
To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/learning/en/us/books/12967.aspx

9780735626249

© 2009 Kalen Delaney (All). All rights reserved.

Microsoft® SQL Server®
2008 Internals

Kalen Delaney
Paul S. Randal, Kimberly L. Tripp,
Conor Cunningham, Adam
Machanic, and Ben Nevarez

		 vii

Table of Contents
Foreword . xix

Introduction . xxi

	 1	 SQL Server 2008 Architecture and Configuration 1
SQL Server Editions . 1

SQL Server Metadata . 2

Compatibility Views . 3

Catalog Views . 4

Other Metadata . 6

Components of the SQL Server Engine . 8

Observing Engine Behavior . . 9

Protocols . . 11

The Relational Engine . . 12

The Storage Engine . 14

The SQLOS . 18

NUMA Architecture . 19

The Scheduler . 20

SQL Server Workers . 21

Binding Schedulers to CPUs . 24

The Dedicated Administrator Connection (DAC) 27

Memory . 29

The Buffer Pool and the Data Cache . 29

Access to In-Memory Data Pages . 30

Managing Pages in the Data Cache . 30

The Free Buffer List and the Lazywriter . 31

Checkpoints . 32

Managing Memory in Other Caches . 34

Sizing Memory . 35

Sizing the Buffer Pool . . 36

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii	 Table of Contents

SQL Server Resource Governor . . 42

Resource Governor Overview . 42

Resource Governor Controls . 51

Resource Governor Metadata . . 52

SQL Server 2008 Configuration . 54

Using SQL Server Configuration Manager . 54

Configuring Network Protocols . 54

Default Network Configuration . 55

Managing Services . 55

SQL Server System Configuration . . 57

Operating System Configuration . 57

Trace Flags . 60

SQL Server Configuration Settings . . 60

The Default Trace . 71

Final Words . 73

	 2	 Change Tracking, Tracing, and Extended Events 75
The Basics: Triggers and Event Notifications . 75

Run-Time Trigger Behavior . 76

Change Tracking . . 76

Change Tracking Configuration . 77

Change Tracking Run-Time Behavior . 82

Tracing and Profiling . . 86

SQL Trace Architecture and Terminology . 86

Security and Permissions . 88

Getting Started: Profiler . . 89

Server-Side Tracing and Collection . 97

Extended Events . 108

Components of the XE Infrastructure . 108

Event Sessions . 118

Extended Events DDL and Querying . 121

Summary . 124

	 3	 Databases and Database Files . 125
System Databases . 126

master . 126

model . 126

tempdb . 126

The Resource Database . 127

msdb . 128

	 Table of Contents	 ix

Sample Databases . 128

AdventureWorks . 128

pubs . 129

Northwind . 129

Database Files . 130

Creating a Database . 132

A CREATE DATABASE Example . 134

Expanding or Shrinking a Database . . 135

Automatic File Expansion . 135

Manual File Expansion . 136

Fast File Initialization . 136

Automatic Shrinkage . 136

Manual Shrinkage . 137

Using Database Filegroups . 138

The Default Filegroup . 139

A FILEGROUP CREATION Example . . 140

Filestream Filegroups . 141

Altering a Database . 142

ALTER DATABASE Examples . 143

Databases Under the Hood . . 144

Space Allocation . 145

Setting Database Options . 148

State Options . 151

Cursor Options . 155

Auto Options . 155

SQL Options . 156

Database Recovery Options . 158

Other Database Options . 159

Database Snapshots . 159

Creating a Database Snapshot . 160

Space Used by Database Snapshots . 162

Managing Your Snapshots . 164

The tempdb Database . . 164

Objects in tempdb . . 165

Optimizations in tempdb . 166

Best Practices . 168

tempdb Space Monitoring . . 169

Database Security . 170

Database Access . 170

Managing Database Security . 172

x	 Table of Contents

Databases vs. Schemas . . 173

Principals and Schemas . 173

Default Schemas . 174

Moving or Copying a Database . 175

Detaching and Reattaching a Database . 175

Backing Up and Restoring a Database . 177

Moving System Databases . 177

Moving the master Database . 179

Compatibility Levels . 179

Summary . 180

	 4	 Logging and Recovery . 181
Transaction Log Basics . 181

Phases of Recovery . 184

Reading the Log . 186

Changes in Log Size . 187

Virtual Log Files . . 187

Observing Virtual Log Files . 188

Automatic Truncation of Virtual Log Files . 192

Maintaining a Recoverable Log . 193

Automatic Shrinking of the Log . 196

Log File Size . 196

Backing Up and Restoring a Database . 197

Types of Backups . . 197

Recovery Models . . 198

Choosing a Backup Type . 203

Restoring a Database . 203

Summary . 209

	 5	 Tables . . 211
Creating Tables . 211

Naming Tables and Columns . 212

Reserved Keywords . 213

Delimited Identifiers . 214

Naming Conventions . 215

Data Types . 215

Much Ado About NULL . 241

	 Table of Contents	 xi

User-Defined Data Types . 244

IDENTITY Property . 245

Internal Storage . 249

The sys.indexes Catalog View . 250

Data Storage Metadata . 251

Data Pages . 254

Examining Data Pages . 256

The Structure of Data Rows . 260

Finding a Physical Page . 262

Storage of Fixed-Length Rows . 265

Storage of Variable-Length Rows . . 267

Storage of Date and Time Data . 272

Storage of sql_variant Data . 275

Constraints . 279

Constraint Names and Catalog View Information 280

Constraint Failures in Transactions and Multiple-Row
Data Modifications . 281

Altering a Table . 282

Changing a Data Type . 283

Adding a New Column . . 284

Adding, Dropping, Disabling, or Enabling a Constraint 284

Dropping a Column . 285

Enabling or Disabling a Trigger . 286

Internals of Altering Tables . 286

Heap Modification Internals . 289

Allocation Structures . 289

Inserting Rows . 290

Deleting Rows . 291

Updating Rows . 294

Summary . 297

	 6	 Indexes: Internals and Management . . 299
Overview . . 299

SQL Server Index B-trees . 300

Tools for Analyzing Indexes . . 304

Using the dm_db_index_physical_stats DMV . 304

Using DBCC IND . 308

xii	 Table of Contents

Understanding Index Structures . . 310

The Dependency on the Clustering Key . 311

Nonclustered Indexes . 314

Constraints and Indexes . . 315

Index Creation Options . 316

IGNORE_DUP_KEY . 316

STATISTICS_NORECOMPUTE . . 317

MAXDOP . 317

Index Placement . 317

Constraints and Indexes . . 318

Physical Index Structures . 318

Index Row Formats . 318

Clustered Index Structures . 319

The Non-Leaf Level(s) of a Clustered Index . 320

Analyzing a Clustered Index Structure . 321

Nonclustered Index Structures . 326

Special Index Structures . 337

Indexes on Computed Columns and Indexed Views 337

Full-Text Indexes . 345

Spatial Indexes . . 346

XML Indexes . . 346

Data Modification Internals . . 347

Inserting Rows . 347

Splitting Pages . . 348

Deleting Rows . 352

Updating Rows . 358

Table-Level vs. Index-Level Data Modification . 362

Logging . 363

Locking . 363

Fragmentation . . 363

Managing Index Structures . 364

Dropping Indexes . 365

ALTER INDEX . 365

Detecting Fragmentation . 368

Removing Fragmentation . 369

Rebuilding an Index . 371

Summary . 374

	 Table of Contents	 xiii

	 7	 Special Storage . . 375
Large Object Storage . 375

Restricted-Length Large Object Data (Row-Overflow Data) 376

Unrestricted-Length Large Object Data . 380

Storage of MAX-Length Data . 386

Filestream Data . 388

Enabling Filestream Data for SQL Server . 389

Creating a Filestream-Enabled Database . 390

Creating a Table to Hold Filestream Data . . 390

Manipulating Filestream Data . 392

Metadata for Filestream Data . . 397

Performance Considerations for Filestream Data 399

Sparse Columns . 400

Management of Sparse Columns . . 400

Column Sets and Sparse Column Manipulation 403

Physical Storage . 405

Metadata . 409

Storage Savings with Sparse Columns . . 409

Data Compression . . 412

Vardecimal . 413

Row Compression . 414

Page Compression . 423

Table and Index Partitioning . 434

Partition Functions and Partition Schemes . 434

Metadata for Partitioning . 436

The Sliding Window Benefits of Partitioning . 439

Summary . 442

	 8	 The Query Optimizer . . 443
Overview . . 443

Tree Format . 444

What Is Optimization? . 445

How the Query Optimizer Explores Query Plans . 446

Rules . 446

Properties . 447

Storage of Alternatives—The “Memo” . 449

Operators . 450

xiv	 Table of Contents

Optimizer Architecture . . 456

Before Optimization . 456

Simplification . 457

Trivial Plan/Auto-Parameterization . 457

Limitations . 459

The Memo—Exploring Multiple Plans Efficiently 459

Statistics, Cardinality Estimation, and Costing . 462

Statistics Design . 463

Density/Frequency Information . 466

Filtered Statistics . 468

String Statistics . 469

Cardinality Estimation Details . 470

Limitations . 474

Costing . 475

Index Selection . 477

Filtered Indexes . 480

Indexed Views . 482

Partitioned Tables . 486

Partition-Aligned Index Views . 490

Data Warehousing . 490

Updates . . 491

Halloween Protection . . 494

Split/Sort/Collapse . 495

Merge . 497

Wide Update Plans . 499

Sparse Column Updates . 502

Partitioned Updates . 502

Locking . 505

Distributed Query . 507

Extended Indexes . 510

Full-Text Indexes . 510

XML Indexes . . 510

Spatial Indexes . . 510

Plan Hinting . 511

Debugging Plan Issues . . 513

{HASH | ORDER} GROUP . 514

{MERGE | HASH | CONCAT } UNION . 515

FORCE ORDER, {LOOP | MERGE | HASH } JOIN . 516

	 Table of Contents	 xv

INDEX=<indexname> | <indexid> . . 516

FORCESEEK . 517

FAST <number_rows> . 517

MAXDOP <N> . . 518

OPTIMIZE FOR . . 518

PARAMETERIZATION {SIMPLE | FORCED} . 520

NOEXPAND . 521

USE PLAN . 521

Summary . 523

	 9	 Plan Caching and Recompilation . . 525
The Plan Cache . 525

Plan Cache Metadata . 525

Clearing Plan Cache . 526

Caching Mechanisms . 527

Adhoc Query Caching . 528

Optimizing for Adhoc Workloads . 530

Simple Parameterization . 533

Prepared Queries . 538

Compiled Objects . 540

Causes of Recompilation . 543

Plan Cache Internals . 553

Cache Stores . 553

Compiled Plans . 555

Execution Contexts . 555

Plan Cache Metadata . 556

Handles . . 556

sys.dm_exec_sql_text . 557

sys.dm_exec_query_plan . 558

sys.dm_exec_text_query_plan . 558

sys.dm_exec_cached_plans . 559

sys.dm_exec_cached_plan_dependent_objects . 559

sys.dm_exec_requests . 560

sys.dm_exec_query_stats . 560

Cache Size Management . 561

Costing of Cache Entries . 564

Objects in Plan Cache: The Big Picture . 565

Multiple Plans in Cache . 567

xvi	 Table of Contents

When to Use Stored Procedures and Other Caching Mechanisms 568

Troubleshooting Plan Cache Issues . 569

Wait Statistics Indicating Plan Cache Problems . 569

Other Caching Issues . 571

Handling Problems with Compilation and Recompilation 572

Plan Guides and Optimization Hints . 573

Summary . 585

	 10	 Transactions and Concurrency . 587
Concurrency Models . 587

Pessimistic Concurrency . 587

Optimistic Concurrency . 588

Transaction Processing . 588

ACID Properties . . 589

Transaction Dependencies . 590

Isolation Levels . 592

Locking . 596

Locking Basics . 596

Spinlocks . . 597

Lock Types for User Data . 597

Lock Modes . 598

Lock Granularity . 601

Lock Duration . 608

Lock Ownership . . 609

Viewing Locks . 609

Locking Examples . 612

Lock Compatibility . 618

Internal Locking Architecture . 620

Lock Partitioning . . 622

Lock Blocks . . 623

Lock Owner Blocks . 624

syslockinfo Table . 624

Row-Level Locking vs. Page-Level Locking . 627

Lock Escalation . 629

Deadlocks . . 630

Row Versioning . 635

Overview of Row Versioning . . 635

Row Versioning Details . 636

Snapshot-Based Isolation Levels . 637

Choosing a Concurrency Model . . 655

	 Table of Contents	 xvii

Controlling Locking . 657

Lock Hints . . 657

Summary . 661

	 11	 DBCC Internals . 663
Getting a Consistent View of the Database . 664

Obtaining a Consistent View . 665

Processing the Database Efficiently . 668

Fact Generation . . 668

Using the Query Processor . 670

Batches . 673

Reading the Pages to Process . . 674

Parallelism . 675

Primitive System Catalog Consistency Checks . 677

Allocation Consistency Checks . 679

Collecting Allocation Facts . 679

Checking Allocation Facts . 681

Per-Table Logical Consistency Checks . 683

Metadata Consistency Checks . 684

Page Audit . 685

Data and Index Page Processing . 687

Column Processing . 689

Text Page Processing . 693

Cross-Page Consistency Checks . 694

Cross-Table Consistency Checks . 705

Service Broker Consistency Checks . 706

Cross-Catalog Consistency Checks . 707

Indexed-View Consistency Checks . . 707

XML-Index Consistency Checks . 708

Spatial-Index Consistency Checks . 709

DBCC CHECKDB Output . 709

Regular Output . 710

SQL Server Error Log Output . 712

Application Event Log Output . 713

Progress Reporting Output . . 714

DBCC CHECKDB Options . . 715

NOINDEX . 715

Repair Options . . 716

ALL_ERRORMSGS . 716

EXTENDED_LOGICAL_CHECKS . 717

xviii	 Table of Contents

NO_INFOMSGS . 717

TABLOCK . . 717

ESTIMATEONLY . 717

PHYSICAL_ONLY . 718

DATA_PURITY . 719

Database Repairs . . 719

Repair Mechanisms . . 720

Emergency Mode Repair . 721

What Data Was Deleted by Repair? . . 722

Consistency-Checking Commands Other Than DBCC CHECKDB 723

DBCC CHECKALLOC . 724

DBCC CHECKTABLE . 725

DBCC CHECKFILEGROUP . 725

DBCC CHECKCATALOG . 726

DBCC CHECKIDENT . 726

DBCC CHECKCONSTRAINTS . . 727

Summary . 727

Index . 729

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

		 587

Chapter 10

Transactions and Concurrency
Kalen Delaney

Concurrency can be defined as the ability of multiple processes to access or change shared
data at the same time. The greater the number of concurrent user processes that can be active
without interfering with each other, the greater the concurrency of the database system.

Concurrency is reduced when a process that is changing data prevents other processes from
reading that data or when a process that is reading data prevents other processes from
changing that data. I use the terms reading or accessing to describe the impact of using
the SELECT statement on your data. Concurrency is also affected when multiple processes
attempt to change the same data simultaneously and they cannot all succeed without
sacrificing data consistency. I use the terms modifying, changing, or writing to describe the
impact of using the INSERT, UPDATE, MERGE, or DELETE statements on your data. (Note that
MERGE is a new data modification statement in SQL Server 2008, and you can think of it as a
combination of INSERT, UPDATE, and DELETE.)

In general, database systems can take two approaches to managing concurrent data access:
optimistic or pessimistic. Microsoft SQL Server 2008 supports both approaches. Pessimistic
concurrency was the only concurrency model available before SQL Server 2005. As of SQL
Server 2005, you specify which model to use by using two database options and a SET option
called TRANSACTION ISOLATION LEVEL.

After I describe the basic differences between the two models, we look at the five possible
isolation levels in SQL Server 2008, as well as the internals of how SQL Server controls
concurrent access using each model. We look at how to control the isolation level, and we
look at the metadata that shows you what SQL Server is doing.

Concurrency Models
In either concurrency model, a conflict can occur if two processes try to modify the same
data at the same time. The difference between the two models lies in whether conflicts can
be avoided before they occur or can be dealt with in some manner after they occur.

Pessimistic Concurrency
With pessimistic concurrency, the default behavior is for SQL Server to acquire locks to
block access to data that another process is using. Pessimistic concurrency assumes that
enough data modification operations are in the system that any given read operation is likely

588	 Microsoft SQL Server 2008 Internals

affected by a data modification made by another user. In other words, the system behaves
pessimistically and assumes that a conflict will occur. Pessimistic concurrency avoids conflicts
by acquiring locks on data that is being read, so no other processes can modify that data. It
also acquires locks on data being modified, so no other processes can access that data for
either reading or modifying. In other words, readers block writers and writers block readers
in a pessimistic concurrency environment.

Optimistic Concurrency
Optimistic concurrency assumes that there are sufficiently few conflicting data modification
operations in the system that any single transaction is unlikely to modify data that another
transaction is modifying. The default behavior of optimistic concurrency is to use row
versioning to allow data readers to see the state of the data before the modification occurs.
Older versions of data rows are saved, so a process reading data can see the data as it was
when the process started reading and not be affected by any changes being made to that
data. A process that modifies the data is unaffected by processes reading the data because
the reader is accessing a saved version of the data rows. In other words, readers do not block
writers and writers do not block readers. Writers can and will block writers, however, and this
is what causes conflicts. SQL Server generates an error message when a conflict occurs, but it
is up to the application to respond to that error.

Transaction Processing
No matter what concurrency model you’re working with, an understanding of transactions
is crucial. A transaction is the basic unit of work in SQL Server. Typically, it consists of several
SQL commands that read and update the database, but the update is not considered final
until a COMMIT command is issued (at least for an explicit transaction). In general, when I
talk about a modification operation or a read operation, I am talking about the transaction
that performs the data modification or the read, which is not necessarily a single SQL
statement. When I say that writers will block readers, I mean that so long as the transaction that
performed the write operation is active, no other process can read the modified data.

The concept of a transaction is fundamental to understanding concurrency control. The
mechanics of transaction control from a programming perspective are beyond the scope
of this book, but I discuss basic transaction properties. I also go into detail about the
transaction isolation levels because that has a direct impact on how SQL Server manages the
data being accessed in your transactions.

An implicit transaction is any individual INSERT, UPDATE, DELETE, or MERGE statement. (You
can also consider SELECT statements to be implicit transactions, although SQL Server does
not write to the log when SELECT statements are processed.) No matter how many rows are
affected, the statement must exhibit all the ACID properties of a transaction, which I tell you

	 Chapter 10  Transactions and Concurrency	 589

about in the next section. An explicit transaction is one whose beginning is marked with a
BEGIN TRAN statement and whose end is marked by a COMMIT TRAN or ROLLBACK TRAN
statement. Most of the examples I present use explicit transactions because it is the only way
to show the state of SQL Server in the middle of a transaction. For example, many types of
locks are held for only the duration of the transaction. I can begin a transaction, perform some
operations, look around in the metadata to see what locks are being held, and then end the
transaction. When the transaction ends, the locks are released; I can no longer look at them.

ACID Properties
Transaction processing guarantees the consistency and recoverability of SQL Server databases.
It ensures that all transactions are performed as a single unit of work—even in the presence
of a hardware or general system failure. Such transactions are referred to as having the ACID
properties, with ACID standing for atomicity, consistency, isolation, and durability. In addition
to guaranteeing that explicit multistatement transactions maintain the ACID properties, SQL
Server guarantees that an implicit transaction also maintains the ACID properties.

Here’s an example in pseudocode of an explicit ACID transaction:

BEGIN TRANSACTION DEBIT_CREDIT

Debit savings account $1000

Credit checking account $1000

COMMIT TRANSACTION DEBIT_CREDIT

Now let’s take a closer look at each of the ACID properties.

Atomicity
SQL Server guarantees the atomicity of its transactions. Atomicity means that each
transaction is treated as all or nothing—it either commits or aborts. If a transaction commits,
all its effects remain. If it aborts, all its effects are undone. In the preceding DEBIT_CREDIT
example, if the savings account debit is reflected in the database but the checking account
credit isn’t, funds essentially disappear from the database—that is, funds are subtracted from
the savings account but never added to the checking account. If the reverse occurs (if the
checking account is credited and the savings account is not debited), the customer’s checking
account mysteriously increases in value without a corresponding customer cash deposit or
account transfer. Because of the atomicity feature of SQL Server, both the debit and credit must
be completed or else neither event is completed.

Consistency
The consistency property ensures that a transaction won’t allow the system to arrive at an
incorrect logical state—the data must always be logically correct. Constraints and rules are
honored even in the event of a system failure. In the DEBIT_CREDIT example, the logical rule

590	 Microsoft SQL Server 2008 Internals

is that money can’t be created or destroyed: a corresponding, counterbalancing entry must
be made for each entry. (Consistency is implied by, and in most situations redundant with,
atomicity, isolation, and durability.)

Isolation
Isolation separates concurrent transactions from the updates of other incomplete transactions.
In the DEBIT_CREDIT example, another transaction can’t see the work in progress while the
transaction is being carried out. For example, if another transaction reads the balance of the
savings account after the debit occurs, and then the DEBIT_CREDIT transaction is aborted,
the other transaction is working from a balance that never logically existed.

SQL Server accomplishes isolation among transactions automatically. It locks data or creates
row versions to allow multiple concurrent users to work with data while preventing side
effects that can distort the results and make them different from what would be expected if
users were to serialize their requests (that is, if requests were queued and serviced one at a
time). This serializability feature is one of the isolation levels that SQL Server supports. SQL
Server supports multiple isolation levels so that you can choose the appropriate tradeoff
between how much data to lock, how long to hold locks, and whether to allow users access
to prior versions of row data. This tradeoff is known as concurrency vs. consistency.

Durability
After a transaction commits, the durability property of SQL Server ensures that the effects
of the transaction persist even if a system failure occurs. If a system failure occurs while a
transaction is in progress, the transaction is completely undone, leaving no partial effects
on the data. For example, if a power outage occurs in the middle of a transaction before the
transaction is committed, the entire transaction is rolled back when the system is restarted.
If the power fails immediately after the acknowledgment of the commit is sent to the calling
application, the transaction is guaranteed to exist in the database. Write-ahead logging and
automatic rollback and roll-forward of transactions during the recovery phase of SQL Server
startup ensure durability.

Transaction Dependencies
In addition to supporting all four ACID properties, a transaction might exhibit several
other behaviors. Some people call these behaviors “dependency problems” or “consistency
problems,” but I don’t necessarily think of them as problems. They are merely possible
behaviors, and except for lost updates, which are never considered desirable, you can
determine which of these behaviors you want to allow and which you want to avoid.
Your choice of isolation level determines which of these behaviors is allowed.

