

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/learning/en/us/Books/12914.aspx

9780735626188

© 2009 Hitachi Consulting. All rights reserved.

Microsoft® SQL® Server
2008 MDX Step by Step

Bryan C. Smith
C. Ryan Clay
Hitachi Consulting

		 ix

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Table of Contents
Acknowledgements . xiii

Introduction . xv

Part I	 MDX Fundamentals

	 1	 Welcome to MDX . . 3
The Business Intelligence Landscape . 3

The Dimensional Model . 5

Implementing the Dimensional Model . 7

The Relational Data Warehouse . 8

The Multidimensional Data Warehouse . 8

The MDX Language . 11

Chapter 1 Quick Reference . 14

	 2	 Using the MDX Query Editor . 15
SQL Server Management Studio . 15

The MDX Query Editor . 19

Building a Simple MDX Query . 23

Exploring the Step-by-Step Cube . . 25

Building a More Complex Query . 29

Chapter 2 Quick Reference . 35

	 3	 Understanding Tuples . 37
N-dimensional Space . 37

Cube Space . . 39

Accessing Data with Tuples . 41

Understanding Cells . 43

Working with Partial Tuples . . 47

Building Tuples with User-Hierarchies . 51

x	 Table of Contents

Understanding User-Hierarchy Translation . 51

Avoiding Reference Conflicts . 55

Member Reference Shortcuts . 59

Chapter 3 Quick Reference . 60

	 4	 Working with Sets . 61
Set Basics . 61

Understanding the SELECT Statement . 68

Building Sets with Functions . 72

The Members Function . 73

The Crossjoin Function . 77

Limiting Sets . . 79

Working with Auto-Exists . 79

The Exists Function . 83

Chapter 4 Quick Reference . 88

	 5	 Working with Expressions . 91
Expression Basics . 91

Calculated Members . . 94

Building Dynamic Expressions . 98

Resolving Contextual Conflicts . 103

Avoiding Infinite Recursion . 103

Controlling Solve Order . 105

Building Complex Expressions . 109

Working with the Current Member . 109

Working with Sets in Expressions . . 115

Chapter 5 Quick Reference . 117

Part II	 MDX Functions

	 6	 Building Complex Sets . 123
Assembling Ordered Sets . 123

Retrieving the First or Last Tuples of a Set . 131

Filtering Sets . . 137

Combining Sets . 142

Performing Advanced Set Construction . 147

Assembling Sets with the Generate Function . 147

Assembling Sets with the Extract Function . 151

Chapter 6 Quick Reference . 153

	 Table of Contents	 xi

	 7	 Performing Aggregation . 157
Performing Summation . 157

Calculating Averages . 161

Calculating Averages with the Avg Function . 162

Calculating Averages with Expressions . 165

Identifying Minimum and Maximum Values . 170

Counting Tuples in Sets . 172

Chapter 7 Quick Reference . 178

	 8	 Navigating Hierarchies . 181
Accessing Immediate Relatives . 181

Accessing Extended Relatives . 189

Navigating within a Level . 203

Chapter 8 Quick Reference . 208

	 9	 Working with Time . 211
Understanding the Time Dimension . 211

Calculating an Accumulating Total . . 213

Calculating Rolling Averages . 220

Performing Period-over-Period Analysis . 222

Combining Time-Based Metrics . 229

Chapter 9 Quick Reference . 233

Part III	 MDX Applications

	 10	 Enhancing the Cube . 239
Understanding the MDX Script . . 239

Constructing Calculated Members . 247

Assembling a Basic Calculated Member . 247

Setting Calculated Member Properties . . 256

Assembling Named Sets . 266

Chapter 10 Quick Reference . 272

	 11	 Implementing Dynamic Security . 273
Understanding Dynamic Security . 273

Implementing Attribute-Hierarchy Restrictions . . 285

Restricting Standard Attribute-Hierarchies . 286

Restricting Parent-Child Hierarchies . 297

Implementing Cell-Level Restrictions . 302

Chapter 11 Quick Reference . 309

xii	 Table of Contents

	 12	 Building Reports . 311
Getting Started . 311

Connecting to Analysis Services . 316

Designing the Dataset . 320

Adding Parameters to the Dataset . . 329

Presenting the Data in the Report . 340

Chapter 12 Quick Reference . 351

Index . 353

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

		 211

Chapter 9

Working with Time
After completing this chapter, you will be able to:

n	 Explain the requirements for effective time-based analysis in Analysis Services

n	 Employ MDX functions to calculate common time-based metrics

n	 Combine time-based expressions to assemble complex metrics

Time is a critical component of business analysis. Analysts interpret the state of the business
now, often in relation to what it was in the past, with the goal of understanding what it might
be in the future.

