
chapter no

Chapter Title

You don’t have to go deeply into application and database design theory to build a
solid foundation for your database project. You’ll read about the fundamentals of
application design in the next section of this article, and then you’ll apply those fun-

damentals in the succeeding sections, “An Application Design Strategy” and “Data Analysis.”
The “Database Design Concepts” section teaches you a basic method for designing the
tables that you’ll need for your application and for defining relationships between those
tables.

Application Design Fundamentals

Methodologies for good computer application design were first devised in the 1960s by
recognized industry consultants such as James Martin, Edward Yourdon, and Larry Constan-
tine. At the dawn of modern computing, building an application or fixing a broken one was
so expensive that the experts often advised spending 60 percent or more of the total proj-
ect time getting the design right before writing a single line of code.

Today’s application development technologies make building an application much cheaper
and quicker. In fact, the pace of computing is several orders of magnitude faster than it was
just a decade ago. An experienced user can sit down with Microsoft Access 2010 on a com-
puter and build in an afternoon what took months to create on an early mainframe system
(if it was even possible).

Today’s technologies also give you the power to build very complex applications. But
even with powerful tools, creating a database application (particularly a moderately com-
plex one) without first spending some time determining what the application should do
and how it should operate invites a lot of expensive time reworking the application. Even
though it’s easier than ever to go back and fix mistakes or to redesign “on the fly,” if your
application design is not well thought out, it will be expensive and time-consuming to track
down any problems or to add new functionality later.

article 1

Designing Your Database Application

Application Design Fundamentals 1743

An Application Design Strategy 1747

Data Analysis . 1754

Database Design Concepts . 1757

When to Break the Rules . 1770

	 1743

A
rticle 1

1744 Article	1	 Designing	Your	Database	Application

The following is a brief overview of the typical steps involved in building a database
application.

Step 1: Identifying Tasks

Before you start building an application, you should have some idea of what you want it
to do. It is well worth your time to make a comprehensive list of all the major tasks you
want to accomplish with the application—including those that you might not need right
away but might want to implement in the future. By major tasks, we mean application
functions that will ultimately be represented in a form or a report in your Access database.
For example, “Enter customer orders” is a major task that you would accomplish by using
a form created for that purpose, while “Calculate extended price” is most likely a subtask
of “Enter customer orders” that you would accomplish by using the same form.

Step 2: Charting Task Flow

To be sure your application operates smoothly and logically, you should group the major
tasks by topic and then order those tasks within groups on the basis of the sequence in
which the tasks must be performed. For example, you should separate employee-related
tasks and sales-related tasks into two topic groups. Within sales, an order must be entered
into the system before you can print the order or examine commission totals.

You might discover that some tasks are related to more than one group or that complet-
ing a task in one group is a prerequisite to performing a task in another group. Grouping
and charting the flow of tasks helps you discover a natural flow that you can ultimately
reflect in the way you link the forms and reports in your finished application. Later in this
article, you’ll see how we laid out the tasks performed in one of the sample applications
included with this book.

INSIDE OUT Understanding the Work Process

When you’re designing an application for someone else, these first two steps are

absolutely the most important . Learning the work process of the business is criti-

cal to building an application that works correctly for the user . These first two steps

help you understand how the business is run . Remember, your application is trying to

make life easier for the users by automating some critical process that they’re doing

some other way . If you do a lot of work for small businesses or small departments

within larger businesses, walking the user through this process often helps them

understand their own business, and often leads to new efficiencies even before you

start to write a line of code .

	 Application	Design	Fundamentals 1745

A
rt

ic
le

 1

Step 3: Identifying Data Elements

After you develop your task list, perhaps the most important design step is to list the bits
of data—the data elements—required by each task and the changes that will be made to
that data. A given task will require some input data (for example, a price to calculate an
extended amount owed on an order); the task might also update the data. The task might
delete some data elements (remove invoices paid, for example) or add new ones (insert
new order details); or the task might calculate some data and display it but not save the
data anywhere in the database.

Step 4: Organizing the Data

After you determine all the data elements you need for your application, you must orga-
nize the data elements by subject and then map the subjects into tables in your database.
A subject is a person, place, thing, or action that you need to track in your application.
Each subject normally requires several data elements—individual fields such as name or
address—to fully define the subject. With a relational database system such as Access, you
use a process called normalization to help you design the most efficient and most flexible
way to store the data.

See “Database Design Concepts,” later in this article, for a simple method of creating a nor-
malized design .

Step 5: Designing a Prototype and a User Interface

After you build the table structures needed to support your application, you can easily
mock up the application flow in forms and tie the forms together using simple macros or
Microsoft Visual Basic event procedures. You can build the actual forms and reports for
your application “on screen,” switching to Form view, Layout view, or Print Preview periodi-
cally to check your progress. If you’re building the application to be used by someone else,
you can easily demonstrate and get approval for the “look and feel” of your application
before you spend time writing the complex code that’s needed to actually accomplish the
tasks. (Parts 4 and 5 of this book show you how to design and construct forms and reports
for desktop and web applications; Part 6 shows you how to use macros to automate your
application; Part 8 shows you how to use Visual Basic to link forms and reports to build an
application.)

A
rticle 1

1746 Article	1	 Designing	Your	Database	Application

Step 6: Constructing the Application

For very simple applications, you might find that the prototype is the application. Most
applications, however, will require that you write code to fully automate all the tasks you
identified in your design. You’ll probably also need to create certain navigation forms that
facilitate moving from one task to another. For example, you might need to construct
forms that provide the road map to your application. You might also need to build forms
to gather user input to allow users to easily filter the data they want to use in a particular
task. You might also want to build custom ribbons for most of, if not all, the forms in the
application.

