
Lubor Kollar, Dejan Sarka, Steve Kass
Kalen Delaney–Series Editor

Itzik Ben-Gan

Inside Microsoft® 
SQL Server® 2008:

T-SQL Querying

Foreword by César Galindo-Legaria, PhD
Manager, Query Optimization Team, Microsoft SQL Server



PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Itzik Ben-Gan

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means 
without the written permission of the publisher.

Library of Congress Control Number: 2009920791

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9   QWT   4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about 
international editions, contact your local Microsoft Corporation offi ce or contact Microsoft Press International directly at 
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Excel, MS, MSDN, PivotTable, SQL Server, Visual Basic, Visual C#, Visual Studio and Windows 
are either registered trademarks or trademarks of the Microsoft group of companies. Other product and company names 
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events 
depicted herein are fi ctitious. No association with any real company, organization, product, domain name, e-mail address, 
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any 
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will 
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ken Jones
Developmental Editor: Sally Stickney
Project Editor: Denise Bankaitis
Editorial Production: S4Carlisle Publishing Services
Technical Reviewers: Steve Kass and Umachandar Jayachandran; Technical Review services provided by Content 
Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-45856

A02L626034.indd   ii 2/28/2009   1:31:28 AM



To my parents, Mila & Gabi

—Itzik Ben-Gan

A03D626034.indd   iii 2/17/2009   2:00:56 AM



A03D626034.indd   iv 2/17/2009   2:00:56 AM



  v

Table of Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xiii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xix

 1 Logical Query Processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Logical Query Processing Phases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Logical Query Processing Phases in Brief  . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Sample Query Based on Customers/Orders Scenario . . . . . . . . . . . . . . . . . . . . . . 5

Logical Query Processing Phase Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Step 1: The FROM Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Step 2: The WHERE Phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Step 3: The GROUP BY Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Step 4: The HAVING Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Step 5: The SELECT Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Step 6: The Presentation ORDER BY Phase  . . . . . . . . . . . . . . . . . . . . . . . . . 16

Further Aspects of Logical Query Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Table Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

OVER Clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Set Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

 2 Set Theory and Predicate Logic  . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

An Example of English-to-Mathematics Translation . . . . . . . . . . . . . . . . . . . . . . 35

Well-Defi nedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Equality, Identity, and Sameness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Mathematical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Context  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Functions, Parameters, and Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Instructions and Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  

resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

A04T626034.indd   v 2/20/2009   6:16:01 PM



vi Table of Contents

Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Notation for Sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Well-Defi nedness of Sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Domains of Discourse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Faithfulness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Russell’s Paradox  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Ordered Pairs, Tuples, and Cartesian Products. . . . . . . . . . . . . . . . . . . . . . 53

The Empty Set(s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

The Characteristic Function of a Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Cardinality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Order  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Set Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Set Partitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Generalizations of Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Predicate Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Logic-Like Features of Programming Languages . . . . . . . . . . . . . . . . . . . . 65

Propositions and Predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

The Law of Excluded Middle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

And, Or, and Not  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Logical Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Logical Implication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Quantifi cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Alternatives and Generalizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Relations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

The Refl exive, Symmetric, and Transitive Properties  . . . . . . . . . . . . . . . . . 75

A Practical Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

 3 The Relational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Introduction to the Relational Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Relations, Tuples and Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

The Relational Model: A Quick Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Relational Algebra and Relational Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Basic Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Relational Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Relational Calculus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

T-SQL Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Data Integrity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Declarative Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Other Means of Enforcing Integrity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A04T626034.indd   vi 2/20/2009   6:16:01 PM



 Table of Contents vii

Normalization and Other Design Topics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Normal Forms Dealing with Functional Dependencies. . . . . . . . . . . . . . 112

Higher Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Denormalization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Generalization and Specialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

 4 Query Tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Sample Data for This Chapter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Tuning Methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Analyze Waits at the Instance Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Correlate Waits with Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Determine Course of Action  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Drill Down to the Database/File Level  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Drill Down to the Process Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Tune Indexes and Queries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Tools for Query Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Cached Query Execution Plans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Clearing the Cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Dynamic Management Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

STATISTICS IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Measuring the Run Time of Queries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Analyzing Execution Plans  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Traces/Profi ler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Database Engine Tuning Advisor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Data Collection and Management Data Warehouse. . . . . . . . . . . . . . . . 187

Using SMO to Clone Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Index Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Table and Index Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Index Access Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Analysis of Indexing Strategies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

Fragmentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Preparing Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Data Preparation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

TABLESAMPLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

An Examination of Set-Based vs. Iterative/Procedural 
Approaches and a Tuning Exercise  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

A04T626034.indd   vii 2/20/2009   6:16:01 PM



viii Table of Contents

 5 Algorithms and Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Do You Have a Quarter? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278

How Algorithms Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

An Example of Quadratic Scaling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

An Algorithm with Linear Complexity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Exponential and Superexponential Complexity . . . . . . . . . . . . . . . . . . . . 281

Sublinear Complexity  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

Constant Complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Technical Defi nitions of Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Comparing Complexities  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Classic Algorithms and Algorithmic Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . 286

Algorithms for Sorting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

String Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

A Practical Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Identifying Trends in Measurement Data  . . . . . . . . . . . . . . . . . . . . . . . . . 291

The Algorithmic Complexity of LISLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Solving the Longest Increasing Subsequence Length 
Problem in T-SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

 6 Subqueries, Table Expressions, and Ranking Functions  . . . . . . 297

Subqueries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Self-Contained Subqueries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Correlated Subqueries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

Misbehaving Subqueries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Uncommon Predicates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Table Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Derived Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Common Table Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Analytical Ranking Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

Row Number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Rank and Dense Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

Tile Number  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354

Auxiliary Table of Numbers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

Missing and Existing Ranges (Also Known as Gaps and Islands)  . . . . . . . . . . . 363

Missing Ranges (Gaps). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366

Existing Ranges (Islands) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

A04T626034.indd   viii 2/20/2009   6:16:01 PM



 Table of Contents ix

 7 Joins and Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Joins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Old Style vs. New Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389

Fundamental Join Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Further Examples of Joins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Sliding Total of Previous Year. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Join Algorithms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

Separating Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

Set Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

UNION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

EXCEPT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

INTERSECT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439

Precedence of Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .440

Using INTO with Set Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Circumventing Unsupported Logical Phases. . . . . . . . . . . . . . . . . . . . . . . 441

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

 8 Aggregating and Pivoting Data  . . . . . . . . . . . . . . . . . . . . . . . . . . 445

OVER Clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

Tiebreakers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .448

Running Aggregations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Cumulative Aggregations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

Sliding Aggregations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457

Year-to-Date (YTD)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459

Pivoting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Pivoting Attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Relational Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Aggregating Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

Unpivoting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Custom Aggregations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

Custom Aggregations Using Pivoting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

User Defi ned Aggregates (UDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Specialized Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Histograms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Grouping Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503

Grouping Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

The GROUPING SETS Subclause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

A04T626034.indd   ix 2/20/2009   6:16:01 PM



x Table of Contents

The CUBE Subclause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511

The ROLLUP Subclause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

Grouping Sets Algebra  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

The GROUPING_ID Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

Materialize Grouping Sets  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521

Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

 9 TOP and APPLY  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

SELECT TOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

TOP and Determinism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529

TOP and Input Expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

TOP and Modifi cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531

TOP on Steroids  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 534

APPLY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

Solutions to Common Problems Using TOP and APPLY  . . . . . . . . . . . . . . . . . . 537

TOP n for Each Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Matching Current and Previous Occurrences . . . . . . . . . . . . . . . . . . . . . . 543

Paging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Random Rows. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552

Median. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554

Logical Transformations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

 10 Data Modifi cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Inserting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

Enhanced VALUES Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561

SELECT INTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563

BULK Rowset Provider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

Minimally Logged Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567

INSERT EXEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590

Sequence Mechanisms  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595

GUIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .600

Deleting Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

TRUNCATE vs. DELETE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

Removing Rows with Duplicate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601

DELETE Using Joins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 603

A04T626034.indd   x 2/20/2009   6:16:01 PM



 Table of Contents xi

Updating Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

UPDATE Using Joins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

Updating Large Value Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610

SELECT and UPDATE Statement Assignments . . . . . . . . . . . . . . . . . . . . . . 611

Merging Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

MERGE Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

Adding a Predicate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

Multiple WHEN Clauses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

WHEN NOT MATCHED BY SOURCE  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

MERGE Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

MERGE and Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627

OUTPUT Clause. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628

INSERT with OUTPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629

DELETE with OUTPUT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

UPDATE with OUTPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632

MERGE with OUTPUT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

Composable DML  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

 11 Querying Partitioned Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

Partitioning in SQL Server. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

Partitioned Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 639

Partitioned Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .640

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

 12 Graphs, Trees, Hierarchies, and Recursive Queries. . . . . . . . . . . 659

Terminology  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Graphs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 660

Hierarchies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

Scenarios  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

Employee Organizational Chart  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

Bill of Materials (BOM)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

Road System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 666

Iteration/Recursion  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

Subordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 671

Ancestors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

A04T626034.indd   xi 2/24/2009   1:42:17 AM



xii Table of Contents

Subgraph/Subtree with Path Enumeration  . . . . . . . . . . . . . . . . . . . . . . . . 685

Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 688

Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691

Materialized Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

Maintaining Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

Materialized Path with the HIERARCHYID Data Type  . . . . . . . . . . . . . . . . . . . . 706

Maintaining Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

Further Aspects of Working with HIERARCHYID  . . . . . . . . . . . . . . . . . . . 719

Nested Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

Assigning Left and Right Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

Transitive Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

Directed Acyclic Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 740

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 755

Appendix A: Logic Puzzles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 757

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 779

Microsoft is interested in hearing your feedback so we can continually improve our books and learning  

resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

A04T626034.indd   xii 2/20/2009   6:16:01 PM



  xiii

Foreword

I had met Itzik Ben-Gan briefl y a couple of times and knew of his reputation, so I was looking 
forward to his afternoon session on avoiding cursors in SQL programming at PASS. I was lucky 
to get there early, as the large room fi lled up quickly. Itzik took a couple of SQL programming 
problems and diced them up in the most skillful and entertaining way, showing the elegance 
and effi ciency of set-oriented thinking. The audience loved it—and so did I, except I had 
a different angle. Having worked on the internals of SQL Server, I could see Itzik touch the 
product nerves in his demos, and I admired how he turned features into beautiful solutions. 
After the session, I asked one of the attendees what had been his main takeaway, curious 
about which of the many techniques would have stood out for him. He looked at me, mildly 
surprised, and just said, “The man is a genius!” That pretty much sums it up.