	 Chapter 10  Transactions and Concurrency	 591

Lost Updates
Lost updates occur when two processes read the same data and both manipulate the data,
changing its value, and then both try to update the original data to the new value. The second
process might overwrite the first update completely. For example, suppose that two clerks in a
receiving room are receiving parts and adding the new shipments to the inventory database.
Clerk A and Clerk B both receive shipments of widgets. They both check the current inventory
and see that 25 widgets are currently in stock. Clerk A’s shipment has 50 widgets, so he adds
50 to 25 and updates the current value to 75. Clerk B’s shipment has 20 widgets, so she adds
20 to the value of 25 that she originally read and updates the current value to 45, completely
overriding the 50 new widgets that Clerk A processed. Clerk A’s update is lost.

Lost updates are only one of the behaviors described here that you probably want to avoid in
all cases.

Dirty Reads
Dirty reads occur when a process reads uncommitted data. If one process has changed data but
not yet committed the change, another process reading the data will read it in an inconsistent
state. For example, say that Clerk A has updated the old value of 25 widgets to 75, but
before he commits, a salesperson looks at the current value of 75 and commits to sending
60 widgets to a customer the following day. If Clerk A then realizes that the widgets are
defective and sends them back to the manufacturer, the salesperson has done a dirty read
and taken action based on uncommitted data.

By default, dirty reads are not allowed. Keep in mind that the process updating the data
has no control over whether another process can read its data before the first process is
committed. It’s up to the process reading the data to decide whether it wants to read data
that is not guaranteed to be committed.

Nonrepeatable Reads
A read is nonrepeatable if a process might get different values when reading the same data
in two separate reads within the same transaction. This can happen when another process
changes the data in between the reads that the first process is doing. In the receiving room
example, suppose that a manager comes in to do a spot check of the current inventory.
She walks up to each clerk, asking the total number of widgets received today and adding
the numbers on her calculator. When she’s done, she wants to double-check the result, so
she goes back to the first clerk. However, if Clerk A received more widgets between the
manager’s first and second inquiries, the total is different and the reads are nonrepeatable.
Nonrepeatable reads are also called inconsistent analysis.

Phantoms
Phantoms occur when membership in a set changes. It can happen only when a query
with a predicate—such as WHERE count_of_widgets < 10—is involved. A phantom occurs

592	 Microsoft SQL Server 2008 Internals

if two SELECT operations using the same predicate in the same transaction return a
different number of rows. For example, let’s say that our manager is still doing spot checks
of inventory. This time, she goes around the receiving room and notes which clerks have
fewer than 10 widgets. After she completes the list, she goes back around to offer advice to
everyone with a low total. However, if during her first walkthrough, a clerk with fewer than
10 widgets returned from a break but was not spotted by the manager, that clerk is not on
the manager’s list even though he meets the criteria in the predicate. This additional clerk
(or row) is considered to be a phantom.

The behavior of your transactions depends on the isolation level. As mentioned earlier, you
can decide which of the behaviors described previously to allow by setting an appropriate
isolation level using the command SET TRANSACTION ISOLATION LEVEL <isolation_level>.
Your concurrency model (optimistic or pessimistic) determines how the isolation level is
implemented—or, more specifically, how SQL Server guarantees that the behaviors you don’t
want will not occur.

Isolation Levels
SQL Server 2008 supports five isolation levels that control the behavior of your read
operations. Three of them are available only with pessimistic concurrency, one is available
only with optimistic concurrency, and one is available with either. We look at these levels
now, but a complete understanding of isolation levels also requires an understanding of
locking and row versioning. In my descriptions of the isolation levels, I mention the locks or
row versions that support that level, but keep in mind that locking and row versioning are
discussed in detail later in the chapter.

Read Uncommitted
In Read Uncommitted isolation, all the behaviors described previously, except lost updates,
are possible. Your queries can read uncommitted data, and both nonrepeatable reads and
phantoms are possible. Read Uncommitted isolation is implemented by allowing your read
operations to not take any locks, and because SQL Server isn’t trying to acquire locks, it won’t
be blocked by conflicting locks acquired by other processes. Your process is able to read data
that another process has modified but not yet committed.

In addition to reading individual values that are not yet committed, the Read Uncommitted
isolation level introduces other undesirable behaviors. When using this isolation level
and scanning an entire table, SQL Server can decide to do an allocation order scan (in
page-number order), instead of a logical order scan (which would follow the page pointers).
If there are concurrent operations by other processes that change data and move rows to a
new location in the table, your allocation order scan can end up reading the same row twice.
This can happen when you’ve read a row before it is updated, and then the update moves
the row to a higher page number than your scan encounters later. In addition, performing an

	 Chapter 10  Transactions and Concurrency	 593

allocation order scan under Read Uncommitted can cause you to miss a row completely. This
can happen when a row on a high page number that hasn’t been read yet is updated and
moved to a lower page number that has already been read.

Although this scenario isn’t usually the ideal option, with Read Uncommitted, you can’t get
stuck waiting for a lock, and your read operations don’t acquire any locks that might affect
other processes that are reading or writing data.

When using Read Uncommitted, you give up the assurance of strongly consistent data in
favor of high concurrency in the system without users locking each other out. So when
should you choose Read Uncommitted? Clearly, you don’t want to use it for financial
transactions in which every number must balance. But it might be fine for certain
decision-support analyses—for example, when you look at sales trends—for which complete
precision isn’t necessary and the tradeoff in higher concurrency makes it worthwhile. Read
Uncommitted isolation is a pessimistic solution to the problem of too much blocking activity
because it just ignores the locks and does not provide you with transactional consistency.

Read Committed
SQL Server 2008 supports two varieties of Read Committed isolation, which is the default
isolation level. This isolation level can be either optimistic or pessimistic, depending on the
database setting READ_COMMITTED_SNAPSHOT. Because the default for the database option
is off, the default for this isolation level is to use pessimistic concurrency control. Unless
indicated otherwise, when I refer to the Read Committed isolation level, I am referring to both
variations of this isolation level. I refer to the pessimistic implementation as Read Committed
(locking), and I refer to the optimistic implementation as Read Committed (snapshot).

Read Committed isolation ensures that an operation never reads data that another
application has changed but not yet committed. (That is, it never reads data that logically
never existed.) With Read Committed (locking), if another transaction is updating data and
consequently has exclusive locks on data rows, your transaction must wait for those locks to
be released before you can use that data (whether you’re reading or modifying). Also, your
transaction must put share locks (at a minimum) on the data that are visited, which means
that data might be unavailable to others to use. A share lock doesn’t prevent others from
reading the data, but it makes them wait to update the data. By default, share locks can be
released after the data has been processed—they don’t have to be held for the duration of
the transaction, or even for the duration of the statement. (That is, if shared row locks are
acquired, each row lock can be released as soon as the row is processed, even though the
statement might need to process many more rows.)

Read Committed (snapshot) also ensures that an operation never reads uncommitted data,
but not by forcing other processes to wait. In Read Committed (snapshot), every time a row
is updated, SQL Server generates a version of the changed row with its previous committed
values. The data being changed is still locked, but other processes can see the previous
versions of the data as it was before the update operation began.

594	 Microsoft SQL Server 2008 Internals

Repeatable Read
Repeatable Read is a pessimistic isolation level. It adds to the properties of Committed Read
by ensuring that if a transaction revisits data or a query is reissued, the data does not change.
In other words, issuing the same query twice within a transaction cannot pick up any changes
to data values made by another user’s transaction because no changes can be made by
other transactions. However, the Repeatable Read isolation level does allow phantom rows to
appear.

Preventing nonrepeatable reads is a desirable safeguard in some cases. But there’s no free
lunch. The cost of this extra safeguard is that all the shared locks in a transaction must be held
until the completion (COMMIT or ROLLBACK) of the transaction. (Exclusive locks must always
be held until the end of a transaction, no matter what the isolation level or concurrency
model, so that a transaction can be rolled back if necessary. If the locks were released sooner,
it might be impossible to undo the work because other concurrent transactions might have
used the same data and changed the value.) No other user can modify the data visited by
your transaction as long as your transaction is open. Obviously, this can seriously reduce
concurrency and degrade performance. If transactions are not kept short or if applications
are not written to be aware of such potential lock contention issues, SQL Server can appear to
stop responding when a process is waiting for locks to be released.

Note  You can control how long SQL Server waits for a lock to be released by using the session
option LOCK_TIMEOUT. It is a SET option, so the behavior can be controlled only for an individual
session. There is no way to set a LOCK_TIMEOUT value for SQL Server as a whole. You can read
about LOCK_TIMEOUT in SQL Server Books Online.

Snapshot
Snapshot isolation (sometimes referred to as SI) is an optimistic isolation level. Like Read
Committed (snapshot), it allows processes to read older versions of committed data if the
current version is locked. The difference between Snapshot and Read Committed (snapshot)
has to do with how old the older versions have to be. (We see the details in the section
entitled “Row Versioning,” later in this chapter.) Although the behaviors prevented by
Snapshot isolation are the same as those prevented by Serializable, Snapshot is not truly a
Serializable isolation level. With Snapshot isolation, it is possible to have two transactions
executing simultaneously that give us a result that is not possible in any serial execution.
Table 10-1 shows an example of two simultaneous transactions. If they run in parallel, they
end up switching the price of two books in the titles table in the pubs database. However,
there is no serial execution that would end up switching the values, whether we run
Transaction 1 and then Transaction 2, or run Transaction 2 and then Transaction 1. Either
serial order ends up with the two books having the same price.

 Chapter 10 Transactions and Concurrency 595

TABLe 10-1 Two Simultaneous Transactions in Snapshot isolation That
Cannot Be run Serially

Time Transaction 1 Transaction 2

1 USE pubs

SET TRANSACTION ISOLATION LEVEL

SNAPSHOT

DECLARE @price money

BEGIN TRAN

USE pubs

SET TRANSACTION ISOLATION LEVEL

SNAPSHOT

DECLARE @price money

BEGIN TRAN

2 SELECT @price = price

FROM titles

WHERE title_id = 'BU1032'

SELECT @price = price

FROM titles

WHERE title_id = 'PS7777'

3 UPDATE titles

SET price = @price

WHERE title_id = 'PS7777'

UPDATE titles

SET price = @price

WHERE title_id = 'BU1032'

4 COMMIT TRAN COMMIT TRAN

Serializable
Serializable is also a pessimistic isolation level. The Serializable isolation level adds to the
properties of Repeatable Read by ensuring that if a query is reissued, rows were not added in
the interim. In other words, phantoms do not appear if the same query is issued twice within
a transaction. Serializable is therefore the strongest of the pessimistic isolation levels because
it prevents all the possible undesirable behaviors discussed earlier—that is, it does not allow
uncommitted reads, nonrepeatable reads, or phantoms, and it also guarantees that your
transactions can be run serially.

Preventing phantoms is another desirable safeguard. But once again, there’s no free lunch.
The cost of this extra safeguard is similar to that of Repeatable Read—all the shared locks in a
transaction must be held until the transaction completes. In addition, enforcing the Serializable
isolation level requires that you not only lock data that has been read, but also lock data that
does not exist! For example, suppose that within a transaction, we issue a SELECT statement to
read all the customers whose ZIP code is between 98000 and 98100, and on fi rst execution,
no rows satisfy that condition. To enforce the Serializable isolation level, we must lock that
range of potential rows with ZIP codes between 98000 and 98100 so that if the same query
is reissued, there are still no rows that satisfy the condition. SQL Server handles this situation
by using a special kind of lock called a key-range lock. Key-range locks require that there be
an index on the column that defi nes the range of values. (In this example, that would be the
column containing the ZIP codes.) If there is no index on that column, Serializable isolation
 requires a table lock. I discuss the different types of locks in detail in the section on locking.
The Serializable level gets its name from the fact that running multiple serializable transactions
at the same time is the equivalent of running them one at a time—that is, serially.

For example, suppose that transactions A, B, and C run simultaneously at the Serializable
level and each tries to update the same range of data. If the order in which the transactions
 acquire locks on the range of data is B, C, and then A, the result obtained by running all three

Time Transaction 1 Transaction 2

596 Microsoft SQL Server 2008 Internals

 simultaneously is the same as if they were run sequentially in the order B, C, and then A.
Serializable does not imply that the order is known in advance. The order is considered a chance
event. Even on a single-user system, the order of transactions hitting the queue would be
 essentially random. If the batch order is important to your application, you should implement it
as a pure batch system. Serializable means only that there should be a way to run the transactions
serially to get the same result you get when you run them simultaneously. Table 10-1 illustrates a
case where two transactions cannot be run serially and get the same result.

Table 10-2 summarizes the behaviors that are possible in each isolation level and notes the
concurrency control model that is used to implement each level. You can see that Read
Committed and Read Committed (snapshot) are identical in the behaviors they allow,
but the behaviors are implemented differently—one is pessimistic (locking), and one is
 optimistic (row versioning). Serializable and Snapshot also have the same No values for all the
 behaviors, but one is pessimistic and one is optimistic.

TABLe 10-2 Behaviors Allowed in each isolation Level

 Isolation Level Dirty Read Nonrepeatable Read Phantom Concurrency Control

 Read Uncommitted Yes Yes Yes Pessimistic

 Read Committed
(locking)

No Yes Yes Pessimistic

 Read Committed
(snapshot)

No Yes Yes Optimistic

 Repeatable Read No No Yes Pessimistic

 Snapshot No No No Optimistic

 Serializable No No No Pessimistic

Locking
 Locking is a crucial function of any multiuser database system, including SQL Server. Locks
are applied in both the pessimistic and optimistic concurrency models, although the way
other processes deal with locked data is different in each. The reason I refer to the pessimistic
variation of Read Committed isolation as Read Committed (locking) is because locking allows
concurrent transactions to maintain consistency. In the pessimistic model, writers always block
readers and writers, and readers can block writers. In the optimistic model, the only blocking
that occurs is that writers block other writers. But to really understand what these simplifi ed
behavior summaries mean, we need to look at the details of SQL Server locking.

Locking Basics
 SQL Server can lock data using several different modes. For example, read operations acquire
shared locks, and write operations acquire exclusive locks. Update locks are acquired
 during the initial portion of an update operation, while SQL Server is searching for the data

Isolation Level Dirty Read Nonrepeatable Read Phantom Concurrency Control

	 Chapter 10  Transactions and Concurrency	 597

to update. SQL Server acquires and releases all these types of locks automatically. It also
manages compatibility between lock modes, resolves deadlocks, and escalates locks if necessary.
It controls locks on tables, on the pages of a table, on index keys, and on individual rows
of data. Locks can also be held on system data—data that’s private to the database system,
such as page headers and indexes.

SQL Server provides two separate locking systems. The first system affects all fully shared
data and provides row locks, page locks, and table locks for tables, data pages, Large Object
(LOB) pages, and leaf-level index pages. The second system is used internally for index
concurrency control, controlling access to internal data structures and retrieving individual
rows of data pages. This second system uses latches, which are less resource-intensive than
locks and provide performance optimizations. You could use full-blown locks for all locking,
but because of their complexity, they would slow down the system if you used them for all
internal needs. If you examine locks using the sp_lock system stored procedure or a similar
mechanism that gets information from the sys.dm_tran_locks view, you cannot see latches—
you see only information about locks.

Another way to look at the difference between locks and latches is that locks ensure the
logical consistency of the data and latches ensure the physical consistency. Latching happens
when you place a row physically on a page or move data in other ways, such as compressing
the space on a page. SQL Server must guarantee that this data movement can happen
without interference.

Spinlocks
For shorter-term needs, SQL Server achieves mutual exclusion with a spinlock. Spinlocks are
used purely for mutual exclusion and never to lock user data. They are even more lightweight
than latches, which are lighter than the full locks used for data and index leaf pages. The
requester of a spinlock repeats its request if the lock is not immediately available. (That is, the
requester “spins” on the lock until it is free.)

Spinlocks are often used as mutexes within SQL Server for resources that are usually not busy. If
a resource is busy, the duration of a spinlock is short enough that retrying is better than waiting
and then being rescheduled by the operating system, which results in context switching between
threads. The savings in context switches more than offsets the cost of spinning as long as you
don’t have to spin too long. Spinlocks are used for situations in which the wait for a resource is
expected to be brief (or if no wait is expected). The sys.dm_os_tasks dynamic management view
(DMV) shows a status of SPINLOOP for any task that is currently using a spinlock.

Lock Types for User Data
We examine four aspects of locking user data. First we look at the mode of locking (the type
of lock). I already mentioned shared, exclusive, and update locks, and I go into more detail

598	 Microsoft SQL Server 2008 Internals

about these modes as well as others. Next we look at the granularity of the lock, which
specifies how much data is covered by a single lock. This can be a row, a page, an index key,
a range of index keys, an extent, a partition, or an entire table. The third aspect of locking is
the duration of the lock. As mentioned earlier, some locks are released as soon as the data
has been accessed, and some locks are held until the transaction commits or rolls back. The
fourth aspect of locking concerns the ownership of the lock (the scope of the lock). Locks can
be owned by a session, a transaction, or a cursor.

Lock Modes
SQL Server uses several locking modes, including shared locks, exclusive locks, update locks,
and intent locks, plus variations on these. It is the mode of the lock that determines whether
a concurrently requested lock is compatible with locks that have already been granted. We
see the lock compatibility matrix at the end of this section in Figure 10-2.

Shared Locks
Shared locks are acquired automatically by SQL Server when data is read. Shared locks can be
held on a table, a page, an index key, or an individual row. Many processes can hold shared
locks on the same data, but no process can acquire an exclusive lock on data that has a shared
lock on it (unless the process requesting the exclusive lock is the same process as the one
holding the shared lock). Normally, shared locks are released as soon as the data has been
read, but you can change this by using query hints or a different transaction isolation level.

Exclusive Locks
SQL Server automatically acquires exclusive locks on data when the data is modified by an
INSERT, UPDATE, or DELETE operation. Only one process at a time can hold an exclusive lock
on a particular data resource; in fact, as you see when we discuss lock compatibility later
in this chapter, no locks of any kind can be acquired by a process if another process has
the requested data resource exclusively locked. Exclusive locks are held until the end of the
transaction. This means the changed data is normally not available to any other process until
the current transaction commits or rolls back. Other processes can decide to read exclusively
locked data by using query hints.

Update Locks
Update locks are really not a separate kind of lock; they are a hybrid of shared and exclusive
locks. They are acquired when SQL Server executes a data modification operation but first,
SQL Server needs to search the table to find the resource that needs to be modified. Using
query hints, a process can specifically request update locks, and in that case, the update locks
prevent the conversion deadlock situation presented in Figure 10-6 later in this chapter.

	 Chapter 10  Transactions and Concurrency	 599

Update locks provide compatibility with other current readers of data, allowing the process
to later modify data with the assurance that the data hasn’t been changed since it was last
read. An update lock is not sufficient to allow you to change the data—all modifications
require that the data resource being modified have an exclusive lock. An update lock acts
as a serialization gate to queue future requests for the exclusive lock. (Many processes can
hold shared locks for a resource, but only one process can hold an update lock.) So long as a
process holds an update lock on a resource, no other process can acquire an update lock or
an exclusive lock for that resource; instead, another process requesting an update or exclusive
lock for the same resource must wait. The process holding the update lock can convert it
into an exclusive lock on that resource because the update lock prevents lock incompatibility
with any other processes. You can think of update locks as “intent-to-update” locks, which
is essentially the role they perform. Used alone, update locks are insufficient for updating
data—an exclusive lock is still required for actual data modification. Serializing access for the
exclusive lock lets you avoid conversion deadlocks. Update locks are held until the end of the
transaction or until they are converted to an exclusive lock.

Don’t let the name fool you: update locks are not just for UPDATE operations. SQL Server uses
update locks for any data modification operation that requires a search for the data prior to the
actual modification. Such operations include qualified updates and deletes, as well as inserts
into a table with a clustered index. In the latter case, SQL Server must first search the data
(using the clustered index) to find the correct position at which to insert the new row. While
SQL Server is only searching, it uses update locks to protect the data; only after it has found the
correct location and begins inserting does it convert the update lock to an exclusive lock.

Intent Locks
Intent locks are not really a separate mode of locking; they are a qualifier to the modes
previously discussed. In other words, you can have intent shared locks, intent exclusive locks,
and even intent update locks. Because SQL Server can acquire locks at different levels of
granularity, a mechanism is needed to indicate that a component of a resource is already
locked. For example, if one process tries to lock a table, SQL Server needs a way to determine
whether a row (or a page) of that table is already locked. Intent locks serve this purpose. We
discuss them in more detail when we look at lock granularity.

Special Lock Modes
SQL Server offers three additional lock modes: schema stability locks, schema modification
locks, and bulk update locks. When queries are compiled, schema stability locks prevent
other processes from acquiring schema modification locks, which are taken when a table’s
structure is being modified. A bulk update lock is acquired when the BULK INSERT command
is executed or when the bcp utility is run to load data into a table. In addition, the bulk
import operation must request this special lock by using the TABLOCK hint. Alternatively, the
table owner can set the table option called table lock on bulk load to True, and then any bulk
copy IN or BULK INSERT operation automatically requests a bulk update lock. Requesting

600 Microsoft SQL Server 2008 Internals

this special bulk update table lock does not necessarily mean it is granted. If other processes
already hold locks on the table, or if the table has any indexes, a bulk update lock cannot be
granted. If multiple connections have requested and received a bulk update lock, they can
perform parallel loads into the same table. Unlike exclusive locks, bulk update locks do not
confl ict with each other, so concurrent inserts by multiple connections is supported.

Conversion Locks
Conversion locks are never requested directly by SQL Server, but are the result of a conversion
from one mode to another. The three types of conversion locks supported by SQL Server 2008
are SIX, SIU, and UIX. The most common of these is the SIX, which occurs if a transaction is
 holding a shared (S) lock on a resource and later an IX lock is needed. The lock mode is indicated
as SIX. For example, suppose that you issue the following batch:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

BEGIN TRAN

SELECT * FROM bigtable

UPDATE bigtable

 SET col = 0

 WHERE keycolumn = 100

If the table is large, the SELECT statement acquires a shared table lock. (If the table has only
a few rows, SQL Server acquires individual row or key locks.) The UPDATE statement then
 acquires a single exclusive key lock to perform the update of a single row, and the X lock at
the key level means an IX lock at the page and table level. The table then shows SIX when
viewed through sys.dm_tran_locks. Similarly, SIU occurs when a process has a shared lock
on a table and an update lock on a row of that table, and UIX occurs when a process has an
 update lock on the table and an exclusive lock on a row.

Table 10-3 shows most of the lock modes, as well as the abbreviations used in sys.dm_tran_locks.

TABLe 10-3 SQL Server Lock Modes

Abbreviation Lock Mode Description

S Shared Allows other processes to read but not change the locked
resource.

X Exclusive Prevents another process from modifying or reading data
in the locked resource.

U Update Prevents other processes from acquiring an update or
 exclusive lock; used when searching for the data to
modify.

IS Intent shared Indicates that a component of this resource is locked with
a shared lock. This lock can be acquired only at the table
or page level.

