
chapter no

Chapter Title

Underlying every query in Microsoft Access 2010 is the Structured Query Language
(SQL) database command language. Although you can design most queries using
the simple Access 2010 design grid (or the view, function, or stored procedure

designer in an Access project file), Access stores every query you design as an SQL com-
mand. When you use one of the designers, Access creates the SQL for you. However, for
advanced types of queries that use the results of a second query as a comparison condition,
you need to know SQL to define the second query (called a subquery). Also, you cannot use
the design grid to construct all types of queries available in the product; you must use SQL
for some of them. Understanding SQL is essential to building queries in an Access project
file, because you’re using Microsoft SQL Server.

Note
This article does not document all the syntax variants accepted by Access, but it does

cover all the features of the SELECT statement and of action queries. Wherever possible,

American National Standards Institute (ANSI) standard syntax is shown to provide por-

tability across other databases that also support some form of SQL. You might notice

that Access modifies the ANSI-standard syntax to a syntax that it prefers after you

define and save a query. You can find some of the examples shown in the following

pages in the ContactsDataCopy.accdb sample database. When an example is in the

sample database, you’ll find the name of the sample query in italics immediately pre-

ceding the query in the text. For a discussion of the syntax conventions used in this

article, see the “Conventions and Features Used in This Book” section in the book’s

front matter.

Article 2

Understanding SQL

SQL SELECT Queries. 1774 SQL Action Queries . 1815

	 	 1773

A
rticle 2

1774	 Article 2  Understanding SQL

How to Use This Article

This article contains two major sections: SQL select queries and SQL action queries.

Within the first section, you can find keywords used in SQL in alphabetical order. You

can also find entries for the basic building blocks you need to understand and use in

various clauses: Column-Name, Expression, Search-Condition, and Subquery. If you’re

new to SQL, you might want to study these building block topics first. You can then

study the major clauses of a SELECT statement in the order in which they appear

in a SELECT statement: PARAMETERS, SELECT, FROM, WHERE, GROUP BY, HAVING,

UNION, and ORDER BY.

In the second section, you can find a discussion of the syntax for the four types of

queries that you can use to update your database, also in alphabetical order: DELETE,

INSERT, SELECT INTO, and UPDATE. As you study these topics, you’ll find references to

some of the major clauses that you’ll also use in a SELECT statement. You can find the

details about those clauses in the first section.

SQL SELECT Queries

The SELECT statement forms the core of the SQL database language. You use the SELECT
statement to select or retrieve rows and columns from database tables. The SELECT state-
ment syntax contains six major clauses: SELECT, FROM, WHERE, GROUP BY, HAVING, and
ORDER BY.

In an Access desktop application (.accdb), Access implements three significant exten-
sions to the standard language: TRANSFORM, to allow you to build crosstab queries; IN,
to allow you to specify a remote database connection or to specify column names in a
crosstab query; and DISTINCTROW in a SELECT statement, to limit the rows returned from
the <table list> to rows that have different primary key values in the tables that supply
columns in the <field list>. In a previous version format database (.mdb), you can also use
WITH OWNERACCESS OPTION in a SELECT statement to design queries in a secured data-
base that can be run by users who are authorized to use the query, including those who
have insufficient access rights to the tables referenced in the query.

	 SQL SELECT Queries	 1775

A
rt

ic
le

 2

Note
When you save a query that you have written in SQL in your database, Access often

examines your SQL command and adds brackets or extra parentheses to make the com-

mand easier to parse and compile. In some cases, Access restates complex predicates

or changes the ANSI-standard syntax to one it prefers. For this reason, the examples

shown in the book might not exactly match what you see in the sample queries when

you open them in SQL view. If you enter the SQL exactly as shown in the book, it will

return the same result as the sample query you find in the database.

Aggregate Functions: AVG, CHECKSUM_AGG, COUNT, MAX,
MIN, STDEV, STDEVP, SUM, VAR, and VARP

See Table 10-1 (on page 647 of the printed book).

BETWEEN Predicate

Compares a value with a range of values.

Syntax

<expression> [NOT] BETWEEN <expression> AND <expression>

Notes

The data types of all expressions must be compatible. Comparison of alphanumeric literals
(strings) in Access or a default installation of SQL Server is case-insensitive.

Let a, b, and c be expressions. Then, in terms of other predicates, a BETWEEN b AND c is
equivalent to the following:

(a >= b) AND (a <= c)

a NOT BETWEEN b AND c is equivalent to the following:

(a < b) OR (a > c)

The result is undefined if any of the expressions is Null.

A
rticle 2

1776	 Article 2  Understanding SQL

Example

To determine whether the SoldPrice is greater than or equal to $100 and less than or equal
to $500, enter the following:

SoldPrice BETWEEN 100 AND 500

See also Expression, SELECT Statement, Subquery, and WHERE Clause, in this article.

Column-Name

Specifies the name of a column in an expression.

Syntax

[[[]{table-name | select-query-name |
 correlation-name}[]].][[]field-name[]]

Notes

You must supply a qualifier to the field name only if the name is ambiguous within the con-
text of the query or subquery (for example, if the same field name appears in more than
one table or query listed in the FROM clause).

The table-name, select-query-name, or correlation-name that qualifies the field name must
also appear in the FROM clause of the query or subquery. If a table or query has a correla-
tion name, you must use the alias, not the actual name of the table or query. (A correlation
name is an alias you assign to the table or query name in the FROM clause.)

You must supply the enclosing brackets in an Access desktop application (.accdb) only if
the name contains an embedded blank or the name is also a reserved word (such as select,
table, name, or date). Embedded blanks and enclosing brackets are not supported in the
ANSI standard. You can use names that have embedded blanks in SQL Server by including
a SET QUOTED_IDENTIFIER ON command and then enclosing each nonstandard name in
double quotes ("). When you open a query from an Access project, Access automatically
includes this command in the command stream that it sends to SQL Server.

If the field-name is a multi-value field, a query referencing the field-name returns the indi-
vidual values separated by commas. A query datasheet provides a combo box that you can
use to edit the multiple values. If you bind the column to a combo box control on a form,
you can edit the field on the form. To edit the individual values in separate rows, use field-
name.Value in your query. For records in the table that have multiple values in the field,

	 SQL SELECT Queries	 1777

A
rt

ic
le

 2

the query returns one row per value. The effect is identical to linking to a related many-to-
many lookup table using a join. (See FROM Clause, on page 675, for details about defining
a join in a query.) Note, however, that when you ask for field-name.Value from more than
one multi-valued column in a table, the resulting query is not updatable because the query
returns the Cartesian product of the multiple values in the two fields for each row in the
source table.

If the field-name is an attachment data type, a query datasheet provides an attachment
control to allow you to edit the data. You can also edit the data if you bind the field to an
Attachment control in a form. You can individually reference one of the three properties
of an attachment field: field-name.FileData, field-name.FileName, or field-name.FileType.
All three properties return one row per separate attachment for each record in the source
table, but you cannot update the values. The FileData property returns the binary attached
file, the FileName property returns the original name of the file, and the FileType property
returns the file extension.

Examples

To specify a field named Customer Last Name in a table named Customer List in an Access
desktop application (.accdb), use the following:

[Customer List].[Customer Last Name]

To reference the same column in a view, stored procedure, or function for SQL Server, use
the following:

"Customer List"."Customer Last Name"

To specify a field named StreetAddress that appears in only one table or query in the FROM
clause, enter the following:

StreetAddress

To reference the individual values of a multi-valued field named ContactType, enter the
following:

ContactType.Value

See also FROM Clause, SELECT Statement, and Subquery in this article.

Comparison Predicate

Compares the values of two expressions or the value of an expression and a single value
returned by a subquery.

A
rticle 2

1778	 Article 2  Understanding SQL

Syntax

<expression> {= | <> | > | < | >= | <=}
 {<expression> | <subquery>}

Notes

Comparison of strings in Access or a default installation of SQL Server is case-insensitive.
The data type of the first expression must be compatible with the data type of the second
expression or with the value returned by the subquery. If the subquery returns no rows
or more than one row, an error is returned except when the select list of the subquery is
COUNT(*), in which case the return of multiple rows yields one value. If the first expression,
the second expression, or the subquery evaluates to Null, the result of the comparison is
undefined.

Examples

To determine whether the sales date was in 2011, enter the following:

Year(DateSold) = 2011

To determine whether the invoice ID is not equal to 50, enter the following:

InvoiceID <> 50

To determine whether a product was sold in the first half of the year, enter the following:

Month(DateSold) < 7

To determine whether the date sold in the current row is less than the earliest order for Pro-
ductID 1, enter the following:

DateSold <
 (SELECT MIN(DateSold)
 FROM tblContactProducts
 WHERE ProductID = 1)

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

EXISTS Predicate

Tests the existence of at least one row that satisfies the selection criteria in a subquery.

Syntax

EXISTS (<subquery>)

	 SQL SELECT Queries	 1779

A
rt

ic
le

 2

Notes

The result cannot be undefined. If the subquery returns at least one row, the result is True;
otherwise, the result is False. The subquery need not return values for this predicate; there-
fore, you can list any columns in the select list that exist in the underlying tables or queries
or use an asterisk (*) to denote all columns.

Example

To find all contacts that own at least one product, enter the following
(qxmplContactsSomeProduct):

SELECT tblContacts.FirstName, tblContacts.MiddleInit, tblContacts.LastName
 FROM tblContacts
 WHERE EXISTS
 (SELECT *
 FROM tblContactProducts
 INNER JOIN tblProducts
 ON tblContactProducts.ProductID = tblProducts.ProductID
 WHERE tblContactProducts.ContactID = tblContacts.ContactID
 AND tblProducts.TrialVersion = 0);

Note
In this example, the inner subquery makes a reference to the tblContacts table in the

SELECT statement by referring to a column in the outer table (tblContacts.ContactID).

This forces the subquery to be evaluated for every row in the SELECT statement, which

might not be the most efficient way to achieve the desired result. (This type of sub-

query is also called a correlated subquery.) Whenever possible, the database query plan

optimizer solves the query efficiently by reconstructing the query internally as a join

between the source specified in the FROM clause and the subquery. In many cases, you

can perform this reconstruction yourself, but the purpose of the query might not be as

clear as when you state the problem using a subquery.

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

Expression

Specifies a value in a predicate or in the select list of a SELECT statement or subquery.

A
rticle 2

1780	 Article 2  Understanding SQL

Syntax

[+ | –] {function | [(]<expression>[)] | literal |
 column-name} [{+ | – | * | / | \ | ^ | MOD | &}
 {function | [(]<expression>[)] | literal |
 column-name}]...