To support this, Analysis Services provides a number of time-based MDX functions. Using
these functions, powerful metrics can be assembled. In this chapter, you learn how to employ
the time-based MDX functions to calculate some of the more frequently requested of these
metrics.

Understanding the Time Dimension
Analysis Services has no inherent awareness of the concept of time. Although at first glance
this may seem like a shortcoming of the tool, it actually affords you the flexibility to define
your time dimension in a way that reflects how time is managed in your specific organization.

At the heart of the time dimension is one or more user-hierarchies referred to as calendars.
Calendars allow you to drill down in time from higher levels of granularity, such as years, into
lower levels of granularity, such as quarters, months, and days. Figure 9-1 illustrates one such
calendar hierarchy based on the standard calendar we employ in everyday life.

When employed against calendar hierarchies, the time-based MDX functions give the
appearance of time awareness. However, most time-based functions are simply exploiting
the basic structure of the hierarchy to return the set or member required. In fact, SQL
Server Books Online goes so far as to provide the navigational equivalents of each of
the time-based functions. If you require slightly different functionality, you can use the
navigational functions to implement it yourself.

212	 Part II  MDX Functions

All Periods All Level

Level 1
(Calendar

Year)

Level 2
(Calendar
Semester)

Level 3
(Calendar
Quarter)

Level 4
(Month)

Level 5
(Date, Leaf)

CY 2003

Q1
CY 2003

Ja
nu

ar
y

20
03

Fe
br

ua
ry

 2
00

3

M
ar

ch
 2

00
3

......January 1, 2003 December 31, 2004

Q2
CY 2003

H1
CY 2003

H2
CY 2003

...

Ap
ril

 2
00

3

M
ay

 2
00

3

Ju
ne

 2
00

3

Ju
ly

 2
00

3

Au
gu

st
 2

00
3

Se
pt

em
be

r 2
00

3

O
ct

ob
er

 2
00

3

N
ov

em
be

r 2
00

3

D
ec

em
be

r 2
00

3

Q3
CY 2003

Q4
CY 2003

CY 2004

Q1
CY 2004

Ja
nu

ar
y

20
04

Fe
br

ua
ry

 2
00

4

M
ar

ch
 2

00
4

Q2
CY 2004

H1
CY 2004

H2
CY 2004

...

Ap
ril

 2
00

4

M
ay

 2
00

4

Ju
ne

 2
00

4

Ju
ly

 2
00

4

Au
gu

st
 2

00
4

Se
pt

em
be

r 2
00

4

O
ct

ob
er

 2
00

4

N
ov

em
be

r 2
00

4

D
ec

em
be

r 2
00

4

Q3
CY 2004

Q4
CY 2004

Figure 9-1  A user-hierarchy based on the standard calendar

The reliance on the calendar hierarchies for time-based functionality imposes two critical
constraints on the attributes of the time dimension. First, the members of the attributes
comprising the calendar hierarchies must be ordered in time-based sequence from the past
to the present because many time-based functions assume this order. Second, complete
sets of members for each attribute should be provided because missing members throw off
position-based navigation.

Each of these issues is addressed through cube and ETL-layer design. As an MDX developer,
you may not have the responsibility or the access required to ensure that these are addressed
in a manner appropriate to your needs. However, if you intend to successfully make use of
the time-based functions, you must make sure those responsible for assembling the time
dimension are aware of these issues.

Determining the Current Value
A very common request is to return the current value of a metric. Although determining
the current value is a seemingly simple request, it can be quite challenging.

First, you need to determine the granularity of the request. We often think of time as
continuous, but in Analysis Services time is recorded as discrete members representing
ranges of time. Between attributes, these members overlap so that the current date
member of one attribute is associated with the current month member of another and
the current quarter and year members of still others. Each of these represents quite
different ranges of time, but each represents the current time.

 Chapter 9 Working with Time 213 213

 Once you know the grain, the next challenge is to determine which member represents
the current time. A key characteristic of any data warehouse is latency. The time it takes
for changes to data in source systems to be refl ected in the data warehouse varies
from implementation to implementation, but some degree of latency is always present.
Because of this, the data warehouse is only current as of some point in the past. Knowing
this simply shifts the challenge from identifying the member associated with the current
time to identifying the member associated with the time at which the data is current.

One technique for identifying the time at which the data is current is to employ the
VBA time functions Date, Time, or Now to retrieve the current time, and then use the
VBA date math functions DateAdd or DateDiff to adjust the time for latency. You can
then use the adjusted value or parts of it extracted by using the VBA DatePart function
to locate the current time member.

