
	 	 A1

Table of Contents for This Appendix
Additional Tips from Chapter 1

AX.01	 Getting Help Samples . A7
AX.02	 Make the Start Page Go Away . A8
AX.03	 Bringing Back the Start Page . A8
AX.04	 Show All Settings with Visual Basic . A9
AX.05	 Find Your Development Settings . A10
AX.06	 Settings Automatically Saved On Exit . A11
AX.07	 Customize Your Toolbars in Visual Studio 2008: Toolbars Tab A12
AX.08	 Customize Your Toolbars in Visual Studio 2008: Commands Tab A15
AX.09	 Hide or Show Default Buttons on a Toolbar . A20
AX.10	 Reset Toolbars . A21

Additional Tips from Chapter 2
AX.11	 Sorting Templates in the New Project Dialog Box . A23
AX.12	 Toggle Icon Size in the New Project Dialog Box . A24
AX.13	 Choosing the StartUp Project . A25
AX.14	 Linked Items in Projects . A26
AX.15	 Using the Miscellaneous Files Project . A27
AX.16	 Change the Order of Your Application Settings . A28
AX.17	 Hide or Show the Solution File in Solution Explorer . A32
AX.18	 New Project Dialog Preferred Language . A33
AX.19	 Optimizing Your Project Code . A35

Additional Tips from Chapter 3
AX.20	 Full Screen Mode . A38
AX.21	 Split Your Windows Horizontally . A39
AX.22	 Sorting Items in the Toolbox . A40
AX.23	 Icon vs. List View in the Toolbox . A41
AX.24	 Hide the Status Bar . A43
AX.25	 Remove the Navigation Bar . A43
AX.26	 Show Any Toolbar . A44
AX.27	 Changing Auto-Hide Behavior for Tool Windows . A45
AX.28	 Closing a Tool Window Tab Group . A47
AX.29	 Copy and Paste with the Command Prompt . A47

A2	 Table of Contents

AX.30	 Customize the Command Prompt . A50
AX.31	 Show All Toolbox Controls . A57
AX.32	 Server Explorer: Data Connections . A58
AX.33	 Server Explorer: Server Event Logs . A62
AX.34	 Server Explorer: Server Management Classes . A65
AX.35	 Window Layouts: File View . A68
AX.36	 Rearrange Your Toolbars . A70
AX.37	 Create a Shortcut Key for a Macro . A71
AX.38	 How to Run External Executables from the Command Window A73

Additional Tips from Chapter 4
AX.39	 Close All But This on the File Tab Channel . A75
AX.40	 Copy a File’s Full Path from the File Tab . A75
AX.41	 Understanding the File Tab Channel Drop-Down Button . A76
AX.42	 How to Disable the IDE Navigator . A77
AX.43	 Thumbnail Previews in the IDE Navigator . A79
AX.44	 Changing Editors Using Open With . A80

Additional Tips from Chapter 5
AX.45	 Using a Simple Quick Find . A84
AX.46	 Using the Find Combo Box . A85
AX.47	 Customize the Files to Search with Find In Files . A87
AX.48	 How to Show and Hide Find Messages . A89
AX.49	 How to Not Automatically Search for the Currently Selected Word A91
AX.50	 Setting Bookmarks . A91
AX.51	 Organizing Bookmarks . A93
AX.52	 Navigating Bookmarks . A94

Additional Tips from Chapter 6
AX.53	 Turn On Line Numbers . A97
AX.54	 Go to a Line Number . A98
AX.55	 Comment and Uncomment Code . A99
AX.56	 Select the Current Word . A100
AX.57	 Delete Through the Beginning or End of a Word . A101
AX.58	 Click and Drag Text to a New Location . A101
AX.59	 Make Selection Uppercase or Lowercase . A104
AX.60	 Brace Matching Rectangle . A104

	 Table of Contents	 A3

AX.61	 Automatic Delimiter Highlighting . A105
AX.62	 Move or Select to the Top or Bottom of the Current View in the Editor A107
AX.63	 Format the Current Document or Selection . A108
AX.64	 Use F6 to Jump Between Split Windows . A109
AX.65	 Turn Off Single-Click URL Navigation in the Editor . A109
AX.66	 Hide the Vertical and/or Horizontal Scroll Bars . A110
AX.67	 How to Convert Tabs to Spaces and Vice Versa . A111
AX.68	 Delete Horizontal White Space . A113
AX.69	 Expanding Your Code with Outlining . A114
AX.70	 Collapsing or Expanding All Your Code with Outlining . A115
AX.71	 Turn Off or Turn On Outlining . A116
AX.72	 Understanding Virtual Space . A117
AX.73	 Document Outline: WPF and Silverlight Projects . A118
AX.74	 Document Outline: Windows Form Projects . A121
AX.75	 Change the Tooltip Font Size . A124
AX.76	 Change the Statement Completion Font Size . A125
AX.77	 Vertical Split View for Web Projects . A126
AX.78	 Open JScript Braces on a New Line . A127
AX.79	 Insert Spaces vs. Keep Tabs . A127
AX.80	 View in Browser . A129
AX.81	 Detect When a File Is Changed Outside the Environment A130
AX.82	 Turn Off the Selection Margin . A131
AX.83	 Reuse the Same Editor Window When Opening Files . A132
AX.84	 Sharing Snippets with Your Team . A133
AX.85	 Swap the Current Anchor Position . A135
AX.86	 Guidelines: A Hidden Feature for the Visual Studio Editor A135
AX.87	 Insert File as Text . A138
AX.88	 Indenting: Smart vs. Block vs. None . A139
AX.89	 Change CSS Formatting . A140
AX.90	 How to Turn Off Automatic IntelliSense . A142
AX.91	 Disable HTML, CSS, or JScript IntelliSense . A142
AX.92	 Design and XAML on Different Document Tabs . A143
AX.93	 Using Generate from Usage . A145
AX.94	 IntelliSense Suggestion Mode . A148
AX.95	 Turn Off Automatic Symbol Renaming When You Rename a File in

Solution Explorer . A149
AX.96	 Mark Methods and Types as Hidden from IntelliSense and the Object

Browser . A150

A4	 Table of Contents

Additional Tips from Chapter 7
AX.97	 Set or Remove a Breakpoint . A153
AX.98	 Enable or Disable a Breakpoint . A154
AX.99	 Start Debugging vs. Start Without Debugging . A155
AX.100	 Set As Start Page . A157
AX.101	 Enable Debugging in Web.Config . A159
AX.102	 View the Error List Window . A160
AX.103	 Show Error Help from Errors List Window . A161
AX.104	 Hide or Show Error List When the Build Finishes with Errors A161
AX.105	 Show the Output Window During Build . A162
AX.106	 Navigate Among Errors in the Output Window . A163
AX.107	 Customize the Output Window . A164
AX.108	 Step Out of or Over a Method . A165
AX.109	 Clearing Your DataTips . A167
AX.110	 Create User Tasks in the Task List . A169
AX.111	 Show the Full File Path in the Task List . A172
AX.112	 Disable the Prompt for Deleting Items from the Task List A173
AX.113	 Navigate Task List Entries with the Keyboard . A174
AX.114	 Navigating Between Output Window Panes with the Keyboard A175
AX.115	 The Watch Window: Moving Values Between Watch Windows A176
AX.116	 The Immediate Window: Simple Printing and Changing Values A178
AX.117	 The Immediate Window: Working with Members . A179
AX.118	 The Immediate Window: Design-Time Breakpoints . A181
AX.119	 The Immediate Window: Running Commands . A182
AX.120	 Class View and Object Browser Icons . A183
AX.121	 Output Window vs. Immediate Window . A185
AX.122	 The Object Browser: Settings . A186
AX.123	 The Object Browser: Search . A192
AX.124	 The Object Browser: Objects Pane . A195
AX.125	 The Object Browser: Members Pane . A203
AX.126	 The Object Browser: Description Pane . A205
AX.127	 The Object Browser: Creating a Keyboard Shortcut for

Add To References . A206

	 Table of Contents	 A5

AX.128	 The Object Browser: Type-Ahead Selection . A208
AX.129	 The Object Browser: Exporting Your Settings . A209
AX.130	 The Immediate Window: Implicit Variables . A211
AX.131	 Show External Code . A213
AX.132	 Understanding Just My Code . A215
AX.133	 Attach To Process (Tools vs. Debug Menu) . A218
AX.134	 The Immediate Window: Running WinDbg and SOS (Son of Strike)

Commands . A219
AX.135	 Creating a Class Diagram from Class View . A224
AX.136	 Placing the Call Stack and Call Hierarchy Windows . A224
AX.137	 Delete All Breakpoints . A226
AX.138	 Make Object ID . A229
AX.139	 Change Values from the Locals Window . A231
AX.140	 Debug Executable Without Using Attach to Process . A232
AX.141	 The Watch Window: Hexadecimal Display . A234
AX.142	 Edit And Continue . A235
AX.143	 Print with Line Numbers . A237
AX.144	 Printing the File Path in the Page Header . A238
AX.145	 Printing in Different Fonts and Colors . A238
AX.146	 Get Rid of the Splash Screen . A239
AX.147	 Understanding Check Accessibility . A240
AX.148	 Automatic vs. Default in Fonts and Colors . A242
AX.149	 Visual Studio Permissions Needed on Windows Vista or Later A248
AX.150	 Show Advanced Build Configurations . A251
AX.151	 Emacs Emulation . A252
AX.152	 ViM Emulation . A253

	 	 A7

Appendix B

Additional Tips

Additional Tips from Chapter 1
AX.01	 Getting Help Samples

Windows Alt,H, L

Menu Help | Samples

Command Help.Samples

Versions 2008,2010

Code vstipEnv0002

This is another one of those things that is always there but that developers tend to forget
about. You can get sample code from within Visual Studio itself. Just select Help | Samples
from your menu bar.

What you see next is version-specific—for example, in Visual Studio 2010, you will see the
page shown below:

A8	 AX.02  Make the Start Page Go Away

Click the Local Samples Folder link, and you see the folder shown in the following image:

From here, you just unzip the code samples for the language you are interested in.

AX.02	 Make the Start Page Go Away

Windows Alt,V, G

Menu View | Start Page

Command View.StartPage

Versions 2010

Code vstipTool0002

Does the Start Page appearing every time you start Visual Studio annoy you? You can set up
Visual Studio so that the Start Page doesn’t load when you start Visual Studio. Just look in the
lower-left corner, and clear the Show Page On Startup check box.

From now on, the Start Page shows up only when you want it to.

AX.03	 Bringing Back the Start Page

Windows Alt,V, G

Menu View | Start Page

Command View.StartPage

Versions 2010

Code vstipTool0001

You might have noticed that when you open up a Solution or Project, the Start Page goes
away. This is the new default behavior in Visual Studio 2010.

	 Appendix B  Additional Tips	 A9

To change it, look in the lower-left corner of the new and improved Start Page, and clear the
Close Page After Project Load check box. From now on, the Start Page sticks around until you
close it yourself.

AX.04	 Show All Settings with Visual Basic

Windows Alt,T, O

Menu Tools | Options

Command Tools.Options

Versions 2005, 2008, 2010

Languages VB

Code vstipEnv0042

Did you choose the Visual Basic settings during your install?

If so, you might notice, when you open the Tools | Options menu, that the options are not all
there:

To bring them back, just select Show All Settings at the bottom-left of the dialog box, and all
the available settings will reappear:

A10	 AX.05  Find Your Development Settings

AX.05	 Find Your Development Settings

Versions 2005, 2008, 2010

Code vstipEnv0020

Development settings determine quite a bit when you use Visual Studio. For example, they
determine how you see the installed templates and what options you see initially in the
Tools | Options dialog box. You probably remember the following choices when you installed
Visual Studio:

If you happen to forget what choice you made, you can quickly get a reminder by going to
the registry key HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\<version>\Profile.

	 Appendix B  Additional Tips	 A11

Warning  Don’t make any changes in the Registry for this tip; just view the data.

So, for Visual Studio 2010, the path would be HKEY_CURRENT_USER\Software\Microsoft\
VisualStudio\10.0\Profile, and then you would look at the “LastResetSettingsFile” string:

Assuming you haven’t reset the settings via Tools | Import And Export Settings lately, this
value should have the name of the settings file you chose at first launch. In my case, as shown
in the preceding graphic, I chose the “General Development Settings” (General.vssettings)
option.

AX.06	 Settings Automatically Saved On Exit

Windows Alt,T, I

Menu Tools | Options | Import and Export Settings

Command Tools.ImportandExportSettings

Versions 2005, 2008, 2010

Code vstipEnv0026

Visual Studio automatically saves your settings every time it is closed. To see where this file
is located (or to change the location), go to Tools | Options | Import And Export Settings and
locate the Automatically Save My Settings To This File area:

The nice thing is that you can use this to “undo” any changes you have made during a ses-
sion. So if you made some changes to Visual Studio but don’t want to keep them, you can
import the CurrentSettings.vssettings (default name) file to bring back your settings from the
last time Visual Studio was closed.

A12	 AX.07  Customize Your Toolbars in Visual Studio 2008: Toolbars Tab

AX.07	 Customize Your Toolbars in Visual Studio 2008: Toolbars Tab

Windows Alt,T, C

Menu Tools | Customize

Command Tools.Customize

Versions 2008

Code vstipEnv0032

You can customize any toolbar in Visual Studio 2008. Just click the drop-down arrow to the
right of any toolbar, click Add Or Remove Buttons, and choose Customize:

Whichever option you choose opens the Customize dialog box:

	 Appendix B  Additional Tips	 A13

Custom Toolbars
Notice that the Toolbars tab lists all the available toolbars. When you click New to create a
customized toolbar, you are prompted to give the new toolbar a name:

After you name it, you can delete the custom toolbar by clicking Delete, or you can rename it
by clicking Rename:

A14	 AX.07  Customize Your Toolbars in Visual Studio 2008: Toolbars Tab

Additionally, you can take advantage of the following options at the bottom of the dialog
box:

●● Use Large Icons  Shows larger icons on toolbars in your environment.

●● Show ScreenTips On Toolbars  Indicates whether you see a tooltip for the toolbar
items:

●● Show Shortcut Keys In ScreenTips  Shows the shortcut key combinations in the
tooltips for items that have them.

Clicking the Keyboard button at the bottom of the Customize dialog box is just the same as
going to Tools | Options | Keyboard (see vstipTool0063, “Keyboard Shortcuts: Creating New
Shortcuts,” on page 127 for details):

	 Appendix B  Additional Tips	 A15

AX.08	 Customize Your Toolbars in Visual Studio 2008: Commands Tab

Windows Alt,T, C

Menu Tools | Customize

Command Tools.Customize

Versions 2008

Code vstipEnv0033

You can customize any toolbar in Visual Studio 2008. Just click the drop-down arrow to the
right of any toolbar, click Add Or Remove Buttons, and choose Customize:

Alternatively, you can go to Tools | Customize on the menu bar. Whichever option you
choose opens the Customize dialog box:

A16	 AX.08  Customize Your Toolbars in Visual Studio 2008: Commands Tab

In this case, let’s look at the Commands tab:

Note  To learn more about the Toolbars tab, see vstipEnv0032, “Customize Your Toolbars in
Visual Studio 2008 Toolbars Tab,” on page A12.

The best way to learn how to customize menus and toolbars is to work through an example.
For our purposes, we want to add the ability to select some code, right-click, and comment
or uncomment the code.

First, we have to go back to the Toolbars tab and pick the menu or toolbar we want to modi-
fy. For our example, let’s choose Context Menus:

	 Appendix B  Additional Tips	 A17

Now we click the Commands tab and locate the items we want to add. In this case, we dig a
bit and find Selection Comment and Selection Uncomment in the Edit category:

Now we have to see which menu we want to modify. Let’s navigate to Editor Context Menus |
Code Window to see where we want our items to go:

A18	 AX.08  Customize Your Toolbars in Visual Studio 2008: Commands Tab

Now we drag the items where we want them on the menu:

If we want, we can click Modify Selection to reset, delete, modify the name, modify the but-
ton image, change the way the item is displayed, or begin a new group:

	 Appendix B  Additional Tips	 A19

We would like the new buttons to be in their own group, so we click the item just below
where we want our group to be:

 Now we click Modify Selection and choose Begin A Group to get a new group line:

Close the Customize dialog box, select some code, and right-click to see whether our items
show up:

A20	 AX.09  Hide or Show Default Buttons on a Toolbar

AX.09	 Hide or Show Default Buttons on a Toolbar

Versions 2005, 2008, 2010

Code vstipEnv0028

You can pick and choose which default buttons you want to show on any toolbar. Just click
the drop-down arrow to the right of the toolbar:

Then click Add or Remove Buttons:

As you can see, this gives you a list of the buttons currently being viewed. You can uncheck
some of them to create a customized look for your toolbar:

	 Appendix B  Additional Tips	 A21

Unfortunately, if you have added customized buttons, they can’t be hidden in this way:

AX.10	 Reset Toolbars

Versions 2005, 2008, 2010

Code vstipEnv0029

You can reset any toolbar to its default settings. Just click the drop-down arrow to the right
of any toolbar, and then click Add or Remove Buttons:

A22	 AX.10  Reset Toolbars

Click Reset Toolbar:

You now see the following dialog box:

Click Yes to remove any custom buttons and to reset the toolbar to its default settings.

	 Appendix B  Additional Tips	 A23

Note  In Visual Studio 2008, you have to go through an extra menu to get to the Reset Toolbar
option:

Additional Tips from Chapter 2
AX.11	 Sorting Templates in the New Project Dialog Box

Default Ctrl+Shift+N

Visual Basic 6 Ctrl+Shift+N; Ctrl+N

visual c# 2005 Ctrl+Shift+N

Visual c++ 2 Ctrl+Shift+N

Visual c++ 6 Ctrl+Shift+N

Visual Studio 6 Ctrl+N

Windows Alt,F, N, P (new project); Alt,F, D, N (add new project)

Menu File | New Project; File | Add New Project

Command File.NewProject; File.AddNewProject

Versions 2010

Code vstipProj0003

Ever just want to have an alphabetical list of templates in the New Project dialog box? Just
use the new Sort By drop-down list:

A24	 AX.12  Toggle Icon Size in the New Project Dialog Box

AX.12	 Toggle Icon Size in the New Project Dialog Box

Default Ctrl+Shift+N

Visual Basic 6 Ctrl+Shift+N; Ctrl+N

visual c# 2005 Ctrl+Shift+N

Visual c++ 2 Ctrl+Shift+N

Visual c++ 6 Ctrl+Shift+N

Visual Studio 6 Ctrl+N

Windows Alt, F, N, P (new project); Alt, F, D, N (add new project)

Menu File | New | Project

Command File.NewProject

Versions 2005,2008,2010

Code vstipProj0007

When you create a new project (or add a new item) in Visual Studio, you can change the icon
size from small to medium (called large in Visual Studio 2008). To do this, you need to find
the buttons that change the icon to your desired size and then click them. Unfortunately,
these buttons appear in different places, depending on your Visual Studio version. In Visual
Studio 2010, for example, the buttons are located toward the middle-right of the New
Project or Item dialog box, next to the Sort By field:

In Visual Studio 2005 and Visual Studio 2008, the buttons are at the far right, as shown in the
following illustration:

	 Appendix B  Additional Tips	 A25

AX.13	 Choosing the StartUp Project

Windows Alt,P, A (with project selected in Solution Explorer);
Shift+F10, A (with project selected in Solution Explorer)

Menu Project | Set as StartUp Project;
[Right-Click a project in Solution Explorer] | Set as StartUp Project

Command Project.SetasStartUpProject

Versions 2005,2008,2010

Code vstipEnv0014

When you work with multiple projects, one is usually the StartUp Project. That’s the one
that starts up first when you start (with or without debugging). It’s easy to spot the current
StartUp Project because its name appears in bold type in Solution Explorer:

To quickly change the Startup Project, just right-click a project in Solution Explorer and
choose Set As StartUp Project from the context menu:

A26	 AX.14  Linked Items in Projects

AX.14	 Linked Items in Projects

Default Shift+Alt+A; Ctrl+Shift+D

Visual Basic 6 Ctrl+D; Shift+Alt+A

Visual C# 2005 Shift+Alt+A

Visual C++ 2 Shift+Alt+A

Visual C++ 6 Shift+Alt+A

Visual Studio 6 Shift+Alt+A; Ctrl+Shift+D

Windows Alt, P, G

Menu Project | Add Existing Item

Command Project.AddExistingItem

Versions 2005,2008,2010

Code vstipProj0022

You sometimes have a shared resource that you want to include in your project. Traditionally,
you would add the existing item (Shift+Alt+A), and Visual Studio would make a copy for you.

However, did you know you can just link to the item instead? You would typically do this
if you had a shared resource on, say, a network drive that you want to include but don’t
want to have a copy in your project. To do this, go to the Add Existing Item dialog box
(Shift+Alt+A) and choose Add As Link from the Add drop-down list.

Now a link to the file is added to your project rather than a copy:

You can tell a file is a link because it has an arrow indicator in the icon, as shown in the pre-
ceding graphic—much like the arrow you see on shortcut icons in Windows. The usual cave-
ats apply here, just as they do to any shortcut. For example, for Visual Studio to use the file,
you need to make sure that the path to the linked file is accessible.

	 Appendix B  Additional Tips	 A27

AX.15	 Using the Miscellaneous Files Project

Windows Alt,T, O

Menu Tools | Options | Environment | Documents

Command Tools.Options

Versions 2008,2010

Code vstipProj0012

Did you know that Solution Explorer can display a Miscellaneous Files project for files that
you do not want to permanently associate with a project or solution? Maybe you still want
to track and be able to open certain files quickly—but not associate them with the project or
solution. For example, you can create and edit files by using the Visual Studio editors without
creating a project. You can also work on files that you want to use temporarily—such as files
in which you keep development notes while you work on your solution.

To get the Miscellaneous Files folder to show up, go to Tools | Options | Environment |
Documents and select the Show Miscellaneous Files In Solution Explorer option:

Pay particular attention to the Items Saved In The Miscellaneous Files Project field, which is
initially set to zero. Leaving this value set to zero shows only extra files you currently have
open; however, setting it to another number indicates how many files you want to remember
at any given time. If you aren’t sure about what this value should be, to get started, I suggest
setting this value to at least five.

Note  The Miscellaneous Files Project does not show up until you open up at least one file that
goes in it.

A28	 AX.16  Change the Order of Your Application Settings

After you open a file that doesn’t belong to the solution, the folder shows up, as shown in
the following illustration:

With the folder now showing, you can right-click and open, create, or remove files:

Note  Removing files from this folder doesn’t delete them permanently.

AX.16	 Change the Order of Your Application Settings

Versions 2008,2010

Languages C#, VB

Code vstipProj0024

When working in your project properties, you might sometimes find yourself using a variety
of application settings (I’m assuming you know how to create and use application settings;
if not, you can find more information at http://msdn.microsoft.com/en-us/library/a65txexh.
aspx):

http://msdn.microsoft.com/en-us/library/a65txexh.aspx
http://msdn.microsoft.com/en-us/library/a65txexh.aspx

	 Appendix B  Additional Tips	 A29

But what if you want to organize these settings? For example, suppose you want the
WindowColor setting to appear with the other color settings. You can change the sequence
to your preference.

Warning  Changing a setting requires you to manually edit your settings file—which could get
you into trouble if you make a mistake, so do this at your own risk. Also, make a copy of your set-
tings file before editing it so that you can recover if a problem occurs.

First, save any pending changes, and close the Properties window. Now open up the project
location:

Locate your Properties folder:

A30	 AX.16  Change the Order of Your Application Settings

Locate your Settings file, named Settings.settings in this example:

Open the Settings.settings file with a plain text editor such as Notepad. Notice that the file is
an XML file:

As you see in the preceding illustration, each setting resides in a <Setting> element. You just
need to rearrange the elements in the order you want them. In this case, select the <Setting>
element whose name attribute is WindowColor, as shown in the following illustration:

	 Appendix B  Additional Tips	 A31

Next just cut and paste it where you want the setting to show up. For this example, place it
just after the ForegroundColor <Setting> element:

A32	 AX.17  Hide or Show the Solution File in Solution Explorer

Save your changes and close the file. Now, when you go back into your Project properties,
you’ll see the settings arranged in their new order:

AX.17	 Hide or Show the Solution File in Solution Explorer

Windows Alt,T, O

Menu Tools | Options | Projects and Solutions | General

Command Tools.Options

Versions 2005,2008,2010

Code vstipProj0008

If you don’t like seeing the solution file in Solution Explorer, you can easily hide it (or show it
if you have it hidden). First, take a look at the default view of Solution Explorer, with the solu-
tion file showing:

To hide the solution file, select Tools | Options | Projects And Solutions | General, and clear
the Always Show Solution option:

	 Appendix B  Additional Tips	 A33

The result is shown below:

Note  This feature works only when you have just one project in the solution; if you have mul-
tiple projects in your solution, Visual Studio ignores this setting and shows you the solution node.