This question of cursors is more fundamental than it may appear at fi rst. It points to a deep 
 dichotomy of tremendous practical importance. Most of us were taught to program by chopping 
up a task into smaller steps that, when executed in sequence, perform a desired computation. But 
if you approach SQL programming this way, you will get only mediocre results. Your code will be 
much larger and harder to maintain. It will be less effi cient, less fl exible, and less tunable. Using 
SQL effectively is not about an incremental extension of your procedural programming skills 
or about a specifi c collection of tricks. Writing SQL well requires approaching problems with a 
 different mind-set—one that is declarative and set oriented, not procedural. This is the dichotomy.

Inside Microsoft SQL Server 2008: T-SQL Querying puts together all the ingredients you need 
to  understand this declarative and set-oriented way of thinking and become a profi cient 
SQL  programmer, thus making an important contribution to the SQL Server development 
 community. Its chapters on formal foundations help you understand the basis for the language 
philosophy and get a sense for its potential. The language itself is covered thoroughly, from 
the basic operations to the most advanced features, all of them explained in the context of 
real problem solving. The many examples show you what good SQL looks like, and they cover 
common patterns you are likely to fi nd when writing applications. A comprehensive chapter on 
query tuning explains in detail the factors that impact performance in the system, how to go 
about identifying issues, and how to address them effectively.

Itzik assembled a strong team of collaborators to write this book. Coming from different 
backgrounds, all of them share a deep expertise in SQL, a passion for database technology, 
 extensive teaching experience, and a recognized track record of contributions to the SQL 
Server community. Steve Kass is known for his depth of understanding and clarity of thought. 
Dejan Sarka contributes an extensive knowledge of the relational model and a breadth of 
database technologies. As for Lubor Kollar, I’ve had the pleasure of working with him on the 
defi nition, design, and implementation of the Query Processing engine of SQL Server for 
over a decade, and I deeply respect his insight. They make an outstanding team of guides 
who can help you improve your skills.

A05F626034.indd   xiii 2/18/2009   1:43:47 AM



xiv Foreword

SQL is a very powerful language, but I believe only a minority of developers really know 
how to get the most out of it. Using SQL well can mean code that is 10 times more effi cient, 
more scalable, and more maintainable. Inside Microsoft SQL Server 2008: T-SQL Querying tells 
you how.

César Galindo-Legaria, PhD

Manager of the Query Optimization Team, Microsoft SQL Server

A05F626034.indd   xiv 2/18/2009   1:43:47 AM



  xv

Acknowledgments

Several people contributed to the T-SQL querying and T-SQL programming books, and I’d 
like to acknowledge their contributions. Some were involved directly in writing or editing the 
books, while others were involved indirectly by providing advice, support, and inspiration.

To the coauthors of Inside Microsoft SQL Server 2008: T-SQL Querying—Lubor Kollar, 
Dejan Sarka, and Steve Kass—and to the coauthors of Inside Microsoft SQL Server 2008: 
T-SQL Programming—Dejan Sarka, Roger Wolter, Greg Low, Ed Katibah, and Isaac Kunen—it 
is a great honor to work with you. It is simply amazing to see the level of mastery that you 
have over your areas of expertise, and it is pure joy to read your texts. Thanks for agreeing to 
be part of this project.

To Lubor, besides directly contributing to the books, you provide support, advice, and 
 friendship and are a great source of inspiration. I always look forward to spending time with 
you—hiking, drinking, and talking about SQL and other things.

To Dejko, your knowledge of the relational model is admirable. Whenever we spend time 
together, I learn new things and discover new depths. I like the fact that you don’t take things 
for granted and don’t follow blindly words of those who are considered experts in the fi eld. 
You have a healthy mind of your own and see things that very few are capable of seeing. I’d 
like to thank you for agreeing to contribute texts to the books. I’d also like to thank you for 
your friendship; I always enjoy spending time with you. We need to do the beer list thing 
again some time. It’s been almost 10 years!

To the technical editor of the books, Steve Kass, your unique mix of strengths in  mathematics, 
SQL, and English are truly extraordinary. I know that editing both books and also writing 
your own chapters took their toll. Therefore, I’d like you to know how much I appreciate 
your work. I know you won’t like my saying this, but it is quite interesting to see a genius at 
work. It kept reminding me of Domingo Montoya’s work on the sword he prepared for the 
 six-fi ngered man from William Goldman’s The Princess Bride. 

To Umachandar Jayachandran (UC), many thanks for helping out by editing some of the 
chapters. Your mastery of T-SQL is remarkable, and I’m so glad you could join the project in 
any capacity. I’d also like to thank Bob Beauchemin for reviewing the chapter on Spatial Data. 

To Cesar Galindo-Legaria, I feel honored that you agreed to write the foreword for the 
T-SQL querying book. The way you and your team designed SQL Server’s optimizer is  simply 
a  marvel. I’m constantly trying to fi gure out and interpret what the optimizer does, and 
 whenever I manage to understand a piece of the puzzle, I fi nd it astonishing what a piece of 
software is capable of. Your depth of knowledge, your pleasant ways, and your humility are 
an inspiration.

A06A626034.indd   xv 2/18/2009   10:43:50 PM



xvi Acknowledgments

To the team at Microsoft Press: Ken Jones, the product planner: I appreciate the personal 
manner in which you handle things and always look forward to Guinness sessions with you. 
I think that you have an impossible job trying to make everyone happy and keep projects 
moving, but somehow you still manage to do it.

To Sally Stickney, the development editor, thanks for kicking the project off the ground. I know 
that the T-SQL querying book was your last project at Microsoft Press before you started your 
new chosen path in life and am hopeful that it left a good impression on you. I wish you luck 
and happiness in your new calling. 

To Denise Bankaitis, the project editor, you of all people at Microsoft Press probably spent 
most time working on the books. Thanks for your elegant project management and for 
 making sure things kept fl owing. It was a pleasure to work with you.

I’d also like to thank DeAnn Montoya, the project manager for the vendor editorial team, 
S4Carlisle Publishing Services, and Becka McKay, the copy editor. I know you spent countless 
hours going over our texts, and I appreciate it a lot.

To Solid Quality Mentors, being part of this amazing company and group of people is by far the 
best thing that happened to me in my career. It’s as if all I did in my professional life led me to this 
place where I can fulfi ll my calling, which is teaching people about SQL. To Fernando Guerrero, 
Brian Moran, and Douglas McDowell: the company grew and matured because of your efforts, and 
you have a lot to be proud of. Being part of this company, I feel a part of something  meaningful 
and that I’m among family and friends—among people whom I both respect and trust. 

I’d like to thank my friends and colleagues from the company: Ron Talmage, Andrew J. Kelly, 
Eladio Rincón, Dejan Sarka, Herbert Albert, Fritz Lechnitz, Gianluca Hotz, Erik Veerman, 
Jay Hackney, Daniel A. Seara, Davide Mauri, Andrea Benedetti, Miguel Egea, Adolfo Wiernik, 
Javier Loria, Rushabh Mehta, Greg Low, Peter Myers, Randy Dyess, and many others. I’d like 
to thank Jeanne Reeves for making many of my classes possible and all the back-offi ce team 
for their support. I’d also like to thank Kathy Blomstrom for managing our writing projects 
and for your excellent edits.

I’d like to thank the members of the SQL Server development team who are working on T-SQL 
and its optimization: Michael Wang, Michael Rys, Eric Hanson, Umachandar Jayachandran 
(UC), Tobias Thernström, Jim Hogg, Isaac Kunen, Krzysztof Kozielczyk, Cesar Galindo-Legaria, 
Craig Freedman, Conor Cunningham, and many others. For better or worse, what you  develop 
is what we have to work with, and so far the results are outstanding! Still, until we get a full 
implementation of the OVER clause, you know I won’t stop bothering you. ;-)

I’d like to thank Dubi Lebel and Assaf Fraenkel from Microsoft Israel and also Ami Levin, who 
helps me run the Israeli SQL Server users group.

A06A626034.indd   xvi 2/18/2009   10:43:50 PM



 Acknowledgments xvii

To the team at SQL Server Magazine: Megan Bearly, Sheila Molnar, Mary Waterloo, 
Michele Crockett, Mike Otey, Lavon Peters, and Anne Grubb: Being part of this magazine is a 
great  privilege. Congratulations on the 10th anniversary of the magazine! I can’t believe that 
10 years passed so quickly, but that’s what happens when you have fun.

To my fellow SQL Server MVPs: Erland Sommarskog, Alejandro Mesa, Aaron Bertrand, 
Tibor Karaszi, Steve Kass, Dejan Sarka, Roy Harvey, Tony Rogerson, Marcello Poletti (Marc), 
Paul Randall, Bob Beauchemin, Adam Machanic, Simon Sabin, Tom Moreau, Hugo Kornelis, 
David Portas, David Guzman, and many others: Your contribution to the SQL Server community 
is remarkable. Much of what I know today is thanks to our discussions and exchange of ideas.

To my fellow SQL Server MCTs: Tibor Karaszi, Chris Randall, Ted Malone, and others: We go a 
long way back, and I’m glad to see that you’re all still around in the SQL teaching  community. 
We all share the same passion for teaching. Of anyone, you best understand the kind of 
 fulfi llment that teaching can bestow.

To my students: Without you, my work would be meaningless. Teaching is what I like to do 
best, and the purpose of pretty much everything else that I do with SQL—including writing 
these books—is to support my teaching. Your questions make me do a lot of research, and 
therefore I owe much of my knowledge to you.

