Microsoft

Microsoft SQL Server 2008 . ® ®
T-S0L gﬂ(;ggo_ls_?;‘g LSQL Server
Fundamentals

Fundamentals

[tzik Ben-Gan

Itzik Ben-Gan
(Solid Quality Mentors)

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/12806.aspx

Microsoft
9780735626010 Press

© 2009 Itzik Ben-Gan. All rights reserved.

Table of Contents

Acknowledgments.ttt e e xiii
Introduction i e XV
1 Background to T-SQL Querying and Programming............ 1
Theoretical Background 1

1 O 2

SEt ThEOTY . .\t 3

Predicate LOGIC.o 4

The Relational Model 5
TheDataLife Cycle ... 10

SQL Server Architecture 12
SQLServerInstances.o e 13

Databases 14

Schemas and Objects 17

Creating Tables and Defining Data Integrity............................. 18
Creating Tables. 19

Defining Data Integrity. ... 20
CONCIUSION. .« .o 24

2 Single-Table Queries. ...ttt 25
Elements of the SELECT Statement........... i .. 25

The FROM Clause.o e 27

The WHERE Clause. e 29

The GROUP BY Clause.t 30

The HAVING Clause. e 34

The SELECT Clause.ottt e e 35

The ORDERBY Clause e 40

The TOP Option . .. 42

The OVER Clause e 45

Predicates and Operators.ttt 51

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

CASE EXPIrESSIONS .« o vttt ettt e et e e e e e 54
NULLS . ot 58
All-At-Once Operations. 62
Working with Character Data. 63
Data Types.o 64
Collation ... 65
Operators and Functions i, 66

The LIKE Predicate. e 73
Working with Dateand Time Data 75
Date and Time Data Typeso oo 75
Literals 76
Working with Date and Time Separately........................... 80
Filtering Date Rangeso 81

Date and Time Functionso 82
Querying Metadata. 89
Catalog VIeWsS. 89
Information Schema Views. i i 90
System Stored Procedures and Functions 90
CoNCIUSION . . .o 92
EXOICISES. o oottt 92
SOIULIONS . .o 96
3 JOINS i e e e e 101
CrOSS JOINS .« ot 102
ANSI SQL-92 SYNTaX. . .. vv vt et 102
ANSISQL-89 SYNtax.vvv ettt 103

Self Cross JOINSttt 103
Producing Tables of Numbers............. 104

INNEr JOINS . o oo 106
ANSI SQL-92 SYNtaX. . ..o vttt e 106
ANSISQL-89 SYNtax.vvv ettt 107
InnerJoin Safety. 108
Further Join Examples. 109
ComMPOSItE JOINS . . .ot 109
Non-EquiJoins. 110
Multi-Table Joinso 112
OULEr JOINS o 113
Fundamentals of Outer Joins. o L. 113

Beyond the Fundamentals of Outer Joins......................... 116

Table of Contents ix

CONCIUSION. .« .ot 123
EXEICISES. o oo 123
SOIULIONS . e 129
4 SubqUENIES.t e e 133
Self-Contained Subqueries. 134
Self-Contained Scalar Subquery Examples 134
Self-Contained Multi-Valued Subquery
EXamples 136
Correlated Subqueries. 140
The EXISTS Predicate. e 142
Beyond the Fundamentals of Subqueries 144
Returning Previous or Next Values. 144
Running Aggregates 145
Misbehaving Subqueries. 146
CONCIUSION. .« .o 151
EXercises. 152
SOIULIONS . e 156
5 Table Expressionsoiuiiiiiiiiniiiiiiin... 161
Derived Tables 161
Assigning Column Ali@ases.t 163
UsSiNg Argumentsottt 165
NESTING .« .o 165
Multiple References. 166
Common Table EXpressions 167
Assigning Column AlI@ses.t 168
USiNg Argumentsottt 168
Defining Multiple CTESo 169
Multiple References. 169
Recursive CTES o e 170
VWS L 172
Views and the ORDERBY Clause. i, 174
View OptioNs ... 176
Inline Table-Valued Functions 179
The APPLY OPeratorttt e 181
CONCIUSION. .« .o 184
EXEICISES oo 184

SOIULIONS . 189

X Table of Contents

6 SetOperations.............ccoiiiiiiiiiiiiiniinnnnnnnn. 193
The UNION Set Operation i 194
The UNION ALL Set Operation 195

The UNION DISTINCT Set Operation. ..., 195

The INTERSECT Set Operationooiiiiiiiiiiiieaeeann. 196
The INTERSECT DISTINCT Set Operation. ..., 197

The INTERSECT ALL Set Operation, 198

The EXCEPT Set Operationt 200
The EXCEPT DISTINCT Set Operation., 201

The EXCEPT ALL Set Operation.......... ..., 202
Precedenceo 203
Circumventing Unsupported Logical Phases............................ 204
CONCIUSION. .« .o 206
EXEICISES. .« o e 206
SOIULIONS . .o 210
7 Pivot, Unpivot, and Grouping Sets. 213
Pivoting Data 213
Pivoting with Standard SQL i i i i 216
Pivoting with the Native T-SQL PIVOT Operator 217
Unpivoting Data. 219
Unpivoting with Standard SQL oo i i i 220
Unpivoting with the Native T-SQL UNPIVOT Operator.............. 223
GroUPING SetS. ..t 224
The GROUPING SETS Subclause, 225

The CUBE Subclause 226

The ROLLUP Subclause s 227

The GROUPING and GROUPING_ID Functions. 228
CoNCIUSION. . .o 231
EXEICISES. « oo 231
SOIULIONS . .o 234
8 Data Modification............. i, 237
Inserting Data. 237
The INSERT VALUES Statemento, 238

The INSERT SELECT Statement. 239

The INSERT EXEC Statement i, 240

The SELECT INTO Statement 241

The BULK INSERT Statement ..o, 242

The IDENTITY Property. ... 243

Table of Contents xi

Deleting Datao 247
The DELETE Statement e 247

The TRUNCATE Statementt 248
DELETE Based 0n@aJoin ...t 249
Updating Datat 250
The UPDATE Statement.t 250
UPDATE Based ona Join. 252
Assignment UPDATE e 254
Merging Data 255
Modifying Data Through Table Expressionscoovu... 259
Modifications with the TOP Option, 262
The OUTPUT Clause.ottt ettt 263
INSERT with OUTPUT. e 264
DELETE with OUTPUT ... e 266
UPDATE with OUTPUT. ... 266
MERGE with OUTPUT e 267
Composable DML 268
CONCIUSION. .. et 270
EXErCISES. o oo 270
SOIULIONS .. 274
9 Transactions and CoNcurrencycoveieunennenns 279
Transactions. 279
Locksand Blocking 282
LOCKS o 282
Troubleshooting Blocking. i 285
[solation Levels 292
The READ UNCOMMITTED Isolation Level 293

The READ COMMITTED Isolation Level 294

The REPEATABLE READ Isolation Level............................ 295

The SERIALIZABLE Isolation Level 297
Snapshot Isolation Levels 299
Summary of Isolation Levels o i 305
Deadlocks 306
CONCIUSION. .« .. 309
EXErCiSeS. . oot 309
10 ProgrammableObjects il 319
Variables. 319

Batches. 322

xii Table of Contents

ABatchasaUnitof Parsing................ i, 322
Batches and Variables 323
Statements That Cannot Be Combined in the Same Batch........... 324

A Batch as a Unit of Resolution.......... i 324

The GO N OPtioN . ..o 325

Flow Elements.o o 325
The IF ... ELSE Flow Element, 325

The WHILE Flow Element 327

An Example of Using IFand WHILE 329
CUISOS . et e 329
Temporary Tables. 333
Local Temporary Tables 334
Global Temporary Tables 335
Table Variables 336
Table Types . ..o 337
Dynamic SQL. . .. o 338
The EXEC Commando 339

The sp_executesql Stored Procedure 341
Using PIVOT with Dynamic SQL i, 343
ROULINES . . .o 344
User-Defined Functions, 345
Stored Procedurest 346
Lo o =T 349

Error Handlingo 353
CONCIUSION. .« .o 357
Appendix A: Getting Started 359
INdEX oo e e 379

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Chapter 3
Joins

CrOSS JOINS .ottt it e e e e e e e 102
INNErJOINS . o i i i e i e e e e e 106
Further Join Examples i e 109
L@ 10 =] o o 11 T3P 113
(o] 3 Vol U1 o T o NP 123
o8] o 1 =T3P 123
SOlUtIONS . . o e e e e e 129

The FROM clause of a query is the first clause to be logically processed, and within the FROM
clause table operators operate on input tables. Microsoft SQL Server 2008 supports four table
operators—JOIN, APPLY, PIVOT, and UNPIVOT. The JOIN table operator is standard, while APPLY,
PIVOT, and UNPIVOT are T-SQL extensions to the standard. These last three were introduced

in SQL Server 2005. Each table operator acts on tables provided to it as input, applies a set of
logical query processing phases, and returns a table result. This chapter focuses on the JOIN
table operator. The APPLY operator will be covered in Chapter 5, “Table Expressions,” and the
PIVOT and UNPIVOT operators will be covered in Chapter 7, “Pivot, Unpivot, and Grouping Sets.”

