
chapter no

Chapter Title

You’re in the home stretch. You have almost all the forms and reports required for
the tasks you want to implement in your application, but you need some additional
forms to make it easier to navigate to different tasks. To add a professional touch,

you should design a custom ribbon for your main navigation forms, another custom rib-
bon for most data entry forms, and perhaps one for reports. You should take advantage of
built-in tools to check the efficiency of your design, and you should make sure that none of
your forms and reports allow Layout view if you’re using a client database. Finally, you need
to set the startup properties of your database to let Microsoft Access 2010 know how to get
your application rolling, and you need to perform a final compile of your Microsoft Visual
Basic code to achieve maximum performance.

Note
The ribbon examples in this chapter are based on the custom ribbons in Contacts.

accdb, Housing.accdb, HousingSP.accdb, and BOSS.accdb on the companion CD

included with this book. All screen images in this chapter were taken on a Windows 7

system with the Access color scheme set to Silver. Your results might look different if

you are using a different operating system or a different theme.

Creating Custom Ribbons with XML

Throughout this book, you’ve seen how to use the ribbon commands on the four main
tabs—Home, Create, External Data, and Database Tools—as well as on the many contextual
tabs. You even might have noticed the custom ribbons we created in the Conrad Systems
Contacts (Contacts.accdb), Housing Reservations (Housing.accdb), and Back Office Software
System (BOSS.accdb) sample databases when you opened any of the forms and reports
used by the application. In the following sections, you’ll learn what steps are necessary
to create a simple custom ribbon for a form. You’ll see how to create Extensible Markup

Chapter 26

The Finishing Touches

Creating Custom Ribbons with XML. 1665

Loading Ribbon XML. 1679

Using Ribbon Attributes. 1682

Disabling Layout View. 1705

Controlling How Your Application Starts and Runs . . 1706

Performing a Final Visual Basic Compile. 1713

	 	 1665

C
h

ap
ter 26

1666	 Chapter 26  The Finishing Touches

Language (XML) for this ribbon, which displays existing groups from the four main ribbon
tabs. You’ll also create a new data entry form and assign your new ribbon to this form to
test the new commands.

When your application is running, the user probably won’t want or need some of the
design features of Access 2010. However, you might want to provide some additional but-
tons on your form ribbon so that the user has direct access to commands such as Save
Record and Refresh All. For example, open the Conrad Systems Contacts sample database
(Contacts.accdb), open the frmContactsPlain form (which uses the built-in ribbon), and
then open the frmContacts form. As you click each form window, Access changes the rib-
bon. You can see some useful differences between the two ribbons, as shown in Figure
26-1.

Figure 26-1  The standard ribbon (top) displays many commands and tabs your users won’t
need, compared to the custom form ribbon (bottom) from the Conrad Systems Contacts sam-
ple database.

Buttons, groups, and tabs the user won’t need (such as the buttons in the Views and Win-
dows groups) aren’t available on the custom ribbon. Also, Access disables all the buttons
on the Quick Access Toolbar for the frmContacts form, such as Undo, Save, and Quick
Print. (None of the forms in the Conrad Systems Contacts database are designed to be
printed.) However, the custom ribbon does have a Close Form button added at the left
end of the Record Navigation tab, and we provided a custom Undo command because
Undo is no longer available on the Quick Access Toolbar. In the Conrad Systems Contacts
application, all forms (except frmContactsPlain and a few other example forms) have their
Ribbon Name properties set to use the custom ribbon.

The same is true of the built-in tabs. For example, you don’t want your users to be able to
create new database objects using the buttons on the Create tab or to be able to use the
tools available on the Database Tools tab. For most forms, you also don’t want the user to
be able to switch to PivotTable or PivotChart view using the View button. The following
sections show you how to build a custom main ribbon and custom ribbons for forms and
reports.

	 Creating Custom Ribbons with XML	 1667

C
h

ap
te

r
26

Creating a USysRibbons Table

When you open an Access 2010 database, Access looks for a local table called USysRibbons
during the startup process to see whether it needs to load any custom ribbons. If Access
does not find this table, it proceeds to load all built-in ribbons. You can load custom rib-
bons into your application by writing Visual Basic code to load the XML stored in a different
table or defined within your code. We’ll discuss how to do this later in this chapter.

Access does not create a local table called USysRibbons when you create a new blank
database or use one of the database templates—you need to create this table yourself. For
Access to use the USysRibbons table, the table must contain the two fields listed in Table
26-1. The RibbonName field is a unique name used to identify the name of the ribbon. The
RibbonXML field contains the XML used to define the custom ribbon. The XML must be
well formed for Access to interpret the code and apply it to the ribbon. Note that you can
have additional fields in this table if you want (such as a field that documents what’s in your
custom ribbon), but Access looks for only the two fields listed in Table 26-1 when loading
your ribbons.

Table 26-1  USysRibbons Table Fields

Field Name Data Type

RibbonName Text

RibbonXml Memo

By default, Access does not display in the Navigation pane any local tables that start with
the prefix USys because it considers these to be system tables. Depending upon what set-
tings you have configured in the Navigation Options dialog box, you might not be able to
see any system tables. For example, if you create and save a new table with the name USys-
Ribbons, you might not see this new table in the Navigation pane.

In the Conrad Systems Contacts database, we have included this table to load the custom
ribbons we use in the application. Open the Contacts.accdb database and click OK in the
opening message box. Click the Navigation menu at the top of the Navigation pane, click
Object Type under Navigate To Category, and then click Tables under Filter By Group to
display a list of tables available in this database. If you scroll through the list of tables, you’ll
notice that you do not see a table called USysRibbons. To see this table in the Navigation
pane, right-click the Navigation menu at the top of the Navigation pane and click Naviga-
tion Options. In the Display Options section in the Navigation Options dialog box, select
the Show System Objects check box to display all system objects in the database, as shown
in Figure 26-2.

C
h

ap
ter 26

1668	 Chapter 26  The Finishing Touches

Figure 26-2  Select the Show System Objects check box to display the USysRibbons table.

Click OK to close the Navigation Options dialog box, and then review the list of tables in
the Navigation pane. You’ll notice that you can now see the USysRibbons table and six
additional tables that start with the prefix MSys. Right-click the USysRibbons table in the
Navigation pane and click Design View from the shortcut menu to see this table in Design
view. In Figure 26-3, you can see the table has one additional field—ID—with a data type of
AutoNumber. Remember that Access needs to have only the RibbonName and RibbonXml
fields and will ignore any other fields. We added the ID field and used it as the primary key
for the table to make sure our entries are unique.

Figure 26-3  Access looks for a table called USysRibbons during startup to load custom ribbons.

	 Creating Custom Ribbons with XML	 1669

C
h

ap
te

r
26

CAUTION!
Do not attempt to modify or delete the system tables with the MSys prefix. Access

uses these tables internally to manage the various objects and other elements of your

database.

Switch to Datasheet view by clicking the arrow in the Views group on the Design tab
and clicking Datasheet View from the list of available views. You’ll notice that there are
three records in the USysRibbons table, as shown in Figure 26-4. Each of the records in
this table denotes a specific custom ribbon. You can see the names of each of the rib-
bons in the RibbonName field—rbnForms, rbnPrintPreview, and rbnCSD. The rbnForms
ribbon is used by most of the data entry forms in the Conrad Systems Contacts database,
the rbnPrintPreview ribbon is used by the reports, and the rbnCSD ribbon displays for the
frmMain, frmCodeLists, and frmReports forms.

Figure 26-4  The Conrad Systems Contacts database includes three custom ribbons.

In the RibbonXml field, you can see the XML for each of these three custom ribbons. The
well-formed XML in these fields, however, is not particularly easy to read in table Data-
sheet view. You can place your insertion point in the field and use the arrow keys to read
the XML, you can press Shift+F2 to open the Zoom box, or you can expand the height of
the individual rows. However, a much easier way to view and modify the XML is to create
a form bound to this table. In the Conrad Systems Contacts database (and the Housing
Reservations database as well), we created a form to add and edit the records in this table.
Close the USysRibbons table, click the Navigation menu at the top of the Navigation pane,
click Object Type under Navigate To Category, and then click Forms under Filter By Group
to display a list of forms available in the this database. Find the form called zfrmChangeRib-
bonXML, and open it in Form view, as shown in Figure 26-5. If you use the record naviga-
tion buttons, you can see the XML for each of the three custom ribbons. Creating a form to
work with your USysRibbons table is not a requirement, but you’ll have an easier time view-
ing and modifying your XML by using a large text box on a form for the RibbonXml field.

C
h

ap
ter 26

1670	 Chapter 26  The Finishing Touches

Note
Now that you understand how to change your settings in the Navigation Options

dialog box to view system objects like the USysRibbons table in the Navigation pane,

we recommend that you change your settings back to not display system objects. To

do this, right-click the Navigation menu at the top of the Navigation pane and click

Navigation Options. In the Display Options section in the Navigation Options dialog

box, clear the Show System Objects check box, and then click OK. You’ll be using our

zfrmChangeRibbonXML form in the remaining sections to work with the data in the

USysRibbons table, so you don’t need to see this table in the Navigation pane.

Figure 26-5  You’ll have an easier time editing your XML for the USysRibbons table if you use a
form.

Creating a Test Form

Most of the forms and reports in the Conrad Systems Contacts database already have
a custom ribbon applied. In the section, we’ll walk you through creating XML for a new
form ribbon. Before we build the XML, let’s first create a new data entry form based on
the tblContacts table. We’ll use this new form to test the XML without disturbing any of
the existing database objects. First, close the zfrmChangeRibbonXML form if you still have
it open. Next, click the Navigation menu at the top of the Navigation pane, click Object

	 Creating Custom Ribbons with XML	 1671

C
h

ap
te

r
26

Type under Navigate To Category, and then click Tables under Filter By Group. Finally,
select the tblContacts table in the Navigation pane, and click the Form button in the Forms
group on the Create tab. Access creates a new columnar form based on the table and
opens it in Form view. Click the Save button on the Quick Access Toolbar, name the form
frmRibbonTest, and then close the form.

Building the Ribbon XML

To create a custom ribbon for a form or report, you must first create the XML in a text edi-
tor such as Notepad, Notepad 2007, or in Visual Basic 2010 Express Edition. We used the
Notepad text editor to create our XML. To create well-formed XML for ribbons, you need
to use the Microsoft Office 2010 Reference: Office Fluent User Interface XML Schema Refer-
ence, which contains the schema information that Access 2010 needs to validate the ribbon
customizations. You might also want to download the Office Fluent User Interface Control
Identifiers, which contains a complete list of the ControlIDs of the built-in tabs, groups, but-
tons, and other commands. Each button, group, and tab is assigned a unique ControlID in
the ribbon schema file. You can use these ControlIDs to place existing built-in ribbon ele-
ments onto your custom ribbons.

Note

If you use an XML editor such as Notepad 2007 or a tool such as Visual Basic

2010 Express Edition, you can use Microsoft IntelliSense to assist with con-

structing your XML. You can download the free XML Notepad 2007 edi-

tor from Microsoft at http://www.microsoft.com/downloads/details.

aspx?familyid=72D6AA49-787D-4118-BA5F-4F30FE913628&displaylang=en.

You can download the Visual Basic 2010 Express Edition from Microsoft at http://msdn.

microsoft.com/vstudio/express/vb/.

You can download the Office 2010 Reference: Office Fluent User Interface XML Schema

from Microsoft at

http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=c2aa6

91a-8004-46ac-9852-102f1d5bcd18.

You can download the Office 2010 Help Files: Office Fluent User Interface Control Iden-

tifiers from Microsoft at

http://www.microsoft.com/downloads/details.

aspx?familyid=3F2FE784-610E-4BF1-8143-41E481993AC6&displaylang=en.