Notes

function—You can specify one of the SQL aggregate functions: AVG, COUNT, MAX, MIN,
STDEV, STDEVP, SUM, VAR, or VARP; however, you cannot use an SQL aggregate function
more than once in an expression. In a desktop application (.accdb), you can also use any of
the functions built into Access or any function you define using Microsoft Visual Basic. In a
project file (.adp), you can use any of the SQL Server built-in functions.

[(]<expression>[)]—You can construct an expression from multiple expressions separated
by operators. Use parentheses around expressions to clarify the evaluation order. (See the
examples later in this section.)

literal—You can specify a numeric or an alphanumeric constant. You must enclose an
alphanumeric constant in single quotation marks in a project file (.adp) or single or double
quotation marks in a desktop database (.accdb). To include an apostrophe in an alphanu-
meric constant, enter the apostrophe character twice in the literal string; or, in a desktop
database, you can also choose to enclose the literal string in double quotation marks. If the
expression is numeric, you must use a numeric constant. In a desktop database (.accdb),
enclose a date/time literal within pound (#) signs, and any date/time literal you enter in
SQL view must follow the U.S. mm/dd/yy (or mm/dd/yyyy) format. This might be different
from the format you use on the query design grid, which must follow the format defined
for Short Date Style in your Regional And Language Options section of the Control Panel.
In a project file (.adp), you must enclose date or time literals in single quotes, and you can
use any specification inside the quotes that SQL Server can recognize as a date or time. For
example, SQL Server recognizes any of the following as a valid date literal:

'April 15, 2011'

'15 April, 2011'

'110415'

'04/15/2011'

'2011-04-15'

column-name—You can specify the name of a column in a table or a query. You can use a
column name only from a table or query that you’ve specified in the FROM clause of the
statement. If the expression is arithmetic, you must use a column that contains numeric
data. If the same column name appears in more than one of the tables or queries included

	 SQL SELECT Queries	 1781

A
rt

ic
le

 2

in the query, you must fully qualify the name with the query name, table name, or cor-
relation name, as in TableA.Column1. When a table or column name contains a blank or is
a reserved word (such as select, table, name, or date) in a desktop database (.accdb), you
must enclose each name in brackets, as in [Table A].[Column 1]. When a table or column
name contains a blank or is a reserved word in a project file (.adp), you must enclose each
name in double quotes, as in "Table A"."Column 1". Note that when you open a query in
an Access project, Access includes the required SET QUOTED_IDENTIFIER ON command in
the command string. However, if you execute an SQL Server query from a desktop database
with a pass-through query, you must include this command in the pass-through query.
Although in ANSI SQL (and SQL Server) you can reference an output-column-name any-
where within an expression, Access supports this only within the <field list> of a SELECT
statement. Access does not support references to named expression columns in GROUP BY,
HAVING, ORDER BY, or WHERE clauses. You must repeat the expression rather than use the
column name. See SELECT Statement, on page 675, for details about output-column-name.

+ | - | * | / | \ | ^ | MOD—You can combine multiple numeric expressions with arithmetic
operators that specify a calculation. If you use arithmetic operators, all expressions within
an expression must evaluate as numeric data types.

&—You can concatenate alphanumeric expressions by using the & operator in a desktop
database (.accdb). In a project file (.adp), use + as the concatenation operator.

Examples

To specify the average of a column named COST, enter the following:

AVG(COST)

To specify one-half the value of a column named PRICE, enter the following:

(PRICE * .5)

To specify a literal for 3:00 P.M. on March 1, 2011, in a desktop database (.accdb), enter the
following:

#3/1/2011 3:00PM#

To specify a literal for 3:00 P.M. on March 1, 2011, in a project file (.adp), enter the
following:

'March 1, 2011 3:00PM'

To specify a character string that contains the name Acme Mail Order Company, enter the
following:

'Acme Mail Order Company'

A
rticle 2

1782	 Article 2  Understanding SQL

To specify a character string that contains a possessive noun (requiring an embedded apos-
trophe), enter the following:

'Andy''s Hardware Store'

or in a desktop database you can also enter:

"Andy's Hardware Store"

In a desktop database (.accdb), to specify a character string that is the concatenation of
fields from a table named Customer List containing a person’s first and last name with an
intervening blank, enter the following:

[Customer List].[First Name] & " " & [Customer List].[Last Name]

In a project file (.adp), to specify a character string that is the concatenation of fields from
a table named Customer List containing a person’s first and last name with an intervening
blank, enter the following:

"Customer List"."First Name" + ' ' + "Customer List"."Last Name"

See also Column-name, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE NULL, and Quan-
tified), SELECT Statement, Subquery, and UPDATE Statement in this article.

FROM Clause

Specifies the tables or queries that provide the source data for your query.

Syntax

FROM {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>},...

 [IN <"source database name"> <[source connect string]>]

where <joined table> is

({table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 <joined table>}

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN
 {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 <joined table>}

ON <join-specification>)

	 SQL SELECT Queries	 1783

A
rt

ic
le

 2

where <joined table> is the result of another join operation, and where <join-specification>
is a search condition made up of predicates that compare fields in the first table, query, or
joined table with fields in the second table, query, or joined table.

Notes

You can supply a correlation name for each table name or query name and use this correla-
tion name as an alias for the full table name when qualifying column names in the <field-
list>, in the <join-specification>, or in the WHERE clause and subclauses. If you’re joining
a table or a query to itself, you must use correlation names to clarify which copy of the
table or query you’re referring to in the select list, join criteria, or selection criteria. If a table
name or a query name is also an SQL reserved word (for example, Order), you must enclose
the name in brackets. In SQL Server, you must enclose the name of a table or query that
is also an SQL reserved word in double quotes. If you decide to use quotes, you must also
ensure that the server has received the command SET QUOTED_IDENTIFIER ON. Note that
when you open a query in an Access project, Access includes the required SET QUOTED_
IDENTIFIER ON command in the command string to ensure that any names that you have
enclosed in quotes are recognized correctly by SQL Server. However, if you execute an SQL
Server query from a desktop database with a pass-through query, you must either use
brackets or quotes and include this command in the pass-through query.

Use INNER JOIN to return all the rows that match the join specification in both tables. Use
LEFT [OUTER] JOIN to return all the rows from the first logical table (where logical table
is any table, query, or joined table expression) joined on the join specification with any
matching rows from the second logical table. When no row matches in the second logical
table, the database returns Null values for the columns from that table. Conversely, RIGHT
[OUTER] JOIN returns all the rows from the second logical table joined with any matching
rows from the first logical table. A FULL [OUTER] JOIN returns all rows from the tables or
queries on both sides of the join, but only SQL Server supports this operation.

When you use only equals comparison predicates in the join specification, the result is
called an equi-join. The joins that Access displays in the design grid are equi-joins. Access
cannot display on the design grid any join specification that uses any comparison operator
other than equals (=)—also called a non-equijoin. If you want to define a join on a non-
equals comparison (<, >, <>, <=, or >=) in Access, you must define the query using the
SQL view. The query designer in an Access project can display non-equijoins. When you join
a table to itself using an equals comparison predicate, the result is called a self-join.

SQL Server also supports a CROSS JOIN (with no ON clause). A CROSS JOIN produces the
same result as listing table or query names separated by commas with no JOIN specifica-
tion (a Cartesian product).

A
rticle 2

1784	 Article 2  Understanding SQL

If you include multiple tables in the FROM clause with no JOIN specification but do include
a predicate that matches fields from the multiple tables in the WHERE clause, the data-
base in most cases optimizes how it solves the query by treating the query as a JOIN. For
example:

SELECT *

 FROM TableA, TableB

 WHERE TableA.ID = TableB.ID

is solved by the database as though you had specified

SELECT *

 FROM TableA

 INNER JOIN TableB

 ON TableA.ID = TableB.ID

You cannot update fields in a table by using a recordset opened on the query, the query
datasheet, or a form bound to a multiple table query where the join is expressed using a
table-list and a WHERE clause. In many cases you can update the fields in the underlying
tables when you use the JOIN syntax.

When you list more than one table or query without join criteria, the source is the Cartesian
product of all the tables. For example, FROM TableA, TableB instructs the database to fetch
all the rows of TableA matched with all the rows of TableB. Unless you specify other restrict-
ing criteria, the number of logical rows that the database processes could equal the number
of rows in TableA times the number of rows in TableB. When you include the WHERE or
HAVING clause, the database returns the rows in which the selection criteria specified in
those clauses evaluate to True.

Example

To select information about all companies and contacts and any products purchased, enter
the following (qxmplAllCompanyContactsAnyProducts):

SELECT tblCompanies.CompanyName, tblContacts.FirstName,
 tblContacts.LastName, CP.ProductName, CP.DateSold, CP.SoldPrice
 FROM ((tblCompanies
 INNER JOIN tblCompanyContacts
 ON tblCompanies.CompanyID = tblCompanyContacts.CompanyID)
 INNER JOIN tblContacts
 ON tblContacts.ContactID = tblCompanyContacts.ContactID)
 LEFT JOIN
 (SELECT tblContactProducts.ContactID, tblProducts.ProductName,
 tblContactProducts.DateSold, tblContactProducts.SoldPrice
 FROM tblProducts
 INNER JOIN tblContactProducts
 ON tblProducts.ProductID = tblContactProducts.ProductID
 WHERE tblProducts.TrialVersion = 0) AS CP
 ON tblContacts.ContactID = CP.ContactID;

	 SQL SELECT Queries	 1785

A
rt

ic
le

 2

Note

If you save the previous query in a previous version of Access, when you open the

query in Design view, you’ll find that Access saves the inner <select-statement> with

brackets:

[SELECT tblContactProducts.ContactID, tblProducts.ProductName,

tblContactProducts.DateSold, tblContactProducts.SoldPrice

FROM tblProducts

INNER JOIN tblContactProducts

ON tblProducts.ProductID = tblContactProducts.ProductID

WHERE tblProducts.TrialVersion = 0]. AS CP

This is the internal syntax supported by the Joint Engine Technology (JET) database

engine installed with Access 2003 and earlier. The Access Database Engine (ACE) sup-

plied with Access 2007 and Access 2010 no longer modifies the SQL—you’ll find the

sample query saved exactly as stated in the example without brackets.

See also HAVING Clause, IN Clause, SELECT Statement, Subquery, and WHERE Clause in this
article.

GROUP BY Clause

In a SELECT statement, specifies the columns used to form groups from the rows selected.
Each group contains identical values in the specified column(s). In Access, you use the
GROUP BY clause to define a totals query. You must also include a GROUP BY clause in a
crosstab query in Access. (See TRANSFORM Statement for details.)