AX.18	 New Project Dialog Preferred Language

Windows Alt,T, I

Menu Tools | Import and Export Settings

Command Tools.ImportandExportSettings

Versions 2005,2008,2010

Code vstipEnv0041

As you’re examining items that Visual Studio can export, you might come across the New
Project Dialog Preferred Language option, under General Settings:

You might wonder what that means. The best way to explain is to show you a little bit more
about the inner workings of Visual Studio.

A34	 AX.18  New Project Dialog Preferred Language

When you installed Visual Studio, you might recall having chosen your preferred develop-
ment settings:

Some of these options are language-specific, and some are not. If you chose General
Development Settings, for example, you have no preferred language in the New Project dia-
log box, so you see a list of languages:

Without a preferred language, the New Project dialog box groups all the language-specific
templates into separate nodes, so you can easily select the one you want. However, if you
chose a development setting option associated with a particular language, such as VB, you
see something different in the New Project dialog box:

	 Appendix B  Additional Tips	 A35

As you can see, the other top-level language nodes have disappeared, because you already
indicated that Visual Basic is your preferred language. Instead, you’ll see an Other Languages
node that represents all the other languages:

So, to come full circle, when you export the New Project Dialog Preferred Language item, it
saves this structure for you, which you can then later import.

AX.19	 Optimizing Your Project Code

Default Alt+Enter (with project selected in Solution Explorer)

Visual Basic 6 Alt+Enter (with project selected in Solution Explorer)

Visual c# 2005 Alt+Enter (with project selected in Solution Explorer)

Visual C++ 2 Alt+Enter (with project selected in Solution Explorer)

Visual C++ 6 Alt+F7; Alt+Enter (with project selected in Solution Explorer)

Windows Alt,P, P

Menu Project | [Project Name] Properties

Command Project.Properties

Versions 2008,2010

Languages C#, C++, VB

Code vstipProj0014

In vstipDebug0032 (“Understanding Just My Code,” page A215), we touched on optimiza-
tion. When optimization is turned off (the default setting for Debug builds), it factors into
the code being considered “yours” for the purposes of determining what is “Just My Code.”
Generally, you won’t turn this on for Debug builds. If you do, debug symbols are not gener-
ated and you can’t step through your code.

A36	 AX.19  Optimizing Your Project Code

When you create a Release build, Visual Studio turns optimization on by default. So what is
optimization? According to the documentation, the optimization option “enables or disables
optimizations performed by the compiler to make your output file smaller, faster, and more
efficient.”

It’s useful to know where to find this option.

C#
In C#, you’ll find the Optimize Code option in the Project properties on the Build tab:

VB
In VB, it is also in the Project properties, but on the Compile tab, and you need to click
Advanced Compile Options to find it:

	 Appendix B  Additional Tips	 A37

Next, locate the Enable Optimizations option:

C++
While VB and C# have only a single option to control optimization, C++ supports a number
of more specific optimizations. For example, you can choose to optimize for application
speed or for program size. Enabling the optimizations setting from the Project properties en-
ables full optimization (/Ox).

You can get a sense of the full range of /O features in the following list at http://msdn.microsoft.
com/en-us/library/k1ack8f1.aspx:

●● /O1 optimizes code for minimum size.

●● /O2 optimizes code for maximum speed.

●● /Ob controls inline function expansion.

●● /Od disables optimization, speeding compilation and simplifying debugging.

●● /Og enables global optimizations.

●● /Oi generates intrinsic functions for appropriate function calls.

●● /Os tells the compiler to favor optimizations for size over optimizations for speed.

●● /Ot (a default setting) tells the compiler to favor optimizations for speed over optimiza-
tions for size.

●● /Ox selects full optimization.

●● /Oy suppresses the creation of frame pointers on the call stack for quicker function
calls.

Finally
Optimization does a lot of cool things that are great for a shipping application—but not for
one you are currently working on and debugging. It’s easy to get deep into what the various
optimization options actually do; Eric Lippert, of Microsoft, wrote an excellent article on this
subject, titled “What Does the Optimize Switch Do,” which you can find at http://blogs.msdn.
com/b/ericlippert/archive/2009/06/11/what-does-the-optimize-switch-do.aspx.

http://msdn.microsoft.com/en-us/library/k1ack8f1.aspx
http://msdn.microsoft.com/en-us/library/k1ack8f1.aspx
http://blogs.msdn.com/b/ericlippert/archive/2009/06/11/what-does-the-optimize-switch-do.aspx
http://blogs.msdn.com/b/ericlippert/archive/2009/06/11/what-does-the-optimize-switch-do.aspx

A38	 AX.20  Full Screen Mode

Additional Tips from Chapter 3
AX.20	 Full Screen Mode

Default Shift+Alt+Enter

Visual Basic 6 Shift+Alt+Enter

Visual C# 2005 Shift+Alt+Enter

Visual C++ 2 Shift+Alt+Enter

Visual C++ 6 Shift+Alt+Enter

Visual Studio 6 Shift+Alt+Enter

Windows Alt,V, U

Menu View | Full Screen

Command View.FullScreen

Versions 2005, 2008, 2010

Code vstipEnv0024

You can quickly switch from any current window state to Full Screen Mode by pressing
Shift+Alt+Enter:

By default, this action hides the toolbars and takes up as much of the screen as possible. The
advantage, of course, is that you get more real estate to work with when you need more
room.

To come out of Full Screen Mode, just press Shift+Alt+Enter again and you are returned to
normal view.

	 Appendix B  Additional Tips	 A39

AX.21	 Split Your Windows Horizontally

Windows Alt,W, P (toggle split and remove)

Menu Window | Split; Window | Remove Split

Command Window.Split (toggle split and remove)

Versions 2005, 2008, 2010

Code vstipEnv0004

In Visual Studio, you can split your windows horizontally. This feature has been available in
Microsoft products for quite a while. Just go to Window | Split on the menu bar, or you can
use the following mouse technique.

Go the upper-right corner of a document window, and look for the splitter control, as shown
in the following illustration:

Click and drag the control down to begin the split process:

Now you have a horizontal split, so you can do things like see different sections of your
document at the same time:

A40	 AX.22  Sorting Items in the Toolbox

To remove a split, select Window | Remove Split—or just double-click the line separating the
two sections.

AX.22	 Sorting Items in the Toolbox

Windows Shift,F10, O (with the Toolbox selected)

Menu [Right Click the Toolbox] | Sort Items Alphabetically

Command Tools.SortItemsAlphabetically

Versions 2005, 2008, 2010

Code vstipTool0052

Warning  As far as I know, there is no easy way to undo the sorting action other than resetting
the Toolbox, so make sure you really want the Toolbox items listed alphabetically before you ap-
ply this tip.

If you don’t like the default sort order for items in the Toolbox, you can right-click the
Toolbox and then choose to sort the items alphabetically:

Selecting this option sorts the items by name, assuming they weren’t sorted that way already:

	 Appendix B  Additional Tips	 A41

AX.23	 Icon vs. List View in the Toolbox

Windows Shift,F10, L (with the Toolbox selected will toggle List View)

Menu [Right Click the Toolbox] | List View (toggle)

Command Tools.ListView

Versions 2005, 2008, 2010

Code vstipTool0053

The default view of items in the Toolbox is List View, as shown in the following illustration:

You can change this to the Icon View if you prefer, by right-clicking the Toolbox and clicking
List View, which turns off the List View option:

A42	 AX.23  Icon vs. List View in the Toolbox

This produces the result shown in the following illustration:

To get the List View back again, right-click in Icon View, and click List View again.

This option applies only on the current Toolbox tab, so you can have your tabs organized dif-
ferently based on your preference:

	 Appendix B  Additional Tips	 A43

AX.24	 Hide the Status Bar

Windows Alt,T, O

Menu Tools | Options | Environment | General

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0024

Removing the Status Bar gives you a little extra space at the bottom of your screen. Without
it you cannot get status messages, so remove it only if you are sure you don’t need it. To re-
move the Status Bar, go to Tools | Options | Environment | General and clear the Show Status
Bar option:

Before (status bar is where the word “Ready” is located):

After (no status bar):

AX.25	 Remove the Navigation Bar

Windows Alt,T, O

Menu Tools | Options | Text Editor | [All Languages or Specific Language]

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0028

If you find you don’t use the navigation bar, shown in the following illustration, and want a
little extra space, how can you make it go away?

A44	 AX.26  Show Any Toolbar

Just go to Tools | Options | Text Editor | [All Languages or Specific Language], and clear the
Navigation Bar check box:

The following illustration shows the result:

AX.26	 Show Any Toolbar

Windows Alt,V, T, [Up or Down] Arrow

Menu View | Toolbars | [Toolbar]

Versions 2005, 2008, 2010

Code vstipEnv0025

You can show any toolbar at any time. Just right-click an existing toolbar, and left-click the
one you want to see:

Not all toolbars will have their buttons available, because it depends on your context. For
example, the Database Diagram Toolbar (shown in the following illustration) buttons are not
available until you are actually working on a diagram:

	 Appendix B  Additional Tips	 A45

AX.27	 Changing Auto-Hide Behavior for Tool Windows

Windows Alt,T, O

Menu Tools | Options | Environment | General

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0035

By default, you could easily have several tool windows in a tab group, as shown here:

So to clear your workspace, you click the auto-hide button:

Now all the tool windows are hidden together. Next you can go to Tools | Options |
Environment | General and select the Auto Hide Button Affects Active Tool Window Only
option:

Now you no longer get tabs at the bottom when you interact with a tool window:

A46	 AX.27  Changing Auto-Hide Behavior for Tool Windows

The tool windows have to be docked individually to get the tabs again:

Now, when you auto-hide a window, only that window is hidden; the rest of the tab group
remains visible:

	 Appendix B  Additional Tips	 A47

AX.28	 Closing a Tool Window Tab Group

Windows Shift,Esc

Menu Tools | Options | Environment | General

Command Window.CloseToolWindow

Versions 2005, 2008, 2010

Code vstipTool0040

By default, when you click the Close button for a tool window in a tab group, it normally
closes only the current tool window:

However, you can change this behavior by going to Tools | Options | Environment | General
and clearing the Close Button Affects Active Tool Window Only check box, as shown in the
following illustration:

Now, closing any one tool window in the tab group causes all tool windows in that group to
be closed.

AX.29	 Copy and Paste with the Command Prompt

Windows Enter (copy)

Menu System Menu | Edit | [Mark, Copy, Paste, Select All]

Code vstipTool0057

In a previous tip, we looked at how to work with the command prompt history. In this tip, we
examine how to copy and paste text to and from the Command Prompt window.

A48	 AX.29  Copy and Paste with the Command Prompt

Pasting
Visual Studio offers a rich set of tools to help you work with text in the command prompt
windows. For example, you can copy text and paste it by going to System Menu | Edit | Paste,
as shown in the following illustration.

Note  The System menu is the icon in the upper-left corner of the window.

If you have a folder or file path you want to use, you can always find the folder or file in
Windows Explorer and drag the item to the command prompt, as shown in the following
illustration:

The preceding action pastes the full path to the folder or file in the window:

	 Appendix B  Additional Tips	 A49

Copying
You can copy text from the command prompt by marking the text. Go to System Menu |
Edit | Mark, as shown in the following illustration:

Highlight the text you want by clicking and dragging over that text:

If you want, you can always go to System Menu | Edit | Select All:

Press Enter to copy the text to the clipboard, and then paste the text where you want.

A50	 AX.30  Customize the Command Prompt

AX.30	 Customize the Command Prompt

Windows Alt,Space, P

Menu System Menu | Properties

Code vstipTool0058

If you are going to use the command prompt, you might want to customize the look and
feel:

Note  If you want to customize the Command window, you need to run it as Administrator. To
do this, just right-click the command prompt icon and choose Run As Administrator:

Let’s review some basic settings you might want to take advantage of early on. First go to
System Menu | Properties:

	 Appendix B  Additional Tips	 A51

Note  Just as a reminder, the System menu is the icon at the upper-left corner of the window:

Options
On the Options tab, notice that we have several items of interest:

A52	 AX.30  Customize the Command Prompt

Cursor Size
Represents the size of the flashing cursor.

Small

Medium

Large

Command History
Deals with how many commands are remembered by setting the buffer size (number of com-
mands to remember) times the number of buffers. The default is 200 commands, but this
value can be changed to 999 for each value for a max total of 998,001 commands that can
be remembered. I usually set Buffer Size to 100 and Number Of Buffers to 5, for a total of
500 commands remembered.

I usually select the Discard Old Duplicates option. Some people leave this off for running the
same command several times, so you might want to leave this off in some cases. Selecting
this option removes duplicates so that they don’t show up several times in the command
history.

	 Appendix B  Additional Tips	 A53

Before:

After:

Edit Options
Define how you can do certain actions. Quick Edit Mode allows you to use your mouse to
work with text in the window, so I suggest you turn it on. Insert Mode is on by default and
simply means that if you move the cursor into a command (using the arrow keys), you can
type and it inserts (instead of overwrites) the text after it.

A54	 AX.30  Customize the Command Prompt

Before:

After:

Font
The Font tab is pretty self-explanatory. It allows you to pick various font properties for the
command window. Play with these to suit your needs:

	 Appendix B  Additional Tips	 A55

Layout
The Layout tab is very important. Let’s look at some of these options:

Screen Buffer Size
Allows you to set how wide and tall you want the window information to be. Width should
be less than the window size width you anticipate. Because I tend to maximize my command
windows, I set this to 100. Height is how many lines you want to be able to scroll back to. I set
this to 5000 just because I like large buffer sizes. Most folks tend to set this to around 1000
or so.

Window Size
Sets the initial size of the command window. You can play with these settings to find a suit-
able size for you. Because I maximize my command windows, I just leave this setting alone.

Window Position
The position you want the window to start in. I would leave this setting be, but if you want to
change it, set Left and Top to 0 and then increase from there to suit your taste.

Colors
The Colors tab allows you to change two major aspects of the color scheme for the com-
mand window: one for the regular window and one for the pop-up window you get when
you press F7:

A56	 AX.30  Customize the Command Prompt

These settings are completely personal preferences, so try adjusting them and looking at the
previews at the bottom to determine what schemes suit you. I tend to favor the old school
“green screen” colors on my Command windows (green text with a black background).

Resetting Back to Defaults
If you totally mess up your settings, you can always get all the default settings back by going
to System Menu | Defaults:

	 Appendix B  Additional Tips	 A57

After clicking Default, you see the properties with all tabs set to their default settings. Just
click OK, and you have all your defaults back:

Note  When you restore the default settings, notice the AutoComplete option that wasn’t en-
abled before. This option allows for tab completion of file names. (See vstipTool0056, “Command
Prompt Tab Completion,” page 105.) You should always leave this setting on.

AX.31	 Show All Toolbox Controls

Windows Shift,F10, S (with Toolbox selected)

Menu Right-click | Show All

Command Tools.ShowAll

Versions 2005, 2008, 2010

Code vstipTool0060

Sometimes when you install controls for the Toolbox, you might not see the controls because
they are in the wrong context. For example, a WPF control wouldn’t show up in the Toolbox
while you are typing code. When the controls don’t show up, you might think the add-in
failed to install the Toolbox controls. This tip shows how you can confirm everything installed
in the Toolbox.

To see all the controls that are installed, right-click the Toolbox and select Show All, as shown
in the following illustration:

A58	 AX.32  Server Explorer: Data Connections

Now all the controls are visible, regardless of context:

AX.32	 Server Explorer: Data Connections

Default Ctrl+Alt+S (view server explorer)

Visual Basic 6 Ctrl+Alt+S (view server explorer)

Visual C# 2005 Ctrl+Alt+S; Ctrl+W, L; Ctrl+W, Ctrl+L (view server explorer)

Visual C++ 2 Ctrl+Alt+S (view server explorer)

Visual C++ 6 Ctrl+Alt+S (view server explorer)

Visual Studio 6 Ctrl+Alt+S (view server explorer)

Windows Alt,V, V (view server explorer); Alt,T, D (connect to database)

Menu View | Server Explorer; Tools | Connect to Database

Command View.ServerExplorer; Tools.ConnecttoDatabase

Versions 2005, 2008, 2010

Code vstipTool0121

Server Explorer (Ctrl+Alt+S) is the server management tool window that comes with Visual
Studio. One of the things you can use this window for is to open data connections:

	 Appendix B  Additional Tips	 A59

Data Connections in Other Areas
The data connections you have in Server Explorer can be used in other areas, such as ADO.
NET Entity Data Models:

When you go to create Entity Data Models that are generated from a database, you can
choose from the data connections you already have or you can create a new connection to
be added to the list.

Data Connections in Server Explorer
There is an incredible amount of power and control that is available here. Let’s look at a
couple of examples.

A60	 AX.32  Server Explorer: Data Connections

Tables

At the most basic level, you can list out the tables in the database. Additionally, you can
right-click any table and see most of the features you can leverage, as shown in the following
illustration:

	 Appendix B  Additional Tips	 A61

Notice that you can add a new table, create a new query, or just show the data in the table,
among other tasks.

Stored Procedures

One of the great database features in Visual Studio is that not only can you create and edit
stored procedures, but you can step into them as well:

Finally
Don’t take the Database Connection features in Server Explorer for granted. These features
make a great deal of power available to you, and you should invest some time to see whether
these are helpful for your work.

A62	 AX.33  Server Explorer: Server Event Logs

AX.33	 Server Explorer: Server Event Logs

Default Ctrl+Alt+S

Visual Basic 6 Ctrl+Alt+S

Visual C# 2005 Ctrl+Alt+S; Ctrl+W, L; Ctrl+W, Ctrl+L

Visual C++ 2 Ctrl+Alt+S

Visual C++ 6 Ctrl+Alt+S

Visual Studio 6 Ctrl+Alt+S

Windows Alt,V, V

Menu View | Server Explorer

Command View.ServerExplorer

Versions 2005, 2008, 2010

Code vstipTool0122

Most people believe that Server Explorer is the tool window we use for data connections (see
vstipTool0121, ”Server Explorer Data Connections,” page A58), and they assume that’s pretty
much where the experience ends.

This unsung hero really does a lot more if you let it. For example, the Servers section comes
with a power that you might not even know existed—working with servers.

Adding Servers
To get started, Server Explorer comes with the local machine already in the list of Servers,
plus you can add additional servers as needed:

Don’t be fooled by the term “Server”; it really means any computer that you want to connect
to for information. In these examples, my “server” is a Microsoft Windows 7 Professional–
based machine.

	 Appendix B  Additional Tips	 A63

Event Logs
After you have the server that you want, you can start working with features. The Event Logs
section is a perfect example. The following illustration shows what is on my machine for
Event Logs in Server Explorer:

You can use this area to start the Event Viewer if you need it:

Or you can take a quick view of events in any of the various categories by drilling down into
the tree:

A64	 AX.33  Server Explorer: Server Event Logs

Click and Drag Components
Event log components can even be dragged onto a Windows form or component class de-
sign surface so that you can manipulate them:

Note  For more information, see the topic “How to: Add Items from Server Explorer,” at http://
msdn.microsoft.com/en-us/library/84s2c1k0.aspx.

When the component is in place, you can write code to perform various actions. In the fol-
lowing example, an entry is written to the event log:

This is a great way to have event log information available to the user. Taking time to learn
Server Explorer can definitely bring you benefits in your daily work.

http://msdn.microsoft.com/en-us/library/84s2c1k0.aspx
http://msdn.microsoft.com/en-us/library/84s2c1k0.aspx

	 Appendix B  Additional Tips	 A65

AX.34	 Server Explorer: Server Management Classes

Default Ctrl+Alt+S

Visual Basic 6 Ctrl+Alt+S

Visual C# 2005 Ctrl+Alt+S; Ctrl+W, L; Ctrl+W, Ctrl+L

Visual C++ 2 Ctrl+Alt+S

Visual C++ 6 Ctrl+Alt+S

Visual Studio 6 Ctrl+Alt+S

Windows Alt,V, V

Menu View | Server Explorer

Command View.ServerExplorer

Versions 2005, 2008, 2010

Code vstipTool0123

The management classes in Server Explorer give you a view into the system. For example, you
can use management classes to see network shares, as shown in the following illustration:

A66	 AX.34  Server Explorer: Server Management Classes

Create
You can also right-click a node and choose Create from the menu to make a new instance:

Unfortunately, you get a really ugly and unfriendly dialog box to use when you do this, as
shown in the following illustration:

	 Appendix B  Additional Tips	 A67

Generate Classes
One better way to work with the management classes is to right-click one and then generate
a class from the menu:

This gives you a class you can use as you see fit:

Click and Drag Components
The management classes can also be dragged onto a Windows form or component class de-
sign surface so that you can manipulate them.

Note  For more information, see the topic “How to: Add Items from Server Explorer,” at http://
msdn.microsoft.com/en-us/library/84s2c1k0.aspx.

http://msdn.microsoft.com/en-us/library/84s2c1k0.aspx
http://msdn.microsoft.com/en-us/library/84s2c1k0.aspx

A68	 AX.35  Window Layouts: File View

AX.35	 Window Layouts: File View

Versions 2005, 2008, 2010

Code vstipEnv0053

I talked about the different window layouts in vstipEnv0051, “Window Layouts: The Four
Modes,” on page 90, and vstipEnv0052, “Window Layouts: Design, Debug, and Full Screen,”
on page 91. Now I want to cover a lesser-known layout known as File View.

You get to File View by putting in the file name of any file associated with Visual Studio at the
command prompt. In the following example, I’ve changed my directory to one of my solu-
tions, and I’m putting in the name “SomethingToDo.cs”:

When I tried to do this without running the command prompt as Administrator, it wouldn’t
load the file. So you might have to run the command prompt as Administrator. If Visual
Studio is already open, it shows the file and if not, it loads and shows the file:

	 Appendix B  Additional Tips	 A69

Notice that it is a very sparse layout. The good news is that you can customize it any way you
want, to have quick access to the tools you need most. I’ll add Server Explorer for now:

If you make changes, they are saved to your .vssettings file when you close Visual Studio.
Remember that each mode is a distinct area, so the changes you make here are not seen in
any of the other window modes.

A70	 AX.36  Rearrange Your Toolbars

AX.36	 Rearrange Your Toolbars

Versions 2005, 2008, 2010

Code vstipEnv0027

You can easily rearrange your toolbars by simply putting your mouse over the grip control
(the four vertical dots to the left of every toolbar), as shown in the following illustration:

When you get the four-directional mouse pointer, just click and drag the toolbar to the new
position:

Be careful; it’s real easy to get a shortened toolbar on your hands when moving toolbars be-
side other toolbars, as shown in the following illustration:

Note  You know that you aren’t seeing all the buttons on a toolbar if there are two arrows side-
by-side on the far right of that toolbar, as shown in the following illustration:

Of course, this shortened toolbar might be exactly what you want because the rest of the
buttons are accessed by clicking on the drop-down arrow:

	 Appendix B  Additional Tips	 A71

If this is not what you want, just click and drag the grip control of the toolbar to the right of
the shortened toolbar and uncover as many buttons as you like:

In Visual Studio 2008 and 2005, you can also make the toolbar a floating one by dragging it
off the toolbar area, as shown in the following illustration:

To put it back, just double-click anywhere on the title bar of the toolbar.

AX.37	 Create a Shortcut Key for a Macro

Windows Alt, T, O

Menu Tools | Options | Environment | Keyboard

Command Tools.CustomizeKeyboard

Versions 2005, 2008, 2010

Code vstipTool0066

We covered creating shortcuts in vstipTool0063 (“Keyboard Shortcuts: Creating New
Shortcuts,” page 127). Assuming you have a macro you would like to attach a shortcut key to,
you can easily make your macros accessible. Let’s look at an example to show you how. First,
go to Tools | Options | Environment | Keyboard:

A72	 AX.37  Create a Shortcut Key for a Macro

To access your macros, type macros. in the Show Commands Containing area:

In this case, let’s bind the Macros.Samples.Utilities.TurnOffLineNumbers and Macros.Samples.
Utilities.TurnOnLineNumbers macros.