A JOIN table operator operates on two input tables. The three fundamental types of joins
are cross, inner, and outer. The three types of joins differ in how they apply their logical
query processing phases; each type applies a different set of phases. A cross join applies only
one phase—Cartesian Product. An inner join applies two phases—Cartesian Product and
Filter. An outer join applies three phases—Cartesian Product, Filter, and Add Outer Rows.
This chapter explains each of the join types and the phases involved in detail.

Logical query processing describes a generic series of logical steps that for any given query
produces the correct result, while physical query processing is the way the query is processed
by the RDBMS engine in practice. Some phases of logical query processing of joins may
sound inefficient, but the physical implementation may be optimized. It's important to stress
the term logical in logical query processing. The steps in the process apply operations to the
input tables based on relational algebra. The database engine does not have to follow logical
query processing phases literally as long as it can guarantee that the result that it produces
is the same as dictated by logical query processing. The SQL Server relational engine often
applies many shortcuts for optimization purposes when it knows that it can still produce the
correct result. Even though this book’s focus is to understand the logical aspects of querying,
| want to stress this point to avoid any misunderstanding and confusion.

101

102

Microsoft SQL Server 2008 T-SQL Fundamentals

Cross Joins

Logically, a cross join is the simplest type of join. A cross join implements only one logical
query processing phase—a Cartesian Product. This phase operates on the two tables provided
as inputs to the join, and produces a Cartesian product of the two. That is, each row from one
input is matched with all rows from the other. So if you have m rows in one table and n rows
in the other, you get m x n rows in the result.

SQL Server supports two standard syntaxes for cross joins—the ANSI SQL-92 and ANSI SQL-89
syntaxes. | recommend that you use the ANSI-SQL 92 syntax for reasons that I'll describe shortly.
Therefore, ANSI-SQL 92 syntax is the main syntax that | use throughout the book. For the sake
of completeness, | describe both syntaxes in this section.

ANSI SQL-92 Syntax

The following query applies a cross join between the Customers and Employees tables (using
the ANSI SQL-92 syntax) in the TSQLFundamentals2008 database, and returns the custid and
empid attributes in the result set:

USE TSQLFundamentals2008;

SELECT C.custid, E.empid
FROM Sales.Customers AS C
CROSS JOIN HR.Employees AS E;

Because there are 91 rows in the Customers table and 9 rows in the Employees table, this
query produces a result set with 819 rows, as shown here in abbreviated form:

custid empid
1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9

(819 row(s) affected)

Chapter 3 Joins 103

Using the ANSI SQL-92 syntax, you specify the CROSS JOIN keywords between the two tables
involved in the join.

Notice that in the FROM clause of the preceding query, | assigned the aliases C and E to the
Customers and Employees tables, respectively. The result set produced by the cross join is

a virtual table with attributes that originate from both sides of the join. Because | assigned
aliases to the source tables, the names of the columns in the virtual table are prefixed by the
table aliases (for example, C.custid, E.empid). If you do not assign aliases to the tables in the
FROM clause, the names of the columns in the virtual table are prefixed by the full source
table names (for example, Customers.custid, Employees.empid). The purpose of the prefixes
is to enable the identification of columns in an unambiguous manner when the same column
name appears in both tables. The aliases of the tables are assigned for brevity. Note that

you are required to use column prefixes only when referring to ambiguous column names
(column names that appear in more than one table); in unambiguous cases column prefixes
are optional. However, some people find it a good practice to always use column prefixes for
the sake of clarity. Also note that if you assign an alias to a table, it is invalid to use the full
table name as a column prefix; in ambiguous cases you have to use the table alias as a prefix.

ANSI SQL-89 Syntax

SQL Server also supports an older syntax for cross joins that was introduced in ANSI SQL-89.
In this syntax you simply specify a comma between the table names like so:

SELECT C.custid, E.empid
FROM Sales.Customers AS C, HR.Employees AS E;

There is no logical or performance difference between the two syntaxes. Both syntaxes are
integral parts of the latest SQL standard (ANSI SQL:2006 at the time of this writing), and
both are fully supported by the latest version of SQL Server (SQL Server 2008 at the time of
this writing). | am not aware of any plans to deprecate the older syntax, and | don't see any
reason to do so while it's an integral part of the standard. However, | recommend using the
ANSI SQL-92 syntax for reasons that will become clear after inner joins are explained.

Self Cross Joins

You can join multiple instances of the same table. This capability is known as self-join and
is supported with all fundamental join types (cross, inner, and outer). For example, the
following query performs a self cross join between two instances of the Employees table:

SELECT
El.empid, El.firstname, El.Tlastname,
E2.empid, E2.firstname, E2.lastname
FROM HR.Employees AS E1
CROSS JOIN HR.Employees AS E2;

104 Microsoft SQL Server 2008 T-SQL Fundamentals

This query produces all possible combinations of pairs of employees. Because the Employees
table has 9 rows, this query returns 81 rows, shown here in abbreviated form:

empid firstname Tastname empid firstname Tastname
1 Sara Davis 1 Sara Davis
2 Don Funk 1 Sara Davis
3 Judy Lew 1 Sara Davis
4 Yael Peled 1 Sara Davis
5 Sven Buck 1 Sara Davis
6 Paul Suurs 1 Sara Davis
7 Russell King 1 Sara Davis
8 Maria Cameron 1 Sara Davis
9 Zoya Dolgopyatova 1 Sara Davis
1 Sara Davis 2 Don Funk
2 Don Funk 2 Don Funk
3 Judy Lew 2 Don Funk
4 Yael Peled 2 Don Funk
5 Sven Buck 2 Don Funk
6 Paul Suurs 2 Don Funk
7 Russell King 2 Don Funk
8 Maria Cameron 2 Don Funk
9 Zoya Dolgopyatova 2 Don Funk

(81 row(s) affected)

In a self-join, aliasing tables is not optional. Without table aliases, all column names in the
result of the join would be ambiguous.

Producing Tables of Numbers

One situation in which cross joins can be very handy is when they are used to produce a
result set with a sequence of integers (1, 2, 3, and so on). Such a sequence of numbers is an
extremely powerful tool that | use for many purposes. Using cross joins you can produce the
sequence of integers in a very efficient manner.

You can start by creating a table called Digits with a column called digit, and populate the
table with 10 rows with the digits 0 through 9. Run the following code to create the Digits
table in the tempdb database (for test purposes) and populate it with the 10 digits:

USE tempdb;
IF OBJECT_ID('dbo.Digits', 'U') IS NOT NULL DROP TABLE dbo.Digits;
CREATE TABLE dbo.Digits(digit INT NOT NULL PRIMARY KEY);

INSERT INTO dbo.Digits(digit)
VALUES (0), (1),(2),(3),(4),(5),(6),(7),(8),(9);

/%
Note:
Above INSERT syntax is new in Microsoft SQL Server 2008.

Chapter 3 Joins 105

In earlier versions use:

INSERT INTO dbo.Digits(digit) VALUES(O);
INSERT INTO dbo.Digits(digit) VALUES(L);
INSERT INTO dbo.Digits(digit) VALUES(2);
INSERT INTO dbo.Digits(digit) VALUES(3);
INSERT INTO dbo.Digits(digit) VALUES(4);
INSERT INTO dbo.Digits(digit) VALUES(5);
INSERT INTO dbo.Digits(digit) VALUES(6);
INSERT INTO dbo.Digits(digit) VALUES(7);
INSERT INTO dbo.Digits(digit) VALUES(8);
INSERT INTO dbo.Digits(digit) VALUES(9);
*/

SELECT digit FROM dbo.Digits;

This code uses a couple of syntax elements for the first time in this book, so I'll briefly explain
them. Any text residing within a block starting with /* and ending with */ is treated as a block
comment and is ignored by SQL Server. This code also uses an INSERT statement to populate
the Digits table. If you're not familiar with the syntax of the INSERT statement, see Chapter 8,
"Data Modification,” for details. Note, however, that this code uses new syntax that was
introduced in SQL Server 2008 for the INSERT VALUES statement, allowing a single statement
to insert multiple rows. A block comment embedded in the code explains that in earlier
versions you need to use a separate INSERT VALUES statement for each row.

