collations, character data types

(tables), 229
performance counters, 826–827
Performance Options dialog box, 21–22
performing database repairs, 893–897
performing fact generation, DBCC CHECKDB,

846–848
permissible functions

computed columns, indexes, 334–335
indexed views, 334–335

permissions
ALTER ANY USER, 166

CREATE SEQUENCE, 243
instance-level logins, 163
View Server State, 42

per-partitioned joins, 657–658
persisted columns

computed columns, indexes, 337–338
persisted computed columns, 457
per-table logical consistency checks, 860–866

data and index page processing, 864–866
metadata consistency checks, 861–862
page audits, 863–864

per-thread hash tables, parallel queries, 667
pessimistic concurrency, 16, 766, 811, 830–832
PFS (Page Free Space) pages, 119, 286–288, 838
PFS (Page Free Space) page, tempdb database, 148
PFS pages, 856
phantoms, transaction dependencies, 769
phases of execution, progress reporting, 889–890
phases of recovery

transaction logs, 174–175
physical index structure, B-tree indexes, 315–332

clustered indexes, 316–322
index row formats, 315–316
nonclustered indexes, 322–332

physical_memory_in_use_kb column (sys.dm_os_
process_memory), 56

physical_memory_kb column (sys.dm_os_sys_
info), 56

physical_name column (sys.database_files), 102
PHYSICAL_ONLY option (DBCC CHECKDB), 893
physical pages, tables, 259–262

creating a function to perform conversion,
260–261

sys.dm_db_database_page_allocations DMV, 261
sys.fn_PhysLocFormatter function, 261–262

physical properties, 616
physical storage

page compression, 437–439
sparse columns, 416–419

pipeline, Query Optimizer, 611
PIVOT operator, 724
planar data, 231
plan cache, 53

clearing, 704–705
global memory pressure, 743
internal organization, 732–744

cache stores, 732–733
compiled plans, 734–735
costing entries, 743–744
execution contexts, 734
metadata, 735

plan freezing

934 Index

local memory pressure, 742–743
mechanisms, 705–732

ad hoc query caching, 706–711
compiled objects, 719–721
parameterization, 711–717
prepared queries, 717–719
recompilation, 722–732

metadata, 704
objects, 744–752

multiple plans, 746–747
stored procedures, 747
troubleshooting issues, 748–752

optimization hints, 752–754
plan guides, 754–764

considerations, 759–764
management, 758
object plan guides, 755–756
SQL plan guides, 756–757
template plan guides, 756–757

previous versions, 703
size management, 740–741

plan freezing, 763
plan guides, 754–764

considerations, 759–764
freezing a plan, 763
validation, 763–764

management, 758
object plan guides, 755–756
SQL plan guides, 756–757

plan_handle parameter, 731
plan_handle value, 735–736
plan shape

Query Optimizer, 667–670
pminlen value, 315
pool_name parameter, 732
pool sizing

Resource Governor, 65–66
populating full-text indexes, 494
precision (numeric data types), 209
predefined columns, FileTable, 408–409
predicates

equijoin (equality), 536
Extended Events, 78–79
inequality, 536
non-pushable, non-sargable, 647
PASSTHRU, 579
pushing non-sargable predicates, 647
sargable, 646
seekable, 528–531
spatial queries, 477

Prepared (prepared statement) value (objtype
columns), 705

prepared queries, 717–719
caching, 718–719
prepare-and-execute method, 718
sp_executesql procedure, 717–718

prepare method, 718, 748
primary data files, 101–102
primary file, 110
primary filegroup, 110
Primary_Filter_Efficiency property, 487
primary filter step, 480
PRIMARY KEY constraint, 276–278
PRIMARY KEY constraints, 312
primary principals

schemas, 133
primary XML indexes, 460–463
primitive system catalog consistency checks,

855–856
principals, 130

primary
schemas, 133

schemas, 133
secondary

schemas, 133
PROBE column, semi-joins, 579
procedures

sp_helpdb, 9
system stored, 9

process affinity
binding schedulers to CPUs, 41–42
dynamic, 41

processing columns, 866–881
computed columns, 866–869
cross-page consistency checks, 871–881

B-tree consistency checks, 872–875
FILESTREAM consistency checks, 876–881
heap consistency checks, 871–872
LOB linkage consistency checks, 875–877

text page processing, 870–871
processing databases efficiently, 845–855

parallelism, 853–855
performing fact generation, 846–848
processing batches, 851–852
query processor, 848–851
reading pages to process, 852–853

processing pipeline, Query Optimizer, 611
Proc (stored procedure) value (objtype

columns), 705
Profiler, 176

 Query Optimizer

 Index 935

programmatic data integrity, 276
progress reporting output, DBCC CHECKDB,

889–890
Project operator (Query Optimizer), 618
properties

ACID, 15
database, 99
database files, 102
EditionID, 2
EngineEdition, 1–2
FILEGROWTH, 105
Internal_Filter_Efficiency, 487
iterators, 515–517

dynamic cursor support, 516
memory consumption, 515–516
non-blocking vs blocking, 516

joins, 544
logical, 616
MAXSIZE, 105
physical, 616
Primary_Filter_Efficiency, 487
READONLY, 114
READWRITE, 114
Recovery (DATABASEPROPERTYEX function), 8
ROWGUIDCOL, 232
search framework, Query Optimizer, 614–616
SEQUENCE objects

Cache value, 241
Cycle, 241
Datatype, 240
Increment, 240
Maximum value, 241
Minimum value, 241
Starting value, 240

SIZE, 105
tables

IDENTITY, 237–240
workload groups, 67–68

Properties sheet
merge join operator, 521

property functions, 8–9
PROPERTY secondary XML index, 463, 468
protocols

disabling, 23
Named Pipes, 11
Shared Memory, 11
SQL Server Database Engine, 11–12
SSRP (SQL Server Resolution Protocol), 20
TCP/IP, 11

pseudotables
compatibility views, 4

pubs, 101
pull-based data flow, 584
purity checks, processing columns, 867–869
purpose, spatial indexes, 472–476
push-based data flow, 584

Q
queries

execution
analyzing plans, 525–600
batch processing, 603–608
columnstore indexes, 603–608
data warehouses, 599–603
hints, 609
query processing, 513–517
reading query plans, 517–526

full-text indexes, 501–502
memory resources, 31
normalizing, 13
prepared, 717–719

caching, 718–719
prepare-and-execute method, 718
sp_executesql procedure, 717–718

shell, 712
star join, 600
Star Join, 660

Query Execution, 12–14
query execution engine, 513
query executor, 14
Query Governor Cost Limit option, 32
querying

even data, 84–85
QueryMemoryResourceNotification API, 50
query method, 464
Query Optimization, 12–14
query optimizer, 513
Query Optimizer, 851

architecture, 624–630
auto-parameterization, 625–626
before optimization, 625
Memo, 627–630
parameterization limitations, 627–628
Simplification phase, 625
trivial plan, 625–626

cardinality estimation, 638–643
costing, 643–645

<QueryPlan> element, displaying query plans

936 Index

data warehousing, 659–669
batch processing, 662–666
columnstore indexes, 660–661, 670–671
plan shape, 667–670

