

Microsoft® SQL Server®
2012 Analysis Services:
The BISM Tabular Model

Marco Russo
Alberto Ferrari
Chris Webb

Copyright © 2012 by Marco Russo, Alberto Ferrari, Christopher Webb
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-5818-9

2 3 4 5 6 7 8 9 10 LSI 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support
related to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you
think of this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property
of their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either
directly or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Holly Bauer

Editorial Production: nSight, Inc.

Technical Reviewers: Darren Gosbell and John Mueller

Copyeditor: Kerin Forsyth / Ann Weaver

Indexer: Nancy Guenther

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrator: nSight, Inc.

[2012-11-02]

To the many BI communities that have supported me in the
last years.

—Marco russo

I dedicate this book to Caterina, Lorenzo, and Arianna: my
family.

—alberto Ferrari

I dedicate this book to my wife, Helen, and my two daughters,
Natasha and Mimi. Thank you for your love, understanding, and
patience.

—chris Webb

Contents at a Glance

Foreword xix

Introduction xxi

ChApTeR 1 Introducing the Tabular Model 1
ChApTeR 2 Getting Started with the Tabular Model 19
ChApTeR 3 Loading Data Inside Tabular 75
ChApTeR 4 DAX Basics 121
ChApTeR 5 Understanding evaluation Context 147
ChApTeR 6 Querying Tabular 185
ChApTeR 7 DAX Advanced 237
ChApTeR 8 Understanding Time Intelligence in DAX 291
ChApTeR 9 Understanding xVelocity and DirectQuery 329
ChApTeR 10 Building hierarchies 361
ChApTeR 11 Data Modeling in Tabular 381
ChApTeR 12 Using Advanced Tabular Relationships 407
ChApTeR 13 The Tabular presentation Layer 429
ChApTeR 14 Tabular and powerpivot 449
ChApTeR 15 Security 463
ChApTeR 16 Interfacing with Tabular 487
ChApTeR 17 Tabular Deployment 513
ChApTeR 18 Optimizations and Monitoring 559
AppenDIX A DAX Functions Reference 589

Index 601

 vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Foreword . xix

Introduction . xxi

Chapter 1 Introducing the Tabular Model 1
The Microsoft BI Ecosystem . 1

What Is Analysis Services and Why Should I Use It? 1

A Short History of Analysis Services . 2

The Microsoft BI Stack Today . 3

Self-Service BI and Corporate BI . 4

Analysis Services 2012 Architecture: One Product, Two Models 6

The Tabular Model . 6

The Multidimensional Model . 8

Why Have Two Models? . 9

The Future of Analysis Services .10

Choosing the Right Model for Your Project .11

Licensing .11

Upgrading from Previous Versions of Analysis Services12

Ease of Use .12

Compatibility with PowerPivot .12

Query Performance Characteristics .13

Processing Performance Characteristics .13

Hardware Considerations .13

Real-Time BI .14

Client Tools .15

Feature Comparison .15

Summary. 17

viii Contents

Chapter 2 Getting Started with the Tabular Model 19
Setting Up a Development Environment .19

Components of a Development Environment 19

Licensing .21

Installation Process .21

Working with SQL Server Data Tools . 31

Creating a New Project .31

Configuring a New Project .33

Importing from PowerPivot .37

Importing a Deployed Project from Analysis Services 38

Contents of a Tabular Project .38

Building a Simple Tabular Model .40

Loading Data into Tables . 41

Working in the Diagram View .49

Deployment .52

Querying a Tabular Model in Excel .53

Connecting to a Tabular Model .54

Querying a Tabular Model in Power View .65

Creating a Connection to a Tabular Model .65

Building a Basic Power View Report .66

Adding Charts and Slicers .68

Interacting with a Report .69

Working with SQL Server Management Studio .71

Summary. 74

Chapter 3 Loading Data Inside Tabular 75
Understanding Data Sources .75

Understanding Impersonation .77

Understanding Server-Side and Client-Side Credentials78

Working with Big Tables .79

Loading from SQL Server .80

Loading from a List of Tables .83

Loading Relationships .86

 Contents ix

Loading from a SQL Query .87

Loading from Views .87

Opening Existing Connections .88

Loading from Access .89

Loading from Analysis Services .90

Using the MDX Editor .92

Loading from a Tabular Database .92

Loading from an Excel File .95

Loading from a Text File .98

Loading from the Clipboard .100

Loading from a Reporting Services Report .103

Loading Reports by Using Data Feeds .108

Loading from a Data Feed .110

Loading from SharePoint .112

Loading from the Windows Azure DataMarket .113

Choosing the Right Data-Loading Method .116

Understanding Why Sorting Data Is Important .118

Summary. .119

Chapter 4 DAX Basics 121
Understanding Calculation in DAX .121

DAX Syntax .121

DAX Data Types .123

DAX Operators .124

DAX Values .125

Understanding Calculated Columns and Measures125

Calculated Columns .126

Measures. .126

Editing Measures by Using DAX Editor .129

Choosing Between Calculated Columns and Measures 130

Handling Errors in DAX Expressions .131

Conversion Errors .131

x Contents

Arithmetical Operation Errors .132

Empty or Missing Values .133

Intercepting Errors .134

Common DAX Functions .135

Aggregate Functions .135

Logical Functions .137

Information Functions .138

Mathematical Functions .139

Text Functions .140

Conversion Functions .140

Date and Time Functions .140

Relational Functions. .141

Using Basic DAX Functions .142

Summary. .146

Chapter 5 Understanding Evaluation Context 147
Evaluation Context in a Single Table .147

Filter Context in a Single Table .148

Row Context in a Single Table .151

Working with Evaluation Context for a Single Table157

Understanding the EARLIER Function .161

Understanding Evaluation Context in Multiple Tables164

Row Context with Multiple Tables .164

Understanding Row Context and Chained Relationships167

Using Filter Context with Multiple Tables .168

Understanding Row and Filter Context Interactions173

Modifying Filter Context for Multiple Tables 177

Final Considerations for Evaluation Context183

Summary. .183

Chapter 6 Querying Tabular 185
Tools for Querying Tabular .185

DAX Query Syntax .187

 Contents xi

Using CALCULATETABLE and FILTER . 189

Using ADDCOLUMNS . 192

Using SUMMARIZE . 194

Using CROSSJOIN, GENERATE, and GENERATEALL 203

Using ROW . 208

Using CONTAINS . 209

Using LOOKUPVALUE . 211

Defining Measures Inside a Query .213

Test Your Measures with a Query .216

Parameters in DAX Query .217

Using DAX Query in SQL Server Reporting Services219

Querying by Using MDX .223

Using DAX Local Measures in MDX Queries229

Drillthrough in MDX Queries .230

Choosing Between DAX and MDX .233

Summary. .235

Chapter 7 DAX Advanced 237
Understanding CALCULATE and CALCULATETABLE Functions 237

Evaluation Context in DAX Queries .238

Modifying Filter Context by Using CALCULATETABLE 240

Using FILTER in CALCULATE and CALCULATETABLE Arguments . .244

Recap of CALCULATE and CALCULATETABLE Behavior 252

Control Filters and Selections .252

Using ALLSELECTED for Visual Totals .253

Filters and Cross Filters .257

Maintaining Complex Filters by Using KEEPFILTERS 267

Sorting Functions .272

Using TOPN . 272

Using RANKX . 276

Using RANK.EQ . 284

xii Contents

Statistical Functions .285

Standard Deviation and Variance by Using STDEV and VAR 285

Sampling by Using the SAMPLE Function .287

Summary. .290

Chapter 8 Understanding Time Intelligence in DAX 291
Tabular Modeling with Date Table .291

Creating a Date Table .292

Defining Relationship with Date Tables .296

Duplicating the Date Table .302

Setting Metadata for a Date Table .306

Time Intelligence Functions in DAX .307

Aggregating and Comparing over Time .307

Semiadditive Measures .321

Summary. .328

Chapter 9 Understanding xVelocity and DirectQuery 329
Tabular Model Architecture in Analysis Services 2012329

In-Memory Mode and xVelocity .331

Query Execution in In-Memory Mode .331

Row-Oriented vs. Column-Oriented Databases334

xVelocity (VertiPaq) Storage .337

Memory Usage in xVelocity (VertiPaq) .339

Optimizing Performance by Reducing Memory Usage 342

Understanding Processing Options .348

Using DirectQuery and Hybrid Modes .351

DirectQuery Mode .352

Analyzing DirectQuery Mode Events by Using SQL Profiler 354

DirectQuery Settings .355

Development by Using DirectQuery .359

Summary. .360

 Contents xiii

Chapter 10 Building Hierarchies 361
Basic Hierarchies .361

What Are Hierarchies? .361

When to Build Hierarchies .363

Building Hierarchies .363

Hierarchy Design Best Practices .364

Hierarchies Spanning Multiple Tables .365

Parent/Child Hierarchies .367

What Are Parent/Child Hierarchies? .367

Configuring Parent/Child Hierarchies .368

Unary Operators .373

Summary. .380

Chapter 11 Data Modeling in Tabular 381
Understanding Different Data Modeling Techniques 381

Using the OLTP Database .383

Working with Dimensional Models .384

Working with Slowly Changing Dimensions386

Working with Degenerate Dimensions .389

Using Snapshot Fact Tables .390

Computing Weighted Aggregations .393

Understanding Circular Dependencies .396

Understanding the Power of Calculated Columns: ABC Analysis399

Modeling with DirectQuery Enabled .403

Using Views to Decouple from the Database .405

Summary. .406

Chapter 12 Using Advanced Tabular Relationships 407
Using Multicolumn Relationships .407

Banding in Tabular .410

Using Many-to-Many Relationships .412

xiv Contents

Implementing Basket Analysis .417

Querying Data Models with Advanced Relationships 421

Implementing Currency Conversion .425

Summary. .428

Chapter 13 The Tabular Presentation Layer 429
Naming, Sorting, and Formatting .429

Naming Objects .429

Hiding Columns .431

Organizing Measures .432

Sorting Column Data .432

Formatting .436

Perspectives .438

Power View–Related Properties .440

Default Field Set .441

Table Behavior Properties .442

Drillthrough . 444

KPIs .445

Summary. .448

Chapter 14 Tabular and PowerPivot 449
PowerPivot for Microsoft Excel 2010 .449

Using the PowerPivot Field List .452

Understanding Linked Tables .455

PowerPivot for Microsoft SharePoint .455

Using the Right Tool for the Job .458

Prototyping in PowerPivot, Deploying with Tabular460

Summary. .461

Chapter 15 Security 463
Roles .463

Creating Database Roles .464

Membership of Multiple Roles .466

 Contents xv

Administrative Security .466

The Server Administrator Role .466

Database Roles and Administrative Permissions 468

Data Security .469

Basic Data Security .469

Testing Data Security .471

Advanced Row Filter Expressions .474

Dynamic Security .479

DAX Functions for Dynamic Security .479

Implementing Dynamic Security by Using CUSTOMDATA 480

Implementing Dynamic Security by Using USERNAME 481

Advanced Authentication Scenarios .482

Connecting to Analysis Services from Outside a Domain482

Kerberos and the Double-Hop Problem .483

Monitoring Security .484

Summary. .486

Chapter 16 Interfacing with Tabular 487
Understanding Different Tabular Interfaces .488

Understanding Tabular vs. Multidimensional Conversion488

Using AMO from .NET .491

Writing a Complete AMO Application .494

Creating Data Source Views .494

Creating a Cube .495

Loading a SQL Server Table .495

Creating a Measure .498

Creating a Calculated Column .500

Creating Relationships .501

Drawing Some Conclusions .506

Performing Common Operations in AMO with .NET507

Processing an Object .507

Working with Partitions .508

xvi Contents

Using AMO with PowerShell .509

Using XMLA Commands .510

CSDL Extensions .512

Summary. .512

Chapter 17 Tabular Deployment 513
Sizing the Server Correctly .513

xVelocity Requirements .513

DirectQuery Requirements .517

Automating Deployment to a Production Server .517

Table Partitioning .518

Defining a Partitioning Strategy .518

Defining Partitions for a Table in a Tabular Model.520

Managing Partitions for a Table .524

Processing Options .527

Available Processing Options .528

Defining a Processing Strategy .532

Executing Processing .535

Processing Automation .539

Using XMLA .539

Using AMO .545

Using PowerShell .546

Using SSIS .547

DirectQuery Deployment .551

Define a DirectQuery Partitioning Strategy 551

Implementing Partitions for DirectQuery and Hybrid Modes552

Security and Impersonation with DirectQuery557

Summary. .558

Chapter 18 Optimizations and Monitoring 559
Finding the Analysis Services Process .559

Understanding Memory Configuration .561

Using Memory-Related Performance Counters .564

 Contents xvii

Understanding Query Plans .569

Understanding SUMX . 575

Gathering Time Information from the Profiler577

Common Optimization Techniques .578

Currency Conversion .578

Applying Filters in the Right Place .580

Using Relationships Whenever Possible .582

Monitoring MDX Queries .584

Monitoring DirectQuery .585

Gathering Information by Using Dynamic Management Views585

Summary. .587

Appendix A DAX Functions Reference 589
Statistical Functions .589

Table Transformation Functions .591

Logical Functions .591

Information Functions .592

Mathematical Functions .593

Text Functions .594

Date and Time Functions .595

Filter and Value Functions .597

Time Intelligence Functions .598

Index 601

About the Authors 627

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xix

Foreword

I have known Marco Russo, Alberto Ferrari, and Chris Webb for many years through my
work on the Analysis Services product team. Early on, these authors were among the

first to embrace multidimensional modeling and offered their insights and suggestions
as valued partners to help us make the product even better. When we introduced tabu-
lar modeling in SQL Server 2012, the authors were on board from the start, participat-
ing in early reviews and applying their substantial skills to this new technology. Marco,
Alberto, and Chris have been instrumental in helping to shape the product design and
direction, and we are deeply grateful for their contributions.

The authors are truly among the best and brightest in the industry. Individually and
collectively, they have authored many books. Expert Cube Development with Microsoft
SQL Server 2008 Analysis Services notably stands out as a must-have book for under-
standing multidimensional modeling in Analysis Services. In addition to writing amazing
books, you can often find Marco, Alberto, and Chris speaking at key conferences, run-
ning training courses, and consulting for companies who are applying business intel-
ligence to improve organizational performance. These authors are at the top of their
field; their blogs come up first in the search list for almost any query you might have
related to building business intelligence applications.

The book you have in your hands describes ways to build business intelligence
applications in detail, using DAX and tabular models. But what truly sets this book apart
is its practical advice. This is a book that only seasoned BI practitioners could write. It is
a great blend of the information you need the most: an all-up guide to tabular model-
ing, balanced with sensible advice to guide you through common modeling decisions. I
hope you enjoy this book as much as I do. I’m sure it will become an essential resource
that you keep close at hand whenever you work on tabular models.

Edward Melomed
Program Manager
SQL Server Analysis Services

 xxi

Introduction

When we, the authors of this book, first learned what Microsoft’s plans were for
Analysis Services in the SQL Server 2012 release, we were not happy. Analysis

Services hadn’t acquired much in the way of new features since 2005, even though in
the meantime it had grown to become the biggest-selling OLAP tool. It seemed as if
Microsoft had lost interest in the product. The release of PowerPivot and all the hype
surrounding self-service Business Intelligence (BI) suggested that Microsoft was no
longer interested in traditional corporate BI, or even that Microsoft thought profes-
sional BI developers were irrelevant in a world where end users could build their own
BI applications directly in Excel. Then, when Microsoft announced that the technology
underpinning PowerPivot was to be rolled into Analysis Services, it seemed as if all our
worst fears had come true: the richness of the multidimensional model was being aban-
doned in favor of a dumbed-down, table-based approach; a mature product was being
replaced with a version 1.0 that was missing a lot of useful functionality. Fortunately, we
were proven wrong and as we started using the first CTPs of the new release, a much
more positive—if complex—picture emerged.

SQL Server 2012 is undoubtedly a milestone release for Analysis Services. Despite
all the rumors to the contrary, we can say emphatically that Analysis Services is neither
dead nor dying; instead, it’s metamorphosing into something new and even more pow-
erful. As this change takes place, Analysis Services will be a two-headed beast— almost
two separate products (albeit ones that share a lot of the same code). The Analysis
Services of cubes and dimensions familiar to many people from previous releases will
become known as the “Multidimensional Model,” while the new, PowerPivot-like flavor
of Analysis Services will be known as the “Tabular Model.” These two models have dif-
ferent strengths and weaknesses and are appropriate for different projects. The Tabular
Model (which, from here onward, we’ll refer to as simply Tabular) does not replace the
Multidimensional Model. Tabular is not “better” or “worse” than Multidimensional.
Instead, the Tabular and Multidimensional models complement each other well. Despite
our deep and long-standing attachment to Multidimensional, Tabular has impressed us
because not only is it blindingly fast, but because its simplicity will bring BI to a whole
new audience.

In this book we’ll be focusing exclusively on Tabular for two reasons. First, there’s not
much that’s new in the Multidimensional Model, so books written for previous versions
of Analysis Services will still be relevant. Second, if you’re using Analysis Services on a
project, you’ll have to make a decision early on about which of the two models to use—
and it’s very unlikely you’ll use both. That means anyone who decides to use Tabular is

xxii Introduction

unlikely to be interested in reading about the Multidimensional Model anyway. One of
the first things we’ll do in this book is to give you all the information you need to make
the decision about which model to use.

We have enjoyed learning about and writing about Tabular and we hope you enjoy
reading this book.

Who Should Read This Book
This book is aimed at professional Business Intelligence developers: consultants or
members of in-house BI development teams who are about to embark on a project
 using the Tabular Model.

Assumptions
Although we’re going to start with the basics of Tabular—so in a sense this is an intro-
ductory book—we’re going to assume that you already know certain core BI concepts
such as dimensional modeling and data warehouse design. Some previous knowledge
of relational databases, and especially SQL Server, will be important when it comes to
understanding how Tabular is structured and how to load data into it and for topics
such as DirectQuery.

Previous experience with Analysis Services Multidimensional isn’t necessary, but
because we know most readers of this book will have some we will occasionally refer to
its features and compare them with equivalent features in Tabular.

Who Should Not Read This Book
No book is suitable for every possible audience, and this book is no exception. Those
without any existing business intelligence experience will find themselves out of their
depth very quickly, as will managers who do not have a technical background.

Organization of This Book
This book is organized as follows: In the first chapter we will introduce the Tabular
 Model, what it is and when it should (and shouldn’t) be used. In Chapters 2 and 3
we will cover the basics of building a Tabular Model. In Chapters 4 through 8 we’ll

 Introduction xxiii

 introduce DAX, its concepts, syntax and functions, and how to use it to create calcu-
lated columns, measures, and queries. Chapters 9 through 16 will deal with numerous
Tabular design topics such as hierarchies, relationships, many-to-many, and security.
Finally, Chapters 17 and 18 will deal with operational issues such as hardware sizing and
configuration, optimization, and monitoring.

Conventions and Features in This Book
This book presents information using conventions designed to make the information
readable and easy to follow:

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys
at the same time. For example, Press Alt+Tab means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (for example, File | Close),
means that you should select the first menu or menu item, then the next,
and so on.

System Requirements
You will need the following hardware and software to install the code samples and
sample database used in this book:

■■ Windows Vista SP2, Windows 7, Windows Server 2008 SP2, or greater. Either
 32-bit or 64-bit editions will be suitable.

■■ At least 4 GB of free space on disk.

■■ At least 4 GB of RAM.

■■ A 2.0GHz x86 or x64 processor or better.

■■ An instance of SQL Server Analysis Services 2012 Tabular plus client compo-
nents. Full instructions on how to install this are given in Chapter 2, “Getting
Started with the Tabular Model.”

xxiv Introduction

Code Samples
The database used for examples in this book is based on Microsoft’s Adventure Works
2012 DW sample database. Because there are several different versions of this database
in existence, all of which are slightly different, we recommend that you download the
database from the link below rather than use your own copy of Adventure Works if you
want to follow the examples.

All sample projects and the sample database can be downloaded from the following
page:

http://www.microsoftpressstore.com/title/9780735658189

Follow the instructions to download the BismTabularSample.zip file and the sample
database.

Installing the Code Samples
Follow these steps to install the code samples on your computer so that you can follow
the examples in this book:

1. Unzip the samples file onto your hard drive.

2. Restore the two SQL Server databases from the .bak files that can be found in
the Databases directory. Full instructions on how to do this can be found here:
http://msdn.microsoft.com/en-us/library/ms177429.aspx.

3. Restore the Adventure Works Tabular database to Analysis Services from the
.abf file that can also be found in the Databases directory. Full instructions on
how to do this can be found here: http://technet.microsoft.com/en-us/library/
ms174874.aspx.

4. Each chapter has its own directory containing code samples. In many cases
this takes the form of a project, which that must be opened in SQL Server Data
Tools. Full instructions on how to install SQL Server Data Tools are given in
Chapter 2, “Getting Started With the Tabular Model.”

Acknowledgments
We’d like to thank the following people for their help and advice: Akshai Mirchandani,
Amir Netz, Ashvini Sharma, Brad Daniels, Cristian Petculescu, Dan English, Darren
Gosbell, Dave Wickert, Denny Lee, Edward Melomed, Greg Galloway, Howie Dickerman,

http://technet.microsoft.com/en-us/library/ms174874.aspx
http://technet.microsoft.com/en-us/library/ms174874.aspx
http://www.microsoftpressstore.com/title/9780735658189

 Introduction xxv

Hrvoje Piasevoli, Jeffrey Wang, Jen Stirrup, John Sirmon, John Welch, Kasper de Jonge,
Marius Dumitru, Max Uritsky, Paul Sanders, Paul Turley, Rob Collie, Rob Kerr, TK Anand,
Teo Lachev, Thierry D’Hers, Thomas Ivarsson, Thomas Kejser, Tomislav Piasevoli,
Vidas Matelis, Wayne Robertson, Paul te Braak, Stacia Misner, Javier Guillen, Bobby
 Henningsen, Toufiq Abrahams, Christo Olivier, Eric Mamet, Cathy Dumas, and Julie
Strauss.