Step 7: Testing, Reviewing, and Refining

As you complete various components of your application, you should test each option that
you provide. When you automate your application using Visual Basic and macros, you’ll
have many debugging tools at your disposal to verify correct application execution and to
identify and fix errors.

INSIDE OUT Get Feedback from Your Users

If at all possible, you should provide completed portions of your application to users

so that they can test your code and macros and provide feedback about the flow of the

application . Despite your best efforts to identify tasks and lay out a smooth task flow,

users will invariably think of new and better ways to approach a particular task after

they’ve seen your application in action . Also, users often discover that some features

they asked you to include are not so useful after all . Discovering a required change

early in the implementation stage can save you a lot of time reworking things later .

The refinement and revision process continues even after the application is put into use.
Most software developers recognize that after they’ve finished one “release,” they often
must make design changes and build enhancements. For major revisions, you should start
over at Step 1 to assess the overall impact of the desired changes so that you can smoothly
integrate them into your earlier work.

	 An	Application	Design	Strategy 1747

A
rt

ic
le

 1

typical application Development Steps

Step 1: Identifying tasks

Step 2: Charting task flow

Step 3: Identifying data elements

Step 4: Organizing the data

Step 5: Designing a prototype and a user interface

Step 6: Constructing the application

Step 7: Testing, reviewing, and refining

An Application Design Strategy

The two major schools of thought on designing databases are process-driven design (also
known as top-down design), which focuses on the functions or tasks you need to perform,
and data-driven design (also known as bottom-up design), which concentrates on identify-
ing and organizing all the bits of data you need. The method we describe here incorporates
some of the best ideas from both philosophies.

The method we like to use starts by identifying and grouping tasks to decide whether you
need only one database or more than one database. (This is a top-down approach.) As
explained previously, databases should be organized around a group of related tasks, or
functions. For each task, you choose the individual elements of data you need. Next, you
gather all the data fields for all related tasks and begin organizing them into subjects. (This
is a bottom-up approach.) Each subject forms the foundation for the individual tables in
your database. Finally, you apply the rules you will learn in the “Database Design Concepts”
section of this article to create your tables.

note
The examples in the rest of this article are based on the Conrad Systems Contacts sam-

ple database application on the companion CD . In the chapters in this book, you can

learn how to build various parts of the application as you explore the architecture and

features of Access 2010 . Conrad Systems Contacts is not only a contacts management

application (Companies, People, Events, and Reminders) but also an order entry appli-

cation (Products, Sales, and Invoices) . As such, it is considerably more complex than the

Northwind Traders application that is included with Access 2010 . It also employs many

techniques not found in the product documentation .

A
rticle 1

1748 Article	1	 Designing	Your	Database	Application

oh, no! not another order-entry example!

You might have noticed that when you study database design—whether in a seminar,

by reading a book, or by examining sample databases—nearly all the examples (includ-

ing the one presented here) seem to be order-entry applications . There are several

good reasons why you encounter this sort of example over and over again .

●● A large percentage of business-oriented database applications use the common
order-entry model . If you build a database, it’s likely to use this model .

●● Using the order-entry model makes it easy to demonstrate good database design
techniques .

●● At the core of the model, you’ll find a many-to-many relationship example . (An
order might be for many products, and any one product can appear in many
orders .) Many-to-many relationships are common to most database applications
yet often trip up even the most seasoned computer user .

You might argue, “Wait a minute, I’m building a hospital patient tracking system, not

an order-entry system!” Or perhaps you’re creating a database to reserve rooms in

corporate housing for employees visiting from out of town . (The Housing Reservations

sample database that is included with this book does this .) Aren’t you “selling” hospital

beds to patients? Isn’t reserving a room for an employee “selling” that room? If you

look at your business applications from this viewpoint, you’ll be able to compare your

project to the order-entry example with ease . Even if you’re writing a personal applica-

tion to keep track of your wine collection, you’re “selling” a rack position in your cellar

to your latest bottle purchase, and you’re probably also tracking the “supplier” of your

purchases .

The concept of data subjects related to each other in a many-to-many fashion is

important in all but the simplest of database applications . This type of data relation-

ship can be found in nearly all business or personal database applications . For example,

a particular patient might need many different medications, and any one medication

is administered to many patients . A movie in your home collection has many starring

actors, and any one actor appears in many movies . As you’ll discover, a well-designed

order-entry database contains several many-to-many relationships .

	 An	Application	Design	Strategy 1749

A
rt

ic
le

 1

Analyzing the Tasks

Let’s assume that you’ve been hired by the owner of Conrad Systems to build a Contacts
and Sales Tracking database. The database application must allow the owner to enter com-
panies or organizations, the people in these companies, and the various types of contacts a
user within Conrad Systems made while marketing several software products. If the contact
results in a sale, the application should track the sale and print invoices.

The first design step you should perform is to list all the major tasks that this database
application must implement. A partial list might include the following:

●● Enter company/organization data

●● Enter person data

●● Link persons with companies/organizations

●● Indicate the primary contact person for a company and the primary company for a
person

●● Enter product information

●● Perform a company search

●● Perform a person search

●● Log a contact event with a person

●● Sell a product during a contact event

●● Create an invoice for products ordered

●● Print an invoice

●● Log contact events after the sale

Figure A1-1 shows a blank application design worksheet that you should fill out for each
task.

