
To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/learning/en/us/books/12967.aspx

9780735626249

© 2009 Kalen Delaney (All). All rights reserved.

Microsoft® SQL Server®
2008 Internals

Kalen Delaney
Paul S. Randal, Kimberly L. Tripp,
Conor Cunningham, Adam
Machanic, and Ben Nevarez

		 vii

Table of Contents
Foreword . xix

Introduction . xxi

	 1	 SQL Server 2008 Architecture and Configuration 1
SQL Server Editions . 1

SQL Server Metadata . 2

Compatibility Views . 3

Catalog Views . 4

Other Metadata . 6

Components of the SQL Server Engine . 8

Observing Engine Behavior . . 9

Protocols . . 11

The Relational Engine . . 12

The Storage Engine . 14

The SQLOS . 18

NUMA Architecture . 19

The Scheduler . 20

SQL Server Workers . 21

Binding Schedulers to CPUs . 24

The Dedicated Administrator Connection (DAC) 27

Memory . 29

The Buffer Pool and the Data Cache . 29

Access to In-Memory Data Pages . 30

Managing Pages in the Data Cache . 30

The Free Buffer List and the Lazywriter . 31

Checkpoints . 32

Managing Memory in Other Caches . 34

Sizing Memory . 35

Sizing the Buffer Pool . . 36

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii	 Table of Contents

SQL Server Resource Governor . . 42

Resource Governor Overview . 42

Resource Governor Controls . 51

Resource Governor Metadata . . 52

SQL Server 2008 Configuration . 54

Using SQL Server Configuration Manager . 54

Configuring Network Protocols . 54

Default Network Configuration . 55

Managing Services . 55

SQL Server System Configuration . . 57

Operating System Configuration . 57

Trace Flags . 60

SQL Server Configuration Settings . . 60

The Default Trace . 71

Final Words . 73

	 2	 Change Tracking, Tracing, and Extended Events 75
The Basics: Triggers and Event Notifications . 75

Run-Time Trigger Behavior . 76

Change Tracking . . 76

Change Tracking Configuration . 77

Change Tracking Run-Time Behavior . 82

Tracing and Profiling . . 86

SQL Trace Architecture and Terminology . 86

Security and Permissions . 88

Getting Started: Profiler . . 89

Server-Side Tracing and Collection . 97

Extended Events . 108

Components of the XE Infrastructure . 108

Event Sessions . 118

Extended Events DDL and Querying . 121

Summary . 124

	 3	 Databases and Database Files . 125
System Databases . 126

master . 126

model . 126

tempdb . 126

The Resource Database . 127

msdb . 128

	 Table of Contents	 ix

Sample Databases . 128

AdventureWorks . 128

pubs . 129

Northwind . 129

Database Files . 130

Creating a Database . 132

A CREATE DATABASE Example . 134

Expanding or Shrinking a Database . . 135

Automatic File Expansion . 135

Manual File Expansion . 136

Fast File Initialization . 136

Automatic Shrinkage . 136

Manual Shrinkage . 137

Using Database Filegroups . 138

The Default Filegroup . 139

A FILEGROUP CREATION Example . . 140

Filestream Filegroups . 141

Altering a Database . 142

ALTER DATABASE Examples . 143

Databases Under the Hood . . 144

Space Allocation . 145

Setting Database Options . 148

State Options . 151

Cursor Options . 155

Auto Options . 155

SQL Options . 156

Database Recovery Options . 158

Other Database Options . 159

Database Snapshots . 159

Creating a Database Snapshot . 160

Space Used by Database Snapshots . 162

Managing Your Snapshots . 164

The tempdb Database . . 164

Objects in tempdb . . 165

Optimizations in tempdb . 166

Best Practices . 168

tempdb Space Monitoring . . 169

Database Security . 170

Database Access . 170

Managing Database Security . 172

x	 Table of Contents

Databases vs. Schemas . . 173

Principals and Schemas . 173

Default Schemas . 174

Moving or Copying a Database . 175

Detaching and Reattaching a Database . 175

Backing Up and Restoring a Database . 177

Moving System Databases . 177

Moving the master Database . 179

Compatibility Levels . 179

Summary . 180

	 4	 Logging and Recovery . 181
Transaction Log Basics . 181

Phases of Recovery . 184

Reading the Log . 186

Changes in Log Size . 187

Virtual Log Files . . 187

Observing Virtual Log Files . 188

Automatic Truncation of Virtual Log Files . 192

Maintaining a Recoverable Log . 193

Automatic Shrinking of the Log . 196

Log File Size . 196

Backing Up and Restoring a Database . 197

Types of Backups . . 197

Recovery Models . . 198

Choosing a Backup Type . 203

Restoring a Database . 203

Summary . 209

	 5	 Tables . . 211
Creating Tables . 211

Naming Tables and Columns . 212

Reserved Keywords . 213

Delimited Identifiers . 214

Naming Conventions . 215

Data Types . 215

Much Ado About NULL . 241

	 Table of Contents	 xi

User-Defined Data Types . 244

IDENTITY Property . 245

Internal Storage . 249

The sys.indexes Catalog View . 250

Data Storage Metadata . 251

Data Pages . 254

Examining Data Pages . 256

The Structure of Data Rows . 260

Finding a Physical Page . 262

Storage of Fixed-Length Rows . 265

Storage of Variable-Length Rows . . 267

Storage of Date and Time Data . 272

Storage of sql_variant Data . 275

Constraints . 279

Constraint Names and Catalog View Information 280

Constraint Failures in Transactions and Multiple-Row
Data Modifications . 281

Altering a Table . 282

Changing a Data Type . 283

Adding a New Column . . 284

Adding, Dropping, Disabling, or Enabling a Constraint 284

Dropping a Column . 285

Enabling or Disabling a Trigger . 286

Internals of Altering Tables . 286

Heap Modification Internals . 289

Allocation Structures . 289

Inserting Rows . 290

Deleting Rows . 291

Updating Rows . 294

Summary . 297

	 6	 Indexes: Internals and Management . . 299
Overview . . 299

SQL Server Index B-trees . 300

Tools for Analyzing Indexes . . 304

Using the dm_db_index_physical_stats DMV . 304

Using DBCC IND . 308

xii	 Table of Contents

Understanding Index Structures . . 310

The Dependency on the Clustering Key . 311

Nonclustered Indexes . 314

Constraints and Indexes . . 315

Index Creation Options . 316

IGNORE_DUP_KEY . 316

STATISTICS_NORECOMPUTE . . 317

MAXDOP . 317

Index Placement . 317

Constraints and Indexes . . 318

Physical Index Structures . 318

Index Row Formats . 318

Clustered Index Structures . 319

The Non-Leaf Level(s) of a Clustered Index . 320

Analyzing a Clustered Index Structure . 321

Nonclustered Index Structures . 326

Special Index Structures . 337

Indexes on Computed Columns and Indexed Views 337

Full-Text Indexes . 345

Spatial Indexes . . 346

XML Indexes . . 346

Data Modification Internals . . 347

Inserting Rows . 347

Splitting Pages . . 348

Deleting Rows . 352

Updating Rows . 358

Table-Level vs. Index-Level Data Modification . 362

Logging . 363

Locking . 363

Fragmentation . . 363

Managing Index Structures . 364

Dropping Indexes . 365

ALTER INDEX . 365

Detecting Fragmentation . 368

Removing Fragmentation . 369

Rebuilding an Index . 371

Summary . 374

	 Table of Contents	 xiii

	 7	 Special Storage . . 375
Large Object Storage . 375

Restricted-Length Large Object Data (Row-Overflow Data) 376

Unrestricted-Length Large Object Data . 380

Storage of MAX-Length Data . 386

Filestream Data . 388

Enabling Filestream Data for SQL Server . 389

Creating a Filestream-Enabled Database . 390

Creating a Table to Hold Filestream Data . . 390

Manipulating Filestream Data . 392

Metadata for Filestream Data . . 397

Performance Considerations for Filestream Data 399

Sparse Columns . 400

Management of Sparse Columns . . 400

Column Sets and Sparse Column Manipulation 403

Physical Storage . 405

Metadata . 409

Storage Savings with Sparse Columns . . 409

Data Compression . . 412

Vardecimal . 413

Row Compression . 414

Page Compression . 423

Table and Index Partitioning . 434

Partition Functions and Partition Schemes . 434

Metadata for Partitioning . 436

The Sliding Window Benefits of Partitioning . 439

Summary . 442

	 8	 The Query Optimizer . . 443
Overview . . 443

Tree Format . 444

What Is Optimization? . 445

How the Query Optimizer Explores Query Plans . 446

Rules . 446

Properties . 447

Storage of Alternatives—The “Memo” . 449

Operators . 450

xiv	 Table of Contents

Optimizer Architecture . . 456

Before Optimization . 456

Simplification . 457

Trivial Plan/Auto-Parameterization . 457

Limitations . 459

The Memo—Exploring Multiple Plans Efficiently 459

Statistics, Cardinality Estimation, and Costing . 462

Statistics Design . 463

Density/Frequency Information . 466

Filtered Statistics . 468

String Statistics . 469

Cardinality Estimation Details . 470

Limitations . 474

Costing . 475

Index Selection . 477

Filtered Indexes . 480

Indexed Views . 482

Partitioned Tables . 486

Partition-Aligned Index Views . 490

Data Warehousing . 490

Updates . . 491

Halloween Protection . . 494

Split/Sort/Collapse . 495

Merge . 497

Wide Update Plans . 499

Sparse Column Updates . 502

Partitioned Updates . 502

Locking . 505

Distributed Query . 507

Extended Indexes . 510

Full-Text Indexes . 510

XML Indexes . . 510

Spatial Indexes . . 510

Plan Hinting . 511

Debugging Plan Issues . . 513

{HASH | ORDER} GROUP . 514

{MERGE | HASH | CONCAT } UNION . 515

FORCE ORDER, {LOOP | MERGE | HASH } JOIN . 516

	 Table of Contents	 xv

INDEX=<indexname> | <indexid> . . 516

FORCESEEK . 517

FAST <number_rows> . 517

MAXDOP <N> . . 518

OPTIMIZE FOR . . 518

PARAMETERIZATION {SIMPLE | FORCED} . 520

NOEXPAND . 521

USE PLAN . 521

Summary . 523

	 9	 Plan Caching and Recompilation . . 525
The Plan Cache . 525

Plan Cache Metadata . 525

Clearing Plan Cache . 526

Caching Mechanisms . 527

Adhoc Query Caching . 528

Optimizing for Adhoc Workloads . 530

Simple Parameterization . 533

Prepared Queries . 538

Compiled Objects . 540

Causes of Recompilation . 543

Plan Cache Internals . 553

Cache Stores . 553

Compiled Plans . 555

Execution Contexts . 555

Plan Cache Metadata . 556

Handles . . 556

sys.dm_exec_sql_text . 557

sys.dm_exec_query_plan . 558

sys.dm_exec_text_query_plan . 558

sys.dm_exec_cached_plans . 559

sys.dm_exec_cached_plan_dependent_objects . 559

sys.dm_exec_requests . 560

sys.dm_exec_query_stats . 560

Cache Size Management . 561

Costing of Cache Entries . 564

Objects in Plan Cache: The Big Picture . 565

Multiple Plans in Cache . 567

xvi	 Table of Contents

When to Use Stored Procedures and Other Caching Mechanisms 568

Troubleshooting Plan Cache Issues . 569

Wait Statistics Indicating Plan Cache Problems . 569

Other Caching Issues . 571

Handling Problems with Compilation and Recompilation 572

Plan Guides and Optimization Hints . 573

Summary . 585

	 10	 Transactions and Concurrency . 587
Concurrency Models . 587

Pessimistic Concurrency . 587

Optimistic Concurrency . 588

Transaction Processing . 588

ACID Properties . . 589

Transaction Dependencies . 590

Isolation Levels . 592

Locking . 596

Locking Basics . 596

Spinlocks . . 597

Lock Types for User Data . 597

Lock Modes . 598

Lock Granularity . 601

Lock Duration . 608

Lock Ownership . . 609

Viewing Locks . 609

Locking Examples . 612

Lock Compatibility . 618

Internal Locking Architecture . 620

Lock Partitioning . . 622

Lock Blocks . . 623

Lock Owner Blocks . 624

syslockinfo Table . 624

Row-Level Locking vs. Page-Level Locking . 627

Lock Escalation . 629

Deadlocks . . 630

Row Versioning . 635

Overview of Row Versioning . . 635

Row Versioning Details . 636

Snapshot-Based Isolation Levels . 637

Choosing a Concurrency Model . . 655

	 Table of Contents	 xvii

Controlling Locking . 657

Lock Hints . . 657

Summary . 661

	 11	 DBCC Internals . 663
Getting a Consistent View of the Database . 664

Obtaining a Consistent View . 665

Processing the Database Efficiently . 668

Fact Generation . . 668

Using the Query Processor . 670

Batches . 673

Reading the Pages to Process . . 674

Parallelism . 675

Primitive System Catalog Consistency Checks . 677

Allocation Consistency Checks . 679

Collecting Allocation Facts . 679

Checking Allocation Facts . 681

Per-Table Logical Consistency Checks . 683

Metadata Consistency Checks . 684

Page Audit . 685

Data and Index Page Processing . 687

Column Processing . 689

Text Page Processing . 693

Cross-Page Consistency Checks . 694

Cross-Table Consistency Checks . 705

Service Broker Consistency Checks . 706

Cross-Catalog Consistency Checks . 707

Indexed-View Consistency Checks . . 707

XML-Index Consistency Checks . 708

Spatial-Index Consistency Checks . 709

DBCC CHECKDB Output . 709

Regular Output . 710

SQL Server Error Log Output . 712

Application Event Log Output . 713

Progress Reporting Output . . 714

DBCC CHECKDB Options . . 715

NOINDEX . 715

Repair Options . . 716

ALL_ERRORMSGS . 716

EXTENDED_LOGICAL_CHECKS . 717

xviii	 Table of Contents

NO_INFOMSGS . 717

TABLOCK . . 717

ESTIMATEONLY . 717

PHYSICAL_ONLY . 718

DATA_PURITY . 719

Database Repairs . . 719

Repair Mechanisms . . 720

Emergency Mode Repair . 721

What Data Was Deleted by Repair? . . 722

Consistency-Checking Commands Other Than DBCC CHECKDB 723

DBCC CHECKALLOC . 724

DBCC CHECKTABLE . 725

DBCC CHECKFILEGROUP . 725

DBCC CHECKCATALOG . 726

DBCC CHECKIDENT . 726

DBCC CHECKCONSTRAINTS . . 727

Summary . 727

Index . 729

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

		 125

Chapter 3

Databases and Database Files
Kalen Delaney

Simply put, a Microsoft SQL Server database is a collection of objects that hold and
manipulate data. A typical SQL Server instance has only a handful of databases, but it’s not
unusual for a single instance to contain several dozen databases. The technical limit for one
SQL Server instance is 32,767 databases. But practically speaking, this limit would never
be reached.

To elaborate a bit, you can think of a SQL Server database as having the following properties
and features:

n	 It is a collection of many objects, such as tables, views, stored procedures, and
constraints. The technical limit is 231–1 (more than 2 billion) objects. The number of
objects typically ranges from hundreds to tens of thousands.

n	 It is owned by a single SQL Server login account.

n	 It maintains its own set of user accounts, roles, schemas, and security.

n	 It has its own set of system tables to hold the database catalog.

n	 It is the primary unit of recovery and maintains logical consistency among objects
within it. (For example, primary and foreign key relationships always refer to other
tables within the same database, not in other databases.)

n	 It has its own transaction log and manages its own transactions.

n	 It can span multiple disk drives and operating system files.

n	 It can range in size from 2 MB to a technical limit of 524,272 terabytes.

n	 It can grow and shrink, either automatically or manually.

n	 It can have objects joined in queries with objects from other databases in the same
SQL Server instance or on linked servers.

n	 It can have specific properties enabled or disabled. (For example, you can set a
database to be read-only or to be a source of published data in replication.)

And here is what a SQL Server database is not:

n	 It is not synonymous with an entire SQL Server instance.

n	 It is not a single SQL Server table.

n	 It is not a specific operating system file.

126	 Microsoft SQL Server 2008 Internals

Although a database isn’t the same thing as an operating system file, it always exists in two
or more such files. These files are known as SQL Server database files and are specified either
at the time the database is created, using the CREATE DATABASE command, or afterward,
using the ALTER DATABASE command.