Syntax

GROUP BY column-name,...

Notes

A column name in the GROUP BY clause can refer to any column from any table in the
FROM clause, even if the column is not named in the select list. If the GROUP BY clause is
preceded by a WHERE clause, the database creates the groups from the rows selected after
it applies the WHERE clause. When you include a GROUP BY clause in a SELECT statement,
the select list must be made up of either SQL aggregate functions or column names speci-
fied in the GROUP BY clause.

A
rticle 2

1786	 Article 2  Understanding SQL

Example

To find the average and maximum prices for products by category name, enter the follow-
ing (qxmplCategoryAvgMaxPrice):

SELECT tblProducts.CategoryDescription,
 Avg(tblProducts.UnitPrice) AS AvgOfUnitPrice,
 Max(tblProducts.UnitPrice) AS MaxOfUnitPrice
 FROM tblProducts
 WHERE tblProducts.TrialVersion = 0
 GROUP BY tblProducts.CategoryDescription;

See also Aggregate Functions, HAVING Clause, Search-Condition, SELECT Statement, and
WHERE Clause in this article.

HAVING Clause

Specifies groups of rows that appear in the logical table (a recordset) defined by a SELECT
statement. The search condition applies to columns specified in a GROUP BY clause, to col-
umns created by aggregate functions, or to expressions containing aggregate functions. If
a group doesn’t pass the search condition, the database does not include it in the logical
table.

Syntax

HAVING <search-condition>

Notes

If you do not include a GROUP BY clause, the select list must be formed by using one or
more of the SQL aggregate functions.

The difference between the HAVING clause and the WHERE clause is that WHERE <search-
condition> applies to single rows before they are grouped, while HAVING <search-condition>
applies to groups of rows.

If you include a GROUP BY clause preceding the HAVING clause, the <search-condition>
applies to each of the groups formed by equal values in the specified columns. If you do
not include a GROUP BY clause, the <search-condition> applies to the entire logical table
defined by the SELECT statement.

	 SQL SELECT Queries	 1787

A
rt

ic
le

 2

Example

To find the invoice amounts for all invoices that total more than $150, enter the following
(qxmplTotalInvoices>150):

SELECT tblCompanies.CompanyName, tblInvoices.InvoiceID,
 tblInvoices.InvoiceDate, Sum(tblContactProducts.SoldPrice) AS InvoiceTotal
 FROM (tblCompanies
 INNER JOIN tblInvoices
 ON tblCompanies.CompanyID = tblInvoices.CompanyID)
 INNER JOIN tblContactProducts
 ON tblInvoices.InvoiceID = tblContactProducts.InvoiceID
 GROUP BY tblCompanies.CompanyName, tblInvoices.InvoiceID,
 tblInvoices.InvoiceDate
HAVING Sum(tblContactProducts.SoldPrice) > 150;

See also Aggregate Functions, GROUP BY Clause, Search-Condition, SELECT Statement, and
WHERE Clause in this article.

IN Clause

In a desktop database (.accdb), specifies the source for the tables in a query. The source can
be another Access database; a dBASE, or any database for which you have an Open Data-
base Connectivity (ODBC) driver. This is an Access extension to standard SQL.

Syntax

IN <"source database name"> <[source connect string]>

Enter “source database name” and [source connect string]. (Be sure to include the quota-
tion marks and the brackets.) If your database source is Access, enter only “source database
name”. Enter these parameters according to the type of database to which you are con-
necting, as shown in Table A2-1.

Table A2-1  IN Parameters for Various Database Types

Database Name Source Database Name Source Connect String

Access “drive:\path\filename” (none)

dBASE III “drive:\path” [dBASE III;]

dBASE IV “drive:\path” [dBASE IV;]

dBASE 5 “drive:\path” [dBASE 5.0;]

ODBC (none) [ODBC; DATABASE= defaultdatabase;
UID=user; PWD= password;DSN=
datasourcename]

A
rticle 2

1788	 Article 2  Understanding SQL

Notes

The IN clause applies to all tables referenced in the FROM clause and any subqueries in
your query. You can refer to only one external database within a query, but if the IN clause
points to a database that contains more than one table, you can use any of those tables in
your query. If you need to refer to more than one external file or database, attach those
files as tables in Access and use the logical attached table names instead.

For ODBC, if you omit the DSN= or DATABASE= parameter, Access prompts you with a
dialog box showing available data sources so that you can select the one you want. If you
omit the UID= or PWD= parameter and the server requires a user ID and password, Access
prompts you with a login dialog box for each table accessed.

For dBASE, you can provide an empty string ("") for source database name and provide
the path or dictionary filename using the DATABASE= parameter in source connect string
instead, as in

"[dBase IV; DATABASE=C:\MyDB\dbase.dbf]"

Example

In a desktop database (.accdb), to retrieve the Company Name field in the Northwind Trad-
ers sample database without having to attach the Customers table, enter the following:

SELECT Customers.CompanyName
FROM Customers
IN "C:\My Documents\Shortcut to NORTHWIND.ACCDB";

See also SELECT Statement in this article.

IN Predicate

Determines whether a value is equal to any of the values or is unequal to all values in a set
returned from a subquery or provided in a list of values.

Syntax

<expression> [NOT] IN {(<subquery>) |
 ({literal},...) |<expression>}

	 SQL SELECT Queries	 1789

A
rt

ic
le

 2

Notes

Comparison of strings in Access or a default installation of SQL Server is case-insensitive.
The data types of all expressions, literals, and the column returned by the subquery must
be compatible. If the expression is Null or any value returned by the subquery is Null, the
result is undefined. In terms of other predicates, <expression> IN <expression> is equivalent
to the following:

<expression> = <expression>

<expression> IN (<subquery>) is equivalent to the following:

<expression> = ANY (<subquery>)

<expression> IN (a, b, c,...), where a, b, and c are literals, is equivalent to the following:

(<expression> = a) OR (<expression> = b) OR

 (<expression> = c) ...

<expression> NOT IN ... is equivalent to the following:

NOT (<expression> IN ...)

Examples

To test whether StateOrProvince is on the west coast of the United States, enter the
following:

[StateOrProvince] IN ('CA', 'OR', 'WA')

To list all contacts who have not purchased a multi-user product, enter the following
(qxmplContactsNotMultiUser):

SELECT tblContacts.ContactID, tblContacts.FirstName,
 tblContacts.MiddleInit, tblContacts.LastName
 FROM tblContacts
 WHERE tblContacts.ContactID NOT IN
 (SELECT ContactID
 FROM tblContactProducts
 INNER JOIN tblProducts
 ON tblContactProducts.ProductID = tblProducts.ProductID
 WHERE tblProducts.CategoryDescription = 'Multi-User');

See also Expression, Quantified Predicate, SELECT Statement, Subquery, and WHERE Clause in
this article.

A
rticle 2

1790	 Article 2  Understanding SQL

LIKE Predicate

Searches for strings that match a pattern.

Syntax

column-name [NOT] LIKE match-string [ESCAPE escape-character]

Notes

String comparisons in Access or a default installation of SQL Server are case-insensitive. If
the column specified by column-name contains a Null, the result is undefined. Comparison
of two empty strings or an empty string with the special asterisk (*) character (% character
in SQL Server) evaluates to True.

You provide a text string as a match-string value that defines what characters can exist in
which positions for the comparison to be true. Access and SQL Server understand a number
of wildcard characters (shown in Table A2-2) that you can use to define positions that can
contain any single character, zero or more characters, or any single number.

Table A2-2  Wildcard Characters for String Comparisons

Desktop Database Project File Meaning

? _ Any single character

* % Zero or more characters (used to define leading, trailing,
or embedded strings that don’t have to match any of
the pattern characters)

[0-9] Any single number

You can also specify in the match string that any particular position in the text or memo
field can contain only characters from a list that you provide. To define a list of comparison
characters for a particular position, enclose the list in brackets ([]). You can specify a range
of characters within a list by entering the low-value character, a hyphen, and the high-value
character, as in [A-Z] or [3-7]. If you want to test a position for any characters except those
in a list, start the list with an exclamation point (!) in a desktop database or a caret symbol
(^) in a project file.

If you want to test for one of the special characters *, ?, #, and [, (and _ or % in a project
file), you must enclose the character in brackets. Alternatively, in a project file, you can

	 SQL SELECT Queries	 1791

A
rt

ic
le

 2

specify an ESCAPE clause. When you place the escape character in the match string, the
database ignores the character and uses the following character as a literal comparison
value. Therefore, you can include the escape character immediately preceding one of the
special characters to use the special character as a literal comparison instead of a pattern
character. Desktop databases do not support the ESCAPE clause.

Examples

In a desktop database, to determine whether a contact’s LastName is at least four charac-
ters long and begins with Smi, enter the following:

tblContacts.LastName LIKE "Smi?*"

In a project file, write the previous test as follows:

tblContacts.LastName LIKE 'Smi_%'

In a desktop database, to test whether PostalCode is a valid Canadian postal code, enter the
following:

PostalCode LIKE "[A-Z]#[A-Z] #[A-Z]#"

In a project file, to test whether a character column named Discount ends in 5%, enter the
following:

Discount LIKE '%5$%' ESCAPE '$'

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

NULL Predicate

Determines whether the expression evaluates to Null or not Null. This predicate evaluates
only to True or False and will not evaluate to undefined.

Syntax

<expression> IS [NOT] NULL

A
rticle 2

1792	 Article 2  Understanding SQL

Example

To determine whether the contact work phone number column contains the Null value,
enter the following:

tblContacts.WorkPhone IS NULL

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

ORDER BY Clause

Specifies the sequence of rows to be returned by a SELECT statement or a subquery.

Syntax

ORDER BY {column-name | column-number [ASC | DESC]},...

Notes

You use column names or relative output column numbers to specify the columns on
whose values the rows returned are ordered. (If you use relative output column numbers,
the first output column is 1.) You can specify multiple columns in the ORDER BY clause.
When you specify multiple columns, the list is ordered primarily by the first column. If rows
exist for which the values of that column are equal, they are ordered by the next column
in the ORDER BY list, and so on. When multiple rows contain the matching values in all the
columns in the ORDER BY clause, the database can return the matching rows in any order.
You can specify ascending (ASC) or descending (DESC) order for each column. If you do not
specify ASC or DESC, ASC is assumed. Using an ORDER BY clause in a SELECT statement is
the only means of defining the sequence of the returned rows.

When you include the DISTINCT keyword or use the UNION query operator in the SELECT
statement, the ORDER BY clause can include only columns specified in the SELECT clause.
Otherwise, you can include any column in the logical table returned by the FROM clause.