C
h

ap
ter 26

1672	 Chapter 26  The Finishing Touches

Hiding Existing Ribbon Elements

Open Notepad (or an XML editor) to begin building your XML. We’ll create a custom rib-
bon for our test form that includes two groups from the Home tab and hides all the built-in
main tabs. As we proceed, you’ll test each step to see the ribbon take shape. The XML for
ribbons needs to start with the following line:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

The first line tells Access which schema file to use when building this specific ribbon. The
next line should read as follows:

<ribbon startFromScratch="true">

If you specify True, Access hides the four main tabs on the ribbon when your custom rib-
bon is loaded. Also, the Quick Access Toolbar shows no options except the arrow—you can
select only the options to place the Quick Access Toolbar above or below the ribbon, or you
can minimize the ribbon. If you want to have a more controlled interface and show only
your custom ribbons to users, you should set this XML attribute to True. If you set start-
FromScratch to False, Access does not hide any of the main ribbon tabs. Any new tabs that
you create appear to the right of the Database Tools tab.

After these first two lines, you can begin to build any tabs, groups, buttons, and other rib-
bon elements. For now, let’s complete this simple XML example with some ending tags for
ribbon and customUI. Your XML up to this point should look like the following:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

 <ribbon startFromScratch="true">

 </ribbon>

</customUI>

Testing Your XML

As you build your XML, it’s a good idea to test it along the way to ensure that everything
is working properly. You’ll have an easier time debugging any issues in your XML if you
systematically test it after each major step. Highlight all the XML you’ve created so far and
copy it to the Clipboard. Next, open the zfrmChangeRibbonXML form in the Conrad Sys-
tems Contacts database in Form view and navigate to a new record. In the Ribbon Name
text box control, enter rbnTest for the name of this ribbon. Finally, use the Tab key to move
to the Ribbon Xml text box control and paste in the XML content from the Clipboard. Your
record in the form should look like Figure 26-6.

	 Creating Custom Ribbons with XML	 1673

C
h

ap
te

r
26

Figure 26-6  Create a new record in the USysRibbons table for your test ribbon by using the
zfrmChangeRibbonXML form.

Close the zfrmChangeRibbonXML form to save your changes to the USysRibbons table. To
display this ribbon for your test form to see how it looks, you need to assign the rbnTest
ribbon to the Ribbon Name property of the form. Before you do this, however, you need to
close the database and then reopen it. You’ll remember we mentioned earlier that Access
loads all the ribbons found in the USysRibbons table during the application startup process.
Because you just added this new record to the table, Access has not loaded this ribbon into
memory. If you opened the Property Sheet window for your test form at this point, you
will not see rbnTest as an available option for the Ribbon Name property. (Note that you
can type rbnTest in the property line, but you still won’t see this ribbon displayed until you
close and reopen the database.)

Close the database now and then reopen it to have Access load your new test ribbon into
memory. After you reopen the database, open your test form—frmRibbonTest—in Design
view. Click the Property Sheet button in the Tools group on the Design tab to open the
property sheet for the form. On the Other or All tabs of the property sheet, click the arrow
on the Ribbon Name property line, and then select rbnTest from the list of four ribbons.
Click the Save button on the Quick Access Toolbar to save your changes and then switch to
Form view to see the result.

When you switch views, you’ll notice the entire ribbon disappears, as shown in Figure
26-7. Access also hides all the options on the Quick Access Toolbar except for the arrow
to open the Customize Quick Access Toolbar menu. Click the File tab on the Backstage
view and you’ll notice that you still see all the options available. Because you specified
StartFromScratch=True in your XML and did not specify any other custom tabs, Access
presents a very limited user interface. Unless you want to provide features such as filtering
and sorting directly on your forms, you clearly need to improve this custom ribbon beyond
the bare essentials.

C
h

ap
ter 26

1674	 Chapter 26  The Finishing Touches

Figure 26-7  The simple XML you created earlier completely hides the ribbon.

INSIDE OUT  Displaying Ribbon Errors

If you create XML for a ribbon that is not well formed, Access does not display your

custom ribbon. In this situation, Access displays the built-in four main ribbon tabs

because it cannot interpret and display the appropriate customization elements. Access

is not forgiving in this case because even a single line of XML that is not well formed

causes Access to revert to showing all the main tabs of the ribbon. You will have a dif-

ficult time debugging the XML and finding the cause of the problem because Access

does not automatically display errors when it encounters errors in your XML.

Fortunately, Access includes an option that you can enable to display errors in these

cases. Click the File tab on the Backstage view, click Options, click the Client Settings

category, and then scroll down to the General area. If you select the Show Add-In User

Interface Errors check box (cleared by default) and then click OK, Access displays a

dialog box if it finds any problems in your XML. For example, if you select the Show

Add-In User Interface Errors check box and add an extra < at the beginning of the third

line of the XML you’ve been working with up to this point, Access displays the fol-

lowing error message when you open your test form (after you close and reopen the

database):

You can see in the error message text that Access found a problem on line 3 of your

XML. Selecting this option can help you debug your XML for ribbons.

	 Creating Custom Ribbons with XML	 1675

C
h

ap
te

r
26

Creating Tabs

Creating an interface with no ribbon showing, such as the one you just tested in the previ-
ous section, might work for some applications, but what if you want to provide your users
with the same navigation and filter options for your forms that normally display on the
Home tab? To add buttons and controls to your custom ribbon, you first need to create a
tab to hold these controls. The Access ribbon schema uses a tabs tag to denote a new tab
to display on the ribbon.

Open Notepad (or an XML editor), and return to the XML file you were creating earlier. To
create a new tab, you first need to use a tabs tag (<tabs>) followed by a line of XML with
the following syntax:

<tab id=UniqueTabName label=LabelCaption

The UniqueTabName must be a unique name for the current ribbon XML. The LabelCaption
attribute is optional, but if you don’t provide a caption for the tab, Access displays a small,
empty tab header. At the end of any XML for the tab, you also need to provide an ending
tab tag (</tab>) for each tab and an ending tabs tag (</tabs>) following all the individual
tab tags. For this example, we’ll create a new tab called tabTest with a caption called Navi-
gation. Add the following XML between the two ribbon tags (<ribbon> and </ribbon>)
that we created earlier to create this new tab:

 <tabs>

 <tab id="tabTest" label="Navigation">

 </tab>

 </tabs>

Your completed XML should now look like the following:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

 <ribbon startFromScratch="true">

 <tabs>

 <tab id="tabTest" label="Navigation">

 </tab>

 </tabs>

 </ribbon>

</customUI>

Now, let’s test this markup with our test form and see how it looks. Highlight all the XML
you’ve created so far and copy it to the Clipboard. Next, open the zfrmChangeRibbonXML
form in the Conrad Systems Contacts database in Form view and navigate to the record
that has rbnTest in the Ribbon Name text box. Tab to the Ribbon XML text box control, and
paste the XML content from the Clipboard, overwriting the previous XML. Next, close the
zfrmChangeRibbonXML form to save your changes to the USysRibbons table. Finally, close
the database, reopen it, and then open the frmRibbonTest form in Form view. Access now
displays the ribbon at full height with a new tab and caption of Navigation, as shown in
Figure 26-8.

C
h

ap
ter 26

1676	 Chapter 26  The Finishing Touches

Figure 26-8  You can create custom tabs for your ribbons.

Adding Built-In Groups to Tabs

Now that you have a new tab created in your markup, you can begin the process of add-
ing different controls to this tab. For this test form, it would help your users to navigate
through the contact records if they could use some of the built-in buttons and commands
found on the Home tab—specifically, the Records, Sort & Filter, and Find groups. You could
write your own XML to create custom buttons that mimic the actions of each of the indi-
vidual buttons in those three groups, but to make things easier, you can use the RibbonX
architecture to copy buttons, commands, and options found in a built-in group onto one
of your custom tabs. (We’ll show you how to create individual custom buttons on tabs in
“Using Ribbon Attributes,” on page 1682.)

Open Notepad (or an XML editor), and return to the XML file you were creating earlier. To
use an existing built-in group on a custom tab, use the following syntax:

<group idMso=ControlID>

You can add this tag anywhere within a tab definition (delimited with <tab> </tab> tags).
You can use the idMso attribute to denote a built-in control ID—a built-in control defined
in the RibbonX architecture. Every button, group, and tab on the built-in ribbon has an
internal control ID that you can reference. In this case, you’re going to show how to use the
idMso attribute to refer to a specific group that you want to use on your tab. To help iden-
tify the names of these groups, you can use the Office 2010 User Interface Control Identi-
fiers Excel spreadsheet, which contains a complete list of these internal control IDs. For this
example, you want to add the Records group on the Home tab to your custom navigation
tab to help your users add, save, and delete records. The control ID for the Records group is
GroupRecords. At the end of any XML for a new group, you also need to provide an ending
group tag. Add the following XML between the tab tags to create this new group:

 <group idMso="GroupRecords">

 </group>

	 Creating Custom Ribbons with XML	 1677

C
h

ap
te

r
26

Your completed XML up to this point should now look like the following:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

 <ribbon startFromScratch="true">

 <tabs>

 <tab id="tabTest" label="Navigation">

 <group idMso="GroupRecords">

 </group>

 </tab>

 </tabs>

 </ribbon>

</customUI>

INSIDE OUT  Finding Control IDs for Built-In Controls

You can also find the control IDs for built-in controls listed in the Customize cat-

egory in the Access Options dialog box. Click the File tab on the Backstage view, click

Options, and then select either the Customize Ribbon or Quick Access Toolbar cat-

egory. In the command list on the left, you can see the built-in Access commands. If

you rest your mouse pointer on one of these commands, Access displays a tooltip that

lists the internal control ID. To help you identify control groups, Access displays an icon

with a down arrow next to any group names. The internal control ID for the Records

group on the Home tab—GroupRecords—is within the parentheses on the tooltip, as

shown here:

Now, let’s test this XML with our test form to see how it looks. As you did previously,
highlight all the XML you’ve created so far and copy it to the Clipboard. Next, open the
zfrmChangeRibbonXML form in the Conrad Systems Contacts database in Form view and
navigate to the record that has rbnTest in the Ribbon Name text box. Use Tab to move
to the Ribbon XML text box control, and paste in the XML content from the Clipboard,

C
h

ap
ter 26

1678	 Chapter 26  The Finishing Touches

overwriting the existing XML. Next, close the zfrmChangeRibbonXML form to save your
changes to the USysRibbons table. Finally, close the database, reopen it, and then open
the frmRibbonTest form in Form view. Access now displays all the buttons and commands
from the Records group on your custom Navigation tab, as shown in Figure 26-9. If you test
some of the buttons, you’ll see that they all work just as they do on the Home tab.

Figure 26-9  The built-in Records group now appears on your custom ribbon.

Now that you’ve added the Records group to your tab, let’s finish the XML by adding the
Sort & Filter and Find groups to your custom ribbon. Open Notepad (or an XML editor),
and return to the XML file you were creating earlier. The control ID for the Sort & Filter
group is GroupSortAndFilter, and the control ID for the Find group is GroupFindAccess. Add
the following XML after the group end tag and before the end tab tag:

 <group idMso="GroupSortAndFilter">

 </group>

 <group idMso="GroupFindAccess">

 </group>

Your final XML should now look like the following:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

 <ribbon startFromScratch="true">

 <tabs>

 <tab id="tabTest" label="Navigation">

 <group idMso="GroupRecords">

 </group>

 <group idMso="GroupSortAndFilter">

 </group>

 <group idMso="GroupFindAccess">

 </group>

 </tab>

 </tabs>

 </ribbon>

</customUI>

	 Loading Ribbon XML	 1679

C
h

ap
te

r
26

Now, test your completed XML on your test form. As you did previously, highlight all the
XML you’ve created so far, and copy it to the Clipboard. Next, open the zfrmChangeRib-
bonXML form in the Conrad Systems Contacts database in Form view, and paste in the XML
content from the Clipboard into the Ribbon XML text box on the rbnTest record, overwrit-
ing the existing XML. Close the zfrmChangeRibbonXML form to save your changes to the
USysRibbons table. Close the database and reopen it to have Access load the new ribbon
changes. Finally, open the frmRibbonTest form in Form view to see the results. Access now
displays all the buttons and commands from the Records, Sort & Filter, and Find groups on
your custom Navigation tab, as shown in Figure 26-10. With only a few lines of XML, you’ve
created a custom ribbon that you can use in your application. You can assign this ribbon to
any of the forms in your application. Also, because the XML is stored in a local table, you
can easily import this table into another database and reuse the ribbon for those forms.