System Databases
A new SQL Server 2008 installation always includes four databases: master, model, tempdb,
and msdb. It also contains a fifth, “hidden” database that you never see using any of the
normal SQL commands that list all your databases. This database is referred to as the
resource database, but its actual name is mssqlsystemresource.

master
The master database is composed of system tables that keep track of the server installation
as a whole and all other databases that are subsequently created. Although every database
has a set of system catalogs that maintain information about objects that the database
contains, the master database has system catalogs that keep information about disk space,
file allocations and usage, system-wide configuration settings, endpoints, login accounts,
databases on the current instance, and the existence of other servers running SQL Server
(for distributed operations).

The master database is critical to your system, so always keep a current backup copy of it.
Operations such as creating another database, changing configuration values, and modifying
login accounts all make modifications to master, so you should always back up master after
performing such actions.

model
The model database is simply a template database. Every time you create a new database,
SQL Server makes a copy of model to form the basis of the new database. If you’d like every
new database to start out with certain objects or permissions, you can put them in model,
and all new databases inherit them. You can also change most properties of the model
database by using the ALTER DATABASE command, and those property values then are used
by any new database you create.

tempdb
The tempdb database is used as a workspace. It is unique among SQL Server databases because
it’s re-created—not recovered—every time SQL Server is restarted. It’s used for temporary tables
explicitly created by users, for worktables that hold intermediate results created internally by
SQL Server during query processing and sorting, for maintaining row versions used in snapshot

	 Chapter 3  Databases and Database Files	 127

isolation and certain other operations, and for materializing static cursors and the keys of
keyset cursors. Because the tempdb database is re-created, any objects or permissions that you
create in the database are lost the next time you start your SQL Server instance. An alternative
is to create the object in the model database, from which tempdb is copied. (Keep in mind that
any objects that you create in the model database also are added to any new databases you
create subsequently. If you want objects to exist only in tempdb, you can create a startup stored
procedure that creates the objects every time your SQL Server instance starts.)

The tempdb database sizing and configuration is critical for optimal functioning and
performance of SQL Server, so I’ll discuss tempdb in more detail in its own section later in
this chapter.

The Resource Database
As mentioned, the mssqlsystemresource database is a hidden database and is usually
referred to as the resource database. Executable system objects, such as system stored
procedures and functions, are stored here. Microsoft created this database to allow very fast
and safe upgrades. If no one can get to this database, no one can change it, and you can
upgrade to a new service pack that introduces new system objects by simply replacing the
resource database with a new one. Keep in mind that you can’t see this database using any of
the normal means for viewing databases, such as selecting from sys.databases or executing
sp_helpdb. It also won’t show up in the system databases tree in the Object Explorer pane of
SQL Server Management Studio, and it does not appear in the drop-down list of databases
accessible from your query windows. However, this database still needs disk space.

You can see the files in your default binn directory by using Microsoft Windows Explorer.
My data directory is at C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\
MSSQL\Binn; I can see a file called mssqlsystemresource.mdf, which is 60.2 MB in size, and
mssqlsystemresource.ldf, which is 0.5 MB. The created and modified date for both of these files
is the date that the code for the current build was frozen. It should be the same date that you
see when you run SELECT @@version. For SQL Server 2008, the RTM build, this is 10.0.1600.22.

If you have a burning need to “see” the contents of mssqlsystemresource, a couple of
methods are available. The easiest, if you just want to see what’s there, is to stop SQL Server,
make copies of the two files for the resource database, restart SQL Server, and then attach
the copied files to create a database with a new name. You can do this by using Object
Explorer in Management Studio or by using the CREATE DATABASE FOR ATTACH syntax to
create a clone database, as shown here:

CREATE DATABASE resource_COPY

ON (NAME = data, FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\binn

 \mssqlsystemresource_COPY.mdf'),

 (NAME = log, FILENAME =

 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\binn\mssqlsystemresource_COPY.ldf')

 FOR ATTACH;

128	 Microsoft SQL Server 2008 Internals

SQL Server treats this new resource_COPY database like any other user database, and it
does not treat the objects in it as special in any way. If you want to change anything in the
resource database, such as the text of a supplied system stored procedure, changing it in
resource_COPY obviously does not affect anything else on your instance. However, if you
start your SQL Server instance in single-user mode, you can make a single connection to
your SQL Server, and that connection can use the mssqlsystemresource database. Starting an
instance in single-user mode is not the same thing as setting a database to single-user mode.
For details on how to start SQL Server in single-user mode, see the SQL Server Books Online
entry for the sqlservr.exe application. In Chapter 6, “Indexes: Internals and Management,”
when I discuss database objects, I’ll discuss some of the objects in the resource database.

msdb
The msdb database is used by the SQL Server Agent service and other companion services,
which perform scheduled activities such as backups and replication tasks, and the Service
Broker, which provides queuing and reliable messaging for SQL Server. In addition to backups,
objects in msdb support jobs, alerts, log shipping, policies, database mail, and recovery of
damaged pages. When you are not actively performing these activities on this database,
you can generally ignore msdb. (But you might take a peek at the backup history and other
information kept there.) All the information in msdb is accessible from Object Explorer in
Management Studio, so you usually don’t need to access the tables in this database directly.
You can think of the msdb tables as another form of system table: Just as you can never directly
modify system tables, you shouldn’t directly add data to or delete data from tables in msdb
unless you really know what you’re doing or are instructed to do so by a SQL Server technical
support engineer. Prior to SQL Server 2005, it was actually possible to drop the msdb database;
your SQL Server instance was still usable, but you couldn’t maintain any backup history, and
you weren’t able to define tasks, alerts, or jobs or set up replication. There is an undocumented
traceflag that allows you to drop the msdb database, but because the default msdb database is
so small, I recommend leaving it alone even if you think you might never need it.

Sample Databases
Prior to SQL Server 2005, the installation program automatically installed sample databases
so you would have some actual data for exploring SQL Server functionality. As part of
Microsoft’s efforts to tighten security, SQL Server 2008 does not automatically install any
sample databases. However, several sample databases are widely available.

AdventureWorks
AdventureWorks actually comprises a family of sample databases that was created by the
Microsoft User Education group as an example of what a “real” database might look like. The
family includes: AdventureWorks2008, AdventureWorksDW2008, and AdventureWorksLT2008,

	 Chapter 3  Databases and Database Files	 129

as well as their counterparts created for SQL Server 2005: AdventureWorks, AdventureWorksDW,
and AdventureWorksLT. You can download these databases from the Microsoft codeplex
site at http://www.codeplex.com/SqlServerSamples. The database was designed to showcase
SQL Server features, including the organization of objects into different schemas. These
databases are based on data needed by the fictitious Adventure Works Cycles company.
The AdventureWorks and AdventureWorks2008 databases are designed to support OLTP
applications and AdventureWorksDW and AdventureWorksDW2008 are designed to support the
business intelligence features of SQL Server and are based on a completely different database
architecture. Both designs are highly normalized. Although normalized data and many separate
schemas might map closely to a real production database’s design, they can make it quite
difficult to write and test simple queries and to learn basic SQL.

Database design is not a major focus of this book, so most of my examples use simple tables that
I create; if more than a few rows of data are needed, I’ll sometimes copy data from one or more
AdventureWorks2008 tables into tables of my own. It’s a good idea to become familiar with the
design of the AdventureWorks family of databases because many of the examples in SQL Server
Books Online and in white papers published on the Microsoft Web site (http://www.microsoft.com/
sqlserver/2008/en/us/white-papers.aspx) use data from these databases.

Note that it is also possible to install an AdventureWorksLT2008 (or AdventureWorksLT)
database, which is a highly simplified and somewhat denormalized version of the
AdventureWorks OLTP database and focuses on a simple sales scenario with a single schema.

pubs

The pubs database is a sample database that was used extensively in earlier versions of SQL
Server. Many older publications with SQL Server examples assume that you have this database
because it was installed automatically on versions of SQL Server prior to SQL Server 2005. You can
download a script for building this database from Microsoft’s Web site, and I have also included
the script with this book’s companion content at http://www.SQLServerInternals.com/companion.

The pubs database is admittedly simple, but that’s a feature, not a drawback. It provides good
examples without a lot of peripheral issues to obscure the central points. You shouldn’t worry
about making modifications in the pubs database as you experiment with SQL Server features.
You can rebuild the pubs database from scratch by running the supplied script. In a query
window, open the file named Instpubs.sql and execute it. Make sure there are no current
connections to pubs because the current pubs database is dropped before the new one is created.

Northwind
The Northwind database is a sample database that was originally developed for use with
Microsoft Office Access. Much of the pre–SQL Server 2005 documentation dealing with
application programming uses Northwind. Northwind is a bit more complex than pubs,
and, at almost 4 MB, it is slightly larger. As with pubs, you can download a script from the

130 Microsoft SQL Server 2008 Internals

Microsoft Web site to build it, or you can use the script provided with the companion
 content. The fi le is called Instnwnd.sql. In addition, some of the sample scripts for this book
use a modifi ed copy of Northwind called Northwind2.

Database Files
A database fi le is nothing more than an operating system fi le. (In addition to database fi les,
SQL Server also has backup devices, which are logical devices that map to operating system
fi les or to physical devices such as tape drives. In this chapter, I won’t be discussing fi les that
are used to store backups.) A database spans at least two, and possibly several, database fi les,
and these fi les are specifi ed when a database is created or altered. Every database must span
at least two fi les, one for the data (as well as indexes and allocation pages) and one for the
transaction log.

 SQL Server 2008 allows the following three types of database fi les:

n Primary data fi les Every database has one primary data fi le that keeps track of all the
rest of the fi les in the database, in addition to storing data. By convention, a primary
data fi le has the extension .mdf.

n Secondary data fi les A database can have zero or more secondary data fi les. By
 convention, a secondary data fi le has the extension .ndf.

n Log fi les Every database has at least one log fi le that contains the information necessary
to recover all transactions in a database. By convention, a log fi le has the extension .ldf.

In addition, SQL Server 2008 databases can have fi lestream data fi les and full-text data fi les.
Filestream data fi les will be discussed in the section “Filestream Filegroups,” later in this
 chapter, and in Chapter 7, “Special Storage.” Full-text data fi les are created and managed
completely, separately from your other database fi les and are beyond the scope of this book.

Each database fi le has fi ve properties that can be specifi ed when you create the fi le: a logical
fi lename, a physical fi lename, an initial size, a maximum size, and a growth increment.
(Filestream data fi les have only the logical and physical name properties.) The value of these
properties, along with other information about each fi le, can be seen through the metadata
view sys.database_fi les, which contains one row for each fi le used by a database. Most of the
columns shown in sys.database_fi les are listed in Table 3-1. The columns not mentioned here
contain information dealing with transaction log backups relevant to the particular fi le, and
I’ll discuss the transaction log in Chapter 4, “Logging and Recovery.”

 TABLe 3-1 The sys.database_fi les Catalog View

 Column Description

 fi leid The fi le identifi cation number (unique for each database).

 fi le_guid GUID for the fi le.

NULL = Database was upgraded from an earlier version of SQL Server.

 Column Description

 Chapter 3 Databases and Database Files 131

 TABLe 3-1 The sys.database_fi les Catalog View

 Column Description

 type File type:

0 = Rows (includes full-text catalogs upgraded to or created in
SQL Server 2008)

1 = Log

2 = FILESTREAM

3 = Reserved for future use

4 = Full-text (includes full-text catalogs from versions earlier than
SQL Server 2008)

 type_desc Description of the fi le type:

ROWS

LOG

FILESTREAM

FULLTEXT

 data_space_id ID of the data space to which this fi le belongs. Data space is a
fi legroup.

0 = Log fi le.

 name The logical name of the fi le.

 physical_name Operating-system fi le name.

 state File state:

0 = ONLINE

1 = RESTORING

2 = RECOVERING

3 = RECOVERY_PENDING

4 = SUSPECT

5 = Reserved for future use

6 = OFFLINE

7 = DEFUNCT

 state_desc Description of the fi le state:

ONLINE

RESTORING

RECOVERING

RECOVERY_PENDING

SUSPECT

OFFLINE

DEFUNCT

 size Current size of the fi le, in 8-KB pages.

0 = Not applicable

For a database snapshot, size refl ects the maximum space that the snapshot
can ever use for the fi le.

 Column Description

132 Microsoft SQL Server 2008 Internals

 TABLe 3-1 The sys.database_fi les Catalog View

 Column Description

 max_size Maximum fi le size, in 8-KB pages:

0 = No growth is allowed.

–1 = File will grow until the disk is full.

268435456 = Log fi le will grow to a maximum size of 2 terabytes.

 growth 0 = File is a fi xed size and will not grow.

>0 = File will grow automatically.

If is_percent_growth = 0, growth increment is in units of 8-KB pages,
rounded to the nearest 64 KB.

If is_percent_growth = 1, growth increment is expressed as a whole number
percentage.

 is_media_read_only 1 = File is on read-only media.

0 = File is on read/write media.

 is_read_only 1 = File is marked read-only.

0 = File is marked read/write.

 is_sparse 1 = File is a sparse fi le.

0 = File is not a sparse fi le.

(Sparse fi les are used with database snapshots, discussed later in this
chapter.)

 is_percent_growth See description for growth column, above.

 is_name_reserved 1 = Dropped fi le name (name or physical_name) is reusable only after the
next log backup. When fi les are dropped from a database, the logical names
stay in a reserved state until the next log backup. This column is relevant
only under the full recovery model and the bulk-logged recovery model.

Creating a Database
 The easiest way to create a database is to use Object Explorer in Management Studio, which
provides a graphical front end to the T-SQL commands that actually create the database
and set its properties. Figure 3-1 shows the New Database dialog box, which represents
the T-SQL CREATE DATABASE command for creating a new user database. Only someone
with the appropriate permissions can create a database, either through Object Explorer
or by using the CREATE DATABASE command. This includes anyone in the sysadmin role,
anyone who has been granted CONTROL or ALTER permission on the server, and any user
who has been granted CREATE DATABASE permission by someone with the sysadmin or
 dbcreator role.

When you create a new database, SQL Server copies the model database. If you have an object
that you want created in every subsequent user database, you should create that object in
model fi rst. You can also use model to set default database options in all subsequently created

 Column Description

	 Chapter 3  Databases and Database Files	 133

databases. The model database includes 53 objects—45 system tables, 6 objects used for SQL
Server Query Notifications and Service Broker, 1 table used for helping to manage filestream
data, and 1 table for helping to manage change tracking. You can see these objects by
selecting from the system table called sys.objects. However, if you run the procedure sp_help
in the model database, it will list 1,978 objects. It turns out that most of these objects are not
really stored in the model database but are accessible through it. In Chapter 5, “Tables,” I’ll
tell you what the other kinds of objects are and how you can tell whether an object is really
stored in a particular database. Most of the objects you see in model will show up when you
run sp_help in any database, but your user databases will probably have more objects added
to this list. The contents of model are just the starting point.

Figure 3-1  The New Database dialog box, where you can create a new database

A new user database must be 3 MB or larger (including the transaction log), and the primary
data file size must be at least as large as the primary data file of the model database.
(The model database only has one file and cannot be altered to add more. So the size of
the primary data file and the size of the database are basically the same for model.) Almost
all the possible arguments to the CREATE DATABASE command have default values, so it’s
possible to create a database using a simple form of CREATE DATABASE, such as this:

CREATE DATABASE newdb;

134	 Microsoft SQL Server 2008 Internals

This command creates the newdb database, with a default size, on two files whose
logical names—newdb and newdb_log—are derived from the name of the database.
The corresponding physical files, newdb.mdf and newdb_log.ldf, are created in the default
data directory, which is usually determined at the time SQL Server is installed.

The SQL Server login account that created the database is known as the database owner, and
that information is stored with the information about the database properties in the master
database. A database can have only one actual owner, who always corresponds to a login
name. Any login that uses any database has a user name in that database, which might be
the same name as the login name but doesn’t have to be. The login that is the owner of a
database always has the special user name dbo when using the database it owns. I’ll discuss
database users later in this chapter when I tell you about the basics of database security. The
default size of the data file is the size of the primary data file of the model database (which
is 2 MB by default), and the default size of the log file is 0.5 MB. Whether the database
name, newdb, is case-sensitive depends on the sort order that you chose during setup. If you
accepted the default, the name is case-insensitive. (Note that the actual command CREATE
DATABASE is case-insensitive, regardless of the case sensitivity chosen for data.)