The contents of the Digits table are shown here:

O 0NV A WN RO

Suppose you need to write a query that produces a sequence of integers in the range 1 through
1,000. You can cross three instances of the Digits table, each representing a different power of
10 (1, 10, 100). By crossing three instances of the same table, each instance with 10 rows, you get
a result set with 1,000 rows. To produce the actual number, multiply the digit from each instance
by the power of 10 it represents, sum the results, and add 1. Here's the complete query:

SELECT D3.digit * 100 + D2.digit * 10 + D1l.digit + 1 AS n
FROM dbo.Digits AS D1

CROSS JOIN dbo.Digits AS D2

CROSS JOIN dbo.Digits AS D3
ORDER BY n;

106

Microsoft SQL Server 2008 T-SQL Fundamentals

This query returns the following output, shown here in abbreviated form:

O 00NV A WN B

=
o

998
999
1000

(1000 row(s) affected)
This was just an example producing a sequence of 1,000 integers. If you need more, you can

add more instances of the Digits table to the query. For example, if you need to produce a
sequence of 1,000,000 rows, you would need to join six instances.

Inner Joins

An inner join applies two logical query processing phases—it applies a Cartesian product between
the two input tables like a cross join, and then it filters rows based on a predicate that you specify.
Like cross joins, inner joins have two standard syntaxes: ANSI SQL-92 and ANSI SQL-89.

ANSI SQL-92 Syntax

Using the ANSI SQL-92 syntax, you specify the INNER JOIN keywords between the table
names. The INNER keyword is optional because an inner join is the default, so you can
specify the JOIN keyword alone. You specify the predicate that is used to filter rows in a
designated clause called ON. This predicate is also known as the join condition.

For example, the following query performs an inner join between the Employees and Orders
tables in the TSQLFundamentals2008 database, matching employees and orders based on
the predicate E.empid = O.empid:

USE TSQLFundamentals2008;

SELECT E.empid, E.firstname, E.lastname, O.orderid
FROM HR.Employees AS E
JOIN Sales.Orders AS O
ON E.empid = O.empid;

Chapter 3 Joins 107

This query produces the following result set, shown here in abbreviated form:

empid firstname Tastname orderid
1 Sara Davis 10258
1 Sara Davis 10270
1 Sara Davis 10275
1 Sara Davis 10285
1 Sara Davis 10292
2 Don Funk 10265
2 Don Funk 10277
2 Don Funk 10280
2 Don Funk 10295
2 Don Funk 10300

(830 row(s) affected)

For most people the easiest way to think of such an inner join is as matching each employee
row to all order rows that have the same employee ID as the employee’s employee ID. This is a
simplified way to think of the join. The more formal way to think of the join based on relational
algebra is that first the join performs a Cartesian product of the two tables (9 employee

rows x 830 order rows = 7,470 rows), and then filters rows based on the predicate E.empid =
O.empid, eventually returning 830 rows. As mentioned earlier, that's just the logical way the
join is processed; in practice, physical processing of the query by the database engine can be
different.

Recall the discussion from previous chapters about the three-valued predicate logic used

by SQL. Like with the WHERE and HAVING clauses, the ON clause also returns only rows for
which the predicate returns TRUE, and does not return rows for which the predicate evaluates
to FALSE or UNKNOWN.

In the TSQLFundamentals2008 database all employees have related orders, so all employees
show up in the output. However, had there been employees with no related orders, they
would have been filtered out by the filter phase.

ANSI SQL-89 Syntax

Similar to cross joins, inner joins can be expressed using the ANSI SQL-89 syntax. You specify
a comma between the table names just like in a cross join, and specify the join condition in
the query’s WHERE clause, like so:

SELECT E.empid, E.firstname, E.lastname, O.orderid
FROM HR.Employees AS E, Sales.Orders AS O
WHERE E.empid = O.empid;

Note that the ANSI SQL-89 syntax has no ON clause.

108

Microsoft SQL Server 2008 T-SQL Fundamentals

Again, both syntaxes are standard, fully supported by SQL Server, and interpreted the
same by the engine, so you shouldn’t expect any performance difference between the two.
But one syntax is safer, as explained in the next section.

Inner Join Safety

| strongly recommend that you stick to the ANSI SQL-92 join syntax because it is safer in
several ways. Say you intend to write an inner join query, and by mistake forget to specify
the join condition. With the ANSI SQL-92 syntax the query becomes invalid and the parser
generates an error. For example, try to run the following code:

SELECT E.empid, E.firstname, E.lastname, O.orderid
FROM HR.Employees AS E
JOIN Sales.Orders AS 0;

You get the following error:

Msg 102, Level 15, State 1, Line 3

Incorrect syntax near ';'.

Even though it might not be obvious immediately that the error involves a missing join
condition, you will figure it out eventually and fix the query. However, if you forget to specify
the join condition using the ANSI SQL-89 syntax, you get a valid query that performs a cross
join:

SELECT E.empid, E.firstname, E.lastname, O.orderid

FROM HR.Employees AS E, Sales.Orders AS 0O;

Because the query doesn't fail, the logical error might go unnoticed for a while, and users of
your application might end up relying on incorrect results. It is unlikely that a programmer
would forget to specify the join condition with such short and simple queries; however,
most production queries are much more complicated and have multiple tables, filters, and
other query elements. In those cases the likelihood of forgetting to specify a join condition
increases.

If I've convinced you that it is important to use the ANSI SQL-92 syntax for inner joins, you
might wonder whether the recommendation holds for cross joins. Because no join condition

is involved, you might think that both syntaxes are just as good for cross joins. However, |
recommend staying with the ANSI SQL-92 syntax with cross joins for a couple of reasons—one
being consistency. Also, let’s say you do use the ANSI SQL-89 syntax. Even if you intended to
write a cross join, when other developers need to review or maintain your code, how will they
know whether you intended to write a cross join or intended to write an inner join and forgot
to specify the join condition?

Chapter 3 Joins 109

Further Join Examples

This section covers a few join examples that are known by specific names, including composite
joins, non-equi joins, and multi-table joins.

Composite Joins

A composite join is simply a join based on a predicate that involves more than one attribute
from each side. A composite join is commonly required when you need to join two tables
based on a primary key—foreign key relationship, and the relationship is composite: that is,
based on more than one attribute. For example, suppose you have a foreign key defined on
dbo.Table2, columns coll, col2, referencing dbo.Tablel, columns coll, col2, and you need to
write a query that joins the two based on primary key—foreign key relationship. The FROM
clause of the query would look like this:

FROM dbo.Tablel AS T1
JOIN dbo.Table2 AS T2
ON Tl.coll = T2.coll
AND T1l.col2 = T2.col2

For a more tangible example, suppose that you need to audit updates to column values
against the OrderDetails table in the TSQLFundamentals2008 database. You create a custom
auditing table called OrderDetailsAudit:

USE TSQLFundamentals2008;
IF OBJECT_ID('Sales.OrderDetailsAudit', 'U') IS NOT NULL
DROP TABLE Sales.OrderDetailsAudit;
CREATE TABLE Sales.OrderDetailsAudit
(
Tsn INT NOT NULL IDENTITY,
orderid INT NOT NULL,
productid INT NOT NULL,
dt DATETIME NOT NULL,
Toginname sysname NOT NULL,
columnname sysname NOT NULL,
oldval SQL_VARIANT,
newval SQL_VARIANT,
CONSTRAINT PK_OrderDetailsAudit PRIMARY KEY(1sn),
CONSTRAINT FK_OrderDetailsAudit_OrderDetails
FOREIGN KEY(orderid, productid)
REFERENCES Sales.OrderDetails(orderid, productid)
b

Each audit row stores a log serial number (Isn), the key of the modified row (orderid, productid),
the name of the modified column (columnname), the old value (o/dval), new value (newval),
when the change took place (dt), and who made the change (loginname). The table has a
foreign key defined on the attributes orderid, productid, referencing the primary key of the
OrderDetails table, which is defined on the attributes orderid, productid.