Errata & Book Support
We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://www.microsoftpressstore.com/title/ 9780735658189

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You
At Microsoft Press, your satisfaction is our top priority and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch
Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoftpressstore.com/title/ 9780735658189

 1

C H A P T E R 1

Introducing the Tabular Model

The purpose of this chapter is to introduce Analysis Services 2012, provide a brief overview of
what the Tabular model is, and explore its relationship to the Multidimensional model, to Analysis

Services 2012 as a whole, and to the wider Microsoft business intelligence (BI) stack. This chapter will
also help you make what is probably the most important decision in your project’s life cycle: whether
you should use the Tabular model.

The Microsoft BI Ecosystem

In the Microsoft ecosystem, BI is not a single product; it’s a set of features distributed across several
products, as explained in the following sections.

What Is Analysis Services and Why Should I Use It?
Analysis Services is an online analytical processing (OLAP) database, a type of database that is highly
optimized for the kinds of queries and calculations that are common in a business intelligence envi-
ronment. It does many of the same things that a relational database can do, but it differs from a rela-
tional database in many respects. In most cases, it will be easier to develop your BI solution by using
Analysis Services in combination with a relational database such as Microsoft SQL Server than by
using SQL Server alone. Analysis Services certainly does not replace the need for a relational database
or a properly designed data warehouse.

One way of thinking about Analysis Services is as an extra layer of metadata, or a semantic model,
that sits on top of a data warehouse in a relational database. This extra layer contains information
about how fact tables and dimension tables should be joined, how measures should aggregate up,
how users should be able to explore the data through hierarchies, the definitions of common calcula-
tions, and so on. This layer includes one or more models containing the business logic of your data
warehouse—and end users query these models rather than the underlying relational database. With
all this information stored in a central place and shared by all users, the queries that users need to
write become much simpler: All a query needs to do in most cases is describe which columns and
rows are required, and the model applies the appropriate business logic to ensure that the numbers
that are returned make sense. Most important, it becomes impossible to write a query that returns
“incorrect” results due to a mistake by end users, such as joining two tables incorrectly or summing a

2 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

column that cannot be summed. This, in turn, means that end-user reporting and analysis tools must
do much less work and can provide a clearer visual interface for end users to build queries. It also
means that different tools can connect to the same model and return consistent results.

Another way of thinking about Analysis Services is as a kind of cache that you can use to speed up
reporting. In most scenarios in which Analysis Services is used, it is loaded with a copy of the data in
the data warehouse. Subsequently, all reporting and analytic queries are run against Analysis Services
rather than against the relational database. Even though modern relational databases are highly
optimized and contain many features specifically aimed at BI reporting, Analysis Services is a database
specifically designed for this type of workload and can, in most cases, achieve much better query
performance. For end users, optimized query performance is extremely important because it allows
them to browse through data without waiting a long time for reports to run and without any breaks
in their chain of thought.

For the IT department, the biggest benefit of all this is that it becomes possible to transfer the bur-
den of authoring reports to the end users. A common problem with BI projects that do not use OLAP
is that the IT department must build not only a data warehouse but also a set of reports to go with it.
This increases the amount of time and effort involved, and can be a cause of frustration for the busi-
ness when it finds that IT is unable to understand its reporting requirements or to respond to them as
quickly as is desirable. When an OLAP database such as Analysis Services is used, the IT department
can expose the models it contains to the end users and enable them to build reports themselves by
using whatever tool with which they feel comfortable. By far the most popular client tool is Microsoft
Excel. Ever since Office 2000, Excel PivotTables have been able to connect directly to Analysis Services
cubes and Excel 2010 has some extremely powerful capabilities as a client for Analysis Services.

All in all, Analysis Services not only reduces the IT department’s workload but also increases end
user satisfaction because users now find they can build the reports they want and explore the data at
their own pace without having to go through an intermediary.

A Short history of Analysis Services
SQL Server Analysis Services—or OLAP Services, as it was originally called when it was released
with SQL Server 7.0—was the first foray by Microsoft into the BI market. When it was released,
many people commented that this showed that BI software was ready to break out of its niche and
reach a mass market, and the success of Analysis Services and the rest of the Microsoft BI stack over
the past decade has proved them correct. SQL Server Analysis Services 2000 was the first version
of Analysis Services to gain significant traction in the marketplace; Analysis Services 2005 quickly
became the biggest-selling OLAP tool not long after its release, and, as Analysis Services 2008 and
2008 R2 improved scalability and performance still further, more and more companies started to
adopt it as a cornerstone of their BI strategy. Terabyte-sized cubes are now not uncommon, and
the famous example of the 24-TB cube Yahoo! built shows just what can be achieved. Analysis
Services today is an extremely successful, mature product that is used and trusted in thousands of
enterprise-level deployments.

 CHAPTER 1 Introducing the Tabular Model 3

The Microsoft BI Stack Today
The successes of Analysis Services would not have been possible if it had not been part of an equally
successful wider suite of BI tools that Microsoft has released over the years. Because there are so
many of these tools, it is useful to list them and provide a brief description of what each does.

The Microsoft BI stack can be broken up into two main groups: products that are part of the SQL
Server suite of tools and products that are part of the Office group. As of SQL Server 2012, the SQL
Server BI-related tools include:

■■ SQL Server relational database The flagship product of the SQL Server suite and the plat-
form for the relational data warehouse. http://www.microsoft.com/sqlserver/en/us/default.aspx

■■ SQL Azure The Microsoft cloud-based version of SQL Server, not commonly used for BI pur-
poses at the moment, but, as other cloud-based data sources become more common in the
future, it will be used more and more. https://www.windowsazure.com/en-us/home/features/
sql-azure

■■ Parallel Data Warehouse A highly specialized version of SQL Server, aimed at companies
with multiterabyte data warehouses, which can scale out its workload over many physical
 servers. http://www.microsoft.com/sqlserver/en/us/solutions-technologies/data-warehousing/
pdw.aspx

■■ SQL Server Integration Services An extract, transform, and load (ETL) tool for moving
data from one place to another. Commonly used to load data into data warehouses. http://
www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/integration-
services.aspx

■■ Apache Hadoop The most widely used open-source tool for aggregating and analyzing
large amounts of data. Microsoft has decided to support it explicitly in Windows and provide
tools to help integrate it with the rest of the Microsoft BI stack. http://www.microsoft.com/
bigdata

■■ SQL Server Reporting Services A tool for creating static and semistatic, highly formatted
reports and probably the most widely used SQL Server BI tool of them all. http://
www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/reporting-
services.aspx

■■ SQL Azure Reporting The cloud-based version of SQL Server Reporting Services, in beta at
the time of writing. http://msdn.microsoft.com/en-us/library/windowsazure/gg430130.aspx

■■ Power View A powerful new data visualization and analysis tool, available through Microsoft
SharePoint, which acts as a front end to Analysis Services. http://www.microsoft.com/sqlserver/
en/us/future-editions/SQL-Server-2012-breakthrough-insight.aspx

■■ StreamInsight A complex event-processing platform for analyzing data that arrives too
quickly and in too large a volume to persist in a relational database. http://www.microsoft.com/
sqlserver/en/us/solutions-technologies/business-intelligence/complex-event-processing.aspx

https://www.windowsazure.com/en-us/home/features/sql-azure/
https://www.windowsazure.com/en-us/home/features/sql-azure/
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/data-warehousing/pdw.aspx
http:// www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/integration-services.aspx
http:// www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/integration-services.aspx
http:// www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/integration-services.aspx
http://www.microsoft.com/bigdata
http://www.microsoft.com/bigdata
http:// www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/reporting-services.aspx
http:// www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/reporting-services.aspx
http:// www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/reporting-services.aspx
http://www.microsoft.com/sqlserver/en/us/future-editions/SQL-Server-2012-breakthrough-insight.aspx
http://www.microsoft.com/sqlserver/en/us/future-editions/SQL-Server-2012-breakthrough-insight.aspx
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/complex-event-processing.aspx
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/complex-event-processing.aspx

4 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

■■ Master Data Services A tool for managing a consistent set of master data for BI systems.
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/
master-data-services.aspx

■■ Data Quality Services A data quality and cleansing tool. http://msdn.microsoft.com/en-us/
library/ff877917(v=sql.110).aspx

■■ PowerPivot A self-service BI tool that enables users to construct their own reporting solu-
tions in Excel and publish them in SharePoint. It is very closely related to Analysis Services and
will be discussed in greater detail in the following section, “Self-Service BI and Corporate BI.”

BI tools developed by the Office group include:

■■ SharePoint 2010 The Microsoft flagship portal and collaboration product. In the view of
Microsoft, SharePoint is where all your BI reporting should be surfaced, through Excel and
Excel Services, Reporting Services, Power View, or PerformancePoint. It also serves as the hub
for sharing PowerPivot models by using PowerPivot for SharePoint.

■■ PerformancePoint Services A tool for creating BI dashboards inside SharePoint.

■■ Excel 2010 The venerable spreadsheet program and probably the most widely used BI tool
in the world, Excel has long been able to connect directly to Analysis Services through pivot
tables and cube formulas. Now, with the release of PowerPivot (which is an Excel add-in), it is
at the center of the Microsoft self-service BI strategy.

It is also worth mentioning that Microsoft makes various experimental BI tools available on its SQL
Azure Labs site (http://www.microsoft.com/en-us/sqlazurelabs/default.aspx), which include the projects
code-named “Social Analytics” and “Data Explorer.” In addition, a large number of third-party soft-
ware vendors make valuable contributions to the Microsoft BI ecosystem; for example, by building
client tools for Analysis Services.

Self-Service BI and Corporate BI
One of the most significant trends in the BI industry over the last few years has been the appearance
of so-called self-service BI tools such as QlikView and Tableau. These tools aim to give power users
the ability to create small-scale BI solutions with little or no help from IT departments. In a sense,
Analysis Services has always been a kind of self-service BI tool in that it enables end users to build
their own queries and reports, but it still requires an IT professional to design and build the Analysis
Services database and the underlying data warehouse. This means that it is usually grouped with
other, more traditional corporate BI tools, where the design of databases and reporting of and access
to data is strictly controlled by the IT department. In many organizations, however, especially smaller
ones, the resources simply do not exist to undertake a large-scale BI project; even when they do, the
failure rate for this type of project is often very high, hence the appeal to a certain class of users of
self-service BI tools that enable them to do everything themselves.

http://www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/master-data-services.aspx
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/business-intelligence/master-data-services.aspx
http://msdn.microsoft.com/en-us/library/ff877917(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ff877917(v=sql.110).aspx

 CHAPTER 1 Introducing the Tabular Model 5

The quickest way to start an argument between two BI professionals is to ask them what they think
of self-service BI. On one hand, self-service BI makes BI development extremely business-focused,
responsive, and agile. On the other hand, it can amplify the problems associated with the persistence
of out-of-date data, poor data quality, lack of integration between multiple source systems, and dif-
ferent interpretations of how data should be modeled, especially because self-service BI proponents
often claim that the time-consuming step of building a data warehouse is unnecessary. Whatever the
advantages and disadvantages of self-service BI, it is a fast-growing market and one that Microsoft,
as a software company, could not ignore, so in 2010 it released its own self-service BI tool called
PowerPivot.

PowerPivot is essentially a desktop-based version of Analysis Services, but it takes the form of a
free-to-download add-in for Excel 2010. (See www.powerpivot.com for more details.) It makes it very
easy for Excel power users to import data from a number of sources, build their own models, and
then query them using pivot tables. The PowerPivot database runs in-process inside Excel; all the
imported data is stored there and all queries from Excel go against it. Excel users can work with vastly
greater data volumes than they ever could before if they were storing the data directly inside an Excel
worksheet, and they can still get lightning-fast query response times. When the Excel workbook is
saved, the PowerPivot database and all the data in it is saved inside the workbook; the workbook can
then be copied and shared like any regular Excel workbook, although any other user wishing to query
the data held in PowerPivot must also have PowerPivot installed on his or her PC. To share models
and reports between groups of users more efficiently, PowerPivot for SharePoint, a service that inte-
grates with Microsoft SharePoint 2010 Enterprise edition, is required. With PowerPivot for SharePoint,
it becomes possible to upload a workbook containing a PowerPivot database into SharePoint,
enabling other users to view the reports in the workbook over the web by using Excel Service or to
query the data held in PowerPivot on the server by using Excel or any other Analysis Services client
tool on the desktop.

The release of PowerPivot does not mean that the Microsoft commitment to corporate BI tools has
diminished. No single type of tool is appropriate in every situation, and it is to the credit of Microsoft
that it not only sells both self-service and corporate BI tools but also has a coherent story for how
both types of tools should coexist inside the same organization. Microsoft foresees a world in which IT
departments and power users live in harmony, where IT-led projects use corporate BI tools and push
data down from a central data warehouse out to the masses through reports and Analysis Services
cubes, but where power users are also free to build their own self-service models in PowerPivot, share
them with other people, and, if their models are popular, see them handed over to the IT department
for further development, support, and eventual incorporation into the corporate model. PowerPivot
for SharePoint provides a number of dashboards that enable the IT department to monitor usage of
PowerPivot models that have been uploaded to SharePoint and, in Analysis Services 2012, it is pos-
sible to import a model created in PowerPivot into Analysis Services. It is likely that future releases will
include features that help bridge the gap between the worlds of self-service and corporate BI.

6 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

Analysis Services 2012 Architecture: One Product, Two Models

This section explains a little about the architecture of Analysis Services, which in SQL Server 2012 is
split into two models.

The first and most important point to make about Analysis Services 2012 is that it is really two
products in one. Analysis Services in the SQL Server 2008 R2 release and before is still present, but it
is now called the Multidimensional model. It has had a few improvements relating to performance,
scalability, and manageability, but there is no new major functionality. Meanwhile, there is a new
version of Analysis Services that closely resembles PowerPivot—this is called the Tabular model. The
Tabular model is the subject of this book.

When installing Analysis Services, you must choose between installing an instance that runs in
Tabular mode and one that runs in Multidimensional mode; more details on the installation process
will be given in Chapter 2, “Getting Started with the Tabular Model.” A Tabular instance can sup-
port only databases containing Tabular models, and a Multidimensional instance can support only
databases containing Multidimensional models. Although these two parts of Analysis Services share
much of the same code underneath, in most respects they can be treated as separate products. The
concepts involved in designing the two types of model are very different, and you cannot convert a
Tabular database into a Multidimensional database, or vice versa, without rebuilding everything from
the beginning. That said, it is important to emphasize the fact that, from an end user’s point of view,
the two models do almost the same things and appear almost identical when used through a client
tool such as Excel.

The following sections compare the functionality available in the Tabular and Multidimensional
models and define some important terms that are used throughout the rest of this book.

The Tabular Model
A database is the highest-level object in the Tabular model and is very similar to the concept of a
database in the SQL Server relational database. An instance of Analysis Services can contain many data-
bases, and each database can be thought of as a self-contained collection of objects and data relating
to a single business solution. If you are writing reports or analyzing data and find that you need to
run queries on multiple databases, you have probably made a design mistake somewhere because
everything you need should be contained in a single database.

Tabular models are designed by using SQL Server Data Tools (SSDT), and a project in SSDT maps
onto a database in Analysis Services. After you have finished designing a project in SSDT, it must be
deployed to an instance of Analysis Services, which means SSDT executes a number of commands to
create a new database in Analysis Services or alters the structure of an existing database. SQL Server
Management Studio (SSMS), a tool that can be used to manage databases that have already been
deployed, can also be used to write queries against databases.

Databases are made up of one or more tables of data. Again, a table in the Tabular model is very
similar to a table in the relational database world. A table in Tabular is usually loaded from a single
table in a relational database or from the results of a SQL SELECT statement. A table has a fixed

 CHAPTER 1 Introducing the Tabular Model 7

number of columns that are defined at design time and can have a variable number of rows, depend-
ing on the amount of data that is loaded. Each column has a fixed type, so for example, a single
column could contain only integers, only text, or only decimal values. Loading data into a table is
referred to as processing that table.

It is also possible to define relationships between tables at design time. Unlike in SQL, it is not
possible to define relationships at query time; all queries must use these preexisting relationships.
However, relationships between tables can be marked as active or inactive, and at query time it is
possible to choose which relationships between tables are actually used. It is also possible to simulate
the effect of relationships that do not exist inside queries and calculations. All relationships are one-to-
many relationships and must involve just one column from each of two tables. It is not possible to
define relationships that are explicitly one to one or many to many, although it is certainly possible to
achieve the same effect by writing queries and calculations in a particular way. It is also not possible
to design relationships that are based on more than one column from a table or recursive relation-
ships that join a table to itself.

The Tabular model uses a purely memory-based engine and stores only a copy of its data on
disk so that no data is lost if the service is restarted. Whereas the Multidimensional model, like most
relational database engines, stores its data in a row-based format, the Tabular model uses a column-
oriented database called the xVelocity in-memory analytics engine, which in most cases offers signifi-
cant query performance improvements. (For more details on the column-based type of database, see
http://en.wikipedia.org/wiki/Column-oriented_DBMS.)

note The xVelocity analytics in-memory engine was known as the Vertipaq engine before
the release of Analysis Services 2012. Many references to the Vertipaq name remain in
docu mentation, blog posts, and other material online, and it even persists inside the prod-
uct itself in property names and Profiler events. The name xVelocity is also used to refer to
the wider family of related technologies, including the new column store index feature in
the SQL Server 2012 relational database engine. For a more detailed explanation of this ter-
minology, see http://blogs.msdn.com/b/analysisservices/archive/2012/03/09/xvelocity-and-
analysis-services.aspx.

Queries and calculations in Tabular are defined in Data Analysis eXpressions (DAX), the native
language of the Tabular model, and in PowerPivot. Client tools such as Power View can generate DAX
queries to retrieve data from a Tabular model, or you can write your own DAX queries and use them
in reports. It is also possible to write queries by using the MDX language that Multidimensional mod-
els use. This means that the Tabular model is backward compatible with the large number of existing
Analysis Services client tools that are available from Microsoft, such as Excel and SQL Server Reporting
Services, and tools from third-party software vendors.

Derived columns, called calculated columns, can be added to a table in a Tabular model; they use
DAX expressions to return values based on the data already loaded in other columns in the same or
other tables in the same Analysis Services database. Calculated columns are populated at process-
ing time and, after processing has taken place, behave in exactly the same way as regular columns.

8 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

Measures can also be defined on tables by using DAX expressions; a measure can be thought of
as a DAX expression that returns some form of aggregated value based on data from one or more
columns. A simple example of a measure is one that returns the sum of all values from a column of
data that contains sales volumes. Key performance indicators (KPIs) are very similar to measures, but
are collections of calculations that enable you to determine how well a measure is doing relative to a
target value and whether it is getting closer to reaching that target over time.

Most front-end tools such as Excel use a PivotTable-like experience for querying Tabular models:
Columns from different tables can be dragged onto the rows axis and columns axis of a pivot table
so that the distinct values from these columns become the individual rows and columns of the pivot
table, and measures display aggregated numeric values inside the table. The overall effect is some-
thing like a Group By query in SQL, but the definition of how the data aggregates up is predefined
inside the measures and is not necessarily specified inside the query itself. To improve the user experi-
ence, it is also possible to define hierarchies on tables inside the Tabular model, which create multi-
level, predefined drill paths. Perspectives can hide certain parts of a complex model, which can aid
usability, and security roles can be used to deny access to specific rows of data from tables to specific
users. Perspectives should not be confused with security, however; even if an object is hidden in a
perspective it can still be queried, and perspectives themselves cannot be secured.

The Multidimensional Model
At the highest level, the Multidimensional model is very similar to the Tabular model: Data is orga-
nized in databases, and databases are designed in SSDT (formerly BI Development Studio, or BIDS)
and managed by using SQL Server Management Studio.

The differences become apparent below the database level, where multidimensional rather than
relational concepts are prevalent. In the Multidimensional model, data is modeled as a series of cubes
and dimensions, not tables. Each cube is made up of one or more measure groups, and each measure
group in a cube is usually mapped onto a single fact table in the data warehouse. A measure group
contains one or more measures, which are very similar to measures in the Tabular model. A cube also
has two or more dimensions: one special dimension, the Measures dimension, which contains all the
measures from each of the measure groups, and various other dimensions such as Time, Product,
Geography, Customer, and so on, which map onto the logical dimensions present in a dimensional
model. Each of these non-Measures dimensions consists of one or more attributes (for example, on
a Date dimension, there might be attributes such as Date, Month, and Year), and these attributes can
themselves be used as single-level hierarchies or to construct multilevel user hierarchies. Hierarchies
can then be used to build queries. Users start by analyzing data at a highly aggregated level, such as
a Year level on a Time dimension, and can then navigate to lower levels such as Quarter, Month, and
Date to look for trends and interesting anomalies.

As you would expect, because the Multidimensional model is the direct successor to previous ver-
sions of Analysis Services, it has a very rich and mature set of features representing the fruit of more
than a decade of development, even if some of them are not used very often. Most of the features
available in the Tabular model are present in the Multidimensional model, but the Multidimensional

 CHAPTER 1 Introducing the Tabular Model 9

model also has many features that have not yet been implemented in Tabular. A detailed feature
comparison between the two models appears later in this chapter.

In terms of data storage, the Multidimensional model can store its data in three ways:

■■ Multidimensional OLAP (MOLAP), where all data is stored inside Analysis Services’ own disk-
based storage format.

■■ Relational OLAP (ROLAP), where Analysis Services acts purely as a metadata layer and where
no data is stored in Analysis Services itself; SQL queries are run against the relational source
database when a cube is queried.

■■ Hybrid OLAP (HOLAP), which is the same as ROLAP but where some pre-aggregated values
are stored in MOLAP.

MOLAP storage is used in the vast majority of implementations, although ROLAP is sometimes
used when a requirement for so-called real-time BI HOLAP is almost never used.

One particular area in which the Multidimensional and Tabular models differ is in the query and
calculation languages they support. The native language of the Multidimensional model is MDX, and
that is the only language used for defining queries and calculations. The MDX language has been suc-
cessful and is supported by a large number of third-party client tools for Analysis Services. It was also
promoted as a semiopen standard by a cross-vendor industry body called the XMLA Council (now
effectively defunct) and, as a result, has also been adopted by many other OLAP tools that are direct
competitors to Analysis Services. However, the problem with MDX is the same problem that many
people have with the Multidimensional model in general: although it is extremely powerful, many BI
professionals have struggled to learn it because the concepts it uses, such as dimensions and hierar-
chies, are very different from the ones they are accustomed to using in SQL.

