
chapter no

Chapter Title

Now that you’ve learned the fundamentals of using Microsoft Visual Basic, it’s time
to put this knowledge into practice. In this chapter, you’ll learn how to create the
Visual Basic code you need to automate many common tasks.

You can find dozens of examples of automation in the Conrad Systems Contacts, Housing
Reservations, Back Office Software System, and Wedding List sample databases. As you
explore the databases, whenever you see something interesting, open the form or report in
Design view and take a look at the Visual Basic code behind the form or report. This chap-
ter walks you through a few of the more interesting examples in these databases.

note
You can find the code explained in this chapter in the Conrad Systems Con-

tacts (Contacts.accdb), Housing Reservations (Housing.accdb), and Wedding List

 (WeddingList.accdb) sample applications on the companion CD.

Why Aren’t We Using Macros?

Although you can certainly use user interface macros to automate applications, macros
have certain limitations. For example, as you might have noticed when examining the list
of available events in Chapter 19, “Understanding Event Processing,” many events require
or return parameters that can be passed to or read from a Visual Basic procedure but not
a macro. And as you saw in Chapter 20, “Automating a Client Application Using Macros,”
and Chapter 21, “Automating a Web Application Using Macros,” the debugging facilities for
macros are not as robust as for Visual Basic.

chapter 25

Automating Your Application
with Visual Basic

Why Aren’t We Using Macros? . 1583

Assisting Data Entry . 1585

Validating Complex Data . 1604

Controlling Tabbing on a Multiple-Page Form 1613

Automating Data Selection . 1615

Linking to Related Data in Another Form or Report . . 1631

Automating Complex Tasks . 1639

Automating Reports. 1649

Calling Named Data Macros . 1658

	 1583

C
h

ap
ter 25

1584 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

When to Use Macros

Use macros in your application in any of the following circumstances:

●● You are working with a web database.

●● Your application consists of only a few forms and reports.

●● You need to build a simple application that is automated using only trusted macro
actions so that the application can run in an untrusted environment.

●● Your application might be used by users unfamiliar with Visual Basic who will want to
understand how your application is constructed and possibly modify or enhance it.

●● You’re developing an application prototype, and you want to rapidly automate
a few features to demonstrate your design. However, once you understand
Visual Basic, automating a demonstration application is just as easy using event
procedures.

●● You don’t need to evaluate or set parameters passed by certain events, such as
AfterDelConfirm, ApplyFilter, BeforeDelConfirm, Error, Filter, KeyDown, KeyPress,
KeyUp, MouseDown, MouseMove, MouseUp, NotInList, and Updated.

●● You don’t need to open and work with recordsets or other objects.

When to Use Visual Basic

Although user interface macros can be useful and are necessary when working with web
forms, a number of tasks cannot be carried out with macros, and there are others that are
better implemented using a Visual Basic procedure. Use a Visual Basic procedure instead
of a macro in any of the following circumstances:

●● You need complex error handling in your application.

●● You want to define a new function.

●● You need to handle events that pass parameters or accept return values (other than
Cancel).

●● You need to create new objects (tables, queries, forms, or reports) in your database
from application code.

	 Assisting	Data	Entry 1585

C
h

ap
te

r
25

●● Your application needs to interact with another Windows-based program via ActiveX
automation.

●● You want to be able to directly call Windows application programming interface (API)
functions.

●● You want to define application code that is common across several applications in a
library.

●● You want to be able to open and work with data in a recordset on a record-by-record
basis.

●● You need to use some of the native facilities of the relational database management
system that handles your attached tables (such as Microsoft SQL Server procedures or
data definition facilities).

●● You want maximum performance in your application. Because modules are compiled,
they execute slightly faster than macros. You’ll probably notice a difference only on
slower processors.

●● You are writing a complicated application that will be difficult to debug.

Assisting Data Entry

You can do a lot to help make sure the user of your application enters correct data by using
data macros and by defining default values, input masks, and validation rules. But what
can you do if the default values come from a related table? How can you assist a user who
needs to enter a value that’s not in the row source of a combo box? How do you make the
display text in a hyperlink more readable? Is there a way you can make it easier for your
user to pick dates and times? And how do you help the user edit linked picture files? You
can find the answers to these questions in the following sections.

Filling In Related Data

The tblContactProducts table in the Conrad Systems Contacts database (Contacts.accdb)
has a SoldPrice field that reflects the actual sales price at the time of a sale. The tblProducts
table has a UnitPrice field that contains the normal selling price of the product. When the
user is working in the Contacts form (frmContacts) and wants to sell a new product, you
don’t want the user to have to look up the current product price before entering it into the
record.

C
h

ap
ter 25

1586 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

You learned in Chapter 15, “Advanced Form Design,” how to build a form with subforms
nested two levels to edit contacts, the default company for each contact, and the products
sold to that company and registered to the current contact. However, if you open frmCon-
tacts in the Contacts.accdb sample database and click the Products tab, as shown in Figure
25-1, you’ll notice that there doesn’t appear to be any linking company data between con-
tacts and the products sold. (The subform to display contact products isn’t nested inside
another subform to show the companies for the current contact.) Again, the user shouldn’t
have to look up the default company ID for the current contact before selling a product.
Note that in Figure 25-1, we navigated to the fourth contact record.

Figure 25-1 Selling a product to a contact involves filling in the price and the default company.

As you can see, a combo box on the subform (fsubContactProducts) helps the user choose
the product to sell. Part of the secret to setting the price (the SoldPrice field in tblContact-
Products) automatically is in the row source query for the combo box, qlkpProductsForCon-
tacts, as shown in Figure 25-2.

	 Assisting	Data	Entry 1587

C
h

ap
te

r
25

Figure 25-2 The qlkpProductsForContacts query is the row source for the Product combo box
on fsubContactProducts.

You certainly need the ProductID field for the new record in tblContactProducts. Displaying
the ProductName field in the combo box is more meaningful than showing the ProductID
number, and, as you can see in Figure 25-1, the list in the combo box also shows you the
CategoryDescription and whether the product is a trial version. But why did we include the
UnitPrice, TrialExpire, and PreRequisite columns in the query’s design grid?

As it turns out, you can retrieve any of these fields from the current row in the combo box
by referencing the combo box Column property. (You’ll see later in this chapter, in “Validat-
ing Complex Data” on page 1604, that other code behind the form uses the additional fields
to make sure the contact already owns any prerequisite product.) You can see the simple
line of code that copies the UnitPrice field by opening the Visual Basic module behind the
fsubContactProducts form. Go to the Navigation pane, select the fsubContactProducts
form, right-click the form and click Design View on the menu, and then click the View Code
button in the Tools group on the Design tab. In the Visual Basic Editor (VBE) Code window,
scroll down until you find the cmbProductID_AfterUpdate procedure. The code is as follows:

Private Sub cmbProductID_AfterUpdate()

 ' Grab the default price from the hidden 5th column

 Me.SoldPrice = Me.cmbProductID.Column(4)

End Sub

Notice that you use an index number to fetch the column you want and that the index
starts at zero. You can reference the fifth column in the query (UnitPrice) by asking for the
Column(4) property of the combo box. Notice also that the code uses the Me shortcut
object to reference the form object where this code is running. Therefore, every time you

C
h

ap
ter 25

1588 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

pick a different product, the After Update event occurs for the ProductID combo box, and
this code fills in the related price automatically. Close the fSubContactProducts form before
continuing with the next section.

If you open the frmContacts form in Design view, select the fsubContactProducts form on
the Products tab, and examine the Link Child Fields and Link Master Fields properties, you’ll
find that the two forms are linked on ContactID. However, the tblContactProducts table also
needs a CompanyID field in its primary key. Code in the module for the fsubContactProd-
ucts form handles fetching the default CompanyID for the current contact, so you don’t
need an intermediary subform that would clutter the form design. If you still have the mod-
ule for the fsubContactProducts form open in the VBE window, you can find the code in the
Form_BeforeInsert procedure. The code is as follows:

Private Sub Form_BeforeInsert(Cancel As Integer)

Dim varCompanyID As Variant

 ' First, disallow insert if nothing in outer form

 If IsNothing(Me.Parent.ContactID) Then

 MsgBox "You must define the contact information on a new row before " & _

 "attempting to sell a product", vbCritical, gstrAppTitle

 Cancel = True

 Exit Sub

 End If

 ' Try to lookup this contact's Company ID

 varCompanyID = DLookup("CompanyID", "qryContactDefaultCompany", _

 "(ContactID = " & Me.Parent.ContactID.Value & ")")

 If IsNothing(varCompanyID) Then

 ' If not found, then disallow product sale

 MsgBox "You cannot sell a product to a Contact that does not have a " & _

 "related Company that is marked as the default for this Contact." & _

 " Press Esc to clear your edits and click on the Companies tab " & _

 "to define the default Company for this Contact.", vbCritical, _

 gstrAppTitle

 Cancel = True

 Else

 ' Assign the company ID behind the scenes

 Me.CompanyID = varCompanyID

 End If

End Sub

This procedure executes whenever the user sets any value on a new row in the subform.
First, it makes sure that the outer form has a valid ContactID. Next, the code uses the
DLookup domain function to attempt to fetch the default company ID for the current con-
tact. The query includes a filter to return only the rows from tblCompanyContacts where
the DefaultForContact field is True. If the function returns a valid value, the code sets the
required CompanyID field automatically. If it can’t find a CompanyID, the code uses the
MsgBox statement to tell the user about the error.

	 Assisting	Data	Entry 1589

C
h

ap
te

r
25

note
The IsNothing function that you see used in code throughout all the sample applica-

tions is not a built-in Visual Basic function. This function tests the value you pass to

it for “nothing”—Null, zero, or a zero-length string. You can find this function in the

modUtility standard module in all the sample databases.

INSIDE OUT Understanding the Useful Domain Functions

Quite frequently in code, in a query, or in the control source of a control on a form or

report, you might need to look up a single value from one of the tables or queries in

your database. Although you can certainly go to the trouble of defining and opening

a recordset in code, Microsoft Access provides a set of functions, called domain func-

tions, that can provide the value you need with a single function call. The available

functions are as follows:

Function Name Description

DFirst, DLast Return a random value from the specified domain (the table or
query that’s the record source)

DLookup Looks up a value in the specified domain

DMax Returns the highest (Max) value in the specified domain

DMin Returns the lowest (Min) value in the specified domain

DStDev, DstDevP Return the standard deviation of a population sample or a popu-
lation of the specified domain

DSum Returns the sum of an expression from a domain

DVar, DVarP Return the variance of a population sample or a population of the
specified domain

The syntax to call a domain function is as follows:

<function name>(<field expression>, <domain name> [, <criteria>])

where

<function name> is the name of one of the functions in the preceding list;

<field expression> is a string literal or name of a string variable containing the name of

a field or an expression using fields from the specified domain;

<domain name> is a string literal or name of a string variable containing the name of a

table or query in your database;

C
h

ap
ter 25

1590 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

<criteria> is a string literal or name of a string variable containing a Boolean compari-

son expression to filter the records in the domain

Note that when a domain function finds no records, the returned value is a Null, so you

should always assign the result to a Variant data type variable. When you construct a

criteria expression, you must enclose string literals in quotes and date/time literals in

the # character. (If you use double quotes to delimit the criteria string literal, then use

single quotes around literals inside the string, and vice versa.) For example, to find the

lowest work postal code value for all contacts where the contact type is customer and

the birth date is before January 1, 1970, enter:

DMin("WorkPostalCode", "tblContacts", "[ContactType] = 'customer'

And Format([BirthDate], 'mm/dd/yyyy') < #01/01/1970#")

Handling the NotInList Event

In almost every data entry form you’ll ever build, you’ll need to provide a way for the user
to set the foreign key of the edited record on the many side of a relationship to point back
to the correct one side record—for example, to set the ProductID field in the tblContact-
Products table when selling a product on the Products tab of the frmContacts form. But
what if the user needs to create a new product? Should the user have to open the form to
edit products first to create the new product before selling it? The answer is a resounding
no, but you must write code in the NotInList event of the combo box to handle new values
and provide a way to create new rows in the tblProducts table.

Figure 25-3 shows you what happens when the user tries to type a product name that’s not
already in the tblProducts table. In this case, the customer wants to purchase a two-year
support contract instead of the already available one-year product. You can see that some-
thing has intercepted the new product name to confirm that the user wants to add the new
product.

	 Assisting	Data	Entry 1591

C
h

ap
te

r
25

Figure 25-3 When you enter a product that isn’t defined in the database, the application asks if
you want to add the new product.

First, the combo box has been defined with its Limit To List property set to Yes. Second,
there’s an event procedure defined to handle the NotInList event of the combo box, and
it is this code that’s asking whether the user wants to add a product. If the user clicks Yes
to confirm adding this product, the event procedure opens the frmProductAdd form in
Dialog mode to let the user enter the new data, as shown in Figure 25-4. Opening a form
in Dialog mode forces the user to respond before the application resumes execution. The
code that opens this form passes the product name entered and the product type that the
user selected before entering a new product name. The user can fill in the price and other
details. The user can also click Cancel to avoid saving the record and close the form. If the
user clicks Save, the form saves the new product record and closes to allow the code in the
NotInList event procedure to continue.

Figure 25-4 The frmProductAdd form lets you define the details for the new product.

C
h

ap
ter 25

1592 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

To see how this works, open the fsubContactProducts form in Design view, select the cmb-
ProductID combo box control from the Selection Type combo box on the Property Sheet
window, find the On Not In List event property in the Properties window, and click Build
to open the code. (We had you select the combo box from the Property Sheet window
because the ProductName text box control overlays the cmbProductID combo box control
on the form design grid.) The code for the procedure is shown here:

Private Sub cmbProductID_NotInList(NewData As String, Response As Integer)

Dim strType As String, strWhere As String

 ' User has typed in a product name that doesn't exist

 strType = NewData

 ' Set up the test predicate

 strWhere = "[ProductName] = """ & strType & """"

 ' Ask if they want to add this product

 If vbYes = MsgBox("Product " & NewData & " is not defined. " & _

 "Do you want to add this Product?", vbYesNo + vbQuestion + _

 vbDefaultButton2, gstrAppTitle) Then

 ' Yup. Open the product add form and pass it the new name

 ' - and the pre-selected Category

 DoCmd.OpenForm "frmProductAdd", DataMode:=acFormAdd, _

 WindowMode:=acDialog, _

 OpenArgs:=strType & ";" & Me.cmbCategoryDescription

 ' Verify that the product really got added

 If IsNull(DLookup("ProductID", "tblProducts", strWhere)) Then

 ' Nope.

 MsgBox "You failed to add a Product that matched what you entered." & _

 " Please try again.", vbInformation, gstrAppTitle

 ' Tell Access to continue - we trapped the error

 Response = acDataErrContinue

 Else

 ' Product added OK - tell Access so that combo gets requeried

 Response = acDataErrAdded

 End If

 Else

 ' Don't want to add - let Access display normal error

 Response = acDataErrDisplay

 End If

End Sub

As you can see, Access passes two parameters to the NotInList event. The first parameter
(NewData) contains the string you typed in the combo box. You can set the value of the
second parameter (Response) before you exit the sub procedure to tell Access what you
want to do. You wouldn’t have access to these parameters in a macro, so you can see that
this event requires a Visual Basic procedure to handle it properly.

The procedure first creates the criteria string that it uses later to verify that the user saved
the product. Next, the procedure uses the MsgBox function to ask whether the user wants
to add this product to the database (the result shown in Figure 25-3). If you’ve ever looked
at the MsgBox function Help topic, you know that the second parameter is a number that’s

	 Assisting	Data	Entry 1593

C
h

ap
te

r
25

the sum of all the options you want. Fortunately, Visual Basic provides named constants for
these options, so you don’t have to remember the number codes. In this case, the procedure
asks for a question mark icon (vbQuestion) and for the Yes and No buttons (vbYesNo) to be
displayed. It also specifies that the default button is the second button (vbDefaultButton2)—
the No button—just in case the user quickly presses Enter upon seeing the message.

If the user clicks Yes in the message box, the procedure uses DoCmd.OpenForm to open
the frmProductAdd form in Dialog mode and passes it the product name entered and the
product type selected by setting the form’s OpenArgs property. Note that the use of the
named parameter syntax in the call to DoCmd.OpenForm makes it easy to set the param-
eters you want. You must open the form in Dialog mode. If you don’t, your code continues
to run while the form opens. Whenever a dialog box form is open, Visual Basic code execu-
tion stops until the dialog box closes, which is critical in this case because you need the
record to be saved or canceled before you can continue with other tests.

After the frmProductAdd form closes, the next statement calls the DLookup function to ver-
ify that the product really was added to the database. If the code can’t find a new matching
product name (the user either changed the product name in the add form or clicked Can-
cel), it uses the MsgBox statement to inform the user of the problem and sets a return value
in the Response parameter to tell Access that the value hasn’t been added but that Access
can continue without issuing its own error message (acDataErrContinue).

