
http://www.facebook.com/share.php?u=http://www.microsoftpressstore.com/title/9780735627185
http://twitter.com/?status=RT: download a free sample chapter http://www.microsoftpressstore.com/title/9780735627185
https://plusone.google.com/share?url=http://www.microsoftpressstore.com/title/9780735627185
http://www.linkedin.com/shareArticle?mini=true&url=http://www.microsoftpressstore.com/title/9780735627185
http://www.stumbleupon.com/submit?url=http://www.microsoftpressstore.com/title/9780735627185/Free-Sample-Chapter

Programming
Windows® Identity
Foundation

Vittorio Bertocci

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2011 by Vittorio Bertocci

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2010933007

Printed and bound in the United States of America.

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly
at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/
EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Rosemary Caperton
Editorial Production: Waypoint Press (www.waypointpress.com)
Technical Reviewer: Peter Kron; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X17-09958

To Iwona, moja kochanie

	 	 v

Contents at a Glance

Part I	 Windows	Identity	Foundation	for	Everybody
	 1 Claims-Based Identity . 3
	 2 Core ASP .NET Programming . 23

Part II	 Windows	Identity	Foundation	for	Identity	
Developers

	 3		 WIF Processing Pipeline in ASP .NET . 51
	 4		 Advanced ASP .NET Programming . 95
	 5		 WIF and WCF . 145
	 6		 WIF and Windows Azure . 185
	 7		 The Road Ahead . 215

	 	 vii

Table of Contents
Foreword .xi

Acknowledgments .xiii

Introduction . xvii

Part I	 Windows	Identity	Foundation	for	Everybody
	 1 Claims-Based Identity . 3

What Is Claims-Based Identity? . 3
Traditional Approaches to Authentication . 4
Decoupling Applications from the Mechanics of
Identity and Access . 8

WIF Programming Model . 15
An API for Claims-Based Identity . 16
WIF’s Essential Behavior . 16
IClaimsIdentity and IClaimsPrincipal . 18

Summary . 21

	 2 Core ASP .NET Programming . 23
Externalizing Authentication . 24

WIF Basic Anatomy: What You Get Out of the Box 24
Our First Example: Outsourcing Web Site Authentication
to an STS . 25

Authorization and Customization . 33
ASP .NET Roles and Authorization Compatibility 36
Claims and Customization . 37
A First Look at <microsoft .identityModel> . 39
Basic Claims-Based Authorization . 41

Summary . 46

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii Table of Contents

Part II	 Windows	Identity	Foundation	for	Identity	
Developers

	 3		 WIF Processing Pipeline in ASP .NET . 51
Using Windows Identity Foundation . 52
WS-Federation: Protocol, Tokens, Metadata . 54

WS-Federation . 55
The Web Browser Sign-in Flow . 57
A Closer Look to Security Tokens . 62
Metadata Documents . 69

How WIF Implements WS-Federation . 72
The WIF Sign-in Flow . 74

WIF Configuration and Main Classes . 82
A Second Look at <microsoft .identityModel> . 82
Notable Classes . 90

Summary . 94

	 4		 Advanced ASP .NET Programming . 95
More About Externalizing Authentication . 96

Identity Providers . 97
Federation Providers . 99
The WIF STS Template . 102

Single Sign-on, Single Sign-out, and Sessions . 112
Single Sign-on . 113
Single Sign-out . 115
More About Sessions . 122

Federation . 126
Transforming Claims . 129
Pass-Through Claims . 134
Modifying Claims and Injecting New Claims . 135
Home Realm Discovery . 135
Step-up Authentication, Multiple Credential Types,
and Similar Scenarios . 140

 Table of Contents ix

Claims Processing at the RP . 141
Authorization . 142
Authentication and Claims Processing . 142

Summary . 143

	 5		 WIF and WCF . 145
The Basics . 146

Passive vs . Active . 146
Canonical Scenario . 154
Custom TokenHandlers . 163
Object Model and Activation . 167

Client-Side Features . 170
Delegation and Trusted Subsystems . 170
Taking Control of Token Requests . 179

Summary . 184

	 6		 WIF and Windows Azure . 185
The Basics . 186

Packages and Config Files . 187
The WIF Runtime Assembly and Windows Azure 188
Windows Azure and X .509 Certificates . 188

Web Roles . 190
Sessions . 191
Endpoint Identity and Trust Management . 192

WCF Roles . 195
Service Metadata . 195
Sessions . 196
Tracing and Diagnostics . 201

WIF and ACS . 204
Custom STS in the Cloud . 205

Dynamic Metadata Generation . 205
RP Management . 213

Summary . 213

x Table of Contents

	 7		 The Road Ahead . 215
New Scenarios and Technologies . 215

ASP .NET MVC . 216
Silverlight . 223
SAML Protocol . 229
Web Identities and REST . 230

Conclusion . 239

	 Index . 241

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

	 	 xi

Foreword
A	few	years	ago,	I	was	sitting	at	a	table	playing	a	game	of	poker	with	a	few	colleagues	from	
Microsoft	who	had	all	been	involved	at	various	times	in	the	development	of	Web	Services	
Enhancements	for	Microsoft	.NET	(WSE).	Don	Box,	Mark	Fussell,	Kirill	Gavrylyuk,	and	I	played	
the	hands	while	showman	extraordinaire	Doug	Purdy	engaged	us	with	lively	banter	and	
more	than	a	few	questions	about	the	product—all	of	this	in	front	of	the	cameras	at	the	
MSDN	studios.

We	had	each	selected	a	person	from	the	field	to	play	for;	someone	whom	we	each	
thought	had	made	a	significant	contribution	to	the	success	of	WSE	but	hadn’t	been	a	direct	
member	of	the	product	team	itself.	If	we	won,	then	our	nominee	would	get	a	prize,	a	token	
of	our	appreciation	for	the	work	that	he	or	she	had	done.	My	selection	was	a	guy	called	
Vittorio	Bertocci	who	was	working	for	Microsoft	in	Italy	at	the	time.	I’d	never	met	Vittorio,	
nor	even	seen	a	photo	of	him,	but	he	was	a	prolific	poster	on	our	internal	discussion	list,	
clearly		understood	the	key	security	concepts	for	the	product	including	the	WS-*		protocols,	
and	had	even	crafted	an	extension	to	enable	Reliable	Messaging	despite	some	of	the	crude	
	extensibility	we	had	in	place	at	the	time.	Vittorio	was	someone	worth	playing	for	but,	
	unfortunately,	I	didn’t	win.

Time	passed,	the	Windows	Communication	Foundation	(WCF)	superseded	WSE,	and	I	moved	
to	become	the	Architect	for	the	Identity	and	Access	team	tasked	with	building	a	Security	
Token	Service	for	Windows	Server.	One	day,	out	of	the	blue,	I	got	an	e-mail	from	Vittorio	
to	say	that	he’d	moved	to	Redmond	to	take	on	a	Platform	Evangelist	role	and	asking	if	we	
could	meet	up.	Of	course	I	said	yes,	but	what	I	couldn’t	have	anticipated	was	that	mane	of	
jet-black	hair....

Vittorio	was	deeply	interested	in	the	work	that	we	were	doing	to	enable	a	claims-based	
	programming	model	for	.NET,	on	top	of	which	we	planned	to	build	the	second	version	of	our	
security	token	service.	Over	time,	these	ideas	became	the	“Geneva”	wave	of	products	and	
were	finally	birthed	as	the	Windows	Identity	Foundation	and	Active	Directory	Federation	
Services	2.0.

Throughout	several	years	of	product	development,	Vittorio	became	not	only	a	remarkable	
spokesperson	for	the	products	but	a	key	source	of	feedback	on	our	work,	both	from	the	
customers	and	partners	that	he	met	with	and	from	his	own	direct	efforts	to	use	the	product.	
He	was	instrumental	in	encouraging	me,	and	the	product	team,	to	take	on	the	last-minute	
task	of	making	WIF	run	in	Windows	Azure	just	in	time	for	PDC	2009	and	the	product	release.	
Watching	Vittorio	present	a	session	on	WIF	is	a	pleasure—his	depth	of	knowledge	and	his	
creative	presentation	skills	allow	him	to	deliver	the	message	on	an	increasingly	important	
topic	despite	the	fact	that	it	is	too	frequently	tainted	with	the	dryness	of	the	“security”	label.

xii Foreword

Within	the	pages	of	this	book,	you’ll	learn	how	to	use	the	Windows	Identity	Foundation	from	
someone	who	is	not	only	a	great	teacher	but	is	also	deeply	familiar	with	the	concepts	be-
hind	the	technology	itself	and	who	has	worked	directly	with	the	product	team,	and	myself	
	personally,	on	a	very	close	basis	over	the	course	of	the	last	four	to	five	years.

Vittorio	takes	you	through	the	terminology	and	key	concepts,	and	explains	the	integration	
of	WIF	with	ASP.NET,	Windows	Communication	Foundation,	and	Windows	Azure,	culminat-
ing	in	a	speculative	look	ahead	at	the	scenarios	that	the	product	might	tackle	in	a	future	
release.	I	encourage	you,	the	reader,	to	think	deeply	about	the	concepts	here	and	how	you	
will		manage	identity	in	the	applications	that	you	go	on	to	build;	it’s	a	topic	that	is	becoming	
increasingly	important	to	both	enterprises	and	the	Web	community.

Finally,	I	want	to	thank	Vittorio	for	his	enthusiasm,	support,	and	tireless	energy	over	the	
years.	I	have	but	one	final	request	of	him:	please	get	a	haircut.

Hervey Wilson
Architect, AppFabric Access Control Service

Microsoft, Redmond
July 2010

	 	 xiii

Acknowledgments
You create the world of the dream. We bring the subject into that dream and fill it
with their subconscious.

 —Cobb in “Inception”, Christopher Nolan, 2010

Some	time	ago,	a	friend	asked	me	what	the	point	was	of	writing	a	book	when	I	already	have	
a	well-read	blog.	There	are	many	excellent	answers	to	that	question,	from	the	extra	reach	
that	a	book	has	to	the	advantages	of	reading	without	having	to	constantly	fight	the	op-
portunity	costs	of	not	following	a	link.	My	favorite	answer,	however,	is	that	whereas	a	blog	is	
a	one-man	operation,	a	book	is	the	result	of	the	contribution	of	many	people	and	its	value	
for	the	reader	is	proportionally	higher.	It	might	be	my	name	on	the	cover,	but	the	reality	
is	that	I	stand	on	the	shoulders	of	many	fine	people,	who	I	want	to	acknowledge	here.	I’ve	
been	working	with	identity	for	the	last	8	years	or	so,	interacting	with	an	incredible	amount	of	
	people;	hence,	I	am	pretty	sure	I’ll	forget	somebody.	I	apologize	in	advance.

Peter	Kron	is	a	Principal	Software	Developer	Engineer	on	the	WIF	team,	and	the	official	
technical	editor	of	this	book.	Without	his	patience,	thoroughness,	and	deep	knowledge	of	
WIF,	this	would	have	been	a	much	inferior	book.

Hervey	Wilson	is	the	Architect	of	the	Access	Control	service.	He	led	the	Web	Services	
Enhancements	(WSE)	team,	and	he	happens	to	be	the	one	who	envisioned	Windows	Identity	
Foundation.	I’ve	been	working	with	Hervey	since	2002,	well	before	I	moved	to	Redmond.	At	
the	time,	I	was	still	using	his	WSE	for	securing	solutions	for	Italian	customers.	If	you	believe	
what	Malcom	Gladwell	says	in	his	book	Outliers: The Story of Success	(Little,	Brown	and	Co.,	
2008),	that	you	need	10,000	hours	of	practice	for	becoming	real	good	at	something,	nobody	
contributed	more	than	Hervey	to	my	professional	growth	in	the	field	of	Identity.	I	am	very	
honored	he	agreed	to	write	the	foreword	for	this	book.	Thanks,	man!

The	crew	at	Microsoft	Press	has	been	outstanding,	chopping	into	manageable	chunks	my	
long	“Itanglish”	sentences	without	changing	the	meaning	and	working	around	my	abysmal	
delays	and	crazy	schedule.	(In	the	last	year	alone,	I	handed	a	boarding	pass	to	smiling	ladies	
55	times.)	Specifically,	thanks	go	to	Ben	Ryan	and	Gerry	O’Brien	for	having	trust	in	me	and	
the	book,	to	Devon	Musgrave	for	bootstrapping	the	project,	and	to	Rosemary	Caperton	
for	running	the	project.	Steve	Sagman	of	Waypoint	Press	led	a	fantastic	production	team:	
Roger	LeBlanc	as	Copy	Editor,	Thomas	Speeches	as	Proofreader,	and	Audrey	Marr	as	
Illustrator.	Special	thanks	to	Audrey	for	working	on	really	challenging	illustrations:	you	can	
pull	out	the	needles	from	my	doll	now!		

Stuart	Kwan,	Group	Program	Manager	for	WIF,	and	Conrad	Bayer,	GM	for	the	Identity	and	
Access	division,	have	been	great	partners	and	supported	this	project	from	the	very	start.

xiv Acknowledgments

I	did	most	of	the	writing	at	night,	on	weekends,	and	during	vacation	time,	but	at	times	
the	book	did	impact	my	day	job.	James	Conard	and	Neil	Hutson,	Senior	Directors	in	the	
Developer	and	Platform	Evangelism	group	and	my	direct	management	chain,	have	been	very	
patient	and	supportive	of	the	effort.	

Justine	Smith	and	Brjann	Brekkan,	from	the	Business	Group	of	the	Identity	and	Access	
Division,	have	been	incredibly	helpful	on	activities	that	ultimately	had	an	impact	on	the	
	sample	code	discussed	here.

Todd	West,	at	the	time	with	the	WIF	test	team,	is	one	of	the	most	gifted	Web	services	
	developers	I’ve	ever	met.	Most	of	the	guidance	regarding	WIF	and	Windows	Azure	in	this	
book	and	out	there	is	the	result	of	his	work.

My	good	friend	Caleb	Baker,	Program	Manager	on	the	WIF	team,	is	a	never-ending	source	
of	insights	and	useful	discussions.	He	is	also	the	owner	of	the	WIF	and	Silverlight	integration.	
The	Silverlight	code	samples	are	all	based	on	his	work.

Together	with	Hervey,	the	original	WSE	team	merged	with	WIF	too.	I	had	a	chance	to	
tap	their	brains	countless	times.	Thanks	to	Sidd	Shenoy,	Govind	Ramanathan,	Vick	
Mukherjee,	HongMei	Ge,	and	Keith	Ballinger.	

The	entire	WIF	team	contributed	to	this	book.	Here	I’ll	call	a	few	people	out	to	give	you	
a	feeling	for	the	quality	of	their	work.	Daniel	Wu	was	of	great	help	on	sessions;	Brent	
Schmaltz	was	key	for	helping	me	understand	the	inner	workings	of	WIF	and	WCF;	Vani	Nori	
and	Vick	devised	the	way	of	using	WIF	with	MVC;	Junaid	Tisekar	was	key	for	starting	the	
work	with	WIF	and	OAuth	2.0;	Shiung	Yong	was	instrumental	in	figuring	out	some	parts	of	
the	WIF	pipeline	in	the	early	days	of	WIF.	

Many	others	in	the	identity	product	team	contributed	through	the	years:	thanks	to	Jan	
Alexander,	Vijay	Gajjala,	Arun	Nanda,	Marc	Goodner,	Mike	Jones,	Craig	Wittenberg,	
Don	Schmidt,	Ruchi	Bhargava,	Sesha	Mani,	Matt	Steele,	and	Sam	Devasahayam.

My	teammates	in	the	Windows	Azure	platform	evangelism	team	played	a	key	role	in	
keeping	me	on	my	toes,	and	they’re	simply	awesome	to	hang	out	with.	Thanks	to	Ryan	
Dunn,	David	Aiken,	Nigel	Watling,	and	Zach	Owen.	Please	delete	all	the	pictures	you	
saved!

The	guys	at	Southworks,	the	company	that	helped	me	with	practically	all	the	identity	
	samples	and	labs	in	the	last	two	years,	are	fantastic	to	work	with.	Many	thanks	to	Matias	
Woloski,	Pablo	Damiani,	Tim	Osborn,	Johnny	Halife,	and	many	others.

Conversations	about	identity	with	Gianpaolo	Carraro	and	Eugenio	Pace	were	extremely	
	valuable,	especially	the	ones	related	to	the	P&P	guide	on	claims-based	identity	led	by	
Eugenio.

 Acknowledgments xv

Donovan	Follette	has	been	the	ADFS	evangelist	for	a	long	time,	sharing	with	me	the	pains	
and	the	joys	of	the	claims-based	identity	renaissance	at	PDC08.	Even	if	now	he	is	all	cozy	
in	his	new	Office	role,	I	cannot	forget	his	incredible	contribution	to	bringing	identity	to	the	
community.

Of	course,	we	would	not	be	even	discussing	this	if	Kim	Cameron	had	not	driven	the	
	conversation	on	the	identity	metasystem	and	claims-based	identity	with	the	entire	industry.	
Thank	you,	Kim!

My	wife,	Iwona	Bialynicka-Birula,	deserves	special	thanks.	She	accepted	and	supported	
this	crazy	initiative	no	matter	what,	whether	it	meant	skipping	beach	time	while	in	Maui	or	
	coping	with	insurance	agents	and	contractors	after	our	house	got	flooded.	Without	her,	
not	only	would	you	not	be	holding	this	book	in	your	hands,	I	don’t	know	what	I	would	do….	
Thank	you,	darling.	I	promise:	no	more	books	for	some	time!

Finally,	I	want	to	thank	you:	the	readers	of	my	blog,	who	followed	faithfully	my	ramblings	for	
seven	years	without	asking	too	often	about	the	weird	blog	name;	the	participants	of	the	WIF	
workshops	in	Belgium,	UK,	Germany,	Singapore,	Melbourne,	and	Redmond,	who	put	up	so	
nicely	with	my	“sexy”	accent;	and	the	attendees	of	the	many	sessions	I	gave	at	events	all	over	
the	world	in	the	last	five	years.	Without	your	questions,	your	critiques,	your	comments,	your	
compliments,	and	your	longing	for	understanding,	I	would	have	never	found	the	motivation	
to	do	this	and	the	other	things	I	do	for	evangelizing	identity.	This	book	is	for	you.	

	 	 xvii

Introduction
It	has	been	said	that	every	problem	in	Computer	Science	can	be	solved	by	adding	a	level	of	
indirection.	

You	don’t	have	to	go	far	to	find	examples	of	successful	applications	of	that	principle.	Before	
the	introduction	of	the	concept	of	driver,	programs	had	to	be	rewritten	every	time	one	
changed	something	as	simple	as	the	monitor.	Before	the	introduction	of	TCP/IP,	programs	
targeting	a	token	ring	network	environment	had	to	be	rewritten	if	the	network	protocol	
changed.		Drivers	and	TCP/IP	helped	to	free	application	developers	from	the	need	to	worry	
about	unnecessary	details,	presenting	them	with	a	generic	façade	while	leaving	the	nitty-
gritty	details	to	the	underlying	infrastructure.	In	addition	to	making	the	developer	profession	
a	happier	one,	the	approach	led	to	more	robust	and	long-lived	software	for	the	benefit	of	
everybody.

For	various	historical	reasons,	authentication	and	identity	management	practices	never		really	
followed	the	same	route	of	monitors	and	network	cards.	Adding	“authentication”	to	your	
software	today	still	largely	means	messing	with	the	code	of	the	application	itself,		writing	
logic	that	takes	care	in	detail	of	low	level	tasks	such	as	verifying	username	and	passwords	
against	an	account	store,	juggling	with	X509	certificates	or	similar.	When	you	are	spared	from	
handling	things	at	such	low	level,	which	usually	means	that	you	took	a	strong	dependency	on	
your	infrastructure	and	your	application	will	be	unmovable	without	substantial	rewriting:	just	
like	a	program	from	the	pre-drivers	era.

As	you	will	learn	in	the	first	chapters	of	this	book,	claims-based	identity	is	changing	all	this.	

Without	going	too	much	into	details,	claims	are	the	means	to	add	that	extra	level	of	
	indirection	that	eluded	the	identity	world	so	far.	The	introduction	of	open	protocols		enjoying	
wide	industry	consensus	&	support,	the	converge	toward	the	idea	of	a	meta-system	for	
identity,	the	success	of	metadata	formats	which	can	automate	many	tedious	and	error-prone	
tasks	created	the	perfect	storm	that	generated	the	practices	collectively	known	as	claims-
based	identity.	Claims	are	paving	the	way	for	identity	and	access	management	to	be	pushed	
outside	of	applications	and	down	in	the	infrastructure,	freeing	developers	from	the	need	
to	handle	it	explicitly	while	enhancing	solutions	with	welcome	extra	advantages	(such	as	
	cross-platform	interoperability	out	of	the	box).

I	have	spent	full	four	years	working	almost	exclusively	on	claims-based	architectures	with	
customers	and	product	teams	here	in	Redmond;	the	model	is	sound,	and	it	invariably		delivers	
significant	improvements	against	any	other	authentication	system.	However,	until	recently,	
actually	implementing	systems	according	to	the	model	was	a	painful	experience,	since	it	
	required	writing	large	amounts	of	custom	code	that	would	handle	protocols,	cryptography,	
and	similar	low	level	aspects.

xviii Introduction

This	all	changed	when,	in	October	2008,	Microsoft	announced	the	“Geneva”	wave	of	
	claims-aware	beta	products:	among	those	there	was	Windows	Identity	Foundation,	the	
	protagonist	of	the	book	you	are	holding,	which	was	finally	released	in	November	2009.

Windows	Identity	Foundation	(WIF)	is	Microsoft’s	stack	for	claims-based	identity	
	programming.	It	is	a	new	foundational	technology	which	helps	.NET	developers	to	take	
	advantage	of	the	claims	based	approach	for	handing	authentication,	authorization,	custom-
ization	and	in	general	any	identity-related	task	without	the	need	to	write	any	low-level	code.

True	to	the	claims-based	identity	promise,	you	can	decide	to	use	WIF	to	externalize	all	
	identity	and	access	control	logic	from	your	applications:	Visual	Studio	will	make	it	a	breeze,	
and	you	will	not	be	required	to	know	any	detail	about	the	underlying	security	protocols.	If	
you	want	to	take	finer	control	of	the	authentication	and	authorization	process,	however,	WIF	
offers	you	a	powerful	and	flexible	programming	model	that	will	give	you	complete	access	to	
all	aspects	of	the	identity	management	pipeline.

This	book	will	show	you	how	to	use	Windows	Identity	Foundation	for	handling	
	authentication,	authorization	and	identity-driven	customization	of	your	.NET	applications.	

Although	the	text	will	often	be	task-oriented,	especially	for	the	novice	part	of	the	book,	the	
ultimate	goal	will	always	be	to	help	you	understanding	the	claims	based	approach	and	the	
pattern	that	is	most	appropriate	for	the	problem	at	hand.	

Who	Is	This	Book	For?
Part	I	of	the	book	is	for	the	ASP.NET	developer	who	wants	to	take	advantage	of	claims-based	
identity	without	having	to	become	a	security	expert.	Although	there	are	no		requirements	
about	pre-existing	security	knowledge,	you	do	need	to	have	hands-on	ASP.NET	program-
ming	knowledge	to	proficiently	read	Part	I.

In	Part	II	I	shift	gear	pretty	dramatically,	assuming	that	you	are	an	experienced	.NET	
	developer	who	knows	about	ASP.NET	pipeline,	Forms	authentication,	X.509	certificates,	LINQ	
syntax	and	the	like.	I	often	try	to	add	sidebars	which	introduce	the	topic	if	you	know	little	
about	it	but	you	want	to	follow	the	text	anyway,	but	reality	is	that	without	concrete,	hands-
on	knowledge	of	the	.NET	Framework	(and	specifically	C#)	Part	II	could	be	hard	to	navigate.	I	
also	assume	that	you	are	motivated	to	invest	energy	on	understanding	the	“why”s	of	identity	
and	security.

Identity	is	an	enabling	technology,	which	is	never	found	in	isolation	but	always	as	a	
	component	and	enhancement	of	other	technologies	and	scenarios.	This	book	discusses	
how	to	apply	WIF	with	a	variety	of	technologies	and	products,	and	of	course	cannot		afford	
	providing	introductions	for	everything:	in	order	to	be	able	to	apply	the	guidance	in	the	
	various	chapters	you’ll	need	to	be	proficient	in	the	corresponding	technology.	The	good	
news	is	that	the	chapters	are	reasonably	decoupled	from	each	other,	so	that	you	don’t	need	

 Introduction xix

to	be	a	WCF	expert	for	appreciating	the	chapters	about	ASP.NET.	Chapter	3	and	Chapter	4	
require	you	to	be	familiar	with	ASP.NET	and	its	extensibility	model.	Chapter	5	is	for	experi-
enced	WCF	developers.	Chapter	6	requires	you	to	be	familiar	with	Windows	Azure	and	its	
programming	model.	Chapter	7	sweeps	on	a	number	of	different	technologies,	including	
Silverlight	and	ASP.NET	MVC	Framework,	and	expects	you	to	be	at	ease	with	terminology	
and	usage.

The	bottom	line	is	that	in	order	to	fully	take	advantage	of	the	book	you	need	to	be	an	expert	
.NET	and	Web	developer.	On	the	other	hand,	the	book	contains	a	lot	of	architectural	patterns	
and	explanations	which	could	easily	be	applied	to	products	on	other	platforms:	hence	if	you	
are	an	architect	that	can	stomach	patterns	explanations	intertwined	with	code	commentary,	
chances	are	that	you’ll	find	this	book	a	good	reference	on	how	claims-based	identity	solves	
various	canonical	problems	in	the	identity	and	access	space.

System	Requirements
You’ll	need	the	following	software	and	hardware	to	build	and	run	the	code	samples	for	
this	book:

■	 Microsoft®	Windows	7;	Windows	Server	2003	Service	Pack	2;	Windows	Server	2008	R2;	
Windows	Server	2008	Service	Pack	2;	Windows	Vista

■	 Windows	Identity	Foundation	1.0	runtime

■	 Windows	Identity	Foundation	SDK	4.0

■	 Microsoft®	Internet	Information	Services	(IIS)	7.5,	7.0	or	6.0	

■	 Microsoft®	.NET	Framework	4.0	

■	 Visual	Studio	2010

■	 1.6-GHz	Pentium	or	compatible	processor

■	 1	GB	RAM	for	x86	

■	 2	GB	RAM	for	x64	

■	 An	additional	512	MB	RAM	if	running	in	a	virtual	machine	

■	 DirectX	9–capable	video	card	that	runs	at	1024	×	768	or	higher	display	resolution	

■	 5400-RPM	hard	drive	(with	3	GB	of	available	hard	disk	space)

■	 DVD-ROM	drive

■	 Microsoft	mouse	or	compatible	pointing	device

■	 Approximately	78	MB	of	available	hard	disk	space	to	install	the	code	samples

xx Introduction

Note	that	the	WIF	runtime	and	the	WIF	SDK	3.5	are	compatible	with	Visual	Studio	2008	and	
the	.NET	Framework	3.5	SP2.	The	March	2010	version	of	the	Identity	Training	Kit	contains	
most	of	the	samples	of	the	book	in	a	form	that	is	compatible	with	VS	2008	and	the	.NET	
Framework	3.5,	however	please	note	that	the	code	in	the	text	refers	to	VS	2010	and	there	are	
small	differences	here	and	there.

Code	Samples
The	code	samples	for	this	book	are	available	for	download	here:	

http://www.microsoftpressstore.com/title/9780735627185.

Click	the	download	link	and	follow	the	instructions	to	save	the	code	samples	to	your	local	
hard	drive.	

The	code	samples	used	in	this	book	are	mostly	from	the	Identity	Developer	Training	Kit,	a	
collection	of	hands-on	labs,	presentations,	and	instructional	videos,	which	is	meant	to	help	
developers	learn	Microsoft’s	identity	technologies.	It	is	a	self-extracting	.EXE.	Every	lab	has	its	
own	setup,	which	will	take	care	of	most	prerequisites	for	you.	Please	follow	the	instructions	
on	the	Welcome	page.

Producing	the	Identity	Developer	Training	Kit	is	one	of	the	things	I	do	during	my	day	job.	
Whereas	in	the	book	I	highlight	code	snippets	to	help	you	understand	the	technology,	in	
the	Identity	Developer	Training	Kit	documentation	I	give	step-by-step	instructions.	Feel	
free	to	combine	the	two	approaches	as	you	ramp	up	your	knowledge	of	Windows	Identity	
Foundation.

The	Identity	Developer	Training	Kit	is	a	living	deliverable;	every	time	there	is	a	new	ver-
sion	of	a	product	I	update	it	accordingly.	However,	I	want	to	make	sure	that	the	code	
samples		referenced	in	the	book	will	not	break.	For	that	reason,	I	am	including	in	the	book	
code		sample	archive	the	current	version	of	the	training	kit,	June	2010,	which	will	always	be	
	available,	even	if	I	keep	updating	the	training	kit	in	its	original	download	location.

Errata	and	Book	Support
We’ve	made	every	effort	to	ensure	the	accuracy	of	this	book	and	its	companion	content.	If	
you	do	find	an	error,	please	report	it	on	our	Microsoft	Press	site.

	 1.	

	 2.	 In	the	Search	box,	enter	the	book’s	ISBN	or	title.

	 3.	 Select	your	book	from	the	search	results.

	 4.	

	 5.	 Click	View/Submit	Errata.

Go	to	www.microsoftpressstore.com.

On your book’s catalog page, find the Errata & Updates tab

http://www.microsoftpressstore.com/title/9780735627185

 Introduction xxi

You’ll	find	additional	information	and	services	for	your	book	on	its	catalog	page.	If	you	need	
additional	support,	please	e-mail	Microsoft	Press	Book	Support	at	mspinput@microsoft.com.

Please	note	that	product	support	for	Microsoft	software	is	not	offered	through	the	addresses	
above.

We	Want	to	Hear	from	You
At	Microsoft	Press,	your	satisfaction	is	our	top	priority,	and	your	feedback	our	most	valuable	
asset.	Please	tell	us	what	you	think	of	this	book	at:	

http://www.microsoft.com/learning/booksurvey

The	survey	is	short,	and	we	read	every	one	of	your	comments	and	ideas.	Thanks	in	advance	
for	your	input!	

Stay	in	Touch
Let’s	keep	the	conversation	going!	We’re	on	Twitter:	http://twitter.com/MicrosoftPress.	

	 	 3

Chapter	1

Claims-Based Identity
In this chapter:
What Is Claims-Based Identity? . 3
WIF Programming Model . 15
Summary . 21

Microsoft	Windows	Identity	Foundation	(WIF)	enables	you	to	apply	the	principles	of	
	claims-based	identity	when	securing	your	Microsoft	.NET	application.	Claims-based	identity	
is	so	important	that	I	want	to	make	sure	you	understand	it	well	before	I	formally	introduce	
Windows	Identity	Foundation.	