In addition, Microsoft has publicly committed (in this post on the Analysis Services team blog
and other public announcements at http://blogs.msdn.com/b/analysisservices/archive/2011/05/16/
analysis-services-vision-amp-roadmap-update.aspx) to support DAX queries on the Multidimensional
model at some point after Analysis Services 2012 has been released, possibly as part of a service pack.
This will allow Power View to query Multidimensional models and Tabular models, although it is likely
that some compromises will have to be made and some Multidimensional features might not work as
expected when DAX queries are used.

Why have Two Models?
Why has this split happened? Although Microsoft does not want to make any public comments on
this topic, there are a number of likely reasons.

■■ Analysis Services Multidimensional is getting old. It was designed in an age of 32-bit servers
with one or two processors and less than a gigabyte of RAM, when disk-based storage was
the only option for databases. Times have changed, and modern hardware is radically dif-
ferent; now a new generation of memory-based, columnar databases has set the standard
for query performance with analytic workloads, and Analysis Services must adopt this new

http://blogs.msdn.com/b/analysisservices/archive/2011/05/16/analysis-services-vision-amp-roadmap-update.aspx
http://blogs.msdn.com/b/analysisservices/archive/2011/05/16/analysis-services-vision-amp-roadmap-update.aspx

10 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

technology to keep up. Retrofitting the new xVelocity in-memory engine into the existing
Multidimensional model was not, however, a straightforward job, so it was necessary to intro-
duce the new Tabular model to take full advantage of xVelocity.

■■ Despite the success of Analysis Services Multidimensional, there has always been a perception
that it is difficult to learn. Some database professionals, accustomed to relational data model-
ing, struggle to learn multidimensional concepts, and those that do find the learning curve
is steep. Therefore, if Microsoft wants to bring BI to an ever-wider audience, it must simplify
the development process—hence the move from the complex world of the Multidimensional
model to the relatively simple and familiar concepts of the Tabular model.

■■ Microsoft sees self-service BI as a huge potential source of growth, and PowerPivot is its entry
into this market. It is also important to have consistency between the Microsoft self-service
and corporate BI tools. Therefore, if Analysis Services must be overhauled, it makes sense to
make it compatible with PowerPivot, with a similar design experience so self-service models
can easily be upgraded to full-fledged corporate solutions.

■■ Some types of data are more appropriately, or more easily, modeled by using the Tabular
approach, and some types of data are more appropriate for a Multidimensional approach.
Having different models gives developers the choice to use whichever approach suits their
circumstances.

What Is the BI Semantic Model?
One term that has been mentioned a lot in the discussions about Analysis Services 2012 is the
BI Semantic Model or BISM. This term does not refer to either the Multidimensional or Tabular
models specifically but, instead, describes the function of Analysis Services in the Microsoft BI
stack: the fact that it acts as a semantic layer on top of a relational data warehouse, adding a
rich layer of metadata that includes hierarchies, measures, and calculations. In that respect, it
is very similar to the term Unified Dimensional Model that was used around the time of the
SQL Server 2005 launch. In some cases, the term BI Semantic Model has referred to the Tabular
model only, but this is not correct. Because this book is specifically concerned with the Tabular
model, we will not be using this term very often; nevertheless, we believe it is important to
understand exactly what it means and how it should be used.

The Future of Analysis Services
Having two models inside Analysis Services, plus two query and calculation languages, is clearly not
an ideal state of affairs. First and foremost, it means you have to choose which model to use at the
start of your project, when you might not know enough about your requirements to know which one
is appropriate—and this is the question we will address in the next section. It also means that anyone
who decides to specialize in Analysis Services has to learn two technologies. Presumably, this state of
affairs will not continue in the long term.

 CHAPTER 1 Introducing the Tabular Model 11

Microsoft has been very clear in saying that the Multidimensional model is not deprecated and
that the Tabular model is not its replacement. It is likely that new features for Multidimensional will be
released in future versions of Analysis Services. The fact that the Tabular and Multidimensional mod-
els share some of the same code suggests that some new features could easily be developed for both
models simultaneously. The post on the Analysis Services blog previously referenced suggests that
in time the two models will converge and offer much the same functionality, so the decision about
which model to use is based on whether the developer prefers to use a multidimensional or relational
way of modeling data. Support for DAX queries in the Multidimensional model, when it arrives, will
represent one step in this direction.

One other thing is clear about the future of Analysis Services: It will be moving to the cloud.
Although no details are publicly available at the time of writing, Microsoft has confirmed it is working
on a cloud-based version of Analysis Services and this, plus SQL Azure, SQL Azure Reporting Services,
and Office 365, will form the core of the Microsoft cloud BI strategy.

Choosing the Right Model for Your Project

It might seem strange to be addressing the question of whether the Tabular model is appropriate for
your project at this point in the book, before you have learned anything about the Tabular model, but
you must answer this question at an equally early stage of your BI project. At a rough guess, either
model will work equally well for about 60 percent to 70 percent of projects, but for the remaining 30
percent to 40 percent, the correct choice of model will be vital.

As has already been stated, after you have started developing with one model in Analysis Services,
there is no way of switching over to use the other; you have to start all over again from the begin-
ning, possibly wasting much precious development time, so it is very important to make the correct
decision as soon as possible. Many factors must be taken into account when making this decision. In
this section we discuss all of them in a reasonable amount of detail. You can then bear these factors
in mind as you read the rest of this book, and when you have finished it, you will be in a position to
know whether to use the Tabular model or the Multidimensional model.

Licensing
Analysis Services 2012 is available in the following editions: SQL Server Standard, SQL Server
Business Intelligence, and SQL Server Enterprise. In SQL Server Standard edition, however, only the
Multidimensional model is available, and has the same features that were available in SQL Server
Standard edition of previous versions of Analysis Services. This means that several important features
needed for scaling up the Multidimensional model, such as partitioning, are not available in SQL
Server Standard edition. SQL Server Business Intelligence edition contains both the Multidimensional
and Tabular models, as does SQL Server Enterprise edition. In terms of Analysis Services functional-
ity, these two editions are the same; the only difference between them is that SQL Server Business
Intelligence edition licensing is based on buying a server license plus Client Access Licenses (CALs),
whereas SQL Server Enterprise edition is licensed on a per-CPU core basis. (You can no longer license

12 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

SQL Server Enterprise edition on a server-plus-CALs basis as was possible in the past.) In SQL Server
Business Intelligence and SQL Server Enterprise editions, both Tabular and Multidimensional models
contain all available features and can use as many cores as the operating system makes available.

The upshot of this is that it could be more expensive in some situations to use Tabular than
Multidimensional because Multidimensional is available in SQL Server Standard edition and Tabular is
not. If you have a limited budget, already have existing Multidimensional skills, or are willing to learn
them, and your data volumes mean that you do not need to use Multidimensional features such as
partitioning, it might make sense to use Multidimensional and SQL Server Standard edition to save
money. If you are willing to pay slightly more for SQL Server Business Intelligence edition or SQL
Server Enterprise edition, however, then licensing costs should not be a consideration in your choice
of model.

Upgrading from previous Versions of Analysis Services
As has already been mentioned, there is no easy way of turning a Multidimensional model into a
Tabular model. Tools undoubtedly will appear on the market that claim to make this transition with a
few mouse clicks, but such tools could only ever work for very simple Multidimensional models and
would not save much development time. Therefore, if you already have a mature Multidimensional
implementation and the skills in house to develop and maintain it, it probably makes no sense to
abandon it and move over to Tabular unless you have specific problems with Multidimensional that
Tabular is likely to solve.

ease of Use
In contrast, if you are starting an Analysis Services 2012 project with no previous Multidimensional or
OLAP experience, it is very likely that you will find Tabular much easier to learn than Multidimensional.
Not only are the concepts much easier to understand, especially if you are used to working with
relational databases, but the development process is also much more straightforward and there are
far fewer features to learn. Building your first Tabular model is much quicker and easier than building
your first Multidimensional model. It can also be argued that DAX is easier to learn than MDX, at least
when it comes to writing basic calculations, but the truth is that both MDX and DAX can be equally
confusing for anyone used to SQL.

Compatibility with powerpivot
The Tabular model and PowerPivot are almost identical in the way their models are designed; the user
interfaces for doing so are practically the same and both use DAX. PowerPivot models can also be
imported into SQL Server data tools to generate a Tabular model, although the process does not work
the other way, and a Tabular model cannot be converted to a PowerPivot model. Therefore, if you
have a strong commitment to self-service BI by using PowerPivot, it makes sense to use Tabular for
your corporate BI projects because development skills and code are transferable between the two.

 CHAPTER 1 Introducing the Tabular Model 13

Query performance Characteristics
Although it would be dangerous to make sweeping generalizations about query performance, it’s
fair to say that Tabular will perform at least as well as Multidimensional in most cases and will out-
perform it in some specific scenarios. Distinct count measures, which are a particular weakness of the
 Multidimensional model, perform extremely well in Tabular, for instance. Anecdotal evidence also
suggests that queries for detail-level reports (for example, queries that return a large number of rows
and return data at a granularity close to that of the fact table) will perform much better on Tabular
as long as they are written in DAX and not MDX. When more complex calculations or modeling
techniques such as many-to-many relationships are involved, it is much more difficult to say whether
Multidimensional or Tabular will perform better, unfortunately, and a proper proof of concept will be
the only way to tell whether the performance of either model will meet requirements.

processing performance Characteristics
Comparing the processing performance of Multidimensional and Tabular is also difficult. It might be a
lot slower to process a large table in Tabular than the equivalent measure group in Multidimensional
because Tabular cannot process partitions in the same table in parallel, whereas Multidimensional
(assuming you are using SQL Server Business Intelligence or SQL Server Enterprise edition and are
partitioning your measure groups) can process partitions in the same measure group in parallel.
Disregarding the different, noncomparable operations that each model performs when it performs
processing, such as building aggregations and indexes in the Multidimensional model, the number of
rows of raw data that can be processed per second for a single partition is likely to be similar.

However, Tabular has some significant advantages over Multidimensional when it comes to pro-
cessing. First, there are no aggregations in the Tabular model, and this means that there is one less
time-consuming task to be performed at processing time. Second, processing one table in a Tabular
model has no direct impact on any of the other tables in the model, whereas in the Multidimensional
model, processing a dimension has consequential effects. Doing a full process on a dimension in the
Multidimensional model means that you must do a full process on any cubes that dimension is used
in, and even doing a process update on a dimension requires a process index on a cube to rebuild
aggregations. Both of these can cause major headaches on large Multidimensional deployments,
especially when the window available for processing is small.

hardware Considerations
The Multidimensional and Tabular models also have very different hardware specification require-
ments. Multidimensional’s disk-based storage means that high-performance disks plus plenty of
space on those disks is important; it will cache data in memory as well, so having sufficient RAM for
this is very useful but not essential. For Tabular, the performance of disk storage is much less of a pri-
ority because it is an in-memory database. For that very reason, though, it is much more important to
have enough RAM to hold the database and to accommodate any spikes in memory usage that occur
when queries are running or when processing is taking place.

14 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

Multidimensional’s disk requirements will probably be easier to accommodate than Tabular’s mem-
ory requirements. Buying a large amount of disk storage for a server is relatively cheap and straight-
forward for an IT department; many organizations have storage area networks (SANs) that, though
they might not perform as well as they should, make providing enough storage space (or increasing
that provision) very simple. However, buying large amounts of RAM for a server can be more difficult—
you might find that asking for half a terabyte of RAM on a server raises some eyebrows—and if you
find you need more RAM than you originally thought, increasing the amount that is available can
also be awkward. Based on experience, it is easy to start with what seems like a reasonable amount
of RAM and then find that, as fact tables grow, new data is added to the model, and queries become
more complex, you start to encounter out-of-memory errors. Furthermore, for some extremely large
Analysis Services implementations with several terabytes of data, it might not be possible to buy a
server with sufficient RAM to store the model, so Multidimensional might be the only feasible option.

Real-Time BI
Although not quite the industry buzzword that it was a few years ago, the requirement for real-time
or near-real-time data in BI projects is becoming more common. Real-time BI usually refers to the
need for end users to be able to query and analyze data as soon as it has been loaded into the data
warehouse, with no lengthy waits for the data to be loaded into Analysis Services.

The Multidimensional model can handle this in one of two ways: Either use MOLAP storage and
partition your data so that all the new data in your data warehouse goes to one relatively small
partition that can be processed quickly, or use ROLAP storage and turn off all caching so that
Multidimensional issues SQL queries every time it is queried. The first of these options is usually pre-
ferred, although it can be difficult to implement, especially if dimension tables and fact tables change.
Updating the data in a dimension can be slow and can also require aggregations to be rebuilt. ROLAP
storage in Multidimensional can often result in very poor query performance if data volumes are
large, so the time taken to run a query in ROLAP mode might be greater than the time taken to
reprocess the MOLAP partition in the first option.

The Tabular model offers what are essentially the same two options but with fewer shortcomings
than their Multidimensional equivalents. If data is being stored in the xVelocity in-memory engine,
updating data in one table has no impact on the data in any other table, so processing times are likely
to be faster and implementation much easier. If data is to remain in the relational engine, then the
major difference is that the equivalent of ROLAP mode, called DirectQuery, will, it’s hoped, perform
much better than ROLAP. This is because in DirectQuery mode, Analysis Services tries to push all its
query processing back to the relational database by translating the whole query it receives into SQL
queries. (Multidimensional ROLAP mode does not do this; it translates some internal operations into
SQL queries but will still do some work, such as evaluating calculations, by itself.) DirectQuery, how-
ever, also comes with a number of significant limitations: It can accept only DAX queries and not MDX
when in DirectQuery mode, which means, for instance, that Excel users cannot see real-time data
because Excel can generate only MDX queries; only SQL Server is supported as a data source; data
security must be implemented in SQL Server and cannot be implemented in Analysis Services; and,
finally, neither calculated columns nor many common DAX functions are supported, so only models

 CHAPTER 1 Introducing the Tabular Model 15

with very simple DAX calculations can be used. A full description of how to configure DirectQuery
mode is given in Chapter 9, “Understanding xVelocity and DirectQuery.”

Client Tools
In many cases, the success or failure of a BI project depends on the quality of the tools that end users
use to analyze the data being provided. Therefore, the question of which client tools are supported
by which model is an important one.

Both the Tabular model and the Multidimensional model support MDX queries, so, in theory, most
Analysis Services client tools should support both models. However, in practice, although some client
tools such as Excel and SQL Server Reporting Services do work equally well on both, some third-party
client tools might need to be updated to their latest versions to work, and some older tools that are
still in use but are no longer supported might not work properly or at all.

At the time of writing, only the Tabular model supports DAX queries, although support for DAX
queries in the Multidimensional model is promised at some point in the future. This means that, at
least initially, Power View—the new, highly regarded Microsoft data visualization tool—will work only
on Tabular models. Even when DAX support in Multidimensional models is released, it is likely that
not all Power View functionality will work on it and, similarly, that not all Multidimensional functional-
ity will work as expected when queried by using DAX.

Feature Comparison
One more thing to consider when choosing a model is the functionality present in the Multidimensional
model that either has no equivalent or is only partially implemented in the Tabular model. Not all of
this functionality is important for all projects, however, and it must be said that in many scenarios it is
possible to approximate some of this Multidimensional functionality in Tabular by using some clever
DAX in calculated columns and measures. In any case, if you do not have any previous experience
using Multidimensional, you will not miss functionality you have never had.

Here is a list of the most important functionality missing in Tabular:

■■ Writeback, the ability for an end user to write values back to a Multidimensional database.
This can be very important for financial applications in which users enter budget figures, for
example.

■■ Translations, in which the metadata of a Multidimensional model can appear in different
languages for users with different locales on their desktops. There is no way of implementing
this in Tabular.

■■ Dimension security on measures, in which access to a single measure can be granted or
denied.

■■ Cell security, by which access to individual cells can be granted or denied. Again, there is no
way of implementing this in Tabular, but it is only very rarely used in Multidimensional.

16 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

■■ Ragged hierarchies, a commonly used technique for avoiding the use of a parent/child
hierarchy. In a Multidimensional model, a user hierarchy can be made to look something like a
parent/child hierarchy by hiding members if certain conditions are met; for example, if a mem-
ber has the same name as its parent. This is known as creating a ragged hierarchy. Nothing
equivalent is available in the Tabular model.

■■ Role-playing dimensions, designed and processed once, then appear many times in the
same model with different names and different relationships to measure groups; in the
Multidimensional model, this is known as using role-playing dimensions. Something similar
is possible in the Tabular model, by which multiple relationships can be created between two
tables (see Chapter 3, “Loading Data Inside Tabular,” for more details on this), and although
this is extremely useful functionality, it does not do exactly the same thing as a role-playing
dimension. In Tabular, if you want to see the same table in two places in the model simultane-
ously, you must load it twice, and this can increase processing times and make maintenance
more difficult.

■■ Scoped assignments and unary operators, advanced calculation functionality, is present in
MDX in the Multidimensional model but is not possible or at least not easy to re-create in DAX
in the Tabular model. These types of calculation are often used in financial applications, so
this and the lack of writeback and true parent/child hierarchy support mean that the Tabular
model is not suited for this class of application.

The following functionality can be said to be only partially supported in Tabular:

■■ Parent/child hierarchy support in Multidimensional is a special type of hierarchy built from
a dimension table with a self-join on it by which each row in the table represents one member
in the hierarchy and has a link to another row that represents the member’s parent in the hier-
archy. Parent/child hierarchies have many limitations in Multidimensional and can cause query
performance problems. Nevertheless, they are very useful for modeling hierarchies such as
company organization structures because the developer does not need to know the maximum
depth of the hierarchy at design time. The Tabular model implements similar functionality by
using DAX functions such as PATH (see Chapter 9 for details), but, crucially, the developer must
decide what the maximum depth of the hierarchy will be at design time.

■■ Support for many-to-many relationships in the Multidimensional model is one of its most
important features, and it is frequently used. (For some applications, see the white paper at
http://www.sqlbi.com/articles/many2many/.) It is possible to re-create this functionality in
Tabular by using DAX, as described in Chapter 12, “Using Advanced Tabular Relationships,” but
even though query performance is likely to be just as good if not better than Multidimensional
when using this approach, it adds a lot of complexity to the DAX expressions used in mea-
sures. If a model contains a large number of many-to-many relationships or chained many-
to-many relationships, this added complexity can mean that maintenance of the DAX used in
measures is extremely difficult.

 CHAPTER 1 Introducing the Tabular Model 17

■■ Drillthrough, by which the user can click a cell to see all the detail-level data that is
aggregated to return that value. Drillthrough is supported in both models but, in the
Multidimensional model, it is possible to specify which columns from dimensions and mea-
sure groups are returned from a drillthrough. In the Tabular model, no interface exists in
SQL Server data tools for doing this and, by default, a drillthrough returns every column
from the underlying table. It is possible, though, to edit the XMLA definition of your model
manually to do this, as described in the blog post at http://sqlblog.com/blogs/marco_russo/
archive/2011/08/18/drillthrough-for-bism-tabular-and-attribute-keys-in-ssas-denali.aspx. A
user interface to automate this editing process is also available in the BIDS Helper add-in
(http://bidshelper.codeplex.com/).

Summary

In this chapter, you have seen what the Tabular and Multidimensional models in Analysis Services
2012 are, what their strengths and weaknesses are, and when they should be used. The key point to
remember is that the two models are very different—practically separate products—and that you
should not make the decision to use the Tabular model on a project without considering whether it is
a good fit for your requirements. In the next chapter, you will take a first look at how you can actually
build Tabular models.

http://sqlblog.com/blogs/marco_russo/archive/2011/08/18/drillthrough-for-bism-tabular-and-attribute-keys-in-ssas-denali.aspx
http://sqlblog.com/blogs/marco_russo/archive/2011/08/18/drillthrough-for-bism-tabular-and-attribute-keys-in-ssas-denali.aspx

 121

C H A P T E R 4

DAX Basics

Now that you have seen the basics of SQL Server Analysis Services (SSAS) Tabular, it is time to learn
the fundamentals of Data Analysis Expressions (DAX) expressions. DAX has its own syntax for

defining calculation expressions; it is somewhat similar to a Microsoft Excel expression, but it has spe-
cific functions that enable you to create more advanced calculations on data stored in multiple tables.

Understanding Calculation in DAX

Any calculation in DAX begins with the equal sign, which resembles the Excel syntax. Nevertheless,
the DAX language is very different from Excel because DAX does not support the concept of cells and
ranges as Excel does; to use DAX efficiently, you must learn to work with columns and tables, which
are the fundamental objects in the Tabular world.

Before you learn how to express complex formulas, you must master the basics of DAX, which
include the syntax, the different data types that DAX can handle, the basic operators, and how to
refer to columns and tables. In the next few sections, we introduce these concepts.

DAX Syntax
A relatively simple way to understand how DAX syntax works is to start with an example. Suppose you
have loaded the FactInternetSales table in a Tabular project. In Figure 4-1, you can see some of its
columns.

122 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

FIGURE 4-1 Here you can see the FactInternetSales table in a Tabular project.

You now use this data to calculate the margin, subtracting the TotalProductCost from the
SalesAmount, and you use the technique already learned in Chapter 2, “Getting Started with the
Tabular Model,” to create calculated columns. To do that, you must write the following DAX formula
in a new calculated column, which you can call GrossMargin.

= FactInternetSales[SalesAmount] - FactInternetSales[TotalProductCost]

This new formula is repeated automatically for all the rows of the table, resulting in a new column
in the table. In this example, you are using a DAX expression to define a calculated column. You can
see the resulting column in Figure 4-2. (Later, you see that DAX is used also to define measures.)

FIGURE 4-2 The GrossMargin calculated column has been added to the table.

This DAX expression handles numeric values and returns a numeric value. DAX can work with data
types other than numbers. In the next section, you learn the different data types available in DAX and
how to work with them.

 CHAPTER 4 DAX Basics 123

DAX Data Types
DAX can compute values for seven data types:

■■ Integer

■■ Real

■■ Currency

■■ Date (datetime)

■■ TRUE/FALSE (Boolean)

■■ String

■■ BLOB (binary large object)

DAX has a powerful type-handling system so that you do not have to worry much about data
types. When you write a DAX expression, the resulting type is based on the type of the terms used in
the expression and on the operator used. Type conversion happens automatically during the expres-
sion evaluation.