If the matching product name now exists (indicating the user clicked Save on the frmPro-
ductAdd form), the code tells Access that the new product now exists (acDataErrAdded).
Access re-queries the combo box and attempts a new match. Finally, if the user clicks No in
the message box shown in Figure 25-3, the procedure sets Response to acDataErrDisplay to
tell Access to display its normal error message.

The other critical piece of code is in the Load event for the frmProductAdd form. The code
is as follows:

Private Sub Form_Load()

Dim intI As Integer

 If Not IsNothing(Me.OpenArgs) Then

 ' If called from "not in list", Openargs should have

 ' Product Name; Category Description

 ' Look for the semi-colon separating the two

 intI = InStr(Me.OpenArgs, ";")

 ' If not found, then all we have is a product name

 If intI = 0 Then

 Me.ProductName = Me.OpenArgs

 Else

 ' If called from fsubContactProducts,

 ' .. have category only

 If intI > 1 Then

 ' Have a product name - grab it

 Me.ProductName = Left(Me.OpenArgs, intI - 1)

C
h

ap
ter 25

1594 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

 End If

 Me.CategoryDescription = Mid(Me.OpenArgs, intI + 1)

 ' lock the category

 Me.CategoryDescription.Locked = True

 Me.CategoryDescription.Enabled = False

 ' .. and clear the tool tip

 Me.CategoryDescription.ControlTipText = ""

 End If

 End If

End Sub

If you remember, the cmbProductID NotInList event procedure passes the original string
that the user entered and selected the product type (the CategoryDescription field) as
the OpenArgs parameter to the OpenForm method. This sets the OpenArgs property of
the form being opened. The OpenArgs property should contain the new product name, a
semicolon, and the selected product type, so the Form_Load procedure parses the product
name and product type by using the InStr function to look for the semicolon. (The InStr
function returns the offset into the string in the first parameter where it finds the string
specified in the second parameter, and it returns 0 if it doesn’t find the search string.) The
code then uses the two values it finds to set the ProductName and CategoryDescription
fields. Also, when the code finds a category description, it locks that combo box so that the
user can’t change it to something other than what was selected on the new product row in
the original form.

Fixing an E-Mail Hyperlink

As you learned in Chapter 9, “Creating and Working with Simple Queries,” one of the easi-
est ways to enter a hyperlink is to use the Insert Hyperlink feature. However, you can also
type the hyperlink address directly into the field in a datasheet or form. Remember that a
hyperlink field can contain up to four parts: display text, hyperlink address, bookmark, and
ScreenTip text. If a user simply enters an e-mail address into a hyperlink field, Access 2010
recognizes the format, adds the mailto: protocol, and uses what the user typed as the dis-
play text. For example, if the user enters

jconrad@proseware.com

Access stores in the hyperlink field

jconrad@proseware.com#mailto:jconrad@proseware.com#

Rather than repeat the e-mail address as the display text, the result might look better if
the display text is the person’s name rather than a repeat of the e-mail address. One of the
forms that has an e-mail address is the frmContacts form in the Conrad Systems Contacts
application. You can find the code that examines and attempts to fix the address in the Aft-
erUpdate event procedure for the EmailName text box. (If the user enters some valid proto-
col other than http:// or mailto:, this code won’t fix it.) The code is as follows:

	 Assisting	Data	Entry 1595

C
h

ap
te

r
25

Private Sub EmailName_AfterUpdate()

' If you just type in an email name: Somebody@hotmail.com

' Access changes it to: Somebody@hotmail.com#mailto:somebody@hotmail.com#

' This code replaces the display field with the user name

Dim intI As Integer

 ' Don't do anything if email is empty

 If IsNothing(Me.EmailName) Then Exit Sub

 ' Fix up http:// if it's there

 ' This was an old bug in 2003 and earlier, but fixed in Access 2007

 Me.EmailName = Replace(Me.EmailName, "http://", "mailto:")

 ' Now look for the first "#" that delimits the hyperlink display name

 intI = InStr(Me.EmailName, "#")

 ' And put the person name there instead if found

 If intI > 0 Then

 Me.EmailName = (Me.FirstName + " ") & Me.LastName & _

 Mid(Me.EmailName, intI)

 End If

End Sub

If the user clears the EmailName text box, the code doesn’t do anything. If there’s some-
thing in the text box, the code uses the Replace function to search for an incorrect http://
and replace it with the correct mailto: protocol identifier. As you know, a hyperlink field
can contain text that is displayed instead of the hyperlink, a # character delimiter, and the
actual hyperlink address. The code uses the InStr function to check for the presence of the
delimiter. (The InStr function returns the offset into the string in the first parameter where it
finds the string specified in the second parameter.) If the code finds the delimiter, it replaces
the contents of the field with the person’s first and last name as display text followed by the
text starting with the # delimiter. (The Mid function called with no length specification—the
optional third parameter—returns all characters starting at the specified offset.)

note
In Access 2003 and earlier, when you typed an e-mail address without the mailto: pro-

tocol prefix into a hyperlink field, Access would store the hyperlink with the http://

protocol prefix in error. This bug was fixed in Access 2007, but the preceding code will

fix that problem if you use it in the earlier versions of the software.

Providing a Graphical Calendar

You can always provide an input mask to help a user enter a date and time value correctly,
but an input mask can be awkward—always requiring, for example, that the user type a
two-digit month. An input mask also can conflict with any default value that you might
want to assign. It’s much more helpful if the user can choose the date using a graphical
calendar.

C
h

ap
ter 25

1596 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

Access 2010 provides a Show Date Picker property for text boxes. You can set this prop-
erty to For Dates to instruct Access to display a calendar icon next to the control when it
contains a date/time value and has the focus. The user can click the button to pop open a
graphical calendar to select a date value. But Show Date Picker isn’t available for controls
other than the text box control, and the date picker lets the user enter only a date, not a
date and time. You also are restricted to moving backward and forward one month at a
time using the left and right arrow keys on the date picker, so if you need to enter a date
that is many months away from the current date, such as a birth date, you’ll have to click
the arrow keys many times to reach the correct month and year.

Both the Conrad Systems Contacts and the Housing Reservations sample applications pro-
vide sample calendar forms and code you can use to set a date/time value in any control.
The two applications have a calendar form—frmCalendar—that uses Visual Basic code to
“draw” the calendar on a form using an option group and toggle button controls. This cal-
endar form provides an option to enter a time as well as select a date.

troubleshooting

Why isn’t Access setting my defined default value for a date/time field?

Did you also define an Input Mask property? If so, then that’s your problem. A date/

time field is actually a floating-point number, but Access always converts and displays

the character value in table and query datasheets and forms and reports. When you

define an Input Mask property, any Default Value setting must match the restrictions

imposed by the input mask. If the value violates the restrictions, Access won’t use the

default value. When you assign a default value to a date/time field, you typically use

the Date or Now built-in functions. These functions return a valid date/time floating-

point value—which probably won’t match your input mask restrictions. To have Access

use the default value, you must format it to match your input mask. For example, if

your input mask is 90/00/0000\ 00:00, then you should set the Default Value property

of the field or control to =Format(Now(), "mm/dd/yyyy hh:nn"). This forces Access to

return a string value as the default that matches your input mask.

This graphical facility is available in the sample applications wherever you see a small com-
mand button next to a control containing a date or date/time field on a form. Click the
button to open the calendar and set the value. One control that uses our custom calendar
form is the ContactDateTime control on the Events tab of the frmContacts form. You can
see the calendar open in Figure 25-5.

	 Assisting	Data	Entry 1597

C
h

ap
te

r
25

Figure 25-5 Click the calendar command button next to the ContactDateTime control on the
Events tab of the frmContacts form to open a graphical form to select the date and enter the
time.

The code in the Click event of this command button calls a public function to open the
form and pass it the related control that should receive the resulting date value. You can
find the code shown here in the module for the fsubContactEvents form:

Private Sub cmdContactTimeCal_Click()

Dim varReturn As Variant

 ' Clicked the calendar icon asking for graphical help

 ' Put the focus on the control to be updated

 Me.ContactDateTime.SetFocus

 ' Call the get a date/time function

 varReturn = GetDate(Me.ContactDateTime, False)

End Sub

INSIDE OUT Use Keyboard Shortcuts to Jump to Procedures and
 Functions

If you highlight the function call, GetDate in our previous example, and then press

Shift+F2, Access takes you directly to that function in the modCalendar module.

When the user clicks the command button, Access moves the focus to it. The code moves
the focus back to the date field to be edited and calls the public function where the real
action happens. You can find the code for the function GetDate in the modCalendar mod-
ule; the code is also listed here:

C
h

ap
ter 25

1598 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

Option Compare Database

Option Explicit

Public Function GetDate(ctl As control, _

 Optional intDateOnly As Integer = 0) As Integer

'---

' Inputs: A Control object containing a date/time value

' Optional "date only" (no time value) flag

' Outputs: Sets the Control to the value returned by frmCalendar

' Created By: JLV 09/05/01

' Last Revised: JLV 09/05/01

'---

Dim varDateTime As Variant

Dim strDateTime As String

Dim frm As Form

 ' Error trap just in case

 On Error GoTo Error_Date

 ' First, validate the kind of control passed

 Select Case ctl.ControlType

 ' Text box, combo box, and list box are OK

 Case acTextBox, acListBox, acComboBox

 Case Else

 GetDate = False

 Exit Function

 End Select

 ' If the control has no value

 If IsNothing(ctl.Value) Then

 If intDateOnly Then

 ' Set default date

 varDateTime = Date

 Else

 ' .. or default date and time

 varDateTime = Now

 End If

 Else

 ' Otherwise, pick up the current value

 varDateTime = ctl.Value

 ' Make sure it's a date/time

 If vbDate <> varType(varDateTime) Then

 GetDate = False

 Exit Function

 End If

 End If

 ' Turn the date and time into a string

 ' to pass to the form

 strDateTime = Format(varDateTime, "mm/dd/yyyy hh:nn")

 ' Make sure we don't have an old copy of

 ' frmCalendar hanging around

 If IsFormLoaded("frmCalendar") Then

 DoCmd.Close acForm, "frmCalendar"

 End If

 ' Open the calendar as a dialog so this code waits,

 ' and pass the date/time value

	 Assisting	Data	Entry 1599

C
h

ap
te

r
25

 DoCmd.OpenForm "frmCalendar", WindowMode:=acDialog, _

 OpenArgs:=strDateTime & "," & intDateOnly

 ' If the form is gone, user canceled the update

 If Not IsFormLoaded("frmCalendar") Then Exit Function

 ' Get a pointer to the now-hidden form

 Set frm = Forms!frmCalendar

 ' Grab the date part off the hidden text box

 strDateTime = Format(frm.ctlCalendar.Value, "dd-mmm-yyyy")

 If Not intDateOnly Then

 ' If looking for date and time,

 ' also grab the hour and minute

 strDateTime = strDateTime & " " & frm.txtHour & _

 ":" & frm.txtMinute

 End If

 ' Stuff the returned value back in the caller's control

 ctl.Value = DateValue(strDateTime) + TimeValue(strDateTime)

 ' Close the calendar form to clean up

 DoCmd.Close acForm, "frmCalendar"

 GetDate = True

Exit_Date:

 Exit Function

Error_Date:

 ' This code is pretty simple and does check for

 ' a usable control type,

 ' .. so this should never happen.

 ' But if it does, log it...

 ErrorLog "GetDate", Err, Error

 GetDate = False

 Resume Exit_Date

End Function

The function begins by setting an error trap that executes the code at the Error_Date
label if anything goes wrong. The function accepts two arguments—ctlToUpdate and
intDateOnly. Access uses the ctlToUpdate argument to examine the control type and con-
trol value passed into the function. Access uses the optional intDateOnly argument to indi-
cate whether the control needs a date and time or a date only. The function checks to see
if the control passed in is a text box, combo box, or list box. If the control matches one of
these control types, the function continues; otherwise, the function exists. The function then
checks the value of the control passed in. If there is no value in the control, Access assigns
the current date to the variant varDateTime or the current date and time, depending upon
the value of the intDateOnly argument. If the control has a value, the function assigns the
current value of the control to the variant and also verifies the value is a valid date and
time. Next, the function converts the variant value to a string and checks to see if the frm-
Calendar form is open. If the function finds the calendar form currently open, the function
closes it, and then reopens the form in Dialog mode. In the OpenForm call to frmCalendar,
the function passes in the string value of the date and time and the intDateOnly value as
OpenArgs parameters.

C
h

ap
ter 25

1600 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

After the user clicks either the Save or Cancel button on the frmCalendar form, this func-
tion continues executing. If the user cancels the update by clicking the cmdCancel com-
mand button on the frmCalendar form, the function exits. If the user clicks the cmdSave
command button on the frmCalendar form, the function grabs the selected date and time
information off the form, sets the calling control’s value to the date and time data, closes
the frmCalendar form, and then exits.

The final pieces of code that make all of this work are in the module behind the frmCalendar
form. The code in the Load event of the form is listed here:

Private Sub Form_Load()

 ' Establish an initial value for the date

 If IsNothing(Me.OpenArgs) Then

 varDate = Date

 Else

 ' Should have date, time, and "DateOnly"

 ' indicator in OpenArgs:

 ' mm/dd/yyyy hh:mm,-1

 varDate = Left(Me.OpenArgs, 10)

 Me.txtHour = Mid(Me.OpenArgs, 12, 2)

 Me.txtMinute = Mid(Me.OpenArgs, 15, 2)

 ' If "date only"

 If Right(Me.OpenArgs, 2) = "-1" Then

 ' Hide some stuff

 Me.txtHour.Visible = False

 Me.txtMinute.Visible = False

 Me.lblColon.Visible = False

 Me.lblTimeInstruct.Visible = False

 Me.SetFocus

 ' .. and resize my window

 DoCmd.MoveSize , , , 4295

 End If

 End If

 ' Initialize the month selector

 Me.cmbMonth = Month(varDate)

 ' Initialize the year selector

 Me.cmbYear = Year(varDate)

 ' Call the common calendar draw routine

 SetDays

 ' Place the date/time value in a hidden control -

 ' The calling routine fetches it from here

 Me.ctlCalendar = varDate

 ' Highlight the correct day box in the calendar

 Me.optCalendar = Day(varDate)

End Sub

	 Assisting	Data	Entry 1601

C
h

ap
te

r
25

This code first checks to see if any OpenArgs parameters are passed into the form. If no
OpenArgs parameters are passed in, the code assigns the current date to a variant called
varDate. If there are OpenArgs parameters passed in, the code parses out the OpenArgs
elements for the date and possible time portion. If the optional intDateOnly variable from
the GetDate function is True (the control needs only a date value, not a date and time
value), the form shrinks to hide those text boxes. Because the event date/time field needs
a time value, this parameter is False, so you should be able to see the hour and minute text
boxes. The final parts of the code set up the calendar from control elements to match either
the value already in the control or the system date and time. (Note that the code calls a
SetDays procedure included in the form’s class module to set up the various from controls.)

After the setup code for the calendar form controls completes, the form waits until the user
enters a value and clicks Save or decides not to change the value by clicking Cancel. The
code for the two procedures that respond to the command buttons are as follows:

Public Sub cmdCancel_Click()

 ' Closing doesn't pass the value back

 DoCmd.Close acForm, Me.Name

End Sub

Private Sub cmdSave_Click()

 ' Hiding this dialog lets the calling code in GetDate continue

 Me.Visible = False

End Sub

Clicking the Cancel button (cmdCancel_Click) simply closes the form without changing any
value in the control passed to the form. The code that saves the value that the user selects
on the graphical calendar is in the GetDate module. To save the value, the click event for
the cmdSave command button simply hides the frmCalendar form.

troubleshooting

Why can’t I find the ActiveX Calendar Control in Access 2010?

In Access 2010, Microsoft removed the ActiveX Calendar Control that shipped with

many past versions of Access. If you want to show a graphical calendar to your users

when they need to select a date, you’ll need to use the newer, built-in Date Picker

control included with Access or create your own calendar form using Visual Basic,

as we have in the Conrad Systems Contacts and the Housing Reservations sample

applications.

C
h

ap
ter 25

1602 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

Working with Linked Photos

Although you can certainly store and display photos in an Access application using the OLE
Object data type, if your application needs to handle hundreds or thousands of photos, you
could easily exceed the 2-GB file size limit for an .accdb file. You can also use the Attach-
ment data type for your photos to store them more efficiently, but you still might run into
file size limitations if you need to store many photos. The alternative method is to store the
pictures as files and save the picture path as a text field in your tables.

The good news is the image control in Access 2010 lets you specify a Control Source
property. When this property points to a field containing a folder and file location as a
text string, the image control will load the photo for you from that location. However,
you should still provide features in your forms to help users to easily edit the file location
information.