Other default property values apply to the new database and its files. For example, if the LOG
ON clause is not specified but data files are specified, SQL Server creates a log file with a size
that is 25 percent of the sum of the sizes of all data files.

If the MAXSIZE clause isn’t specified for the files, the file grows until the disk is full. (In other
words, the file size is considered unlimited.) You can specify the values for SIZE, MAXSIZE, and
FILEGROWTH in units of terabytes, GB, and MB (the default), or KB. You can also specify the
FILEGROWTH property as a percentage. A value of 0 for FILEGROWTH indicates no growth. If
no FILEGROWTH value is specified, the default growth increment for data files is 1 MB. The log
file FILEGROWTH default is specified as 10 percent.

A CREATE DATABASE Example
The following is a complete example of the CREATE DATABASE command, specifying three
files and all the properties of each file:

CREATE DATABASE Archive

ON

PRIMARY

(NAME = Arch1,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\archdat1.mdf',

SIZE = 100MB,

MAXSIZE = 200MB,

FILEGROWTH = 20MB),

(NAME = Arch2,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\archdat2.ndf',

	 Chapter 3  Databases and Database Files	 135

SIZE = 10GB,

MAXSIZE = 50GB,

FILEGROWTH = 250MB)

LOG ON

(NAME = Archlog1,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\archlog1.ldf',

SIZE = 2GB,

MAXSIZE = 10GB,

FILEGROWTH = 100MB);

Expanding or Shrinking a Database
Databases can be expanded and shrunk automatically or manually. The mechanism for
automatic expansion is completely different from the mechanism for automatic shrinkage.
Manual expansion is also handled differently from manual shrinkage. Log files have their own
rules for growing and shrinking; I’ll discuss changes in log file size in Chapter 4.

Warning  Shrinking a database or any data file is an extremely resource-intensive operation,
and the only reason to do it is if you absolutely must reclaim disk space. Shrinking a data file can
also lead to excessive logical fragmentation within your database. We’ll discuss fragmentation in
Chapter 6 and shrinking in Chapter 11, “DBCC Internals.”

Automatic File Expansion
Expansion can happen automatically to any one of the database’s files when that particular file
becomes full. The file property FILEGROWTH determines how that automatic expansion happens.
The FILEGROWTH property that is specified when the file is first defined can be qualified using
the suffix TB, GB, MB, KB, or %, and it is always rounded up to the nearest 64 KB. If the value is
specified as a percentage, the growth increment is the specified percentage of the size of the file
when the expansion occurs. The file property MAXSIZE sets an upper limit on the size.

Allowing SQL Server to grow your data files automatically is no substitute for good capacity
planning before you build or populate any tables. Enabling autogrow might prevent some
failures due to unexpected increases in data volume, but it can also cause problems. If a
data file is full and your autogrow percentage is set to grow by 10 percent, if an application
attempts to insert a single row and there is no space, the database might start to grow by a
large amount (10 percent of 10,000 MB is 1,000 MB). This in itself can take a lot of time if fast
file initialization (discussed in the next section) is not being used. The growth might take so
long that the client application’s timeout value is exceeded, which means the insert query fails.
The query would have failed anyway if autogrow weren’t set, but with autogrow enabled, SQL
Server spends a lot of time trying to grow the file, and you won’t be informed of the problem
immediately. In addition, file growth can result in physical fragmentation on the disk.

136	 Microsoft SQL Server 2008 Internals

With autogrow enabled, your database files still cannot grow the database size beyond the
limits of the available disk space on the drives on which files are defined, or beyond the size
specified in the MAXSIZE file property. So if you rely on the autogrow functionality to size your
databases, you must still independently check your available hard disk space or the total file
size. (The undocumented extended procedure xp_fixeddrives returns a list of the amount of free
disk space on each of your local volumes.) To reduce the possibility of running out of space, you
can watch the Performance Monitor counter SQL Server: Databases Object: Data File Size and
set up a performance alert to fire when the database file reaches a certain size.

Manual File Expansion
You can expand a database file manually by using the ALTER DATABASE command with the
MODIFY FILE option to change the SIZE property of one or more of the files. When you alter
a database, the new size of a file must be larger than the current size. To decrease the size of
a file, you use the DBCC SHRINKFILE command, which I’ll tell you about shortly.

Fast File Initialization
SQL Server 2008 data files (but not log files) can be initialized instantaneously. This allows
for fast execution of the file creation and growth. Instant file initialization adds space to the
data file without filling the newly added space with zeros. Instead, the actual disk content
is overwritten only as new data is written to the files. Until the data is overwritten, there is
always the chance that a hacker using an external file reader tool can see the data that was
previously on the disk. Although the SQL Server 2008 documentation describes the instant
file initialization feature as an “option,” it is not really an option within SQL Server. It is
actually controlled through a Windows security setting called SE_MANAGE_VOLUME_NAME,
which is granted to Windows administrators by default. (This right can be granted to other
Windows users by adding them to the Perform Volume Maintenance Tasks security policy.) If
your SQL Server service account is in the Windows Administrator role and your SQL Server is
running on a Windows XP, Windows Server 2003, or Windows Server 2008 filesystem, instant
file initialization is used. If you want to make sure your database files are zeroed out as they
are created and expanded, you can use traceflag 1806 or deny SE_MANAGE_VOLUME_NAME
rights to the account under which your SQL Server service is running.

Automatic Shrinkage
The database property autoshrink allows a database to shrink automatically. The effect is the
same as doing a DBCC SHRINKDATABASE (dbname, 25). This option leaves 25 percent free space
in a database after the shrink, and any free space beyond that is returned to the operating
system. The thread that performs autoshrink shrinks databases at very frequent intervals, in
some cases as often as every 30 minutes. Shrinking data files is so resource-intensive that it
should be done only when there is no other way to reclaim needed disk space.

	 Chapter 3  Databases and Database Files	 137

Important  Automatic shrinking is never recommended. In fact, Microsoft has announced that
the autoshrink option will be removed in a future version of SQL Server and you should avoid
using it.

Manual Shrinkage
You can shrink a database manually using one of the following DBCC commands:

DBCC SHRINKFILE ({file_name | file_id }

[, target_size][, {EMPTYFILE | NOTRUNCATE | TRUNCATEONLY}])

DBCC SHRINKDATABASE (database_name [, target_percent]

[, {NOTRUNCATE | TRUNCATEONLY}])

DBCC SHRINKFILE
DBCC SHRINKFILE allows you to shrink files in the current database. When you specify target_size,
DBCC SHRINKFILE attempts to shrink the specified file to the specified size in megabytes. Used
pages in the part of the file to be freed are relocated to available free space in the part of the
file that is retained. For example, for a 15-MB data file, a DBCC SHRINKFILE with a target_size of
12 causes all used pages in the last 3 MB of the file to be reallocated into any free slots in the
first 12 MB of the file. DBCC SHRINKFILE doesn’t shrink a file past the size needed to store the
data. For example, if 70 percent of the pages in a 10-MB data file are used, a DBCC SHRINKFILE
command with a target_size of 5 shrinks the file to only 7 MB, not 5 MB.

DBCC SHRINKDATABASE
DBCC SHRINKDATABASE shrinks all files in a database but does not allow any file to be
shrunk smaller than its minimum size. The minimum size of a database file is the initial size
of the file (specified when the database was created) or the size to which the file has been
explicitly extended or reduced, using either the ALTER DATABASE or DBCC SHRINKFILE
command. If you need to shrink a database smaller than its minimum size, you should use
the DBCC SHRINKFILE command to shrink individual database files to a specific size. The size
to which a file is shrunk becomes the new minimum size.

The numeric target_percent argument passed to the DBCC SHRINKDATABASE command is
a percentage of free space to leave in each file of the database. For example, if you’ve used
60 MB of a 100-MB database file, you can specify a shrink percentage of 25 percent. SQL
Server then shrinks the file to a size of 80 MB, and you have 20 MB of free space in addition
to the original 60 MB of data. In other words, the 80-MB file has 25 percent of its space free.
If, on the other hand, you’ve used 80 MB or more of a 100-MB database file, there is no way
that SQL Server can shrink this file to leave 25 percent free space. In that case, the file size
remains unchanged.

138	 Microsoft SQL Server 2008 Internals

Because DBCC SHRINKDATABASE shrinks the database on a file-by-file basis, the mechanism
used to perform the actual shrinking of data files is the same as that used with DBCC
SHRINKFILE (when a data file is specified). SQL Server first moves pages to the front of files to
free up space at the end, and then it releases the appropriate number of freed pages to the
operating system. The actual internal details of how data files are shrunk will be discussed in
Chapter 11.

Note  Shrinking a log file is very different from shrinking a data file, and understanding
how much you can shrink a log file and what exactly happens when you shrink it requires an
understanding of how the log is used. For this reason, I will postpone the discussion of shrinking
log files until Chapter 4.

As the warning at the beginning of this section indicated, shrinking a database or any data
files is a resource-intensive operation. If you absolutely need to recover disk space from the
database, you should plan the shrink operation carefully and perform it when it has the least
impact on the rest of the system. You should never enable the AUTOSHRINK option, which will
shrink all the data files at regular intervals and wreak havoc with system performance. Because
shrinking data files can move data all around a file, it can also introduce fragmentation, which
you then might want to remove. Defragmenting your data files can then have its own impact
on productivity because it uses system resources. Fragmentation and defragmentation will be
discussed in Chapter 6.

It is possible for shrink operations to be blocked by a transaction that has been enabled for
either of the snapshot-based isolation levels. When this happens, DBCC SHRINKFILE and
DBCC SHRINKDATABASE print out an informational message to the error log every five
minutes in the first hour and then every hour after that. SQL Server also provides progress
reporting for the SHRINK commands, available through the sys.dm_exec_requests view.
Progress reporting will be discussed in Chapter 11.

Using Database Filegroups
You can group data files for a database into filegroups for allocation and administration
purposes. In some cases, you can improve performance by controlling the placement of data
and indexes into specific filegroups on specific drives or volumes. The filegroup containing
the primary data file is called the primary filegroup. There is only one primary filegroup, and
if you don’t ask specifically to place files in other filegroups when you create your database,
all of your data files are in the primary filegroup.

In addition to the primary filegroup, a database can have one or more user-defined
filegroups. You can create user-defined filegroups by using the FILEGROUP keyword in the
CREATE DATABASE or ALTER DATABASE command.

	 Chapter 3  Databases and Database Files	 139

Don’t confuse the primary filegroup and the primary file. Here are the differences:

n	 The primary file is always the first file listed when you create a database, and it typically
has the file extension .mdf. The one special feature of the primary file is that it has pointers
into a table in the master database (which you can access through the catalog view
sys.database_files) that contains information about all the files belonging to the database.

n	 The primary filegroup is always the filegroup that contains the primary file. This filegroup
contains the primary data file and any files not put into another specific filegroup. All
pages from system tables are always allocated from files in the primary filegroup.

The Default Filegroup
One filegroup always has the property of DEFAULT. Note that DEFAULT is a property of
a filegroup, not a name. Only one filegroup in each database can be the default filegroup.
By default, the primary filegroup is also the default filegroup. A database owner can change
which filegroup is the default by using the ALTER DATABASE command. When creating
a table or index, it is created in the default filegroup if no specific filegroup is specified.

Most SQL Server databases have a single data file in one (default) filegroup. In fact, most
users probably never know enough about how SQL Server works to know what a filegroup
is. As a user acquires greater database sophistication, she might decide to use multiple
devices to spread out the I/O for a database. The easiest way to do this is to create a
database file on a RAID device. Still, there would be no need to use filegroups. At the next
level of sophistication and complexity, the user might decide that she really wants multiple
files—perhaps to create a database that uses more space than is available on a single drive.
In this case, she still doesn’t need filegroups—she can accomplish her goals using CREATE
DATABASE with a list of files on separate drives.

More sophisticated database administrators might decide to have different tables assigned
to different drives or to use the table and index partitioning feature in SQL Server 2008. Only
then will they need to use filegroups. They can then use Object Explorer in Management
Studio to create the database on multiple filegroups. Then they can right-click the database
name in Object Explorer and create a script of the CREATE DATABASE command that includes
all the files in their appropriate filegroups. They can save and reuse this script when they
need to re-create the database or build a similar database.

Why Use Multiple Files?
You might wonder why you would want to create a database on multiple files located
on one physical drive. There’s usually no performance benefit in doing so, but it gives
you added flexibility in two important ways.

First, if you need to restore a database from a backup because of a disk crash, the new
database must contain the same number of files as the original. For example, if your
original database consisted of one large 120-GB file, you would need to restore it to

140	 Microsoft SQL Server 2008 Internals

a database with one file of that size. If you don’t have another 120-GB drive immediately
available, you cannot restore the database. If, however, you originally created the database
on several smaller files, you have added flexibility during a restoration. You might be more
likely to have several 40-GB drives available than one large 120-GB drive.

Second, spreading the database onto multiple files, even on the same drive, gives you
the flexibility of easily moving the database onto separate drives if you modify your
hardware configuration in the future. (Please refer to the section “Moving or Copying a
Database,” later in this chapter, for details.)

Objects that have space allocated to them, namely tables and indexes, are created on a
particular filegroup. (They can also be created on a partition scheme, which is a collection
of filegroups. I’ll discuss partitioning and partition schemes in Chapter 7.) If the filegroup
(or partition scheme) is not specified, objects are created on the default filegroup. When you
add space to objects stored in a particular filegroup, the data is stored in a proportional fill
manner, which means that if you have one file in a filegroup with twice as much free space
as another, the first file has two extents (or units of space) allocated from it for each extent
allocated from the second file. (I’ll discuss extents in more detail in the section entitled
“Space Allocation,” later in this chapter.) It’s recommended that you create all of your files to
be the same size to avoid the issues of proportional fill.

You can also use filegroups to allow backups of parts of the database. Because a table is created
on a single filegroup, you can choose to back up just a certain set of critical tables by backing
up the filegroups in which you placed those tables. You can also restore individual files or
filegroups in two ways. First, you can do a partial restore of a database and restore only a subset
of filegroups, which must always include the primary filegroup. The database will be online
as soon as the primary filegroup has been restored, but only objects created on the restored
filegroups will be available. Partial restore of just a subset of filegroups can be a solution to allow
very large databases to be available within a mandated time window. Alternatively, if you have
a failure of a subset of the disks on which you created your database, you can restore backups
of the filegroups on those disks on top of the existing database. This method of restoring also
requires that you have log backups, so I’ll discuss this topic in more detail in Chapter 4.

A FILEGROUP CREATION Example
This example creates a database named sales with three filegroups:

n	 The primary filegroup, with the files salesPrimary1 and salesPrimary2. The FILEGROWTH
increment for both of these files is specified as 100 MB.

n	 A filegroup named SalesGroup1, with the files salesGrp1File1 and salesGrp1Fi1e2.

n	 A filegroup named SalesGroup2, with the files salesGrp2File1 and salesGrp2Fi1e2.