Be aware of this behavior in case the type returned from a DAX expression is not the expected
one; in such a case, you must investigate the data type of the terms used in the expression. For
example, if one of the terms of a sum is a date, the result is a date, too. However, if the data type is an
integer, the result is an integer. This is known as operator overloading, and you can see an example
of its behavior in Figure 4-3, in which the OrderDatePlusOne column is calculated by adding 1 to the
value in the OrderDate column, by using the following formula.

= FactInternetSales[OrderDate] + 1

The result is a date because the OrderDate column is of the date data type.

FIGURE 4-3 Adding an integer to a date results in a date increased by the corresponding number of days.

In addition to operator overloading, DAX automatically converts strings into numbers and num-
bers into strings whenever it is required by the operator. For example, if you use the & operator, which
concatenates strings, DAX automatically converts its arguments into strings. If you look at the formula

= 5 & 4

124 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

it returns a “54” string result. However, the formula

= "5" + "4"

returns an integer result with the value of 9.

As you have seen, the resulting value depends on the operator and not on the source columns,
which are converted following the requirements of the operator. Even if this behavior is convenient,
later in this chapter you see the types of errors that might occur during these automatic conversions.

Date Data Type
PowerPivot stores dates in a datetime data type. This format uses a floating point number
internally, wherein the integer corresponds to the number of days (starting from December
30, 1899), and the decimal identifies the fraction of the day. (Hours, minutes, and seconds are
converted to decimal fractions of a day.) Thus, the expression

= NOW() + 1

increases a date by one day (exactly 24 hours), returning the date of tomorrow at the same
hour/minute/second of the execution of the expression itself. If you must take only the date
part of a DATETIME, always remember to use TRUNC to get rid of the decimal part.

DAX Operators
You have seen the importance of operators in determining the type of an expression; you can now
see, in Table 4-1, a list of the operators available in DAX.

TABLE 4-1 Operators

Operator Type Symbol Use Example

Parenthesis () Precedence order and grouping of arguments (5 + 2) * 3

Arithmetic

+
-
*
/

Addition
Subtraction/negation
Multiplication
Division

4 + 2
5 – 3
4 * 2
4 / 2

Comparison

=
<>
>
>=
<
<=

Equal to
Not equal to
Greater than
Greater than or equal to
Less than
Less than or equal to

[Country] = “USA”
[Country] <> “USA”
[Quantity] > 0
[Quantity] >= 100
[Quantity] < 0
[Quantity] <= 100

Text concatenation & Concatenation of strings “Value is “ & [Amount]

Logical

&&

||

!

AND condition between two Boolean
 expressions
OR condition between two Boolean
 expressions
NOT operator on the Boolean expression that
follows

[Country] = “USA” && [Quantity] > 0
[Country] = “USA” || [Quantity] > 0
! ([Country] = “USA”)

 CHAPTER 4 DAX Basics 125

Moreover, the logical operators are available also as DAX functions, with syntax very similar to
Excel syntax. For example, you can write these conditions

AND([Country] = "USA", [Quantity] > 0)
OR([Country] = "USA", [Quantity] > 0)
NOT([Country] = "USA")

that correspond, respectively, to

[Country] = "USA" && [Quantity] > 0
[Country] = "USA" || [Quantity] > 0
!([Country] = "USA")

DAX Values
You have already seen that you can use a value directly in a formula, for example, USA or 0, as
previously mentioned. When such values are used directly in formulas, they are called literals and,
although using literals is straightforward, the syntax for referencing a column needs some attention.
Here is the basic syntax.

'Table Name'[Column Name]

The table name can be enclosed in single quote characters. Most of the time, quotes can be omit-
ted if the name does not contain any special characters such as spaces. In the following formula, for
example, the quotes can be omitted.

TableName[Column Name]

The column name, however, must always be enclosed in square brackets. Note that the table name
is optional. If the table name is omitted, the column name is searched in the current table, which is
the one to which the calculated column or measure belongs. However, we strongly suggest that you
always specify the complete name (table and column) when you reference a column to avoid any
confusion.

Understanding Calculated Columns and Measures

Now that you know the basics of DAX syntax, you must learn one of the most important concepts
in DAX: the difference between calculated columns and measures. Even though they might appear
similar at first sight because you can make some calculations both ways, you must use measures to
implement the most flexible calculations. This is a key to unlock the true power of DAX.

126 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

Calculated Columns

If you want to create a calculated column, you can move to the last column of the table, which is
named Add Column, and start writing the formula. The DAX expression must be inserted into the
formula bar, and Microsoft IntelliSense helps you during the writing of the expression.

A calculated column is just like any other column in a Tabular table and can be used in rows,
columns, filters, or values of a Microsoft PivotTable. The DAX expression defined for a calculated
column operates in the context of the current row of the table to which it belongs. Any reference to
a column returns the value of that column for the row it is in. You cannot access the values of other
rows directly.

note As you see later, there are DAX functions that aggregate the value of a column for
the whole table. The only way to get the value of a subset of rows is to use DAX functions
that return a table and then operate on it. In this way, you aggregate column values for a
range of rows and possibly operating on a different row by filtering a table made of only
one row. More on this topic is in Chapter 5, “Understanding Evaluation Context.”

One important concept that must be well understood about calculated columns is that they are
computed during the Tabular database processing and then stored in the database, just as any other
column. This might seem strange if you are accustomed to SQL-computed columns, which are com-
puted at query time and do not waste space. In Tabular, however, all calculated columns occupy space
in memory and are computed once during table processing.

This behavior is handy whenever you create very complex calculated columns. The time required
to compute them is always process time and not query time, resulting in a better user experience.
Nevertheless, you must always remember that a calculated column uses precious RAM. If, for exam-
ple, you have a complex formula for a calculated column, you might be tempted to separate the steps
of computation into different intermediate columns. Although this technique is useful during project
development, it is a bad habit in production because each intermediate calculation is stored in RAM
and wastes space.

Measures

You have already seen in Chapter 2 how to create a measure by using the measure grid; now you
learn the difference between a calculated column and a measure to understand when to use which
one.

Calculated columns are easy to create and use. You have already seen in Figure 4-2 how to define
the GrossMargin column to compute the amount of the gross margin.

[GrossMargin] = FactInternetSales[SalesAmount] - FactInternetSales[TotalProductCost]

 CHAPTER 4 DAX Basics 127

But what happens if you want to show the gross margin as a percentage of the sales amount? You
could create a calculated column with the following formula.

[GrossMarginPerc] = FactInternetSales[GrossMargin] / FactInternetSales[SalesAmount]

This formula computes the right value at the row level, as you can see in Figure 4-4.

FIGURE 4-4 The GrossMarginPerc column shows the Gross Margin as a percentage, calculated row by row.

Nevertheless, when you compute the aggregate value, you cannot rely on calculated columns.
In fact, the aggregate value is computed as the sum of gross margin divided by the sum of sales
amount. Thus, the ratio must be computed on the aggregates; you cannot use an aggregation of
calculated columns. In other words, you compute the ratio of the sum, not the sum of the ratio.

The correct formula for the GrossMarginPerc is as follows.

= SUM(FactInternetSales[GrossMargin]) / SUM(FactInternetSales[SalesAmount])

But, as already stated, you cannot enter it into a calculated column. If you need to operate on
aggregate values instead of on a row-by-row basis, you must create measures, which is the topic of
the current section.

Measures and calculated columns both use DAX expressions; the difference is the context of evalu-
ation. A measure is evaluated in the context of the cell of the pivot table or DAX query, whereas a
calculated column is evaluated at the row level of the table to which it belongs. The context of the cell
(later in the book, you learn that this is a filter context) depends on the user selections on the pivot
table or on the shape of the DAX query. When you use SUM([SalesAmount]) in a measure, you mean
the sum of all the cells that are aggregated under this cell, whereas when you use [SalesAmount] in a
calculated column, you mean the value of the SalesAmount column in this row.

When you create a measure, you can define a value that changes according to the filter that the
user applies on a pivot table. In this way, you can solve the problem of calculating the gross margin
percentage. To define a measure, you can click anywhere inside the measure grid and write the fol-
lowing measure formula by using the assignment operator :=:.

GrossMarginPct := SUM(FactInternetSales[Gross Margin]) / SUM(FactInternetSales[SalesAmount])

You can see the formula bar in Figure 4-5.

128 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

FIGURE 4-5 You can create measures in the formula bar.

After the measure is created, it is visible in the measure grid, as you can see in Figure 4-6.

FIGURE 4-6 Measures are shown in the measure grid.

A few interesting things about measures are shown in the measure grid. First, the value shown is
dynamically computed and takes filters into account. Thus, the value 0.41149… is the gross margin
in percentage for all AdventureWorks sales. If you apply a filter to some columns, the value will be
updated accordingly.

You can move the measure anywhere in the measure grid by using the technique of cut and paste.
To move the measure, cut it and paste it somewhere else. Copy and paste also works if you want to
make a copy of a formula and reuse the code.

Measures have more properties that cannot be set in the formula. They must be set in the
Properties window. In Figure 4-7, you can see the Properties window for the example measure.

FIGURE 4-7 Measures properties are set in the Properties window.

The Properties window is dynamically updated based on the format of the measure. In Figure 4-7,
you can see that the default format for a measure is General. The General format does not have any
formatting property. Because you want to format the measure as a percentage (0.41149 really means

 CHAPTER 4 DAX Basics 129

41.15%), change the format to Percentage. The updated Properties window (see Figure 4-8) now
shows the number of decimal places among the properties of the measure.

FIGURE 4-8 The properties of a measure are updated dynamically based on the format.

editing Measures by Using DAX editor
Simple measures can be easily authored by using the formula bar, but, as soon as the measures start
to become more complex, using the formula bar is no longer a viable option. Unfortunately, SQL
Server Data Tools (SSDT) does not have any advanced editor in its default configuration.

As luck would have it, a team of experts has developed DAX Editor, a Microsoft Visual Studio
add-in that greatly helps in measure authoring. You can download the project from CodePlex at
http://daxeditor.codeplex.com.

DAX Editor supports IntelliSense and automatic measure formatting and enables you to author all
the measures in a project by using a single script view, which is convenient for developers. In addition,
DAX Editor enables you to add comments to all your measures, resulting in a self-documented script
that will make your life easier when maintaining the code.

In Figure 4-9, you can see the DAX Editor window with a couple of measures and some comments.

FIGURE 4-9 DAX Editor has syntax highlighting and many useful functions to author DAX code.

130 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

We do not want to provide here a detailed description of this add-in, which, being on CodePlex,
will be changed and maintained by independent coders, but we strongly suggest that you download
and install the add-in. Regardless of whether your measures are simple or complex, your authoring
experience will be a much better one.

Choosing Between Calculated Columns and Measures
Now that you have seen the difference between calculated columns and measures, you might be
wondering when to use calculated columns and when to use measures. Sometimes either is an option,
but in most situations, your computation needs determine your choice.

You must define a calculated column whenever you intend to do the following:

■■ Place the calculated results in an Excel slicer or see results in rows or columns in a pivot table
(as opposed to the Values area).

■■ Define an expression that is strictly bound to the current row. (For example, Price * Quantity
must be computed before other aggregations take place.)

■■ Categorize text or numbers (for example, a range of values for a measure, a range of ages of
customers, such as 0–18, 18–25, and so on).

However, you must define a measure whenever you intend to display resulting calculation values
that reflect pivot table selections made by the user and see them in the Values area of pivot tables,
for example:

■■ When you calculate profit percentage of a pivot table selection

■■ When you calculate ratios of a product compared to all products but filter by both year and
region

Some calculations can be achieved by using calculated columns or measures, even if different DAX
expressions must be used in these cases. For example, you can define GrossMargin as a calculated
column.

= FactInternetSales[SalesAmount] - FactInternetSales[TotalProductCost]

It can also be defined as a measure.

= SUM(FactInternetSales[SalesAmount]) – SUM(FactInternetSales[TotalProductCost])

The final result is the same. We suggest you favor the measure in this case because it does not
consume memory and disk space, but this is important only in large datasets. When the size of the
database is not an issue, you can use the method with which you are more comfortable.

 CHAPTER 4 DAX Basics 131

Cross References
It is obvious that a measure can refer to one or more calculated columns. It might be less intui-
tive that the opposite is also true. A calculated column can refer to a measure; in this way, it
forces the calculation of a measure for the context defined by the current row. This might yield
strange results, which you will fully understand and master only after having read and digested
Chapter 5. This operation transforms and consolidates the result of a measure into a column,
which will not be influenced by user actions. Only certain operations can produce meaningful
results, because usually a measure makes calculations that strongly depend on the selection
made by the user in the pivot table.

Handling Errors in DAX Expressions

Now that you have seen some basic formulas, you learn how to handle invalid calculations gracefully
if they happen. A DAX expression might contain invalid calculations because the data it references
is not valid for the formula. For example, you might have a division by zero or a column value that
is not a number but is used in an arithmetic operation, such as multiplication. You must learn how
these errors are handled by default and how to intercept these conditions if you want some special
handling.

Before you learn how to handle errors, the following list describes the different kinds of errors that
might appear during a DAX formula evaluation. They are:

■■ Conversion errors

■■ Arithmetical operations errors

■■ Empty or missing values

The following sections explain them in more detail.

Conversion errors
The first kind of error is the conversion error. As you have seen before in this chapter, DAX values are
automatically converted between strings and numbers whenever the operator requires it. To review
the concept with examples, all these are valid DAX expressions.

"10" + 32 = 42
"10" & 32 = "1032"
10 & 32 = "1032"
DATE(2010,3,25) = 3/25/2010
DATE(2010,3,25) + 14 = 4/8/2010
DATE(2010,3,25) & 14 = "3/25/201014"

132 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

These formulas are always correct because they operate with constant values. What about the
 following expression?

SalesOrders[VatCode] + 100

Because the first operator of this sum is obtained by a column (which, in this case, is a text column),
you must be sure that all the values in that column are numbers to determine whether they will be
converted and the expression will be evaluated correctly. If some of the content cannot be converted
to suit the operator needs, you will incur a conversion error. Here are typical situations.

"1 + 1" + 0 = Cannot convert value '1+1' of type string to type real

DATEVALUE("25/14/2010") = Type mismatch

To avoid these errors, you must write more complex DAX expressions that contain error detection
logic to intercept error conditions and always return a meaningful result.

Arithmetical Operation Errors
The second category of errors is arithmetical operations, such as division by zero or the square root of
a negative number. These kinds of errors are not related to conversion; they are raised whenever you
try to call a function or use an operator with invalid values.

Division by zero, in DAX, requires special handling because it behaves in a way that is not very
intuitive (except for mathematicians). When you divide a number by zero, DAX usually returns the
special value Infinity. Moreover, in the very special cases of 0 divided by 0 or Infinity divided by
Infinity, DAX returns the special NaN (not a number) value. These results are summarized in Table 4-2.

Table 4-2 Special Result Values for Division by Zero

expression Result

10 / 0 Infinity

-7 / 0 -Infinity

0 / 0 NaN

(10 / 0) / (7 / 0) NaN

Note that Infinity and NaN are not errors but special values in DAX. In fact, if you divide a number
by Infinity, the expression does not generate an error but returns 0.

9954 / (7 / 0) = 0

Apart from this special situation, arithmetical errors might be returned when calling a DAX func-
tion with a wrong parameter, such as the square root of a negative number.

SQRT(-1) = An argument of function 'SQRT' has the wrong data type or the result is too large
or too small

 ChapTeR 4 DAX Basics 133

If DAX detects errors like this, it blocks any further computation of the expression and raises an
error. You can use the special ISERROR function to check whether an expression leads to an error,
something that you use later in this chapter. Finally, even if special values such as NaN are displayed
correctly in the SSDT window, they show as errors in an Excel PivotTable, and they will be detected as
errors by the error detection functions.

Empty or Missing Values
The third category of errors is not a specific error condition but the presence of empty values, which
might result in unexpected results or calculation errors.

DAX handles missing values, blank values, or empty cells by a special value called BLANK. BLANK
is not a real value but a special way to identify these conditions. It is the equivalent of NULL in SSAS
Multidimensional. The value BLANK can be obtained in a DAX expression by calling the BLANK func-
tion, which is different from an empty string. For example, the following expression always returns a
blank value.

= BLANK()

On its own, this expression is useless, but the BLANK function itself becomes useful every time you
want to return or check for an empty value. For example, you might want to display an empty cell
instead of 0, as in the following expression, which calculates the total discount for a sale transaction,
leaving the cell blank if the discount is 0.

= IF(Sales[DiscountPerc] = 0, BLANK(), Sales[DiscountPerc] * Sales[Amount])

If a DAX expression contains a blank, it is not considered an error—it is considered an empty value.
So an expression containing a blank might return a value or a blank, depending on the calculation
required. For example, the following expression

= 10 * Sales[Amount]

returns BLANK whenever Sales[Amount] is BLANK. In other words, the result of an arithmetic prod-
uct is BLANK whenever one or both terms are BLANK. This propagation of BLANK in a DAX expres-
sion happens in several other arithmetical and logical operations, as you can see in the following
examples.

BLANK() + BLANK() = BLANK()
10 * BLANK() = BLANK()
BLANK() / 3 = BLANK()
BLANK() / BLANK() = BLANK()
BLANK() || BLANK() = FALSE
BLANK() && BLANK() = FALSE

However, the propagation of BLANK in the result of an expression does not happen for all formu-
las. Some calculations do not propagate BLANK but return a value depending on the other terms of
the formula. Examples of these are addition, subtraction, division by BLANK, and a logical operation

134 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

between a blank and a valid value. In the following expressions, you can see some examples of these
conditions along with their results.

BLANK() - 10 = -10
18 + BLANK() = 18
4 / BLANK() = Infinity
0 / BLANK() = NaN
FALSE() || BLANK() = FALSE
FALSE() && BLANK() = FALSE
TRUE() || BLANK() = TRUE
TRUE() && BLANK() = FALSE
BLANK() = 0 = TRUE

Understanding the behavior of empty or missing values in a DAX expression and using BLANK() to
return an empty cell in a calculated column or in a measure are important skills to control the results
of a DAX expression. You can often use BLANK() as a result when you detect wrong values or other
errors, as you learn in the next section.

Intercepting errors
Now that you have seen the various kinds of errors that can occur, you can learn a technique to inter-
cept errors and correct them or, at least, show an error message with some meaningful information.
The presence of errors in a DAX expression frequently depends on the value contained in tables and
columns referenced in the expression itself, so you might want to control the presence of these error
conditions and return an error message. The standard technique is to check whether an expression
returns an error and, if so, replace the error with a message or a default value. A few DAX functions
have been designed for this.

The first of them is the IFERROR function, which is very similar to the IF function, but instead of
evaluating a TRUE/FALSE condition, it checks whether an expression returns an error. You can see two
typical uses of the IFERROR function here.

= IFERROR(Sales[Quantity] * Sales[Price], BLANK())
= IFERROR(SQRT(Test[Omega]), BLANK())

In the first expression, if either Sales[Quantity] or Sales[Price] are strings that cannot be converted
into a number, the returned expression is BLANK; otherwise the product of Quantity and Price
is returned.

In the second expression, the result is BLANK every time the Test[Omega] column contains a
 negative number.

When you use IFERROR this way, you follow a more general pattern that requires the use of
ISERROR and IF. The following expressions are functionally equivalent to the previous ones, but the
usage of IFERROR in the previous ones makes them shorter and easier to understand.

= IF(ISERROR(Sales[Quantity] * Sales[Price]), BLANK(), Sales[Quantity] * Sales[Price])
= IF(ISERROR(SQRT(Test[Omega])), BLANK(), SQRT(Test[Omega]))

 CHAPTER 4 DAX Basics 135

You should use IFERROR whenever the expression that has to be returned is the same as that
tested for an error; you do not have to duplicate the expression, and the resulting formula is more
readable and safer in case of future changes. You should use IF, however, when you want to return the
result of a different expression when there is an error.

For example, the ISNUMBER function can detect whether a string (the price in the first line) can be
converted to a number and, if it can, calculate the total amount; otherwise, a BLANK can be returned.

= IF(ISNUMBER(Sales[Price]), Sales[Quantity] * Sales[Price], BLANK())
= IF(Test[Omega] >= 0, SQRT(Test[Omega]), BLANK())

The second example detects whether the argument for SQRT is valid, calculating the square root
only for positive numbers and returning BLANK for negative ones.

A particular case is the test against an empty value, which is called BLANK in DAX. The ISBLANK
function detects an empty value condition, returning TRUE if the argument is BLANK. This is espe-
cially important when a missing value has a meaning different from a value set to 0. In the following
example, you calculate the cost of shipping for a sales transaction by using a default shipping cost for
the product if the weight is not specified in the sales transaction itself.

= IF(ISBLANK(Sales[Weight]),
 RELATED(Product[DefaultShippingCost]),
 Sales[Weight] * Sales[ShippingPrice])

If you had just multiplied product weight and shipping price, you would have an empty cost for all
the sales transactions with missing weight data.

Common DAX Functions

Now that you have seen the fundamentals of DAX and how to handle error conditions, take a brief
tour through the most commonly used functions and expressions of DAX. In this section, we show
the syntax and the meaning of various functions. In the next section, we show how to create a useful
report by using these basic functions.

Aggregate Functions
Almost every Tabular data model must operate on aggregated data. DAX offers a set of functions that
aggregate the values of a column in a table and return a single value. We call this group of functions
aggregate functions. For example, the expression

= SUM(Sales[Amount])

calculates the sum of all the numbers in the Amount column of the Sales table. This expression aggre-
gates all the rows of the Sales table if it is used in a calculated column, but it considers only the rows
that are filtered by slicers, rows, columns, and filter conditions in a pivot table whenever it is used in
a measure.

136 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

In Table A-1 of the Appendix, you can see the complete list of aggregated functions available in
DAX. The four main aggregation functions (SUM, AVERAGE, MIN, and MAX) operate on only numeric
values. These functions work only if the column passed as argument is of numeric or date type.