Warning  Make sure the keyboard shortcuts you use here aren’t already assigned to some-
thing else. They most likely aren’t, but you should double-check by reviewing vstipTool0063 ,
“Keyboard Shortcuts Creating New Shortcuts,” page 127.

Let’s bind Macros.Samples.Utilities.TurnOnLineNumbers to Ctrl+M, CTRL+1, as shown in the
following illustration:

Let’s bind Macros.Samples.Utilities.TurnOffLineNumbers to Ctrl+M, Ctrl+0 (zero), as shown in
the following illustration:

	 Appendix B  Additional Tips	 A73

Click OK, and let’s test out our shortcuts. Go to any source code, and press Ctrl+M, Ctrl+0 to
turn line numbers off and Ctrl+M, Ctrl+1 to turn them on.

AX.38	 How to Run External Executables from the Command Window

Command Tools.Shell

Versions 2005, 2008, 2010

Code vstipTool0089

You can run external programs from the Command Window (Ctrl+Alt+A) by using the Tools.
Shell command. This can be useful if you run certain executables often (like Xcopy) and
want to turn the action into a command alias. See vstipTool0068 (“Understanding Command
Aliases,” page 113).

The general syntax for the command is as follows:

Tools.Shell [/command] [/output] [/dir:folder] path [args]

Arguments
Following are some key arguments you can use for this command:

●● /commandwindow, /command, /c, or /cmd

Optional. Specifies that the output for the executable is displayed in the Command
Window.

●● /dir:folder or /d: folder

Optional. Specifies the working directory to be set when the program is run.

A74	 AX.38  How to Run External Executables from the Command Window

●● /outputwindow, /output, /out, or /o

Optional. Specifies that the output for the executable is displayed in the Output
window.

For example, to run the Xcopy command, it would appear as shown in the following
illustration:

Just for fun, because I don’t actually have the files in the sample command, the output shown
in the following illustration is the result of running the Xcopy command:

As you can see, the output from Xcopy was redirected to the Command Window and tells me
that it can’t find a file.

If the item you want to run isn’t in the path environment variable, you must include the
full path (surrounded by quotes if any spaces are in the path), as shown in the following
illustration:

	 Appendix B  Additional Tips	 A75

Additional Tips from Chapter 4
AX.39	 Close All But This on the File Tab Channel

Default Alt+- (minus sign), A [VS2010 Only]

Visual Basic 6 [no shortcut]

Visual C# 2005 Alt+- (minus sign), A [VS2010 Only]

Visual C++ 2 Alt+- (minus sign), A [VS2010 Only]

Visual C++ 6 Alt+- (minus sign), A [VS2010 Only]

Visual Studio 6 Alt+- (minus sign), A [VS2010 Only]

Windows [no shortcut]

Command File.CloseAllButThis; Window.ShowDockMenu

Versions 2005, 2008, 2010

Code vstipEnv0011

If you ever get the urge to close every file except the one you are currently working on, you
can just right-click the current file tab and choose Close All But This:

AX.40	 Copy a File’s Full Path from the File Tab

Default Alt+- (minus sign), F [VS2010 Only]

Visual Basic 6 [no shortcut]

Visual C# 2005 Alt+- (minus sign), F [VS2010 Only]

Visual C++ 2 Alt+- (minus sign), F [VS2010 Only]

Visual C++ 6 Alt+- (minus sign), F [VS2010 Only]

Visual Studio 6 Alt+- (minus sign), F [VS2010 Only]

Windows [no shortcut]

Command File.CopyFullPath; Window.ShowDockMenu

Versions 2005, 2008, 2010

Code vstipEdit0013

You can quickly copy the full path of any file. Just right-click the tab for the file, and choose
Copy Full Path, as shown in the following illustration:

A76	 AX.41  Understanding the File Tab Channel Drop-Down Button

You now have the full path in your clipboard so that you can paste it (Ctrl+V) anywhere you
need it.

AX.41	 Understanding the File Tab Channel Drop-Down Button

Versions 2005, 2008, 2010

Code vstipEnv0012

Here is a convenient way to know whether you are seeing all your files on the File Tab
Channel.

Let’s say you have a couple of files open: Notice that the button to the far right looks like an
arrow pointing down:

But if you open up a few more files so that they all can’t be seen on the file channel, the
button changes to let you know that all the files are not visible on the File Tab Channel (indi-
cated by the line above the arrow in the following illustration):

If you click the button, it gives you a list of all the files so that you can pick the one you want
from the list.

	 Appendix B  Additional Tips	 A77

AX.42	 How to Disable the IDE Navigator

Default Ctrl+F6 (next); Ctrl+Shift+F6 (previous)

Visual Basic 6 Ctrl+F6 (next); Ctrl+Shift+F6 (previous)

Visual c# 2005 Ctrl+F6 (next); Ctrl+Shift+F6 (previous)

Visual C++ 2 Ctrl+F6; Ctrl+Tab (next); Ctrl+Shift+F6; Ctrl+Shift+Tab (previous)

Visual C++ 6 Ctrl+F6 (next); Ctrl+Shift+F6 (previous)

Visual Studio 6 Ctrl+F6; Ctrl+Tab (next); Ctrl+Shift+F6; Ctrl+Shift+Tab (previous)

Windows [no shortcut]

Command Window.NextDocumentWindow; Window.PreviousDocumentWindow

Versions 2005, 2008, 2010

Code vstipEnv0039

By default, if you press Ctrl+Tab, you get the IDE Navigator, as shown in the following
illustration:

Some people don’t like this feature and instead would like to just iterate through open docu-
ment tabs.

This behavior is bound to Ctrl+ F6 and to Ctrl+Shift+F6 in the General settings, but some
people don’t like this key combination.

You can easily rebind the commands to Ctrl+Tab and Ctrl+Shift+Tab. If you go to
Tools | Options | Environment | Keyboard, you can see that Ctrl+Tab is bound to
Window.NextDocumentWindowNav:

A78	 AX.42  How to Disable the IDE Navigator

If you assign Ctrl+Tab to Window.NextDocumentWindow instead, you can see the result in
the following illustration:

The IDE Navigator does not show up anymore, and instead Ctrl+Tab iterates through the
open document tabs. If you like this, you might want to bind Ctrl+Shift+Tab to Window.
PreviousDocumentWindow as well:

	 Appendix B  Additional Tips	 A79

If you don’t like the new setup, you can always reverse the process and rebind
Ctrl+Tab and Ctrl+Shift+Tab to Window.NextDocumentWindowNav and Window.
PreviousDocumentWindowNav, respectively.

For more information about binding keyboard shortcuts, refer to vstipTool0063 (“Keyboard
Shortcuts Creating New Shortcuts,” page 127).

AX.43	 Thumbnail Previews in the IDE Navigator

Versions 2010

Code vstipTool0113

In vstipTool0023 (“Using the IDE Navigator,” page 160), I show you how to use the IDE
Navigator. This next tip comes from Paul Harrington on the Visual Studio Team. In Visual
Studio 2008, when you used the IDE Navigator, you could also see thumbnail previews of the
documents in the list. However, this feature was removed from Visual Studio 2010. The good
news is that the feature is still there.

Warning  This tip requires you to add a value to the registry, so you do this at your own risk.
And this solution has been known to not always work 100 percent of the time.

Open up the registry (regedit.exe), and go to HKEY_CURRENT_USER\Software\Microsoft\
VisualStudio\10.0\General.

Now right-click the General key, and add a new DWORD value:

Call it ShowThumbnailsOnNavigation, and set the value to 1:

A80	 AX.44  Changing Editors Using Open With

Now you should have the thumbnail preview available:

Troubleshooting
This is a little graphics intensive, so if you don’t see the thumbnail, it could be because
you haven’t enabled the rich client visual experience under Tools | Options | Environment |
General:

AX.44	 Changing Editors Using Open With

Windows Alt,V, N

Menu View | Open With

Command View.OpenWith

Versions 2008, 2010

Code vstipEnv0037

	 Appendix B  Additional Tips	 A81

You can use Open With to change the editor used to view a file. You can use this feature in
several ways. For example, if you have an existing file open, you can go to View | Open With:

For files not opened yet, you can use this option from inside the Open File dialog box:

Regardless of the method used, you get the Open With dialog box:

A82	 AX.44  Changing Editors Using Open With

Notice, in this example, that one editor is the default editor for the file type you want to
open. This can easily be changed by selecting a new editor and clicking Set As Default:

Warning  Use this feature at your own risk, because it’s important to be sure of the editor you
are using before you make it the default.

	 Appendix B  Additional Tips	 A83

Notice the Add button, shown in the following illustration, which enables you to indicate new
programs that you want to use for opening files:

Example
One common use of Open With is to enable source code editing for WPF files. Normally, you
get a designer/code view:

To enable source code editing more easily, first use Open With and select Source Code (Text)
Editor:

A84	 AX.45  Using a Simple Quick Find

Now you should see a “code only” view of the XAML:

Additional Tips from Chapter 5
AX.45	 Using a Simple Quick Find

Default Ctrl+F

Visual Basic 6 Ctrl+F

Visual C# 2005 Ctrl+F

Visual C++ 2 Alt+F3

Visual C++ 6 Ctrl+F

Visual Studio 6 Ctrl+F

Windows Alt,E, F, F

Menu Edit | Find and Replace | Quick Find

Command Edit.Find

Versions 2005, 2008, 2010

Code vstipFind0006

You can do a simple find anytime you want by pressing Ctrl+F to bring up the Quick Find
window:

	 Appendix B  Additional Tips	 A85

The Find What area is automatically prepopulated with the word the cursor was currently on,
or you can type in a new one.

To start, just press Enter or click Find Next, and the find operation finds the next instance
of the search term you are looking for. By default, it looks from the current cursor location
downward.

The search continues until you reach the end of the document, and then it returns to the be-
ginning and shows the following dialog box:

As you can see, you can turn this off by clearing the Always Show This Message check box so
that it doesn’t annoy you.

AX.46	 Using the Find Combo Box

Default Ctrl+D

Visual Basic 6 [no shortcut]

Visual C# 2005 Ctrl+/

Visual C++ 2 Ctrl+D; Ctrl+F; Ctrl+A

Visual C++ 6 Ctrl+D

Visual Studio 6 Ctrl+Shift+F

Windows Ctrl+Shift+F

Command Edit.GoToFindCombo

Versions 2005, 2008, 2010

Code vstipFind0009

While it tends to get ignored sometimes, the Find Combo box is actually quite useful. In the
following examples, I’ll show how you can quickly use this area while you are writing your
code:

A86	 AX.46  Using the Find Combo Box

It can be used as a quick way to go to a line without any dialog boxes popping up. Just press
Ctrl+D to get to the combo box, and then type in a line number, and finally, press Ctrl+G to
go to the line number you typed:

Also, it can be used to execute commands by the pressing Ctrl+Forward slash (/) followed by
your command:

Note  Ctrl+/ is bound to the Tools.GoToCommandLine command for all languages except C#.

Its primary use, however, is to perform a simple find operation. Press Ctrl+D, type in whatever
you are looking for, and press Enter:

It finds the next instance of the search term. If you have a lot of text to go through, you can
hold down the Enter key to quickly go through the document. One other thing to note is
that, unlike a Quick Find, this find does not give you a dialog box telling you when you have
looped around to where you started.

When you use this feature, pay attention to the status bar at the bottom. It shows you all the
options that have been set for the current search:

The options used here are set in the Quick Find tool window (Ctrl+F):

	 Appendix B  Additional Tips	 A87

Last, but certainly not least, is the Find In Files button, which brings up the Find In Files tool
window (see vstipFind0013, “Find in Files: Find Options,” page 186):

AX.47	 Customize the Files to Search with Find In Files

Default Ctrl+Shift+F

Visual Basic 6 Ctrl+Shift+F

Visual C# 2005 Ctrl+Shift+F

Visual C++ 2 Ctrl+Shift+F

Visual C++ 6 Ctrl+Shift+F

Visual Studio 6 [no shortcut]

Windows Alt, E, F, I

Menu Edit | Find and Replace | Find In Files

Command Edit.FindinFiles

Versions 2005, 2008, 2010

Code vstipFind0005

A88	 AX.47  Customize the Files to Search with Find In Files

In the Find In Files dialog box (Ctrl+Shift+F), choose any option except Current Document and
All Open Documents:

The Look At These File Types combo box is enabled under Find Options:

Now you can choose from the predetermined list of file types, or you can include your own
(semicolon delimited) list:

You can also create a customized set of folders to search in by going back to the Look In area
and clicking the ellipsis:

	 Appendix B  Additional Tips	 A89

Now you have the Choose Search Folders dialog box, where you can completely customize
the folders to look in, and you can even create a custom name for the folder set by typing a
new name in the Folder Set area:

AX.48	 How to Show and Hide Find Messages

Windows Alt,T, O

Menu Tools | Options | Environment | Find and Replace

Versions 2005, 2008, 2010

Code vstipFind0017

When working with the various find-tool windows, you sometimes get messages based on
what you are doing. These range from informational messages to warning messages, as
shown in the following illustrations:

A90	 AX.48  How to Show and Hide Find Messages

If you clear the Always Show This Message check box, the messages go away. But what if you
want the messages back or don’t want to wait for a message to pop up until you can turn the
messages off? No problem. Just go to Tools | Options | Environment | Find And Replace:

The Display Informational Messages and Display Warning Messages check boxes toggle,
showing these messages when you use a find operation. Informational messages really aren’t
very important, but you should consider carefully whether turning off warning messages is a
good idea.

	 Appendix B  Additional Tips	 A91

AX.49	 How to Not Automatically Search for the Currently Selected Word

Windows Alt,T, O

Menu Tools | Options | Environment | Find and Replace

Versions 2005, 2008, 2010

Code vstipFind0018

Does it annoy you when your find operations automatically populate with the word you hap-
pen to have the cursor in?

You can simply go to Tools | Options | Environment | Find And Replace and clear the
Automatically Populate Find What With Text From The Editor check box:

AX.50	 Setting Bookmarks

Default Ctrl+K, Ctrl+K

Visual Basic 6 Ctrl+K, Ctrl+K; Ctrl+K, T

Visual C# 2005 Ctrl+K, Ctrl+K; Ctrl+B, Ctrl+T; Ctrl+B, T

Visual C++ 2 Ctrl+F2

Visual C++ 6 Ctrl+K, Ctrl+K; Ctrl+F2

Visual Studio 6 Ctrl+K, Ctrl+K

Windows Alt,E, K, T

Menu Edit | Bookmarks | Toggle Bookmark

Command Edit.ToggleBookmark

Versions 2005, 2008, 2010

Code vstipTool0047

Bookmarks are a pretty cool feature that a lot of people don’t seem to know about.
Essentially, bookmarks provide a way to mark locations in your code. Unlike comment tokens
(“TODOs”), bookmarks are not stored with the source code and thus are seen only by you.

A92	 AX.50  Setting Bookmarks

You have numerous ways to set a Bookmark. The simplest way is to use Ctrl+K, Ctrl+K to cre-
ate a single bookmark:

When you set a bookmark, it creates a glyph in the margin (see image above) and creates an
entry in the Bookmarks window:

The good news is that you don’t have to keep the default name that is given for the book-
mark. Just right-click the entry in the window, and choose Rename:

Then put in whatever you want for the name:

You can continue to use either the keyboard command or the menu option to create
bookmarks. Another great way to create bookmarks is to use the Bookmark All (bottom
right) button in the Quick Find dialog box (Ctrl+F):

	 Appendix B  Additional Tips	 A93

The Bookmark All button becomes available only if you choose Current Document or All
Open Documents from the Look In drop-down box.

AX.51	 Organizing Bookmarks

Versions 2005, 2008, 2010

Code vstipTool0048

The Bookmarks window gives you some basic information about the bookmarks, and you
have the ability to rename them as well:

However, when you have a lot of bookmarks, it is probably a good idea to organize your
bookmarks. You can drag the bookmarks around to reorganize them in the list:

A94	 AX.52  Navigating Bookmarks

Another thing you can do is create folders in the Bookmarks window (Ctrl+K, Ctrl+F):

Just give the folder(s) a name, and you have a great place to organize bookmarks:

Now you can just drag your bookmarks into the folder(s) you have created:

Naturally, if you have no need for a bookmark, you can simply press Del to delete the cur-
rently selected one, or you can go to Edit | Bookmarks | Clear Bookmarks to remove all your
bookmarks:

AX.52	 Navigating Bookmarks

Default Ctrl+K, Ctrl+P (previous bookmark); Ctrl+K, Ctrl+N (next bookmark); Ctrl+Shift+K, Ctrl+Shift+P
(previous bookmark in folder); Ctrl+Shift+K, Ctrl+Shift+N (next bookmark in folder)

Visual Basic 6 Ctrl+K, Ctrl+P (previous bookmark); Ctrl+K, P (previous bookmark); Ctrl+K, Ctrl+N (next book-
mark); Ctrl+K, N (next bookmark); Ctrl+Shift+K, Ctrl+Shift+P (previous bookmark in folder);
Ctrl+Shift+K, Ctrl+Shift+N (next bookmark in folder)

Visual C# 2005 Ctrl+K, Ctrl+P (previous bookmark); Ctrl+B, Ctrl+P (previous bookmark); Ctrl+B, P (previous book-
mark); Ctrl+K, Ctrl+N (next bookmark); Ctrl+B, Ctrl+N (next bookmark); Ctrl+B, N (next book-
mark); [no shortcut] (previous bookmark in folder); [no shortcut] (next bookmark in folder)

Visual C++ 2 Shift+F2 (previous bookmark); F2 (next bookmark); Ctrl+Shift+K, Ctrl+Shift+P (previous book-
mark in folder); Ctrl+Shift+K, Ctrl+Shift+N (next bookmark in folder)

Visual C++ 6 Ctrl+K, Ctrl+P (previous bookmark); Shift+F2 (previous bookmark); Ctrl+K, Ctrl+N (next book-
mark); F2 (next bookmark); Ctrl+Shift+K, Ctrl+Shift+P (previous bookmark in folder); Ctrl+Shift+K,
Ctrl+Shift+N (next bookmark in folder)

Visual Studio 6 Ctrl+K, Ctrl+P (previous bookmark); Ctrl+K, Ctrl+N (next bookmark); Ctrl+Shift+K, Ctrl+Shift+P
(previous bookmark in folder); Ctrl+Shift+K, Ctrl+Shift+N (next bookmark in folder)

Windows Alt,E, K, [P (previous),B (next)]

Menu Edit | Bookmarks | [Previous, Next] Bookmark [In Folder, Document]

Command Edit.[Previous, Next] Bookmark; Edit.[Previous, Next] Bookmark [In Folder, Document]

Versions 2005, 2008, 2010

Code vstipTool0049

	 Appendix B  Additional Tips	 A95

After you have created and organized your bookmarks, you want to navigate them. You can
go to Edit | Bookmarks to see several available options:

[Next,Previous] Bookmark In Document
This option allows you to restrict browsing to only those bookmarks in the current open
document, independently of how they are organized in the Bookmarks window.

So, even though you have lots of bookmarks in different folders within the Bookmarks win-
dow, this option moves only between the bookmarks in the current document, ignoring any
organization.

[Next,Previous] Bookmark In Folder
This option allows you to restrict browsing to only those bookmarks in the current folder in
the Bookmarks window, independent of how they are arranged in the source code.

Pretty much the opposite of the previous feature, this feature ignores how the bookmarks
are organized in the source code and moves only within the bookmarks in the current folder
within the Bookmarks window:

A96	 AX.52  Navigating Bookmarks

When you reach the last Bookmark in the folder, it loops back around to the first bookmark
in the current folder:

[Next,Previous] Bookmark
This option allows you to navigate between bookmarks in the Bookmarks window. This fea-
ture is very similar to the [Previous, Next] Bookmark In Folder feature and moves sequentially
through bookmarks.

The difference comes when you reach the last bookmark in a folder. Instead of looping
back around to the first bookmark in the folder, this option continues to the next folder and
moves sequentially through those bookmarks as well (and so on):

	 Appendix B  Additional Tips	 A97

Additional Tips from Chapter 6
AX.53	 Turn On Line Numbers

Windows Alt,T,O

Menu Tools | Options | Text Editor | All Languages | General | Display

Command Macros.Samples.Utilities.TurnOnLineNumbers; Macros.Samples.Utilities.TurnOffLineNumbers

Versions 2005, 2008, 2010

Code vstipEdit0025

As you can see in the following illustration, it’s great to have line numbers in your code:

Line numbers are not on by default. To turn on line numbers, just go to Tools | Options | Text
Editor | General | Display and select the Line Numbers check box:

A98	 AX.54  Go to a Line Number

AX.54	 Go to a Line Number

Default Ctrl+G

Visual Basic 6 [no shortcut]

Visual C# 2005 Ctrl+G

Visual C++ 2 Ctrl+G

Visual C++ 6 Ctrl+G

Visual Studio 6 Ctrl+G

Windows Alt,E,G

Menu Edit | Go To

Command Edit.GoTo

Versions 2005, 2008, 2010, 2010 SP1

Code vstipEdit0026

You have three main ways you can go to any line number in your code.

First, you can go to any line number by simply pressing Ctrl+G to see the following dialog
box. Just type in your desired line number, and click OK. The cursor moves to the line number
you typed:

Second, you can double-click in the status bar area that shows your current location (lower-
right part of your screen) to get the “Go To Line” dialog box:

Third, you can use the Find Combo box to quickly go to a line number. This technique does
not work with a default installation of Visual Studio 2010 but was fixed with Service Pack 1. It
requires two steps:

	 1.	 Press Ctrl+D to put your cursor into the Find Combo box:

	 2.	 Type in any line number, and press Ctrl+G to go to that line number:

	 Appendix B  Additional Tips	 A99

Note  In Visual Studio 2010, you might have to press the escape key (Esc) to get out of the Find
Combo box and back to your code.

AX.55	 Comment and Uncomment Code

Default Ctrl+K, Ctrl+C (comment); Ctrl+K, Ctrl+U (uncomment)

Visual Basic 6 Ctrl+K, Ctrl+C (comment); Ctrl+K, Ctrl+U (uncomment)

Visual C# 2005 Ctrl+K, Ctrl+C (comment); Ctrl+E, Ctrl+C (comment); Ctrl+E, C (comment);
Ctrl+E, Ctrl+U (uncomment); Ctrl+E, U (uncomment); Ctrl+K, Ctrl+U (uncomment)

Visual C++ 2 [no shortcut]

Visual C++ 6 Ctrl+K, Ctrl+C (comment); Ctrl+K, Ctrl+U (uncomment)

Visual Studio 6 Ctrl+K, Ctrl+C (comment); Ctrl+K, Ctrl+U (uncomment)

Windows Alt,E, V, M; Alt,E, V, E;

Menu Edit | Advanced | Comment Selection; Edit | Advanced | Uncomment Selection

Command Edit.CommentSelection; Edit.UncommentSelection

Versions 2005, 2008, 2010

Code vstipEdit0047

Sometimes it’s the simple things we forget about. So I present to you the classic Comment
and Uncomment selection. Naturally, you have the Comment and Uncomment buttons,
shown in the following illustration:

And, of course, you have the menu items:

But it’s the keyboard shortcuts that are really important. These, predictably, comment or un-
comment lines of code for you. So let’s say you have some code you want commented out.
Just select it, as shown in the following illustration:

Then press Ctrl+K, Ctrl+C:

A100	 AX.56  Select the Current Word

OK, great, but what if you don’t want to use the mouse? No problem. Just hold Alt+Shift+[Up
or Down Arrow] to do a vertical selection. You don’t have to select the entire line to com-
ment or uncomment it.

Note  In Visual Studio 2005 and Visual Studio 2008, you have to go right or left one character
before you can go up or down for vertical selection.

Then press Ctrl+K, Ctrl+U (in this example):

And there you go. You now have Comment and Uncomment actions anytime you want them.