	 Chapter 3  Databases and Database Files	 141

CREATE DATABASE Sales

ON PRIMARY

(NAME = salesPrimary1,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesPrimary1.mdf',

SIZE = 100,

MAXSIZE = 500,

FILEGROWTH = 100),

(NAME = salesPrimary2,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesPrimary2.ndf',

SIZE = 100,

MAXSIZE = 500,

FILEGROWTH = 100),

FILEGROUP SalesGroup1

(NAME = salesGrp1Fi1e1,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp1Fi1e1.ndf',

SIZE = 500,

MAXSIZE = 3000,

FILEGROWTH = 500),

(NAME = salesGrp1Fi1e2,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp1Fi1e2.ndf',

SIZE = 500,

MAXSIZE = 3000,

FILEGROWTH = 500),

FILEGROUP SalesGroup2

(NAME = salesGrp2Fi1e1,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp2Fi1e1.ndf',

SIZE = 100,

MAXSIZE = 5000,

FILEGROWTH = 500),

(NAME = salesGrp2Fi1e2,

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\salesGrp2Fi1e2.ndf',

SIZE = 100,

MAXSIZE = 5000,

FILEGROWTH = 500)

LOG ON

(NAME = 'Sales_log',

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\saleslog.ldf',

SIZE = 5MB,

MAXSIZE = 25MB,

FILEGROWTH = 5MB);

Filestream Filegroups
I briefly mentioned filestream storage in Chapter 1, “SQL Server 2008 Architecture and
Configuration,” when I talked about configuration options. Filestream filegroups can be
created when you create a database, just like regular filegroups can be, but you must specify

142	 Microsoft SQL Server 2008 Internals

that the filegroup is for filestream data by using the phrase CONTAINS FILESTREAM. Unlike
regular filegroups, each filestream filegroup can contain only one file reference, and that file
is specified as an operating system folder, not a specific file. The path up to the last folder
must exist, and the last folder must not exist. So in my example, the path C:\Data must
exist, but the Reviews_FS subfolder cannot exist when you execute the CREATE DATABASE
command. Also unlike regular filegroups, there is no space preallocated to the filegroup and
you do not specify size or growth information for the file within the filegroup. The file and
filegroup will grow as data is added to tables that have been created with
filestream columns:

CREATE DATABASE MyMovieReviews

ON

PRIMARY

 (NAME = Reviews_data,

 FILENAME = 'c:\data\Reviews_data.mdf'),

FILEGROUP MovieReviewsFSGroup1 CONTAINS FILESTREAM

 (NAME = Reviews_FS,

 FILENAME = 'c:\data\Reviews_FS')

LOG ON (NAME = Reviews_log,

 FILENAME = 'c:\data\Reviews_log.ldf');

GO

If you run the previous code, you should see a Filestream.hdr file and an $FSLOG folder in
the C:\Data\Reviews_FS folder. The Filestream.hdr file is a FILESTREAM container header file.
This file should not be modified or removed. For existing databases, you can add a filestream
filegroup using ALTER DATABASE, which I’ll cover in the next section. All data in all columns
placed in the MovieReviewsFSGroup1 is maintained and managed with individual files created
in the Reviews_FS folder. I’ll tell you more about the file organization within this folder in
Chapter 7, when I talk about special storage formats.

Altering a Database
You can use the ALTER DATABASE command to change a database’s definition in one of the
following ways:

n	 Change the name of the database.

n	 Add one or more new data files to the database. If you want, you can put these files in
a user-defined filegroup. All files added in a single ALTER DATABASE command must go
in the same filegroup.

n	 Add one or more new log files to the database.

n	 Remove a file or a filegroup from the database. You can do this only if the file or
filegroup is completely empty. Removing a filegroup removes all the files in it.

	 Chapter 3  Databases and Database Files	 143

n	 Add a new filegroup to a database. (Adding files to those filegroups must be done
in a separate ALTER DATABASE command.) Modify an existing file in one of the
following ways:

o	 Increase the value of the SIZE property.

o	 Change the MAXSIZE or FILEGROWTH property.

o	 Change the logical name of a file by specifying a NEWNAME property. The value of
NEWNAME is then used as the NAME property for all future references to this file.

o	 Change the FILENAME property for files, which can effectively move the files to a new
location. The new name or location doesn’t take effect until you restart SQL Server.
For tempdb, SQL Server automatically creates the files with the new name in the new
location; for other databases, you must move the file manually after stopping your
SQL Server instance. SQL Server then finds the new file when it restarts.

n	 Mark the file as OFFLINE. You should set a file to OFFLINE when the physical file has
become corrupted and the file backup is available to use for restoring. (There is also
an option to mark the whole database as OFFLINE, which I'll discuss shortly when I talk
about database properties.) Marking a file as OFFLINE allows you to indicate that you
don’t want SQL Server to recover that particular file when it is restarted. Modify an
existing filegroup in one of the following ways:

o	 Mark the filegroup as READONLY so that updates to objects in the filegroup
aren’t allowed. The primary filegroup cannot be made READONLY.

o	 Mark the filegroup as READWRITE, which reverses the READONLY property.

o	 Mark the filegroup as the default filegroup for the database.

o	 Change the name of the filegroup.

n	 Change one or more database options. (I’ll discuss database options later in the chapter.)

The ALTER DATABASE command can make only one of the changes described each time it is
executed. Note that you cannot move a file from one filegroup to another.

ALTER DATABASE Examples
The following examples demonstrate some of the changes that you can make using the
ALTER DATABASE command.

This example increases the size of a database file:

USE master

GO

ALTER DATABASE Test1

MODIFY FILE

(NAME = 'test1dat3',

SIZE = 2000MB);

144	 Microsoft SQL Server 2008 Internals

The following example creates a new filegroup in a database, adds two 500-MB files to
the filegroup, and makes the new filegroup the default filegroup. You need three ALTER
DATABASE statements:

ALTER DATABASE Test1

ADD FILEGROUP Test1FG1;

GO

ALTER DATABASE Test1

ADD FILE

(NAME = 'test1dat4',

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\t1dat4.ndf',

SIZE = 500MB,

MAXSIZE = 1000MB,

FILEGROWTH = 50MB),

(NAME = 'test1dat5',

FILENAME =

 'c:\program files\microsoft sql server\mssql.1\mssql\data\t1dat5.ndf',

SIZE = 500MB,

MAXSIZE = 1000MB,

FILEGROWTH = 50MB)

TO FILEGROUP Test1FG1;

GO

ALTER DATABASE Test1

MODIFY FILEGROUP Test1FG1 DEFAULT;

GO

Databases Under the Hood
A database consists of user-defined space for the permanent storage of user objects such as
tables and indexes. This space is allocated in one or more operating system files.

Databases are divided into logical pages (of 8 KB each), and within each file the pages are
numbered contiguously from 0 to x, with the value x being defined by the size of the file.
You can refer to any page by specifying a database ID, a file ID, and a page number. When
you use the ALTER DATABASE command to enlarge a file, the new space is added to the end
of the file. That is, the first page of the newly allocated space is page x + 1 on the file you’re
enlarging. When you shrink a database by using the DBCC SHRINKDATABASE or DBCC
SHRINKFILE command, pages are removed starting at the highest-numbered page in the
database (at the end) and moving toward lower-numbered pages. This ensures that page
numbers within a file are always contiguous.

When you create a new database using the CREATE DATABASE command, it is given a unique
database ID, and you can see a row for the new database in the sys.databases view. The rows
returned in sys.databases include basic information about each database, such as its name,
database_id, and creation date, as well as the value for each database option that can be
set with the ALTER DATABASE command. I’ll discuss database options in more detail later in
the chapter.

 Chapter 3 Databases and Database Files 145

Space Allocation
The space in a database is used for storing tables and indexes. The space is managed in units
called extents. An extent is made up of eight logically contiguous pages (or 64 KB of space).
To make space allocation more effi cient, SQL Server 2008 doesn’t allocate entire extents to
tables with small amounts of data. SQL Server 2008 has two types of extents:

n Uniform extents These are owned by a single object; all eight pages in the extent can
be used only by the owning object.

n Mixed extents These are shared by up to eight objects.

 SQL Server allocates pages for a new table or index from mixed extents. When the table or
index grows to eight pages, all future allocations use uniform extents.

 When a table or index needs more space, SQL Server needs to fi nd space that’s available to
be allocated. If the table or index is still less than eight pages total, SQL Server must fi nd a
mixed extent with space available. If the table or index is eight pages or larger, SQL Server
must fi nd a free uniform extent.

 SQL Server uses two special types of pages to record which extents have been allocated and
which type of use (mixed or uniform) the extent is available for:

n Global Allocation Map (GAM) pages These pages record which extents have been
allocated for any type of use. A GAM has a bit for each extent in the interval it covers.
If the bit is 0, the corresponding extent is in use; if the bit is 1, the extent is free. After
the header and other overhead are accounted for, there are 8,000 bytes, or 64,000 bits,
available on the page, so each GAM can cover about 64,000 extents, or almost 4 GB of
data. This means that one GAM page exists in a fi le for every 4 GB of fi le size.

n Shared Global Allocation Map (SGAM) pages These pages record which extents are
currently used as mixed extents and have at least one unused page. Just like a GAM,
each SGAM covers about 64,000 extents, or almost 4 GB of data. The SGAM has a bit
for each extent in the interval it covers. If the bit is 1, the extent being used is a mixed
extent and has free pages; if the bit is 0, the extent isn’t being used as a mixed extent,
or it’s a mixed extent whose pages are all in use.

 Table 3-2 shows the bit patterns that each extent has set in the GAM and SGAM pages, based
on its current use.

 TABLe 3-2 Bit Settings in gAM and SgAM Pages

 Current Use of Extent GAM Bit Setting SGAM Bit Setting

 Free, not in use 1 0

 Uniform extent or full mixed extent 0 0

 Mixed extent with free pages 0 1

Current Use of Extent GAM Bit Setting SGAM Bit Setting

146	 Microsoft SQL Server 2008 Internals

There are several tools available for actually examining the bits in the GAMs and SGAMs.
Chapter 5 discusses the DBCC PAGE command which allows you to view the contents of a
SQL Server database page using a query window. Because the page numbers of the GAMs
and SGAMs are known, we can just look at pages 2 or 3. If we use format 3, which gives the
most details, we can see that output displays which extents are allocated and which are not.
Figure 3-2 shows the last section of the output using DBCC PAGE with format 3 for the first
GAM page of my AdventureWorks2008 database.

(1:0) - (1:24256) = ALLOCATED

(1:24264) - = NOT ALLOCATED

(1:24272) - (1:29752) = ALLOCATED

(1:29760) - (1:30168) = NOT ALLOCATED

(1:30176) - (1:30240) = ALLOCATED

(1:30248) - (1:30256) = NOT ALLOCATED

(1:30264) - (1:32080) = ALLOCATED

(1:32088) - (1:32304) = NOT ALLOCATED

Figure 3-2  GAM page contents indicating allocation status of extents in a file

This output indicates that all the extents up through the one that starts on page 24,256 are
allocated. This corresponds to the first 189 MB of the file. The extent starting at 24,264 is not
allocated, but the next 5,480 pages are allocated.

We can also use a graphical tool called SQL Internals Viewer to look at which extents have been
allocated. SQL Internals Viewer is a free tool available from http://www.SQLInternalsViewer.com,
and is also available on this book’s companion Web site. Figure 3-3 shows the main allocation
page for my master database. GAMs and SGAMs have been combined in one display and
indicate the status of every page, not just every extent. The green squares indicate that the
SGAM is being used but the extent is not used, so there are pages available for single-page
allocations. The blue blocks indicate that both the GAM bit and the SGAM bit are set, so the
corresponding extent is completely unavailable. The gray blocks indicate that the extent is free.

Figure 3-3  SQL Internals Viewer indicating the allocation status of each page

	 Chapter 3  Databases and Database Files	 147

If SQL Server needs to find a new, completely unused extent, it can use any extent with a
corresponding bit value of 1 in the GAM page. If it needs to find a mixed extent with available
space (one or more free pages), it finds an extent with a value in the SGAM of 1 (which always
has a value in the GAM of 0). If there are no mixed extents with available space, it uses the
GAM page to find a whole new extent to allocate as a mixed extent, and uses one page from
that. If there are no free extents at all, the file is full.

SQL Server can locate the GAMs in a file quickly because a GAM is always the third page in
any database file (that is, page 2). An SGAM is the fourth page (that is, page 3). Another GAM
appears every 511,230 pages after the first GAM on page 2, and another SGAM appears
every 511,230 pages after the first SGAM on page 3. Page 0 in any file is the File Header
page, and only one exists per file. Page 1 is a Page Free Space (PFS) page. In Chapter 5, I’ll
say more about how individual pages within a table look and tell you about the details of PFS
pages. For now, because I’m talking about space allocation, I’ll examine how to keep track of
which pages belong to which tables.

IAM pages keep track of the extents in a 4-GB section of a database file used by an allocation
unit. An allocation unit is a set of pages belonging to a single partition in a table or index
and comprises pages of one of three storage types: pages holding regular in-row data, pages
holding Large Object (LOB) data, or pages holding row-overflow data. I’ll discuss these regular
in-row storage in Chapter 5, and LOB, row-overflow storage, and partitions in Chapter 7.

For example, a table on four partitions that has all three types of data (in-row, LOB, and
row-overflow) has at least 12 IAM pages. Again, a single IAM page covers only a 4-GB section
of a single file, so if the partition spans files, there will be multiple IAM pages, and if the file is
more than 4 GB in size and the partition uses pages in more than one 4-GB section, there will
be additional IAM pages.

An IAM page contains a 96-byte page header, like all other pages followed by an IAM page
header, which contains eight page-pointer slots. Finally, an IAM page contains a set of bits
that map a range of extents onto a file, which doesn’t necessarily have to be the same file
that the IAM page is in. The header has the address of the first extent in the range mapped
by the IAM. The eight page-pointer slots might contain pointers to pages belonging to the
relevant object contained in mixed extents; only the first IAM for an object has values in
these pointers. Once an object takes up more than eight pages, all of its additional extents
are uniform extents—which means that an object never needs more than eight pointers to
pages in mixed extents. If rows have been deleted from a table, the table can actually use
fewer than eight of these pointers. Each bit of the bitmap represents an extent in the range,
regardless of whether the extent is allocated to the object owning the IAM. If a bit is on,
the relative extent in the range is allocated to the object owning the IAM; if a bit is off, the
relative extent isn’t allocated to the object owning the IAM.

148	 Microsoft SQL Server 2008 Internals

For example, if the bit pattern in the first byte of the IAM is 1100 0000, the first and second
extents in the range covered by the IAM are allocated to the object owning the IAM and
extents 3 through 8 aren’t allocated to the object owning the IAM.

IAM pages are allocated as needed for each object and are located randomly in the database
file. Each IAM covers a possible range of about 512,000 pages.

The internal system view called sys.system_internals_allocation_units has a column called
first_iam_page that points to the first IAM page for an allocation unit. All the IAM pages for
that allocation unit are linked in a chain, with each IAM page containing a pointer to the next
in the chain. You can find out more about IAMs and allocation units in Chapters 5, 6, and 7
when I discuss object and index storage.

In addition to GAMs, SGAMs, and IAMs, a database file has three other types of special
allocation pages. PFS pages keep track of how each particular page in a file is used. The second
page (page 1) of a file is a PFS page, as is every 8,088th page thereafter. I’ll talk about them
more in Chapter 5. The seventh page (page 6) is called a Differential Changed Map (DCM)
page. It keeps track of which extents in a file have been modified since the last full database
backup. The eighth page (page 7) is called a Bulk Changed Map (BCM) page and is used when
an extent in the file is used in a minimally or bulk-logged operation. I’ll tell you more about
these two kinds of pages when I talk about the internals of backup and restore operations in
Chapter 4. Like GAM and SGAM pages, DCM and BCM pages have 1 bit for each extent in the
section of the file they represent. They occur at regular intervals—every 511,230 pages.

You can see the details of IAMs and PFS pages, as well as DCM and BCM pages, using either
DBCC PAGE or the SQL Internals Viewer. I’ll show you more examples of the output of DBCC
PAGE in later chapters as we cover more details of the different types of allocation pages.

Setting Database Options
You can set several dozen options, or properties, for a database to control certain behavior
within that database. Some options must be set to ON or OFF, some must be set to one of
a list of possible values, and others are enabled by just specifying their name. By default,
all the options that require ON or OFF have an initial value of OFF unless the option was
set to ON in the model database. All databases created after an option is changed in model
have the same values as model. You can easily change the value of some of these options by
using Management Studio. You can set all of them directly by using the ALTER DATABASE
command. (You can also use the sp_dboption system stored procedure to set some of the
options, but that procedure is provided for backward compatibility only and is scheduled to
be removed in the next version of SQL Server.)

Examining the sys.databases catalog view can show you the current values of all the options.
The view also contains other useful information, such as database ID, creation date, and the
Security ID (SID) of the database owner. The following query retrieves some of the most

 Chapter 3 Databases and Database Files 149

 important columns from sys.databases for the four databases that exist on a new default
 installation of SQL Server:

SELECT name, database_id, suser_sname(owner_sid) as owner,

 create_date, user_access_desc, state_desc

FROM sys.databases

WHERE database_id <= 4;

The query produces this output, although the created dates may vary:

name database_id owner create_date user_access_desc state_desc

------ ----------- ----- ----------------------- ---------------- ----------

master 1 sa 2003-04-08 09:13:36.390 MULTI_USER ONLINE

tempdb 2 sa 2008-04-19 12:02:35.327 MULTI_USER ONLINE

model 3 sa 2003-04-08 09:13:36.390 MULTI_USER ONLINE

msdb 4 sa 2008-03-21 01:54:05.240 MULTI_USER ONLINE

The sys.databases view actually contains both a number and a name for the user_access
and state information. Selecting all the columns from sys.databases would show you that
the user_access_desc value of MULTI_USER has a corresponding user_access value of 0, and
the state_desc value of ONLINE has a state value of 0. SQL Server Books Online shows the
 complete list of number and name relationships for the columns in sys.databases. These are
just two of the database options displayed in the sys.databases view. The complete list of
database options is divided into seven main categories: state options, cursor options, auto
 options, parameterization options, SQL options, database recovery options, and external
 access options. There are also options for specifi c technologies that SQL Server can use,
 including database mirroring, Service Broker activities, change tracking, database encryption,
and snapshot isolation. Some of the options, particularly the SQL options, have corresponding
SET options that you can turn on or off for a particular connection. Be aware that the ODBC or
OLE DB drivers turn on a number of these SET options by default, so applications act as if the
 corresponding database option has already been set.