To my parents, Emilia and Gabriel Ben-Gan, and to my siblings, Ina Aviram and Michael Ben-Gan, 
thanks for your continuous support. The fact that most of us ended up being teachers is  probably 
not by chance, but for me to fulfi ll my calling, I end up traveling a lot. I miss you all when I’m 
away, and I always look forward to our family reunions when I’m back.

To Lilach, you’re the one who needs to put up with me all the time and listen to my SQL ideas 
that you probably couldn’t care less about. It’s brainwashing, you see—at some point you 
will start asking for more, and before you know it, you will even start reading my books. Not 
 because I will force you but because you will want to, of course. That’s the plan at least. Thanks 
for giving meaning to what I do and for supporting me through some rough times of writing.

A06A626034.indd   xvii 2/18/2009   10:43:50 PM



A06A626034.indd   xviii 2/18/2009   10:43:50 PM



  xix

Introduction

This book and its sequel—Inside Microsoft SQL Server 2008: T-SQL Programming—cover 
advanced T-SQL querying, query tuning, and programming in Microsoft SQL Server 2008. 
They are designed for experienced programmers and DBAs who need to write and optimize 
code in SQL Server 2008. For brevity, I’ll refer to the books as T-SQL Querying and T-SQL 
Programming, or just as these books.

Those who read the SQL Server 2005 edition of the books will fi nd plenty of new materials 
covering new subjects, new features, and enhancements in SQL Server 2008, plus revisions 
and new insights about the existing subjects.

These books focus on practical common problems, discussing several approaches to 
 tackle each. You will be introduced to many polished techniques that will enhance 
your toolbox and coding vocabulary, allowing you to provide effi cient solutions in a 
natural manner.

These books unveil the power of set-based querying and explain why it’s usually superior to 
procedural programming with cursors and the like. At the same time, they teach you how to 
identify the few scenarios where cursor-based solutions are superior to set-based ones.

This book—T-SQL Querying—focuses on set-based querying and query tuning, and 
I  recommend that you read it fi rst. The second book—T-SQL Programming—focuses on 
 procedural  programming and assumes that you read the fi rst book or have suffi cient 
 querying background.

T-SQL Querying starts with fi ve chapters that lay the foundation of logical and physical query 
processing required to gain the most from the rest of the chapters in both books.

The fi rst chapter covers logical query processing. It describes in detail the logical phases 
 involved in processing queries, the unique aspects of SQL querying, and the special mind-set 
you need to adopt to program in a relational, set-oriented environment.

The second chapter covers set theory and predicate logic—the strong mathematical 
 foundations upon which the relational model is built. Understanding these foundations 
will give you  better insights into the model and the language. This chapter was written 
by Steve Kass, who was also the main technical editor of these books. Steve has a unique 
 combination of strengths in  mathematics, computer science, SQL, and English that make him 
the ideal  author for this subject. 

A07I626034.indd   xix 2/25/2009   10:44:11 AM



xx Introduction

The third chapter covers the relational model. Understanding the relational model is 
 essential for good database design and helps in writing good code. The chapter defi nes 
relations and tuples and operators of relational algebra. Then it shows the relational model 
from a  different perspective called relational calculus. This is more of a  business-oriented 
 perspective, as the logical model is described in terms of predicates and propositions. 
Data integrity is crucial for transactional systems; therefore, the chapter spends time 
 discussing all kinds of constraints. Finally, the chapter introduces normalization—the 
formal process of  improving database design. This chapter was written by Dejan Sarka. 
Dejan is one of the people with the deepest understanding of the relational model 
that I know.

The fourth chapter covers query tuning. It introduces a query tuning methodology we 
 developed in our company (Solid Quality Mentors) and have been applying in production 
systems. The chapter also covers working with indexes and analyzing execution plans. This 
chapter provides the important background knowledge required for the rest of the chapters 
in both books, which as a practice discuss working with indexes and analyzing execution 
plans. These are important aspects of querying and query tuning.

The fi fth chapter covers complexity and algorithms and was also written by Steve Kass. This 
chapter particularly focuses on some of the algorithms used often by the SQL Server engine. 
It gives attention to considering worst-case behavior as well as average case complexity. 
By understanding the complexity of algorithms used by the engine, you can anticipate, for 
 example, how the performance of certain queries will degrade when more data is added 
to the tables involved. Gaining a better understanding of how the engine processes your 
 queries equips you with better tools to tune them.

The chapters that follow delve into advanced querying and query tuning, addressing both 
logical and physical aspects of your code. These chapters cover the following subjects: 
 subqueries, table expressions, and ranking functions; joins and set operations;  aggregating 
and pivoting data; TOP and APPLY; data modifi cation; querying partitioned tables; and 
graphs, trees, hierarchies, and recursive queries.

The chapter covering querying partitioned tables was written by Lubor Kollar. Lubor led 
the development of partitioned tables and indexes when fi rst introduced in the product, 
and many of the features that we have today are thanks to his efforts. These days 
Lubor works with customers who have, among other things, large implementations 
of partitioned tables and indexes as part of his role in the SQL Server Customer Advisory 
Team (SQL CAT).

Appendix A covers logic puzzles. Here you have a chance to practice logical puzzles to 
 improve your logic skills. SQL querying essentially deals with logic. I fi nd it important to 
 practice pure logic to improve your query problem-solving capabilities. I also fi nd these 
 puzzles fun and challenging, and you can practice them with the entire family. These puzzles 

A07I626034.indd   xx 2/25/2009   10:44:11 AM



 Introduction xxi

are a compilation of the logic puzzles that I covered in my T-SQL column in SQL Server 
Magazine. I’d like to thank SQL Server Magazine for allowing me to share these puzzles with 
the book’s readers.

The second book—T-SQL Programming—focuses on programmatic T-SQL constructs 
and expands its coverage to treatment of XML and XQuery and the CLR integration. 
The book’s chapters cover the following subjects: views; user-defi ned functions; stored 
 procedures;  triggers; transactions and concurrency; exception handling; temporary tables 
and table  variables; cursors; dynamic SQL; working with date and time; CLR user-defi ned 
types;  temporal support in the relational model; XML and XQuery (including  coverage 
of open schema); spatial data; change data capture, change tracking, and auditing; 
and Service Broker.

The chapters covering CLR user-defi ned types, temporal support in the relational model, 
and XML and XQuery were written by Dejan Sarka. As I mentioned, Dejan is extremely 
 knowledgeable in the relational model and has very interesting insights into the model 
itself and the way the constructs that he covers in his chapters fi t in the model when 
used sensibly. 

The chapter about spatial data was written by Ed Katibah and Isaac Kunen. Ed and Isaac 
are with the SQL Server development team and led the efforts to implement spatial data 
 support in SQL Server 2008. It is a great privilege to have this chapter written by the 
 designers of the feature. Spatial data support is new to SQL Server 2008 and brings new 
data types, methods, and indices. This chapter is not intended as an exhaustive  treatise 
on spatial data or as an encyclopedia of every spatial method that SQL Server now 
 supports. Instead, this chapter will introduce core spatial concepts and provide the reader 
with key  programming constructs necessary to successfully navigate this new feature 
to SQL Server.

The chapter about change data capture, change tracking, and auditing was written by Greg 
Low. Greg is a SQL Server MVP and the managing director of SolidQ Australia. Greg has 
many years of experience working with SQL Server—teaching, speaking, and writing about 
it—and is highly regarded in the SQL Server community. The technologies that are the  focus 
of this chapter track access and changes to data and are new in SQL Server 2008. At fi rst 
glance, these technologies can appear to be either overlapping or contradictory, and the 
best-use cases for each might be far from obvious. This chapter explores each  technology, 
 discusses the capabilities and limitations of each, and explains how each is intended 
to be used.

The last chapter, which covers Service Broker (SSB), was written by Roger Wolter. Roger is 
the program manager with the SQL Server development team and led the initial efforts to 
 introduce SSB in SQL Server. Again, there’s nothing like having the designer of a component 
explain it in his own words. The “sleeper” feature of SQL Server 2005 is now in production in 

A07I626034.indd   xxi 2/25/2009   10:44:11 AM



xxii Introduction

a wide variety of applications. This chapter covers the architecture of SSB and how to use SSB 
to build a variety of reliable asynchronous database applications. The SQL 2008  edition adds 
coverage of the new features added to SSB for the SQL Server 2008 release and includes 
 lessons learned and best practices from SSB applications deployed since the SQL Server 2005 
release. The major new features are Queue Priorities, External Activation, and a new SSB 
 troubleshooting application that incorporates lessons the SSB team learned from customers 
who have already deployed applications. 

Hardware and Software Requirements

To practice all the material in these books and run all code samples, it is 
 recommended that you use Microsoft SQL Server 2008 Developer or Enterprise Edition 
and Microsoft Visual Studio 2008 Professional or Database Edition. If you have a 
 subscription to MSDN, you can download SQL Server 2008 and Visual Studio 2008 from 
http://msdn.microsoft.com. Otherwise, you can download a 180-day free SQL Server 2008 
trial software from http://www.microsoft.com/sqlserver/2008/en/us/trial-software.aspx and 
a 90-day free Visual Studio 2008 trial software from http://msdn.microsoft.com/
en-us/vstudio/aa700831.aspx.

You can fi nd system requirements for SQL Server 2008 at 
http://msdn.microsoft.com/en-us/ library/ms143506.aspx and for Visual Studio 2008 at 
http://msdn.microsoft.com/en-us/vs2008/products/bb894726.aspx.

Companion Content and Sample Database

These books feature a companion Web site that makes available to you all the code used in 
the books, the errata, additional resources, and more. The companion Web site is 
http://www.insidetsql.com. 

For each of these books the companion Web site provides a compressed fi le with the book’s 
source code, a script fi le to create the books’ sample database, and additional fi les that are 
required to run some of the code samples. 