Distributed Query feature, 687–689
extended indexes, 689
hints, 689–699

debugging planning issues, 691–692
FAST <number_rows> hint, 695
FORCESEEK hint, 695
GROUP BY operation, 692–693
JOIN operations, 693–694
MAXDOP<N> hint, 696
NDEX=<indexname> | <indexid> hint, 694
NOEXPAND hint, 699
OPTIMIZE FOR hint, 696–698
PARAMETERIZATION hint, 698
UNION operations, 693–694
USE PLAN hint, 699–700

hotfixes, 700–701
indexed views, 340
index selection, 645–654

filtered indexes, 648–650
indexed views, 649–653

optimization, 613
overview, 611–613

tree format, 612–613
partitioned tables, 654–657
search framework, 614–624

Memo, 617
operators, 617–624
properties, 614–616
rules, 614

statistics, 630–638
density/frequency information, 634–636
design, 631–634
filtered, 636–637
string, 637–638

updates, 670–686
Halloween Protection feature, 674–675
locking, 685–686
MERGE operation, 676–678
non-updating updates, 681–682
partitioned table updates, 682–685
partition-level lock escalation, 686
sparse column updates, 681
Split/Sort/Collapse optimization, 674–676
wide update plans, 679–681

windowing functions, 658–660
<QueryPlan> element, displaying query plans, 524

query plans
analysis, 525–600

advanced index operations, 560–567
aggregations, 545–556
bookmark lookup, 531–533
data modification statements, 598–599
joins, 533–544
parallelism, 580–598
scans and seeks, 526–528
seekable predicates and covered

columns, 528–531
subqueries, 566–580
unions, 555–559

full-text indexes, 502–503
reading, 517–526

display options, 520–526
estimated vs. actual query plans, 518–519
graphical plans, 517
text plans, 518
XML plans, 518

SET commands, 519
spatial indexes, 479–480
XML indexes, 465–467, 470–471

query processing options, 31–33
query processor, 12–14, 848–851

NOEXPAND hint, 884
Query Wait option, 31
QUOTED_IDENTIFIER option, 127, 206
quoted identifiers, 206
QUOTED_IDENTIFIER (Set option), 724

R
Random I/Os, 644
RangePartitionNew function, 682
ranges

Windows collations, character data types
(tables), 222–223

RCSI (read committed snapshot isolation), 813–814
vs snapshot isolation, 821–822

readable records, transaction logs and
recovery, 176–177

read-ahead
index ranges, 60
table scans, 60

READCOMMITTED hint, 834
Read Committed isolation (transactions), 771
READCOMMITTEDLOCK hint, 834
read committed snapshot isolation (RCSI), 813–814

vs snapshot isolation, 821–822

 reserved keywords

 Index 937

reading pages, database processing, 852–853
reading query plans, 517–526

display options, 520–526
estimated vs. actual query plans, 518–519
graphical plans, 517
text plans, 518
XML plans, 518

READ_ONLY mode, 123–124
READONLY property, 114
read operations, 157–158
READPAST hint, 834
READUNCOMMITTED hint, 833
Read Uncommitted isolation (transactions), 770
READ_WRITE mode, 123–124
READWRITE property, 114
reattaching

databases, 135–136
rebinds, spools, 572
rebuilding CI records, 440–441
rebuilding indexes, 366–367
reclaiming pages, ghost cleanup background

thread, 354
recompilation, 722–732

correctness-based recompiles, 722–725
multiple recompilations, 729
optimality-based recompiles, 725–728

modification counters, 727–728
stale statistics, 725–727
updated statistics, 725

removing plans from cache, 729–732
skipping recompile step, 728–729
troubleshooting, 751–752

recompilation threshold (RT), 726–727
RECOMPILE hint, 752–753
RECONFIGURE command, 25
recoverable state (VLFs), 178
recovery

databases
models, 190–194

transaction logs, 171–177
changes in log size, 178–188
log cache, 177
page LSNs, 175–176
readable records, 176–177
recovery phases, 174–175

recovery interval, 184
Recovery Interval option, 28
Recovery Interval server configuration option, 51
recovery_model column, 9
RECOVERY_PENDING mode, 123

Recovery property (DATABASEPROPERTYEX
function), 8

RECURSIVE_TRIGGERS option, 127
redo phase of recovery, 174
redo_target_lsn column (sys.master_files), 200
referential integrity, 277
regions

allocation, 160
regular_buffer_size and total_regular_buffers column

(sys.dm_xe_sessions), 96
regular output, DBCC CHECKDB, 885–887
relational operator elements, 518
<RelOp> element, displaying query plans, 525
removed_all_rounds_count column (sys.dm_os_

memory_cache_clock_hands), 59
removing

event sessions, 86
removing correlations, subqueries, 576–577
removing fragmentation, B-tree indexes, 364–366
REORGANIZE option (ALTER INDEX command),

365–366
reorganizing indexes, 363
REPAIR_ALLOW_DATA_LOSS option (DBCC

CHECKDB), 891, 894, 897
Repair options (DBCC CHECKDB), 891
REPAIR_REBUILD option (DBCC CHECKDB), 891
repairs, DBCC CHECKDB, 893–897
repartition exchange, 583–584
REPEATABLEREAD hint, 833
Repeatable Read isolation (transactions), 771–772
REPLICATE function, 266
ReplProc value (objtype columns), 705
request_Columns

viewing locks, 788–789
request_exec_context_id (request_Columns), 788
request_lifetime (request_Columns), 788
REQUEST_MAX_CPU_TIME_SEC property, 68
REQUEST_MAX_MEMORY_GRANT_PERCENT

property, 68
REQUEST_MEMORY_GRANT_TIMEOUT_SEC

property, 68
request_owner_guid (request_Columns), 788
request_owner_id (request_Columns), 788
request_reference_count (request_Columns), 788
request_request_id (request_Columns), 788
request_session_id (request_Columns), 788
request_status (request_Columns), 788
request_type (request_Columns), 788
reserved keywords

naming tables, 205

resource_address (sys.dm_os_waiting_tasks)

938 Index

resource_address (sys.dm_os_waiting_tasks), 45
resource_Columns

viewing locks, 786–787
resource database, 140–141
resource_description (sys.dm_os_waiting_tasks), 45
Resource Governor, 61–71

classifier function, 62–63
code example, 68–70
controls, 70–71
disabling, 71
enabling, 62
metadata, 71–72
overview, 61–62
pool sizing, 65–66
resource pools, 63–64
workload groups, 66–68

resource_lock_partition column, 798
Resource Monitor

memory pressure, 53
QueryMemoryResourceNotification API, 50

resource pools, 63–64
Default pool, 64
Internal pool, 64
pool sizing, 65–66

RESOURCE_SEMAPHORE_QUERY_COMPILE
waits, 749

restart recovery, 172
RESTORE command, 161

WITH RECOVERY option, 196
RESTORE DATABASE command, 198
RESTORE DATABASE statement

PAGE clause, 199
restore processes

databases, 188–201
choosing backup type, 194–195
files and filegroups, 197–198
partial backups, 198
partial restore, 200
recovery models, 190–194
restoring pages, 198–200
restoring with standby, 200–201
types of backups, 189–190

restore recovery, 173, 197
restoring

databases, 136
restricted-length LOB data, storage, 382–386
RESTRICTED_USER mode, 122
restrictions, DBCC CHECKDB PHYSICAL_ONLY

option, 893
RESUME full-text operation, 500

reusable state (VLFs), 179
revert operation

managing snapshots, 161
rewinds, spools, 572
right deep hash join tree, 543–544
ring buffer, allocation, 149
RING_BUFFER_ALLOC_TRACE ring buffer, 150
ring_buffer target, 80, 90
ROLLBACK AFTER integer [SECONDS] option, 124
ROLLBACK IMMEDIATE option, 124
ROLLBACK termination options, 814
ROLLBACK TRAN command, 171
root pages

splitting, 343
round-robin exchange, parallelism, 592
rounds_count column (sys.dm_os_memory_cache_

clock_hands), 59
routes

AutoCreatedLocal, 169
defined, 169

row-at-a-time model, 514
row-at-a-time modifications, 358
row-based operator model, 618
row-based processing, 514
ROWGUIDCOL attribute, 397
ROWGUIDCOL property, 232
row-level versioning of data

tempdb database, 146
ROWLOCK hint, 833
row-locking, 803–805
row offset array, table data pages, 249–250
row operations, 14
row-overflow data pages, 245
row-overflow LOB data, storage, 382–386
rows

data compression, 424–432
CD (column descriptor) format, 426–432
enabling, 425–426