Claims-based	identity	is	a	natural	way	of	dealing	with	identity	and	access	control.	However,	
the	old	ways	of	doing	this	are	well	established,	so	before	delving	into	the	new	approach,	it’s	
useful	to	describe	and	challenge	the	classic	assumptions	about	authentication	and	authoriza-
tion.	Once	you	have	a	clear	understanding	of	some	of	the	issues	with	traditional	approaches,	
I’ll	introduce	the	basic	principles	of	claims-based	identity—I’ll	say	enough	to	enable	you	to	
proficiently	use	Windows	Identity	Foundation	for	the	most	common	scenarios.	This	chapter	
contains	some	simplifications	that	will	get	you	going	without	overloading	you	with	infor-
mation.	For	a	more	thorough	coverage	of	the	subject,	refer	to	Part	II,	“Windows	Identity	
Foundation	for	Identity	Developers.”

Finally,	we’ll	take	our	initial	look	at	how	WIF	implements	the	mechanisms	of	claims-based	
identity	and	how	you,	the	developer,	can	access	the	main	elements	exposed	by	its	object	
model.

After	reading	this	chapter,	you’ll	be	able	to	describe	how	claims-based	identity	works	and	
how	to	take	advantage	of	it	in	solutions	to	common	problems.	Furthermore,	you’ll	be	able	to	
define	Windows	Identity	Foundation	and	recognize	its	main	elements.

What	Is	Claims-Based	Identity?

Note If	you	already	know	about	claims,	feel	free	to	skip	ahead	to	the	“WIF	Programming	
Model”	section.	If	you	are	in	a	big	hurry,	I	offer	you	the	following	summary	of	this	section	before	
you	skip	to	the	next	section:	Claims-based	identity	allows	you	to	outsource	identity	and	access	
management	to	external	entities.	

4 Part I Windows Identity Foundation for Everybody

The	problem	of	recognizing	people	and	granting	access	rights	to	them	is	one	of	the	oldest	
in	the	history	of	computer	science,	and	it	has	its	roots	in	identity	and	access	problems	we	all	
experience	every	day	as	we	go	through	our	lives.

Although	we	can	classify	almost	all	the	solutions	to	the	problem	in	relatively	few		categories,	
an	incredible	number	of	solutions	tailored	specifically	to	solve	this	or	that	problem		exists.	
From	the	innumerable	ways	of	handling	user	names	and	passwords	to	the	most	exotic	
	hardware-based	cryptography	solutions,	the	panorama	of	identity	and	access	meth-
ods		creates	a	sequence	of	systems	that	are	almost	never	compatible,	each	with	different	
	advantages,	disadvantages,	tradeoffs,	and	so	on.

From	the	developer	perspective,	this	status	quo	is	bad	news:	this	diversity	forces	you	to	
	continually	relearn	how	to	do	the	same	thing	with	different	APIs,	exposes	you	to	details	
of	the	security	mechanisms	that	you’d	rather	not	be	responsible	for,	and	subjects	you	to	
	software	that	is	brittle	and	difficult	to	maintain.

What	you	need	is	a	way	to	secure	your	applications	without	having	to	work	directly	at	the	
security	mechanism	level:	an	abstraction	layer,	which	would	allow	you	to	express	your	secu-
rity	requirements	(the	“what”)	without	getting	caught	in	the	specifics	of	how	to	make	that	
happen	(the	“how”).	If	your	specialty	is	designing	user	experiences	for	Microsoft	ASP.NET,	you	
should	be	allowed	to	focus	your	effort	on	that	aspect	of	the	solution	and	not	be	forced	to	
become	an	expert	in	security	(beyond	the	basic,	secure-coding	best	practices,	of	course—all	
developers	need	to	know	those).	

If you need a good reference on secure coding best practices, I highly recommend Writing	
Secure	Code,	Second	Edition, by Michael Howard and David LeBlanc (Microsoft Press, 2002).

What	we	collectively	call	“claims-based	identity”	provides	that	layer	of	abstraction	and	helps	
you	avoid	the	shortcomings	of	traditional	solutions.	Claims-based	identity	makes	it	possible	
to	have	technologies	such	as	Windows	Identity	Foundation,	which	enables	you	to	secure	
systems	without	being	required	to	understand	the	fine	details	of	the	security	mechanisms	
involved.	

Traditional Approaches to Authentication
Before	we	go	any	further,	let	me	be	absolutely	clear	on	a	key	point:	this	book	does	not	
suggest	that	traditional	approaches	to	authentication	and	authorization	are	not	secure	or	
somehow	bad	per se.	In	fact,	they	usually	do	very	well	in	solving	the	problem	they	have	been	
designed	to	tackle.	The	issues	arise	when	you	have	to	deal	with	changes	or	you	need	differ-
ent	systems	to	work	together.	Because	a	single	system	can’t	solve	all	problems,	you	are	often	
forced	to	re-perform	the	same	task	with	different	APIs	to	accommodate	even	small	changes	
in	your	requirements.

 Chapter 1 Claims-Based Identity 5

It’s	beyond	the	scope	of	this	book	to	give	an	exhaustive	list	of	authentication	systems	and	
their	characteristics;	fortunately,	that	won’t	be	necessary	for	making	our	point.	In	this	section	
I’ll	briefly	examine	the	built-in	mechanisms	offered	by	the	.NET	Framework	and	provide	some	
examples	of	how	they	might	not	always	offer	a	complete	solution.

IPrincipal and IIdentity
Managing	identity	and	access	requires	you	to	acquire	information	about	the	current	user	so	
that	you	can	make	informed	decisions	about	the	user’s	identity	claims	and	what	actions	by	
the	user	should	be	allowed	or	denied.

In	a	.NET	application	the	user	in	the	current	context	is	represented	by	an	IIdentity,	a	simple	
interface	that	provides	basic	information	about	the	user	and	how	the	user	was	authenticated:

public interface IIdentity
{
 // Properties
 string AuthenticationType { get; }
 bool IsAuthenticated { get; }
 string Name { get; }
}

IIdentity	lives	inside	IPrincipal,	another	interface	that	contains	more	information	about	
the	user	(such	as	whether	he	belongs	to	a	certain	security	group)	that	can	be	used	in	
	authorization	decisions:

public interface IPrinicipal
{
 // Methods
 bool IsInRole(string role);
 // Properties
 IIdentity Identity { get; }
}

You	can	always	reach	the	current	IPrincipal	in	the	code	of	your	.NET	application:	in		
ASP.NET,	you	will	find	it	in	HttpContext.Current.User,	and	in	general,	you’ll	find	it	in	
Thread.CurrentPrincipal.

IPrincipal	and	IIdentity,	as	they	exist	out	of	the	box,	do	provide	some	good	decoupling	
from	how	the	authentication	actually	happened.	They	do	not	force	you	to	deal	with	the	
details	of	how	the	system	came	to	know	how	the	information	about	the	user	was	acquired.	
If	your	users	are	allowed	to	perform	a	certain	action	only	if	they	are	administrators,	you	
can	write	Thread.CurrentPrincipal.IsInRole(“Administrators”)	without	having	to	change	your	
code	according	to	the	authentication	method.	The	framework	uses	different	extensions	
of	IPrincipal—WindowsPrincipal,	GenericPrincipal,	or	your	own	custom	class—to	accom-
modate	the	specific	mechanism,	and	you	can	always	cast		from	IPrincipal	to	one	of	those	

6 Part I Windows Identity Foundation for Everybody

classes	if	you	need	to	access	the	extra	functionalities	they	provide.	However,	in	general,	using	
IPrincipal	directly	makes	your	code	more	resilient	to	changes.

Unfortunately,	the	preceding	discussion	is	just	a	tiny	part	of	what	you	need	to	know	about	
.NET	security	if	you	want	to	implement	a	real	system.

Populating IPrincipal
Most	of	the	information	you	need	to	know	about	the	user	is	in	IPrincipal,	but	how	do	you	get	
that	information	in	there?	The	values	in	IPrincipal	are	the	result	of	a	successful	authentication:	
before	being	able	to	take	advantage	of	the	approach,	you	have	to	worry	about	making	the	
authentication	step	happen.	That	is	where	things	might	start	getting	confusing	if	you	don’t	
want	to	invest	a	lot	in	security	know-how.

When	I	joined	Microsoft	in	2001,	my	background	was	mainly	in	scientific	visualization	and	
with	Silicon	Graphics;	I	knew	nothing	about	Microsoft	technologies.	One	of	the	first	projects	
I	worked	on	was	a	line-of-business	application	for	a	customer’s	intranet.	Today	I	can	say	I’ve	
had	my	fair	share	of	experience	with	.NET	and	authentication,	but	I	can	still	recall	the	confu-
sion	I	experienced	back	then.	Let’s	take	a	look	at	some	concrete	examples	of	using	IPrincipal.

Up	until	the	release	of	Microsoft	Visual	Studio	2008,	if	you	created	a	Web	site	from	the	
template,	the	default	authentication	mode	was	Windows.	That	means	that	the	application	
expects	Internet	Information	Services	(IIS)	to	take	care	of	authenticating	the	user.	However,	if	
you	inspect	the	IPrincipal	in	such	an	application	you	will	find	it	largely	empty.	This	is	because	
the	Web	application	has	anonymous	authentication	enabled	in	IIS	by	default,	so	no	attempt	
to	authenticate	the	user	is	made.	This	is	the	first	breach	in	the	abstraction:	you	have	to	leave	
your	development	environment,	go	to	the	IIS	console,	disable	anonymous	authentication,	
and	explicitly	enable	Windows	authentication.	(You	could	do	this	directly	by	modifying	the	
web.config	file	of	the	application	in	Microsoft	Visual	Studio,	but	going	through	IIS	is	still	the	
most	common	approach	in	my	experience.)

After	you	adjust	the	IIS	authentication	types,	you’re	good	to	go,	at	least	as	long	as	you	
	remain	within	the	boundaries	of	the	intranet.	If	you	are	developing	on	your	domain-joined	
laptop	and	you	decide	to	burn	some	midnight	oil	at	home	working	on	your	application,	
don’t	be	surprised	if	your	calls	to	IsInRole	now	fail.	Without	the	network	infrastructure	readily	
available,	the	names	of	the	groups	to	which	the	user	belongs	cannot	be	resolved.	As	you	can	
imagine,	the	same	thing	happens	if	the	application	is	moved	to	a	hoster,	to	the	cloud,	or	in	
general	away	from	your	company’s	network	environment.

In	fact,	you’ll	encounter	precious	few	cases	in	which	you	enjoy	the	luxury	of	having	
	authentication	taken	care	of	by	the	infrastructure.	If	the	users	you	want	to	authenticate	live	
outside	of	your	directory,	you	are	normally	forced	to	take	the	matter	into	your	own	hands	
and	use	authentication	APIs.	That	usually	means	configuring	your	ASP.NET	application	to	use	

 Chapter 1 Claims-Based Identity 7

Forms	authentication,	perhaps	creating	and	populating	a	users	and	roles	store	according	to	
the	schema	imposed	by	sqlMembershipProvider,	implementing	your	own	MembershipProvider	
if	your	scenario	cannot	fit	what	is	available	out	of	the	box,	and	so	on.

There’s	more:	not	everything	can	be	solved	by	providing	a	custom	user	store.	Often,	your	
	users	are	already	provisioned	in	an	existing	store	but	that	store	is	not	under	your	direct	
	control.	(Think	about	employees	of	business	partners,	suppliers,	and	customers.)	Store	dupli-
cation	is	sometimes	an	option,	but	it	normally	brings	more	problems	than	the	ones	it	solves.	
ASP.NET	provides	mechanisms	for	extending	Forms	authentication	to	those	cases,	but	they	
require	you	to	learn	even	more	security	and,	above	all,	they	are	not	guaranteed	to	work	with	
other	platforms.

If	you’ve	dealt	with	security	issues	in	the	past,	you	can	certainly	relate	to	what	I’ve	just	
	described.	If	you	haven’t,	don’t	worry	if	you	didn’t	understand	everything	in	the	last	couple	
of	paragraphs.	You	can	still	understand	that	you	need	to	learn	a	lot	to	add	authentication	
	capabilities	to	your	application,	despite	ASP.NET	providing	you	with	helper	classes,		tooling,	
and	models.	If	you’re	not	interested	in	becoming	a	security	expert,	you	would	probably	
	rather	spend	your	time	and	energy	on	something	else.

Here’s	one	last	note	before	moving	on.	When	using	Forms	authentication,	you	do	need	
to	write	extra	code	for	taking	care	of	authentication,	but	in	the	end	you	can	still	use	the	
IPrincipal	abstraction.	(The	user’s	information	is	copied	from	a	FormsIdentity	object	into	a	
GenericPrincipal.)	This	might	induce	you	to	think	that	all	you	need	is	better	tooling	to	handle	
authentication	and	that	the	abstraction	is	already	the	right	one.	You’re	on	the	right	track,	
but	this	is	not	the	case	if	you	stick	with	the	current	idea	of	authentication.	Imagine	a	case	in	
which	you	want	authentication	to	happen	using	radically	different	credentials,	such	as	a	client	
Secure	Sockets	Layer	(SSL)	certificate,	but	those	credentials	do	not	map	to	existing	Windows	
users.	In	the	traditional	case,	you	have	to	directly	inspect	the	request	for	the	incoming	X.509	
certificate	and	learn	new	concepts	(subject,	thumbprint,	and	so	on)	to	perform	the	same	task	
you	already	know	how	to	do	with	other	APIs.	

The	problem	here	is	not	with	how	ASP.NET	handles	authentication:	it	is	systemic,	and	you’d	
have	the	same	issues	with	any	other	general-purpose	technology.	By	the	way,	if	you	consider	
how	to	handle	identity	and	access	with	Microsoft	Windows	Communication	Foundation	
(WCF),	you	have	to	learn	yet	another	model,	one	that	is	largely	incompatible	with	what	we	
have	seen	so	far	and	with	its	own	range	of	APIs	and	exceptions.

When	you	can	rely	on	infrastructure,	like	in	the	Windows	Authentication	example,	you	do	
fine:	most	details	are	handled	by	Windows,	and	all	that’s	left	for	you	is	deciding	what	to	do	
with	the	user	information.	When	you	can’t	rely	on	the	infrastructure,	as	in	the	generic	case,	
you	can	observe	a	consistent	issue	across	all	cases:	you	are	burdened	with	the	responsibil-
ity	of	driving	the	mechanics	of	authentication,	and	that	often	means	dealing	with	complex	
	issues.	As	I’ve	already	stressed,	the	gamut	of	all	authentication	options	is	wide,	diverse,	and	

8 Part I Windows Identity Foundation for Everybody

	constantly	evolving.	Tooling	can	help	you	only	so	far,	and	it	is	doomed	to	be	obsolete	as	
soon	as	a	new	authentication	scheme	emerges.	

What	should	developers	do?	Are	we	doomed	to	operate	in	an	infinite	arms	race	between	
	authentication	systems	and	the	APIs	supporting	them?	

Decoupling Applications from the Mechanics of Identity
and Access
Once	upon	a	time,	developers	were	forced	to	handle	hardware	components	directly	in	their	
applications.	If	you	wanted	to	print	a	line,	you	needed	to	know	how	to	make	that	happen	
with	the	specific	hardware	of	the	printer	model	in	use	in	the	environment	of	your	customer.

Those	days	are	fortunately	long	gone.	Today’s	software	takes	advantage	of	the	available	
hardware	via	device drivers.	A	device	driver	is	a	program	that	acts	as	an	intermediary	be-
tween	a	given	device	and	the	software	that	wants	to	use	it.	All	drivers	have	one	logical
layer,	which	exposes	a	generic	representation	of	the	device	and	the	functionalities	that	are	
common	to	the	device	class	and	reveals	no	details	about	the	specific	hardware	of	a	given	
device.	The	logical	layer	is	the	layer	with	which	the	higher	level	software	interacts—for	
	example,	“print	this	string.”	The	driver	contains	a	physical layer	too,	which	is	tailored	to	the	
specific	hardware	of	a	given	device.	The	physical	layer	takes	care	of	translating	the	high-
level		commands	from	the	logical	layer	to	the	hardware-specific	instructions	required	by	the	
exact	device	model	being	used—for	example,	“put	this	byte	array	in	that	register,”	“add	the	
	following	delimiter,”	“push	the	following	instructions	in	the	stack,”	and	so	forth.

If	you	want	to	print	from	your	.NET	application,	you	just	call	some	method	on	PrintDocument,	
which	will	eventually	take	advantage	of	the	local	drivers	and	make	that	happen	for	you.	Who	
cares	about	which	printer	model	will	actually	be	available	at	run	time?	

Doesn’t	this	scenario	sound	awfully	familiar?	Managing	hardware	directly	from	applications	
is	similar	to	the	problem	of	dealing	with	authentication	and	authorization	from	applications’	
code:	there	are	too	many	(difficult!)	details	to	handle,	and	results	are	too	inflexible	and	vul-
nerable	to	changes.	The	hardware	problem	was	solved	by	the	introduction	of	device	drivers;	
there	is	reason	to	believe	that	a	similar	approach	can	solve	the	access	management	problem,	
too.

Although	an	operating	system	provides	an	environment	conducive	to	the	creation	of	
a		thriving	driver	ecosystem,	the	identity	and	access	problem	space	presents	its	own	
	challenges—for	example,	authentication	technologies	and	protocols	belong	to	many	dif-
ferent	owners,	the	ways	in	which	resources	and	services	are	accessed	is	constantly	changing	
and	is	fragmented	in	many	different	segments,	different	uses	imply	dramatically	different	
	usability	and	security	requirements,	users	and	data	are	often	sealed	in	inaccessible	silos,	and	

 Chapter 1 Claims-Based Identity 9

so	on.	The	chances	of	a	level	of	indirection	spontaneously	emerging	from	that	chaos	are	
practically	zero.

With	the	inflationary	growth	of	distributed	systems	and	online	businesses,	in	the	last	
few	years	the	increasing	need	for	interoperable	protocols	that	could	tear	down	the	walls	
	between	silos	became	clear.	The	big	players	in	the	IT	industry	got	together	and	agreed	
on	a	set	of	common	protocols	that	would	support	interoperable	communications	across	
	different		platforms.	Some	examples	of	those	protocols	are	SOAP,	WS-Security,	WS-Trust,	
	WS-Federation,	Security	Assertion	Markup	Language	(SAML),	and	in	more	recent	times,	
OpenID,	OAuth,	and	other	open	protocols.	Don’t	worry	if	you	don’t	recognize	some	or	
any	of	those	names.	What	is	important	here	is	that	the	emergence	of	common	protocols,	
combined	with	the	extra	attention	that	the	security	aspects	commanded	in	their	redaction,	
	finally	created	the	conditions	for	introducing	the	missing	logical	layer	in	identity	and	access	
management.	It	is	that	extra	layer	that	will	make	it	possible	to	isolate	applications	and	their	
	developers	from	the	gory	details	of	authentication	and	authorization	mechanics.	In	this	part,	
I	am	not	going	to	go	into	the	details	of	what	those	protocols	are	or	how	they	work;	instead,	I	
will	concentrate	on	the	scenarios	that	they	enable	and	how	to	take	advantage	of	them.

Now	that	you’ve	gained	some	perspective	on	why	today’s	approaches	are	less	than	ideal,	it	is	
time	to	focus	on	how	you	can	move	beyond	them.

Authentication and Authorization in Real Life
Imagining	what	should	be	in	the	logical	layer	of	a	printer	driver	is	easy.	After	all,	you	have	a	
good	idea	of	what	a	printer	is	supposed	to	do	and	how	you’d	like	to	take	advantage	of	it	in	
your	code.	Now	that	you	know	it	is	possible	to	create	a	logical	layer	for	identity,	do	you	know	
what	it	should	look	like?	Which	kind	of	API	should	you	offer	to	developers?

We	have	been	handling	low-level	details	for	so	long	that	it	may	be	hard	to	see	the		bigger	
picture.	A	useful	exercise	is	to	step	back	and	spend	a	moment	analyzing	how	identity	is	
	actually	used	for	authorization	in	the	real	world,	and	see	if	what	you	learn	can	be	of	help	in	
designing	your	new	identity	layer.	Let’s	look	at	an	easy	example.

Imagine	you	are	going	to	a	movie	theater	to	see	a	documentary	film.	Consider	the	following	
facts:

	 1.	 The	documentary	contains	scenes	that	are	not	suitable	for	a	young	and	impression-
able	audience;	therefore,	the	clerk	at	the	box	office	asks	you	for	a	picture	ID	so	that	he	
can	verify	whether	you	are	old	enough	to	watch	the	film.	You	reach	for	your	wallet	and	
	extract	your	driver’s	license,	and	in	so	doing	you	realize	that	it	is	expired.

	 2.	 Resigned	to	missing	the	first	show,	you	walk	to	a	nearby	office	of	the	Department	of	
Licensing	(DOL).	At	the	DOL,	you	hand	over	your	old	driver’s	license	and	ask	to	get	a	
new	one.	

10 Part I Windows Identity Foundation for Everybody

	 3.	 The	clerk	takes	a	good	look	at	you	to	see	whether	you	look	like	the	photo	on	record.	
Perhaps	he	asks	you	to	read	a	few	letters	from	an	eye	test	chart.	When	he’s	satisfied	
that	you	are	who	you	claim	to	be,	he	hands	you	your	new	driver’s	license.

	 4.	 You	go	back	to	the	movie	theater	and	present	your	new	driver’s	license	to	the	clerk.	
The	clerk,	now	satisfied	that	you	are	old	enough	to	watch	the	movie,	issues	you	a	ticket	
for	the	next	show.	

Figure	1-1	shows	a	diagram	of	the	transaction	just	described.	

FIGURE	1-1	One	identity	transaction	taking	place	in	real	life

This	is	certainly	not	rocket	science.	We	go	through	similar	interactions	all	the	time,	from	
when	we	board	a	plane	to	when	we	deal	with	our	insurance	companies.	Yet,	the	story	
	contains	precious	clues	about	how	we	can	add	our	missing	identity	layer.	

Let’s	consider	things	from	the	perspective	of	the	box-office	clerk.	The	clerk	regulates	access	
to	the	movie,	actually	authorizing	(or	blocking)	viewers	from	acquiring	a	ticket.	The	question	
that	the	clerk	needs	to	answer	is,	“Is	this	person	older	than	X?”	Here	comes	the	interesting	
part:	the	box-office	clerk	does	not	verify	your	age	directly.	How	could	he?	Instead,	he	relies	
on	the	verification	that	somebody	else	already	did.	In	this	case,	the	DOL	certified	your	birth	
date	in	its	driver’s	license	document.	The	box-office	clerk	trusts	the	DOL	to	tell	the	truth	
about	your	age.	The	DOL	is	a	recognized	government	institution,	and	it	has	a	solid	business	
need	to	know	a	person’s	correct	age	because	it	is	relevant	to	that	person’s	ability	to	drive.	
The	outcome	of	the	interaction	would	be	different	if	you	presented	the	box-office	clerk	a	
sticky	note	on	which	you	scribbled	your	age.	In	such	a	transaction,	you	are	not	a	trustworthy	
source.	(Unless	the	clerk	knows	you	personally,	he	must	assume	bias	on	your	part—that	is,	
you	could	lie	in	order	to	get	into	the	movie	theater.)

 Chapter 1 Claims-Based Identity 11

Note	that	in	this	scenario	you	presented	a	driver’s	license	as	proof	of	age,	but	from	the	clerk’s	
point	of	view	not	much	would	have	changed	if	you	had	used	your	passport	or	any	other	
document	as long as the institution issuing it is known and trusted by the box office clerk.	

One	last	thought	before	drawing	our	parallel	to	software:	the	box-office	clerk	does	not	know	
which	procedure	the	DOL	clerk	followed	for	issuing	you	a	driver’s	license,	how	the	DOL	
	verified	your	identity,	which	things	he	verified,	and	how	he	verified	them.	He	does	not	need	
to	know	these	things	because	once	he	decides	he	trusts	the	DOL	to	certify	age		correctly,	
he’ll	believe	in	whatever	birth	date	appears	on	a	valid	driver’s	license	with	the	picture	of	
the	bearer.

Let’s	summarize	our	observations	in	this	scenario:

■	 The	box-office	clerk	does	not	verify	the	customer’s	age	directly,	but	relies	on	a	trusted	
party	(the	DOL)	to	do	so	and	finds	the	result	in	a	document	(the	driver’s	license).

■	 The	box-office	clerk	is	not	tied	to	a	particular	document	format	or	source.	As	long	as	
the	issuer	is	trusted	and	the	format	is	recognized,	the	clerk	will	accept	the	document.

■	 The	box-office	clerk	does	not	know	or	care	about	the	details	of	how	the	customer	has	
been	identified	by	the	document	issuer.

This	sounds	quite	efficient.	In	fact,	similar	transactions	have	been	successfully	taking	place	for	
the	last	few	thousand	years	of	civilization.	It’s	high	time	that	we	learn	how	to	take	advantage	
of	such	transactions	in	our	software	solutions	as	well.

Claims-Based Identity: A Logical Layer for Identity
The	transaction	described	in	the	preceding	section,	including	the	various	roles	that	the	actors	
played	in	it,	can	be	generalized	in	one	of	the	most	universal	patterns	in	identity	and	access	
and	forms	the	basis	of	claims-based	identity.	The	pattern	does	not	impose	any	specific	tech-
nology,	although	it	does	assume	the	presence	of	certain	capabilities,	and	it	contains	all	the	
indications	you	need	for	defining	your	logical	identity	layer.	

Let’s	try	to	extract	from	the	story	a	generic	pattern	describing	a	generic	authentication	and	
authorization	system.	Pay	close	attention	for	the	next	few	paragraphs.	Once	you	understand	
this	pattern,	it	is	yours	forever.	It	will	provide	you	with	the	key	for	dealing	with	most	of	the	
scenarios	you	encounter	in	implementing	identity-based	transactions.	

Entities Figure	1-2	shows	the	main	entities	that	play	a	role	in	most	identity-based	
transactions.

12 Part I Windows Identity Foundation for Everybody

Relying PartySubject

Security
Token

Claim

Identity Provider

FIGURE	1-2	 The	main	entities	in	claims-based	identity

Let’s	say	that	our	system	includes	a	user,	which	in	literature	is	often	referred	to	as	a	subject,	
and	the	application	the	user	wants	to	access.	In	our	earlier	example,	the	subject	was	the	
	moviegoer;	in	the	general	case,	a	subject	can	be	pretty	much	anything	that	needs	to	be	
identified,	from	an	actual	user	to	the	application	identities	of	unattended	processes.

The	application	can	be	a	Web	site,	a	Web	service,	or	in	general	any	software	that	has	a	
need	to	authenticate	and	authorize	users.	In	identity	jargon,	it	is	called	a	relying party,	often	
	abbreviated	as	RP.	In	our	earlier	example,	the	RP	is	the	combination	of	the	box-office	clerk	
and	movie	theater.

The	system	might	include	one	or	more	identity providers	(IPs).	An	IP	is	an	entity	that	knows	
about	subjects.	It	knows	how	to	authenticate	them,	like	the	DOL	in	the	example	knew	how	
to	compare	the	customer’s	face	to	its	picture	archives;	it	knows	facts	about	the	customer,	like	
the	DOL	knows	about	the	birth	date	of	every	licensed	driver	in	its	region.	An	identity	pro-
vider	is	an	abstract	role,	but	it	requires	concrete	components:	directories,	user	repositories,	
and	authentication	systems	are	all	examples	of	parts	often	used	by	an	identity	provider	to	
perform	its	function.

We	assume	that	a	subject	has	standard	ways	of	authenticating	with	an	IP	and	receiving	
in		return	the	necessary	user	information	(like	the	birth	date	in	the	example)	for	a	specific	
	identity	transaction.	We	call	that	user	information	claims.

The	magical	word	“claim”	finally	comes	out.	A claim is a statement about a subject made by
an entity.	The	statement	can	be	literally	anything	that	can	be	associated	with	a	subject,	from	
attributes	such	as	birth	date	to	the	fact	that	the	subject	belongs	to	a	certain	security	group.	A	
claim	is	distinct	from	a	simple	attribute	by	the	fact	that	a	claim	is	always	associated	with	the	
entity	that	issued	it.	This	is	an	important	distinction:	it	provides	you	with	a	criterion	for	decid-
ing	if	you	want	to	believe	that	the	assertion	applies	to	the	subject.	Recall	the	example	of	the	
birth	date	printed	on	the	driver’s	license	versus	a	birth	date	scribbled	on	a	sticky	note:	the	
clerk	believes	the	former	but	not	the	latter	because	of	the	entities	backing	the	assertion.

 Chapter 1 Claims-Based Identity 13

Claims	travel	across	the	nodes	of	distributed	systems	in	security tokens,	which	are	XML	or	
	binary	fragments	constructed	according	to	some	security	standard.	Tokens	are	digitally	
signed,	which	means	that	they	cannot	be	tampered	with	and	that	they	can	always	be	traced	
back	to	the	IP	that	issued	them	(which	provides	a	nice	mechanism	for	associating	token	
	content	with	its	issuer,	as	required	by	the	definition	of	claims).

Flow Claims	are	the	currency	of	identity	systems:	they	are	what	describe	the	subject	in	
the	current	context,	what	the	IP	produces,	and	what	the	RP	consumes.	Here’s	how	the	
	transaction	unfolds.	

Well	before	your	transaction	starts,	the	RP	publishes	a	document,	often	called	a	policy,	in	
which	it	advertises	its	security	requirements:	things	such	as	which	security	protocols	the	RP	
understands	and	similar	information.	This	is	analogous	to	the	box	office	hanging	up	a	sign	
that	says,	“Be	ready	to	show	your	driver’s	license	or	your	passport	to	the	clerk.”	The	most	
important	part	of	the	RP	policy	is	the	list	of	the	identity	providers	it	trusts.	This	is	equivalent	
to	another	sign	at	the	box	office	specifying,	“Drivers’	licenses	from	U.S.	states	only;	passports	
from	Schengen	Treaty	countries	only.”

Again,	before	the	transaction	starts,	the	IP	publishes	an	analogous	policy	document	that	
	advertises	its	own	security	requirements.	This	document	provides	instructions	on	how	to	
ask	the	IP	to	issue	a	security	token.	In	literature,	you	will	often	find	that	IPs	offer	their	token	
	issuance	services	via	a	special	flavor	of	Web	services,	called	STS	(Security	Token	Service).	
You’ll	read	more	(MUCH	more)	about	STS	throughout	the	book.	

Figure	1-3	summarizes	the	steps	of	the	canonical	identity	transaction.

Identity Provider

Relying PartySubject

Security
Token

2

3

1
4

STS
Policy

Policy

5

FIGURE	1-3	 The	flow	of	the	canonical	transaction	in	claims-based	identity

Here’s	a	description	of	that	flow:

14 Part I Windows Identity Foundation for Everybody

	 1.	 The	subject	wants	to	access	the	RP	application.	It	does	that	via	an	agent	of	some	sort	
(a	browser,	a	rich	client,	and	so	on).	The	subject	begins	by	reading	the	RP	policy.	In	so	
doing,	it	learns	which	identity	providers	the	RP	trusts,	which	kind	of	claims	are	required,	
and	which	security	protocols	should	be	used.

	 2.	 The	subject	chooses	one	of	the	IPs	that	the	RP	trust	and	inspects	its	policy	to	find	out	
which	security	protocol	is	required.	Then	it	sends	a	request	to	the	IP	to	issue	a	token	
that	matches	the	RP	requirements.	This	process	is	the	equivalent	of	going	to	the	DOL	
and	asking	for	a	document	containing	a	birth	date.	In	so	doing,	the	subject	is	required	
to	provide	some	credentials	in	order	to	be	recognized	by	the	IP.	The	details	of	the	
	protocol	used	are	described	in	the	IP	policy.	