The Housing Reservations database (Housing.accdb) is designed to use this functionality.
Open the Housing.accdb sample database and then open the frmEmployeesPlain form, as
shown in Figure 25-6. The employee picture you see on the frmEmployees and frmEmploy-
eesPlain forms is fetched by the image control from the path stored in the Photo field of
the table.

Figure 25-6 The image control loads the photo on the Employees form from a picture path.

Notice that the user cannot see the contents of the Photo field that contains the picture
path information. However, we’ve provided two command buttons to make it easy for the
user to edit or delete the photo path information.

	 Assisting	Data	Entry 1603

C
h

ap
te

r
25

Deleting and Updating an Image Path

Clearing the file name saved in the record is the easy part, so let’s look at that first. Behind
the Delete button that you can see on the frmEmployeesPlain form, you can find the fol-
lowing code:

Private Sub cmdDelete_Click()

' User asked to remove the picture

 ' Clear photo

 Me.txtPhoto = Null

 ' Set the message

 Me.lblMsg.Caption = "Click Add to create a photo for this employee."

 ' Put focus in a safe place

 Me.FirstName.SetFocus

End Sub

When the user clicks the command button asking to delete the photo, the code sets the
photo path to Null and displays the informative label. Setting the Photo field to Null causes
the mage control to remove the image. Because the background of the image control is
transparent, the label control hidden behind it shows through, displaying an informative
message.

The tricky part is to provide the user with a way to enter the picture path to add or update
a picture in a record. Although you could certainly use the InputBox function to ask the
user for the path, it’s much more professional to call the Open File dialog box in Windows
so that the user can navigate to the desired picture using familiar tools. The bad news is
calling any procedure in Windows is complex and usually involves setting up parameter
structures and a special declaration of the external function. The good news is the Microsoft
Office 2010 system includes a special FileDialog object that greatly simplifies this process.
You need to add a reference to the Microsoft Office library to make it easy to use this
object—to do this, from the VBE window, choose References from the Tools menu and be
sure the Microsoft Office 14.0 Object Library is selected. After you do this, you can include
code using the FileDialog object to load a picture path. You can find the following code
behind the Click event of the Add button (cmdAdd) in the frmEmployeesPlain form:

Private Sub cmdAdd_Click()

' User asked to add a new photo

Dim strPath As String

 ' Grab a copy of the Office file dialog

 With Application.FileDialog(msoFileDialogFilePicker)

 ' Select only one file

 .AllowMultiSelect = False

 ' Set the dialog title

 .Title = "Locate the Employee picture file"

 ' Set the button caption

 .ButtonName = "Choose"

 ' Make sure the filter list is clear

C
h

ap
ter 25

1604 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

 .Filters.Clear

 ' Add two filters

 .Filters.Add "JPEGs", "*.jpg"

 .Filters.Add "Bitmaps", "*.bmp"

 ' Set the filter index to 2

 .FilterIndex = 2

 ' Set the initial path name

 .InitialFileName = CurrentProject.Path & "\Pictures"

 ' Show files as thumbnails

 .InitialView = msoFileDialogViewThumbnail

 ' Show the dialog and test the return

 If .Show = 0 Then

 ' Didn't pick a file - bail

 Exit Sub

 End If

 ' Should be only one filename - grab it

 strPath = Trim(.SelectedItems(1))

 ' Set an error trap

 On Error Resume Next

 ' Set the image

 Me.txtPhoto = strPath

 ' Set the message in case Image control couldn't find it

 Me.lblMsg.Caption = "Failed to load the picture you selected." & _

 " Click Add to try again."

 End With

 ' Put focus in a safe place

 Me.FirstName.SetFocus

End Sub

The code establishes a pointer to the FileDialog object using a With statement, sets the
various properties of the object (including the allowed file extensions and the initial path),
and then uses the Show method to display the Open File dialog box. Setting the Photo field
causes the image control to load the new picture, but the code also sets the message hid-
den behind the image control just in case the image control had a problem loading the file.

Validating Complex Data

Although you can certainly take advantage of the Input Mask property and the field and
table Validation Rule properties, your application often has additional business rules that
you can enforce only by adding code behind the forms you provide to edit the data or by
using data macros at the data level. The following examples show you how several of the
business rules in the Conrad Systems Contacts and Housing Reservations applications are
enforced with Visual Basic code.

	 Validating	Complex	Data 1605

C
h

ap
te

r
25

Checking for Possible Duplicate Names

When you design a table, you should attempt toone identify some combination of fields
that will be unique across all records to use as your primary key. However, when you create
a table to store information about people, you usually create an artificial number as the pri-
mary key of the table because you would need to combine many fields to ensure a unique
value. Even when you attempt to construct a primary key from first name, last name,
address, postal code, and phone number, you still can’t guarantee a unique value across all
rows.

Using an artificial primary key doesn’t mean you should abandon all efforts to identify
potentially duplicate rows. Code in the frmContacts form in the Conrad Systems Contacts
application (Contacts.accdb) checks the last name the user enters for a new record and
issues a warning message if it finds any close names. For example, if the user creates a new
record and enters a last name like “Viscas” (assuming John’s record is still in the table), code
behind the form’s BeforeUpdate event detects the similar name and issues the warning
shown in Figure 25-7.

Figure 25-7 The application warns you about a potential duplicate name in the contacts table.

The code searches for potential duplicates by comparing the Soundex codes of the last
names. The formula for generating a Soundex code for a name was created by the U.S.
National Archives and Records Administration (NARA). Soundex examines the letters by
sound and produces a four-character code. When the codes for two names match, it’s

C
h

ap
ter 25

1606 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

likely that the names are very similar and sound alike. Therefore, by using Soundex, the
error-checking code not only finds existing contacts with exactly the same last name but
also other contacts whose name might be the same but one or both might be slightly
misspelled.

Access 2010 doesn’t provide a built-in Soundex function (SQL Server does), but it’s easy
to create a simple Visual Basic procedure to generate the code for a name. You can find
a Soundex function in the modUtility module in both the Conrad Systems Contacts and
Housing Reservations sample databases. You can find the code that checks for a potential
duplicate name in the BeforeUpdate event procedure of the frmContacts form. The code is
as follows:

Private Sub Form_BeforeUpdate(Cancel As Integer)

Dim rst As DAO.Recordset, strNames As String

 ' If on a new row,

 If (Me.NewRecord = True) Then

 ' Check for similar name

 If Not IsNothing(Me.LastName) Then

 ' Open a recordset to look for similar names

 Set rst = CurrentDb.OpenRecordset("SELECT LastName, FirstName FROM " & _

 "tblContacts WHERE Soundex([LastName]) = '" & _

 Soundex(Me.LastName) & "'")

 ' If got some similar names, collect them for the message

 Do Until rst.EOF

 strNames = strNames & rst!LastName & ", " & rst!FirstName & vbCrLf

 rst.MoveNext

 Loop

 ' Done with the recordset

 rst.Close

 Set rst = Nothing

 ' See if we got some similar names

 If Len(strNames) > 0 Then

 ' Yup, issue warning

 If vbNo = MsgBox("CSD Contacts found contacts with similar " & _

 "last names already saved in the database: " & vbCrLf & vbCrLf & _

 strNames & vbCrLf & _

 "Are you sure this contact is not a duplicate?", _

 vbQuestion + vbYesNo + vbDefaultButton2, gstrAppTitle) Then

 ' Cancel the save

 Cancel = True

 End If

 End If

 End If

 End If

End Sub

The code checks only when the user is about to save a new row. It opens a recordset to
fetch any other contact records where the Soundex code of the last name matches the
last name about to be saved. It includes all names it finds in the warning message so that

	 Validating	Complex	Data 1607

C
h

ap
te

r
25

the user can verify that the new contact is not a duplicate. If the user decides not to save
the record, the code sets the Cancel parameter to True to tell Access not to save the new
contact.

Testing for Related Records When Deleting a Record

You certainly can and should define relationships between your tables and ask Access to
enforce referential integrity to prevent saving unrelated records or deleting a record that
still has related records in other tables. In most cases, you do not want to activate the cas-
cade delete feature to automatically delete related records. However, Access displays a mes-
sage “The record cannot be deleted or changed because ‘tblXYZ’ contains related records”
whenever the user tries to delete a record that has dependent records in other tables.

You can do your own testing in code behind your forms in the Delete event and give the
user a message that more clearly identifies the problem. For example, here’s the code
in the Delete event procedure of the frmContacts form in the Conrad Systems Contacts
application:

Private Sub Form_Delete(Cancel As Integer)

Dim db As DAO.Database, qd As DAO.QueryDef, rst As DAO.Recordset

Dim varRelate As Variant

 ' Check for related child rows

 ' Get a pointer to this database

 Set db = CurrentDb

 ' Open the test query

 Set qd = db.QueryDefs("qryCheckRelateContact")

 ' Set the contact parameter

 qd!ContactNo = Me.ContactID

 ' Open a recordset on the related rows

 Set rst = qd.OpenRecordset()

 ' If we got rows, then can't delete

 If Not rst.EOF Then

 varRelate = Null

 ' Loop to build the informative error message

 rst.MoveFirst

 Do Until rst.EOF

 ' Grab all the table names

 varRelate = (varRelate + ", ") & rst!TableName

 rst.MoveNext

 Loop

 MsgBox "You cannot delete this Contact because you have " & _

 "related rows in " & _

 varRelate & _

 ". Delete these records first, and then delete the Contact.", _

 vbOKOnly + vbCritical, gstrAppTitle

 ' close all objects

 rst.Close

 qd.Close

 Set rst = Nothing

C
h

ap
ter 25

1608 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

 Set qd = Nothing

 Set db = Nothing

 ' Cancel the delete

 Cancel = True

 Exit Sub

 End If

 ' No related rows - clean up objects

 rst.Close

 qd.Close

 Set rst = Nothing

 Set qd = Nothing

 Set db = Nothing

 ' No related rows, so OK to ask if they want to delete!

 If vbNo = MsgBox("Are you sure you want to delete Contact " & _

 Me.txtFullName & "?", _

 vbQuestion + vbYesNo + vbDefaultButton2, gstrAppTitle) Then

 Cancel = True

 End If

End Sub

The code uses a special UNION parameter query, qryCheckRelateContact, that attempts to
fetch related rows from tblCompanyContacts, tblCompanies (the ReferredBy field), tblCon-
tactEvents, and tblContactProducts, and returns the name(s) of the table(s) that have any
related rows. When the code finds rows returned by the query, it formats a message con-
taining names more meaningful to the user, and it includes all the tables that the user must
clear to be able to delete the contact. The standard Access error message lists only the first
related table that Access finds. Even when the check for related records finds no problems,
the code also gives the user a chance to decide not to delete the contact after all.

Verifying a Prerequisite

In some applications, it makes sense to save a certain type of record only if prerequisite
records exist. For example, in a school or seminar registration application, the user might
need to verify that the person enrolling has successfully completed prerequisite courses. In
the Conrad Systems Contacts application, it doesn’t make sense to sell support for a prod-
uct that the contact doesn’t own. It’s not possible to ask Access to perform this sort of test
in a validation rule, so you must write code or create a data macro to enforce this business
rule.

Figure 25-8 shows you the message the user sees when trying to sell support for a product
that the contact doesn’t own. This message also appears if the user attempts to sell the spe-
cial upgrade to a multi-user product and the contact doesn’t already own the prerequisite
single-user product.

	 Validating	Complex	Data 1609

C
h

ap
te

r
25

Figure 25-8 Special business rule code won’t let you sell a product with a missing prerequisite.

The code that enforces this business rule is in the BeforeUpdate event procedure of the
fsubContactProducts form. The code is as follows:

Private Sub Form_BeforeUpdate(Cancel As Integer)

Dim lngPreReq As Long, strPreReqName As String

 ' Check for prerequisite

 If Not IsNothing(Me.cmbProductID.Column(6)) Then

 ' Try to lookup the prerequisite for the contact

 lngPreReq = CLng(Me.cmbProductID.Column(6))

 If IsNull(DLookup("ProductID", "tblContactProducts", _

 "ProductID = " & lngPreReq & " And ContactID = " & _

 Me.Parent.ContactID)) Then

 ' Get the name of the prerequisite

 strPreReqName = DLookup("ProductName", "tblProducts", _

 "ProductID = " & lngPreReq)

 ' Display error

 MsgBox "This contact must own prerequisite product " & strPreReqName & _

 " before you can sell this product.", vbCritical, gstrAppTitle

 ' Cancel the edit

 Cancel = True

 End If

 End If

End Sub

Remember, from Figure 25-2, that the query providing the row source for the cmbPro-
ductID combo box includes any prerequisite product ID in its seventh column. When the
code finds a prerequisite, it uses the DLookup function to verify that the current contact
already owns the required product. If not, then the code looks up the name of the product,

C
h

ap
ter 25

1610 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

includes it in an error message displayed to the user, and disallows saving the product by
setting the Cancel parameter to True. This enforces the business rule and makes it crystal
clear to the user what corrective action is necessary.

Maintaining a Special Unique Value

When two subjects have a many-to-many relationship in your database, you must define a
linking table to create the relationship. (See Article 1, “Designing Your Database Applica-
tion,” on the companion CD, for details about designing tables to support a many-to-many
relationship.) You will often add fields in the linking table to further clarify the relationship
between a row in one of the related tables and the matching row in another. Figure 25-9
shows you the table in the Conrad Systems Contacts application that defines the link
between companies and contacts.

Figure 25-9 The tblCompanyContacts table defines the many-to-many relationship between
companies and contacts.

Two special yes/no fields in this table identify which company is the default for a contact
and which contact is the default for a company. However, a contact can’t have two or more
default companies. Likewise, it doesn’t make sense for a company to have more than one
default contact. To verify this type of special unique value constraint, you can add business
rules in code behind the forms you provide to the user to edit this data.

	 Validating	Complex	Data 1611

C
h

ap
te

r
25

You can find the code that ensures that there is only one default company for each contact
in code behind the fsubContactCompanies form in the Conrad Systems Contacts sample
application (Contacts.accdb). The code is in the BeforeUpdate event procedure for the
DefaultForContact control on the form. The code is as follows:

Private Sub DefaultForContact_BeforeUpdate(Cancel As Integer)

 ' Disallow update if there's no Company ID yet

 If IsNothing(Me.CompanyID) Then

 MsgBox "You must select a Company / Organization before" & _

 " you can set Default.", _

 vbCritical, gstrAppTitle

 Cancel = True

 Exit Sub

 End If

 ' Make sure there's only one default

 ' Check only if setting Default = True

 If (Me.DefaultForContact = True) Then

 ' Try to lookup another contact set Default

 If Not IsNothing(DLookup("ContactID", "tblCompanyContacts", _

 "ContactID = " & Me.Parent.ContactID & _

 " AND CompanyID <> " & Me.CompanyID & _

 " AND DefaultForContact = True")) Then

 ' ooops...

 MsgBox "You have designated another Company as the" & _

 " Default for this Contact." & _

 " You must remove that designation before you" & _

 " can mark this Company as the Default.", _

 vbCritical, gstrAppTitle

 Cancel = True

 End If

 End If

End Sub

First, the code verifies that the user has chosen a company for this record. (The Link Child
Fields and Link Master Fields properties of the subform control provide the ContactID.)
Next, if the user is attempting to mark this company as the default for the contact, the
code uses the DLookup function to see if any other record exists (in the tblCompany-
Contacts table for the current contact) that is also marked as the default. If it finds such a
duplicate record, it warns the user and sets the Cancel parameter to True to prevent saving
the change to the control. You’ll find similar code in the fsubCompanyContacts form that
makes sure only one contact is the primary for any company.

Checking for Overlapping Data

When you build an application that tracks the scheduling of events or reservations that can
span a period of time, you most likely need to make sure that a new event or reservation
doesn’t overlap with an existing one. This can be a bit tricky, especially when the records
you’re checking have start and end dates or times.

C
h

ap
ter 25

1612 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

Of course, the Housing Reservations application (Housing.accdb) must make sure that an
employee doesn’t enter an overlapping reservation request. To see how this works, open
the sample database and then open the frmSplash form to start the application. Choose
any employee name you like from the combo box in the sign-on dialog box (Jack Richins
is a good choice), type password as the password, and click Sign On. On the main switch-
board, click Reservation Requests. If you see the Edit Reservation Requests dialog box
(because you happened to sign on as a manager), click Edit All.

The Reservation Requests form won’t let you enter a reservation start date in the past. Click
in the blank new row in the list of reservation requests, enter a reservation request for next
week for a span of several days, and save the row. (Remember, you can click the Calen-
dar buttons that appear next to the date fields when the focus is on the field to help you
choose dates.) Enter another request that overlaps the reservation you just created either at
the beginning, the end, or across the middle of the reservation you just entered. Try to save
the row, and you should see a warning message similar to the one in Figure 25-10.