IU Intent update Indicates that a component of this resource is locked with
an update lock. This lock can be acquired only at the table
or page level.

Abbreviation Lock Mode Description

 Chapter 10 Transactions and Concurrency 601

TABLe 10-3 SQL Server Lock Modes

Abbreviation Lock Mode Description

IX Intent exclusive Indicates that a component of this resource is locked with
an exclusive lock. This lock can be acquired only at the
table or page level.

SIX Shared with intent
exclusive

Indicates that a resource holding a shared lock also has a
component (a page or row) locked with an exclusive lock.

SIU Shared with intent
update

Indicates that a resource holding a shared lock also has a
component (a page or row) locked with an update lock.

UIX Update with intent
exclusive

Indicates that a resource holding an update lock also has a
component (a page or row) locked with an exclusive lock.

Sch-S Schema stability Indicates that a query using this table is being compiled.

Sch-M Schema modifi cation Indicates that the structure of the table is being changed.

BU Bulk update Used when a bulk copy operation is copying data into
a table and the TABLOCK hint is being applied (either
 manually or automatically).

Key-Range Locks
Additional lock modes—called key-range locks—are taken only in the Serializable isolation
level for locking ranges of data. Most lock modes can apply to almost any lock resource. For
example, shared and exclusive locks can be taken on a table, a page, a row, or a key. Because
key-range locks can be taken only on keys, I describe the details of key-range locks later in
this chapter in the section on key locks.

Lock Granularity
 SQL Server can lock user data resources (not system resources, which are protected with
latches) at the table, page, or row level. (If locks are escalated, SQL Server can also lock a single
partition of a table or index.) In addition, SQL Server can lock index keys and ranges of index
keys. Figure 10-1 shows the basic lock levels in a table that can be acquired when a resource is
fi rst accessed. Keep in mind that if the table has a clustered index, the data rows are at the leaf
level of the clustered index and they are locked with key locks instead of row locks.

 The sys.dm_tran_locks view keeps track of each lock and contains information about the
 resource, which is locked (such as a row, key, or page), the mode of the lock, and an identifi er
for the specifi c resource. Keep in mind that sys.dm_tran_locks is only a dynamic view that
is used to display the information about the locks that are held. The actual information
is stored in internal SQL Server structures that are not visible to us at all. So when I talk
about information being in the sys.dm_tran_locks view, I am referring to the fact that the
 information can be seen through that view.

Abbreviation Lock Mode Description

602	 Microsoft SQL Server 2008 Internals

RowRow Row

Page Page Page

Table

Figure 10-1  Levels of granularity for SQL Server locks on a table

When a process requests a lock, SQL Server compares the lock requested to the resources
already listed in sys.dm_tran_locks and looks for an exact match on the resource type and
identifier. However, if one process has a row exclusively locked in the Sales.SalesOrderHeader
table, for example, another process might try to get a lock on the entire Sales.SalesOrderHeader
table. Because these are two different resources, SQL Server does not find an exact match
unless additional information is already in sys.dm_tran_locks. This is what intent locks are for.
The process that has the exclusive lock on a row of the Sales.SalesOrderHeader table also has an
intent exclusive lock on the page containing the row and another intent exclusive lock on the
table containing the row. We can see those locks by first running this code:

USE Adventureworks2008;

BEGIN TRAN

UPDATE Sales.SalesOrderHeader

SET ShipDate = ShipDate + 1

WHERE SalesOrderID = 43666;

This statement should affect a single row. Because I have started a transaction and not yet
terminated it, the exclusive locks acquired are still held. I can look at those locks using the
sys.dm_tran_locks view:

SELECT resource_type, resource_description,

 resource_associated_entity_id, request_mode, request_status

FROM sys.dm_tran_locks

WHERE resource_associated_entity_id > 0;

I give you more details about the data in the section entitled “sys.dm_tran_locks” later in this
chapter, but for now, just note that the reason for the filter in the WHERE clause is that I am

	 Chapter 10  Transactions and Concurrency	 603

interested only in locks that are actually held on data resources. If you are running a query on a
SQL Server instance that others are using, you might have to provide more filters to get just the
rows you’re interested in. For example, you could include a filter on request_session_id to limit
the output to locks held by a particular session. Your results should look something like this:

resource_type resource_description  resource_associated_entity_id request_mode request_status

------------- -------------------- ----------------------------    ------------ ---------------

KEY    (92007ad11d1d)     72057594045857792    X    GRANT

PAGE 1:5280 72057594045857792   IX GRANT

OBJECT 722101613   IX GRANT

Note that there are three locks, even though the UPDATE statement affected only a single
row. For the KEY and the PAGE locks, the resource_associated_entity_id is a partition_id.
For the OBJECT locks, the resource_associated_entity_id is a table. We can verify what table it
is by using the following query:

SELECT object_name(722101613)

The results should tell us that the object is the Sales.SalesOrderHeader table. When the sec-
ond process attempts to acquire an exclusive lock on that table, it finds a conflicting row al-
ready in sys.dm_tran_locks on the same lock resource (the Sales.SalesOrderHeader table), and
it is blocked. The sys.dm_tran_locks view shows us the following row, indicating a request for
an exclusive lock on an object that is unable to be granted. The process requesting the lock is
in a WAIT state:

resource_type resource_description  resource_associated_entity_id      request_mode request_status

------------- -------------------- ------------------------------   ------------   ------------

OBJECT 722101613 X WAIT

Not all requests for locks on resources that are already locked result in a conflict. A conflict
occurs when one process requests a lock on a resource that is already locked by another
process in an incompatible lock mode. For example, two processes can each acquire shared
locks on the same resource because shared locks are compatible with each other. I discuss
lock compatibility in detail later in this chapter.

Key Locks
SQL Server 2008 supports two kinds of key locks, and which one it uses depends on the
isolation level of the current transaction. If the isolation level is Read Committed, Repeatable
Read, or Snapshot, SQL Server tries to lock the actual index keys accessed while processing
the query. With a table that has a clustered index, the data rows are the leaf level of the
index, and you see key locks acquired. If the table is a heap, you might see key locks for the
nonclustered indexes and row locks for the actual data.

If the isolation level is Serializable, the situation is different. We want to prevent phantoms, so
if we have scanned a range of data within a transaction, we need to lock enough of the table

604	 Microsoft SQL Server 2008 Internals

to make sure no one can insert a value into the range that was scanned. For example, we can
issue the following query within an explicit transaction in the AdventureWorks2008 database:

BEGIN TRAN

SELECT * FROM Sales.SalesOrderHeader

WHERE CustomerID BETWEEN 100 and 110;

When you use Serializable isolation, locks must be acquired to make sure no new rows with
CustomerID values between 100 and 110 are inserted before the end of the transaction.
Much older versions of SQL Server (prior to 7.0) guaranteed this by locking whole pages or
even the entire table. In many cases, however, this was too restrictive—more data was locked
than the actual WHERE clause indicated, resulting in unnecessary contention. SQL Server
2008 uses the key-range locks mode, which is associated with a particular key value in an
index and indicates that all values between that key and the previous one in the index are
locked.

The AdventureWorks2008 database includes an index on the Person table with the LastName
column as the leading column. Assume that we are in TRANSACTION ISOLATION LEVEL
SERIALIZABLE and we issue this SELECT statement inside a user-defined transaction:

SELECT * FROM Person.Person

WHERE LastName BETWEEN 'Freller' AND 'Freund';

If Fredericksen, French, and Friedland are sequential leaf-level index keys in an index on the
LastName column, the second two of these keys (French and Friedland) acquire key-range
locks (although only one row, for French, is returned in the result set). The key-range locks
prevent any inserts into the ranges ending with the two key-range locks. No values greater
than Fredericksen and less than or equal to French can be inserted, and no values greater
than French and less than or equal to Friedland can be inserted. Note that the key-range
locks imply an open interval starting at the previous sequential key and a closed interval
ending at the key on which the lock is placed. These two key-range locks prevent anyone
from inserting either Fremlich or Frenkin, which are in the range specified in the WHERE
clause. However, the key-range locks would also prevent anyone from inserting Freedman
(which is greater than Fredericksen and less than French), even though Freedman is not in the
query’s specified range. Key-range locks are not perfect, but they do provide much greater
concurrency than locking whole pages or tables, while guaranteeing that phantoms are
prevented.

There are nine types of key-range locks, and each has a two-part name: the first part
indicates the type of lock on the range of data between adjacent index keys, and the second
part indicates the type of lock on the key itself. These nine types of key-range locks are
described in Table 10-4.

 Chapter 10 Transactions and Concurrency 605

TABLe 10-4 Types of Key-range Locks

 Abbreviation Description

 RangeS-S Shared lock on the range between keys; shared lock on the key at the end
of the range

 RangeS-U Shared lock on the range between keys; update lock on the key at the end
of the range

 RangeIn-Null Exclusive lock to prevent inserts on the range between keys; no lock on the keys
themselves

 RangeX-X Exclusive lock on the range between keys; exclusive lock on the key at the end of
the range

 RangeIn-S Conversion lock created by S and RangeIn_Null lock

 RangeIn-U Conversion lock created by U and RangeIn_Null lock

 RangeIn-X Conversion of X and RangeIn_Null lock

 RangeX-S Conversion of RangeIn_Null and RangeS_S lock

 RangeX-U Conversion of RangeIn_Null and RangeS_U lock

Many of these lock modes are very rare or transient, so you do not see them very often in
sys.dm_tran_locks. For example, the RangeIn-Null lock is acquired when SQL Server attempts
to insert into the range between keys in a session using Serializable isolation. This type of
lock is not often seen because it is typically very transient. It is held only until the correct
location for insertion is found, and then the lock is converted into an X lock. However, if
one transaction scans a range of data using the Serializable isolation level and then another
 transaction tries to insert into that range, the second transaction has a lock request with a WAIT
status with the RangeIn-Null mode. You can observe this by looking at the status column in
sys.dm_tran_locks, which we discuss in more detail later in the chapter.

Additional Lock Resources
In addition to locks on objects, pages, keys, and rows, a few other resources can be locked
by SQL Server. Locks can be taken on extents—units of disk space that are 64 KB in size
(eight pages of 8 KB each). This kind of locking occurs automatically when a table or an
 index needs to grow and a new extent must be allocated. You can think of an extent lock as
 another type of special-purpose latch, but it does show up in sys.dm_tran_locks. Extents can
have both shared extent and exclusive extent locks.

When you examine the contents of sys.dm_tran_locks, you should notice that most processes
hold a lock on at least one database (resource_type = DATABASE). In fact, any process holding
locks in any database other than master or tempdb has a lock for that database resource.
These database locks are always shared locks if the process is just using the database. SQL
Server checks for these database locks when determining whether a database is in use, and
then it can determine whether the database can be dropped, restored, altered, or closed.
Because few changes can be made to master and tempdb and they cannot be dropped

Abbreviation Description

606	 Microsoft SQL Server 2008 Internals

or closed, DATABASE locks are unnecessary. In addition, tempdb is never restored, and to
restore the master database, the entire server must be started in single-user mode, so again,
DATABASE locks are unnecessary. When attempting to perform one of these operations,
SQL Server requests an exclusive database lock, and if any other processes have a shared lock
on the database, the request blocks. Generally, you don’t need to be concerned with extent or
database locks, but you see them if you are perusing sys.dm_tran_locks.

You might occasionally see locks on ALLOCATION_UNIT resources. Although all table and
index structures contain one or more ALLOCATION_UNITs, when these locks occur, it means
SQL Server is dealing with one of these resources that is no longer tied to a particular object.
For example, when you drop or rebuild large tables or indexes, the actual page deallocation
is deferred until after the transaction commits. Deferred drop operations do not release
allocated space immediately, and they introduce additional overhead costs, so a deferred
drop is done only on tables or indexes that use more than 128 extents. If the table or index
uses 128 or fewer extents, dropping, truncating, and rebuilding are not deferred operations.
During the first phase of a deferred operation, the existing allocation units used by the
table or index are marked for deallocation and locked until the transaction commits. This
is where you see ALLOCATION_UNIT locks in sys.dm_tran_locks. You can also look in the
sys.allocation_units view to find allocation units with a type_desc value of DROPPED to see
how much space is being used by the allocation units that are not available for reuse but are
not currently part of any object. The actual physical dropping of the allocation unit’s space
occurs after the transaction commits.

Finally, you occasionally have locks on individual partitions, which are indicated in the
lock metadata as HOBT locks. This can happen only when locks are escalated, and only
if you have specified that escalation to the partition level is allowed (and, of course, only
when the table or index has been partitioned). We look at how you can specify that you
want partition-level locking in the section entitled “Lock Escalation,” later in this chapter.

Identifying Lock Resources
When SQL Server tries to determine whether a requested lock can be granted, it checks the
sys.dm_tran_locks view to determine whether a matching lock with a conflicting lock mode
already exists. It compares locks by looking at the database ID (resource_database_ID), the
values in the resource_description and resource_associated_entity_id columns, and the type of
resource locked. SQL Server knows nothing about the meaning of the resource description.
It simply compares the strings identifying the lock resources to look for a match. If it finds
a match with a request_status value of GRANT, it knows the resource is already locked; it
then uses the lock compatibility matrix to determine whether the current lock is compatible
with the one being requested. Table 10-5 shows many of the possible lock resources that
are displayed in the first column of the sys.dm_tran_locks view and the information in the
resource_description column, which is used to define the actual resource locked.

 Chapter 10 Transactions and Concurrency 607

TABLe 10-5 Lockable resources in SQL Server

 Resource_Type Resource_Description Example

 DATABASE None; the database is always indicated in the resource_
database_ID column for every locked resource.

 12

 OBJECT The object ID (which can be any database object, not
 necessarily a table) is reported in the resource_ associated_
entity_id column.

69575286

 HOBT hobt_id is reported in the resource_associated_entity_id
column. Used only when partition locking has been
 enabled for a table.

72057594038779904

 EXTENT File number:page number of the fi rst page of the extent. 1:96

 PAGE File number:page number of the actual table or
 index page.

1:104

 KEY A hashed value derived from all the key components and
the locator. For a nonclustered index on a heap, where
columns c1 and c2 are indexed, the hash will contain
 contributions from c1, c2, and the RID.

ac0001a10a00

ROW File number:page number:slot number of the actual row. 1:161:3

Note that key locks and key-range locks have identical resource descriptions because key
range is considered a mode of locking, not a locking resource. When you look at output from
the sys.dm_tran_locks view, you see that you can distinguish between these types of locks by
the value in the lock mode column.

Another type of lockable resource is METADATA. More than any other resource, METADATA
resources are divided into multiple subtypes, which are described in the resource_subtype
column of sys.dm_tran_locks. You might see dozens of subtypes of METADATA resources,
but most of them are beyond the scope of this book. For some, however, even though SQL
Server Books Online describes them as “for internal use only,” it is pretty obvious what they
refer to. For example, when you change properties of a database, you can see a resource_type
of METADATA and a resource_subtype of DATABASE. The value in the resource_description
 column of that row is database_id =<ID>, indicating the ID of the database whose metadata is
 currently locked.

Associated Entity ID
 For locked resources that are part of a larger entity, the resource_associated_entity_id column
in sys.dm_tran_locks displays the ID of that associated entity in the database. This can be an
object ID, a partition ID, or an allocation unit ID, depending on the resource type. Of course,
for some resources, such as DATABASE and EXTENT, there is no resource_associated_entity_id.
An object ID value is given in this column for OBJECT resources, and an allocation unit ID is
given for ALLOCATION_UNIT resources. A partition ID is provided for resource types PAGE,
KEY, and RID.

Resource_Type Resource_Description Example

608	 Microsoft SQL Server 2008 Internals

There is no simple function to convert a partition ID value to an object name; you have to
actually select from the sys.partitions view. The following query translates all the resource_
associated_entity_id values for locks in the current database by joining sys.dm_tran_locks to
sys.partitions. For OBJECT resources, the object_name function is applied to the resource_
associated_entity_id column. For PAGE, KEY, and RID resources, I use the object_name function
with the object_id value from the sys.partitions view. For other resources for which there is no
resource_associated_entity_id, the code just returns n/a. Because the code references the
sys.partitions view, which occurs in each database, this code is filtered to return only lock
information for resources in the current database. The output is organized to reflect the
information returned by the sp_lock procedure, but you can add any additional filters or
columns that you need. I will use this query in many examples later in this chapter, so I create
a VIEW based on the SELECT and call it DBlocks:

CREATE VIEW DBlocks AS

SELECT request_session_id as spid,

 db_name(resource_database_id) as dbname,

 CASE

 WHEN resource_type = 'OBJECT' THEN

 object_name(resource_associated_entity_id)

 WHEN resource_associated_entity_id = 0 THEN 'n/a'

 ELSE object_name(p.object_id)

 END as entity_name, index_id,

 resource_type as resource,

 resource_description as description,

 request_mode as mode, request_status as status

FROM sys.dm_tran_locks t LEFT JOIN sys.partitions p

 ON p.partition_id = t.resource_associated_entity_id

WHERE resource_database_id = db_id();

Lock Duration
The length of time that a lock is held depends primarily on the mode of the lock and
the transaction isolation level in effect. The default isolation level for SQL Server is Read
Committed. At this level, shared locks are released as soon as SQL Server has read and
processed the locked data. In Snapshot isolation, the behavior is the same—shared locks
are released as soon as SQL Server has read the data. If your transaction isolation level is
Repeatable Read or Serializable, shared locks have the same duration as exclusive locks; that
is, they are not released until the transaction is over. In any isolation level, an exclusive lock
is held until the end of the transaction, whether the transaction is committed or rolled back.
An update lock is also held until the end of the transaction unless it has been promoted to
an exclusive lock, in which case the exclusive lock, as is always the case with exclusive locks,
remains for the duration of the transaction.

In addition to changing your transaction isolation level, you can control the lock duration by
using query hints. I discuss query hints for locking, briefly, later in this chapter.

	 Chapter 10  Transactions and Concurrency	 609

Lock Ownership
Lock duration is also directly affected by the lock ownership. Lock ownership has nothing
to do with the process that requested the lock, but you can think of it as the “scope” of the
lock. There are four types of lock owners, or lock scopes: transactions, cursors, transaction_
workspaces, and sessions. The lock owner can be viewed through the request_owner_type
column in the sys.dm_tran_locks view.

Most of our locking discussion deals with locks with a lock owner of TRANSACTION. As we’ve
seen, these locks can have two different durations depending on the isolation level and lock
mode. The duration of shared locks in Read Committed isolation is only as long as the locked
data is being read. The duration of all other locks owned by a transaction is until the end of
the transaction.

A lock with a request_ownertype value of CURSOR must be requested explicitly when the
cursor is declared. If a cursor is opened using a locking mode of SCROLL_LOCKS, a cursor
lock is held on every row fetched until the next row is fetched or the cursor is closed. Even if
the transaction commits before the next fetch, the cursor lock is not released.

In SQL Server 2008, locks owned by a session must also be requested explicitly and apply
only to APPLICATION locks. A session lock is requested using the sp_getapplock procedure.
Its duration is until the session disconnects or the lock is released explicitly.

Transaction_workspace locks are acquired every time a database is accessed, and the
resource associated with these locks is always a database. A workspace holds database locks
for sessions that are enlisted into a common environment. Usually, there is one workspace
per session, so all DATABASE locks acquired in the session are kept in the same workspace
object. In the case of distributed transactions, multiple sessions are enlisted into the same
workspace, so they share the database locks.

Every process acquires a DATABASE lock with an owner of SHARED_TRANSACTION_
WORKSPACE on any database when the process issues the USE command. The exception
is any processes that use master or tempdb, in which case no DATABASE lock is taken. That
lock isn’t released until another USE command is issued or until the process is disconnected.
If a process attempts to ALTER, RESTORE, or DROP the database, the DATABASE lock
acquired has an owner of EXCLUSIVE_TRANSACTION_WORKSPACE. SHARED_TRANSACTION_
WORKSPACE and EXCLUSIVE_TRANSACTION_WORKSPACE locks are maintained by the same
workspace and are just two different lists in one workspace. The use of two different owner
names is misleading in this case.

Viewing Locks
To see the locks currently outstanding in the system, as well as those that are being waited
for, the best source of information is the sys.dm_tran_locks view. I’ve shown you some queries

610 Microsoft SQL Server 2008 Internals

from this view in previous sections, and in this section, I show you a few more and explain what
more of the output columns mean. This view replaces the sp_lock procedure. Although calling
a procedure might require less typing than querying the sys.dm_tran_locks view, the view is
much more fl exible. Not only are there many more columns of information providing details
about your locks, but as a view, sys.dm_tran_locks can be queried to select just the columns
you want, or only the rows that meet your criteria. It can be joined with other views and
 aggregated to get summary information about how many locks of each kind are being held.

sys.dm_tran_locks
All the columns (with the exception of the last column called lock_owner_address) in
sys.dm_tran_locks start with one of two prefi xes. The columns whose names begin with
 resource_ describe the resource on which the lock request is being made. The columns whose
names begin with request_ describe the process requesting the lock. Two requests operate on
the same resource only if all the resource_ columns are the same.

resource_ Columns I’ve mentioned most of the resource_ columns already, but I referred
only briefl y to the resource_subtype column. Not all resources have subtypes, and some have
many. The METADATA resource type, for example, has over 40 subtypes.

 Table 10-6 lists all the subtypes for resource types other than METADATA.

 TABLe 10-6 Subtype resources

 Resource Type Resource Subtypes Description

 DATABASE BULKOP_BACKUP_DB Used for synchronization of database backups with
bulk operations

 BULKOP_BACKUP_LOG Used for synchronization of database log backups
with bulk operations

 DDL Used to synchronize Data Defi nition Language (DDL)
operations with File Group operations (such as DROP)

 STARTUP Used for database startup synchronization

 TABLE UPDSTATS Used for synchronization of statistics updates on
a table

 COMPILE Used for synchronization of stored procedure
 compiles

 INDEX_OPERATION Used for synchronization of index operations

 HOBT INDEX_REORGANIZE Used for synchronization of heap or index
 reorganization operations

 BULK_OPERATION Used for heap-optimized bulk load operations with
concurrent scan, in the Snapshot, Read Uncommitted,
and Read Committed SI levels

 ALLOCATION_UNIT PAGE_COUNT Used for synchronization of allocation unit page
count statistics during deferred drop operations

Resource Type Resource Subtypes Description

	 Chapter 10  Transactions and Concurrency	 611

As previously mentioned, most METADATA subtypes are documented as being for INTERNAL
USE ONLY, but their meaning is often pretty obvious. Each type of metadata can be locked
separately as changes are made. Here is a partial list of the METADATA subtypes:

n	 INDEXSTATS

n	 STATS

n	 SCHEMA

n	 DATABASE_PRINCIPAL

n	 DB_PRINCIPAL_SID

n	 USER_TYPE

n	 DATA_SPACE

n	 PARTITION_FUNCTION

n	 DATABASE

n	 SERVER_PRINCIPAL

n	 SERVER

Most of the other METADATA subtypes not listed here refer to elements of SQL Server 2008
that are not discussed in this book, including CLR routines, XML, certificates, full-text search,
and notification services.

request_ Columns  I’ve also mentioned a couple of the most important request_ columns in
sys.dm_tran_locks, including request_mode (the type of lock requested), request_owner_type
(the scope of the lock requested), and request_session_id. Here are some of the others:

n	 request_type  In SQL Server 2008, the only type of resource request tracked in sys.
dm_tran_locks is for a LOCK. Future versions may include other types of resources that
can be requested.

n	 request_status  Status can be one of three values: GRANT, CONVERT, or WAIT. A status
of CONVERT indicates that the requestor has already been granted a request for the
same resource in a different mode and is currently waiting for an upgrade (convert)
from the current lock mode to be granted. (For example, SQL Server can convert a
U lock to X.) A status of WAIT indicates that the requestor does not currently hold a
granted request on the resource.

n	 request_reference_count  This value is a rough count of number of times the same
requestor has requested this resource and applies only to resources that are not
automatically released at the end of a transaction. A granted resource is no longer
considered to be held by a requestor if this field decreases to 0 and request_lifetime is also 0.

n	 request_lifetime  This value is a code that indicates when the lock on the resource is
released.