A
rticle 1

1750 Article	1	 Designing	Your	Database	Application

Figure A1-1 You can use an application design worksheet to help you describe tasks.

note
You can find the Application Design Worksheet #1 in the Documents subfolder of the

files you install from the companion CD, in the ArticleA1-01 .doc file . Worksheet #2 is in

the ArticleA1-02 .doc file .

Consider the task of logging a new contact event (such as a letter received). For this task,
the user might need to search for the person or the person’s company. If the search is by
company, then the user should be able to look at a list of people who are contacts for that
company and select the specific person. The user should then be able to directly enter the
details about the letter received and schedule a follow-up if necessary. In this particular
application, Conrad Systems also wants to be able to log a sale as a contact event and be
able to easily specify the product sold as part of entering the event. The program must also
automatically create the related product sale record for the contact when this happens.

	 An	Application	Design	Strategy 1751

A
rt

ic
le

 1

note
Some of the terminology we are using here might be a bit confusing . A “contact” might

be either a person (the person contacted) or an event (the telephone call or letter or

what have you) . Throughout this book, we use contact to refer to the person and con-

tact event to refer to the action .

Data or information?

You need to understand the difference between data and information before you start

building your data design . This bit of knowledge makes it easier for you to determine

what you need to store in your database .

Data is the set of static values you store in the tables of the database, while information

is data that is retrieved and organized in a way that is meaningful to the person view-

ing it . You store data and you retrieve information . The distinction is important because

of the way that you construct a database application . You first determine the tasks that

are necessary (what information you need to be able to retrieve), and then you deter-

mine what must be stored in the database to support those tasks (what data you need

to construct and supply that information) .

Whenever you refer to or work with the structure of your database or the items stored

in the tables, queries, macros, or code, you’re dealing with data . Likewise, whenever

you refer to or work with query records, filters, forms, or reports, you’re dealing with

information . The process of designing a database and its application becomes clearer

once you understand this distinction . Unfortunately, these two terms are ones that

folks in the computer industry have used interchangeably . But armed with this new

knowledge, you’re ready to tackle data design .

Selecting the Data

After you identify all the tasks, you must list the data items you need to perform each task.
On the task worksheet, you enter a name for each data item, a usage code, and a brief
description. In the Usage column, you enter one or more usage codes—I, O, U, D, and C—
which stand for input, output, update, delete, and calculate. A data item is an input for a
task if you need to read it from the database (but not update it) to perform the task. For

A
rticle 1

1752 Article	1	 Designing	Your	Database	Application

example, a contact person name and address are some of the inputs needed to create a
contact event. Likewise, data is an output for a task if it is new data that you enter as you
perform the task or that the task calculates and stores based on the input data. For exam-
ple, the payment due date of an invoice is an output; quantity sold and the selling price for
a product in a new order are outputs as well.

You update data in a task if you read data from the database, change it, and write it back. A
task such as recording a company’s change of address would input the old address, update
it, and write the new one back to the database. As you might guess, a task deletes data
when it removes the data from the database. In the Contacts database, you might have a
task to remove a product from the list of products owned by a contact person if that person
decides to return the product. Finally, calculated data creates new values from input data to
be displayed or printed but not written back to the database.

In the Subject column of the task worksheet, you enter the name of the subject to which
you think each data element belongs. For example, an address might belong to a Contact.
A completed application design worksheet for the Enter a Contact Event task might look
like the one shown in Figure A1-2.

Figure A1-2 A completed worksheet for the Enter a Contact Event task might look like this.

	 An	Application	Design	Strategy 1753

A
rt

ic
le

 1

You might be wondering why we appear to have duplicate data here—ContactEventRe-
quiresFollowUp and ContactFollowUp or ContactEventFollowUpDays and ContactFollow-
UpDate. The two ContactEvent data elements define the default actions that should occur
for a particular type of event, and the two Contact fields are items that should be calculated
by the application whenever the user chooses an event that requires a follow-up. The latter
is something we call point-in-time data, which we discuss later in this article. You might not
be able to spot this sort of subtle distinction as you first start to document your tasks, but
you’ll sort it out later in the design process as you finalize your table design following the
rules we list in “Normalization Is the Solution” on page 1760.

Organizing Tasks

You should use task worksheets as a guide in laying out an initial structure for your appli-
cation. Part of the planning you do on these worksheets is to consider usage—whether a
piece of data might be needed as input, for updating, or as output of a given task.

Wherever you have something that is required as input, you should have a precedent task
that creates that data item as output. For example, for the worksheet shown in Figure A1-2,
you must gather company, contact, and product data before you can record a contact
event. Similarly, you need to create the contact event type data in some other task before
you can use that data in this task. Therefore, you should have a task for gathering basic
company data, a task for entering basic contact person data, a task for creating product
data, and a task for defining contact event types. It’s useful to lay out all your defined tasks
in a relationship diagram. You can see relationships among the tasks in the Conrad Systems
Contacts database in Figure A1-3. When one task is optionally precedent to another task,
the two tasks are linked with dashed lines. For example, you do not have to define all prod-
ucts before you define simple contact event types. You can create an event for a contact
(but you can’t sell a product in that event) before you define the default company for a
contact.

A
rticle 1

1754 Article	1	 Designing	Your	Database	Application

Figure A1-3 This diagram shows the relationships among tasks in the Conrad Systems Contacts
database.

Data Analysis

Now you’re ready to begin a more thorough analysis of your data and to organize the
individual elements into data subjects. These subjects become candidates for tables in your
database design.