 Although effective, this technique requires certainty in the amount of latency in the
data. Try as you might, you may not be able to always accurately refl ect this in the
 calculation. Considering the potential complexity of the expression logic as well, other
 alternatives should be explored.

 A preferred alternative is to incorporate a property or attribute within the time dimension
identifying a member at an appropriately low level of granularity as current. Relationships
between attributes can then be employed to identify current time members at higher
 levels of granularity. The particulars of this design-time solution to the problem of
 identifying the current time member vary with the circumstances of your data warehouse,
but the approach allows the data warehouse to tell you how up to date it is rather than
you telling it how up to date it should be.

Calculating an Accumulating Total
In business, metrics are quite frequently reported as accumulating totals. For example,
 consider reseller sales in the month of October. Although sales in this month alone are
 interesting and important, the accumulation of sales over the months of the year up to and
including October may be more interesting, especially if you are tracking sales against an
 annual target.

To calculate accumulating totals, you must determine the set of time members over which a
value is to be aggregated. This is done using the PeriodsToDate function:

PeriodsToDate([Level , [Member]])PeriodsToDate([Level , [Member]])

214 Part II MDX Functions

 The PeriodsToDate function returns the set of members from the start of a given period up
to and including a specifi ed member. The Level argument identifi es the level of the hierarchy
representing the period over which the returned set should span, whereas the Member
 argument identifi es the set’s ending member. You can think of Analysis Services as starting
with the specifi ed member, navigating up to its ancestor in the specifi ed level and then back
down to the fi rst sibling of the specifi ed member under this shared ancestor. The set returned
represents the range of members between and including these two members.

If the Member argument is not specifi ed but the Level argument is, Analysis Services infers
the current member of the hierarchy for the Member argument. If neither the Member nor
the Level argument is specifi ed, Analysis Services infers the current member of a hierarchy
in a time dimension for the Member argument and the parent level of this member for the
Level argument. For most applications of the PeriodsToDate function, you are encouraged to
 supply both arguments to ensure clarity.

Calculate year-to-date reseller sales

 1. Open the MDX Query Editor to the MDX Step-by-Step database.

 2. In the code pane, enter the following query to retrieve reseller sales for the periods to
date for the month of April 2002:

SELECT

 {([Measures].[Reseller Sales Amount])} ON COLUMNS,

 {

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].[Month].[April 2002]

)

 } ON ROWS

FROM [Step-by-Step]

 3. Execute the query and review the results.

 In the preceding query, you use the PeriodsToDate function to retrieve all months in the
year 2002 prior to and including the month of April. By specifying the Calendar Year level
of the Calendar hierarchy, Analysis Services moves from the member April 2002 to its

Calculate year-to-date reseller sales

	 Chapter 9  Working with Time	 215

ancestor along this level, CY 2002. It then selects the CY 2002 member’s first descendant
within the Month level—the level occupied by the specified member April 2002. This first
descendant, January 2002, and the specified member, April 2002, then are used to form
a range, [Date].[Calendar].[Month].[January 2002]:[Date].[Calendar].[Month].[April 2002],
which resolves to the set presented along the ROWS axis.

This query demonstrates the basic functionality of the PeriodsToDate function, but your
goal is to calculate a year-to-date total for reseller sales. Instead of using PeriodsToDate
to define a set along an axis, you can use the function to define the set over which you
aggregate values in a calculated member. As a starting point towards this goal, re-factor
the query to return all months along the ROWS axis.

	 4.	 Modify the query to retrieve reseller sales for each month:

SELECT

 {([Measures].[Reseller Sales Amount])} ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

	 5.	 Execute the query and review the results.

	 6.	 Modify the query to calculate the year-to-date cumulative reseller sales for each
member along the ROWS axis:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

216	 Part II  MDX Functions

	 7.	 Execute the query and review the results.

For each member along the ROWS axis, the PeriodsToDate function returns the set of
members from the start of its calendar year up to and including this member. Over this
set, the current measure, Reseller Sales Amount, is aggregated to calculate year-to-date
sales. Comparing the year-to-date totals to the monthly sales values for previous
months, you can verify this logic.

Note  The preceding calculation employs the Aggregate function to calculate a running
total. For more information on this and the other MDX aggregation functions, see Chapter 7,
“Performing Aggregation.”

As you review these results, notice between December 2001 and January 2002 the
value of the accumulating total “resets.” This is because these two members have
differing ancestor members within the Calendar Year level. This pattern of accumulation
and reset is observed whenever transitions between ancestors occur, as demonstrated
in the following calculations of quarter-to-date totals.