Figure 25-10 The Housing Reservations application displays a warning when you attempt to
save an overlapping reservation request.

If you click No, the code cancels your save and returns you to the record to fix it. Notice
that you can click Yes to save the duplicate—the application allows this because an
employee might intend to reserve two or more rooms on the same or overlapping dates.
The code that performs this check in the BeforeUpdate event of the fsubReservationRe-
quests form is as follows (note that this code is near the end of the BeforeUpdate event
code):

	 Controlling	Tabbing	on	a	Multiple-Page	Form 1613

C
h

ap
te

r
25

Dim varNum As Variant

 ' Check for overlap with existing request

 ' Try to grab RequestID - will be Null on unsaved row

 varNum = Me.RequestID

 If IsNull(varNum) Then varNum = 0 ' Set dummy value

 If Not IsNull(DLookup("RequestID", "tblReservationRequests", _

 "(EmployeeNumber = " & _

 Me.Parent.EmployeeNumber & ") AND (CheckInDate < #" & _

 Format(Me.CheckOutDate, "mm/dd/yyyy") & _

 "#) AND (CheckOutDate > #" & _

 Format(Me.CheckInDate, "mm/dd/yyyy") & "#) AND (RequestID <> " & _

 varNum & ")")) Then

 If vbNo = MsgBox("You already have a room request " & _

 "that overlaps the dates you have " & _

 "requested. Are you sure you want to make this request?", _

 vbQuestion + vbYesNo + vbDefaultButton2, gstrAppTitle) Then

 Cancel = True

 Exit Sub

 End If

 End If

The code uses the DLookup function to see if another reservation exists (but a different
request ID) for the same employee with dates that overlap. The criteria asks for any record
that has a check-in date earlier than the requested checkout date (an employee can legiti-
mately check out and then check back in on the same date) and a checkout date that is
later than the requested check-in date. You might be tempted to build more complex crite-
ria that checks all combinations of reservations that overlap into the start of the requested
period, overlap into the end of the requested period, span the entire requested period, or
are contained wholly within the requested period, but the two simple tests are all you need.

Controlling Tabbing on a Multiple-Page Form

In Chapter 15, you learned how to create a multiple-page form as one way to handle dis-
playing more data than will fit on one page of a form on your computer screen. You also
learned how to control simple tabbing on the form by setting the form’s Cycle property to
Current Page. One disadvantage of this approach is you can no longer use Tab or Shift+Tab
to move to other pages or other records. You must use the Page Up and Page Down keys
or the record selector buttons to do that. You can set the Cycle property to All Records to
restore this capability, but some strange things happen if you don’t add code to handle
page alignment.

To see what happens, open the frmXmplContactsPages form in the Conrad Systems Con-
tacts sample database (Contacts.accdb) from the Navigation pane. Press Page Down to
move to the Home Address field for the first contact. Next, press Shift+Tab once (back tab).
Your screen should look something like Figure 25-11.

C
h

ap
ter 25

1614 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

Figure 25-11 The form page doesn’t align correctly when you back-tab from the Home Address
field in frmXmplContactsPages.

If you leave the Cycle property set to All Records or Current Record, tabbing across page
boundaries causes misalignment unless you add some code to fix it. What happens is
that Access moves the form display only far enough to show the control you just tabbed
to. (In this example, you’re tabbing to the Notes text box control.) Open the sample
frmContactsPages form that has the code to fix this problem and try the same exercise. You
should discover that Shift+Tab places you in the Notes field, but the form scrolls up to show
you the entire first page.

To allow tabbing across a page boundary while providing correct page alignment, you need
event procedures in the Enter event for the first and last controls that can receive the focus
on each page. If you examine the code behind the frmContactsPages form, you’ll find these
four procedures:

Private Sub ContactID_Enter()

 ' If tabbing forward into this field from previous record

 ' align page 1

 Me.GoToPage 1

End Sub

Private Sub HomeAddress_Enter()

 ' If tabbing forward into this field, align page 2

 Me.GoToPage 2

End Sub

Private Sub Notes_Enter()

 On Error Resume Next

 ' If tabbing backward into the last control on page 1, align it

 Me.GoToPage 1

End Sub

	 Automating	Data	Selection 1615

C
h

ap
te

r
25

Private Sub Photo_Enter()

 On Error Resume Next

 ' If tabbing backward into the last control on page 2, align it

 Me.GoToPage 2

End Sub

This is arguably some of the simplest example code in any of the sample databases, but this
attention to detail will make the users of your application very happy.

note
The code also executes when you tab backward into the ContactID or HomeAddress

controls or forward into the Notes or Photo control, or you can click in any of the con-

trols. Access realizes that the form is already on the page requested in each case, so it

does nothing.

Automating Data Selection

One of the most common tasks to automate in a database application is filtering data. Par-
ticularly when a database contains thousands of records, users will rarely need to work with
more than a few records at a time. If your edit forms always display all the records, perfor-
mance can suffer greatly. So it’s a good idea to enable the user to easily specify a subset of
records. This section examines four ways to do this.

Working with a Multiple-Selection List Box

You work with list boxes all the time in Windows and in Access. For example, the file list in
Windows Explorer is a list box, the Access 2010 Navigation pane is a list box, and the list of
properties on any tab in the property sheet is a list box. In the property list box, you can
select only one property from the list at a time. If you click a different property, the previ-
ous object is no longer selected—this is a simple list box. In Windows Explorer, you can
select one file, select multiple noncontiguous files by holding down the Ctrl key and click-
ing, or select a range of files by holding down the Shift key and clicking—this is a multiple-
selection list box.

Suppose you’re using the Conrad Systems Contacts application (Contacts.accdb) and you’re
interested in looking at the details for several contacts at one time but will rarely want to
look at the entire list. Start the application by opening the frmSplash form, select John
Viescas as the User Name, and click Sign On (no password required). Click the Contacts
button on the main switchboard form, and the application opens the Select Contacts form
(frmContactList). As shown in Figure 25-12, the frmContactList form contains a multiple-
selection list box.

C
h

ap
ter 25

1616 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

note
You won’t see the Select Contacts dialog box if the Don’t Show Contact List option is

selected in John’s user profile. If the Contacts form opens when you click the Contacts

button on the main switchboard, close the form and click Users. Clear the Don’t Show

Contact List option in John’s profile, save the record, and close the form. You should

now see the Select Contacts dialog box when you click the Contacts button on the

main switchboard.

Figure 25-12 You can select multiple contact records to edit in the frmContactList form.

In this list box, the contacts are shown in alphabetic order by last name, and the list is
bound to the ContactID field in the underlying table. You can edit any single contact by
simply double-clicking the person’s name. You can move the highlight up or down by using
the arrow keys. You can also type the first letter of a contact’s last name to jump to the next
contact whose last name begins with that letter. You can hold down the Shift key and use
the arrow keys to extend the selection to multiple names. Finally, you can hold down either
the Shift key or the Ctrl key and use the mouse to select multiple names.

	 Automating	Data	Selection 1617

C
h

ap
te

r
25

Figure 25-12 shows three contacts selected using the Ctrl key and the mouse. When you
click Edit, the application opens the frmContacts form with only the records you selected.
As shown in Figure 25-13, the caption to the right of the Record Number box indicates that
there are three available records and that the recordset is filtered.

Figure 25-13 After you select the records you want to edit in the frmContactList, the application
opens the frmContacts form displaying only those records.

To see how this works, you need to go behind the scenes of the frmContactList form. Click
Exit on the main switchboard form to return to the Navigation pane. (Click Yes in the mes-
sage box that asks “Are you sure you want to exit?” and click No if the application offers
to create a backup for you.) Select frmContactList, and open the form in Design view, as
shown in Figure 25-14. Click the list box control, and open its property sheet to see how the
list box is defined. The list box uses two columns from the qlkpContacts query, hiding the
ContactID (the primary key that will provide a fast lookup) in the first column and display-
ing the contact name in the second column. The key to this list box is that its Multi Select
property is set to Extended. Using the Extended setting gives you the full Ctrl+click or
Shift+click features that you see in most list boxes in Windows. The default for this property
is None, which lets you select only one value at a time. You can set it to Simple if you want
to select or clear multiple values using the mouse or the spacebar.

C
h

ap
ter 25

1618 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

Figure 25-14 The multiple-selection list box on the frmContactList form has its Multi Select
property set to Extended.

If you scroll down to the Event properties, you’ll find an event procedure defined for On
Dbl Click. The code for this event procedure (which is called when you double-click an item
in the list box) runs only the cmdSome_Click procedure. Right-click the cmdSome com-
mand button (the one whose caption says Edit), and choose Build Event from the shortcut
menu to jump to the cmdSome_Click procedure that does all the work, as shown here:

Private Sub cmdSome_Click()

Dim strWhere As String, varItem As Variant

 ' Request to edit items selected in the list box

 ' If no items selected, then nothing to do

 If Me!lstCName.ItemsSelected.Count = 0 Then Exit Sub

 ' Loop through the items selected collection

 For Each varItem In Me!lstCName.ItemsSelected

 ' Grab the ContactID column for each selected item

 strWhere = strWhere & Me!lstCName.Column(0, varItem) & ","

 Next varItem

 ' Throw away the extra comma on the "IN" string

 strWhere = Left$(strWhere, Len(strWhere) - 1)

 ' Open the contacts form filtered on the selected contacts

 strWhere = "[ContactID] IN (" & strWhere & ") And (Inactive = False)"

 DoCmd.OpenForm FormName:="frmContacts", WhereCondition:=strWhere

 DoCmd.Close acForm, Me.Name

End Sub

	 Automating	Data	Selection 1619

C
h

ap
te

r
25

When you set the Multi Select property of a list box to something other than None, you can
examine the control’s ItemsSelected collection to determine what (if anything) is selected.
In the cmdSome_Click procedure, the Visual Basic code first checks the Count property
of the control’s ItemsSelected collection to determine whether anything is selected. If the
Count is 0, there’s nothing to do, so the procedure exits.

The ItemsSelected collection is composed of variant values, each of which provides an index
to a highlighted item in the list box. The For Each loop asks Visual Basic to loop through all
the available variant values in the collection, one at a time. Within the loop, the code uses
the value of the variant to retrieve the Contact ID from the list. List boxes also have a Col-
umn property, and you can reference all the values in the list by using a statement such as

Me.ListBoxName.Column(ColumnNum, RowNum)

where ListBoxName is the name of your list box control, ColumnNum is the relative column
number (the first column is 0, the second is 1, and so on), and RowNum is the relative row
number (also starting at 0). The variant values in the ItemsSelected collection return the rel-
ative row number. This Visual Basic code uses column 0 and the values in the ItemsSelected
collection to append each selected ContactID to a string variable, separated by commas.
You’ll recall from studying the IN predicate in Chapter 9 that a list of values separated by
commas is ideal for an IN clause.

After retrieving all the ContactID numbers, the next statement removes the trailing comma
from the string. The final Where clause includes an additional criterion to display only
active contacts. The DoCmd.OpenForm command uses the resulting string to create a filter
clause as it opens the form. Finally, the code closes the frmContactList form. (Me.Name is
the name of the current form.)

Providing a Custom Query By Form

Suppose you want to do a more complex search on the frmContacts form—using criteria
such as contact type, company, or products owned rather than simply using contact name.
You could teach your users how to use the Filter By Form features to build the search, or
you could use Filter By Form to easily construct multiple OR criteria on simple tests. But if
you want to find, for example, all contacts who own the Single User edition or whom you
contacted between certain dates, there’s no way to construct this request using standard
filtering features. The reason for this is that when you define a filter for a subform (such as
the Events subform in frmContacts) using Filter By Form, you’re filtering only the subform
rows. You’re not finding contacts who have only a matching subform row.

C
h

ap
ter 25

1620 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

The only solution, then, is to provide a custom Query By Form that provides options to
search on all the important fields and then build the Where clause to solve the search prob-
lem using Visual Basic code. To start, open the Conrad Systems Contacts application. (If you
have exited to the Navigation pane, you can start the application by opening frmSplash.)
Sign on, click the Contacts button on the main switchboard form, and then click the Search
button in the Select Contacts dialog box. You should see the fdlgContactSearch form, as
shown in Figure 25-15.

Figure 25-15 You can design a custom Query By Form to perform a complex search.

Try selecting contacts whose last name begins with the letter M, whom you contacted
between September 1, 2010, and December 15, 2010, and who own the BO$$ Single User
product (from the Owns Product drop-down list). When you click Search, you should see
the frmContacts form open and display two contacts.

To see how this works, you need to explore the design of the fdlgContactSearch form.
Switch to the Navigation pane (by pressing F11), and open the form in Design view. You
should see a window like Figure 25-16. Notice that the form is not bound to any record
source. The controls must be unbound so they can accept any criteria values that a user
might enter.

	 Automating	Data	Selection 1621

C
h

ap
te

r
25

Figure 25-16 When you look at the fdlgContactSearch form in Design view, you can see that it
has no record source.

The bulk of the work happens when you click Search. The code for the event procedure for
the Click event of the Search button is shown here:

Private Sub cmdSearch_Click()

Dim varWhere As Variant, varDateSearch As Variant

Dim rst As DAO.Recordset

 ' Initialize to Null

 varWhere = Null

 varDateSearch = Null

 ' First, validate the dates

 ' If there's something in Contact Date From

 If Not IsNothing(Me.txtContactFrom) Then

 ' First, make sure it's a valid date

 If Not IsDate(Format(Me.txtContactFrom, "mm/dd/yyyy")) Then

 ' Nope, warn them and bail

 MsgBox "The value in Contact From is not a valid date.", _

 vbCritical, gstrAppTitle

 Exit Sub

 End If

 ' Now see if they specified a "to" date

 If Not IsNothing(Me.txtContactTo) Then

 ' First, make sure it's a valid date

 If Not IsDate(Format(Me.txtContactTo, "mm/dd/yyyy")) Then

 ' Nope, warn them and bail

 MsgBox "The value in Contact To is not a valid date.", _

 vbCritical, gstrAppTitle

 Exit Sub

C
h

ap
ter 25

1622 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

 End If

 ' Got two dates, now make sure "to" is >= "from"

 If Format(Me.txtContactTo, "mm/dd/yyyy") < _

 Format(Me.txtContactFrom, "mm/dd/yyyy") Then

 MsgBox "Contact To date must be greater than " & _

 "or equal to Contact From date.", _

 vbCritical, gstrAppTitle

 Exit Sub

 End If

 End If

 Else

 ' No "from" but did they specify a "to"?

 If Not IsNothing(Me.txtContactTo) Then

 ' Make sure it's a valid date

 If Not IsDate(Format(Me.txtContactTo, "mm/dd/yyyy")) Then

 ' Nope, warn them and bail

 MsgBox "The value in Contact To is not a valid date.", _

 vbCritical, gstrAppTitle

 Exit Sub

 End If

 End If

 End If

 ' If there's something in Follow-up Date From

 If Not IsNothing(Me.txtFollowUpFrom) Then

 ' First, make sure it's a valid date

 If Not IsDate(Format(Me.txtFollowUpFrom, "mm/dd/yyyy")) Then

 ' Nope, warn them and bail

 MsgBox "The value in Follow-up From is not a valid date.", _

 vbCritical, gstrAppTitle

 Exit Sub

 End If

 ' Now see if they specified a "to" date

 If Not IsNothing(Me.txtFollowUpTo) Then

 ' First, make sure it's a valid date

 If Not IsDate(Format(Me.txtFollowUpTo, "mm/dd/yyyy")) Then

 ' Nope, warn them and bail

 MsgBox "The value in Follow-up To is not a valid date.", _

 vbCritical, gstrAppTitle

 Exit Sub

 End If

 ' Got two dates, now make sure "to" is >= "from"

 If Format(Me.txtFollowUpTo, "mm/dd/yyyy") < _

 Format(Me.txtFollowUpFrom, "mm/dd/yyyy") Then

 MsgBox "Follow-up To date must be greater than " & _

 "or equal to Follow-up From date.", _

 vbCritical, gstrAppTitle

 Exit Sub

 End If

 End If

 Else

 ' No "from" but did they specify a "to"?