110

Microsoft SQL Server 2008 T-SQL Fundamentals

Suppose that you already have in place all the required processes that audit column value
changes taking place in the OrderDetails table in the OrderDetailsAudit table.

You need to write a query that returns all value changes that took place against the column
qgty, but in each result row you need to return the current value from the OrderDetails table,
and the values before and after the change from the OrderDetailsAudit table. You need to
join the two tables based on primary key—foreign key relationship like so:

SELECT OD.orderid, OD.productid, OD.qty,
ODA.dt, ODA.Toginname, ODA.oldval, ODA.newval
FROM Sales.OrderDetails AS 0D
JOIN Sales.OrderDetailsAudit AS ODA
ON OD.orderid = ODA.orderid
AND OD.productid = ODA.productid
WHERE ODA.columnname = N'qty';

Because the relationship is based on multiple attributes, the join condition is composite.

Non-Equi Joins

When the join condition involves only an equality operator, the join is said to be an

equi join. When the join condition involves any operator besides equality, the join is said
to be a non-equi join. As an example of a non-equi join, the following query joins two
instances of the Employees table to produce unique pairs of employees:

SELECT
El.empid, El.firstname, El.lastname,
E2.empid, E2.firstname, E2.Tlastname
FROM HR.Employees AS E1
JOIN HR.Employees AS E2
ON El.empid < E2.empid;

Notice the predicate specified in the ON clause. The purpose of the query is to produce
unique pairs of employees. Had you used a cross join, you would have gotten self pairs

(for example, 1 with 1), and also mirrored pairs (for example, 1 with 2 and also 2 with 1).
Using an inner join with a join condition that says that the key in the left side must be smaller
than the key in the right side eliminates the two inapplicable cases. Self pairs are eliminated
because both sides are equal. With mirrored pairs, only one of the two cases qualifies
because out of the two cases, only one will have a left key that is smaller than the right key.
In our case, out of the 81 possible pairs of employees that a cross join would have returned,
our query returns the 36 unique pairs shown here:

empid firstname Tlastname empid firstname Tastname
1 Sara Davis 2 Don Funk
1 Sara Davis 3 Judy Lew

2 Don Funk 3 Judy Lew

O NOUVDA WNREFNOUDNWNROUDN WNREUDAWNRERSMWNEREWRNR

Sara
Don
Judy
Sara
Don
Judy
Yael
Sara
Don
Judy
Yael
Sven
Sara
Don
Judy
Yael
Sven
Paul
Sara
Don
Judy
Yael
Sven
Paul
Russell
Sara
Don
Judy
Yael
Sven
Paul
Russell
Maria

Davis
Funk
Lew
Davis
Funk
Lew
Peled
Davis
Funk
Lew
Peled
Buck
Davis
Funk
Lew
Peled
Buck
Suurs
Davis
Funk
Lew
Peled
Buck
Suurs
King
Davis
Funk
Lew
Peled
Buck
Suurs
King
Cameron

(36 row(s) affected)

If it is still not clear to you what this query does, try to process it one step at a time with
a smaller set of employees. For example, suppose the Employees table contained only
employees 1, 2, and 3. First, produce the Cartesian product of two instances of the table:

W W WNNNRRR

W NRFE WNRFRE WNR

O W W W WWWWOoOoOoOo©oOoMmOoONNNNNNoToooToOoUTununul A DN D

Yael
Yael
Yael
Sven
Sven
Sven
Sven
Paul
Paul
Paul
Paul
Paul
Russell
Russell
Russell
Russell
Russell
Russell
Maria
Maria
Maria
Maria
Maria
Maria
Maria
Zoya
Zoya
Zoya
Zoya
Zoya
Zoya
Zoya
Zoya

Peled

Peled

Peled

Buck

Buck

Buck

Buck

Suurs

Suurs

Suurs

Suurs

Suurs

King

King

King

King

King

King

Cameron
Cameron
Cameron
Cameron
Cameron
Cameron
Cameron
Dolgopyatova
Dolgopyatova
Dolgopyatova
Dolgopyatova
Dolgopyatova
Dolgopyatova
DoTlgopyatova
Dolgopyatova

Chapter 3 Joins

111

112

Microsoft SQL Server 2008 T-SQL Fundamentals

Next, filter the rows based on the predicate E1.empid < E2.empid, and you are left with only
three rows:

El.empid E2.empid
1 2
1 3
2 3

Multi-Table Joins

A join table operator operates only on two tables, but a single query can have multiple joins.

In general, when more than one table operator appears in the FROM clause, the table operators
are logically processed from left to right. That is, the result table of the first table operator is
served as the left input to the second table operator; the result of the second table operator is
served as the left input to the third table operator and so on. So if there are multiple joins in the
FROM clause, logically the first join operates on two base tables, but all other joins get the result
of the preceding join as their left input. With cross joins and inner joins, the database engine can
(and often does) internally rearrange join ordering for optimization purposes because it won't
have an impact on the correctness of the result of the query.

As an example, the following query joins the Customers and Orders tables to match customers
with their orders, and joins the result of the first join with the OrderDetails table to match
orders with their order lines:

SELECT
C.custid, C.companyname, O.orderid,
OD.productid, OD.qty
FROM Sales.Customers AS C
JOIN Sales.Orders AS O
ON C.custid = O.custid
JOIN Sales.OrderDetails AS OD
ON O.orderid = OD.orderid;

This query returns the following output, shown here in abbreviated form:

custid companyname orderid productid qty
85 Customer ENQZT 10248 11 12
85 Customer ENQZT 10248 42 10
85 Customer ENQZT 10248 72 5
79 Customer FAPSM 10249 14

79 Customer FAPSM 10249 51 40
34 Customer IBVRG 10250 41 10
34 Customer IBVRG 10250 51 35
34 Customer IBVRG 10250 65 15
84 Customer NRCSK 10251 22 6
84 Customer NRCSK 10251 57 15

(2155 row(s) affected)

Chapter 3 Joins 113

Outer Joins

Outer joins are usually harder for people to grasp compared to the other types of joins. First
| will describe the fundamentals of outer joins. If by the end of the section “Fundamentals of
Outer Joins,” you feel very comfortable with the material and are ready for more advanced
content, you can read an optional section describing aspects of outer joins that are beyond
the fundamentals. Otherwise, feel free to skip that part and return to it when you feel com-
fortable with the material.

Fundamentals of Outer Joins

Outer joins were introduced in ANSI SQL-92 and unlike inner and cross joins, they only have
one standard syntax—the one where you specify the JOIN keyword between the table
names, and the join condition in the ON clause. Outer joins apply the two logical processing
phases that inner joins apply (Cartesian product and the ON filter), plus a third phase called
Adding Outer Rows that is unique to this type of join.

In an outer join you mark a table as a “preserved” table by using the keywords LEFT OUTER
JOIN, RIGHT OUTER JOIN, or FULL OUTER JOIN between the table names. The OUTER
keyword is optional. The LEFT keyword means that the rows of the left table are preserved,
the RIGHT keyword means that the rows in the right table are preserved, and the FULL
keyword means that the rows in both the left and right tables are preserved. The third logical
query processing phase of an outer join identifies the rows from the preserved table that

did not find matches in the other table based on the ON predicate. This phase adds those
rows to the result table produced by the first two phases of the join, and uses NULLs as place
holders for the attributes from the nonpreserved side of the join in those outer rows.