To use ORDER BY in a view, function, or stored procedure in SQL Server, you must also
include the TOP keyword in the SELECT clause. To fetch and sort all rows, specify TOP
100 PERCENT. Note, however, that a view, function, or stored procedure returns the result
ordered only when you directly execute the query from code. When Access runs a query
in SQL Server that is identified as the record source of a form or report or the row source
of a combo box or list box, it sends a SELECT * FROM queryname command to the server.
The server returns the rows sorted only when you specify the ORDER BY clause again in the
record source or row source as part of a SELECT statement on the query.

	 SQL SELECT Queries	 1793

A
rt

ic
le

 2

Examples

To calculate the total for all invoices and list the result for each customer and invoice in
descending sequence by order total, enter the following (qxmplOrderTotalSorted):

SELECT TOP 100 PERCENT tblCompanies.CompanyName, tblInvoices.InvoiceID,
 tblInvoices.InvoiceDate, Sum(tblContactProducts.SoldPrice) AS InvoiceTotal
 FROM (tblCompanies
 INNER JOIN tblInvoices
 ON tblCompanies.CompanyID = tblInvoices.CompanyID)
 INNER JOIN tblContactProducts
 ON tblInvoices.InvoiceID = tblContactProducts.InvoiceID
 GROUP BY tblCompanies.CompanyName, tblInvoices.InvoiceID,
 tblInvoices.InvoiceDate
 ORDER BY Sum(tblContactProducts.SoldPrice) DESC;

Note
The TOP keyword is optional in a desktop database (.accdb). In SQL Server, you can also

specify the calculated column alias name in the ORDER BY clause: ORDER BY InvoiceTo-

tal DESC. In a desktop database, you must repeat the calculation expression as shown in

the example.

In a desktop database (.accdb), to create a mailing list for all companies and all contacts,
sorted in ascending order by postal code, enter the following (qxmplSortedMailingList):

SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City,
 tblCompanies.StateOrProvince, tblCompanies.PostalCode
 FROM tblCompanies
UNION
SELECT [FirstName] & " " & ([MiddleInit]+". ") & [LastName] AS Contact,
 tblContacts.HomeAddress, tblContacts.HomeCity,
 tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode
 FROM tblContacts
ORDER BY 5;

Note
If you decide to use column names in the ORDER BY clause of a UNION query, the

database derives the column names from the names returned by the first query. In this

example, you could change the ORDER BY clause to read ORDER BY PostalCode.

A
rticle 2

1794	 Article 2  Understanding SQL

To create the same mailing list in a view or in-line function in an SQL Server database, enter
the following:

SELECT TOP 100 PERCENT CompanyName, Address, City,
 StateOrProvince, PostalCode
FROM
(SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City,
 tblCompanies.StateOrProvince, tblCompanies.PostalCode
 FROM tblCompanies
UNION
SELECT tblContacts.FirstName + ' ' +
 IsNull(tblContacts.MiddleInit + '. ', '') +
 tblContacts.LastName AS Contact,
 tblContacts.HomeAddress, tblContacts.HomeCity,
 tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode
 FROM tblContacts) AS U
ORDER BY 5;

Notice that you must UNION the rows first and then select and sort them all.

See also INSERT Statement, SELECT Statement, and UNION Query Operator in this article.

PARAMETERS Declaration

In a desktop database (.accdb), precedes an SQL statement to define the data types of any
parameters you include in the query. You can use parameters to prompt the user for data
values or to match data values in controls on an open form. (In an SQL Server database, you
declare the parameters for a function or procedure as part of the CREATE statement.)

Syntax

PARAMETERS {[parameter-name] data-type},... ;

Notes

If your query prompts the user for values, each parameter name should describe the value
that the user needs to enter. For example, [Print invoices from orders on date:] is much
more descriptive than [Enter date:]. If you want to refer to a control on an open form, use
this format:

[Forms]![Myform]![Mycontrol]

To refer to a control on a subform, use this format:

[Forms]![Myform]![Mysubformcontrol].[Form]![ControlOnSubform]

Valid data type entries are shown in Table A2-3.

	 SQL SELECT Queries	 1795

A
rt

ic
le

 2

Table A2-3  SQL Parameter Data Types

SQL Parameter Data Types Equivalent Access Data Type

Char, Text(n)1, VarChar Text

Text1, LongText, LongChar, Memo Memo

TinyInt, Byte, Integer1 Number, Byte

SmallInt, Short, Integer2 Number, Integer

Integer, Long, Integer4 Number, Long Integer

Real, Single, Float4, IEEESingle Number, Single

Float, Double, Float8, IEEEDouble Number, Double

Decimal, Numeric Number, Decimal

UniqueIdentifier, GUID Number, Replication ID

DateTime, Date, Time Date/Time

Money, Currency Currency

Bit, Boolean, Logical, YesNo Yes/No

Image, LongBinary, OLEObject OLE Object

Text, LongText, LongChar, Memo Hyperlink2

Binary, VarBinary Binary3

1 Text with a length descriptor of 255 or less maps to the Access Text data type. Text
with no length descriptor is a Memo field.

2 Internally, Access stores a Hyperlink in a Memo field but sets a custom property to
indicate a Hyperlink format.

3 The ACE supports a Binary data type (raw hexadecimal), but the Access user
interface does not. If you encounter a non-Access table that has a data type that
maps to Binary, you will be able to see the data type in the table definition, but
you won’t be able to successfully edit this data in a datasheet or form. You can
manipulate Binary data in Visual Basic.

Example

To create a parameter query that summarizes the sales and the cost of goods for all items
sold in a given month, enter the following (qxmplMonthSalesParameter):

PARAMETERS [Year to summarize:] Short, [Month to summarize:] Short;
SELECT tblProducts.ProductName,
 Format([DateSold],"mmmm"", ""yyyy") AS OrderMonth,
 Sum(tblContactProducts.SoldPrice) AS TotalSales
 FROM tblProducts
 INNER JOIN tblContactProducts
 ON tblProducts.ProductID = tblContactProducts.ProductID
 WHERE (Year([DateSold]) = [Year to summarize:])
 AND (Month([DateSold]) = [Month to summarize:])
GROUP BY tblProducts.ProductName, Format([DateSold],"mmmm"", ""yyyy");

A
rticle 2

1796	 Article 2  Understanding SQL

See also SELECT Statement in this article.

Quantified Predicate

Compares the value of an expression to some, any, or all values of a single column returned
by a subquery.

Syntax

<expression> {= | <> | > | < | >= | <=}
 [SOME | ANY | ALL] (<subquery>)

Notes

String comparisons in Access or a default installation of SQL Server are case-insensitive. The
data type of the expression must be compatible with the data type of the value returned by
the subquery.

When you use ALL, the predicate is true if the comparison is True for all the values returned
by the subquery. If the expression or any of the values returned by the subquery is Null, the
result is undefined. When you use SOME or ANY, the predicate is True if the comparison
is true for any of the values returned by the subquery. If the expression is a Null value, the
result is undefined. If the subquery returns no values, the predicate is False.

Examples

To find the products whose price is greater than all the products in the Support category,
enter the following (qxmplProductPrice>AllSupport):

SELECT tblProducts.ProductID, tblProducts.ProductName, tblProducts.UnitPrice
 FROM tblProducts
 WHERE tblProducts.UnitPrice >All
 (SELECT tblProducts.UnitPrice
 FROM tblProducts
 WHERE tblProducts.CategoryDescription = 'Support');

To find the products whose price is greater than any of the products in the Support cat-
egory, enter the following (qxmplProductPrice>AnySupport):

SELECT tblProducts.ProductID, tblProducts.ProductName, tblProducts.UnitPrice
 FROM tblProducts
 WHERE tblProducts.UnitPrice >Any
 (SELECT tblProducts.UnitPrice
 FROM tblProducts
 WHERE tblProducts.CategoryDescription = 'Support');

See also Expression, SELECT Statement, Subquery, and WHERE Clause in this article.

	 SQL SELECT Queries	 1797

A
rt

ic
le

 2

Search Condition

Describes a simple or compound predicate that is True, False, or undefined for a given row
or group. Use a search condition in the WHERE clause of a SELECT statement, a subquery, a
DELETE statement, or an UPDATE statement. You can also use a search condition within the
HAVING clause in a SELECT statement. The search condition defines the rows that should
appear in the resulting logical table or the rows that should be acted upon by the change
operation. If the search condition is True when applied to a row, that row is included in the
result.

Syntax

[NOT] {predicate | (<search-condition>)}
 [{AND | OR | XOR | EQV | IMP}
 [NOT] {predicate | (<search-condition>)}]...

Notes

If you include a comparison predicate in the form of <expression> comparison-operator
<subquery>, the database returns an error if the subquery returns no rows. The database
effectively applies any subquery in a predicate within a search condition to each row of the
table that is the result of the previous clauses. The database then evaluates the result of the
subquery with regard to each candidate row.

The order of evaluation of the Boolean operators is NOT, AND, OR, XOR (exclusive OR), EQV
(equivalence), and IMP (implication). You can include additional parentheses to influence
the order in which the Boolean expressions are processed. SQL Server does not support the
XOR, EQV, and IMP logical operators.

INSIDE OUT  Using XOR, EQV, and IMP in the Access Query Designer

You can express AND and OR Boolean operations directly by using the design grid. If

you need to use XOR, EQV, or IMP, you must create an expression in the Field row, clear

the Show check box, and set the Criteria row to <> False.

When you use the Boolean operator NOT, the following holds: NOT (True) is False, NOT
(False) is True, and NOT (undefined) is undefined. The result is undefined whenever a predi-
cate references a null value. If a search condition evaluates to False or undefined when
applied to a row, the row is not selected. The database returns True, False, or undefined val-
ues as a result of applying Boolean operators (AND, OR, XOR, EQV, IMP) against two predi-
cates or search conditions according to the tables shown in Figure A2-1.