 If Not IsNothing(Me.txtFollowUpTo) Then

 ' Make sure it's a valid date

	 Automating	Data	Selection 1623

C
h

ap
te

r
25

 If Not IsDate(Format(Me.txtFollowUpTo, "mm/dd/yyyy")) Then

 ' Nope, warn them and bail

 MsgBox "The value in Follow-up To is not a valid date.", _

 vbCritical, gstrAppTitle

 Exit Sub

 End If

 End If

 End If

 ' OK, start building the filter

 ' If specified a contact type value

 If Not IsNothing(Me.cmbContactType) Then

 ' .. build the predicate

 varWhere = "(ContactType.Value = '" & Me.cmbContactType & "')"

 End If

 ' Do Last Name next

 If Not IsNothing(Me.txtLastName) Then

 ' .. build the predicate

 ' Note: taking advantage of Null propagation

 ' so we don't have to test for any previous predicate

 varWhere = (varWhere + " AND ") & "([LastName] LIKE '" & _

 Me.txtLastName & "*')"

 End If

 ' Do First Name next

 If Not IsNothing(Me.txtFirstName) Then

 ' .. build the predicate

 varWhere = (varWhere + " AND ") & "([FirstName] LIKE '" & _

 Me.txtFirstName & "*')"

 End If

 ' Do Company next

 If Not IsNothing(Me.cmbCompanyID) Then

 ' .. build the predicate

 ' Must use a subquery here because the value is in a linking table...

 varWhere = (varWhere + " AND ") & _

 "([ContactID] IN (SELECT ContactID FROM tblCompanyContacts " & _

 "WHERE tblCompanyContacts.CompanyID = " & Me.cmbCompanyID & "))"

 End If

 ' Do City next

 If Not IsNothing(Me.txtCity) Then

 ' .. build the predicate

 ' Test for both Work and Home city

 varWhere = (varWhere + " AND ") & "(([WorkCity] LIKE '" & _

 Me.txtCity & "*')" & _

 " OR ([HomeCity] LIKE '" & Me.txtCity & "*'))"

 End If

 ' Do State next

 If Not IsNothing(Me.txtState) Then

 ' .. build the predicate

 ' Test for both Work and Home state

 varWhere = (varWhere + " AND ") & "(([WorkStateOrProvince] LIKE '" & _

 Me.txtState & "*')" & _

 " OR ([HomeStateOrProvince] LIKE '" & Me.txtState & "*'))"

 End If

C
h

ap
ter 25

1624 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

 ' Do Contact date(s) next -- this is a toughie

 ' because we want to end up with one filter on the subquery table

 ' for both Contact Date range and FollowUp Date range

 ' Check Contact From first

 If Not IsNothing(Me.txtContactFrom) Then

 ' .. build the predicate

 varDateSearch = "tblContactEvents.ContactDateTime >= #" & _

 Format(Me.txtContactFrom, "mm/dd/yyyy") & "#"

 End If

 ' Now do Contact To

 If Not IsNothing(Me.txtContactTo) Then

 ' .. add to the predicate, but add one because ContactDateTime includes

 ' a date AND a time

 varDateSearch = (varDateSearch + " AND ") & _

 "tblContactEvents.ContactDateTime < #" & _

 CDate(Format(Me.txtContactTo, "mm/dd/yyyy")) + 1 & "#"

 End If

 ' Now do Follow-up From

 If Not IsNothing(Me.txtFollowUpFrom) Then

 ' .. add to the predicate

 varDateSearch = (varDateSearch + " AND ") & _

 "tblContactEvents.ContactFollowUpDate >= #" & _

 Format(Me.txtFollowUpFrom, "mm/dd/yyyy") & "#"

 End If

 ' Finally, do Follow-up To

 If Not IsNothing(Me.txtFollowUpTo) Then

 ' .. add to the predicate

 varDateSearch = (varDateSearch + " AND ") & _

 "tblContactEvents.ContactFollowUpDate <= #" & _

 Format(Me.txtFollowUpTo, "mm/dd/yyyy") & "#"

 End If

 ' Did we build any date filter?

 If Not IsNothing(varDateSearch) Then

 ' OK, add to the overall filter

 ' Must use a subquery here because the value is in a linking table...

 varWhere = (varWhere + " AND ") & _

 "([ContactID] IN (SELECT ContactID FROM tblContactEvents " & _

 "WHERE " & varDateSearch & "))"

 End If

 ' Do Product

 If Not IsNothing(Me.cmbProductID) Then

 ' .. build the predicate

 ' Must use a subquery here because the value is in a linking table...

 varWhere = (varWhere + " AND ") & _

 "([ContactID] IN (SELECT ContactID FROM tblContactProducts " & _

 "WHERE tblContactProducts.ProductID = " & Me.cmbProductID & "))"

 End If

 ' Finally, do the Inactive check box

 If (Me.chkInactive = False) Then

 ' Build a filter to exclude inactive contacts

 varWhere = (varWhere + " AND ") & "(Inactive = False)"

 End If

	 Automating	Data	Selection 1625

C
h

ap
te

r
25

 ' Check to see that we built a filter

 If IsNothing(varWhere) Then

 MsgBox "You must enter at least one search criteria.", _

 vbInformation, gstrAppTitle

 Exit Sub

 End If

 ' Open a recordset to see if any rows returned with this filter

 Set rst = CurrentDb.OpenRecordset("SELECT * FROM tblContacts " & _

 "WHERE " & varWhere)

 ' See if found none

 If rst.RecordCount = 0 Then

 MsgBox "No Contacts meet your criteria.", vbInformation, gstrAppTitle

 ' Clean up recordset

 rst.Close

 Set rst = Nothing

 Exit Sub

 End If

 ' Hide me to fix later focus problems

 Me.Visible = False

 ' Move to last to find out how many

 rst.MoveLast

 ' If 5 or less or frmContacts already open,

 If (rst.RecordCount < 6) Or IsFormLoaded("frmContacts") Then

 ' Open Contacts filtered

 ' Note: if form already open, this just applies the filter

 DoCmd.OpenForm "frmContacts", WhereCondition:=varWhere

 ' Make sure focus is on contacts

 Forms!frmContacts.SetFocus

 Else

 ' Ask if they want to see a summary list first

 If vbYes = MsgBox("Your search found " & rst.RecordCount & _

 " contacts. " & _

 "Do you want to see a summary list first?", _

 vbQuestion + vbYesNo, gstrAppTitle) Then

 ' Show the summary

 DoCmd.OpenForm "frmContactSummary", WhereCondition:=varWhere

 ' Make sure focus is on contact summary

 Forms!frmContactSummary.SetFocus

 Else

 ' Show the full contacts info filtered

 DoCmd.OpenForm "frmContacts", WhereCondition:=varWhere

 ' Make sure focus is on contacts

 Forms!frmContacts.SetFocus

 End If

 End If

 ' Done

 DoCmd.Close acForm, Me.Name

 ' Clean up recordset

 rst.Close

 Set rst = Nothing

End Sub

C
h

ap
ter 25

1626 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

The first part of the procedure validates the contact date’s from and to values and the fol-
low up date’s from and to values. If any are not valid dates, or the from date is later than
the to date, the code issues an appropriate warning message and exits.

The next several segments of code build up a WHERE string by looking at the unbound
controls one at a time. If the corresponding field is a string, the code builds a test using
the LIKE predicate so that whatever the user enters can match any part of the field in the
underlying table, but not all the fields are strings. When the function adds a clause as
it builds the WHERE string, it inserts the AND keyword between clauses if other clauses
already exist. Because the variable containing the WHERE clause is a Variant data type ini-
tialized to Null, the code can use a + concatenation to optionally add the AND keyword.
Note that because the ContactType field is a multi-value field, the code specifically searches
the Value property of the field.

The underlying record source for the frmContacts form does not include either contact
event or product information directly, so the procedure has to build a predicate using a
subquery if you ask for a search by contact date, follow-up date, or product. In the case
of contact date or follow-up date, the code builds a separate filter string (varDateSearch)
because both fields are in the same table (tblContactEvents). If you ask for any date range
check, the code builds criteria using a subquery that finds the ContactID from records in
the tblContactEvents table that fall within the date range. For a search by product, the code
builds criteria using a subquery that finds the ContactID from records in the tblContact-
Products table that match the product you selected. Finally, if you leave the Include Inactive
Contacts check box cleared, the code adds a test to include only records that are active.

After examining all the possible filter values the user could have entered, the code checks
to see if there’s anything in the filter string (varWhere). There’s no point in opening the
form without a filter, so the code displays a message and exits, leaving the form open to
allow the user to try again.

The final part of the procedure builds a simple recordset on the tblContacts table used in
both the frmContacts and frmContactSummary forms, applying the WHERE clause built by
the code in the first part of the procedure. If it finds no records, it uses the MsgBox function
to inform the user and then gives the user a chance to try again.

When you first open a Recordset object in code, its RecordCount property is 0 if the record-
set is empty and is some value greater than 0 if the recordset contains some records. The
RecordCount property of a Recordset object contains only a count of the number of rows
visited and not the number of rows in the recordset. Therefore, if it finds some rows, the
procedure moves to the last row in the temporary recordset to get an accurate count.
When the record count is greater than 5 and the frmContacts form is not already open, the
procedure uses the MsgBox function to give the user the option to view a summary of the
records found in the frmContactSummary form or to display the records found directly in

	 Automating	Data	Selection 1627

C
h

ap
te

r
25

the frmContacts form. (As noted earlier, both forms use the same record source, so the
code can apply the filter it built as it opens either form.) We’ll examine how the frm-
ContactSummary form works in the next section.

Selecting from a Summary List

As you saw in the cmdSearch_Click procedure in the previous section, the user gets to make
a choice if more than five rows meet the entered criteria. To examine this feature in more
detail, make sure the frmContacts form is not open, and ask for a search of contacts with a
Contact Type of Customer in the fdlgContactSearch form. The result should look like Figure
25-17, in which 30 contacts are categorized as customers.

Figure 25-17 This message box appears when the cmdSearch_Click procedure returns more than
five rows.

If you click Yes, the cmdSearch_Click procedure opens the Contact Search Summary form
(frmContactSummary), as shown in Figure 25-18. You can scroll down to any row, put the
focus on that row (be sure the row selector indicator is pointing to that row), and then click
View Details to open the frmContacts form and view the details for the one contact you
selected. You can see that this is a very efficient way to help the user narrow down a search
to one particular contact.

Figure 25-18 You can select a specific contact from the search summary form.

C
h

ap
ter 25

1628 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

You can also double-click either the Contact ID or the Name field to see the details for that
contact. Because this list is already filtered using the criteria you specified in the fdlgCon-
tactSearch form, the code that responds to your request builds a simple filter on Contact
ID to make opening the frmContacts form most efficient. The code behind this form, which
responds to your request in the Click event of the Details command button, is as follows:

Private Sub Details_Click()

Dim strFilter As String

 ' They asked for details (or double-clicked one of the controls)

 ' Set up the filter

 strFilter = "(ContactID = " & Me.ContactID & ")"

 ' Open contacts filtered on the current row

 DoCmd.OpenForm FormName:="frmContacts", WhereCondition:=strFilter

 ' Close me

 DoCmd.Close acForm, Me.Name

 ' Put focus on contacts

 Forms!frmContacts.SetFocus

End Sub

Filtering One List with Another

You might have noticed when editing products on the Products tab in the frmContacts
form (see Figure 25-1) that you can first choose a product type to narrow down the list of
products and then choose the product you want. There are only 11 products in the sample
application, so being able to narrow down the product selection first isn’t all that useful,
but you can imagine how a feature like this would be absolutely necessary in an application
that had thousands of products available for sale.

The secret is that the row source for the Product combo box is a parameter query that fil-
ters the products based on the product type you chose. When you use this technique in a
form in Single Form view, all you need to do is requery the filtered combo box (in this case,
the Product combo box) when the user moves to a new record (in the Current event of the
form) and requery when the user chooses a different value in the combo box that provides
the filter value (in the AfterUpdate event of the combo box providing the filter value).

However, using this technique on a form in Continuous Forms view is considerably more
complex. Even though you can see multiple rows in Continuous Forms view, there is actu-
ally only one copy of each control on the form. If you always requery the Product combo
box each time you move to a new row, the product name displayed in other rows that have
a different product type will appear blank. When the value in a row doesn’t match a value
in the list, you get a blank result, not the actual value of the field.

The way to solve this problem is to include the display name in the recordset for the form
and carefully overlay each combo box with a text box that always displays the correct value
regardless of the filter. You can open the fsubContactProducts form in Design view to see

	 Automating	Data	Selection 1629

C
h

ap
te

r
25

how we did this. Figure 25-19 shows you the form with the two overlay text boxes (Category-
Description and ProductName) pulled down from the underlying combo boxes (Unbound and
ProductID).

Figure 25-19 You can solve a filtered combo box display problem by overlaying text boxes.

Notice that the control source of the Product combo box is actually the ProductID field,
but the combo box displays the ProductName field. Also, the Product Type combo box isn’t
bound to any field at all—there is no CategoryDescription field in tblContactProducts—but
it does display the CategoryDescription field from the lookup table. To make this work, you
need to include the ProductName and CategoryDescription fields in the record source for
this form. You don’t want the user to update these values, but you need them to provide
the overlay display. These two text boxes have their Locked property set to Yes to prevent
updating and their Tab Stop property set to No so that the user will tab into the underlying
combo boxes and not these text boxes. Figure 25-20 shows you the qryContactProducts
query that’s the row source for this form.

Figure 25-20 The qryContactProducts query provides the necessary ProductName and
 CategoryDescription fields from a related table so that you can display the values.

C
h

ap
ter 25

1630 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

To make it all work correctly, several event procedures make sure that the focus goes where
necessary and that the filtered Product combo box gets re-queried correctly. The code
behind the fsubContactProducts form that does this is as follows:

Private Sub CategoryDescription_GotFocus()

 ' We have some tricky "overlay" text boxes here that

 ' shouldn't get the focus. Move focus to the underlying

 ' combo box if that happens.

 Me.cmbCategoryDescription.SetFocus

End Sub

Private Sub cmbCategoryDescription_AfterUpdate()

 ' If they pick a new Category, then requery the

 ' product list that's filtered on category

 Me.cmbProductID.Requery

 ' Set the Product to the first row in the new list

 Me.cmbProductID = Me.cmbProductID.ItemData(0)

 ' .. and signal Product after update.

 cmbProductID_AfterUpdate

End Sub

Private Sub Form_Current()

 ' If we have a valid Category Description on this row...

 If Not IsNothing(Me.CategoryDescription) Then

 ' Then make sure the unbound combo is in sync.

 Me.cmbCategoryDescription = Me.CategoryDescription

 End If

 ' Requery the product list to match the current category

 Me.cmbProductID.Requery

 If (Me.Invoiced = True) Then

 Me.cmbProductID.Locked = True

 Me.cmbCategoryDescription.Locked = True

 Me.DateSold.Locked = True

 Me.SoldPrice.Locked = True

 Me.RegistrationCode.Locked = True

 Else

 Me.cmbProductID.Locked = False

 Me.cmbCategoryDescription.Locked = False

 Me.DateSold.Locked = False

 Me.SoldPrice.Locked = False

 Me.RegistrationCode.Locked = False

 End If

End Sub

Private Sub ProductName_GotFocus()

 ' We have some tricky "overlay" text boxes here that

 ' shouldn't get the focus. Move focus to the underlying

 ' combo box if that happens.

 Me.cmbProductID.SetFocus

End Sub

	 Linking	to	Related	Data	in	Another	Form	or	Report 1631

C
h

ap
te

r
25

As expected, the code re-queries the Product combo box whenever you pick a new cat-
egory (cmbCategoryDescription_AfterUpdate) or when you move to a new row (Form_
Current). It also keeps the unbound combo box in sync as you move from row to row so long
as the underlying record has a valid category. (A new record won’t have a related Category-
Description until you choose a Product ID, so the code doesn’t update the unbound combo
box on a new record.) Finally, if you try to click in CategoryDescription or ProductName, the
GotFocus code moves you to the underlying combo box where you belong. Why didn’t we
simply set the Enabled property for CategoryDescription and ProductName to No? If you
do that, then you can’t ever click into the category or product combo boxes because the
disabled text box overlaid on top would block you.

note
If you want to see what the filtered combo box looks like without the overlay, make a

backup copy of Contacts.accdb, open the fsubContactProducts form in Design view,

move the Category Description and Product Name text boxes down similar to Figure

25-19, and save the form. Now, open the frmContacts form and click the Products tab.

Linking to Related Data in Another Form or Report

Now that you know how to build a filter to limit what the user sees, you can probably sur-
mise that using a filter is a good way to open another form or report that displays informa-
tion related to the current record or set of filtered records in the current form. This section
shows you how to do this for both forms and reports. Later in this section, you will learn
how to use events in class modules to build sophisticated links.

Linking Forms Using a Filter

You’ve already seen the frmContactSummary form (see Figure 25-18) that uses a simple
filter to link from the record selected in that form to full details in the frmContacts form.
You can find similar code behind the fsubCompanyContacts form used as a subform in
the frmCompanies form. Figure 25-21 shows you the frmCompanies form and the Edit
This buttons we provided on the subform.

C
h

ap
ter 25

1632 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

Figure 25-21 You can provide a link from the Companies / Organizations form to details about a
particular contact.