	 8.	 Add a quarter-to-date total for reseller sales to the query:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

MEMBER [Measures].[Quarter to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Quarter],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

 Chapter 9 Working with Time 217

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales]),

 ([Measures].[Quarter to Date Reseller Sales])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

 9. Execute the query and review the new Quarter To Date Reseller Sales values.

Reviewing the results, you can see the same pattern of accumulation and reset with
the Quarter To Date Reseller Sales calculated measure as you do with the Year To Date
Reseller Sales calculated measure. The only difference is that the pattern is based on a
quarterly cycle as opposed to an annual one.

Simplifying Periods-to-Date Calculations
Many of the attributes in a time dimension are assigned Type property values at design
time, identifying the attributes as representing years, quarters, months, or weeks.
Analysis Services can return period-to-date sets based on these type assignments
without the identifi cation of a level by name. This functionality is provided through the
specialized Ytd, Qtd, Mtd, and Wtd functions returning year-to-date, quarter-to-date,
month-to-date, and week-to-date sets, respectively:

Ytd([Member])

Qtd([Member])

Mtd([Member])

Wtd([Member])

These functions, collectively referred to as the xTD functions, are logically equivalent
to the PeriodsToDate function with hard-coded level arguments. Their reliance on the
proper assignment of Type property values at design time makes them more succinct
but also makes them dependent on settings into which you may have little insight.
If you use the xTD functions, it is important for you to verify the set returned.

Ytd([Member])

Qtd([Member])

Mtd([Member])

Wtd([Member])

218	 Part II  MDX Functions

To demonstrate the use of the xTD functions, the last query of the previous exercise is
rewritten using Ytd and Qtd to derive the year-to-date and quarter-to-date sets, respectively:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 Ytd([Date].[Calendar].CurrentMember),

 ([Measures].[Reseller Sales Amount])

)

MEMBER [Measures].[Quarter to Date Reseller Sales] AS

 Aggregate(

 Qtd([Date].[Calendar].CurrentMember),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales]),

 ([Measures].[Quarter to Date Reseller Sales])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

Calculating Inception-to-Date
The period-to-date calculations return a value based on a range that is restricted to a
particular period, such as a quarter or year. Occasionally, you may wish to calculate an
accumulating value across all periods for which data is recorded. This is referred to as
an inception-to-date value.

You can retrieve the inception-to-date range using the PeriodsToDate function with the
calendar’s (All) member’s level as the period identifier, as demonstrated in the following
expression:

PeriodsToDate(

 [Date].[Calendar].[(All)],

 [Date].[Calendar].CurrentMember

)

	 Chapter 9  Working with Time	 219

Although this expression is perfectly valid, many MDX developers typically calculate
inception-to-date sets employing a range-based shortcut:

Null: [Date].[Calendar].CurrentMember

The Null member reference forces Analysis Services to evaluate the range from a
position just prior to the first member of the level on which the current time member
resides. The result is the same set returned by the previous expression that employed
the PeriodsToDate function.

Whichever technique you employ, measures are aggregated over the set just as with
other period-to-date calculations, as demonstrated in the following example:

WITH

MEMBER [Measures].[Inception to Date Reseller Sales - PTD] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[(All)],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

MEMBER [Measures].[Inception to Date Reseller Sales - Range] AS

 Aggregate(

 NULL:[Date].[Calendar].CurrentMember,

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Inception to Date Reseller Sales - PTD]),

 ([Measures].[Inception to Date Reseller Sales - Range])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

220 Part II MDX Functions

Calculating Rolling Averages
 Analysts often look for changes in values over time. Natural variability in most data can
make it diffi cult to identify meaningful changes. Rolling averages are frequently employed
to smooth out some of this variation, allowing more signifi cant or longer-term changes to be
more readily identifi ed.

 A rolling average is calculated as the average of values for some number of periods before
or after (and including) the period of interest. For example, the three-month rolling average
of sales for the month of February might be determined as the average of sales for February,
January, and December. A three-month rolling average calculated in this manner is common
in business analysis.

 The heart of the rolling average calculation is the determination of the set of periods
over which values will be averaged. To support the retrieval of this set, the MDX function
LastPeriods is provided:

LastPeriods(n [, Member])

 The LastPeriods function returns a set of n members before or after (and including) a
 specifi ed member of a time hierarchy. If a positive n value is provided, the set returned
 includes the members preceding the member of interest. If a negative n value is provided,
the set returned includes the members following the member of interest.