Here is a list of the options, by category. Options listed on a single line and values separated
by vertical bars (|) are mutually exclusive.

State options

 1. SINGLE_USER | RESTRICTED_USER | MULTI_USER

 2. OFFLINE | ONLINE | EMERGENCY

 3. READ_ONLY | READ_WRITE

Cursor options

 1. CURSOR_CLOSE_ON_COMMIT { ON | OFF }

 2. CURSOR_DEFAULT { LOCAL | GLOBAL }

State options

Cursor options

150 Microsoft SQL Server 2008 Internals

Auto options

 1. AUTO_CLOSE { ON | OFF }

 2. AUTO_CREATE_STATISTICS { ON | OFF }

 3. AUTO_SHRINK { ON | OFF }

 4. AUTO_UPDATE_STATISTICS { ON | OFF }

 5. AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }

Parameterization options

 1. DATE_CORRELATION_OPTIMIZATION { ON | OFF }

 2. PARAMETERIZATION { SIMPLE | FORCED }

SQL options

 1. ANSI_NULL_DEFAULT { ON | OFF }

 2. ANSI_NULLS { ON | OFF }

 3. ANSI_PADDING { ON | OFF }

 4. ANSI_WARNINGS { ON | OFF }

 5. ARITHABORT { ON | OFF }

 6. CONCAT_NULL_YIELDS_NULL { ON | OFF }

 7. NUMERIC_ROUNDABORT { ON | OFF }

 8. QUOTED_IDENTIFIER { ON | OFF }

 9. RECURSIVE_TRIGGERS { ON | OFF }

Database recovery options

 1. RECOVERY { FULL | BULK_LOGGED | SIMPLE }

 2. TORN_PAGE_DETECTION { ON | OFF }

 3. PAGE_VERIFY { CHECKSUM | TORN_PAGE_DETECTION | NONE }

External access options

 1. DB_CHAINING { ON | OFF }

 2. TRUSTWORTHY { ON | OFF }

Database mirroring options

 1. PARTNER { = ‘partner_server’ }

 2. | FAILOVER

Auto options

Parameterization options

SQL options

Database recovery options

External access options

Database mirroring options

 Chapter 3 Databases and Database Files 151

 3. | FORCE_SERVICE_ALLOW_DATA_LOSS

 4. | OFF

 5. | RESUME

 6. | SAFETY { FULL | OFF }

 7. | SUSPEND

 8. | TIMEOUT integer

 9. }

 10. WITNESS { = ‘witness_server’ }| OFF }

Service Broker options

 1. ENABLE_BROKER | DISABLE_BROKER

 2. NEW_BROKER

 3. ERROR_BROKER_CONVERSATIONS

Change Tracking options

 1. CHANGE_TRACKING {= ON [<change_tracking_settings> | = OFF}

Database Encryption options

 1. ENCRYPTION {ON | OFF}

Snapshot Isolation options

 1. ALLOW_SNAPSHOT_ISOLATION {ON | OFF }

 2. READ_COMMITTED_SNAPSHOT {ON | OFF } [WITH <termination>]

State Options
The state options control who can use the database and for what operations. There are three
aspects to usability: The user access state determines which users can use the database;
the status state determines whether the database is available to anybody for use; and the
 updateability state determines what operations can be performed on the database. You
 control each of these aspects by using the ALTER DATABASE command to enable an option
for the database. None of the state options uses the keywords ON and OFF to control the
state value.

SINGLE_USER | RESTRICTED_USER | MULTI_USER
The three options SINGLE_USER, RESTRICTED_USER, and MULTI_USER describe the user
access property of a database. They are mutually exclusive; setting any one of them unsets

Service Broker options

Change Tracking options

Database Encryption options

Snapshot Isolation options

152	 Microsoft SQL Server 2008 Internals

the others. To set one of these options for your database, you just use the option name. For
example, to set the AdventureWorks2008 database to single-user mode, use the following code:

ALTER DATABASE AdventureWorks2008 SET SINGLE_USER;

A database in SINGLE_USER mode can have only one connection at a time. A database
in RESTRICTED_USER mode can have connections only from users who are considered
“qualified”—those who are members of the dbcreator or sysadmin server role or the db_owner
role for that database. The default for a database is MULTI_USER mode, which means anyone
with a valid user name in the database can connect to it. If you attempt to change a database’s
state to a mode that is incompatible with the current conditions—for example, if you try to
change the database to SINGLE_USER mode when other connections exist—the behavior of
SQL Server is determined by the TERMINATION option you specify. I’ll discuss termination
options shortly.

To determine which user access value is set for a database, you can examine the sys.databases
catalog view, as shown here:

SELECT USER_ACCESS_DESC FROM sys.databases

WHERE name = '<name of database>';

This query will return one of MULTI_USER, SINGLE_USER, or RESTRICTED_USER.

OFFLINE | ONLINE | EMERGENCY
You use the OFFLINE, ONLINE, and EMERGENCY options to describe the status of a database.
They are mutually exclusive. The default for a database is ONLINE. As with the user access
options, when you use ALTER DATABASE to put the database in one of these modes, you
don’t specify a value of ON or OFF—you just use the name of the option. When a database
is set to OFFLINE, it is closed and shut down cleanly and marked as offline. The database
cannot be modified while the database is offline. A database cannot be put into OFFLINE
mode if there are any connections in the database. Whether SQL Server waits for the other
connections to terminate or generates an error message is determined by the TERMINATION
option specified.

The following code examples show how to set a database’s status value to OFFLINE and how
to determine the status of a database:

ALTER DATABASE AdventureWorks2008 SET OFFLINE;

SELECT state_desc from sys.databases

WHERE name = 'AdventureWorks2008';

A database can be explicitly set to EMERGENCY mode, and that option will be discussed in
Chapter 11, in conjunction with DBCC commands.

As shown in the preceding query, you can determine the current status of a database by
examining the state_desc column of the sys.databases view. This column can return status

	 Chapter 3  Databases and Database Files	 153

values other than OFFLINE, ONLINE, and EMERGENCY, but those values are not directly
settable using ALTER DATABASE. A database can have the status value RESTORING while it
is in the process of being restored from a backup. It can have the status value RECOVERING
during a restart of SQL Server. The recovery process is performed on one database at a
time, and until SQL Server has finished recovering a database, the database has a status of
RECOVERING. If the recovery process cannot be completed for some reason (most likely
because one or more of the log files for the database is unavailable or unreadable), SQL
Server gives the database the status of RECOVERY_PENDING. Your databases can also be put
into RECOVERY_PENDING mode if SQL Server runs out of either log or data space during
rollback recovery, or if SQL Server runs out of locks or memory during any part of the startup
process. I’ll go into more detail about the difference between rollback recovery and startup
recovery in Chapter 4.

If all the needed resources, including the log files, are available, but corruption is detected
during recovery, the database may be put in the SUSPECT state. You can determine the state
value by looking at the state_desc column in the sys.databases view. A database is completely
unavailable if it’s in the SUSPECT state, and you will not even see the database listed if you
run sp_helpdb. However, you can still see the status of a suspect database in the sys.databases
view. In many cases, you can make a suspect database available for read-only operations by
setting its status to EMERGENCY mode. If you really have lost one or more of the log files
for a database, EMERGENCY mode allows you to access the data while you copy it to a new
location. When you move from RECOVERY_ PENDING to EMERGENCY, SQL Server shuts down
the database and then restarts it with a special flag that allows it to skip the recovery process.
Skipping recovery can mean you have logically or physically inconsistent data—missing index
rows, broken page links, or incorrect metadata pointers. By specifically putting your database
in EMERGENCY mode, you are acknowledging that the data might be inconsistent but that
you want access to it anyway.

READ_ONLY | READ_WRITE
These options describe the updatability of a database. They are mutually exclusive. The default
for a database is READ_WRITE. As with the user access options, when you use ALTER DATABASE
to put the database in one of these modes, you don’t specify a value of ON or OFF, you just
use the name of the option. When the database is in READ_WRITE mode, any user with the
appropriate permissions can carry out data modification operations. In READ_ONLY mode, no
INSERT, UPDATE, or DELETE operations can be executed. In addition, because no modifications
are done when a database is in READ_ONLY mode, automatic recovery is not run on this
database when SQL Server is restarted, and no locks need to be acquired during any SELECT
operations. Shrinking a database in READ_ONLY mode is not possible.

A database cannot be put into READ_ONLY mode if there are any connections to the
database. Whether SQL Server waits for the other connections to terminate or generates an
error message is determined by the TERMINATION option specified.

154	 Microsoft SQL Server 2008 Internals

The following code shows how to set a database’s updatability value to READ_ONLY and how
to determine the updatability of a database:

ALTER DATABASE AdventureWorks2008 SET READ_ONLY;

SELECT name, is_read_only FROM sys.databases

WHERE name = 'AdventureWorks2008';

When READ_ONLY is enabled for database, the is_read_only column returns 1; otherwise, for
a READ_WRITE database, it returns 0.

Termination Options
As I just mentioned, several of the state options cannot be set when a database is in use or
when it is in use by an unqualified user. You can specify how SQL Server should handle this
situation by indicating a termination option in the ALTER DATABASE command. You can have
SQL Server wait for the situation to change, generate an error message, or terminate the
connections of unqualified users. The termination option determines the behavior of SQL
Server in the following situations:

n	 When you attempt to change a database to SINGLE_USER and it has more than one
current connection

n	 When you attempt to change a database to RESTRICTED_USER and unqualified users
are currently connected to it

n	 When you attempt to change a database to OFFLINE and there are current connections
to it

n	 When you attempt to change a database to READ_ONLY and there are current
connections to it

The default behavior of SQL Server in any of these situations is to wait indefinitely. The following
TERMINATION options change this behavior:

n	 ROLLBACK AFTER integer [SECONDS]  This option causes SQL Server to wait for the
specified number of seconds and then break unqualified connections. Incomplete
transactions are rolled back. When the transition is to SINGLE_USER mode, all
connections are unqualified except the one issuing the ALTER DATABASE command.
When the transition is to RESTRICTED_USER mode, unqualified connections are those
of users who are not members of the db_owner fixed database role or the dbcreator
and sysadmin fixed server roles.

n	 ROLLBACK IMMEDIATE  This option breaks unqualified connections immediately. All
incomplete transactions are rolled back. Keep in mind that although the connection
may be broken immediately, the rollback might take some time to complete. All work
done by the transaction must be undone, so for certain operations, such as a batch
update of millions of rows or a large index rebuild, you could be in for a long wait.
Unqualified connections are the same as those described previously.

	 Chapter 3  Databases and Database Files	 155

n	 NO_WAIT  This option causes SQL Server to check for connections before attempting
to change the database state and causes the ALTER DATABASE command to fail if
certain connections exist. If the database is being set to SINGLE_USER mode, the
ALTER DATABASE command fails if any other connections exist. If the transition is
to RESTRICTED_USER mode, the ALTER DATABASE command fails if any unqualified
connections exist.

The following command changes the user access option of the AdventureWorks2008 database
to SINGLE_USER and generates an error if any other connections to the AdventureWorks2008
database exist:

ALTER DATABASE AdventureWorks2008 SET SINGLE_USER WITH NO_WAIT;

Cursor Options
The cursor options control the behavior of server-side cursors that were defined using one
of the following T-SQL commands for defining and manipulating cursors: DECLARE, OPEN,
FETCH, CLOSE, and DEALLOCATE.

n	 CURSOR_CLOSE_ON_COMMIT {ON | OFF}  When this option is set to ON, any open
cursors are closed (in compliance with SQL-92) when a transaction is committed or
rolled back. If OFF (the default) is specified, cursors remain open after a transaction
is committed. Rolling back a transaction closes any cursors except those defined as
INSENSITIVE or STATIC.

n	 CURSOR_DEFAULT {LOCAL | GLOBAL}  When this option is set to LOCAL and cursors
aren’t specified as GLOBAL when they are created, the scope of any cursor is local to
the batch, stored procedure, or trigger in which it was created. The cursor name is
valid only within this scope. The cursor can be referenced by local cursor variables in
the batch, stored procedure, or trigger, or by a stored procedure output parameter.
When this option is set to GLOBAL and cursors aren’t specified as LOCAL when they are
created, the scope of the cursor is global to the connection. The cursor name can be
referenced in any stored procedure or batch executed by the connection.

Auto Options
The auto options affect actions that SQL Server might take automatically. All these options
are Boolean options, with a value of ON or OFF.

n	 AUTO_CLOSE  When this option is set to ON, the database is closed and shut down
cleanly when the last user of the database exits, thereby freeing any resources. All file
handles are closed, and all in-memory structures are removed so that the database is
not using any memory. When a user tries to use the database again, it reopens. If the
database was shut down cleanly, the database isn’t initialized (reopened) until a user

156	 Microsoft SQL Server 2008 Internals

tries to use the database the next time SQL Server is restarted. The AUTO_CLOSE option
is handy for personal SQL Server databases because it allows you to manage database
files as normal files. You can move them, copy them to make backups, or even e-mail
them to other users. However, you shouldn’t use this option for databases accessed
by an application that repeatedly makes and breaks connections to SQL Server. The
overhead of closing and reopening the database between each connection will
hurt performance.

n	 AUTO_SHRINK  When this option is set to ON, all of a database’s files are candidates
for periodic shrinking. Both data files and log files can be automatically shrunk by
SQL Server. The only way to free space in the log files so that they can be shrunk
is to back up the transaction log or set the recovery model to SIMPLE. The log
files shrink at the point that the log is backed up or truncated. This option is never
recommended.

n	 AUTO_CREATE_STATISTICS  When this option is set to ON (the default), the SQL
Server Query Optimizer creates statistics on columns referenced in a query’s WHERE
or ON clause. Adding statistics improves query performance because the SQL Server
Query Optimizer can better determine how to evaluate a query.

n	 AUTO_UPDATE_STATISTICS  When this option is set to ON (the default), existing
statistics are updated if the data in the tables has changed. SQL Server keeps a
counter of the modifications made to a table and uses it to determine when statistics
are outdated. When this option is set to OFF, existing statistics are not automatically
updated. (They can be updated manually.) Statistics will be discussed in more detail in
Chapter 6 and Chapter 8, “The Query Optimizer.”

SQL Options
The SQL options control how various SQL statements are interpreted. They are all Boolean
options. The default for all these options is OFF for SQL Server, but many tools, such as the
Management Studio, and many programming interfaces, such as ODBC, enable certain
session-level options that override the database options and make it appear as if the ON
behavior is the default.

n	 ANSI_NULL_DEFAULT  When this option is set to ON, columns comply with the ANSI
SQL-92 rules for column nullability. That is, if you don’t specifically indicate whether a
column in a table allows NULL values, NULLs are allowed. When this option is set to
OFF, newly created columns do not allow NULLs if no nullability constraint is specified.

n	 ANSI_NULLS  When this option is set to ON, any comparisons with a NULL value
result in UNKNOWN, as specified by the ANSI-92 standard. If this option is set to OFF,
comparisons of non-Unicode values to NULL result in a value of TRUE if both values
being compared are NULL.