To see the details for a particular contact, the user clicks the Edit This button on the cho-
sen contact record, and code opens the frmContacts form with that contact displayed. The
code behind the button is as follows:

Private Sub cmdEdit_Click()

 ' Open Contacts on the related record

 DoCmd.OpenForm "frmContacts", WhereCondition:="ContactID = " & Me.ContactID

End Sub

And code in the form’s Current event prevents the user from clicking the button when in a
new record that doesn’t have a contact ID, as shown here:

Private Sub Form_Current()

 ' Disable "edit this" if on a new row

 Me.cmdEdit.Enabled = Not (Me.NewRecord)

End Sub

Setting the button’s Enabled property to False causes it to appear dimmed, and the user
cannot click the button.

Linking to a Report Using a Filter

Now, let’s look at using the Filter technique to link to related information in a report. Open
the frmInvoices form in the Conrad Systems Contacts application (Contacts.accdb) and
move to an invoice that looks interesting (we used invoice number 50). Click Print to open

	 Linking	to	Related	Data	in	Another	Form	or	Report 1633

C
h

ap
te

r
25

the Print Invoices form (fdlgInvoicePrintOptions) that gives you the option to see the cur-
rent invoice formatted in a report, display all unprinted invoices in a report, display only
unprinted invoices for the current customer, or print all invoices currently shown in the
frmInvoices form. (You can use Search to filter the displayed invoices to the ones you want.)
Select the Current Invoice Only option and click Print again to see the invoice in a report,
as shown in Figure 25-22. (The figure shows you the sequence you see after clicking the
Print button on the frmInvoices form. The Print Invoices dialog box closes after opening the
report.)

Figure 25-22 You can ask to print only the current invoice in the Conrad Systems Contacts
database.

The code from the Click event of the Print button in the fdlgInvoicePrintOptions form is as
follows:

Private Sub cmdPrint_Click()

Dim strFilter As String, frm As Form

 ' Set an error trap

 On Error GoTo cmdPrint_Error

 ' Get a pointer to the Invoices form

 Set frm = Forms!frmInvoices

 Select Case Me.optFilterType.Value

C
h

ap
ter 25

1634 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

 ' Current Invoice

 Case 1

 ' Set filter to open Invoice report for current invoice only

 strFilter = "[InvoiceID] = " & frm!InvoiceID

 ' All unprinted invoices

 Case 2

 ' Set filter to open all unprinted invoices

 strFilter = "[InvoicePrinted] = 0"

 ' Unprinted invoices for current company

 Case 3

 ' Set filter to open unprinted invoices for current company

 strFilter = "[CompanyID] = " & frm!cmbCompanyID & _

 " AND [InvoicePrinted] = 0"

 ' Displayed invoices (if filter set on form)

 Case 4

 ' Check for a filter on the form

 If IsNothing(frm.Filter) Then

 ' Make sure they want to print all!

 If vbNo = MsgBox("Your selection will print all " & _

 "Invoices currently in the " & _

 "database. Are you sure you want to do this?", _

 vbQuestion + vbYesNo + vbDefaultButton2, _

 gstrAppTitle) Then

 Exit Sub

 End If

 ' Set "do them all" filter

 strFilter = "1 = 1"

 Else

 strFilter = frm.Filter

 End If

 End Select

 ' Hide me

 Me.Visible = False

 ' Have a filter now. Open the report on that filter

 DoCmd.OpenReport "rptInvoices", acViewPreview, , strFilter

 ' Update the Print flag for selected invoices

 CurrentDb.Execute "UPDATE tblInvoices SET InvoicePrinted = -1 WHERE " & _

 strFilter

 ' Refresh the form to show updated Printed status

 frm.Refresh

 ' Execute the Current event on the form to make sure it is locked correctly

 frm.Form_Current

cmdPrint_Exit:

 ' Clear the form object

 Set frm = Nothing

 ' Done

 DoCmd.Close acForm, Me.Name

 Exit Sub

cmdPrint_Error:

 ' Got an error

 ' If Cancel, that means the filter produced no Invoices

 If Err = errCancel Then

	 Linking	to	Related	Data	in	Another	Form	or	Report 1635

C
h

ap
te

r
25

 ' Exit - report will display "no records" message

 Resume cmdPrint_Exit

 End If

 ' Got unknown error - display and log

 MsgBox "Unexpected error while printing and updating print flags: " & _

 Err & ", " & _

 Error, vbCritical, gstrAppTitle

 ErrorLog Me.Name & "_Print", Err, Error

 Resume cmdPrint_Exit

End Sub

This first part of this procedure sets an object reference to the frmInvoices form to make it
easy to grab either the InvoiceID or the CompanyID and to reference properties and meth-
ods of the form’s object. The Select Case statement examines which option button the user
selected on fdlgInvoicePrintOption and builds the appropriate filter for the report. Notice
that if the user asks to print all the invoices currently displayed on the form, the code first
looks for a user-applied filter on the frmInvoices form. If the code finds no filter, it asks
if the user wants to print all invoices. The code uses the filter it built (or the current filter
on the frmInvoices form) to open the rptInvoices report in Print Preview. It also executes
a Structured Query Language (SQL) UPDATE statement to flag all the invoices the user
printed. If you look at code in the Current event of the frmInvoices form, you’ll find that it
locks all controls so that the user can’t update an invoice that has been printed.

Synchronizing Two Forms Using a Class Event

Sometimes it’s useful to give the user an option to open a pop-up form that displays addi-
tional details about some information displayed on another form. As you move from one
row to another in the main form, it would be nice if the form that displayed the additional
information stayed in sync.

Of course, the Current event of a form lets you know when you move to a new row. In the
Wedding List sample database built with macros (WeddingListMC.accdb), the macros do
some elaborate filtering to keep a pop-up form with additional city information in sync
with the main form. However, doing it with macros is the hard way!

The primary Wedding List sample application is in WeddingList.accdb, and it uses Visual
Basic to provide all the automation. With Visual Basic, we were able to declare and use a
custom event in the WeddingList form to signal the CityInformation form if it’s open and
responding to the events. In the Current event of the WeddingList form, we don’t have to
worry about whether the companion form is open. The code simply signals the event and
lets the City Information form worry about keeping in sync with the main form. (The user
can open the City Information form at any time by clicking the City Info button on the
Wedding List form.) You can see these two forms in action in Figure 25-23.

C
h

ap
ter 25

1636 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

Figure 25-23 The CityInformation form pops open over the main WeddingList form to display
additional information about the invitee’s home city.

Here’s the code from the WeddingList form class module that makes an event available to
signal the CityInformation form:

Option Compare Database

Option Explicit

' Event to signal we've moved to a new city

Public Event NewCity(varCityName As Variant)

' End of Declarations Section

Private Sub Form_Current()

On Error GoTo Form_Current_Err

 ' Signal the city form to move to this city

 ' and pass the city name to the event

 RaiseEvent NewCity(Me!City)

Form_Current_Exit:

 Exit Sub

Form_Current_Err:

 MsgBox Error$

 Resume Form_Current_Exit

End Sub

Private Sub cmdCity_Click()

On Error GoTo cmdCity_Click_Err

 ' If the city form is not open, open it

 If Not IsFormLoaded("CityInformation") Then

 DoCmd.OpenForm "CityInformation", acNormal, , , acFormReadOnly, acHidden

 ' Give the other form a chance to "hook" our event

	 Linking	to	Related	Data	in	Another	Form	or	Report 1637

C
h

ap
te

r
25

 DoEvents

 End If

 ' Signal the form we just opened

 RaiseEvent NewCity(Me!City)

cmdCity_Click_Exit:

 Exit Sub

cmdCity_Click_Err:

 MsgBox Error$

 Resume cmdCity_Click_Exit

End Sub

In the Declarations section of the module, we declared an event variable and indicated
that we’re going to pass a parameter (the city name) in the event. In the Form_Current
event procedure, the code uses RaiseEvent to pass the current city name to any other
module that’s listening. The code doesn’t have to worry about whether any other module
is interested in this event—it just signals the event when appropriate and then ends. (This
is not unlike how Access works. When a form moves to a new record, Access signals the
Form_Current event, but nothing happens unless you have written code to respond to the
event.) Note that the variable passed is declared as a Variant to handle the case when the user
moves to the new row at the end—the City control will be Null in that circumstance. A com-
mand button (cmdCity) on the WeddingList form allows the user to open the CityInformation
form. The Click event of that button opens the form hidden and uses the DoEvents function
to give the CityInformation form a chance to open and indicate that it wants to listen to
the NewCity event on the WeddingList form. After waiting for the CityInformation form to
finish processing, the code raises the event to notify that form about the city in the current
row.

The CityInformation form does all the work (when it’s open) to respond to the event sig-
naled by the WeddingList form and move to the correct row. The code is shown here:

Option Compare Database

Option Explicit

Dim WithEvents frmWedding As Form_WeddingList

' End of the Declarations Section

Private Sub Form_Load()

On Error GoTo Form_Load_Err

 ' If the wedding list form is open

 If IsLoaded("WeddingList") Then

 ' Then set to respond to the NewCity event

 Set frmWedding = Forms!WeddingList

 End If

Form_Load_Exit:

 Exit Sub

Form_Load_Err:

 MsgBox Error$

 Resume Form_Load_Exit

End Sub

C
h

ap
ter 25

1638 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

Private Sub frmWedding_NewCity(varCityName As Variant)

 ' The Wedding List form has asked us to move to a

 ' new city via the NewCity event

 On Error Resume Next

 If IsNothing(varCityName) Then

 ' Hide me if city name is empty

 Me.Visible = False

 Else

 ' Reveal me if there's a city name, and go

 ' find it

 Me.Visible = True

 Me.Recordset.FindFirst "[CityName] = """ & _

 varCityName & """"

 End If

End Sub

In the Declarations section, you can find an object variable called frmWedding that has a
data type equal to the class module name of the WeddingList form. The WithEvents key-
word indicates that code in this class module will respond to events signaled by any object
assigned to this variable. When the form opens, the Form_Load procedure checks to see
that the WeddingList form is open (just in case you opened this form by itself from the
Navigation pane). If the WeddingList form is open, it “hooks” the NewCity event in that
form by assigning it to the frmWedding variable.

The frmWedding_NewCity procedure responds to the NewCity event of the frmWedding
object. Once the Load event code establishes frmWedding as a pointer to the Wedding-
List form, this procedure runs whenever code in the class module for that form signals the
NewCity event with RaiseEvent.

The code in the event procedure is pretty simple. If the CityName parameter passed by
the event is “nothing” (Null or a zero-length string), the procedure hides the form because
there’s nothing to display. If the event passes a valid city name, the procedure uses the
FindFirst method of the Recordset object of this form to move to the correct city.

note
The Recordset property of a form in an Access database (.accdb file) returns a Data

Access Objects (DAO) recordset in Access 2010. For this reason, you should use a DAO

FindFirst method, not an ADO Find method, to locate rows in a form recordset.

	 Automating	Complex	Tasks 1639

C
h

ap
te

r
25

Automating Complex Tasks

The most complex Visual Basic code we’ve examined thus far in this chapter is the proce-
dure to build a search clause from the data you enter in the fdlgContactSearch form. Trust
us—we’ve only started to scratch the surface.

Triggering a Data Task from a Related Form

One of the more complex pieces of code in the Conrad Systems Contacts sample database
is triggered from the fsubContactEvents form that’s part of the frmContacts form. After
signing in correctly to the application, the user can open the frmContacts form, click the
Events tab, and add an event indicating the sale of a product. As soon as the user saves the
record, code behind the subform automatically adds the product to the contact, as shown
in Figure 25-24.

Figure 25-24 Logging a product sale event on the Events tab automatically sells the product to
the contact.

If you look behind the fsubContactEvents form, you’ll find event procedures that detect
when the user has created a sale event and execute an SQL INSERT command to create the
related product row. The code is as follows:

Option Compare Database

Option Explicit

' Flag to indicate auto-add of a product if new event requires it

Dim intProductAdd As Integer

' Place to store Company Name on a product add

Dim varCoName As Variant

C
h

ap
ter 25

1640 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

' End of the Declarations Section

Private Sub ContactEventTypeID_BeforeUpdate(Cancel As Integer)

 ' Did they pick an event that involves a software sale?

 ' NOTE: All columns in a combo box are TEXT

 If Me.ContactEventTypeID.Column(4) = "-1" Then

 ' Try to lookup this contact's Company Name

 varCoName = DLookup("CompanyName", "qryContactDefaultCompany", _

 "ContactID = " & Me.Parent.ContactID.Value)

 ' If not found, then disallow product sale

 If IsNothing(varCoName) Then

 MsgBox "You cannot sell a product to a Contact " & _

 "that does not have a " & _

 "related Company that is marked as the default for this Contact." & _

 " Press Esc to clear your edits and click on the Companies tab " & _

 "to define the default Company for this Contact.", _

 vbCritical, gstrAppTitle

 Cancel = True

 End If

 End If

End Sub

Private Sub Form_BeforeUpdate(Cancel As Integer)

 ' Did they pick an event that involves a software sale?

 ' NOTE: All columns in a combo box are TEXT

 If Me.ContactEventTypeID.Column(4) = "-1" Then

 ' Do this only if on a new record or they changed the EventID value

 If (Me.NewRecord) Or (Me.ContactEventTypeID <> _

 Me.ContactEventTypeID.OldValue) Then

 ' Set the add product flag

 '- product added by AfterUpdate code for safety

 intProductAdd = True

 End If

 End If

End Sub

Private Sub Form_AfterUpdate()

Dim strSQL As String, curPrice As Currency,

Dim lngProduct As Long, varCoID As Variant

Dim rst As DAO.Recordset, strPreReqName As String

 ' See if we need to auto-add a product

 If (intProductAdd = True) Then

 ' Reset so we only do this once

 intProductAdd = False

 ' Set an error trap

 On Error GoTo Insert_Err

 ' Save the Product ID

 lngProduct = Me.ContactEventTypeID.Column(5)

 ' Fetch the product record

 Set rst = CurrentDb.OpenRecordset("SELECT * FROM tblProducts " & _

 "WHERE ProductID = " & lngProduct)

 ' Make sure we got a record

	 Automating	Complex	Tasks 1641

C
h

ap
te

r
25

 If rst.EOF Then

 MsgBox "Could not find the product record for this sales event." & _

 " Auto-create of " & _

 "product record for this contact has failed.", _

 vbCritical, gstrAppTitle

 rst.Close

 Set rst = Nothing

 GoTo Insert_Exit

 End If

 ' Check for prerequisite product

 If Not IsNull(rst!PreRequisite) Then

 ' Make sure contact owns the prerequisite product

 If IsNull(DLookup("ProductID", "tblContactProducts", _

 "ProductID = " & rst!PreRequisite & " And ContactID = " & _

 Me.Parent.ContactID)) Then

 ' Get the name of the prerequisite

 strPreReqName = DLookup("ProductName", "tblProducts", _

 "ProductID = " & rst!PreRequisite)

 ' Display error

 MsgBox "This contact must own prerequisite product " & _

 strPreReqName & " before you can sell this product." & _

 vbCrLf & vbCrLf & _

 "Auto-create of product record for this contact has failed", _

 vbCritical, gstrAppTitle

 ' Bail

 rst.Close

 Set rst = Nothing

 GoTo Insert_Exit

 End If

 End If

 ' Save the price

 curPrice = rst!UnitPrice

 ' Done with the record - close it

 rst.Close

 Set rst = Nothing

 ' Now, find the default company for this contact

 varCoID = DLookup("CompanyID", "qryContactDefaultCompany", _

 "ContactID = " & Me.Parent.ContactID.Value)

 ' If not found, then disallow product sale

 If IsNothing(varCoID) Then

 MsgBox "You cannot sell a product to a Contact who does not have a " & _

 "related Company that is marked as the default for this Contact.", _

 vbCritical, gstrAppTitle

 GoTo Insert_Exit

 End If

 ' Set up the INSERT command

 strSQL = "INSERT INTO tblContactProducts " & _

 "(CompanyID, ContactID, ProductID, DateSold, SoldPrice) " & _

 "VALUES(" & varCoID & ", " & Me.Parent.ContactID & ", " & _

 lngProduct & ", #" & _

 DateValue(Format(Me.ContactDateTime, "mm/dd/yyyy")) & "#, " & _

 curPrice & ")"

C
h

ap
ter 25

1642 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

 ' Attempt to insert the Product row

 CurrentDb.Execute strSQL, dbFailOnError

 ' Got a good add - inform the user

 MsgBox "The product you sold with this event " & _

 "has been automatically added " & _

 "to the product list for this user. " & _

 "Click the Products tab to verify the price.", _

 vbInformation, gstrAppTitle

 ' Requery the other subform to get the new row there

 Me.Parent.fsubContactProducts.Requery

 End If

Insert_Exit:

 Exit Sub

Insert_Err:

 ' Was error a duplicate row?