AX.56	 Select the Current Word

Default Ctrl+W

Visual Basic 6 Ctrl+Shift+W

Visual C# 2005 Ctrl+Shift+W

Visual C++ 2 Ctrl+W

Visual C++ 6 Ctrl+W

Visual Studio 6 Ctrl+W

Windows [no shortcut]

Command Edit.SelectCurrentWord

Versions 2005, 2008, 2010

Code vstipEdit0039

You can easily select the current word in Visual Studio by putting your cursor in the word:

And then just press Ctrl+W:

	 Appendix B  Additional Tips	 A101

AX.57	 Delete Through the Beginning or End of a Word

Default Ctrl+Del (delete to end); Ctrl+Backspace (delete to start)

Visual Basic 6 Ctrl+Del (delete to end); Ctrl+Backspace (delete to start

Visual C# 2005 Ctrl+Del (delete to end); Ctrl+Backspace (delete to start

Visual C++ 2 Ctrl+Del (delete to end); Ctrl+Backspace (delete to start

Visual C++ 6 Ctrl+Del (delete to end); Ctrl+Backspace (delete to start

Visual Studio 6 Ctrl+Del (delete to end); Ctrl+Backspace (delete to start

Windows [no shortcut]

Command Edit.WordDeleteToEnd; Edit.WordDeleteToStart

Versions 2005, 2008, 2010

Code vstipEdit0040

You can delete from the current cursor position through the beginning or end of a word. Let
me Illustrate with a simple example. Let’s say you want to change the word “public”:

Given the current cursor position, you could delete to the end of the word by pressing
Ctrl+Del:

Then you could type the new word:

This is a somewhat contrived example, but you get the idea. Additionally, Ctrl+Backspace de-
letes from the current cursor location through the beginning of a word.

AX.58	 Click and Drag Text to a New Location

Command OtherContextMenus.DragandDrop.MoveHere

Versions 2005, 2008, 2010

Code vstipEdit0041

Often you will find yourself with the need to move text around in the Editor. Text can easily
be moved around by simply selecting it and dragging it to a new location. Start with some-
thing you want to move, like a method:

A102	 AX.58  Click and Drag Text to a New Location

In this case, you might want to collapse the code to make it easier to select and move, as
shown in the following illustration:

Now just select the text, and then click and drag (left mouse button) to move the cursor to
the destination:

Release the mouse button to finish the move to the new location:

	 Appendix B  Additional Tips	 A103

This technique can also be used to move text from one file to another. Just select the text,
and then click and drag your mouse pointer over the tab for the new file:

Even though you get the “can’t drop” indicator, it switches to the new file. Just keep holding
the mouse button down, and move the cursor to the new location:

Then release and you are all set.

A104	 AX.59  Make Selection Uppercase or Lowercase

AX.59	 Make Selection Uppercase or Lowercase

Default Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

Visual Basic 6 Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

Visual C# 2005 Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

Visual C++ 2 Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

Visual C++ 6 Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

Visual Studio 6 Ctrl+Shift+U (uppercase); Ctrl+U (lowercase)

Windows Alt, E, V, U (uppercase); Alt, E, V, L (lowercase)

Menu Edit | Advanced | Make Uppercase; Edit | Advanced | Make Lowercase

Command Edit.MakeUppercase; Edit.MakeLowercase

Versions 2005, 2008, 2010

Code vstipEdit0044

You can easily change the case of any text:

Just select the as much of the word you want to change case for, and press Ctrl+Shift+U to
make the selected characters all uppercase:

Or if you prefer, you can always make all the selected characters lowercase by pressing
Ctrl+U:

Again, you don’t have to select the whole word; you can select only the characters you want
to change.

AX.60	 Brace Matching Rectangle

Windows Alt,T, O

Menu Tools | Options | Fonts and Colors | Display Items

Versions 2005, 2008, 2010

Code vstipEdit0050

The default colors can be a pain sometimes, especially when it comes to certain colors. One
of these, for me, is the Brace Matching Rectangle. The default colors are light grey:

	 Appendix B  Additional Tips	 A105

To change the color, first go to Tools | Options | Fonts and Colors | Display Items and choose
Brace Matching (Rectangle), as shown in the following illustration:

Now choose your new color (Cyan in this example):

A Note About VB
Visual Basic treats this a little differently. When you first close braces, it gives you the Brace
Matching Rectangle color.

After the braces are in place, if you click next to them, it uses the highlighted reference
colors.

AX.61	 Automatic Delimiter Highlighting

Windows Alt,T, O

Menu Tools | Options | Fonts and Colors | Display Items

Versions 2005, 2008, 2010

Code vstipEdit0071

You have probably seen automatic delimiter highlighting in action before. It shows up when
you close parentheses, curly brackets, and other similar delimiters.

A106	 AX.61  Automatic Delimiter Highlighting

C#

VB

Changing Colors
You can modify the colors to suit your need by going to Tools | Options | Environment | Fonts
and Colors and selecting Brace Matching (Rectangle):

Let’s change the background to lime green and click OK:

Turning It Off
If you don’t like this feature, you can go to Tools | Options | Text Editor | General and clear
the Automatic Delimiter Highlighting check box, as shown in the following illustration:

	 Appendix B  Additional Tips	 A107

AX.62	 Move or Select to the Top or Bottom of the Current View in the Editor

Default Ctrl+PgUp (move top); Ctrl+PgDn (move bottom); Ctrl+Shift+PgUp (select top);
Ctrl+Shift+PgDn (select bottom)

Visual Basic 6 [no shortcut]

Visual C# 2005 Ctrl+PgUp (move top); Ctrl+PgDn (move bottom); Ctrl+Shift+PgUp (select top);
Ctrl+Shift+PgDn (select bottom)

Visual C++ 2 Ctrl+PgUp (move top); Ctrl+PgDn (move bottom); Ctrl+Shift+PgUp (select top);
Ctrl+Shift+PgDn (select bottom)

Visual C++ 6 Ctrl+PgUp (move top); Ctrl+PgDn (move bottom); Ctrl+Shift+PgUp (select top);
Ctrl+Shift+PgDn (select bottom)

Visual Studio 6 Ctrl+PgUp (move top); Ctrl+PgDn (move bottom); Ctrl+Shift+PgUp (select top);
Ctrl+Shift+PgDn (select bottom)

Windows [no shortcut]

Command Edit.ViewTop; Window.ViewBottom;Edit.ViewTopExtend;Edit.ViewBottomExtend

Versions 2005, 2008, 2010

Code vstipEdit0056

This tip comes in handy when you want to travel from one end of your screen to the other.
For example, when you are working with documents, you might find yourself at the bottom
of the screen and want to get to the top:

Just press Ctrl+PgUp, and you are taken to the top of the screen as close to the current col-
umn position as possible:

Using Ctrl+PgDn takes you to the bottom of the screen. You can also use Ctrl+Shift+Pg[Up or
Dn] to select everything from the current cursor position to the top or bottom of the screen.

A108	 AX.63  Format the Current Document or Selection

AX.63	 Format the Current Document or Selection

Default Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection)

Visual Basic 6 Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection)

Visual C# 2005 Ctrl+K, Ctrl+D (document); Ctrl+E, Ctrl+D (document); Ctrl+E, D (document);
Ctrl+K, Ctrl+F (selection); Ctrl+E, Ctrl+F (selection); Ctrl+E, F (selection)

Visual C++ 2 [no shortcut] (document); Ctrl+Shift+F (selection); Ctrl+Alt+I (selection)

Visual C++ 6 Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection); Alt+F8 (selection)

Visual Studio 6 Ctrl+K, Ctrl+D (document); Ctrl+K, Ctrl+F (selection); Alt+F8 (selection)

Windows Alt,E, V, A (document); Alt,E, V, F (selection)

Menu Edit | Advanced | Format Document; Edit | Advanced | Format Selection

Command Edit.FormatDocument; Edit.FormatSelection

Versions 2005, 2008, 2010

Code vstipEdit0057

Let’s say you have some code that isn’t formatted properly.

Now you want it to look good. Just select the code, and then go to Edit | Advanced | Format
Selection to get the result shown in the following illustration:

If you want to fix the formatting for the entire document you are currently working in, just go
to Edit | Advanced | Format Document. This operation formats everything in the current open
document for you, without your having to select specific areas.

	 Appendix B  Additional Tips	 A109

AX.64	 Use F6 to Jump Between Split Windows

Default F6; Shift+F6

Visual Basic 6 F6; Shift+F6

Visual C# 2005 [no shortcut]

Visual C++ 2 [no shortcut]

Visual C++ 6 F6; Shift+F6

Visual Studio 6 F6; Shift+F6

Windows [no shortcut]

Command Window.NextSplitPane; Window.PreviousSplitPane

Versions 2005, 2008, 2010

Code vstipEnv0005

If you have split windows (Window | Split), you can easily move the cursor between the panes
without using your mouse: Just press F6:

AX.65	 Turn Off Single-Click URL Navigation in the Editor

Windows Alt,T, O

Menu Tools | Options | Text Editor | All Languages | General | Display

Versions 2005, 2008, 2010

Code vstipEdit0060

In most languages, by default, single-click URL navigation is turned on, which allows you to
use Ctrl+Click to follow a link from the Editor:

A110	 AX.66  Hide the Vertical and/or Horizontal Scroll Bars

This feature can be turned off by going to Tools | Options | Text Editor | All Languages [or
your language] | General | Display and clearing the Enable Single-Click URL Navigation check
box:

AX.66	 Hide the Vertical and/or Horizontal Scroll Bars

Windows Alt,T, O

Menu Tools | Options | Text Editor | General | Display

Versions 2005, 2008, 2010

Code vstipEdit0058

This isn’t a commonly used option but can be useful in certain situations. If you want more
real estate on your screen, you can go to Tools | Options | Text Editor | General | Display and
clear the Vertical Scroll Bar and/or Horizontal Scroll Bar check boxes to make the scroll bars
go away.

Before:

	 Appendix B  Additional Tips	 A111

After:

Of course, you no longer have your scroll bars, which can be somewhat annoying.

AX.67	 How to Convert Tabs to Spaces and Vice Versa

Default [no shortcut]

Visual Basic 6 [no shortcut]

Visual C# 2005 [no shortcut]

Visual C++ 2 [no shortcut]

Visual C++ 6 [no shortcut]

Visual Studio 6 Ctrl+Q (tabify); Ctrl+Shift+Q (untabify)

Windows Alt,E, V, T (tabify); Alt,E, V, B (untabify)

Menu Edit | Advanced | Tabify Selected Lines; Edit | Advanced | Untabify Selected Lines

Command Edit.TabifySelectedLines; Edit.UntabifySelectedLines; Edit.ConvertSpacesToTabs;
Edit.ConvertTabsToSpaces

Versions 2008, 2010

Code vstipEdit0028

Some people prefer spaces; others prefer tabs. You can have it any way you want it with this
next item. You can convert spaces to tabs and convert tabs to spaces on your selected lines.
You can do this in a couple of ways, and each has different results.

A112	 AX.67  How to Convert Tabs to Spaces and Vice Versa

Tabify/Untabify
If all you want to do is convert leading spaces to tabs (or vice versa), you would use the
Tabify/Untabify commands. First, pick a line with some leading spaces, as shown in the fol-
lowing illustration.

Note  You don’t have to select the entire line for this to work; as long as any part of the line is
selected, it performs the action.

Now go to Edit | Advanced | Tabify Selected Lines.

You should get the leading spaces converted to tabs, as shown in the following illustration:

To change leading tabs to spaces, you would use the Untabify Selected Lines command.

ConvertSpacesToTabs/ConvertTabsToSpaces
OK, so what if you want to convert all spaces to tabs? Well, you have to use commands
that have no shortcut or menu items. The commands you are interested in are Edit.
ConvertTabsToSpaces and Edit.ConvertSpacesToTabs.

The following illustration shows what ConvertSpacesToTabs does to our example.

Note  For these commands, you have to select everywhere you want to convert, because the
command does not automatically convert the entire line.

As you can see, almost all spaces are converted to tabs. Because spaces are converted to tabs
in increments of 4 (default), if you have, say, 6 spaces, it results in a tab and 2 spaces left over.
That is why you see some leftover spaces in the example. If you select these same lines and
run ConvertTabsToSpaces, it inserts spaces instead of tabs.

	 Appendix B  Additional Tips	 A113

AX.68	 Delete Horizontal White Space

Default Ctrl+K, Ctrl+\

Visual Basic 6 Ctrl+K, Ctrl+\

Visual C# 2005 Ctrl+K, Ctrl+\; Ctrl+E, Ctrl+\; Ctrl+E, \

Visual C++ 2 [no shortcut]

Visual C++ 6 Ctrl+K, Ctrl+\

Visual Studio 6 Ctrl+K, Ctrl+\

Windows Alt,E, V, H

Menu Edit | Advanced | Delete Horizontal White Space

Command Edit.DeleteHorizontalWhiteSpace

Versions 2005, 2008, 2010

Code vstipEdit0037

Want to get rid of some extra spaces? First find a line that has some extra white space that
you want to get rid of:

Put your cursor in the extra white space:

Go to Edit | Advanced | Delete Horizontal White Space or press Ctrl+K, Ctrl+\, and the extra
space is gone:

Interestingly, this also works between items as well. Just find some space and put your cursor
in it:

Then get rid of the extra space:

Note  One space always remains when you use this feature between items.

A114	 AX.69  Expanding Your Code with Outlining

AX.69	 Expanding Your Code with Outlining

Default Ctrl+M, Ctrl+M

Visual Basic 6 Ctrl+M, Ctrl+M

Visual C# 2005 Ctrl+M, Ctrl+M; Ctrl+M, M

Visual C++ 2 [no shortcut]

Visual C++ 6 Ctrl+M, Ctrl+M

Visual Studio 6 [no shortcut]

Windows Alt,E, O, T

Menu Edit | Outlining | Toggle Outlining Expansion

Command Edit.ToggleOutliningExpansion

Versions 2005, 2008, 2010

Code vstipEdit0030

By default, outlining is enabled in Visual Studio. Suppose you encounter a collapsed area of
code, as shown in the following illustration, and you want to see all the code that is collapsed
in that area:

You have three ways to expand it:

●● Click the plus sign to expand the area.

●● Click anywhere in the area to be expanded, and press Ctrl+M, Ctrl+M.

●● Click anywhere in the area to be expanded, and go to Edit | Outlining | Toggle
Outlining Expansion on the menu bar.

	 Appendix B  Additional Tips	 A115

AX.70	 Collapsing or Expanding All Your Code with Outlining

Default Ctrl+M, Ctrl+L

Visual Basic 6 Ctrl+M, Ctrl+L

Visual C# 2005 Ctrl+M, Ctrl+L; Ctrl+M, L

Visual C++ 2 [no shortcut]

Visual C++ 6 Ctrl+M, Ctrl+L

Visual Studio 6 [no shortcut]

Windows Alt,E, O, L

Menu Edit | Outlining | Toggle All Outlining

Command Edit.ToggleAllOutlining

Versions 2005, 2008, 2010

Code vstipEdit0031

You can easily collapse or expand all your code with outlining. For example, suppose you
have code that is expanded, as shown in the following illustration:

You want it all collapsed, so you have two options:

●● Press Ctrl+M, Ctrl+L.

●● Go to Edit | Outlining | Toggle All Outlining on the menu bar.

A116	 AX.71  Turn Off or Turn On Outlining

The result is collapsed code:

Just repeat one of the steps to reverse the process, and all your code is expanded again. This
is particularly useful if you are using a feature (certain Find operations) that can’t look inside
collapsed code.

AX.71	 Turn Off or Turn On Outlining

Default Ctrl+M, Ctrl+P (stop outlining)

Visual Basic 6 Ctrl+M, Ctrl+P (stop outlining)

Visual C# 2005 Ctrl+M, Ctrl+P (stop outlining); Ctrl+M, P (stop outlining)

Visual C++ 2 [no shortcut]

Visual C++ 6 Ctrl+M, Ctrl+P (stop outlining)

Visual Studio 6 [no shortcut]

Windows Alt,E, O, P (stop outlining); Alt, E, O, U (start outlining)

Menu Edit | Outlining | Stop Outlining; Edit | Outlining | Start Automatic Outlining (Not
Available in C++ 2005 and 2008)

Command Edit.StopOutlining; Edit.OutliningStartAutomaticOutlining

Versions 2005, 2008, 2010

Code vstipEdit0033

If you don’t like the outlining feature in Visual Studio, you can turn it off one of two ways:

●● Press Ctrl+M, Ctrl+P on your keyboard.

●● Go to Edit | Outlining | Stop Outlining on your menu bar.

To turn outlining back on, go to Edit | Outlining | Start Automatic Outlining on your menu
bar. Unfortunately, no keyboard shortcut is available for turning outlining back on.

Note  Start Automatic Outlining is not available in C++ 2005/2008. To get it back in C++
2005/2008, just close and reopen the file you are working on.

	 Appendix B  Additional Tips	 A117

AX.72	 Understanding Virtual Space

Windows Alt,T, O

Menu Tools | Options | Text Editor | All Languages | General | Settings

Versions 2005, 2008, 2010

Code vstipEdit0023

Virtual space is a little difficult to understand if you aren’t familiar with older editors. We
used to have (and some people still have) editors that treat everywhere on a line as editable
space.

Let me explain: Without virtual space, the line ends where the code ends.

If I move my cursor to the end of any line and press my Right Arrow key, it goes to the next
line. This is the way editors have been for a while now, and this isn’t really new information.

However, this wasn’t always the case. There was a time when you could type anywhere you
wanted, anytime you wanted, without restriction. Some text editors still allow this today.
Virtual space allows you to go back to the old style of editing, which is preferred by some.
Go to Tools | Options | Text Editor | All Languages | General | Settings, and select the Enable
Virtual Space check box to turn this feature on:

Note  Enable Virtual Space and Word Wrap are mutually exclusive options, so you have to
choose one or the other.

A118	 AX.73  Document Outline: WPF and Silverlight Projects

After you select the Enable Virtual Space option, you can type anywhere on a line, regardless
of whether or not the code ends:

AX.73	 Document Outline: WPF and Silverlight Projects

Default Ctrl+Alt+T

Visual Basic 6 Ctrl+Alt+T

Visual C# 2005 Ctrl+Alt+T; Ctrl+W, Ctrl+U; Ctrl+W, U

Visual C++ 2 [no shortcut]

Visual C++ 6 Ctrl+Alt+D

Visual Studio 6 Ctrl+Alt+T

Windows Alt,V, E, D

Menu View | Other Windows | Document Outline

Command View.DocumentOutline

Versions 2010

Languages C#, VB

Code vstipTool0117

When working with WPF and XAML, it can sometimes get tricky finding items. This is
where the Document Outline feature comes in handy. In this example, I’ve created a WPF
Application and put a few controls on it. The following illustration shows what I get when I
pull up the Document Outline (Ctrl+Alt+T):

	 Appendix B  Additional Tips	 A119

You can also get to the Document Outline by clicking the Document Outline button located
in the lower-left corner of the screen by default:

Notice how it shows each control and the parent/child relationships. If the experience
stopped there, it would be OK, but it actually gets even better when you put your mouse
pointer over any item in the list, as shown in the following illustration:

Putting the mouse pointer over a parent shows a preview of the parent and all the children:

You can also get a preview from the outline presented at the lower part of the screen:

And you can dig into the details if needed:

A120	 AX.73  Document Outline: WPF and Silverlight Projects

Also, when you click on any item in the Document Outline, it is selected in both XAML and
Design view:

To sum it up, the Document Outline can be used when working with WPF to do the
following:

●● View the logical structure of elements in your XAML.

●● View a thumbnail preview of an element in a pop-up window.

●● Navigate to specific elements, in Design view and in XAML view.

●● Put user input focus on deeply nested elements that might be hard to select on the de-
sign surface itself.

●● Locate controls that might be visually hidden by other controls.

	 Appendix B  Additional Tips	 A121

AX.74	 Document Outline: Windows Form Projects

Default Ctrl+Alt+T

Visual Basic 6 Ctrl+Alt+T

Visual C# 2005 Ctrl+Alt+T; Ctrl+W, Ctrl+U; Ctrl+W, U

Visual C++ 2 [no shortcut]

Visual C++ 6 Ctrl+Alt+D

Visual Studio 6 Ctrl+Alt+T

Windows Alt,V, E, D

Menu View | Other Windows | Document Outline

Command View.DocumentOutline

Versions 2005, 2008, 2010

Code vstipTool0118

The Document Outline is used to get a bird’s eye view of items in your project. Let’s look at
using it with Windows Form projects.

For this example, I’ve created a new Windows Forms Application and put a few sample con-
trols on it. The following illustration shows what the Document Outline (Ctrl+Alt+T) looks like:

A122	 AX.74  Document Outline: Windows Form Projects

Selection
When you click any item in the list, that item is selected on the form in Design view:

Context Commands
Additionally, you can access a variety of commands by right-clicking any item, including the
ability to rename the control from the Document Outline:

View Code
You can also press F7 with any item selected to view the code for it, but remember that the
Document Outline does not work in code view:

	 Appendix B  Additional Tips	 A123

Relocate Items
The ability to move items from one container to another is supported as well:

Toolbar Controls
The toolbar supports a variety of functions as described in the following sections.

Name display
You can select different name display styles:

A124	 AX.75  Change the Tooltip Font Size

Expand/collapse
You can expand or collapse the entire outline:

Moving around
The toolbar even supports moving around within and between containers:

AX.75	 Change the Tooltip Font Size

Windows Alt,T, O

Menu Tools | Options | Fonts and Colors | Show settings For

Versions 2005, 2008, 2010

Code vstipEdit0046

Ever want to change the size of your tooltip font? Here is what it looks like by default:

To change it, just go to Tools | Options | Fonts and Colors | Show Settings For. From there,
select Editor Tooltip from the drop-down list, as shown in the following illustration:

	 Appendix B  Additional Tips	 A125

Now that you have the Editor Tooltip settings, change the font to a bigger size and then click
OK. Now you should see a bigger font size on your tooltips.

AX.76	 Change the Statement Completion Font Size

Windows Alt,T, O

Menu Tools | Options | Fonts and Colors

Versions 2005, 2008, 2010

Code vstipEdit0055

Are you like me and think that the statement completion font is annoyingly small and hard to
read?

Well, you can easily increase the font size by going to Tools | Options | Fonts And Colors |
Show Settings For | Statement Completion, as shown in the following illustration:

From this dialog box, just make the font any size you like. Click OK to exit the dialog box, and
now you should have statement completion in a size you can read:

A126	 AX.77  Vertical Split View for Web Projects

AX.77	 Vertical Split View for Web Projects

Windows Alt,T, O

Menu Tools | Options

Command Tools.Options

Versions 2008, 2010

Code vstipEdit0081

The default way Split view handles panes is to tile them horizontally:

However, you can change this by going to Tools | Options | HTML Designer | General and se-
lecting Split Views Vertically. Now the Split view tiles the panes vertically:

	 Appendix B  Additional Tips	 A127

Note  When you perform this action, you might have to close and reopen some files to see it
take effect.

AX.78	 Open JScript Braces on a New Line

Windows Alt,T, O

Menu Tools | Options | Text Editor | JScript | Formatting

Command Tools.Options

Versions 2008, 2010

Code vstipEdit0087

By default, Visual Studio formats JScript functions and control blocks with the open brace on
the same line as the declaration:

Without getting into the big debate about whether this is good or bad, let’s assume you pre-
fer to have your braces inline vertically:

Go to Tools | Options | Text Editor | JScript | Formatting, and choose whether you want the
open brace on a new line for functions, control blocks, or both.

AX.79	 Insert Spaces vs. Keep Tabs

Windows Alt,T, O

Menu Tools | Options | Text Editor | [Language] | Tab

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0072

Some people like tabs in their code, and others are partial to spaces. You can specify what
you want by going to Tools | Options | Text Editor | [Language] | Tab:

A128	 AX.79  Insert Spaces vs. Keep Tabs

Tab Size
Use this setting to specify the distance in spaces between tab stops. The default is four spac-
es. Every time you hit the Tab key, it advances the number of spaces specified.

Indent Size
Use this setting to specify the size in spaces of an automatic indentation. The default is four
spaces. Tab characters, space characters, or both are inserted according to the specified size.
When the editor automatically indents your code, it uses this setting to determine how much
space to use.