612	 Microsoft SQL Server 2008 Internals

n	 request_session_id  This value is the ID of the session that has requested the lock.
The owning session ID can change for distributed and bound transactions. A value
of –2 indicates that the request belongs to an orphaned DTC transaction. A value of
–3 indicates that the request belongs to a deferred recovery transaction. (These are
transactions whose rollback has been deferred at recovery because the rollback could
not be completed successfully.)

n	 request_exec_context_id  This value is the execution context ID of the process that
currently owns this request. A value greater than 0 indicates that this is a subthread
used to execute a parallel query.

n	 request_request_id  This value is the request ID (batch ID) of the process that currently
owns this request. This column is populated only for the requests coming in from a
client application using Multiple Active Result Sets (MARS).

n	 request_owner_id  This value is currently used only for requests with an owner of
TRANSACTION, and the owner ID is the transaction ID. This column can be joined with
the transaction_id column in the sys.dm_tran_active_transactions view.

n	 request_owner_guid  This value is currently used only by DTC transactions when it
corresponds to the DTC GUID for that transaction.

n	 lock_owner_address  This value is the memory address of the internal data structure
that is used to track this request. This column can be joined with the resource_address
column in sys.dm_os_waiting_tasks if this request is in the WAIT or CONVERT state.

Locking Examples
The following examples show what many of the lock types and modes discussed earlier look
like when reported using the DBlocks view that I described previously.

Example 1: SELECT with Default Isolation Level
SQL BATCH

USE Adventureworks2008;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

BEGIN TRAN

SELECT * FROM Production.Product

WHERE Name = 'Reflector';

SELECT * FROM DBlocks WHERE spid = @@spid;

COMMIT TRAN

RESULTS FROM DBlocks

spid dbname  entity_name     index_id resource   description    mode status

-----    ----------------- ------------ -------- --------- ----------- ----- ------

60 Adventureworks2008    n/a NULL       DATABASE S  GRANT

60 AdventureWorks2008    DBlocks NULL  OBJECT IS  GRANT

There are no locks on the data in the Production.Product table because the batch was
performing only SELECT operations that acquired shared locks. By default, the shared locks

	 Chapter 10  Transactions and Concurrency	 613

are released as soon as the data has been read, so by the time the SELECT from the view is
executed, the locks are no longer held. There is only the ever-present DATABASE lock, and an
OBJECT lock on the view.

Example 2: SELECT with Repeatable Read Isolation Level
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;

BEGIN TRAN

SELECT * FROM Production.Product

WHERE Name LIKE 'Racing Socks%';

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'Product';

COMMIT TRAN

RESULTS FROM DBlocks

spid dbname   entity_name index_id    resource    description mode status

---- ------------------- ------------ --------- ---------- -------------- -------- ------

54 AdventureWorks2008 Product  NULL  OBJECT     IS  GRANT

54 AdventureWorks2008 Product   1     PAGE 1:16897  IS  GRANT

54 AdventureWorks2008 Product  1 KEY      (6b00b8eeda30)    S  GRANT

54 AdventureWorks2008 Product   1 KEY      (6a00dd896688)    S  GRANT

54 AdventureWorks2008 Product 3  KEY      (9502d56a217e)    S  GRANT

54 AdventureWorks2008 Product 3 PAGE 1:1767 IS  GRANT

54 AdventureWorks2008 Product 3 KEY       (9602945b3a67)    S  GRANT

This time, I filtered out the database lock and the locks on the view and the rowset, just to keep
the focus on the data locks. Because the Production.Product table has a clustered index, the rows
of data are all index rows in the leaf level. The locks on the two individual data rows returned are
listed as key locks. There are also two key locks at the leaf level of the nonclustered index on the
table used to find the relevant rows. In the Production.Product table, that nonclustered index is
on the Name column. You can tell the clustered and nonclustered indexes apart by the value in
the index_id column: the data rows (the leaf rows of the clustered index) have an index_id value
of 1, and the nonclustered index rows have an index_id value of 3. (For nonclustered indexes,
the index_id value can be anything between 2 and 250 or between 356 and 1005.) Because the
transaction isolation level is Repeatable Read, the shared locks are held until the transaction is
finished. Note that the index rows have shared (S) locks, and the data and index pages, as well as
the table itself, have intent shared (IS) locks.

Example 3: SELECT with Serializable Isolation Level
SQL BATCH

USE AdventureWorks2008 ;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRAN

SELECT * FROM Production.Product

WHERE Name LIKE 'Racing Socks%';

614	 Microsoft SQL Server 2008 Internals

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'Product';

COMMIT TRAN

RESULTS FROM DBlocks

spid dbname entity_name index_id resource description mode status

---- ------------------ ------------ ---------- ---------- ------------ ------- ------

54 AdventureWorks2008 Product NULL OBJECT IS GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16897 IS GRANT

54 AdventureWorks2008 Product 1 KEY (6b00b8eeda30) S GRANT

54 AdventureWorks2008 Product 1 KEY (6a00dd896688) S GRANT

54 AdventureWorks2008 Product 3 KEY (9502d56a217e) RangeS-S GRANT

54 AdventureWorks2008 Product 3 PAGE 1:1767 IS GRANT

54 AdventureWorks2008 Product 3 KEY (23027a50f6db) RangeS-S GRANT

54 AdventureWorks2008 Product 3 KEY (9602945b3a67) RangeS-S GRANT

The locks held with the Serializable isolation level are almost identical to those held with the
Repeatable Read isolation level. The main difference is in the mode of the lock. The two-part
mode RangeS-S indicates a key-range lock in addition to the lock on the key itself. The first
part (RangeS) is the lock on the range of keys between (and including) the key holding the
lock and the previous key in the index. The key-range locks prevent other transactions from
inserting new rows into the table that meet the condition of this query; that is, no new rows
with a product name starting with Racing Socks can be inserted. The key-range locks are held
on ranges in the nonclustered index on Name (index_id = 3) because that is the index used
to find the qualifying rows. There are three key locks in the nonclustered index because three
different ranges need to be locked. The two Racing Socks rows are Racing Socks, L and Racing
Socks, M. SQL Server must lock the range from the key preceding the first Racing Socks
row in the index up to the first Racing Socks. It must lock the range between the two rows
starting with Racing Socks, and it must lock the range from the second Racing Socks to the
next key in the index. (So actually nothing could be inserted between Racing Socks and the
previous key, Pinch Bolt, or between Racing Socks and the next key, Rear Brakes. For example,
we could not insert a product with the name Portkey or Racing Tights.)

Example 4: Update Operations
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

BEGIN TRAN

UPDATE Production.Product

SET ListPrice = ListPrice * 0.6

WHERE Name LIKE 'Racing Socks%';

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'Product';

COMMIT TRAN

	 Chapter 10  Transactions and Concurrency	 615

RESULTS FROM DBlocks

spid dbname entity_name index_id resource description  mode    status

---- ------------------- ----------- ---------- ---------- -------------- ----- -------

54 AdventureWorks2008 Product NULL OBJECT IX GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16897 IX GRANT

54 AdventureWorks2008 Product 1 KEY (6b00b8eeda30) X GRANT

54 AdventureWorks2008 Product 1 KEY (6a00dd8966 88) X GRANT

The two rows in the leaf level of the clustered index are locked with X locks. The page and
the table are then locked with IX locks. I mentioned earlier that SQL Server actually acquires
update locks while it looks for the rows to update. However, these are converted to X locks
when the actual update is performed, and by the time we look at the DBLocks view, the
update locks are gone. Unless you actually force update locks with a query hint, you might
never see them in the lock report from DBLocks or by direct inspection of sys.dm_tran_locks.

Example 5: Update with Serializable Isolation Level Using an Index
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRAN

UPDATE Production.Product

SET ListPrice = ListPrice * 0.6

WHERE Name LIKE 'Racing Socks%';

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'Product';

COMMIT TRAN

RESULTS FROM DBlocks

spid dbname entity_name index_id resource description mode status

---- ------------------- ------------ ----------- ---------- --------------- -------- ------

54 AdventureWorks2008 Product NULL OBJECT IX GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16897 IX GRANT

54 AdventureWorks2008 Product 1 KEY (6a00dd896688) X GRANT

54 AdventureWorks2008 Product 1 KEY (6b00b8eeda30) X GRANT

54 AdventureWorks2008 Product 3 KEY (9502d56a217e) RangeS-U GRANT

54 AdventureWorks2008 Product 3 PAGE 1:1767 IU GRANT

54 AdventureWorks2008 Product 3 KEY (23027a50f6db) RangeS-U GRANT

54 AdventureWorks2008 Product 3 KEY (9602945b3a67) RangeS-U GRANT

Again, notice that the key-range locks are on the nonclustered index used to find the relevant
rows. The range interval itself needs only a shared lock to prevent insertions, but the searched
keys have U locks so no other process can attempt to update them. The keys in the table itself
(index_id = 1) obtain the exclusive lock when the actual modification is made.

Now let’s look at an UPDATE operation with the same isolation level when no index can be
used for the search.

616	 Microsoft SQL Server 2008 Internals

Example 6: Update with Serializable Isolation Not Using an Index
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

BEGIN TRAN

UPDATE Production.Product

SET ListPrice = ListPrice * 0.6

WHERE Color = 'White';

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'Product';

COMMIT TRAN

RESULTS FROM DBlocks (Abbreviated)

spid dbname entity_name index_id resource description mode status

---- ------------------- ------------ ----------- ---------- -------------- -------- -------

54 AdventureWorks2008 Product NULL OBJECT IX GRANT

54 AdventureWorks2008 Product 1 KEY (7900ac71caca) RangeS-U GRANT

54 AdventureWorks2008 Product 1 KEY (6100dc0e675f) RangeS-U GRANT

54 AdventureWorks2008 Product 1 KEY (5700a1a9278a) RangeS-U GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16898 IU GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16899 IU GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16896 IU GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16897 IX GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16900 IU GRANT

54 AdventureWorks2008 Product 1 PAGE 1:16901 IU GRANT

54 AdventureWorks2008 Product 1 KEY (5600c4ce9b32) RangeS-U GRANT

54 AdventureWorks2008 Product 1 KEY (7300c89177a5) RangeS-U GRANT

54 AdventureWorks2008 Product 1 KEY (7f00702ea1ef) RangeS-U GRANT

54 AdventureWorks2008 Product 1 KEY (6b00b8eeda30) RangeX-X GRANT

54 AdventureWorks2008 Product 1 KEY (c500b9eaac9c) RangeX-X GRANT

54 AdventureWorks2008 Product 1 KEY (c6005745198e) RangeX-X GRANT

54 AdventureWorks2008 Product 1 KEY (6a00dd896688) RangeX-X GRANT

The locks here are similar to those in the previous example except that all the locks are on
the table itself (index_id = 1). A clustered index scan (on the entire table) had to be done, so
all keys initially received the RangeS-U lock, and when four rows were eventually modified,
the locks on those keys were converted to RangeX-X locks. You can see all the RangeX-X
locks, but not all the RangeS-U locks are shown for space reasons (the table has 504 rows).

Example 7: Creating a Table
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED;

BEGIN TRAN

SELECT *

INTO newProducts

FROM Production.Product

WHERE ListPrice between 1 and 10;

SELECT * FROM DBlocks

WHERE spid = @@spid;

COMMIT TRAN

	 Chapter 10  Transactions and Concurrency	 617

RESULTS FROM DBlocks (Abbreviated)

spid dbname entity_name index_id resource description mode status

---- ------------------ ------------ ----------- ---------- ---------------- ------ ------

54 AdventureWorks2008 n/a NULL DATABASE NULL GRANT

54 AdventureWorks2008 n/a NULL DATABASE NULL GRANT

54 AdventureWorks2008 n/a NULL DATABASE S GRANT

54 AdventureWorks2008 n/a NULL METADATA user_type_id = 258   Sch-S GRANT

54 AdventureWorks2008 n/a NULL METADATA data_space_id = 1  Sch-S GRANT

54 AdventureWorks2008 n/a NULL DATABASE S GRANT

54 AdventureWorks2008 n/a NULL METADATA $seq_type = 0, objec Sch-M GRANT

54 AdventureWorks2008 n/a NULL METADATA user_type_id = 260 Sch-S GRANT

54 AdventureWorks2008 sysrowsetcol NULL OBJECT IX GRANT

54 AdventureWorks2008 sysrowsets NULL OBJECT IX GRANT

54 AdventureWorks2008 sysallocunit NULL OBJECT IX GRANT

54 AdventureWorks2008 syshobtcolum NULL OBJECT IX GRANT

54 AdventureWorks2008 syshobts NULL OBJECT IX GRANT

54 AdventureWorks2008 sysserefs NULL OBJECT IX GRANT

54 AdventureWorks2008 sysschobjs NULL OBJECT IX GRANT

54 AdventureWorks2008 syscolpars NULL OBJECT IX GRANT

54 AdventureWorks2008 sysidxstats NULL OBJECT IX GRANT

54 AdventureWorks2008 sysrowsetcol 1 KEY (15004f6b3486) X GRANT

54 AdventureWorks2008 sysrowsetcol 1 KEY (0a00862c4e8e) X GRANT

54 AdventureWorks2008 sysrowsets 1 KEY (000000aaec7b) X GRANT

54 AdventureWorks2008 sysallocunit 1 KEY (00001f2dcf47) X GRANT

54 AdventureWorks2008 syshobtcolum 1 KEY (1900f7d4e2cc) X GRANT

54 AdventureWorks2008 syshobts 1 KEY (000000aaec7b) X GRANT

54 AdventureWorks2008 NULL NULL RID 1:6707:1 X GRANT

54 AdventureWorks2008 DBlocks NULL OBJECT IS GRANT

54 AdventureWorks2008 newProducts NULL OBJECT Sch-M GRANT

54 AdventureWorks2008 sysserefs 1 KEY (010025fabf73) X GRANT

54 AdventureWorks2008 sysschobjs 1 KEY (3b0042322c99) X GRANT

54 AdventureWorks2008 syscolpars 1 KEY (4200c1eb801c) X GRANT

54 AdventureWorks2008 syscolpars 1 KEY (4e00092bfbc3) X GRANT

54 AdventureWorks2008 sysidxstats 1 KEY (3b0006e110a6) X GRANT

54 AdventureWorks2008 sysschobjs 2 KEY (9202706f3e6c) X GRANT

54 AdventureWorks2008 syscolpars 2 KEY (6c0151be80af) X GRANT

54 AdventureWorks2008 syscolpars 2 KEY (2c03557a0b9d) X GRANT

54 AdventureWorks2008 sysidxstats 2 KEY (3c00f3332a43) X GRANT

54 AdventureWorks2008 sysschobjs 3 KEY (9202d42ddd4d) X GRANT

54 AdventureWorks2008 sysschobjs 4 KEY (3c0040d00163) X GRANT

54 AdventureWorks2008 newProducts 0 PAGE 1:6707 X GRANT

54 AdventureWorks2008 newProducts 0 HOBT Sch-M GRANT

Very few of these locks are actually acquired on elements of the newProducts table. In the
entity_name column, you can see that most of the objects are undocumented, and normally
invisible, system table names. As the new table is created, SQL Server acquires locks on nine
different system tables to record information about this new table. In addition, notice the
schema modification (Sch-M) lock and other metadata locks on the new table.

The final example looks at the locks held when there is no clustered index on the table and
the data rows are being updated.

618	 Microsoft SQL Server 2008 Internals

Example 8: Row Locks
SQL BATCH

USE AdventureWorks2008;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

BEGIN TRAN

UPDATE newProducts

SET ListPrice = 5.99

WHERE name = 'Road Bottle Cage';

SELECT * FROM DBlocks

WHERE spid = @@spid

AND entity_name = 'newProducts';

COMMIT TRAN

RESULTS FROM DBlocks

spid dbname entity_name index_id resource description mode status

---- ------------------- ------------ ----------- ---------- ------------ -------- --------

54 AdventureWorks2008 newProducts NULL OBJECT IX GRANT

54 AdventureWorks2008 newProducts 0 PAGE 1:6708 IX GRANT

54 AdventureWorks2008 newProducts 0 RID 1:6708:5 X GRANT

There are no indexes on the newProducts table, so the lock on the actual row meeting our
criteria is an exclusive (X) lock on the row (RID). For RID locks, the description actually reports
the specific row in the form File number:Page number:Slot number. As expected, IX locks are
taken on the page and the table.

Lock Compatibility
Two locks are compatible if one lock can be granted while another lock on the same resource
is held by a different process. If a lock requested for a resource is not compatible with a
lock currently being held, the requesting connection must wait for the lock. For example, if
a shared page lock exists on a page, another process requesting a shared page lock for the
same page is granted the lock because the two lock types are compatible. But a process that
requests an exclusive lock for the same page is not granted the lock because an exclusive
lock is not compatible with the shared lock already held. Figure 10-2 summarizes the
compatibility of locks in SQL Server 2008. Along the top are all the lock modes that a process
might already hold. Along the left edge are the lock modes that another process might
request.

At the point where the held lock and requested lock meet, there can be three possible
values. N indicates that there is no conflict, C indicates that there will be a conflict and the
requesting process will have to wait, and I indicates an invalid combination that could never
occur. All the I values in the chart involve range locks, which can be applied only to KEY
resources, so any type of lock that can never be applied to KEY resources indicates an invalid
comparison.

	 Chapter 10  Transactions and Concurrency	 619

NL
SCH-S
SCH-M

S
U
X
IS
IU
IX

SIU
SIX
UIX
BU

RS-S
RI-U
RI-N
RI-S
RI-U
RI-X
RX-S
RX-U
RX-X

NL
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N

SCH-S
N
N
C
N
N
N
N
N
N
N
N
N
N
I
I
I
I
I
I
I
I
I

SCH-M
N
C
C
C
C
C
C
C
C
C
C
C
C
I
I
I
I
I
I
I
I
I

S
N
N
C
N
N
C
N
N
C
N
C
C
C
N
N
N
N
N
C
N
N
C

U
N
N
C
N
C
C
N
C
C
C
C
C
C
N
C
N
N
C
C
N
C
C

X
N
N
C
C
C
C
C
C
C
C
C
C
C
C
C
N
C
C
C
C
C
C

IS
N
N
C
N
N
C
N
N
N
N
N
N
C
I
I
I
I
I
I
I
I
I

IU
N
N
C
N
C
C
N
N
N
N
N
C
C
I
I
I
I
I
I
I
I
I

IX
N
N
C
C
C
C
N
N
N
C
C
C
C
I
I
I
I
I
I
I
I
I

SIU
N
N
C
N
C
C
N
N
C
N
C
C
C
I
I
I
I
I
I
I
I
I

SIX
N
N
C
C
C
C
N
N
C
C
C
C
C
I
I
I
I
I
I
I
I
I

UIX
N
N
C
C
C
C
N
C
C
C
C
C
C
I
I
I
I
I
I
I
I
I

BU
N
N
C
C
C
C
C
C
C
C
C
C
N
I
I
I
I
I
I
I
I
I

RS-S
N
I
I
N
N
C
I
I
I
I
I
I
I
N
N
C
C
C
C
C
C
C

RS-U
N
I
I
N
C
C
I
I
I
I
I
I
I
N
C
C
C
C
C
C
C
C

RI-N
N
I
I
N
N
N
I
I
I
I
I
I
I
C
C
N
N
N
N
C
C
C

RI-S
N
I
I
N
N
C
I
I
I
I
I
I
I
C
C
N
N
N
C
C
C
C

RI-U
N
I
I
N
C
C
I
I
I
I
I
I
I
C
C
N
N
C
C
C
C
C

RI-X
N
I
I
C
C
C
I
I
I
I
I
I
I
C
C
N
C
C
C
C
C
C

RX-S
N
I
I
N
N
C
I
I
I
I
I
I
I
C
C
C
C
C
C
C
C
C

RX-U
N
I
I
N
C
C
I
I
I
I
I
I
I
C
C
C
C
C
C
C
C
C

RX-X
N
I
I
C
C
C
I
I
I
I
I
I
I
C
C
C
C
C
C
C
C
C

Figure 10-2  SQL Server lock compatibility matrix

Lock compatibility comes into play between locks on different resources, such as table locks
and page locks. A table and a page obviously represent an implicit hierarchy because a table
is made up of multiple pages. If an exclusive page lock is held on one page of a table, another
process cannot get even a shared table lock for that table. This hierarchy is protected using
intent locks. A process acquiring an exclusive page lock, update page lock, or intent exclusive
page lock first acquires an intent exclusive lock on the table. This intent exclusive table lock
prevents another process from acquiring the shared table lock on that table. (Remember that
intent exclusive locks and shared locks on the same resource are not compatible.)

Similarly, a process acquiring a shared row lock must first acquire an intent shared lock for the
table, which prevents another process from acquiring an exclusive table lock. Or if the exclusive
table lock already exists, the intent shared lock is not granted and the shared page lock has
to wait until the exclusive table lock is released. Without intent locks, process A can lock a
page in a table with an exclusive page lock and process B can place an exclusive table lock
on the same table and hence think that it has a right to modify the entire table, including the
page that process A has exclusively locked.

Note  Obviously, lock compatibility is an issue only when the locks affect the same object. For
example, two or more processes each can hold exclusive page locks simultaneously so long as
the locks are on different pages or different tables.

Even if two locks are compatible, the requester of the second lock might still have to wait if
an incompatible lock is waiting. For example, suppose that process A holds a shared page
lock. Process B requests an exclusive page lock and must wait because the shared page
lock and the exclusive page lock are not compatible. Process C requests a shared page lock

620	 Microsoft SQL Server 2008 Internals

that is compatible with the shared page already granted to process A. However, the shared
page lock cannot be granted immediately. Process C must wait for its shared page lock
because process B is ahead of it in the lock queue with a request (exclusive page) that is not
compatible.