	 Chapter 3  Databases and Database Files	 157

n	 ANSI_PADDING  When this option is set to ON, strings being compared with each
other are set to the same length before the comparison takes place. When this option
is OFF, no padding takes place.

n	 ANSI_WARNINGS  When this option is set to ON, errors or warnings are issued when
conditions such as division by zero or arithmetic overflow occur.

n	 ARITHABORT  When this option is set to ON, a query is terminated when an
arithmetic overflow or division-by-zero error is encountered during the execution of a
query. When this option is OFF, the query returns NULL as the result of the operation.

n	 CONCAT_NULL_YIELDS_NULL  When this option is set to ON, concatenating two
strings results in a NULL string if either of the strings is NULL. When this option is set
to OFF, a NULL string is treated as an empty (zero-length) string for the purposes of
concatenation.

n	 NUMERIC_ROUNDABORT  When this option is set to ON, an error is generated
if an expression will result in loss of precision. When this option is OFF, the result is
simply rounded. The setting of ARITHABORT determines the severity of the error.
If ARITHABORT is OFF, only a warning is issued and the expression returns a NULL. If
ARITHABORT is ON, an error is generated and no result is returned.

n	 QUOTED_IDENTIFIER  When this option is set to ON, identifiers such as table and
column names can be delimited by double quotation marks, and literals must then
be delimited by single quotation marks. All strings delimited by double quotation
marks are interpreted as object identifiers. Quoted identifiers don’t have to follow the
T-SQL rules for identifiers when QUOTED_IDENTIFIER is ON. They can be keywords
and can include characters not normally allowed in T-SQL identifiers, such as spaces
and dashes. You can’t use double quotation marks to delimit literal string expressions;
you must use single quotation marks. If a single quotation mark is part of the literal
string, it can be represented by two single quotation marks (''). This option must be
set to ON if reserved keywords are used for object names in the database. When
it is OFF, identifiers can’t be in quotation marks and must follow all T-SQL rules
for identifiers.

n	 RECURSIVE_TRIGGERS  When this option is set to ON, triggers can fire recursively,
either directly or indirectly. Indirect recursion occurs when a trigger fires and performs
an action that causes a trigger on another table to fire, thereby causing an update to
occur on the original table, which causes the original trigger to fire again. For example,
an application updates table T1, which causes trigger Trig1 to fire. Trig1 updates table T2,
which causes trigger Trig2 to fire. Trig2 in turn updates table T1, which causes Trig1
to fire again. Direct recursion occurs when a trigger fires and performs an action that
causes the same trigger to fire again. For example, an application updates table T3,
which causes trigger Trig3 to fire. Trig3 updates table T3 again, which causes trigger Trig3
to fire again. When this option is OFF (the default), triggers can’t be fired recursively.

158	 Microsoft SQL Server 2008 Internals

Database Recovery Options
The database option RECOVERY (FULL, BULK_LOGGED or SIMPLE) determines how much
recovery can be done on a SQL Server database. It also controls how much information is
logged and how much of the log is available for backups. I’ll cover this option in more detail
in Chapter 4.

Two other options also apply to work done when a database is recovered. Setting the
TORN_PAGE_DETECTION option to ON or OFF is possible in SQL Server 2008, but that particular
option will go away in a future version. The recommended alternative is to set the PAGE_VERIFY
option to a value of TORN_PAGE_DETECTION or CHECKSUM. (So TORN_PAGE_DETECTION
should now be considered a value, rather the name of an option.)

The PAGE_VERIFY options discover damaged database pages caused by disk I/O path errors,
which can cause database corruption problems. The I/O errors themselves are generally
caused by power failures or disk failures that occur when a page is being written to disk.

n	 CHECKSUM  When the PAGE_VERIFY option is set to CHECKSUM, SQL Server
calculates a checksum over the contents of each page and stores the value in the page
header when a page is written to disk. When the page is read from disk, a checksum is
recomputed and compared with the value stored in the page header. If the values do
not match, error message 824 (indicating a checksum failure) is reported.

n	 TORN_PAGE_DETECTION  When the PAGE_VERIFY option is set to TORN_PAGE_
DETECTION, it causes a bit to be flipped for each 512-byte sector in a database page
(8 KB) whenever the page is written to disk. It allows SQL Server to detect incomplete
I/O operations caused by power failures or other system outages. If a bit is in the
wrong state when the page is later read by SQL Server, it means that the page was
written incorrectly. (A torn page has been detected.) Although SQL Server database
pages are 8 KB, disks perform I/O operations using 512-byte sectors. Therefore,
16 sectors are written per database page. A torn page can occur if the system crashes
(for example, because of power failure) between the time the operating system writes
the first 512-byte sector to disk and the completion of the 8-KB I/O operation. When
the page is read from disk, the torn bits stored in the page header are compared
with the actual page sector information. Unmatched values indicate that only part of
the page was written to disk. In this situation, error message 824 (indicating a torn
page error) is reported. Torn pages are typically detected by database recovery if it is
truly an incomplete write of a page. However, other I/O path failures can cause a torn
page at any time.

n	 NONE (No Page Verify Option)  You can specify that that neither the CHECKSUM nor
the TORN_PAGE_DETCTION value will be generated when a page is written, and these
values will not be verified when a page is read.

Both checksum and torn page errors generate error message 824, which is written to
both the SQL Server error log and the Windows event log. For any page that generates an

	 Chapter 3  Databases and Database Files	 159

824 error when read, SQL Server inserts a row into the system table suspect_pages in the
msdb database. (SQL Server Books Online has more information on “Understanding and
Managing the suspect _pages Table.”)

SQL Server retries any read that fails with a checksum, torn page, or other I/O error four
times. If the read is successful in any one of those attempts, a message is written to the error
log and the command that triggered the read continues. If the attempts fail, the command
fails with error message 824.

You can “fix” the error by restoring the data or potentially rebuilding the index if the failure
is limited to index pages. If you encounter a checksum failure, you can run DBCC CHECKDB
to determine the type of database page or pages affected. You should also determine the
root cause of the error and correct the problem as soon as possible to prevent additional or
ongoing errors. Finding the root cause requires investigating the hardware, firmware drivers,
BIOS, filter drivers (such as virus software), and other I/O path components.

In SQL Server 2008 and SQL Server 2005, the default is CHECKSUM. In SQL Server 2000,
TORN_PAGE_ DETECTION was the default, and CHECKSUM was not available. If you upgrade
a database from SQL Server 2000, the PAGE_VERIFY value will be NONE or TORN_PAGE_
DETECTION. You should always consider using CHECKSUM. Although TORN_PAGE_DETECTION
uses fewer resources, it provides less protection than CHECKSUM. Keep in mind that if you
enable CHECKSUM on a database upgraded from SQL Server 2000, that a checksum value is
computed only on pages that are modified.

Note  Prior to SQL Server 2008, neither CHECKSUM nor TORN_PAGE_DETECTION was available
in the tempdb database.

Other Database Options
Of the other categories of database options, two more will be covered in later chapters. The
snapshot isolation options will be discussed in Chapter 10, “Transactions and Concurrency.”
and the change tracking options were covered in Chapter 2. The others are beyond the scope
of this book.

Database Snapshots
An interesting feature added to the product in SQL Server 2005 Enterprise Edition is
database snapshots, which allow you to create a point-in-time, read-only copy of any
database. In fact, you can create multiple snapshots of the same source database at different
points in time. The actual space needed for each snapshot is typically much less than the
space required for the original database because the snapshot stores only pages that have
changed, as will be discussed shortly.

160	 Microsoft SQL Server 2008 Internals

Database snapshots allow you to do the following:

n	 Turn a database mirror into a reporting server. (You cannot read from a database
mirror, but you can create a snapshot of the mirror and read from that.)

n	 Generate reports without blocking or being blocked by production operations.

n	 Protect against administrative or user errors.

You’ll probably think of more ways to use snapshots as you gain experience working with them.

Creating a Database Snapshot
The mechanics of snapshot creation are straightforward—you simply specify an option for
the CREATE DATABASE command. There is no graphical interface for creating a database
snapshot through Object Explorer, so you must use the T-SQL syntax. When you create a
snapshot, you must include each data file from the source database in the CREATE DATABASE
command, with the original logical name and a new physical name and path. No other
properties of the files can be specified, and no log file is used.

Here is the syntax to create a snapshot of the AdventureWorks2008 database, putting the
snapshot files in the SQL Server 2008 default data directory:

CREATE DATABASE AdventureWorks_snapshot ON

(NAME = N'AdventureWorks_Data',

 FILENAME =

 N'C:\Program Files\Microsoft SQL Server\MSSQL10.MSSQLSERVER\MSSQL\

 Data\AW_data_snapshot.mdf')

AS SNAPSHOT OF AdventureWorks2008;

Each file in the snapshot is created as a sparse file, which is a feature of the NTFS file system.
(Don’t confuse sparse files with sparse columns available in SQL Server 2008.) Initially, a
sparse file contains no user data, and disk space for user data has not been allocated to it.
As data is written to the sparse file, NTFS allocates disk space gradually. A sparse file can
potentially grow very large. Sparse files grow in 64-KB increments; thus, the size of a sparse
file on disk is always a multiple of 64 KB.

The snapshot files contain only the data that has changed from the source. For every file, SQL
Server creates a bitmap that is kept in cache, with a bit for each page of the file, indicating
whether that page has been copied to the snapshot. Every time a page in the source is updated,
SQL Server checks the bitmap for the file to see if the page has already been copied, and if it
hasn’t, it is copied at that time. This operation is called a copy-on-write operation. Figure 3-4 shows
a database with a snapshot that contains 10 percent of the data (one page) from the source.

When a process reads from the snapshot, it first accesses the bitmap to see whether the page
it wants is in the snapshot file or is still the source. Figure 3-5 shows read operations from the
same database as in Figure 3-4. Nine of the pages are accessed from the source database,
and one is accessed from the snapshot because it has been updated on the source. When a
process reads from a snapshot database, no locks are taken no matter what isolation level

	 Chapter 3  Databases and Database Files	 161

Unallocated
Original page
Updated page
Copy-on-write
operation

Percent copied 10%

Source database
Page

Snapshot
Page

Figure 3-4  A database snapshot that contains one page of data from the source database

Source database
Page

Snapshot

Unallocated
Original page
Updated page

Percent copied 10%

Page

Read operation
on the snapshot

Figure 3-5  Read operations from a database snapshot, reading changed pages from the snapshot and
unchanged pages from the source database

162	 Microsoft SQL Server 2008 Internals

you are in. This is true whether the page is read from the sparse file or from the source
database. This is one of the big advantages of using database snapshots.

As mentioned earlier, the bitmap is stored in cache, not with the file itself, so it is always readily
available. When SQL Server shuts down or the database is closed, the bitmaps are lost and need
to be reconstructed at database startup. SQL Server determines whether each page is in the
sparse file as it is accessed, and then it records that information in the bitmap for future use.

The snapshot reflects the point in time when the CREATE DATABASE command is
issued—that is, when the creation operation commences. SQL Server checkpoints the
source database and records a synchronization Log Sequence Number (LSN) in the source
database’s transaction log. As you’ll see in Chapter 4, when I talk about the transaction log,
the LSN is a way to determine a specific point in time in a database. SQL Server then runs
recovery on the source database so that any uncommitted transactions are rolled back in
the snapshot. So although the sparse file for the snapshot starts out empty, it might not
stay that way for long. If transactions are in progress at the time the snapshot is created,
the recovery process has to undo uncommitted transactions before the snapshot database
can be usable, so the snapshot contains the original versions of any page in the source that
contains modified data.

Snapshots can be created only on NTFS volumes because they are the only volumes that
support the sparse file technology. If you try to create a snapshot on a FAT or FAT32 volume,
you’ll get an error like one of the following:

Msg 1823, Level 16, State 2, Line 1

A database snapshot cannot be created because it failed to start.

Msg 5119, Level 16, State 1, Line 1

Cannot make the file "E:\AW_snapshot.MDF" a sparse file. Make sure the file system supports

sparse files.

The first error is basically the generic failure message, and the second message provides
more details about why the operation failed.

Space Used by Database Snapshots
You can find out the number of bytes that each sparse file of the snapshot is currently using
on disk by looking at the Dynamic Management Function sys.dm_io_virtual_file_stats, which
returns the current number of bytes in a file in the size_on_disk_bytes column. This function
takes database_id and file_id as parameters. The database ID of the snapshot database
and the file IDs of each of its sparse files are displayed in the sys.master_files catalog view.
You can also view the size in Windows Explorer by right-clicking the file name and looking at
the properties, as shown in Figure 3-6. The Size value is the maximum size, and the size on
disk should be the same value that you see using sys.dm_io_virtual_file_stats. The maximum
size should be about the same size the source database was when the snapshot was created.

	 Chapter 3  Databases and Database Files	 163

Figure 3-6  The snapshot file’s Properties dialog box in Windows Explorer showing the current size of the
sparse file as the size on disk

Because it is possible to have multiple snapshots for the same database, you need to make
sure you have enough disk space available. The snapshots start out relatively small, but as
the source database is updated, each snapshot grows. Allocations to sparse files are made
in fragments called regions, in units of 64 KB. When a region is allocated, all the pages
are zeroed out except the one page that has changed. There is then space for seven more
changed pages in the same region, and a new region is not allocated until those seven
pages are used.

It is possible to overcommit your storage. This means that under normal circumstances,
you can have many times more snapshots than you have physical storage for, but if the
snapshots grow, the physical volume might run out of space. (Note that this can happen
when running online DBCC CHECKDB, and related commands, which use a hidden
snapshot during processing. You have no control of the placement of the hidden snapshot
that the commands use—they’re placed on the same volume that the files of the parent
database reside on. If this happens, the DBCC uses the source database and acquires table
locks. You can read lots more details of the internals of the DBCC commands in Chapter 11.)
Once the physical volume runs out of space, the write operations to the source cannot
copy the Before image of the page to the sparse file. The snapshots that cannot write their
pages out are marked as suspect and are unusable, but the source database continues
operating normally. There is no way to “fix” a suspect snapshot; you must drop the
snapshot database.

164	 Microsoft SQL Server 2008 Internals

Managing Your Snapshots
If any snapshots exist on a source database, the source database cannot be dropped,
detached, or restored. In addition, you can basically replace the source database with one of
its snapshots by reverting the source database to the way it was when a snapshot was made.
You do this by using the RESTORE command:

RESTORE DATABASE AdventureWorks2008

FROM DATABASE_SNAPSHOT = 'AdventureWorks_snapshot';

During the revert operation, both the snapshot and the source database are unavailable and
are marked as “In restore.” If an error occurs during the revert operation, the operation tries
to finish reverting when the database starts again. You cannot revert to a snapshot if multiple
snapshots exist, so you should first drop all snapshots except the one you want to revert to.
Dropping a snapshot is like using any other DROP DATABASE operation. When the snapshot
is deleted, all the NTFS sparse files are also deleted.

Keep in mind these additional considerations regarding database snapshots:

n	 Snapshots cannot be created for the model, master, or tempdb database. (Internally,
snapshots can be created to run the online DBCC checks on the master database, but
they cannot be created explicitly.)

n	 A snapshot inherits the security constraints of its source database, and because it is
read-only, you cannot change the permissions.

n	 If you drop a user from the source database, the user is still in the snapshot.

n	 Snapshots cannot be backed up or restored, but backing up the source database works
normally; it is unaffected by database snapshots.

n	 Snapshots cannot be attached or detached.

n	 Full-text indexing is not supported on database snapshots, and full-text catalogs are
not propagated from the source database.

The tempdb Database
In some ways, the tempdb database is just like any other database, but it has some unique
behaviors. Not all of them are relevant to the topic of this chapter, so I will provide some
references to other chapters where you can find additional information.

As mentioned previously, the biggest difference between tempdb and all the other databases
in your SQL Server instance is that tempdb is re-created—not recovered—every time SQL
Server is restarted. You can think of tempdb as a workspace for temporary user objects and
internal objects explicitly created by SQL Server itself.

Every time tempdb is re-created, it inherits most database options from the model database.
However, the recovery model is not copied because tempdb always uses simple recovery,

	 Chapter 3  Databases and Database Files	 165

which will be discussed in detail in Chapter 4. Certain database options cannot be set for
tempdb, such as OFFLINE and READONLY. You also cannot drop the tempdb database.

In the SIMPLE recovery model, the tempdb database’s log is constantly being truncated, and
it can never be backed up. No recovery information is needed because every time SQL Server
is started, tempdb is completely re-created; any previous user-created temporary objects
(that is, all your tables and data) disappear.

Logging for tempdb is also different than for other databases. (Normal logging will be
discussed in Chapter 4.) Many people assume that there is no logging in tempdb, but this is
not true. Operations within tempdb are logged so that transactions on temporary objects
can be rolled back, but the records in the log contain only enough information to roll back
a transaction, not to recover (or redo) it.