Choosing the Database Subjects

If you’ve been careful in identifying the subject for each data item you need, the next step
is very easy. You create another worksheet, similar to the worksheet shown in Figure A1-4,
to help you collect all the data items that belong to each subject. In the top part of the
worksheet, you list the related subjects that appear in any given task and indicate the kind
of relationship.

	 Data	Analysis 1755

A
rt

ic
le

 1

Figure A1-4 This application design worksheet will help to identify related subjects.

If there are potentially many instances of the related subject for one instance of the cur-
rent subject (for example, many contacts within a company), enter Many in the Relationship
column. If there is potentially only one instance of the related subject to one instance of the
current subject (for example, one and only one contact refers a company), enter One in the
Relationship column. For details about relationship types, see “Efficient Relationships Are
the Result,” on page 1768.

It’s important to understand these relationships because they have a significant effect on
the database structure and on how you work with two related subject tables in Access. If
you take care in filling out and revising your worksheets, you can ultimately use each work-
sheet to create a table in Access. You’ll learn more about these relationships later in this
article.

You can see a completed worksheet for the Companies subject in Figure A1-5.

A
rticle 1

1756 Article	1	 Designing	Your	Database	Application

Figure A1-5 Here is a completed worksheet for the Companies subject.

As you copy each data item to the subject worksheet, you designate the data type (Text,
Number, Currency, Memo, and so on) and the data length in the Data Type column. You
can enter a short descriptive phrase for each data item in the Description column. When
you create your table from the worksheet, the description is the default information that
Access will display on the status bar at the bottom of the screen whenever the field is
selected on a datasheet or in a form or a report.

Finally, in the Validation Rule column, you should make a note of any validation rules or
input mask restrictions that always apply to the data field. Later, you can define these rules
in Access, and Access will check each time you create new data to ensure that you haven’t
violated any of the rules. Validating data can be especially important when you create a
database application for other people to use.

Mapping Subjects to Your Database

After you fill out all the subject worksheets, each worksheet becomes a candidate to be
a table in your database. For each table, you must confirm that all the data you need is
included. You should also be sure that you don’t include any unnecessary data.

For example, if any customers need more than one line for an address, you should consider
adding a second data field. If you expect to have more than one type of product category
(in Conrad Systems’ case, they sell Single, Multi-User, and Remote versions of their software,

	 Database	Design	Concepts 1757

A
rt

ic
le

 1

as well as support for each), you should create a separate worksheet for product categories
that you’ll use to define a table that contains records for each product type. In the next sec-
tion, you’ll learn how to use four simple rules to create a flexible and logical set of tables
from your subject worksheets.

Database Design Concepts

When using a relational database system such as Access 2010, you should begin by design-
ing each database around a specific set of tasks or functions. For example, you might
design one database for customers and orders that contains data about each customer, the
products available for sale, the orders for each customer, and the product sales history. You
might have another database that handles human resources for your company. It would
contain all relevant data about the employees and their dependents, such as names, job
titles, employment histories, departmental assignments, insurance information, and the like.

INSIDE OUT Review Your Work

If you have filled out the subject worksheets for your application before you start this

process, it’s a good idea to go back and make any necessary corrections to those work-

sheets as you follow the rules in this section to refine your table structure . At the end

of the process, each subject worksheet should map to exactly one table .

At this point, you face your biggest design challenge: How do you organize data within
each task-oriented database so that you take advantage of the relational capabilities of
Access and avoid inefficiency and waste? If you followed the steps outlined earlier in this
article for analyzing application tasks and identifying database subjects, you’re well on your
way to creating a logical, flexible, and usable database design. But what if you just dove in
and started laying out your tables without first analyzing tasks and subjects? The rest of this
article shows you how to apply some rules to transform a makeshift database design into
one that is robust and efficient.

Waste Is the Problem

A table stores the data you need for the tasks you want to perform. A table is made up of
columns, or fields, each of which contains a specific kind of data (such as a customer name
or a credit rating), and rows, or records, that collect all the data about a particular person,
place, or thing. You can see this organization in the Companies table in the Conrad Systems
Contacts database, as shown in Figure A1-6.

A
rticle 1

1758 Article	1	 Designing	Your	Database	Application

Figure A1-6 The Companies table in Datasheet view is an example of how data is organized in a
table.

note
The example companies, organizations, products, domain names, e-mail addresses,

logos, people, places, and events depicted herein are fictitious . No association with any

real company, organization, product, domain name, e-mail address, logo, person, place,

or event is intended or should be inferred .

For the purposes of this design exercise, let’s say you want to build a new database (named
Contacts) for tracking contacts, contact events, and products sold during contact events
without the benefit of first analyzing the tasks and subjects you’ll need. You might be
tempted to put all the data about the task you want to do—keeping track of customers and
their contacts with you and the products they might buy during a contact—in a single Con-
tact Events table, whose fields are represented in Figure A1-7.

	 Database	Design	Concepts 1759

A
rt

ic
le

 1

Figure A1-7 This design for the Contacts database uses a single Contact Events table.

There are many problems with this technique. For example:

●● Every day that a contact calls you, you have to duplicate the Company Name, Com-
pany Address, Contact Name, and Contact Address fields in another record for the
new contact event. Repeatedly storing the same name and address in your database
wastes a lot of space—and you can easily make mistakes if you have to enter basic
information about a contact more than once.

●● You have no way of predicting how many contact events you’ll have in a given day or
how many products might be ordered. If you keep track of each day’s contact events
in a single record, you have to guess the largest number of individual events and
products and leave space for Event Time 1, Event Time 2, Event Time 3, Product Name
1, Product Name 2, and so on, all the way to the maximum number. Again, you’re
wasting valuable space in your database. If you guess wrong, you’ll have to change
your design just to accommodate a day when a contact calls you (or you call them)
more times than you have allocated in your record. Later, if you want to find out what
products were sold to which contacts, you’ll have to search each Product Name field
in every record.