By examining the compatibility of locks not only with processes granted locks, but also processes
waiting, SQL Server prevents lock starvation, which can result when requests for shared locks
keep overlapping so that the request for the exclusive lock can never be granted.

Internal Locking Architecture
Locks are not on-disk structures. You won’t find a lock field directly on a data page or a table
header, and the metadata that keeps track of locks is never written to disk. Locks are internal
memory structures—they consume part of the memory used for SQL Server. A lock is identified
by lock resource, which is a description of the resource that is locked (a row, index key, page,
or table). To keep track of the database, the type of lock, and the information describing the
locked resource, each lock requires 64 bytes of memory on a 32-bit system and 128 bytes of
memory on a 64-bit system. This 64-byte or 128-byte structure is called a lock block.

Each process holding a lock also must have a lock owner, which represents the relationship
between a lock and the entity that is requesting or holding the lock. The lock owner requires
32 bytes of memory on a 32-bit system and 64 bytes of memory on a 64-bit system. This
32-byte or 64-byte structure is called a lock owner block. A single transaction can have
multiple lock owner blocks; a scrollable cursor sometimes uses several. Also, one lock can
have many lock owner blocks, as is the case with a shared lock. As mentioned, the lock owner
represents a relationship between a lock and an entity, and the relationship can be granted,
waiting, or in a state called waiting-to-convert.

The lock manager maintains a lock hash table. Lock resources, contained within a lock block,
are hashed to determine a target hash slot in the hash table. All lock blocks that hash to the
same slot are chained together from one entry in the hash table. Each lock block contains a
15-byte field that describes the locked resource. The lock block also contains pointers to lists of
lock owner blocks. There is a separate list for lock owners in each of the three states. Figure 10-3
shows the general lock architecture.

The number of slots in the hash table is based on the system’s physical memory, as shown
in Table 10-7. There is an upper limit of 231 slots. All instances of SQL Server on the same
machine have a hash table with the same number of slots. Each entry in the lock hash table
is 16 bytes in size and consists of a pointer to a list of lock blocks and a spinlock to guarantee
serialized access to the same slot.

 Chapter 10 Transactions and Concurrency 621

All owner blocks from
same transaction are

linked together.

Lock hash table

Lock block

Convert Grant Wait

Lock resource block

Lock block

Convert Grant Wait

Lock resource block

Lock
owner
block

Lock
owner
block

Lock
owner
block

Lock block

Convert Grant Wait

Lock resource block

Figure 10-3 SQL Server locking architecture

 TABLe 10-7 Number of Slots in the internal Lock Hash Table

Physical Memory (MB) Number of Slots Memory Used

< 32 214 = 16384 128 KB

>= 32 and < 64 215 = 32768 256 KB

>= 64 and < 128 216 = 65536 512 KB

>= 128 and < 512 218 = 262144 2048 KB

>= 512 and < 1024 219 = 524288 4096 KB

>= 1024 and < 4096 221 = 2097152 16384 KB

>= 4096 and < 8192 222 = 4194304 32768 KB

>= 8192 and < 16384 223 = 8388608 65536 KB

>= 16384 225 = 33554432 262144 KB

The lock manager allocates in advance a number of lock blocks and lock owner blocks at
server startup. On NUMA confi gurations, these lock and lock owner blocks are divided
among all NUMA nodes. So when a lock request is made, local lock blocks are used. If the
number of locks has been set by sp_confi gure, it allocates that confi gured number of lock

Physical Memory (MB) Number of Slots Memory Used

622	 Microsoft SQL Server 2008 Internals

blocks and the same number of lock owner blocks. If the number is not fixed (0 means
auto-tune), it allocates 2,500 lock blocks for your SQL Server instance. It allocates twice as
many (2 * # lock blocks) of the lock owner blocks. At their maximum, the static allocations
can’t consume more than 25 percent of the committed buffer pool size.

When a request for a lock is made and no free lock blocks remain, the lock manager
dynamically allocates new lock blocks instead of denying the lock request. The lock manager
cooperates with the global memory manager to negotiate for server allocated memory.
When necessary, the lock manager can free the dynamically allocated lock blocks. The lock
manager is limited to 60 percent of the buffer manager’s committed target size allocation to
lock blocks and lock owner blocks.

Lock Partitioning
For large systems, locks on frequently referenced objects can become a performance
bottleneck. The process of acquiring and releasing locks can cause contention on the internal
locking resources. Lock partitioning enhances locking performance by splitting a single
lock resource into multiple lock resources. For systems with 16 or more CPUs, SQL Server
automatically splits certain locks into multiple lock resources, one per CPU. This is called
lock partitioning, and there is no way for a user to control this process. (Do not confuse
lock partitioning with partition locks, which are discussed in the section entitled “Lock
Escalation,” later in this chapter.) An informational message is sent to the error log whenever
lock partitioning is active. The error message is “Lock partitioning is enabled. This is an
informational message only. No user action is required.” Lock partitioning applies only to full
object locks (for example, tables and views) in the following lock modes: S, U, X, and SCH-M.
All other modes (NL, SCH_S, IS, IU, and IX) are acquired on a single CPU. SQL Server assigns a
default lock partition to every transaction when the transaction starts. During the life of that
transaction, all lock requests that are spread over all the partitions use the partition assigned
to that transaction. By this method, access to lock resources of the same object by different
transactions is distributed across different partitions.

The resource_lock_partition column in sys.dm_tran_locks indicates which lock partition a
particular lock is on, so you can see multiple locks for the exact same resource with different
resource_lock_partition values. For systems with fewer than 16 CPUs, for which lock partitioning
is never used, the resource_lock_partition value is always 0.

For example, consider a transaction acquiring an IS lock in REPEATABLE READ isolation, so
that the IS lock is held for the duration of the transaction. The IS lock is acquired on the
transaction’s default partition—for example, partition 4. If another transaction tries to acquire
an X lock on the same table, the X lock must be acquired on ALL partitions. SQL Server
successfully acquires the X lock on partitions 0 to 3, but it blocks when attempting to acquire
an X lock on partition 4. On partition IDs 5 to 15, which have not yet acquired the X lock for
this table, other transactions can continue to acquire any locks that do not cause blocking.

	 Chapter 10  Transactions and Concurrency	 623

With lock partitioning, SQL Server distributes the load of checking for locks across multiple
spinlocks, and most accesses to any given spinlock are from the same CPU (and practically
always from the same node), which means the spinlock should not spin often.

Lock Blocks
The lock block is the key structure in SQL Server’s locking architecture, shown earlier in
Figure 10-3. A lock block contains the following information:

n	 Lock resource information containing the lock resource name and details about
the lock.

n	 Pointers to connect the lock blocks to the lock hash table.

n	 Pointers to lists of lock owner blocks for locks on this resource that have been granted.
Four grant lists are maintained to minimize the amount of time it takes to find a
granted lock.

n	 A pointer to a list of lock owner blocks for locks on this resource that are waiting to be
converted to another lock mode. This is called the convert list.

n	 A pointer to a list of lock owner blocks for locks that have been requested on this
resource but have not yet been granted. This is called the wait list.

The lock resource uniquely identifies the data being locked. Its structure is shown in Figure 10-4.
Each “row” in the figure represents 4 bytes, or 32 bits.

31 0

DBID Resource
type

Resource-specific data 2

Resource
flags

Resource-specific data 1

Resource-specific data 3

Figure 10-4  The structure of a lock resource

The meanings of the fields shown in Figure 10-4 are described in Table 10-8. The value in the
resource type byte is one of the locking resources described earlier in Table 10-5. The number
in parentheses after the resource type is the code number for the resource type (which we
see in the syslockinfo table a little later in the chapter). The meaning of the values in the
three data fields varies depending on the type of resource being described. SR indicates a
subresource (which I describe shortly).

624 Microsoft SQL Server 2008 Internals

 TABLe 10-8 Fields in the Lock resource Block

Resource Content

 Resource Type Data 1 Data 2 Data 3

 Database (2) SR 0 0

 File (3) File ID 0 0

 Index (4) Object ID SR Index ID

 Table (5) Object ID SR 0

 Page (6) Page number 0

 Key (7) Partition ID Hashed key

 Extent (8) Extent ID 0

 RID (9) RID 0

 The following are some of the possible SR (SubResource) values. If the lock is on a Database
resource, SR indicates one of the following:

n Full database lock

n Bulk operation lock

 If the lock is on a Table resource, SR indicates one of the following:

n Full table lock (default)

n Update statistics lock

n Compile lock

 If the lock is on an Index resource, SR indicates one of the following:

n Full index lock (default)

n Index ID lock

n Index name lock

Lock Owner Blocks
 Each lock owned or waited for by a session is represented in a lock owner block. Lists of
lock owner blocks form the grant, convert, and wait lists that hang off the lock blocks. Each
lock owner block for a granted lock is linked with all other lock owner blocks for the same
transaction or session so they can be freed as appropriate when the transaction or session ends.

syslockinfo Table
 Although the recommended way of retrieving information about locks is through the
sys.dm_tran_locks view, there is another metadata object called syslockinfo that provides
internal information about locks. Prior to the introduction of the DMVs in SQL Server 2005,
 syslockinfo was the only internal metadata available for examining locking information.

Resource Content

Resource Type Data 1 Data 2 Data 3

	 Chapter 10  Transactions and Concurrency	 625

In fact, the stored procedure sp_lock is still defined to retrieve information from syslockinfo
instead of from sys.dm_tran_locks. I will not go into full detail about syslockinfo because
almost all the information from that table is available, in a much more readable form, in the
sys.dm_tran_locks view. However, syslockinfo is available in the master database for you to
take a look at. One column, however, is of particular interest—the rsc_bin column, which
contains a 16-byte description of a locked resource.

You can analyze the syslockinfo.rsc_bin field as the resource block. Let’s look at an example.
I select a single row from the Person table in AdventureWorks2008 using the REPEATABLE
READ isolation level, so my shared locks continue to be held for the duration of the transaction.
I then look at the rsc_bin column in syslockinfo for key locks, page locks, and table locks:

USE AdventureWorks2008

GO

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

GO

BEGIN TRAN

SELECT * FROM Person.Person

WHERE BusinessEntityID = 249;

GO

SELECT rsc_bin, rsc_type

FROM master..syslockinfo

WHERE rsc_type IN (5,6,7);

GO

Here are the three rows in the result set:

rsc_bin rsc_type

---------------------------------- --------

0x805EFA59000000000000000007000500 5

0x19050000010000000000000007000600 6

0x710000000001F900CE79D52507000700 7

The last 2 bytes in rsc_bin are the resource mode, so after byte-swapping, you can see
the same value as in the rsc_type column—for example, you byte-swap 0500 to 0005 to
resource mode 5 (a table lock). The next 2 bytes at the end indicate the database ID, and
for all three rows, the value after byte-swapping is 0007, which is the database ID of my
AdventureWorks2008 database.

The rest of the bytes vary depending on the type of resource. For a table, the first 4 bytes
represent the object ID. The preceding row for the object lock (rsc_type = 5) after byte
swapping has a value of 59FA5E80, which is 1509580416 in decimal. I can translate this to an
object name as follows:

SELECT object_name(1509580416)

This shows me the Person table.

For a PAGE (rsc_type = 6), the first 6 bytes are the page number followed by the file
number. After byte-swapping, the file number is 0001, or 1 decimal, and the page number
is 00000519, or 9889 in decimal. So the lock is on file 1, page 1305.

626	 Microsoft SQL Server 2008 Internals

Finally, for a KEY (rsc_type = 7), the first 6 bytes represent the partition ID but the translation
is a bit trickier. We need to add another 2 bytes of zeros to the value after byte-swapping, so
we end up with 0100000000710000, which translates to 72057594045333504 in decimal. To
see which object this partition belongs to, I can query the sys.partitions view:

SELECT object_name(object_id)

FROM sys.partitions

WHERE partition_ID = 72057594045333504;

Again, the result is that this partition is part of the Person table. The next 6 bytes of rsc_bin
for the KEY resource are F900CE79D525. This is a character field, so no byte-swapping
is needed. However, the value is not further decipherable. Key locks have a hash value
generated for them, based on all the key columns of the index. Indexes can be quite long, so
for almost any possible data type, SQL Server needs a consistent way to keep track of which
keys are locked. The hashing function therefore generates a 6-byte hash string to represent
the key. Although you can’t reverse-engineer this value and determine exactly which index
row is locked, you can use it to look for matching entries, just like SQL Server does. If two rsc_bin
values have the same 6-byte hash string, they are referring to the same lock resource.

In addition to detecting references to the same lock resource, you can determine which
specific keys are locked by using the undocumented value %%lockres%%, which can return
the hash string for any key. Selecting this value, along with data from the table, returns the
lock resource for every row in the result set, based on the index used to retrieve the data.
Consider the following example, which creates a clustered and nonclustered index on a tiny
table and then selects the %%lockres%% value for each row, first using the clustered index
and then using the nonclustered index:

CREATE TABLE lockres (c1 int, c2 int);

GO

INSERT INTO lockres VALUES (1,10);

INSERT INTO lockres VALUES (2,20);

INSERT INTO lockres VALUES (3,30);

GO

CREATE UNIQUE CLUSTERED INDEX lockres_ci ON lockres(c1);

CREATE UNIQUE NONCLUSTERED INDEX lockres_nci ON lockres(c2);

GO

SELECT %%lockres%% AS lock_resource, * FROM lockres WITH (INDEX = lockres_ci);

SELECT %%lockres%% AS lock_resource, * FROM lockres WITH (INDEX = lockres_nci);

GO

I get the following results. The first set of rows shows the lock resource for the clustered
index keys, and the second set shows the lock resources for the nonclustered index:

lock_resource c1 c2

-------------------------------- ----------- -----------

(010086470766) 1 10

(020068e8b274) 2 20

(03000d8f0ecc) 3 30

	 Chapter 10  Transactions and Concurrency	 627

lock_resource c1 c2

-------------------------------- ----------- -----------

(0a0087c006b1) 1 10

(14002be0c001) 2 20

(1e004f007d6e) 3 30

I can use this lock resource to find which row in a table matches a locked resource. For
example, if sys.dm_tran_locks indicates that a row with the lock resource (010086470766) is
holding a lock in the lockres table, I could find which row that resource corresponds to with
the following query:

SELECT * FROM lockres

WHERE %%lockres%% = '(010086470766)'

Note that if the table is a heap and I look for the lock resource when scanning the table, the
lock resource is the actual row ID (RID). The value returned looks just like the special value
%%physloc%%, which I told you about in Chapter 5, “Tables”:

CREATE TABLE lockres_on_heap (c1 int, c2 int);

GO

INSERT INTO lockres_on_heap VALUES (1,10);

INSERT INTO lockres_on_heap VALUES (2,20);

INSERT INTO lockres_on_heap VALUES (3,30);

GO

SELECT %%lockres%% AS lock_resource, * FROM lockres_on_heap;

Here are my results:

lock_resource c1 c2

-------------------------------- ----------- ----

1:169:0 1 10

1:169:1 2 20

1:169:2 3 30

Caution  You need to be careful when trying to find the row in a table with a hash string that
matches a particular lock resource. These queries have to perform a complete scan of the table
to find the row you are interested in, and with a large table, that process can be very expensive.

Row-Level Locking vs. Page-Level Locking
Although SQL Server 2008 fully supports row-level locking, in some situations, the lock
manager decides not to lock individual rows and instead locks pages or the whole table. In
other cases, many smaller locks are escalated to a table lock, as I discuss in the upcoming
section entitled “Lock Escalation.”

Prior to SQL Server 7.0, the smallest unit of data that SQL Server could lock was a page. Even
though many people argued that this was unacceptable and it was impossible to maintain
good concurrency while locking entire pages, many large and powerful applications were written

628	 Microsoft SQL Server 2008 Internals

and deployed using only page-level locking. If they were well designed and tuned, concurrency
was not an issue, and some of these applications supported hundreds of active user connections
with acceptable response times and throughput. However, with the change in page size
from 2 KB to 8 KB for SQL Server 7.0, the issue has become more critical. Locking an entire
page means locking four times as much data as in previous versions. Beginning with SQL
Server 7.0, the software implements full row-level locking, so any potential problems due to
lower concurrency with the larger page size should not be an issue. However, locking isn’t
free. Resources are required to manage locks. Recall that a lock is an in-memory structure of
64 or 128 bytes (for 32-bit or 64-bit machines, respectively) with another 32 or 64 bytes for
each process holding or requesting the lock. If you need a lock for every row and you scan a
million rows, you need more than 64 MB of RAM just to hold locks for that one process.

Beyond memory consumption issues, locking is a fairly processing-intensive operation.
Managing locks requires substantial bookkeeping. Recall that, internally, SQL Server uses a
lightweight mutex called a spinlock to guard resources, and it uses latches—also lighter than
full-blown locks—to protect non-leaf level index pages. These performance optimizations
avoid the overhead of full locking. If a page of data contains 50 rows of data, all of which
are used, it is obviously more efficient to issue and manage one lock on the page than to
manage 50. That’s the obvious benefit of page locking—a reduction in the number of lock
structures that must exist and be managed.

Let’s say two processes each need to update a few rows of data, and even though the rows
are not the same ones, some of them happen to exist on the same page. With page-level
locking, one process would have to wait until the page locks of the other process were
released. If you use row-level locking instead, the other process does not have to wait. The
finer granularity of the locks means that no conflict occurs in the first place because each
process is concerned with different rows. That’s the obvious benefit of row-level locking.
Which of these obvious benefits wins? Well, the decision isn’t clear-cut, and it depends on
the application and the data. Each type of locking can be shown to be superior for different
types of applications and usage.

The ALTER INDEX statement lets you manually control the unit of locking within an index
with options to disallow page locks or row locks within an index. Because these options are
available only for indexes, there is no way to control the locking within the data pages of
a heap. (But remember that if a table has a clustered index, the data pages are part of the
index and are affected by a value set with ALTER INDEX.) The index options are set for each
table or index individually. Two options, ALLOW_ROW_LOCKS and ALLOW_PAGE_LOCKS, are
both set to ON initially for every table and index. If both of these options are set to OFF for a
table, only full table locks are allowed.

As mentioned earlier, during the optimization process, SQL Server determines whether to
lock rows, pages, or the entire table initially. The locking of rows (or keys) is heavily favored.
The type of locking chosen is based on the number of rows and pages to be scanned, the
number of rows on a page, the isolation level in effect, the update activity going on, the
number of users on the system needing memory for their own purposes, and so on.

	 Chapter 10  Transactions and Concurrency	 629

Lock Escalation
SQL Server automatically escalates row, key, or page locks to coarser table or partition locks
as appropriate. This escalation protects system resources—it prevents the system from using
too much memory for keeping track of locks—and increases efficiency. For example, after
a query acquires many row locks, the lock level can be escalated because it probably makes
more sense to acquire and hold a single lock than to hold many row locks. When lock escalation
occurs, many locks on smaller units (rows or pages) are released and replaced by one lock on
a larger unit. This escalation reduces locking overhead and keeps the system from running out
of locks. Because a finite amount of memory is available for the lock structures, escalation is
sometimes necessary to make sure the memory for locks stays within reasonable limits.

The default in SQL Server is to escalate to table locks. However, SQL Server 2008
introduces the ability to escalate to a single partition using the ALTER TABLE statement. The
LOCK_ESCALATION option of ALTER TABLE can specify that escalation is always to a table level,
or that it can be to either a table or partition level. The LOCK_ESCALATION option can also
be used to prevent escalation entirely. Here’s an example of altering the TransactionHistory
table (which you may have created if you ran the partitioning example in Chapter 7, “Special
Storage”), so that locks can be escalated to either the table or partition level:

ALTER TABLE TransactionHistory

SET (LOCK_ESCALATION = AUTO);

Lock escalation occurs in the following situations:

n	 The number of locks held by a single statement on one object, or on one partition of
one object, exceeds a threshold. Currently that threshold is 5,000 locks, but it might
change in future service packs. The lock escalation does not occur if the locks are
spread over multiple objects in the same statement—for example, 3,000 locks in one
index and 3,000 in another.

n	 Memory taken by lock resources exceeds 40 percent of the non-AWE (32-bit) or regular
(64-bit) enabled memory and the locks configuration option is set to 0. (In this case,
the lock memory is allocated dynamically as needed, so the 40 percent value is not a
constant.) If the locks option is set to a nonzero value, memory reserved for locks is
statically allocated when SQL Server starts. Escalation occurs when SQL Server is using
more than 40 percent of the reserved lock memory for lock resources.

When the lock escalation is triggered, the attempt might fail if there are conflicting locks.
So, for example, if an X lock on a RID needs to be escalated and there are concurrent X locks
on the same table or partition held by a different process, the lock escalation attempt fails.
However, SQL Server continues to attempt to escalate the lock every time the transaction
acquires another 1,250 locks on the same object. If the lock escalation succeeds, SQL Server
releases all the row and page locks on the index or the heap.

630	 Microsoft SQL Server 2008 Internals

Note  SQL Server never escalates to page locks. The result of a lock escalation is always a table
or partition. In addition, multiple partition locks are never escalated to a table lock.

Controlling Lock Escalation
Lock escalation can potentially lead to blocking of future concurrent access to the index or
the heap by other transactions needing row or page locks on the object. SQL Server cannot
de-escalate the lock when new requests are made. So lock escalation is not always a good
idea for all applications.

SQL Server 2008 also supports disabling lock escalation for a single table using the ALTER TABLE
statement. Here is an example of disabling lock escalation on the TransactionHistory table:

ALTER TABLE TransactionHistory

SET (LOCK_ESCALATION = DISABLE);

SQL Server 2008 also supports disabling lock escalation using trace flags. Note that these
trace flags affect lock escalation on all tables in all databases in a SQL Server instance.

n	 Trace flag 1211 completely disables lock escalation. It instructs SQL Server to ignore
the memory acquired by the lock manager up to the maximum statically allocated lock
memory (specified using the locks configuration option) or 60 percent of the non-AWE
(32-bit) or regular (64-bit) dynamically allocated memory. At that time, an out-of-lock
memory error is generated. You should exercise extreme caution when using this trace
flag as a poorly designed application can exhaust the memory and seriously degrade
the performance of your SQL Server instance.

n	 Trace flag 1224 also disables lock escalation based on the number of locks acquired,
but it allows escalation based on memory consumption. It enables lock escalation when
the lock manager acquires 40 percent of the statically allocated memory (as per the
locks option) or 40 percent of the non-AWE (32-bit) or regular (64-bit) dynamically
allocated memory. You should note that if SQL Server cannot allocate memory for
locks due to memory use by other components, the lock escalation can be triggered
earlier. As with trace flag 1211, SQL Server generates an out-of-memory error when
memory allocated to the lock manager exceeds the total statically allocated memory or
60 percent of non-AWE (32-bit) or regular (64-bit) memory for dynamic allocation.