Figure 26-10  The custom ribbon you created now includes buttons and commands from three
built-in groups.

Loading Ribbon XML

In the previous sections, you’ve learned the basic structure of ribbon XML and how to cre-
ate a USysRibbons table to store the XML for each of your custom ribbons. You learned that
Access searches for this table during startup and that if it finds this table (and correct fields
within the table), Access loads these custom ribbons into memory. In the Conrad Systems
Contacts (Contacts.accdb) sample database, we created three custom ribbons for the appli-
cation in the USysRibbons table—rbnCSD, rbnForms, and rbnPrintPreview.

After you define custom ribbons in the USysRibbons table, you can specify that Access load
a specific custom ribbon each time you open the database. To accomplish this, click the File
tab on the Backstage view, click Options, and then click the Current Database category. In
the Ribbon And Toolbar Options section, click the arrow on the Ribbon Name option, and
then select your custom ribbon from the list of loaded ribbons, as shown in Figure 26-11.
(Note that you might need to close and reopen the database to see any new ribbon you
just created appear in the list.) Click OK to save your changes, and close the Access Options
dialog box. The next time you open your database, Access applies that custom ribbon.

C
h

ap
ter 26

1680	 Chapter 26  The Finishing Touches

Figure 26-11  In the Current Database category in the Access Options dialog box, you can select
a specific custom ribbon to load each time you open the database.

Note
To prevent Access from automatically loading any custom ribbons during the startup

procedure, press and hold the Shift key when you open the database.

When you create a USysRibbons table, Access takes care of the work of loading your
custom ribbons. You can also load custom ribbons into your application by using the
LoadCustomUI method. When you dynamically load your ribbon customization using the
LoadCustomUI method, you can store your XML in a table with a different name, in a differ-
ent database, or in a Visual Basic module.

Syntax

Application.LoadCustomUI(CustomUIName, CustomUIXML)

Notes

CustomUIName is a string variable or literal containing the unique name of the custom
ribbon to be associated with this XML, and CustomUIXML is a string variable or literal that
contains the well-formed XML that defines your custom ribbon.

If you want to dynamically load custom ribbons, you need to call the LoadCustomUI
method each time you open the database. In the HousingSP.accdb database, we use this
method to load similar custom ribbons that you see in the Housing Reservations database
(Housing.accdb). Close the Contacts.accdb file if you still have it open, and then open the
HousingSP.accdb file. After you database opens, click OK on the opening message box.
Next, click the Navigation menu at the top of the Navigation pane, click Object Type under

	 Loading Ribbon XML	 1681

C
h

ap
te

r
26

Navigate To Category, and then click Tables under Filter By Group to display a list of tables
available in this database. If you open the zTblRibbons table in Datasheet view, you’ll notice
we have two of the same custom ribbons in this table—rbnForms and rbnProseWare—as
we have in the USysRibbons table in the Housing.accdb sample database.

INSIDE OUT  Loading Ribbons into Access Data Projects

Because all tables for an Access project file (.adp) are stored in Microsoft SQL Server,

you cannot define a local USysRibbons table to have Access automatically load your

custom ribbons. Defining a USysRibbons table in SQL Server doesn’t work because

those tables don’t become available until after Access has completed the initialization

of the project file.

Close the zTblRibbons table, and let’s examine the Visual Basic code we use to load these
custom ribbons. Click the Navigation menu at the top of the Navigation pane, click Object
Type under Navigate To Category, and then click Modules under Filter By Group to display
a list of Visual Basic modules available in this database. Right-click modRibbonCallbacks
in the Navigation pane, and click Design View from the shortcut menu to open the Visual
Basic Editor. The first function in this module—LoadRibbons—and the Declarations above it
use the LoadCustomUI method as follows:

' This serves as a cached copy of the RibbonUI.

' We can use this to then invalidate the Ribbon and refresh the controls

Public gobjRibbon As IRibbonUI

Public Function LoadRibbons() As Integer

' Code called by frmCopyright to verify custom Ribbon load

Dim db As DAO.Database, rst As DAO.Recordset

 ' Set an error trap

 On Error GoTo LoadRibbon_Err

 ' Do nothing if gobjRibbon is set

 If Not (gobjRibbon Is Nothing) Then

 ' Set OK return

 LoadRibbons = True

 Else

 ' Try to load - open recordset on Ribbons

 Set db = CurrentDb

 Set rst = db.OpenRecordset("ztblRibbons", dbOpenDynaset)

 Do Until rst.EOF

 Application.LoadCustomUI rst!RibbonName, rst!RibbonXML

 rst.MoveNext

 Loop

 ' Close out

 rst.Close

 Set rst = Nothing

C
h

ap
ter 26

1682	 Chapter 26  The Finishing Touches

 Set db = Nothing

 LoadRibbons = True

 End If

LoadRibbon_Exit:

 Exit Function

LoadRibbon_Err:

 ' Silently log error

 ErrorLog "LoadRibbons", Err, Error

 LoadRibbons = False

 Resume LoadRibbon_Exit

End Function

The first line of code in the LoadRibbons function after the Dim statement instructs Access
to go to the LoadRibbon_Err line if any errors occur. The If statement checks to see whether
Access has already loaded customization by verifying whether a cached copy of the Rib-
bonUI has been set. If the main custom ribbon has been loaded, Is Nothing returns a value
of False to indicate Access already has loaded the ribbon. If the custom ribbon isn’t loaded,
the code following the Else line executes. To load the custom ribbons, the code opens a
Data Access Objects (DAO) recordset on the zTblRibbons table, loops through each record
in the recordset, and calls the LoadCustomUI method once for each record. The code uses
the RibbonName field from the recordset to pass the name to the LoadCustomUI method,
and the RibbonXml field contains the well-formed XML that defines each of our custom
ribbons. After Access loads each ribbon, the code closes the recordset and sets it to Noth-
ing. The last line before the End If statement returns a value of True for the LoadRibbons
function, indicating success. The last part of the code has an exit procedure and our error
handling code to handle the case if Access encounters an error.

As you can see, you can use the LoadCustomUI method to load a custom ribbon from a dif-
ferent table, but you’re not limited to storing the XML in a table. You could also store the
XML directly within a code module and set it to a string variable.

Using Ribbon Attributes

The RibbonX architecture contains many controls and attributes you can use in your appli-
cations. To help you understand some of the elements you can create with RibbonX, we’ll
look at the custom ribbons we created in the Conrad Systems Contacts sample database.
Close the HousingSP.accdb database, open the Contacts.accdb sample database, and click
OK on the opening message box. Next, open the frmSplash form in Form view either by
double-clicking the form in the Navigation pane or by right-clicking it and clicking Open
on the shortcut menu. The frmSplash form displays for a few seconds and then opens the
frmSignOn form, where you can sign into the database. Select Jeff’s name from the User
Name combo box control, and click Sign On to sign into the database. (Neither of the
users has a password assigned.) Access opens the frmMain form and displays the custom
main ribbon for this database, as shown in Figure 26-12. The main ribbon in this database,

	 Using Ribbon Attributes	 1683

C
h

ap
te

r
26

rbnCSD, has a tab called Conrad Systems Contacts and four groups—News, Navigation, Exit,
and About. The News group displays three labels, one of which displays the name of the
current user signed into the database. (You’ll learn how to dynamically change the ribbon
later in this chapter.) The remaining three groups display custom buttons that allow you to
navigate to the various parts of the application.

Figure 26-12  The main ribbon in the Conrad Systems Contacts database displays custom
controls.

You can see in Figure 26-12 that all built-in ribbon elements are hidden. As you recall from
earlier in this chapter, if you set the StartFromScratch attribute to True, Access hides all four
built-in ribbon tabs and displays a limited Quick Access Toolbar.

When you build a custom ribbon definition, you can either define an entire custom ribbon
or define XML that modifies one of the built-in ribbons. In your XML, you define custom
controls. You assign attributes to your controls to define how they look and where they are
positioned, and you define callbacks for your controls to define how they act. In Visual Basic
terms, you can think of an attribute as a property of a control object and a callback as a
method or event of a control object. When an attribute of a control is a callback, it is essen-
tially the same as an event property of an Access control—you assign to a callback attribute
the name of a procedure that will handle the event. You can also copy attributes of built-in
controls by using an attribute name that is a Control ID, and you can reference a control in
another custom ribbon using a Qualified ID.

Let’s look at attributes you can assign to controls first. Table 26-2 lists the RibbonX attri-
butes you can use in your XML customization.

Table 26-2  RibbonX Attributes

Attribute Value or Type Description

autoScale True or False Determines whether a group should scale its contents
automatically.

centerVertically True or False Determines whether the content inside a group should
be centered vertically.

description String Defines the text shown in menu controls when
itemSize=”large”.

enabled True or False Returns the control’s enabled state. Disabled controls
(enabled = False) appear dimmed in the ribbon.

C
h

ap
ter 26

1684	 Chapter 26  The Finishing Touches

Attribute Value or Type Description

getDescription Callback Names the macro or procedure that can set the
description attribute of a control.

getEnabled Callback Defines the macro or procedure that can set the
enabled state of a control.

getImage Callback Names the macro or procedure that can set the image
attribute of a control.

getLabel Callback Defines the macro or procedure that can set the label
attribute of a control.

getPressed Callback Names the procedure that can respond to the current
state of a toggle button or check box.

getSupertip Callback Names the procedure that can set the Enhanced
ScreenTip of a control.

getTooltip Callback Names the procedure that can set the tooltip of a
control.

getVisible Callback Names the procedure that can set the visibility state of
a control.

id String Provides the Unique ID for a user-defined control.

idMso Control ID Provides the Control ID for a built-in ribbon element.

idQ Qualified ID Provides the qualified name of a control on another
ribbon.

image String Defines the image displayed on the control.

imageMso Control ID Provides the icon of a built-in control.

insertAfterMso Control ID Positions a custom control after a built-in control.

insertAfterQ Qualified ID Positions a custom control after a control defined by
another ribbon using a qualified name.

insertBeforeMso Control ID Positions a custom control before a built-in control.

insertBeforeQ Qualified ID Positions a custom control before a control defined by
another ribbon using a qualified name.

label String Returns a control’s label text.

onAction Callback Defines the macro or procedure called when a user
clicks this control.

pressed True or False Returns the state of toggle button or check box control.

showInRibbon False or 0 Note that this appears in the schema, but cannot be
used in RibbonX.

showLabel True or False Specifies whether or not to show the label on a control.
Specifies a callback which returns whether to show the
label.

size Normal or Large Sets the image size of custom control.

	 Using Ribbon Attributes	 1685

C
h

ap
te

r
26

Attribute Value or Type Description

supertip String Defines the text to display an enhanced ScreenTip when
the user rests their mouse pointer on the control.

title String Provides the title for a menuSeparator.

tooltip String Defines the text to display as a tooltip.

visible True or False Returns the visible status of a control.