ROWSET_COLUMN_COMBINED_ID coulmn
(facts), 848

ROWSET_COLUMN_FACT_BLOB coulmn (facts), 848
ROWSET_COLUMN_FACT_KEY column (facts), 848
ROWSET_COLUMN_FACT_TYPE coulmn (facts), 848
ROWSET_COLUMN_SLOT_ID coulmn (facts), 848
Rowset metadata objects, 861
rowsets, 12
rows (tables)

defined, 203
deleting

heap data modifications, 288–292

 search framework, Query Optimizer

 Index 939

modifying indexes, 346–353
inserting

heap data modifications, 288
modifying indexes, 342

moving, 292–293
updating

heap data modifications, 292–295
modifying indexes, 354–358

rowversion data types, 231
row versioning, 811–832

choosing concurrency model, 830–832
details, 811–812
snapshot-based isolation levels, 813–830

DDL statements, 819–822
RCSI (read committed snapshot

isolation), 813–814
snapshot isolation, 814–815
snapshot isolation scope, 815–816
summary, 821–822
transaction metadata, 827–830
update conflicts, 817–818
version store, 823–827
viewing database state, 816–817

RT (recompilation threshold), 726–727
rules

search framework, Query Optimizer, 614
Rule value (objtype columns), 706
runnable_tasks_count (sys.dm_os_schedulers), 43
RUNNABLE value (task_state), 44
RUNNING value (task_state), 44

S
sample databases

AdventureWorks, 100
AdventureWorks2012

security, 132
Northwind, 101
pubs, 101

SAMPLED mode (mode parameter), 303
sargable predicates, 646
savings (storage), sparse columns, 420–423
scalar aggregations, 545–548
scalar functions, forcing recompilation, 720–721
Scalar operator, 504
scalar subqueries, 566
scale (numeric data types), 209, 212–213
scan operators, 526–528

parallelism, 586–588
scans on clustered indexes, 527

scans on heaps, 527
scans on nonclustered indexes, 527
scheduler_id (sys.dm_os_schedulers), 43
scheduler_id (sys.dm_os_tasks), 45
Scheduler Monitor, 40
schedulers

affinity, 38
binding to CPUs, 41–42
core-based licensing, 38
CPUs, 38
DAC (Dedicated Administrator Connection), 46
DMVs (Dynamic Management Objects), 42–45
SOS, 38
SQL Server, 37–47

dynamic affinity, 41
fibers, 40
NUMA (Non-Uniform Memory Access), 40–41
tasks, 39–40
threads, 40
workers, 39

Windows, 37, 38
scheduling options, 27–28
schema

creating tables, 204–205
schema binding

computed columns, indexes, 335
indexed views, 335

schema changes, correctness-based
recompilation, 722

schema modification locks, 777
schemas

creating objects in
, 134

default, 134
INFORMATION_SCHEMA, 7
primary principals, 133
principals, 133
secondary principals, 133
versus databases, 133

schema stability locks, 777
schema-validated columns, XML indexes, 469–470
schemes, partitions, 444–446
SCOPE_IDENTITY function, 239
SC (supports supplementary characters) tokens, 218
Se44mi-Join operators (Query Optimizer), 619–621
search-ARGument-able predicates, 646
search framework, Query Optimizer, 614–624

Memo, 617
operators, 617–624

Apply, 621–622

SEARCHPROPERTY LIST specification

940 Index

Compute Scalar, 618
Compute Sequence, 619
Exchange, 624
Se44mi-Join, 619–621
spools, 623

properties, 614–616
rules, 614

SEARCHPROPERTY LIST specification
full-text indexes, 493

secondary data files, 102
secondary principals

schemas, 133
secondary XML indexes, 463, 468–469
securables, 130
security

authentication
contained databases, 166

databases, 129–134
default schemas, 134

datbases
access, 130–131

security policies
metadata, 9

seekable predicates, 528–531
seek operators, 526–528

dynamic index seeks, 560–563
Segment operator, 659
SELECT *, 414
SELECT DISTINCT keyword

stream aggregation, 550–551
SELECT INTO command, 190, 277
SELECT INTO operation, 182
SE_MANAGE_VOLUME_NAME setting, 107
semantic indexes, 505–510
SEMANTICKEYPHRASETABLE function, 507
SemanticsDB database, 505
Semantic Search, 505–510
SEMANTICSIMILARITYDETAILSTABLE function, 509
SEMANTICSIMILARITYTABLE function, 508
semi-joins, 537

PROBE column, 579
reduction, 598

sequence objects (tables), 240–243
Sequence Project operator (Query Optimizer), 619
serial execution plans, 32
SERIALIZABLE hint, 833
Serializable isolation (transactions), 773–774
Serializer UDX operator, 471
server collation, 217

Server Core
install SQL Server 2012, 2–3

Server Name Indication (SNI), 37
SERVERPROPERTYEX function, 501
server property pages

SQL Server Management Studio, 25
Service Broker

msdb database, 141
Service Broker feature, consistency checks, 882
services

managing
SQL Server Configuration Manager, 19

SQL Server Browser, 20
session IDs (SPID)

compared to tasks, 39
session_id (sys.dm_os_tasks), 45
session_id (sys.dm_os_waiting_tasks), 45
SESSIONPROPERTY function, 334
session-scoped options, 96–97
sessions (event), 67, 82–83

catalog metadata, 96
creating, 83–84, 86–90
managing, 86–90
removing, 86
session-scoped options, 96–97
stopping, 86

SET commands, displaying query plans, 519
SET DEADLOCK_PRIORITY statement, 809
SET IDENTITY_INSERT tablename option, 238
SET options

computed columns, indexes, 333–334
indexed views, 333–334
recompilation, 724

SET option settings, creating an XML index, 459
SET QUOTED_IDENTIFIER ON option, 206
SET ROWCOUNT N operation, 671
SET SHOWPLAN_ALL ON text plans, 518
SET SHOWPLAN_TEXT ON text plans, 518
SET STATISTICS TIME ON tool, 691
SET STATISTICS XML ON output, 523
setting

database options, 119–129
auto options, 125–126
cursor options, 125
database recovery options, 128–129
SQL options, 126–127
state options, 122–125

setting LOCK_TIMEOUT, 834–836
settings

system configuration, 24–33

 SORT_IN_TEMPDB option

 Index 941

Disk I/O, 28–30
memory options, 26–27
query processing options, 31–33
scheduling options, 27–28

SET TRANSACTION ISOLATION LEVEL
command, 813

Set Working Set Size option, 26
SGAM (Shared Global Allocation Map) pages, 117,

856
SGAM (Shared Global Allocation Map) page, tempdb

database, 148
Shared Global Allocation Map (SGAM) pages, 117,

856
Shared Global Allocation Map (SGAM) page, tempdb

database, 148
shared locks, 775–776
Shared Memory, 11
Shared Table lock

running DBCC CHECKDB in tempdb
database, 144

shell queries, 712
short data cluster, 428
short data region (CD format), 428–429
SHOWPLAN_ALL output, 571
showplan options

graphical plans, 517
text plans, 518
XML plans, 518

shrinking
databases, 106–109

automatic shrinkage, 108
manual shrinkage, 108–109

log files, 109
shrinking databases

tempdb, 147
shrinking files and databases, 837–841

AUTO_SHRINK option, 841–842
data file shrinking, 838–839
DBCC SHRINKFILE command, 840
log file shrinking, 840

shutdowns
orderly shutdowns, 51

sibling facts, 847
side-tables, 458
simple parameterization, 713, 747
SIMPLE parameterization model, 698
SIMPLE recovery model (databases), 193
Simplification phase (Query Optimizer), 625
simultaneous transactions, 772
single-byte character strings, 214

single-byte character types
Windows collations, 219–220

single-column indexes, seekable predicates, 528
SingleFragmentDocidFilter iterator, 504
SingleFragmentSeekFilter iterator, 504
SINGLE_USER mode, 122
size column (sys.database_files), 103
size management

plan cache, 740–741
SIZE property, 105
sizing

buffer pools, 55–57
memory, 54–55
pools

Resource Governor, 65–66
skipping recompile steps, 728–729
sliding window benefits, partitions, 450–453
slot ID, 847
smalldatetime data type, 210
SMP (symmetric multiprocessing)