DAX offers an alternative syntax to these functions to make the calculation on columns that can
contain both numeric and nonnumeric values such as a text column. That syntax adds the suffix A to
the name of the function, just to get the same name and behavior as Excel. However, these functions
are useful for only columns containing TRUE/FALSE values because TRUE is evaluated as 1 and FALSE
as 0. Any value for a text column is always considered 0. Empty cells are never considered in the cal-
culation, so even if these functions can be used on nonnumeric columns without returning an error,
there is no automatic conversion to numbers for text columns. These functions are named AVERAGEA,
COUNTA, MINA, and MAXA.

The only interesting function in the group of A-suffixed functions is COUNTA. It returns the num-
ber of cells that are not empty and works on any type of column. If you are interested in counting all
the cells in a column containing an empty value, you can use the COUNTBLANK function. Finally, if
you want to count all the cells of a column regardless of their content, you want to count the number
of rows of the table, which can be obtained by calling the COUNTROWS function. (It gets a table as
a parameter, not a column.) In other words, the sum of COUNTA and COUNTBLANK for the same
column of a table is always equal to the number of rows of the same table.

You have four functions by which to count the number of elements in a column or table:

■■ COUNT operates only on numeric columns.

■■ COUNTA operates on any type of columns.

■■ COUNTBLANK returns the number of empty cells in a column.

■■ COUNTROWS returns the number of rows in a table.

Finally, the last set of aggregation functions performs calculations at the row level before they
are aggregated. This is essentially the same as creating a column calculation and a measure calcula-
tion in one formula. This set of functions is quite useful, especially when you want to make calcula-
tions by using columns of different related tables. For example, if a Sales table contains all the sales
transactions and a related Product table contains all the information about a product, including its
cost, you might calculate the total internal cost of a sales transaction by defining a measure with this
expression.

Cost := SUMX(Sales, Sales[Quantity] * RELATED(Product[StandardCost]))

This function calculates the product of Quantity (from the Sales table) and StandardCost of the sold
product (from the related Product table) for each row in the Sales table, and it returns the sum of all
these calculated values.

Generally speaking, all the aggregation functions ending with an X suffix behave this way: they cal-
culate an expression (the second parameter) for each of the rows of a table (the first parameter) and
return a result obtained by the corresponding aggregation function (SUM, MIN, MAX, or COUNT)

 CHAPTER 4 DAX Basics 137

applied to the result of those calculations. We explain this behavior further in Chapter 5. Evaluation
context is important for understanding how this calculation works. The X-suffixed functions available
are SUMX, AVERAGEX, COUNTX, COUNTAX, MINX, and MAXX.

Among the counting functions, one of the most used is DISTINCTCOUNT, which does exactly what
its name suggests: counts the distinct values of a column, which it takes as its only parameter.

DISTINCTCOUNT deserves a special mention among the various counting functions because of its
speed. If you have some knowledge of counting distinct values in previous versions of SSAS, which
implemented Multidimensional only, you already know that counting the number of distinct values
of a column was problematic. If your database was not small, you had to be very careful whenever
you wanted to add distinct counts to the solution and, for medium and big databases, a careful and
complex handling of partitioning was necessary to implement distinct counts efficiently. However, in
Tabular, DISTINCTCOUNT is amazingly fast due to the nature of the columnar database and the way it
stores data in memory. In addition, you can use DISTINCTCOUNT on any column in your data model
without worrying about creating new structures, as in Multidimensional.

note DISTINCTOUNT is a function introduced in the 2012 version of both Microsoft
SQL Server and PowerPivot. The earlier version of PowerPivot did not include the
DISTINCTCOUNT function and, to compute the number of distinct values of a column, you
had to use COUNTROWS(DISTINCT(ColName)). The two patterns return the same result
even if DISTINCTCOUNT is somewhat easier to read, requiring only a single function call.

Following what you have already learned in Chapter 1, “Introducing the Tabular Model,” if you
have a previous SSAS cube that has many problematic DISTINCTCOUNT results, measuring perfor-
mance of the same solution rewritten in Tabular is definitely worth a try; you might have very pleasant
surprises and decide to perform the transition of the cube for the sole presence of DISTINCTCOUNT.

Logical Functions
Sometimes you might need to build a logical condition in an expression—for example, to implement
different calculations depending on the value of a column or to intercept an error condition. In these
cases, you can use one of the logical functions in DAX. You have already seen in the previous section,
“Handling Errors in DAX Expressions,” the two most important functions of this group, which are IF
and IFERROR. In Table A-3 of the Appendix, you can see the list of all these functions (which are AND,
FALSE, IF, IFERROR, NOT, TRUE, and OR) and their syntax. If, for example, you want to compute the
Amount as Quantity multiplied by Price only when the Price column contains a correct numeric value,
you can use the following pattern.

Amount := IFERROR(Sales[Quantity] * Sales[Price], BLANK())

If you did not use the IFERROR and the Price column contains an invalid number, the result for the
calculated column would be an error because if a single row generates a calculation error, the error is

138 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

propagated to the whole column. The usage of IFERROR, however, intercepts the error and replaces it
with a blank value.

Another function you might put inside this category is SWITCH, which is useful when you have a
column containing a low number of distinct values, and you want to get different behaviors, depend-
ing on the value. For example, the column Size in the DimProduct table contains L, M, S, and XL, and
you might want to decode this value in a more meaningful column. You can obtain the result by using
nested IF calls.

SizeDesc :=
 IF (DimProduct[Size] = "S", "Small",
 IF (DimProduct[Size] = "M", "Medium",
 IF (DimProduct[Size] = "L", "Large",
 IF (DimProduct[Size] = "XL", "Extra Large", "Other"))))

The following is a more convenient way to express the same formula, by using SWITCH.

SizeDesc :=
 SWITCH (DimProduct[Size],
 "S", "Small",
 "M", "Medium",
 "L", "Large",
 "XL", "Extra Large",
 "Other"
)

The code in this latter expression is more readable, even if it is not faster, because, internally, switch
statements are translated into nested IF calls.

Information Functions
Whenever you must analyze the data type of an expression, you can use one of the information
functions that are listed in Table A-4 of the Appendix. All these functions return a TRUE/FALSE value
and can be used in any logical expression. They are: ISBLANK, ISERROR, ISLOGICAL, ISNONTEXT,
ISNUMBER, and ISTEXT.

Note that when a table column is passed as a parameter, the ISNUMBER, ISTEXT, and ISNONTEXT
functions always return TRUE or FALSE, depending on the data type of the column and on the empty
condition of each cell.

You might be wondering whether ISNUMBER can be used with a text column just to check whether
a conversion to a number is possible. Unfortunately, you cannot use this approach; if you want to test
whether a text value can be converted to a number, you must try the conversion and handle the error
if it fails.

 Chapter 4 DAX Basics 139

For example, to test whether the column Price (which is of type String) contains a valid number,
you must write the following.

IsPriceCorrect = ISERROR(Sales[Price] + 0)

To get a TRUE result from the ISERROR function, for example, DAX tries to add a zero to the Price
to force the conversion from a text value to a number. The conversion fails for the N/A price value, so
you can see that ISERROR is TRUE.

If, however, you try to use ISNUMBER, as in the following expression

IsPriceCorrect = ISNUMBER(Sales[Price])

you will always get FALSE as a result because, based on metadata, the Price column is not a number
but a string.

Mathematical Functions
The set of mathematical functions available in DAX is very similar to those in Excel, with the same syn-
tax and behavior. You can see the complete list of these functions and their syntax in Table A-5 of the
Appendix. The mathematical functions commonly used are ABS, EXP, FACT, LN, LOG, LOG10, MOD, PI,
POWER, QUOTIENT, SIGN, and SQRT. Random functions are RAND and RANDBETWEEN.

There are many rounding functions, summarized here.

FLOOR = FLOOR(Tests[Value], 0.01)
TRUNC = TRUNC(Tests[Value], 2)
ROUNDDOWN = ROUNDDOWN(Tests[Value], 2)
MROUND = MROUND(Tests[Value], 0.01)
ROUND = ROUND(Tests[Value], 2)
CEILING = CEILING(Tests[Value], 0.01)
ROUNDUP = ROUNDUP(Tests[Value], 2)
INT = INT(Tests[Value])
FIXED = FIXED(Tests[Value],2,TRUE)
ISO = ISO.CEILING(Tests[Value], 0.01)

In Figure 4-10, you can see the different results when applied to some test values.

Figure 4-10 Different rounding functions lead to different values.

As you can see, FLOOR, TRUNC, and ROUNDDOWN are very similar, except in the way you can
specify the number of digits on which to round. In the opposite direction, CEILING and ROUNDUP
are very similar in their results. You can see a few differences in the way the rounding is done (see
row B, in which the 1.265 number is rounded in two ways on the second decimal digit) between the

140 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

MROUND and ROUND functions. Finally, note that FLOOR and MROUND functions do not operate
on negative numbers, whereas other functions do.

Text Functions
Table A-6 of the Appendix contains a complete description of the text functions available in DAX: they
are CONCATENATE, EXACT, FIND, FIXED, FORMAT, LEFT, LEN, LOWER, MID, REPLACE, REPT, RIGHT,
SEARCH, SUBSTITUTE, TRIM, UPPER, and VALUE.

These functions are useful for manipulating text and extracting data from strings that contain mul-
tiple values, and are often used in calculated columns to format strings or find specific patterns.

Conversion Functions
You learned that DAX performs automatic conversion of data types to adjust them to the need of the
operators. Even if it happens automatically, a set of functions can still perform explicit conversion of
types.

CURRENCY can transform an expression into a currency type, whereas INT transforms an expres-
sion into an integer. DATE and TIME take the date and time parts as parameters and return a correct
DATETIME. VALUE transforms a string into a numeric format, whereas FORMAT gets a numeric value
as the first parameter and a string format as its second parameter, and can transform numeric values
into strings.

Date and Time Functions
In almost every type of data analysis, handling time and date is an important part of the job. DAX
has a large number of functions that operate on date and time. Some of them make simple transfor-
mations to and from a datetime data type, such as the ones described in Table A-7 of the Appendix.
These are DATE, DATEVALUE, DAY, EDATE, EOMONTH, HOUR, MINUTE, MONTH, NOW, SECOND,
TIME, TIMEVALUE, TODAY, WEEKDAY, WEEKNUM, YEAR, and YEARFRAC. To make more complex
operations on dates, such as comparing aggregated values year over year or calculating the year-to-
date value of a measure, there is another set of functions, called time intelligence functions, which is
described in Chapter 8, “Understanding Time Intelligence in DAX.”

As mentioned before in this chapter, a datetime data type internally uses a floating-point number
by which the integer part corresponds to the number of days starting from December 30, 1899, and
the decimal part indicates the fraction of the day in time. (Hours, minutes, and seconds are converted
into decimal fractions of the day.) Thus, adding an integer number to a datetime value increments the
value by a corresponding number of days. However, most of the time, the conversion functions are
used to extract day, month, and year from a date.

 CHAPTER 4 DAX Basics 141

Relational Functions
Two useful functions that enable you to navigate through relationships inside a DAX formula are
RELATED and RELATEDTABLE. In Chapter 5, you learn all the details of how these functions work;
because they are so useful, it is worth describing them here.

You already know that a calculated column can reference column values of the table in which it
is defined. Thus, a calculated column defined in FactResellerSales can reference any column of the
same table. But what can you do if you must refer to a column in another table? In general, you
cannot use columns in other tables unless a relationship is defined in the model between the two
tables. However, if the two tables are in relationship, then the RELATED function enables you to access
columns in the related table.

For example, you might want to compute a calculated column in the FactResellerSales table that
checks whether the product that has been sold is in the Bikes category and, if it is, apply a reduc-
tion factor to the standard cost. To compute such a column, you must write an IF that checks the
value of the product category, which is not in the FactResellerSales table. Nevertheless, a chain of
relationships starts from FactResellerSales, reaching DimProductCategory through DimProduct and
DimProductSubcategory, as you can see in Figure 4-11.

FIGURE 4-11 FactResellerSales has a chained relationship with DimProductCategory.

It does not matter how many steps are necessary to travel from the original table to the related
one; DAX will follow the complete chain of relationship and return the related column value. Thus, the
formula for the AdjustedCost column can be

=IF (
 RELATED (DimProductCategory[EnglishProductCategoryName]) = "Bikes",
 [ProductStandardCost] * 0.95,
 [ProductStandardCost]
)

142 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

In a one-to-many relationship, RELATED can access the one side from the many side because, in
that case, only one row, if any, exists in the related table. If no row is related with the current one,
RELATED returns BLANK.

If you are on the one side of the relationship and you want to access the many side, RELATED is not
helpful because many rows from the other side are available for a single row in the current table. In
that case, RELATEDTABLE will return a table containing all the related rows. For example, if you want
to know how many products are in this category, you can create a column in DimProductCategory
with this formula.

= COUNTROWS (RELATEDTABLE (DimProduct))

This calculated column will show, for each product category, the number of products related, as
you can see in Figure 4-12.

FIGURE 4-12 Count the number of products by using RELATEDTABLE.

As is the case for RELATED, RELATEDTABLE can follow a chain of relationships, always starting from
the one side and going in the direction of the many side.

Using Basic DAX Functions

Now that you have seen the basics of DAX, it is useful to check your knowledge of developing a
sample reporting system. With the limited knowledge you have so far, you cannot develop a very
complex solution. Nevertheless, even with your basic set of functions, you can already build some-
thing interesting.

Start loading some tables from AdventureWorksDW into a new Tabular project. You are interested
in DimDate, DimProduct, DimProductCategory, DimProductSubcategory, and FactResellerSales. The
resulting data model is shown in Figure 4-13.

 CHAPTER 4 DAX Basics 143

FIGURE 4-13 The Diagram View shows the structure of the demo data model.

To test your new knowledge of the DAX language, use this data model to solve some reporting
problems.

First, count the number of products and enable the user to slice them with category and subcate-
gory as long as it is with any of the DimProduct columns. It is clear that you cannot rely on calculated
columns to perform this task; you need a measure that just counts the number of products, which we
call NumOfProducts. The code is the following.

NumOfProducts := COUNTROWS (DimProduct)

Although this measure seems very easy to author, it has an issue. Because DimProduct is a slowly
changing dimension of type 2 (that is, it can store different versions of the same product to track
changes), the same product might appear several times in the table, and you should count it only
once. This is a common scenario and can be easily solved by counting the number of distinct values of
the natural key of the table. The natural key of DimProduct is the ProductAlternateKey column. Thus,
the correct formula to count the number of products is as follows.

NumOfProducts := DISTINCTCOUNT (DimProduct[ProductAlternateKey])

You can see in Figure 4-14 that, although the number of rows in the table is 606, the number of
products is 504. This number correctly takes into account different versions of the same product,
counting them only once.

144 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

FIGURE 4-14 DISTINCTCOUNT is a useful and common function for counting.

This measure is already very useful and, when browsed through Excel, slicing by category and
subcategory produces a report like the one shown in Figure 4-15.

FIGURE 4-15 This is a sample report using NumOfProducts.

In this report, the last two rows are blank because there are products without a category and
subcategory. After investigating the data, you discover that many of these uncategorized products
are nuts, whereas other products are of no interest. Thus, you decide to override the category and
subcategory columns with two new columns by following this pattern:

■■ If the category is not empty, then display the category.

■■ If the category is empty and the product name contains the word “nut,” show “Nuts” for the
category and “Nuts” for the subcategory.

■■ Otherwise, show “Other” in both category and subcategory.

Because you must use these values to slice data, this time you cannot use measures; you must
author some calculated columns. Put these two calculated columns in the DimProduct table and call
them ProductCategory and ProductSubcategory.

ProductSubcategory =
 IF(
 ISBLANK(DimProduct[ProductSubcategoryKey]),
 IF(
 ISERROR(FIND("Nut", DimProduct[EnglishProductName])),
 "Other",
 "Nut"
),
 RELATED(DimProductSubcategory[EnglishProductSubcategoryName])
)

 CHAPTER 4 DAX Basics 145

This formula is interesting because it uses several of the newly learned functions. The first IF checks
whether the ProductSubcategoryKey is empty and, if so, it searches for the word “nut” inside the prod-
uct name. FIND, in the case of no match, returns an error, and this is why you must surround it with
the ISERROR function, which intercepts the error and enables you to take care of it as if it is a cor-
rect situation (which, in this specific scenario, is correct). If FIND returns an error, the result is “Other”;
otherwise, the formula computes the subcategory name from the DimProductSubcategory by using
the RELATED function.

note Note that the ISERROR function can be slow in such a scenario because it raises
 errors if it does not find a value. Raising thousands, if not millions, of errors can be a time-
consuming operation. In such a case, it is often better to use the fourth parameter of the
FIND function (which is the default return value in case of no match) to always get a value
back, avoiding the error handling. In this formula, we are using ISERROR for educational
purposes. In a production data model, it is always best to take care of performances.

With this calculated column, you have solved the issue with the ProductSubcategory. The same
code, by replacing ProductSubcategory with ProductCategory, yields to the second calculated column,
which makes the same operation with the category.

ProductCategory =
 IF(
 ISBLANK(DimProduct[ProductSubcategoryKey]),
 IF(
 ISERROR(FIND("Nut", DimProduct[EnglishProductName])),
 "Other",
 "Nut"
),
 RELATED(DimProductCategory[EnglishProductCategoryName])
)

Note that you still must check for the emptiness of ProductSubcategoryKey because this is the only
available column in DimProduct to test whether the product has a category.

If you now browse this new data model with Excel and use the newly created calculated column on
the rows, you get the result shown in Figure 4-16.

FIGURE 4-16 You can build a report with the new product category and subcategory, taking care of nuts.

146 Microsoft SQL Server 2012 Analysis Services: The BISM Tabular Model

Summary

In this chapter, you explored the syntax of DAX, its data types, and the available operators and func-
tions. The most important concept you have learned is the difference between a calculated column
and a measure. Although both are authored in DAX, the difference between them is huge, and you
will always have to choose whether a value should be computed by using a calculated column or a
measure.

You also learned the following:

■■ How to handle errors and empty values in DAX expressions by using common patterns.

■■ The groups of functions available in DAX. These functions can be learned only by using them;
we provided the syntax and a brief explanation. During the demo of the next chapters, you
learn how to use them in practice.

■■ With the last exercise, you put into practice some of the key concepts you learned, creating a
complete reporting system that, although simple, already shows some of the power of Tabular.

 601

Add Counters dialog box (Performance Monitor), 565
additive measures, 321
administrative security, 466–469
Administrator setting, for administrative
permissions, 469
ADOMD.NET library, 187

connection, 218, 234
ADO.NET Entity Framework, 512
AdventureWorks DW

loading tables from, 142
product-related tables in, 167
sample database, 40

aggregated sales figures, 230
aggregate values, 127. See also measures

absence in Tabular model, 13
weighted, 393–395

aggregation functions, 135
in CALCULATE, 242
parameters, 158
for time, 307–321

ALLEXCEPT function, 161, 180, 280
avoiding circular dependencies with, 399

ALL function, 157, 159, 180, 254, 326
vs. VALUES, 245

ALLNOBLANKROW function, 165, 597
Allow Partition To Be Processed setting, 553
ALLSELECTED function, 254–255

FILTERS function and, 262–264
for visual totals, 253–257
without parameters, and bug, 257

alter command (XMLA), 40, 445
AMO (Analysis Management Object), 487, 488,
491–493, 545–546

application for Tabular database creation, 494–507
calculated columns, 500–501
cubes, 495
data source views, 494–495
measure creation, 498–499

Index

Symbols
64-bit Access Database Engine (ACE) driver, 90
:= (assignment operator), 127
* (asterisk) operator, in hierarchy, 374
/ (forward slash) operator, in hierarchy, 374
- (minus sign) operator, in hierarchy, 374
& operator, for strings, 123, 124
() (parentheses), in DAX, 124
+ (plus sign) operator, and hierarchy aggregation, 373
' (quote characters), for table name, 125
[] (square brackets), for column names in DAX, 125
@ symbol, for named parameters, 217
~ (tilde) operator, in hierarchy, 374
Σ (sum) button in toolbar, 45

A
ABC analysis, 399–403
.abf file, 40
ABS function, 139
Access Database Engine (ACE) driver (64-bit), 90
Access, loading data from, 89
account, for Analysis Services service, 30
active relationships, 7, 419

for Date table, 298
active row context, 151
active rows, defining set of, 148
Add Analysis Services Object window, 550
ADDCOLUMNS function, 192–194, 214

and filter display, 261
applying filter context, 259
FILTER and, 581
row context from, 240
row context transformed to filter context, 271
SQL equivalent, 240
vs. SUMMARIZE, 195

602 Index

AMO (Analysis Management Object) (continued)

relationships creation, 501–506
SQL Server table loading, 495–498

operations with .NET, 507–509
PowerShell with, 509–510
reference to library, 492

AMO2Tabular project, 487, 507
Analysis Service Properties dialog box, 467
Analysis Services

2012 architecture, 6–11
licensing, 11–12
Multidimensional model, 8–9
SWITCH implementation in RTM version, 317
Tabular model, 6–8

basics, 1–2
connecting

configuring for SQL Server, 41
to instance with SSMS, 71
from outside domain, 482–483

creating report with SSDT, 460
database backup and restore operations, 518
data sources, 75–76
decision to use, 458
Dynamic Management Views (DMVs), 585–587
Excel to browse memory used by, 339
finding process, 559–561
future, 10–11
history, 2
importing deployed project from, 38
loading data from, 90–94, 513
managing instance, 487
metadata from, 234
paging use, 349
security, 77
starting, 513
stored procedures, 480
Tabular models architecture in, 329–330
upgrading from previous versions, 12
xVelocity and, 338

Analysis Services Configuration page, 29
Analysis Services Execute DDL Task control, 549–551
Analysis Services Processing Task, 547
Analysis Services Processing Task Editor, 547–548
Analysis Services Properties window, 561–563
Analysis Services server property, 466
Analysis Services Tabular Project, as new project
option, 32
Analyze In Excel dialog box, 54, 439, 471–472
AND condition

for cross filters, 258
in DAX, 124

animated scatter chart, 68
Apache Hadoop, 3
arithmetic operation errors, 132–133
arithmetic operators in DAX, 124
ascending order

for Sort By Column property, 433
for RANKX results, 283

ASC keyword, for sort order, 188
ASCMD utility, 512

executing XML script from, 543
.asdatabase file, 40
assignment operator (:=), 127
asterisk (*) operator in hierarchy, 374
A-suffixed functions, 136
.atomsvc file, 109
Attribute Key, in Multidimensional, 225
attribute relationships, 225, 500, 502
attributes

of dimensions, 8, 384
on slicer, 59

authentication, 482–483
for SQL Server, 81
Windows, 56, 482

automating processing, 539–551
setting for, 34

AVERAGE function, 136, 321
AVERAGEX function, 156
AVGX function, 394

B
backup

Analysis Services database, 518
setting for, 35
workspace database, 30

balances, updating using transactions, 326–328
banding, 410–412
basket analysis, 417–421
Batch element (XMLA), 540
batch execution of process commands, 545
best practices

date tables, 292, 324
hiding Date ID column from user, 299
hierarchy design, 364–365
for multiple Date tables, 305