A good way to understand outer joins is through an example. The following query joins the
Customers and Orders tables based on a match between the customer’s customer ID and the
order’s customer ID to return customers and their orders. The join type is a left outer join;
therefore, the query also returns customers who did not place any orders in the result:

SELECT C.custid, C.companyname, O.orderid
FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
ON C.custid = O.custid;

This query returns the following output, shown here in abbreviated form:

custid companyname orderid
1 Customer NRZBB 10643
1 Customer NRZBB 10692
1 Customer NRZBB 10702
1 Customer NRZBB 10835
1 Customer NRZBB 10952

114

Microsoft SQL Server 2008 T-SQL Fundamentals

21 Customer KIDPX 10414
21 Customer KIDPX 10512
21 Customer KIDPX 10581
21 Customer KIDPX 10650
21 Customer KIDPX 10725
22 Customer DTDMN NULL

23 Customer WVFAF 10408
23 Customer WVFAF 10480
23 Customer WVFAF 10634
23 Customer WVFAF 10763
23 Customer WVFAF 10789
56 Customer QNIVZ 10684
56 Customer QNIVZ 10766
56 Customer QNIVZ 10833
56 Customer QNIVZ 10999
56 Customer QNIVZ 11020
57 Customer WVAXS NULL

58 Customer AHXHT 10322
58 Customer AHXHT 10354
58 Customer AHXHT 10474
58 Customer AHXHT 10502
58 Customer AHXHT 10995
91 Customer CCFIZ 10792
91 Customer CCFIZ 10870
91 Customer CCFIZ 10906
91 Customer CCFIZ 10998
91 Customer CCFIZ 11044

(832 row(s) affected)

Two customers in the Customers table did not place any orders. Their IDs are 22 and 57.
Observe that in the output of the query both customers are returned with NULLs in the
attributes from the Orders table. Logically, the rows for these two customers were filtered out
by the second phase of the join (filter based on the ON predicate), but the third phase added
those as outer rows. Had the join been an inner join, these two rows would not have been
returned. These two rows are added to preserve all the rows of the left table.

You can consider two kinds of rows in the result of an outer join in respect to the preserved
side—inner rows and outer rows. Inner rows are rows that have matches in the other side
based on the ON predicate, and outer rows are rows that don’t. An inner join returns only
inner rows, while an outer join returns both inner and outer rows.

A common question when using outer joins that is the source of a lot of confusion is whether
to specify a predicate in the ON or WHERE clauses of a query. You can see that with respect
to rows from the preserved side of an outer join, the filter based on the ON predicate is not
final. In other words, the ON predicate does not determine whether the row will show up in
the output, only whether it will be matched with rows from the other side. So when you need
to express a predicate that is not final—meaning a predicate that determines which rows

Chapter 3 Joins 115

to match from the nonpreserved side—specify the predicate in the ON clause. When you
need a filter to be applied after outer rows are produced, and you want the filter to be final,
specify the predicate in the WHERE clause. The WHERE clause is processed after the FROM
clause—namely, after all table operators were processed and (in the case of outer joins), after
all outer rows were produced. Also, the WHERE clause is final with respect to rows that it
filters out, unlike the ON clause.

Suppose that you need to return only customers who did not place any orders, or more
technically speaking, you need to return only outer rows. You can use the previous query as
your basis, and add a WHERE clause that filters only outer rows. Remember that outer rows are
identified by the NULLs in the attributes from the nonpreserved side of the join. So you can
filter only the rows where one of the attributes in the nonpreserved side of the join is NULL,
like so:

SELECT C.custid, C.companyname
FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
ON C.custid = O.custid
WHERE O.orderid IS NULL;

This query returns only two rows, with the customers 22 and 57:

custid companyname
22 Customer DTDMN
57 Customer WVAXS

(2 row(s) affected)

Notice a couple of important things about this query. Recall the discussions about NULLs
earlier in the book: When looking for a NULL you should use the operator IS NULL and
not an equality operator, because an equality operator comparing something with a NULL
always returns UNKNOWN—even when comparing two NULLs. Also, the choice of which
attribute from the nonpreserved side of the join to filter is important. You should choose
an attribute that can only have a NULL when the row is an outer row and not otherwise
(for example, a NULL originating from the base table). For this purpose, three cases are
safe to consider—a primary key column, a join column, and a column defined as NOT
NULL. A primary key column cannot be NULL; therefore, a NULL in such a column can
only mean that the row is an outer row. If a row has a NULL in the join column, that row
is filtered out by the second phase of the join, so a NULL in such a column can only mean
that it's an outer row. And obviously a NULL in a column that is defined as NOT NULL can
only mean that the row is an outer row.

To practice what you've learned and get a better grasp of outer joins, make sure that you
perform the exercises for this chapter.

116

Microsoft SQL Server 2008 T-SQL Fundamentals

Beyond the Fundamentals of Outer Joins

This section covers more advanced aspects of outer joins and is provided as optional reading
for when you feel very comfortable with the fundamentals of outer joins.

Including Missing Values

You can use outer joins to identify and include missing values when querying data. For example,
suppose that you need to query all orders from the Orders table in the TSQLFundamentals2008
database. You need to ensure that you get at least one row in the output for each date in the
range January 1, 2006 through December 31, 2008. You don’t want to do anything special with
dates within the range that have orders. But you do want the output to include the dates with
no orders, with NULLs as placeholders in the attributes of the order.

To solve the problem, you can first write a query that returns a sequence of all dates in
the requested date range. You can then perform a left outer join between that set and the
Orders table. This way the result also includes the missing order dates.

To produce a sequence of dates in a given range, | usually use an auxiliary table of numbers.

| create a table called Nums with a column called n, and populate it with a sequence of
integers (1, 2, 3, and so on). | find that an auxiliary table of numbers is an extremely powerful
general-purpose tool that | end up using to solve many problems. You need to create it only
once in the database and populate it with as many numbers as you might need. Run the code
in Listing 3-1 to create the Nums table in the dbo schema and populate it with 100,000 rows:

LISTING 3-1 Code to Create and Populate the Auxiliary Table Nums

SET NOCOUNT ON;

USE TSQLFundamentals2008;

IF OBJECT_ID('dbo.Nums', 'U') IS NOT NULL DROP TABLE dbo.Nums;
CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @i AS INT = 1;

/5‘:

Note:

The ability to declare and initialize variables in one statement
is new in Microsoft SQL Server 2008.

In earlier versions use separate DECLARE and SET statements:

DECLARE @i AS INT;
SET @i = 1;
*/
BEGIN TRAN
WHILE @i <= 100000
BEGIN
INSERT INTO dbo.Nums VALUES(@i);
SET @i = @i + 1;
END
COMMIT TRAN
SET NOCOUNT OFF;

Chapter 3 Joins 117

Note Don't worry if you don't yet understand some parts of the code, such as using variables
and loops—those are explained later in the book. For now, it's enough to understand what this
code is supposed to do; how it does it is not the focus of discussion here. But in case you're
curious and cannot resist, you can find details in Chapter 10, “Programmable Objects.” | should
point out, however, that declaring and initializing variables in the same statement is new in SQL
Server 2008 as the block comment that appears in the code explains. If you're working with an
earlier version, you should use separate DECLARE and SET statements.

As the first step in the solution, you need to produce a sequence of all dates in the requested
range. You can achieve this by querying the Nums table, and filtering as many numbers

as the number of days in the requested date range. You can use the DATEDIFF function to
calculate that number. By adding n - 1 days to the starting point of the date range (January
1, 2006) you get the actual date in the sequence. Here's the solution query:

SELECT DATEADD(day, n-1, '20060101') AS orderdate
FROM dbo.Nums

WHERE n <= DATEDIFF(day, '20060101', '20081231') + 1
ORDER BY orderdate;

This query returns a sequence of all dates in the range January 1, 2006 through December 31,
2008, as shown here in abbreviated form:

orderdate

2006-01-01 00:00:00.000
2006-01-02 00:00:00.000
2006-01-03 00:00:00.000
2006-01-04 00:00:00.000
2006-01-05 00:00:00.000

2008-12-27 00:00:00.000
2008-12-28 00:00:00.000
2008-12-29 00:00:00.000
2008-12-30 00:00:00.000
2008-12-31 00:00:00.000

(1096 row(s) affected)

The next step is to extend the previous query, adding a left outer join between Nums and
the Orders tables. The join condition compares the order date produced from the Nums
table using the expression DATEADD(day, Nums.n - 1, '20060101') and the orderdate from
the Orders table like so:

SELECT DATEADD(day, Nums.n - 1, '20060101') AS orderdate,
0.orderid, 0O.custid, O.empid
FROM dbo.Nums
LEFT OUTER JOIN Sales.Orders AS O
ON DATEADD(day, Nums.n - 1, '20060101') = O.orderdate
WHERE Nums.n <= DATEDIFF(day, '20060101', '20081231') + 1
ORDER BY orderdate;