NUMA, 36
snapshot-based isolation levels, row

versioning, 813–830
DDL statements, 819–822
RCSI (read committed snapshot isolation),

813–814, 821–822
snapshot isolation, 814–815
snapshot isolation scope, 815–816
summary, 821–822
transaction metadata, 827–830
update conflicts, 817–818
version store, 823–827
viewing database state, 816–817

Snapshot isolation (transactions), 772
row versioning, 814–815
scope, row versioning, 815–816

snapshots (databases), 155–161
alternatives to, 844–845
consistency checks, 843
creating, 156–159
management, 161
space monitoring, 159–161

Snapshot Transactions counter, 827
SNI (Server Name Indication), 37
SNI (SQL Server Network Interface) protocol

layer, 11
snowflake schemas, 659
snowflake schemas, data warehouses, 600
SORT_IN_TEMPDB option, 154

SORT_IN_TEMPDB option (CREATE INDEX command)

942 Index

SORT_IN_TEMPDB option (CREATE INDEX
command), 363

SORT_IN_TEMPDB (XML index option), 460
sort merge joins, 540–542
Sort operator, 675
sort order

SQL Server collations, character data types
(tables), 225

Windows collations, character data types
(tables), 220–222

sort units
tempdb database, 145

SOS_RESERVEDMEMBLOCKLIST waits, 749
SOS Scheduler, 38
space allocation

altering databases, 116–119
space monitoring

database snapshots, 159–161
tempdb database, 153–155

sparse column checks, processing columns, 869
sparse columns (storage format), 411–423

COLUMN_SET construct, 414–417
management, 411–414

altering tables, 413–414
creating tables, 412–413

metadata, 419
physical storage, 416–419
storage savings, 420–423

sparse column updates, Query Optimizer, 681
sparse files, 156
sparse vector, 417–418
spatial data types, 231

GEOGRAPHY, 471
GEOMETRY, 471

spatial-index consistency checks, 885
spatial indexes, 471–491

columns, 458, 476
composition of, 475–477
diagnostic stored procedures, 484–491
ensuring use, 478–479
nearest neighbor queries, 481–484
purpose of, 472–476
query plans, 479–480
spatial queries, 477

SpatialIntersectFilterOverGridIndex
optimization, 477

SpatialJoinToApply optimization, 477
spatial queries, 477
SPATIAL_WINDOW_MAX_CELLS query hint, 479
SPATIAL_WINDOW_MAX_CELLS value, 491

sp_cacheobjects view, 745
sp_configure Recovery Interval option, 51
sp_configure stored procedure, 184
sp_control_plan_guide procedure, 758
sp_create_plan_guide_from_handle procedure,

763–764
sp_create_plan_guide procedure, 755
special data types (tables), 230–233

binary data types, 230
bit data types, 230
LOB data types, 230
rowversion data types, 231
spatial data types, 231
sql_variant data types, 231
table data types, 231
uniqueidentifier data types, 231
xml data types, 231

special indexes
full-text indexes, 492–505

configuring, 500–501
creating, 498–499
diagnostic information, 500–501
extended event information, 503–505
internal tables, 494–497
maintenance, 499–500
metadata views, 497
query plans, 502–503
status metadata, 500–501
use in a query, 501–502

semantic indexes, 505–510
spatial

columns, 458
spatial indexes, 471–491

composition of, 475–477
diagnostic stored procedures, 484–491
ensuring use, 478–479
nearest neighbor queries, 481–484
purpose of, 472–476
query plans, 479–480
spatial queries, 477

versus ordinary indexes, 457–458
XML, 458–471

creating and maintaining, 459–463
query plans, 465–467, 470–471
schema-validated columns, 469–470
secondary XML indexes, 468–469
XQuery, 463–465

sp_estimate_data_compression_savings stored
procedure, 442

sp_executesql procedure, 717–718, 748

 SQL Server Analysis Services

 Index 943

sp_filestream_force_garbage_collection
procedure, 404

sp_fulltext_keymappings system stored
procedure, 496

sp_fulltext_pendingchanges system procedure, 495
sp_fulltext_semantic_register_language_statistics_db

system stored procedure, 505
sp_fulltext_semantic_unregister_language_statistics_

db system stored procedure, 505
sp_get_query_template procedure, 757, 761
sp_helpdb procedure, 9
sp_help_spatial_geography_histogram system stored

procedure, 491
sp_help_spatial_geography_index diagnostic

procedure, 484
sp_help_spatial_geography_index_xml system stored

procedure, 484
sp_help_spatial_geometry_histogram system stored

procedure, 491
sp_help_spatial_geometry_index diagnostic

procedure, 484
sp_help_spatial_geometry_index_xml system stored

procedure, 484
SPIDs (session IDs)

compared to tasks, 39
spilling

hash aggregates, 552–553
hash joins, 543

spinlocks, 775, 810
SPINLOOP value (task_state), 44
Split operator, 675–676
Split/Sort/Collapse optimization (Query

Optimizer), 674–676
splitting pages, indexes, 342–346

intermediate index pages, 344
leaf-level pages, 344–347
root pages, 343

sp_migrate_user_to_contained stored
procedure, 164

spool operators (Query Optimizer), 623
spools

lazy, 535
sp_sequence_get_range stored procedure, 242
SQL-92 standard, 7, 205
SQL Azure, 2
SQLCMD tool, 2
sql_handle parameter, 731
sql_handle value, 735
SQL_Latin1_General_CP1_CI_AS collation, 218, 227

SQLMail
fiber mode, 40

SQL Manager Cache (SQLMGR), 735
SQL methods

XML data types, 463–465
SQLMGR (SQL Manager Cache), 735
SQL options, 126–127
SQLOS (SQl Server Operating System)

memory
DMVs (Dynamic Management Objects), 57–59

SQLOS (SQL Server Operating System). See SQLOS
memor

column store object pool, 48
memory, 47–61

buffer pool, 47
buffer pool sizing, 55–57
checkpoints, 50–52
column store object pool, 48
data cache, 47, 47–50
free buffer list, 49–50
lazywriter, 49–50
management in other caches, 52–53
Memory Broker, 54
NUMA (Non-Uniform Memory Access), 59–60
page management in data cache, 48–49
read-ahead, 60
sizing, 54–55

NUMA (Non-Uniform Memory Access)
architecture, 36–37

SQLOS (SQL Server Operating Sytem)
memory

access to pages in data cache, 48
SQL plan guides, 756–757
SQL Plans cache store, 732
SQL PowerShell, 2
SQL Server, 1

editions, 1–2
SQL Server 2012, 1

configuring, 17–20
default network configuration, 18–19
network protocols, 18
system configuration, 21–33

editions
memory configurations, 56

installing, 2
SQL Server Agent service

msdb database, 141
SQL Server Analysis Services

schemas, 133

SQL Server Books Online

944 Index

SQL Server Books Online
editions, 1

SQL Server Browser service, 20
SQL Server collations, character data types

(tables), 224–230
defined collations during setup, 227–228
Installation Wizard, 228
performance considerations, 229
sort orders, 225
tertiary collations, 225–227
traps, 229–230

SQL Server Configuration Manager
configuring network protocols, 18
configuring SQL Server 2012, 18–19
implementing default network configuration,

18–19
managing services, 19
moving the master database, 143
SQL Server Browser service, 20