In addition to attributes you can use in your XML customization, you can create many types
of controls using RibbonX. Table 26-3 lists the types of controls you can use in a custom rib-
bon definition and their associated attributes (properties) and callbacks (event properties).

Table 26-3  RibbonX Controls

Control Name Attributes Callbacks

button description, enabled, id, idMso, idQ,
image, imageMso, insertAfterMso,
insertAfterQ, insertBeforeMso, insert-
BeforeQ, keytip, label, screentip,
showImage, showLabel, size, supertip,
tag, and visible

getDescription, getEnabled,
getImage, getKeytip, getLabel,
getScreentip, getShowImage, get-
ShowLabel, getSize, getSupertip,
getVisible, and onAction

buttonGroup id, idQ, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ, tag,
and visible

getVisible

checkBox description, enabled, id, idMso, idQ,
insertAfterMso, insertAfterQ, insert-
BeforeMso, insertBeforeQ, keytip,
label, screentip, supertip, tag, and
visible

getDescription, getEnabled,
getKeytip, getLabel, getPressed,
getScreentip, getSupertip, getVis-
ible, and onAction

comboBox enabled, id, idMso, idQ, image, ima-
geMso, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
label, invalidateContentOnDrop,
maxLength, screentip, showItemI-
mage, showImage, showLabel,
sizeString, supertip, tag, and visible

getEnabled, getImage, getItem-
Count, getItemID, getItemImage,
getItemLabel, getItemScreentip,
getItemSupertip, getKeytip, getLa-
bel, getScreentip, getShowImage,
getShowLabel, getSize, getSu-
pertip, getText, getVisible, and
onChange

dialogBox-
Launcher

None
Note that you must create a but-
ton inside a dialogBoxLauncher tag
and then use the attributes of that
button to specify attributes for the
dialogBoxLauncher.

None
Note that you must create a but-
ton inside a dailogBoxLauncher
tag and then use the callbacks of
that button to specify events for
the dialogBoxLauncher.

C
h

ap
ter 26

1686	 Chapter 26  The Finishing Touches

Control Name Attributes Callbacks

dropDown enabled, id, idMso, idQ, image, ima-
geMso, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
keytip, label, screentip, showImage,
showItemLabel, showLabel, supertip,
tag, and visible

getEnabled, getImage, getItem-
Count, getItemID, getItemImage,
getItemLabel, getItemScreentip,
getItemSupertip, getKeytip, get-
Label, getScreentip, getSelect-
edItemID, getSelectedItemIndex,
getShowImage, getShowLabel,
getSize, getSupertip, getText, get-
Visible, and onChange

dynamicMenu description, enabled, id, idMso, idQ,
image, imageMso, insertAfterMso,
insertAfterQ, insertBeforeMso, insert-
BeforeQ, invalidateContentOnDrop,
keytip, label, screentip, showImage,
showLabel, size, supertip, tag, and
visible

getDescription, getEnabled, get-
Content, getImage, getKeytip,
getLabel, getScreentip, getShow-
Image, getShowLabel, getSize,
getSupertip, and getVisible

editBox enabled, id, idMso, idQ, image, ima-
geMso, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ,
keytip, label, maxLength screentip,
showImage, showLabel, sizeString,
supertip, tag, and visible

getEnabled, getImage, getKeytip,
getLabel, getScreentip, getShow-
Image, getShowLabel, getSupertip,
getText, getVisible, and onChange

gallery columns, description, enabled, id,
idMso, idQ, image, imageMso, inser-
tAfterMso, insertAfterQ, insertBefo-
reMso, insertBeforeQ, itemHeight,
itemWidth, keytip, label, rows,
screentip, showImage, showInRib-
bon, showItemImage, showItemLabel,
showLabel, size, sizeString, supertip,
tag, and visible

getDescription, getEnabled,
getImage, getItemCount, getItem-
Height, getItemID, getItemImage,
getItemLabel, getItemScreentip,
getItemSupertip, getItemWidth,
getKeytip, getLabel, getScreentip,
getSelectedItemID, getSelect-
edItemIndex, getShowImage, get-
ShowLabel, getSize, getSupertip,
getText, getVisible, and onAction

group autoScale, centerVertically, id, idMso,
idQ, image, imageMso, insertAfter-
Mso, insertAfterQ, insertBeforeMso,
insertBeforeQ, keytip, label, screentip,
supertip, tag, and visible

getImage, getKeytip, getLabel,
getScreentip, getSupertip, and
getVisible

labelControl enabled, id, idMso, idQ, insertAfter-
Mso, insertAfterQ, insertBeforeMso,
insertBeforeQ, label, screentip, show-
Label, supertip, tag, and visible

getEnabled, getLabel, getScreen-
tip, getShowLabel, getSupertip,
and getVisible

	 Using Ribbon Attributes	 1687

C
h

ap
te

r
26

Control Name Attributes Callbacks

menu description, enabled, id, idMso,
idQ, image, imageMso, insertAfter-
Mso, insertAfterQ, insertBeforeMso,
insertBeforeQ, itemSize, keytip, label,
screentip, showImage, showLabel,
size, supertip, tag, and visible

getDescription, getEnabled,
getImage, getKeytip, getLabel,
getScreentip, getShowImage, get-
ShowLabel, getSize, getSupertip,
and getVisible

menuSeparator id, idQ, insertAfterMso, insertAfterQ,
insertBeforeQ, tag, and title

getTitle

separator id, idQ, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ, tag,
and visible

getVisible

splitButton enabled, id, idMso, idQ, insertAfter-
Mso, insertAfterQ, insertBeforeMso,
insertBeforeQ, keytip, label, screentip,
showLabel, size, supertip, tag, and
visible

getEnabled, getKeytip, getShowLa-
bel, getSize, and getVisible

tab id, idMso, idQ, insertAfterMso, inser-
tAfterQ, insertBeforeMso, insertBe-
foreQ, keytip, label, tag, and visible

getKeytip, getLabel, and getVisible

toggleButton description, enabled, id, idMso, idQ,
image, imageMso, insertAfterMso,
insertAfterQ, insertBeforeMso, insert-
BeforeQ, keytip, label, screentip,
showImage, showLabel, size, supertip,
tag, and visible

getDescription, getEnabled,
getImage, getKeytip, getLabel,
getPressed, getScreentip, get-
ShowImage, getShowLabel, get-
Size, getSupertip, getVisible, and
onAction

Now that you know the attributes and callbacks available in the RibbonX architecture, you
can begin to study how we created the main ribbon in the Conrad Systems Contacts data-
base. If you still have the frmMain form open, click Exit to close it, and then click Yes to con-
firm that you want to exit. Next, find the zfrmChangeRibbonXML form in the Navigation
pane and open it in Form view. Finally, move to the third record in the table where the Rib-
bon Name text box control displays rbnCSD. Listed next is the XML customization for this
ribbon in the Ribbon XML text box control. We’ve added line numbers to this code listing
so that you can follow along with the line-by-line explanations in Table 26-4, which follows
the listing.

1 <customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui"

2 onLoad="onRibbonLoad1">

3 <ribbon startFromScratch="true">

4 <tabs>

5 <tab id="tabCSD" label="Conrad Systems Contacts">

6 <group id="grpNews" label="News">

7 <labelControl id="lblWelcome" getLabel="onGetLabel"/>

8 <labelControl id="lblToday" getLabel="onGetLabel"/>

C
h

ap
ter 26

1688	 Chapter 26  The Finishing Touches

9 <labelControl id="lblPending" getLabel="onGetLabel"/>

10 </group>

11 <group id="grpNavigation" label="Navigation" visible="true">

12 <button id="cmdCompanies" label="Companies"

13 imageMso="MeetingsWorkspace" size="large"

14 onAction="onOpenCompanies"

15 supertip="Edit company information."/>

16 <button id="cmdContacts" label="Contacts" imageMso="NewContact"

17 size="large" onAction="onOpenContacts"

18 supertip="Edit contact information."/>

19 <button id="cmdProducts" label="Products"

20 imageMso="FilePackageForCD" size="large"

21 onAction="onOpenProducts"

22 supertip="Edit product information."/>

23 <button id="cmdPendingEvents" label="Pending Events"

24 imageMso="SendCopyFlag" size="large"

25 onAction="onOpenPendingEvents"

26 supertip="View any pending events."/>

27 <button id="cmdInvoices" label="Invoices"

28 imageMso="CustomTableOfContentsGallery" size="large"

29 onAction="onOpenInvoices"

30 supertip="Edit invoice information."/>

31 <button id="cmdUsers" label="Users"

32 imageMso="FileDocumentEncrypt"

33 size="large" onAction="onOpenUsers"

34 supertip="Edit user information."/>

35 <splitButton id="sbCodeList" size="large">

36 <button id="cmdCodeLists" imageMso="NewTask"

37 onAction="onOpenCodeLists" label="Code Lists"/>

38 <menu id="sbMnuCodeLists">

39 <button id="cmdContactTypes" label="Contact Types"

40 imageMso="NewTask" onAction="onOpenContactTypes"/>

41 <button id="cmdEventTypes" label="Event Types"

42 imageMso="NewTask" onAction="onOpenEventTypes"/>

43 <button id="cmdProductCategories" label="Product Categories"

44 imageMso="NewTask" onAction="onOpenProductCategories"/>

45 <button id="cmdPersonTitles" label="Person Titles"

46 imageMso="NewTask" onAction="onOpenPersonTitles"/>

47 <button id="cmdPersonSuffixes" label="Person Suffixes"

48 imageMso="NewTask" onAction="onOpenPersonSuffixes"/>

49 </menu>

50 </splitButton>

51 <splitButton id="sbReports" size="large">

52 <button id="cmdReports" imageMso="CreateReport"

53 onAction="onOpenReports" label="Reports"/>

54 <menu id="sbMnuReports" supertip="View reports.">

55 <button id="cmdCompanyReports" label="Company Reports"

56 imageMso="CreateReport" onAction="onOpenCompanyReports"/>

57 <button id="cmdContactReports" label="Contact Reports"

58 imageMso="CreateReport" onAction="onOpenContactReports"/>

59 <button id="cmdProductReports" label="Product Reports"

60 imageMso="CreateReport" onAction="onOpenProductReports"/>

	 Using Ribbon Attributes	 1689

C
h

ap
te

r
26

61 </menu>

62 </splitButton>

63 </group>

64 <group id="grpExit" label="Exit">

65 <button id="cmdExitDatabase" label="Exit Database"

66 imageMso="PrintPreviewClose" size="large"

67 onAction="onCloseDatabase" supertip="Exit the database."/>

68 </group>

69 <group id="grpAbout" label="About">

70 <button id="cmdHelpAbout" label="About" size="large"

71 imageMso="Help" onAction="onOpenFormEdit" tag="frmAbout"

72 supertip="View the About form."/>

73 </group>

74 </tab>

75 </tabs>

76 </ribbon>

77 </customUI>

Table 26-4  Explanation of the XML in Ribbon rbnCSD

Line(s) Explanation

1 Tells Access which schema file to use when building this specific ribbon.

2 Specifies a procedure that processes the RibbonLoad event when Access first dis-
plays the ribbon. In this event, you can save a pointer to the ribbon to enable your
code to dynamically update it. (We’ll explain how to update the ribbon later in this
chapter.)

3 Hides all built-in ribbon elements.

4 Specifies the beginning tag to create a new set of tabs.

5 Creates a new tab with a Control ID called tabCSD and displays Conrad Systems
Contacts in the tab caption.

6 Creates a new group with a Control ID called grpNews and displays News as the
group label.

7 Creates a new label control, lblWelcome, and specifies the onGetLabel procedure
to respond to the getLabel event to dynamically update the text displayed in the
label.