 If Err = errDuplicate Then

 MsgBox "CSD Contacts attempted to auto-add " & _

 "the product that you just indicated " & _

 "that you sold, but the Contact appears " & _

 "to already own this product. Be sure " & _

 "to verify that you haven't tried to sell the same product twice.", _

 vbCritical, gstrAppTitle

 Else

 MsgBox "There was an error attempting to auto-add " & _

 "the product you just sold: " & _

 Err & ", " & Error, vbCritical, gstrAppTitle

 ' Log the error

 ErrorLog Me.Name & "_FormAfterUpdate", Err, Error

 End If

 Resume Insert_Exit

End Sub

In the Declarations section of the module, you can find two variables that the event proce-
dures use to pass information between events. (If you declare the variables inside one of the
procedures, only that procedure can use the variables.) The BeforeUpdate event procedure
for the contact event type checks to see if the event is a product sale (by examining one
of the hidden columns in the combo box row source). If the user is trying to log a product
sale and this particular contact doesn’t have a default company defined, the code displays
an error message and won’t let the user save that event type. Remember, a record in the
tblContactProducts table must have a CompanyID as well as a ContactID.

When the user attempts to save a new or changed event record, Access runs the form’s
BeforeUpdate event procedure. This code again checks to see if the record about to be
saved is for a product sale. However, if this isn’t a new record or the user is saving an old
event record but didn’t change the event type, the code exits because it doesn’t want to
add a product record twice. (If this is an existing record and the event type didn’t change,
this code probably created the companion contact product record the first time the user
saved the record.) The code could insert the record into tblContactProducts at this point,

	 Automating	Complex	Tasks 1643

C
h

ap
te

r
25

but, as you learned in Chapter 19, the record isn’t really saved until after the BeforeUpdate
event completes. Therefore, this code sets the module variable to tell the form’s AfterUpdate
event procedure to perform that task after Access has saved the changed record.

After Access saves the new or changed event record, it runs the form’s AfterUpdate event
procedure. If the code in BeforeUpdate indicated that a product insert is required by set-
ting the module intProductAdd variable to True, this code sets up to add the new record. It
opens a recordset on the tblProducts table for the product that was just sold so that it can
get the product price and check for any prerequisite product. If the product has a prerequi-
site but this contact doesn’t own the prerequisite, the code displays an error message and
exits.

Although previous code checked to see that this contact has a default CompanyID, this
code checks again and exits if it can’t find one. After the code has completed all checks
and has the price and company ID information it needs, it inserts the new record into the
tblContactProducts table using SQL. Notice that at the bottom of the procedure, you can
find error-trapping code that tests to see if the insert caused a duplicate record error.

Linking to a Related Task

Let’s switch to the Housing Reservations application (Housing.accdb) and take a look at
the process for confirming a room for a reservation request. To see this in action, you must
start the application by opening the frmSplash form, and then sign on as an administrator
(Conrad, Jeff; Richins, Jack S.; Schare, Gary; or Viescas, John L.) using password as the pass-
word. On the main switchboard, click Reservation Requests, and then click View Unbooked
in the Edit Reservation Requests dialog box. You’ll see the Unbooked Requests form
(frmUnbookedRequests), as shown in Figure 25-25.

note
The query that provides the records displayed in the frmUnbookedRequests form

includes criteria to exclude any requests that have a check-in date earlier than today’s

date. (It doesn’t make sense to confirm a reservation request for a date in the past.) The

latest requested check-in date in the original database is March 11, 2011, so you will

probably see an error message when you attempt to look at unbooked requests. You

can use the zfrmLoadData form to load new reservations and requests that are more

current into the qryUnbookedRequests query not to eliminate old requests, to be able

to see how the frmUnbookedRequests form works.

C
h

ap
ter 25

1644 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

Figure 25-25 The Unbooked Requests form lets administrators view pending requests and start
the booking process.

Earlier in this chapter, in “Linking to Related Data in Another Form or Report” on page 1631,
you learned one technique for using a command button to link to a related task. The key
task in the Housing Reservations application for the housing manager (or any administra-
tor) is to assign a room and book a reservation for pending requests. When you click one
of the Book buttons on the Unbooked Requests form, code behind the form opens a form
to show the manager the rooms that match the request and aren’t booked for the time
span requested. If you click the request from Kirk DeGrasse for a room with a king bed
from December 1, 2010, to December 19, 2010, you’ll see the list of available rooms in the
fdlgAvailableRooms form, as shown in Figure 25-26.

	 Automating	Complex	Tasks 1645

C
h

ap
te

r
25

Figure 25-26 The fdlgAvailableRooms form shows a list of available rooms matching the
selected reservation request.

The code behind the Book button on the frmUnbookedRequests form is as follows:

Private Sub cmdBook_Click()

 ' Make sure no changes are pending

 If Me.Dirty Then Me.Dirty = False

 ' Open the available rooms form - hidden, dialog

 ' and check if any available

 DoCmd.OpenForm "fdlgAvailableRooms", _

 WhereCondition:="Smoking = " & Me.Smoking, _

 WindowMode:=acHidden

 If Forms!fdlgAvailableRooms.RecordsetClone.RecordCount = 0 Then

 MsgBox "There are no available rooms of this " & _

 "type for the dates requested." & _

 vbCrLf & vbCrLf & _

 "You can change the Room Type or dates and try again.", _

 vbInformation, gstrAppTitle

 DoCmd.Close acForm, "fdlgAvailableRooms"

 Exit Sub

 End If

 ' Show the available rooms

 ' - form will call our public sub to create the res.

 Forms!fdlgAvailableRooms.Visible = True

End Sub

C
h

ap
ter 25

1646 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

The record source of the fdlgAvailableRooms form is a parameter query that filters out
rooms already booked for the specified dates and includes the remaining rooms that match
the requested room type. The code behind the Book button adds a filter for the smoking
or nonsmoking request because the room type doesn’t include this information, but each
specific available room does. Behind the Pick This button on the fdlgAvailableRooms form,
you can find the following code:

Private Sub cmdPick_Click()

Dim intReturn As Integer

 ' Call the build a reservation proc in the calling form

 intReturn = Form_frmUnbookedRequests.Bookit(Me.FacilityID, Me.RoomNumber, _

 Me.DailyRate, Me.WeeklyRate)

 If (intReturn = True) Then

 MsgBox "Booked!", vbExclamation, gstrAppTitle

 Else

 MsgBox "Room booking failed. Please try again.", _

 vbCritical, gstrAppTitle

 End If

 DoCmd.Close acForm, Me.Name

End Sub

Can you figure out what’s happening? Back in frmUnbookedRequests, there’s a public
function called Bookit that this code calls as a method of that form. It passes the critical
FacilityID, RoomNumber, DailyRate, and WeeklyRate fields to complete the booking. Back in
frmUnbookedRequests, the code in the public function is as follows:

Public Function Bookit(lngFacility As Long, lngRoom As Long, _

 curDaily As Currency, curWeekly As Currency) As Integer

' Sub called as a method by fdlgAvailableRooms to book the selected room

' Caller passes in selected Facility, Room number, and rates

Dim db As DAO.Database, rstRes As DAO.Recordset

Dim varResNum As Variant, strSQL As String, intTrans As Integer

 ' Set error trap

 On Error GoTo BookIt_Err

 ' Get a pointer to this database

 Set db = CurrentDb

 ' Open the reservations table for insert

 Set rstRes = db.OpenRecordset("tblReservations", _

 dbOpenDynaset, dbAppendOnly)

 ' Start a transaction

 BeginTrans

 intTrans = True

 ' Get the next available reservation number

 varResNum = DMax("ReservationID", "tblReservations")

 If IsNull(varResNum) Then varResNum = 0

 varResNum = varResNum + 1

 ' Update the current row

 strSQL = "UPDATE tblReservationRequests SET ReservationID = " & _

 varResNum & " WHERE RequestID = " & Me.RequestID

 db.Execute strSQL, dbFailOnError

	 Automating	Complex	Tasks 1647

C
h

ap
te

r
25

 ' Book it!

 rstRes.AddNew

 ' Copy reservation ID

 rstRes!ReservationID = varResNum

 ' Copy employee number

 rstRes!EmployeeNumber = Me.EmployeeNumber

 ' Copy facility ID from the room we picked

 rstRes!FacilityID = lngFacility

 ' .. and room number

 rstRes!RoomNumber = lngRoom

 ' Set reservation date = today

 rstRes!ReservationDate = Date

 ' Copy check-in, check-out, and notes

 rstRes!CheckInDate = Me.CheckInDate

 rstRes!CheckOutDate = Me.CheckOutDate

 rstRes!Notes = Me.Notes

 ' Copy daily and weekly rates

 rstRes!DailyRate = curDaily

 rstRes!WeeklyRate = curWeekly

 ' Calculate the total charge

 rstRes!TotalCharge = ((Int(Me.CheckOutDate - Me.CheckInDate) \ 7) * _

 curWeekly) + _

 ((Int(Me.CheckOutDate - Me.CheckInDate) Mod 7) * _

 curDaily)

 ' Save the Reservation Row

 rstRes.Update

 ' Commit the transaction

 CommitTrans

 intTrans = False

 ' Clean up

 rstRes.Close

 Set rstRes = Nothing

 Set db = Nothing

 ' Requery this form to remove the booked row

 Me.Requery

 ' Return success

 Bookit = True

BookIt_Exit:

 Exit Function

BookIt_Err:

 MsgBox "Unexpected Error: " & Err & ", " & Error, vbCritical, gstrAppTitle

 ErrorLog Me.Name & "_Bookit", Err, Error

 Bookit = False

 If (intTrans = True) Then Rollback

 Resume BookIt_Exit

End Function

It makes sense to have the actual booking code back in the frmUnbookedRequests form
because the row the code needs to insert into tblReservations needs several fields from
the current request record (EmployeeNumber, CheckInDate, CheckOutDate, and Notes). The
code starts a transaction because it must simultaneously enter a ReservationID in both the

C
h

ap
ter 25

1648 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

tblReservationRequests table and the tblReservations table. If either fails, the error-trapping
code rolls back both updates. Notice that the code opens the tblReservations table for
append only to make the insert of the new reservation more efficient.

Calculating a Stored Value

If you follow the rules of good table design (see Article 1 on the companion CD), you know
that storing a calculated value in a table isn’t usually a good idea because you must write
code to maintain the value. But sometimes, in a very large database, you need to calculate
and save a value to improve performance for searching and reporting. The Housing Res-
ervations application isn’t all that large—but it could be in real life. We chose to store the
calculated total charge for each reservation to show you some of the steps you must take
to maintain a value like this.

Users can create and edit reservation requests, but the creation of the reservation records
that contain the calculated value is controlled entirely by code, so maintaining the cal-
culated TotalCharge value in this application is simple. You’ve already seen the one place
where a new reservation record is created—in the public Bookit function in the frmUn-
bookedRequests form. The little piece of code that calculates the value is as follows:

 ' Calculate the total charge

 rstRes!TotalCharge = ((Int(Me.CheckOutDate - Me.CheckInDate) \ 7) * _

 curWeekly) + _

 ((Int(Me.CheckOutDate - Me.CheckInDate) Mod 7) * _

 curDaily)

However, in many applications, you may not be able to control the editing of a calculated
value this closely. You need to carefully consider the ramifications of saving a calculated
value in your table and perhaps write code that an administrator can run to periodically
verify that any saved calculated value hasn’t become out of sync with the other fields used
to perform the calculation.

note
Access 2010 includes a new Calculated data type that you can use for storing calculated

values, but we wanted to show you in this section how you can achieve this functional-

ity through Visual Basic. You need to realize, however, that if you use Visual Basic to

manage storing a calculated value, you cannot enforce the calculation if a user changes

the data directly in a table or query datasheet. If you use a Calculated data type, Access

controls the calculated value at the engine level.

	 Automating	Reports 1649

C
h

ap
te

r
25

Automating Reports

In a typical application, you’ll probably spend 80 to 90 percent of your coding effort in
event procedures for your forms. That doesn’t mean that there aren’t many tasks that you
can automate on reports. This next section shows you just a few of the possibilities.

Allowing for Used Mailing Labels

Have you ever wanted to create a mailing label report and come up with a way to use
up the remaining labels on a partially used page? You can find the answer in the Conrad
Systems Contacts sample application (Contacts.accdb). Let’s say you want to send a promo-
tional mailing to all contacts who own the Single User product, offering them an upgrade
to Multi-User. Open the main switchboard form (frmMain), click Contacts, and then click
Search in the Select Contacts pop-up window. Perform a search for all contacts who own
the BO$$ Single User product—you should find eight records in the original sample data.
(Click No when the application asks you if you want to see a summary list first.) Click the
Print button on the frmContacts form, select Avery 5163 Labels (2" × 4"), ask for the report
to include the Displayed Contacts, and specify that your first page of labels is missing three
used ones. Your screen should look like Figure 25-27 at this point.

Figure 25-27 You can request mailing labels and specify that some labels have already been
used on the first page.

Click the Print button in the dialog box, and you should see the labels print—but with three
blank spaces first to avoid the used ones—as shown in Figure 25-28.

C
h

ap
ter 25

1650 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

Figure 25-28 The labels print and avoid the used ones.

You can find some interesting code in the AfterUpdate event of the option group to choose
the report type in the fdlgContactPrintOptions form. The code is as follows:

Private Sub optReportType_AfterUpdate()

 ' Figure out whether to show the "used labels" combo

 Select Case Me.optReportType

 Case 1

 ' Show the used labels combo

 Me.cmbUsedLabels.Visible = True

 ' Hide the number of days option group

 Me.optDisplay.Visible = False

 ' up to 29 used labels on 5160

 Me.cmbUsedLabels.RowSource = "0;1;2;3;4;5;6;7;8;9;10;11;12;13;" & _

 "14;15;16;17;18;19;20;21;22;23;24;25;26;27;28;29"

 Case 2

 ' Show the used labels combo

 Me.cmbUsedLabels.Visible = True

 ' Hide the number of days option group

 Me.optDisplay.Visible = False

 ' up to 9 used labels on 5163

 Me.cmbUsedLabels.RowSource = "0;1;2;3;4;5;6;7;8;9"

 Case 3, 4

 ' Don't need the combo for Envelopes and contact list

 Me.cmbUsedLabels.Visible = False

 ' .. or the number of days filter

 Me.optDisplay.Visible = False

	 Automating	Reports 1651

C
h

ap
te

r
25

 Case 5, 6

 ' Don't need the used labels combo for contact events or products

 Me.cmbUsedLabels.Visible = False

 ' Do need the day filter

 Me.optDisplay.Visible = True

 End Select

End Sub

You can have up to 29 used labels when printing on Avery 5160 (1" × 2.625") label paper.
You can have up to 9 used labels when printing on Avery 5163 (2" × 4") label paper. The
combo box that you can use to indicate the number of used labels has a Value List as
its row source type, so the code sets up the appropriate list based on the label type you
choose.

However, the real trick to leaving blank spaces on the report is in the query that is the
record source for the rptContactLabels5163 report—qryRptContactLabels. In the sample
database, you can find a table, ztblLabelSpace, that has 30 records, and each record has
one field containing the values 1 through 30. The SQL for the qryRptContactLabels query is
as follows:

PARAMETERS [Forms]![fdlgContactPrintOptions]![cmbUsedLabels] Long;

SELECT "" As Contact, "" As CompanyName, "" As Address, "" As CSZ,

Null As ContactID, "" As Zip, "" As LastName, "" As FirstName,

"" As ContactType, "" As WorkCity, "" As WorkStateOrProvince,

"" As HomeCity, "" As HomeStateOrProvince, 0 As Inactive

FROM ztblLabelSpace

WHERE ID <= [Forms]![fdlgContactPrintOptions]![cmbUsedLabels]

UNION ALL

SELECT ([tblContacts].[Title]+" ") & [tblContacts].[FirstName] & " " &

([tblContacts].[MiddleInit]+". ") & [tblContacts].[LastName] &

(", "+[tblContacts].[Suffix]) AS Contact,

Choose([tblContacts].[DefaultAddress], qryContactDefaultCompany.CompanyName,

Null) As CompanyName,

Choose([tblContacts].[DefaultAddress],[tblContacts].[WorkAddress],

[tblContacts].[HomeAddress]) AS Address,

Choose([tblContacts].[DefaultAddress],[tblContacts].[WorkCity] & ", " &

[tblContacts].[WorkStateOrProvince] & " " & [tblContacts].[WorkPostalCode],

[tblContacts].[HomeCity] & ", " & [tblContacts].[HomeStateOrProvince]

& " " & [tblContacts].[HomePostalCode]) AS CSZ,

tblContacts.ContactID,

Choose([tblContacts].[DefaultAddress],[tblContacts].[WorkPostalCode],

[tblContacts].[HomePostalCode]) AS Zip,

tblContacts.LastName, tblContacts.FirstName, tblContacts.ContactType,

tblContacts.WorkCity, tblContacts.WorkStateOrProvince, tblContacts.HomeCity,

tblContacts.HomeStateOrProvince, tblContacts.Inactive

FROM tblContacts

LEFT JOIN qryContactDefaultCompany

ON tblContacts.ContactID = qryContactDefaultCompany.ContactID;

C
h

ap
ter 25

1652 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

The first SELECT statement (up to the UNION ALL) creates dummy blank columns for each
field used by the report and uses the ztblLabelSpace table and a filter on the combo box in
the fdlgContactPrintOptions form (see Figure 25-27) to return the correct number of blank
rows. The query uses a UNION with the actual query that returns contact data to display
information on the report.