	 3.	 The	IP	processes	the	request;	if	it	finds	the	request	to	be	satisfactory,	it	retrieves	the	
values	of	the	requested	claims,	sending	them	back	to	the	subject	in	the	form	of	a	
	security	token.

	 4.	 The	subject	receives	the	security	token	from	the	IP	and	sends	it	together	with	his	first	
request	to	the	RP	application.

	 5.	 The	RP	application	examines	the	incoming	token	and	verifies	that	it	matches	all	the	
requirements	(coming	from	one	trusted	IP,	in	the	expected	format,	not	having	been	
tampered	with,	containing	the	right	set	of	claims,	and	so	on).	If	everything	looks	as	
	expected,	the	RP	grants	access	to	the	subject.

This	sequence	of	steps	could	describe	a	user	buying	something	online	and	presenting	to	
the	Web	merchant	a	credit	score	from	a	financial	institution;	it	could	describe	the	user	of	a	
Windows	Presentation	Foundation	(WPF)	application	accessing	a	Web	service	on	the	local	
intranet	by	presenting	a	group	membership	claim	issued	from	the	domain	controller;	it	could	
describe	pretty	much	any	identity	transaction	if	you	assign	the	subject,	RP,	and	IP	roles	in	the	
right	way.

The abstraction layer we were searching for The	pattern	we’ve	been	discussing		describes	a	
generic	identity	transaction.	Without	going	into	detail	about	the	actual	protocols	and	tech-
nologies	involved,	we	can	say	that	it	just	makes	assumptions	about	what	capabilities	those	
technologies	should	have,	such	as	the	capability	of	exposing	policies.

The	model	is	profoundly	different	from	what	we	have	observed	in	classic	approaches:	
whereas	a	traditional	application	takes	care	of	authentication	more	or	less	directly,	here	the	
RP	outsources	it	entirely	to	a	third	party,	the	identity	provider.	The	details	of	how	authenti-
cation	happens	are	no	longer	a	concern	of	the	application	developer;	all	you	need	to	do	is	
configure	your	application	to	redirect	users	to	the	intended	identity	providers	and	be	able	
to	process	the	security	tokens	they	issue.	Although	you	can	use	many	different	protocols	
for	obtaining	and	using	a	security	token,	the	abstract	idea	of	claims	and	security	tokens	is	

 Chapter 1 Claims-Based Identity 15

	nonspecific	enough	to	allow	you	to	create	a	generic	programming	model	for	representing	
users	and	the	outcome	of	authentication	operations	without	exceptions.	

Those	changes	in	perspective	finally	eliminate	the	systemic	flaw	that	prevented	us	from	
eradicating	from	the	application	code	the	explicit	handling	of	identity	without	relying	on	
demanding	infrastructure.	All	that’s	left	to	do	is	for	platform	and	developer	tools	providers	to	
take	advantage	of	the	claims-based	identity	model	in	their	products.

Note The	model	is	extremely	expressive.	In	fact,	you	can	easily	use	it	for	representing	
	traditional	scenarios	too.	If	the	IP	and	the	RP	are	the	same	entity,	you	are	back	to	the	case	in	
which	the	application	itself	takes	care	of	handling	authentication.	The	important	difference	in	
the	implementation	is	that	both	code	and	architecture	will	show	that	this	is	just	a	special	case	
of	a	more	generic	scenario.	Therefore,	the	decoupling	will	be	respected	and	changes	will	be	
	accommodated	gracefully.

WIF	Programming	Model
Microsoft	has	been	among	the	most	enthusiastic	promoters	of	the	claims-based	identity	
model.	It	should	come	as	no	surprise	that	it	has	also	been	one	of	the	first	to	integrate	it	in	its	
product	offerings.	For	example,	Active	Directory	Federation	Services	2	(ADFS2)	is	a	Windows	
Server	role	that,	among	other	things,	enables	your	Active	Directory	instance	to	act	as	an	
identity	provider	and	issue	claims	for	your	user	accounts.

Windows	Identity	Foundation	(WIF)	is	a	set	of	classes	and	tools,	an	extension	to	the	.NET	
Framework,	that	enables	you	to	use	claims-based	identity	when	developing	ASP.NET	or	
WCF	applications.	It	is	seamlessly	integrated	with	the	core	.NET	Framework	classes	and	in	
Visual	Studio	so	that	you	can	keep	using	the	tools	and	techniques	you	are	familiar	with	for	
	developing	your	applications,	while	reaping	the	advantages	of	the	new	model	when	it	comes	
to	identity.

In	this	section,	I	will	introduce	the	basics	of	Windows	Identity	Foundation:	how	it	exposes	
claims-based	identity	principles	to	developers,	some	fundamental	considerations	about	its	
structure,	and	the	essential	programming	surface	every	developer	should	be	aware	of.

16 Part I Windows Identity Foundation for Everybody

An API for Claims-Based Identity
In	the	previous	section,	you	learned	about	claims-based	identity.	If	you	had	to	expose	it	as	
a	programming	model	so	that	an	application	developer	could	take	advantage	of	it,	what	
	requirements	would	you	follow?	Here	is	my	wish	list:

■	 Make	claims	available	to	the	developer	in	a	clear,	consistent,	and	protocol-independent	
fashion.

■	 Take	care	of	all	(or	nearly	all)	authentication,	authorization,	and	protocol	handling	
	outside	of	the	code	of	the	application,	away	from	the	eyes	of	the	developer.

■	 Minimize	the	need	to	change	the	code	when	changes	at	deployment	time	occur.	Drive	
as	much	of	the	application’s	behavior	as	possible	via	configuration.

■	 Provide	a	way	to	easily	configure	applications	to	rely	on	external	identity	providers	for	
authentication.

■	 Provide	a	way	for	applications	to	easily	advertise	their	requirements	via	policy.

■	 Organize	everything	in	a	pluggable	architecture	that	can	support	multiple	protocols	
and	isolate	the	developer	from	the	details	of	the	deployment	(on	premises	and	cloud,	
ASP.NET	and	WCF,	and	so	on).

■	 Respect	as	much	as	possible	existing	code	and	practices,	maximizing	the	amount	of	old	
code	that	will	still	work	in	the	new	model	while	offering	incremental	advantages	with	
the	new	APIs.

As	you’ll	see	time	and	time	again	throughout	the	book,	WIF	satisfies	all	these	criteria.

WIF’s Essential Behavior
Earlier	in	the	text,	I	wrote	that	Part	I	of	the	book	will	show	you	how	to	take	advantage	of	WIF	
in	your	applications	without	the	need	to	become	a	security	expert,	and	I	intend	to	keep	that	
promise.	Here	I’ll	start	with	a	simplified	description	of	how	WIF	works,	covering	the	essential	
points	for	allowing	you	to	use	the	product.	Part	I	will	be	about	ASP.NET	applications,	and	I’ll	
stick	with	discussing	scenarios	that	can	be	tackled	by	using	WIF	tooling	alone.	I’ll	omit	the	
details	that	have	no	immediate	use.	You	can	refer	to	Part	II	of	the	book	if	you	want	to	know	
the	whole	story.	

WIF	allows	you	to	externalize	authentication	and	authorization	by	configuring	your	
	application	to	rely	on	an	identity	provider	to	perform	some	or	all	those	functions	for	you.	
How	does	it	do	that	in	practice?

Figure	1-4	shows	a	simplified	diagram	of	how	WIF	handles	authentication	in	the		
ASP.NET	case.

 Chapter 1 Claims-Based Identity 17

Identity Provider

ApplicationSubject

2

3
1

5

4

WIF

Claims
Browser

STS

FIGURE	1-4	 A	simplified	diagram	of	how	Windows	Identity	Foundation	takes	care	of	handling	authentication	
for	an	ASP.NET	application

The	idea	is	extremely	simple	and	closely	mimics	the	canonical	claims-based	identity	pattern:	

	 1.	 WIF	sits	in	front	of	your	application	in	the	ASP.NET	pipeline.	When	an	unauthenticated	
user	requests	a	page,	it	redirects	the	browser	to	the	identity	provider	pages.	

	 2.	 Here	the	IP	authenticates	the	user	in	whatever	way	it	chooses	(perhaps	by	showing	
a	page	with	user	name	and	password,	using	Kerberos,	or	in	some	other	way).	Then	it	
manufactures	a	token	with	the	required	claims	and	sends	it	back.	

	 3.	 The	browser	posts	the	token	it	got	from	the	IP	to	the	application,	where	WIF	again	
	intercepts	the	request.

	 4.	 If	the	token	satisfies	the	requirements	of	the	application	(that	is,	it	comes	from	the	right	
IP,	contains	the	right	claims,	and	so	on),	the	user	is	considered	authenticated.	WIF	then	
drops	a	cookie,	and	a	session	is	established.	

	 5.	 The	claims	in	the	incoming	token	are	made	available	to	the	application	code,	and	the	
control	is	passed	to	the	application.	

As	long	as	the	session	cookie	is	valid,	the	subsequent	requests	won’t	need	to	go	through	the	
same	flow	because	the	user	will	be	considered	to	be	authenticated.

You	are	not	supposed	to	know	it	yet,	but	the	preceding	flow	unfolds	according	to	the	
WS-Federation	protocol	specification:	most	of	the	magic	is	done	by	two	HTTP	modules:	
WSFederationAuthenticationModule	(WSFAM)	and	SessionAuthenticationModule.

18 Part I Windows Identity Foundation for Everybody

The	whole	trick	of	using	WIF	in	your	application	boils	down	to	the	following	tasks:

	 1.	 Configure	the	application	so	that	the	WIF	HTTP	modules	sit	in	the	ASP.NET	pipeline	in	
front	of	it.

	 2.	 Configure	the	WIF	modules	so	that	they	refer	to	the	intended	IPs,	use	the	right	
	protocols,	protect	the	planned	resources	of	the	application,	and	in	general	enforce	all	
the	desired	application	policies.

	 3.	 Access	claim	values	from	the	application	code	whenever	there	is	a	need	in	the	
	application	logic	to	make	a	decision	driven	by	user	identity	attributes.

The	good	news	is	that	in	many	cases	steps	1	and	2	can	be	performed	via	Visual	Studio	
	tooling.	There	is	a	handy	wizard	that	walks	you	through	the	process	of	choosing	an	identity	
provider,	offers	you	various	options,	and	informs	you	about	the	kind	of	claims	you	can	get	
about	the	user	from	the	specific	IP	you	are	referring	to.	The	wizard	translates	all	the	prefer-
ences	you	expressed	via	point	and	click	in	the	web.config	settings.	The	next	time	you	press	
F5,	your	application	will	already	apply	the	new	authentication	strategy.	Congratulations,	your	
application	is	now	claims-aware.

The	good	news	keep	coming;	performing	step	3	is	simple	and	perfectly	in	line	with	what	
.NET	developers	are	already	accustomed	to	doing	when	handling	user	attributes.

IClaimsIdentity and IClaimsPrincipal
Remember	IIdentity	and	IPrincipal	as	a	means	of	decoupling	the	application	code	from	the	
authentication	method?	It	worked	pretty	well	until	we	found	an	authentication	style	(client	
certificates)	that	broke	the	model.	Now	that	authentication	is	no	longer	a	concern	of	the	
	application,	we	can	confidently	revisit	the	approach	and	apply	it	for	exposing	new	informa-
tion	(claims)	by	leveraging	a	familiar	model.

WIF	provides	two	extensions	to	IIdentity	and	IPrincipal, IClaimsIdentity	and	IClaimsPrincipal,	
respectively—which	are	used	to	make	the	claims	processed	in	the	WIF	pipeline	available	to	
the	application	code.	The	instances	live	in	the	usual	HttpContext.Current.User	property	in	
ASP.NET	applications.	You	can	use	them	as	is	with	the	usual	IIdentity	and	IPrincipal	program-
ming	model,	or	you	can	cast	them	to	the	correct	interface	and	take	advantage	of	the	new	
functionalities.	

Let’s	take	a	quick	look	at	the	members	of	the	new	interfaces.	Note	that	the	list	for	now	is	by	
no	means	exhaustive	and	highlights	only	properties	that	will	be	useful	in	basic	scenarios.

 Chapter 1 Claims-Based Identity 19

IClaimsPrincipal	is	defined	as	follows:

public interface IClaimsPrincipal : IPrincipal
{
 // ...

 // Properties
 ClaimsIdentityCollection Identities { get; }
}

Because	IClaimsPrincipal	is	an	extension	of	IPrincipal,	all	the	usual	functionalities	(such	as	
IsInRole)	are	supported.	As	you’ll	see	in	Chapter	2,	“Core	ASP.NET	Programming,”	this	use-
ful	property	extends	to	other	ASP.NET	features	that	take	advantage	of	IPrincipal	roles—for	
	example,	access	conditions	expressed	via	the	<authorization>	element	still	work.

The	only	noteworthy	news	is	the	Identities	collection,	which	is	in	fact	a	list	of	IClaimsIdentity.	
Let’s	take	a	look	at	the	definition	of	IClaimsIdentity:

public interface IClaimsIdentity : IIdentity
{
 // ...
 ClaimCollection Claims { get; }
 }

Here	I	stripped	out	most	of	the	IClaimsIdentity	members	(because	I’ll	have	a	chance	to	
	introduce	them	all	as	you	proceed	though	the	book),	but	I	left	in	the	most	important	one,	
the	list	of	claims	associated	with	the	current	user.	What	does	a	Claim	look	like?

public class Claim
{
 // ...
 // Properties
 public virtual string ClaimType { get; }
 public virtual string Issuer { get; }
 public virtual IClaimsIdentity Subject { get; }
 public virtual string Value { get; }
}

Once	again,	many	members	have	been	stripped	out	for	the	sake	of	clarity.	The	properties	
shown	are	self-explanatory:

■ ClaimType Represents	the	type	of	the	claim:	birth	date,	role,	and	group	membership	
are	all	good	examples.	WIF	comes	with	a	number	of	constants	representing	names	of	
claim	types	in	common	use;	however,	you	can	easily	define	your	own	types	if	you	need	
to.	The	typical	claim	type	is	represented	with	a	URI.

■ Value Specifies,	as	you	can	imagine,	the	value	of	the	claim.	It	is	always	a	string,	
	although	it	can	represent	a	value	of	a	different	CLR	type.	(Birth	date	is	a	good	example.)

20 Part I Windows Identity Foundation for Everybody

■ Issuer Indicates	the	name	of	the	IP	that	issued	the	current	claim.

■ Subject Points	to	the	IClaimsIdentity	to	which	the	current	Claim	belongs,	which	is	a	
representation	of	the	identity	of	the	subject	to	which	the	claim	refers	to.

If	you	understand	what	a	claim	is,	and	if	you	have	any	type	of	identity	card	in	your	wallet,	the	
properties	just	described	are	intuitive	and	easy	to	use.	Let’s	look	at	one	easy	example.

Suppose	that	you	are	working	on	one	application	that	has	been	configured	with	WIF	to	use	
claims-based	identity.	Let’s	say	that	authentication	takes	place	at	the	very	beginning	of	the	
session,	so	that	during	the	execution	you	can	always	assume	the	user	is	authenticated.	At	a	
certain	point	in	your	code,	you	need	to	send	an	e-mail	notification	to	your	user.	Therefore,	
you	need	to	retrieve	her	e-mail	address.	Here	there’s	how	you	do	it	with	WIF:

IClaimsIdentity identity = Thread.CurrentPrincipal.Identity as IClaimsIdentity;
string Email = (from c in identity.Claims
 where c.ClaimType == System.IdentityModel.Claims.ClaimTypes.Email
 select c.Value).SingleOrDefault();

The	first	line	retrieves	the	current	IClaimsIdentity	from	the	current	principal	of	the	thread,	
	exactly	as	it	would	if	you	wanted	to	work	with	the	classic	.NET	IIdentity—the	only	difference	
is	the	downcast	to	IClaimsPrincipal.

The	second	line	uses	LINQ	for	retrieving	the	e-mail	address	from	the	current	claim	collection.	
The	query	is	very	intuitive:	you	search	for	all	the	claims	whose	type	corresponds	to	the	well-
known	Email	claim	type,	and	you	return	the	value	of	the	first	occurrence	you	find.	For	the	
e-mail	case,	it	is	reasonable	to	expect	that	there	will	be	only	one	occurrence	in	the	collection,	
However,	this	is	not	true	in	the	general	case.	Just	think	of	how	many	group	claims	would	be	
generated	for	any	given	Windows	user;	thus,	the	standard	way	of	retrieving	a	claims	value	
must	take	into	account	that	there	might	be	multiple	claims	of	the	same	type	in	the	current	
IClaimsIdentity.

Nothing	in	the	code	shown	indicates	which	protocol	or	credential	types	have	been	used	for	
authenticating	the	user.	That	means	you	are	free	to	make	any	changes	in	the	way	in	which	
users	authenticate,	without	having	to	change	anything	in	your	code.	Relying	on	one	IP	for	
handling	user	authentication	and	using	open	protocols	delivers	true	separation	of	concerns;	
therefore,	making	those	changes	is	also	very	easy.

Relying	on	claims	for	getting	information	about	the	user	mitigates	the	need	for	maintaining	
attribute	stores,	where	the	data	can	become	stale	or	be	compromised.	As	you	can	observe,	
the	code	shown	in	this	section	does	not	contain	any	call	to	a	local	database	that	could	be	
broken	by	routine	changes	or	that	could	become	a	problem	if	the	application	is	moved	to	an	
external	host	that	cannot	access	local	resources.	In	the	age	of	the	cloud,	the	importance	of	
being	able	to	move	applications	around	cannot	be	overestimated.

 Chapter 1 Claims-Based Identity 21

Finally,	the	two	lines	of	code	shown	earlier	will	work	with	any	kind	of	.NET	program,		
ASP.NET	or	WCF.	The	way	in	which	WIF	snaps	to	the	two	different	hosting	models	and	
	pipelines	is	different.	I	will	describe	how	it	does	this	in	detail	in	Part	II;	however,	from	the	
perspective	of	the	application	developer,	nothing	changes.	The	tooling	operates	its	magic	
for	configuring	the	application	to	externalize	authentication.	All	you	need	to	know	is	how	to	
mine	the	results	with	a	consistent	API	without	worrying	about	underlying	protocols,	hosting	
model,	or	location.

It	would	appear	that	adding	one	extra	layer	of	indirection	worked.	We	finally	found	an	API	
that	can	secure	your	applications	without	forcing	you	to	take	care	of	the	details.	

Summary
Traditional	approaches	to	adding	identity	and	access	management	functionality	to	
	applications	all	have	the	same	issues:	they	require	the	developer	to	take	matters	into	his	own	
hands,	calling	for	specialized	security	knowledge,	or	they	heavily	rely	on	the	features	of	the	
underlying	infrastructure.	This	situation	has	led	to	a	proliferation	of	APIs	and	techniques,	
forcing	developers	to	continually	re-learn	how	to	perform	the	same	task	with	different	APIs.	
The	resulting	software	is	brittle,	difficult	to	maintain,	and	resistant	to	change.	In	this	chapter,	
I	gave	some	concrete	examples	of	how	this	systemic	flaw	in	the	approach	to	adding	identity	
and	access	management	affects	development,	even	development	in	.NET.	

Claims-based	identity	is	an	approach	that	changes	the	way	we	think	about	authentication	
and	authorization,	adding	a	logical	representation	of	identity	transactions	and	identifying	
the	roles	that	every	entity	plays.	By	adding	that	further	level	of	indirection,	claims-based	
identity	created	the	basis	for	the	decoupling	of	the	programming	model	and	the	details	of	
deploy-time	systems.	In	the	chapter,	I	described	the	basics	of	claims-based	identity	and	you	
learned	how	it	can	be	used	to	model	a	wide	variety	of	scenarios.

Windows	Identity	Foundation	is	one	set	of	.NET	classes	and	tools	that	helps	developers	to	
	secure	applications	by	following	the	principles	of	claims-based	identity.	This	chapter	intro-
duced	the	essential	programming	surface	exposed	by	WIF,	and	it	demonstrated	how	WIF	
does	not	suffer	from	the	issues	I	mentioned	for	traditional	approaches.

In	the	next	chapter,	I	will	show	how	to	take	advantage	of	WIF	for	performing	authentication,	
authorization	and	identity-driven	customization	in	a	variety	of	common	Web	scenarios.	

	 	 95

Chapter	4

Advanced ASP .NET Programming
In this chapter:
More About Externalizing Authentication . 96
Single Sign-on, Single Sign-out, and Sessions . 112
Federation . 126
Claims Processing at the RP . 141
Summary . 143

Now	that	most	technicalities	are	out	of	the	way,	we	can	focus	on	intended	usage	of	the	
	product	for	addressing	a	wider	range	of	scenarios.	

This	chapter	resumes	the	architectural	considerations	that	drove	Part	I	of	the	book,	“Windows	
Identity	Foundation	for	Everybody,”	by	tackling	more	complex	situations.	I’ll		assume	you	
are	now	familiar	with	the	flow	described	in	Chapter	3,	“WIF	Processing	Pipeline	in	ASP.NET.”	
I’ll	give	you	concrete	indications	about	how	to	customize	the	default	behavior	of	Windows	
Identity	Foundation	(WIF)	to	obtain	the	desired	effect	for	every	given	scenario.

Using	claims-based	identity	in	your	application	is,	for	the	most	part,	the	art	of	choosing	
who	to	outsource	authentication	to	and	providing	just	the	right	amount	of	information	for	
	influencing	the	process.	This	chapter	will	not	exhaust	all	the	possible	ways	you	can		customize	
WIF—far	from	it.	However,	it	will	equip	you	with	the	principles	you	need	to	confidently	
	explore	new	scenarios	on	your	own.

The	first	section,	“More	About	Externalizing	Authentication,”	takes	a	deeper	look	at	the	
entities	to	which	you	can	outsource	authentication	for	your	application.	I’ll	go	beyond	the	
simplifications	offered	so	far,	introducing	the	idea	of	multiple	provider	types.	A	lot	of	the	
discussion	will	be	at	the	architectural	level,	helping	you	with	the	design	choices	in	your	
solutions.	However,	hardcore	coders	should	not	fear!	The	section	also	dives	deep	into	the	
Security	Token	Service	(STS)	project	template	that	comes	with	the	WIF	SDK.	Although	in	real	
scenarios	you’ll	rarely	need	to	create	a	custom	STS,	given	that	more	often	than	not	you’ll	rely	
on	off-the-shelf	products	such	as	Active	Directory	Federation	Services	2.0	(ADFS	2.0),	you’ll	
find	it	useful	to	see	a	concrete	example	of	how	the	architectural	considerations	mentioned	
are	reflected	in	code.

The	“Single	Sign-on,	Single	Sign-out,	and	Sessions”	section	explores	techniques	that	reduce	
the	need	for	users	to	explicitly	enter	their	credentials	when	visiting	affiliated	Web	sites	and	

96 Part II Windows Identity Foundation for Identity Developers

shows	how	to	clean	up	multiple	sessions	at	once.	One	specific	case,	sessions	with	sliding	
	validity,	is	the	occasion	for	a	deeper	look	at	how	WIF	handles	sessions.

The	“Federation”	section	dissects	the	pattern	that	is	most	widely	used	for	handling	access	
across	multiple	organizations.	I’ll	cover	more	in	depth	the	use	of	STSes	for	processing	claims,	
and	we’ll	tackle	the	problem	of	deciding	who	should	authenticate	the	user	when	there	are	
many	identity	providers	(IPs)	to	choose	from	(something	known	as	the	home realm discovery
problem).	The	solutions	to	those	problems	can	be	easily	generalized	to	any	situation	in	which	
the	relying	party	(RP)—which	was	discussed	in	Chapter	3—needs	to	communicate	options	to	
the	IP.	I’ll	demonstrate	that	with	another	example:	the	explicit	request	for	a	certain		
authentication	level.

The	“Claims	Processing	at	the	RP”	section	closes	the	chapter	by	describing	how	to	use	
Windows	Identity	Foundation	for	preprocessing	the	claims	received	from	the	identity	
	provider.	I’ll	briefly	revisit	the	claims-based	authorization	flow—introduced	in	minimal	terms	
in	Chapter	2,	“Core	ASP.NET	programming.”	Then	I’ll	show	you	how	to	filter	and	enrich	the	
IClaimsPrincipal	before	the	application	code	gains	access	to	it.

After	you	read	this	chapter,	you’ll	be	able	to	make	informed	decisions	about	the	identity	
management	architecture	of	your	solutions.	You’ll	know	what	it	takes	to	implement	such	
	decisions	in	ASP.NET.	You’ll	have	concrete	experience	using	the	WIF	extensibility	model	for	
solving	a	range	of	classic	identity	management	scenarios.	That	experience	will	help	you	to	
devise	your	own	WIF-based	solutions.	Once	again,	I’ll	give	you	practical	code	indications	
about	the	ASP.NET	case,	but	the	general	principles	introduced	here	can	be	applied	more	
broadly,	often	to	the	WCF	services	case	and	even	on	non-Microsoft	platforms.

More	About	Externalizing	Authentication
Until	now,	I	have	described	situations	in	which	the	application	relies	on	only	one	external	
	entity—what	I	defined	as	the	identity provider,	or	IP.	Although	this	is	an	accurate	representa-
tion	of	a	particular	common	scenario,	the	general	case	can	be	a	bit	more	complicated.	Not	
only	might	you	have	to	accept	identities	from	multiple	identity	providers,	identity	providers	
are	not	the	only	entities	you	can	outsource	authentication	to!	

So	far,	the	role	played	by	the	entity	within	a	transaction	(the	identity	provider)	has	been	
	conflated	with	the	instrument	used	to	perform	the	function	(the	STS).	The	purpose	of	this	
section	is	to	help	you	better	understand	the	separation	between	the	two	by		providing	
more	details	about	the	nature	of	the	identity	provider,	introducing	a	new	role	known	
as	the		federation provider,	and	studying	how	those	high-level	functions	reflect	on	the	
	implementation	of	the	associated	STS.	

 Chapter 4 Advanced ASP .NET Programming 97

Identity Providers
Being	an	identity	provider	is	a	role,	a	job	if	you	will.	You	know	from	Chapter	1,	“Claims-Based	
Identity,”	that	an	IP	“knows	about	subjects.”	In	fact,	all	the	thinking	behind	the	idea	of	IP	is	
just	good	service	orientation	applied	to	identity.	

The	standard	example	of	a	concrete	identity	provider	is	one	built	on	top	of	a	directory,	just	as	
ADFS	2.0	is	built	on	top	of	Active	Directory.	In	this	scenario,	there’s	an	entity	that	is	capable	
of	authenticating	users	and	making	assertions	about	them,	and	all	you	are	doing	is	making	
that	capability	reusable	to	a	wider	audience	by	slapping	a	standard	façade	(the	STS)	in	front	
of	it.	The	use	of	standards	when	exposing	the	STS	is	simply	a	way	of	maximizing	the	audience	
and	increasing	reusability.	Here’s	an	example:	Although	a	SharePoint	instance	on	an	intranet	
can	take	advantage	of	Active	Directory	authentication	capabilities	directly	via	Kerberos,	
that	is	not	the	case	for	a	SharePoint	instance	living	outside	the	corporate	boundaries	and	
hosted	by	a	different	company.	Exposing	the	authentication	capabilities	of	Active	Directory	
via	ADFS	2.0	makes	it	possible	to	reuse	identities	with	the	SharePoint	instance	in	the	second	
scenario,	removing	the	platform	and	location	constraints.	WIF	is	just	machinery	that	enables	
your	application	to	take	advantage	of	the	same	mechanism.	It	is	worthwhile	to	point	out	that	
SharePoint	2010	is,	in	fact,	based	on	WIF.

Another	advantage	of	wrapping	the	actual	authentication	behind	a	standard	interface	is	
that	you	are	now	isolated	from	its	implementation	details.	The	IP	could	be	a	façade	for	a	
directory,	a	membership	provider–based	site,	or	an	entirely	custom	solution	on	an	arbitrary	
platform;	as	long	as	its	STS	exposes	the	authentication	functionality	through	standards,	
applications	can	use	it	without	ties	or	dependencies	outside	of	the	established	contract.	
Who	cares	if	the		connection	string	to	the	membership	database	changes,	or	even	if	there	
is	a	membership	database	in	the	first	place?	All	you	need	to	know	is	the	address	of	the	STS	
metadata.

Those	characteristics	of	the	IP	role	tell	you	quite	a	lot	about	what	to	expect	regarding	the	
structure	of	the	STS	exposed	by	one	IP.	

Note In	literature,	you’ll	often	find	that	one	STS	used	by	one	IP	can	be	defined	as	an	“IP-STS.”	
In	a	short,	you’ll	see	how	this	can	sometimes	be	useful	for	disambiguating	the	function	the	STS	
offers.

In	the	WS-Federation	Sign-in	flow,	described	in	Chapter	3,	you	saw	that	the	details	of	how	
the	STS	authenticates	the	request	for	security	tokens	is	a	private	matter	between	the	STS	and	
the	user.	Now	you	know	that	such	a	system	has	to	be	something	that	allows	the	STS	to	look	
up	user	information	from	some	store—so	that	it	can	be	extracted	and	packaged	in	the	form	
of	claims.	Notable	examples	are	the	ones	in	which	the	STS	leverages	the	same	authentication	
methods	of	the	resource	it	is	wrapping.	If	the	IP	is	a	façade	for	Active	Directory	and	the	user	

98 Part II Windows Identity Foundation for Identity Developers

is	on	the	intranet,	the	STS	might	very	well	be	hosted	on	one	ASPX	page	that	is	configured	in	
Internet	Information	Services	(IIS)	to	leverage	Windows	native	authentication.	If	the	source	
is	a	membership	database,	the	STS	site	will	be	protected	via	a	membership	provider,	and	so	
on.	The	claim	value’s	retrieval	logic	in	the	STS	will	use	whatever	moniker	the	authentication	
scheme	offers	for	looking	up	claim	values,	but	the	authentication	will	often	be	performed	by	
the	infrastructure	hosting	the	STS	rather	than	the	STS	code	itself.

Nothing	prevents	one	IP	from	exposing	more	than	one	STS	endpoint	to	accommodate	
	multiple	consumption	models.	For	example,	the	same	IP	might	be	listening	for	Kerberos	
	authenticated	requests	from	the	intranet	and	X.509	secured	calls	on	an	endpoint	available	
on	the	Internet;	the	IP	might	expose	further	endpoints,	both	for	browser-based	requestors	
via	WS-Federation	and	SAMLP	or	for	active	requestors	via	WS-Trust;	and	so	on.	This	process	
offers	another	insight	into	how	one	IP	is	structured:	authentication	and	claims	issuance	logic	
should	communicate	but	remain	separate	so	that	multiple	STS	endpoints	scenarios	are	han-
dled	with	little	or	no	duplication.	As	you’ll	see	later	in	the	section,	the	WIF	STS	programming	
model	is	consistent	with	that	consideration.