As I mentioned previously, recovery is run on a database as one of the first steps in creating
a snapshot. We can’t recover tempdb, so we cannot create a snapshot of it, and this means
we can’t run DBCC CHECKDB using a snapshot (or, in fact, most of the DBCC validation
commands). Another difference with running DBCC in tempdb is that SQL Server skips all
allocation and catalog checks. Running DBCC CHECKDB (or CHECKTABLE) in tempdb acquires
a Shared Table lock on each table as it is checked. (Locking will be discussed in Chapter 10.)

Objects in tempdb
Three types of objects are stored in tempdb: user objects, internal objects, and the version
store, used primarily for snapshot isolation.

User Objects
All users have the privileges to create and use local and global temporary tables that reside
in tempdb. (Local and global table names have the # or ## prefix, respectively. However, by
default, users don’t have the privileges to use tempdb and then create a table there, unless the
table name is prefaced with # or ##.) But you can easily grant the privileges in an autostart
procedure that runs each time SQL Server is restarted.

Other user objects that need space in tempdb include table variables and table-valued functions.
The user objects that are created in tempdb are in many ways treated just like user objects in any
other database. Space must be allocated for them when they are populated, and the metadata
needs to be managed. You can see user objects by examining the system catalog views, such as
sys.objects, and information in the sys.partitions and sys.allocation_units views will allow you to
see how much space is taken up by user objects. I’ll discuss these views in Chapters 5 and 7.

Internal Objects
Internal objects in tempdb are not visible using the normal tools, but they still take up space
from the database. They are not listed in the catalog views because their metadata is stored only
in memory. The three basic types of internal objects are work tables, work files, and sort units.

166	 Microsoft SQL Server 2008 Internals

Work tables are created by SQL Server during the following operations:

n	 Spooling, to hold intermediate results during a large query

n	 Running DBCC CHECKDB or DBCC CHECKTABLE

n	 Working with XML or varchar(MAX) variables

n	 Processing SQL Service Broker objects

n	 Working with static or keyset cursors

Work files are used when SQL Server is processing a query that uses a hash operator, either
for joining or aggregating data.

Sort units are created when a sort operation takes place, and this occurs in many situations
in addition to a query containing an ORDER BY clause. SQL Server uses sorting to build an
index, and it might use sorting to process queries involving grouping. Certain types of joins
might require that SQL Server sort the data before performing the join. Sort units are created
in tempdb to hold the data as it is being sorted. SQL Server can also create sort units in user
databases in addition to tempdb, in particular when creating indexes. As you’ll see in Chapter 6,
when you create an index, you have the option to do the sort in the current user database or
in tempdb.

Version Store
The version store supports technology for row-level versioning of data. Older versions of
updated rows are kept in tempdb in the following situations:

n	 When an AFTER trigger is fired

n	 When a Data Modification Language (DML) command is executed in a database that
allows snapshot transactions

n	 When multiple active result sets (MARS) are invoked from a client application

n	 During online index builds or rebuilds when there is concurrent DML on the index

Versioning and snapshot transactions are discussed in detail in Chapter 10.

Optimizations in tempdb
Because tempdb is used for many internal operations in SQL Server 2008 than in previous
versions, you have to take care in monitoring and managing it. The next section presents
some best practices and monitoring suggestions. In this section, I tell you about some
of the internal optimizations in SQL Server that allow tempdb to manage objects much more
efficiently.

	 Chapter 3  Databases and Database Files	 167

Logging Optimizations
As you know, every operation that affects your user database in any way is logged. In tempdb,
however, this is not entirely true. For example, with logging update operations, only the
original data (the “before” image) is logged, not the new values (the after image). In addition,
the commit operations and committed log records are not flushed to disk synchronously in
tempdb, as they are in other databases.

Allocation and Caching Optimizations
Many of the allocation optimizations are used in all databases, not just tempdb. However,
tempdb is most likely the database in which the greatest number of new objects are created
and dropped during production operations, so the impact on tempdb is greater than on user
databases. In SQL Server 2008, allocation pages are accessed very efficiently to determine
where free extents are available; you should see far less contention on the allocation pages
than in previous versions. SQL Server 2008 also has a very efficient search algorithm for
finding an available single page from mixed extents. When a database has multiple files, SQL
Server 2008 has a very efficient proportional fill algorithm that allocates space to multiple
data files, proportional to the amount of free space available in each file.

Another optimization specific to tempdb prevents you from having to allocate any new space
for some objects. If a work table is dropped, one IAM page and one extent are saved (for a
total of nine pages), so there is no need to deallocate and then reallocate the space if the same
work table needs to be created again. This dropped work table cache is not very big and
has room for only 64 objects. If a work table is truncated internally and the query plan that
uses that worktable is still in the plan cache, again the first IAM page and the first extent are
saved. For these truncated tables, there is no specific limitation on the number of objects that
can be cached; it depends only on the available memory space.

User objects in tempdb can also have some of their space cached if they are dropped. For a
small table of less than 8 MB, dropping a user object in tempdb causes one IAM page and
one extent to be saved. However, if the table has had any additional DDL performed, such
as creating indexes or constraints, or if the table was created using dynamic SQL, no caching
is done.

For a large table, the entire drop is performed as a deferred operation. Deferred drop
operations are in fact used in every database as a way to improve overall throughput
because a thread does not need to wait for the drop to complete before proceeding with
its next task. Like the other allocation optimizations that are available in all databases, the
deferred drop probably provides the most benefit in tempdb, which is where tables are
most likely to be dropped during production operations. A background thread eventually
cleans up the space allocated for dropped tables, but until then, the allocated space remains.
You can detect this space by looking at the sys.allocation_units system view for rows with a
type value of 0, which indicates a dropped object; you will also see that the column called

168	 Microsoft SQL Server 2008 Internals

container_id is 0, which indicates that the allocated space does not really belong to any
object. I’ll look at sys.allocation_units and the other system views that keep track of space
usage in Chapter 5.

Best Practices
By default, your tempdb database is created on only one data file. You will probably find that
multiple files give you better I/O performance and less contention on the global allocation
structures (the GAM, SGAM, and PFS pages). An initial recommendation is that you have one file
per CPU, but your own testing based on your data and usage patterns might indicate more or
less than that. For the greatest efficiency with the proportional fill algorithm, the files should be
the same size. The downside of multiple files is that every object will have multiple IAM pages
and there will be more switching costs as objects are accessed. It will also take more effort just
to manage the files. No matter how many files you have, they should be on the fastest disks you
can afford. One log file should be sufficient, and that should also be on a fast disk.

To determine the optimum size of your tempdb, you must test your own applications with
your data volumes, but knowing when and how tempdb is used can help you make preliminary
estimates. Keep in mind that there is only one tempdb for each SQL Server instance, so one
badly behaving application can affect all other users in all other applications. In Chapter 10,
I’ll explain how to determine the size of the version store. All these factors affect the space
needed for your tempdb. Finally, in Chapter 11, I’ll look at how the DBCC consistency
checking commands use tempdb and how to determine the tempdb space requirements.

Database options for tempdb should rarely be changed, and some options are not applicable
to tempdb. In particular, the autoshrink option is ignored in tempdb. In any case, shrinking
tempdb is not recommended unless your workload patterns have changed significantly. If
you do need to shrink your tempdb, you’re probably better off shrinking each file individually.
Keep in mind that the files might not be able to shrink if any internal objects or version store
pages need to be moved. The best way to shrink tempdb is to ALTER the database, change
the files’ sizes, and then stop and restart SQL Server so tempdb is rebuilt to the desired size.
You should allow your tempdb files to autogrow only as a last resort and only to prevent
errors due to running out of room. You should not rely on autogrow to manage the size
of your tempdb files. Autogrow causes a delay in processing when you can probably least
afford it, although the impact is somewhat less if you use instant file initialization. You should
determine the size of tempdb through testing and planning so that tempdb can start with as
much space as it needs and won’t have to grow while your applications are running.

Here are some tips for making optimum use of your tempdb. Later chapters will elaborate on
why these suggestions are considered best practices:

n	 Take advantage of tempdb object caching.

n	 Keep your transactions short, especially those that use snapshot isolation, MARS,
or triggers.

	 Chapter 3  Databases and Database Files	 169

n	 If you expect a lot of allocation page contention, force a query plan that uses tempdb less.

n	 Avoid page allocation and deallocation by keeping columns that are to be updated at
a fixed size rather than a variable size (which can implement the UPDATE as a DELETE
followed by an INSERT).

n	 Do not mix long and short transactions from different databases (in the same instance)
if versioning is being used.

tempdb Space Monitoring
Quite a few tools, stored procedures, and system views report on object space usage, as
discussed in Chapters 5 and 7. However, one set of system views reports information only for
tempdb. The simplest view is sys.dm_db_file_space_usage, which returns one row for each data
file in tempdb. It returns the following columns:

n	 database_id (even though the DBID 2 is the only one used)

n	 file_id

n	 unallocated_extent_page_count

n	 version_store_reserved_page_count

n	 user_object_reserved_page_count

n	 internal_object_reserved_page_count

n	 mixed_extent_page_count

These columns can show you how the space in tempdb is being used for the three types of
storage: user objects, internals objects, and version store.

Two other system views are similar to each other:

n	 sys.dm_db_task_space_usage  This view returns one row for each active task and
shows the space allocated and deallocated by the task for user objects and internal
objects. If no tasks are being run by a session, this view still gives you one row for the
session, with all the space values showing 0. No version store information is reported
because that space is not associated with any particular task or session. Every running
task starts with zeros for all the space allocation and deallocation values.

n	 sys.dm_db_session_space_usage  This view returns one row for each session, with the
cumulative values for space allocated and deallocated by the session for user objects
and internal objects, for all tasks that have been completed. In general, the space
allocated values should be the same as the space deallocated values, but if there are
deferred drop operations, allocated values will be greater than the deallocated values.
Keep in mind that this information is not available to all users; a special permission
called VIEW SERVER STATE is needed to select from this view.

170	 Microsoft SQL Server 2008 Internals

Database Security
Security is a huge topic that affects almost every action of every SQL Server user, including
administrators and developers, and it deserves an entire book of its own. However, some
areas of the SQL Server security framework are crucial to understanding how to work with a
database or with any objects in a SQL Server database, so I can’t leave the topic completely
untouched in this book.

SQL Server manages a hierarchical collection of entities. The most prominent of these entities
are the server and databases in the server. Underneath the database level are objects. Each
of these entities below the server level is owned by individuals or groups of individuals. The
SQL Server security framework controls access to the entities within a SQL Server instance.
Like any resource manager, the SQL Server security model has two parts: authentication and
authorization.

Authentication is the process by which the SQL Server validates and establishes the identity
of an individual who wants to access a resource. Authorization is the process by which SQL
Server decides whether a given identity is allowed to access a resource.

In this section, I’ll discuss the basic issues of database access and then describe the metadata
where information on database access is stored. I’ll also tell you about the concept of
schemas and describe how they are used to access objects.

The following two terms now form the foundation for describing security control in SQL
Server 2008:

n	 Securable  A securable is an entity on which permissions can be granted. Securables
include databases, schemas, and objects.

n	 Principal  A principal is an entity that can access securables. A primary principal
represents a single user (such as a SQL Server login or a Windows login); a secondary
principal represents multiple users (such as a role or a Windows group).

Database Access
Authentication is performed at two different levels in SQL Server. First, anyone who wants to
access any SQL Server resource must be authenticated at the server level. SQL Server 2008
security provides two basic methods for authenticating logins: Windows Authentication
and SQL Server Authentication. In Windows Authentication, SQL Server login security is
integrated directly with Windows security, allowing the operating system to authenticate
SQL Server users. In SQL Server Authentication, an administrator creates SQL Server login
accounts within SQL Server, and any user connecting to SQL Server must supply a valid SQL
Server login name and password.

	 Chapter 3  Databases and Database Files	 171

Windows Authentication uses trusted connections, which rely on the impersonation feature
of Windows. Through impersonation, SQL Server can take on the security context of the
Windows user account initiating the connection and test whether the SID has a valid privilege
level. Windows impersonation and trusted connections are supported by any of the available
network libraries when connecting to SQL Server.

Under Windows Server 2003 and Windows Server 2008, SQL Server can use Kerberos to
support mutual authentication between the client and the server, as well as to pass a client’s
security credentials between computers so that work on a remote server can proceed using
the credentials of the impersonated client. With Windows Server 2003 and Windows Server
2008, SQL Server uses Kerberos and delegation to support Windows authentication as well as
SQL Server authentication.

The authentication method (or methods) used by SQL Server is determined by its security mode.
SQL Server can run in one of two security modes: Windows Authentication mode (which uses
only Windows authentication) and Mixed mode (which can use either Windows authentication
or SQL Server authentication, as chosen by the client). When you connect to an instance of SQL
Server configured for Windows Authentication mode, you cannot supply a SQL Server login
name, and your Windows user name determines your level of access to SQL Server.

One advantage of Windows authentication has always been that it allows SQL Server to take
advantage of the security features of the operating system, such as password encryption,
password aging, and minimum and maximum length restrictions on passwords. When running
on Windows Server 2003 or Windows Server 2008, SQL Server authentication can also take
advantage of Windows password policies. Take a look at the ALTER LOGIN command in SQL
Server Books Online for the full details. Also note that if you choose Windows Authentication
during setup, the default SQL Server sa login is disabled. If you switch to Mixed mode after
setup, you can enable the sa login using the ALTER LOGIN command. You can change the
authentication mode in Management Studio by right-clicking on the server name, choosing
Properties, and then selecting the Security page. Under Server authentication, select the new
server authentication mode, as shown in Figure 3-7.

Under Mixed mode, Windows-based clients can connect using Windows authentication,
and connections that don’t come from Windows clients or that come across the Internet can
connect using SQL Server authentication. In addition, when a user connects to an instance of
SQL Server that has been installed in Mixed mode, the connection can always supply a SQL
Server login name explicitly. This allows a connection to be made using a login name distinct
from the user name in Windows.

All login names, whether from Windows or SQL Server authentication, can be seen in the
sys.server_principals catalog view, which also contains a SID for each server principal. If the
principal is a Windows login, the SID is the same one that Windows uses to validate the user’s
access to Windows resources. The view contains rows for server roles, Windows groups, and
logins mapped to certificates and asymmetric keys, but I will not discuss those principals here.

172	 Microsoft SQL Server 2008 Internals

Figure 3-7  Choosing an authentication mode for your SQL Server instance in the
Server Properties dialog box

Managing Database Security
Login names can be the owners of databases, as seen in the sys.databases view, which has a
column for the SID of the login that owns the database. Databases are the only resource owned
by login names. As you’ll see, all objects within a database are owned by database principals.

The SID used by a principal determines which databases that principal has access to. Each
database has a sys.database_principals catalog view, which you can think of as a mapping
table that maps login names to users in that particular database. Although a login name and
a user name can have the same value, they are separate things. The following query shows
the mapping of users in the AdventureWorks2008 database to login names, and it also shows
the default schema (which I will discuss shortly) for each database user:

SELECT s.name as [Login Name], d.name as [User Name],

 default_schema_name as [Default Schema]

 FROM sys.server_principals s

 JOIN sys.database_principals d

 ON d.sid = s.sid;

	 Chapter 3  Databases and Database Files	 173

In my AdventureWorks2008 database, these are the results I receive:

Login Name User Name Default Schema

---------- ---------- --------------

sa dbo dbo

sue sue sue

Note that the login sue has the same value for the user name in this database. There is no
guarantee that other databases that sue has access to will use the same user name. The login
name sa has the user name dbo. This name is a special login that is used by the sa login, by
all logins in the sysadmin role, and by whatever login is listed in sys.databases as the owner
of the database. Within a database, it is users, not logins, who own objects, and users, not
logins, to whom permissions are granted.

The preceding results also indicate the default schema for each user in my AdventureWorks2008
database. In this case, the default schema is the same as the user name, but that doesn’t have
to be the case, as you’ll see in the next section.

Databases vs. Schemas
In the ANSI SQL-92 standard, a schema is defined as a collection of database objects that are
owned by a single user and form a single namespace. A namespace is a set of objects that
cannot have duplicate names. For example, two tables can have the same name only if they
are in separate schemas, so no two tables in the same schema can have the same name. You
can think of a schema as a container of objects. (In the context of database tools, a schema
also refers to the catalog information that describes the objects in a schema or database.
In SQL Server Analysis Services, a schema is a description of multidimensional objects such as
cubes and dimensions.)