●● You waste space in the database storing data that can easily be calculated when it’s
time to print a report. For example, you’ll certainly want to calculate the total invoice
amount, but you do not need to keep the result in a field.

A
rticle 1

1760 Article	1	 Designing	Your	Database	Application

●● Designing one complex field to contain all the parts of simple data items (for exam-
ple, lumping together Street Address, City, State, and Postal Code) makes it difficult
to search or sort on part of the data. In this example, it would be impossible to sort
on company or contact postal code because that piece of information might appear
anywhere within the more complex single address fields.

Normalization Is the Solution

You can minimize the kinds of problems noted above (although it might not always be
desirable to eliminate all duplicate values), by using a process called normalization to orga-
nize data fields into a group of tables. The mathematical theory behind normalization is
rigorous and complex, but the tests you can apply to determine whether you have a design
that makes sense and that is easy to use are quite simple—and can be stated as rules.

Field Uniqueness

Because wasted space is one of the biggest problems with an unnormalized table design, it
makes sense to remove redundant fields from a table. Therefore, the first rule is about field
uniqueness.

Rule 1: Each field in a table should represent a unique type of information .

This means that you should break up complex compound fields and get rid of the repeat-
ing groups of information. In this example, you should separate the complex address fields
into simple fields and new tables designed to eliminate the repeating contact event and
product information. When you create separate tables for the repeating data, you include
some “key” information from the main table to create a link between the new tables and
the original one. One possible result might look like the diagram in Figure A1-8.

	 Database	Design	Concepts 1761

A
rt

ic
le

 1

Figure A1-8 This design for the Contacts database eliminates redundant fields.

These tables are much simpler because you can store one record per contact event. Also,
you don’t have to reserve room in your records to hold a large number of events per day
per contact. All the lengthy address information is now in a separate table so that you don’t
have to repeat it for each event. Because an invoice might cover multiple products pur-
chased, there’s also a separate table for that. Notice that the Contact Events table includes
certain key information to link it to the Contacts table (Company Name and Contact Name)
and to the Invoices table (Invoice Number).

Searching and sorting the information will now also be easier. You can sort the Contacts
records on the postal code, or do a search on the separate city and state fields. Can you
spot a field that we failed to break up into separate elements? If your answer is the Contact
Name field, you’re correct! As you’ll see in the final solution, we need to break this field into
at least separate First Name and Last Name fields.

A
rticle 1

1762 Article	1	 Designing	Your	Database	Application

The duplicate data problem is now somewhat worse because you are repeating the Com-
pany Name and Contact Name fields in each Contact Events record. This duplicate data is
necessary, however, to maintain the links between the tables. The potentially long Product
Name field is also redundant in the Contact Events table—when you sell the same product
more than once, the Product Name will appear in multiple rows. (Maybe Products should
have a separate table?) What happens if you misspell a product name in one of the rows?
Will you be able to find all contacts who bought the same product? You can solve this
problem by following the second rule.

Primary Keys

In a good relational database design, each record in any table must be uniquely identified.
That is, some field (or combination of fields) in the table must yield a unique value for each
record in the table. This unique identifier is called the primary key.

Rule 2: Each table must have a unique identifier, or primary key, that is made up of one
or more fields in the table .

Whenever possible, you should use the simplest data that naturally provides unique values.
You should always be able to find a field or some combination of fields whose values are
unique across all rows. (In relational design terminology, these are called candidate keys.)
You should consider the simplest combination of fields as the best candidate to be your pri-
mary key. However, in the case of the Contacts table, as currently designed in Figure A1-8,
you would probably need a combination of Company Name, Contact Name, and perhaps
one of the contact address or city fields to guarantee uniqueness. When this happens, it is
preferable to generate an artificial unique ID field to use as the Primary Key (Contact ID).
However, you might want to add code in your final application that checks for a potential
duplicate name (another record previously saved that has the same name as the new record
about to be saved) and warns the user before inserting a new unique record. Access pro-
vides a handy data type called AutoNumber to make it easy to create a unique ID field like
Contact ID. You can learn more about the AutoNumber data type in Chapter 4, “Designing
Client Tables.”

After we assign Contact ID as the primary key of the Contacts table, it becomes much easier
to link a contact with a contact event by substituting Contact ID for the Company Name
and Contact Name fields in the Contact Events table. Although Contact ID in the Contact
Events table perhaps looks like duplicate information, it’s really the link that you can use to
associate or relate the rows from the two tables. Relational databases are equipped to sup-
port this design technique by giving you powerful tools to bring related information back
together easily. You can learn more about these tools in Chapter 9, “Creating and Working
with Simple Queries.”

	 Database	Design	Concepts 1763

A
rt

ic
le

 1

A less ideal solution would be to create another ID field to uniquely identify the rows in
Contact Events. Now, with the addition of Contact ID, it’s easy to see that the combination
of Contact ID, Contact Date, and Contact Event Time are most likely unique to each row,
so we should use the this combination of elements as a natural primary key. For the new
Invoices table, the choice is simple. Invoice Number might be an AutoNumber ID field, but
it is probably a unique number entered by the user when creating a new invoice record.
Some companies like to use a year prefix combined with a unique sequence number within
the year as an invoice number. The Invoice Number is still in the Contact Events table to
identify which products were billed on what invoice number. You can see the result of add-
ing primary keys in Figure A1-9.