An	IP	will	actively	manage	the	list	of	the	RPs	it	is	willing	to	issue	a	token	for.	This	is	not	only	
a	matter	of	ensuring	that	claims	are	transmitted	exclusively	to	intended	recipients,	but	also	a	
practical	necessity.	Especially	in	the	passive	case,	in	which	token	requests	are	usually	simple,	
the	IP	decides	what	list	of	claims	will	be	included	in	a	token	according	to	the	RP	the	token	is	
being	issued	for.	(“Passive	case”	is	mainly	another	way	to	say	that	you	use	a	browser.	You’ll	
know	everything	about	it	after	reading	Chapter	5,	“WIF	and	WCF.”)	Such	a	list	is	established	
when	the	RP	is	provisioned	in	the	IP’s	allow	list.	Just	like	WIF	enables	one	application	to	es-
tablish	a	trust	relationship	with	an	IP	by	consuming	its	metadata	via	the	Federation	Utility	
Wizard,	IP	software	such	as	ADFS	2.0	includes	wizards	that	can	consume	the	application	
metadata	and	automatically	provision	the	RP	entry	in	its	allow	list.

Note In	computer	science	as	in	other	disciplines,	an	allow	list	is	a	list	of	entities	that	are	
	approved	to	do	something	or	to	be	recipients	of	some	action.	For	example,	if	your	company	
	network	has	an	allow	list	of	Web	sites,	that	means	you	can	browse	only	on	those	sites	and	no	
other.	Conversely,	having	a	blacklist	of	Web	sites	means	that	you	can	browse	everywhere	but	on	
those.	An	IP		normally	maintains	an	allow	list	of	RPs	it	is	willing	to	issue	a	token	for:	any	request	
for	a	recipient	not	in	the		allow	list	is	refused.	The	ADFS	2.0	UI	describes	that	as	Relying Party
Trust.	I	am	not	very	fond	of	that	use	of	“trust,”	which	in	this	context	has	a	special	meaning	(be-
lieving	that	the	claims	issued	by	a	given	IP	about	a	subject	are	true),	but	your	mileage	may	vary.

The	IP	also	keeps	track	of	the	certificate	associated	with	the	RP,	both	for	ensuring	that	the	
RP	has	a	strong	endpoint	identity	(exposed	via	HTTPS)	and	for	encrypting	the	token	with	the	
correct	key	if	confidentiality	is	required.

 Chapter 4 Advanced ASP .NET Programming 99

Nonauditing	STS
There	are	situations,	especially	in	the	area	of	e-government,	in	which	the	user	would	
like	to	keep	private	the	identity	of	the	RP	he	is	using.	For	example,	a	citizen	might	
want	to	use	a	token	issued	by	a	government	IP	proving	his	age,	but	at	the	same	time	
he	would	like	to	maintain	his	privacy	about	what	kind	of	sites	(for	example,	liquor	
	merchants)	he	is	using	the	token	for.

Technically,	the	scenario	is	possible,	although	setting	up	such	functionality	would	
introduce	some	limitations.	For	example,	not	knowing	the	identity	of	the	RP,	the	IP	
would	not	know	the	associated	X.509	certificate	and	that	would	make	it	impossible	
to	encrypt	the	issued	token.	Also,	some	protocols	handle	the	scenario	better	than	
others.	Although	the	WS-Federation	specification	allows	for	specifying	which	claims	
should	be	included	in	the	requested	token,	most	implementations	expect	the	list	of	
claims		required	by	one	RP	to	be	established	a	priori,	which	is	of	course	of	no	help	if	the	
	identity	of	the	RP	is	not	known.	Things	can	be	a	little	easier	with	WS-Trust,	as	you’ll	see	
in	the	next	chapter.

In	the	business	world,	the	most	common	scenario	requires	the	IP	to	have	a	preexisting	
relationship	with	the	RP	before	issuing	tokens	for	it;	therefore,	off-the-shelf	products	
such	as	ADFS	2.0	normally	mandate	it.

The	scenario	described	so	far—one	application	outsourcing	authentication	to	one	identity	
provider—is	common,	and	none	of	the	further	details	about	IPs	I	gave	here	invalidate	it.	
However,	sometimes	the	planets	do	not	align	the	way	you’d	like,	and	for	some	reason	simple	
direct	outsourcing	to	one	IP	does	not	solve	the	problem.

Federation Providers
Let’s	consider	for	a	moment	the	matter	of	handling	multiple	identity	providers.	Imagine	
	being	a	developer	for	a	financial	institution.	Let’s	say	you	are	writing	a	corporate	banking	
	application,	which	allows	companies	to	handle	the	salary	payment	process	for	their	work-
force.	This	is	clearly	one	case	in	which	you	need	to	trust	multiple	identity	providers—namely,	
all	the	companies	who	access	your	financial	institution	for	managing	payments.

From	what	you	have	seen	so	far,	you	know	only	one	way	of	handling	the	situation:		adding	
multiple	FederatedPassiveSignIn	controls	to	your	application	entry	page,	each	of	them	
	pointing	to	a	different	identity	provider.	Although	the	approach	works,	it	can	hardly	be	
called	a	full	externalization	of	identity	management	because	provisioning	and		deprovisioning	
identity	providers	forces	you	to	change	the	application	code.	Things	get	worse	when	you	
have	one	entire	portfolio	of	applications	to	make	available	to	a	list	of	multiple	identity	
	providers—having	to	reapply	the	trick	mentioned	previously	for	every	application	rapidly	

100 Part II Windows Identity Foundation for Identity Developers

	becomes	unsustainable	as	the	number	of	apps	and	IPs	goes	up.	This	clearly	indicates	the	
need	to	factor	out	IP	relationship	management	from	the	application	responsibilities.

Another	common	issue	you	might	encounter	has	to	do	with	the	ability	of	your	application	to	
understand	claims	as	issued	by	one	identity	provider.	Here	is	why:

■	 Sometimes	you	might	have	simple	format	issues.	For	example,	the	users	you	are	
	interested	in	might	come	from	another	country	and	their	IP	might	use	claim	URIs	
	containing	locale-specific	terms	your	application	does	not	understand.	(An	English	
	application	might	need	to	know	the	name	of	the	current	user	and	expect	it	in	an		
http://claims/name	format,	while	an	Italian	IP	might	send	the	desired	information	in	the	
http://claims/nome	claim	format.)	

■	 Sometimes	the	information	will	need	some	processing	before	being	fed	to	your	
	application.	For	example,	an	IP	might	offer	a	birth	date	claim,	but	your	application	
might	be	forbidden	from	receiving	personally	identifiable	information	(PII).	All	you	
	require	here	is	a	simple	Boolean	value	indicating	if	the	user	is	below	or	above	a	certain	
threshold	age.	Although	the	information	is	clearly	available	to	the	IP,	it	might	not	be	
offered	as	a	claim.	

■	 Finally,	you	might	need	to	integrate	the	claims	received	from	the	IP	with	further	
	information	that	the	IP	does	not	know.	For	example,	you	might	be	an	online	book	shop	
accepting	users	from	a	partner	IP.	The	IP	can	provide	you	with	name	and	shipping	
	address	claims,	but	it	cannot	provide	you	with	the	last	10	books	the	user	bought	from	
your	store.	That	is	data	that	belongs	to	you,	and	you	have	the	responsibility	of	making	
it	available	in	the	form	of	claims	if	you	want	to	offer	to	your	developers	a	consistent	
way	of	consuming	identity	information.

What	is	needed	here	is	a	means	of	doing	some	preprocessing—some	kind	of	intermediary	
that	can	massage	the	claims	and	make	them	more	digestible	for	the	application.

The	standard	solution	to	these	issues	is	the	introduction	of	a	new	role	in	identity	transactions,	
which	goes	by	the	name	of	Federation	Provider	(FP).

A	Federation	Provider	is	a	claims	transformer;	it	is	an	entity	that	accepts	tokens	in	input—
kind	of	like	an	RP	does—and	issues	tokens	that	are	(usually)	the	result	of	some	kind	of	
	processing	of	the	input	claims.	An	FP	offers	its	token	manipulation	capabilities	exactly	like	an	
IP,	by	exposing	STS	endpoints.	The	main	difference	is	that,	whereas	one	IP	usually	expects	re-
quests	for	security	tokens	secured	by	user	credentials	that	will	be	used	for	looking	up	claims,	
the	FP	expects	requests	to	be	secured	with	an	issued	token	that	will	be	used	as	input	for	the	
claims	transformation	process.	In	the	IP	case,	the	issued	token	contains	the	claims	describing	
the	authenticated	user;	in	the	FP	case,	the	issued	token	is	the	result	of	the	processing	applied	
to	the	token	received	in	the	request.	Given	the	fact	that	an	FP	exposes	one	STS,	applications	
can	use	it	for	externalizing	authentication	in	exactly	the	same	way	as	you	have	seen	they	
do	with	IPs.	WIF’s	Federation	Utility	Wizard	does	not	distinguish	between	IPs	and	FPs—all	it	
needs	is	an	STS	and	its	metadata.

 Chapter 4 Advanced ASP .NET Programming 101

The	reason	that	it’s	known	as	the	Federation	Provider	is	that	enabling	federation	is	the	
	primary	purpose	that	led	to	the	emergence	of	this	role.	In	a	nutshell,	here’s	how	that	works.	
Imagine	company	A	is	a	manufacturer	that	has	a	number	of	line-of-business	(LOB)	applica-
tions	for	its	own	employees,	including	applications	for	supply	management,	inventory,	and	
other	usual	stuff.	Company	B	is	a	retailer	that	sells	the	products	manufactured	by	A.	To	im-
prove	the	efficiency	of	their	collaboration,	A	and	B	decide	to	enter	into	a	federation	agree-
ment:	certain	B	employees	will	have	access	to	certain	A	applications.	Instead	of	having	every	
A	application	add	the	B	identity	provider	and	having	the	B	IP	provision	every	application	as	a	
recognized	RP,	A	exposes	a	Federation	Provider.

The	B	IP	will	provision	the	A	FP	just	like	any	other	RP,	associating	to	the	relationship	the	list	of	
claims	that	B	decides	to	share	with	A	about	its	users.	All	of	the	A	applications	that	need	to	be	
accessible	will	enter	into	a	trust	relationship	with	the	A	FP,	outsourcing	their	authentication	
management	to	its	STS.	Figure	4-1	shows	the	trust	relationships	and	the	sign-in	flow.

Browser

IP-STS

APP

1

23 4

6

7

Trust

Trust

R-STS

5

IP FP

B A

A

AB

B

FIGURE	4-1	 The	authentication	flow	in	a	federation	relationship	between	two	organizations

The	flow	goes	as	follows:

	 1	 One	employee	of	B	navigates	to	one	application	in	A.

	 2	 The	user	is	not	authenticated	because	the	application	will	accept	only	users	presenting	
tokens	issued	by	the	A	FP.	The	application	redirects	the	user	to	the	A	FP.

	 3	 Again,	the	user	is	not	authenticated.	The	A	FP	will	accept	only	users	presenting	tokens	
issued	by	the	B	IP.	The	application	redirects	the	user	to	the	B	IP.

	 4	 The	user	lands	on	the	B	IP,	where	authentication	will	take	place	according	to	the	modes	
decided	by	B.	The	user	gets	a	token	from	the	B	IP.

	 5	 The	user	gets	back	to	the	A	FP	and	presents	the	token	from	the	B	IP.

102 Part II Windows Identity Foundation for Identity Developers

	 6	 The	A	FP	processes	the	token	according	to	the	application’s	needs—some	claims	
might	be	reissued	verbatim	as	they	were	received	from	B;	others	might	be	somehow	
processed;	still	others	might	be	produced	and	added	anew.	The	A	FP	packages	the	
	results	of	the	processing	in	the	form	of	claims	and	issues	the	new	token	to	the	user.

	 7	 The	user	gets	back	to	the	application	and	presents	the	token	from	the	A	FP;	the	
	application	authenticates	the	call	by	examining	the	token	from	A	FP.	

The	main	advantage	of	using	an	FP	in	a	federation	scenario	is	obvious:	you	now	have	a	single	
place	where	you	can	manage	your	relationship,	defining	its	terms	(such	as	which	claims	you	
should	receive).	The	applications	are	decoupled	from	those	details.	Because	the	FP	knows	
about	both	the	incoming	claims	(because	it	is	on	point	for	handling	the	relationships)	and	the	
claims	needed	by	the	application	(because	it	is	part	of	the	organization,	it	knows	about	which	
claim	types	are	available	and	their	semantics),	applications	can	effectively	trust	it	to	handle	
authentication	on	their	behalf	even	if	the	actual	user	credentials	verification	takes	place	
	elsewhere.	The	process	can	be	iterated.	For	example,	you	can	have	an	FP	trusting	another	FP,	
which	in	turn	trusts	an	IP,	although	that	does	not	happen	too	often	in	practice.

The WIF STS Template
Outsourcing	authentication	to	one	external	STS	makes	life	much	easier	for	the	application	
developer,	at	the	price	of	relinquishing	control	of	a	key	system	function	to	the	STS	itself.	
Although	relinquishing	control	of	the	mechanics	of	authentication	is	sweet,	as	I’ve	been	
pointing	out	through	the	entire	book,	the	STS	you	choose	better	be	good,	or	else.	Here’s	
what	I	mean	by	“good”	in	this	case:

■	 An	STS	must	be	secure	 A	compromised	STS	is	an	absolute	catastrophe	because	it	
can	abuse	your	application’s	trust	by	misrepresenting	the	user	privileges.

■	 An	STS	must	be	available	 If	the	STS	endpoint	is	down,	as	a	consequence	of	peak	
traffic	or	any	other	reason,	your	application	is	unreachable:	no	token,	no	party.

■	 An	STS	must	be	high-performing	 Every	time	a	user	begins	a	session	with	your	
	application,	the	STS	comes	into	play.	Bad	performance	is	extremely	visible,	can		
become	a	source	of	frustration	for	users,	and	even	pile	up	to	compromise	the		
system’s	availability.

■	 An	STS	must	be	manageable	 If	you	own	the	STS,	whether	it	used	as	an	IP	or	FP,	
you’ll	need	to	manage	many	aspects	of	its	activities	and	life	cycle,	such	as	the	logic	
used	for	retrieving	claim	values,	provisioning	of	recognized	RPs,	establishment	of	trust	
relationships	with	the	IP	of	federated	partners,	management	of	signing	and	encryp-
tion	keys,	auditing	of	the	issuing	activities,	and	management	of	multiple	endpoints	for	
	different	credential	types	and	protocols.	The	list	goes	on	and	on.

 Chapter 4 Advanced ASP .NET Programming 103

In	other	words,	running	an	STS	is	serious	business:	don’t	let	anybody	convince	you	otherwise.	
An	endpoint	that	understands	WS-Federation,	WS-Trust,	or	SAMLP	requests	and	can	issue	a	
token	accordingly	technically	fits	the	definition	of	“STS,”	but	protocol	capabilities	alone	can’t	
help	with	any	of	the	requirements	just	mentioned.

This	is	why	in	the	vast	majority	of	real-world	scenarios	it	is	wise	to	rely	on	off-the-shelf	STS	
products,	such	as	ADFS	2.0.	Those	products	host	STS	endpoints	and	advanced	management	
features	that	simplify	both	small	and	large	maintenance	operations	that	running	an	IP	or	an	
FP	(or	both)	entails.	Let’s	take	ADFS	2.0	as	an	example:	ADFS	2.0	is	a	true	Windows	server	
role—tried,	stressed,	and	tested	just	like	any	other	Windows	server	feature.

The	Windows	Identity	Foundation	SDK	makes	the	generation	of	an	STS	deceivingly	simple	
by	offering	Microsoft	Visual	Studio	templates	for	both	ASP.NET	Web	sites	and	WCF	services	
projects	that	implement	a	bare-bones	STS	endpoint	(for	WS-Federation	and	WS-Trust,	re-
spectively).	The	Generate	New	STS	option	in	the	Add	STS	Reference	Wizard	just	instantiates	
one	of	those	templates	in	the	current	solution.	Those	test	STSes	are	an	incredibly	useful	tool	
for	testing	applications,	thanks	to	the	near	absence	of	infrastructure	requirements	(ADFS	2.0	
requires	a	working	Active	Directory	instance,	SQL	Server,	Windows	Server	2008	R2,	and	so	
on)	and	instantaneous	creation.	As	somebody	who	had	to	write	STSes	from	scratch	with	WCF	
in	the	past	(a	long	and	messy	business),	I	am	delighted	by	how	easy	it	is	to	generate	a	test	
STS	with	WIF.	For	the	same	reason,	such	test	STSes	are	consistently	used	in	WIF	samples	and	
courseware.	This	book	is	no	exception.

Why	do	I	say	“deceivingly	simple”?	Because	of	all	the	requirements	I	listed	earlier.	WIF	can	
certainly	be	used	to	build	an	enterprise-class	STS—it	has	been	used	for	building	ADFS	2.0	
itself.	However,	between	the	STS	template	offered	by	the	WIF	SDK	and	ADFS	2.0,	there	are	
many,	many	man-years	of	design,	enormous	amounts	of	development	and	testing,	tons	of	
assumptions	and	default	choices,	brutal	fuzzing,	relentless	stressing,	and	so	on.	The	fact	that	
the	STS	template	gives	you	back	a	token	does	not	mean	it	can	be	used	as	is	in	a	real-life	sys-
tem.	People	regularly	underestimate	the	effort	required	for	building	a	viable	STS,	an	error	of	
judgment	that	can	result	in	serious	issues.	That	is	why	I	always	discourage	the	creation	of	cus-
tom	STSes	unless	it’s	absolutely	necessary,	and	there’s	not	a	lot	of	detailed	guidance	on	that.

Now	that	I’ve	got	the	disclaimer	out	of	the	way:	this	chapter	will	use	a	lot	of	custom	STSes.	
Taking	a	peek	inside	an	STS	is	a	powerful	educational	tool	that	can	help	you	understand	
	scenarios	end	to	end.	Being	able	to	put	together	test	STSes	can	help	you	simulate	complex	
setups	before	committing	resources	to	them.	Finally,	you’ll	likely	encounter	situations	in	
which	setting	up	a	custom	STS	is	the	way	to	go—for	example,	if	your	user	credentials	are	
not	stored	in	Active	Directory.	The	guidance	here	is	absolutely	not	enough	for	handling	the	
task—that	would	involve	teaching	how	to	build	secure,	scalable,	manageable,	and	perform-
ing	services,	which	is	well	beyond	the	scope	of	this	text—but	it	can	be	a	starting	point	for	
understanding	the	token	issuance	model	offered	by	WIF.

104 Part II Windows Identity Foundation for Identity Developers

The	rest	of	the	section	describes	the	STS	template	for	ASP.NET	offered	by	WIF	SDK	4.0.	As	
you	read	through	this	section,	I	suggest	you	go	back	to	the	simple	example	you	created	in	
Chapter	2	and	put	breakpoints	on	the	parts	of	the	STS	project	being	discussed.	Every	time	
something	is	not	too	clear,	try	a	test	run	in	the	debugger	to	get	a	better	sense	of	what’s	
	going	on.

Structure of the STS ASP .NET Project Template
The	ASP.NET	Security	Token	Service	Web	Site	template,	as	WIF	SDK	4.0	names	it,	can	be	
found	in	the	C#	Web	sites	templates	list	in	Visual	Studio.	As	mentioned,	this	is	also	the	
	template	that	is	used	by	the	Add	STS	Reference	Wizard	for	generating	an	STS	project	within	
an	existing	solution.	Figure	4-2	shows	the	list	of	templates	installed	by	the	WIF	SDK	4.0.

FIGURE	4-2	 The	templates	installed	by	WIF	SDK	4.0,	with	the	template	used	for	creating	an	ASP.NET	STS	
highlighted

The	STS	Web	site	is	typically	created	on	the	local	IIS.	Although	it	is	possible	to	use	the	plain	
HTTP	binding,	in	general	the	STS	Web	site	will	be	created	on	an	HTTPS	endpoint.

Note Using	HTTP	in	this	case	is	normally	a	really	bad	idea.	Even	if	you	encrypt	the	tokens	you	
issue,	and	even	if	the	RP	can	take	steps	for	mitigating	the	risk	of	accepting	stolen	tokens,	the	
	reality	is	that	using	plain	HTTP	on	browser-based	scenarios	makes	you	vulnerable	to	man-in-	
the-middle	and	other	attacks.	In	Chapter	5,	you’ll	have	a	chance	to	dig	deeper	into	the	topic.

 Chapter 4 Advanced ASP .NET Programming 105

IIS	vs.	Visual	Studio	Built-in	Web	Server
Visual	Studio	allows	you	to	develop	Web	sites	without	requiring	the	presence	of	IIS	on	
your	development	machine.	Visual	Studio	offers	a	built-in	Web	server,	called	the		
ASP.NET	Development	Server,	which	can	be	used	to	render	pages	directly	from	the	
file	system.

Although	you	can	get	WIF	to	work	on	Web	sites	running	on	the	ASP.NET	Development	
Server,	there	are	limitations	(for	example,	the	built-in	Web	server	does	not	support	
HTTPS)	and	complications	(for	example,	the	dynamically	assigned	ports	change	the	site	
URIs	and	thus	force	changes	in	the	configuration).	Because	of	this,	it’s	just	simpler	to	
use	IIS.

Similar	considerations	led	me	to	use	Web	site	projects	rather	than	Web	application	
ones.	Web	application	development	starts	on	the	file	system	and	requires	extra	steps	
for	hosting	(and	debugging)	the	application	in	IIS.	Furthermore,	at	the	time	of	this	
	writing,	Fedutil.exe	is	not	a	big	friend	of	the	dynamic	ports	system	featured	by	ASP.NET	
Development	Server.	The	Add	STS	Reference	Wizard	will	not	always	work	as	expected	
when	launched	on	a	Web	application	project.

Figure	4-3	shows	the	structure	of	the	STS	project.

FIGURE	4-3	 The	ASP.NET	STS	project	structure

That	is	the	structure	of	a	minimal	Web	site	protected	via	Forms	authentication,	containing	
the	classic	Login.aspx	and	Default.aspx	pages.	The	web.config	file	is	minimal,	containing	prac-
tically	nothing	specific	to	WIF	apart	from	the	reference	to	its	assembly	and	a	few	values	in	
the	<appSettings>.	The	Web	site	is	configured	to	use	Forms	Authentication.	As	you	saw	in	the	
first	example	in	Chapter	2,	Login.aspx	does	not	actually	verify	any	credentials	and	represents	

106 Part II Windows Identity Foundation for Identity Developers

just	a	pro-forma	authentication	page:	the	page	will	just	create	the	authentication	cookie	and	
start	a	session	regardless	of	the	credentials	entered	in	the	UI.	

The hands-on lab Web Sites and Identity (C:\IdentityTrainingKit2010\Labs\
WebSitesAndIdentity\Source\Ex1-ClaimEnableASPNET) exercise 2, shows how to use an
existing Membership store for authenticating calls to the STS, and how to source claim values
from a Role provider.

All	this	emphasizes	what	I	mentioned	earlier	about	the	separation	between	the	STS	functions	
and	the	authentication	mechanism:	here	Forms	authentication	is	the	method	of	choice,	but	
it	is	independent	from	what	WIF	does	for	implementing	the	token-issuing	functionality.	The	
authentication	system	could	be	easily	substituted	with	Windows	integrated	authentication	
or	whatever	else,	as	long	as	it	takes	care	of	authenticating	the	user	before	giving	access	to	
Default.aspx.	

Note An	obvious	observation	is	that	the	STS	template	generates	an	IP-STS,	something	that	
	authenticates	users	and	issues	tokens	describing	them.	It	is	not	hard	to	transform	it	into	an	
R-STS:	you	can	just	run	the	Add	STS	Reference	Wizard	on	the	STS	project	itself,	and	that	will	be	
enough	for	excluding	the	current	Forms	authentication	settings	and	externalize	authentication	
to	the		second	STS	of	your	choosing.	However,	that	would	change	only	the	way	authentication	is	
handled,	not	the	way	claims	are	generated:	an	R-STS	transforms	incoming	claims,	but	the	default	
template	implementation	does	not	do	that.	At	the	end	of	the	section,	I’ll	discuss	what	you	need	
to	change	for	modifying	the	claim	issuance	criteria	as	well.	

The	Default.aspx	page	represents	the	STS	endpoint,	and	it	takes	care	of	instantiating	and	
	executing	the	token-issuing	logic	in	the	context	of	an	ASP.NET	request.	The	page	itself	
does	not	contain	much.	What	we	are	interested	in	is	the	Page_PreRender	handler	in	
Default.aspx.cs:

public partial class _Default : Page
{ /// <summary>
 /// Performs WS-Federation Passive Protocol processing.
 /// </summary>
 protected void Page_PreRender(object sender, EventArgs e)
 {
 string action = Request.QueryString[WSFederationConstants.Parameters.Action];

 try
 {
 if (action == WSFederationConstants.Actions.SignIn)
 {
 // Process signin request.
 SignInRequestMessage requestMessage =
 (SignInRequestMessage)WSFederationMessage.CreateFromUri(Request.Url);
 if (User != null && User.Identity != null && User.Identity.IsAuthenticated)
 {

 Chapter 4 Advanced ASP .NET Programming 107

 SecurityTokenService sts =
 new CustomSecurityTokenService(CustomSecurityTokenServiceConfiguration.Current);
 SignInResponseMessage responseMessage =
 FederatedPassiveSecurityTokenServiceOperations.ProcessSignInRequest
 (requestMessage, User, sts);
 FederatedPassiveSecurityTokenServiceOperations.ProcessSignInResponse
 (responseMessage, Response);
 }
 else
 {
 throw new UnauthorizedAccessException();
 }
 }
 else if (action == WSFederationConstants.Actions.SignOut)
 {
 // Ignore the rest for now
 // ...

 }
}

This	code	is	the	STS	counterpart	of	the	WS-Federation	processing	logic	that	WIF	provides	for	
RPs,	as	studied	in	Chapter	3.	Whereas	the	RP	generates	the	request	for	a	security	token	and	
validates	it,	the	STS	listens	to	those	requests	and	issues	tokens	according	to	the		
WS-Federation	protocol.	Here’s	a	quick	explanation	of	what	the	method	does:

■	 The	handler	inspects	the	request	QueryString	for	the	WS-Federation	action	parameter,	
wa.	Let’s	focus	on	the	case	in	which	wa	is	present	and	has	the	value	wsignin1.0,	which	
indicates	a	request	for	a	token.	(We’ll	explore	the	sign-out	case	later	in	the	chapter.)

■	 The	code	creates	a	new	SignInRequestMessage	from	the	request—that	is,	a	name-value	
collection	that	surfaces	the	various	WS-Federation	parameters	as	properties.

■	 Do	you	have	a	non-empty	IPrincipal?	Is	the	current	user	authenticated?	If	it	isn’t,	an	
UnauthorizedAccessException	is	thrown	and	the	user	is	redirected	to	the	login	page.	If	it	
is,	the	following	must	take	place:

❑	 Get	an	instance	of	SecurityTokenService	by	retrieving	an	instance	of	a	subclass,	
CustomSecurityTokenService.	This	class	contains	the	core	STS	logic,	as	you’ll	see	in	
a	moment.

❑	 The	new	STS	instance,	along	with	the	incoming	SignInRequestMessage	and	
the	user’s	IPrincipal,	is	fed	to	FederatedPassiveSecurityTokenServiceOperations.
ProcessSignInRequest,	where	it	will	be	used	for	issuing	the	token	and	producing	a	
suitable	SignInResponseMessage.

❑	 Finally,	FederatedPassiveSecurityTokenServiceOperations.ProcessSignInResponse	
writes	the	SignInResponseMessage	in	the	response	stream,	which	will	be	
	eventually	forwarded	to	the	RP	and	processed	as	you	saw	in	Chapter	3.

108 Part II Windows Identity Foundation for Identity Developers

There	are	a	lot	of	classes	with	long	names,	but	in	the	end	the	code	shown	earlier	just	feeds	
the	authenticated	user	and	the	request	to	a	custom	SecurityTokenService	class	and	sends	back	
the	result.	The	STS	project	features	an	App_Code	folder,	which	contains	all	the	classes	the	STS	
needs,	including	the	CustomSecurityTokenService	class;	all	you	need	to	do	is	take	a	look	at	
what	happens	there.

The	Redirect	Exception	in	the	STS	Template	in	Visual	Studio	2010
At	the	time	of	this	writing,	the	ASP.NET	STS	template	exhibits	a	small	issue	with	
Visual	Studio	2010.	At	the	end	of	the	Page_PreRender	method,	there	is	a	catch	clause	
that	handles	generic	Exceptions	and	re-throws	them	after	having	added	a	message.	
Unfortunately,	the	code	described	earlier	contains	at	least	a	redirect,	which	throws	an	
exception.	Normally,	you	would	not	see	it,	but	the	re-throw	makes	Visual	Studio	stop	
at	the	unhandled	exception.	There	are	various	workarounds	for	this	issue.	You	could	
catch	ThreadAbortException	and	ignore	it.	You	could	just	press	F5	again,	and	the	appli-
cation	will	move	forward	without	issues.	You	could	comment	that	line	in	the	template.	
You	could	start	without	debugging.	I	do	not	suggest	disabling	the	Visual	Studio	default	
behavior	of	stopping	at	unhandled	exceptions	unless	you	know	very	well	what	you	are	
doing.

STS Classes and Methods in App_Code
The	Common.cs	file	is	not	very	interesting;	it’s	just	a	bunch	of	constants.	CertificateUtil.cs	is	not	
that	remarkable	either;	it’s	a	helper	class	for	retrieving	X.509	certificates	from	the	Windows	
stores,	although	there	is	an	interesting	piece	of	trivia	for	it.	WIF	uses	that	code,		instead	of	the	
classic	X509Certificate2Collection.Find	because	the	latter	does	not	call	Reset	on	the	certifi-
cates	it	opened.

CustomSecurityTokenServiceConfiguration,	as	the	name	implies,	takes	care	of	storing	some	
key	configuration	settings	for	the	STS:	the	name,	the	certificate	that	should	be	used	for	
	signing	tokens,	serializers	for	the	various	protocols,	and	so	on.	The	most	important	setting	it	
stores	is	the	type	of	the	custom	SecurityTokenService	itself.

Finally,	we	get	to	the	very	heart	of	the	STS:	the	class	in	CustomSecurityToken.cs.	The	code	
generated	by	the	template	has	the	purpose	of	doing	the	bare	minimum	for	obtaining	a	
working	STS;	hence,	I	won’t	analyze	it	too	closely	here,	except	for	pointing	out	some	notable	
behavior.	Rather,	I’ll	use	it	as	a	base	for	telling	you	about	the	more	general	model	that	you	
have	to	follow	when	developing	a	custom	STS	in	WIF.	Note	that	the	considerations	about	
SecurityTokenService	apply	both	to	ASP.NET	and	WCF	STSes.

SecurityTokenService In	WIF,	a	custom	STS	is	always	a	subclass	of	SecurityTokenService,	and	
the	ASP.NET	template	is	no	exception.	The	claims-issuance	process	is	represented	by	a	series	

 Chapter 4 Advanced ASP .NET Programming 109

of	SecurityTokenService	methods,	which	are	invoked	following	a	precise	syntax	that	leads	the	
form	request	validation	to	emit	the	token	bits.	Complete	coverage	of	that	sequence	is	be-
yond	the	scope	of	this	book;	however,	here	I’ll	list	the	main	methods	you	should	know	about:

❑	 ValidateRequest	 This	method	takes	in	a	RequestSecurityToken	and	verifies	that	it	is	
in	a	request	that	can	be	handled	by	the	current	implementation.	For	example,	it	checks	
that	the	required	token	type	is	known.	SecurityTokenService	provides	an	implementa-
tion	of	ValidateRequest.	You	should	override	it	only	if	you	are	adding	or	subtracting	
from	the	default	STS	capabilities.	There	are	also	few	things	taking	place	in	GetScope	
that	could	perhaps	be	done	in	ValidateRequest.	I’ll	point	those	out	as	we	encounter	
them.