BI Development Studio, 19. See also SQL Server Data
Tools (SSDT)
BIDS Helper, 17

installing on development workstation, 27

 Cartesian product between two tables

 Index 603

big tables, working with, 79–80
BIM file, 355
Binary data type, in xVelocity, 347
binary large objects (BLOBs), 347
BI Semantic Model (BISM), 10
BI Semantic Model Connection, 65

troubleshooting access, 66
BISM Normalizer, 459

installing on development workstation, 27
bitmap index, for xVelocity dictionary, 337
BLANK function, 133–134
BLANK value, 133

from LOOKUPVALUE function, 212
SUMMARIZE and, 198–200

BLOBs (binary large objects), 347
Books Online, 373
Boolean expressions

in DAX, 124
as filter parameter in CALCULATE, 244

bridge table, for many-to-many relationship, 414
browsing

data without filter, 169
data with period table, 315–318
workspace database, 54–55

Build menu, Deploy, 52
BuiltinAdminsAreServerAdmins property, 466
business intelligence (BI)

real-time, 14–15
self-service and corporate, 4–17

business intelligence (BI) stack, 1
business logic of data warehouse, 1
bus technique of Kimball, 382

C
cache, 516

clearing
for query performance monitoring, 578
by SSAS, 563

system in DAX, 215
CalcAmount measure, 155
calculated columns, 7, 14

AMO for creating, 500–501
for banding, 410
creating, 48–49, 126
DirectQuery and, 353, 404
example, 152
expression evaluation in row context, 152

for concatenating employee first and last
names, 368
for hierarchies, 365
LOOKUPVALUE function for, 408
vs. measures, 125, 130–131
memory for, 395
power in data modeling, 399–403
RAM use vs. complexity, 403
reference to measure, 131
refreshing in table processing, 349
refresh processing in xVelocity, 348
row filtering and, 162, 477

CALCULATE function, 157, 176, 183, 237–252
ALLEXCEPT filter, 387
behavior recap, 252
and DatesYTD function, 309
dependency list for column, 397
effect of combining FILTER, ALL, and
VALUES, 246–251
filter conditions, 181
vs. FILTER function, 178
in FILTER function argument, 244–251
filter parameters, 177
in lookup operation, 213
measure formula in, 239
nested, 420
as parameter of CALCULATE, 389
passing multiple table filter parameters in, 180
and removing part of filter, 160–161
result of, 242
row context and, 173–175
VALUES function in, 282
vs. RELATEDTABLE, 167

CALCULATETABLE function, 174, 176, 183, 237–252,
574

behavior recap, 252
evaluation order in nested, 191–192
in FILTER function argument, 244–251
modifying filter context with, 240–244
query with FILTER, 189–192
vs. CONTAINS, 210

calculations
in DAX, 121–125
unrelated table for parameters, 318

calendar table, time period selection, 419
CallbackDataID function, 576
CaptureXml property, 545
cardinality of column, in xVelocity, 342
Cartesian product between two tables, 205

cascading many-to-many relationship

604 Index

cascading many-to-many relationship, 416, 421–424
C# console application, AMO library use in, 491–493
CEILING function, 139
cells

aggregate functions and empty, 136
context of, 127

cell security, 477
missing in Tabular, 15

cellset for MDX, 187, 234
chained relationships

Power View and, 424
row context and, 167–168
USERELATIONSHIP function for inactive, 177

charts
applying filters to, 70
in reports, 68–69

circular dependencies, 396–399
ClearCache command (XMLA), 332
clearing

cache for query performance monitoring, 578
filters in PivotTables, 59

client side credentials, 78–79
client tools

for data analysis, 15
DirectQuery and, 404

Clipboard, loading data from, 100–103
ClosingBalance, 324–326
CLOSINGBALANCEYEAR function, 311, 325
ClosingEOM measure, 325
ClosingEOQ measure, 325
ClosingEOY measure, 325
ClosingMonth, formula for, 325
ClosingQuarter, formula for, 325
ClosingYear, formula for, 325
cloud, Analysis Services and, 11
C# (Microsoft), 218
CodePlex, 130, 487
coherent data, in data source, 117
Collation property, for Tabular model, 438
column in Grid View, filtering, 45
column-oriented databases, row-oriented vs.,
334–336
columns in PivotTable

selecting, 57
sorting and filtering, 60–62

columns in tables, 7. See also calculated columns
best practices for referencing, 125
choosing for partition, 521
detecting type in loaded CSV files, 99

filtering, 85, 257–261
constraint, 252

formatting, 436–440
grouping data by, 194. See also SUMMARIZE
function
hiding, 364, 431–432
memory cost in xVelocity, 347
merging for multiple column relationships, 409
names, 94, 429

changing inside view, 304
in copied tables, 303
in Excel, 96
vs. measure name, 217

as primary key, 443
propagating filter context between, 207
reducing number of values of, 343
reference in DAX expression, 126
reference to, in another table, 141
returning last date of, 313
sorting data, 432–436
SSDT setting to ignore headers, 102
table identifier use to reference column, 214
working with, 44

command line, executing XMLA script from, 543
Command Type DMX mode, Query Designer in, 220
comma-separated values (CSV) files, 75

loading data from, 98–99
comments for measures, 129
comparison

DAX functions for time, 307–321
DAX operators, 124

composite key, 408–409
compressing table, Vertipaq process, 118
CONCATENATE function, 140
concatenating text in DAX, 124
Conceptual Schema Definition Language (CSDL), 512
configuration table, for banding, 410
connecting

to Analysis Services
from outside domain, 482–483
with SSMS, 71

components for, 79
to data source, opening existing, 88–89
to deployed database, 55–57
Power View to Tabular model, 65–66
slicer to multiple PivotTables, 59
to Tabular model, 54–64

driver for, 187
Connection Properties dialog box, 473
connection string properties, testing roles
with, 472–474

 data modeling in Tabular

 Index 605

constrained delegation, 483
CONTAINS function, 209–211
context of cell, 127
control filters

ALLSELECTED for visual totals, 253–257
and selections, 252–272

controls for slicer, resizing and moving, 68
conversion DAX functions, 140
conversion errors in DAX formula, 131
converting

PivotTable to formulas, 63
Tabular model to Multidimensional model, 223

copy and paste Excel table into Tabular model, 295
Copy command (SSMS), for partition, 526
corporate business intelligence (BI), 4–17
COUNTA function, 136
COUNTAX function, 156
COUNTBLANK function, 136
COUNT function, 136, 321
COUNTROWS function, 136, 175, 176, 264
COUNTX function, 156
CPU

SSAS Tabular use of, 561
xVelocity requirements, 515–516

CPUTime, 577
Create Role dialog box (SSMS), 464, 465
credentials, server and client side, 78–79
cross-filters, 257–266
CROSSJOIN function, 203–204, 207, 427, 579, 580

and filter loss, 268
GENERATE vs., 206

CROSS JOIN statement (SQL), 207
cross references, measures and calculated
columns, 131
cross table filtering, 173
CSDL Extension for Tabular Models, 512
cubes, 8, 338

adding calculations to, 500
AMO to create, 495
Excel viewing model as, 56
formulas in Excel, 63–64
online analytical processing (OLAP), 91
setting for name, 35

CubeValue() function, 64
currency

conversion, 425–428
optimization, 578–579

data type, in xVelocity, 347
CURRENCY function, 140

Currency Symbol, Data Format property values
for, 437
CurrentListPrice, computing, 388
current row, 151
Current Windows User, as default Analyze in Excel
dialog box option, 54
custom application, query results integrated in, 234
CUSTOMDATA function, 479, 480–481
cut/copy and paste, to move measures, 46, 128

D
data

grouping by year, 196
preparation for hierarchy, 363
refreshed by server, 76

Data Analysis eXpressions (DAX), 7. See also DAX
(Data Analysis eXpressions)
Data Backup model property, 35
Database name, for SQL Server connection, 81
Database Properties window in SSMS, 357
database roles, 463, 468–469

creating, 464–465
databases. See also workspace database

production, processing, 79
row-oriented vs. column-oriented, 334–336
in Tabular model, 6
views for decoupling from, 405–406

Data Connection Wizard, 56
DataDir property, of Analysis Services instance, 338
data feeds, 75

loading data from, 110–112
for loading reports, 108–110

data feed URL, for Table Import Wizard, 110
data file, 339
data filtering, 85. See also filtering
Data Format property, 436–437
DataID, 338
DataMarket. See Windows Azure Marketplace
data marts, design, 384
data memory usage, in xVelocity, 340–341
Data Mining Extension (DMX), 219
data modeling in Tabular, 381

calculated columns power, 399–403
circular dependencies, 396–399
data stored, 388
dimensional models, 384–393

degenerate dimensions, 389–390
slowly changing (SCD), 386–389
snapshot fact tables, 390–393

606 Index

data modeling in Tabular (continued)

techniques, 381–384
OLTP database, 383–384

views to decouple from database, 405–406
weighted aggregations, 393–395
with DirectQuery enabled, 403–405

data models
for currency conversion, 426
for computing ABC classes, 400
for many-to-many relationships, 413
with advanced relationships, querying, 421–424

data processing. See also processing
for table, 350
in xVelocity, 348

Data Quality Services, 4
data security, 469–478. See also security

testing, 471–474
Data Source Properties window, 221
data sources, 75–76

C# code to add to database, 493
OLE DB connection type for defining, 220
Windows account credentials for loading
information from, 77

data source views, 488
AMO for, 494–495
loading table metadata in, 495

data storage, PowerPivot, 451
Data tab on ribbon (Excel)

Connections button, 473
From Other Sources button, 55, 56

data types
choosing in xVelocity, 346–348
in DAX, 123–125
in data sources, 117

data warehouses, 2
Analysis Services and, 1
design approaches, 381

DATEADD function, 311
and error, 319–321

date and time functions, 140
Date, as DAX reserved word, 176
date column

as LASTDATE parameter, 323
in xVelocity, 343
for TOTALYTD function, 309

Date data type
Data Format property values for, 437
for DAX functions, 306
in xVelocity, 347

date filters, for importing data, 85
DATE function, 140

date hierarchy in Excel, 362
dates. See also time intelligence

handling wrong or missing, 296
managing granularity, 300–301
measures for calculations related to, 302

DATESBETWEEN function, 313
DateStream on Windows Azure Marketplace,
importing Date table from, 296
DATESYTD function, 308, 311, 312

CALCULATE function and, 309
Date tables

best practices, 324
creating, 292–296
defining relationships with, 296–301
duplicating, 302–305
generating dates in SQL query, 293–295
importing from DateStream on DataMarket, 296
importing from Excel, 295
marking table as, 443
metadata for, 306–307
separating time from date, 298–300
sort order for month and day names, 306
Table Import Wizard for, 303
Tabular modeling with, 291–307
using duplicate, 305

DATETIME column
including milliseconds, 346
transforming into columns for date and time, 344

datetime data type, 124, 140
DAX (Data Analysis eXpressions), 7

automatic detection of relationships, 175
cache system, 215
for calculated columns, 126

editing expression for, 48
calculations, 121–125
data types, 123–125
drillthrough in, 231
error handling, 131–135
formulas for many-to-many relationships, 412
functions

aggregate functions, 135
basic use, 142–145
conversion functions, 140
date and time functions, 140
information functions, 138–139
logical functions, 137–138
mathematical functions, 139–140
relational functions, 141–142
text functions, 140

implementing unary operators with, 374–379
MDX vs., 185, 233–234
for measures, 46, 127

 development workstation, installation

 Index 607

operators, 124–125
performance, vs. MDX, 225
syntax, 121–122
values, 125

DAX Editor
for measure editing, 129–130
installing on development workstation, 27

DAX filter expressions, for data security, 469
DAX optimizer, SQL Server optimizer vs., 569, 572
DAX queries

column names in, 94
converting in SQL statement, 557
evaluation context in, 238–240
executing, 73
on Multidimensional model, Microsoft support
of, 9
ORDER BY clause, 188–189
parameters, 217–223
SQL Server Management Studio to run, 73, 157
in SQL Server Reporting Services, 219–224
steps to optimize and execute, 570
syntax, 187–189
syntax for measures, 214
in Table Import Wizard, 93
testing in Query Designer, 222

DAX query plans, 569
generation, 332
MDX query translated into, 584

DAX Storage Engine, caching by, 332
day names

Date table sort order for, 306
sorting by, 433

decimal numbers, in xVelocity, 347
Decimal Number type, Data Format property values
for, 437
decoupling from database, views for, 405–406
decoupling layer, views as, 304
dedicated development server, 20
default development server, 33
Default Environment Settings page, 31
Default Field Set dialog box, 432, 441
Default Field Set for table, 441–442
default format for measure, 128
Default Image property, for Table Behavior, 443
default instance, for development server install, 28
Default Label property, for Table Behavior, 443
Default Properties Wizard, 33
DEFINE MEASURE function, 214, 239
degenerate dimensions, 385, 389–390

DegenerateMeasureGroupDimension measure
group, 497
de Jonge, Kasper, 310
delegation, constrained, 483
Delete command (SSMS), for partition, 526
deleting

columns, 45
partitions with AMO, 509
relationship, 51

denormalizing columns, 408
DENSE argument, for RANKX function, 276
dependencies

between database table structure and Tabular
solution, 406
circular, 396–399

deployed database, connecting to, 55–57
deployed project, importing from Analysis
Services, 38
deploying Tabular model

after prototyping in PowerPivot, 460–461
automating to production server, 517–518
in Diagram view, 52–53
processing options, 527–539
sizing server, 513–517
table partitioning, 518–527

.deploymentoptions file, 40
Deployment Options\Processing Option
property, 34
deployment properties of project, DirectQuery, 355
Deployment Server\Cube Name property, 35
Deployment Server\Database property, 35
Deployment Server\Edition property, 34
Deployment Server\Server property, 34
.deploymenttargets file, 40
Deployment Wizard, 517
derived columns, 7. See also calculated columns
descending order for RANKX results, 283
DESC keyword, for query sort order, 188
design mode, for Query Designer, 219
developer environment

components, 19–21
installation process, 21–30
setup, 19–30
SQL Server Developer Ediiton for, 21

development database, vs. workspace database, 21
development server, 20

database metadata deployment to, 52
installation, 27–30

development time, model selection and, 11
development workstation, installation, 21–27

Diagram view

608 Index

Diagram view, 49–52
demo data model, 143
hiearchy design in, 364
hierarchy creation in, 52
model deployment, 52–53

dictionary, 338
creating and updating, 349
size reduction impact on performance, 342–346
for xVelocity values, 337

dimensional models, 384–393
degenerate dimensions, 389–390
Kimball's methodology and, 382
slowly changing (SCD), 386–389
snapshot fact tables, 390–393

dimension folder, 338
DimensionID element (XMLA), 541
dimensions, 8, 384

defining properties, 489
junk, 343
in Multidimensional data model, 489

processing before measure groups, 348
security on measures, missing in Tabular, 15
shared relationship, 503

dimension table, self-join for parent/child
hierarchy, 367
dimmed item, on slicer, 172
directories, for development server install, 29
DirectQuery, 14, 351–360

deployment, 551–558
development with, 359–360
implementing partitions for, 552–556
limitations, 353, 404
modeling with enabled, 403–405
monitoring, 585
partitioning strategy, 551–552
query execution in, 352
reasons for using, 353
security and impersonation with, 557–558
server requirements, 517
settings, 355–359
SQL Profiler for event analysis, 354–355
SQL Server for, 118
for Tabular model definition, 329

DirectQuery Mode property, 355
DirectQuery option for DirectQuery Mode
setting, 358
DirectQuery with In-Memory mode, 552
DirectQuery with In-Memory option, 358
dirty data, in hierarchy, 376
DISCOVER_OBJECT_MEMORY_USAGE, 586

Disk Space Requirements page
for development server install, 29

disk storage
Tabular vs. Multidimensional models, 13
xVelocity requirements, 513–514

DISTINCTCOUNT function, 137, 143
DISTINCT function, 174, 415

vs. SUMMARIZE, 195
vs. VALUES function, 182

distinct values, VALUES function to return from
specified column, 182
divide-by-zero error, 132

IF statement to avoid, 314
DMX (Data Mining Extension), 219
documentation for SQL Server, installing, 24–25
domain user accounts, 463
double-hop problem, Kerberos and, 483
drillthrough, 444–445

in MDX queries, 230–233
operation on measure, 322
partial support in Tabular, 17

Dumas, Cathy, 432
blog, 30

duplicating Date table, 302–305
Duration, SQL Profiler information on, 577
dynamic feeds, loading data from, 75
Dynamic Management Views (DMVs), 585–587
dynamic security, 479–482

with CUSTOMDATA function, 480–482
DAX functions for, 479–480
with USERNAME function, 481

E
EARLIER function, 161–164
EARLIEST function, 163
Edit command (SSMS), for partition, 525
editing projects online, 32
Edit Relationship dialog box, 51
EffectiveUserName connection string property,
472, 483
employee names, calculated columns for
concatenating first and last, 368
empty cells, aggregate functions and, 136
empty items in parent/child hierarchies

handling, 372–373
empty values, 133–134
ENDOFYEAR function, 311
end-user reporting, Analysis Services benefits for, 2

 filter context

 Index 609

errors
arithmetical operation errors, 132–133
circular dependency causing, 396
from drillthrough on MDX calculated
measure, 231
empty or missing values, 133–134
from duplicate measure and column names, 217
from MDX vs. DAX local measures, 230
from measure definition referencing row
value, 153
from removing column from group, 281
from sorting by column, 434–436
in DAX, 131–135
intercepting errors, 134
from LOOKUPVALUE function, 212
and year-to-date calculation, 310

estimating database size, for xVelocity, 340
EVALUATE function, 187

ORDER BY clause, 200
evaluation context

adding filters to, 173
in DAX queries, 238–240
EARLIER function, 161–164
final considerations, 183
in multiple tables, 164–183
in single table, 147–161
measure in, 239
testing in SSDT and SSMS, 156–157
types, 147

evaluation order, in nested CALCULATETABLE,
191–192
EXACT function, 140
Excel, 4, 27. See also PowerPivot

as client for complex relationship models, 424
connecting to deployed database, 55–57
copying table content to clipboard, 100
cube formulas, 63–64
date hierarchy, 362
DirectQuery and, 14, 404
editing connection string in, 473
importing data saved in SharePoint, 112
importing Date table from, 295
limitation as data source, 117
loading data from, 95–97
PowerPivot database process inside, 5
querying Tabular model in, 53–64
sample table for loading in Tabular, 95
slicers, 58–60, 148–149
testing roles with, 471–472
to browse memory used by Analysis Services, 339
workbook containing PowerPivot model, 37

exchange rate for currency, table for, 426
Exclude First Row Of Copied Data setting, 102
Execute button (SSMS toolbar), 73
ExecuteCaptureLog command, 545
Execute method (XMLA), 218
Existing Connection dialog box, 88
Existing Session event, trace for, 485
EXISTS keyword (SQL), 211
EXP function, 139
Export To Data Feed icon, 108
Expression editor, 222

F
FACT function, 139
fact relationship, in Tabular data model, 504
facts

in dimensional model, 385
dimension relationships with, 384

fact tables
attributes stored in, 389
currency for, 425–426
measures represented in, 345
names for, 430
snapshot, 390–393

fault tolerance, 516
Feature Selection page

for development workstation install, 23, 24
for development server install, 27, 28

Field List, in PowerPivot, 452–454
File menu (SSDT), New\Project, 31
File menu (SSMS), New\Analysis Services MDX
Query, 185
file names of .bim file, 36
filter context, 147

applying to ADDCOLUMNS function, 259
CALCULATE to transform row context, 174
changing only part, 160
checks for multiple active values, 316
in single table, 148–151
interaction with row context, 173–177
many-to-many relationship and, 414
modifying with CALCULATETABLE, 240–244
with multiple tables, 168–173

modifying, 177–182
order of evaluation, 192
propagating between columns, 207
removing filter from, 158
row context transformed to, 260, 271, 397

FILTER function

610 Index

FILTER function, 157, 183, 414
ADDCOLUMNS and, 581
as aggregation function parameter, 158
CALCULATE function vs., 178
CALCULATETABLE function with, 189–192
in CALCULATE and CALCULATETABLE
arguments, 244–251

filtering
adding to evaluation context, 173
applying to charts, 70
browsing data without, 169
CallbackDataID and, 576
column in Grid View, 45
constraint in CALCULATE function, 252
CONTAINS as condition, 211
and cross-filters, 257–266
data display in table, 44
hierarchies for, 362
for importing to table, 85
location for optimizing, 580–581
maintaining complex, 267–272
MDX query WHERE condition for, 227
in measure, 216
on lookup table, propagating to related
tables, 173
order for conditions in CALCULATE function, 181
overriding, 180
for partitions, 522
PivotTable rows and columns, 60–62
removing in PivotTables, 59
removing in SQL, 242
slicers for, 58–60

FILTERS function
ALLSELECTED function and, 262–264
VALUES and, 261–262

FILTER statement, 173
FIND function, 140, 144
firewalls, 43
FIRSTDATE function, 326
FIRSTNONBLANK function, 324
fiscal year, calcuating year-to-date
measure over, 310
Fit-to-Screen button (Diagram View), 50
FIXED function, 139, 140
FLOOR function, 139
foreign key

of existing values only, 199
Tabular and, 408

FORMAT function, 140

formatting
columns in tables, 436–440
measures, 437

formula bar
measure definitions in, 47, 128
resizing, 47

Formula Engine (FE), 574
vs. Storage Engine, 334

formulas
converting PivotTable to, 63
inserting line break in, 47

forward slash (/) operator in hierarchy, 374
fragmentation, dictionary update and, 349
free-form reports in Excel, 64
freezing columns, 45
Friendly connection name, for SQL Server, 81
from table, 502