After downloading the source code, run the script fi le TSQLFundamentals2008.sql to 
create the sample database InsideTSQL2008, which is used in many of the books’ code 
samples. The data model of the InsideTSQL2008 database is provided in Figure I-1 for 
your convenience.

A07I626034.indd   xxii 2/25/2009   10:44:11 AM



 Introduction xxiii

Production.Products

productidPK

I2
FK2,I3
FK1,I1

productname
supplierid
categoryid
unitprice
discontinued

HR.Employees

empidPK

I1

I2

FK1

lastname
firstname
title
titleofcourtesy
birthdate
hiredate
address
city
region
postalcode
country
phone
mgrid

Sales.Shippers

shipperidPK

companyname
phone

Sales.Orders

orderidPK

FK2,I1
FK1,I2
I3

I4
FK3,I5

I6

custid
empid
orderdate
requireddate
shippeddate
shipperid
freight
shipname
shipaddress
shipcity
shipregion
shippostalcode
shipcountry

I1
I4
I3

Sales.Customers

custidPK

companyname
contactname
contacttitle
address
city
region
postalcode
country
phone
fax

I2

Production.Suppliers

supplieridPK

I1

I2

companyname
contactname
contacttitle
address
city
region
postalcode
country
phone
fax

Production.Categories

categoryidPK

I1 categoryname
description

Sales.OrderDetails

orderid
productid

PK,FK2,I1
PK,FK1,I2

Sales.OrderTotalsByYear

orderyear
qty

Sales.OrderValues

orderid
custid
empid
shipperid
orderdate
val

Sales.CustOrders

custid
ordermonth
qty

unitprice
qty
discount

FIGURE I-1 Data model of the TSQLFundamentals2008 database

Find Additional Content Online

As new or updated material becomes available that complements your books, it will be 
 posted online on the Microsoft Press Online Windows Server and Client Web site. The type 
of  material you might fi nd includes updates to books content, articles, links to companion 
 content,  errata, sample chapters, and more.  This Web site is available at http://microsoftpresssrv
.libredigital.com/serverclient/ and is updated periodically.

A07I626034.indd   xxiii 2/25/2009   10:44:11 AM



xxiv Introduction

Support for These Books

Every effort has been made to ensure the accuracy of these books and the contents of 
the companion Web site. As corrections or changes are collected, they will be added to a 
Microsoft Knowledge Base article. 

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the books or questions that are not 
 answered by visiting the sites above, please send them to me via e-mail to

itzik@SolidQ.com

or via postal mail to

Microsoft Press

Attn: Inside Microsoft SQL Server 2008: T-SQL Querying and Inside Microsoft SQL Server 2008: 
T-SQL Programming Editor

One Microsoft Way

Redmond, WA 98052-6399.

Please note that Microsoft software product support is not offered through the above 
addresses.

A07I626034.indd   xxiv 2/25/2009   10:44:11 AM



  445

Chapter 8

 Aggregating and Pivoting Data 

 This chapter covers various data-aggregation techniques, including using the OVER clause 
with aggregate functions, tiebreakers, running aggregates, pivoting, unpivoting, custom 
 aggregations, histograms, grouping factors, and grouping sets. 

 In my solutions in this chapter, I’ll reuse techniques that I introduced earlier. I’ll also introduce 
new techniques for you to familiarize yourself with. 

 Logic will naturally be an integral element in the solutions. Remember that at the heart of 
every querying problem lies a logical puzzle. 

OVER Clause

 The OVER clause allows you to request window-based calculations—that is, calculations 
performed over a whole window of rows. In Chapter 6, “Subqueries, Table Expressions, 
and Ranking Functions,” I described in detail how you use the OVER clause with analytical 
 ranking functions. Microsoft SQL Server also supports the OVER clause with scalar aggregate 
 functions; however, currently you can provide only the PARTITION BY clause. Future versions 
of SQL Server will most likely also support the other ANSI elements of aggregate window 
functions, including the ORDER BY and ROWS clauses. 

 The purpose of using the OVER clause with scalar aggregates is to calculate, for each row, an 
aggregate based on a window of values that extends beyond that row—and to do all this 
without using a GROUP BY clause in the query. In other words, the OVER clause allows you to 
add aggregate calculations to the results of an ungrouped query. This capability provides an 
alternative to requesting aggregates with subqueries in case you need to include both base 
row attributes and aggregates in your results. 

 Remember that in Chapter 7, “Joins and Set Operations,” I presented a problem in which 
you were required to calculate two aggregates for each order row: the percentage the row 
 contributed to the total value of all orders and the difference between the row’s order value 
and the average value over all orders. In my examples I used a table called MyOrderValues 
that you create and populate by running the following code: 

SET NOCOUNT ON;

USE InsideTSQL2008;

IF OBJECT_ID('dbo.MyOrderValues', 'U') IS NOT NULL

  DROP TABLE dbo.MyOrderValues;

GO

C08626034.indd   445 2/13/2009   2:04:49 AM



446 Inside Microsoft SQL Server 2008: T-SQL Querying

SELECT *

INTO dbo.MyOrderValues

FROM Sales.OrderValues;

ALTER TABLE dbo.MyOrderValues

  ADD CONSTRAINT PK_MyOrderValues PRIMARY KEY(orderid);

CREATE INDEX idx_val ON dbo.MyOrderValues(val);

 I showed the following optimized query in which I used a cross join between the base table 
and a derived table of aggregates instead of using multiple subqueries: 

SELECT orderid, custid, val,

  CAST(val / sumval * 100. AS NUMERIC(5, 2)) AS pct,

  CAST(val - avgval AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues

  CROSS JOIN (SELECT SUM(val) AS sumval, AVG(val) AS avgval

              FROM dbo.MyOrderValues) AS Aggs;

 This query produces the following output: 

orderid  custid  val       pct   diff

-------- ------- --------- ----- -------------

10248    85      440.00    0.03  -1085.05

10249    79      1863.40   0.15  338.35

10250    34      1552.60   0.12  27.55

10251    84      654.06    0.05  -870.99

10252    76      3597.90   0.28  2072.85

10253    34      1444.80   0.11  -80.25

10254    14      556.62    0.04  -968.43

10255    68      2490.50   0.20  965.45

10256    88      517.80    0.04  -1007.25

...

 The motivation for calculating the two aggregates in a single derived table instead of as 
two separate subqueries stemmed from the fact that each subquery accessed the base table 
 separately, while the derived table calculated the aggregates using a single scan of the data. 
SQL Server’s query optimizer didn’t use the fact that the two subqueries aggregated the 
same data into the same groups. 

 When you specify multiple aggregates with identical OVER clauses in the same SELECT list, 
however, the aggregates refer to the same window, as with a derived table, and SQL Server’s 
query optimizer evaluates them all with one scan of the source data. Here’s how you use the 
OVER clause to answer the same request: 

SELECT orderid, custid, val,

  CAST(val / SUM(val) OVER() * 100. AS NUMERIC(5, 2)) AS pct,

  CAST(val - AVG(val) OVER() AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues;

C08626034.indd   446 2/13/2009   2:04:49 AM



 Chapter 8 Aggregating and Pivoting Data 447

 Note In Chapter 6, I described the PARTITION BY clause, which is used with window functions, 
including aggregate window functions. This clause is optional. When not specifi ed, the aggregate 
is based on the whole input rather than being calculated per partition. 

 Here, because I didn’t specify a PARTITION BY clause, the aggregates were calculated based 
on the whole input. Logically, SUM(val) OVER() is equivalent here to the subquery (SELECT 
SUM(val) FROM dbo.MyOrderValues). Physically, it’s a different story. As an exercise, you 
can compare the execution plans of the following two queries, each requesting a different 
 number of aggregates using the same OVER clause: 

SELECT orderid, custid, val,

  SUM(val) OVER() AS sumval

FROM dbo.MyOrderValues;

SELECT orderid, custid, val,

  SUM(val)   OVER() AS sumval,

  COUNT(val) OVER() AS cntval,

  AVG(val)   OVER() AS avgval,

  MIN(val)   OVER() AS minval,

  MAX(val)   OVER() AS maxval

FROM dbo.MyOrderValues;

 You’ll fi nd the two plans nearly identical, with the only difference being that the single 
Stream Aggregate operator calculates a different number of aggregates. The query costs are 
identical. On the other hand, compare the execution plans of the following two queries, each 
requesting a different number of aggregates using subqueries: 

SELECT orderid, custid, val,

  (SELECT SUM(val) FROM dbo.MyOrderValues) AS sumval

FROM dbo.MyOrderValues;

SELECT orderid, custid, val,

  (SELECT SUM(val)   FROM dbo.MyOrderValues) AS sumval,

  (SELECT COUNT(val) FROM dbo.MyOrderValues) AS cntval,

  (SELECT AVG(val)   FROM dbo.MyOrderValues) AS avgval,

  (SELECT MIN(val)   FROM dbo.MyOrderValues) AS minval,

  (SELECT MAX(val)   FROM dbo.MyOrderValues) AS maxval

FROM dbo.MyOrderValues;

 You’ll fi nd that they have different plans, with the latter being more expensive because it 
 rescans the source data for each aggregate. 

 Another benefi t of the OVER clause is that it allows for shorter and simpler code. This is 
 especially apparent when you need to calculate partitioned aggregates. Using OVER, you 
simply specify a PARTITION BY clause. Using subqueries, you have to correlate the inner 
 query to the outer, making the query longer and more complex. 

C08626034.indd   447 2/13/2009   2:04:49 AM



448 Inside Microsoft SQL Server 2008: T-SQL Querying

 As an example of using the PARTITION BY clause, the following query calculates the  percentage 
of the order value out of the customer total and the difference from the customer average: 

SELECT orderid, custid, val,

  CAST(val / SUM(val) OVER(PARTITION BY custid) * 100.