Insert Spaces
Indent operations insert only space characters, not Tab characters. For example, if the indent
size is set to 5, five space characters are inserted whenever you press the Tab key or click the
Increase Indent button on the formatting toolbar:

Keep Tabs
Indent operations insert Tab characters. Each Tab character comprises the number of spaces
specified in the Tab Size setting. If the indent size is not an even multiple of the Tab size,
space characters are added to make up the difference:

	 Appendix B  Additional Tips	 A129

AX.80	 View in Browser

Default Ctrl+Shift+W

Visual Basic 6 Ctrl+Shift+W

Visual C# 2005 [no shortcut]

Visual C++ 2 Ctrl+Shift+W

Visual C++ 6 Ctrl+Shift+W

Visual Studio 6 Ctrl+Shift+W

Windows Alt,F, B

Menu File | View in Browser

Command File.ViewinBrowser

Versions 2005, 2008, 2010

Code vstipTool0119

You can quickly view your current page in your browser by pressing Ctrl+Shift+W. This auto-
matically opens up your default browser (see vstipEnv0057, “Using Additional Browsers for
Web Development,” page 96):

A130	 AX.81  Detect When a File Is Changed Outside the Environment

AX.81	 Detect When a File Is Changed Outside the Environment

Windows Alt,T, O

Menu Tools | Options Environment | Documents

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0073

If you go to Tools | Options | Environment | Documents, you can see two interesting options:

Detect When File Is Changed Outside The Environment
When this option is selected, a message immediately notifies you of changes to an open file
that have been made by an editor outside the IDE. The message enables you to reload the
file from storage:

Auto-Load Changes, If Saved
When you have the Detect When File Is Changed Outside The Environment options selected
and an open file in the IDE changes outside the IDE, a warning message is generated by de-
fault. However, if the Auto-Load Changes, If Saved option is selected, no warning appears
and the document is reloaded in the IDE to pick up the external changes.

As you can see, the default is to detect the changes but not auto-load them. This is generally
a good strategy because any changes you load from outside the editor should be reviewed,
to avoid erasing work you have already in the editor.

	 Appendix B  Additional Tips	 A131

AX.82	 Turn Off the Selection Margin

Windows Alt,T, O

Menu Tools | Options | Text Editor | General

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0034

For those who aren’t familiar with it, the selection margin is the area between line numbers
and the outline indicators. It is used to show code changes and to enable you to select an
entire line of code with one click. The following illustration shows the area in action:

If you don’t have use for the change tracking and line selection, you can easily turn this fea-
ture off by going to Tools | Options | Text Editor | General | Display and clearing the Selection
Margin check box:

Now the selection margin is gone:

An interesting side effect in Visual Studio 2005 and Visual Studio 2008 is that hiding the se-
lection margin also hides the outline area.

Before:

A132	 AX.83  Reuse the Same Editor Window When Opening Files

After:

AX.83	 Reuse the Same Editor Window When Opening Files

Windows Alt,T, O

Menu Tools | Options | Environment | Documents

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0027

Normally, when you open up a document (in this example “Program.cs”), it creates a new tab.

Before:

After:

You can reuse the same document window if you want by going to Tools | Options |
Environment | Documents and selecting the Reuse Current Document Window, If Saved
check box:

Now when you open a document, you see the following results.

	 Appendix B  Additional Tips	 A133

Before:

After:

The caveat here is that you must have a saved document for this to work. If the document
was not saved, a new document window would be created even with this option turned on.

AX.84	 Sharing Snippets with Your Team

Default Ctrl+K, Ctrl+B

Visual Basic 6 Ctrl+K, Ctrl+B

Visual C# 2005 Ctrl+K, Ctrl+B

Visual C++ 2 [no shortcut]

Visual C++ 6 Ctrl+K, Ctrl+B

Visual Studio 6 Ctrl+K, Ctrl+B

Windows Alt,T, T

Menu Tools | Code Snippets Manager

Command Tools.CodeSnippetsManager

Versions 2005, 2008, 2010

Code vstipTool0075

Sometimes you might want to share special snippets with your team for others to use. It’s
easy to do, and it’s a great way to ensure common code constructs remain the same.

First create a network directory that all the team members can read from, and put all your
special .snippet files there. If you don’t have experience working with snippet files, take a look
at vstipTool0016, “Create New Code Snippets from Existing Ones,” page 271.

Next have each team member open the Code Snippets Manager (Ctrl+K, Ctrl+B):

A134	 AX.84  Sharing Snippets with Your Team

Ask your team members to click Add and select the network directory you created earlier,
and everyone can use the shared snippets.

If you don’t want to have everyone doing this manually, you can do these steps yourself and
export just your code snippet locations, as shown in the following illustration:

	 Appendix B  Additional Tips	 A135

Then have everyone import the .vssettings file you created to get the shared location. For
more information about exporting, see vstipEnv0021, “Exporting Your Environment Settings,”
on page 6.

AX.85	 Swap the Current Anchor Position

Default Ctrl+K, Ctrl+A

Visual Basic 6 Ctrl+K, Ctrl+A

Visual C# 2005 Ctrl+K, Ctrl+A; Ctrl+E, Ctrl+A; Ctrl+E, A

Visual C++ 2 Ctrl+Shift+X

Visual C++ 6 Ctrl+K, Ctrl+A

Visual Studio 6 Ctrl+K, Ctrl+A

Windows [no shortcut]

Command Edit.SwapAnchor

Versions 2005, 2008, 2010

Code vstipEdit0068

When you select text, the “anchor” is the cursor location at the end of the selection. By de-
fault, the anchor is to the right of the selection. However, you can use Ctrl+K, Ctrl+A to swap
the anchor from the right side to the left side, as shown in the following illustrations:

OK, so why would you want to do this? Well, those who use Emacs like this feature quite a
bit, and it has been around a long, long time. One great benefit comes when you need to
expand a selection from left to right. By swapping the anchor, you can hold down your Shift
key and use your Left Arrow key to expand the selection:

AX.86	 Guidelines: A Hidden Feature for the Visual Studio Editor

Versions 2005, 2008, 2010

Code vstipEdit0015

Guidelines are used when you want visible column indicators to help you keep things lined
up in the editor:

A136	 AX.86  Guidelines: A Hidden Feature for the Visual Studio Editor

Visual Studio 2010
This feature has been removed in Visual Studio 2010. With that said, if you are using Visual
Studio 2010, an extension, created by Paul Harrington, is available at http://visualstudiogal-
lery.msdn.microsoft.com/en-us/0fbf2878-e678-4577-9fdb-9030389b338c.

Visual Studio 2005/2008
To add the guidelines to the user interface, you need to follow these steps:

	 1.	 Shut down Visual Studio.

	 2.	 Go to [HKEY_CURRENT_USER]\Software\Microsoft\VisualStudio\<version>\Text Editor in
the registry (regedit.exe).

Warning  Editing the registry can cause serious problems if you don’t know what you are
doing, so edit it at your own risk.

	 3.	 Create a string value called Guides:

http://visualstudiogallery.msdn.microsoft.com/en-us/0fbf2878-e678-4577-9fdb-9030389b338c
http://visualstudiogallery.msdn.microsoft.com/en-us/0fbf2878-e678-4577-9fdb-9030389b338c

	 Appendix B  Additional Tips	 A137

	 4.	 Set Guides to the following:

RGB(x,y,z) n1,…,n13, where x,y,z are the RGB color values representing the color you
want for the guides; and n is the column number position at which you want the guides
to appear.

You can have at most 13 guidelines. For example, RGB(255,0,0) 5, 80 places a red guide-
line at column numbers 5 and 80:

	 5.	 Open Visual Studio, and open a file in the Editor:

Removing guidelines
To delete the guidelines, just delete the Guides value you created above and then close and
reopen Visual Studio.

A138	 AX.87  Insert File as Text

AX.87	 Insert File as Text

Windows Alt,E, X

Menu Edit | Insert File As Text

Command Edit.InsertFileAsText

Versions 2005, 2008, 2010

Code vstipEdit0021

Another classic item that tends to get overlooked in the wake of snippets and T4 templates is
the Insert File As Text feature. Let’s say you have a chunk of code in a file, and you want it in
another file too. Just go to Edit | Insert File As Text to see the following dialog box:

Choose your file, and it inserts the contents of that file as though you had just typed the text
in yourself.

Note  When performing this action, you might need to change the file type to look for.

	 Appendix B  Additional Tips	 A139

AX.88	 Indenting: Smart vs. Block vs. None

Windows Alt,T, O

Menu Tools | Options | Text Editor | [Language] | Tabs | Indenting

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0049

Indenting is something we all deal with in the Editor all the time. In this tip, I reveal what each
of the available indenting choices does for you. If you go to Tools | Options | Text Editor |
[Language] | Tabs | Indenting, you can see the options shown in the following illustration:

Smart
Let’s begin with the option that most people have by default: Smart indenting. Create a new
method, and press Enter after the curly brace:

Notice that Smart indenting pays attention to where it is and automatically indents after
the opening curly brace. This is the “smart” part of the indenting because it knew that you
pressed Enter after an opening curly brace and assumed you wanted to indent.

Block
Now let’s look at Block indenting:

In this case, the cursor maintains its current indent level and doesn’t “smart” indent based on
context. Block indenting is the old indenting style that is preferred by people who want con-
trol over when indenting happens.

A140	 AX.89  Change CSS Formatting

None
Of course, if you really want total control, you can choose None in the Options dialog box
and turn off any indenting at all:

The cursor returns to column 1 every time you press Enter.

AX.89	 Change CSS Formatting

Windows Alt,T, O

Menu Tools | Options | Text Editor | CSS | Formatting

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0094

People are very picky about how their code is styled. Fortunately, Visual Studio offers you the
ability to format your CSS code the way you like it. Just go to Tools | Options | Text Editor |
CSS | Formatting:

Note  In Visual Studio 2005, the menu path is Tools | Options | Text Editor | CSS | Format.

	 Appendix B  Additional Tips	 A141

Style
You have three style options available:

Expanded (Default)
Provides the most readability by adding extra space in the styles. The selector and initial
brace appear on their own lines, declarations are indented on subsequent lines, and the clos-
ing brace is aligned with the matching opening brace:

Semi-expanded
Provides a trade-off between readability and compactness by reducing space. The selector
and initial brace ({) are positioned on the same line, declarations are indented on subsequent
lines, and the closing brace (}) is aligned with the matching opening brace:

Compact rules
Provides maximum amount of reduced space. The selector and declaration are positioned on
the same line:

Capitalization
This option is pretty straightforward and provides casing instructions for the properties.

Lowercase (Default)

A142	 AX.90  How to Turn Off Automatic IntelliSense

Uppercase

As entered
Leaves the casing alone and doesn’t modify the user input.

AX.90	 How to Turn Off Automatic IntelliSense

Windows Alt,T, O

Menu Tools | Options | Text Editor | All Languages [or specific language] | General | Statement
completion

Versions 2005, 2008, 2010

Code vstipEdit0054

So IntelliSense might not be for everyone. It can sometimes annoy people when it automati-
cally pops up. You can disable automatic IntelliSense and still have it come up only when you
want it to.

Go to Tools | Options | Text Editor | All Languages [or specific language] | General | Statement
Completion, and clear the Auto List Members check box:

Now anytime you want IntelliSense, just press Ctrl+J to bring it up.

AX.91	 Disable HTML, CSS, or JScript IntelliSense

Windows Alt,T, O

Menu Tools | Options | Text Editor | HTML | General

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0085

Personally, I love IntelliSense everywhere I write code.

	 Appendix B  Additional Tips	 A143

However, some people don’t like it in some places, and one place I find where that is espe-
cially true is in the HTML editor. You can turn off IntelliSense by going to Tools | Options |
Text Editor | HTML | General and clearing the Auto List Members check box:

This action disables IntelliSense for the HTML text editor. Additionally, if you want to do the
same for CSS or Jscript, just go to Tools | Options | Text Editor | [CSS or JScript] | General and
perform the same step.

AX.92	 Design and XAML on Different Document Tabs

Versions 2010

Code vstipTool0009

Now that you can free your document windows and put them on multiple monitors, many
people are asking how to do this with code-behind files. Assume you have the following
XAML document open:

But you want the Design view in one window and the XAML view in another so that you can
work on each document in a separate monitor. Well, if you click and drag the document tab,
both the design and the XAML go together:

A144	 AX.92  Design and XAML on Different Document Tabs

So what do you do? As it turns out, the solution is pretty easy. With the design view in one
document, go to Solution Explorer, right-click the XAML file, and choose Open With:

Now, in the Open With dialog box, select Source Code (Text) Editor and click OK:

	 Appendix B  Additional Tips	 A145

You now have two XAML windows, one for your designer and one for the XAML:

Now you can put them on two different monitors or whatever you feel like doing.

AX.93	 Using Generate from Usage

Windows Alt,E, I, G, T

Menu Edit | IntelliSense | Generate | New Type

Command Edit.GenerateNewType; EditorContextMenus.CodeWindow.Generate.GenerateNewType

Versions 2010

Code vstipEdit0011

I’m a big fan of Test Driven Development (TDD), so I absolutely love this tip because it is a big
step toward enabling TDD activities in Visual Studio. The idea behind it is simple; it allows you
to use classes and members before you define them. This was created so that you can write
your tests and use classes/members that haven’t been created yet per the tenets of TDD
(“red, green, refactor”). The C# and VB implementations are slightly different, so let’s take a
look at those differences.

VB
Start by using a class that you haven’t created yet:

A146	 AX.93  Using Generate from Usage

Obviously, you will get an error:

But wait. When you click the Error Correction Options, you get something new:

Click Generate ‘Class Dollar’, and you get a new file called Dollar.vb with a class stub inside:

The error is gone, and you are ready to start using the class. You can repeat this process for
new members that you create for the new class, as you use them.

	 Appendix B  Additional Tips	 A147

C#
Start by using a class that doesn’t exist:

Here you have a couple of options. You can right-click and choose Generate | Class, or you
can click the smart tag and choose Generate class for ‘Dollar’. They both do the same thing,
and you can see both options in the following illustrations:

You get a new file called Dollar.cs with a class stub inside:

The error is gone, and you are ready to start using the class. You can repeat this process for
new members that you create for the new class, as you use them.

When you get the hang of this and actually start using this feature for TDD activities, you
would not use the examples I provided but would instead choose the Generate New Type
option. The dialog box is the same for VB and C#.

A148	 AX.94  IntelliSense Suggestion Mode

Notice that you have the ability to set Access, Kind, and—most importantly—Location. It’s
the Location option that TDD folks will use to put the classes into the proper project outside
of their test projects.

AX.94	 IntelliSense Suggestion Mode

Default Ctrl+Alt+Spacebar

Windows Alt,E, I, T

Menu Edit | IntelliSense | Toggle Completion Mode

Command Edit.ToggleCompletionMode

Versions 2008, 2010

Code vstipEdit0012

IntelliSense comes in two modes: Completion and Suggestion. You are already familiar with
IntelliSense completion mode; it’s the traditional mode that we have all used for years. But
if you are into Test Driven Development (TDD), completion mode can be very annoying at
times.

TDD developers often use classes and members before they exist. It’s not fun when you go
to type the name of something that doesn’t exist and you get IntelliSense. Especially because
you sometimes accidentally get an option you didn’t want:

	 Appendix B  Additional Tips	 A149

The solution is suggestion mode. Just press Ctrl+Alt+Spacebar to go into this mode:

Now you get the best of both worlds: You can type in a name that doesn’t exist and have
quick access to the completion mode options as well. The risk of getting an option you don’t
want is reduced.

AX.95	 Turn Off Automatic Symbol Renaming When You Rename a File in
Solution Explorer

Windows Alt,T, O

Menu Tools | Options | Projects And Solutions | General

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0011

When you start to rename a class file in Solution Explorer, you receive the following prompt:

When you click Yes, both the class name in all your code and the file are renamed:

A150	 AX.96  Mark Methods and Types as Hidden from IntelliSense and the Object Browser

If you find yourself doing this a lot, you can get rid of the prompt to rename by going to
Tools | Options | Projects And Solutions | General and clearing the Prompt For Symbolic
Renaming When Renaming Files check box.

From now on, when you do your renaming, the prompt does not appear and everything is
renamed automatically.

AX.96	 Mark Methods and Types as Hidden from IntelliSense and the Object
Browser

Versions 2005, 2008, 2010

Code vstipTool0088

When you make assemblies for others to use, you might sometimes want to have hidden meth-
ods, properties, and other elements. To hide an item, you use the System.ComponentModel
namespace.

C#

VB

	 Appendix B  Additional Tips	 A151

Hiding
To hide a property or method, you use the EditorBrowsable(EditorBrowsableState.Never)
attribute.

C#

VB

Use
Testing this is a little tricky. You have to use the assembly externally because hiding is meant
to hinder external users, not the creator of the assembly. Just making a reference to another
project isn’t enough. You actually have to go to the Browse tab and set a reference to the
external assembly that is created:

A152	 AX.96  Mark Methods and Types as Hidden from IntelliSense and the Object Browser

Result
When you test it, the hidden items should not be visible.

C#

VB

	 Appendix B  Additional Tips	 A153

Additional Tips from Chapter 7
AX.97	 Set or Remove a Breakpoint

Default F9

Visual Basic 6 F9

Visual C# 2005 F9

Visual C++ 2 F9; Ctrl+Shift+F9

Visual C++ 6 F9

Visual Studio 6 F9

Windows Alt,D, G

Menu Debug | Toggle Breakpoint

Command Debug.ToggleBreakpoint

Versions 2005, 2008, 2010

Code vstipDebug0016

Setting a simple breakpoint is easy. Just find some code:

Now set (or remove) a breakpoint either by pressing F9 or by selecting Debug | Toggle
Breakpoint on your menu bar:

If you prefer using the mouse, you can set a breakpoint by positioning your pointer in the
margin next to the line on which you want to set the breakpoint:

A154	 AX.98  Enable or Disable a Breakpoint

Then click your left mouse button:

All the breakpoints you have set show up in the Breakpoints window as a list that you can
work with later on.

AX.98	 Enable or Disable a Breakpoint

Default Ctrl+F9

Visual Basic 6 [no shortcut]

Command Debug.EnableBreakpoint

Versions 2005, 2008, 2010

Code vstipDebug0017

Sometimes you want to keep a breakpoint around but need to temporarily disable it. This is
easy to do and requires only a slight muscle memory modification from setting and remov-
ing a breakpoint. Just put your cursor on the line with the breakpoint you want to disable,
then press Ctrl+F9 to disable the breakpoint (notice that the glyph in the margin changes):

To re-enable it, press Ctrl+F9 again.

All your disabled breakpoints are easily visible in the Breakpoints window alongside your en-
abled breakpoints so that you can work with them later.

	 Appendix B  Additional Tips	 A155

AX.99	 Start Debugging vs. Start Without Debugging

Default F5 (start); Ctrl+F5 (start w/o debug)

Visual Basic 6 F5 (start); Ctrl+F5 (start w/o debug); Ctrl+Alt+Break (stop)

Visual C# 2005 F5 (start); Ctrl+F5 (start w/o debug); Shift+F5 (stop)

Visual C++ 2 F5 (start); Ctrl+F5 (start w/o debug); Alt+F5 (stop)

Visual C++ 6 F5 (start); Ctrl+F5 (start w/o debug); Shift+F5 (stop)

Visual Studio 6 F5 (start); Ctrl+F5 (start w/o debug); Shift+F5 (stop)

Windows Alt,D, S (start); Alt,D, H (start w/o debug)

Menu Debug | Start Debugging; Debug | Start Without Debugging

Command Debug.Start; Debug.StartWithoutDebugging

Versions 2005, 2008, 2010

Code vstipDebug0037

There seems to be a great deal of confusion as to what actually happens when you use Start
Debugging (F5) versus Start Without Debugging (Ctrl+F5):

Starting with Debugging
Let’s start with the basics: When you press F5 (Start Debugging) in Visual Studio, it launches
your application, attaches the debugger, and lets you do all the “normal” things you would
expect.

According to the documentation (see “Debugger Roadmap” at http://msdn.microsoft.com/en-
us/library/k0k771bt(v=VS.100).aspx), here is what the debugger does:

“The Visual Studio debugger is a powerful tool that allows you to observe the run-time
behavior of your program and locate logic errors. The debugger works with all Visual
Studio programming languages and their associated libraries. With the debugger, you
can break, or suspend, execution of your program to examine your code, evaluate and
edit variables in your program, view registers, see the instructions created from your
source code, and view the memory space used by your application.”

http://msdn.microsoft.com/en-us/library/k0k771bt(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/k0k771bt(v=VS.100).aspx

A156	 AX.99  Start Debugging vs. Start Without Debugging

The debugger: Release builds
One popular misconception is that the debugger doesn’t come into play for release builds.
This isn’t true. Set a breakpoint in some code for a release build, and press F5 to see whether
it stops there. Of course it does!

The debugger is attached. Now, what about things that aren’t happening?

Note  Release builds are optimized versions of your code, so make sure to test your breakpoint
on a piece of code that is used.

For example, you can’t use the System.Diagnostics.Debug class methods to send messages to
the Output window because the compiler strips them out for release builds:

Starting Without Debugging
This is exactly what it sounds like. When you choose the Start Without Debugging option,
the application starts without the debugger attached. That’s it! Nothing else happens. It just
doesn’t attach the debugger. Otherwise, everything else is the same. So, the practical im-
plications of this are obvious: Without the debugger attached, when the application runs, it
does not hit breakpoints, emit debug messages, and so on.

So now let’s deal with the biggest myth about choosing the Start Without Debugging option.

Myth: Start Without Debugging creates a release build
Not true. It uses the build you are currently on. So if you are using a debug build and you
press Ctrl+F5, Visual Studio runs that debug build. The easiest way to test this is to use condi-
tional compilation to see whether you are using a debug build:

	 Appendix B  Additional Tips	 A157

In this example, the Console statements run, but the System.Diagnostics.Debug statement
does not run because the debugger is not attached. So you get the following output:

Finally
OK, so the obvious question is “Why have this option?” Well, the answer is simple: So that
you can run the application without having the overhead of the debugger attached, to do a
quick “Smoke Test” to see whether the code runs. As you learn more about this feature, you
might find other reasons for wanting to run without the debugger attached.

Now you have a better idea of the difference between the Start Debugging and Start
Without Debugging options.

AX.100	 Set As Start Page

Windows ALT, P, P, P, Enter

Menu Project | Set As Start Page

Command Project.SetAsStartPage

Versions 2005, 2008, 2010

Code vstipProj0027

When you create a new web project, the default start page is set for you automatically and
is the first page you see when you start debugging. However, you might find that you want a
different page to start with instead. It’s easy to change the start page. Simply right-click the
new start page in Solution Explorer, and select Set As Start Page:

A158	 AX.100  Set As Start Page

The changes take effect immediately, and the new page becomes the start page until you
change it.

In case you are curious, this actually changes the Specific Page value in your Web Application
properties dialog box (Web Tab, Start Action):

For websites, you can find this in the project properties dialog box under Start Options:

	 Appendix B  Additional Tips	 A159

AX.101	 Enable Debugging in Web.Config

Versions 2008, 2010

Code vstipProj0026

If you have ever created a web project in Visual Studio, you have undoubtedly encountered
the following dialog box:

A quick read tells you that it defaults to the Modify The Web.config File To Enable Debugging
option:

A couple of things need to be pointed out here:

●● You can avoid this dialog box by editing your Web.config file manually and setting
debug to true.

●● No dialog box comes up to enable you to turn this off again before you deploy, so be
aware that you should ensure that it is turned off before you go to production.

A160	 AX.102  View the Error List Window

AX.102	 View the Error List Window

Default Ctrl+\, E; Ctrl+\, Ctrl+E

Visual Basic 6 Ctrl+\, E; Ctrl+\, Ctrl+E; Ctrl+W, Ctrl+E

Visual C# 2005 Ctrl+\, E; Ctrl+\, Ctrl+E; Ctrl+W, Ctrl+E; Ctrl+W, E

Visual C++ 2 Ctrl+\, E; Ctrl+\, Ctrl+E

Visual C++ 6 Ctrl+\, E; Ctrl+\, Ctrl+E

Visual Studio 6 Ctrl+\, E; Ctrl+\, Ctrl+E

Windows Alt,V, I

Menu View | Error List

Command View.ErrorList

Versions 2005, 2008, 2010

Code vstipTool0018

You can view the Error List window by pressing Ctrl+\, E inside Visual Studio:

Also, you can filter by type, using the toggle buttons at the top (Errors, Warnings, Messages)
to show or hide particular messages:

	 Appendix B  Additional Tips	 A161

AX.103	 Show Error Help from Errors List Window

Default F1

Visual Basic 6 F1

Visual C# 2005 F1

Visual C++ 2 F1

Visual C++ 6 F1

Visual Studio 6 F1

Windows F1

Menu [Context Menu] | Show Error Help

Command Help.F1Help

Versions 2005, 2008, 2010

Code vstipTool0020

You can get help on any error in the Errors List window by right-clicking any error and choos-
ing Show Error Help. This opens the documentation, if available, with details about the spe-
cific error:

AX.104	 Hide or Show Error List When the Build Finishes with Errors

Windows Alt,T, O

Menu Tools | Options | Projects and Solutions | Default

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0022

By default, the Error List window appears when build errors have occurred:

A162	 AX.105  Show the Output Window During Build

You can change this behavior by going to Tools | Options | Projects And Solutions | General
and clearing the Always Show Error List If Build Finishes With Errors check box.