G
gallery in SharePoint, for PowerPivot
workbooks, 456
General format

for data types, 437
for measures, 128

GENERATEALL function, 205, 207
GENERATE function, 205, 207, 422

vs. CROSSJOIN, 206
for applying TOPN, 275, 280

globally unique identifier (GUID), 339
Grand Total row, 239
granularity

of dates, managing, 300–301
of process request, 527
of snapshot fact table, 391

Grid view, 43, 44
calculated column creation, 48–49
creating measures, 45–48
filtering column, 45

gross margin, 126
GrossMargin calculated column, formula, 122
grouping data

by banding, 410–412
by year, 196
MDX assumption about, 226
removing in SQL, 242

 invalid calculations, troubleshooting

 Index 611

H
HardMemoryLimit performance counter, 567
HardMemoryLimit setting for SSAS, 563
hardware, Multidimensional vs. Tabular needs, 13–14
HASONEFILTER function, 264–266

when to use, 265–266
HASONEVALUE function, 264–266
help, installing for SQL Server, 24
Help Library application, 25
Hide From Client tool command, 317
hiding measures, 317
.HIDX file, 339
hierarchies, 179, 339

basics, 361–362
browsing time with, 300
building, 52, 363–364

guidelines on when, 363
DAX and, 228
defining on tables, 8
design best practices, 364–365
design in Diagram View, 364
MDX for navigating into, 227
names of, 429
parent/child, 367–379

support in Multidimensional, 16
in PivotTables, 57
rebuilding for xVelocity table, 349
spanning multiple tables, 365–367
unary operators, 373–379

HOLAP (Hybrid OLAP), 9
Home tab in ribbon (Sharepoint), Full Screen
button, 69
HTTP connectivity, 482
HyperThreading, 516

I
.IDF extension, 339
IFERROR function, 134, 137, 320, 411
IF function, 134, 144, 372

to avoid divide-by-zero error, 314
ImpersonateCurrentUser setting, for Analysis
Services, 557
impersonation, 77–78

DirectQuery for, 557–558
in Table Import Wizard, 42
PowerPivot and, 451
settings, 358
testing roles by, 474

implicit measures, in PowerPivot, 453–454
imported tables, names for, 83
Import from PowerPivot, as new project option, 32
Import from Server (Tabular), as new project
option, 32
importing

Date table from DateStream on Windows Azure
Marketplace, 296
from PowerPivot, 460
from PowerPivot, 37–38

inactive relationships, 7, 419
in SUMMARIZE, 201–202
row context and, 175–177

indexes, 335, 339
cost of refreshing, 520
rebuilding in xVelocity processing, 349
xVelocity memory-optimized columnstore, 336

indirect filters (cross-filters), 257–266
Infinity value, 132
information DAX functions, 138–139
in-memory database, xVelocity as, 338
In-Memory mode

and xVelocity, 331–351
for Tabular model definition, 329–330
query execution, 331–334

In-Memory option, for DirectQuery Mode
settings, 357
In-Memory with DirectQuery mode, 358, 552
Inmon, William, 381
INNER JOIN CROSS APPLY statement (SQL), 207
INNER JOIN statement (SQL), 205
inserting line break in formulas, 47
Insert Slicers dialog box, 58, 149
Insert tab on ribbon (Excel), Slicer button, 58
installation

development server, 27–30
development workstation, 21–27
workspace database server, 30

Install Content From Online page, 26
Instance Configuration page, for development server
install, 28
instance node in Object Explorer pane, 72
Integration Services package, for loading Excel
workbook, 95
IntelliSense, 47, 48

DAX Editor support for, 129
intercepting errors, 134
Internet Total Sales measure, 308
INT function, 139, 140
invalid calculations, troubleshooting, 131

I/O, xVelocity requirements

612 Index

I/O, xVelocity requirements, 513–514
ISBLANK condition, testing, 581
ISBLANK function, 138
ISCROSSFILTERED function, 257–261
ISERROR function, 133, 134, 138, 139, 144, 145
ISFILTERED function, 257–261, 372
ISLOGICAL function, 138
ISNONTEXT function, 138
ISNUMBER function, 135, 138, 139
ISSUBTOTAL function, 199
ISTEXT function, 138
IT departments, and power users, 5

J
junk dimensions, 343, 385

K
KEEPFILTERS function, 267–272
Keep In Memory setting, for workspace retention, 36
Keep Unique Rows setting, for table, 443
Kerberos, double-hop problem, 483
Key Performance Indicator dialog box, 446
key performance indicators (KPIs), 8, 445–447
Kimball, Ralph, 381, 382

L
L2 cache of processor, 516. See also cache
Language property, for Tabular model, 438
LASTDATE function, 313, 322, 323, 325, 327
LASTNONBLANK function, 323, 324
latency, in publishing measure, 216
.layout file, 40
Layout tab on ribbon (Sharepoint), Chart Title\
None, 68
LEFT function, 140
LEFT JOIN OUTER APPLY statement (SQL), 207
LEFT JOIN statement (SQL), 207
LEN function, 140
licensing, 11–12, 21
linear dependencies, 396
line break, inserting in formulas, 47
linked tables

in PowerPivot, 455
in SSDT, 101

literals, 125

LN function, 139
load balancing, 516
loading data

from Access, 89
from Analysis Services, 90–94
choosing right method, 116–118
from Clipboard, 100–103
from data feed, 110–112
from data source

Windows account credentials for, 77
from Excel, 95–97
from list of tables, 83–85
recommendations, 87
from Reporting Services report, 103–110
from SharePoint, 112–113
from SQL query, 87
into tables, 41–49
from Tabular database, 92–94
from text files, 98–99
from views, 87–88
from Windows Azure Marketplace, 113

loading relationships, 86
loading reports, data feeds for, 108–110
loading tables from AdventureWorksDW, 142
local measures, 229–230

defining, 215
overriding measure in Tabular model, 216–217

local user accounts, 463
LOG10 function, 139
LOG function, 139
logical functions, 137–138
logical operators in DAX, 124
logical query plan, 569

graphical representation, 573
logon credentials, Windows Authentication for, 56
Log on to the server option, for SQL Server
authentication, 81
lookup, RELATED function for, 213
lookup table, 165, 343

applying filter, 173
filter on, 169
foreign key of existing values only, 199

LOOKUPVALUE function, 211–213
for employee key values, 370
for calculated column, 408
performance impact, 427
RELATED function vs., 334

LOWER function, 140
LowMemoryLimit setting for SSAS, 563

 Merge Partition window

 Index 613

M
Manage Relationships dialog box, 51
Manage Sets command (Excel), 318
many-to-many relationships, 412

in basket analysis, 418
cascading, 416, 421–424
in Tabular vs. Multidimensional, 416
partial support in Tabular, 16
whitepaper, 417

margin percentage column, query creating, 193
Mark As Date Table dialog box, 306
Master Data Services, 4
materialization, 568
mathematical functions, 139–140
MAT (moving annual total), 313
MAX function, 136, 321
MAXX function, 156
MDX editor, 91, 92, 93, 185, 186
MDX Formula Engine, 331

caching by, 332
MDX language, 7, 9

DAX vs., 185, 225, 233–234
DirectQuery model and, 14
limitations for measure definition, 498–499
queries with, 223–233
WHERE condition, 227

MDX queries
cellset for, 187
DAX local measures in, 229–230
designer, 91
DirectQuery and, 353
drillthrough in, 230–233
execution in Tabular model, vs. DAX, 331
monitoring, 584–585
in SQL Server Management Studio, 73
WHERE condition, filter in, 232

MDX script, Tabular and, 225
MDX set expression, New Set dialog box for
writing, 62
MEASURE function, 229
measure grid, 46, 127

key performance indicator in, 447
measure groups

creating, 497
in Multidimensional, 489

measures, 8, 126–131
AMO to create, 498–499
calculated columns vs., 125, 130–131
calculations related to dates, 302

comments for, 129
counting number of products, 143
creating, 45–48

in PowerPivot, 453–454
data security and, 470
DAX definition, 46
DAX Editor for editing, 129–130
definition

and CALCULATE behavior, 242
inside query, 213–217

definition location, 215
before EVALUATE, 239
standard location, 46

drillthrough operation on, 322
error message from referencing row value, 153
formatting, 437
hiding, 317
MDX query WHERE condition for filter applied
to, 227
in Multidimensional, 224
names, 429

vs. column name, 217
organizing, 432
overriding with local measure, 216–217
in PowerPivot

field list creation, 452
implicit, 453–454

selecting for PivotTables, 57
semiadditive, 321–328
testing with query, 216–217
time intelligence-based, 319–321

Measures dimension, 8
Measure Settings dialog box, 453–454
memory

calculated columns need for, 126, 395
configuration for Tabular, 561–564
cost of xVelocity table, 339
DirectQuery and, 353
DMVs for memory occupation by object, 586
optimizing performance by reducing, 342–348
performance counters for, 564–568
for PowerPivot, 451
Process Full operation and, 531
query use of, 568
SSAS Tabular use of, 561
system bandwidth, 515
Tabular vs. Multidimensional models, 13
xVelocity requirements, 339–342, 514–515

Memory\VertiPaqPagingPolicy server setting, 531
Merge command, for partition, 509, 526
Merge Partition window, 526, 527

merging partitions

614 Index

merging partitions, 520
metadata

from Analysis Services, 234
for database, deployment, 52
for Date tables, 306–307
for project, 40

Microsoft
ADO.NET Entity Framework, 512
Amo2Tabular project, 487, 507
C#, 218
Office 2010, need to install, 27
support of DAX queries on Multidimensional
model, 9

Microsoft business intelligence (BI) ecosystem, 1–5
current status of stack, 3–4

Microsoft Visual Basic .NET (VB.NET), 218
Microsoft Visual Studio, DAX Editor as add-in, 129
MID function, 140
milliseconds, in DATETIME column, 346
MIN function, 136, 321
minimap, 50
minus sign (-) operator, in hierarchies, 374
MINX function, 156
missing values, 133–134
Model.bim file, 35, 38, 40, 355
Model menu (SSDT)

Analyze In Excel, 54, 471
Existing Connections, 88, 302
Import From Data Source, 41, 76, 80
Model View\Diagram View, 49
Perspectives, 438
Process\Process All, 52
Roles, 464

Model Properties dialog box, 35
models. See also Multidimensional model; Tabular
model

choosing for project, 11–17
deployment in Diagram view, 52–53
properties, 35–36
reasons for two, 9–10

MOD function, 139
MOLAP (Multidimensional OLAP), 9, 14

vs. ROLAP, 330
monitoring

DirectQuery, 585
MDX queries, 584–585
security, 484–485

Month In Year column, 434, 435
month names, Date table sort order for, 306
month-to-date (MTD) calculation, 308–311

moving
measures, 128
slicer controls, 68

moving annual total (MAT), 313, 314
MROUND function, 139
MSDN website, 25
msmdpump.dll file, 482
MSMDSRV.EXE (Microsoft Multidimensional
Server), 559
msmdsrv.ini file, memory settings, 561
multicolumn relationships, 407–409
Multidimensional database, Tabular data model
stored as, 507
Multidimensional model, 6, 8–9, 9

cell security in, 477
converting Tabular model to, 223
data sources, 488
data storage, 8–9
degenerate dimensions in, 389
dynamic security in, 480
features missing in Tabular, 15–17, 225
hardware requirements, 13–14
measure group partitioning, 519
Microsoft support of DAX queries on, 9
MOLAP vs. ROLAP, 330
processing dimensions before measure
groups, 348
processing performance compared to Tabular, 13
ragged hierarchies and, 367
reference relationship handling, 503
role-playing dimension in, 302
security, 470
storing measures to be aggregated, 345
Tabular project translation into, 488–491
Tool dimension in, 315
unary operators in, 373

Multidimensional OLAP (MOLAP), 9, 14
vs. ROLAP, 330

Multidimensional sources, 75
multithread-enabled operation, xVelocity Storage
Engine as, 332

N
Named Set, 60

creating, 61
names

of columns
changing inside view, 304
in DAX queries, 94

 paging

 Index 615

in Excel file, 96
in table copies, 303

for development server instance, 28
in hierarchies, 365
for imported table, 83
measure vs. column, 217
of objects, 429
of Date table, 293
@ symbol for parameters, 217

NaN (not a number) value, 132
natural keys, for dimensions, 384
negative number, square root of, 132
nested CALCULATETABLE, evaluation order in,
191–192
nested FILTER statements, 191
.NET, AMO operations with, 507–509
network-attached storage (NAS), 516
Never Process This Partition in the Processing
Option, 553
New BI Semantic Model Connection page, 66
New command (SSMS), for partition, 525
New MDX Query button (SSMS toolbar), 73
New Project dialog box, 32
New Set dialog box, 62
NEXTDAY function, 313
NEXTYEAR function, 311
nonadditive measure, 321
None, default setting for administrative
permissions, 468
Non-Uniform Memory Access (NUMA)
architecture, 515
NOT operator in DAX, 124
null value, in xVelocity, 348
numbers

automatic conversion of strings to, 123
data types in xVelocity, 346
precision, optimization and, 346
testing text value conversion, 138
transforming to strings, 140

O
Object element (XMLA), 541
Object Explorer pane (SSMS), 72
objects

AMO processing with .NET, 507–508
names of, 429

OData, limitation as data source, 117
Office 2010, need to install, 27
offline help, 25

OLAP database, Analysis Services as, 1
OLAP PivotTable Extensions, 27
OLAP Services, 2. See also Analysis Services
OLE DB ADO.NET, 234
OLE DB connection

for defining data source, 220
in Report Builder, 219

OLE DB for OLAP provider, 187
OLTP databases, 381, 383–384
one-to-many relationship, 7

hierarchies and, 363
row filtering and, 476
between tables, 164

online analytical processing (OLAP) cubes, 91
online analytical processing (OLAP) database, 1
online mode, for Multidimensional models, 32
OpenBalance, 324–326
Open Data Protocol, 75, 110
OPENINGBALANCEMONTH function, 326
OPENINGBALANCEQUARTER function, 326
OPENINGBALANCEYEAR function, 311, 326
opening existing connections to data source, 88–89
operators

in DAX, 124–125
overloading, 123
unary, 373–379

optimization, 578–583
by memory usage reduction, 342–348
currency conversion, 578–579
filters location, 580–581
query performance, 2
relationships for, 582–583

Options dialog box, 36–37
OR condition in DAX, 124
OrderBy Attribute setting, in Multidimensional, 225
ORDER BY clause, 238, 273

in DAX queries, 188–189
in EVALUATE, 200

ORDER BY condition, in DAX, 225
Order ID, 344
Original Size button (Diagram View), 50
overriding filters, 180

P
paging

in Analysis Services, 349
disabling, 338
for SQL Server storage space, 335

Parallel Data Warehouse

616 Index

Parallel Data Warehouse, 3
PARALLELPERIOD function, 311
parameterizing DAX query, Reporting Services
expression for, 223
parameters in DAX queries, 217–223

defining, 220
parent/child hierarchies, 367–379

configuring, 368–373
example, 371
handling empty items, 372–373
support in Multidimensional, 16

parentheses [()], in DAX, 124
Partition Manager dialog box, 520
Partition query, 522
partitions, 359, 518–527

AMO with .NET for, 508–509
defining, 520–524
deleting using AMO, 509
filters for, 522
for hybrid mode configuration, 556
implementing for DirectQuery and hybrid
modes, 552–556
managing, 524–527
PowerPivot and, 451
Process Add operation, 534
Process Data operation, 533–534
Process Full operation, 533
processing, 538–539
reasons for, 519
strategy for DirectQuery, 551–552
tables, 518–527
in xVelocity, 349, 555

Partitions window, editing table partitions in, 525
password, for SQL Server account, 41
Paste Append, 101
pasted tables, 432
Paste Preview window, 100, 102
Paste Replace, 101
PATH function, 368

DirectQuery and, 405
output, 369

PATHLENGTH function, 368
pathnames, for reports, 108
percentage

formatting data as, 437
Gross Margin as, 127
year-over-year difference as, 314

performance
DAX vs. MDX, 225
ISERROR function and, 145

LOOKUPVALUE function and, 427
optimizing by memory usage reduction,
342–348
snapshot tables and, 393

performance counters, for memory, 564–568
Performance Monitor, 564–568
PerformancePoint Services, 4
period of the prior year (PY), 311–314
period table, browsing data with, 315–318
permissions

defining in SQL Server, 358
role membership and, 466
row filtering using table, 478

perspectives, 8, 438–440
hierarchy visibility to, 363

Perspectives dialog box, 439
physical query plan, 569
PI function, 139
PivotTable

converting to formulas, 63
creating, 56
drillthrough in, 230, 232
filter context definition, 148
key performance indicator in, 447
queries in MDX, 233
relationships between cells and table rows, 151
removing filters, 59
sample, 58
sorting and filtering rows and columns, 60–62
using, 57–58
with CurrentListPrice and historical ListPrice, 387
year-to-date calculation for prior year and fiscal
year in, 313

PivotTable field list, 454
Sets folder in, 62

PivotTable\Options tab on ribbon (Excel)
Calculations button, 60
Insert Slicer button, 148
OLAP Tools button, 63

plus sign (+) operator, and hierarchy
aggregation, 373
POWER function, 139
PowerPivot, 4, 5, 10, 449–455

advanced mode, 450
data storage, 451
datetime data type, 124
decision to use, 458
Field List, 452–454
implicit measures, 453–454
importing from, 37–38

 PushedDataSource data source

 Index 617

linked tables, 455
measures in, 453–454
model embedded in Excel workbook, 37, 112
performance penalty in first version, 346
PivotTable field list, 454
prototyping in, 460–461
sample rows imported from report, 107
Tabular model compatibility with, 12

PowerPivot for SharePoint, 5, 455–458
decision to use, 458

PowerPivot import warning dialog box, 37
PowerPivot tab on ribbon (Excel), 449
PowerPivot window, 450
PowerShell, 546–547

AMO with, 509–510
power users, IT departments and, 5
Power View, 3, 7, 15

blank view in report, 67
building basic report, 66–68
complex relationships and, 424
connecting to Tabular model, 65–66
DAX queries, 233
Default Field Set in, 441–442
manufacturing (RTM) version, 362
querying Tabular model, 65–71
reports interaction, 69–71
report using Default Field Set, 442
Tabular model properties as metadata, 440–444
tile report with images, 444

precision of number, optimization and, 346
previous year, difference over, 314–315
PREVIOUSYEAR function, 311
prices, banding, 410
primary key, specifying column as, 443
Process Add operation, 528

of partitions, 534
Process Clear operation, 528, 532, 533
Process Database window, 535
Process Data operation, 529

in xVelocity, 350
of selected partitions and tables, 533–534

Process Default operation, 529, 530
Process Defrag operation, 530

in xVelocity, 350
Process Full operation, 531

of database, 532
in xVelocity, 350
of selected partitions and tables, 533

processing
automating, 539–551

with SSIS, 547–551
with PowerShell, 546

database, 514
executing, 535–539
options for, 527–539
SSAS memory use during, 561
strategy for, 532–535
tables, 7

processing memory usage, in xVelocity, 341–342
processing time

predictability of source, 117
table partitioning and, 519

Process method, 507
Process Partition option, 538–539
Process Recalc operation, 530, 531

in xVelocity, 350
Process setting, for administrative permissions, 469
Process Table option, 536–538
Process Table window, 537

Script command, 511
product category, computing number of products
for each, 193
production database, processing, 79
production projects, prototypes vs., 103
production server, automating Tabular deployment
to, 517–518
Project Properties dialog box, 34, 357
projects

building and deploying, 20
choosing model for, 11–17
configuring, 33–37
creating, 31–32
editing online, 32
importing deployed from Analysis Services, 38
metadata for, 40
properties, 33–35

Properties command (SSMS), for partition, 526
Properties window, for measures, 128
prototypes

in PowerPivot, 460–461
vs. production projects, 103

.P suffix, for standard deviation or variance
function, 285
PushedDataSource data source, 101

QlikView

618 Index

Q
QlikView, 4
QtyGreen measure, 244
quarter-to-date (QTD) calculation, 308–311
queries

ADDCOLUMNS function, 192–194
CALCULATETABLE and FILTER, 189–192
clearing cache for performance monitoring, 578
CONTAINS for, 209–211
CROSSJOIN, GENERATE, GENERATEALL for, 203–
208
DAX syntax, 187–189
in Excel, 8, 53–64
execution

in Analysis Services Tabular model, 330
in In-Memory mode, 331–334

language options, 185
LOOKUPVALUE for, 211–213
MDX for, 223–233
measure definition in, 213–217
memory usage, 514

in xVelocity, 342
optimizing performance, 2
performance characteristics, 13
Performance Monitor for execution, 566–567
in Power View, 65–71
ROW function for, 208–209
SSAS memory use during, 561
SUMMARIZE, 194–202
of table data sample, 287–289
testing measures with, 216–217
time intelligence-based measures, 319–321
tools, 185–187

Query Designer
Command Type DMX mode, 219, 220
testing DAX query in, 222

Query Editor (SQL Server), 87
Query Mode property, of Tabular project, 356
query plans, 569–578
query projection, 196
quote characters ('), for table name, 125
QUOTIENT function, 139

R
ragged hierarchies, 367

missing in Tabular, 16
RANDBETWEEN function, 139
RAND function, 139

RANK.EQ function, 284
RANKX function, 276–284

specifying <value> parameter in, 282
Read and Process setting, for administrative
permissions, 469
Read setting, for administrative permissions, 468
real-time reporting, with DirectQuery, 353
reference relationships, in Tabular data model, 504
referencing columns, best practices, 125
refresh interval, for PowerPivot report, 457
RELATED function, 141–142, 166, 174, 183

for lookup operation, 213
list of chained relationships for, 167
LOOKUPVALUE function vs., 334