118 Microsoft SQL Server 2008 T-SQL Fundamentals

This query produces the following output, shown here in abbreviated form:

orderdate orderid custid empid
2006-01-01 00:00:00.000 NULL NULL NULL
2006-01-02 00:00:00.000 NULL NULL NULL
2006-01-03 00:00:00.000 NULL NULL NULL
2006-01-04 00:00:00.000 NULL NULL NULL
2006-01-05 00:00:00.000 NULL NULL NULL
2006-06-29 00:00:00.000 NULL NULL NULL
2006-06-30 00:00:00.000 NULL NULL NULL
2006-07-01 00:00:00.000 NULL NULL NULL
2006-07-02 00:00:00.000 NULL NULL NULL
2006-07-03 00:00:00.000 NULL NULL NULL
2006-07-04 00:00:00.000 10248 85 5
2006-07-05 00:00:00.000 10249 79 6
2006-07-06 00:00:00.000 NULL NULL NULL
2006-07-07 00:00:00.000 NULL NULL NULL
2006-07-08 00:00:00.000 10250 34 4
2006-07-08 00:00:00.000 10251 84 3
2006-07-09 00:00:00.000 10252 76 4
2006-07-10 00:00:00.000 10253 34 3
2006-07-11 00:00:00.000 10254 14 5
2006-07-12 00:00:00.000 10255 68 9
2006-07-13 00:00:00.000 NULL NULL NULL
2006-07-14 00:00:00.000 NULL NULL NULL
2006-07-15 00:00:00.000 10256 88 3
2006-07-16 00:00:00.000 10257 35 4
2008-12-27 00:00:00.000 NULL NULL NULL
2008-12-28 00:00:00.000 NULL NULL NULL
2008-12-29 00:00:00.000 NULL NULL NULL
2008-12-30 00:00:00.000 NULL NULL NULL
2008-12-31 00:00:00.000 NULL NULL NULL

(1446 row(s) affected)

Order dates that do not appear in the Orders table appear in the output of the query with
NULLs in the order attributes.

Filtering Attributes from the Nonpreserved Side of an Outer Join

When you need to review code involving outer joins to look for logical bugs, one of the
things you should examine is the WHERE clause. If the predicate in the WHERE clause refers
to an attribute from the nonpreserved side of the join using an expression in the form
<attribute> <operator> <value>, it's usually an indication of a bug. This is because attributes
from the nonpreserved side of the join are NULLs in outer rows, and an expression in the
form NULL <operator> <value> yields UNKNOWN (unless it's the IS NULL operator explicitly
looking for NULLs). Recall that a WHERE clause filters UNKNOWN out. Such a predicate in

Chapter 3 Joins 119

the WHERE clause causes all outer rows to be filtered out, effectively nullifying the outer join.
In other words, it's as if the join type logically becomes an inner join. So the programmer
either made a mistake in the choice of the join type, or made a mistake in the predicate. If
this is not clear yet, the following example might help. Consider the following query:

SELECT C.custid, C.companyname, O.orderid, O.orderdate
FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
ON C.custid = O.custid
WHERE O.orderdate >= '20070101';

The query performs a left outer join between the Customers and Orders tables. Prior to
applying the WHERE filter, the join operator returns inner rows for customers who placed
orders, and outer rows for customers who didn’t place orders, with NULLs in the order
attributes. The predicate O.orderdate >= '20070101" in the WHERE clause evaluates to
UNKNOWN for all outer rows because those have a NULL in the O.orderdate attribute.

All outer rows are eliminated by the WHERE filter, as you can see in the output of the query,
shown here in abbreviated form:

custid companyname orderid orderdate

19 Customer RFNQC 10400 2007-01-01 00:00:00.000
65 Customer NYUHS 10401 2007-01-01 00:00:00.000
20 Customer THHDP 10402 2007-01-02 00:00:00.000
20 Customer THHDP 10403 2007-01-03 00:00:00.000
49 Customer CQRAA 10404 2007-01-03 00:00:00.000
58 Customer AHXHT 11073 2008-05-05 00:00:00.000
73 Customer JIMIKW 11074 2008-05-06 00:00:00.000
68 Customer CCKOT 11075 2008-05-06 00:00:00.000
9 Customer RTXGC 11076 2008-05-06 00:00:00.000
65 Customer NYUHS 11077 2008-05-06 00:00:00.000

(678 row(s) affected)

This means that the use of an outer join here was futile. The programmer either made a
mistake in using an outer join or made a mistake in the WHERE predicate.

Using Outer Joins in a Multi-Table Join

Recall the discussion about all-at-once operations in Chapter 2, “Single Table Queries.”
The concept means that all expressions that appear in the same logical query processing
phase are logically evaluated at the same point in time. However, this concept is not
applicable to the processing of table operators in the FROM phase. Table operators are
logically evaluated from left to right. Rearranging the order in which outer joins are
processed might result in different output, so you cannot rearrange them at will.

120

Microsoft SQL Server 2008 T-SQL Fundamentals

Some interesting logical bugs have to do with the logical order in which outer joins are
processed. For example, a common logical bug involving outer joins could be considered a
variation of the bug in the previous section. Suppose that you write a multi-table join query
with an outer join between two tables, followed by an inner join with a third table. If the
predicate in the inner join's ON clause compares an attribute from the nonpreserved side of
the outer join and an attribute from the third table, all outer rows are filtered out. Remember
that outer rows have NULLs in the attributes from the nonpreserved side of the join, and
comparing a NULL with anything yields UNKNOWN, and UNKNOWN is filtered out by the
ON filter. In other words, such a predicate would nullify the outer join and logically it would
be as if you specified an inner join. For example, consider the following query:

SELECT C.custid, O.orderid, OD.productid, OD.qty
FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
ON C.custid = O.custid
JOIN Sales.OrderDetails AS OD
ON O.orderid = OD.orderid;

The first join is an outer join returning customers and their orders and also customers who
did not place any orders. The outer rows representing customers with no orders have NULLs
in the order attributes. The second join matches order lines from the OrderDetails table

with rows from the result of the first join based on the predicate O.orderid = OD.orderid;
however, in the rows representing customers with no orders, the O.orderid attribute is NULL.
Therefore, the predicate evaluates to UNKNOWN and those rows are filtered out. The output
shown here in abbreviated form doesn’t contain the customers 22 and 57, the two customers
who did not place orders:

custid orderid productid qty
85 10248 11 12
85 10248 42 10
85 10248 72 5
79 10249 14 9
79 10249 51 40
65 11077 64 2
65 11077 66 1
65 11077 73 2
65 11077 75 4
65 11077 77 2

(2155 row(s) affected)

To generalize the problem: outer rows are nullified whenever any kind of outer join

(left, right, or full) is followed by a subsequent inner join or right outer join. That's assuming,
of course, that the join condition compares the NULLs from the left side with something from
the right side.

Chapter 3 Joins 121

You have several ways to get around the problem if you want to return customers with no
orders in the output. One option is to use a left outer join in the second join as well:

SELECT C.custid, O.orderid, OD.productid, OD.qty
FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
ON C.custid = O.custid
LEFT OUTER JOIN Sales.OrderDetails AS OD
ON O.orderid = OD.orderid;

This way, the outer rows produced by the first join aren't filtered out, as you can see in the
output shown here in abbreviated form:

custid orderid productid qty
85 10248 11 12
85 10248 42 10
85 10248 72 5

79 10249 14 9

79 10249 51 40
65 11077 64 2

65 11077 66 1

65 11077 73 2

65 11077 75 4

65 11077 77 2

22 NULL NULL NULL
57 NULL NULL NULL

(2157 row(s) affected)

A second option is to first join Orders and OrderDetails using an inner join, and then join to
the Customers table using a right outer join:

SELECT C.custid, O.orderid, OD.productid, OD.qty
FROM Sales.Orders AS O
JOIN Sales.OrderDetails AS OD
ON O.orderid = OD.orderid
RIGHT OUTER JOIN Sales.Customers AS C
ON O.custid = C.custid;

This way, the outer rows are produced by the last join, and are not filtered out.