8 Creates a new label control, lblToday, that also calls onGetLabel.

9 Creates a new label control, lblPending, that also calls onGetLabel.

10 Ends the group tag for the grpNews group.

11 Creates a new group with a Control ID called grpNavigation and displays Naviga-
tion as the group label.

12–15 Creates a new button, cmdCompanies, with a label of Companies. Instead of speci-
fying an image attribute, we used imageMSO to copy the image from the built-in
control named FilePackageForCD. The button size is set to large, and the onAction
attribute issues a callback to the opOpenProducts procedure. Finally, we designate
text to display as a supertip.

C
h

ap
ter 26

1690	 Chapter 26  The Finishing Touches

Line(s) Explanation

16–18 Creates a new button, cmdContacts, with a label of Contacts, an image copied
from a built-in control, and a defined callback.

19–22 Creates a new button, cmdProducts, with a label of Products, an image copied
from a built-in control, and a defined callback.

23–26 Creates a new button, cmdPendingEvents, with a label of Pending Events, an image
copied from a built-in control, and a defined callback.

27–30 Creates a new button, cmdInvoices, with a label of Invoices, an image copied from
a built-in control, and a defined callback.

31–34 Creates a new button, cmdUsers, with a label of Users, an image copied from a
built-in control, and a defined callback.

35 Creates a new split button, sbCodeList, with a large size.

36–37 Creates a new button, cmdCodeLists, with a label of Code Lists, an image copied
from a built-in control, and a defined callback. This button becomes the top half
of the split button. If you click the top half of the button, Access calls the onAction
procedure for this button.

38 Creates a new menu control, sbMnuCodeLists, for the bottom half of the split
button.

39–40 Creates a new button, cmdContactTypes, with a label of Contact Types, an image
copied from a built-in control, and a defined callback.

41–42 Creates a new button, cmdEventTypes, with a label of Event Types, an image cop-
ied from a built-in control, and a defined callback.

43–44 Creates a new button, cmdProductCategories, with a label of Product Categories,
an image copied from a built-in control, and a defined callback.

45–46 Creates a new button, cmdPersonTitles, with a label of Person Titles, an image cop-
ied from a built-in control, and a defined callback.

47–48 Creates a new button, cmdPersonSuffixes, with a label of Person Suffixes, an image
copied from a built-in control, and a defined callback.

49 Ends the menu tag for menu sbMnuCodeLists.

50 Ends the split button tag for sbCodeList.

51 Creates a new split button, sbReports, with a large size.

52–53 Creates a new button, cmdReports, with a label of Reports, an image copied from
a built-in control, and a callback defined. This button becomes the top half of the
split button. If you click the top half of the button, Access calls the onAction proce-
dure for this button.

54 Creates a new menu control, sbMnuReports, for the bottom half of the split button
with a supertip.

55–56 Creates a new button, cmdCompanyReports, with a label of Company Reports, an
image copied from a built-in control, and a defined callback.

57–58 Creates a new button, cmdContactReports, with a label of Contact Reports, an
image copied from a built-in control, and a defined callback.

	 Using Ribbon Attributes	 1691

C
h

ap
te

r
26

Line(s) Explanation

59–60 Creates a new button, cmdProductReports, with a label of Product Reports, an
image copied from a built-in control, and a defined callback.

61 Defines the ending menu tag for menu sbMnuReports.

62 Defines the ending split button tag for sbReports.

63 Defines the ending group tag for the grpNavigation group.

64 Creates a new group with a Control ID called grpExit and displays Exit for the
group label.

65–67 Creates a new button, cmdExitDatabase, with a label of Exit Database, an image
copied from a built-in control, and a callback defined.

68 Ends the group tag for the grpExit group.

69 Creates a new group with a Control ID called grpAbout and displays About for the
group label.

70–72 Creates a new button, cmdHelpAbout, with a label of About, an image copied
from a built-in control, and a defined callback. A custom tag value is assigned to
this control using the tag attribute.

73 Defines the ending group tag for the grpAbout group.

74 Defines the ending tag for the tabCSD tab.

75 Defines the ending tabs tag.

76 Defines the ending ribbon tag.

77 Defines the ending customUI tag.

Creating VBA Callbacks

As you reviewed the XML customization for the rbnCSD ribbon, you no doubt noticed that
most of the buttons used the onAction callback. When you use onAction, you specify a
saved macro object (you cannot use an embedded macro on a form or report in this case)
or a Microsoft Visual Basic for Applications (VBA) procedure to respond to the event—
namely, the user clicking the button. (You can think of onAction for a button in a ribbon
as the same as On Click for a command button on an Access form.) In the Conrad Systems
Contacts sample database (Contacts.accdb), we defined all the procedures to respond to
callback events for our custom ribbons in the module modRibbonCallbacks. Let’s look at
some of these VBA procedures so that you can see how everything ties together. Close any
objects you have open at the moment, right-click modRibbonCallbacks in the Navigation
pane (you might need to adjust your Navigation pane display to see the modules), and click
Design View on the shortcut menu to open this module in Design view.

Scroll down the procedures and functions in this module until you come to the onOpen-
Companies procedure. This procedure responds to the On Click event of the very first but-
ton defined in our custom ribbon—the cmdCompanies button. The procedure is as follows:

C
h

ap
ter 26

1692	 Chapter 26  The Finishing Touches

Public Sub onOpenCompanies(control As IRibbonControl)

' User wants to open Companies form

 ' Make sure frmMain is there

 If IsFormLoaded("frmMain") Then

 ' Yes - execute the Companies procedure

 Form_frmMain.cmdCompanies_Click

 End If

End Sub

The idea is to duplicate what happens when the user clicks the Companies button in the
main switchboard form. That form (frmMain) already has code to process the request, so
why duplicate it? If you remember from Chapter 24, “Understanding Visual Basic Funda-
mentals,” on the companion CD, you can make any procedure in a form’s class module
a method of the form by declaring it Public. We did exactly that with the cmdCompa-
nies_Click procedure in the frmMain form so that this onAction procedure can call it and
not duplicate the code to open companies. The procedure first verifies that frmMain form is
open because a call to the public method will fail if the form is closed. If the frmMain form
is open, the procedure calls the cmdExit_Click procedure as a method of the form. If you
scroll through the other procedures in the modRibbonCallbacks modules, you’ll find that
most of them follow this same pattern—they run an existing command button Click event
procedure on the frmMain form.

Dynamically Updating Ribbon Elements

When Access first opens a custom ribbon, it issues callbacks for all the controls to set their
attributes. Note that, other than for the Ribbon Name defined in the Current Database
category of Access Options, Access opens a custom ribbon when it is first referenced in the
Ribbon Name property of a form or report that you open or that your application code
opens. Executing the LoadCustomUI method of the Application object loads the ribbon
definition into memory, but it does not actually open the ribbon.

After a ribbon is loaded, the ribbon is static, and Access does not update any elements.
If you want to update the ribbon, such as to change the text in a label control to display
the current user’s name, you must explicitly tell Access to reinitialize the entire ribbon or
a control on the ribbon. Fortunately, the RibbonX architecture allows you to save a copy
of a pointer to the ribbon in a public variable so you that can update it at a later time. In
RibbonX terms, you invalidate a control (or the entire ribbon) to force Access to reload the
object and issue any attribute setting callbacks. At the beginning of the XML customization
for rbnCSD, you’ll recall seeing this line of code:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui"

 onLoad="onRibbonLoad1">

	 Using Ribbon Attributes	 1693

C
h

ap
te

r
26

The first procedure in the modRibbonCallbacks module is onRibbonLoad1. In the proce-
dure called by onRibbonLoad1, you can save a pointer to the ribbon that is being opened.
If you do not plan to ever update any of your ribbon elements, you do not need to add
the onRibbonLoad1 attribute to the <customUI> element. Access calls the onLoad callback
only once during the process of opening the custom ribbon for the first time. The follow-
ing is the onRibbonLoad1 procedure that executes in the onLoad callback of the rbnCSD
custom ribbon:

' This is the customUI onLoad event handler for main ribbon

Public Sub onRibbonLoad1(ribbon As IRibbonUI)

 ' Cache a copy of the Ribbon so we can refresh later at any time

 Set gobjRibbon1 = ribbon

End Sub

The IRibbonUI object is a parameter that you can use to save a pointer to the opened cus-
tom ribbon. The IRibbonUI class provides methods that you can use to invalidate a single
control in your customization or the entire ribbon. Table 26-5 lists these methods.

Table 26-5  IRibbonUI Methods

Method Description

Invalidate() Access reinitializes all custom controls.

InvalidateControl(string controlID) Access reinitializes one specific control.

After you signed into the Conrad Systems Contacts database, you’ll recall seeing the user
name displayed in the News group on our custom ribbon. To update the display of the
three labels in the News group, we use the following onGetLabel procedure:

' This serves as a getLabel callback for the labels.

' We determine which Control ID was passed from the Ribbon

' and set the label appropriately.

Public Sub onGetLabel(control As IRibbonControl, ByRef label)

 Select Case control.Id

 Case "lblWelcome"

 ' Update welcome information

 label = GetWelcomeMessage()

 Case "lblToday"

 ' Update Time

 label = "Today is: " & FormatDateTime(Date, vbLongDate)

 Case "lblPending"

 ' Update Pending Events message

 label = GetPendingEventsNumber

 End Select

End Sub

C
h

ap
ter 26

1694	 Chapter 26  The Finishing Touches

We use a Select Case procedure to test the value of the label Control ID passed into the
onGetLabel procedure. For the lblWelcome label, we update the display by calling the
GetWelcomeMessage function to retrieve the name of the user currently signed into the
database. For the lblToday label, we retrieve the current date from the Windows system
date and format it to display as Long Date. For the lblPending label, we retrieve the number
of pending events for the current user by calling the GetPendingEventsNumber function.

You might be wondering, when does Access know to update these labels? On the
frmSignOn form, you have to select a user name and provide a password. In the Click
event of the cmdSignOn command button, we have this code just before the form close code:

 ' Refresh the data in the Ribbon

 gobjRibbon1.InvalidateControl "lblWelcome"

 gobjRibbon1.InvalidateControl "lblPending"

A few lines above this code, Access saves the user name to a public string variable,
gstrThisUser, which is referenced in the GetWelcomeMessage function and the GetPend-
ingEventsNumber function. We invalidate the lblWelcome control in the cmdSignOn
procedure, which causes Access to refresh this specific control and change the label’s text.
We also invalidate the lblPending control so that the correct number of pending events is
displayed for the current user. After you’ve saved a pointer to the ribbon, you can invalidate
the controls or the entire ribbon as often as you need.

INSIDE OUT  Adjusting Ribbon State

You can minimize the ribbon programmatically by using the following SendKeys

command:

SendKeys "^{F1}", True

That command sends a Ctrl+F1 key combination. The key combination acts like a

toggle for the current state of the ribbon. If the ribbon is currently expanded, Access

minimizes the ribbon. If you use this key combination when the ribbon is currently

minimized, Access expands the ribbon. You can also check the current height of the

ribbon using the following line of VBA code:

Application.CommandBars.Item("Ribbon").Height

	 Using Ribbon Attributes	 1695

C
h

ap
te

r
26

Loading Images into Custom Controls

The easiest way to display images on a custom button in your custom ribbon is to use the
imageMso attribute. As you’ll recall from earlier in this chapter, you can use the imageMso
attribute to apply an existing icon from Access 2010 or from any Office 2010 system appli-
cations that support ribbons. All the custom command buttons on the ribbons in the Con-
rad Systems Contacts and Housing Reservations sample databases reuse icons and images
from other built-in controls.