Principals and Schemas
Prior to SQL Server 2005, there was a CREATE SCHEMA command, but it effectively did
nothing because there was an implicit relationship between users and schemas that could be
changed or removed. In fact, the relationship was so close that many users of these earlier
versions of SQL Server were unaware that users and schemas are different things. Every user
was the owner of a schema that has the same name as the user. If you created a user sue, for
example, SQL Server 2000 created a schema called sue, which was sue’s default schema.

In SQL Server 2005 and SQL Server 2008, users and schemas are two separate things.
To understand the difference between users and schemas, think of the following: Permissions
are granted to users, but objects are placed in schemas.

The command GRANT CREATE TABLE TO sue refers to the user sue. Let’s say sue then creates
a table, as follows:

CREATE TABLE mytable (col1 varchar(20));

174	 Microsoft SQL Server 2008 Internals

This table is placed in sue’s default schema, which may be the schema sue. If another user
wants to retrieve data from this table, he can issue this statement:

SELECT col1 FROM sue.mytable;

In this statement, sue refers to the schema that contains the table.

Schemas can be owned by either primary or secondary principals. Although every object in a
SQL Server 2008 database is owned by a user, you never reference an object by its owner; you
reference it by the schema in which it is contained. In most cases, the owner of the schema
is the same as the owner of all objects within the schema. The metadata view sys.objects
contains a column called principal_id, which contains the user_id of an object’s owner if it
is not the same as the owner of the object’s schema. In addition, a user is never added to a
schema; schemas contain objects, not users. For backward compatibility, if you execute the
sp_adduser or sp_grantdbaccess procedure to add a user to a database, SQL Server 2008
creates both a user and a schema of the same name, and it makes the schema the default
schema for the new user. However, you should get used to using the new DDL CREATE USER
and CREATE SCHEMA commands because sp_adduser and sp_grantdbaccess have been
deprecated. When you create a user, you can specify a default schema if you want, but the
default for the default schema is the dbo schema.

Default Schemas
When you create a new database in SQL Server 2008, several schemas are included in it.
These include dbo, INFORMATION_SCHEMA, and guest. In addition, every database has a
schema called sys, which provides a way to access all the system tables and views. Finally,
every fixed database role except public has a schema of the same name in SQL Server 2008.

Users can be assigned a default schema that might or might not exist when the user is
created. A user can have at most one default schema at any time. As mentioned earlier, if no
default schema is specified for a user, the default schema for the user is dbo. A user’s default
schema is used for name resolution during object creation or object reference. This can be
both good news and bad news for backward compatibility. The good news is that if you’ve
upgraded a database from SQL Server 2000, which has many objects in the dbo schema, your
code can continue to reference those objects without having to specify the schema explicitly.
The bad news is that for object creation, SQL Server tries to create the object in the dbo
schema rather than in a schema owned by the user creating the table. The user might not
have permission to create objects in the dbo schema, even if that is the user’s default schema.
To avoid confusion, in SQL Server 2008 you should always specify the schema name for all
object access as well as object management.

Note  When a login in the sysadmin role creates an object with a single part name, the schema
is always dbo. However, a sysadmin can explicitly specify an alternate schema in which to create
an object.

	 Chapter 3  Databases and Database Files	 175

To create an object in a schema, you must satisfy the following conditions:

n	 The schema must exist.

n	 The user creating the object must have permission to create the object (through
CREATE TABLE, CREATE VIEW, CREATE PROCEDURE, and so on), either directly or
through role membership.

n	 The user creating the object must be the owner of the schema or a member of the role
that owns the schema, or the user must have ALTER rights on the schema or have the
ALTER ANY SCHEMA permission in the database.

Moving or Copying a Database
You might need to move a database before performing maintenance on your system, after
a hardware failure, or when you replace your hardware with a newer, faster system. Copying
a database is a common way to create a secondary development or testing environment. You
can move or copy a database by using a technique called detach and attach or by backing up
the database and restoring it in the new location.

Detaching and Reattaching a Database
You can detach a database from a server by using a simple stored procedure. Detaching
a database requires that no one is using the database. If you find existing connections that
you can’t terminate, you can use the ALTER DATABASE command and set the database to
SINGLE_USER mode using one of the termination options that breaks existing connections.
Detaching a database ensures that no incomplete transactions are in the database and that
there are no dirty pages for this database in memory. If these conditions cannot be met, the
detach operation fails. Once the database is detached, the entry for it is removed from the
sys.databases catalog view and from the underlying system tables.

Here is the command to detach a database:

EXEC sp_detach_db <name of database>;

Once the database has been detached, from the perspective of SQL Server, it’s as if you
had dropped the database. No metadata for the database remains within the SQL Server
instance, and the only time there might be a trace of it is when your msdb database contains
backup and restore history for the database that has not yet been deleted. But the history of
when backups and restores were done would provide no information about the structure or
content of the database. If you are planning to reattach the database later, it’s a good idea to
record the properties of all the files that were part of the database.

176	 Microsoft SQL Server 2008 Internals

Note  The DROP DATABASE command also removes all traces of the database from your
instance, but dropping a database is more severe than detaching. SQL Server makes sure that no
one is connected to the database before dropping it, but it doesn’t check for dirty pages or open
transactions. Dropping a database also removes the physical files from the operating system, so
unless you have a backup, the database is really gone.

To attach a database, you can use the CREATE DATABASE command with the FOR
ATTACH option. (There is a stored procedure, sp_attach_db, but it is deprecated and not
recommended in SQL Server 2008.) The CREATE DATABASE command gives you control over
all the files and their placement and is not limited to only 16 files like sp_attach_db is. CREATE
DATABASE has no such limit—in fact, you can specify up to 32,767 files and 32,767 file groups
for each database. The syntax summary for the CREATE DATABASE command showing the
attach options is shown here:

CREATE DATABASE database_name

 ON <filespec> [,...n]

 FOR { ATTACH

 | ATTACH_REBUILD_LOG }

Note that only the primary file is required to have a <filespec> entry because the primary file
contains information about the location of all the other files. If you’ll be attaching existing
files with a different path than when the database was first created or last attached, you must
have additional <filespec> entries. In any event, all the data files for the database must be
available, whether or not they are specified in the CREATE DATABASE command. If there are
multiple log files, they must all be available.

However, if a read/write database has a single log file that is currently unavailable and if the
database was shut down with no users or open transactions before the attach operation,
FOR ATTACH rebuilds the log file and updates information about the log in the primary file.
If the database is read-only, the primary file cannot be updated, so the log cannot be rebuilt.
Therefore, when you attach a read-only database, you must specify the log file or files in the
FOR ATTACH clause.

Alternatively, you can use the FOR ATTACH_REBUILD_LOG option, which specifies that the
database will be created by attaching an existing set of operating system files. This option
is limited to read/write databases. If one or more transaction log files are missing, the log is
rebuilt. There must be a <filespec> entry specifying the primary file. In addition, if the log
files are available, SQL Server uses those files instead of rebuilding the log files, so the FOR
ATTACH_REBUILD_LOG will function as if you used FOR ATTACH.

If your transaction log is rebuilt by attaching the database, using the FOR ATTACH_REBUILD_
LOG breaks the log backup chain. You should consider making a full backup after performing
this operation.

	 Chapter 3  Databases and Database Files	 177

You typically use FOR ATTACH_REBUILD_LOG when you copy a read/write database with
a large log to another server where the copy will be used mostly or exclusively for read
operations and therefore require less log space than the original database.

Although the documentation says that you should use CREATE DATABASE FOR ATTACH only
on databases that were previously detached using sp_detach_db, sometimes following this
recommendation isn’t necessary. If you shut down the SQL Server instance, the files are closed,
just as if you had detached the database. However, you are not guaranteed that all dirty pages
from the database were written to disk before the shutdown. This should not cause a problem
when you attach such a database if the log file is available. The log file has a record of all
completed transactions, and a full recovery is performed when the database is attached to
make sure the database is consistent. One benefit of using the sp_detach_db procedure is that
SQL Server records the fact that the database was shut down cleanly, and the log file does not
have to be available to attach the database. SQL Server builds a new log file for you. This can be
a quick way to shrink a log file that has become much larger than you would like, because the
new log file that sp_attach_db creates for you would be the minimum size—less than 1 MB.

Backing Up and Restoring a Database
You can also use backup and restore to move a database to a new location, as an alternative
to detach and attach. One benefit of this method is that the database does not need to come
offline at all because backup is a completely online operation. Because this book is not a how-to
book for database administrators, you should refer to the bibliography in the companion
content for several excellent book recommendations about the mechanics of backing up and
restoring a database and to learn best practices for setting up a backup-and-restore plan for
your organization. Nevertheless, some issues relating to backup-and-restore processes can help
you understand why one backup plan might be better suited to your needs than another, so I
will discuss backup and restore briefly in Chapter 4. Most of these issues involve the role of the
transaction log in backup-and-restore operations.

Moving System Databases
You might need to move system databases as part of a planned relocation or scheduled
maintenance operation. If you move a system database and later rebuild the master
database, you must move the system database again because the rebuild operation installs
all system databases to their default location. The steps for moving tempdb, model, and msdb
are slightly different than for moving the master database.

Note  In SQL Server 2008, the mssqlsystemresource database cannot be moved. If you move the
files for this database, you will not be able to restart your SQL Server service. This is incorrectly
documented in the RTM edition of SQL Server 2008 Books Online, which indicates that the
mssqlsystemresource database can be moved, but this misinformation may be corrected in a
later refresh.

178	 Microsoft SQL Server 2008 Internals

Here are the steps for moving an undamaged system database (that is, not the master
database):

	 1.	 For each file in the database to be moved, use the ALTER DATABASE command with the
MODIFY FILE option to specify the new physical location.

	 2.	 Stop the SQL Server instance.

	 3.	 Physically move the files.

	 4.	 Restart the SQL Server instance.

	 5.	 Verify the change by running the following query:

SELECT name, physical_name AS CurrentLocation, state_desc

FROM sys.master_files

WHERE database_id = DB_ID(N'<database_name>');

If the system database needs to be moved because of a hardware failure, the solution is a
bit more problematical because you might not have access to the server to run the ALTER
DATABASE command. Here are the steps to move a damaged system database (other than
the master database or the resource database):

	 1.	 Stop the instance of SQL Server if it has been started.

	 2.	 Start the instance of SQL Server in master-only recovery mode (by specifying traceflag
3608) by entering one of the following commands at the command prompt:

-- If the instance is the default instance:

NET START MSSQLSERVER /f /T3608

-- For a named instance:

NET START MSSQL$instancename /f /T3608

	 3.	 For each file in the database to be moved, use the ALTER DATABASE command with
the MODIFY FILE option to specify the new physical location. You can use either
Management Studio or the SQLCMD utility.

	 4.	 Exit Management Studio or the SQLCMD utility.

	 5.	 Stop the instance of SQL Server.

	 6.	 Physically move the file or files to the new location.

	 7.	 Restart the instance of SQL Server without traceflag 3608. For example, run NET START
MSSQLSERVER.

	 8.	 Verify the change by running the following query:

SELECT name, physical_name AS CurrentLocation, state_desc

FROM sys.master_files

WHERE database_id = DB_ID(N'<database_name>');

	 Chapter 3  Databases and Database Files	 179

Moving the master Database
Full details on moving the master database can be found in SQL Server Books Online, but I will
summarize the steps here. The biggest difference between moving this database and moving
other system databases is that you must go through the SQL Server Configuration Manager.

To move the master database, follow these steps.

	 1.	 Open the SQL Server Configuration Manager. Right-click the desired instance of SQL
Server, choose Properties, and then click the Advanced tab.

	 2.	 Edit the Startup Parameters values to point to the new directory location for the master
database data and log files. If you want, you can also move the SQL Server error log
files. The parameter value for the data file must follow the –d parameter, the value for
the log file must follow the –l parameter, and the value for the error log must follow
the –e parameter, as shown here:

-dE:\SQLData\master.mdf;

-lE:\SQLData\mastlog.ldf;

-eE:\ SQLData\LOG\ERRORLOG

	 3.	 Stop the instance of SQL Server and physically move the files for to the new location.

	 4.	 Restart the instance of SQL Server.

	 5.	 Verify the file change for the master database by running the following query:

SELECT name, physical_name AS CurrentLocation, state_desc

FROM sys.master_files

WHERE database_id = DB_ID('master');

Compatibility Levels
Each new version of SQL Server includes a large number of new features, many of which require
new keywords and also change certain behaviors that existed in earlier versions. To provide
maximum backward compatibility, Microsoft allows you to set the compatibility level of a
database running on a SQL Server 2008 instance to one of the following modes: 100, 90, or 80.
All newly created databases in SQL Server 2008 have a compatibility level of 100 unless you
change the level for the model database. A database that has been upgraded or attached from an
older version has its compatibility level set to the version from which the database was upgraded.

All the examples and explanations in this book assume that you’re using a database in
100 compatibility mode, unless otherwise noted. If you find that your SQL statements
behave differently than the ones in the book, you should first verify that your database is
in 100 compatibility mode by executing this command:

SELECT compatibility_level FROM sys.databases

WHERE name = '<database name>';

180	 Microsoft SQL Server 2008 Internals

To change to a different compatibility level, use the ALTER DATABASE command:

ALTER DATABASE <database name>

SET COMPATIBILITY_LEVEL = <compatibility-level>;

Note  The compatibility-level options are intended to provide a transition period while you’re
upgrading a database or an application to SQL Server 2008. I strongly suggest that you try
to change your applications so that compatibility options are not needed. Microsoft doesn’t
guarantee that these options will continue to work in future versions of SQL Server.

Not all changes in behavior from older versions of SQL Server can be duplicated by changing
the compatibility level. For the most part, the differences have to do with whether new
reserved keywords and new syntax are recognized, and they do not affect how your queries
are processed internally. For example, if you change to compatibility level 80, you don’t make
the system tables viewable or do away with schemas. But because the word MERGE is a new
reserved keyword in SQL Server 2008 (compatibility level 100), by setting your compatibility
level to 80 or 90, you can create a table called MERGE without using any special delimiters—or
a table that you already have in a SQL Server 2005 database continues to be accessible if the
database stays in the 90 compatibility level.

For a complete list of the behavioral differences between the compatibility levels and the
new reserved keywords, see the documentation for ALTER DATABASE Compatibility Level in
SQL Server Books Online.

Summary
A database is a collection of objects such as tables, views, and stored procedures. Although
a typical SQL Server installation has many databases, it always includes the following three:
master, model, and tempdb. An installation usually also includes msdb, but that database can
be removed. (To remove msdb requires a special traceflag and is rarely recommended.) A SQL
Server instance also includes the mssqlsystemresource database that cannot be seen using
the normal tools. Every database has its own transaction log; integrity constraints among
objects keep a database logically consistent.

Databases are stored in operating system files in a one-to-many relationship. Each database
has at least one file for data and one file for the transaction log. You can increase and
decrease the size of databases and their files easily, either manually or automatically.

	Cover

	Table of Contents

	Chapter 3: Databases and Database Files

	System Databases
	master
	model
	tempdb
	The Resource Database
	msdb

	Sample Databases
	AdventureWorks
	pubs
	Northwind

	Database Files
	Creating a Database
	A CREATE DATABASE Example

	Expanding or Shrinking a Database
	Automatic File Expansion
	Manual File Expansion
	Fast File Initialization
	Automatic Shrinkage
	Manual Shrinkage

	Using Database Filegroups
	The Default Filegroup
	A FILEGROUP CREATION Example
	Filestream Filegroups

	Altering a Database
	ALTER DATABASE Examples

	Databases Under the Hood
	Space Allocation

	Setting Database Options
	State Options
	Cursor Options
	Auto Options
	SQL Options
	Database Recovery Options
	Other Database Options

	Database Snapshots
	Creating a Database Snapshot
	Space Used by Database Snapshots
	Managing Your Snapshots

	The tempdb Database
	Objects in tempdb
	Optimizations in tempdb
	Best Practices
	tempdb Space Monitoring

	Database Security
	Database Access
	Managing Database Security
	Databases vs. Schemas
	Principals and Schemas
	Default Schemas

	Moving or Copying a Database
	Detaching and Reattaching a Database
	Backing Up and Restoring a Database
	Moving System Databases
	Moving the master Database

	Compatibility Levels
	Summary