SQL Server Database Engine, 1
components, 10–17

protocols, 11–12
query processor, 12–14
storage engine, 14–17

SQL Server error log, DBCC CKECKDB output, 888
SQL Server Express, 2
SQL Server Express with Advanced Services, 2
SQL Server Express with Tools, 2
sqlserver.latch_suspend_end event, 151
SQL Server Management Studio, 2, 184

Object Explorer pane, 2
server property pages, 25

SQL Server Network Interface (SNI) protocol
layer, 11

SQL Server Operating System. See SQLOS
SQL Server Profiler, 176
SQL Server Resolution Protocol (SSRP), 20
SQL Server Resource Governor. See Resource

Governor
SQL Server schedulers, 37–47

dynamic affinity, 41
fibers, 40
NUMA (Non-Uniform Memory Access), 40–41
tasks, 39–40
threads, 40
workers, 39

SQLServer:Transactions performance object,
826–827

SQL statements
DAC (Dedicated Administrator Connection), 46

sqlvariant columns, 382
sql_variant data, tables, 273–276
sql_variant data types, 231
SQLXML

fiber mode, 40
SRID, spatial index columns, 458
SSRP (SQL Server Resolution Protocol), 20
stack_bytes_used (sys.dm_os_threads), 44
stale statistics, optimality-based recompiles,

725–727
Standard edition, 2
standards

SQL-92, 7
standby, restoring with, 200–201
star join queries, 600
Star Join queries, 660
star schema, data warehouses, 600
star schemas, 659
started_by_sqlserver (sys.dm_os_threads), 44
START FULL POPULATION option (ALTER FULLTEXT

INDEX statement), 499
START INCREMENTAL POPULATION s option (ALTER

FULLTEXT INDEX statement), 499
Starting value property, SEQUENCE objects, 240
start parallelism exchange, 585
START UPDATE POPULATION option (ALTER

FULLTEXT INDEX statement), 499
State column (sys.database_files), 102
state_desc column (sys.database_files), 103
statements, 67

ALTER
CONTAINMENT option, 163

ALTER DATABASE, 114–119
FILEGROUP keyword, 110

ALTER EVENT SESSION, 83
ALTER INDEX

manually controlling unit of locking, 804
ALTER TABLE

escalating table locks, 805
CREATE DATABASE

CONTAINMENT option, 163
FILEGROUP keyword, 110

CREATE EVENT SESSION, 83
CREATE INDEX

monitoring space usage in tempdb, 154
CREATE SCHEMA, 133
CREATE VIEW

WITH SCHEMABINDING option, 335
DBCC CHECKIDENT(tablename), 240
DBCC OPTIMIZER_WHATIF, 602

 sys.column_store_segments view

 Index 945

DDL (Data Definition Language)
ALTER FULLTEXT INDEX, 499
CREATE DATABASE...FOR ATTACH, 505
CREATE FULLTEXT CATALOG, 492–493
CREATE PRIMARY XML INDEX, 459
CREATE SPATIAL INDEX, 472
snapshot isolation, 819–822

DELETE, 598–599
GRANT CREATE TABLE TO, 133
INSERT, 598–599
RESTORE DATABASE

PAGE clause, 199
SET DEADLOCK_PRIORITY, 809
UPDATE, 598–599

WRITE clause, 190
UPDATE STATISTICS, 606
UPDATETEXT, 190
WRITETEXT, 190

<StatementSetOptions> element, displaying query
plans, 524

state options, 122–125
states, virtual log files, 178
STATISTICAL_SEMANTICS keyword, 493, 505
statistics

optimality-based recompiles
stale, 725–727
updated, 725

Query Optimizer, 630–638
density/frequency information, 634–636
design, 631–634
filtered, 636–637
string, 637–638

wait, 748–749
STATISTICS_NORECOMPUTE option, creating

indexes, 314
STATISTICS PROFILE output, 635
STATMAN aggregate function, 633
Status column (VLFs), 180
STDistance() method, 472–473
STIntersects operation, 488
STIntersects() spatial operator, 480
<StmtSimple> element, displaying query plans, 524
STOPLIST specification

full-text indexes, 493
stop parallelism exchange, 585
stopping

event sessions, 86
storage

columnstore indexes, 371–375

data
data compression, 423–443
FILESTREAM data, 394–405
FileTable data, 404–410
LOB (large object) data, 381–393
metadata, 245–246
partitioning, 444–455
sparse columns, 411–423
tables, 203–296

storage engine, 14–17
access methods, 14–15
transaction services, 15–17

stored procedures, 719–720, 747
sp_sequence_get_range, 242

stream aggregations, 548–552
String Statistics feature, Query Optimizer, 637–638
structure

B-tree indexes, 308–312, 315–332
clustered indexes, 316–322
clustering key dependency, 308–311
constraints, 312
index row formats, 315–316
nonclustered B-tree indexes, 311–312
nonclustered indexes, 322–332

stub, Optimize for Ad Hoc Workloads option,
709–711

subqueries, 566–580
CASE expressions, 578–580
correlated, 566
correlated scalar subqueries, 570–577
multirow, 566
noncorrelated, 566
noncorrelated scalar subqueries, 567–569
removing correlations, 576–577
scalar, 566

subtype resources, 786–787
supplementary characters (SC) tokens, 218
suspect_pages table, 198–199
SUSPECT state, 123
SUSPENDED value (task_state), 44
switching recovery models, 193–194
SWITCH operations, 658
SWITCH option, partitions, 450
SWITCH PARTITION operator, 670
symmetric multiprocessing. See SMP
syscacheobjects, 4
syscacheobjects object, 744–746
sys.column_store_segments catalog view, 376–380
sys.column_store_segments view, 454

sys.database_files

946 Index

sys.database_files
columns, 102–103

sys.database_recovery_status catalog view, 185
sys.databases, 4, 5
sysdatabases, 3
sys.databases catalog view, 119–129
sys.databases view, 8, 120–129

columns, 120
state options, 122–125

sys.data_spaces columns, 446
sys.destination_data_spaces columns, 447
sys.dm_db_database_page_allocations DMV

locating physical pages, tables, 261
sys.dm_db_file_space_usage DMV

monitoring space usage in tempdb, 153
sys.dm_db_fts_index_physical_stats DMV, 506
sys.dm_db_session_space_usage DMV

monitoring space usage in tempdb, 153
sys.dm_db_task_space_usage DMV

monitoring space usage in tempdb, 153
sys.dm_db_uncontained_entities DMV

detecting uncontained features in databases, 168
sys.dm_exec_cached_plan_dependent_objects

function, 738
sys.dm_exec_cached_plans, 6, 72
sys.dm_exec_cached_plans view, 738–739
sys.dm_exec_connections, 6
sys.dm_exec_procedure_stats view, 740–743
sys.dm_exec_query_memory_grants, 72
sys.dm_exec_query_resource_semaphores, 72
sys.dm_exec_query_stats function, 739–740
sys.dm_exec_requests, 6, 72
sys.dm_exec_requests catalog view, 889
sys.dm_exec_requests view, 739–740
sys.dm_exec_sessions, 6, 72
sys.dm_exec_sql_text function, 736–738
sys.dm_exec_text_query_plan function, 737
sys.dm_fts_index_keywords_by_document

function, 497
sys.dm_fts_index_keywords_by_property

function, 497
sys.dm_fts_index_keywords function, 497
sys.dm_fts_index_population DMV, 500, 506
sys.dm_fts_memory_buffers DMV, 500
sys.dm_fts_memory_pools DMV, 500
sys.dm_fts_outstanding_batches DMV, 500
sys.dm_fts_population_ranges DMV, 500
sys.dm_fts_semantic_similarity_population DMV, 506
sys.dm_io_virtual_file_stats function, 159
sys.dm_os_memory_brokers, 72