 The function’s second argument is optional. If the second argument is not supplied, Analysis
Services assumes the current member of a hierarchy in a time dimension. For most applications
of the LastPeriods function, you are encouraged to employ the Member argument to ensure
clarity.

Calculate the three-month rolling average for reseller sales

 1. Open the MDX Query Editor to the MDX Step-by-Step database.

 2. In the code pane, enter the following query to retrieve reseller sales for the three
 periods preceding and including January 2002:

SELECT

 {([Measures].[Reseller Sales Amount])} ON COLUMNS,

 {

 LastPeriods(

 3,

 [Date].[Calendar].[Month].[January 2002]

)

 } ON ROWS

FROM [Step-by-Step]

LastPeriods(n [, Member])

Calculate the three-month rolling average for reseller sales

	 Chapter 9  Working with Time	 221

	 3.	 Execute the query and review the results.

In this query, you use the LastPeriods function to retrieve the three-month period
preceding and including January 2002. Analysis Services starts with the specified member,
January 2002, and treats this as period 1. This leaves n-1 or 2 members to return in the set.
Because n is a positive number, Analysis Services retrieves the January 2002 member’s two
preceding siblings to complete the set. (Notice that the November and December 2001
siblings were selected without regard for the change in the Calendar Year ancestor
between them and the January 2002 member.)

This query demonstrates the basic functionality of the LastPeriods function, but your
goal is to calculate a rolling average for reseller sales. Instead of using LastPeriods
to define a set along an axis, you can use the function to define the set over which
you will average values in a calculated member. As a starting point towards this goal,
re-factor the query to return all months along the ROWS axis.

	 4.	 Alter the query to retrieve reseller sales for various months:

SELECT

 {([Measures].[Reseller Sales Amount])} ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

	 5.	 Execute the query and review the results.

Reseller sales vary considerably between various months. For example, take a look at
the six-month period between October 2001 and March 2002. The wild swings between
monthly sales make it difficult to determine any general upward or downward trends during
this period. The same is true of the months between June 2002 and December 2002.

222	 Part II  MDX Functions

	 6.	 Alter the query to calculate a three-month rolling average for reseller sales:

WITH

MEMBER [Measures].[Three Month Avg Reseller Sales Amount] AS

 Avg(

 LastPeriods(

 3,

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Three Month Avg Reseller Sales Amount])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

	 7.	 Execute the query and compare the monthly reseller sales values to the three-month
rolling average values.

The three-month rolling average smoothes out some of the variability in the data,
making general trends more easily observed. The period from October 2001 to
March 2002 that reflected so much variability based on monthly sales totals now
appears to be trending only slightly upward. The period from June 2002 and December
2002 that also displayed considerable variability appears to be trending more
significantly upward. Without the smoothing effect of the rolling average, these trends
would be harder to observe and differentiate.

Performing Period-over-Period Analysis
Historical values are frequently used in data analysis to provide perspective on current
values. When comparing historical to current values, it is important you select values from
time periods relatively similar to one another. Although no two time periods are exactly
alike, analysts often compare values from what are referred to as parallel periods to minimize
differences resulting from cyclical, time-dependent variations in the data.

 Chapter 9 Working with Time 223

To understand parallel periods, consider the month of April 2003. This month is the fourth
month of the calendar year 2003. In a business heavily infl uenced by annual cycles, you
might compare values for this month to those for the month of April in a prior year. In doing
so, you might accurately (or inaccurately) assume that differences in current and historical
values are due to factors other than the annual cyclical infl uence.

Should you compare values for April 2003 to those of January 2003 or October 2002? Your
fi rst response may be to say no. However, if your business is heavily infl uenced by quarterly
cycles, this might be completely appropriate. April 2003 is the fi rst month of a calendar
 quarter. January 2003 is the fi rst month of the prior quarter and is therefore a parallel
 member based on quarter. October 2002 is also a parallel member except that it is from two
quarters prior. What constitutes an appropriate parallel period for your analysis is highly
 dependent upon the time-based cycles infl uencing your business.

To assist you with the retrieval of parallel period members, Analysis Services provides the
ParallelPeriod function:

ParallelPeriod([Level [,n [, Member]]])

 The function’s fi rst argument identifi es the level of the time hierarchy across which you wish
to identify the parallel period member. If no level is identifi ed, the parent level of the current
time member is assumed.

 The function’s second argument identifi es how far back along the identifi ed level you wish to
go to retrieve the parallel member. If no value is provided, a value of 1 is assumed, indicating
the prior period.