Figure A1-9 The Conrad Systems Contacts database tables now have primary keys defined.

Functional Dependence

Defining a primary key helps you better identify the true subject of the table. Now, you
can check to see whether you included all the data relevant to the subject of the table and
whether each of the fields in the table describes an attribute of the subject (and not some
other subject). In relational terminology, you should check to see whether each field is func-
tionally dependent on the primary key that defines the subject of the table.

Rule 3: For each unique primary key value, the values in the data columns must be rel-
evant to, and must completely describe, the subject of the table .

This rule works in two ways. First, you shouldn’t have any data in a table that is not relevant
to the subject (as defined by the primary key) of the table. Second, the data in the table
should completely describe the subject.

A
rticle 1

1764 Article	1	 Designing	Your	Database	Application

Let’s start by looking at the Contacts table as defined in Figure A1-9. The subject of this
table is the people who are our contacts. We certainly need to know the company or orga-
nization with which a person is associated. What if a person has more than one such asso-
ciation? For example, a person might work for a company but also be a member of one or
more professional organizations. We certainly do not want to repeat the contact name and
personal address information multiple times for each different association. Is the company
information in a contact row unique to the individual defined by that row? Probably not.
Even if we’re certain that a person is associated with only one company or organization,
we’ll have to duplicate the company information in multiple rows when a company has
more than one person associated with it.

The solution is to identify companies (organizations) as a separate subject with its own
unique identifier. If a person is related to one and only one company, we can place a linking
copy of the Company ID in the Contacts table. In this case, let’s assume that a person can
be related to more than one company or organization. A company has many persons, and
a person might belong to many companies or organizations. In relational terminology, this
is called a many-to-many relationship, which you can read more about later in this article.
To define this in our table design, we need a linking table that stores the multiple relation-
ships of the companies and people—a table called Company Contacts. While we’re at it,
let’s refine the Contact Name field by splitting it into separate First Name and Last Name
fields (so we can sort and search by just the last name), and let’s complete the Company
Contacts table by adding an indicator field that defines which company is the primary one
for the contact.

Now, we should turn our attention to the Contact Events table. In the table shown in Figure
A1-9, we have not only information about the event but also information about a product
that might be sold during the event. In fact, the user of this database might make many
calls or mail out many brochures or letters before actually selling a product. The product
information isn’t fully functionally dependent on the subject of this table, so it needs to be
in a separate subject table. In fact, a product is not going to be purchased by an individual
contact—it will be bought by the contact’s primary company or organization.

So, we also need to create a separate Contact Products table to store the products that a
contact might purchase after dozens of contacts. This table should have all the informa-
tion relevant to a company purchasing a product for an employee, but nothing extra. This
moves the extra product information from the old Contact Events table and makes the
fields in that table relevant only to events and nothing else.

Finally, we should completely define the Invoices subject by adding other relevant informa-
tion such as the purchasing company’s purchase order number, the date the invoice pay-
ment is due, and an indicator field to mark when the invoice is paid. You can see the result
of applying the rule in this step in Figure A1-10.

	 Database	Design	Concepts 1765

A
rt

ic
le

 1

Figure A1-10 Creating additional subject tables in the Conrad Systems Contacts database
ensures that all fields in a table are functionally dependent on the primary key of the table.

Field Independence

The last rule checks to see whether you’ll have any problems when you make changes to
the data in your tables.

Rule 4: You must be able to make a change to the data in any field (other than to a field
in the primary key) without affecting the data in any other field .

Take a look again at the Contact Products table in Figure A1-10. As we applied the second
and third rules, we left product information with the Contact Products table because it
seems reasonable that you need to know about the product sold to a contact. Note that
if you need to correct the spelling of a product name, you can do so without affecting
any other fields in that record. If you misspelled the same product name for many contact
products, however, you might have to change many records. Also, if you entered the wrong
product (for example, an order is actually for a Single-User edition, not a Multi-User edi-
tion), you can’t change the product name without also changing that record’s category and
pricing information.

The Product Category, Product Name, and Product Price fields are not independent of one
another. In fact, Product Category and Product Price are functionally dependent on Product
Name. (See Rule 3.) Although it wasn’t obvious at first, Product Name describes another
subject that is different from the subject of contact products. You can see how carefully
applying this fourth rule helps you identify changes that you perhaps should have made
when applying earlier rules. This situation calls for another table in your design: a separate
Products table, as shown in Figure A1-11.

A
rticle 1

1766 Article	1	 Designing	Your	Database	Application

Now, if you misspell a product name, you can simply change the product name in the
Products table. Also, instead of using the Product Name field (which might be 40 or 50
characters long) as the primary key for the Products table, you can create a shorter Product
ID field (perhaps a five-digit number) to minimize the size of the relational data you need
in the Contact Products table.

Figure A1-11 This design for the Conrad Systems Contacts database follows all the design rules.

Note also that we removed the Invoice Total field from the Invoices table because any
change to a price in Contact Products would make this value incorrect. The database is not
going to maintain this calculated value for you, so you would have to write extra code or
create a macro in your application to recalculate and update the value each time a contact
ordered another product. It’s a simple matter to build a query to sum the product prices
for the records related to an invoice to calculate the total owed. (See Chapters 9 and 10 for
details.) You can also calculate the total invoice value when the invoice is complete—per-
haps as part of the report that prints the invoice.