❑	 GetScope	 GetScope	is	an	abstract	method	in	SecurityTokenService	that	must	be	
	overridden	in	any	concrete	implementation.	It	takes	as	input	the	IClaimsPrincipal	of	the	
caller	and	the	current	RequestSecurityToken.

The	purpose	of	GetScope	is	to	validate	and	establish	some	key	parameters	that	will	
influence	the	token-issuance	process.	Those	parameters	are	saved	in	one	instance	
of	Scope,	which	is	returned	by	GetScope	and	will	cascade	through	all	the	subsequent	
methods	in	the	token-issuance	sequence.	Here	are	the	main	questions	that	GetScope	
answers:

❑	 Which	certificate	should	be	used	for	signing	the	issued	token?	Although	
a	signing	certificate	has	already	been	identified	in	the	configuration	class,	
GetScope	should	confirm	that	certificate	(as	done	by	the	template	implementa-
tion)	or		override	it	with	custom	criteria—for	example,	if	something	in	the	request	
	influences	which	certificate	should	be	used.

❑	 Is	the	intended	token	destination	a	recognized	RP?	As	discussed		earlier,	
normally	an	STS	issues	tokens	only	to	the	RP	URIs	that	have	been		explicitly	
	provisioned.	If	the	incoming	wtrealm	(available	in	RequestSecurityToken	
via	the	property	AppliesTo)	does	not	correspond	to	a	known	RP,	an	
InvalidRequestException	should	be	thrown.	

Note The	template	implementation	of	GetScope	performs	the	check	against	a	
	hard-coded	list.	One	could	argue	that	a	validation	check	would	belong	to	the	
ValidateRequest	method,	but	the	item	about	encryption	that	follows	shows	how	GetScope	
would	need	to	query	an	RP	settings	database	anyway.

If	the	AppliesTo	value	is	valid,	it	is	fed	into	the	Scope	object.	It	will	be	needed	for	
the	AudienceRestriction	element	of	the	issued	token,	which	in	turn	will	be	vali-
dated	by	WIF	against	the	<audienceURI>	config	element	on	the	RP.

❑	 Should	the	issued	token	be	encrypted?	If	yes,	with	which	certificate?	The	STS	
configuration	should	specify	whether	the	token	should	be	encrypted.	If	it	should	

110 Part II Windows Identity Foundation for Identity Developers

be,	the	same	store	that	was	used	for	establishing	whether	the	RP	was	valid	should	
also	carry	information	about	which	encryption	certificate	should	be	used.	The	
template	uses	a	value	from	config.

❑	 To	which	address	should	the	token	be	returned?	The	template	assumes	that	
wtrealm—that	is,	the	AppliesTo	value—is	both	the	identifier	of	the	RP	and	its	
network-addressable	URI.	As	a	result,	GetScope	assigns	the	value	of	AppliesTo	to	
the	ReplyToAddress	property	of	the	Scope	object.

Important Although	in	many	cases	it	is	true	that	AppliesTo	contains	the	network	
	addressable	endpoint	of	one	RP,	that	does	not	always	hold.	Sometimes	wtrealm	will	be	a	
logical	identifier	for	the	application	rather	than	a	network	address,	and	the	actual		address	
to	which	the	token	should	be	returned	will	be	different.	A	way	of	handling	this	is	by	
	sending	the	actual	address	in	the	request	via	the	wreply	parameter,	and	then		assigning	
it	to	Scope.ReplyToAddress	(from	RequestSecurityToken.ReplyTo).	ReplyTo	addresses	
should	always	be	thoroughly	validated	because	supporting	wreply	opens	your	STS	up	
to	redirect	attacks.

Note ADFS	2.0	does	not	handle	wreply.

When	the	Scope	is	ready,	a	number	of	lower	level	token-issuance	preparation	
steps	take	place.	You	can	influence	those	if	you	want	to,	but	I	won’t	go	into	
	further	details	here.	After	those	steps	are	completed,	it	is	finally	time	to	work	
with	claims.

❑	 GetOutputClaimsIdentity	 This	method	takes	as	input	the	IClaimsPrincipal	of	the	
caller,	the	RequestSecurityToken,	and	the Scope.	It	returns	an	IClaimsIdentity,	which	con-
tains	the	claims	that	should	be	issued	in	the	token	for	the	caller.	Note	that	at	this	point	
the	IClaimsPrincipal	of	the	caller	is	a	representation	of	the	IPrincipal	obtained	from	
the	STS	caller	via	Forms	authentication.	This	should	not	be	confused	with	the	output	
IClaimsPrincipal	created	by	the	STS,	which	will	be	available	at	the	RP	after	successful	
sign-in.

This	is	perhaps	the	least	realistic	of	the	implementations	in	the	STS	template.	It	returns	
two	hard-coded	claims,	Name	and	Role,	regardless	of	the	targeted	RP	or	the	caller	
(the	only	concession	being	the	value	of	the	Name	claim,	extracted	from	the	incoming	
principal):

protected override IClaimsIdentity GetOutputClaimsIdentity
 (IClaimsPrincipal principal, RequestSecurityToken request, Scope scope)
 {
 if (principal == null)
 {
 throw new ArgumentNullException("principal");
 }

 Chapter 4 Advanced ASP .NET Programming 111

 ClaimsIdentity outputIdentity = new ClaimsIdentity();

 // Issue custom claims.
 // TODO: Change the claims below to issue custom claims required by your
application.
 // Update the application's configuration file too to reflect new claims
requirement.

 outputIdentity.Claims.Add(new Claim(System.IdentityModel.Claims.ClaimTypes.Name,
principal.Identity.Name));
 outputIdentity.Claims.Add(new Claim(ClaimTypes.Role, "Manager"));

 return outputIdentity;
 }

In	a	more	realistic	setting,	your	GetOutputClaimsIdentity	implementation	would	need	
to	make	some	decisions	about	the	outgoing	IClaimsIdentity.	These	are	the	questions	it	
will	need	to	answer:

❑	 Given	the	current	request,	which	claim	types	should	be	included?	The	list	of	
claims	that	should	be	issued	is	often	established	per	RP,	at	provisioning	time.	That	
is	especially	common	for	WS-Federation	scenarios,	and	some	products	will	go	as	
far	as	implementing	that	tactic	for	the	WS-Trust	case	as	well.	

Note ADFS	2.0	uses	that	approach	in	every	case.	The	list	of	claims	to	issue	is	always	
	established	on	the	basis	of	the	RP	for	which	the	token	is	being	issued.

Chances	are	that	the	list	of	claims	to	use	will	be	available	in	the	same	store	you	
used	in	GetScope	for	retrieving	the	RP	URI	and	encryption	certificate.

WS-Trust	(and	WS-Federation,	via	wreq	or	wreqptr	parameters)	supports	request-
ing	a	specific	list	of	claims	for	every	request.	Although	that	requires	more	work,	
which	probably	includes	checking	on	an	RP-bound	list	if	the	required	claims	are	
allowed	for	that	given	RP,	there	are	many	advantages	to	the	approach.	Apart	
from	minimal	disclosure	and	privacy	considerations,	possibly	a	bit	out	of	scope	
here,	one	obvious	advantage	is	that	this	can	help	keep	the	token	size	under	con-
trol.	A	token	representing	a	Windows	identity	can	have	many	group	claims.	If	for	
a	given	transaction	the	group	claim	is	not	required,	being	able	to	exclude	it	can	
dramatically	shrink	the	resulting	token.	

If	you	want	to	support	requests	that	specify	the	required	claims,	you’ll	find	that	
list	in	the	RequestSecurityToken.Claims	collection.

❑	 Given	the	current	principal,	which	claim	values	should	be	assigned?	
Together	with	the	request	authentication	method,	this	is	the	question	that	
	determines	whether	your	STS	is	an	IP-STS	or	an	R-STS.	

112 Part II Windows Identity Foundation for Identity Developers

One	IP-STS	uses	some	claims	of	the	incoming	IClaimsPrincipal	for	looking	up	the	
caller	in	one	or	more	attribute	stores,	from	where	the	STS	will	retrieve	the	values	
to	assign	to	the	established	claim	types.	That’s	the	direct	descendent	of	using	
a	user	name	for	looking	up	attributes	in	a	profile	store;	in	fact,	it	can	take	place	
in	exactly	the	same	way	if	you	have	a	user	name	claim.	Of	course,	you	are	not	
	limited	to	it—you	can	use	any	claim	you	like.

One	R-STS	processes	the	claims	in	the	incoming	IClaimsPrincipal	in	arbitrary	ways,	
storing	the	results	in	other	claims	in	the	outgoing	IClaimsIdentity.	Note	that	the	
STS	can	also	just	copy	some	claims	from	the	incoming	token	to	the	outgoing	one	
without	modification,	and	it	can	even	add	new	claims	in	the	same	way	the	IP-STS	
does.	I’ll	show	some	examples	of	this	later,	during	the	federation	and	home-realm	
discovery	discussions.

ADFS	2.0	offers	a	management	UI,	where	administrators	can	specify	how	to	
source	or	transform	claims.	The	mappings	can	be	specified	via	a	simple	UI	or	via	
a	SQL-like	language	that	is	especially	well	suited	for	claims	issuance.	In	your	own	
STS,	you	can	embed	the	corresponding	code	directly	in	GetOutputClaimsIdentity,	
or	you	can	develop	a	mechanism	for	driving	its	behavior	from	outside.

Metadata
You	know	about	metadata	from	Chapter	3.	If	you	need	to	change	something	in	the	metadata	
document	of	one	RP,	you	can	simply	edit	it.	Perhaps	that’s	not	the	greatest	fun	you’ll	have,	
but	it	is	feasible.

Doing	the	same	for	one	STS	is	out	of	the	question	because	an	STS	metadata	document	must	
always	be	signed.	The	WIF	SDK	has	one	example	showing	how	to	use	the	WIF	API	for	gener-
ating	a	metadata	document	programmatically.	It’s	not	rocket	science,	just	a	lot	of	serializa-
tion.	Generating	the	document	has	the	advantage	of	keeping	it	automatically	updated	if	you	
play	your	cards	well	and	read	things	from	the	config.	It	also	has	another	advantage	of	grant-
ing	you	better	control	of	complicated	situations,	such	as	cases	in	which	on	the	same	Web	site	
you	expose	both	WS-Federation	and	WS-Trust	endpoints.	

Any	dynamic	content	generation	mechanism	will	do.	My	favorite	is	exposing	a	WCF	service	
and	hiding	the	.svc	extension	with	some	IIS	URL	rewriting.

Single	Sign-on,	Single	Sign-out,	and	Sessions
In	this	section,	I’ll	formalize	some	of	the	session-related	concepts	I’ve	been	hinting	at	so	far.	
Namely,	I’ll	help	you	explore	how	WIF	can	reduce	the	number	of	times	a	user	is	prompted	
for	credentials	when	browsing	Web	sites	that	are	somehow	related	to	each	other.	I’ll	show	
you	how	you	can	sign	out	a	user	from	multiple	Web	sites	at	once,	making	sure	no	dangling	

 Chapter 4 Advanced ASP .NET Programming 113

	sessions	are	still	open.	Finally,	I’ll	share	a	few	tricks	you	can	use	for	tweaking	the	way	in	which	
WIF	handles	sessions.

Single Sign-on
In	Chapter	3,	I	illustrated	the	dance	that	WS-Federation	prescribes	for	signing	in	a	relying	
party	and	how	the	WIF	object	model	implements	that.	Let’s	move	the	scenario	a	little		further	
by	supposing	that	you	want	to	model	the	case	in	which	the	user	visits	more	than	one	RP	
application.

If	the	RPs	have	absolutely	nothing	in	common,	there	is	not	much	to	be	said:	every	RP	session	
will	have	its	own	independent	story.	But	what	happens	if,	for	example,	two	RPs	trust	the	same	
STS?	Things	get	more	interesting.	Figure	4-4	briefly	revisits	the	sign-in	sequence,	showing	the	
user	signing	in	the	first	RP	application,	named	A.

STS

STS A

5

A

3

5
1

2
3 4

FIGURE	4-4	 The	user	signs	in	the	RP	named	A,	and	in	so	doing	it	receives	session	cookies	both	from	
the	STS	and	A

By	now,	you	know	the	drill:	

	 1.	 The	user	sends	a	GET	for	a	page	on	A.

	 2.	 The	user	is	redirected	to	the	STS.

	 3.	 The	user	is	authenticated	by	whatever	system	the	STS	chooses	and	obtains	a	session	
cookie.

	 4.	 The	user	gets	back	a	token.

	 5.	 The	user	sends	the	token	to	A	and	gets	back	a	session	cookie.	

Here	step	3	is	especially	interesting:	In	Figure	4-4,	I	assumed	the	authentication	method	
picked	by	the	STS	involves	the	creation	of	a	session	with	the	STS	site	itself.	That’s	a	reason-
able	assumption	because	that’s	precisely	the	case	with	common	authentication	methods	

114 Part II Windows Identity Foundation for Identity Developers

such	as	Kerberos	(which	leverages	the	session	that	the	user	created	from	her	workstation	
at	login	time)	or	Forms	authentication	(which	drops	a	session	cookie,	just	like	the	WIF	STS	
template	does).	If	that	is	the	case,	at	the	end	of	the	sign-in	sequence	the	user’s	machine	will	
have	two	cookies:	one	representing	the	session	with	A,	created	by	WIF,	and	one	representing	
the		session	with	the	STS.	Starting	from	that	situation,	let’s	now	look	at	Figure	4-5	to	see	what	
happens	when	the	user	signs	in	with	B,	another	RP,	that	trusts	the	same	STS.

STS

B

4 A

1

2

3

4
STS A

B

FIGURE	4-5	 The	user	signs	in	to	the	RP	named	B,	and	the	existing	session	with	the	STS	allows	the	user	to	sign	
in	without	being	prompted	for	the	STS	credentials

The	flow	starts	as	usual,	the	user	requests	a	page	from	B	(step	1,	as	shown	in	Figure	4-5)	and	
gets	redirected	to	the	STS	to	obtain	a	token	(step	2).	However,	this	time	the	user	is	already	
authenticated	with	the	STS	site	because	there	is	an	active	session	represented	by	the	STS	
cookie.	This	means	the	request	for	the	STS	page—say,	Default.aspx	if	you	are	in	the	WIF	STS	
template	case—leads	straight	to	execution	of	the	SecurityTokenService	issuing	sequence	
without	showing	to	the	user	any	UI	for	credential	gathering.	The	token	is	issued	silently		
(step	3)	and	forwarded	to	B	(step	4)	according	to	the	usual	sequence.	From	the	moment	the	
user	clicks	on	the	link	to	B	and	the	browser	displays	the	requested	page	from	B,	only	some	
flickering	of	the	address	bar	in	the	browser	will	give	away	the	fact	that	some	authentication	
took	place	under	the	hood.	That’s	pretty	much	what	Single	Sign-on	(SSO)	means:	the	user	
went	through	the	experience	of	signing	in	only	once,	and	from	that	moment	on	the	system	is	
able	to	gain	access	to	further	RPs	without	prompting	the	user	for	credentials	again.

SSO	is	an	all-time	favorite	for	end	users.	Using	a	single	set	of	credentials	for	different	Web	
sites	without	being	reproached	for	it?	Typing	stuff	only	once?	Count	me	in!	This	is	also	
	something	that	greatly	pleases	system	administrators,	because	reducing	the	number	of	
	credentials	to	manage	eases	the	administrative	burden,	lowers	the	probability	that	users	will	
reuse	the	same	password	in	different	Web	sites,	and	so	on.

 Chapter 4 Advanced ASP .NET Programming 115

Note By	now,	you	can	certainly	see	the	fundamental	difference	between	authenticating	with	
an	STS	only	once,	and	silently	obtaining	tokens	for	multiple	Web	sites	after	that	single	credential	
gathering	moment	and	reusing	the	same	credentials	across	multiple	Web	sites	(each	handling	
their	own	authentication).	Whereas	the	first	approach	minimizes	the	chances	of	passwords	being	
stolen,	the	second	maximizes	it.

You’ll	find	that	although	most	uninitiated	people	will	not	understand	most	of	the	stuff	I	
covered	in	this	book,	everybody	will	have	a	clear,	intuitive	understanding	and	appreciation	
of	SSO.	Perhaps	not	surprisingly,	SSO	became	the	Holy	Grail	of	the	industry	long	before	the	
emergence	of	claims-based	identity,	and	as	of	today	a	lot	of	people	think	that	the	ultimate	
goal	of	identity	management	should	be	universal	SSO.

The	good	news?	As	long	as	the	STS	creates	a	session	in	its	authentication	method,		having	
SSO	across	Web	site	RPs	protected	via	WIF	is	something	that	works	right	out	of	the	box.	
There’s	no	arcane	WS-Federation	trick	here,	just	good	old	cookies	and	a	bit	of	trust	
management.

The hands-on lab ASP.NET Membership Provider and Federation (c:\IdentityTrainingKit2010\
Labs\MembershipAndFederation) demonstrates how you can easily obtain SSO across Web
sites using WIF. In fact, it shows how it is enough to add a page to an existing Web site, without
modifying anything else, to add IP capabilities to it. The scenario in the lab modifies a Web site
secured via the Membership provider, but this pattern can be applied to any authentication
system.

Single Sign-out
In	one	of	those	rare	instances	in	which	building	is	easier	than	destroying,	you	are	about	to	
discover	that	Single	Sign-out	is	somewhat	harder	to	implement	than	Single	Sign-on.

Single	Sign-out,	or	SSOut,	takes	place	when	the	termination	of	one	session	with	a	specific	RP	
triggers	the	cleanup	of	state	and	other	sessions	across	the	same	über	session.	In	other	words,	
signing	out	from	one	Web	site	cascades	through	all	the	Web	sites	that	were	part	of	the	SSO	
club	and	signs	out	from	them	as	well.

Note The	basic	idea	of	SSOut	is	readily	understood	and	can	be	easily	experienced	even	outside	
federated	scenarios:	the	sign-out	option	of	Live	ID,	which	(at	the	time	of	this	writing)	throws	you	
out	at	once	from	all	the	Web	sites	accepting	Live	ID	you’ve	been	signing	in	to,	is	a	good	example	
of	that.	However,	in	literature	“Single	Sign-out”	is	almost	always	used	as	a	synonym	of	“federated	
sign-out”	and	is	expected	to	behave	as	specified	by	WS-Federation	or	SAMLP.

116 Part II Windows Identity Foundation for Identity Developers

The	mechanics	of	SSOut	are	not	very	straightforward,	especially	because	the	outcome	of	the	
entire	process	relies	on	all	the	entities	involved	receiving	messages	and	complying.	Both	of	
those	things	are	hard	to	enforce	without	reliable	messaging	or	transactions;	hence,	the	entire	
thing	ends	up	being	a	“make	your	best	effort”	attempt.	This	state	of	affairs	was	well	known	
to	the	authors	of	the	WS-Federation	specification,	who	were	not	especially	prescriptive	in	
describing	the	messages	and	mechanisms	used	for	implementing	SSOut.	WIF	does	support	
SSOut	out	of	the	box	for	RPs,	but	the	STS	template	is	not	especially	thorough	in	implement-
ing	all	its	details.	In	this	section,	I’ll	clue	you	in	to	the	things	you	need	to	add	for	achieving	
more	complete	support.

Signing Out from One RP
Before	getting	into	the	details	of	how	to	handle	signing	out	from	multiple	Web	sites,	let’s	see	
what	it	takes	to	sign	out	from	just	one.

What	keeps	a	user	session	alive,	apart	from	the	sheer	Forms	authentication	machinery?	First	
of	all,	it’s	the	existence	(and	validity)	of	the	session	cookie	generated	at	sign-on	time.	The	
	default	name	used	by	WIF	for	that	cookie	is	FedAuth,	with	an	additional	FedAuth1…FedAuthn	
if	the	size	of	the	SessionSecurityToken	requires	multiple	cookies.	You	can	easily	take	care	
of	that	yourself—it’s	just	a	matter	of	calling	FormsAuthentication.SignOut	and	deleting	the	
	session	cookie	(by	hand	or	via	SessionAuthenticationModule.DeleteSessionTokenCookie).

Second,	it’s	the	session	with	the	STS.	If	you	delete	the	session	with	the	RP	but	the	user	still	
has	a	valid	session	with	the	STS,	she	will	still	have	access	to	the	RP.	The	first	unauthenticated	
GET	elicits	the	usual	redirect	to	the	STS,	and	a	valid	session	means	that	the	user	will	be	issued	
a	new	token	without	even	being	prompted	for	credentials.

The	RP	cannot	directly	change	the	STS	session.	In	fact,	it	is	not	even	supposed	to	know	how	
that	session	(if	any)	is	implemented	to	begin	with!	Luckily,	WS-Federation	defines	a	way	for	
the	RP	to	ask	the	STS	to	sign	out	the	current	principal.	It	will	be	up	to	the	STS	to	decide	what	
specific	steps	that	entails	in	the	context	of	its	own	implementation.	

The	mechanism	that	WS-Federation	uses	for	signing	out	is	straightforward:	you	are	supposed	
to	do	a	GET	of	the	STS	endpoint	page	with	the	parameter	wa=wsignout1.0	and	a	wreply	in-
dicating	where	you	want	the	browser	to	be	redirected	after	the	sign	out	is	done.	Once	again,	
this	is	something	you	could	do	yourself;	but	why	bother,	when	there	is	something	that	can	
take	care	of	both	the	RP	session	cleanup	and	sending	the	sign-out	message	to	the	STS?	That	
something	is	FederatedPassiveSignInStatus,	an	ASP.NET	control	that	comes	with	WIF.

FederatedPassiveSignInStatus,	as	the	name	implies,	can	be	used	for	easily	displaying	on	your	
Web	site	the	current	state	of	the	session.	Drag	it	on	any	page,	and	its	appearance	will	change	
according	to	whether	you	have	a	valid	session	in	place.	If	you	do,	by	default	the	control	
appears	as	a	hyperlink	with	the	text	“Sign	Out.”	Clicking	that	link	results	in	the	current	RP	
session	being	cleaned	up.	If	the	control	property	SignOutAction	is	set	to	FederatedSignOut,	

 Chapter 4 Advanced ASP .NET Programming 117

the	control	takes	care	of	sending	the	wsignout1.0	message	to	the	STS	indicated	in	the	
SessionSecurityToken.	Handy,	isn’t	it?	That’s	my	favorite	way	of	implementing	sign	out	with	
WIF—it’s	easy	and	painless.	

Warning FederatedPassiveSignInStatus	has	a	property,	SignOutPageUrl,	that	indicates	the	
page	the	browser	should	return	to	after	the	sign-out	is	done.	In	practice,	it’s	the	wreply	in	the	
wsignout1.0	message.	If	you	leave	the	property	blank,	WIF	sets	wreply	to	your	wtrealm	and	
	appends	“login.aspx”	to	it.	Chances	are	that	your	Web	site	does	not	contain	a	login	page	be-
cause	you	are	using	an	STS.	If	that’s	the	case,	you	might	get	an	error	at	the	next	successful	au-
thentication.	The	bottom	line	is	this:	make	sure	you	add	a	meaningful	value	to	SignOutPageUrl.

The	WIF	STS	Template	and	wsignout1.0
In	the	description	of	the	WIF	STS	template,	I	purposefully	omitted	the	code	that	takes	
care	of	signing	out.	Now	that	you	know	what	an	STS	is	supposed	to	do	in	response	to	a	
wsignout1.0	message,	I	can	get	back	to	it	and	complete	the	description	of	the	template.	
The	following	code	shows	the	missing	branch:

else if (action == WSFederationConstants.Actions.SignOut)
 {
 // Process signout request.
 SignOutRequestMessage requestMessage =
 (SignOutRequestMessage)WSFederationMessage.CreateFromUri(Request.Url);
 FederatedPassiveSecurityTokenServiceOperations.ProcessSignOutRequest(
 requestMessage, User, requestMessage.Reply, Response);
 }

SignOutRequestMessage	is	analogous	to	SignInRequestMessage,	in	that	it’s	just	a	
dictionary	of	querystring	values.	FederatedPassiveSecurityTokenServiceOperations.
ProcessSignOutRequest	is	not	all	that	glamorous	either,	I’m	afraid.	It	just	signs	out	from	
the	Form	authentication	session,	deletes	the	WIF	session	token	(if	there	is	any—the	STS	
template	does	not	include	SessionAuthenticationManager	by	default)	and	redirects	to	
the	address	indicated	by	wreply.

Signing Out from Multiple RPs
From	the	perspective	of	the	RP	from	which	the	user	is	signing	out,	cleaning	up	its	own	ses-
sion	and	sending	wsignout1.0	to	the	STS	is	all	that	is	needed	for	closing	the	games.	If	there	
are	other	RPs	with	which	the	user	still	entertains	an	active	session,	it	is	responsibility	of	the	
STS	to	propagate	the	sign-out	to	them	as	well.

All	that	is	left	to	do	is	for	the	other	RPs	to	get	rid	of	their	sessions.	Note	that	the	STS	already	
eliminated	its	own	session	with	the	user;	hence,	there	is	no	risk	of	silent	re-issuing	after	the	
other	RPs	do	their	cleanup.

118 Part II Windows Identity Foundation for Identity Developers

Once	again,	WS-Federation	provides	a	mechanism	for	that.	I	won’t	go	into	the	details	
here—it	suffices	to	say	that	one	way	of	requesting	a	cleanup	to	one	RP	is	simply	by	doing	a	
GET	request	on	the	RP	and	including	in	the	query	string	the	action	wa=wsignoutcleanup1.0.	
You	could	specify	an	address	via	wreply	to	return	to	after	the	cleanup	is	done,	but	things	
can	get	problematic	here.	What	if	you	have	three	RPs	that	need	to	clean	up	their	sessions?	
If	you	are	relying	on	the	browser	to	perform	the	necessary	GETs,	you’d	have	to	chain	the	
	requests.	In	addition	to	being	complicated,	this	is	a	very	brittle	approach	because	some-
thing	going	wrong	with	one	RP	would	jeopardize	the	chance	of	sending	cleanup	requests	
to	all	the		subsequent	RPs	in	the	list.	The	STS	can	avoid	using	the	browser	and	send	the	GET	
	requests	directly,	but	again,	this	is	not	very	straightforward.	For	those	reasons	and	others,	
the		presence	of	a	wreply	is	optional	in	wsignoutcleanup1.0 messages;	it	is	acceptable	to	re-
turn	something	from	the	RP	that	somehow	indicates	the	outcome	of	the	operation.	There’s	
more:	the	cleanup	operation	is	required	to	be	idempotent—that	is,	you	should	be	able	to	call	
the	same	operation	multiple	times	without	affecting	the	outcome	or	raising	errors.	This	al-
lows	you	to	retry	the	operation	if	you	think	something	went	wrong,	without	worrying	about	
	creating	error	situations.	

Now	for	some	good	news:	RPs	secured	via	WIF	handle	wsignoutcleanup1.0 messages	out	of	
the	box.	The	WSFAM	looks	out	for	those	messages	in	its	AuthenticateRequest	handler.	If	the	
incoming	message	has	a	wsignoutcleanup1.0	action,	WSFAM	promptly	deletes	the	session	
cookie	and	drops	the	corresponding	token	from	the	cache.	

What	sets	apart	the	cleanup	from	all	other	actions	I’ve	described	so	far	is	that	it	might	not	
end	with	a	redirect.	If	the	message	contains	a	wreply,	WSFAM	dutifully	returns	a	302	message	
to	the	indicated	location;	if	it	doesn’t,	it	will	return	an	image	or	.gif	of	a	green	check	mark.

Returning	the	bits	of	one	image	upon	successful	cleanup	is	part	of	a	clever	strategy	for	
	working	around	the	“chaining	of	sign-out	redirects”	problem	described	earlier.	After	the	STS	
successfully	clears	its	own	session,	it	can	return	a	page	containing	an		element	for	
each	RP	whose	session	is	up	for	cleanup.	If	the	src	value	of	the		elements	is	of	the	form	
https://RPAddress/Default.aspx?wa=wsignoutcleanup1.0,	just	rendering	the	list	of	images	in	
the	browser	sends	as	many	cleanup	messages	to	the	RPs	in	the	list.	Every	successful	cleanup	
sends	back	the	image	of	the	green	check	box,	which	the	STS	page	can	use	for	confirming	
that	the	sign-out	actually	took	place	for	a	given	RP.	Failure	to	render	the	image	might	be	an	
indication	that	something	went	wrong	with	the	cleanup	operations.

All	of	the	preceding	activity	relies	on	the	fact	that	the	STS	will	keep	track	of	the	RPs	for	which	
it	issued	a	token	in	the	context	of	one	federated	session.	At	sign-out	time,	the	STS	needs	to	
remember	the	address	of	all	RPs	in	order	to	generate	the	correct	cleanup	URIs	for	the	src	of	
the	images	collection	in	the	sign-out	page.	The	STS	can	use	whatever	state-preserving	mech-
anism	its	owner	sees	fit.	In	my	samples,	I	usually	keep	the	list	of	RP	URIs	in	a	protected	cookie	
because	it	requires	zero	state-management	code	on	the	server.	

 Chapter 4 Advanced ASP .NET Programming 119

Did	you	get	lost	in	all	the	back	and	forth	required	by	the	SSOut	process?	Let’s	take	a	look	
at	one	example.	Figure	4-6	illustrates	the	Single	Sign-out	message	flow	across	two	Web	
sites	and	a	common	STS,	together	with	what	happens	to	the	client’s	cookie	collection	as	the	
	sequence	progresses.