AX.105	 Show the Output Window During Build

Windows Alt,T, O

Menu Tools | Options | Projects and Solutions | General

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0045

When you do a build, by default, it always shows the Output window. If you don’t want
the Output window to show up every time you do a build, you can go to Tools | Options |
Projects And Solutions | General and clear the Show Output Window When Build Starts check
box:

Of course, you can bring up the Output window anytime by pressing Ctrl+Alt+O.

	 Appendix B  Additional Tips	 A163

AX.106	 Navigate Among Errors in the Output Window

Default F8 (next); Shift+F8 (previous)

Visual Basic 6 [no shortcut]

Visual C# 2005 F8 (next); Shift+F8 (previous)

Visual C++ 2 F4 (next); Shift+F4 (previous)

Visual C++ 6 F8 (next); F4 (next)

Visual Studio 6 F8 (next); F12 (next); Shift+F8 (previous); Shift+F12 (previous)

Command Edit.GoToNextLocation; Edit.GoToPrevLocation;

Versions 2005, 2008, 2010

Code vstipTool0043

Did you know that you can use toolbar buttons on the Output window to navigate between
errors?

Also, assuming the Output window is active, you can use F8 (next) and Shift+F8 (previous) to
navigate among the errors as well.

The cursor in the editor automatically follows you as you go through the errors, places the
cursor where you can make changes so that you just start typing, and has an indicator in the
far left margin to show your current position:

A164	 AX.107  Customize the Output Window

AX.107	 Customize the Output Window

Windows Alt,T, O

Menu Tools | Options | Environment | Fonts and Colors | Show settings for | Output Window

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0044

Working with the Output window is fairly common. Personalizing the window to your needs
can definitely improve your work day. The Output window can be modified from its original
configuration:

Just go to Tools | Options | Fonts And Colors | Show Settings For | Output Window. You can
change the font type, color, and size for a variety of display items, as shown in the following
illustration:

Here’s the result in the Output window:

	 Appendix B  Additional Tips	 A165

Obviously, you’ll want to experiment with combinations that suit you.

AX.108	 Step Out of or Over a Method

Default Shift+F11 (step out); F10 (step over)

Visual Basic 6 Shift+F11 (step out); Ctrl+Shift+F8 (step out); F10 (step over); Shift+F8 (step
over)

Visual C# 2005 Shift+F11 (step out); F10 (step over)

Visual C++ 2 Shift+F7 (step out); F10 (step over)

Visual C++ 6 Shift+F11 (step out); F10 (step over)

Visual Studio 6 Shift+F11 (step out); F10 (step over)

Windows Alt,D, T (step out); Alt, D, O (step over)

Menu Debug | Step Out; Debug | Step Over

Command Debug.StepOut ; Debug.StepOver

Versions 2005, 2008, 2010

Code vstipDebug0035

When debugging your code, you often come across a call to another method:

A166	 AX.108  Step Out of or Over a Method

At this point, if you want to see what is in the method, you can step into it by pressing F11:

Step Out
Once inside, you might decide you don’t really need to go through all the code. You can, at
any time, step out by pressing Shift+F11, which finishes execution of the current method and
returns you to the original call:

From here, you can continue on as you normally would with your debugging.

	 Appendix B  Additional Tips	 A167

Step Over
You have another option when you get to a method call:

You can decide that the method should just run without having to look at what is inside it.
If you want to run the method and move to the next line of code, just press F10 to step over
that method:

You can now navigate more effectively by using these techniques to determine how deep
you want to get into method calls.

AX.109	 Clearing Your DataTips

Windows Alt,D, A, A, ENTER (clear all)

Menu Debug | Clear All DataTips; Debug | Clear All DataTips Pinned to [file]

Command Debug.ClearAllDataTips

Versions 2010

Code vstipDebug0014

As you create your DataTips, you might find that it is necessary to clear them out when you
are done. You can clear your DataTips in a couple of ways from the Debug menu:

A168	 AX.109  Clearing Your DataTips

Clear All DataTips
This command does what it says and clears all (pinned and floating) DataTips in the solution.

Clear All DataTips Pinned to [File Name]
Clear only the pinned DataTips in [file name]. This option appears only if you have at least
one pinned DataTip in a file. The referenced file is the one you have currently open in the
editor.

	 Appendix B  Additional Tips	 A169

AX.110	 Create User Tasks in the Task List

Default Ctrl+\, Ctrl+T; Ctrl+\, T

Visual Basic 6 Ctrl+\, Ctrl+T; Ctrl+\, T; Ctrl+ALT+K

Visual C# 2005 Ctrl+\, Ctrl+T; Ctrl+\, T; Ctrl+W,Ctrl+T; Ctrl+W, T

Visual C++ 2 Ctrl+\, Ctrl+T; Ctrl+\, T

Visual C++ 6 Ctrl+\, Ctrl+T; Ctrl+\, T

Visual Studio 6 Ctrl+\, Ctrl+T; Ctrl+\, T; Ctrl+Alt+K

Windows Alt, V, K

Menu View | Task List

Command View.TaskList

Versions 2005, 2008, 2010

Code vstipTool0027

Creating tasks is useful when you need reminders for getting work done. User Tasks is a
checklist of “to do” items that are stored in the Solution User Options (.suo) file. They are per-
user settings and are not typically checked into source control:

To begin, make sure that User Tasks is selected from the drop-down list in the Task List
(Ctrl+\, T):

A170	 AX.110  Create User Tasks in the Task List

Next, click the Create User Task button:

Now you can enter any task you want:

You can easily edit any task by double-clicking or pressing Enter while in it. Also, you can set
priority levels on them by clicking in the box to the far left of any task:

Naturally, you can sort them by any column, such as Description or Priority:

	 Appendix B  Additional Tips	 A171

When you are done with a task, you can just click the check box to mark it complete:

Or you can right-click the task and delete it:

Note  A command called CreateUserTask is available, but it doesn’t accept any arguments and
creates only a blank task. For this reason, I didn’t list it in the summary information.

A172	 AX.111  Show the Full File Path in the Task List

AX.111	 Show the Full File Path in the Task List

Windows Alt,T, O

Menu Tools | Options

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0033

Sometimes you have comments and/or shortcuts with descriptions and/or file names that are
the same but in different solutions. Knowing the full path to the file can help you determine
which item you are looking at in the Task List. This tip can help you with the items that are
part of the Comments and Shortcuts areas. Normally, an item in the Task List doesn’t have
the full path:

You can enable the full path by going to Tools | Options | Environment | Task List | Task List
Options and clearing the Hide Full File Paths check box:

Now you can see the full file path in the Task List and clearly see where a comment or short-
cut resides:

	 Appendix B  Additional Tips	 A173

AX.112	 Disable the Prompt for Deleting Items from the Task List

Windows Alt,T, O

Menu Tools | Options | Environment | Task List | Task List

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0031

When dealing with the Task List, removing items is quite common. To delete an item from
the Task List, simply right-click any item and choose Delete:

The following prompt appears:

You can turn the prompt dialog box off by going to Tools | Options | Environment | Task List |
Task List Options and clearing the Confirm Deletion Of Tasks check box:

A174	 AX.113  Navigate Task List Entries with the Keyboard

Now when you delete tasks, you have no dialog box to contend with. Of course, this means
that you can also now accidentally delete a task without anything to stop you, so use this op-
tion at your own risk.

AX.113	 Navigate Task List Entries with the Keyboard

Default F8 (next location); Shift+F8 (prev location); [no shortcut] (next task); [no shortcut] (prev task)

Visual Basic 6 [no shortcut] (next location); [no shortcut] (prev location); Ctrl+Shift+F12 (next task); [no
shortcut](prev task)

Visual C# 2005 F8 (next location); Shift+F8 (prev location); [no shortcut] (next task); [no shortcut] (prev task)

Visual C++ 2 F4 (next location); Shift+F4 (prev location); [no shortcut] (next task); [no shortcut] (prev task)

Visual C++ 6 F8 (next location); F4 (next location); [no shortcut] (next task); [no shortcut] (prev task)

Visual Studio 6 F8 (next location); F12 (next location); Shift+F8 (prev location); Shift+F12 (prev location); [no
shortcut] (next task); [no shortcut] (prev task)

Command Edit.GoToNextLocation; Edit.GoToPrevLocation; View.NextTask; View.PreviousTask

Versions 2005, 2008, 2010

Code vstipTool0092

F8 and Shift+F8 are the universal “next” and “previous” keyboard shortcuts for items in tool
window lists. For example, when the Task List is up, these keyboard commands move the fo-
cus between task items. If the Errors window is up, the commands move the focus between
errors. However, you cannot use these commands to switch to the Task List from the Errors
window.

What if you wanted a set of keyboard shortcuts that switched to the Task List and then navi-
gated between them? Just go to Tools | Options | Environment | Keyboard, and assign short-
cut keys to the View.NextTask and View.PreviousTask commands, as shown in the following
illustration.

Note  For more information about assigning shortcut keys, see vstipTool0063 (“Keyboard
Shortcuts: Creating New Shortcuts,” page 127).

	 Appendix B  Additional Tips	 A175

AX.114	 Navigating Between Output Window Panes with the Keyboard

Command Window.NextSubPane; Window.PreviousSubPane

Versions 2005, 2008, 2010

Code vstipTool0091

The Output window can have several panes. How many depends on your context:

You can use Window.[Next / Previous]Subpane to move between these panes. However,
the commands are not bound, by default, to any keyboard mappings. That is easily solved
by going to Tools | Options | Environment | Keyboard and assigning shortcut keys to the
commands.

Note  For more information about assigning shortcut keys, see vstipTool0063 (“Keyboard
Shortcuts: Creating New Shortcuts,” page 127).

A176	 AX.115  The Watch Window: Moving Values Between Watch Windows

AX.115	 The Watch Window: Moving Values Between Watch Windows

Default Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

Visual Basic 6 Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

Visual C# 2005 Ctrl+Alt+W,1; Ctrl+D, Ctrl+W; Ctrl+D, W; Ctrl+Alt+W,[2-4]

Visual C++ 2 [no shortcut]

Visual C++ 6 Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

Visual Studio 6 Ctrl+Alt+W,1; Ctrl+Alt+W,[2-4]

Windows Alt,D, W, W, [1-4]

Menu Debug | Windows | Watch | Watch [1,2,3,4]

Command Debug.Watch[1,2,3,4]

Versions 2005, 2008, 2010

Code vstipTool0105

You can have up to four Watch windows in Visual Studio. The reason you get all these win-
dows is so that you can easily organize your watches into groups. Opening a particular win-
dow is easy enough: Just press Ctrl+Alt+W and then select the number of the window you
want (1, 2, 3, or 4):

The only problem is that anytime you use Add Watch or QuickWatch, the watch expression
always gets added to Watch 1:

Moving Between Windows
What if you want to move to another window? Let’s look at some of your options.

	 Appendix B  Additional Tips	 A177

Type it in
You can just go to the window you want and type in the value you are looking for:

Copy and paste
You can copy and paste the value from one window to another:

Note  You can copy but not cut in the Watch window. You have to delete the original value from
Watch 1 if you want to actually “move” it.

Click and drag
You can click and crag to copy a value from one window to another:

A178	 AX.116  The Immediate Window: Simple Printing and Changing Values

AX.116	 The Immediate Window: Simple Printing and Changing Values

Default Ctrl+Alt+I

Visual Basic 6 Ctrl+Alt+I; Ctrl+G

Visual C# 2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

Windows Alt,D, W, I

Menu Debug | Windows | Immediate

Command Debug.Immediate

Versions 2005, 2008, 2010

Code vstipTool0094

The Immediate Window’s versatility is great, and it can give instant feedback with infor-
mation you might need to help with your application. The first thing people usually learn
when using it is how to print values. Just go into debug mode, and use either Debug.
Print(variable) or (more commonly) just ?variable:

Additionally, you can modify values:

This is pretty basic assignment in these examples, but you can run pretty much any valid
code to change values.

	 Appendix B  Additional Tips	 A179

AX.117	 The Immediate Window: Working with Members

Default Ctrl+Alt+I

Visual Basic 6 Ctrl+Alt+I; Ctrl+G

Visual C# 2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

Visual C++ 2 Ctrl+Alt+I

Visual C++ 6 Ctrl+Alt+I

Visual Studio 6 Ctrl+Alt+I

Windows Alt,D, W, I

Menu Debug | Windows | Immediate

Command Debug.Immediate

Versions 2005, 2008, 2010

Languages C#, VB

Code vstipTool0095

When using the Immediate Window, you work with class and object members directly. Both
the traditional usage in Debug mode and the lesser-known use in Design mode is available.

Debug
You can use any method or property as long as it is in context. So, for example, when you are
in debug mode, you can call any method that is in scope:

Design

Warning  When working with members at design time, a build will occur. This might have un-
intended consequences, so make sure you have experimented with this feature a bit before you
use it on production code.

A180	 AX.117  The Immediate Window: Working with Members

Note  You cannot use design time expression evaluation in project types that require starting up
an execution environment, including Visual Studio Tools for Office projects, web projects, Smart
Device projects, and SQL projects.

A lesser-known feature is that you can work with properties and methods while in design
mode. If you have static (“Shared” in VB) methods on a class, for example, you can just ex-
ecute them without going into debug mode:

For object members, you need to create an instance of the object before working with the
members:

	 Appendix B  Additional Tips	 A181

AX.118	 The Immediate Window: Design-Time Breakpoints

Default Ctrl+Alt+I

Visual Basic 6 Ctrl+Alt+I; Ctrl+G

Visual C# 2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

Visual C++ 2 Ctrl+Alt+I

Visual C++ 6 Ctrl+Alt+I

Visual Studio 6 Ctrl+Alt+I

Windows Alt,D, W, I

Menu Debug | Windows | Immediate

Command Debug.Immediate

Versions 2005, 2008, 2010

Languages C#, VB

Code vstipTool0096

In vstipTool0095 (“The Immediate Window: Working with Members,” page A179), I demon-
strated that you could do design-time execution of members. I thought it would be instruc-
tive to mention that you can also use this technique to hit breakpoints in your code.

For example, assume you have an application that has a class with a static method.

Now set a breakpoint on a line of code:

Then, in design mode, execute the method from the Immediate Window.

It executes the code and stops at the breakpoint, ready for you to continue debugging:

A182	 AX.119  The Immediate Window: Running Commands

This is an interesting feature of design-time execution, which you can use to quickly get to an
area for debugging.

AX.119	 The Immediate Window: Running Commands

Default Ctrl+Alt+I

Visual Basic 6 Ctrl+Alt+I; Ctrl+G

Visual C# 2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

Visual C++ 2 Ctrl+Alt+I

Visual C++ 6 Ctrl+Alt+I

Visual Studio 6 Ctrl+Alt+I

Windows Alt,D, W, I

Menu Debug | Windows | Immediate

Command Debug.Immediate

Versions 2005, 2008, 2010

Code vstipTool0098

You can run commands when you are in the Immediate Window. Just type >[command] to
run any command. When I want to quickly clear out the Immediate Window, one of my fa-
vorite commands to run is >cls:

	 Appendix B  Additional Tips	 A183

Any valid command can be run in this way, so you can run any command you want from the
Immediate Window.

AX.120	 Class View and Object Browser Icons

Versions 2005, 2008, 2010

Code vstipTool0076

You often encounter icons to represent symbols in a variety of places, such as when you use
the Object Browser:

A184	 AX.120  Class View and Object Browser Icons

The help documentation lists out the icons for you and I have listed them in the following
table for your reference. You can see them online at http://msdn.microsoft.com/en-us/library/
y47ychfe.aspx.

Class View and Object Browser Icons:

Icon Description Icon Description
Namespace Method or function

Class Operator

Interface Property

Structure Field or variable

Union Event

Enum Constant

TypeDef Enum item

Module Map item

Intrinsic External declaration

Delegate Macro

Exception Template

Map Unknown or error

Global Type forwarding

Extension method

Modifier Icons:

Icon Description

<No Signal Icon> Public. Accessible from anywhere in this component and from any component
that references it.
Protected. Accessible from the containing class or type, or those derived from the
containing class or type.

Private. Accessible only in the containing class or type.

Internal. Accessible only from this component.

Friend. Accessible only from the project.

Shortcut. A shortcut to the object.

http://msdn.microsoft.com/en-us/library/y47ychfe.aspx
http://msdn.microsoft.com/en-us/library/y47ychfe.aspx

	 Appendix B  Additional Tips	 A185

AX.121	 Output Window vs. Immediate Window

Windows Alt,T, O

Menu Tools | Options | Debugging | General

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipTool0046

Depending on your settings, you might want to redirect Output window messages that you
create to the Immediate window, or vice versa. So, consider your messages (Asserts, for ex-
ample) that currently go to the Output window:

Go to Tools | Options | Debugging | General, and select the Redirect All Output Window Text
To The Immediate Window check box:

A186	 AX.122  The Object Browser: Settings

Now your messages go to the Immediate window instead of the Output window:

Note  Not all information is redirected to the Immediate window. In this example, the results of
your Assert are redirected, but some system information is always shown in the Output window.

AX.122	 The Object Browser: Settings

Default Ctrl+Alt+J

Visual Basic 6 Ctrl+Alt+J; F2

Visual C# 2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

Visual C++ 2 Ctrl+Alt+J; Shift+Alt+F1

Visual C++ 6 Ctrl+Alt+J

Visual Studio 6 Ctrl+Alt+B; F2

Windows Alt,V, J

Menu View | Object Browser

Command View.ObjectBrowser

Versions 2005, 2008, 2010

Code vstipTool0080

Object Browser settings are a critical part of your browsing experience. They determine
what you see and how much detail exists. This tip shows you how to use the settings to your
advantage.

First, the settings button is located to the far right on the toolbar and looks like a sheet of
paper with a check mark in it. There is quite a bit to look at, as you can see:

	 Appendix B  Additional Tips	 A187

Note  The options you see are based on your context in the Object Browser, so not all options
may be currently available.

Containers vs. Namespaces

View Containers
Sets the highest-level items in the Objects pane to physical containers, such as components,
assemblies, source browser (.bsc) files, and output type libraries (.tlb). These expand to show
the namespaces that are contained:

A188	 AX.122  The Object Browser: Settings

View Namespaces
Sets the highest-level items in the Objects pane to namespaces. Namespaces stored in mul-
tiple physical containers are merged. These expand to show the items that are contained:

Base and Derived Types

	 Appendix B  Additional Tips	 A189

Show Base Types
Toggles showing the Base Types folder and contents.

Show Derived Types
Toggles showing the Derived Types folder and contents and is available only for Visual C++
projects and the .NET Framework.

Hidden Types and Members

Show Hidden Types And Members
Toggles display of hidden types in the Objects pane and hidden members in the Members
pane. Hidden items show up as dimmed items in the lists.

Public, Protected, Private, and Other Members

Show Public Members
Displays members that are public or protected:

A190	 AX.122  The Object Browser: Settings

Show Protected Members
Displays members that are protected:

Show Private Members
Displays members with private accessibility:

	 Appendix B  Additional Tips	 A191

Show Other Members
Displays members that do not fall into the category of public, protected, private, or inherited:

Inherited Members and Extension Methods

Show Inherited Members
Toggles display of inherited members in the Members pane, as shown in the following
illustrations:

Off:

On:

A192	 AX.123  The Object Browser: Search

Show Extension Methods
Toggles the display of extension methods in the Members pane:

AX.123	 The Object Browser: Search

Default Ctrl+K, Ctrl+R (goto to search)

Visual Basic 6 Ctrl+K, Ctrl+R (goto to search)

Visual C# 2005 [no shortcut] (goto to search)

Visual C++ 2 [no shortcut] (goto to search)

Visual C++ 6 Ctrl+K, Ctrl+R (goto to search)

Visual Studio 6 Ctrl+K, Ctrl+R (goto to search)

Command View.ObjectBrowserGoToSearchCombo; View.ObjectBrowserClearSearch; View.
ObjectBrowserSearch

Versions 2005, 2008, 2010

Code vstipTool0081

When you use the Object Browser, typically you need to find something fast. Search is a
great way to find what you are looking for within the current browsing scope. To use search,
just type the string you are looking for into the Search box and press Enter or click the Search
button:

	 Appendix B  Additional Tips	 A193

Searches are a “contains” operation and are not case-specific. For example, typing in the
search term ask highlights the substring in the results. The search utility filters the Objects
pane to show only those items that contain the search string:

You can repeat any previous search by clicking the drop-down list arrow in the Search area:

A194	 AX.123  The Object Browser: Search

This list persists even after Visual Studio is closed because the values are stored in the registry
(HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\<version>\Object_Browser):

You can clear any search (and remove the filter on the Objects pane) by clicking the Clear
Search button to the right of the Search box:

View.ObjectBrowserSearch Command
You can invoke the View.ObjectBrowserSearch command to quickly do a search by using
a command. This is particularly useful if you have a search you perform frequently be-
cause you can create command aliases for your common search strings. See vstipTool0068
(“Understanding Commands: Aliases,” page 113) for more information about command
aliases.

The command is relatively straightforward. Just type in View.ObjectBrowserSearch [search
string]:

This yields a result based on the current Object Browser settings:

	 Appendix B  Additional Tips	 A195

AX.124	 The Object Browser: Objects Pane

Default Ctrl+Alt+J

Visual Basic 6 Ctrl+Alt+J; F2

Visual C# 2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

Visual C++ 2 Ctrl+Alt+J; Shift+Alt+F1

Visual C++ 6 Ctrl+Alt+J

Visual Studio 6 Ctrl+Alt+B; F2

Windows Alt,V, J

Menu View | Object Browser

Command View.ObjectBrowser

Versions 2005, 2008, 2010

Code vstipTool0082

When working with the Object Browser, you will inevitably find yourself in the Objects pane
located just below the Search area:

A196	 AX.124  The Object Browser: Objects Pane

The Objects pane displays an expandable list of symbols whose top-level nodes represent
components or namespaces (based on your choice in the settings) available in the current
browsing scope. These top-level nodes typically contain symbols that contain other symbols.
To expand or collapse a node selected in the list, click its arrow sign or press Enter.

When you right-click in the Objects pane, you can see a list of options. What you see de-
pends on the item chosen, but it generally looks something like the following:

	 Appendix B  Additional Tips	 A197

Following are descriptions of the possible options and what they do.

Go To Definition
Takes you to the line of code where the item is defined:

Browse Definition
Takes you to the primary node (typically top level) for the selected symbol in the Object
Browser:

A198	 AX.124  The Object Browser: Objects Pane

Find All References
Performs a search on the currently selected object symbol by using the current browsing
scope with results shown in the Find Symbol Results dialog box:

	 Appendix B  Additional Tips	 A199

Filter To Type
Shows only the selected type in the Objects pane. Essentially, it makes the selected item
the top-level item in the pane. It is particularly useful for focusing on a single namespace or
component:

Filter To Type searches only on the item selected, and you can take the filter off by clicking
the Clear Search button to the right of the Search box:

A200	 AX.124  The Object Browser: Objects Pane

Copy
Copies a symbol reference that can be pasted into a designer and also copies the full path
and name of the selected item to the clipboard.

View Namespaces
Sets the highest-level items in the Objects pane to logical namespaces. Namespaces stored in
multiple physical containers are merged:

View Containers
Sets the highest-level items in the Objects pane to physical containers, such as projects, com-
ponents, assemblies, source browser (.bsc) files, and output type libraries (.tlb). These can be
expanded to show the namespaces they contain:

	 Appendix B  Additional Tips	 A201

Sort Alphabetically
Lists items alphabetically by their names in ascending order:

Sort By Object Type
Lists items in order of their type, such as base classes, followed by derived classes, interfaces,
methods, and so forth:

A202	 AX.124  The Object Browser: Objects Pane

Sort By Object Access
Lists items in order of their access type, such as public or private:

Group By Object Type
Sorts items into groups by type, such as classes, interfaces, properties, methods, and so on.
This is a great organizational feature:

Go To Declaration
Takes you to the declaration of the symbol in the code. This is available only in Visual C++
projects.