You can also load images from an attachment field stored in a table or use the LoadPicture
method to load image files stored in a folder. In the Housing Reservations sample database
(Housing.accdb), we store all the pictures for the employees in a table called USysRib-
bonImages. (Note that you can name your table whatever you like, but we chose to name
our table with the USys prefix so that it displays in the Navigation pane only if you have
enabled your Navigation Options to display system objects.) Open the Housing.accdb
database now (and close Contacts.accdb if you have it open), and click OK on the open-
ing message box. Next, open the frmSplash form in Form view. After a few seconds, the
frmSplash form closes, and then frmSignOn opens. Select Jeff’s name from the User Name
combo box, and enter password in the Password text box. (All the passwords in this sample
database are password.) Finally, click Sign On to sign into the database under Jeff’s name.
Access opens the frmMain form and displays a custom ribbon with Jeff’s picture in the
News group, as shown in Figure 26-13.

Figure 26-13  You can load images from Attachment fields onto custom controls in your ribbons.

Access is placing the image on a button in the News group, cmdPicture, that has no onAc-
tion attribute assigned to it. (We don’t want anything to happen if you click the button, but
we’re using the button to display our custom image.) If you were to sign in as a different
user, Access would update the picture because we invalidated the control in the Click event
of the cmdSignOn button on the frmSignOn form. To set the picture, we use the getImage
callback attribute of the custom cmdPicture control in our main ribbon. The getImage call-
back runs the GetButtonImage function in the modRibbonCallbacks module listed here:

Public Function GetButtonImage(control As IRibbonControl, ByRef image)

 ' This function displays a picture of the logged on user

 ' The command button in the Welcome group will update from

 ' a picture stored in an Attachment field in the table USysRibbonImages.

 ' We have to load a hidden form in order to grab the picture

C
h

ap
ter 26

1696	 Chapter 26  The Finishing Touches

 Dim frmRibbonImages As Form

 Static rsForm As DAO.Recordset2

 If frmRibbonImages Is Nothing Then

 ' Form is not opened, so open it

 DoCmd.OpenForm "zfrmUSysRibbonImages", WindowMode:=acHidden

 Set frmRibbonImages = Forms("zfrmUSysRibbonImages")

 Set rsForm = frmRibbonImages.Recordset

 End If

 ' Find the picture for the logged on user

 rsForm.FindFirst "UserID='" & gstrThisEmployee & "'"

 If rsForm.NoMatch Then

 ' User not found so set the image to nothing

 Set image = Nothing

 Else

 ' Found a match, so update the display on the Ribbon

 Set image = frmRibbonImages.RibbonImages.PictureDisp

 End If

 Set rsForm = Nothing

End Function

To load an image from an attachment field onto a custom ribbon, you have to assign an
object that is in the correct format. The PictureDisp property of an Attachment control
bound to a picture in an attachment field returns the correct object type. Using an open
form bound to the table that contains the attachment field is a simple way to get what
we need. (You could also write a COM object in C#, but that’s far beyond the scope of this
book.) We created a special form, zfrmUSysRibbonImages, especially for this purpose. The
code opens this form in hidden mode so it never becomes visible on screen. Next, the code
searches the records in the table for a match to the public variable that contains the name
of the user signed into the database—gstrThisEmployee. If no match is found, Access sets
the image to nothing. If a match is found, Access updates the image on the custom button
with the picture stored in the attachment field.

Hiding Options on the Backstage View

You’ve previously learned that if you set the StartFromScratch attribute of your customiza-
tion to True, Access hides some of the options available when your ribbon is open. You can
selectively hide buttons and commands on the Backstage view by using the <backstage>
tags and setting the visible attribute for the built-in tabs and controls to false. For example,
if you want to hide everything on the Backstage view except the recent list of database files
opened, use the following XML example in a custom ribbon that you load:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

 <ribbon startFromScratch="false">

 <!-- Your custom Ribbon definition here -->

 </ribbon>

 <backstage>

 <tab idMso="TabInfo" visible="false"/>

	 Using Ribbon Attributes	 1697

C
h

ap
te

r
26

 <button idMso="FileSave" visible="false"/>

 <button idMso="SaveObjectAs" visible="false"/>

 <button idMso="FileSaveAsCurrentFileFormat" visible="false"/>

 <button idMso="FileOpen" visible="false"/>

 <button idMso="FileCloseDatabase" visible="false"/>

 <tab idMso="TabRecent" visible="false"/>

 <tab idMso="TabNew" visible="false"/>

 <tab idMso="TabPrint" visible="false"/>

 <tab idMso="TabShare" visible="false"/>

 <tab idMso="TabHelp" visible="false"/>

 <button idMso="ApplicationOptionsDialog" visible="false"/>

 <button idMso="FileExit" visible="false"/>

 </backstage>

</customUI>

If you click the Backstage view using this customization, you’ll see a list of recent database
files opened for your users, as shown in Figure 26-14.

Figure 26-14  You now have limited options available when you click the Backstage view.

Adding Options to the Backstage View

In addition to hiding options on the Backstage view, you might want to create your own
options on the Backstage view. A full discussion of all the elements you can add to the
Backstage view goes far beyond the scope of this chapter, but we’ll show you a sample of
some of the customizing you can do to the Backstage view. In the Back Office Software
System web database (BOSS.accdb), we created a custom ribbon that displays when you
open the database. This custom ribbon—rbnMain—does not hide or add any elements to
the default Backstage view. We also created a second, more advanced custom ribbon in this
database—rbnMainBackstage—that displays our own Backstage customizations. Close any
database you might have open, and then open the BOSS.accdb sample web database. Next,
click the File tab on the Backstage view, click Options, and then click the Current Database
category. In the Ribbon And Toolbar Options section, click the arrow on the Ribbon Name
option, and then select your rbnMainBackstage from the list of loaded ribbons. Click OK
to save your changes, and close the Access Options dialog box. Finally, close the database,

C
h

ap
ter 26

1698	 Chapter 26  The Finishing Touches

reopen the database so Access loads the different ribbon, and then click the File tab on the
Backstage view. You’ll see a list of recent database files opened for your users, the Exit but-
ton to close Access, and a custom tab called BOSS Information, as shown in Figure 26-15.

Figure 26-15  You can add your own customization to the Backstage view.

If you open the USysRibbons table in this database, navigate to the third record and exam-
ine the custom XML for the rbnMainBackstage ribbon, you’ll see the following (note that
we’ve omitted the first part of the ribbon customization for brevity):

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

 <ribbon startFromScratch="false">

....(remaining XML customization here)....

 </ribbon>

 <backstage>

 <tab idMso="TabInfo" visible="false"/>

 <button idMso="FileSave" visible="false"/>

 <button idMso="SaveObjectAs" visible="false"/>

 <button idMso="FileSaveAsCurrentFileFormat" visible="false"/>

 <button idMso="FileOpen" visible="false"/>

 <button idMso="FileCloseDatabase" visible="false"/>

 <tab idMso="TabRecent" visible="false"/>

 <tab idMso="TabNew" visible="false"/>

 <tab idMso="TabPrint" visible="false"/>

 <tab idMso="TabShare" visible="false"/>

 <tab idMso="TabHelp" visible="false"/>

 <button idMso="ApplicationOptionsDialog" visible="false"/>

 <tab id="plcInfo" label="BOSS Information" title="Program Options">

 <firstColumn>

 <taskFormGroup id="frmbtnSlab1" label="BO$$ - Version 1.0">

 <category id="myTask" label="About" >

 <task id="tskTest" description="Copyright Information" imageMso="Help">

 <group id="s1" label="Back Office Software System - Version 1.0"

 style="warning">

 <topItems>

 <layoutContainer id="layOptions1" layoutChildren="vertical">

 <labelControl id="lblFrmOptions1" label="Restaurant Management Access

	 Using Ribbon Attributes	 1699

C
h

ap
te

r
26

 Services Web Application"/>

 <labelControl id="lblFrmOptions2" label=" "/>

 <labelControl id="lblFrmOptions3" label="© 2010 Conrad Systems Development"/>

 <labelControl id="lblFrmOptions4" label="Commercial resale prohibited"/>

 <labelControl id="lblFrmOptions5" label="Microsoft Access 2010 Inside Out"/>

 <labelControl id="lblFrmOptions6" label=" "/>

 <hyperlink id="hlnkCSD" label=http://www.AccessJunkie.com

 target="http://www.AccessJunkie.com"/>

 </layoutContainer>

 </topItems>

 </group>

 </task>

 </category>

 </taskFormGroup>

 </firstColumn>

 </tab>

 </backstage>

</customUI>

In this ribbon customization, we left the Exit option available on the Backstage view so
users can exit the application. After we hide the existing options on the Backstage view, the
remaining XML customization creates a new tab—plcInfo—to display information about
the application using buttons, labels, and a hyperlink.

INSIDE OUT  Adding a Custom Button to the Backstage View

You can also add your own custom button to the Backstage view by adding XML such

as the following example:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

 <ribbon startFromScratch="false">

 <!-- Ribbon XML -->

 </ribbon>

 <backstage>

 <button id="btnBackstage" label="My Button" imageMso="Help"

 onAction="MyCustomAction"/>

 </backstage>

</customUI>

Let’s take a look at attributes you can assign to Backstage view controls. Table 26-6 lists the
Backstage view attributes you can use in your XML customization.

C
h

ap
ter 26

1700	 Chapter 26  The Finishing Touches

Table 26-6  Backstage View Attributes

Attribute Value or Type Description

align topLeft, top, topRight, left,
center, right, bottomLeft,
bottom, or bottomRight

Determines where child con-
trols will be aligned in a
layoutContainer.

alignLabel topLeft, top, topRight, left,
center, right, bottomLeft,
bottom, or bottomRight

Determines the alignment of a
label relative to its control.

allowedTaskSizes largeMediumSmall, largeMe-
dium, large, mediumSmall,
medium, or small

Determines the sizes that are
allowed for a task control in a
taskGroup or taskFormGroup
control.

altText String Specifies text that appears when
the mouse is hovered over an
imageControl.

columnWidthPercent Positive Integer Determines the division of col-
umns as a percentage of the
width of an entire tab.

expand horizontal, vertical, both, or
neither

Determines how a control
expands in a container.

firstColumnMaxWidth Positive Integer Determines the maximum width
(in pixels) of the first column in
a tab.

firstColumnMinWidth Positive Integer Determines the minimum width
(in pixels) of the first column in
a tab.

getAltText Callback Defines the macro or proce-
dure that sets the altText for an
imageControl.

getHelperText Callback Defines the macro or procedure
that sets the helperText for a
group.

getStyle Callback Defines the macro or procedure
that sets the style for a group.

helperText String Specifies additional text to appear
with a group.

isDefinitive True or False Determines whether an action
should close the Backstage.

layoutChildren horizontal or vertical Determines the layout direc-
tion for child controls in a
layoutContainer.

	 Using Ribbon Attributes	 1701

C
h

ap
te

r
26

Attribute Value or Type Description

onHide Callback Defines the macro or procedure
that runs when the Backstage is
closed.

onShow Callback Defines the macro or procedure
that runs when the Backstage is
opened.

secondColumnMaxWidth Positive Integer Determines the maximum width
in pixels of the second column in
a tab.

secondColumnMinWidth Positive Integer Determines the minimum width
in pixels of the second column in
a tab.

style normal, warning, or error Determines the appearance for a
group.

style normal, borderless, or large Determines the size and style for
a button.

In addition to attributes you can use in your XML customization, you can create many types
of Backstage view controls. Table 26-7 lists the types of controls you can use in a custom
Backstage view definition and their associated attributes (properties) and callbacks (event
properties).