WebSiteA WebSiteB STS
ST

SA
SP

XA
U

TH

Ss
oS

es
sio

ns

ST
SA

SP
XA

U
TH

Ss
oS

es
sio

ns

ST
SA

SP
XA

U
TH

Ss
oS

es
sio

ns

STS

STS

WebSiteABrowser

POST /WebSiteA/ HTTP/1.1
..
Cookie: FedAuth
__EVENTTARGET=ctl00%24FederatedPassive
SignInStatus1%24signoutLink&…

HTTP/1.1 302 Found
Location:
https://STS/?wa=wsignout1.0&wreply=https%3a%2
f%2fWebSiteA%2fDefault.aspx
...
Set-Cookie: FedAuth=; expires=Fri, 18-Jun-2010
05:47:03 GMT; path=/SSOWebSiteA/

GET
/STS/?wa=wsignout1.0&wreply=https%3a%2f%
2fWebSiteA%2fDefault.aspx HTTP/1.1
..
Cookie: .STSASPXAUTH … SsoSessions

HTTP/1.1 200 OK
…
Set-Cookie: .STSASPXAUTH=; expires=…; path=/; HttpOnly
Set-Cookie: SsoSessions=; expires=… path=/
<html>...<body>
<form method="POST" action=" /?wa=wsignout1.0&wreply=…">
You are now signed out of the following sites:
 <div id="SignoutLinks">
 <p>WebSiteA/
 </p>
 <p>WebSiteB/
 </p>
 </div></form>
</body>..</html>

GET / WebSiteB/?wa=wsignoutcleanup1.0 HTTP/1.1
Cookie: FedAuth=…

1

2

3

4

5

6

WebSiteB

GET / WebSiteA/?wa=wsignoutcleanup1.0 HTTP/1.1

HTTP/1.1 200 OK
Content-Type: image/gif
...
GIF89a

HTTP/1.1 200 OK
Content-Type: image/gif
Set-Cookie: FedAuth=; expires=…;
path=/SSOWebSiteB/
...
GIF89a

WebSiteA WebSiteB STS

WebSiteA WebSiteB STS

ST
SA

SP
XA

U
TH

Ss
oS

es
sio

ns

WebSiteA WebSiteB STS

WebSiteA WebSiteB STS

Fe
dA

ut
h

Fe
dA

ut
h

Fe
dA

ut
h

ST
SA

SP
XA

U
TH

Ss
oS

es
sio

ns

Fe
dA

ut
h

FIGURE	4-6	 A	Single	Sign-out	process	taking	place	as	described	in	WS-Federation

120 Part II Windows Identity Foundation for Identity Developers

Let’s	examine	every	step.	In	the	beginning,	the	user	is	signed	in	to	WebSiteA	and	WebSiteB	
via	tokens	obtained	from	STS,	and	his	browser	is	currently	on	WebSiteA.	His	cookie	collec-
tion	contains	a	FedAuth	session	cookie	for	each	RP	and	one	Forms	authentication	cookie	
(STSASPXAUTH)	with	STS.	It	also	has	an	SsoSessions	cookie	with	STS,	which	contains	the	list	of	
RPs	for	which	the	STS	issued	a	token	in	the	context	of	its	STSASPXAUTH	session.	Here’s	how	
the	process	unfolds:

	 1.	 The	user	clicks	on	a	FederatedSignInStatus	control	instance	on	WebSiteA,	triggering	
a	POST	in	the	authenticated	session	described	by	WebSiteA’s	FedAuth	cookie.	The	
SignOutAction	property	of	the	control	is	set	to	FederatedPassiveSignOut.

	 2.	 WebSiteA	receives	the	request	for	signing	out.	As	a	result,	it	destroys	its	own	session	
(by	cleaning	FedAuth	from	the	WebSiteA	cookie	collection	on	the	client)	and	redirects	
the	browser	to	send	a	sign-out	message	to	the	STS	that	originated	the	current	session.

	 3.	 The	browser	follows	the	redirect,	sending	to	the	STS	the	sign-out	message,	along	with	
the	session	cookie	STSASPXAUTH	and	the	cookie	containing	the	list	of	RPs	with	whom	
the	user	might	still	entertain	active	sessions.

	 4.	 The	STS	reacts	by	cleaning	up	all	its	cookies	and	sends	back	a	page	that	contains	
	images	whose	src	URIs	are	in	fact	cleanup	messages	for	all	the	RPs	listed	in	the	
SsoSessions	cookie—that	is,	WebSiteA	and	WebSiteB.

	 5.	 The	browser	renders	the	first	image,	pointing	to	WebSiteA.	Hence,	it	sends	a	GET	for	
its	source,	which	in	fact	delivers	a	cleanup	message.	WebSiteA	already	cleaned	up	its	
session	because	it	was	the	originator	of	the	Single	Sign-out	sequence.	If	the	STS	had	
known	this,	it	could	have	avoided	adding	WebSiteA	to	the	list	of	cleanup	RPs;	however,	
nothing	bad	happens,	thanks	to	the	idempotency	requirements	of	wssignoutcleanup1.0	
messages.	WebSiteA	simply	returns	the	bits	of	the	GIF	indicating	that	cleanup	success-
fully	took	place.

	 6.	 The	browser	renders	the	image,	pointing	to	WebSiteB.	WebSiteB	receives	the	cleanup	
message	and	reacts	by	deleting	its	own	FedAuth	cookie	and	returning	the	bits	of	the	
GIF	of	the	check	mark	as	expected.	At	this	point,	all	the	sessions	have	been	cleaned	up:	
the	Single	Sign-out	concluded	successfully,	and	the	user	can	see	on	the	STS	page	the	
list	of	Web	sites	he	has	been	signed	out	from.

Once	you	get	the	hang	of	it,	it’s	really	not	that	hard.	One	of	the	things	I	like	best	about	this	
approach	is	that	it	allows	you	to	herd	the	behavior	of	multiple	Web	sites	without	knowing	
any	detail.	Some	sites	could	be	hosted	on	your	intranet,	others	could	be	hosted	in	the	cloud,	
or	sites	could	be	running	on	different	stacks	and	operating	systems,	but	as	long	as	they	all	
speak	via	WS-Federation	and	share	a	common,	trusted	ground,	the	right	thing	just	happens.

 Chapter 4 Advanced ASP .NET Programming 121

The	WIF	STS	Template	and	Single	Sign-out
As	you	saw	earlier,	the	STS	template	handles	wssignout1.0	messages.	However,	it	does	
not	propagate	them	via	wssignoutcleanup1.0	to	the	other	RPs	in	the	session,	nor	does	
it	contain	any	mechanism	for	keeping	track	of	the	RPs	in	the	current	session	at	issuance	
time.	The	sample	discussed	here	offers	such	a	mechanism	in	the	SingleSignOnManager	
class.	It	is	a	façade	for	a	collection	of	RP	URIs	saved	in	a	cookie,	which	gets	updated	
with	the	RP	address	every	time	the	STS	issues	a	token	(in	GetOutputClaimsIdentity)	
and	that	can	be	looked	up	when	it’s	time	to	send	cleanup	messages.	That	is	just	one	
	example—you	can	use	any	equivalent	mechanism.	Once	you	have	that	capability,	
	enhancing	the	STS	template	code	to	support	SSOut	is	easy.	Consider	the	following	
modified		version	of	the	sign-out	branch	in	the	Default.asp.cs code:

else if (action == WSFederationConstants.Actions.SignOut)
 {
 // Process signout request.
 SignOutRequestMessage requestMessage =
 (SignOutRequestMessage)WSFederationMessage.CreateFromUri(Request.Url);

 FederatedPassiveSecurityTokenServiceOperations.ProcessSignOutRequest(
 requestMessage, User, /*requestMessage.Reply*/ null, Response);
 // new
 string[] signedInUrls = SingleSignOnManager.SignOut();
 lblSignoutText.Visible = true;
 foreach (string url in signedInUrls)
 {
 SignoutLinks.Controls.Add(
 new LiteralControl(String.Format(
 "<p>{0} <img src='{0}?wa=wsignoutcleanup1.0'
 title='Signout request: {0}?wa=wsignoutcleanup1.0'/></p>," url)));
 }
 }

The	changes	are	straightforward.	The	call	to	ProcessSignOutRequest	does	not	redirect	
to	wreply,	because	after	it	cleaned	up	its	own	session	there’s	still	work	to	do	that	would	
not	be	done	if	it	redirected	as	in	the	default	case.	After	cleaning	its	own	session,	the	
STS	prepares	the	UI	for	the	sign-out	by	turning	on	the	visibility	of	a	sign-out	message	
(here,	in	a	label).	The	call	to	SingleSignOutManager	returns	the	list	of	all	the	RPs	whose	
session	should	be	cleaned	up.	The	foreach	that	appears	below	that	uses	that	list	for	
generating	and	appending	to	the	page	as	many	images	as	needed,	which	will	dispatch	
the	cleanup	message	once	they	are	rendered.

122 Part II Windows Identity Foundation for Identity Developers

More About Sessions
I	briefly	touched	on	the	topic	of	sessions	at	the	end	of	Chapter	3,	where	I	showed	you	how	
you	can	keep	the	size	of	the	session	cookie	independent	from	the	dimension	of	its	originat-
ing	token	by	saving	a	reference	to	session	state	stored	on	the	server	side.	The	WIF	program-
ming	model	goes	well	beyond	that,	granting	you	complete	control	over	how	sessions	are	
handled.	Here	I’d	like	to	explore	with	you	two	notable	examples	of	that	principle	in	action:	
sliding	sessions	and	network	load-balancer-friendly	sessions.

Sliding Sessions
By	default,	WIF	creates	SessionSecurityTokens	whose	validity	is	based	on	the	validity	of	the	
incoming	token.	You	can	overrule	that	behavior	without	writing	any	code,	by	adding	to	the	
<microsoft.identityModel>	element	in	the	web.config	file	something	like	the	following:

<securityTokenHandlers>
 <add type="Microsoft.IdentityModel.Tokens.SessionSecurityTokenHandler,
 Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35">
 <sessionTokenRequirement lifetime="0:02" />
 </add>
</securityTokenHandlers>

Note The	lifetime	property	can	restrict	only	the	validity	expressed	by	the	token	to	begin	with.	In	
the	preceding	code	snippet,	I	set	the	lifetime	to	2	minutes,	but	if	the	incoming	security	token	was	
valid	for	just	1	minute,	the	session	token	would	have	1	minute	of	validity.	If	you	want	to	increase	
the	validity	beyond	what	the	initial	token	specified,	you	need	to	do	so	in	code	(by	subclassing	
SessionSecurityTokenHandler	or	by	handling	SessionSecurityTokenReceived).

Now,	let’s	say	that	you	want	to	implement	a	more	sophisticated	behavior.	For	example,	
you	want	to	keep	the	session	alive	indefinitely	as	long	as	the	user	is	actively	working	with	
the	pages.	However,	you	want	to	terminate	the	session	if	you	do	not	detect	user	activity	in	
the	past	2	minutes,	regardless	of	the	fact	that	the	initial	token	would	still	be	valid.	This	is	a	
common	requirement	for	Web	sites	that	reveal	personally	identifiable	information	(PII)	or	
give	control	to	banking	operations.	Those	are	cases	in	which	you	want	to	ensure	that	the	
user	is	actually	in	front	of	the	machine	and	the	pages	are	not	abandoned	to	the	mercy	(or	
	mercenary	instincts)	of	bystanders.

In	Chapter	3,	I	hinted	at	this	scenario,	suggesting	that	it	could	be	solved	by	subclassing	the	
SessionAuthenticationModule.	That	is	the	right	strategy	if	you	expect	to	reuse	this	function-
ality	over	and	over	again	across	multiple	applications,	given	that	it	neatly	packages	it	in	a	
class	you	can	include	in	your	code	base.	In	fact,	SharePoint	2010	offers	sliding	sessions	and	
implements	those	precisely	in	that	way.	If,	instead,	this	is	an	improvement	you	need	to	apply	

 Chapter 4 Advanced ASP .NET Programming 123

only	occasionally,	or	you	own	just	one	application,	you	can	obtain	the	same	effect	simply	by	
	handling	the	SessionSecurityTokenReceived	event.	Take	a	look	at	the	following	code:

<%@ Application Language=”C#” %>
<%@ Import Namespace=”Microsoft.IdentityModel.Web” %>
<%@ Import Namespace=”Microsoft.IdentityModel.Tokens” %>

<script runat=”server”>

 void SessionAuthenticationModule_SessionSecurityTokenReceived
 (object sender, SessionSecurityTokenReceivedEventArgs e)
 {
 DateTime now = DateTime.UtcNow;
 DateTime validFrom = e.SessionToken.ValidFrom;
 DateTime validTo = e.SessionToken.ValidTo;
 double halfSpan = (validTo – validFrom).TotalMinutes / 2;
 if (validFrom.AddMinutes(halfSpan) < now && now < validTo)
 {
 SessionAuthenticationModule sam = sender as SessionAuthenticationModule;
 e.SessionToken = sam.CreateSessionSecurityToken(e.SessionToken.ClaimsPrincipal,
e.SessionToken.Context,
 now, now.AddMinutes(2), e.SessionToken.IsPersistent);
 e.ReissueCookie = true;
 }
 }
 //...

As	you	certainly	guessed,	this	is	a	fragment	of	the	global.asax	file	of	the	RP		application.	
SessionSecurityTokenReceived	gets	called	as	soon	as	the	session	cookie	is	deserialized	
(or	resolved	from	the	cache	if	you	are	in	session	mode).	Here	you	verify	whether	you	
are	within	the	second	half	of	the	validity	window	of	the	session	token.	If	you	are,	you	
	extend	the	validity	to	another	2	minutes,	starting	now.	That	change	takes	place	on	the	
	in-memory	instance	of	the	SessionSecurityToken.	Setting	ReissueToken	to	true	instructs	the	
SessionAuthenticationModule	to	persist	the	new	settings	in	the	cookie	after	the	execution	
leaves	SessionSecurityTokenReceived.	Let’s	say	that	the	token	is	valid	between	10:00	a.m.	and	
10:02	a.m.	If	the	current	time	falls	between	10:01	a.m.	and	10:02	a.m.—say,	10:01:15—the	
code	sets	the	new	validity	boundaries	to	go	from	10:01:15	to	10:03:15	and	saves	those	in	the	
session	cookie.

Note This	is	the	same	heuristic	that	FormsAuthentication	uses	for	sliding	expiration.	Why	renew	
the	session	only	during	the	second	half	of	the	validity	interval?	Well,	writing	the	cookie	is	not	for	
free.	This	is	just	a	heuristic	for	reducing	the	times	at	which	the	session	gets	refreshed,	but	you	
can	certainly	choose	to	apply	different	strategies.

If	the	current	time	is	outside	the	validity	interval,	this	implementation	of	
SessionSecurityTokenReceived	will	have	no	effect.	The	SessionAuthenticationModule	will	take	
care	of	handling	the	expired	session	right	after.	Note	that	an	expired	session	does	not	elicit	
any	explicit	sign-out	process.	If	you	recall	the	discussion	about	SSO	and	SSOut	just	a	few	

124 Part II Windows Identity Foundation for Identity Developers

pages	earlier,	you’ll	realize	that	if	the	STS	session	outlives	the	RP	session	the	user	will	just	
silently	re-obtain	the	authentication	token	and	renew	the	session	without	even	realizing	
	anything	happened.

Sessions and Network Load Balancers
By	default,	session	cookies	written	by	WIF	are	protected	via	DPAPI,	taking	advantage	of	the	
RP’s	machine	key.	Such	cookies	are	completely	opaque	to	the	client	and	anybody	else	who	
does	not	have	access	to	that	specific	machine	key.

This	works	well	when	all	the	requests	in	the	context	of	a	user	session	are	aimed	at	the	same	
machine.	But	what	happens	when	the	RP	is	hosted	on	multiple	machines—for	example,	in	a	
load-balanced	environment?	A	session	cookie	might	be	created	on	one	machine	and	sent	to	
a	different	machine	at	the	next	postback.	Unless	the	two	machines	share	the	same	machine	
key	and	use	it	for	encrypting	the	cookie	instead	of	taking	advantage	of	the	DPAPI	Encryption	
key,	a	cookie	originated	from	machine	A	will	be	unreadable	from	machine	B.

There	are	various	solutions	to	the	situation.	One	obvious	one	is	using	sticky	sessions—that	is,	
guaranteeing	that	a	session	beginning	with	machine	A	keeps	referring	to	A	for	all	subsequent	
requests.	I	am	not	a	big	fan	of	that	solution	because	it	dampens	the	advantages	of	using	a	
load-balanced	environment.	Furthermore,	you	might	not	always	have	a	say	in	the		matter—
for	example,	if	you	are	hosting	your	applications	on	a	third-party	infrastructure	(such	as	
Windows	Azure),	your	control	of	the	environment	will	be	limited.

Another	solution	is	to	synchronize	the	machine	keys	of	every	machine	and	use	those	for	
	encrypting	cookies.	I	like	this	better	than	using	sticky	sessions,	but	there	is	an	approach	I	like	
even	better.	More	often	than	not,	your	RP	application	will	use	Secure	Sockets	Layer	(SSL),	
which	means	you	need	to	make	the	certificate	and	corresponding	private	key	available	on	
every	node.	It	makes	perfect	sense	to	use	the	same	cryptographic	material	for	securing	the	
cookie	in	a	load-balancer-friendly	way.

WIF	makes	the	process	of	applying	the	aforementioned	strategy	in	ASP.NET	applications	
trivial.	The	following	code	illustrates	how	it	can	be	done:

public class Global : System.Web.HttpApplication
{
 //...
 void OnServiceConfigurationCreated(object sender, ServiceConfigurationCreatedEventArgs
e)
 {
 //
 // Use the <serviceCertificate> to protect the cookies that are
 // sent to the client.
 //
 List<CookieTransform> sessionTransforms =
 new List<CookieTransform>(new CookieTransform[] {
 new DeflateCookieTransform(),

 Chapter 4 Advanced ASP .NET Programming 125

 new RsaEncryptionCookieTransform(e.ServiceConfiguration.ServiceCertificate),
 new RsaSignatureCookieTransform(e.ServiceConfiguration.ServiceCertificate) });
 SessionSecurityTokenHandler sessionHandler = new
SessionSecurityTokenHandler(sessionTransforms.AsReadOnly());

 e.ServiceConfiguration.SecurityTokenHandlers.AddOrReplace(sessionHandler);
 }

 protected void Application_Start(object sender, EventArgs e)
 {
 FederatedAuthentication.ServiceConfigurationCreated += OnServiceConfigurationCreated;
 }

Instead	of	using	the	usual	inline	approach,	this	time	I	am	showing	you	the	code-behind	
file	global.asax.cs.	OnServiceConfigurationCreated	is—Surprise!	Surprise!—a	handler	for	
the	ServiceConfigurationCreated	event	and	fires	just	after	WIF	reads	the	configuration.	If	
you	make	changes	here,	you	have	the	guarantee	that	they	will	already	be	applied	from	the	
	request	coming	in.	

Note Contrary	to	what	various	samples	out	there	would	lead	you	to	believe,	
OnServiceConfigurationCreated	is	pretty	much	the	only	WIF	event	handler	that	should	be	
	associated	to	its	event	in	Application_Start.	This	has	to	do	with	the	way	(and	the	number	of	times)	
ASP.NET	invokes	the	handlers	though	the	application	lifetime.

The	code	is	self-explanatory.	It	creates	a	new	list	of	CookieTransform	transformations,	which	
takes	care	of	cookie	compression,	encryption,	and	signature.	The	last	two	take	advantage	of	
the	RsaxxxxCookieTransform,	taking	in	input	the	certificate	defined	for	the	RP	in	the	
web.config	file.	

Note Why	do	you	sign	the	cookie?	Wouldn’t	it	be	enough	to	encrypt	it?	If	you	use	the	RP	
	certificate,	encryption	would	not	be	enough.	Remember,	the	RP	certificate	is	a	public	key.	If	you	
just	encrypt	it,	a	crafty	client	can	just	discard	the	session	cookie,	create	a	new	one	with	super-
privileges	in	the	claims,	and	encrypt	it	with	the	RP	certificate.	The	RP	would	not	be	able	to	tell	
the	difference.	Adding	the	signature	successfully	prevents	this	attack	because	it	requires	a	private	
key,	which	is	not	available	to	the	client	or	anybody	else	but	the	RP	itself.

The	new	transformations	list	is	assigned	to	a	new	SessionSecurityTokenHandler	instance,	
which	is	then	used	for	overriding	the	existing	session	handler.	From	this	point	on,	all	session	
cookies	will	be	handled	using	the	new	strategy.	That’s	it!	As	long	as	you	remember	to	add	an	
entry	for	the	service	certificate	in	the	RP	configuration,	you’ve	got	network	load	balancing	
(NLB)–friendly	sessions	without	having	to	resort	to	compromises	such	as	sticky	sessions.	

126 Part II Windows Identity Foundation for Identity Developers

Federation
At	the	beginning	of	the	chapter,	I	introduced	the	Federation	Provider	and	discussed	some	
of	the	advantages	that	the	IP-FP-RP	pattern	offers.	The	temptation	to	expand	the	architec-
tural	considerations	about	this	important	pattern	is	strong;	however,	here	I	want	to	keep	
the	focus	on	WIF	and	give	you	a	concrete	coding	example.	There	are	many	good	high-level	
	introductions	to	the	topic	you	can	refer	to.

For a good introduction to the subject, refer to A	Guide	to	Claims-Based	Identity	and	Access	
Control	by Dominick Baier, Vittorio Bertocci, Keith Brown, Matias Woloski, and Eugenio Pace
(Microsoft Press, 2010).

WIF	does	not	really	care	if	the	STS	used	by	the	RP	is	an	IP-STS	or	an	R-STS.	Both	types	look	
the	same	in	their	metadata	description	and,	despite	the	differences	in	the	sequence	that	
	ultimately	lead	to	that,	they	both	issue	a	token	as	requested.	It	helps	to	see	this	in	action	in	a	
concrete	example.

Note As	usual,	in	a	realistic	scenario	you	can	expect	the	R-STS	to	be	provided	by	one	ADFS	2.0	
instance	playing	the	FP	role.	Once	again,	for	educational	purposes,	I’ll	take	advantage	of	custom	
STSes	here.

Do	you	recall	the	first	example	we	explored	in	Chapter	2?	It	was	a	classic	RP-IP	scenario,	
but	it	is	very	easy	to	transform	it	into	a	toy	federation	sample.	Just	right-click	on	the	
BasicWebSite_STS	project	in	Solution	Explorer,	select	the	Add	STS	Reference	entry,	and	use	
the	wizard	for	creating	yet	another	new	STS	project	in	the	current	solution.	

Note The	Add	STS	Reference	Wizard	adds	an	<httpModules>	element	in	the	<system.web>	
	section	of	BasicWebSite_STS	config,	which	does	not	play	well	with	the	IIS	integrated	pipeline.	You	
might	have	to	comment	out	that	<httpModules>	entry.

Figure	4-7	shows	the	new	solution	layout.

 Chapter 4 Advanced ASP .NET Programming 127

FIGURE	4-7	 BasicWebSite	trusts	BasicWebSite_STS,	which	in	turn	trusts	BasicWebSite_STS_STS

Nothing	changed	for	the	RP,	BasicWebSite,	which	is	still	outsourcing	authentication	to	
BasicWebSite_STS.	BasicWebSite_STS	was	an	IP-STS	when	we	started,	because	it	was	an	
unmodified	instance	of	the	WIF	STS	template.	After	the	wizard	configured	it	to	outsource	
authentication	to	BasicWebSite_STS_STS,	however,	BasicWebSite_STS	became	an	R-STS;	
therefore,	its	login.aspx	page	will	not	be	used	anymore.	If	you	run	the	solution	you’ll	observe	
the	browser	being	redirected	from	BasicWebSite	to	BasicWebSite_STS,	which	will	redirect	
right	away	to	BasicWebSite_STS_STS,	which	will	finally	show	its	own	login.aspx	page.	After	
you	click	Submit	on	the	login	form,	the	flow	will	go	through	the	chain	in	the	opposite	order:	
BasicWebSite_STS_STS	will	issue	a	token	that	will	be	used	for	signing	in	BasicWebSite_STS,	
which	in	turn	will	issue	a	new	token	that	will	be	used	for	signing	in	BasicWebSite. Figure	4-8	
summarizes	the	sign-in	flow.

128 Part II Windows Identity Foundation for Identity Developers

Browser

BasicWebSite_STS_STS

BasicWebSite
1

23 4
6

7

Trust

Trust

BasicWebSite_STS

5A

5

FIGURE	4-8	 The	authentication	flow	linking	BasicWebSite,	BasicWebSite _STS,	and	BasicWebSite_STS_STS

	 1	 The	user	requests	a	page	from	BasicWebSite.

	 2	 Because	the	user	is	not	authenticated,	he	is	redirected	to	BasicWebSite_STS	for	
authentication.

	 3	 BasicWebSite_STS	itself	outsources	authentication	to	BasicWebSite_STS_STS;	hence,	it	
redirects	the	request	accordingly

	 4	 Once	the	user	successfully	authenticates	with	BasicWebSite_STS_STS,	he	gets	back	a	
token.

	 5	 The	user	gets	redirected	back	to	BasicWebSite_STS,	which	validates	the	token	from	
BasicWebSite_STS_STS	and	considers	the	user	authenticated	thanks	to	it.

	 6	 BasicWebSite_STS	issues	a	token	to	the	user,	as	requested.

	 7	 The	user	gets	back	to	BasicWebSite	with	the	token	obtained	from	BasicWebSite_STS	as	
required,	and	the	authenticated	session	starts.

Convoluted?	A	bit,	perhaps.	On	the	upside,	BasicWebSite	is	now	completely	isolated	from	
the	actual	identity	provider—changes	in	the	IP	will	not	affect	the	RP.	If	you	have	multiple	
RPs,	you	can	now	have	them	all	trust	the	same	R-STS,	which	will	take	care	of	enforcing	any	
changes	in	the	relationship	with	the	IP	(or	IPs,	as	I’ll	show	in	a	moment)	without	requiring	any	
ad-hoc	intervention	on	the	RP	code	or	configuration	itself.	Pretty	handy!

 Chapter 4 Advanced ASP .NET Programming 129

Transforming Claims
The	example	in	the	preceding	section	modified	the	authentication	flow	to	conform	to	the	
federation	pattern,	but	it	didn’t	really	change	the	way	in	which	BasicWebSite_STS	processes	
claims.	With	its	hard-coded	claims	entries,	the	default	WIF	STS	template	behavior	mimics	that	
of	an	IP-STS;	whereas	in	its	new	FP	role,	BasicWebSite_STS	is	expected	to	process	the	incom-
ing	claims	(in	this	case,	from	BasicWebSite_STS_STS).	If	you	want	to	change	BasicWebSite_STS	
into	a	proper	R-STS,	you	need	to	modify	the	GetOutputClaimsIdentity method	of	the	
CustomSecurityTokenService	class.	

As	you	already	know,	in	GetOutputClaimsIdentity	the	incoming	claims	are	available	in	the	
IClaimsPrincipal principal	parameter.	You	can	pretty	much	do	anything	you	want	with	the	
incoming	claims,	but	I	find	it	useful	to	classify	the	possible	actions	into	three	(non-exhaustive)	
categories:	pass-through,	modification,	and	injection	of	new	claims.	They	are	represented	in	
step	5a	of	Figure	4-8.	Here	is	a	simple	example	of	a	GetOutputClaimsIdentity	implementation	
that	features	all	three	methods:

 protected override IClaimsIdentity GetOutputClaimsIdentity
 (IClaimsPrincipal principal, RequestSecurityToken request, Scope scope)
 {
 if (null == principal)
 {
 throw new ArgumentNullException("principal");
 }

 ClaimsIdentity outputIdentity = new ClaimsIdentity();

 IClaimsIdentity incomingIdentity = (IClaimsIdentity)principal.Identity;

 // Pass-through
 Claim nname = (from c in incomingIdentity.Claims
 where c.ClaimType == ClaimTypes.Name
 select c).Single();
 Claim nnnm = new Claim(ClaimTypes.Name, nname.Value, ClaimValueTypes.String, nname.
OriginalIssuer);
 outputIdentity.Claims.Add(nnnm);

 // Modified
 string rrole = (from c in incomingIdentity.Claims
 where c.ClaimType == ClaimTypes.Role
 select c.Value).Single();
 outputIdentity.Claims.Add(new Claim(ClaimTypes.Role, "Transformed " + rrole));

 // New
 outputIdentity.Claims.Add(new Claim("http://maseghepensu.it/hairlength",
 "a value", ClaimValueTypes.Double));

 return outputIdentity;
 }

130 Part II Windows Identity Foundation for Identity Developers

Before	going	into	the	details	of	how	the	various	transformations	work,	it	is	finally	time	to	take	
a	deeper	look	at	that	Claim	class	we’ve	been	using	without	giving	it	too	much	thought	so	far.	
Here	are	the	various	properties	of	the	class	and	some	methods	of	interest:

public class Claim
{
 // Methods

 public virtual Claim Copy();
 public virtual void SetSubject(IClaimsIdentity subject);
 // Properties

 public virtual string ClaimType { get; }
 public virtual string Issuer { get; }
 public virtual string OriginalIssuer { get; }
 public virtual IDictionary<string, string> Properties { get; }
 public virtual IClaimsIdentity Subject { get; }
 public virtual string Value { get; }
 public virtual string ValueType { get; }
}

One	thing	that	immediately	grabs	your	attention	is	that	all	properties	of	Claim	are	read-only:	
after	the	class	has	been	created,	the	values	cannot	be	changed.	The	only	exception	is	the	
subject	to	which	the	Claim	instance	is	referring	to:	SetSubject	will	change	the	value	of	the	
Subject	property	to	a	new	IClaimsIdentity.

You	are	already	familiar	with	Value	and	ClaimType	because	I’ve	been	using	those	throughout	
the	entire	book.	ValueType	is	more	interesting.	It	allows	you	to	specify	a	type	for	the	claim	
value,	which	the	claim	consumer	can	use	to	deserialize	the	claim	in	a	common	language	
	runtime	(CLR)	type	(or	whatever	type	system	your	programming	stack	requires	if	you	are	
not	in	.NET)	other	than	the	default	string.	That	is	a	key	enabler	for	applying	complex	logic	to	
claims.	Without	knowing	that	DateOfBirth	should	be	deserialized	in	a	DateTime,	you’ll	find	
it	difficult	to	verify	whether	it	is	below	or	above	a	given	threshold.	Note	that	the	ValueType	
is	just	one	indication:	the	Value	returned	by	the	claim	is	always	a	string	regardless	of	the	
ValueType.	You’ll	have	to	call	the	appropriate	Parse	method	(or	similar)	yourself.

The	Properties	dictionary	is	used	for	carrying	extra	information	about	the	claim	itself	
when	the	protocol	requires	it.	For	example,	in	SAML2	you	might	have	properties	such	as	
SamlAttributeDisplayName	assigned	to	a	claim.	

Note The	WIF	token	handlers	will	not	serialize	the	properties.	If	you	want	them	to	travel,	you’ll	
have	to	take	care	of	that	yourself.

The	Issuer	property	is	a	string	representing	the	token	issuer	from	which	the	claim	has	been	
extracted.	The	string	itself	comes	from	the	mapping	that	IssuerNameRegistry	makes	between	
the	certificate	used	for	signing	the	token	and	the	friendly	name	assigned	to	the	associated	
issuer.	The	OriginalIssuer	property	records	the	first	issuer	that	produced	this	claim	in	the	fed-
eration	chain.	I’ve	included	more	details	about	this	in	the	“Pass-Through	Claims”	section.