sys.dm_os_memory_cache_clock_hands, 53
columns, 59

sys.dm_os_memory_cache_counters
columns, 58

sys.dm_os_memory_cache_hash_tables
columns, 58

sys.dm_os_memory_clerks, 54
columns, 57–58

sys.dm_os_performance_counters view, 188
sys.dm_os_process_memory, 56

columns, 56
sys.dm_os_schedulers

columns, 43
sys.dm_os_sys_info

columns, 56
sys.dm_os_tasks, 44–45
sys.dm_os_threads, 44
sys.dm_os_waiting_tasks, 45
sys.dm_os_wait_stats view

wait statistics, 748–749
sys.dm_os_workers, 44
sys.dm_resource_governor_configuration, 72
sys.dm_resource_governor_resource_pools, 72
sys.dm_resource_governor_workload_groups, 72
sys.dm_tran_current_transaction view, 827–828
sys.dm_tran_locks view

viewing locks, 786–789
sys.dm_xe_packages, 75
sys.dm_xe_sessions

columns, 96–97
sys,dn_db_database_page_allocations, 824
sys.fn_PhysLocFormatter function

locating physical pages, tables, 261–262
sys.fn_validate_plan_guide function, 763
sys.fulltext_index_catalog_usages metadata

table, 497
sys.fulltext_semantic_languages metadata view, 505
sys.fulltext_semantic_language_statistics_database

metadata view, 505
sys.indexes, 4
sysindexes, 3
sys.indexes Catalog view, tables, 244–245
sys.language_model_mapping_table internal

table, 505
syslockinfo tables, 800–802
sysmembers, 3
sysmessages, 3
sys.objects, 5
sysobjects, 3
sys.partition_functions columns, 447

 tables

 Index 947

sys.partition_range_values columns, 447
sys.partition_schemes columns, 447
sys.partitions view, 245
sys.plan_guides view, 759
sysprocesses, 4
sys.resource_governor_configuration, 71
sys.resource_governor_resource_pools, 72
sys.resource_governor_workload_groups, 72
sys schema, 205
sys.sysallocunits system catalog, 855
sys.syshobtcolumns table, 855
sys.syshobts table, 855
sys.sysrowsets system catalog, 855
sys.sysrscols system catalog, 855
sys.system_internals_partition_columns view, 264
sys.tables, 5
SysTab value (objtype columns), 706
system base tables, 3
system catalog consistency checks, 855–856
system configuration

configuring, 21–33
operating system, 21–23
settings, 24–33

Disk I/O, 28–30
memory options, 26–27
query processing options, 31–33
scheduling options, 27–28

system databases
master, 139–140
model, 140
moving, 142–144
msdb, 141–142
partially contained, 162–169

collation changes, 166–168
configuring, 162–163
creating, 163–166
detecting uncontained features, 168–169

resource, 140–141
snapshots, 155–161

creating, 156–159
management, 161
space monitoring, 159–161

tempdb, 140, 144–156
best practices, 147–148
contention, 148–152
objects, 144–145
optimizations, 146–147
space monitoring, 153–155

system functions, 8–9
system_internals_allocation_units view, 446

system metadata objects
catalog views, 4–5
compatibility views, 3–4
Dynamic Management Objects, 6–7

system stored procedures, 9
system tables

Compatibility Views, 3–4
sysusers, 3

T
table data types, 231
table-level data modification, indexes, 357
Table metadata objects, 861
tables, 203–296

altering, 279–286
adding columns, 281
changing data types, 280–281
constraints, 281–282
dropping columns, 283
internals, 283–286
sparse columns (storage format), 413–414

constraints, 276–279
failures in transactions, 278–279
names and catalog view information, 277–278

creating, 203–204
data types, 208–233
delimited identifiers, 206–207
FILESTREAM data, 397–398
naming, 204–205
naming conventions, 207–208
NULL values, 233–235
reserved keywords, 205–206
sparse columns (storage format), 412–413
user-defined data types, 235–236

data types, 208–233
character, 213–230
date and time, 210–213
numeric, 208–210
special data types, 230–233
user-defined, 235–236

dimension, 600
fact, 600
filegroups, 111
hash, 48
heap modification internals, 286–295

allocation structures, 286–288
deleting rows, 288–292
inserting rows, 288
updating rows, 292–295

table scans

948 Index

IDENTITY property, 237–240
internal storage, 243–276

catalog view queries, 246–248
data and time data, 270–273
data pages, 248–257
data rows, 257–259
data storage metadata, 245–246
fixed-length rows, 262–265
locating a physical page, 259–262
NULL values, 267–270
sql_variant data, 273–276
sys.indexes Catalog view, 244–245
variable-length columns, 267–270
variable-length rows, 265–267

naming, 204–208
conventions, 207–208
delimited identifiers, 206–207
reserved keywords, 205

NULL issues, 233–235
partitioning, 444–455

columnstore indexes, 452–454
functions and schemes, 444–446
metadata, 446–449
sliding window benefits, 450–453

per-table logical consistency checks, 860–866
data and index page processing, 864–865
metadata consistency checks, 861–862
page audits, 863–865

sequence objects, 240–243
system

Compatibility Views, 3–4
system base, 3

table scans
read-ahead, 60

table-valued functions
tempdb database, 145

Table-Valued Function [XML Reader] iterator, 471
Table-Valued Function [XML Reader with XPath

Filter] iterator, 470
table variables

tempdb database, 145
TABLOCK hint, 833
TABLOCK option (DBCC CHECKDB), 892
TABLOCKX hint, 833
tabular data stream (TDS)

endpoints, 12
packets, 11–12

TagB row header, 315
Tag Index (TI) semantic index, 506
Target Memory, 56

Target Recovery Time database configuration
option, 51

TARGET_RECOVERY_TIME option, 29
targets

Extended Events, 80–82
viewing data, 90–95

tasks, 39–40
Blocked Process Threshold option, 31
compared to SPIDs (session IDs), 39
managing, 21–22

task_state (sys.dm_os_tasks), 44
TCP/IP, 11
TDS (tabular data stream)

endpoints, 12
packets, 11–12

tempdb database, 140, 144–156
best practices, 147–148
contention, 148–152

DDL contention, 153
DML contention, 148–152

objects, 144–145
optimizations, 146–147
space monitoring, 153–155

temporary tables, 166
Temp Tables Creation Rate performance

counter, 153
Temp Tables for Destruction performance

counter, 153
termination options, 124–125
tertiary collations

SQL Server collations, character data types
(tables), 225–227

TERTIARY_WEIGHTS function, 225
tessellation levels, cells, 472
TextAdd UDX operator, 471
TEXT_DATA pages, 388
text_in_row_limit value, 389
TEXT_MIXED pages, 388
text pages, processing columns, 870–871
text plans, queries, 518
threads

compared to fibers, 40
parallel query execution plans, 32
serial execution plans, 32

three-part name specification, tables, 204
ticks, 744
time data

internal storage, tables, 270–273
time data types, 210–213
TI (Tag Index) semantic index, 506

 UNION queries

 Index 949

toggling on/off
trace flags, 23

tokens, collations, 218
tools

analyzing indexes, 302–307
dm_db_database_page_allocations

function, 306–307
dm_db_index_physical_stats DMV, 302–305

DBCC MEMORYSTATUS, 691
SET STATISTICS TIME ON, 691
SQLCMD, 2

ToolTip
merge join operator, 520
rewind and rebind information, 572

TopNByRank iterator, 504
TOP N Sort iterator, 482
Top operations, 671
TORN_PAGE_DETECTION option, 128
total_virtual_address_space_kb column (sys.dm_os_

process_memory), 56
traceflag 1106, 149
trace flag 2549, 853
trace flag 2562, 853
trace flags, 23–24