An alternative (but less rigorous) way to check for field independence is to see whether you
have the same data repeated in your records. In the previous design, whenever you cre-
ated a sale for a particular product during a contact event, you had to enter the product’s
name, category, and price in the record. With a separate Products table, if you need to cor-
rect a product name spelling or change a list price or product category, you have to make
the change only in one field of one record in the Products table. If you entered the wrong
product in a contact product record, you have to change only the Product ID to fix the
problem.

	 Database	Design	Concepts 1767

A
rt

ic
le

 1

Note that we added a new field, a separate Product Sold Price field, in the Contact Products
table. Why not link to the new Products table to find out the price? Why isn’t this duplicate
data that violates Rule 1? This is an example of why it is very important to understand how
the business runs. In this case, Conrad Systems sometimes offers a discount off “list price”
to a company that purchases multiple copies of Conrad Systems’ products. The price in the
Contact Products table is the actual sales price that the user enters when the company buys
the product. You can learn more about the concept of such point-in-time data later in this
article.

The actual Conrad Systems Contacts sample database includes 10 tables, which are all
shown in the Relationships window in Figure A1-12. Notice that we created additional
fields in each table to fully describe the subject of each table, and we added other tables to
support some of the other tasks identified earlier in this section. For example, many fields
were added to both the Companies and Contacts tables to fully capture all the pertinent
information about those subjects. There are also three lookup tables to help ensure accurate
data entry and to provide additional information about the nature of some classification
codes.

A lookup table helps you restrict the list of values that are valid for a field in a main table,
and they might also contain additional fields that help further define the meaning of each
value in the list. You can learn more about defining lookup properties in Chapter 4.

Figure A1-12 The tables in the Conrad Systems Contacts sample database are shown in the
Relationships window.

A
rticle 1

1768 Article	1	 Designing	Your	Database	Application

the Four rules of Good table Design

Rule 1: Each field in a table should represent a unique type of information .

Rule 2: Each table must have a unique identifier, or primary key, that is made up of one

or more fields in the table .

Rule 3: For each unique primary key value, the values in the data columns must be rel-

evant to, and must completely describe, the subject of the table .

Rule 4: You must be able to make a change to the data in any field (other than to a field

in the primary key) without affecting the data in any other field .

Efficient Relationships Are the Result

When you apply good design techniques, you end up with a database that efficiently links
your data. You probably noticed that when you normalize your data as recommended, you
tend to get many separate tables. Before relational databases were invented, you had to
either compromise your design or manually keep track of the relationships between files
or tables. For example, you had to put company data in your contacts and invoices tables
or write your program to first open and read a record from one table and then search for
the matching record in the related table. Relational databases solve these problems. With
a good design, you don’t have to worry about how to bring the data together when you
need it.

Foreign Keys

You might have noticed as you followed the Conrad Systems Contacts design example that
each time we created a new table, we left behind in the other table a field that could link
the two, such as the Company ID, Contact ID, and Product ID fields in the Contact Prod-
ucts table. The Invoice Number field in Contact Products is also a link to the Invoices table.
These “linking” fields are called foreign keys.

In a well-designed database, foreign keys result in efficiency. You keep track of related
foreign keys as you lay out your database design. When you define your tables in Access,
you link primary keys to foreign keys to tell Access how to join the data when you need
to retrieve information from more than one table. You can also ask Access to maintain the
integrity of your table relationships—for example, Access will ensure that you don’t create
a contact event for a contact that doesn’t exist. When you ask Access to maintain this refer-
ential integrity, Access automatically creates indexes for you. Indexes help Access find data
more quickly when you’re searching, filtering, or linking data.

	 Database	Design	Concepts 1769

A
rt

ic
le

 1

For details about referential integrity and defining indexes, see Chapter 4 .

One-to-Many and One-to-One Relationships

In most cases, the relationship between any two tables is one-to-many. That is, for any
one record in the first table, there are many related records in the second table; but, for
any record in the second table, there is exactly one matching record in the first table. You
can see several instances of this type of relationship in the design of the Conrad Systems
Contacts database. For example, each company might have several invoices, but a single
invoice record applies to only one company.

Occasionally, you might want to break down a table further because you use some of the
data in the table infrequently or because some of the data in the table is highly sensitive
and should not be available to everyone. You might also hit an Access storage limit for indi-
vidual records if you’ve defined too many fields and store a lot of data in those fields. For
example, you might want to keep track of certain company data for marketing purposes,
but you don’t need access to that data all the time. Or you might have data about credit
ratings that should be accessible only to authorized people. In either case, you can create
a separate table that also has a primary key of Company ID. The relationship between the
original Companies table and the Company Info or Company Credit table is one-to-one.
That is, for each record in the first table, there is exactly one record in the second table.

Creating Table Links

The last step in designing your database is to create the links between your tables. For each
subject, identify those for which you wrote Many under Relationship on the worksheet. Be
sure that the corresponding relationship for the other table is One. If you see Many in both
places, you must create a separate linking table to handle the relationship. (Access won’t
let you define a many-to-many relationship directly between two tables.) In the example of
the Add/Edit a Contact task, a contact might be associated with many companies or orga-
nizations, and a company most likely has many contacts. The Company Contacts table in
the Conrad Systems Contacts database is a linking table that clears up this many-to-many
relationship between companies and contacts. Contact Products is another table that works
as an intersection table because it has a one-to-many relationship with both Contacts and
Products. (A contact might purchase several products, and a product is most likely owned
by many contacts.)

After you straighten out the many-to-many relationships and create additional subject
worksheets to reflect the linking tables, you need to create the links between subjects. To
complete the links, you should place a copy of the primary key from the one subject into a
field in the many subject. For example, by looking at the worksheet for Companies shown
in Figure A1-5, you can surmise that the primary key for the Companies subject, Company
ID, also needs to be a field in the Company Contacts and Invoices subjects.