Table 26-7  Backstage Controls

Attribute Value or Type Callbacks

backstage onHide, onShow

bottomItems None—defined in a Backstage group
element

None—defined in a Backstage
group element

button enabled, id, idMso, idQ, image, ima-
geMso, insertAfterMso, insertAfterQ,
insertBeforeMso, insertBeforeQ, isDefini-
tive, keyTip, label, tag, visible

getEnabled, getImage, get-
Keytip, getLabel, getVisible,
onAction

category id, idMso, idQ, insertAfterMso, inser-
tAfterQ, insertBeforeMso, insertBeforeQ,
label, tag, visible

getLabel, getVisible,

checkBox description, enabled, expand, id, idQ,
keyTip, label, screenTip, superTip, tag,
visible

getDescription, getEnabled,
getKeytip, getLabel, get-
Pressed, getScreentip, getSu-
pertip, getVisible, onAction

comboBox alignLabel, enabled, expand, id, idQ, key-
Tip, label, sizeString, tag, visible

getEnabled, getItemCount,
getItemID, getItemLabel,
getKeytip, getLabel, getText,
getVisible, and onChange

C
h

ap
ter 26

1702	 Chapter 26  The Finishing Touches

Attribute Value or Type Callbacks

dropDown alignLabel, enabled, expand, id, idQ, key-
Tip, label, screentip, sizeString, supertip,
tag, visible

getEnabled, getItemCount,
getItemID, getItemLabel, get-
Keytip, getLabel, getScreentip,
getSelectedItemIndex, getSu-
pertip, getText, getVisible, and
onAction

editBox alignLabel, enabled, expand, id, idQ,
keytip, label, maxLength, sizeString, tag,
visible

getEnabled, getKeytip, getLa-
bel, getText, getVisible

firstColumn None—defined in a Backstage tab
element

None—defined in a Backstage
tab element

group helperText, id, idMso, idQ, insertAfter-
Mso, insertAfterQ, insertBeforeMso,
insertBeforeQ, label, showLabel, style,
tag, visible

getHelperText, getLabel,
getShowLabel, getStyle,
getVisible

groupBox expand, id, idQ, label, and tag getLabel

hyperlink alignLabel, enabled, expand, id, idQ,
image, imageMso, keytip, label, screentip,
supertip, tag, target, visible

getEnabled, getImage, get-
Keytip, getLabel, getScreentip,
getSupertip, getTarget, get-
Visible, onAction

imageControl altText, enabled, id, idQ, image, ima-
geMso, tag, visible

getAltText, getEnabled, getI-
mage, getVisible

labelControl alignLabel, enabled, expand, id, idQ,
label, noWrap, tag, visible

getEnabled, getLabel,
getVisible

layoutContainer align, expand, id, idQ, layoutChildren,
visible

None

menu enabled, id, idQ, image, imageMso, key-
tip, label, screentip, supertip, tag, visible

getEnabled, getImage, get-
Keytip, getLabel, getScreentip,
getSupertip, getVisible,

menuGroup id, idQ, itemSize, label, and tag getLabel

primaryItem None—defined in a Backstage group
element

None—defined in a Backstage
group element

radioGroup alignLabel, enabled, expand, id, idQ, key-
tip, label, tag, visible

getEnabled, getItemCount,
getItemID, getItemLabel,
getKeytip, getLabel, getSe-
lectedItemIndex, getVisible,
onAction

secondColumn None—defined in a Backstage tab
element

None—defined in a Backstage
tab element

	 Using Ribbon Attributes	 1703

C
h

ap
te

r
26

Attribute Value or Type Callbacks

tab columnWidthPercent, firstColumn-
MinWidth, firstColumnMaxWidth,
secondColumnMinWidth, secondColum-
nMaxWidth, id, idMso, idQ, insertAfter-
Mso, insertAfterQ, insertBeforeMso,
insertBeforeQ, enabled, label, visible,
keyTip, title, tag

getEnabled, getKeytip, getLa-
bel, getTitle, getVisible

task description, enabled, id, idMso, idQ,
image, imageMso, insertAfterMso, inser-
tAfterQ, insertBeforeMso, insertBeforeQ,
keyTip, label, tag, visible

getDescription, getEnabled,
getImage, getKeytip, getLa-
bel, getVisible

taskFormGroup allowedTaskSizes, helperText, id, idMso,
idQ, label, tag, and visible

getHelperText, getLabel, get-
ShowLabel, getVisible

taskGroup allowedTaskSizes, helperText, id, idMso,
idQ, insertAfterMso, insertAfterQ, insert-
BeforeMso, insertBeforeQ, label, tag, and
visible

getHelperText, getLabel, get-
ShowLabel, getVisible

toggleButton description, enabled, id, idQ, image, ima-
geMso, keytip, label, tag, visible

getDescription, getEnabled,
getImage, getKeytip, get-
Pressed, getLabel, getVisible

topItems None—defined in a Backstage group
element

None—defined in a Backstage
group element

Creating a Custom Quick Access Toolbar

If you take a close look at the Quick Access Toolbar in Figure 26-15, you’ll notice that we
also have our own custom Quick Access Toolbar. You’ve previously learned that if you set the
StartFromScratch attribute of your customization to True, Access disables all the buttons on
the Quick Access Toolbar. You can selectively add buttons and commands to your custom
Quick Access Toolbar by using the <qat> and <documentControls> tags. Near the top of the
rbnMain and rbnMainBackstage ribbons in the USysRibbons table, you can see the following
XML that we’re using to show a few of the built-in commands on the Quick Access Toolbar:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

 <ribbon startFromScratch="false">

 <qat>

 <documentControls>

 <button idMso="PrintDialogAccess"/>

 <button idMso="Synchronize" />

 <button idMso="DatabaseServerCompatibilityCheckDatabase" />

 </documentControls>

 </qat>

....(remaining XML customization here)....

 </ribbon>

</customUI>

C
h

ap
ter 26

1704	 Chapter 26  The Finishing Touches

Setting Focus to a Tab

In the Conrad Systems Contacts and Housing Reservations sample databases, we want to
display our main ribbon at all times. For the data entry forms, we want to still see the main
tab when the custom ribbon for forms is open but put the focus on the Navigation tab as a
visual cue for the users of the application. Instead, the Navigation tab opens to the right of
the main tab but does not receive focus. Fortunately, RibbonX does provide a TabSetForm-
ReportExtensibility element that you can use for these cases.

When you use the TabSetFormReportExtensibility element, Access places the content into
the current tabSet, moves the focus to this tab, and places a caption above the tab. The tab
caption matches the Caption property of the current form or report if this property is set.
If no caption is set, Access uses the current name of the object. In the rbnForms custom
ribbon in both Conrad Systems Contacts and Housing Reservations, we duplicated all the
controls in the main ribbon—rbnCSD or rbnProseware—and then added the XML necessary
to display the tab we wanted with groups and controls for form navigation. The specific
customization for these follows this format:

 <contextualTabs>

 <tabSet idMso="TabSetFormReportExtensibility">

 <tab id="tabRecNav" label="Record Navigation">

....(remaining XML customization here)....

 </tab>

 </tabSet>

</contextualTabs>

INSIDE OUT  Use VBA to Change Ribbon Tab Focus

In Office 2007, the RibbonX architecture did not support a method to place the focus

on a specific tab. In Office 2010, Microsoft now added a method that you can use to set

focus to a ribbon tab. An example VBA call in Access to put focus on the main ribbon

tab—rbnProseware—in the Housing.accdb would be the following:

gobjRibbon1.ActivateTab "tabProseware"

In essence, we created our own contextual tab that appears next to the main ribbon tab but
receives the focus when the data entry forms open, as shown in Figure 26-16.

	 Disabling Layout View	 1705

C
h

ap
te

r
26

Figure 26-16  Use the TabSetFormReportExtensibility element to set focus to a specific tab.

Quite frankly, we could write an entire book about ribbon customization, but you should
have enough information at this point to get started building your own custom ribbons.
For more information, visit the Microsoft Developer Network website at http://msdn.micro-
soft.com/. In the remainder of this chapter, you’ll learn additional techniques that you can
use to customize your applications for your users.

INSIDE OUT  Use One Line of VBA to Hide All Ribbon Elements

If you’d like to hide all elements of the ribbon, including the Quick Access Toolbar and

Backstage view, you can write one line of Visual Basic code. In the Load event of your

startup form, enter the following code to hide everything:

DoCmd.ShowToolbar "Ribbon", acToolbarNo

Disabling Layout View

You might have noticed as you built new forms and reports in your Access 2010 client data-
bases that Access sets the new Allow Layout View property to Yes by default. This is a handy
feature while you’re building forms and reports because it allows you to align, position, and
resize controls while you view live data. When you’re ready to put your application in pro-
duction, however, you need to reset this new property to No for all your forms and reports
so that the users see your forms and reports as you intended. You could open every form
and report in Design view, change the property, and save the form or report. But why do it
the hard way? In the Access Options dialog box, you can select an option that disables the
ability to open forms and reports in Layout view. Click the File tab on the Backstage view,
click Options, and then click the Current Database category. In the Application Options sec-
tion, clear the Enable Layout View check box, as shown in Figure 26-17.

C
h

ap
ter 26

1706	 Chapter 26  The Finishing Touches

Figure 26-17  You can disable the ability to view objects in Layout view in the Access Options
dialog box.

When you clear this option, Access does not show Layout View as an option in the Views
group on the ribbon or on any shortcut menus.

Controlling How Your Application Starts and Runs

Especially if you’re distributing your application for others to use, you probably want your
application to automatically start when the user opens your database. You’ll also want to
create a main form, such as a navigation form, to help the user navigate to the various parts
of your application. You should also set properties and write code to ensure that your user
can cleanly exit your application.

Setting Startup Properties for Your Database

At this point, you know how to build all the pieces you need to fully implement your data-
base application. But what if you want your application to start automatically when you
open your database? One way is to create a macro named Autoexec—Access always runs
this macro if it exists when you open the database (unless you hold down the Shift key
when you open the database). In the Conrad Systems Contacts database, we first use an
AutoExec macro to determine whether the database is being run in a trusted environment.
You can also specify an opening form in the startup properties for the database. You can set
these properties by clicking the File tab on the Backstage view, clicking Options, and then
clicking the Current Database category, as shown in Figure 26-18.

	 Controlling How Your Application Starts and Runs	 1707

C
h

ap
te

r
26

Figure 26-18  You can set startup properties for your database in the Current Database category
of the Access Options dialog box.

You can specify which form opens your database by selecting a form from the Display Form
list. You can also specify a custom title for the application, an icon for the application, and
a custom ribbon to override the built-in ribbon. If you always open the database with its
folder set to the current directory, you can simply enter the icon file name, as shown in Fig-
ure 26-18. If you’re not sure which folder will be current when the application opens, you
should enter a fully qualified file name location. Note that you can also ask Access to dis-
play the icon you specify as the form and report icon instead of the standard Access icons.

If you clear the Display Navigation Pane check box, Access hides the Navigation pane when
your application starts. (As you’ll learn in the next section, you can also write code that
executes in your startup form to ensure that the Navigation pane is hidden.) You can also
hide the status bar if you want by clearing the Display Status Bar check box. We like to use
the SysCmd function to display information on the status bar, so we usually leave the Dis-
play Status Bar check box selected. We recommend that you always clear the Enable Design
Changes For Tables In Datasheet View (For This Database) check box if you’re using a client
database. If you leave this check box selected, your users can make design changes to your
tables displayed in Datasheet view, as well as any forms that open in Datasheet view. Note
that this option is selected by default in a web database and is dimmed, so you cannot
change the setting.

C
h

ap
ter 26

1708	 Chapter 26  The Finishing Touches

Finally, you can disable special keys—such as F11 to reveal the Navigation pane, Ctrl+G to
open the Debug window, or Ctrl+Break to halt code execution—by clearing the Use Access
Special Keys check box. As you can see, you have many powerful options for customizing
how your application starts and how it operates.