1211, 805
1224, 806
2371, 727
toggling on/off, 23

tracking type, changing in full-text indexes, 493
transaction_id column, 827
transaction_is_snapshot column, 827
transaction logs, 171–177

changes in log size, 178–188
autoshrinking, 187–188
maintaining recoverable logs, 185–187
viewing log file size, 188
virtual log files, 178–185

LSN (Log Sequence Number), 158
recovery

log cache, 177
page LSNs, 175–176
phases, 174–175
readable records, 176–177

truncating, 176
transactions, 766–774

ACID properties, 15, 767–768
dependencies, 768–769
isolation levels, 770–775

Read Committed isolation, 771
Read Uncommitted isolation, 770

Repeatable Read isolation, 771–772
Serializable isolation, 773–774
Snapshot isolation, 772

manipulating FILESTREAM data, 401–402
metadata

snapshot-based isolation levels, 827–830
Recovery Interval option, 29

transaction sequence number (XSN), 811
transaction_sequence_num column, 827
transaction services, 15–17
Transact-SQL (T-SQL)

catalog views, 5
tree format, Query Optimizer, 612–613
trie trees, 637–638
Trigger value (objtype columns), 705
trivial plans (Query Optimizer), 616, 625–626
troubleshooting

plan cache issues, 748–752
TRUNCATEONLY option, shrinking files and

databses, 839
truncating

databases, 185
transaction logs, 176

T-SQL BULK INSERT command, 238
T-SQL query constructs, 458
T-SQL Reference, 298
T-SQL syntax, 156
T-SQL (Transact-SQL)

catalog views, 5
TYPE COLUMN specification

full-text indexes, 493
type_desc column (sys.database_files), 102
types

Extended Events, 79

U
UDTs (user-defined data types), 631
UDT (user-defined data type), 852
UDX iterator, 471
UMS (User Mode Scheduler), 38
uncontained features (partially contained databases),

detecting, 168–169
undo phase of recovery, 173–174
Unicode character strings, 213
Uniformity assumption, Query Optimizer, 637
UNION ALL queries, 555–559
UNION operations, Query Optimizer, 693–694
UNION queries, 555–559

indexes, 562–564

UNIQUE constraint

950 Index

UNIQUE constraint, 276
UNIQUEIDENTIFIER data type, 507
uniqueidentifier data types, 231
UNIQUE KEY constraints, 312
universal unique identifier (UUID) data type, 231
unrestricted-length LOB data, storage, 386–393

appending data into columns, 393
data rows, 389–392
max-length data, 392–393

Unused state (VLFs), 179
UPDATE command, 671
Update Conflict Ratio counter, 827
update conflicts

snapshot-based isolation levels, row
versioning, 817–818

updated statistics, optimality-based recompiles, 725
update locks, 776
updates

FILESTREAM data, 400
Query Optimizer, 670–686

Halloween Protection feature, 674–675
locking, 685–686
MERGE operation, 676–678
non-updating updates, 681–682
partitioned table updates, 682–685
partition-level lock escalation, 686
sparse column updates, 681
Split/Sort/Collapse optimization, 674–676
wide update plans, 679–681

UPDATE statement, 598–599
WRITE clause, 190

UPDATE STATISTICS command, 725
UPDATE STATISTICS statement, 606
UPDATETEXT statement, 190
updating

rows
heap data modifications, 292–295
modifying indexes, 354–358

UPDLOCK hint, 819, 833
USE PLAN hint, 754
USE PLAN hint, Query Optimizer, 699–700
User Connections option, 26
user data

lock types for, 775–786
lock duration, 785
lock granularity, 778–784
lock modes, 775–778
lock ownership, 785–786

user-defined data types (tables), 235–236
user-defined data types (UDTs), 631

user-defined data type (UDT), 852
user-defined scalar functions, forcing

recompilation, 720–721
User Interfaces

Extended Events, 86–97
aggregating data, 93–95
Data Storage page, 89
Events page, 87–88
General page, 86–87
grouping data, 93–95
viewing target data, 90–95

User Mode Scheduler (UMS), 38
user objects

tempdb database, 145
user stores, 53
UsrTab value (objtype columns), 706
UUID (universal unique identifier) data type, 231

V
validation

plan guides, 763–764
value-based encoding, 372
value method, 464
VALUE secondary XML index, 463, 468
varbinary data, 382
varchar(MAX) data type, 389
vardecimal (data compression), 423
vardecimal storage format property, 209
variable-length columns, tables, 214, 267–270
variable-length rows, tables, 265–267
variables

@BlobEater, 850
VAS (virtual address space), 55–57
Version Cleanup Rate counter, 826
Version Generation Rate counter, 826
versioning

tempdb database, 146
versioning code, 16
versioning info, 430
versioning operations, 15
versions

Windows collations, character data types
(tables), 219

version store
snapshot-based isolation levels, row

versioning, 823–827
tempdb database, 146

Version Store Size counter, 826
very large databases (VLDBs), partial backups, 198

 word breaker

 Index 951

view
sys.databases, 120–129

viewa
sys.resource_governor_workload_groups, 72

view expansion preoptimization activity, 625
viewing

collation options, character data types
(tables), 218

database state, row versioning, 816–817
locks, 786–789

request_Columns, 788–789
resource_Columns, 786–787

log file size, 188
query plans, 520–526
resource database contents, 141
target data (Extended Events UI), 90–95

views
sys.databases

columns, 120
state options, 122–125

sys.databases catalog, 119
sys.dm_exec_cached_plans, 72
sys.dm_exec_query_memory_grants, 72
sys.dm_exec_query_resource_semaphores, 72
sys.dm_exec_requests, 72
sys.dm_exec_sessions, 72
sys.dm_os_memory_brokers, 72
sys.dm_os_schedulers, 43
sys.dm_os_tasks, 44–45
sys.dm_os_threads, 44
sys.dm_os_waiting_tasks, 45
sys.dm_os_workers, 44
sys.dm_resource_governor_configuration, 72
sys.dm_resource_governor_resource_pools, 72
sys.dm_resource_governor_workload_groups, 72
sys.dm_tran_current_transaction, 827–828
sys.dm_tran_locks

viewing locks, 786–789
sys.plan_guides, 759
sys.resource_governor_configuration, 71
sys.resource_governor_resource_pools, 72

View Server State permission, 42
View value (objtype columns), 706
virtual_address_space_available_kb column (sys.

dm_os_process_memory), 57
virtual_address_space_committed_kb column (sys.

dm_os_process_memory), 57
virtual_address_space_reserved_kb column (sys.

dm_os_process_memory), 56
virtual address space (VAS), 55–57

virtual log files. See VLFs
virtual_memory_committed_kb column (sys.dm_os_

memory_clerks), 58
virtual_memory_kb column (sys.dm_os_sys_info), 56
virtual_memory_reserved_kb column (sys.dm_os_

memory_clerks), 58
VLDBs (very large databases), partial backups, 198
VLFs (virtual log files), 178–185

automatic truncation, 184–185
observing, 179–181
states, 178
using multiple files, 181–183

volumes
NTFS, creating snapshots, 159

W
wait_duration_ms (sys.dm_os_waiting_tasks), 45
wait statistics, 748–749
wait_type (sys.dm_os_waiting_tasks), 45
warehouses, data, 599–603
Web edition, 2
WHERE clause

full-text index queries, 501
wide update plans, Query Optimizer, 679–681
width sensitivity (WS) tokens, 218
windowing functions, Query Optimizer, 658–660
windows

New Database, 104
Windows collations, character data types

(tables), 218–224
binary collations, 223–224
character ranges, 222–223
naming, 218–219
single-byte character types, 219–220
sort order, 220–222
versions, 219