A third option is to use parentheses to make the inner join between Orders and OrderDetails
become an independent logical phase. This way you can apply a left outer join between the
Customers table and the result of the inner join between Orders and OrderDetails. The query
would look like this:

SELECT C.custid, O.orderid, OD.productid, OD.qty
FROM Sales.Customers AS C
LEFT OUTER JOIN

122

Microsoft SQL Server 2008 T-SQL Fundamentals

(Sales.Orders AS O
JOIN Sales.OrderDetails AS OD
ON O.orderid = OD.orderid)
ON C.custid = O.custid;

Using the COUNT Aggregate with Outer Joins

Another common logical bug involves using COUNT with outer joins. When you group

the result of an outer join and use the COUNT(*) aggregate, the aggregate takes into
consideration both inner rows and outer rows because it counts rows regardless of their
contents. Usually, you're not supposed to take outer rows into consideration for the purposes
of counting. For example, the following query is supposed to return the count of orders for
each customer:

SELECT C.custid, COUNT(*) AS numorders
FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
ON C.custid = O.custid
GROUP BY C.custid;

However, the COUNT(*) aggregate counts rows regardless of their meaning or contents, and
customers who did not place orders—like 22 and 57—each have an outer row in the result of
the join. As you can see in the output of the query shown here in abbreviated form, both 22
and 57 show up with a count of 1, while the number of orders they place is actually O:

custid numorders
1 6
2 4
3 7
4 13
5 18
22 1
57 1
87 15
88 9
89 14
90 7
91 7

(91 row(s) affected)

The COUNT(*) aggregate function cannot detect whether a row really represents an order.
To fix the problem you should use COUNT(<column>) instead of COUNT(*), and provide a
column from the nonpreserved side of the join. This way, the COUNT() aggregate ignores

Chapter 3 Joins 123

outer rows because they have a NULL in that column. Remember to use a column that
can only be NULL in case the row is an outer row—for example, the primary key column
orderid:

SELECT C.custid, COUNT(O.orderid) AS numorders
FROM Sales.Customers AS C
LEFT OUTER JOIN Sales.Orders AS O
ON C.custid = O.custid
GROUP BY C.custid;

Notice in the output shown here in abbreviated form that the customers 22 and 57 now
show up with a count of O:

custid numorders
1 6
2 4
3 7
4 13
5 18
22 0
57 0
87 15
88 9
89 14
90 7
91 7

(91 row(s) affected)

Conclusion

This chapter covered the join table operator. It described the logical query processing phases
involved in the three fundamental types of joins—cross, inner, and outer. The chapter also
covered further join examples including composite joins, non-equi joins, and multi-table
joins. The chapter concluded with an optional reading section covering more advanced
aspects of outer joins. To practice what you've learned, go over the exercises for this chapter.

Exercises

This section provides exercises to help you familiarize yourself with the subjects discussed in
this chapter. All exercises involve querying objects in the TSQLFundamentals2008 database.

124 Microsoft SQL Server 2008 T-SQL Fundamentals

Run the following code to create the dbo.Nums auxiliary table in the TSQLFundamentals2008
database:

SET NOCOUNT ON;

USE TSQLFundamentals2008;

IF OBJECT_ID('dbo.Nums', 'U') IS NOT NULL DROP TABLE dbo.Nums;
CREATE TABLE dbo.Nums(n INT NOT NULL PRIMARY KEY);

DECLARE @i AS INT = 1;
BEGIN TRAN
WHILE @i <= 100000
BEGIN
INSERT INTO dbo.Nums VALUES(@i);
SET @i = @i + 1;
END
COMMIT TRAN
SET NOCOUNT OFF;

1-2
Write a query that generates five copies out of each employee row.
Tables involved: HR.Employees, and dbo.Nums tables.

Desired output:

empid firstname Tastname n
1 Sara Davis 1
2 Don Funk 1
3 Judy Lew 1
4 Yael Peled 1
5 Sven Buck 1
6 Paul Suurs 1
7 Russell King 1
8 Maria Cameron 1
9 Zoya Dolgopyatova 1
1 Sara Davis 2
2 Don Funk 2
3 Judy Lew 2
4 Yael Peled 2
5 Sven Buck 2
6 Paul Suurs 2
7 Russell King 2
8 Maria Cameron 2
9 Zoya Dolgopyatova 2
1 Sara Davis 3
2 Don Funk 3
3 Judy Lew 3
4 Yael Peled 3
5 Sven Buck 3
6 Paul Suurs 3

OO NOOUVIA, WNE OKONO VA WNRE OO

Russell
Maria
Zoya
Sara
Don
Judy
Yael
Sven
Paul
Russell
Maria
Zoya
Sara
Don
Judy
Yael
Sven
Paul
Russell
Maria
Zoya

(45 row(s) affected)

1-3 (Optional, Advanced)

King

Cameron
Dolgopyatova
Davis

Funk

Lew

Peled

Buck

Suurs

King

Cameron
Dolgopyatova
Davis

Funk

Lew

Peled

Buck

Suurs

King

Cameron
Dolgopyatova

VvVunuuuuuunu b DD DDDMDDDAEDAWWW

Chapter 3 Joins

125

Write a query that returns a row for each employee and day in the range June 12, 2009 -
June 16, 20009.

Tables involved: HR.Employees, and dbo.Nums tables.

Desired output:

empid

dt

ViU A DB DDWWWWWNNNNNRERRERR

2009-06-12
2009-06-13
2009-06-14
2009-06-15
2009-06-16
2009-06-12
2009-06-13
2009-06-14
2009-06-15
2009-06-16
2009-06-12
2009-06-13
2009-06-14
2009-06-15
2009-06-16
2009-06-12
2009-06-13
2009-06-14
2009-06-15
2009-06-16
2009-06-12
2009-06-13

126 Microsoft SQL Server 2008 T-SQL Fundamentals

2009-06-14 00:00:00.000
2009-06-15 00:00:00.000
2009-06-16 00:00:00.000
2009-06-12 00:00:00.000
2009-06-13 00:00:00.000
2009-06-14 00:00:00.000
2009-06-15 00:00:00.000
2009-06-16 00:00:00.000
2009-06-12 00:00:00.000
2009-06-13 00:00:00.000
2009-06-14 00:00:00.000
2009-06-15 00:00:00.000
2009-06-16 00:00:00.000
2009-06-12 00:00:00.000
2009-06-13 00:00:00.000
2009-06-14 00:00:00.000
2009-06-15 00:00:00.000
2009-06-16 00:00:00.000
2009-06-12 00:00:00.000
2009-06-13 00:00:00.000
2009-06-14 00:00:00.000
2009-06-15 00:00:00.000
2009-06-16 00:00:00.000

O O W W WOoWOoWOoWOoOWOO®WMNNNNNOOCOOOOOOOO VT T

(45 row(s) affected)

2

Return U.S. customers, and for each customer return the total number of orders and total
quantities.

Tables involved: Sales.Customers, Sales.Orders, and Sales.OrderDetails tables.

Desired output:

custid numorders totalqty
32 11 345
36 5 122
43 2 20
45 4 181
48 8 134
55 10 603
65 18 1383
71 31 4958
75 9 327
77 4 46
78 3 59
82 3 89
89 14 1063

(13 row(s) affected)

Chapter 3 Joins

3

Return customers and their orders including customers who placed no orders.
Tables involved: Sales.Customers, and Sales.Orders tables.
Desired output (abbreviated):

custid companyname orderid orderdate

85 Customer ENQZT 10248 2006-07-04 00:00:00.000
79 Customer FAPSM 10249 2006-07-05 00:00:00.000
34 Customer IBVRG 10250 2006-07-08 00:00:00.000
84 Customer NRCSK 10251 2006-07-08 00:00:00.000
73 Customer JIMIKW 11074 2008-05-06 00:00:00.000
68 Customer CCKOT 11075 2008-05-06 00:00:00.000
9 Customer RTXGC 11076 2008-05-06 00:00:00.000
65 Customer NYUHS 11077 2008-05-06 00:00:00.000
22 Customer DTDMN NULL NULL

57 Customer WVAXS NULL NULL

(832 row(s) affected)

4

Return customers who placed no orders.
Tables involved: Sales.Customers, and Sales.Orders tables.
Desired output:

custid companyname
22 Customer DTDMN
57 Customer WVAXS

(2 row(s) affected)

5

Return customers with orders placed on Feb 12, 2007 along with their orders.
Tables involved: Sales.Customers, and Sales.Orders tables.
Desired output:

custid companyname orderid orderdate
66 Customer LHANT 10443 2007-02-12 00:00:00.000
5 Customer HGVLZ 10444 2007-02-12 00:00:00.000

(2 row(s) affected)

127

128

Microsoft SQL Server 2008 T-SQL Fundamentals

6 (Optional, Advanced)

Return customers with orders placed on Feb 12, 2007 along with their orders. Also return
customers who didn't place orders on Feb 12, 2007.
Tables involved: Sales.Customers, and Sales.Orders tables.