A
rticle 1

1770 Article	1	 Designing	Your	Database	Application

When to Break the Rules

As a starting point, for every application that you build, you should always analyze the tasks
you need to perform, decide on the data required to support those tasks, and create a well-
designed (also known as normalized) database table structure. After you have a design that
follows all the rules, you might discover changes that you need to make, either to follow
specific business rules or to make your application more responsive to the needs of your
users. In every case for which you decide to “break the rules,” you should know the specific
reason for doing so, document your actions, and be prepared to add procedures to your
application to manage the impact of those changes. The following sections discuss some of
the reasons why you might need to break the rules.

Improving Performance of Critical Tasks

The majority of cases for breaking the rules involve manipulating the design to achieve bet-
ter performance for certain critical tasks. For example, although modern relational database
systems (like Access) do a good job of linking many related tables to perform complex
tasks, you might encounter situations in which the performance of a multiple-table link
(also called a joined query—see Chapter 10 for details) is not fast enough. Sometimes if you
denormalize selected portions of the design, you can achieve the required performance. For
example, instead of building a separate table of product category codes that requires a link,
you might place the category descriptions directly in the products table. If you choose to
do this, you will need to add procedures to the forms you provide to enter these categories
or create data macros at the data layer to make sure that any similar descriptions aren’t
duplicate entries. We chose to do this in the Conrad Systems Contacts database, and we
solved the problem by using a combo box that allows the user to choose a value only from
a validated list in another table. You’ll learn more about working with combo box controls
in Chapter 13, “Building a Form.”

Another case for breaking the rules is the selective inclusion of calculated values in your
database. For example, if a critical management report needs the calculated totals for all
orders in a month, but the data is retrieved too slowly when calculating the detailed val-
ues for thousands of product purchase records per order and thousands of orders, you
might want to add a Calculated field for order total in the Orders or Invoices table. You’ll
learn more about creating Calculated fields in tables in Chapter 6, “Designing Web Tables.”
Your application will spend a few extra fractions of a second processing each order so that
month-end totals can be obtained quickly.

	 When	to	Break	the	Rules 1771

A
rt

ic
le

 1

Capturing Point-in-Time Data

Sometimes you need to break the rules to follow known business rules. In the previous
design exercise, we considered removing the Price field from the Contact Products table
because it duplicated the price information in the Products table. However, if your business
rules say that the price of a product can change over time, you might need to include the
price in your order details to record the price at the point in time that the order was placed.
If your business rules dictate this sort of change, you should add procedures to your appli-
cation to automatically copy the “current” price to any new order detail row.

You can see another case in the Conrad Systems Contacts database. Some of the billing
address information in the Invoices table looks like it duplicates information in the Com-
panies table. If you examine the way the database works, you’ll find some code that copies
the company information to the invoice information when you create a new invoice. Again,
this address information in the Invoice is point-in-time data. It is the address that was cur-
rent at the time the invoice was created. The company address might change later, but we
will always know where we mailed a particular invoice.

note
You can find the Housing Reservations sample application on the companion CD .

There’s yet another example in the Housing Reservations database. In this database, the
user creates room reservation requests that indicate that an employee needs a specific
type of room over a range of dates. Some of this request information gets copied to the
actual reservation record at the time the housing manager confirms the reservation. It is
also company policy to honor the quoted rate at the time the reservation is made so that
the manager who approves the reservation knows exactly what will be charged. (Likewise,
if this were a commercial hotel, you would expect to pay the rate quoted at the time of the
reservation, not the current rate at the time you check in three months later.) If you look at
the database design for the Housing Reservations database, shown in Figure A1-13, you’ll
see what looks like duplicate information in the Reservation Requests and the Reservations
tables. In this case, check-in and check-out information is copied from Reservation Requests
to Reservations when a reservation is confirmed. Likewise, the daily and weekly rates that
are current at the time the reservation is made are copied to the reservation by code in the
application.

A
rticle 1

1772 Article	1	 Designing	Your	Database	Application

Figure A1-13 The design for the Housing Reservations database includes duplicate point-in-
time pricing information in the Reservations table.

Note also that there’s a Total Charge field in the record that must be calculated by code
within the application. The application spends a little computing time for each change to
the records in the table to save processing time in reports that might need to work with
hundreds of rows. If you look behind the Reservations form in the Housing Reservations
database, you’ll find lots of code to accomplish both the rate copy and the total calculation.

Creating Report Snapshot Data

One additional case for breaking the rules involves accumulating data for reporting. As you
can see if you study the examples in Chapter 18, “Advanced Report Design,” the queries
required to collect data for a complex report can be quite involved. If you have a lot of data
required for your report, running the query could take an unacceptably long time, particu-
larly if you need to run several large reports from the same complex collection of data. In
this case, it’s acceptable to create temporary but “rule-breaking” tables that you load once
with the results of a complex query to run your reports. We call these tables “snapshots”
because they capture the results of a complex reporting query for a single moment in time.
You can look in Chapter 11, “Modifying Data with Action Queries,” for some ideas about
how to build action queries that save a complex data result to a temporary table. If you use
the resulting “snapshot” data from these tables, you can run several complex reports with-
out having to run long and complex queries more than once. Chapter 4, “Designing Client
Tables,” shows you how to create a new database and tables, and Chapter 5, “Modifying
Your Table Design,” shows you how to make changes later if you discover that you need to
modify your design.