A
rticle 2

1798	 Article 2  Understanding SQL

Figure A2-1  Truth tables for SQL Boolean operators

Example

In a desktop database, to find all products for which the unit price is greater than $100 and
for which the category description number is equal to Multi-User or the product has a pre-
requisite, but not both, enter the following (qxmplXOR):

SELECT tblProducts.ProductID, tblProducts.ProductName,
 tblProducts.CategoryDescription, tblProducts.UnitPrice,
 tblProducts.PreRequisite
 FROM tblProducts
 WHERE tblProducts.UnitPrice>100
 AND ((tblProducts.CategoryDescription = "Multi-User")
 XOR (tblProducts.PreRequisite Is Not Null));

	 SQL SELECT Queries	 1799

A
rt

ic
le

 2

In a project file, to find all products for which the unit price is greater than $100 and for
which the category description number is equal to Multi-User or the product has a prereq-
uisite, but not both, enter the following:

SELECT tblProducts.ProductID, tblProducts.ProductName,
 tblProducts.CategoryDescription, tblProducts.UnitPrice,
 tblProducts.PreRequisite
 FROM tblProducts
 WHERE tblProducts.UnitPrice>100
 AND ((tblProducts.CategoryDescription = "Multi-User")
 OR (tblProducts.PreRequisite Is Not Null))
 AND NOT ((tblProducts.CategoryDescription = "Multi-User")
 AND (tblProducts.PreRequisite Is Not Null));

See also DELETE Statement, Expression, HAVING Clause, Predicates (BETWEEN, Comparison,
EXISTS, IN, LIKE NULL, and Quantified), SELECT Statement, Subquery, UPDATE Statement, and
WHERE Clause in this article.

SELECT Statement

Fetches data from one or more tables or queries to create a logical table (recordset). The
items in the select list identify the columns or calculated values to return from the source
tables to the new recordset. You identify the tables to be joined in the FROM clause, and
you identify the rows to be selected in the WHERE clause. Use GROUP BY to specify how
to form groups for an aggregate query, and use HAVING to specify which resulting groups
should be included in the result.

Syntax

SELECT [ALL | DISTINCT | DISTINCTROW | TOP number
 [PERCENT]] <select-list>
FROM {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>},...

 [IN <"source database name"> <[source connect
 string]>]

 [WHERE <search-condition>]
 [GROUP BY column-name,...]
 [HAVING <search-condition>]
 [UNION [ALL] <select-statement>]
 [ORDER BY {column-name [ASC | DESC]},...]
 [WITH OWNERACCESS OPTION];

A
rticle 2

1800	 Article 2  Understanding SQL

where <select-list> is

{* | {<expression> [AS output-column-name] |

 table-name.* | query-name.* |

 correlation-name.*},...}

and where <joined table> is

({table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>}

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN
 {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>}

ON <join-specification>)

Notes

You can supply a correlation name for each table name or query name and use this cor-
relation name as an alias for the full table name when qualifying column names in the
<select-list>, in the <join-specification>, or in the WHERE clause and subclauses. If you’re
joining a table or a query to itself, you must use correlation names to clarify which copy of
the table or query you’re referring to in the select list, join criteria, or selection criteria. If a
table name or a query name is also an SQL reserved word (for example, Order), you must
enclose the name in brackets. In SQL Server, you must enclose the name of a table or query
that is also an SQL reserved word in brackets or double quotes. If you decide to use quotes,
you must also ensure that the server has received the command SET QUOTED_IDENTIFIER
ON. Note that when you open a query in an Access project, Access includes the required
SET QUOTED_IDENTIFIER ON command in the command string to ensure that any names
that you have enclosed in quotes are recognized correctly by SQL Server. However, if you
execute an SQL Server query from a desktop database with a pass-through query, you must
use brackets or quotes and include this command in the pass-through query.

When you list more than one table or query without join criteria, the source is the Cartesian
product of all the tables. For example, FROM TableA, TableB instructs the database to search
all the rows of TableA matched with all the rows of TableB. Unless you specify other restrict-
ing criteria, the number of logical rows that the database processes could equal the number
of rows in TableA times the number of rows in TableB. The database then returns the rows
in which the selection criteria specified in the WHERE and HAVING clauses are true. (See
FROM Clause, on page 675, for further details about specifying joins.)

You can further define which rows the database includes in the output recordset by specify-
ing ALL, DISTINCT, DISTINCTROW (in a desktop database only), TOP n, or TOP n PERCENT.

	 SQL SELECT Queries	 1801

A
rt

ic
le

 2

ALL includes all rows that match the search criteria from the source tables, including poten-
tial duplicate rows. DISTINCT requests that the database return only rows that are different
from any other row. You cannot update any columns in a query that uses DISTINCT because
the database can’t identify which of several potentially duplicate rows you intend to update.

DISTINCTROW (the default in Access 7.0—Access 95—and earlier) requests that Access
return only rows in which the concatenation of the primary keys from all tables supplying
output columns is unique. Depending on the columns you select, you might see rows in
the result that contain duplicate values, but each row in the result is derived from a distinct
combination of rows in the underlying tables. DISTINCTROW is significant only when you
include a join in a query and do not include output columns from all tables. For example,
the statement

SELECT tblContacts.WorkStateOrProvince

FROM tblContacts

 INNER JOIN tblContactProducts

 ON tblContacts.ContactID = tblContactProducts.ContactID

WHERE tblContactProducts.DateSold > #7/1/2010#;

returns 92 rows in the ContactsDataCopy.accdb sample database—one row for each prod-
uct owned by a contact. On the other hand, the statement

SELECT DISTINCTROW tblContacts.WorkStateOrProvince

FROM tblContacts

 INNER JOIN tblContactProducts

 ON tblContacts.ContactID = tblContactProducts.ContactID

WHERE tblContactProducts.DateSold > #7/1/2010#;

returns only 29 rows—one for each distinct row in the tblContacts table, the only table with
output columns. The equivalent of the second example in ANSI-standard SQL is as follows:

SELECT tblContacts.WorkStateOrProvince

FROM tblContacts

WHERE tblContacts.ContactID

 IN (Select tblContactProducts.ContactID FROM tblContactProducts

 WHERE tblContactProducts.DateSold > '2010-07-01');

We suspect that Microsoft implemented DISTINCTROW in version 1 because the first
release of Access did not support subqueries.

Specify TOP n or TOP n PERCENT to request that the recordset contain only the first n or
first n percent of rows. In general, you should specify an ORDER BY clause when you use
TOP to indicate the sequence that defines which rows are first, or top. The parameter n
must be a positive integer and must be less than or equal to 100 if you include the PER-
CENT keyword. If you do not include an ORDER BY clause, the sequence of rows returned is
undefined. In a TOP query, if the nth and any rows immediately following the nth row are
duplicates, the database returns the duplicates; thus, the recordset might have more than

A
rticle 2

1802	 Article 2  Understanding SQL

n rows. Note that if you specify an order, using TOP does not cause the query to execute
any faster; the database must still solve the entire query, order the rows, and return the top
rows.

When you include a GROUP BY clause, the select list must be made up of one or more of
the SQL aggregate functions or one or more of the column names specified in the GROUP
BY clause. A column name in a GROUP BY clause can refer to any column from any table in
the FROM clause, even if the column is not named in the select list. If you want to refer to a
calculated expression in the GROUP BY clause, you must assign an output column name to
the expression in the select list and then refer to that name in the GROUP BY clause. If the
GROUP BY clause is preceded by a WHERE clause, the database forms the groups from the
rows selected after it applies the WHERE clause.

If you use a HAVING clause but do not include a GROUP BY clause, the select list must be
formed using SQL aggregate functions. If you include a GROUP BY clause preceding the
HAVING clause, the HAVING search condition applies to each of the groups formed by
equal values in the specified columns. If you do not include a GROUP BY clause, the HAV-
ING search condition applies to the entire logical table defined by the SELECT statement.

You use column names or relative output column numbers to specify the columns on
whose values the rows returned are ordered. (If you use relative output column numbers,
the first output column is 1.) You can specify multiple columns in the ORDER BY clause.
When you specify multiple columns, the list is ordered primarily by the first column. If rows
exist for which the values of that column are equal, they are ordered by the next column
in the ORDER BY list, and so on. When multiple rows contain the matching values in all the
columns in the ORDER BY clause, the database can return the matching rows in any order.
You can specify ascending (ASC) or descending (DESC) order for each column. If you do not
specify ASC or DESC, ASC is assumed. Using an ORDER BY clause in a SELECT statement is
the only means of defining the sequence of the returned rows.

In an .mdb-format desktop database that has user-level security implemented, the person
running the query not only must have rights to the query but also must have the appropri-
ate rights to the tables used in the query. (These rights include reading data to select rows
and updating, inserting, and deleting data using the query.) If your application has multiple
users, you might want to secure the tables so that no user has direct access to any of the
tables and all users can still run queries defined by you. Assuming you’re the owner of both
the queries and the tables, you can deny access to the tables but allow access to the que-
ries. To make sure that the queries run properly, you must add the WITH OWNERACCESS
OPTION clause to allow users the same access rights as the table owner when accessing
the data via the query. Access 2010 does not support user-level security in .accdb-format
databases.

	 SQL SELECT Queries	 1803

A
rt

ic
le

 2

If the select-list references a multi-value field, the query returns the individual values sepa-
rated by commas. A query datasheet provides a combo box that you can use to edit the
multiple values. If you bind the column to a combo box control on a form, you can edit the
field on the form. To edit the individual values in separate rows, use field-name.Value in
your query. For records in the table that have multiple values in the field, the query returns
one row per value. The effect is identical to linking to a related many-to-many lookup table
using a join. (See FROM Clause, on page 675, for details about defining a join in a query.)
Note, however, that when you ask for field-name.Value from more than one multi-valued
column in a table, the resulting query is not updatable because the query returns the Car-
tesian product of the multiple values in the two fields for each row in the source table.

If the select-list contains an attachment data type, the query datasheet provides an attach-
ment control to allow you to edit the data. You can also edit the data if you bind the field
to an Attachment control in a form. You can individually reference one of the three prop-
erties of an attachment field: field-name.FileData, field-name.FileName, or field-name.
FileType. All three properties return one row per separate attachment for each record
in the source table, but you cannot update the values. The FileData property returns the
binary attached file, the FileName property returns the original name of the file, and the
FileType property returns the file extension.

Examples

To select information about all companies and contacts and any products purchased, enter
the following (qxmplAllCompanyContactsAnyProducts):

SELECT tblCompanies.CompanyName, tblContacts.FirstName,
 tblContacts.LastName, CP.ProductName, CP.DateSold, CP.SoldPrice
 FROM ((tblCompanies
 INNER JOIN tblCompanyContacts
 ON tblCompanies.CompanyID = tblCompanyContacts.CompanyID)
 INNER JOIN tblContacts
 ON tblContacts.ContactID = tblCompanyContacts.ContactID)
 LEFT JOIN
 (SELECT tblContactProducts.ContactID, tblProducts.ProductName,
 tblContactProducts.DateSold, tblContactProducts.SoldPrice
 FROM tblProducts
 INNER JOIN tblContactProducts
 ON tblProducts.ProductID = tblContactProducts.ProductID
 WHERE tblProducts.TrialVersion = 0) AS CP
 ON tblContacts.ContactID = CP.ContactID;

A
rticle 2

1804	 Article 2  Understanding SQL

Note

If you save the previous query in a previous version of Access, when you open the

query in Design view, you’ll find that Access saves the inner <select-statement> with

brackets, like this:

[SELECT tblContactProducts.ContactID, tblProducts.ProductName,

tblContactProducts.DateSold, tblContactProducts.SoldPrice

FROM tblProducts

INNER JOIN tblContactProducts

ON tblProducts.ProductID = tblContactProducts.ProductID

WHERE tblProducts.TrialVersion = 0]. AS CP

This is the internal syntax supported by the JET database engine installed with Access

2003 and earlier. The ACE supplied with Access 2010 no longer modifies the SQL—

you’ll find the sample query saved exactly as stated in the example without brackets.