 Chapter 4 Advanced ASP .NET Programming 131

Claim	Types	and	Value	Constants
WIF	offers	two	collections	of	string	constants	that	gather	most	of	the	known	claim	
type	URIs.	One	is	Microsoft.IdentityModel.Protocols.WSIdentity.WSIdentityConstants.
ClaimTypes	(which	is	almost	the	same	as	the	WCF	collection	System.IdentityModel.
Claims.ClaimTypes);	the	other	is	Microsoft.IdentityModel.Claims.ClaimTypes	(which	is	a	
superset	of	the	first	one).	For	your	reference,	the	content	of	Microsoft.IdentityModel.
Claims.ClaimTypes	is	listed	next.	Note	that	some	popular	claim	types	(such	as	Group)	
are	kept	in	the	Prip	subtype	and	are	often	overlooked.	Prip	stands	for	WS-Federation	
Passive	Requestor	Interoperability	Profile,	which	is	a	specific	subset	of	WS-Federation	
used	during	early	multivendor	interoperability	tests.

public static class ClaimTypes
{
 // Fields
 public const string Actor =
 "http://schemas.xmlsoap.org/ws/2009/09/identity/claims/actor";
 public const string Anonymous =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/anonymous";
 public const string Authentication =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/authentication";
 public const string AuthenticationInstant =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationinstant";
 public const string AuthenticationMethod =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/authenticationmethod";
 public const string AuthorizationDecision =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/authorizationdecision";
 public const string ClaimType2005Namespace =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims";
 public const string ClaimType2009Namespace =
 "http://schemas.xmlsoap.org/ws/2009/09/identity/claims";
 public const string ClaimTypeNamespace =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims";
 public const string CookiePath =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/cookiepath";
 public const string Country =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/country";
 public const string DateOfBirth =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dateofbirth";
 public const string DenyOnlyPrimaryGroupSid =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/
denyonlyprimarygroupsid";
 public const string DenyOnlyPrimarySid =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/denyonlyprimarysid";
 public const string DenyOnlySid =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/denyonlysid";
 public const string Dns =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/dns";
 public const string Dsa =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/dsa";

132 Part II Windows Identity Foundation for Identity Developers

 public const string Email =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress";
 public const string Expiration =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/expiration";
 public const string Expired =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/expired";
 public const string Gender =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/gender";
 public const string GivenName =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/givenname";
 public const string GroupSid =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/groupsid";
 public const string Hash =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/hash";
 public const string HomePhone =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/homephone";
 public const string IsPersistent =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/ispersistent";
 public const string Locality =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/locality";
 public const string MobilePhone =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/mobilephone";
 public const string Name =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name";
 public const string NameIdentifier =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier";
 public const string OtherPhone =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/otherphone";
 public const string PostalCode =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/postalcode";
 public const string PPID =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/
privatepersonalidentifier";
 public const string PrimaryGroupSid =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/primarygroupsid";
 public const string PrimarySid =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/primarysid";
 public const string Role =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/role";
 public const string Rsa =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/rsa";
 public const string SerialNumber =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/serialnumber";
 public const string Sid =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/sid";
 public const string Spn =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/spn";
 public const string StateOrProvince =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/stateorprovince";
 public const string StreetAddress =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/streetaddress";
 public const string Surname =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/surname";

 Chapter 4 Advanced ASP .NET Programming 133

 public const string System =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/system";
 public const string Thumbprint =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/thumbprint";
 public const string Upn =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/upn";
 public const string Uri =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/uri";
 public const string UserData =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/userdata";
 public const string Version =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/version";
 public const string Webpage =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/webpage";
 public const string WindowsAccountName =
 "http://schemas.microsoft.com/ws/2008/06/identity/claims/windowsaccountname";
 public const string X500DistinguishedName =
 "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/x500distinguishedname";

 // Nested Types
 public static class Prip
 {
 // Fields
 public const string ClaimTypeNamespace = "http://schemas.xmlsoap.org/claims";
 public const string CommonName = "http://schemas.xmlsoap.org/claims/
CommonName";
 public const string Email = "http://schemas.xmlsoap.org/claims/EmailAddress";
 public const string Group = "http://schemas.xmlsoap.org/claims/Group";
 public const string Upn = "http://schemas.xmlsoap.org/claims/UPN";
 }
}

You	can,	of	course,	create	your	own	claim	types.	However,	I	suggest	that	before	doing	
so	you	take	a	look	at	the	Information	Card	Foundation	Web	site,	which	(among	other	
things)	gathers	all	the	known	and	emergent	claim	types	from	the	community.	The	
	direct	address	is	http://informationcard.net/resources/claim-catalog.	

WIF	also	offers	various	constants	representing	common	types	of	claim	values:

public static class ClaimValueTypes
{
 // Fields
 public const string Base64Binary = "http://www.w3.org/2001/XMLSchema#base64Binary";
 public const string Boolean = "http://www.w3.org/2001/XMLSchema#boolean";
 public const string Date = "http://www.w3.org/2001/XMLSchema#date";
 public const string Datetime = "http://www.w3.org/2001/XMLSchema#dateTime";
 public const string DaytimeDuration = "http://www.w3.org/TR/2002/WD-xquery-
operators-20020816#dayTimeDuration";
 public const string Double = "http://www.w3.org/2001/XMLSchema#double";
 public const string DsaKeyValue = "http://www.w3.org/2000/09/xmldsig#DSAKeyValue";
 public const string HexBinary = "http://www.w3.org/2001/XMLSchema#hexBinary";
 public const string Integer = "http://www.w3.org/2001/XMLSchema#integer";

134 Part II Windows Identity Foundation for Identity Developers

 public const string KeyInfo = "http://www.w3.org/2000/09/xmldsig#KeyInfo";
 public const string Rfc822Name = "urn:oasis:names:tc:xacml:1.0:data-
type:rfc822Name";
 public const string RsaKeyValue = "http://www.w3.org/2000/09/xmldsig#RSAKeyValue";
 public const string String = "http://www.w3.org/2001/XMLSchema#string";
 public const string Time = "http://www.w3.org/2001/XMLSchema#time";
 public const string X500Name = "urn:oasis:names:tc:xacml:1.0:data-type:x500Name";
 private const string Xacml10Namespace = "urn:oasis:names:tc:xacml:1.0";
 private const string XmlSchemaNamespace = "http://www.w3.org/2001/XMLSchema";
 private const string XmlSignatureConstantsNamespace =
 "http://www.w3.org/2000/09/xmldsig#";
 private const string XQueryOperatorsNameSpace =
 "http://www.w3.org/TR/2002/WD-xquery-operators-20020816";
 public const string YearMonthDuration =
 "http://www.w3.org/TR/2002/WD-xquery-operators-20020816#yearMonthDuration";
}

The	types	are	represented	according	to	W3C	and	OASIS	type	URIs,	but	the	mapping	to	
CLR	types	is	obvious	most	of	the	time.	

Now	that	you	understand	a	bit	better	how	the	Claim	class	works,	let’s	resume	the	discussion	
about	the	claim	transformations.

Pass-Through Claims
One	of	the	most	common	transformations	you’ll	want	to	apply	to	your	claims	is…no	
	transformation	at	all.	Sometimes	the	IP	directly	issues	the	claims	the	RP	needs;	hence,	you	
have	to	make	sure	that	those	claims	are	reissued	as-is	by	the	R-STS.	

Although	the	claim	type	and	value	come	straight	from	the	incoming	values,	the	fact	that	the	
new	claim	is	issued	in	a	token	signed	by	the	R-STS	makes	the	R-STS	itself	the	asserting	party	
and	shadows	the	original	issuer.	The	R-STS	might	even	be	accepting	tokens	from	multiple	
issuers,	which	would	complicate	things	further.	There	could	be	situations	in	which	know-
ing	the	actual	origin	of	the	claim	could	change	the	way	in	which	the	information	it	carries	is	
processed;	therefore,	it	is	important	to	somehow	let	the	RP	know	which	IP	issued	the	claim	
in	the	first	place.	This	is	done	by	setting	the	OriginalIssuer	property	of	the	outgoing	claim	to	
the	OriginalIssuer	carried	by	the	claim	you	are	re-issuing.	Here	are	the	relevant	lines	from	the	
GetOutputClaimsIdentity	implementation	shown	earlier:

// Pass-through
 Claim nname = (from c in incomingIdentity.Claims
 where c.ClaimType == ClaimTypes.Name
 select c).Single();
 Claim nnnm = new Claim(ClaimTypes.Name, nname.Value, ClaimValueTypes.String, "," nname.
OriginalIssuer);
 outputIdentity.Claims.Add(nnnm);

 Chapter 4 Advanced ASP .NET Programming 135

In	this	example,	the	claim	to	be	reissued	is	the	Name	claim.	The	code	retrieves	it	from	the	
incoming	principal,	and	then	it	just	creates	a	new	claim	that	copies	everything	from	the	origi-
nal	except	for	the	issuer.	(Here	the	issuer	parameter	is	left	empty	because	it	is	going	to	be	
overridden	with	the	current	R-STS,	anyway.)	That	snippet	is	designed	to	surface	to	you	the	
use	of	OriginalIssuer,	but	in	fact	you	can	use	a	more	compact	form	using	Copy	as	shown	here:	

// Pass-through
 Claim nname = (from c in incomingIdentity.Claims
 where c.ClaimType == ClaimTypes.Name
 select c).Single();
 Claim nnnm = nname.Copy();
 outputIdentity.Claims.Add(nnnm);

Modifying Claims and Injecting New Claims
The	distinction	between	modifying	claims	and	injecting	new	claims	is	a	bit	philosophical,	
	because	from	the	code	perspective	the	two	transformations	are	the	same.	

Modifying	a	claim	means	producing	a	new	claim	by	processing	or	combining	the	value	of	
one	or	more	incoming	claims,	according	to	arbitrary	logic.	An	excellent	example	of	that	is	
given	by	the	ADFS	2.0	claims-transformation	language,	which	allows	administrators	to	specify	
transformations	without	writing	any	explicit	code.	Of	course,	in	GetOutputClaimsIdentity	you	
can	literally	write	whatever	logic	you	want.

Injecting	new	claims	usually	entails	looking	up	new	information	about	the	incoming	
	subject—information	that	was	not	available	to	the	IP	but	that	the	RP	needs.	A	classic	example	
is	the	buyer’s	profile:	imagine	that	the	user	is	one	employee,	the	IP	is	the	user’s	employer,	
and	the	RP	is	some	kind	of	online	shop.	The	R-STS	might	maintain	information	such	as	the	
last	10	items	the	user	bought,	data	that	the	employer	does	not	keep	track	of	and	that	should	
be	injected	by	the	resource	organization—for	example,	in	the	R-STS.	The	challenge	here	
can	be	choosing	which	incoming	claims	should	be	used	for	uniquely	identifying	the	cur-
rent	user	and	looking	up	his	data	in	the	R-STS	profile	store.	Whereas	the	IP	has	one	strong	
incentive	to	have	such	a	unique	identifier—because	that	is	usually	needed	in	order	to	apply	
the		mechanics	of	the	authentication	method	of	choice—the	R-STS	does	not	have	a	similar	
requirement	per	se.	The	claims	chosen	should	be	unique,	at	least	in	the	context	of	the	current	
R-STS,	and	stable	enough	to	be	reusable	across	multiple	transactions.	The	e-mail	claim	is	a	
good		example,	but	of	course	it’s	not	a	perfect	one	because	e-mail	addresses	do	change	from	
time	to	time—think	of	the	situation	where	interns	become	full-time	employees	and	similar	
events.	

Home Realm Discovery
One	of	the	great	advantages	of	federation	is	the	possibility	of	handling	multiple	identity	
	providers	without	having	to	change	anything	in	the	RP	itself.	The	Federation	Providers	can	

136 Part II Windows Identity Foundation for Identity Developers

take	care	of	all	the	trust	relationships.	Extending	the	audience	of	the	application	without	pay-
ing	any	complexity	price	is	great;	however,	the	sheer	possibility	of	using	more	than	one	IP	
does	introduce	a	new	problem:	when	an	unauthenticated	user	shows	up,	which	IP	should	she	
ultimately	authenticate	with?	In	the	trivial	federation	case	examined	so	far,	the	one	with	one	
FP	and	one	IP,	the	answer	is	obvious:	the	redirect	chain	crawls	all	the	way	to	the	IP	and	back.	
When	you	have	more	than	one	IP,	however,	how	does	the	R-STS	decide	if	the	redirect	should	
go	to	IP	A	or	IP	B?

The	problem	of	deciding	which	IP	should	authenticate	the	user	is	well	known	in	literature,	
and	it	goes	under	the	name	of	Home	Realm	Discovery	(HRD).	The	HRD	problem	has	many	
solutions,	although	as	of	today	they	are	mostly	ad	hoc	and	what	works	in	one	given	scenario	
might	not	be	suitable	for	another.	For	example,	one	classic	solution	(offered	out	of	the	box	
by	ADFS	2.0)	asks	the	R-STS	to	show	a	Web	page	in	which	the	user	can	pick	his	own	realm	
among	the	list	of	all	trusted	IPs.	This	is	often	a	good	solution,	but	there	are	situations	in	
which	it	is	not	advisable	to	reveal	the	list	of	all	trusted	IPs.	Furthermore,	sometimes	asking	
the	user	to	make	a	choice	is	inconvenient	or	unacceptable,	in	which	case	the	IP	selection	
should	be	done	silently	according	to	some	criteria.

WS-Federation	provides	a	parameter	that	can	be	useful	in	handling	HRD:	whr.	It	is	meant	to	
carry	the	address	(or	the	urn:	identifier)	of	the	home	realm.	An	R-STS	receiving	a	wsignin1.0	
message	that	includes	whr	will	consider	whr	content	to	be	the	IP-STS	of	the	requestor	and	
will	drive	the	sequence	accordingly.	(See	Figure	4-9.)

Browser

IP-STS A

APP

1

2
3 4

6

7

Trust

Trust

R-STS

IP-STS B

Trust

WHR=http://A

5

FIGURE	4-9	 The	Home	Realm	Discovery	problem

 Chapter 4 Advanced ASP .NET Programming 137

	 1	 The	user	requests	a	page	from	App.

	 2	 Because	the	user	is	not	authenticated;	instead,	he	is	redirected	to	R-STS	for	authenti-
cation.	The	sign-in	message	includes	a	new	parameter,	whr,	which	indicates	A	as	the	
home	realm	for	the	request.

	 3	 R-STS	redirects	the	request	to	A.

	 4	 Once	the	user	successfully	authenticates	with	A,	he	gets	back	a	token.

	 5	 The	user	gets	redirected	back	to	R-STS,	which	validates	the	token	from	A	and	considers	
the	user	authenticated	thanks	to	it.

	 6	 R-STS	issues	a	token	to	the	user,	as	requested.

	 7	 The	user	gets	back	to	App	with	the	token	obtained	from	R-STS	as	required,	and	the	
	authenticated	session	starts.

Who	injects	the	whr	value	in	the	authentication	flow?	There	are	at	least	two	possibilities:

■	 The	requestor	 You	can	imagine	a	scenario	in	which	the	administrator	of	the	
	organization	of	IP	A	gives	to	all	users	a	link	to	the	RP	that	already	contains	the	whr	
	parameter	preselecting	IP	A.	That	is	a	handy	technique,	which	eliminated	the	HRD	
problem	at	its	root.	Unfortunately,	this	is	not	guaranteed	to	work:	this	system	requires	
the	RP	to	understand	(or	at	least	preserve	in	the	redirect	to	the	R-STS)	the	whr	param-
eter,	but	WS-Federation	does	not	mandate	this	to	the	RP.	In	fact,	RPs	implemented	via	
WIF	do	not	support	this	behavior	out	of	the	box	(although	it’s	not	especially	hard	to	
add	it).

■	 The	RP	 The	RP	itself	could	inject	whr	in	the	message	to	the	R-STS.	Imagine	the	case	
in	which	the	RP	is	one	specific	instance	of	a	multitenant	application.	In	that	case,	the	
whr	might	be	one	of	the	parameters	that	personalize	the	instance	for	a	given	tenant.	
WIF	supports	this	specific	setup	on	the	RP,	by	allowing	you	to	specify	the	attribute	
	homeRealm	in	the	<federatedAuthentication/wsFederation>	element	of	the	WIF	con-
figuration.	The	value	of	homeRealm	will	be	sent	via	whr	to	the	R-STS.	However,	the	WIF	
STS	template	project	knows	nothing	about	whr	and	will	just	ignore	it.	Once	again,	it	is	
not	hard	to	add	some	handling	logic.

The	R-STS	is	the	recipient	of	whr.	If	the	execution	reaches	the	FP	without	having	added	a	whr,	
it	is	up	to	the	R-STS	to	make	a	decision	on	the	basis	of	anything	else	that	is	available	in	the	
specific	situation	and	can	help	decide	which	IP	should	be	chosen.

Let’s	once	again	set	up	a	hypothetical	solution	in	Visual	Studio	so	that	you	can	gain	hands-on	
experience	with	the	flow	the	scenario	entails.

If	you	still	have	the	solution	we	used	for	showing	how	federation	works,	right-click	on	
BasicWebSite_STS,	and	again	use	the	Add	STS	Reference	Wizard	to	outsource	its	authentica-
tion	to	a	new	STS.	Visual	Studio	will	call	the	new	STS	BasicWebSite_STS_STS1.	The	current	
situation	is	described	in	Figure	4-10.

138 Part II Windows Identity Foundation for Identity Developers

FIGURE	4-10	 The	sample	solution	showing	how	to	handle	HRD

BasicWebSite	trusts	BasicWebSite_STS,	the	R-STS	of	the	scenario.	BasicWebSite_STS	now	
trusts	BasicWebSite_STS_STS1	because	with	the	latest	add	STS	reference,	its	former	
trust	relationship	with	BasicWebSite_STS_STS	has	been	overridden.	The	goal	here	is	to	
	establish	a	mechanism	that	allows	the	flow	to	switch	between	the	two	IPs	in	the	scenario	
(BasicWebSite_STS_STS	and	BasicWebSite_STS_STS1)	dynamically.

Note With	all	those	STSes	looking	alike,	things	might	become	hard	to	follow.	A	good	trick	for	
always	knowing	what	is	going	on	is	assigning	different	colors	to	the	background	of	the	login.aspx	
pages	of	the	various	STS	projects.

The	easiest	thing	to	accomplish	in	the	scenario	is	enabling	the	RP	BasicWebSite	to	express	a	
preference	for	one	IP	via	whr.	As	mentioned	earlier,	this	can	be	done	easily	via	configuration:

<federatedAuthentication>
 <wsFederation passiveRedirectEnabled=”true”
 issuer=”https://localhost/BasicWebSite_STS/”
 realm=”https://localhost/BasicWebSite/”
 homeRealm=”https://localhost/BasicWebSite_STS_STS/”
 requireHttps=”true” />
 <cookieHandler requireSsl=”true” />
 </federatedAuthentication>

The	value	of	homeRealm	establishes	that	BasicWebSite_STS_STS	should	be	used	for	
	authentication,	which	is	contrary	to	what	the	WIF	configuration	of	BasicWebSite_STS	currently	
says.	That	way,	it	will	be	obvious	whether	the	system	successfully	overrides	the	static	settings.

Note As	is	usually	the	case	for	the	parameters	in	<wsFederation>,	you	can	do	something	to	the	
same	effect	by	using	the	PassiveFederationSignInControl	and	its	properties.	From	now	on,	I’ll	omit	
this	note,	assuming	that	in	similar	situations	you’ll	know	that	the	control	alternative	is	available.	

The	next	step	is	making	the	WIF	STS	template	understand	whr.	It	is	actually	simple—it	is	
mainly	a	matter	of	intercepting	the	redirect	to	the	IP	and	forcing	it	to	go	whenever	the	whr	

 Chapter 4 Advanced ASP .NET Programming 139

decides.	Add	to	the	BasicWebSite_STS	project	a	global.asax	file.	Here	you	can	handle	the	
WSFAM	RedirectingToIdentityProvider	event	as	follows:

<%@ Application Language=”C#” %>
<%@ Import Namespace=”Microsoft.IdentityModel.Web” %>

<script runat=”server”>
 void WSFederationAuthenticationModule_RedirectingToIdentityProvider
 (object sender, RedirectingToIdentityProviderEventArgs e)
 {
 string a = HttpContext.Current.Request.QueryString[“whr”];
 if (a != null)
 {
 e.SignInRequestMessage.BaseUri = new Uri(a);
 }
 }

The	code	could	not	be	easier.	It	verifies	whether	there	is	a	whr	parameter	in	the	query	string,	
and	if	it	there	is	one,	it	assigns	it	to	the	BaseUri	in	the	SignInRequestMessage,	overwriting	
whatever	value	the	BasicWebSite_STS	configuration	had	put	in	there.	As	soon	as	the	handler	
returns,	the	WSFAM	will	redirect	the	sign-in	message	to	the	whr—in	this	case,	
BasicWebSite_STS_STS.	And	that	is	exactly	as	you	wanted	it.

Note The	code	here	assumes	that	whr	carries	a	network-addressable	URI,	but	per	the	
WS-Federation	specification	this	might	not	be	the	case.	If	the	URI	is	an	urn	identifier,	
BasicWebSite_STS	should	look	up	the	actual	address	in	some	mapping	store.

Having	to	specify	the	home	realm	in	the	RP	configuration	might	be	too	static	a	behav-
ior	for	many	occasions.	Fortunately,	the	RedirectingToIdentityProvider	event	can	be	easily	
handled	on	the	RP	as	well,	implementing	any	dynamic	behavior.	For	example,	you	can	think	
of		maintaining	a	table	of	IP	ranges	where	requests	might	come	from,	and	map	them	to	the	
	corresponding	IP	addresses.	For	the	sake	of	simplicity,	here	I’ll	show	you	how	to	implement	
the	approach	when	it	is	the	requestor	that	sends	the	whr	up	front	in	its	first	request	to	the	RP.

If	you	add	a	global.asax	file	to	BasicWebSite,	almost	exactly	the	same	code	as	shown	earlier	
will	give	you	the	desired	effect:

<%@ Application Language=”C#” %>
<%@ Import Namespace=”Microsoft.IdentityModel.Web” %>

<script runat=”server”>
 void WSFederationAuthenticationModule_RedirectingToIdentityProvider
 (object sender, RedirectingToIdentityProviderEventArgs e)
 {
 string a = HttpContext.Current.Request.QueryString[“whr”];
 if (a != null)
 {
 e.SignInRequestMessage.HomeRealm = a;
 }
 }

140 Part II Windows Identity Foundation for Identity Developers

The	code	here	intercepts	the	execution	right	before	sending	back	the	redirect	to	the	R-STS,	
and	if	the	original	request	contained	whr	it	ensures	that	it	will	be	propagated	to	the	R-STS	
as	well.	That	means	you	can	delete	the	homeRealm	attribute	in	the	BasicWebSite	config,	
	because	now	you	have	the	ability	to	express	whr	directly	at	request	time.

Important Keep	in	mind	that	all	the	samples	here	aim	to	help	you	understand	the	problem,	
but	they	do	not	constitute	complete	solutions.	Handling	HRD	in	practice	is	not	just	a	matter	
of	complying	with	the	protocol.	Instead,	it	presents	various	challenges	with	manageability	and	
maintenance	aspects	that	are	beyond	the	scope	of	this	book	and	are	best	addressed	by	using	
packaged	server-grade	products	such	as	ADFS	2.0.

Step-up Authentication, Multiple Credential Types, and
Similar Scenarios
The	trick	of	using	RedirectingToIdentityProvider	for	steering	the	request	to	the	STS	has	many	
applications	that	go	beyond	the	HRD	problem	examined	earlier.

One	eminent	example	of	this	shows	up	every	time	the	RP	needs	to	communicate	some	kind	
of	preference	about	the	authentication	process	the	IP	should	use	when	issuing	tokens	to	
users.	It’s	great	that	claims-based	identity	decouples	the	RP	from	the	authentication	respon-
sibilities,	but	there	are	situations	in	which	the	value	of	the	operation	imposes	certain	guar-
antees	about	the	strength	of	the	authentication.	Imagine	a	banking	Web	site	or	a	medical	
records	Web	site	that	gives	access	to	certain	operations	only	if	the	user	is	authenticated	with	
a	high-assurance	method	such	as	X.509	certificates	or	similar.

As	you’ve	grown	to	expect,	WS-Federation	has	a	parameter	for	that:	wauth.	It	is	supposed	to	
be	attached	to	wsignin1.0	messages	to	communicate	to	the	STS	the	authentication	method	
preference.	Usually,	the	STS	uses	that	for	performing	internal	redirects	to	one	endpoint	that	
is	secured	with	the	corresponding	authentication	technique,	or	something	to	that	effect	(for	
example,	wiring	custom	HttpHandlers	or	similar	low-level	tricks).

Important I	won’t	go	into	the	details	here	of	how	an	STS	should	handle	wauth,	mainly	because	
it	would	do	so	by	leveraging	the	authentication	infrastructures	rather	than	WIF	APIs.	The	main	
thing	to	remember	on	the	STS	side	is	that	a	token	will	advertise	the	authentication	method	that	
led	to	its	own	issuance	by	the	presence	of	the	claim	of	type	ClaimTypes.Authentication.

Each	RP	has	its	own	criteria	for	assigning	a	value	to	wauth.	Sometimes	it	is	a	blanket	property	
for	the	entire	Web	site—in	which	case,	it	is	expressed	directly	in	<wsFederation>	in	the	au-
thenticationType	attribute.	At	other	times,	the	user	is	given	the	chance	of	selecting	(directly	
or	indirectly)	from	among	multiple	credential	types.	In	yet	another	situation,	there	might	be	
logic	that	silently	establishes	whether	the	current	authentication	level	is	enough	for	accessing	
the	requested	resource,	or	whether	the	system	should	step	up	to	a	higher	level	of	assurance	

 Chapter 4 Advanced ASP .NET Programming 141

and	re-authenticate	the	user	accordingly.	The	last	two	cases	call	for	a	dynamic	assignment	of	
wauth,	which	is	when	reusing	what	you	learned	about	whr	and	RedirectingToIdentityProvider	
comes	in	handy	for	wauth	too.

Authentication	Methods
WIF	offers	handy	constants	representing	common	authentication	methods.	Once	
again,	they	are	grouped	in	multiple	collections:	Microsoft.IdentityModel.Claims.
AuthenticationMethods	and	Microsoft.IdentityModel.Tokens.Saml11.Saml11Constants+
AuthenticationMethods	(shown	next).	The	SDK	samples	use	the	first	one,	whereas	the	
second	one	is	used	when	communicating	with	ADFS	(though	in	that	case,	it	boils	down	
to	Password,	TlsClientString,	and	WindowsString).	In	fact,	the	values	in	the	following	
AuthenticationMethods	are	only	used	in	the	on-the-wire	format	specified	by	SAML.	In	
the	general	case	you	won’t	need	them.

public static class AuthenticationMethods
{
 // Fields
 public const string HardwareTokenString = "URI:urn:oasis:names:tc:SAML:1.0:am:
HardwareToken";
 public const string KerberosString = "urn:ietf:rfc:1510";
 public const string PasswordString = "urn:oasis:names:tc:SAML:1.0:am:password";
 public const string PgpString = "urn:oasis:names:tc:SAML:1.0:am:PGP";
 public const string SecureRemotePasswordString = "urn:ietf:rfc:2945";
 public const string SignatureString = "urn:ietf:rfc:3075";
 public const string SpkiString = "urn:oasis:names:tc:SAML:1.0:am:SPKI";
 public const string TlsClientString = "urn:ietf:rfc:2246";
 public const string UnspecifiedString = "urn:oasis:names:tc:SAML:1.0:am:
unspecified";
 public const string WindowsString = "urn:federation:authentication:windows";
 public const string X509String = "urn:oasis:names:tc:SAML:1.0:am:X509-PKI";
 public const string XkmsString = "urn:oasis:names:tc:SAML:1.0:am:XKMS";
}

The	WS-Federation	specification	lists	yet	a	different	set	of	wst:AuthenticationType
 values,	but	to	be	fair	it	explicitly	states	that	those	types	are	optional.

Claims	Processing	at	the	RP
In	this	final	section	of	the	chapter,	I	cover	some	of	the	things	you	can	do	with	claims	at	the	
last	minute,	when	they	are	already	in	the	RP	pipeline	and	are	about	to	hit	the	application	
code.

There	is	not	a	whole	lot	of	coding	required,	especially	considering	that	I	already	covered	
ClaimsAuthorizationManager	in	detail	in	Chapter	2.	This	section	attempts	to	give	you	an	idea	
of	the	intended	usage	of	those	extension	points	and	inspire	you	to	take	advantage	of	them	
in	your	scenarios.

142 Part II Windows Identity Foundation for Identity Developers

Authorization
Claims	authorization	is	a	fascinating	subject	that	probably	deserves	an	entire	book	of	its	own.	
One	thing	that	puts	off	the	various	Role-Based	Access	Control	(RBAC)	aficionados	is	that	
there	is	so	much	freedom	and	so	many	ways	of	doing	things.	For	example,	take	the	coarse	
form	of	authorization	that	can	be	implemented	by	simply	refusing	to	issue	a	token.	You	
can	set	up	rules	at	the	IP	that	prevent	from	obtaining	a	token	all	the	users	that	are	already	
known	not	to	be	authorized	to	access	the	application	they	are	asking	for.	That	is	feasible	for	
all	the	situations	in	which	the	IP	knows	enough	to	make	a	decision—for	example,	in	cases	
like	Customer	Relationship	Management	(CRM)	online,	in	which	users	need	to	be	explicitly	
invited	before	having	access,	even	when	there’s	a	federation	in	place.

Another	obvious	place	for	enforcing	authorization	is	in	the	R-STS,	which	might	deny	tokens	
on	the	basis	of	some	cross-organizational	considerations.	For	example,	the	R-STS	used	by	one	
independent	software	vendor	(ISV)	for	managing	access	to	its	application	portfolio	might	
keep	track	of	how	many	concurrent	users	are	currently	holding	active	sessions	and	refuse	to	
issue	a	new	token	if	that	would	exceed	the	number	of	licenses	bought	by	the	IP	organization.

The	enforcement	point	that	is	the	closest	to	traditional	authorization	systems	is	the	RP	itself,	
which	is	where	ClaimsAuthorizationManager	is	positioned.	There	are	intrinsic	advantages	to	
enforcing	authorization	here.	The	resources	are	well	known.	For	example,	if	the	RP	is	a	docu-
ment	management	system,	the	life	cycle	of	documents	themselves	is	under	the	control	of	
the	RP,	which	can	easily	manage	permissions	as	well;	whereas	others	(such	as	the	R-STS,	or	
worse	still,	the	IP)	would	need	to	be	synchronized.	Another	advantage	is	the	availability	of	
the	call	itself,	although	that’s	easier	to	see	with	Web	services	than	with	Web	sites.	If	you	want	
to	authorize	the	user	to	make	a	purchase	according	to	a	spending-limit	claim,	you	need	both	
the	claim	value	and	the	amount	of	the	proposed	purchase:	one	STS	would	only	see	the	claim	
value,	as	the	body	of	a	call	plays	no	part	in	RST/RSTR	exchanges.

The	absolute	flexibility	offered	by	ClaimsAuthorizationManager	is	both	its	greatest	strength	
and	biggest	weakness.	Claims-based	authorization	is	really	powerful,	but	at	the	time	of	this	
writing	there	are	no	out-of-the-box	implementations	of	ClaimsAuthorizationManager	or	
tools	and	official	policy	formats	for	it.	You	can	do	everything	with	it,	but	you	are	required	to	
write	your	own	code.

Authentication and Claims Processing
Sometimes	it	just	makes	sense	to	do	some	claims	processing	at	the	RP	side.	Perhaps	you	
need	to	make	available	to	the	application	code	information	about	the	user	that	is	known	to	
the	RP	but	not	to	the	R-STS,	such	as	in	the	case	of	a	user	profile	specific	to	the	application.	
Or	maybe	there	are	claims	you	need	to	see	only	once,	at	the	beginning	of	the	session,	but	
that	you	prefer	not	to	make	available	to	the	application	code.