RELATEDTABLE function, 141, 142, 167, 174, 183
CROSSJOIN and, 204
list of chained relationships for, 167
vs. CALCULATE, 167

related tables, selecting, 86
relational database, 75

goal in, 342
vs. OLAP database, 1

relational Data Warehouse, 382
relational DAX functions, 141–142
Relational OLAP (ROLAP), 9, 14
relationships, 7, 224

active, 419
AMO for creating, 501–506
automatic detection by DAX functions, 175
between measure groups and dimensions, 489
between table rows and PivotTable cells, 151
chained, row context and, 167–168
complex, Power View and, 424
creating, 50–51
data models with advanced, querying, 421–424
defining with Date tables, 296–301
displaying in Diagram view, 49
inactive, 419

row context and, 175–177
in SUMMARIZE, 201–202

loading, 86
many-to-many, 412. See also many-to-many
relationships
multicolumn, 407–409
optimization with, 582–583
pointing to different tables, 419
rebuilding for xVelocity table processing, 349
row filters and, 476–477
USERELATIONSHIP function for inactive
chained, 177
in xVelocity, 339

 SANs (storage area networks)

 Index 619

remote connections, SQL Server enabled to
accept, 43
Remove method, for partition, 509
removing data from table, partitions and, 519
removing filters, in PivotTables, 59
renaming columns, 45
REPLACE function, 140
Report Builder

data source definition, 221
OLE DB connection in, 219

Reporting Services. See SQL Server Reporting
Services
reports. See also Power View

charts in, 68–69
importing from SharePoint, 112
pathnames for, 108
slicers in, 68–69
SSDT to design, 219
surfaced by Excel Services, 457
with tables, 68

reprocessing models, dedicated server for, 20
REPT function, 140
reserved words in DAX, Date, 176, 293
Reset Layout button (Diagram View), 50
resizing

formula bar, 47
slicer controls, 68

resources, for Windows process, 560
restore operation, Analysis Services database, 518
ribbon in Excel, PowerPivot tab, 449
RIGHT function, 140
ROLAP (Relational OLAP), 9, 14

for Multidimensional model, 352
MOLAP vs., 330

Role Manager dialog box (SSDT), 464, 465, 474
Permissions drop-down list, 468
Row Filters configuration, 470

roleplaying dimensions, 418
in Multidimensional model, 302
missing in Tabular, 16

roles, 463–466
database, and administrative permissions, 468–
469
membership in multiple, 466
Server Administrator, 466–468
testing

with connection string properties, 472–474
with Excel, 471–472
by impersonating users, 474

Roles connection string property, 472

ROLLUP function, 239
limitations to use, 422

roll-up rows, in SUMMARIZE results, 198–200
ROUNDDOWN function, 139
ROUND function, 139
rounding functions, 139

and data storage, 346
ROUNDUP function, 139
row context, 147, 238

from ADDCOLUMNS function, 240
and CALCULATE function, 173–175
and chained relationships, 167–168
and inactive relationships, 175–177
in multiple tables, 164–167
interaction with filter context, 173–177
nesting, 162
in single table, 151–157, 164
transformed to filter context, 239, 260, 271

row filtering
advanced expressions, 474–478

for multiple columns, 475
table relationships and, 476–477

calculated columns and, 477
permissions table for, 478
table relationships and, 476–477

ROW function, 208–209
evaluating CONTAINS in, 209

row identifier, marking column as, 398
Row Identifier property, 443
RowNumber column, 338, 496, 500, 502
row-oriented databases, column-oriented vs.,
334–336
rows in PivotTable, sorting and filtering, 60–62
rows in tables

checking for existence of condition, 209. See
also CONTAINS function
denying access to every, 475
relationships between PivotTable cells and, 151
specifying maximum to be returned, 273

Run As Different User option, 474
running totals, 162–163, 401
Russo, Marco, 445

S
SAMEPERIODLASTYEAR function, 311, 313
SAMEPERIODSLASTYEAR function, and error,
319–321
SAMPLE function, 287–289
SANs (storage area networks), 14

scatter chart

620 Index

scatter chart
animated, 68
example, 70

schema.ini file, 98
schema, star vs. snowflake, 256
Scientific formatting for data, 437
scoped assignments, missing in Tabular, 16
Script Action To New Query Window command
(SSMS), 511
SEARCH function, 140
security

administrative permissions, 466–469
authentication, 482–483
data, 469–478
DirectQuery and, 404, 557–558
dynamic, 479–482
monitoring, 484–485
PowerPivot and, 450
roles, 8, 463–466
SSAS, 77

selecting
columns for PivotTables, 57
control filters and, 252–272
measures for PivotTables, 57
related tables, 86

select-object cmdlet, 509
SELECT statement (MDX), 229
SELECT statement (SQL)

GROUP BY condition, 238
GROUP BY, SUMMARIZE compared, 195
WHERE clause, filter context and, 150

self-join on dimension table, for parent/child
hierarchy, 367
self-service business intelligence (BI), 4–17
semiadditive measures, 321–328
separating time from date, 298–300
server administrator role, 463, 466–468
Server Configuration page, 29
Server object, C# code creating, 493
servers

data refresh by, 76
development, 20
for default workspace database server, 33
name for SQL Server connection, 81
sizing for Tabular deployment, 513–517
workplace database, 21

server side credentials, 78–79
Service Account, for impersonation, 77
ServiceAccountIsServerAdmin server property, 466
service packs, for SQL Server updates, 22

Sets folder, in PivotTable Field List, 62
.settings file, 40
SETUP.EXE, 21
Setup Support Rules, 22

page, 23
ShareDimensionStorage property, 497
SharePoint, 4. See also PowerPivot for SharePoint

creating Power View connection in, 65
loading data from, 112–113

SIGN function, 139
Size Slicer, 241
sizing server for Tabular deployment, 513–517
SKIP argument, for RANKX function, 276
slicers, 58–60, 169

in Excel, 148–149
in reports, 68–69
item dimmed on, 172
making selection on, 169
PowerPivot field list handling of, 452
table of parameters, 318

Slicer Setting dialog box, 172
Slicer Tools\Options tab on ribbon (Excel), PivotTable
Connections button, 149
slowly changing dimensional models (SCD), 386–389
slowly changing dimensions, 384, 385
snapshot fact tables, 390–393
snowflaked dimension, 365
snowflake schema, star schema vs., 256
Software as a Service (SaaS) applications, 113
Solution Explorer pane

Show All Files button, 38, 39
Solution Explorer pane, 39

Sort by Column property, 188, 324
of column, 432
of Date table column, 306
in Tabular, 224
in MDX, 238

sort functions, 272–284
sorting, 44

and memory pressure during processing, 341
column data, 432–436
importance of, 118–119
order in Date table for month and day
names, 306
PivotTable rows and columns, 60–62
for price banding, 411

sort order, ORDER BY clause, 188–189
source control, for development workstation
install, 26
SourceDirect property, 551

 SUBSTITUTE function

 Index 621

source of model, XML file as, 103
source tables, 519
spooling temporary tables, memory for, 568
SQL Azure, 3

experimental BI tools available, 4
SQL Azure Reporting, 3
SqlDataAdapter, 496
SQL Engine optimizer, vs. DAX Query optimizer, 572
SQL Profiler

for analyzing In-Memory mode events, 332–334
for DirectQuery event analysis, 354–355
running trace, 484
time information from, 577–578
to view query plans, 570

SQL queries
generating dates in, 293–295
loading data from, 87

SQL Server
AMO for loading table, 495–498
configuring Analysis Services connection to, 41
for DirectQuery, 118
documentation installation, 24–25
editions with Analysis Services, 11
enabled to accept remote connections, 43
loading from list of tables, 83–85
relational database engine

installing, 30
storage space in pages, 335

SQL Server Agent, 543–544
SQL Server Analysis Services (SSAS), 2. See
also Analysis Services
SQL Server database, 3

loading data into workspace database, 80
semantic layer on top, 353

SQL Server Data Tools (SSDT), 6, 19
client-side operations, 78
creating new Analysis Services report with, 460
creating project, 31–32
deploying Tabular model from, 517
editing column names, 303
linked tables in, 101
private Tabular database, 21
Query Mode property setting in, 357
starting, 31
testing evaluation context, 156–157

SQL Server designer of Access, 90
SQL Server Installation Center window, 21, 22
SQL Server installer, for development
workstation, 21
SQL Server Integration Services (SSIS), 3, 547–551

process execution from, 544

SQL Server Management Studio (SSMS), 6, 71–73
browser in, 27
connection string properties in, 473–474
database role creation, 464
DAX query preparation in, 93
DirectQueryMode property, 357
opening project in, 101
Partitions context menu, 525
for query writing, 185
scripting to learn XMLA commands, 510
testing evaluation context, 156–157

SQL Server optimizer, 569
SQL Server Reporting Services, 3

DAX Query in, 219–224
exporting data feed, 110
expression for parameterizing DAX query, 223
loading data from report, 103–110
MDX vs. DAX, 234
web interface, 108

SQL statement, manual changes, Table Preview
mode and, 523
SQRT function, 139
square brackets ([]), for column names in DAX, 125
square root of negative number, 132
SSDT. See SQL Server Data Tools (SSDT)
.S suffix, for standard deviation or variance
function, 285
standard deviation, 285
star schema

basket analysis and, 418
Date table from, 293
junk dimensions in, 343
snowflake schema vs., 256

START AT condition, in DAX query, 189
STARTOFYEAR function, 311
statistical functions, 285–289
STDEV function, 285
STDEVX function, 286
storage area networks (SANs), 14
Storage Engine (SE), 574

Formula Engine vs., 334
StreamInsight, 3
strings

automatic conversion to numbers, 123
concatenation for composite key, 409
transforming numbers to, 140
in xVelocity, 347

SubCategories Count measure, 215
SUBSTITUTE function, 140

SUM function

622 Index

SUM function, 135, 153, 178, 321, 346, 579
error message from using, 154
SUMX vs., 394

in CALCULATE, 161
SUMMARIZE function, 194–202, 208, 239, 254, 256,
261, 267, 319, 415

inactive relationships in, 201–202
limitations in use, 422
multiple tables in, 196
virtual table for, 270
without adding columns, 197

Sum of Quantity measure, 242
grouped by channel, 238

Sum of SalesAmount measure, 453
SUMX function, 136, 153, 154, 155, 156, 178, 346

SUM vs., 394
in CALCULATE, 161

xVelocity for, 334, 575–576
sum (Σ) button in toolbar, 45
surrogate keys for dimensions, 384
SWITCH function, 138
SWITCH statement, 316
Synchronize Database Wizard, 517

T
Tableau, 4
Table Behavior dialog box, 442
Table Behavior Properties, 442–448
table filter, 177

constraint, 252
table identifier, to reference column, 214
Table Import Wizard

for Access data source, 89
Choose How to Import the Data, 83
as client side operation, 78
connecting SQL Server, 42
Connect to a Microsoft Access Database, 89
Connect to Flat File, 99
Connect to Microsoft Excel File, 95
Connect to Microsoft SQL Server Analysis
Services, 90
for Data Feed, 109, 110
data sources list in, 76
for Date table, 303
DAX queries in, 93
for importing from SSDT report, 104–105
impersonation in, 42
Impersonation Information page, 77, 82

loading data from Windows Azure
Marketplace, 114
Preview Selected Table, 84
report preview, 106
Select Related Tables button, 86
Select Tables and Views, 43, 84
parameters for SQL Server connection, 81
starting, 41
for text files, 98
Work Item list, 86

Table menu (SSDT)
Create Relationship, 51
Date\Date Table Settings, 306
Date\Mark As Date Table, 306
Manage Relationships, 51

Table Preview mode, 524
table qualifier, in ADDCOLUMNS function, 193
tables, 6. See also relationships

big, working with, 79–80
Cartesian product between two, 205
creating hierarchy, 364
Default Field Set for, 441–442
dependencies between Tabular solution and
structure of, 406
DMVs for memory usage, 587
evaluation context for single, 157–161
evaluation context in multiple, 164–183
facts and dimensions stored in, 385
filter context for multiple, 168–173

modifying, 177–182
hierarchies spanning multiple, 365–367
loading data from list of, 83–85
loading data into, 41–49
lookup, 165
names of, 83, 429
in PowerPivot, linked, 455
Process Data operation, 533–534
Process Full operation, 533
processing, 536–538
querying data sample from, 287–289
report with, 68
row context in single, 151–157
Row Identifier property, 399
selecting related, 86
selecting to import from data feed, 107
size in xVelocity, 340
viewing data in different, 44
xVelocity process operation steps, 349

table scan, cost of complete, 335

 Transaction ID

 Index 623

tables in Excel
converting to PowerPivot table, 455

Tabular database
C# code creating, 493
loading data from, 92–94

Tabular interface, understanding different, 488
Tabular models, 6–8

architecture in Analysis Services 2012, 329–330
as ETL tool, 498
building, 40–53

loading data into tables, 41–49
compatibility with PowerPivot, 12
connecting Power View to, 65–66
connecting to, 54–64
DAX vs. MDX queries execution, 331
dependencies between database table structure
and, 406
deployment after prototyping in
PowerPivot, 460–461
driver for connecting to, 187
ease of use, 12
functionality of Multidimensional model not
present in, 15–17
hardware requirements, 13–14
language. See DAX (Data Analysis eXpressions)
mapped on Multidimensional data structure, 490
vs. Multidimensional model, 8
period table defined in, 316
private SSDT database, 21
processing performance compared to
Multidimensional, 13
querying in Excel, 53–64
querying in Power View, 65–71
query performance characteristics, 13
ragged hierarchy, lack of support, 367
reference dimension relationship, 504–506
relationships between tables of, 224
relationship types, 504
security role types, 463
storage as Multidimensional database, 507
tool selection for creating, 458–459

Tabular presentation layer
drillthrough, 444–445
formatting, 436–438
hiding columns, 431–432
key performance indicators (KPI), 445–447
Language and Collation properties, 438
naming objects, 429
organizing measures, 432
perspectives, 438–440
sorting column data, 432–436

Tabular project
contents, 38–40
loading tables from AdventureWorksDW, 142
translation into Multidimensional, 488–491

temporary tables, memory for spooling, 568
testing

data security, 471–474
DAX query in Query Designer, 222
evaluation context in SSDT and SSMS, 156–157
measures with query, 216–217
relationship performances, 582
text value conversion to number, 138

text
concatenation in DAX, 124
testing conversion to numbers, 138

text files
as data source, 75

limitation, 117
loading data from, 98–99

text functions, 140
Thousand Separator, Data Format property values
for, 437
ties in ranking, 282
tilde (~) operator in hierarchy, 374
time

browsing with hierarchies, 300
separating from date, 298–300
SQL Profiler for information on, 577–578

TIME function, 140
time intelligence, 291

DAX functions, 140, 307–328
measures based on, 319–321
Tabular modeling with Date table, 291–307

Tool dimension, in Multidimensional model, 315
TOPN function, 272–276
to table, 502
TotalMemoryLimit performance counter, 567
TotalMemoryLimit setting for SSAS, 563
TOTALMTD function, 310
TOTALQTD function, 310
Total Units Calculated measure, 327–328
Total Units Check measure, 327
Total Units measure, 322

formula for, 323
Total Units Movement measure, 326
TOTALYTD function, 309, 311
trace events, intercepting, 332
Transaction attribute, of Batch element, 541
Transaction ID, 344

transactions

624 Index

transactions
for Process operations, 532
processing tables in separate, 529
updating balances using, 326–328

translations functionality, missing in Tabular, 15
TRIM function, 140
troubleshooting

BISM Connection type, 66
invalid calculations, 131
workspace database connection to SQL Server
database, 43

True/False data type, Data Format property values
for, 437
TRUNC function, 124, 139, 298
type conversion, 123
type-handling system, in DAX, 123

U
unary operators, 373–379

effective use in hiearchy levels, 378
implementing with DAX, 374–379
missing in Tabular, 16

Units Balance measure, 326
Update method, of AMO object, 493
UPPER function, 140
URL

for report, 108
for Table Import Wizard data feed, 110

usability, 429
Use First Row As Column Headers check box (Text
Import Wizard), 99
USERELATIONSHIP function, 176, 233, 298, 419, 582

DAX expression to invoke, 229
for inactive chained relationships, 177

user hierarchies, 8
user interface, Tabular model as, 429
username, for SQL Server account, 41
USERNAME function, 479, 481–482
users, 463

SSAS impersonation, 77

V
VALUE function, 140
Value Not Supported error, 348
values

in DAX, 125
empty or missing, 133–134

VALUES function, 174, 182, 183, 387, 411
ALL expression vs., 245
FILTERS function and, 261–262
in CALCULATE, 282

VAR function, 285
variance of a variable, 285
VARX function, 286
VB.NET (Visual Basic .NET), 218
VertiPaq engine, 7, 118. See also xVelocity in-
memory analytics engine (VertiPaq)
VertiPaqMemoryLimit setting for SSAS, 562
VertiPaqPagedKB counter, 568
VertiPaqPagingPolicy setting for SSAS, 562, 564
VertiPaq queries, 574

execution, 571–572
views

as decoupling layer, 304, 405–406
loading data from, 87–88
selecting in Table Import Wizard, 43

Visual Basic .NET (VB.NET), 218
Visual Studio, DAX editor for SQL Server extension
in, 186
VISUALTOTAL function (MDX), 253
visual totals, ALLSELECTED function for, 253–257
VisualTotals function (MDX), 471
Visual Totals property, 470

W
Wang, Jeffrey, 225
warehouse stocking, 390
warnings, during install, 22
web browser, for SQL Server help, 25
web resources, data sources, 296
weighted aggregations, 393–395
WHERE condition, 574

in MDX query, 227
filter in, 232

Whole Number data type, 437
whole numbers, in xVelocity, 346
Windows account credentials, 77
Windows Authentication, 56, 482
Windows Azure Marketplace, 113

costs, 116
DateStream, 296
DateStream feed, 115
home page, 115
loading data from, 113

Windows integrated security, 463

 YTD (year-to-date) calculation

 Index 625

Windows Task Manager
Processes tab, 560
Services tab, Analysis Services display, 559

Windows user account, as Analysis Services
administrator, 466
Workbook Connections dialog box, 473
workbooks, merging into single SSAS Tabular
solution, 459
workplace database server, 21
workspace database, 78

browsing, 54–55
connecting to SQL Server database, 43
recommended size, 79
server installation, 30

Workspace Retention model property, 36
Workspace Server, Service Account as user running
SSAS, 77
workstation in development environment, 19–20
Writeback functionality, missing in Tabular, 15

X
XMLA Council, 9
XMLA (XML for Analysis), 218, 487, 510–512

Batch element to group commands, 540–542
command reference, 543
executing script from command line, 543
parameterizing command content, 551
processing automation with, 539–544
query window, 539
script for Tabular model deployment, 517

XML file, as source of model, 103
X-suffix aggregate functions, 136
xVelocity in-memory analytics engine (VertiPaq), 7,
326, 329, 330, 574. See also PowerPivot

cardinality of column, 342
CPU requirements, 515–516
database size estimation, 340
data types in, 346–348
disk and I/O requirements, 513
In-Memory mode and, 331–351
memory for, 338, 339–342, 514
pageable memory for, 568
partitions and, 520, 555
processing memory usage, 341–342
processing options, 348–351
querying memory usage, 342
server requirements, 513–516
snapshots and, 391

storage, 337–339
ADDCOLUMNS and, 193
internal structures, 338

SUMX function in, 575–576
and updating data, 14
use during development, 359

Y
year-over-year (YOY), 314
year-to-date aggregation, 307
year-to-date of the prior year, calculating, 312
YOY (year-over-year), 314
YOY YTD Sales%, formulas to define, 315
YTD order quantity column, creating for snapshot
table, 391
YTD (year-to-date) calculation, 308–311

About the Authors

MARCO RUSSO is a Business Intelligence (BI) consultant and mentor. His
main activities are related to data warehouse relational and multidimensional
design, but he is also involved in the complete development life cycle of a
BI solution. He has particular experience and competence in such sectors
as financial services (including complex OLAP designs in the banking area),
manufacturing, gambling, and commercial distribution.

Marco is also a book author and, apart from his BI-related publications, has
written books on .NET programming. He is also a speaker at international
conferences such as PASS Summit, SQLRally, and SQLBits.

He has achieved the unique SSAS Maestro certification and is also a Microsoft
 Certified Trainer with several Microsoft Certified Professional certifications.

ALBERTO FERRARI is a BI consultant. His main interests are in two areas: the
methodological approach to the BI development life cycle and performance
tuning of ETL and SQL code.

His activities are related to designing and implementing solutions based on
Integration Services and Analysis Services for the financial, manufacturing, and
statistical markets.

A certified SSAS Maestro, Alberto is also a book author and a speaker at
 international conferences such as PASS Summit, SQLRally, and SQLBits.

CHRIS WEBB is a consultant specializing in Analysis Services, MDX,
 PowerPivot, and DAX. He is a coauthor of Expert Cube Development with SQL
Server 2008 Analysis Services and MDX Solutions: With Microsoft SQL Server
Analysis Services 2005 and Hyperion Essbase.

Chris is a certified SSAS Maestro and is a regular speaker at PASS Summit and
SQLBits conferences.

	Foreword
	Introduction
	Chapter 1: Introducing the Tabular Model
	The Microsoft BI Ecosystem
	What Is Analysis Services and Why Should I Use It?
	A Short History of Analysis Services
	The Microsoft BI Stack Today
	Self-Service BI and Corporate BI

	Analysis Services 2012 Architecture: One Product, Two Models
	The Tabular Model
	The Multidimensional Model
	Why Have Two Models?
	The Future of Analysis Services

	Choosing the Right Model for Your Project
	Licensing
	Upgrading from Previous Versions of Analysis Services
	Ease of Use
	Compatibility with PowerPivot
	Query Performance Characteristics
	Processing Performance Characteristics
	Hardware Considerations
	Real-Time BI
	Client Tools
	Feature Comparison

	Summary

	Chapter 4: DAX Basics
	Understanding Calculation in DAX
	DAX Syntax
	DAX Data Types
	DAX Operators
	DAX Values

	Understanding Calculated Columns and Measures
	Calculated Columns
	Measures
	Editing Measures by Using DAX Editor
	Choosing Between Calculated Columns and Measures

	Handling Errors in DAX Expressions
	Conversion Errors
	Arithmetical Operation Errors
	Empty or Missing Values
	Intercepting Errors

	Common DAX Functions
	Aggregate Functions
	Logical Functions
	Information Functions
	Mathematical Functions
	Text Functions
	Conversion Functions
	Date and Time Functions
	Relational Functions

	Using Basic DAX Functions
	Summary

	Index