If both trace flags (1211 and 1224) are set at the same time, trace flag 1211 takes precedence.
Remember that these trace flags affect the entire SQL Server instance. In many cases, it is
desirable to control the escalation threshold at the object level, so you should consider using
the ALTER TABLE command when possible.

Deadlocks
A deadlock occurs when two processes are waiting for a resource and neither process can
advance because the other process prevents it from getting the resource. A true deadlock is

	 Chapter 10  Transactions and Concurrency	 631

a Catch-22 in which, without intervention, neither process can ever make progress. When a
deadlock occurs, SQL Server intervenes automatically. I refer mainly to deadlocks acquired
due to conflicting locks, although deadlocks can also be detected on worker threads, memory,
and parallel query resources.

Note  A simple wait for a lock is not a deadlock. When the process that’s holding the lock
completes, the waiting process can acquire the lock. Lock waits are normal, expected,
and necessary in multiuser systems.

In SQL Server, two main types of deadlocks can occur: a cycle deadlock and a conversion
deadlock. Figure 10-5 shows an example of a cycle deadlock. Process A starts a transaction,
acquires an exclusive table lock on the Product table, and requests an exclusive table lock
on the PurchaseOrderDetail table. Simultaneously, process B starts a transaction, acquires
an exclusive lock on the PurchaseOrderDetail table, and requests an exclusive lock on the
Product table. The two processes become deadlocked—caught in a “deadly embrace.” Each
process holds a resource needed by the other process. Neither can progress, and, without
intervention, both would be stuck in deadlock forever. You can actually generate the
deadlock in SQL Server Management Studio, as follows:

	 1.	 Open a query window, and change your database context to the AdventureWorks2008
database. Execute the following batch for process A:

BEGIN TRAN

UPDATE Production.Product

 SET ListPrice = ListPrice * 0.9

WHERE ProductID = 922;

	 2.	 Open a second window, and execute this batch for process B:

BEGIN TRAN

UPDATE Purchasing.PurchaseOrderDetail

 SET OrderQty = OrderQty + 200

 WHERE ProductID = 922

 AND PurchaseOrderID = 499;

	 3.	 Go back to the first window, and execute this UPDATE statement:

UPDATE Purchasing.PurchaseOrderDetail

 SET OrderQty = OrderQty - 200

 WHERE ProductID = 922

 AND PurchaseOrderID = 499;

At this point, the query should block. It is not deadlocked yet, however. It is waiting for
a lock on the PurchaseOrderDetail table, and there is no reason to suspect that it won’t
eventually get that lock.

	 4.	 Go back to the second window, and execute this UPDATE statement:

UPDATE Production.Product

 SET ListPrice = ListPrice * 1.1

 WHERE ProductID = 922;

632	 Microsoft SQL Server 2008 Internals

At this point, a deadlock occurs. The first connection never gets its requested lock on the
PurchaseOrderDetail table because the second connection does not give it up until it gets a
lock on the Product table. Because the first connection already has the lock on the Product
table, we have a deadlock. One of the processes receives the following error message.
(Of course, the actual process ID reported will probably be different.)

Msg 1205, Level 13, State 51, Line 1

Transaction (Process ID 57) was deadlocked on lock resources with another process and has

been chosen as the deadlock victim. Rerun the transaction.

DEADLOCK

Process A Process B
Product PurchaseOrderDetail

Acquires
exclusive
lock on
Product

Requests
exclusive lock on

PurchaseOrderDetail
(held by B)

Acquires
exclusive
lock on

PurchaseOrderDetail

Requests
exclusive lock
on Product
(held by A)

ProductPurchaseOrderDetail

Figure 10-5  A cycle deadlock resulting from two processes, each holding a resource needed by the other

Figure 10-6 shows an example of a conversion deadlock. Process A and process B each hold
a shared lock on the same page within a transaction. Each process wants to promote its
shared lock to an exclusive lock but cannot do so because of the other process’s lock. Again,
intervention is required.

SQL Server automatically detects deadlocks and intervenes through the lock manager,
which provides deadlock detection for regular locks. In SQL Server 2008, deadlocks can also
involve resources other than locks. For example, if process A is holding a lock on Table1 and
is waiting for memory to become available and process B has some memory that it can’t
release until it acquires a lock on Table1, the processes deadlock. When SQL Server detects a
deadlock, it terminates one process’s batch, rolling back the active transaction and releasing
all that process’s locks to resolve the deadlock. In addition to deadlocks on lock resources and
memory resources, deadlocks can also occur with resources involving worker threads, parallel
query execution–related resources, and MARS resources. Latches are not involved in deadlock
detection because SQL Server uses deadlock-proof algorithms when it acquires latches.

	 Chapter 10  Transactions and Concurrency	 633

Shared lock #1
Process A wants to

convert shared lock on
page 100 to exclusive
but cannot because

process B also has a
shared lock on

page 100.

Process A

Page 100

DEADLOCK

Shared lock #2

Process B

Page 100

DEADLOCK

Process B wants to
convert shared lock on
page 100 to exclusive
but cannot because

process A also has a
shared lock on

page 100.

Figure 10-6  A conversion deadlock resulting from two processes wanting to promote their locks on the
same resource within a transaction

In SQL Server, a separate thread called LOCK_MONITOR checks the system for deadlocks
every five seconds. As deadlocks occur, the deadlock detection interval is reduced and can
go as low as 100 milliseconds. In fact, the first few lock requests that cannot be satisfied after
a deadlock has been detected will immediately trigger a deadlock search rather than wait for
the next deadlock detection interval. If the deadlock frequency declines, the interval can go
back to every five seconds.

This LOCK_MONITOR thread checks for deadlocks by inspecting the list of waiting locks
for any cycles, which indicate a circular relationship between processes holding locks and
processes waiting for locks. SQL Server attempts to choose as the victim the process that
would be least expensive to roll back, considering the amount of work the process has
already done. That process is killed and error message 1205 is sent to the corresponding
client connection. The transaction is rolled back, meaning all its locks are released, so other
processes involved in the deadlock can proceed. However, certain operations are marked as
golden, or unkillable, and cannot be chosen as the deadlock victim. For example, a process
involved in rolling back a transaction cannot be chosen as a deadlock victim because the
changes being rolled back could be left in an indeterminate state, causing data corruption.

Using the SET DEADLOCK_PRIORITY statement, a process can determine its priority for
being chosen as the victim if it is involved in a deadlock. There are 21 different priority levels,
from –10 to 10. You can also specify the value LOW, which is equivalent to –5, NORMAL, which
is equivalent to 0, and HIGH, which is equivalent to 5. Which session is chosen as the deadlock
victim depends on each session’s deadlock priority. If the sessions have different deadlock

634	 Microsoft SQL Server 2008 Internals

priorities, the session with the lowest deadlock priority is chosen as the deadlock victim.
If both sessions have set the same deadlock priority, SQL Server selects as the victim the
session that is less expensive to roll back.

Note  The lightweight latches and spinlocks used internally do not have deadlock detection
services. Instead, deadlocks on latches and spinlocks are avoided rather than resolved. Avoidance is
achieved via strict programming guidelines used by the SQL Server development team. These
lightweight locks must be acquired in a hierarchy, and a process must not have to wait for a
regular lock while holding a latch or spinlock. For example, one coding rule is that a process
holding a spinlock must never directly wait for a lock or call another service that might have to
wait for a lock, and a request can never be made for a spinlock that is higher in the acquisition
hierarchy. By establishing similar guidelines for your development team for the order in which SQL
Server objects are accessed, you can go a long way toward avoiding deadlocks in the first place.

In the example in Figure 10-5, the cycle deadlock could have been avoided if the processes
had decided on a protocol beforehand—for example, if they had decided always to access the
Product table first and the PurchaseOrderDetail table second. Then one of the processes gets
the initial exclusive lock on the table being accessed first, and the other process waits for the
lock to be released. One process waiting for a lock is normal and natural. Remember, waiting
is not a deadlock.

You should always try to have a standard protocol for the order in which processes access
tables. If you know that the processes might need to update the row after reading it, they
should initially request an update lock, not a shared lock. If both processes request an update
lock rather than a shared lock, the process that is granted an update lock is assured that the
lock can later be promoted to an exclusive lock. The other process requesting an update lock
has to wait. The use of an update lock serializes the requests for an exclusive lock. Other
processes needing only to read the data can still get their shared locks and read. Because the
holder of the update lock is guaranteed an exclusive lock, the deadlock is avoided.

In many systems, deadlocks cannot be completely avoided, but if the application handles
the deadlock appropriately, the impact on any users involved, and on the rest of the
system, should be minimal. (Appropriate handling implies that when error 1205 occurs,
the application resubmits the batch, which most likely succeeds on the second try. Once
one process is killed, its transaction is aborted, and its locks are released, the other process
involved in the deadlock can finish its work and release its locks, so the environment is
not conducive to another deadlock.) Although you might not be able to avoid deadlocks
completely, you can minimize their occurrence. For example, you should write your
applications so that your processes hold locks for a minimal amount of time; in that way,
other processes won’t have to wait too long for locks to be released. Although you don’t
usually invoke locking directly, you can influence locking by keeping transactions as short as
possible. For example, don’t ask for user input in the middle of a transaction. Instead, get the
input first and then quickly perform the transaction.

	 Chapter 10  Transactions and Concurrency	 635

Row Versioning
At the beginning of this chapter, I described two concurrency models that SQL Server
can use. Pessimistic concurrency uses locking to guarantee the appropriate transactional
behavior and avoid problems such as dirty reads, according to the isolation level you are
using. Optimistic concurrency uses a new technology called row versioning to guarantee your
transactions. Starting in SQL Server 2005, optimistic concurrency is available after you enable
one or both of the database properties called READ_COMMITTED_SNAPSHOT and
ALLOW_SNAPSHOT_ ISOLATION. Exclusive locks can be acquired when you use optimistic
concurrency, so you still need to be aware of all issues related to lock modes, lock resources,
and lock duration, as well as the resources required to keep track of and manage locks.
The difference between optimistic and pessimistic concurrency is that with optimistic
concurrency, writers and readers do not block each other. Or, using locking terminology, a
process requesting an exclusive lock does not block when the requested resource currently
has a shared lock. Conversely, a process requesting a shared lock does not block when the
requested resource currently has an exclusive lock.

It is possible to avoid blocking because as soon as one of the new database options is
enabled, SQL Server starts using tempdb to store copies (versions) of all rows that have
changed, and it keeps those copies as long as there are any transactions that might need to
access them. The space in tempdb used to store previous versions of changed rows is called
the version store.

Overview of Row Versioning
In earlier versions of SQL Server, the tradeoff in concurrency solutions is that we can avoid
having writers block readers if we are willing to risk inconsistent data—that is, if we use Read
Committed isolation. If our results must always be based on committed data, we need to be
willing to wait for changes to be committed.

SQL Server 2005 introduced a new isolation level called Snapshot isolation and a new
nonblocking flavor of Read Committed isolation called Read Committed Snapshot Isolation (RCSI).
These row versioning–based isolation levels allow a reader to get to a previously committed
value of the row without blocking, so concurrency is increased in the system. For this to work,
SQL Server must keep old versions of a row when it is updated or deleted. If multiple updates are
made to the same row, multiple older versions of the row might need to be maintained. Because
of this, row versioning is sometimes called multiversion concurrency control.

To support storing multiple older versions of rows, additional disk space is used from the
tempdb database. The disk space for the version store must be monitored and managed
appropriately, and I point out some of the ways you can do that later in this section.
Versioning works by making any transaction that changes data keep the old versions of
the data around so that a snapshot of the database (or a part of the database) can be
constructed from these old versions.

636	 Microsoft SQL Server 2008 Internals

Row Versioning Details
When a row in a table or index is updated, the new row is stamped with the transaction
sequence number (XSN) of the transaction that is doing the update. The XSN is a monotonically
increasing number that is unique within each SQL Server database. The concept of XSN is
not the same as Log Sequence Numbers (LSNs), which I discussed in Chapter 4, “Logging and
Recovery.” I discuss XSNs in more detail later. When updating a row, the previous version is
stored in the version store, and the new row contains a pointer to the old row in the version
store. Old rows in the version store might contain pointers to even older versions. All the old
versions of a particular row are chained in a linked list, and SQL Server might need to follow
several pointers in a list to reach the right version. Version rows must be kept in the version
store only as long as there are operations that might require them.

In Figure 10-7, the current version of the row is generated by transaction T3, and it is stored
in the normal data page. The previous versions of the row, generated by transaction T2 and
transaction Tx, are stored in pages in the version store (in tempdb).

Row versioning gives SQL Server an optimistic concurrency model to work with when an
application requires it or when the concurrency reduction of using the default pessimistic
model is unacceptable. Before you switch to the row versioning–based isolation levels, you
must carefully consider the tradeoffs of using this new concurrency model. In addition to
requiring extra management to monitor the increased use of tempdb for the version store,
versioning slows the performance of update operations due to the extra work involved in
maintaining old versions. Update operations bear this cost, even if there are no current
readers of the data. If there are readers using row versioning, they have the extra cost of
traversing the link pointers to find the appropriate version of the requested row.

Current Row(K=1, A=11) created by
Transaction T3

Previous Version Row(K=1, A=9)
created by transaction T2

Previous Version(K=1, A=5)
created by transaction Tx

Figure 10-7  Versions of a row

In addition, because the optimistic concurrency model of Snapshot isolation assumes
(optimistically) that not many update conflicts will occur, you should not choose the Snapshot
isolation level if you are expecting contention for updating the same data concurrently. Snapshot
isolation works well to enable readers not to be blocked by writers, but simultaneous writers are

 Chapter 10 Transactions and Concurrency 637

still not allowed. In the default pessimistic model, the fi rst writer will block all subsequent writers,
but using Snapshot isolation, subsequent writers could actually receive error messages and the
application would need to resubmit the original request. Note that these update confl icts occur
only with the full Snapshot isolation, not with the enhanced RCSI.

Snapshot-Based Isolation Levels
SQL Server 2008 provides two types of snapshot-based isolation, both of which use row
 versioning to maintain the snapshot. One type, RCSI, is enabled simply by setting a database
option. Once enabled, no further changes need to be made. Any transaction that would have
operated under the default Read Committed isolation will run under RCSI. The other type,
Snapshot isolation must be enabled in two places. You must fi rst enable the database with
the ALLOW_SNAPSHOT_ISOLATION option, and then each connection that wants to use SI
must set the isolation level using the SET TRANSACTION ISOLATION LEVEL command. Let’s
compare these two types of Snapshot-based isolation.

Read Committed Snapshot Isolation
RCSI is a statement-level Snapshot-based isolation, which means any queries see the most
recent committed values as of the beginning of the statement. For example, let’s look at the
scenario in Table 10-9. Assume that two transactions are running in the AdventureWorks2008
database, which has been enabled for RCSI, and that before either transaction starts running,
the ListPrice value of product 922 is 8.89.

TABLe 10-9 A SELECT running in rCSi

Time Transaction 1 Transaction 2

1 BEGIN TRAN

UPDATE Production.Product

SET ListPrice = 10.00

WHERE ProductID = 922;

BEGIN TRAN

2 SELECT ListPrice

FROM Production.Product

WHERE ProductID = 922;

-- SQL Server returns 8.89

3 COMMIT TRAN

4 SELECT ListPrice

FROM Production.Product

WHERE ProductID = 922;

-- SQL Server returns 10.00

5 COMMIT TRAN

We should note that at Time = 2, the change made by Transaction 1 is still uncommitted, so
the lock is still held on the row for ProductID = 922. However, Transaction 2 does not block
on that lock; it has access to an old version of the row with a last committed ListPrice value

Time Transaction 1 Transaction 2

638	 Microsoft SQL Server 2008 Internals

of 8.89. After Transaction 1 has committed and released its lock, Transaction 2 sees the new
value of ListPrice. This is still Read Committed isolation (just a nonlocking variation), so there is
no guarantee that read operations are repeatable.

You can consider RCSI to be just a variation of the default isolation level Read Committed.
The same behaviors are allowed and disallowed, as indicated back in Table 10-2.

RCSI is enabled and disabled with the ALTER DATABASE command, as shown in this
command to enable RCSI in the AdventureWorks2008 database:

ALTER DATABASE AdventureWorks2008

 SET READ_COMMITTED_SNAPSHOT ON;

Ironically, although this isolation level is intended to help avoid blocking, if there are any
users in the database when the preceding command is executed, the ALTER statement
blocks it. (The connection issuing the ALTER command can be in the database, but no other
connections can be.) Until the change is successful, the database continues to operate as if it
is not in RCSI mode. The blocking can be avoided by specifying a TERMINATION clause for
the ALTER command, as discussed in Chapter 3, “Databases and Database Files”:

ALTER DATABASE AdventureWorks2008

 SET READ_COMMITTED_SNAPSHOT ON WITH NO_WAIT;

If there are any users in the database, the preceding ALTER fails with the following error:

Msg 5070, Level 16, State 2, Line 1

Database state cannot be changed while other users are using

the database 'AdventureWorks2008'

Msg 5069, Level 16, State 1, Line 1

ALTER DATABASE statement failed.

You can also specify one of the ROLLBACK termination options, basically to break any current
database connections.

The biggest benefit of RCSI is that you can introduce greater concurrency because readers
do not block writers and writers do not block readers. However, writers do block writers
because the normal locking behavior applies to all UPDATE, DELETE, and INSERT operations.
No SET options are required for any session to take advantage of RCSI, so you can reduce the
concurrency impact of blocking and deadlocking without any change in your applications.

Snapshot Isolation
Snapshot isolation requires using a SET command in the session, just like for any other
change of isolation level (for example, SET TRANSACTION ISOLATION LEVEL SERIALIZABLE). For a
session-level option to take effect, you must also allow the database to use SI by altering the
database:

ALTER DATABASE AdventureWorks2008

 SET ALLOW_SNAPSHOT_ISOLATION ON;

	 Chapter 10  Transactions and Concurrency	 639

When altering the database to allow SI, a user in the database does not necessarily block the
command from completing. However, if there is an active transaction in the database, the
ALTER is blocked. This does not mean that there is no effect until the statement completes.
Changing the database to allow full SI can be a deferred operation. The database can actually
be in one of four states with regard to ALLOW_SNAPSHOT_ISOLATION. It can be ON or OFF,
but it can also be IN_TRANSITION_TO_ON or IN_TRANSITION_TO_OFF.

Here is what happens when you ALTER a database to ALLOW_SNAPSHOT_ISOLATION:

n	 SQL Server waits for the completion of all active transactions, and the database status is
set to IN_TRANSITION_TO_ON.

n	 Any new UPDATE or DELETE transactions start generating versions in the version store.

n	 New snapshot transactions cannot start because transactions that are already
in progress are not storing row versions as the data is changed. New snapshot
transactions would have to have committed versions of the data to read. There is
no error when you execute the SET TRANSACTION ISOLATION LEVEL SNAPSHOT
command; the error occurs when you try to SELECT data, and you get this message:

Msg 3956, Level 16, State 1, Line 1

Snapshot isolation transaction failed to start in database 'AdventureWorks2008'

because the ALTER DATABASE command which enables snapshot isolation for this database

has not finished yet. The database is in transition to pending ON state. You must wait

until the ALTER DATABASE Command completes successfully.

n	 As soon as all transactions that were active when the ALTER command began have
finished, the ALTER can finish and the state change are complete. The database now is
in the state ALLOW_SNAPSHOT_ISOLATION.

Taking the database out of ALLOW_SNAPSHOT_ISOLATION mode is similar, and again, there
is a transition phase.

n	 SQL Server waits for the completion of all active transactions, and the database status is
set to IN_TRANSITION_TO_OFF.

n	 New snapshot transactions cannot start.

n	 Existing snapshot transactions still execute snapshot scans, reading from the version store.

n	 New transactions continue generating versions.

Snapshot Isolation Scope
SI gives you a transactionally consistent view of the data. Any rows read are the most recent
committed version of the rows as of the beginning of the transaction. (For RCSI, we get the
most recent committed version as of the beginning of the statement.) A key point to keep in
mind is that the transaction does not start at the BEGIN TRAN statement; for the purposes
of SI, a transaction starts the first time the transactions accesses any data in the database.

640 Microsoft SQL Server 2008 Internals

 As an example of SI, let’s look at a scenario similar to the one in Table 10-9. Table 10-10
shows activities in a database with ALLOW_SNAPSHOT_ISOLATION set to ON. Assume
two transactions are running in the AdventureWorks2008 database and that before either
 transaction starts, the ListPrice value of Product 922 is 10.00.

TABLe 10-10 A SELECT running in a SNAPSHOT Transaction

Time Transaction 1 Transaction 2

1 BEGIN TRAN

2 UPDATE Production.Product

SET ListPrice = 12.00

WHERE ProductID = 922;

SET TRANSACTION ISOLATION

LEVEL SNAPSHOT

3 BEGIN TRAN

4 SELECT ListPrice

FROM Production.Product

WHERE ProductID = 922;

-- SQL Server returns 10.00

-- This is the beginning of

-- the transaction

5 COMMIT TRAN

6 SELECT ListPrice

FROM Production.Product

WHERE ProductID = 922;

-- SQL Server returns 10.00

-- Return the committed

-- value as of the beginning

-- of the transaction

7 COMMIT TRAN

SELECT ListPrice

FROM Production.Product

WHERE ProductID = 922;

-- SQL Server returns 12.00

 Even though Transaction 1 has committed, Transaction 2 continues to return the initial value
it read of 10.00 until Transaction 2 completes. Only after Transaction 2 is complete does
the connection read a new value for ListPrice.

Viewing Database State
 The catalog view sys.databases contains several columns that report on the Snapshot
 isolation state of the database. A database can be enabled for SI and/or RCSI. However,
 enabling one does not automatically enable or disable the other. Each one has to be enabled
or disabled individually using separate ALTER DATABASE commands.

 The column snapshot_isolation_state has possible values of 0 to 4, indicating each of the four
possible SI states, and the snapshot_isolation_state_desc column spells out the state. Table 10-11
summarizes what each state means.

Time Transaction 1 Transaction 2

 Chapter 10 Transactions and Concurrency 641

TABLe 10-11 Possible Values for the Database Option ALLOW_SNAPSHOT_iSOLATiON

 Snapshot Isolation State Description

 OFF Snapshot isolation state is disabled in the database. In other words,
transactions with Snapshot isolation are not allowed. Database
 versioning state is initially set to OFF during recovery. If versioning is
enabled, versioning state is set to ON after recovery.

 IN_TRANSITION_TO_ON The database is in the process of enabling SI. It waits for the
 completion of all UPDATE transactions that were active when the
ALTER DATABASE command was issued. New UPDATE transactions in this
 database start paying the cost of versioning by generating row versions.
Transactions using Snapshot isolation cannot start.

 ON SI is enabled. New snapshot transactions can start in this database.
Existing snapshot transactions (in another snapshot-enabled session)
that start before versioning state is turned ON cannot do a snapshot
scan in this database because the snapshot those transactions are
 interested in is not properly generated by the UPDATE transactions.