	 Appendix B  Additional Tips	 A203

AX.125	 The Object Browser: Members Pane

Default Ctrl+Alt+J

Visual Basic 6 Ctrl+Alt+J; F2

Visual C# 2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

Visual C++ 2 Ctrl+Alt+J; Shift+Alt+F1

Visual C++ 6 Ctrl+Alt+J

Visual Studio 6 Ctrl+Alt+B; F2

Windows Alt, V, J

Menu View | Object Browser

Command View.ObjectBrowser

Versions 2005, 2008, 2010

Code vstipTool0083

Each object can contain members such as properties, methods, events, constants, variables,
and enum values. Selecting an object in the Objects pane (left) displays its members in the
Members pane (right):

While in the Members pane, you can do several things. Many of these activities are duplicates
of actions you can take in other areas of the Object Browser, so I will reference those areas to
avoid duplication:

A204	 AX.125  The Object Browser: Members Pane

Go To Definition, Find All References, and Copy
These are the same as in the Objects pane (vstipTool0082, “The Object Browser: Objects
Pane,” page A195).

View Call Hierarchy
This command is unique to the Members pane and opens up the Call Hierarchy window
(vstipTool0005, “Using the Call Hierarchy,” page 310).

Show *
These options are the same as the ones available in the Object Browser settings (vstip-
Tool0080, “The Object Browser: Settings,” page A186).

Sort *
These options are the same as the ones available in the Objects pane (vstipTool0082, “The
Object Browser: Objects pane,” page 124).

	 Appendix B  Additional Tips	 A205

Group By Member Type
This is similar to the same option in the Objects pane but different enough to warrant a quick
look. When you use this option, members are grouped into their respective types:

AX.126	 The Object Browser: Description Pane

Default Ctrl+Alt+J

Visual Basic 6 Ctrl+Alt+J; F2

Visual C# 2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

Visual C++ 2 Ctrl+Alt+J; Shift+Alt+F1

Visual C++ 6 Ctrl+Alt+J

Visual Studio 6 Ctrl+Alt+B; F2

Windows Alt, V, J

Menu View | Object Browser

Command View.ObjectBrowser

Versions 2005, 2008, 2010

Code vstipTool0084

The Description pane (bottom right) displays detailed information about the currently se-
lected item (Objects pane) or member (Members pane). You can copy (right-click anywhere
in the pane) data from the Description pane to the clipboard and then paste it into the code
editor:

A206	 AX.127  The Object Browser: Creating a Keyboard Shortcut for Add To References

The information displayed depends on the selection and can include the following:

●● Name and parent object

●● Properties and attributes

●● Syntax in the programming language of the active project

●● Links to related objects and members

●● Descriptions, comments, and Help text

●● Version of the .NET Framework in which the object or member is included

AX.127	 The Object Browser: Creating a Keyboard Shortcut for
Add To References

Command View.ObjectBrowserAddReference

Versions 2005, 2008, 2010

Code vstipTool0085

A command is available for almost anything you can do in the Object Browser. You can see
this by going to Tools | Options | Keyboard and typing in view.objectbrowser in the Show
Commands Containing area:

	 Appendix B  Additional Tips	 A207

This means that you can create a shortcut key for all kinds of activities. (See vstipTool0063 ,
“Keyboard Shortcuts: Creating New Shortcuts,” page 127.) I’ll provide a short example here.

So let’s say you want to make it easy to get the Add To References In Selected Project In
Solution Explorer functionality available on the toolbar in a keyboard shortcut:

Just go to Tools | Options | Keyboard, type view.objectbrowseraddreference in the Show
Commands Containing area, enter the shortcut you want to use, and click Assign:

You now have a shortcut key you can use anytime you want instead of having to use the
toolbar.

A208	 AX.128  The Object Browser: Type-Ahead Selection

AX.128	 The Object Browser: Type-Ahead Selection

Default Ctrl+Alt+J

Visual Basic 6 Ctrl+Alt+J; F2

Visual C# 2005 Ctrl+Alt+J; Ctrl+W, Ctrl+J; Ctrl+W, J

Visual C++ 2 Ctrl+Alt+J; Shift+Alt+F1

Visual C++ 6 Ctrl+Alt+J

Visual Studio 6 Ctrl+Alt+B; F2

Windows Alt,V, J

Menu View | Object Browser

Command View.ObjectBrowser

Versions 2005, 2008, 2010

Code vstipTool0086

Type-ahead support is available in the Object Browser lists. For example, I have a list of items
in the Objects pane:

I type act, and I get the following result:

	 Appendix B  Additional Tips	 A209

As you can see, it takes me to the first item that begins with act. I can continue typing until I
find exactly what I want, or I can browse from there.

AX.129	 The Object Browser: Exporting Your Settings

Windows Alt,T, I

Menu Tools | Import and Export Settings

Command Tools.ImportandExportSettings

Versions 2005, 2008, 2010

Code vstipTool0087

After you have the Object Browser configured the way you want it, you probably want to ex-
port the settings. In fact, you might have several different configurations you use, depending
on the circumstances. For more information about exporting, see vstipEnv0021 (“Exporting
Your Environment Settings,” page 6). For now, let’s just use a quick example to get your
Object Browser settings exported. First, go to Tools | Import And Export Settings and choose
Export Selected Environment Settings:

A210	 AX.129  The Object Browser: Exporting Your Settings

Click Next, and then clear the All Settings box to clear out all the currently selected items:

Now select Object Browser Options under General Settings:

	 Appendix B  Additional Tips	 A211

Click Next, and then give the .vssettings file a name and the path to store it in:

Click Finish, click Close, and you are all set to go. Anytime you need these settings again, you
can import them.

AX.130	 The Immediate Window: Implicit Variables

Default Ctrl+Alt+I

Visual Basic 6 Ctrl+Alt+I; Ctrl+G

Visual C# 2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

Visual C++ 2 Ctrl+Alt+I

Visual C++ 6 Ctrl+Alt+I

Visual Studio 6 Ctrl+Alt+I

Windows Alt,D, W, I

Menu Debug | Windows | Immediate

Command Debug.Immediate

Versions 2005, 2008, 2010

Languages C#, VB

Code vstipTool0100

A212	 AX.130  The Immediate Window: Implicit Variables

In the Immediate Window, you can create implicit variables for use in your debugging ef-
forts. These implicit variables never go out of scope and can be treated as any other variable.
They are approached differently in VB and C#.

C#
To create an implicit variable in C#, just declare any variable in the Immediate window:

If you are in debug mode, you can actually see the variable in your Locals window. Implicit
variables show up with a “$” character in front of them:

VB
In VB, you cannot declare implicit variables in the Immediate Window. But if you use an un-
declared variable, an implicit variable is created automatically. Unfortunately, VB implicit vari-
ables are not listed in the Locals window:

	 Appendix B  Additional Tips	 A213

AX.131	 Show External Code

Versions 2005, 2008, 2010

Code vstipDebug0031

The Call Stack window provides an option to show external code. Let’s start with the basics.
When you are in break mode and you look at a “normal” call stack, you see the following:

Note  The Call Stack window (Ctrl+Alt+C) is only available while debugging.

Let’s define what “normal” is in this case. Essentially, what you see here is determined by the
Enable Just My Code (Managed Only) setting in Tools | Options | Debugging | General:

A214	 AX.131  Show External Code

This setting is on by default, and it is the reason you see the “[External Code]” sections in
your Call Stack. Selecting Enable Just My Code (Managed Only) means that you want to
see your code without any information getting in the way. If you want to see the details of
“[External Code],” just right-click anywhere in the Call Stack and choose Show External Code:

Now you should be able to see the external calls:

	 Appendix B  Additional Tips	 A215

The grey part is where “[External Code]” used to be. Let’s zoom in on a couple of the entries:

Notice that now you are looking into the details of what is happening. It remains this way
until you turn it off again.

By the way, if you ever need to turn this feature off, just right-click the Call Stack again and
select Show External Code. It turns off this feature, and you are back to the original view.

There is no option to turn this feature on and off, but just for reference, this setting is stored
in the registry at HKEY_CURRENT_USER\Software\Microsoft\VisualStudio\10.0\Debugger un-
der ShowExternalCode.

AX.132	 Understanding Just My Code

Windows Alt,T, O

Menu Tools | Options

Command Tools.Options

Versions 2005, 2008, 2010

Languages C++ (managed only), C#, VB

Code vstipDebug0032

You often want to debug just the code you have written and exclude any Framework or
external component code that you are using. If you go to Tools | Options | Debugging |
General, you can find an option to Enable Just My Code (Managed Only):

A216	 AX.132  Understanding Just My Code

Lots of people wonder what “Just My Code” really means. So let’s start with what the docu-
mentation says (http://msdn.microsoft.com/en-us/library/h5e30exc.aspx):

“To distinguish user code from non-user code, Just My Code looks at three things: DBG
Files, PDB files, and optimization.”

DBG and PDB files

One way to figure out what is “your code” is to look and see whether it has DBG and/or PDB
files. In case you didn’t know, DBG files have been superseded by the PDB format.

The PDB extension stands for “program database.” It holds the debugging information that
was introduced in Visual C++ version 1.0. You can find out more about PDB files at http://
support.microsoft.com/kb/121366/en-us. This is typically deep-level information about the
source, so if you have these files, either it’s your code or someone trusted you enough to give
them to you. In other words, it is basically “yours.”

Optimization
When optimization is turned off (the default setting for Debug builds), it factors into the
code being considered “yours” as well. As stated in the documentation mentioned earlier, the
optimization “option enables or disables optimizations performed by the compiler to make
your output file smaller, faster, and more efficient.”

http://msdn.microsoft.com/en-us/library/h5e30exc.aspx
http://support.microsoft.com/kb/121366/en-us
http://support.microsoft.com/kb/121366/en-us

	 Appendix B  Additional Tips	 A217

Many optimizations are available, such as optimizing for application speed or the size of your
program. You can get see the full list of features at http://msdn.microsoft.com/en-us/library/
k1ack8f1.aspx. Basically, optimization does many things that are great for a shipping applica-
tion but not for one that you are currently debugging.

C#
In C#, this is found in the Project properties on the Build tab:

VB
In VB, it is in the Project properties on the Compile tab, but you have to click the Advanced
Compiler Settings button:

http://msdn.microsoft.com/en-us/library/k1ack8f1.aspx
http://msdn.microsoft.com/en-us/library/k1ack8f1.aspx

A218	 AX.133  Attach To Process (Tools vs. Debug Menu)

C++
In C++, you can find optimization options under the Project properties, under C/C++,
Optimization:

Finally
So if the PDB information is there and optimization is not turned on, the code is considered
“yours” as far as Visual Studio is concerned.

AX.133	 Attach To Process (Tools vs. Debug Menu)

Default Ctrl+Alt+P

Visual Studio 6 Ctrl+Alt+P; Ctrl+Shift+R

Visual C# 2005 Ctrl+Alt+P

Visual C++ 2 Ctrl+Alt+P

Visual C++ 6 Ctrl+Alt+P

Visual Studio 6 Ctrl+Alt+P; Ctrl+Shift+R

Windows Alt, T, P; Alt, D, P, Enter

Menu Tools | Attach to Process; Debug | Attach to Process

Command Tools.AttachtoProcess; Debug.AttachtoProcess

Versions 2005, 2008, 2010

Code vstipDebug0033

I decided to figure out what the difference is between Debug | Attach To Process and Tools |
Attach To Process. I’ll spare you the suspense: They are the same.

OK so why are they there? The answer is simple: Prior to Visual Studio 2010, when you didn’t
have a project open in Visual Studio, it would not show the Debug menu. So the only way
you could use Attach To Process was to use the Tools menu:

	 Appendix B  Additional Tips	 A219

Beginning in Visual Studio 2010, the Debug menu is available even when a project isn’t open:

Essentially, the redundancy is unnecessary in Visual Studio 2010, but it actually served a pur-
pose in prior versions.

AX.134	 The Immediate Window: Running WinDbg and SOS (Son of Strike)
Commands

Default Ctrl+Alt+I

Visual Basic 6 Ctrl+Alt+I; Ctrl+G

Visual C# 2005 Ctrl+Alt+I; Ctrl+D, Ctrl+I; Ctrl+D, I

Visual C++ 2 Ctrl+Alt+I

Visual C++ 6 Ctrl+Alt+I

Visual Studio 6 Ctrl+Alt+I

Windows Alt,D, W, I

Menu Debug | Windows | Immediate

Command Debug.Immediate

Versions 2005, 2008, 2010

Code vstipTool0097

It would take a long time to go into detail about WinDbg and SOS (Son of Strike), so I will
avoid that here. I want to give you a quick view into how SOS works in the Immediate
Window. If you want to get hard-core with debugging, the absolute best places to learn are
these two blogs:

●● John Robbins, at Wintellect: http://www.wintellect.com/CS/blogs/jrobbins/default.aspx

●● Tess Ferrandez, an ASP.NET Escalation Engineer at Microsoft: http://blogs.msdn.com/b/tess

http://www.wintellect.com/CS/blogs/jrobbins/default.aspx
http://blogs.msdn.com/b/tess/

A220	 AX.134  The Immediate Window: Running WinDbg and SOS (Son of Strike) Commands

Loading SOS in the Immediate Window
With that said, let’s take a look at what it takes to get SOS going in the Immediate Window
when using 32-bit and 64-bit architectures. As we go along, I also want to show you the
messages you commonly encounter when trying to set this up. First, open the Immediate
Window (Ctrl+Alt+I), type in .load sos, and press Enter.

32-bit
You most likely get the following message:

“SOS not available while Managed only debugging. To load SOS, enable unmanaged debug-
ging in your project properties.”

To fix this, go to your project properties page and click the Debug tab.

Then select Enable Unmanaged Code Debugging:

Now go back to the Immediate Window, and type .load sos again. It might take a few sec-
onds, but eventually you should see the following message:

	 Appendix B  Additional Tips	 A221

Note  Your version might be different based on the CLR being used.

64-bit
You might see the following message:

“Error during command: extension C:\Windows\Microsoft.NET\Framework64\v4.0.30319\
sos.dll could not load (error 193)”

This means that you are attempting to debug an x64 (64-bit) application. Visual Studio cur-
rently offers no support for interop (managed/unmanaged) debugging on x64. You can
fix this in VB by going to the project properties (Compile tab) and clicking the Advanced
Compile Options button:

In C#, you would go to the Build tab of your project properties instead. Then, under Target
CPU, choose x86:

Using SOS
Once you have Son of Strike loaded, there are a variety of WinDbg commands you can lever-
age. I’ll cover some of the more interesting ones in this section.

A222	 AX.134  The Immediate Window: Running WinDbg and SOS (Son of Strike) Commands

Threads and symbols
Type !threads to see threading info:

Do you see the error that says “PDB symbol for clr.dll not loaded”? This is a common error
that is trying to tell you that you need to get symbols. The easiest way to do this is to go to
Tools | Options | Debugging | Symbols and select the Microsoft Symbol Servers check box in
the Symbol File (.pdb) Locations area:

Warning  There is definitely a performance hit when loading symbols, so be prepared to have
some delays as you debug.

	 Appendix B  Additional Tips	 A223

Dump the managed heap
You can dump the managed heap by typing !dumpheap. Just watch out—this is pretty ver-
bose output by default:

Current thread call stack
If you want to display the call stack for the current thread, you can use !clrstack. The follow-
ing illustration shows a sample of the output:

These are just a few of the commands you can use. You can get as deep or as shallow into
this as you want, but the moral of this story is that you can run WinDbg and SOS commands
from the Immediate Window and do some serious debugging from within the IDE.

A224	 AX.135  Creating a Class Diagram from Class View

AX.135	 Creating a Class Diagram from Class View

Menu [Context Menu] | View Class Diagram

Command ClassViewContextMenus.ClassViewItem. ViewClassDiagram

Versions 2005, 2008, 2010

Languages C#, VB

Code vstipTool0112

If you like using class diagrams, you can easily create them by using the Class View
(Ctrl+Shift+C) window. Just right-click a namespace or class, for example, and choose View
Class Diagram:

AX.136	 Placing the Call Stack and Call Hierarchy Windows

Versions 2005, 2008, 2010

Code vstipTool0115

When you are working with the Call Stack or Call Hierarchy windows, they can sometimes get
a little lengthy. Usually you see them docked at the bottom. This is a great feature, but not
much fun if you want to look at, say, 20 lines in the stack. You might find it useful to dock the
window with Solution Explorer (which by default is docked to the right of your screen). Just
drag the tab toward Solution Explorer, and place it with the other tabs:

	 Appendix B  Additional Tips	 A225

Now you are all set, and you can see much more information while you work:

A226	 AX.137  Delete All Breakpoints

Also, recall that this has no impact on your Design Mode experience because the window
layouts are different. (See vstipEnv0052, “Window Layouts: Design, Debug, and Full Screen,”
page 91)

AX.137	 Delete All Breakpoints

Default Ctrl+Shift+F9

Visual Basic 6 Ctrl+Shift+F9

Visual C# 2005 Ctrl+Shift+F9

Visual C++ 2 [no shortcut]

Visual C++ 6 Ctrl+Shift+F9

Visual Studio 6 Ctrl+Shift+F9

Windows Alt,D, D

Menu Debug | Delete All Breakpoints

Command Debug.DeleteAllBreakpoints

Versions 2005, 2008, 2010

Code vstipDebug0025

You can delete all your breakpoints at once. You have a couple of options for doing this.

Warning  If you want them back, make sure that you export your breakpoints before you use
either of these options. See vstipDebug0003, “How to Import and Export Breakpoints” on page
329, for information about how to back up your breakpoints.

Debug | Delete All Breakpoints; Ctrl+Shift+F9
If you use the Debug menu or Ctrl+Shift+F9, the behavior hasn’t changed from previous ver-
sions: All breakpoints get deleted:

	 Appendix B  Additional Tips	 A227

You will get the following dialog box to verify that you want to delete all the breakpoints:

A228	 AX.137  Delete All Breakpoints

Breakpoints Window
In Visual Studio 2010, you can delete all breakpoints that match the current search criteria.
Only those breakpoints that are currently visible in the Breakpoints window are deleted. This
is a powerful concept that allows you to remove unwanted breakpoints in bulk that are no
longer needed, but still keep the ones you will use later:

You get the following dialog box to verify that you want to delete the breakpoints. Notice
the additional text concerning the current search criteria:

You will always get a dialog box to verify that you want to delete all the breakpoints. You can
turn this off by going to Tools | Options | Debugging | General and clearing the Ask Before
Deleting All Breakpoints check box:

	 Appendix B  Additional Tips	 A229

Warning  Just because you can turn it off doesn’t mean you should turn it off. I don’t recom-
mend it.

AX.138	 Make Object ID

Command DebuggerContextMenus.AutosWindow.MakeObjectID

Versions 2008, 2010

Languages C#, VB

Code vstipDebug0015

Note  The idea for this tip came originally from John Robbins at Wintellect (http://www.wintellect.
com).

Ever want to track an object even if it is out of scope? How about seeing whether an object
has been garbage collected? Well, you can do it with Object IDs. Just follow these steps:

	 1.	 Set a breakpoint in your code where you can get to an object variable that is in scope.

	 2.	 Run your code and let it stop at the breakpoint.

	 3.	 In your Locals or Autos Window, right-click the object variable and choose Make Object
ID from the context menu:

You should now see something new in the Value column:

http://www.wintellect.com
http://www.wintellect.com

A230	 AX.138  Make Object ID

That new value is the Object ID that was generated. Let’s see how it works.

To experiment for this experiment, type both the object variable and the new Object ID in
your Watch window:

Now if you go to another method where the object variable (in this case “doc”) is out of
scope, you get the following result:

Notice that the variable name “doc” is out of scope, but I can still track the Object ID that
shows the location in memory that object variable pointed to. This is very handy for looking
at objects for full lifecycle.

Also, you can do some interesting things. For example, you can see which generation the
memory space is currently in for purposes of garbage collection:

	 Appendix B  Additional Tips	 A231

If you want to learn more about Object IDs, see the excellent blog post at http://blogs.msdn.
com/b/jimgries/archive/2005/11/16/493431.aspx.

AX.139	 Change Values from the Locals Window

Default Ctrl+Alt+V, L

Visual Basic 6 Ctrl+Alt+V, L

Visual C# 2005 Ctrl+Alt+V, L; Ctrl+D, Ctrl+L; Ctrl+D, L

Visual C++ 2 Ctrl+Alt+V, L; Alt+3

Visual C++ 6 Ctrl+Alt+V, L; Alt+4

Visual Studio 6 Ctrl+Alt+V, L; Ctrl+Alt+L

Windows Alt,D, W, L

Menu Debug | Windows | Locals

Command Debug.Locals

Versions 2005, 2008, 2010

Code vstipTool0102

You can use the Locals window to change values while debugging in break mode. Just find
any variable you want to change in your Locals window:

http://blogs.msdn.com/b/jimgries/archive/2005/11/16/493431.aspx
http://blogs.msdn.com/b/jimgries/archive/2005/11/16/493431.aspx

A232	 AX.140  Debug Executable Without Using Attach to Process

In this case, let’s change “d” to another value:

The changed value turns red afterward to indicate that it has been modified:

AX.140	 Debug Executable Without Using Attach to Process

Default Ctrl+Shift+O

Visual Basic 6 Ctrl+Shift+O; Ctrl+O

Visual C# 2005 Ctrl+Shift+O

Visual C++ 2 Ctrl+Shift+O

Visual C++ 6 Ctrl+Shift+O

Visual Studio 6 Ctrl+O

Windows Alt,F, O, P; Alt,F, D, N

Menu File | Open Project/Solution; File | Add | New Project

Command File.OpenProject; File.AddNewProject

Versions 2005, 2008, 2010

Code vstipDebug0034

	 Appendix B  Additional Tips	 A233

Note  You might need to start Visual Studio with administrator rights before you can use this tip.
You will get a warning message that allows you to elevate privileges if this is the case.

You probably already know about the Attach To Process menu items on the Debug and Tools
menus, but what if, for example, the process fails before you can attach to it? Maybe it fails
on startup, or it runs too fast for you to catch it. Did you know you can create a solution for
executables?

It’s easy to do. Just find the executable you want to create a solution for by going to File |
Open Project/Solution:

Or, if you have a solution open already, go to File | Add | Existing Project:

A234	 AX.141  The Watch Window: Hexadecimal Display

Now you can run the executable just like any other project by pressing F5. If you have mul-
tiple projects, make sure to set it as the startup.

When you are debugging an executable without the source code, the available debugging
features are limited, whether you attach to a running executable or add the executable to a
Visual Studio solution.

If the executable was built without debug information in a compatible format, available
features are further limited. If you have the source code, the best approach is to import the
source code into Visual Studio and create a debug build of the executable in Visual Studio:

AX.141	 The Watch Window: Hexadecimal Display

Menu [Context Menu] | Hexadecimal Display

Command Debug.HexadecimalDisplay

Versions 2005, 2008, 2010

Code vstipTool0110

All the variable windows (Locals, Autos, QuickWatch, and Watch) support showing the hexa-
decimal display for values. These values are particularly useful when you are dealing with
data that requires any hex input for values. In any variable window, you can right-click any-
where and choose Hexadecimal Display:

	 Appendix B  Additional Tips	 A235

You now have hex values displayed for the values in all the variable windows:

You can repeat this action to turn the hex display off.

AX.142	 Edit And Continue

Windows Alt,T, O

Menu Tools | Options

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipDebug0038

Did you know you can edit your code while you are debugging? You can do it with the
Edit And Continue (EnC) feature. First, you can find this option under Tools | Options |
Debugging | Edit And Continue:

A236	 AX.142  Edit And Continue

However, in many language-specific scenarios, you can’t use this feature. For more detailed
information, see the topic “Edit and Continue” at http://msdn.microsoft.com/en-us/library/
bcew296c(v=VS.100).aspx.

The preceding caveat notwithstanding, this is an interesting feature that allows you to edit
code while you are debugging and to continue execution without having to do a full recom-
pile of the code.

Disclaimer
I would be remiss if I didn’t mention that there are some people who don’t think using Edit
And Continue is a good idea. John Robbins, whose opinion I respect a great deal, is one of
those people, and he makes some compelling arguments why you might not want to use this
feature all the time. You can find John’s post at http://www.wintellect.com/CS/blogs/jrobbins/
archive/2004/10/17/c-edit-and-continue-announced.aspx.