To find the average and maximum prices for products by category name, enter the follow-
ing (qxmplCategoryAvgMaxPrice):

SELECT tblProducts.CategoryDescription,
 Avg(tblProducts.UnitPrice) AS AvgOfUnitPrice,
 Max(tblProducts.UnitPrice) AS MaxOfUnitPrice
 FROM tblProducts
 WHERE tblProducts.TrialVersion = 0
 GROUP BY tblProducts.CategoryDescription;

To find the invoice amounts for all invoices that total more than $150, enter the following
(qxmplTotalInvoices>150):

SELECT tblCompanies.CompanyName, tblInvoices.InvoiceID,
 tblInvoices.InvoiceDate, Sum(tblContactProducts.SoldPrice) AS InvoiceTotal
 FROM (tblCompanies
 INNER JOIN tblInvoices
 ON tblCompanies.CompanyID = tblInvoices.CompanyID)
 INNER JOIN tblContactProducts
 ON tblInvoices.InvoiceID = tblContactProducts.InvoiceID
 GROUP BY tblCompanies.CompanyName, tblInvoices.InvoiceID,
 tblInvoices.InvoiceDate
HAVING Sum(tblContactProducts.SoldPrice) > 150;

	 SQL SELECT Queries	 1805

A
rt

ic
le

 2

To calculate the total for all invoices and list the result for each customer and invoice in
descending sequence by order total, enter the following (qxmplOrderTotalSorted):

SELECT TOP 100 PERCENT tblCompanies.CompanyName, tblInvoices.InvoiceID,
 tblInvoices.InvoiceDate, Sum(tblContactProducts.SoldPrice) AS InvoiceTotal
 FROM (tblCompanies
 INNER JOIN tblInvoices
 ON tblCompanies.CompanyID = tblInvoices.CompanyID)
 INNER JOIN tblContactProducts
 ON tblInvoices.InvoiceID = tblContactProducts.InvoiceID
 GROUP BY tblCompanies.CompanyName, tblInvoices.InvoiceID,
 tblInvoices.InvoiceDate
 ORDER BY Sum(tblContactProducts.SoldPrice) DESC;

Note
The TOP keyword is optional in a desktop database (.accdb). In SQL Server, you can also

specify the calculated column alias name in the ORDER BY clause: ORDER BY InvoiceTo-

tal DESC. In a desktop database, you must repeat the calculation expression as shown in

the example.

In a desktop database (.accdb), to create a mailing list for all companies and all contacts,
sorted in ascending order by postal code, enter the following (qxmplSortedMailingList):

SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City,

 tblCompanies.StateOrProvince, tblCompanies.PostalCode

 FROM tblCompanies

UNION

SELECT [FirstName] & " " & ([MiddleInit]+". ") & [LastName] AS Contact,

 tblContacts.HomeAddress, tblContacts.HomeCity,

 tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode

 FROM tblContacts

ORDER BY 5;

Note
If you decide to use column names in the ORDER BY clause of a UNION query, the

database derives the column names from the names returned by the first query. In this

example, you could change the ORDER BY clause to read ORDER BY PostalCode.

A
rticle 2

1806	 Article 2  Understanding SQL

To create the same mailing list in a view or in-line function in an SQL Server database, enter
the following:

SELECT TOP 100 PERCENT CompanyName, Address, City,
 StateOrProvince, PostalCode
FROM
(SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City,
 tblCompanies.StateOrProvince, tblCompanies.PostalCode
 FROM tblCompanies
UNION
SELECT tblContacts.FirstName + ' ' +
 IsNull(tblContacts.MiddleInit + '. ', '') +
 tblContacts.LastName AS Contact,
 tblContacts.HomeAddress, tblContacts.HomeCity,
 tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode
 FROM tblContacts) AS U
ORDER BY 5;

Notice that you must UNION the rows first and then select and sort them all.

See also FROM Clause, GROUP BY Clause, HAVING Clause, INSERT Statement, Search-Condi-
tion, and UNION Query Operator in this article.

Subquery

Selects from a single column any number of values, or no values at all, for comparison in
a predicate. You can also use a subquery that returns a single value in the select list of a
SELECT clause.

Syntax

(SELECT [ALL | DISTINCT | DISTINCTROW | TOP number
 [PERCENT]] <select-list>
 FROM {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 <joined table>},...

 [WHERE <search-condition>]
 [GROUP BY column-name,...]
 [HAVING <search-condition>]
 [ORDER BY {column-name [ASC | DESC]},...])

where select-list is

{* | {<expression> | table-name.* |
 query-name.* | correlation-name.*}}

	 SQL SELECT Queries	 1807

A
rt

ic
le

 2

and where <joined table> is

({table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>}

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN
 {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>}

ON <join-specification>)

Notes

You can use the special asterisk (*) character in the <select-list> of a subquery only when
the subquery is used in an EXISTS predicate or when the FROM clause within the subquery
refers to a single table or query that contains only one column.

You can supply a correlation name for each table name or query name and use this correla-
tion name as an alias for the full table name when qualifying column names in the <select-
list>, in the <join-specification>, or in the WHERE clause and subclauses. If you’re joining a
table or a query to itself, you must use correlation names to clarify which copy of the table
or query you’re referring to in the select list, join criteria, or selection criteria. You must also
use a correlation name if one of the tables in the FROM clause is the same as a table in the
outer query. If a table name or a query name is also an SQL reserved word (for example,
Order), you must enclose the name in brackets. In SQL Server, you must enclose the name
of a table or query that is also an SQL reserved word in double quotes. Note that when you
open a query in an Access project, Access includes the required SET QUOTED_IDENTIFIER
ON command in the command string. However, if you execute an SQL Server query from a
desktop database with a pass-through query, you must include this command in the pass-
through query.

When you list more than one table or query without join criteria, the source is the Cartesian
product of all the tables. For example, FROM TableA, TableB instructs the database to search
all the rows of TableA matched with all the rows of TableB. Unless you specify other restrict-
ing criteria, the number of logical rows that the database processes could equal the number
of rows in TableA times the number of rows in TableB. The database then returns the rows in
which the selection criteria specified in the WHERE and HAVING clauses are true. (See also
FROM Clause, on page 675, for further details about specifying joins.)

A
rticle 2

1808	 Article 2  Understanding SQL

You can further define which rows the database includes in the output recordset by specify-
ing ALL, DISTINCT, DISTINCTROW (in a desktop database only), TOP n, or TOP n PERCENT.
ALL includes all rows that match the search criteria from the source tables, including poten-
tial duplicate rows. DISTINCT requests that the database return only rows that are different
from any other row.

DISTINCTROW (the default in Access version 7.0 and earlier) requests that Access return
only rows in which the concatenation of the primary keys from all tables supplying output
columns is unique. Depending on the columns you select, you might see rows in the result
that contain duplicate values, but each row in the result is derived from a distinct combina-
tion of rows in the underlying tables. DISTINCTROW is significant only when you include a
join in a query and do not include output columns from all tables. (See SELECT Statement,
on page 675, for more information about DISTINCTROW.)

Specify TOP n or TOP n PERCENT to request that the recordset contain only the first n
or first n percent of rows. In general, you should specify an ORDER BY clause when you
use TOP to indicate the sequence that defines which rows are first, or top. The parameter
n must be an integer and must be less than or equal to 100 if you include the PERCENT
keyword. If you do not include an ORDER BY clause, the sequence of rows returned is
undefined. In a TOP query, if the nth and any rows immediately following the nth row are
duplicates, the database returns the duplicates; thus, the recordset might have more than
n rows. Note that if you specify an order, using TOP does not cause the query to execute
any faster; the database must still solve the entire query, order the rows, and return the top
rows.

In the search condition of the WHERE clause of a subquery, you can use an outer reference
to refer to the columns of any table or query that is defined in the outer queries. You must
qualify the column name if the table or query reference is ambiguous.

A column name in the GROUP BY clause can refer to any column from any table in the
FROM clause, even if the column is not named in the <select-list>. If the GROUP BY clause
is preceded by a WHERE clause, the database creates the groups from the rows selected
after the application of the WHERE clause.

When you include a GROUP BY or HAVING clause in a SELECT statement, the select list
must be made up of either SQL aggregate functions or column names specified in the
GROUP BY clause. If a GROUP BY clause precedes a HAVING clause, the HAVING clause’s
search condition applies to each of the groups formed by equal values in the specified
columns. If you do not include a GROUP BY clause, the HAVING clause’s search condition
applies to the entire logical table defined by the SELECT statement.

	 SQL SELECT Queries	 1809

A
rt

ic
le

 2

Examples

To find all contacts who own at least one product, enter the following
(qxmplContactSomeProduct):

SELECT tblContacts.FirstName, tblContacts.MiddleInit, tblContacts.LastName
 FROM tblContacts
 WHERE EXISTS
 (SELECT *
 FROM tblContactProducts
 INNER JOIN tblProducts
 ON tblContactProducts.ProductID = tblProducts.ProductID
 WHERE tblContactProducts.ContactID = tblContacts.ContactID
 AND tblProducts.TrialVersion = 0);

Note
In this example, the inner subquery makes a reference to the tblContacts table in the

SELECT statement by referring to a column in the outer table (tblContacts.ContactID).

This forces the subquery to be evaluated for every row in the SELECT statement, which

might not be the most efficient way to achieve the desired result. (This type of sub-

query is also called a correlated subquery.) Whenever possible, the database query plan

optimizer solves the query efficiently by reconstructing the query internally as a join

between the source specified in the FROM clause and the subquery. In many cases, you

can perform this reconstruction yourself, but the purpose of the query might not be as

clear as when you state the problem using a subquery.