 IN_ TRANSITION_TO_OFF The database is in the process of disabling the SI state and is unable to
start new snapshot transactions. UPDATE transactions still pay the cost
of versioning in this database. Existing snapshot transactions can still do
snapshot scans. IN_TRANSITION_TO_OFF does not become OFF until all
existing transactions fi nish.

The is_read_committed_snapshot_on column has a value of 0 or 1. Table 10-12 summarizes
what each state means.

TABLe 10-12 Possible Values for the Database Option reAD_COMMiTTeD_SNAPSHOT

READ_COMMITTED_SNAPSHOT State Description

0 READ_COMMITTED_SNAPSHOT is disabled.

1 READ_COMMITTED_SNAPSHOT is enabled. Any
query with Read Committed isolation executes in the
 nonblocking mode.

You can see the values of each of these snapshot states for all your databases with the
 following query:

SELECT name, snapshot_isolation_state_desc,

 is_read_committed_snapshot_on , *

FROM sys.databases;

Update Confl icts
 One crucial difference between the two optimistic concurrency levels is that SI can
 potentially result in update confl icts when a process sees the same data for the duration of
its transaction and is not blocked simply because another process is changing the same
data. Table 10-13 illustrates two processes attempting to update the Quantity value of the
same row in the ProductInventory table in the AdventureWorks2008 database. Two clerks

Snapshot Isolation State Description

READ_COMMITTED_SNAPSHOT State Description

642 Microsoft SQL Server 2008 Internals

have each received shipments of ProductID 872 and are trying to update the inventory. The
AdventureWorks2008 database has ALLOW_SNAPSHOT_ISOLATION set to ON, and before
either transaction starts, the Quantity value of Product 872 is 324.

 TABLe 10-13 An update Confl ict in SNAPSHOT isolation

 Time Transaction 1 Transaction 2

 1 SET TRANSACTION ISOLATION

LEVEL SNAPSHOT

 2 BEGIN TRAN

 3 SELECT Quantity

FROM Production.ProductInventory

WHERE ProductID = 872;

-- SQL Server returns 324

-- This is the beginning of

-- the transaction

 4 BEGIN TRAN

UPDATE Production.ProductInventory

SET Quantity=Quantity + 200

WHERE ProductID = 872;

-- Quantity is now 524

 5 UPDATE Production.ProductInventory

SET Quantity=Quantity + 300

WHERE ProductID = 872;

-- Process will block

 6 COMMIT TRAN

 7 -- Process receives error 3960

 The confl ict happens because Transaction 2 started when the Quantity value was 324. When
that value was updated by Transaction 1, the row version with 324 was saved in the version
store. Transaction 2 continues to read that row for the duration of the transaction. If both
UPDATE operations were allowed to succeed, we would have a classic lost update situation.
Transaction 1 added 200 to the quantity, and then Transaction 2 would add 300 to the
original value and save that. The 200 added by Transaction 1 would be completely lost. SQL
Server does not allow that.

 When Transaction 2 fi rst tries to perform the UPDATE, it doesn’t get an error immediately—
it is simply blocked. Transaction 1 has an exclusive lock on the row, so when Transaction 2
 attempts to get an exclusive lock, it is blocked. If Transaction 1 had rolled back its transaction,
Transaction 2 would have been able to complete its UPDATE. But because Transaction 1
 committed, SQL Server detects a confl ict and generates the following error:

Msg 3960, Level 16, State 2, Line 1

Snapshot isolation transaction aborted due to update conflict. You cannot use snapshot

isolation to access table 'Production.ProductInventory' directly or indirectly in database'

AdventureWorks2008' to update, delete, or insert the row that has been modified or deleted

by another transaction. Retry the transaction or change the isolation level for the

update/delete statement.

Time Transaction 1 Transaction 2

	 Chapter 10  Transactions and Concurrency	 643

Conflicts are possible only with SI because that isolation level is transaction-based, not
statement-based. If the example in Table 10-13 were executed in a database using RCSI, the
UPDATE statement executed by Transaction 2 would not use the old value of the data. It
would be blocked when trying to read the current Quantity, and then when Transaction 1
finished, it would read the new updated Quantity as the current value and add 300 to that.
Neither update would be lost.

If you choose to work in SI, you need to be aware that conflicts can happen. They can be
minimized, but as with deadlocks, you cannot be sure that you will never have conflicts.
Your application must be written to handle conflicts appropriately and not assume that the
UPDATE has succeeded. If conflicts occur occasionally, you might consider it part of the price
to be paid for using SI, but if they occur too often, you might need to take extra steps.

You might consider whether SI is really necessary, and if it is, you should determine whether
the statement-based RCSI might give you the behavior you need without the cost of detecting
and dealing with conflicts. Another solution is to use a query hint called UPDLOCK to make
sure no other process updates data before you’re ready to update it. In Table 10-13, Transaction 2
could use UPDLOCK on its initial SELECT as follows:

SELECT Quantity

FROM Production.ProductInventory WITH (UPDLOCK)

WHERE ProductID = 872;

The UPDLOCK hint forces SQL Server to acquire update locks for Transaction 2 on the row
that is selected. When Transaction 1 then tries to update that row, it blocks. It is not using
SI, so it does not see the previous value of Quantity. Transaction 2 can perform its update
because Transaction 1 is blocked, and it commits. Transaction 1 can then perform its update
on the new value of Quantity, and neither update is lost.

I will provide a few more details about locking hints at the end of this chapter.

Data Definition Language and SNAPSHOT Isolation
When working with SI, you need to be aware that although SQL Server keeps versions of all
the changed data, that metadata is not versioned. Therefore, certain DDL statements are
not allowed inside a snapshot transaction. The following DDL statements are disallowed in a
snapshot transaction:

n	 CREATE / ALTER / DROP INDEX

n	 DBCC DBREINDEX

n	 ALTER TABLE

n	 ALTER PARTITION FUNCTION / SCHEME

644 Microsoft SQL Server 2008 Internals

 On the other hand, the following DDL statements are allowed:

n CREATE TABLE

n CREATE TYPE

n CREATE PROC

 Note that the allowable DDL statements are ones that create brand-new objects. In SI, there
is no chance that any simultaneous data modifi cations affect the creation of these objects.
Table 10-14 shows a pseudo-code example of a snapshot transaction that includes both
CREATE TABLE and CREATE INDEX.

 TABLe 10-14 DDL inside a SNAPSHOT Transaction

Time Transaction 1 Transaction 2

1 SET TRANSACTION ISOLATION

LEVEL SNAPSHOT;

2 BEGIN TRAN

3 SELECT count(*)

FROM Production.Product;

-- This is the beginning of

-- the transaction

4 BEGIN TRAN

5 CREATE TABLE NewProducts

(<column definitions>)

-- This DDL is legal

INSERT Production.Product

 VALUES (9999,)

-- A new row is insert into

-- the Product table

6 COMMIT TRAN

7 CREATE INDEX PriceIndex

 ON Production.Product

 (ListPrice)

-- This DDL will generate an

-- error

 The CREATE TABLE statement succeeds even though Transaction 1 is in SI because it is not
 affected by anything any other process can do. The CREATE INDEX statement is a different
story. When Transaction 1 started, the new row with ProductID 9999 did not exist. But when
the CREATE INDEX statement is encountered, the INSERT from Transaction 2 has been
 committed. Should Transaction 1 include the new row in the index? There is actually no way
to avoid including the new row, but that would violate the snapshot that Transaction 1 is
 using, and SQL Server generates an error instead of creating the index.

 Another aspect of concurrent DDL to consider is what happens when a statement outside
the snapshot transaction changes an object referenced by a snapshot transaction. The DDL is
 allowed, but you can get an error in the snapshot transaction when this happens. Table 10-15
shows an example.

Time Transaction 1 Transaction 2

 Chapter 10 Transactions and Concurrency 645

TABLe 10-15 Concurrent DDL Outside the SNAPSHOT Transaction

Time Transaction 1 Transaction 2

1 SET TRANSACTION ISOLATION

LEVEL SNAPSHOT;

2 BEGIN TRAN

3 SELECT TOP 10 *

FROM Production.Product;

-- This is the start of

-- the transaction

4 BEGIN TRAN

ALTER TABLE Purchasing.Vendor

 ADD notes varchar(1000);

COMMIT TRAN

5 SELECT TOP 10 *

FROM Production.Product;

-- Succeeds

-- The ALTER to a different

-- table does not affect

-- this transaction

6 BEGIN TRAN

ALTER TABLE Production.Product

 ADD LowestPrice money;

COMMIT TRAN

7 SELECT TOP 10 * FROM Production.

Product;

-- ERROR

For the preceding situation, in Transaction 1, the repeated SELECT statements should always
return the same data from the Product table. An external ALTER TABLE on a completely
 different table has no effect on the snapshot transaction, but Transaction 2 then alters the
Product table to add a new column. Because the metadata representing the former table
structure is not versioned, Transaction 1 cannot produce the same results for the third
SELECT. SQL Server generates this error:

Msg 3961, Level 16, State 1, Line 1

Snapshot isolation transaction failed in database 'AdventureWorks2008' because the object

accessed by the statement has been modified by a DDL statement in another concurrent

transaction since the start of this transaction. It is disallowed because the metadata is

not versioned. A concurrent update to metadata can lead to inconsistency if mixed with

snapshot isolation.

In this version, any concurrent change to metadata on objects referenced by a snapshot
transaction generates this error, even if there is no possibility of anomalies. For example, if
Transaction 1 issues a SELECT count(*), which is not affected by the ALTER TABLE statement,
SQL Server still generates error 3961.

Time Transaction 1 Transaction 2

646 Microsoft SQL Server 2008 Internals

Summary of Snapshot-Based Isolation Levels
 SI and RCSI are similar in the sense that they are based on the versioning of rows in a
 database. However, there are some key differences in how these options are enabled from
an administration perspective and also in how they affect your applications. I have discussed
many of these differences already, but for completeness, Table 10-16 lists both the similarities
and the differences between the two types of snapshot-based isolation.

TABLe 10-16 Snapshot vs. read Committed Snapshot isolation

Snapshot Isolation Read Committed Snapshot Isolation

The database must be confi gured to allow SI,
and the session must issue the command SET
TRANSACTION ISOLATION LEVEL SNAPSHOT.

The database must be confi gured to use RCSI, and
sessions must use the default isolation level. No
code changes are required.

Enabling SI for a database is an online
 operation. It allows a DBA to turn on
versioning for one particular application such
as one that is creating large reports. The DBA
can then turn off versioning after the reporting
transaction has started to prevent new
snapshot transactions from starting. Turning
on SI in an existing database is synchronous.
When the ALTER DATABASE command is given,
control does not return to the DBA until all
existing update transactions that need to
create versions in the current database fi nish.
At this time, ALLOW_SNAPSHOT_ISOLATION
is changed to ON. Only then can users start a
snapshot transaction in that database. Turning
off SI is also synchronous.

Enabling RCSI for a database requires a SHARED_
TRANSACTION_WORKSPACE lock on the database.
All users must be kicked out of a database to
enable this option.

There are no restrictions on active sessions
in the database when this database option is
enabled.

There should be no other sessions active in the
database when you enable this option.

If an application runs a snapshot transaction
that accesses tables from two databases,
the DBA must turn on ALLOW_SNAPSHOT_
ISOLATION in both databases before the
application starts a snapshot transaction.

RCSI is really a table-level option, so tables
from two different databases, referenced in the
same query, can each have their own individual
 setting. One table might get its data from the
version store, while the other table is reading
only the current versions of the data. There is no
 requirement that both databases must have the
RCSI option enabled.

The IN_TRANSITION versioning states do not
 persist. Only the ON and OFF states are
remembered on disk.

There are no IN_TRANSITION states here. Only ON
and OFF states persist.

Snapshot Isolation Read Committed Snapshot Isolation

 Chapter 10 Transactions and Concurrency 647

TABLe 10-16 Snapshot vs. read Committed Snapshot isolation

Snapshot Isolation Read Committed Snapshot Isolation

When a database is recovered after a server
crash, or after your SQL Server instance is shut
down, restored, attached, or made ONLINE,
all versioning history for that database is lost.
If database versioning state is ON, SQL Server
can allow new snapshot transactions to access
the database, but must prevent previous
snapshot transactions from accessing the
database. Those previous transactions would
need to access data from a point in time before
the database recovers.

This is an object-level option; it is not at the
transaction level, so it is not applicable.

If the database is in the IN_TRANSITION_
TO_ON state, ALTER DATABASE SET ALLOW_
SNAPSHOT_ ISOLATION OFF waits for about
six seconds and might fail if the database state
is still in the IN_TRANSITION_TO_ON state. The
DBA can retry the command after the database
state changes to ON.

This option can be enabled only when there is no
other active session in the database, so there are no
transitional states.

For read-only databases, versioning is
automatically enabled. You still can use ALTER
DATABASE SET ALLOW_SNAPSHOT_ISOLATION
ON for a read-only database. If the database is
made read-write later, versioning for the
database is still enabled.

As for SI, versioning is enabled automatically for
read-only databases.

If there are long-running transactions, a DBA
might need to wait a long time before the
versioning state change can fi nish. A DBA can
cancel the wait, and the versioning state is
rolled back and set to the previous one.

This option can be enabled only when there is no
other active session in the database, so there are no
transitional states.

You cannot use ALTER DATABASE to change
the database versioning state inside a user
transaction.

As for SI, you can change the database versioning
state inside a user transaction.

You can change the versioning state of tempdb.
The versioning state of tempdb is preserved
when SQL Server restarts, although the content
of tempdb is not preserved.

You cannot turn this option ON for tempdb.

You can change the versioning state of the
master database.

You cannot change this option for the master
database.

You can change the versioning state of model.
If versioning is enabled for model, every new
database created will have versioning enabled
as well. However, the versioning state of
tempdb is not automatically enabled if you
enable versioning for model.

Similar to the behavior for SI, except that there are
no implications for tempdb.

Snapshot Isolation Read Committed Snapshot Isolation

648 Microsoft SQL Server 2008 Internals

TABLe 10-16 Snapshot vs. read Committed Snapshot isolation

Snapshot Isolation Read Committed Snapshot Isolation

You can turn this option ON for msdb. You cannot turn on this option ON for msdb
because this can potentially break the applications
built on msdb that rely on blocking behavior of Read
Committed isolation.

A query in a SI transaction sees data that was
committed before the start of the transaction,
and each statement in the transaction sees the
same set of committed changes.

A statement running in RCSI sees everything
committed before the start of the statement. Each
new statement in the transaction picks up the most
recent committed changes.

SI can result in update confl icts that might
cause a rollback or abort the transaction.

There is no possibility of update confl icts.

The Version Store
 As soon as a database is enabled for ALLOW_SNAPSHOT_ISOLATION or READ_COMMITTED_
SNAPSHOT, all UPDATE and DELETE operations start generating row versions of the
 previously committed rows, and they store those versions in the version store on data pages
in tempdb. Version rows must be kept in the version store only so long as there are snapshot
queries that might need them.

 SQL Server 2008 provides several DMVs that contain information about active snapshot
transactions and the version store. We won’t examine all the details of all those DMVs, but we
look at some of the crucial ones to help you determine how much use is being made of your
version store and what snapshot transactions might be affecting your results. The fi rst DMV
we look at, sys.dm_tran_version_store, contains information about the actual rows in the
 version store. Run the following script to make a copy of the Production.Product table, and
then turn on ALLOW_SNAPSHOT_ISOLATION in the AdventureWorks2008 database. Finally,
verify that the option is ON and that there are currently no rows in the version store. You
might need to close any active transactions currently using AdventureWorks2008:

USE AdventureWorks2008

SELECT * INTO NewProduct

FROM Production.Product;

GO

ALTER DATABASE ADVENTUREWORKS2008 SET ALLOW_SNAPSHOT_ISOLATION ON;

GO

SELECT name, snapshot_isolation_state_desc,

 is_read_committed_snapshot_on

FROM sys.databases

WHERE name= AdventureWorks2008;

GO

SELECT COUNT(*) FROM sys.dm_tran_version_store;

GO

 As soon as you see that the database option is ON and there are no rows in the version store,
you can continue. What I want to illustrate is that as soon as ALLOW_SNAPSHOT_ ISOLATION

Snapshot Isolation Read Committed Snapshot Isolation

	 Chapter 10  Transactions and Concurrency	 649

is enabled, SQL Server starts storing row versions, even if no snapshot transactions need to
read those versions. So now run this UPDATE statement on the NewProduct table and look at
the version store again:

UPDATE NewProduct

SET ListPrice = ListPrice * 1.1;

GO

SELECT COUNT(*) FROM sys.dm_tran_version_store;

GO

You should see that there are now 504 rows in the version store because there are 504 rows
in the NewProduct table. The previous version of each row, prior to the update, has been
written to the version store in tempdb.

Note  SQL Server starts generating versions in tempdb as soon as a database is enabled for one
of the snapshot-based isolation levels. In a heavily updated database, this can affect the behavior
of other queries that use tempdb, as well as the server itself.

As shown earlier in Figure 10-7, the version store maintains link lists of rows. The current row
points to the next older row, which can point to an older row, and so on. The end of the list is
the oldest version of that particular row. To support row versioning, a row needs 14 additional
bytes of information to keep track of the pointers. Eight bytes are needed for the actual pointer
to the file, page, and row in tempdb, and 6 bytes are needed to store the XSN to help SQL
Server determine which rows are current, or which versioned row is the one that a particular
transaction needs to access. I tell you more about the XSN when we look at some of the other
snapshot transaction metadata. In addition, one of the bits in the first byte of each data row
(the TagA byte) is turned on to indicate that this row has versioning information in it.

Any row inserted or updated when a database is using one of the snapshot-based isolation
levels will contain these 14 extra bytes. The following code creates a small table and inserts
two rows into it in the AdventureWorks2008 database, which already has ALLOW_SNAPSHOT_
ISOLATION enabled. I then find the page number using DBCC IND (it is page 6,709) and use
DBCC to look at the rows on the page. The output shows only one of the rows inserted:

CREATE TABLE T1 (T1ID char(1), T1name char(10));

GO

INSERT T1 SELECT 'A', 'aaaaaaaaaa';

INSERT T1 SELECT 'B', 'bbbbbbbbbb';

GO

DBCC IND (AdventureWorks2008, 'T1',-1); -- page 6709

DBCC TRACEON (3604);

DBCC PAGE('AdventureWorks2008', 1, 6709, 1);

OUTPUT ROW:

Slot 0, Offset 0x60, Length 32, DumpStyle BYTE

Record Type = PRIMARY_RECORD

Record Attributes = NULL_BITMAP VERSIONING_INFO

650	 Microsoft SQL Server 2008 Internals

Memory Dump @0x6207C060

00000000: 50000f00 41616161 61616161 61616102 †P...Aaaaaaaaaaa.

00000010: 00fc0000 00000000 0000020d 00000000 †................

I have highlighted the new header information that indicates this row contains versioning
information, and I have also highlighted the 14 bytes of the versioning information. The
XSN is all 0’s in the row because it was not modified as part of a transaction that Snapshot
isolation needs to keep track of. INSERT statements create new data that no snapshot
transaction needs to see. If I update one of these rows, the previous row is written to the
version store and the XSN is reflected in the row versioning information:

UPDATE T1 SET T1name = '2222222222' where T1ID = 'A';

GO

DBCC PAGE('AdventureWorks2008', 1, 6709, 1);

GO

OUTPUT ROW:

Slot 0, Offset 0x60, Length 32, DumpStyle BYTE

Record Type = PRIMARY_RECORD

Record Attributes = NULL_BITMAP VERSIONING_INFO

Memory Dump @0x61C4C060

00000000: 50000f00 41323232 32323232 32323202 †P...A2222222222.

00000010: 00fc1804 00000100 0100590d 00000000 †..........Y.....

As mentioned, if your database is enabled for one of the snapshot-based isolation levels, every
new row has an additional 14 bytes added to it whether or not that row is ever actually involved
in versioning. Every row updated also has the 14 bytes added to it, if they aren’t already part of
the row, and the update is done as a DELETE followed by an INSERT. This means that for tables
and indexes on full pages, a simple UPDATE could result in page splitting.

When a row is deleted in a database enabled for snapshots, a pointer is left on the page as
a ghost record to point to the deleted row in the version store. These ghost records are very
similar to the ones we saw in Chapter 6, “Indexes: Internals and Management,” and they’re
cleaned up as part of the versioning cleanup process, as I discuss shortly. Here’s an example
of a ghost record under versioning:

DELETE T1 WHERE T1ID = 'B';

DBCC PAGE('AdventureWorks2008 ', 1, 6709, 1);

GO

--Partial Results:

Slot 4, Offset 0x153, Length 15, DumpStyle BYTE

Record Type = GHOST_VERSION_RECORD

Record Attributes = VERSIONING_INFO

Memory Dump @0x5C0FC153

00000000: 4ef80300 00010000 00210200 000000††††N........!.....

The record header indicates that this row is a GHOST_VERSION_RECORD and that it contains
versioning information. The actual data, however, is not on the row, but the XSN is, so that
snapshot transactions know when this row was deleted and whether they should access

	 Chapter 10  Transactions and Concurrency	 651

the older version of it in their snapshot. The sys.dm_db_index_physical_stats DMV that was
discussed in Chapter 6 contains the count of ghost records due to versioning (version_
ghost_record_count) and the count of all ghost records (ghost_record_count), which includes
the versioning ghosts. If an update is performed as a DELETE followed by an INSERT (not
in place), both the ghost for the old value and the new value must exist simultaneously,
increasing the space requirements for the object.

If a database is in a snapshot-based isolation level, all changes to both data and index rows must
be versioned. A snapshot query traversing an index still needs access to index rows pointing to
the older (versioned) rows. So in the index levels, we might have old values, as ghosts, existing
simultaneously with the new value, and the indexes can require more storage space.

The extra 14 bytes of versioning information can be removed if the database is changed
to a non-snapshot isolation level. Once the database option is changed, each time a row
containing versioning information is updated, the versioning bytes are removed.

Management of the Version Store
The version store size is managed automatically, and SQL Server maintains a cleanup thread to
make sure versioned rows are not kept around longer than needed. For queries running under
SI, the row versions must be kept until the end of the transaction. For SELECT statements
running under RCSI, a particular row version is not needed once the SELECT statement has
executed and it can be removed.