Interestingly, you can find Jeff Atwood’s rebuttal to John’s argument at http://www.coding-
horror.com/blog/2006/02/revisiting-edit-and-continue.html.

The bottom line: Make your own informed decision about using Edit And Continue, but even
if you do use it, be fully aware of the implications of changes you make when using it.

http://msdn.microsoft.com/en-us/library/bcew296c(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/bcew296c(v=VS.100).aspx
http://www.wintellect.com/CS/blogs/jrobbins/archive/2004/10/17/c-edit-and-continue-announced.aspx
http://www.wintellect.com/CS/blogs/jrobbins/archive/2004/10/17/c-edit-and-continue-announced.aspx
http://www.codinghorror.com/blog/2006/02/revisiting-edit-and-continue.html
http://www.codinghorror.com/blog/2006/02/revisiting-edit-and-continue.html

	 Appendix B  Additional Tips	 A237

AX.143	 Print with Line Numbers

Default Ctrl+P

Visual Basic 6 Ctrl+P

Visual C# 2005 Ctrl+P

Visual C++ 2 Ctrl+P; Ctrl+Shift+F12; Ctrl+Shift+Alt+F2

Visual C++ 6 Ctrl+P

Visual Studio 6 Ctrl+P

Windows Alt,F, P

Menu File | Print

Command File.Print

Versions 2005, 2008, 2010

Code vstipEnv0006

Want to print your line numbers with your code? Don’t worry! You can do it by just checking
the Include Line Numbers option in the Print dialog box:

A238	 AX.144  Printing the File Path in the Page Header

AX.144	 Printing the File Path in the Page Header

Windows Alt,F, U

Menu File | Page Setup

Command File.PageSetup

Versions 2005, 2008, 2010

Code vstipEnv0008

This feature is on by default in Visual Studio 2010, but just in case you accidentally turn it off
or maybe you don’t want the file path in the page header, just go to File | Page Setup and
notice the Page Header check box:

The Page Header setting toggles the printing of the file path in the page header.

AX.145	 Printing in Different Fonts and Colors

Windows Alt,T, O

Menu Tools | Options

Command Tools.Options

Versions 2005, 2008

Code vstipEnv0007

Ever change your fonts or colors in the editor only to be frustrated because the fonts and
colors do not print correctly or as expected? Just go to Tools | Options | Environment | Fonts
And Colors on your menu bar, and then in the Show Settings For drop-down box, select
Printer. Now you can change how your printed output looks:

	 Appendix B  Additional Tips	 A239

To use your editor colors when you print, just click Use and select Text Editor Settings:

The color and font settings from the text editor will now be applied to your printed output.

Note  This is a copy operation, so if you change the text editor settings, you must redo this step
to copy the new settings over.

AX.146	 Get Rid of the Splash Screen

Versions 2005, 2008, 2010

Code vstipEnv0046

When you start Visual Studio, the splash screen is often the first thing you see:

A240	 AX.147  Understanding Check Accessibility

Did you know that you can suppress it? Just go to the properties of your Visual Studio pro-
gram icon:

Now click the Shortcut tab:

Add /nosplash to the end of the Target area:

Now when you run Visual Studio, you no longer see the splash screen.

AX.147	 Understanding Check Accessibility

Windows Alt,T, B

Menu Tools | Check Accessibility; [Context Menu] | Check Accessibility

Command Tools.CheckAccessibility

Versions 2005, 2008, 2010

Code vstipProj0028

According to the documentation in “Accessibility in Visual Studio and ASP.NET,” at http://
msdn.microsoft.com/en-us/library/ms228004(v=VS.100).aspx, accessibility is an important
consideration in your development work:

“Accessibility standards enable you to build Web pages that can be used by people who have
disabilities. [You can] configure ASP.NET Web server controls to make sure that they generate
accessible HTML.”

http://msdn.microsoft.com/en-us/library/ms228004(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms228004(v=VS.100).aspx

	 Appendix B  Additional Tips	 A241

It is always better to make your websites accessible to people with disabilities, and in some
cases, it’s required. Did you know that you can easily determine whether a page meets acces-
sibility requirements by right-clicking on any page and choosing Check Accessibility?

This opens the Accessibility Validation dialog box:

Following are descriptions of each option on the Accessibility Validation dialog box.

Check For
WCAG Priority 1 & 2—checks for compliance with Web Content Accessibility Guidelines
(http://www.w3.org/WAI/intro/wcag.php).

http://www.w3.org/WAI/intro/wcag.php

A242	 AX.148  Automatic vs. Default in Fonts and Colors

Access Board Section 508—checks accessibility by using the standards that were defined by
the United States government in Section 508 of the Rehabilitation Act, which are based on
the WCAG (http://www.section508.gov).

Show
●● Errors and Warnings  Shows relevant items that violate the rules selected in the

Check For section:

●● Manual Checklist  Generates informational messages that can be used as guides
while the errors and warnings are addressed:

AX.148	 Automatic vs. Default in Fonts and Colors

Windows Alt,T, O

Menu Tools | Options

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipEnv0009

If you’ve ever wondered what the difference is between the Default and Automatic options in
the fonts and colors found at Tools | Options | Environment | Fonts And Colors, see the next
illustration:

http://www.section508.gov/

	 Appendix B  Additional Tips	 A243

Default

The Default setting is pretty straightforward. It uses the default colors set up by Visual Studio
for the item selected. The colors are what Visual Studio defines as the default. You might call
these the “normal” colors, for want of a better term. The good news is that you can always
restore these settings by just clicking Use Defaults in the upper-right corner of the dialog
box:

A244	 AX.148  Automatic vs. Default in Fonts and Colors

Automatic
The Automatic setting is a lot more interesting. Here is the definition of Automatic from the
documentation (the bold emphasis is mine):

“Items can inherit the […] color from other display items such as Plain Text. Using this option,
when you change the color of an inherited display item, the color of the related display items
also change automatically. For example, if you selected the Automatic value for Compiler Error
and later changed the color of Plain Text to Red, Compiler Error would also automatically in-
herit the color Red.”

OK, so let’s show you what this means. Following are the current settings for Plain Text:

Notice, among other things, that the Item foreground is black. Now let’s change the fore-
ground color to red:

	 Appendix B  Additional Tips	 A245

Now let’s change the display item to Comment and see what the settings are there:

Notice that the Item foreground is green and is set to Default. If we change the Item fore-
ground to Automatic, we get the following:

A246	 AX.148  Automatic vs. Default in Fonts and Colors

Notice that Comment inherited the Item Foreground setting from the Plain Text setting we
just changed to red. So now we clearly see the relationship between the Plain Text setting
and some of the other display items. You need to be aware of the following factors:

●● Not all items inherit from plain text.

●● Plain text inherits from the Windows System.

Let’s address the second point. With all the colors back to the default settings, let’s look at
the Plain Text setting again:

Plain Text has a default Item Foreground setting of black again. Where does the plain text
default color come from? Let’s see what happens if we change the Windows System colors.
In this example, I’m using Windows 7, so your settings might be elsewhere, but all versions
of Windows have a similar area. In the case of Windows 7, it’s called Change Windows Colors
And Metrics, as you can see in the following illustration:

When I click this option, it brings me to the Window Color And Appearance dialog box:

	 Appendix B  Additional Tips	 A247

Now I change the Item to Window and the font color to lime green:

A248	 AX.149  Visual Studio Permissions Needed on Windows Vista or Later

I click Apply and then switch back to Visual Studio and notice that, among other things, the
Plain Text setting now has a default color of lime green:

So the plain text default color clearly inherits from the Windows System, and now various
display items inside Visual Studio can inherit from the Plain Text setting by setting their color
to Automatic. Now we finally have a clear picture of the difference between Default and
Automatic in the Fonts And Colors dialog box.

At this point, you might want to change all your colors back to what they were before we
started this adventure.

AX.149	 Visual Studio Permissions Needed on Windows Vista or Later

Versions 2005, 2008, 2010

Code vstipEnv0056

A popular misconception is that you need to have Administrator privileges to use Visual
Studio. While this is true in some cases, it isn’t true in all of them. So when do you need to
run Visual Studio as an administrator and when don’t you? This tip offers some guidance.

Installing Visual Studio (All Versions)
You need Administrator rights to install Visual Studio.

	 Appendix B  Additional Tips	 A249

Running Visual Studio 2005
To run Visual Studio 2005 on Windows Vista or later, you are prompted to run as
Administrator when you start the application. This version of Visual Studio requires that you
have Administrator rights to use it.

Specific Scenarios for Visual Studio 2008/2010

Web/Internet Information Services
Creating a new local or remote IIS website project—You cannot make changes to the Internet
Information Services (IIS) metabase (for example, creating new entries) because it requires
administrative privileges. This affects your ability to configure some settings in the Web.config
file.

Opening a local or remote IIS website project—You cannot run your website unless you use
the ASP.NET Development Server, which is the default web server for filesystem websites.
Alternatively, you can set project options to open the browser and point to the website by
using IIS.

Debugging a local or remote IIS website project—You cannot attach to a process that is run-
ning under the IIS worker process because it requires administrative privileges.

More information can be found here: http://msdn.microsoft.com/en-us/library/
ms178112(v=VS.90).aspx.

Windows Installer deployment
Windows Installer technology supports software installation on the Windows Vista (or later)
operating system. The end user installing applications on Windows Vista should receive
prompts only for each component installation that requires elevation, even when the user’s
computer runs under User Account Control (UAC).

More information can be found here: http://msdn.microsoft.com/en-us/library/
Bb384154(v=VS.100).aspx.

ClickOnce deployment
Windows Installer deployment requires administrative permissions and allows only limited
user installation; ClickOnce deployment enables non-administrative users to install and
grants only those Code Access Security permissions necessary for the application.

More information can be found here: http://msdn.microsoft.com/en-us/library/t71a733d.aspx.

http://msdn.microsoft.com/en-us/library/ms178112(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/ms178112(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/Bb384154(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/Bb384154(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/t71a733d.aspx

A250	 AX.149  Visual Studio Permissions Needed on Windows Vista or Later

Code
Some code requires Administrator access to execute. If possible, alternatives to this code
should be pursued. Examples of code operations that require Administrator access are as
follows:

●● Writing to protected areas of the filesystem, such as the Windows or Program Files
directories

●● Writing to protected areas of the registry, such as HKEY_LOCAL_MACHINE

●● Installing assemblies in the Global Assembly Cache (GAC)

Generally, these actions should be limited to application installation programs. This allows
users to use administrator status only temporarily.

More information can be found here: http://msdn.microsoft.com/en-us/library/
ms173360(v=VS.100).aspx.

Debugging
According to the documentation, “you can debug any applications that you launch within
Visual Studio (native and unmanaged) as a non-administrator by becoming part of the
Debugging Group. This includes the ability to attach to a running application using the
Attach to Process command. However, it is necessary to be part of the Administrator Group
in order to debug native or managed applications that were launched by a different user.”

More information can be found here: http://msdn.microsoft.com/en-us/library/
ms173360(v=VS.100).aspx.

COM/COM Interop
Classic COM

When you add a classic COM control, such as an .ocx control, to the toolbox, Visual
Studio tries to register the control. You must have administrator credentials to register the
control.

Add-ins written by using classic COM must be registered to work in Visual Studio. You must
have administrator credentials to register the control.

COM Interop

When you build managed components and you have selected Register For COM Interop, the
managed assemblies must be registered. You must have administrator credentials to register
the assemblies.

More information can be found here: http://msdn.microsoft.com/en-us/library/
ms165100(v=VS.90).aspx.

http://msdn.microsoft.com/en-us/library/ms173360(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms173360(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms173360(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms173360(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/ms165100(v=VS.90).aspx
http://msdn.microsoft.com/en-us/library/ms165100(v=VS.90).aspx

	 Appendix B  Additional Tips	 A251

AX.150	 Show Advanced Build Configurations

Windows Alt,T, O

Menu Tools | Options | Projects and Solutions | General

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipProj0016

This one is interesting, and the main reason I’m showing it to you is so that you know how to
turn this back on if it ever gets turned off.

If you go to Tools | Options | Projects And Solutions | General, you can see many available
options. Locate the Show Advanced Build Configurations option:

Simplified Build Configurations
So what does this option do? Well, when it is turned off, it uses simplified build configura-
tions, which involve several changes:

Configuration Manager
In simplified builds, the Configuration Manager is not available. It’s just disabled (or removed
completely) from all areas:

The practical implications of this are that you can’t do any custom build configurations,
which makes sense with a simplified build configuration option. So when you don’t see the
Configuration Manager anymore or it’s disabled, that is usually a clear sign that you have
turned off Show Advanced Build Configurations.

Debug Build
In a simplified build scenario, each time you press F5 or go to Debug | Start Debugging, a
debug build of your application is created. This is the expected behavior.

A252	 AX.151  Emacs Emulation

Release Build
The real shocker is that you have no obvious way to create a release build. With simplified
builds, you create a release build by going to Build | Build Solution (Ctrl+Shift+B).

Advanced Build Configurations
I could do an entire series on advanced builds, but I’ll just keep it to the basics for now.
Essentially, you first select Show Advanced Build Configurations:

This option gives you access to the Configuration Manager, so you can actively switch be-
tween build types without having to remember some arcane steps to do it:

As an added bonus, it gives you the ability to make custom builds with your own special con-
figuration options specified for the build.

In short, you have many good reasons to show the advanced build configurations options
and few good reasons to turn it off.

AX.151	 Emacs Emulation

Windows Alt,T, O

Menu Tools | Options | Environment | Keyboard

Command Tools.Options

Versions 2005, 2008, 2010

Code vstipEdit0079

For those not familiar with the term, according to Wikipedia (http://en.wikipedia.org/wiki/
Emacs), Emacs can be defined as follows:

“[…] a class of feature-rich text editors, usually characterized by their extensibility.
Emacs has, perhaps, more editing commands than other editors, numbering over 1,000
commands. It also allows the user to combine these commands into macros to automate
work.

http://en.wikipedia.org/wiki/Emacs
http://en.wikipedia.org/wiki/Emacs

	 Appendix B  Additional Tips	 A253

“Development began in the mid-1970s and continues actively as of 2010. Emacs text
editors are most popular with technically proficient computer users and computer
programmers. The most popular version of Emacs is GNU Emacs, a part of the GNU
project, which is commonly referred to simply as ‘Emacs’.”

Did you know that Visual Studio supports Emacs emulation? If you are using Visual Studio
2010, you need to install the Emacs extension that can be found here:

http://visualstudiogallery.msdn.microsoft.com/en-us/09dc58c4-6f47-413a-9176-742be7463f92

Then, for Visual Studio 2008, 2005, and 2010, go to Tools | Options | Environment | Keyboard
and choose Emacs from the Apply The Following Additional Keyboard Mapping Scheme
drop-down list:

AX.152	 ViM Emulation

Versions 2005, 2008, 2010

Code vstipEdit0080

Many people like to use ViM—there is no denying it. Unfortunately, Visual Studio does not
support ViM emulation out of the box. However, as of the time of this writing, you have two
solutions in the Visual Studio Gallery, depending on your version.

Visual Studio 2010
VsVim by Jared Parsons is very well reviewed, plus it is free. You can find it at http://visualstudiogallery.
msdn.microsoft.com/en-us/59ca71b3-a4a3-46ca-8fe1-0e90e3f79329.

Visual Studio 2008 and Prior
ViEmu by NGEDIT Software is available for Visual Studio versions prior to Visual Studio 2010.
It has good reviews, and the trial version is available from the gallery. It is available at http://
visualstudiogallery.msdn.microsoft.com/en-us/C9055830-39AB-4B39-A19E-4D60F195E7FC.

So, if you need ViM emulation, you have a couple options. These might not be the only op-
tions, but they are readily available in the Visual Studio Gallery.

http://visualstudiogallery.msdn.microsoft.com/en-us/09dc58c4-6f47-413a-9176-742be7463f92
http://visualstudiogallery.msdn.microsoft.com/en-us/59ca71b3-a4a3-46ca-8fe1-0e90e3f79329
http://visualstudiogallery.msdn.microsoft.com/en-us/59ca71b3-a4a3-46ca-8fe1-0e90e3f79329
http://visualstudiogallery.msdn.microsoft.com/en-us/C9055830-39AB-4B39-A19E-4D60F195E7FC
http://visualstudiogallery.msdn.microsoft.com/en-us/C9055830-39AB-4B39-A19E-4D60F195E7FC

	Additional Tips from Chapter 1
	AX.01	Getting Help Samples
	AX.02	Make the Start Page Go Away
	AX.03	Bringing Back the Start Page
	AX.04	Show All Settings with Visual Basic
	AX.05	Find Your Development Settings
	AX.06	Settings Automatically Saved On Exit
	AX.07	Customize Your Toolbars in Visual Studio 2008: Toolbars Tab
	AX.08	Customize Your Toolbars in Visual Studio 2008: Commands Tab
	AX.09	Hide or Show Default Buttons on a Toolbar
	AX.10	Reset Toolbars

	Additional Tips from Chapter 2
	AX.11	Sorting Templates in the New Project Dialog Box
	AX.12	Toggle Icon Size in the New Project Dialog Box
	AX.13	Choosing the StartUp Project
	AX.14	Linked Items in Projects
	AX.15	Using the Miscellaneous Files Project
	AX.16	Change the Order of Your Application Settings
	AX.17	Hide or Show the Solution File in Solution Explorer
	AX.18	New Project Dialog Preferred Language
	AX.19	Optimizing Your Project Code

	Additional Tips from Chapter 3
	AX.20	Full Screen Mode
	AX.21	Split Your Windows Horizontally
	AX.22	Sorting Items in the Toolbox
	AX.23	Icon vs. List View in the Toolbox
	AX.24	Hide the Status Bar
	AX.25	Remove the Navigation Bar
	AX.26	Show Any Toolbar
	AX.27	Changing Auto-Hide Behavior for Tool Windows
	AX.28	Closing a Tool Window Tab Group
	AX.29	Copy and Paste with the Command Prompt
	AX.30	Customize the Command Prompt
	AX.31	Show All Toolbox Controls
	AX.32	Server Explorer: Data Connections
	AX.33	Server Explorer: Server Event Logs
	AX.34	Server Explorer: Server Management Classes
	AX.35	Window Layouts: File View
	AX.36	Rearrange Your Toolbars
	AX.37	Create a Shortcut Key for a Macro
	AX.38	How to Run External Executables from the Command Window

	Additional Tips from Chapter 4
	AX.39	Close All But This on the File Tab Channel
	AX.40	Copy a File’s Full Path from the File Tab
	AX.41	Understanding the File Tab Channel Drop-Down Button
	AX.42	How to Disable the IDE Navigator
	AX.43	Thumbnail Previews in the IDE Navigator
	AX.44	Changing Editors Using Open With

	Additional Tips from Chapter 5
	AX.45	Using a Simple Quick Find
	AX.46	Using the Find Combo Box
	AX.47	Customize the Files to Search with Find In Files
	AX.48	How to Show and Hide Find Messages
	AX.49	How to Not Automatically Search for the Currently Selected Word
	AX.50	Setting Bookmarks
	AX.51	Organizing Bookmarks
	AX.52	Navigating Bookmarks

	Additional Tips from Chapter 6
	AX.53	Turn On Line Numbers
	AX.54	Go to a Line Number
	AX.55	Comment and Uncomment Code
	AX.56	Select the Current Word
	AX.57	Delete Through the Beginning or End of a Word
	AX.58	Click and Drag Text to a New Location
	AX.59	Make Selection Uppercase or Lowercase
	AX.60	Brace Matching Rectangle
	AX.61	Automatic Delimiter Highlighting
	AX.62	Move or Select to the Top or Bottom of the Current View in the Editor
	AX.63	Format the Current Document or Selection
	AX.64	Use F6 to Jump Between Split Windows
	AX.65	Turn Off Single-Click URL Navigation in the Editor
	AX.66	Hide the Vertical and/or Horizontal Scroll Bars
	AX.67	How to Convert Tabs to Spaces and Vice Versa
	AX.68	Delete Horizontal White Space
	AX.69	Expanding Your Code with Outlining
	AX.70	Collapsing or Expanding All Your Code with Outlining
	AX.71	Turn Off or Turn On Outlining
	AX.72	Understanding Virtual Space
	AX.73	Document Outline: WPF and Silverlight Projects
	AX.74	Document Outline: Windows Form Projects
	AX.75	Change the Tooltip Font Size
	AX.76	Change the Statement Completion Font Size
	AX.77	Vertical Split View for Web Projects
	AX.78	Open JScript Braces on a New Line
	AX.79	Insert Spaces vs. Keep Tabs
	AX.80	View in Browser
	AX.81	Detect When a File Is Changed Outside the Environment
	AX.82	Turn Off the Selection Margin
	AX.83	Reuse the Same Editor Window When Opening Files
	AX.84	Sharing Snippets with Your Team
	AX.85	Swap the Current Anchor Position
	AX.86	Guidelines: A Hidden Feature for the Visual Studio Editor
	AX.87	Insert File as Text
	AX.88	Indenting: Smart vs. Block vs. None
	AX.89	Change CSS Formatting
	AX.90	How to Turn Off Automatic IntelliSense
	AX.91	Disable HTML, CSS, or JScript IntelliSense
	AX.92	Design and XAML on Different Document Tabs
	AX.93	Using Generate from Usage
	AX.94	IntelliSense Suggestion Mode
	AX.95	Turn Off Automatic Symbol Renaming When You Rename a File in Solution Explorer
	AX.96	Mark Methods and Types as Hidden from IntelliSense and the Object Browser

	Additional Tips from Chapter 7
	AX.97	Set or Remove a Breakpoint
	AX.98	Enable or Disable a Breakpoint
	AX.99	Start Debugging vs. Start Without Debugging
	AX.100	Set As Start Page
	AX.101	Enable Debugging in Web.Config
	AX.102	View the Error List Window
	AX.103	Show Error Help from Errors List Window
	AX.104	Hide or Show Error List When the Build Finishes with Errors
	AX.105	Show the Output Window During Build
	AX.106	Navigate Among Errors in the Output Window
	AX.107	Customize the Output Window
	AX.108	Step Out of or Over a Method
	AX.109	Clearing Your DataTips
	AX.110	Create User Tasks in the Task List
	AX.111	Show the Full File Path in the Task List
	AX.112	Disable the Prompt for Deleting Items from the Task List
	AX.113	Navigate Task List Entries with the Keyboard
	AX.114	Navigating Between Output Window Panes with the Keyboard
	AX.115	The Watch Window: Moving Values Between Watch Windows
	AX.116	The Immediate Window: Simple Printing and Changing Values
	AX.117	The Immediate Window: Working with Members
	AX.118	The Immediate Window: Design-Time Breakpoints
	AX.119	The Immediate Window: Running Commands
	AX.120	Class View and Object Browser Icons
	AX.121	Output Window vs. Immediate Window
	AX.122	The Object Browser: Settings
	AX.123	The Object Browser: Search
	AX.124	The Object Browser: Objects Pane
	AX.125	The Object Browser: Members Pane
	AX.126	The Object Browser: Description Pane
	AX.127	The Object Browser: Creating a Keyboard Shortcut for
Add To References
	AX.128	The Object Browser: Type-Ahead Selection
	AX.129	The Object Browser: Exporting Your Settings
	AX.130	The Immediate Window: Implicit Variables
	AX.131	Show External Code
	AX.132	Understanding Just My Code
	AX.133	Attach To Process (Tools vs. Debug Menu)
	AX.134	The Immediate Window: Running WinDbg and SOS (Son of Strike) Commands
	AX.135	Creating a Class Diagram from Class View
	AX.136	Placing the Call Stack and Call Hierarchy Windows
	AX.137	Delete All Breakpoints
	AX.138	Make Object ID
	AX.139	Change Values from the Locals Window
	AX.140	Debug Executable Without Using Attach to Process
	AX.141	The Watch Window: Hexadecimal Display
	AX.142	Edit And Continue
	AX.143	Print with Line Numbers
	AX.144	Printing the File Path in the Page Header
	AX.145	Printing in Different Fonts and Colors
	AX.146	Get Rid of the Splash Screen
	AX.147	Understanding Check Accessibility
	AX.148	Automatic vs. Default in Fonts and Colors
	AX.149	Visual Studio Permissions Needed on Windows Vista or Later
	AX.150	Show Advanced Build Configurations
	AX.151	Emacs Emulation
	AX.152	ViM Emulation