 The function’s fi nal argument identifi es the member for which the parallel period is to
be determined. The position of this member relative to its ancestor in the specifi ed level
 determines the member retrieved from the historical period. If no member is identifi ed, the
current time member is assumed.

Calculate growth over prior period

 1. Open the MDX Query Editor to the MDX Step-by-Step database.

 2. In the code pane, enter the following query to retrieve reseller sales for the months of
calendar year 2003:

SELECT

 {([Measures].[Reseller Sales Amount])} ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

ParallelPeriod([Level [,n [, Member]]])

Calculate growth over prior period

224	 Part II  MDX Functions

	 3.	 Execute the query and review the results.

The query returns reseller sales for the months of calendar year 2003. To assess the strength
of these numbers in a business influenced by annual sales cycles, you might compare them
to sales in the prior year. To do this, start by identifying the prior period for each month.

	 4.	 Alter the query to identify the parallel period in the prior year for each month:

WITH

MEMBER [Measures].[x] AS

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

 1,

 [Date].[Calendar].CurrentMember

).Name

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[x])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

	 5.	 Execute the query and review the results.

	 Chapter 9  Working with Time	 225

In the preceding query, the ParallelPeriod function is used to identify the parallel
period in the prior year for each month in calendar year 2003 along the ROWS
axis. The ParallelPeriod function returns a member and the name of that member is
returned with a new calculated member to verify that the appropriate member is being
identified. Now that you are comfortable the correct member is being located, you can
use the returned member to determine prior period sales.

	 6.	 Alter the query to calculate prior period sales:

WITH

MEMBER [Measures].[Prior Period Reseller Sales Amount] AS

 (

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

 1,

 [Date].[Calendar].CurrentMember

),

 [Measures].[Reseller Sales Amount]

)

 ,FORMAT="Currency"

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Prior Period Reseller Sales Amount])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

	 7.	 Execute the query and review the results.

Using the member returned by the ParallelPeriod function to assemble a tuple allows
you to retrieve reseller sales for the prior period. This newly calculated measure is
returned along the COLUMNS axis for comparison against sales in the months displayed
across the rows. To facilitate comparison, you might wish to present the percent change
in sales from the prior period.

226	 Part II  MDX Functions

	 8.	 Alter the query to calculate the percent change in sales (growth) between the current
and prior periods:

WITH

MEMBER [Measures].[Prior Period Reseller Sales Amount] AS

 (

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

 1,

 [Date].[Calendar].CurrentMember

),

 [Measures].[Reseller Sales Amount]

)

 ,FORMAT="Currency"

MEMBER [Measures].[Prior Period Growth] AS

 (

 ([Measures].[Reseller Sales Amount])-

 ([Measures].[Prior Period Reseller Sales Amount])

) /

 ([Measures].[Prior Period Reseller Sales Amount])

 ,FORMAT="Percent"

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Prior Period Reseller Sales Amount]),

 ([Measures].[Prior Period Growth])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

	 9.	 Execute the query and review the results.

The results show each month of calendar year 2003 experienced considerable growth
in reseller sales from those of the month in the prior year.

	 Chapter 9  Working with Time	 227

A Word of Caution
As explained at the start of this chapter, the time-based MDX functions are not
time-aware and simply employ basic navigation for their functionality. This is illustrated
by rewriting the query in Step 4 of the previous exercise with the navigation functions
Cousin, Ancestor, and Lag:

WITH

MEMBER [Measures].[x] AS

 Cousin(

 [Date].[Calendar].CurrentMember,

 Ancestor(

 [Date].[Calendar].CurrentMember,

 [Date].[Calendar].[Calendar Year]

).Lag(1)

).Name

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[x])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

As previously mentioned, the use of basic navigation to provide time-based functionality
imposes some constraints on your time dimension. One of these is that all members
of a time period should be provided in the cube. Again, the query in Step 4 from the
previous exercise provides a very clear demonstration of why this is important. Here is
that query adjusted to present the months of calendar year 2002 along the ROWS axis:

WITH

MEMBER [Measures].[x] AS

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

228	 Part II  MDX Functions

 1,

 [Date].[Calendar].CurrentMember

).Name

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[x])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2002],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

Notice in the results of this query that the month of January 2002 has a parallel period
of July 2001. January 2002 is the first month-level descendant of calendar year 2002. Its
parallel period in the prior year is the first month-level descendant of calendar year 2001.
Because the first month recorded in 2001 is July, July 2001 becomes the parallel period
of January 2002 based on simple navigation. Apply this logic to July 2002, the seventh
month-level descendant of calendar year 2002, and you see why it has no parallel period
in 2001, a year in which only six months were recorded.