 Chapter 4 Advanced ASP .NET Programming 143

For	doing	any	of	these	things,	WIF	offers	you	a	specific	hook	in	the	RP	pipeline,	which	
you	can	leverage	by	providing	your	own	claims-manipulation	logic	wrapped	in	a	cus-
tom	ClaimsAuthenticationManager	class.	ClaimsAuthenticationManager	works	a	lot	like	
ClaimsAuthorizationManager:	you	provide	your	logic	by	overriding	one	method	(here	it’s	
Authenticate),	and	you	add	your	class	in	the	pipeline	by	adding	in	the	WIF	config	the	element	
<claimsAuthenticationManager type=”CustomClaimsAuthnMgr”/>.	

In	your	implementation	of	Authenticate,	you	can	do	whatever	you	want	with	the		principal,	
including	deleting	claims,	adding	claims,	or	even	using	a	custom	IClaimsPrincipal	
	implementation.	Here	is	a	super-simple	example	of	ClaimsAuthenticationManager:

public class CustomClaimsAuthnMgr: ClaimsAuthenticationManager
{
 public override IClaimsPrincipal Authenticate(string resourceName, IClaimsPrincipal
incomingPrincipal)
 {
 //If the identity is not authenticated yet, keep this principal and let it redirect to the
STS
 if (!incomingPrincipal.Identity.IsAuthenticated)
 {
 return incomingPrincipal;
 }
 ((IClaimsIdentity)incomingPrincipal.Identity).Claims.Add(
 new Claim(ClaimTypes.Country,"Saturn,"ClaimValueTypes.String,"LOCAL AUTHORITY"));
 return incomingPrincipal;
 }
}

In	this	case,	the	code	simply	adds	an	extra	claim	to	the	principal.	Note	that	the	issuer	is	
	assigned	to	“LOCAL	AUTHORITY.”	You	can	use	pretty	much	anything	you	want	here,	but	you	
should	really	avoid	using	an	existing	issuer	identifier	because	it	is	equivalent	to	pretending	to	
be	a	legitimate	issuer.	

Summary
Wow,	that	was	an	intense	chapter!	I	hope	you	had	as	much	fun	reading	it	as	I	had	writing	it.

This	chapter	took	a	much	more	concrete	approach	to	WIF	programming,	leveraging	the	
	programming	model	knowledge	you	acquired	in	Chapter	3	to	tackle	many	important	
	problems	and	scenarios	you	might	encounter	when	securing	ASP.NET	applications.

You	learned	about	the	distinction	between	identity	providers	and	Federation	Providers,	
a	cquiring	familiarity	with	the	WIF	STS	template	in	the	process.

You	finally	saw	applied	in	practice	the	sign-in	flow	studied	in	Chapter	3,	applying	it	to	the	
case	of	multiple	Web	sites	and	discovering	how	the	underlying	structure	makes	SSO	possible.	
You	had	a	chance	to	learn	how	Single	Sign-out	works,	and	how	to	use	WIF	for	implementing	

144 Part II Windows Identity Foundation for Identity Developers

it	in	a	few	lines	of	code.	We	explored	one	case	of	exotic	session	management,	in	which	the	
validity	is	driven	by	user	activity	rather	than	fixed	expiration	times.

The	classic	federation	case	and	home	realm	discovery	are	now	very	concrete	scenarios	for	
you,	and	you	know	what	it	takes	for	dealing	with	them	in	various	situations.	In	the	process	of	
learning	this,	you	also	gained	familiarity	with	WIF’s	object	model	for	claims.

Finally,	you	had	a	chance	to	tie	up	a	few	loose	ends	regarding	the	use	of	
ClaimsAuthenticationManager	and	ClaimsAuthorizationManager	for	processing	claims	once	
they	have	already	reached	the	RP.

If	you	develop	for	the	ASP.NET	platform,	this	chapter	should	have	equipped	you	with	all	
the	knowledge	you	need	for	tackling	the	most	common	problems	and	then	some.	For	
	anything	not	explicitly	covered	here,	you	should	now	be	able	to	investigate	and	solve	issues	
on	your	own.

In	the	next	chapter,	I’ll	turn	to	Web	services	and	explore	how	WIF	and	WCF	can	work	
	together	to	create	safer	applications	while	delivering	a	killer	development	experience.

	 	 241

Index

Symbols
<applicationService>,	86
<audienceURI>,	85
<authorization>	element	in	the	<system.web>	

block,	36
<behavior>	element,	157
<certificateValidation>,	89
<certificateValidator>,	89
<ClaimsAuthenticationManager>,	87
<ClaimsAuthorizationManager>,	87
<cookieHandler>,	85,	88
<federatedAuthentication>,	85,	87
<issuerNameRegistry>,	86
<issuerTokenResolver>,	89
<maximumClockSkew>,	88
<microsoft.identityModel>,	82,	84,	155
overview,	39
<service>	elements,	84

<microsoft.identityModel/Service>	structure,	86
.NET	applications

IIdentity,	5
IPrincipal,	5

.NET	Framework
authentication	mechanisms,	5
compatibility	with	Windows	Identity	
Foundation,	24–47

.NET	security
iPrincipal,	6
traditional	approaches,	4

<policy>	elements,	43
<protocolMapping>	element,	157
<saml:Assertion>,	66
<saml:Conditions>,	66
<saml:SubjectConfirmation>,	67
<securityTokenHandlers>,	89
<serviceTokenResolver>,	89
<wsFederation>,	85,	88
parameters,	88
Issuer,	85
passiveRedirectEnabled,	85
realm,	85
requireHttps,	85

A
access	grants,	237
ACS.	See	AppFabric	Access	Control	Service
ActAs
STS	support,	177
tokens,	176

ActAs	approach,	173
Action	collection,	42
active	clients,	56,	148
holder-of-key	confirmation	method,	151
message-based	security,	150
message-level	security	options,	150

Active	Directory	Federation	Services	2.0,	15,	32,	
57

active	STS	endpoints,	209
active	systems,	146
Actor property,	176
Add	STS	Reference,	26
ADFS2.	See	Active	Directory	Federation	Services	2
Adobe	Flash,	147
anonymous	authentication,	6
App_Code,	108
App_Code	folder,	108
AppFabric	Access	Control	Service	(ACS),	204
ASP.NET,	52
authorization,	36
HttpModules,	73
integration	with	WIF,	52
roles	and	authorization	compatibility,	36
WIF	processing	pipeline,	58

ASP.NET	Development	Server,	105
ASP.NET	membership	provider,	35
ASP.NET	MVC	framework,	216

AccountController class,	217
Authorize,	217
flow,	216–240
HttpModules,	218
login,	219
LogOnCommon,	221
logout,	220
project	template,	217
web.config,	adding	WIF,	218
WIF	integration	solutions,	216–240

ASP.NET	Security	Token	Service	Web	Site	
template,	104

242

ASP.NET	STS.	See	STS
ASP.NET	Web	sites,	linking	to	an	STS,	26
audience	verification,	193
AuthenticateRequest event,	75,	76,	78
authentication
advantages	of	a	standard	interface,	97
externalizing,	16,	24–47
generic	system,	11
methods	in	WIF,	141
.NET	Framework,	5
real-world,	9
step-up,	140
traditional	approaches,	4

authentication	APIs,	6
authentication	level	verification	of	tokens,	64
authentication	modes
anonymous,	6
Forms,	7
Windows,	6

authorization,	33–46
caching	user	data,	34
claims,	142
groups	and	roles,	35
IsInRole,	36
real-world,	9
traditional	approaches,	34

AuthorizeRequest	event,	75,	77
Azure.	See	Windows	Azure

B
bearer	tokens,	65,	147
blacklists,	98
bootstrap	tokens,	172–184
browser-based	passive	systems	vs.	active	

systems,	147

C
CAM.	See	ClaimsAuthorizationModule
CanReadKeyIdentifier/CanWriteKeyIdentifier,	93
CanReadToken,	93
CanValidateToken	property,	93
CanWriteToken	property,	93
CheckAccess	method,	42
Claim	class,	130
claims,	12
ADFS	2.0	claims-transformation	language,	135
ADFS	2.0	management	UI,	112
vs.	attribute,	12
authorization,	142

customizing	UI,	37
hard-coded,	110
Information	Card	Foundation	Web	site,	133
injecting	new,	129,	135
modification,	129,	135
Name,	110
pass-through,	129,	134
processing	at	the	RP,	141–142
processing	using	Federation	Providers,	100
Role,	110
transforming,	100,	129
types,	111,	133
types	and	value	constants,	131

ClaimsAuthenticationManager,	92,	143
ClaimsAuthorizationManager,	42,	142
ClaimsAuthorizationModule,	73,	92
claims-based	authorization,	142
claims-based	identity,	3–21
advantages,	4
as	a	logical	layer,	11
need	for,	4

claims-based	security,	147
claims	object	model,	146–184
ClaimsTypesRequested,	70
ClaimType,	72
ClaimType	property,	19
ClaimTypesOffered,	72
ClaimTypesRequested,	72
classes,	90
client-side	features,	170–184
client-to-STS	communications,	180
cloud,	185–213
communicating	across	silos,	55
communication	protocols	and	languages,	55
config	elements,	40
ConfigurationBasedIssuerNameRegistry	class,	86
confirmation	method,	147
CookieHandler,	94
CORBA,	55
cracking	a	token,	151
CreateChannelActingAs,	175,	176
CreateChannelOnBehalfOf,	175
CreateChannelWithIssuedToken,	183
CreateToken,	93
cryptographic	operations,	147
CSDEF	extension,	189
CSPKG	file,	187
customizing	UI	based	on	claims,	37
CustomSecurityTokenService,	107
CustomSecurityTokenServiceConfiguration,	108

ASP .NET STS

 243

D
delegation,	176
DevFabric,	187–213
digital	signatures	for	tokens,	63
dynamic	metadata	generation,	205

E
encrypting	tokens,	63
EndRequest	event,	75,	77
end-to-end	security,	150
enforcing	authorization	at	the	RP,	142
Esposito,	Dino,	73
externalizing	authentication,	16
advantages,	39

F
FederatedAuthentication,	40
FederatedPassiveSignInStatus,	116
federation
providers,	101
relationships,	101
scenarios,	102

federation	metadata	documents,	28
FederationPassiveSignIn	control,	81
federation	provider	role	of	IPs,	96
Federation	Providers,	99
outsourcing	functions,	204

federation	relationships,	authentication	flows,	101
federation	scenarios,	102
Federation	Utility	Wizard,	26
creating	a	new	STS	project,	28
No	STS	option,	28
Using	an	existing	STS,	28

FedUtil.exe,	26,	39
default	configuration,	82

Forms	authentication,	7,	114
FormsIdentity	objects,	7
FP.	See	Federation	Providers
Full	Trust	mode,	188

G
Generate	New	STS	option,	103
generic	identity	transaction,	14
GenericPrincipal extension,	5,	7
GetOutputClaimsIdentity	implementation,	111
GetScope	method,	109
GetTokenTypeIdentifiers	method,	93

H
holder-of-key	confirmation	method,	151,	153
holder	of	key	tokens,	65
homeRealm,	137
Home	Realm	Discovery,	136
Howard,	Michael,	4
HRD.	See	Home	Realm	Discovery
HTML5,	147
HttpContext.Current.User,	5
HttpModules
ASP.NET,	73
ClaimsAuthorizationModule,	73
SessionAuthenticationModule,	72
WIF	sign-in	flow,	74
WSFederationAuthenticationModule,	72

HttpModules	pipeline,	74

I
IClaimsIdentity,	18,	37,	110

Actor	property,	176
ClaimType	property,	19
Issuer	property,	19
Subject	property,	20
Value	property,	19

IClaimsPrincipal,	18,	37,	110
identity	providers,	12,	97
allow	list	of	RPs,	98
federation	provider	role,	96
multiple,	99
multiple	STS	endpoints,	98
roles,	96
specifying,	32
standard	example,	97
unknown	RP	identity,	99

IIdentity,	5
IIdentity	extensions,	18
IIS7,	84
IIS	authentication	types,	6
Information	Card	Foundation	Web	site,	133
intended	audience	of	tokens,	63
Internet	Information	Services
vs.	ASP.NET	Development	Server,	105

Internet	Information	Services	(IIS)	authentication,	
6

IP.	See	identity	providers
IP-FP-RP	pattern,	126
IPrincipal,	5
extensions,	5
populating,	6

IP-STS,	97,	106,	111

IP-STS

244

IsInRole,	6
issued	tokens,	64,	100
Issue	method,	149
IssuerNameRegistry,	94
Issuer	property,	20

J
JavaScript,	147

K
Kerberos,	97,	114
constrained	delegation,	171–184

Kerberos	tokens,	65
keying	strategies,	191

L
LeBlanc,	David,	4
lifetime	property,	122
logical	identity	layer,	11
logical	layer	of	identity,	11

M
man-in-the-middle	attacks,	151
MembershipProvider,	7
MembershipUserNameSecurityTokenHandler,	93
message-based	security,	150
end-to-end	security,	150
nonrepudiation	applied	to	single	messages,	150
properties,	150
vs.	transport	security,	150

metadata,	112
dynamic	generation	in	the	cloud,	205
generating	documents	programmatically,	112

metadata	documents,	69
Microsoft	Excel,	148
Microsoft.IdentityModel.Claims	namespace,	41
Microsoft.IdentityModel.dll,	24
Microsoft	Outlook,	148
Microsoft	Silverlight,	147
Microsoft	Visual	Studio,	6
default	authentication	mode,	6
Windows	Azure	templates,	187–213

Microsoft	Windows	Communication	Foundation,	
7

Microsoft	Word,	148
multiple	identity	providers,	96
multiple	RP	applications,	113
multitenant	applications,	137

N
named	<microsoft.identityModel/Service>	

sections,	199
NASCAR	problem,	232
network	load	balanced	(NLB)	environments,	191
network	load	balancing	(NLB)–friendly	sessions,	

125
nonrepudiation,	150

O
OASIS	Identity	Metasystem	Interoperability	

Technical	Committee,	228
OAuth	2.0	protocol,	233
Authorization	Server	role,	234
Client	role,	234
implementation	for	WIF,	238
profiles,	235
Protected	Resource	role,	234
Resource	Server	role,	234
WS-Trust	integration,	237

OAuth	WRAP,	204,	234
OnBehalfOf,	174
OpenID
implementing	in	WIF,	232
OpenID	moniker,	232
OpenID	provider	(OP),	232

outsourcing	FP	functions,	204

P
Page_PreRender	handler,	106
passive	clients,	56,	147
HTTPS	security	option,	150

PassiveRequestorEndpoint,	70,	72
passive	systems	vs.	active,	146–184
pass-through	claims,	134
personally	identifiable	information,	122
PFX	(Personal	Information	Exchange)	format,	189
PII.	See	personally	identifiable	information
policies,	13
PostAuthenticateRequest	event,	76
primitive	tokens,	65
Principal,	42
processing	pipeline	in	ASP.NET,	58
proof	of	possession,	153
proof	token,	153
protocol	transition	STS,	204

R
RBAC.	See	Role-Based	Access	Security

IsInRole

 245

ReadToken,	93
redirect-based	protection	vs.	login	page,	80
RedirectingToIdentityProvider	event,	139
relying	party,	12
endpoint	identity,	192
load-balanced	environments,	124

Relying	Party	Trust,	98
remote	services,	148
Request	for	Security	Token	Response	(RSTR),	149
Request	for	Security	Token	(RST),	149
RequestSecurityToken,	183
RequestSecurityToken.Claims	collection,	111
RequestSecurityTokenResponse,	183
Resource	collection,	42
REST,	55,	230
restricting	resources	and	actions,	33
REST	service,	205
REST	Web	services,	204
rich	clients,	148
rich	stacks,	147
Role-Based	Access	Control,	142
Role-Based	Access	Security,	35
role-based	authorization,	36
RoleDescriptor,	70,	72
roles,	35
RP.	See	relying	party
RST.	See	Request	for	Security	Token
RSTR.	See	Request	for	Security	Token	Response
R-STS,	111

S
SAM.	See	SessionAuthenticationModule
SAML	2.0	protocol,	229–230
WIF	integration,	229

Saml2SecurityTokenHandler,	93
Saml2TokenHandler,	93
Saml11SecurityTokenHandler,	93
Saml11TokenHandler,	93
SAML	tokens,	66
Secure	Sockets	Layer	(SSL)	certificates,	7
securing	Microsoft	.NET	applications,	3
Security	Assertion	Markup	Language	protocol,	55
SecurityTokenCacheKey	class,	191
SecurityTokenHandler	class,	93,	168
security	tokens,	13,	62
authentication	level	verification,	64
bearer,	65
claims,	64
descriptor,	66
deserializing,	62
digital	signatures,	63

duplication,	63
encryption	and	decryption,	63
expiration,	63
format,	62,	64
holder	of	key,	65
integrity,	63
intended	audience,	63
issued,	64
Kerberos,	65
primitive,	65
SAML	format,	64
structure,	64
subelements,	66
trusted	source,	63
Username,	65
validity	period,	63
verifying,	62
WS-*	specification	definition,	64
X.509,	65

SecurityTokenService,	107,	108
SecurityTokenServiceEndpoint	element,	72
SecurityTokenServiceType,	72
SecurityTokenVisualizerControl	sample	ASP.NET	

control,	68
serializing	and	deserializing	tokens,	93
SessionAuthenticationModule,	72,	91
sessions,	122,	191
keeping	alive,	116
lifetime	property,	122
network	load	balancers,	124
session	tokens,	122
single	sign-in,	112
single	sign-out,	115
sliding,	122
state,	116
sticky,	124

SessionSecurityTokenCookieSerializer,	191
SessionSecurityTokenHandler,	93,	192
SessionSecurityTokens,	93,	122
SharePoint	2010,	97
sign-in,	57
WF-Federation	sequence,	58
WS-Federation	sequence,	58

sign-in	flow	in	WIF,	74
signing	in.	See	Single	Sign-in
signing	in	across	multiple	Web	sites,	230
signing	out.	See	Single	Sign-out
SignInRequestMessage,	107
Silverlight,	223

DisplayToken,	228
making	claims	available	to	applications,	227
WIF	integration,	224

Silverlight

246

Simple	Object	Access	Protocol	(SOAP)	Web	
services,	55

Simple	Web	Tokens	(SWTs),	204,	236
Single	Sign-in,	113
Single	Sign-out,	115
cleanup,	117
multiple	RPs,	117
one	RP,	116
WIF	STS	template,	121

sliding	sessions,	122
smartcards,	152
sqlMembershipProvider,	7
SSO.	See	Single	Sign-on
SSOut,	115.	See	Single	Sign-out
step-up	authentication,	140
STS
active	endpoints,	209
adding	references,	32
ADFS	2.0,	103
ASP.NET	Web	site	linkage,	26
autogenerated,	32
availability,	102
building	viable,	103
classes	and	methods	in	App_Code,	108
configuration	settings,	108
criteria	for	"good",	102
custom,	103
difficulty	of	running,	103
generating	a	test	STS,	28
hosted	endpoints,	103
hosting	in	Windows	Azure,	205
multiple	endpoint	scenarios,	98
nonauditing,	99
off-the-shelf	products,	103
performance,	102
project	structure,	105
protocol	transition,	204
R-STS,	106
security,	102
selecting,	28
separation	from	authentication	mechanism,	106
template,	102
user	name	and	password	authentication	for	a	
Web	service,	164

STS	authentication	page,	30
STS	template,	102
for	WCF,	158
redirect	exception,	108
Single	Sign-out,	121
signing	out	code,	117
structure,	104
wsignout1.0,	117

subclassing,	54
Subject	property,	20
subjects,	12
Sun	Metro,	231
SvcTraceViewer.exe	utility,	203
SvcUtil,	162
SWTs.	See	Simple	Web	Tokens

T
TargetScopes,	70
Thread.CurrentPrincipal,	5
Thread.CurrentPrincipal.IsInRole(“Administrators”),	

5
token	handler	classes,	93
token	handlers	collection,	89
TokenResolvers,	94
tokens.	See also	security	tokens
authentication	level	verification,	64
authentication	tokens	for	service	calls,	180
bearer,	65
bootstrap,	172–184
certificates,	109
claims,	64
deserializing,	62
destinations,	109
digital	signatures,	63
duplication,	63
encryption	and	decryption,	63,	109
expiration,	63
format,	62,	64
holder	of	key,	65
integrity,	63
intended	audience,	63
issuance	process	parameters,	109
issued	tokens,	64,	100
Kerberos,	65
primitive,	65
processing	using	Federation	Providers,	100
proof,	153
required	type	validation,	109
SAML	format,	64
serializing	and	deserializing,	93
signatures,	190
size,	111
structure,	64
subelements,	66
trusted	source,	63
Username,	65
validity	period,	63
verifying,	62
well	formed,	62

Simple Object Access Protocol (SOAP) Web services

 247

tokens	(continued)
WS-*	specification	definition,	64
X.509,	65

TokenType	property,	93
token	validation	settings,	89
token	validity,	62
trace	listeners,	202
transport	security	vs.	message-based	security,	150
troubleshooting	code	execution	in	the	cloud,	201
TrustChannel,	238
trusted	IPs,	63
trusted	subsystems,	170
TurboTax,	148
Twitter,	148

U
username	and	password	authentication	scenario	

using	WIF	within	WCF,	167
Username	tokens,	65
users.	See	subjects

V
ValidateRequest	method,	109
ValidateToken,	93
validity	period	of	tokens,	63
value	constants	and	Claim	types,	131
Value	property,	19
verifying	security	tokens,	62

W
wa	parameter,	59,	61
wauth	parameter,	61
wauth	parameter	in	WS-Federation,	140
WCF,	145–184
claims,	162
client-side	features,	170–184
configuration,	156,	161
configuring	a	service	to	use	WIF,	168
cookie	mode,	196
delegation,	175–184
finding	claim	information,	169
REST	service,	205
similiarities	with	ASP.NET,	146–184
testing	services	tool,	159
user	name	and	password	authentication	with	
WIF,	164

WCF	security	model	vs.	WIF	model,	167
WIF	STS	template,	158

WCF	role	in	Windows	Azure,	195–203

WCF	Service	template,	154
WcfTestClient.exe,	159
wct	parameter,	60,	61
wctx	parameter,	61
Web	applications,	147
Web	authentication	protocols,	232
Web	browser	sign-in,	57
web.config	file,	6,	53,	82,	155
Web	Identities,	230
Web	protocols
vs.	WS-*,	231

Web	Resource	Authorization	Protocol,	234
WebRole.cs	file,	191
Web	roles,	190
Web	servers
ASP.NET	Development	Server,	105
IIS	vs.	Visual	Studio	built-in	Web	server,	105

Web	services,	146–184
invoking,	149
security	policies,	149

Web	services	in	a	load-balanced	environment,	
196

Web	site	authentication,	57
whr	parameter,	61
whr	parameter	in	WS-Federation,	136
WIF.	See also	Windows	Identity	Foundation
ASP.NET	MVC	framework,	216–223
authentication	methods,	141
<authorization>	elements,	37
classes,	90
client-side	features	with	WCF,	170–184
config	elements,	40
configuration,	82
delegation,	175–184
extending,	216
HttpModules,	72
IsInRole	integration,	36
main	classes,	82
OAuth	2.0,	238
processing	pipeline	in	ASP.NET,	58
runtime	assemblies,	188
SAML	protocol	or	token	format,	69
serving	events,	53
sign-in	flow,	74
sign	out	implementation,	117
subclassing,	54
supported	protocols,	57
using	the	SDK	tools,	53
Web	browser	sign-in,	57
Web	site	authentication,	57

WIF	Runtime,	24–47
installing,	24

WIF Runtime

248

WIF	SDK,	24
differences	between	versions,	25
installing,	25

WIF	SDK	STS	template.	See	STS	template
WIF	sign-in	flow

AuthenticateRequest	event,	75
AuthorizeRequest	event,	75
EndRequest	event,	75
PostAuthenticateRequest	event,	75

WIF	Software	Development	Kit.	See	WIF	SDK
WIF	STS	template,	102
WIF	STS	Template
for	WCF,	158

WIF-WCF	pipeline	integration,	168
Windows	authentication,	6
Windows	Azure,	185–213
AppFabric	Access	Control	Service	(ACS),	204
CSPKG	file,	187–213
DevFabric,	187–213,	192
diagnostics,	201
environments,	192
Full	Trust	mode,	188
global	assembly	cache	(GAC),	188
hosting	an	STS,	205
local	simulation	environment,	187–213
Production	Environment,	192
Roles,	188
sessions,	191
sessions	in	a	load-balanced	environment,	196
Staging	Environment,	192
trace	listeners,	202
tracing,	201
Visual	Studio	templates,	187–213
WCF	role,	195
Web	role,	190
WIF	and	passive	federation,	191
WIF	Runtime	Assembly,	188
X.509	certificates,	188

Windows	CardSpace,	228
Windows	Communication	Foundation,	52,	

145–184
integration	with	WIF,	52

Windows	Identity	Foundation
compatibility	with	.NET	Framework,	24–47
definition,	15
four	main	uses,	52
integration	with	ASP.NET	or	Windows	
Communication	Foundation,	52

IsInRole	integration,	36
purpose,	16
WIF	Runtime,	24–47
WIF	SDK,	24
WS-Federation	implementation,	72

Windows	Presentation	Foundation,	14
	extension,	5

Windows	Server	roles,	15
WRAP.	See	Web	Resource	Authorization	Protocol
wreply	parameter,	61
wresult	parameter,	60,	61
WriteToken,	93
Writing	Secure	Code,	4
WS-*,	55
vs.	SAML-P,	57
vs.	Web	protocols,	231

WS-*	capable	clients,	56
WSFAM,	72
WSFAM	events,	90
WS-Federation,	55,	56
audience	verification,	193
implementation	in	WIF,	72
metadata	document	compatibility,	70
parameters,	59
sign-in	sequence,	58
Single	Sign-out	process,	119
wa	parameter,	59,	61
wauth	parameter,	61
wct	parameter,	60,	61
wctx	parameter,	61
whr	parameter,	61,	136
wreply	parameter,	61
wresult	parameter,	60,	61
wtrealm	parameter,	59,	61

WS-Federation	1.2	specification,	56
WSFederationAuthenticationModule,	72
WS-<function>,	55
wsignin1.0,	61
wsignout1.0,	61,	117
WS-Security,	148
signing	and	encrypting	mechanisms,	150

WS-Trust,	148
flow	and	use	of	keys,	152
intergrating	with	OAuth	2.0,	237
invoking	Web	services,	149

WSTrustChannel,	180
WSTrustServiceContract	class,	159
wtrealm,	110
wtrealm	parameter,	59,	61

X
X.509
certificate,	7,	65,	152,	188
tokens,	65

X509CertificateValidator	class,	89
X509SecurityTokenHandler,	93
XAP	files,	225

WIF SDK

Vittorio Bertocci
Vittorio	Bertocci	is	a	Senior	Architect	Evangelist	in	Developer	
and	Platform	Evangelism	(DPE)	and	a	key	member	of	the	
extended	engineering	team	that		produces	Microsoft’s	
	claims-based		platform		components	(for		example,	Windows	
Identity	Foundation	and	ADFS	2.0).	He	is	responsible	for	
	identity	evangelism	for	the	.NET	developer	community	and	
drove	initiatives	such	as	the	Identity	Developer	Training	Kit	
(http://go.microsoft.com/fwlink/?LinkId=148795)	and	the	
IdElement	show	(http://channel9.msdn.com/shows/identity/)
on	Channel	9.

Vittorio	holds	a	master	degree	in	Computer	Science,	and	
he	began	his	career	doing	research	on		computational	
	geometry	and	scientific	visualization.	In	2001,	he	Joined	
Microsoft	Italy,	where	he	immediately	focused	on	the	.NET	

platform	and	the	nascent	field	of	Web	services	security,	becoming	a	reference	at	the		national	
and	European	level.

In	2005,	Vittorio	moved	to	Redmond,	where	he	helped	to	launch	the	.NET	Framework	3.5	by	
working	with	Fortune	100	and	Global	100	companies	on	cutting-edge	SOA	projects	based	on	
WCF,	WF,	and	CardSpace.	He	became	more	and	more	focused	on	identity	themes,	eventually	
undertaking	his	current	mission	of	evangelizing	claims-based	identity	into	mainstream	use.	

In	the	last	five	years,	this	mission	has	led	him	to	speak	about	identity	in	23	countries	and	
4	continents.	Vittorio	is	a	regular	speaker	at	conferences	such	as	Microsoft	PDC,	TechEd	
USA,	TechEd	Europe,	TechEd	Australia,	TechEd	New	Zealand,	TechEd	Japan,	TechDays	Belux,	
Gartner	Summit,	European	Identity	Conference,	IDWorld,	OreDev,	NDC,	IASA,	Basta	and	
many	others.	

Vittorio	is	a	published	author,	both	in	the	academic	and	industry	worlds,	and	has	written	
many	articles	and	papers.	He	is	co-author	of	A Guide to Claims-Based Identity and Access
Control	(Microsoft	Press,	2010)	and	Understanding Windows CardSpace	(Addison-Wesley,	
2008).	He	is	a	prominent	authority/blogger	on	identity,	Windows	Azure,	.NET	development,	
and	related	topics,	and	he	shares	his	thoughts	at	www.CloudIdentity.net.

Vittorio	lives	in	the	lush,	green	city	of	Redmond	with	his	wife,	Iwona.	He	doesn’t	mind	the	
gray	skies	too	much,	but	every	time	he	has	half	a	chance	he	flies	to	some	beach	place,	be	it	
Hawaii	or	Camogli,	his	home	town	in	Italy.

Stay in touch!
To	subscribe	to	the	Microsoft Press® Book Connection Newsletter—for	news	on	upcoming	
books,	events,	and	special	offers—please	visit:	

What do
you think of
this book?
We	want	to	hear	from	you!	
To	participate	in	a	brief	online	survey,	please	visit:	

Tell	us	how	well	this	book	meets	your	needs	—what	works	effectively,	and	what	we	can		
do	better.	Your	feedback	will	help	us	continually	improve	our	books	and	learning	
resources	for	you.			

Thank	you	in	advance	for	your	input!

microsoft.com/learning/booksurvey	

microsoft.com/learning/books/newsletter	

	Cover
	Copyright page

	Table of Contents
	Foreword
	Acknowledgments
	Chapter 1:Claims-Based Identity
	What Is Claims-Based Identity?
	Traditional Approaches to Authentication
	Decoupling Applications from the Mechanics of Identity and Access

	WIF Programming Model
	An API for Claims-Based Identity
	WIF’s Essential Behavior
	IClaimsIdentity and IClaimsPrincipal

	Summary

	Chapter 4:Advanced ASP.NET Programming
	More About Externalizing Authentication
	Identity Providers
	Federation Providers
	The WIF STS Template

	Single Sign-on, Single Sign-out, and Sessions
	Single Sign-on
	Single Sign-out
	More About Sessions

	Federation
	Transforming Claims
	Pass-Through Claims
	Modifying Claims and Injecting New Claims
	Home Realm Discovery
	Step-up Authentication, Multiple Credential Types, and Similar Scenarios

	Claims Processing at the RP
	Authorization
	Authentication and Claims Processing

	Summary

	Index