    AS NUMERIC(5, 2)) AS pct,

  CAST(val - AVG(val) OVER(PARTITION BY custid) AS NUMERIC(12, 2)) AS diff

FROM dbo.MyOrderValues

ORDER BY custid;

This query generates the following output:

orderid  custid  val     pct    diff

-------- ------- ------- ------ ------------

10643    1       814.50  19.06  102.33

10692    1       878.00  20.55  165.83

10702    1       330.00  7.72   -382.17

10835    1       845.80  19.79  133.63

10952    1       471.20  11.03  -240.97

11011    1       933.50  21.85  221.33

10926    2       514.40  36.67  163.66

10759    2       320.00  22.81  -30.74

10625    2       479.75  34.20  129.01

10308    2       88.80   6.33   -261.94

...

 In short, the OVER clause allows for more concise and faster-running queries. 

 When you’re done, run the following code for cleanup: 

IF OBJECT_ID('dbo.MyOrderValues', 'U') IS NOT NULL

  DROP TABLE dbo.MyOrderValues;

Tiebreakers

 In this section, I want to introduce a new technique based on aggregates to solve  tiebreaker 
problems, which I started discussing in Chapter 6. I’ll use the same example as I used 
there—returning the most recent order for each employee—using different  combinations 
of tiebreaker attributes that uniquely identify an order for each employee. Keep in 
mind that the  performance of the solutions that use subqueries depends very strongly 
on  indexing. That is, you need an  index on the partitioning column, sort column, and 
 tiebreaker attributes. But in practice, you don’t always have the option of adding as many 
indexes as you like. The subquery-based  solutions will greatly suffer in performance from 
a lack of appropriate indexes. Using  aggregation techniques, you’ll see that the solution 
yields reasonable performance even when an optimal index is not in place—in fact, even 
when no good index is in place. 

 Let’s start by using MAX(orderid) as the tiebreaker. To recap, you’re after the most recent 
 order for each employee, and if there’s a tie for most recent, choose the order with the 
 largest ID. For each employee’s most recent order, you’re supposed to return the columns 
empid,  orderdate, orderid, custid, and requireddate. 

C08626034.indd   448 2/13/2009   2:04:49 AM



 Chapter 8 Aggregating and Pivoting Data 449

 The aggregate technique to solve the problem applies the following logical idea, given here 
in pseudocode: 

SELECT empid, MAX(orderdate, orderid, custid, requireddate) 

FROM Sales.Orders 

GROUP BY empid;

 This idea can’t be expressed directly in T-SQL, so don’t try to run this query. The idea here is to 
select for each empid, the row with largest orderdate (most recent), then largest orderid—the 
tiebreaker—among orders with the most recent orderdate. Because the combination  empid, 
orderdate, orderid is already unique, there will be no further ties to break, and the other 
 attributes (custid and requireddate) are simply returned from the selected row. Because a MAX 
of more than one attribute does not exist in T-SQL, you must mimic it somehow. One way is 
by merging the attributes into a single input to the MAX function, then extracting back the 
individual elements in an outer query. 

 The question is this: What technique should you use to merge the attributes? The trick 
is to convert each attribute to a fi xed-width string and concatenate the strings. You 
must  convert the attributes to strings in a way that doesn’t change the sorting order. 
When  dealing  exclusively with nonnegative numbers, you can get by with an arithmetic 
 calculation instead of concatenation. For example, say you have the numbers m and n, 
each with a valid range of 1 through 999. To merge m and n, use the following formula: 
m*1000 + n AS r. You can easily extract the individual pieces later: r divided by 1000 is 
m, and r modulo 1000 is n. However, in many cases you may have nonnumeric data to 
 concatenate, so arithmetic wouldn’t be possible. You might want to consider converting 
all values to fi xed-width character strings (CHAR(n) or NCHAR(n)) or to fi xed-width binary 
strings (BINARY(n)). 

 Here’s an example of returning the most recent order for each employee, where 
MAX(orderid) is the tiebreaker, using binary concatenation: 

SELECT empid,

  CAST(SUBSTRING(binstr, 1,  8) AS DATETIME) AS orderdate,

  CAST(SUBSTRING(binstr, 9,  4) AS INT)      AS orderid,

  CAST(SUBSTRING(binstr, 13, 4) AS INT)      AS custid,

  CAST(SUBSTRING(binstr, 17, 8) AS DATETIME) AS requireddate

FROM (SELECT empid, 

        MAX(CAST(orderdate        AS BINARY(8))

              + CAST(orderid      AS BINARY(4))

              + CAST(custid       AS BINARY(4))

              + CAST(requireddate AS BINARY(8))) AS binstr

      FROM Sales.Orders

      GROUP BY empid) AS D;

 The derived table D contains the maximum concatenated string for each employee. Notice 
that each value was converted to the appropriate fi xed-size string before concatenation 
based on its data type (DATETIME—8 bytes, INT—4 bytes, and so on).  

C08626034.indd   449 2/13/2009   2:04:49 AM



450 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note When you convert numbers to binary strings, only nonnegative values preserve their 
 original sort order. As for DATETIME values, as long as they are not earlier than the base date 
January 1st, 1900, when converted to binary, the values preserve the original sort behavior. 
Values of the new DATE data type, however, do not preserve their sort behavior when converted 
to binary. As for character strings, converting them to binary values changes their sort order 
to one like a binary collation would defi ne. Also note that preserving the original sort order is 
required only up to the point where uniqueness of a row per group is guaranteed (orderdate + 
orderid in our case). 

 The outer query uses SUBSTRING to extract the individual elements, and it converts them 
back to their original data types. 

 The real benefi t in this solution is that it scans the data only once regardless of whether you 
have a good index. If you do, you’ll probably get an ordered scan of the index and a sort-based 
aggregate (a stream aggregate). If you don’t have a good index—as is the case here—you’ll 
probably get a hash-based aggregate, as you can see in Figure 8-1.

FIGURE 8-1 Execution plan for a tiebreaker query

 Things get trickier when the sort columns and tiebreaker attributes have different sort  directions 
within them. For example, suppose the tiebreaker was MIN(orderid). In that case, you would 
need to apply MAX to orderdate and MIN to orderid. There is a logical solution when the 
 attribute with the opposite direction is numeric. Say you need to calculate the MIN value of a 
nonnegative integer column n, using only MAX, and you need to use binary concatenation. You 
can get the minimum by using <maxint> - MAX(<maxint> - n). 

 The following query incorporates this logical technique: 

SELECT empid,

  CAST(SUBSTRING(binstr, 1, 8) AS DATETIME)         AS orderdate,

  2147483647 - CAST(SUBSTRING(binstr, 9, 4) AS INT) AS orderid,

  CAST(SUBSTRING(binstr, 13, 4) AS INT)             AS custid,

  CAST(SUBSTRING(binstr, 17, 8) AS DATETIME)        AS requireddate

FROM (SELECT empid, 

        MAX(CAST(orderdate                AS BINARY(8))

              + CAST(2147483647 - orderid AS BINARY(4))

              + CAST(custid               AS BINARY(4))

              + CAST(requireddate         AS BINARY(8))) AS binstr

      FROM Sales.Orders

      GROUP BY empid) AS D;

 Another technique to calculate the minimum by using the MAX function is based on bitwise 
manipulation and works with nonnegative integers. The minimum value of a column n is 
equal to ~MAX(~n), where ~ is the bitwise NOT operator. 

C08626034.indd   450 2/13/2009   2:04:49 AM



 Chapter 8 Aggregating and Pivoting Data 451

 The following query incorporates this technique: 

SELECT empid,

  CAST(SUBSTRING(binstr, 1, 8) AS DATETIME)  AS orderdate,

  ~CAST(SUBSTRING(binstr, 9, 4) AS INT)      AS orderid,

  CAST(SUBSTRING(binstr, 13, 4) AS INT)      AS custid,

  CAST(SUBSTRING(binstr, 17, 8) AS DATETIME) AS requireddate

FROM (SELECT empid, 

        MAX(CAST(orderdate        AS BINARY(8))

              + CAST(~orderid     AS BINARY(4))

              + CAST(custid       AS BINARY(4))

              + CAST(requireddate AS BINARY(8))) AS binstr

      FROM Sales.Orders

      GROUP BY empid) AS D;

 Of course, you can play with the tiebreakers you’re using in any way you like. For example, the 
following query returns the most recent order for each employee, using MAX(requireddate), 
MAX(orderid) as the tiebreaker: 

SELECT empid,

  CAST(SUBSTRING(binstr, 1, 8)   AS DATETIME) AS orderdate,

  CAST(SUBSTRING(binstr, 9, 8)   AS DATETIME) AS requireddate,

  CAST(SUBSTRING(binstr, 17, 4)  AS INT)      AS orderid,

  CAST(SUBSTRING(binstr, 21, 4)  AS INT)      AS custid  

FROM (SELECT empid, 

        MAX(CAST(orderdate        AS BINARY(8))

              + CAST(requireddate AS BINARY(8))

              + CAST(orderid      AS BINARY(4))

              + CAST(custid       AS BINARY(4))

              ) AS binstr

      FROM Sales.Orders

      GROUP BY empid) AS D;

Running Aggregations

 Running aggregations are aggregations of data over a sequence (typically temporal). Running 
aggregate problems have many variations, and I’ll describe several important ones here. 

 In my examples, I’ll use a summary table called EmpOrders that contains one row for 
each employee and month, with the total quantity of orders made by that employee in 
that month. Run the following code to create the EmpOrders table and populate it with 
sample data: 

USE tempdb;

IF OBJECT_ID('dbo.EmpOrders') IS NOT NULL DROP TABLE dbo.EmpOrders;

CREATE TABLE dbo.EmpOrders

(

  empid    INT  NOT NULL,

  ordmonth DATE NOT NULL,

C08626034.indd   451 2/13/2009   2:04:49 AM



452 Inside Microsoft SQL Server 2008: T-SQL Querying

  qty      INT  NOT NULL,

  PRIMARY KEY(empid, ordmonth)

);

GO

INSERT INTO dbo.EmpOrders(empid, ordmonth, qty)

  SELECT O.empid, 

    DATEADD(month, DATEDIFF(month, 0, O.orderdate), 0) AS ordmonth,

    SUM(qty) AS qty

  FROM InsideTSQL2008.Sales.Orders AS O

    JOIN InsideTSQL2008.Sales.OrderDetails AS OD

      ON O.orderid = OD.orderid

  GROUP BY empid,

    DATEADD(month, DATEDIFF(month, 0, O.orderdate), 0);

 Tip I will represent each month by its start date stored as a DATE. This allows fl exible  manipulation 
of the data using date-related functions. Of course, I’ll ignore the day part of the value in my 
 calculations. 