If all twelve months for calendar year 2001 had been recorded, this problem could have
been avoided. However, this problem would now be deferred to the fiscal calendar
whose years start prior to 2001. In other words, there is no way in this dimension to
provide complete sets of members under each period.

So what’s the solution to this problem? The short answer is there really isn’t one. You as
the query developer must be aware of boundary issues such as this when developing
queries employing time-based functions. You might have data at the head and tail of
the time dimension extended to cover periods for which no data is recorded to avoid
misalignment as illustrated previously, but you still need to be aware that no data is
recorded for those periods so that some forms of analysis, such as period-over-period
growth, might not be appropriate.

 Chapter 9 Working with Time 229

Combining Time-Based Metrics
Throughout this chapter, you have explored the various time-based functions and how
they can be used to enhance business analysis and solve business problems. Although each
of these functions is valuable on its own, they are often used in combination to provide
even greater insight and clarity into the analysis of business data. These may seem like very
 challenging metrics to assemble, but in reality they are no more complex than most other
metrics calculated throughout this book. The trick is to remember tuple and expression basics.

Calculate year-to-date and prior period year-to-date sales

 1. Open the MDX Query Editor to the MDX Step-by-Step database.

 2. Enter the following query to retrieve reseller sales for the months of calendar year 2003:

SELECT

 {

 ([Measures].[Reseller Sales Amount])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

 3. Execute the query and review the results.

The query returns reseller sales by month for calendar year 2003. Using the
PeriodsToDate function, you can calculate year-to-date sales just like before.

Calculate year-to-date and prior period year-to-date sales

230	 Part II  MDX Functions

	 4.	 Alter the query to calculate a year-to-date sales:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

 ,FORMAT="Currency"

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

	 5.	 Execute the query and review the results.

Using the Year To Date Reseller Sales calculated member in a tuple, you can easily
calculate year-to-date sales for the prior period.

	 6.	 Alter the query to calculate the prior period year-to-date sales:

WITH

MEMBER [Measures].[Prior Period Year to Date Reseller Sales] AS

 (

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

 1,

 [Date].[Calendar].CurrentMember

),

 [Measures].[Year to Date Reseller Sales]

)

 ,FORMAT="Currency"

	 Chapter 9  Working with Time	 231

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

 ,FORMAT="Currency"

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales]),

 ([Measures].[Prior Period Year to Date Reseller Sales])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

	 7.	 Execute the query and review the results.

This exercise demonstrates a very simple approach to combining calculated members
that use time-based functions. When formulating complex metrics, you can easily lose
sight of the basic techniques allowing logic in one calculated member to be leveraged
for another. As easily as you combined a period-to-date calculation with a prior period
calculation, you could extend this query to include the difference, variance, or percent
growth of the current year year-to-date values compared to the prior year year-to-date
values or any flavors thereof.

The OpeningPeriod and ClosingPeriod Functions
We would be remiss if we did not mention the OpeningPeriod and ClosingPeriod functions.
The introduction of expanded support for semi-additive measures in the 2005 release of

232 Part II MDX Functions

Analysis Services has diminished the role of these functions, which return the fi rst and last
members of a period:

OpeningPeriod([Level [, Member]])

ClosingPeriod([Level [, Member]])

 The OpeningPeriod and ClosingPeriod functions return the fi rst or last member,
 respectively, of the descendants from a given level and a specifi ed member. If no level is
specifi ed, Analysis Services assumes the topmost level of the time hierarchy. If no member
is specifi ed, Analysis Services assumes the current time member. As with the other
 time-based functions, you are encouraged to supply both arguments to ensure clarity.

As previously mentioned, both the OpeningPeriod and ClosingPeriod functions have seen
their use diminished with recent releases of Analysis Services. Historically, these functions
have been used to calculate values now returned by the FirstChild, FirstNonEmpty, LastChild,
and LastNonEmpty aggregate functions. These aggregate functions are frequently
 employed with fi nance facts, exchange rates, and other snapshot facts to identify period
starting and ending values.

For example, the end-of-day exchange rate employs the LastNonEmpty aggregate
function to provide access to the last available value within a given period. But what if
you needed to determine the end-of-day exchange rate at the start of a period? The
following query illustrates the use of the OpeningPeriod function to calculate this value:

WITH

MEMBER [Measures].[First Child Rate] AS

 (

 OpeningPeriod(

 [Date].[Calendar].[Date],

 [Date].[Calendar].CurrentMember

),

 [Measures].[End of Day Rate]

)

 ,FORMAT="Standard"

SELECT

 {

 ([Measures].[First Child Rate]),

 ([Measures].[End of Day Rate])

 } ON COLUMNS,

 {[Date].[Calendar].Members} ON ROWS

FROM [Step-by-Step]

WHERE ([Destination Currency].[Destination Currency].[Euro])

OpeningPeriod([Level [, Member]])

ClosingPeriod([Level [, Member]])

 Chapter 9 Working with Time 233

This query provides both the fi rst and last available end-of-day exchange rates for the
specifi ed period. The former is provided through the MDX OpeningPeriod function;
the latter is provided through a cube aggregate function. You could further extend the
query to identify the difference or variance in exchange rates across the opening and
closing of the period.