Starting and Stopping Your Application

Although you can set startup properties asking Access to hide the Navigation pane, you
might want to include code in the Load event of your startup form to make sure that it is
hidden. All the sample databases provided with this book open the frmCopyright form as
the startup form. Note that the AutoExec macro in these sample databases first checks to
see whether the database is running in a trusted location. If the database is in a trusted
location, the macro opens frmCopyright; otherwise, the macro opens the fdlgNotTrusted
form followed by the frmCopyrightNotTrusted form. The copyright forms display informa-
tion about the database. In the trusted version, code behind the form checks connections
to linked tables. In both the Conrad Systems Contacts and Housing Reservations sample
applications, the code behind the frmCopyright form tells you to open the frmSplash form
to actually start the application.

When the frmSplash form opens, code in the Load event uses the following procedure to
make sure the Navigation pane is hidden:

 ' Select the Navigation Pane

 DoCmd.SelectObject acForm, "frmSplash", True

 ' .. and hide it

 RunCommand acCmdWindowHide

The procedure hides the Navigation pane by selecting a known object in the Navigation
pane to give the Navigation pane the focus and then executing the WindowHide com-
mand. The splash form waits for a timer to expire (the Timer event procedure) and then
opens a form to sign on to the application. When you sign on successfully, the frmMain
form finally opens.

The frmMain form in the Conrad Systems Contacts application has no Close button and no
control menu button. The database also has an AutoKeys macro defined that intercepts any
attempt to close a window using the Ctrl+F4 keys. (You’ll learn about creating an AutoKeys
macro in the next section.) Therefore, you must click the Exit button on the frmMain form
to close the application. On the other hand, the frmMain form in the Housing Reservations
application does allow you to press Ctrl+F4 or click the Close button to close the form and
exit the application.

	 Controlling How Your Application Starts and Runs	 1709

C
h

ap
te

r
26

You should always write code to clean up any open forms, reset variables, and close any
open recordsets when the user asks to exit your application. Because the user can’t close
the frmMain form in Conrad Systems Contacts application except by clicking Exit, you’ll find
such cleanup code in the command button’s Click event. In the frmMain form in the Hous-
ing Reservations database, the cleanup code is in the form’s Close event procedure. The
code in both forms is similar, so here’s the exit code in the Conrad Systems Contacts sample
application:

Private Sub cmdExit_Click()

Dim intErr As Integer, frm As Form, intI As Integer

Dim strData As String, strDir As String

Dim lngOpen As Long, datBackup As Date

Dim strLowBkp As String, strBkp As String, intBkp As Integer

Dim db As DAO.Database, rst As DAO.Recordset

 If vbNo = MsgBox("Are you sure you want to exit?", _

 vbYesNo + vbQuestion + vbDefaultButton2, _

 gstrAppTitle) Then

 Exit Sub

 End If

 ' Trap any errors

 On Error Resume Next

 ' Make sure all forms are closed

 For intI = (Forms.Count - 1) To 0 Step -1

 Set frm = Forms(intI)

 ' Don't close myself!

 If frm.Name <> "frmMain" Then

 ' Use the form's "Cancel" routine

 frm.cmdCancel_Click

 DoEvents

 End If

 ' Note any error that occurred

 If Err <> 0 Then intErr = -1

 Next intI

 ' Log any error beyond here

 On Error GoTo frmMain_Error

 ' Skip backup check if there were errors

 If intErr = 0 Then

 Set db = CurrentDb

 ' Open ztblVersion to see if we need to do a backup

 Set rst = db.OpenRecordset("ztblVersion", dbOpenDynaset)

 rst.MoveFirst

 lngOpen = rst!OpenCount

 datBackup = rst!LastBackup

 rst.Close

 Set rst = Nothing

 ' If the user has opened 10 times

 ' or last backup was more than 2 weeks ago...

C
h

ap
ter 26

1710	 Chapter 26  The Finishing Touches

 If (lngOpen Mod 10 = 0) Or ((Date - datBackup) > 14) Then

 ' Ask if they want to backup...

 If vbYes = MsgBox("CSD highly recommends backing up " & _

 "your data to avoid " & _

 "any accidental data loss. Would you like to backup now?", _

 vbYesNo + vbQuestion, gstrAppTitle) Then

 ' Get the name of the data file

 strData = Mid(db.TableDefs("ztblVersion").Connect, 11)

 ' Get the name of its folder

 strDir = Left(strData, InStrRev(strData, "\"))

 ' See if the "BackupData" folder exists

 If Len(Dir(strDir & "BackupData", vbDirectory)) = 0 Then

 ' Nope, build it!

 MkDir strDir & "BackupData"

 End If

 ' Now find any existing backups - keep only three

 strBkp = Dir(strDir & "BackupData\CSDBkp*.accdb")

 Do While Len(strBkp) > 0

 intBkp = intBkp + 1

 If (strBkp < strLowBkp) Or (Len(strLowBkp) = 0) Then

 ' Save the name of the oldest backup found

 strLowBkp = strBkp

 End If

 ' Get the next file

 strBkp = Dir

 Loop

 ' If more than two backup files

 If intBkp > 2 Then

 ' Delete the oldest one

 Kill strDir & "BackupData\" & strLowBkp

 End If

 ' Now, setup new backup name based on today's date

 strBkp = strDir & "BackupData\CSDBkp" & _

 Format(Date, "yymmdd") & ".accdb"

 ' Make sure the target file doesn't exist

 If Len(Dir(strBkp)) > 0 Then Kill strBkp

 ' Create the backup file using Compact

 DBEngine.CompactDatabase strData, strBkp

 ' Now update the backup date

 db.Execute "UPDATE ztblVersion SET LastBackup = #" & _

 Date & "#", dbFailOnError

 MsgBox "Backup created successfully!", vbInformation, gstrAppTitle

 End If

 ' See if error log has 20 or more entries

 If db.TableDefs("ErrorLog").RecordCount > 20 Then

 ' Don't ask if they've said not to...

 If Not (DLookup("DontSendError", "tblUsers", _

 "UserName = '" & gstrThisUser & "'")) Then

 DoCmd.OpenForm "fdlgErrorSend", WindowMode:=acDialog

 Else

 db.Execute "DELETE * FROM ErrorLog", dbFailOnError

 End If

	 Controlling How Your Application Starts and Runs	 1711

C
h

ap
te

r
26

 End If

 End If

 Set db = Nothing

 End If

 ' Restore original keyboard behavior

 ' Disabled in this sample

' Application.SetOption "Behavior Entering Field", gintEnterField

' Application.SetOption "Move After Enter", gintMoveEnter

' Application.SetOption "Arrow Key Behavior", gintArrowKey

 ' We're outta here!

frmMain_Exit:

 On Error GoTo 0

 DoCmd.Close acForm, Me.Name

 ' In a production application, would quit here

 DoCmd.SelectObject acForm, "frmMain", True

 Exit Sub

frmMain_Error:

 ErrorLog "frmMain", Err, Error

 Resume frmMain_Exit

End Sub

After confirming that the user really wants to exit, the code looks at every open form. All
forms have a public cmdCancel_Click event procedure that this code can call to ask the
form to clear any pending edits and close itself. The DoEvents statement gives that code a
chance to complete before going on to the next form. Notice that the code skips the form
named frmMain (the form where this code is running).

If there were no errors closing all the forms, then the code opens a table that contains a
count of how many times this application has run and the date of the last backup. Every
10th time the application has run, or two weeks after the last backup, the code offers to
create a backup of the application data. If the user confirms creating a backup, the code
creates a Backup subfolder if it does not exist, deletes the oldest backup if there are three
or more in the folder, and then backs up the data using the CompactDatabase method of
the DBEngine.

Next, the code checks to see whether more than 20 errors have been logged by code run-
ning in the application. If so, it opens a dialog box that gives the user the option to e-mail
the error log, print out the error log, skip printing the error log this time, or turn off the
option to print the log. Because the error log option form opens in Dialog mode, this code
waits until that form closes. Finally, the code closes this form and selects an object in the
Navigation pane to reveal that pane. If this weren’t a demonstration application, the code
would use the Quit method of the Application object to close and exit Access.

This might seem like a lot of extra work, but taking care of details like this really gives your
application a professional polish.

C
h

ap
ter 26

1712	 Chapter 26  The Finishing Touches

Creating an AutoKeys Macro

As noted earlier, the Conrad Systems Contacts sample application (Contacts.accdb) has
an AutoKeys macro defined to intercept pressing Ctrl+F4. You can normally press this key
combination to close any window that has the focus, but the application is designed so
that you must close the frmMain form using the Exit button, not Ctrl+F4. You can create an
AutoKeys macro to define most keystrokes that you want to intercept and handle in some
other way. You can define something as simple as a StopMacro action to effectively disable
the keystroke, create a series of macro actions that respond to the keystrokes, or use the
RunCode action to call complex Visual Basic code. Figure 26-19 shows you the AutoKeys
macro in the Conrad Systems Contacts database, open in Design view.

Figure 26-19  The design of this AutoKeys macro intercepts the Ctrl+F4 combination.

The critical part of a macro defined as an AutoKeys macro is the submacro name. When
the submacro name is a special combination of characters that match a key name, the
submacro executes whenever you press those keys. Table 26-8 shows you how to construct
submacro names in an AutoKeys macro to respond to specific keys.

Table 26-8  AutoKeys Macro Key Codes

AutoKeys Submacro Name Key Intercepted

^letter or ^number Ctrl+[the named letter or number key]

{Fn} The named function key (F1–F12)

^{Fn} Ctrl+[the named function key]

+{Fn} Shift+[the named function key]

{Insert} Insert

^{Insert} Ctrl+Insert

+{Insert} Shift+Insert

	 Performing a Final Visual Basic Compile	 1713

C
h

ap
te

r
26

AutoKeys Submacro Name Key Intercepted

{Delete} or {Del} Delete

^{Delete} or ^{Del} Ctrl+Delete

+{Delete} or +{Del} Shift+Delete

Keep in mind that you can also intercept any keystroke on a form in the KeyDown and Key-
Press events when you want to trap a particular key on only one form or control.

Performing a Final Visual Basic Compile

The very last task you should perform before placing your application in production is to
compile and save all your Visual Basic procedures. When you do this, Access stores a com-
piled version of the code in your database. Access uses the compiled code when it needs to
execute a procedure you have written. If you don’t do this, Access has to load and interpret
your procedures the first time you reference them—each and every time you start your
application. For example, if you have several procedures in a form module, the form will
open more slowly the first time because Access has to also load and compile the code.

To compile and save all the Visual Basic procedures in your application, open any mod-
ule—either a module object or a module associated with a form or report. Choose Compile
project-name from the Debug menu, as shown in Figure 26-20. If your code compiles suc-
cessfully, be sure to save the result by choosing File, Save or by clicking the Save button
on the toolbar. (If you have errors in any of your code, the compiler halts at the first error
it finds, displays the line of code, and displays an error message dialog box.) After success-
fully compiling and saving your Visual Basic project, close your database and compact it, as
described in Chapter 5, “Modifying Your Table Design.”

Figure 26-20  Choose the Debug, Compile project-name command to compile all the Visual
Basic procedures in your database.

C
h

ap
ter 26

1714	 Chapter 26  The Finishing Touches

As you’ve seen in this book, you can quickly learn to build complex client and web appli-
cations. You can use the relational database management system (RDMS) in Access 2010
to store and manage your data locally, on a network, or on a server running Microsoft
SharePoint, and you can access information in other popular database formats or in any
server- or mainframe-hosted database that supports the Open Database Connectivity
(ODBC) standard. You can get started with macros to become familiar with event-oriented
programming in web and client databases. With a little practice, you’ll soon find yourself
writing Visual Basic event procedures like a pro. In Chapter 27, “Distributing Your Applica-
tion,” you’ll learn how to set up your application so that you can distribute it to others.