Desired output (abbreviated):

custid

companyname

orderid

orderdate

33
53
39
16

42
34
63
73
15
21
30
55
71
77
66
38
59
36
64
29

Customer
Customer
Customer
Customer
Customer

Customer
Customer
Customer
Customer
Customer
Customer
Customer
Customer
Customer
Customer
Customer

Customer
Customer
Customer
Customer
Customer
Customer
Customer
Customer
Customer
Customer
Customer

(91 row(s) affected)

AHPOP
AHXHT
AZJED
BSVAR
CCFIz

FVXPQ
GCISG
GLLAG
GYBBY
HFBZG
HGVLZ
IATIK
IBVRG
IRRVL
IMIKW
JUWXK

KIDPX
KSLQF
KzQzT
LCOUJ
LCYBZ
LHANT
LJUCA
LOLIO
LVJSO
LWGMD
MDLWA

7 (Optional, Advanced)

Return all customers, and for each return a Yes/No value depending on whether the customer
placed an order on Feb 12, 2007.
Tables involved: Sales.Customers, and Sales.Orders tables.

Desired output (abbreviated):

custid

companyname

Customer
Customer
Customer

NRZBB
MLTDN
KBUDE

2007-02-12 00:00:00.000
NULL
NULL
NULL
NULL
NULL

NULL
NULL
NULL
NULL
NULL
2007-02-12 00:00:00.000
NULL
NULL
NULL
NULL
NULL

HasOrderOn20070212

No
No
No

Chapter 3 Joins 129

4 Customer HFBZG No
5 Customer HGVLZ Yes
6 Customer XHXJV No
7 Customer QXVLA No
8 Customer QUHWH No
9 Customer RTXGC No
10 Customer EEALV No

(91 row(s) affected)

Solutions

This section provides solutions to the exercises for this chapter.

1-2

Producing multiple copies of rows can be achieved with a fundamental technique that utilizes
a cross join. If you need to produce five copies out of each employee row, you need to perform
a cross join between the Employees table and a table that has five rows; alternatively, you

can perform a cross join between Employees and a table that has more than five rows, but
filter only five from that table in the WHERE clause. The Nums table is very convenient for this
purpose. Simply cross Employees and Nums, and filter from Nums as many rows as the number
of requested copies (five in this case). Here's the solution query:

SELECT E.empid, E.FirstName, E.LastName, Nums.n
FROM HR.Employees AS E
CROSS JOIN dbo.Nums
WHERE Nums.n <= 5
ORDER BY n, empid;

1-3

This exercise is an extension of the previous exercise. Instead of being asked to produce

a predetermined constant number of copies out of each employee row, you are asked to
produce a copy for each day in a certain date range. So here you need to calculate the number
of days in the requested date range using the DATEDIFF function, and refer to the result of
that expression in the query’s WHERE clause instead of referring to a constant. To produce the
dates, simply add n - 1 days to the date that starts the requested range. Here's the solution

query:

SELECT E.empid,
DATEADD(day, D.n - 1, '20090612') AS dt
FROM HR.Employees AS E
CROSS JOIN dbo.Nums AS D
WHERE D.n <= DATEDIFF(day, '20090612', '20090616') + 1
ORDER BY empid, dt;

130

Microsoft SQL Server 2008 T-SQL Fundamentals

The DATEDIFF function returns 4 because there is a four-day difference between June 12, 2009
and June 16, 2009. Add 1 to the result, and you get 5 for the five days in the range. So the
WHERE clause filters five rows from Nums where n is smaller than or equal to 5. By adding n - 1
days to June 12, 2009, you get all dates in the range June 12, 2009 and June 16, 20009.

2

This exercise requires you to write a query that joins three tables: Customers, Orders, and
OrderDetails. The query should filter in the WHERE clause only rows where the customer’s
country is USA. Because you are asked to return aggregates per customer, the query should
group the rows by customer ID. You need to resolve a tricky issue here to return the right
number of orders for each customer. Because of the join between Orders and OrderDetails,
you don't get only one row per order—you get one row per order line. So if you use the
COUNT(*) function in the SELECT list, you get back the number of order lines for each
customer and not the number of orders. To resolve this issue, you need to take each order
into consideration only once. You can do this by using COUNT(DISTINCT O.orderid) instead
of COUNT(*). The total quantities don't create any special issues because the quantity is
associated with the order line and not the order. Here's the solution query:

SELECT C.custid, COUNT(DISTINCT O.orderid) AS numorders, SUM(OD.qty) AS totalqty
FROM Sales.Customers AS C
JOIN Sales.Orders AS O
ON O.custid = C.custid
JOIN Sales.OrderDetails AS OD
ON OD.orderid = O.orderid
WHERE C.country = N'USA'
GROUP BY C.custid;

3

To get both customers who placed orders and customers who didn't place orders in the
result, you need to use an outer join like so:

SELECT C.custid, C.companyname, O.orderid, O.orderdate
FROM Sales.Customers AS C
LEFT JOIN Sales.Orders AS O
ON O.custid = C.custid;

This query returns 832 rows (including the customers 22 and 57, who didn't place orders).
An inner join between the tables would return only 830 rows without these customers.

4

This exercise is an extension of the previous one. To return only customers who didn't place
orders, you need to add a WHERE clause to the query that filters only outer rows; namely, rows

Chapter 3 Joins 131

that represent customers with no orders. Outer rows have NULLs in the attributes from the
nonpreserved side of the join (Orders). But to make sure that the NULL is a placeholder for an
outer row and not a NULL that originated from the table, it is recommended that you refer to
an attribute that is the primary key, or the join column, or one defined as not allowing NULLs.
Here’s the solution query referring to the primary key of the Orders table in the WHERE clause:

SELECT C.custid, C.companyname
FROM Sales.Customers AS C
LEFT JOIN Sales.Orders AS O
ON O.custid = C.custid
WHERE O.orderid IS NULL;

This query returns only two rows for the customers 22 and 57, who didn't place orders.

5

This exercise involves writing a query that performs an inner join between Customers and
Orders, and filters only rows where the order date is February 12, 2007:

SELECT C.custid, C.companyname, O.orderid, O.orderdate
FROM Sales.Customers AS C
JOIN Sales.Orders AS O
ON O.custid = C.custid
WHERE O.orderdate = '20070212"';

The WHERE clause filtered out Customers who didn’t place orders on February 12, 2007, but
that was the request.

6

This exercise builds on the previous one. The trick here is to realize two things. First, you need
an outer join because you are supposed to return customers who do not meet a certain criteria.
Second, the filter on the order date must appear in the ON clause and not the WHERE clause.
Remember that the WHERE filter is applied after outer rows are added and is final. Your goal

is to match orders to customers only if the order was placed by the customer and on February
12, 2007. You still want to get customers who didn’t place orders on that date in the output; in
other words, the filter on the order date should only determine matches and not be considered
final in regards to the customer rows. Hence the ON clause should match customers and orders
based on both an equality between the customer’s customer ID and the order’s customer ID,
and the order date being February 12, 2007. Here's the solution query:

SELECT C.custid, C.companyname, O.orderid, O.orderdate
FROM Sales.Customers AS C
LEFT JOIN Sales.Orders AS O
ON O.custid = C.custid
AND O.orderdate = '20070212"';

132 Microsoft SQL Server 2008 T-SQL Fundamentals

7

This exercise is an extension of the previous exercise. Here, instead of returning matching
orders, you just need to return a Yes/No value indicating whether there is a matching order.
Remember that in an outer join a nonmatch is identified as an outer row with NULLs in the
attributes of the nonpreserved side. So you can use a simple CASE expression that checks
whether the current row is an outer one, in which case it returns 'Yes'; otherwise, it returns
‘No'. Because technically you can have more than one match per customer, you should add
a DISTINCT clause to the SELECT list. This way you get only one row back for each customer.
Here's the solution query:

SELECT DISTINCT C.custid, C.companyname,
CASE WHEN O.orderid IS NOT NULL THEN 'Yes' ELSE 'No' END AS [HasOrderOn20070212]
FROM Sales.Customers AS C
LEFT JOIN Sales.Orders AS O
ON O.custid = C.custid
AND O.orderdate = '20070212"';

	Cover
	Table of Contents
	Chapter 3: Joins
	Cross Joins
	ANSI SQL-92 Syntax
	ANSI SQL-89 Syntax
	Self Cross Joins
	Producing Tables of Numbers

	Inner Joins
	ANSI SQL-92 Syntax
	ANSI SQL-89 Syntax
	Inner Join Safety

	Further Join Examples
	Composite Joins
	Non-Equi Joins
	Multi-Table Joins

	Outer Joins
	Fundamentals of Outer Joins
	Beyond the Fundamentals of Outer Joins

	Conclusion
	Exercises
	Solutions