To select contacts who first purchased a product before 2011 and list them in ascending
order by postal code, enter the following (qxmplContactsPurchaseBefore2011):

SELECT TOP 100 PERCENT tblContacts.FirstName, tblContacts.MiddleInit,
 tblContacts.LastName, tblContacts.HomeCity, tblContacts.HomePostalCode
 FROM tblContacts
 WHERE #01/01/2011# >
 (SELECT Min(tblContactProducts.DateSold)
 FROM tblContactProducts
 WHERE tblContactProducts.ContactID = tblContacts.ContactID)
 ORDER BY tblContacts.HomePostalCode;

Note
The previous query also uses a correlated subquery.

A
rticle 2

1810	 Article 2  Understanding SQL

To find the products whose price is greater than any of the support products, enter the fol-
lowing (qxmplProductsPrice>AnySupport):

SELECT tblProducts.ProductID, tblProducts.ProductName, tblProducts.UnitPrice
 FROM tblProducts
 WHERE tblProducts.UnitPrice >Any
 (SELECT tblProducts.UnitPrice
 FROM tblProducts
 WHERE tblProducts.CategoryDescription = "Support");

See also Expression, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE NULL, and Quanti-
fied), and SELECT Statement in this article.

TRANSFORM Statement

In a desktop database, produces a crosstab query that lets you summarize a single value
by using the values found in a specified column or in an expression as the column headers
and using other columns or expressions to define the grouping criteria to form rows. The
result looks similar to a spreadsheet and is most useful as input to a graph object. This is an
Access extension to standard SQL.

Syntax

TRANSFORM <aggregate-function-expression>

 <select-statement>

PIVOT <expression>
[IN (<column-value-list>)]

where <aggregate-function-expression> is an expression created with one of the aggregate
functions, <select-statement> contains a GROUP BY clause, and <column-value-list> is a
list of required values expected to be returned by the PIVOT expression, enclosed in quotes
and separated by commas. (You can use the IN clause to force the output sequence of the
columns.)

Notes

The <aggregate-function-expression> parameter is the value that you want to appear in
the “body” of the crosstab datasheet. PIVOT <expression> defines the column or expression
that provides the column headings in the crosstab result. You might, for example, use this
value to provide a list of months with aggregate rows defined by product categories in the
<select-statement> GROUP BY clause. You can use more than one column or expression in
the SELECT statement to define the grouping criteria for rows.

	 SQL SELECT Queries	 1811

A
rt

ic
le

 2

Example

To produce a total sales amount for each month in the year 2010, categorized by product,
enter the following (qxmpl2010SalesByProductXtab):

TRANSFORM Sum(tblContactProducts.SoldPrice) AS SumOfSoldPrice
 SELECT tblProducts.ProductID, tblProducts.ProductName,
 Sum(tblContactProducts.SoldPrice) AS TotSales
 FROM tblProducts
 INNER JOIN tblContactProducts
 ON tblProducts.ProductID = tblContactProducts.ProductID
 GROUP BY tblProducts.ProductID, tblProducts.ProductName
PIVOT Format([DateSold],”mmm yyyy”)
 IN ("Jan 2010","Feb 2010","Mar 2010","Apr 2010","May 2010",
 "Jun 2010","Jul 2010","Aug 2010","Sep 2010",
 "Oct 2010","Nov 2010","Dec 2010");

Note
This example shows a special use of the IN predicate to define not only which months

should be selected but also the sequence in which Access displays the months in the

resulting recordset.

See also GROUP BY Clause, HAVING Clause, SELECT Statement, and Total Functions in this
article.

UNION Query Operator

Produces a result table that contains the rows returned by both the first SELECT statement
and the second SELECT statement.

Syntax

<select-statement>

UNION [ALL]
 <select-statement>

[ORDER BY {column-name | column-number
[ASC | DESC]},...]

A
rticle 2

1812	 Article 2  Understanding SQL

Notes

When you specify ALL, the database returns all rows in both logical tables. When you
do not specify ALL, the database eliminates duplicate rows. The tables returned by each
<select-statement> must contain an equal number of columns, and each column must have
identical attributes.

You must not use the ORDER BY clause in the <select-statements> that are joined by query
operators; however, you can include a single ORDER BY clause at the end of a statement
that uses one or more query operators. This action will apply the specified order to the
result of the entire statement. The database derives the column names of the output from
the column names returned by the first <select-statement>. If you want to use column
names in the ORDER BY clause, be sure to use names from the first query. You can also use
the output column numbers to define ORDER BY criteria.

In a project file, you can include the ORDER BY clause at the end of the statement in a
stored procedure, but you cannot include this clause in a view or in-line function. To sort
a UNION in a view or in-line function, you must create a view on the query containing the
UNION and then sort the view. You can also embed the UNION query in a FROM clause of
a query and then sort the result.

You can combine multiple SELECT statements using UNION to obtain complex results.
You can also use parentheses to influence the sequence in which the database applies the
operators, as shown here:

SELECT...UNION (SELECT...UNION SELECT...)

Example

In a desktop database (.accdb), to create a mailing list for all companies and all contacts,
sorted in ascending order by postal code, enter the following (qxmplSortedMailingList):

SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City,
 tblCompanies.StateOrProvince, tblCompanies.PostalCode
 FROM tblCompanies
UNION
SELECT [FirstName] & " " & ([MiddleInit]+". ") & [LastName] AS Contact,
 tblContacts.HomeAddress, tblContacts.HomeCity,
 tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode
 FROM tblContacts
ORDER BY 5;

	 SQL SELECT Queries	 1813

A
rt

ic
le

 2

Note 
If you decide to use column names in the ORDER BY clause of a UNION query, the

database derives the column names from the names returned by the first query. In this

example, you could change the ORDER BY clause to read ORDER BY PostalCode.

To create the same mailing list in a view or in-line function in an SQL Server database, enter
the following:

SELECT TOP 100 PERCENT CompanyName, Address, City,
 StateOrProvince, PostalCode
FROM
(SELECT tblCompanies.CompanyName, tblCompanies.Address, tblCompanies.City,
 tblCompanies.StateOrProvince, tblCompanies.PostalCode
 FROM tblCompanies
UNION
SELECT tblContacts.FirstName + ' ' +
 IsNull(tblContacts.MiddleInit + '. ', '') +
 tblContacts.LastName AS Contact,
 tblContacts.HomeAddress, tblContacts.HomeCity,
 tblContacts.HomeStateOrProvince, tblContacts.HomePostalCode
 FROM tblContacts) AS U
ORDER BY 5;

Notice that you must UNION the rows first and then select and sort them all.

See also ORDER BY Clause and SELECT Statement in this article.

WHERE Clause

Specifies a search condition in an SQL statement or an SQL clause. The DELETE, SELECT, and
UPDATE statements and the subquery containing the WHERE clause operate only on those
rows that satisfy the condition.

Syntax

WHERE <search-condition>

Notes

The database applies the <search-condition> to each row of the logical table assembled as
a result of executing the previous clauses, and it rejects those rows for which the <search-
condition> does not evaluate to True. If you use a subquery within a predicate in the
<search-condition> (often called an inner query), the database must execute the subquery
before it evaluates the predicate.

A
rticle 2

1814	 Article 2  Understanding SQL

In a subquery, if you refer to a table or a query that you also use in an outer FROM clause
(often called a correlated subquery), the database must execute the subquery for each row
being evaluated in the outer table. If you do not use a reference to an outer table in a sub-
query, the database must execute the subquery only once. A correlated subquery can also
be expressed as a join, which generally executes more efficiently. If you include a predicate
in the <search-condition> in the form

<expression> <comparison-operator> <subquery>

the database returns an error if the subquery returns no rows.

The order of evaluation of the logical operators used in the <search-condition> is NOT,
AND, OR, XOR (exclusive OR), EQV (equivalence), and then IMP (implication). (SQL Server
does not support the XOR, EQV, and IMP logical operators.) You can include additional
parentheses to influence the order in which the database processes expressions.

Examples

In a desktop database, to find all products for which the unit price is greater than $100 and
for which the category description number is equal to Multi-User or the product has a pre-
requisite, but not both, enter the following (qxmplXOR):

SELECT tblProducts.ProductID, tblProducts.ProductName,
 tblProducts.CategoryDescription, tblProducts.UnitPrice,
 tblProducts.PreRequisite
 FROM tblProducts
 WHERE tblProducts.UnitPrice>100
 AND ((tblProducts.CategoryDescription = "Multi-User")
 XOR (tblProducts.PreRequisite Is Not Null));

In a project file, to find all products for which the unit price is greater than $100 and for
which the category description number is equal to Multi-User or the product has a prereq-
uisite, but not both, enter the following:

SELECT tblProducts.ProductID, tblProducts.ProductName,
 tblProducts.CategoryDescription, tblProducts.UnitPrice,
 tblProducts.PreRequisite
 FROM tblProducts
 WHERE tblProducts.UnitPrice>100
 AND ((tblProducts.CategoryDescription = "Multi-User")
 OR (tblProducts.PreRequisite Is Not Null))
 AND NOT ((tblProducts.CategoryDescription = "Multi-User")
 AND (tblProducts.PreRequisite Is Not Null));

See also DELETE Statement, Expression, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE
NULL, and Quantified), Search Condition, SELECT Statement, Subquery, and UPDATE State-
ment in this article.

	 SQL Action Queries	 1815

A
rt

ic
le

 2

SQL Action Queries

Use SQL action queries to delete, insert, or update data or to create a new table from exist-
ing data. Action queries are particularly powerful because they allow you to operate on sets
of data, not single rows. For example, an UPDATE statement or a DELETE statement affects
all rows in the underlying tables that meet the selection criteria you specify.

DELETE Statement

Deletes one or more rows from a table or a query. The WHERE clause is optional. If you
do not specify a WHERE clause, all rows are deleted from the table or the query that you
specify in the FROM clause. If you specify a WHERE clause, the database applies the search
condition to each row in the table or the query, and only those rows that evaluate to True
are deleted.

Syntax

DELETE [<select-list>]
 FROM {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 <joined table>},...

 [IN <source specification>]
 [WHERE <search-condition>];

where <select-list> is

[* | table-name.*]

and where <joined table> is

({table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>}

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN
 {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>}

ON <join-specification>)

Notes

When you specify a query name in a DELETE statement, the query must not be constructed
using the UNION query operator. The query also must not contain an SQL aggregate func-
tion, the DISTINCT keyword, a GROUP BY or HAVING clause, or a subquery that references
the same base table as the DELETE statement.