Because this label report prints a logo, there’s one final bit of code that keeps this from
appearing on the blank labels in the rptContactLabels5163 report. The code is as follows:

Private Sub Detail_Format(Cancel As Integer, FormatCount As Integer)

 ' Don't print the return logo if this is a "spacer" record

 If IsNull(Me.ContactID) Then

 Me.imgCSD.Visible = False

 Else

 Me.imgCSD.Visible = True

 End If

End Sub

The Format event of the Detail section depends on the fact that the ContactID in the
“spacer” rows is Null. When printing a blank row for spacing, the code hides the logo.

Drawing on a Report

When you want to draw a border around a report print area, sometimes you’ll need to
write some code to ask Access to draw lines or a border after placing the data on the page.
This is especially true if one or more controls on the report can grow to accommodate a
large amount of data.

We used the Report Wizard to create the basic rptContacts report using the Justified
format. (We customized the report after the wizard finished.) The wizard created a fairly
decent layout with a border around all the fields, but it didn’t make the text box to display
notes large enough to display the text for all contacts. Figure 25-29 shows you the report
displaying John’s contact record from the database. You can see that the notes about John
are cut off at the bottom.

	 Automating	Reports 1653

C
h

ap
te

r
25

Figure 25-29 This report uses a border around the data, but one of the text boxes isn’t large
enough to display all the text.

It’s simple enough to change the Can Grow property of the text box to Yes to allow it to
expand, but the rectangle control used to draw the border around all the text doesn’t also
have a Can Grow property. The solution is to remove the rectangle and use the Line method of
the Report object in the report’s Format event of the Detail section to get the job done. Here is
the code that you can find in this event procedure in the rptContactsExpandNotes report:

Private Sub Detail_Print(Cancel As Integer, PrintCount As Integer)

Dim sngX1 As Single, sngY1 As Single

Dim sngX2 As Single, sngY2 As Single, lngColor As Long

 ' Set coordinates

 sngX1 = 120

 sngY1 = 120

 sngX2 = 9120

 ' Adjust the height if Notes has expanded

 sngY2 = 7680 + (Me.Notes.Height - 2565)

 ' Draw the big box around the data

 ' Set width of the line to 8 pixels

 Me.DrawWidth = 8

 ' Draw the rectangle around the expanded fields

 Me.Line Step(sngX1, sngY1)-Step(sngX2, sngY2), RGB(0, 0, 197), B

End Sub

C
h

ap
ter 25

1654 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

The Line method accepts three parameters:

1. The upper-left and lower-right corners of the line or box you want to draw, expressed
in twips. (There are 1440 twips per inch.) Include the Step keyword to indicate that
the coordinates are relative to the current graphics position, which always starts at 0,
0. When you use Step for the second coordinate, you provide values relative to those
you specified in the first set of coordinates.

2. The color you want to draw the line or box, expressed as a red-green-blue (RGB)
value. (The RGB function is handy for this.)

3. An indicator to ask for a line, a rectangle, or a filled rectangle. No indicator draws
a line. Include the letter B to ask for a rectangle. Add the letter F to ask for a filled
rectangle.

Before you call the Line method, you can set the DrawWidth property of the report to set
the width of the line. (The default width is in pixels.)

The only tricky part is figuring out the coordinates. On the original report, the rectangle
starts at 0.0833 inches in from the left and down from the top, so multiplying that value by
1440 twips per inch gave us the starting values of 120 down from the top and 120 in from
the left edge. The width of the rectangle needs to be about 6.3333 inches, so the relative
coordinate for the upper-right corner is 6.3333 × 1440, or about 9,120 twips. The height
of the rectangle needs to be at least 5.3333 inches, or about 7,680 twips, and the height
needs to be adjusted for the amount that the Notes text box expands. The Notes text box is
designed to be a minimum of 1.7813 inches high, or 2,565 twips, so subtracting 2,565 from
the actual height of the Notes text box when it’s formatted (the Height property is also in
twips) gives you the amount you need to add to the original height of the rectangle.

If you open the rptContactsExpandNotes report and move to John’s record on page 32,
you’ll see that the rectangle now expands nicely to fit around the Notes text box that grew
to display all the text in John’s record. Figure 25-30 shows you the report with the rectangle
drawn by the code behind the report.

	 Automating	Reports 1655

C
h

ap
te

r
25

Figure 25-30 Code in the rptContactsExpandNotes report draws a custom rectangle around
expanded text.

INSIDE OUT Exploring Other Reports That Use the Line Method

To see more interesting examples of using the Line method to dynamically draw lines

on a report, you can also explore the rptLaborPlan, rptLaborPlanIndividual, and rpt-

WeeklyPostedSchedule client reports in the Back Office Software System web database.

You might find it easier to explore these reports if you use the BOSSDataCopy.accdb

database because the main BOSS.accdb database uses custom ribbons.

Dynamically Filtering a Report When It Opens

The two most common ways to open a report filtered to print specific records are:

●● Use the WhereCondition parameter with the DoCmd.OpenReport method (usually in
code in an event procedure behind a form) to specify a filter.

●● Base the report on a parameter query that prompts the user for the filter values or
reference control values on an open form.

C
h

ap
ter 25

1656 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

In some cases, you might design a report that you intend to open from several locations in
your application, and you can’t guarantee that the form to provide filter values will always
be open. Alternatively, you might have multiple reports that need the same filter criteria,
and you don’t want to have to design a separate filter form for each report. To solve these
problems, you can add code to the report to have it open its own filter dialog box from
the report’s Open event procedure. Let’s go back to the Housing Reservations application
(Housing.accdb) to take a look at a report that uses this technique.

In the Housing Reservations application, both the rptFacilityOccupancy report and the
rptFacilityRevenueChart report depend on a single form, fdlgReportDateRange, to provide
a starting and ending date for the report. To see the rptFacilityOccupancy report, you can
start the application by opening the frmSplash form, sign in as an administrator (Conrad,
Jeff; Richins, Jack S.; Schare, Gary; or Viescas, John L.), click the Reports button on the main
switchboard, and then click the Reservations button in the Facilities category on the Reports
switchboard. (You can also simply open the report directly from the Navigation pane.)
When you open the report, you’ll see a dialog box prompting you for the dates you want,
as shown in Figure 25-31.

Figure 25-31 A parameter dialog box opens from the report that you asked to view.

Unless you’ve reloaded the sample data, the database contains reservations from August
24, 2010 through March 22, 2011, so asking for a report for October, November, and
December should work nicely. Enter the dates you want and click Go to see the report, as
shown in Figure 25-32.

	 Automating	Reports 1657

C
h

ap
te

r
25

Figure 25-32 The Facility Occupancy report uses a shared filter dialog box to let you specify a
date range.

The report has a parameter query in its record source, and the parameters point to the from
and to dates on the fdlgReportDateRange form shown in Figure 25-31. However, the code
behind the Reservations button on the Reports switchboard opens the report unfiltered. It’s
the code in the report’s Open event procedure that opens the dialog box so that the query
in the record source can find the parameters it needs. The code is as follows:

Private Sub Report_Open(Cancel As Integer)

 ' Open the date range dialog

 ' .. report record source is filtered on this!

 DoCmd.OpenForm "fdlgReportDateRange", WindowMode:=acDialog

End Sub

This works because a Report object doesn’t attempt to open the record source for the
report until after the code in the Open event completes. Therefore, you can place code
in the Open event to dynamically change the record source of the report or, as in this
example, open a form in Dialog mode to wait until that form closes or hides itself. The code
behind the dialog form, fdlgReportDateRange, is as follows:

Private Sub Form_Load()

 ' If passed a parameter, reset defaults to last quarter

 If Not IsNothing(Me.OpenArgs) Then

 ' Set the start default to first day of previous quarter

 Me.txtFromDate.DefaultValue = "#" & _

 DateSerial(Year(Date), ((Month(Date) - 1) \ 3) * 3 - 2, 1) & "#"

 ' Set the end default to last day of previous quarter

C
h

ap
ter 25

1658 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

 Me.txtToDate.DefaultValue = "#" & _

 DateSerial(Year(Date), ((Month(Date) - 1) \ 3) * 3 + 1, 1) & "#"

 End If

End Sub

Private Sub cmdGo_Click()

 ' Hide me so report can continue

 Me.Visible = False

End Sub

The code in the form’s Load event checks to see if the report that is opening the form has
passed a parameter in the OpenArgs property. If so, the code resets the default values for
the two date text boxes to the start and end dates of the previous quarter. If you look at
the code behind the rptFacilityRevenueChart report, you’ll find that this report asks for
the different default values, but it’s the code in the Click event of the Go command button
that gets things rolling. The code behind the form responds to your clicking the Go button
to hide itself so that the report can continue. It can’t close because the record source of
the report depends on the two date parameters. As noted earlier, hiding this form opened
in Dialog mode allows the code in the Open event of the report to finish, which lets the
report finally load its record source. As you might suspect, there’s code in the Close event
of the report to close the parameter form when you close the report or the report finishes
printing.

Calling Named Data Macros

As you learned in Chapter 7, “Creating Table Data Macros,” Access 2010 now includes data
macros that you can use to attach logic at the data layer. When you attach data macros
to table events, Access only fires those data macros in response to data events, such as
inserting a new record, updating values in an existing record, or deleting records. You can
also create a named data macro attached to the table itself. A named data macro, in many
ways, is similar to a public procedure or function in a standard code module—you can call a
named data macro from macros and Visual Basic to execute the actions defined in the data
macro and return results to the caller if you want.

In the Back Office Software System web database, we defined many named data mac-
ros attached to the web tables to help automate the application. In the tblErrorLog table
included in this web database, we log application errors that occur when users are work-
ing with the database in Access client. Attached to this table is a named data macro,
called LogError, that you studied in Chapter 7. As you might recall, this named data macro
includes six parameters that we use to fill in the data we want to record about the error in
the table. We use the CreateRecord data block to create a new record in the tblErrorLog
table and then use the SetField action and pass in the data from the parameters into the
appropriate fields.

	 Calling	Named	Data	Macros 1659

C
h

ap
te

r
25

Open the BOSSDataCopy.accdb web database and we’ll show you how we call this named
data macro from Visual Basic. If you open any client form or client report in this web data-
base, you’ll notice that each Visual Basic procedure or function includes an error handler
label. If the procedure or function encounters an error, we call a public procedure in a
standard module to log the error details. A code example of this call at the form and report
level is as follows:

ErrorHandler "frmDailyLaborPlans", "cmdClearList_Click", Err.Number, Err.Description

As you can see, we call a public procedure called ErrorHandler that includes four param-
eters—the name of the object where the error occurred, the specific procedure that
generated the error, the error number that Access returned, and the description of the
application error. Open the modErrorTrap module in Design view from the Navigation pane
and let’s take a look at this procedure. The code in the public ErrorHandler procedure in
modErrorTrap is as follows:

Public Sub ErrorHandler(strModule As String, _

 strProcedure As String, _

 lngErrorNumber As Long, _

 strErrorString As String)

' For this procedure, continue on if any errors occur

On Error Resume Next

 Dim strMessage As String

 Dim datCurrentTime As Date

 Dim strUser As String

 ' Current date and time

 datCurrentTime = Now()

 ' If we can't determine the current web user who

 ' triggered the error, then use the legacy CurrentUser

 ' function to log user name

 If IsNull(CurrentWebUser(acWebUserName)) Then

 strUser = CurrentUser()

 Else

 strUser = CurrentWebUser(acWebUserName)

 End If

 ' The second action argument of DoCmd.SetParameter is an expression.

 ' If the second argument is a string,

 ' you need to escape the string in double quotes.

 DoCmd.SetParameter "ParamModule", "'" & strModule & "'"

 DoCmd.SetParameter "ParamProcedure", "'" & strProcedure & "'"

 DoCmd.SetParameter "ParamErrorNumber", lngErrorNumber

 DoCmd.SetParameter "ParamErrorString", "'" & strErrorString & "'"

 DoCmd.SetParameter "ParamUser", "'" & strUser & "'"

 DoCmd.SetParameter "ParamTime", "#" & datCurrentTime & "#"

 ' Run the named data macro to log this error event to the error table

 DoCmd.RunDataMacro "tblErrorLog.LogError"

 ' Build up a custom message to display to the user

 strMessage = "There was an unexpected error in your application." & vbCr & vbCr

 strMessage = strMessage & "Error Details:" & vbCr

 strMessage = strMessage & "Module : " & strModule & vbCr

C
h

ap
ter 25

1660 Chapter	25	 Automating	Your	Application	with	Visual	Basic	

 strMessage = strMessage & "Procedure : " & strProcedure & vbCr

 strMessage = strMessage & "Error : " & lngErrorNumber & vbCr & vbCr

 strMessage = strMessage & "Please notify Technical Support of this error." _

 & vbCr & vbCr

 strMessage = strMessage & "Would you like to view this report in order to print?"

 ' View report if requested by user

 If MsgBox(strMessage, vbCritical + vbYesNo + vbDefaultButton1, _

 "BOSS - Unexpected Error") = vbYes Then

 DoCmd.OpenReport "rptErrorLog", acViewPreview, , _

 "ErrorTime=#" & datCurrentTime & "#"

 End If

End Sub

In the first part of this procedure, the code fetches the current system date and time and
currently logged in user name to record into the tblErrorLog table. Next, the code needs to
run a DoCmd.SetParameter method for each parameter we defined in the data macro. The
first action argument of the SetParameter action is the name of the parameter defined in
the named data macro and the second action argument is the data to pass into the param-
eter. As you can see in the code, we list each parameter name and the variable that holds
the data we want to record. Note that if the data you are passing in is a string, you’ll need
to escape the string in quote marks. After the code sets all the parameters, we’re ready to
call the named data macro by using the DoCmd.RunDataMacro method. In the argument
for the RunDataMacro method, you need to supply the name of the table, a period, and
then the name of the named data macro attached to the table. You also need to enclose
the argument in double quotation marks even if your table and named data macro does
not have any spaces. The last part of this code creates a custom message to display to the
user and asks if the user wants to print out the error report. The completed code procedure
logs any application errors encountered in Access client by calling our named data macro.

If you call a named data macro that returns data to the caller using a ReturnVar, you can
use the value in the ReturnVar variable in your Visual Basic code. For example, if you
wanted to use Visual Basic to get the current version number of the BOSS application and
display the value in a message box, you could use the sample TestReturnVar procedure in
the modErrorTrap module:

Public Sub TestReturnVar()

 ' Set the parameter of ParamValue to Version

 DoCmd.SetParameter "ParamValue", """Version"""

 ' Run the named data macro to get the current version of BOSS

 DoCmd.RunDataMacro "tblSettings.GetCurrentValue"

 ' Display the current version of BOSS in a message box

 ' Use the ReturnVar called RVVersion in the message box

 MsgBox "The current version number of BOSS is: " & _

 ReturnVars!RVVersion, vbInformation, "Version Number"

End Sub

	 Calling	Named	Data	Macros 1661

C
h

ap
te

r
25

If you run this sample procedure, the code executes the named data macro GetCurrent-
Value attached to the tblSettings web table, passes in the appropriate parameter value we
want to use, and then displays the value received from the data macro in the message box
using the ReturnVars collection. Note that unlike the TempVars collection, the ReturnVars
collection does not support a Remove or RemoveAll method to delete or clear the values
stored in the ReturnVars collection. You also cannot set a return variable using Visual Basic;
you must always use the SetReturnVar data action in a named data macro attached to a
table to set return variables. If you set a ReturnVar in a named data macro, Access keeps
that value in the ReturnVars collection until you run another named data macro that sets
another ReturnVar or you close the database. You can set up to 255 return variables in the
ReturnVars collection, but you would have to set all those return variables in one named
data macro call.

As you’ve seen in this chapter, Visual Basic is an incredibly powerful language, and the tasks
you can accomplish with it are limited only by your imagination. In Chapter 26, “The Finish-
ing Touches,” the next chapter of this book on the companion CD, you’ll learn how to set
startup properties and create custom ribbons.