The regular cleanup function is performed every minute as a background process to reclaim
all reusable space from the version store. If tempdb actually runs out of free space, the cleanup
function is called before SQL Server increases the size of the files. If the disk gets so full that
the files cannot grow, SQL Server stops generating versions. If that happens, a snapshot query
fails if it needs to read a version that was not generated due to space constraints. Although a
full discussion of troubleshooting and monitoring is beyond the scope of this book, I will point
out that SQL Server 2008 includes more than a dozen performance counters to monitor tempdb
and the version store. These include counters to keep track of transactions that use row
versioning. The following counters are contained in the SQLServer:Transactions performance
object. Additional details and additional counters can be found in SQL Server Books Online.

n	 Free Space in tempdb  This counter monitors the amount of free space in the tempdb
database. You can observe this value to detect when tempdb is running out of space,
which might lead to problems keeping all the necessary version rows.

n	 Version Store Size  This counter monitors the size in kilobytes of the version store.
Monitoring this counter can help determine a useful estimate of the additional space
you might need for tempdb.

n	 Version Generation Rate and Version Cleanup Rate  These counters monitor the rate
at which space is acquired and released from the version store, in kilobytes per second.

652	 Microsoft SQL Server 2008 Internals

n	 Update Conflict Ratio  This counter monitors the ratio of update snapshot
transactions that have update conflicts. It is the ratio of the number of conflicts
compared to the total number of update snapshot transactions.

n	 Longest Transaction Running Time  This counter monitors the longest running
time in seconds of any transaction using row versioning. It can be used to determine
whether any transaction is running for an unreasonable amount of time, as well as help
you determine the maximum size needed in tempdb for the version store.

n	 Snapshot Transactions  This counter monitors the total number of active snapshot
transactions.

Snapshot Transaction Metadata
The most important DMVs for observing snapshot transaction behavior are sys.dm_tran_version_
store (which we briefly looked at earlier in this chapter), sys.dm_tran_transactions_snapshot, and
sys.dm_tran_active_snapshot_database_transactions.

All these views contain a column called transaction_sequence_num, which is the XSN that
I mentioned earlier. Each transaction is assigned a monotonically increasing XSN value when
it starts a snapshot read or when it writes data in a snapshot-enabled database. The XSN
is reset to 0 when your SQL Server instance is restarted. Transactions that do not generate
version rows and do not use snapshot scans do not receive an XSN.

Another column, transaction_id, is also used in some of the snapshot transaction metadata.
A transaction ID is a unique identification number assigned to the transaction. It is used
primarily to identify the transaction in locking operations. It can also help you identify which
transactions are involved in snapshot operations. The transaction ID value is incremented for
every transaction across the whole server, including internal system transactions, so whether
or not that transaction is involved in any snapshot operations, the current transaction ID
value is usually much larger than the current XSN.

You can check current transaction number information using the view sys.dm_tran_current_
transaction, which returns a single row containing the following columns:

n	 transaction_id  This value displays the transaction ID of the current transaction. If you
are selecting from the view inside a user-defined transaction, you should continue to
see the same transaction_id every time you select from the view. If you are running a
SELECT from sys.dm_tran_current_transaction outside of transaction, the SELECT itself
generates a new transaction_id value and you see a different value every time you
execute the same SELECT, even in the same connection.

n	 transaction_sequence_num  This value is the XSN of the current transaction, if it has
one. Otherwise, this column returns 0.

n	 transaction_is_snapshot  This value is 1 if the current transaction was started under
SNAPSHOT isolation; otherwise, it is 0. (That is, this column is 1 if the current session
has set TRANSACTION ISOLATION LEVEL to SNAPSHOT explicitly.)

	 Chapter 10  Transactions and Concurrency	 653

n	 first_snapshot_sequence_num  When the current transaction started, it took a
snapshot of all active transactions, and this value is the lowest XSN of the transactions
in the snapshot.

n	 last_transaction_sequence_num  This value is the most recent XSN generated by the
system.

n	 first_useful_sequence_num  This value is an XSN representing the upper bound of
version store rows that can be cleaned up without affecting any transactions. Any rows
with an XSN less than this value are no longer needed.

I now create a simple versioning scenario to illustrate how the values in the snapshot
metadata get updated. This is not a complete overview, but it should get you started in
exploring the versioning metadata for your own queries. I use the AdventureWorks2008
database, which has ALLOW_SNAPSHOT_ISOLATION set to ON, and I create a simple table:

CREATE TABLE t1

(col1 int primary key, col2 int);

GO

INSERT INTO t1 SELECT 1,10;

INSERT INTO t1 SELECT 2,20;

INSERT INTO t1 SELECT 3,30;

We call this session Connection 1. Change the session’s isolation level, start a snapshot
transaction, and examine some of the metadata:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

GO

BEGIN TRAN

SELECT * FROM t1;

GO

select * from sys.dm_tran_current_transaction;

select * from sys.dm_tran_version_store;

select * from sys.dm_tran_transactions_snapshot;

The sys.dm_tran_current_transaction view should show you something like this: the current
transaction does have an XSN, and the transaction is a snapshot transaction. Also, you can
note that the first_useful_sequence_num value is the same as this transaction’s XSN because
no other snapshot transactions are valid now. I refer to this transaction’s XSN as XSN1.

The version store should be empty (unless you’ve done other snapshot tests within the last
minute). Also, sys.dm_tran_transactions_snapshot should be empty, indicating that there were
no snapshot transactions that started when other transactions were in process.

In another connection (Connection 2), run an update and examine some of the metadata for
the current transaction:

BEGIN TRAN

 UPDATE T1 SET col2 = 100

 WHERE col1 = 1;

SELECT * FROM sys.dm_tran_current_transaction;

654	 Microsoft SQL Server 2008 Internals

Note that although this transaction has an XSN because it generates versions, it is not running
in SI, so the transaction_is_snapshot value is 0. I refer to this transaction’s XSN as XSN2.

Now start a third transaction in a Connection 3 to perform another SELECT. (Don’t worry, this
is the last one and we won’t be keeping it around.) It is almost identical to the first, but there
is an important difference in the metadata results:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

GO

BEGIN TRAN

SELECT * FROM t1;

GO

select * from sys.dm_tran_current_transaction;

select * from sys.dm_tran_transactions_snapshot;

In the sys.dm_tran_current_transaction view, you see a new XSN for this transaction (XSN3),
and you see that the value for first_snapshot_sequence_num and first_useful_sequence_num
are both the same as XSN1. In the sys.dm_tran_transactions_snapshot view, you see that this
transaction with XSN3 has two rows, indicating the two transactions that were active when
this one started. Both XSN1 and XSN2 show up in the snapshot_sequence_num column. You
can now either commit or roll back this transaction, and then close the connection.

Go back to Connection 2, where you started the UPDATE, and commit the transaction.

Now let’s go back to the first SELECT transaction in Connection 1 and rerun the SELECT
statement, staying in the same transaction:

SELECT * FROM t1;

Even though the UPDATE in Connection 2 has committed, we still see the original data values
because we are running a snapshot transaction. We can examine the sys.dm_tran_active_
snapshot_database_transactions view with this query:

SELECT transaction_sequence_num, commit_sequence_num,

 is_snapshot, session_id,first_snapshot_sequence_num,

 max_version_chain_traversed, elapsed_time_seconds

FROM sys.dm_tran_active_snapshot_database_transactions;

I am not showing you the output here because it is too wide for the page, but there are
many columns that you should find interesting. In particular, the transaction_sequence_num
column contains XSN1, which is the XSN for the current connection. You could actually run
the preceding query from any connection; it shows all active snapshot transactions in the
SQL Server instance, and because it includes the session_id, you can join it to sys.dm_exec_
sessions to get information about the connection that is running the transaction:

SELECT transaction_sequence_num, commit_sequence_num,

 is_snapshot, t.session_id,first_snapshot_sequence_num,

 max_version_chain_traversed, elapsed_time_seconds,

 host_name, login_name, transaction_isolation_level

	 Chapter 10  Transactions and Concurrency	 655

FROM sys.dm_tran_active_snapshot_database_transactions t

 JOIN sys.dm_exec_sessions s

 ON t.session_id = s.session_id;

Another value to note is in the column called max_version_chain_traversed. Although now
it should be 1, we can change that. Go back to Connection 2 and run another UPDATE
statement. Even though the BEGIN TRAN and COMMIT TRAN are not necessary for a single
statement transaction, I am including them to make it clear that this transaction is complete:

BEGIN TRAN

 UPDATE T1 SET col2 = 300

 WHERE col1 = 1;

COMMIT TRAN;

Examine the version store if desired, to see rows being added:

SELECT *

 FROM sys.dm_tran_version_store;

When you go back to Connection 1 and run the same SELECT inside the original transaction
and look again at the max_version_chain_traversed column in sys.dm_tran_active_snapshot_
database_transactions, you should see that the number keeps growing. Repeated UPDATE
operations, either in Connection 2 or a new connection, cause the max_version_chain_traversed
value to just keep increasing, as long as Connection 1 stays in the same transaction. Keep this
in mind as an added cost of using Snapshot isolation. As you perform more updates on data
needed by snapshot transactions, your read operations take longer because SQL Server must
traverse a longer version chain to get the data needed by your transactions.

This is just the tip of the iceberg regarding how the snapshot and transaction metadata can
be used to examine the behavior of your snapshot transactions.

Choosing a Concurrency Model
Pessimistic concurrency is the default in SQL Server 2008 and was the only choice in all versions
of SQL Server prior to SQL Server 2005. Transactional behavior is guaranteed by locking, at
the cost of greater blocking. When accessing the same data resources, readers can block
writers and writers can block readers. Because SQL Server was initially designed and built to
use pessimistic concurrency, you should consider using that model unless you can verify that
optimistic concurrency really will work better for you and your applications. If you find that the
cost of blocking is becoming excessive you can consider using optimistic concurrency.

In most situations, RCSI is recommended over Snapshot isolation for several reasons:

n	 RCSI consumes less tempdb space than SI.

n	 RCSI works with distributed transactions; SI does not.

n	 RCSI does not produce update conflicts.

656	 Microsoft SQL Server 2008 Internals

n	 RCSI does not require any change in your applications. All that is needed is one
change to the database options. Any of your applications written using the default Read
Committed isolation level automatically uses RCSI after making the change at the
database level.

You can consider using SI in the following situations:

n	 The probability is low that any of your transactions have to be rolled back because of
an update conflict.

n	 You have reports that need to be generated based on long-running, multistatement
queries that must have point-in-time consistency. Snapshot isolation provides the benefit
of repeatable reads without being blocked by concurrent modification operations.

Optimistic concurrency does have benefits, but you must also be aware of the costs. To
summarize the benefits:

n	 SELECT operations do not acquire shared locks, so readers and writers do not block
each other.

n	 All SELECT operations retrieve a consistent snapshot of the data.

n	 The total number of locks needed is greatly reduced compared to pessimistic
concurrency, so less system overhead is used.

n	 SQL Server needs to perform fewer lock escalations.

n	 Deadlocks are less likely to occur.

Now let’s summarize the other side. When weighing your concurrency options, you must
consider the cost of the snapshot-based isolation levels:

n	 SELECT performance can be affected negatively when long-version chains must be
scanned. The older the snapshot, the more time it takes to access the required row in
an SI transaction.

n	 Row versioning requires additional resources in tempdb.

n	 Whenever either of the snapshot-based isolation levels are enabled for a database,
UPDATE and DELETE operations must generate row versions. (Although I mentioned
earlier that INSERT operations do not generate row versions, there are some cases
where they might. In particular, if you insert a row into a table with a unique index, if
there was an older version of the row with the same key value as the new row and that
old row still exists as a ghost, your new row generates a version.)

n	 Row versioning information increases the size of every affected row by 14 bytes.

n	 UPDATE performance might be slower due to the work involved in maintaining the row
versions.

	 Chapter 10  Transactions and Concurrency	 657

n	 UPDATE operations using SI might have to be rolled back because of conflict detection.
Your applications must be programmed to deal with any conflicts that occur.

n	 The space in tempdb must be carefully managed. If there are very long-running
transactions, all the versions generated by update transactions during the time must be
kept in tempdb. If tempdb runs out of space, UPDATE operations won’t fail, but SELECT
operations that need to read versioned data might fail.

To maintain a production system using SI, you should allocate enough disk space for
tempdb so that there is always at least 10 percent free space. If the free space falls below this
threshold, system performance might suffer because SQL Server expends more resources
trying to reclaim space in the version store. The following formula can give you a rough
estimate of the size required by version store. For long-running transactions, it might be
useful to monitor the generation and cleanup rate using Performance Monitor, to estimate
the maximum size needed:

[size of common version store] =

2 * [version store data generated per minute]

* [longest running time (minutes) of the transaction]

Controlling Locking
The SQL Server Query Optimizer usually chooses the correct type of lock and the lock
mode. You should override this behavior only if thorough testing has shown that a different
approach is preferable. Keep in mind that by setting an isolation level, you have an impact
on the locks that held, the conflicts that cause blocking, and the duration of your locks. Your
isolation level is in effect for an entire session, and you should choose the one that provides
the data consistency required by your application. Table-level locking hints can be used to
change the default locking behavior only when necessary. Disallowing a locking level can
adversely affect concurrency.

Lock Hints
T-SQL syntax allows you to specify locking hints for individual tables when they are
referenced in SELECT, INSERT, UPDATE, and DELETE statements. The hints tell SQL Server the
type of locking or row versioning to use for a particular table in a particular query. Because
these hints are specified in a FROM clause, they are called table-level hints. SQL Server
Books Online lists other table-level hints besides locking hints, but the vast majority of them
affect locking behavior. They should be used only when you absolutely need finer control
over locking at the object level than what is provided by your session’s isolation level. The SQL
Server locking hints can override the current transaction isolation level for the session. In this
section, I will mention only some of the locking hints that you might need to obtain the desired
concurrency behavior.

658	 Microsoft SQL Server 2008 Internals

Many of the locking hints work only in the context of a transaction. However, every INSERT,
UPDATE, and DELETE statement is automatically in a transaction, so the only concern is when
you use a locking hint with a SELECT statement. To get the benefit of most of the following hints
when used in a SELECT query, you must use an explicit transaction, starting with BEGIN TRAN and
terminating with either COMMIT TRAN or ROLLBACK TRAN. The lock hint syntax is as follows:

SELECT select_list

FROM object [WITH (locking hint)]

DELETE [FROM] object [WITH (locking hint)

[WHERE <search conditions>]

UDPATE object [WITH (locking hint)

SET <set_clause>

[WHERE <search conditions>]

INSERT [INTO] object [WITH (locking hint)

<insert specification>

Tip  Not all the locking hints require the keyword WITH, but the syntax without WITH will go
away in a future version of SQL Server. It is recommended that all hints be specified using WITH.

You can specify one of the following keywords for the locking hint:

n	 HOLDLOCK  This hint is equivalent to the SERIALIZABLE hint. Using this hint is similar
to specifying SET TRANSACTION ISOLATION LEVEL SERIALIZABLE, except that the SET
option affects all tables, not only the one specified in this hint.

n	 UPDLOCK  This hint forces SQL Server to take update locks instead of shared locks
while reading the table and holds them until the end of the transaction. Taking update
locks can be an important technique for eliminating conversion deadlocks.

n	 TABLOCK  This hint forces SQL Server to take a shared lock on the table even if page
locks would be taken otherwise. This hint is useful when you know you escalate to a
table lock or if you need to get a complete snapshot of a table. You can use this hint
with HOLDLOCK if you want the table lock held until the end of the transaction block
to operate in Repeatable Read isolation. If you use this hint with a DELETE statement on
a heap, it allows SQL Server to deallocate the pages as the rows are deleted. (If row or
page locks are obtained when deleting from a heap, space will not be deallocated and
cannot be reused by other objects.)

n	 PAGLOCK  This hint forces SQL Server to take shared page locks when a single shared
table lock might otherwise be taken. (To request an exclusive page lock, you must use
the XLOCK hint along with the PAGLOCK hint.)

n	 TABLOCKX  This hint forces SQL Server to take an exclusive lock on the table that is
held until the end of the transaction block. (All exclusive locks are held until the end of

	 Chapter 10  Transactions and Concurrency	 659

a transaction, regardless of the isolation level in effect. This hint has the same effect as
specifying both the TABLOCK and the XLOCK hints together.)

n	 ROWLOCK  This hint specifies that a shared row lock should be taken when a single
shared page or table lock is normally taken.

n	 READUNCOMMITTED | REPEATABLEREAD | SERIALIZABLE  These hints specify that SQL
Server should use the same locking mechanisms as when the transaction isolation level is
set to the level of the same name. However, the hint controls locking for a single table in a
single statement, as opposed to locking all tables in all statements in a transaction.

n	 READCOMMITTED  This hint specifies that SELECT operations comply with the rules
for the Read Committed isolation level by using either locking or row versioning. If the
database option READ_COMMITTED_SNAPSHOT is OFF, SQL Server uses shared locks
and releases them as soon as the read operation is completed. If the database option
READ_COMMITTED_SNAPSHOT is ON, SQL Server does not acquire locks and uses row
versioning.

n	 READCOMMITTEDLOCK  This hint specifies that SELECT statements use the locking
version of Read Committed isolation (the SQL Server default). No matter what the
setting is for the database option READ_COMMITTED_SNAPSHOT, SQL Server acquires
shared locks when it reads the data and releases those locks when the read operation is
completed.

n	 NOLOCK  This hint allows uncommitted, or dirty, reads. Shared locks are not
requested so that the statement does not block when reading data that is holding
exclusive locks. In other words, no locking conflict is detected. This hint is equivalent to
READUNCOMMITTED.

n	 READPAST  This hint specifies that locked rows are skipped (read past). READPAST
applies only to transactions operating at the READ COMMITTED isolation level and
reads past row-level locks only.

n	 XLOCK  This hint specifies that SQL Server should take an exclusive lock that is held
until the end of the transaction on all data processed by the statement. This lock can be
specified with either PAGLOCK or TABLOCK, in which case the exclusive lock applies to
the specified resource.

Setting a Lock Timeout
Setting a LOCK_TIMEOUT also lets you control SQL Server locking behavior. By default, SQL
Server does not time out when waiting for a lock; it assumes optimistically that the lock
will be released eventually. Most client programming interfaces allow you to set a general
timeout limit for the connection so a query is canceled by the client automatically if no
response comes back after a specified amount of time. However, the message that comes
back when the time period is exceeded does not indicate the cause of the cancellation; it
could be because of a lock not being released, it could be because of a slow network, or it
could just be a long-running query.

660	 Microsoft SQL Server 2008 Internals

Like other SET options, SET LOCK_TIMEOUT is valid only for your current connection. Its
value is expressed in milliseconds and can be accessed by using the system function
@@LOCK_TIMEOUT. This example sets the LOCK_TIMEOUT value to five seconds and then
retrieves that value for display:

SET LOCK_TIMEOUT 5000;

SELECT @@LOCK_TIMEOUT;

If your connection exceeds the lock timeout value, you receive the following error message:

Server: Msg 1222, Level 16, State 50, Line 1

Lock request time out period exceeded.

Setting the LOCK_TIMEOUT value to 0 means that SQL Server does not wait at all for locks.
It basically cancels the entire statement and goes on to the next one in the batch. This is not
the same as the READPAST hint, which skips individual rows.

The following example illustrates the difference between READPAST, READUNCOMMITTED,
and setting LOCK_TIMEOUT to 0. All these techniques let you avoid blocking problems,
but the behavior is slightly different in each case.

	 1.	 In a new query window, execute the following batch to lock one row in the
HumanResources.Department table:

USE AdventureWorks2008;

BEGIN TRAN;

UPDATE HumanResources.Department

SET ModifiedDate = getdate()

WHERE DepartmentID = 1;

	 2.	 Open a second connection, and execute the following statements:

USE AdventureWorks2008;

SET LOCK_TIMEOUT 0;

SELECT * FROM HumanResources.Department;

SELECT * FROM Sales.SalesPerson;

Notice that after error 1222 is received, the second SELECT statement is executed,
returning all 17 rows from the SalesPerson table. The batch is not cancelled when error
1222 is encountered.

Warning  Not only is a batch not cancelled when a lock timeout error is encountered,
but any active transaction will not be rolled back. If you have two UPDATE statements in a
transaction and both must succeed if either succeeds, a lock timeout for one of the UPDATE
statements will still allow the other statement to be processed. You must include error
handling in your batch to take appropriate action in the event of an error 1222.

	 Chapter 10  Transactions and Concurrency	 661

	 3.	 Open a third connection, and execute the following statements:

USE AdventureWorks2008 ;

SELECT * FROM HumanResources.Department (READPAST);

SELECT * FROM Sales.SalesPerson;

SQL Server skips (reads past) only one row, and the remaining 15 rows of Department
are returned, followed by all the SalesPerson rows. The READPAST hint is frequently
used in conjunction with a TOP clause, in particular TOP 1, where your table is serving
as a work queue. Your SELECT must get a row containing an order to be processed, but
it really doesn’t matter which row. So SELECT TOP 1 * FROM <OrderTable> returns the
first unlocked row, and you can use that as the row to start processing.

	 4.	 Open a fourth connection, and execute the following statements:

USE AdventureWorks2008 ;

SELECT * FROM HumanResources.Department (READUNCOMMITTED);

SELECT * FROM Sales.SalesPerson;

In this case, SQL Server does not skip anything. It reads all 16 rows from Department,
but the row for Department 1 shows the dirty data that you changed in step 1. This
data has not yet been committed and is subject to being rolled back.

The READUNCOMMITTED hint is probably the least useful because of the availability of
row versioning. In fact, anytime you find yourself needing to use this hint, or the equivalent
NOLOCK, you should consider whether you can actually afford the cost of one of the
snapshot-based isolation levels.

Summary
SQL Server lets you manage multiple users simultaneously and ensure that transactions
observe the properties of the chosen isolation level. Locking guards data and the internal
resources that make it possible for a multiuser system to operate like a single-user system.
You can choose to have your databases and applications use either optimistic or pessimistic
concurrency control. With pessimistic concurrency, the locks acquired by data modification
operations block users trying to retrieve data. With optimistic concurrency, the locks are
ignored and older committed versions of the data are read instead. In this chapter, we looked
at the locking mechanisms in SQL Server, including full locking for data and leaf-level index
pages and lightweight locking mechanisms for internally used resources. We also looked at
the details of how optimistic concurrency avoids blocking on locks and still has access to data.

It is important to understand the issues of lock compatibility and escalation if you want to
design and implement high-concurrency applications. You also need to understand the costs
and benefits of the two concurrency models.

	Cover

	Table of Contents

	Chapter 10: Transactions and Currency

	Concurrency Models
	Pessimistic Concurrency
	Optimistic Concurrency

	Transaction Processing
	ACID Properties
	Transaction Dependencies
	Isolation Levels

	Locking
	Locking Basics
	Spinlocks
	Lock Types for User Data
	Lock Modes
	Lock Granularity
	Lock Duration
	Lock Ownership
	Viewing Locks
	Locking Examples

	Lock Compatibility
	Internal Locking Architecture
	Lock Partitioning
	Lock Blocks
	Lock Owner Blocks
	syslockinfo Table

	Row-Level Locking vs. Page-Level Locking
	Lock Escalation
	Deadlocks

	Row Versioning
	Overview of Row Versioning
	Row Versioning Details
	Snapshot-Based Isolation Levels
	Choosing a Concurrency Model

	Controlling Locking
	Lock Hints

	Summary