Window Spool operator, 658
Windows principal contained users, 163
Windows scheduler, 37, 38
Windows Server 2008 R2 Server Core SP1

installing SQL Server 2012, 2
WITH (NOEXPAND) hint, 650
WITH RECOMPILE option, 720
WITH RECOVERY option, RESTORE command, 196
WITH SCHEMABINDING option (CREATE VIEW

statement), 335
WITH VALUES clause (ALTER TABLE command), 281
word breaker, 498

workers

952 Index

workers, 39
affinity, 39

work files, tempdb database, 145
workload groups, 66–68

Default group, 66
Internal groups, 66
properties, 67–68

work_queue_count (sys.dm_os_schedulers), 43
work tables, tempdb database, 145
write-ahead logging, 15, 172
WRITE clause, 190
WRITETEXT statement, 190
WS (width sensitivity) tokens, 218

X
XACT_ABORT SET option, 279
XLOCK hint, 834
xmaxlen columns, 263
xml data types, 231
XML data types, built-in SQL methods, 463–465
XML-Index consistency checks, 884–885
XML indexes, 458–471, 881

creating and maintaining, 459–463
primary XML indexes, 460–463
secondary XML indexes, 463

query plans, 465–467, 470–471
schema-validated columns, 469–470
secondary XML indexes, 468–469
XQuery, 463–465

XML query plans, 518
XQuery, XML indexes, 463–465
XSN (transaction sequence number), 811

about the authors

KALEN DELANEY (primary author) has been working with Microsoft SQL
Server for over 26 years, and she provides advanced SQL Server training to
clients around the world. She has been a SQL Server MVP (Most Valuable
Professional) since 1992 and has been writing about SQL Server almost as
long. Kalen has spoken at dozens of technical conferences, including almost
every PASS Community Summit held in the United States since the organiza-
tion’s founding in 1999.

Kalen is a contributing editor and columnist for SQL Server Magazine and the author or
co-author of many Microsoft Press books on SQL Server, including Inside Microsoft SQL
Server 7, Inside Microsoft SQL Server 2000, Inside Microsoft SQL Server 2005: The Stor-
age Engine, Inside Microsoft SQL Server 2005: Query Tuning and Optimization and SQL
Server 2008 Internals. Kalen blogs at www.sqlblog.com, and her personal website can be
found at www.SQLServerInternals.com.

BOB BEAUCHEMIN (author) is a database-centric instructor, course author,
writer, conference speaker, application practitioner and architect, and a De-
veloper Skills Partner for SQLskills. Bob has been a Microsoft MVP since 2002.
He's written and taught courses on SQL Server and data access worldwide
since the mid-1990s, and currently writes and teaches SQLskills' developer
and DBA-centric immersion course offerings. He is lead author of the books
A Developer's Guide to SQL Server 2005 and A First Look at SQL Server 2005

For Developers, and sole author of Essential ADO.NET. He's written numerous Microsoft
whitepapers, as well as articles on SQL Server and other databases, database security,
ADO.NET, and OLE DB for a number of magazines.

CONOR CUNNINGHAM (author) is principal architect of the SQL Server
Core Engine Team, with over 15 years experience building database engines
for Microsoft. He specializes in query processing and query optimization,
and he designed and/or implemented a number of the query processing
features available in SQL Server. Conor holds a number of patents in the field
of query optimization, and he has written numerous academic papers on
query processing. Conor blogs at “Conor vs. SQL” at http://blogs.msdn.com/b/

conor_cunningham_msft.

www.sqlblog.com
www.SQLServerInternals.com
http://blogs.msdn.com/b/conor_cunningham_msft
http://blogs.msdn.com/b/conor_cunningham_msft

954 Microsoft SQL Server 2012 Internals

JONATHAN KEHAYIAS (author and technical reviewer) is a Principal Consultant and
Trainer for SQLskills, one of the most well-known and respected SQL Server training and
consulting companies in the world. Jonathan is a SQL Server MVP and was the youngest
person ever to obtain the Microsoft Certified Masters for SQL Server 2008. Jonathan is a
performance tuning expert, for both SQL Server and hardware, and has architected com-
plex systems as a developer, business analyst, and DBA. Jonathan also has extensive devel-
opment (T-SQL, C#, and ASP.Net), hardware and virtualization design expertise, Windows

expertise, Active Directory experience, and IIS administration experience.

Jonathan frequently blogs about SQL Server at http://www.SQLskills.com/blogs/Jonathan, and can be
reached by email at Jonathan@SQLskills.com, or on Twitter as @SQLPoolBoy. He regularly presents at
PASS Summit, SQLBits, SQL Intersections, SQL Saturday events, and local user groups and has re-
mained a top answerer of questions on the MSDN SQL Server Database Engine forum since 2007.

BENJAMIN NEVAREZ (author and technical reviewer) is a database professional based
in Los Angeles, California, and author of Inside the SQL Server Query Optimizer, published
by Red Gate books. He has 20 years of experience with relational databases, and has been
working with SQL Server since version 6.5. Benjamin holds a Master’s degree in computer
science and has been a speaker at many technology conferences, including the PASS Sum-
mit and SQL Server Connections. His blog is at http://benjaminnevarez.com and can be
reached by email at admin@benjaminnevarez.com and on twitter at @BenjaminNevarez.

PAUL S. RANDAL (author) is the CEO of SQLskills.com, the world-renowned training and
consulting company that he runs with his wife Kimberly L. Tripp. He is also a SQL Server
MVP and a Microsoft Regional Director. Paul worked at Microsoft for almost nine years,
after spending five years at DEC working on the OpenVMS file system. He wrote various
DBCC commands for SQL Server 2000 and then rewrote all of DBCC CHECKDB and repair
for SQL Server 2005 before moving into management in the SQL team. During SQL Server
2008 development, he was responsible for the entire Storage Engine.

Paul regularly consults and teaches at locations around the world, including the SQLskills Immersion
Events on internals, administration, high-availability, disaster recovery, and performance tuning. He
also wrote and taught the SQL Server Microsoft Certified Master certification for Microsoft. He is a
top-rated presenter at conferences such as the PASS Summit, and owns and manages the SQLinter-
sections conferences. Paul's popular blog is at www.SQLskills.com/blogs/paul and he can be reached
at Paul@SQLskills.com and on Twitter as @paulrandal.

http://www.SQLskills.com/blogs/Jonathan
mailto:Jonathan%40SQLskills.com?subject=
http://benjaminnevarez.com
mailto:admin%40benjaminnevarez.com?subject=
www.SQLskills.com/blogs/paul
mailto:Paul%40SQLskills.com?subject=

 Now that
you’ve
read the
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

Tell us what you think!

	Contents
	Introduction
	Chapter 1: SQL Server 2012 architecture and configuration
	SQL Server editions
	SQL Server installation and tools
	SQL Server metadata
	Compatibility views
	Catalog views
	Dynamic Management Objects
	Other metadata

	Components of the SQL Server engine
	Protocols
	Query processor
	The storage engine

	SQL Server 2012 configuration
	Using SQL Server Configuration Manager
	Managing services

	SQL Server system configuration
	Operating system configuration
	Trace flags
	SQL Server configuration settings

	Conclusion

	Chapter 8: Special storage
	Large object storage
	Restricted-length large object data (row-overflow data)
	Unrestricted-length large object data

	FILESTREAM and FileTable data
	Enabling FILESTREAM data for SQL Server
	Creating a FILESTREAM-enabled database
	Creating a table to hold FILESTREAM data
	Manipulating FILESTREAM data
	Exploring metadata with FILESTREAM data
	Creating a FileTable
	Considering performance for FILESTREAM data
	Summarizing FILESTREAM and FileTable

	Sparse columns
	Management of sparse columns
	Column sets and sparse column manipulation
	Physical storage
	Metadata
	Storage savings with sparse columns

	Data compression
	Vardecimal
	Row compression
	Page compression

	Table and index partitioning
	Partition functions and partition schemes
	Metadata for partitioning
	The sliding window benefits of partitioning
	Partitioning a columnstore index

	Conclusion

	Index