Chapter 9 Quick reference

To Do this

Retrieve the periods-to-date
for any specifi ed period

Use the PeriodsToDate function to return a set of sibling members
from the same level as a given member, starting with the fi rst
 sibling and ending with the given member, as constrained by a
specifi ed level of a calendar hierarchy. For example, the following
query retrieves the periods-to-date over the calendar year for
each of the Month members along the ROWS axis to calculate a
 year-to-date total for reseller sales:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 PeriodsToDate(

 [Date].[Calendar].[Calendar Year],

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

To Do this

234 Part II MDX Functions

To Do this

Retrieve the periods-to-date
for a year

Use the Ytd function to return a set of sibling members from
the same level as a given member, starting with the fi rst sibling
and ending with the given member, as constrained by the
Year level of a calendar hierarchy. For example, the following
query retrieves the year-to-date periods for each of the Month
 members along the ROWS axis to calculate a year-to-date total for
reseller sales:

WITH

MEMBER [Measures].[Year to Date Reseller Sales] AS

 Aggregate(

 Ytd([Date].[Calendar].CurrentMember),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Year to Date Reseller Sales])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

For quarter-to-date, month-to-date, and week-to-date calculations,
use the Qtd, Mtd, and Wtd functions, respectively, in a similar
 manner.

Retrieve a number of prior
periods

Use the LastPeriods function to retrieve a set of members up to and
including a specifi ed member. For example, the following query
retrieves the last three months for each of the Month members
along the ROWS axis to calculate a rolling three-month average for
reseller sales:

WITH

MEMBER [Measures].[Three Month Avg Reseller Sales Amount] AS

 Avg(

 LastPeriods(

 3,

 [Date].[Calendar].CurrentMember

),

 ([Measures].[Reseller Sales Amount])

)

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Three Month Avg Reseller Sales Amount])

 } ON COLUMNS,

 {[Date].[Calendar].[Month].Members} ON ROWS

FROM [Step-by-Step]

To Do this

 Chapter 9 Working with Time 235

To Do this

Retrieve a parallel member Use the ParallelPeriod function to identify a member from a prior
period in the same relative position as a specifi ed member. For
 example, the following query retrieves prior period reseller sales for
each of the Month members along the ROWS axis:

WITH

MEMBER [Measures].[Prior Period Reseller Sales Amount] AS

 (

 ParallelPeriod(

 [Date].[Calendar].[Calendar Year],

 1,

 [Date].[Calendar].CurrentMember

),

 [Measures].[Reseller Sales Amount]

)

 ,FORMAT="Currency"

SELECT

 {

 ([Measures].[Reseller Sales Amount]),

 ([Measures].[Prior Period Reseller Sales Amount])

 } ON COLUMNS,

 {

 Descendants(

 [Date].[Calendar].[Calendar Year].[CY 2003],

 [Date].[Calendar].[Month],

 SELF

)

 } ON ROWS

FROM [Step-by-Step]

 Retrieve the opening period or
closing period

Use the OpeningPeriod or ClosingPeriod functions, respectively. For
example, the following query employs the OpeningPeriod function
to retrieve the exchange rate for the fi rst day in each period:

WITH

MEMBER [Measures].[First Child Rate] AS

 (

 OpeningPeriod(

 [Date].[Calendar].[Date],

 [Date].[Calendar].CurrentMember

),

 [Measures].[End of Day Rate]

)

 ,FORMAT="Standard"

SELECT

 {

 ([Measures].[First Child Rate]),

 ([Measures].[End of Day Rate])

 } ON COLUMNS,

 {[Date].[Calendar].Members} ON ROWS

FROM [Step-by-Step]

WHERE ([Destination Currency].[Destination Currency].[Euro])

To Do this

	Cover

	Table of Contents
	Chapter 9: Working with Time

	Understanding the Time Dimension
	Calculating an Accumulating Total
	Calculating Rolling Averages

	Performing Period-over-Period Analysis
	Combining Time-Based Metrics
	Chapter 9 Quick Reference