A
rticle 2

1816	 Article 2  Understanding SQL

When you join two or more tables in the FROM clause, you can delete rows only from the
many side of the relationship if the tables are related one-to-many; if the tables are related
one-to-one, you can delete rows from either side. When you include more than one table
in the FROM clause, you must also specify from which table the rows are to be deleted
by using table name.* in the <select-list>. When you specify only one table in the FROM
clause, you do not need to provide a <select-list>.

You can supply a correlation name for each table or query name. You can use this correla-
tion name as an alias for the full table name when qualifying column names in the WHERE
clause and in subclauses. You must use a correlation name when referring to a column
name that occurs in more than one table in the FROM clause.

If you use a subquery in the <search-condition>, you must not reference the target table or
the query or any underlying table of the query in the subquery.

Examples

To delete all rows in the tblContactProducts table, enter the following:

DELETE FROM tblContactProducts;

To delete all rows in the tblContactEventsHistory table for events that occurred before Janu-
ary 1, 2010, enter the following (qxmplDeleteOldEventHistory):

DELETE tblContactEventsHistory.*
 FROM tblContactEventsHistory
 WHERE tblContactEventsHistory.ContactDateTime < #01/01/2010#;

See also IN Clause, INSERT Statement, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE
NULL, and Quantified), Search-Condition, and Subquery in this article.

INSERT Statement (Append Query)

Inserts one or more new rows into the specified table or query. When you use the VALUES
clause, the database inserts only a single row. If you use a SELECT statement, the number of
rows inserted equals the number of rows returned by the SELECT statement.

Syntax

INSERT INTO table-name [({column-name},...)]
 [IN <source specification>]
 {VALUES({literal},...) | select-statement}
 [WHERE <search-condition>];

	 SQL Action Queries	 1817

A
rt

ic
le

 2

Notes

If you do not include a column name list, you must supply values for all columns defined in
the table in the order in which they were declared in the table definition. If you include a
column name list, you must supply values for all columns in the list, and the values must be
compatible with the receiving column attributes. You must include in the list all columns in
the underlying table whose Required attribute is Yes and that do not have a default value.

If you include an IN clause in both the INSERT and the FROM clause of the SELECT state-
ment, both must refer to the same source database.

If you supply values by using a SELECT statement, the statement’s FROM clause cannot have
the target table of the insert as its table name or as an underlying table. The target table
also cannot be used in any subquery.

You cannot include an attachment field in the list of column names for an INSERT into a
table. If the target table contains an attachment field, you must include the column-name
list and specify any other fields into which you want to insert data. It is not possible to
insert data into an attachment field using SQL.

You cannot include a calculated data type field in the list of column names for an INSERT
into a table. If the target table contains a calculated data type field, you must include the
column-name list and specify any other fields into which you want to insert data. It is not
possible to insert data into a calculated data type field using SQL.

You cannot include a multi-valued field in the list of column names for an INSERT into a
table unless the multi-value field is the only field in the column-name list and you include
the Value property of the field. You can include a WHERE clause only when the target
of the insert is the Value property of a single multi-valued field. In this case, you use the
WHERE clause to specify which rows in the parent table should be affected by the INSERT.
If you use a select-statement as the source of the inserted values when the target is the
hidden recordset represented by the Value property of a multi-value field, the WHERE
clause applies to the target table, not the select-statement, unless you can qualify the col-
umn names in the predicate to make it clear that the WHERE clause applies to the select-
statement. You cannot include a WHERE clause filtering the select-statement and a second
WHERE clause filtering the target table.

Because Access allows you to define column-value constraints (validation rules in a desktop
database), table constraints (validation rule in a desktop database), and referential integrity
checks, any values that you insert must pass these validations before Access will allow you
to run the query.

A
rticle 2

1818	 Article 2  Understanding SQL

Examples

To insert a new row in the tblProducts table, enter the following:

INSERT INTO tblProducts (ProductName,
 CategoryDescription, UnitPrice)
VALUES ('Support Renewal', 'Multi-User', 99);

To insert old event records into a history table and avoid duplicates, enter the following
(qxmplArchiveContactEventsByDate):

PARAMETERS LastDateToKeep DateTime;
INSERT INTO tblContactEventsHistory
 (ContactID, ContactDateTime, ContactEventType, ContactNotes)
 SELECT tblContactEvents.ContactID, tblContactEvents.ContactDateTime,
 tlkpContactEventTypes.ContactEventTypeDescription,
 tblContactEvents.ContactNotes
 FROM tlkpContactEventTypes
 INNER JOIN (tblContactEvents
 LEFT JOIN tblContactEventsHistory
 ON (tblContactEvents.ContactID = tblContactEventsHistory.ContactID)
 AND (tblContactEvents.ContactDateTime =
 tblContactEventsHistory.ContactDateTime))
 ON tlkpContactEventTypes.ContactEventTypeID =
 tblContactEvents.ContactEventTypeID
 WHERE (tblContactEvents.ContactDateTime<[LastDateToKeep])
 AND (tblContactEventsHistory.ContactID Is Null);

Although Access accepts the ANSI-standard VALUES clause, you will discover in a desktop
database that Access 2003 and earlier convert a statement such as

INSERT INTO MyTable (ColumnA, ColumnB)

VALUES (123, "Jane Doe");

to

INSERT INTO MyTable (ColumnA, ColumnB)

SELECT 123 As Expr1, "Jane Doe" as Expr2;

Access 2010 does not convert a VALUES clause.

To add the Sales Prospect value to the ContactType multi-valued field of the contact in the
tblContacts table whose last name is Smith, enter the following:

INSERT INTO tblContacts (ContactType.Value)
VALUES ("Sales Prospect")
WHERE tblContacts.LastName = "Smith";

See also DELETE Statement, IN Clause, SELECT Statement, and Subquery in this article.

	 SQL Action Queries	 1819

A
rt

ic
le

 2

SELECT . . . INTO Statement (Make-Table Query)

Creates a new table from values selected from one or more other tables. Make-table que-
ries are most useful for providing backup snapshots or for creating tables with rolled-up
totals at the end of an accounting period.

Syntax

SELECT [ALL | DISTINCT | DISTINCTROW |

 TOP number PERCENT]] <select-list>
INTO new-table-name
 [IN <source specification>]
 FROM {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 <joined table>},...

 [IN <source specification>]
 [WHERE <search-condition>]
 [GROUP BY column-name,...]
 [HAVING <search-condition>]
[UNION [ALL] <select-statement>]
 [[ORDER BY {column-name [ASC | DESC]},...] |
 IN <"source database name">
 <[source connect string]>

 [WITH OWNERACCESS OPTION];

where <select-list> is

{* | {<expression> [AS output-column-name] |
 table-name.* | query-name.* |

 correlation-name.*},...}

and where <joined table> is

({table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>}

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN
 {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>}

ON <join-specification>)

A
rticle 2

1820	 Article 2  Understanding SQL

Notes

A SELECT...INTO query creates a new table with the name specified in new-table-name. If a
table with that name already exists, the database displays a dialog box that asks you to con-
firm the deletion of the existing table before it creates a new one in its place. The columns
in the new table inherit the data type attributes of the columns produced by the <select-
list>. However, you cannot include a multi-valued field, calculated field, or an attachment
field in the <select-list>.

If you include an IN clause for both the INTO and the FROM clauses, both must refer to the
same source database.

Example

To create a new table that summarizes all sales by product and by month, enter the follow-
ing (qxmplProductSalesMakeTable):

SELECT tblProducts.ProductName, Format([DateSold],"yyyy mm") AS MonthSold,
 Sum(tblContactProducts.SoldPrice) AS TotalSales
INTO tblMonthSalesSummary
FROM tblProducts
 INNER JOIN tblContactProducts
 ON tblProducts.ProductID = tblContactProducts.ProductID
GROUP BY tblProducts.ProductName, Format([DateSold],"yyyy mm");

See also IN Clause, Search-Condition, and SELECT Statement in this article.

UPDATE Statement

In the specified table or query, updates the selected columns (either to the value of the
given expression or to Null) in all rows that satisfy the search condition. If you do not enter
a WHERE clause, all rows in the specified table or query are affected.

Syntax

UPDATE {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 <joined table>},...

[IN <source specification>]
SET {column-name = {<expression> | NULL}},...
[WHERE <search-condition>]
where <joined table> is

({table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>}

{INNER | {{LEFT | RIGHT | FULL} [OUTER]} JOIN

	 SQL Action Queries	 1821

A
rt

ic
le

 2

 {table-name [[AS] correlation-name] |
 select-query-name [[AS] correlation-name] |
 (<select-statement>) AS correlation-name |
 <joined table>}

ON <join-specification>)

Notes

If you provide more than one table name, you can update columns only in the table on
the many side of a one-to-many relationship. If the tables are related one-to-one, you can
update columns in either table. You can also update columns in the table on the one side
of a relationship so long as the query returns unique rows for that table. The database must
be able to determine the relationship between tables or queries to update columns in a
query. In general, if a table is joined by its primary key to a query, you can update columns
in the query (because the primary key indicates that the table is on the one side of the
join). If you want to update a table with the results of a query, you must insert the query
results into a temporary table that can be defined with a one-to-many or one-to-one rela-
tionship with the target table and then use the temporary table to update the target.

If you specify a <search-condition>, you can reference only columns found in the target
table or query. If you use a subquery in the <search-condition>, you must not reference the
target table, the query, or any underlying table of the query in the subquery.

In the SET clause, you cannot specify a column name more than once. You also cannot
specify the name of a multi-valued field, a calculated field, or an attachment field. Values
assigned to columns must be compatible with the column attributes. If you assign the Null
value, the column cannot have the Required property set to Yes.

Both Access and SQL Server let you define column-value constraints (field validation rules
in a desktop database), table constraints (table validation rules in a desktop database), and
referential integrity checks, so any values that you update must pass these validations or the
database will not let you run the query.

Example

To mark contacts who haven’t had a contact event since January 1, 2010, enter the follow-
ing (qxmplSetInactive):

UPDATE tblContacts
 LEFT JOIN
 (SELECT tblContactEvents.ContactID, tblContactEvents.ContactDateTime
 FROM tblContactEvents
 WHERE tblContactEvents.ContactDateTime>=#1/1/2010#) AS Active
 ON tblContacts.ContactID = Active.ContactID
SET tblContacts.Inactive = True
WHERE Active.ContactID IS NULL;

A
rticle 2

1822	 Article 2  Understanding SQL

Note
Although the previous query updates rows on the one side of a relationship, the query

is valid because the IS NULL test in conjunction with the LEFT JOIN returns exactly one

unique row per contact.

See also Expression, IN Clause, Predicates (BETWEEN, Comparison, EXISTS, IN, LIKE NULL, and
Quantified), Search-Condition, and WHERE Clause in this article.