 Run the following query to get the contents of the EmpOrders table: 

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, qty

FROM dbo.EmpOrders

ORDER BY empid, ordmonth;

 This query generates the following output, shown here in abbreviated form: 

empid       ordmonth qty

----------- -------- -----------

1           2006-07  121

1           2006-08  247

1           2006-09  255

1           2006-10  143

1           2006-11  318

1           2006-12  536

1           2007-01  304

1           2007-02  168

1           2007-03  275

1           2007-04  20

...

2           2006-07  50

2           2006-08  94

2           2006-09  137

2           2006-10  248

2           2006-11  237

2           2006-12  319

2           2007-01  230

2           2007-02  36

2           2007-03  151

2           2007-04  468

...

 I’ll discuss three types of running aggregation problems: cumulative, sliding, and 
 year-to-date (YTD). 

C08626034.indd   452 2/13/2009   2:04:49 AM



 Chapter 8 Aggregating and Pivoting Data 453

Cumulative Aggregations

 Cumulative aggregations accumulate data from the fi rst element within the sequence up 
to the current point. For example, imagine the following request: for each employee and 
month, return the total quantity and average monthly quantity from the beginning of the 
employee’s activity through the month in question.  

 Recall the techniques for calculating row numbers without using the built-in ROW_NUMBER 
function; using these techniques, you scan the same rows we need here to calculate the 
 total quantities. The difference is that for row numbers you used the aggregate COUNT, and 
here you’ll use the aggregates SUM and AVG. I demonstrated two set-based solutions to 
 calculate row numbers without the ROW_NUMBER function—one using subqueries and one 
using joins. In the solution using joins, I applied what I called an expand-collapse  technique. 
To me, the  subquery solution is much more intuitive than the join solution, with its  artifi cial 
 expand-collapse technique. So, when there’s no performance difference, I’d rather use 
 subqueries. Typically, you won’t see a performance difference when only one aggregate is 
 involved because the plans would be similar. However, when you request multiple aggregates, 
the subquery solution might result in a plan that scans the data separately for each aggregate. 
Compare this to the plan for the join solution, which typically calculates all aggregates during a 
single scan of the source data. 

 So my choice is usually simple—use a subquery for one aggregate and use a join for  multiple 
aggregates. The following query applies the expand-collapse approach to produce the 
 desired result: 

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form: 

empid       ordmonth qtythismonth totalqty    avgqty

----------- -------- ------------ ----------- ----------

1           2006-07  121          121         121.00

1           2006-08  247          368         184.00

1           2006-09  255          623         207.67

1           2006-10  143          766         191.50

1           2006-11  318          1084        216.80

1           2006-12  536          1620        270.00

1           2007-01  304          1924        274.86

1           2007-02  168          2092        261.50

1           2007-03  275          2367        263.00

1           2007-04  20           2387        238.70

...

C08626034.indd   453 2/13/2009   2:04:49 AM



454 Inside Microsoft SQL Server 2008: T-SQL Querying

2           2006-07  50           50          50.00

2           2006-08  94           144         72.00

2           2006-09  137          281         93.67

2           2006-10  248          529         132.25

2           2006-11  237          766         153.20

2           2006-12  319          1085        180.83

2           2007-01  230          1315        187.86

2           2007-02  36           1351        168.88

2           2007-03  151          1502        166.89

2           2007-04  468          1970        197.00

...

 Now let’s say that you are asked to return only one aggregate (say, total quantity). You can 
safely use the subquery approach: 

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth,

  (SELECT SUM(O2.qty) 

   FROM dbo.EmpOrders AS O2

   WHERE O2.empid = O1.empid

     AND O2.ordmonth <= O1.ordmonth) AS totalqty

FROM dbo.EmpOrders AS O1

GROUP BY O1.empid, O1.ordmonth, O1.qty;

 As was the case for calculating row numbers based on subqueries or joins, when  calculating 
running aggregates based on similar techniques, the N2 performance issues I discussed 
 before apply once again. Because running aggregates typically are calculated on a fairly 
small number of rows per group, you won’t be adversely affected by performance issues, 
 assuming you have appropriate indexes (keyed on grouping columns, then sort columns, and 
including covering columns). 

 Let p be the number of partitions involved (employees in our case), let n be the average 
 number of rows per partition (months in our case), and let a be the number of aggregates 
 involved. The total number of rows scanned using the join approach can be expressed as 
pn + p(n+n2)/2 and as pn + ap(n+n2)/2 using the subquery approach because with  subqueries 
the optimizer uses a separate scan per subquery. It’s important to note that the N2 complexity 
is relevant to the partition size and not the table size. If the number of rows in the table grows 
by a factor of f but the partition size doesn’t change, the run time increases by a factor of f 
as well. If, on the other hand, the average partition size grows by a factor of f, the run time 
increases by a factor of f2. With small partitions (say, up to several dozen rows), this set-based 
solution provides reasonable performance. With large partitions, a  cursor  solution would be 
faster despite the overhead associated with row-by-row manipulation  because a cursor scans 
the rows only once, and the per-row overhead is constant. 

 Note ANSI SQL provides support for running aggregates by means of aggregate window 
functions. SQL Server 2005 introduced the OVER clause for aggregate functions only with the 
PARTITION BY clause, and unfortunately SQL Server 2008 didn’t enhance the OVER clause  further. 
Further enhancements are currently planned for the next major release of SQL Server—SQL

C08626034.indd   454 2/13/2009   2:04:49 AM



 Chapter 8 Aggregating and Pivoting Data 455

Server 11. Per ANSI SQL—and I hope in future versions of SQL Server—you could provide a 
 solution relying exclusively on window functions, like so:  

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, qty, 

  SUM(O2.qty) OVER(PARTITION BY empid

                   ORDER BY ordmonth

                   ROWS BETWEEN UNBOUNDED PRECEDING

                            AND CURRENT ROW) AS totalqty, 

  CAST(AVG(1.*O2.qty) OVER(PARTITION BY empid

                           ORDER BY ordmonth

                           ROWS BETWEEN UNBOUNDED PRECEDING

                                    AND CURRENT ROW) 

  AS NUMERIC(12, 2)) AS avgqty 

FROM dbo.EmpOrders;

 When this code is fi nally supported in SQL Server, you can expect dramatic performance 
 improvements and obviously much simpler queries. Being familiar with the way ranking  calculations 
based on the OVER clause are currently optimized, you should expect running  aggregates based on 
the OVER clause to be optimized similarly. That is, given a good index to support the request, you 
should expect the plan to involve a single ordered scan of the data. Then the total number of rows 
scanned would simply be the number of rows in the table (pn). 

 You might also be requested to fi lter the data—for example, return monthly aggregates for 
each employee only for months before the employee reached a certain target. Typically, you’ll 
have a target for each employee stored in a Targets table that you’ll need to join to. To make 
this example simple, I’ll assume that all employees have the same target total  quantity—1,000. 
In practice, you’ll use the target attribute from the Targets table. Because you need to fi lter 
an aggregate, not an attribute, you must specify the fi lter expression (in this case, 
SUM(O2.qty) < 1000) in the HAVING clause, not the WHERE clause. The solution is as follows: 

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) < 1000

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form: 

empid       ordmonth qtythismonth totalqty    avgqty

----------- -------- ------------ ----------- ----------

1           2006-07  121          121         121.00

1           2006-08  247          368         184.00

1           2006-09  255          623         207.67

1           2006-10  143          766         191.50

2           2006-07  50           50          50.00

2           2006-08  94           144         72.00

2           2006-09  137          281         93.67

2           2006-10  248          529         132.25

C08626034.indd   455 2/13/2009   2:04:49 AM



456 Inside Microsoft SQL Server 2008: T-SQL Querying

2           2006-11  237          766         153.20

3           2006-07  182          182         182.00

3           2006-08  228          410         205.00

3           2006-09  75           485         161.67

3           2006-10  151          636         159.00

3           2006-11  204          840         168.00

3           2006-12  100          940         156.67

...

 Things get a bit tricky if you also need to include the rows for those months in which the 
 employees reached their target. If you specify SUM(O2.qty) <= 1000 (that is, write <= instead 
of <), you still won’t get the row in which the employee reached the target unless the total 
through that month is exactly 1,000. But remember that you have access to both the cumulative 
total and the current month’s quantity, and using these two values together, you can solve this 
problem. If you change the HAVING fi lter to SUM(O2.qty) – O1.qty < 1000, you get the months 
in which the employee’s total quantity, excluding the current month’s orders, had not reached the 
target. In particular, the fi rst month in which an employee reached or exceeded the target satisfi es 
this new criterion, and that month will appear in the results. The complete solution follows: 

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) - O1.qty < 1000

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form: 

empid       ordmonth qtythismonth totalqty    avgqty

----------- -------- ------------ ----------- ----------

1           2006-07  121          121         121.00

1           2006-08  247          368         184.00

1           2006-09  255          623         207.67

1           2006-10  143          766         191.50

1           2006-11  318          1084        216.80

2           2006-07  50           50          50.00

2           2006-08  94           144         72.00

2           2006-09  137          281         93.67

2           2006-10  248          529         132.25

2           2006-11  237          766         153.20

2           2006-12  319          1085        180.83

3           2006-07  182          182         182.00

3           2006-08  228          410         205.00

3           2006-09  75           485         161.67

3           2006-10  151          636         159.00

3           2006-11  204          840         168.00

3           2006-12  100          940         156.67

3           2007-01  364          1304        186.29

...

C08626034.indd   456 2/13/2009   2:04:49 AM



 Chapter 8 Aggregating and Pivoting Data 457

 Note You might have another solution in mind that seems like a plausible and simpler 
 alternative—to leave the SUM condition alone but change the join condition to O2.ordmonth < 
O1.ordmonth. This way, the query would select rows where the total through the previous month 
did not meet the target. However, in the end, this solution is not any easier (the AVG is hard to 
generate, for example); what’s worse is that you might come up with a solution that does not 
work for employees who reach the target in their fi rst month. 

 Tip If you want to return no fewer than a certain number of rows per partition, simply add the 
criterion OR COUNT(*) <= <min_num_of_rows> to the HAVING clause. This technique works well 
in our case since the base table contains one row per result row/group.  

 Suppose you’re interested in seeing results only for the specifi c month in which the  employee 
reached the target of 1,000, without seeing results for preceding months. What’s true for 
only those rows in the output of the last query? You’re looking for rows where the total 
 quantity is greater than or equal to 1,000. Simply add this criterion to the HAVING fi lter. 
Here’s the query followed by its output: 

SELECT O1.empid, CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth, SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND O2.ordmonth <= O1.ordmonth

GROUP BY O1.empid, O1.ordmonth, O1.qty

HAVING SUM(O2.qty) - O1.qty < 1000

  AND SUM(O2.qty) >= 1000

ORDER BY O1.empid, O1.ordmonth;

empid       ordmonth qtythismonth totalqty    avgqty

----------- -------- ------------ ----------- ----------

1           2006-11  318          1084        216.80

2           2006-12  319          1085        180.83

3           2007-01  364          1304        186.29

4           2006-10  613          1439        359.75

5           2007-05  247          1213        173.29

6           2007-01  64           1027        171.17

7           2007-03  191          1069        152.71

8           2007-01  305          1228        175.43

9           2007-06  161          1007        125.88

Sliding Aggregations

 Sliding aggregates are calculated over a sliding window in a sequence (again, typically  temporal), 
as opposed to being calculated from the beginning of the sequence until the current point. 
A moving average—such as the employee’s average quantity over the last three months—is one 
example of a sliding aggregate.  

C08626034.indd   457 2/13/2009   2:04:49 AM



458 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note Without clarifi cation, expressions such as “last three months” are ambiguous. The last 
three months could mean the previous three months (not including this month), or it could mean 
the previous two months along with this month. When you get a problem like this, be sure you 
know precisely what window of time you are using for aggregation—for a particular row, exactly 
when does the window begin and end? 

 In our example, the window of time is this: greater than the point in time starting three months 
ago and smaller than or equal to the current point in time. Note that this defi nition works well 
even in cases where you track fi ner time granularities than a month (including day, hour,  minute, 
second, millisecond, microsecond, and nanosecond). This defi nition also addresses implicit 
 conversion  issues resulting from the accuracy level supported by SQL Server for the DATETIME 
data type—3.33 milliseconds. To avoid implicit conversion issues, it’s wiser to use > and <= 
predicates than the BETWEEN predicate. 

 The main difference between the solution for cumulative aggregates and the solution for sliding 
aggregates is in the join condition (or in the subquery’s fi lter in the case of the alternate solution 
using subqueries). Instead of using O2.ordmonth <= O1.current_month, you use O2.ordmonth > 
three_months_before_current AND O2.ordmonth <= O1.current_month. In T-SQL, this translates 
to the following query: 

SELECT O1.empid, 

  CONVERT(VARCHAR(7), O1.ordmonth, 121) AS tomonth,

  O1.qty AS qtythismonth,

  SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND (O2.ordmonth > DATEADD(month, -3, O1.ordmonth)

         AND O2.ordmonth <=  O1.ordmonth)

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;

 This query generates the following output, shown here in abbreviated form: 

empid       tomonth qtythismonth totalqty    avgqty

----------- ------- ------------ ----------- ----------

1           2006-07 121          121         121.00

1           2006-08 247          368         184.00

1           2006-09 255          623         207.67

1           2006-10 143          645         215.00

1           2006-11 318          716         238.67

1           2006-12 536          997         332.33

1           2007-01 304          1158        386.00

1           2007-02 168          1008        336.00

1           2007-03 275          747         249.00

1           2007-04 20           463         154.33

...

2           2006-07 50           50          50.00

2           2006-08 94           144         72.00

2           2006-09 137          281         93.67

2           2006-10 248          479         159.67

2           2006-11 237          622         207.33

C08626034.indd   458 2/13/2009   2:04:49 AM



 Chapter 8 Aggregating and Pivoting Data 459

2           2006-12 319          804         268.00

2           2007-01 230          786         262.00

2           2007-02 36           585         195.00

2           2007-03 151          417         139.00

2           2007-04 468          655         218.33

...

 Note that this solution includes aggregates for three-month periods that don’t include three 
months of actual data. If you want to return only periods with three full months  accumulated, 
without the fi rst two periods that do not cover three months, you can add the criterion 
MIN(O2.ordmonth) = DATEADD(month, –2, O1.ordmonth) to the HAVING fi lter. 

 Note Per ANSI SQL, you can use the ORDER BY and ROWS subclauses of the OVER clause—which 
are currently missing in SQL Server—to address sliding aggregates. You would use the following 
query to return the desired result for the last sliding aggregates request (assuming the data has 
exactly one row per month): 

SELECT empid, CONVERT(VARCHAR(7), ordmonth, 121) AS ordmonth, 

  qty AS qtythismonth, 

  SUM(O2.qty) OVER(PARTITION BY empid

                   ORDER BY ordmonth 

                   ROWS BETWEEN 2 PRECEDING

                            AND CURRENT ROW) AS totalqty, 

  CAST(AVG(1.*O2.qty) OVER(PARTITION BY empid

                           ORDER BY ordmonth 

                           ROWS BETWEEN 2 PRECEDING

                                    AND CURRENT ROW) 

    AS NUMERIC(12, 2)) AS avgqty 

FROM dbo.EmpOrders;

Year-to-Date (YTD)

 YTD aggregates accumulate values from the beginning of a period based on some date and 
time unit (say, a year) until the current point. The calculation is very similar to the  sliding 
 aggregates solution. The only difference is the lower bound provided in the query’s  fi lter, 
which is the calculation of the beginning of the year. For example, the following query 
 returns YTD aggregates for each employee and month: 

SELECT O1.empid, 

  CONVERT(VARCHAR(7), O1.ordmonth, 121) AS ordmonth,

  O1.qty AS qtythismonth,

  SUM(O2.qty) AS totalqty,

  CAST(AVG(1.*O2.qty) AS NUMERIC(12, 2)) AS avgqty

FROM dbo.EmpOrders AS O1

  JOIN dbo.EmpOrders AS O2

    ON O2.empid = O1.empid

    AND (O2.ordmonth >= CAST(CAST(YEAR(O1.ordmonth) AS CHAR(4))

                               + '0101' AS DATETIME)

         AND O2.ordmonth <= O1.ordmonth)

GROUP BY O1.empid, O1.ordmonth, O1.qty

ORDER BY O1.empid, O1.ordmonth;

C08626034.indd   459 2/13/2009   2:04:49 AM



460 Inside Microsoft SQL Server 2008: T-SQL Querying

 This query generates the following output, shown here in abbreviated form: 

empid       ordmonth qtythismonth totalqty    avgqty

----------- -------- ------------ ----------- ----------

1           2006-07  121          121         121.00

1           2006-08  247          368         184.00

1           2006-09  255          623         207.67

1           2006-10  143          766         191.50

1           2006-11  318          1084        216.80

1           2006-12  536          1620        270.00

1           2007-01  304          304         304.00

1           2007-02  168          472         236.00

1           2007-03  275          747         249.00

1           2007-04  20           767         191.75

...

2           2006-07  50           50          50.00

2           2006-08  94           144         72.00

2           2006-09  137          281         93.67

2           2006-10  248          529         132.25

2           2006-11  237          766         153.20

2           2006-12  319          1085        180.83

2           2007-01  230          230         230.00

2           2007-02  36           266         133.00

2           2007-03  151          417         139.00

2           2007-04  468          885         221.25

...

Pivoting

 Pivoting is a technique that allows you to rotate rows to columns, possibly performing 
 aggregations along the way. The number of applications for pivoting is simply astounding. 
In this section, I’ll present a few, including pivoting attributes in an open schema environment, 
solving relational division problems, and formatting aggregated data. Later in the chapter 
and also in later chapters in the book, I’ll show additional applications.  

Pivoting Attributes

 I’ll use open schema as the scenario for pivoting attributes. Open schema is a design problem 
describing an environment that needs to deal with frequent schema changes. The relational 
model and SQL were conceived to handle frequent changes and requests for data via SQL’s 
data manipulation language (DML). However, SQL’s data defi nition language (DDL) was not 
conceived to support frequent schema changes. Whenever you need to add new entities, 
you must create new tables; whenever existing entities change their structures, you must add, 
alter, or drop columns. Such changes usually require downtime of the affected objects, and 
they also bring about substantial revisions to the application. 

 You can choose from several ways to model an open schema environment, each of which 
has advantages and disadvantages. One of those models is known as Entity Attribute 

C08626034.indd   460 2/13/2009   2:04:49 AM



 Chapter 8 Aggregating and Pivoting Data 461

Value (EAV) and also as the narrow representation of data. In this model, you store all data 
in a single table, where each attribute value resides in its own row along with the entity or 
 object ID and the attribute name or ID. You represent the attribute values using the data 
type SQL_VARIANT to accommodate multiple attribute types in a single column. 

 In my examples, I’ll use the OpenSchema table, which you can create and populate by running 
the following code: 

USE tempdb;

IF OBJECT_ID('dbo.OpenSchema') IS NOT NULL DROP TABLE dbo.OpenSchema;

CREATE TABLE dbo.OpenSchema

(

  objectid  INT          NOT NULL,

  attribute NVARCHAR(30) NOT NULL,

  value     SQL_VARIANT  NOT NULL, 

  PRIMARY KEY (objectid, attribute)

);

GO

INSERT INTO dbo.OpenSchema(objectid, attribute, value) VALUES

  (1, N'attr1', CAST(CAST('ABC'      AS VARCHAR(10))   AS SQL_VARIANT)),

  (1, N'attr2', CAST(CAST(10         AS INT)           AS SQL_VARIANT)),

  (1, N'attr3', CAST(CAST('20070101' AS SMALLDATETIME) AS SQL_VARIANT)),

  (2, N'attr2', CAST(CAST(12         AS INT)           AS SQL_VARIANT)),

  (2, N'attr3', CAST(CAST('20090101' AS SMALLDATETIME) AS SQL_VARIANT)),

  (2, N'attr4', CAST(CAST('Y'        AS CHAR(1))       AS SQL_VARIANT)),

  (2, N'attr5', CAST(CAST(13.7       AS NUMERIC(9,3))  AS SQL_VARIANT)),

  (3, N'attr1', CAST(CAST('XYZ'      AS VARCHAR(10))   AS SQL_VARIANT)),

  (3, N'attr2', CAST(CAST(20         AS INT)           AS SQL_VARIANT)),

  (3, N'attr3', CAST(CAST('20080101' AS SMALLDATETIME) AS SQL_VARIANT));

-- show the contents of the table

SELECT * FROM dbo.OpenSchema;

 This generates the following output: 

objectid    attribute  value

----------- ---------- ------------------------

1           attr1      ABC

1           attr2      10

1           attr3      2007-01-01 00:00:00.000

2           attr2      12

2           attr3      2009-01-01 00:00:00.000

2           attr4      Y

2           attr5      13.700

3           attr1      XYZ

3           attr2      20

3           attr3      2008-01-01 00:00:00.000

 Representing data this way allows logical schema changes to be implemented without adding, 
altering, or dropping tables and columns—you use DML INSERTs, UPDATEs, and DELETEs  instead. 

C08626034.indd   461 2/13/2009   2:04:49 AM



462 Inside Microsoft SQL Server 2008: T-SQL Querying

Of course, other aspects of working with the data (such as enforcing integrity, tuning, and 
 querying) become more complex and expensive with such a representation. As mentioned, there 
are other approaches to dealing with open schema environments—for example, storing the data 
in XML format, using a wide representation of data, using CLR types, and others. However, when 
you weigh the advantages and disadvantages of each representation, you might fi nd the EAV 
approach demonstrated here more favorable in some scenarios. 

 Keep in mind that this representation of the data requires very complex queries even for simple 
requests because different attributes of the same entity instance are spread over multiple rows. 
Before you query such data, you might want to rotate it to a traditional form with one column 
for each attribute—perhaps store the result in a temporary table, index it, query it, and then 
get rid of the temporary table. To rotate the data from its open schema form into a traditional 
form, you need to use a pivoting technique. 

 In the following section, I’ll describe the steps involved in solving pivoting problems. I’d like 
to point out that to understand the steps of the solution, it can be very helpful if you think 
about query logical processing phases, which I described in detail in Chapter 1, “Logical 
Query Processing.” I discussed the query processing phases involved with the native PIVOT 
table operator, but those phases apply just as well to the standard solution that does not use 
this proprietary operator. Moreover, in the standard solution the phases are more apparent in 
the code, while using the PIVOT operator they are implicit.  

 The fi rst step you might want to try when solving pivoting problems is to fi gure out how the 
number of rows in the result correlates to the number of rows in the source data. Here, you 
need to create a single result row out of the multiple base rows for each object. In SQL, this 
translates to grouping rows. So our fi rst logical processing phase in pivoting is a grouping 
phase, and the associated element (the element you need to group by) is the objectid column. 

 As the next step in a pivoting problem, you can think in terms of the result columns. You 
need a result column for each unique attribute. Because the data contains fi ve unique 
 attributes  (attr1, attr2, attr3, attr4, and attr5), you need fi ve expressions in the SELECT list. 
Each  expression is supposed to extract, out of the rows belonging to the grouped object, the 
value corresponding to a specifi c attribute. You can think of this logical phase as a spreading 
phase—you need to spread the values, or shift them, from the source column (value in our 
case) to the corresponding target column. As for the element that dictates where to spread 
the values, or the spread by element, in our case it is the attribute column. This spreading 
 activity can be done with the following CASE expression, which in this example is applied to 
the attribute attr2: 

CASE WHEN attribute = 'attr2' THEN value END

 Remember that with no ELSE clause, CASE assumes an implicit ELSE NULL. The CASE 
 expression just shown yields NULL for rows where attribute does not equal attr2 and yields 
value when  attribute does equal attr2. This means that among the rows with a given value of 
 objectid (say, 1), the CASE expression would yield several NULLs and, at most, one known value 

C08626034.indd   462 2/13/2009   2:04:49 AM



 Chapter 8 Aggregating and Pivoting Data 463

(10 in our example), which represents the value of the target attribute (attr2 in our example) for 
the given objectid.  

 The third phase in pivoting attributes is to extract the known value (if it exists) out of the set of 
NULLs and the known value. You have to use an aggregate for this purpose because, as you’ll 
recall, the query involves grouping. The trick to extracting the one known value is to use MAX 
or MIN. Both ignore NULLs and will return the one non-NULL value present because both the 
minimum and the maximum of a set containing one value is that value. So our third logical 
processing phase in pivoting is an aggregation phase. The aggregation element is the value 
column, and the aggregate function is MAX. Using the previous expression implementing the 
second phase with attr2, here’s the revised expression including the aggregation as well: 

MAX(CASE WHEN attribute = 'attr2' THEN value END) AS attr2

 Here’s the complete query that pivots the attributes from OpenSchema:  

SELECT objectid,

  MAX(CASE WHEN attribute = 'attr1' THEN value END) AS attr1,

  MAX(CASE WHEN attribute = 'attr2' THEN value END) AS attr2,

  MAX(CASE WHEN attribute = 'attr3' THEN value END) AS attr3,

  MAX(CASE WHEN attribute = 'attr4' THEN value END) AS attr4,

  MAX(CASE WHEN attribute = 'attr5' THEN value END) AS attr5

FROM dbo.OpenSchema

GROUP BY objectid;

 This query generates the following output: 

objectid    attr1      attr2      attr3                    attr4      attr5

----------- ---------- ---------- ------------------------ ---------- ----------

1           ABC        10         2007-01-01 00:00:00.000  NULL       NULL

2           NULL       12         2009-01-01 00:00:00.000  Y          13.700

3           XYZ        20         2008-01-01 00:00:00.000  NULL       NULL

 Note To write this query, you have to know the names of the attributes. If you don’t, you’ll need 
to construct the query string dynamically. I’ll provide an example later in the chapter. 

 This technique for pivoting data is very effi cient because it scans the base table only once. 

 SQL Server supports a native specialized table operator for pivoting called PIVOT. This operator 
does not provide any special advantages over the technique I just showed, except that it allows 
for shorter code. It doesn’t support dynamic pivoting, and underneath the covers, it applies 
very similar logic to the one I presented in the last solution. So you probably won’t even fi nd 
noticeable performance differences. At any rate, here’s how you would pivot the OpenSchema 
data using the PIVOT operator: 

SELECT objectid, attr1, attr2, attr3, attr4, attr5

FROM dbo.OpenSchema

  PIVOT(MAX(value) FOR attribute

    IN([attr1],[attr2],[attr3],[attr4],[attr5])) AS P;

C08626034.indd   463 2/13/2009   2:04:49 AM



464 Inside Microsoft SQL Server 2008: T-SQL Querying

 Within this solution, you can identify all the elements I used in the previous solution. The 
 inputs to the PIVOT operator are as follows: 

■  The aggregate function applied to the aggregation element. In our case, it’s MAX(value), 
which extracts the single non-NULL value corresponding to the target attribute. In other 
cases, you might have more than one non-NULL value per group and want a different 
aggregate (for example, SUM or AVG).  

■  Following the FOR keyword, the name of the spread by element (attribute, in our case). 
This is the source column holding the values that become the target column names. 

■  The list of actual target column names in parentheses following the keyword IN. 

 As you can see, in the parentheses of the PIVOT operator, you specify the aggregate  function 
and aggregation element and the spread by element and spreading values but not the group 
by elements. This is a problematic aspect of the syntax of the PIVOT operator—the  grouping 
 elements are implicitly derived from what was not specifi ed. The grouping elements are the list 
of all columns from the input table to the PIVOT operator that were not mentioned as  either 
the aggregation or the spreading elements. In our case, objectid is the only column left. If you 
 unintentionally query the base table directly, you might end up with undesired  grouping. If new 
columns will be added to the table in the future, those columns will be  implicitly added to 
PIVOT’s grouping list. Therefore, it is strongly recommended that you  apply the PIVOT operator 
not to the base table directly but rather to a table expression (derived table or CTE) that  includes 
only the elements relevant to the pivoting activity. This way, you can  control  exactly which 
 columns remain besides the aggregation and spreading elements. Future  column  additions 
to the table won’t have any impact on what PIVOT ends up operating on. The following query 
 demonstrates applying this approach to our previous query, using a  derived table: 

SELECT objectid, attr1, attr2, attr3, attr4, attr5

FROM (SELECT objectid, attribute, value FROM dbo.OpenSchema) AS D

  PIVOT(MAX(value) FOR attribute

    IN([attr1],[attr2],[attr3],[attr4],[attr5])) AS P;

 Tip The input to the aggregate function must be a base column from the PIVOT operator’s input 
table with no manipulation—it cannot be an expression (for example: SUM(qty * price)). If you 
want to provide the aggregate function with an expression as input, have the PIVOT  operator 
 operate on a derived table or CTE (as suggested for other reasons as well), and in the derived 
table query assign the expression with a column alias (qty * price AS value). Then, as far as the 
PIVOT operator is concerned, that alias is the name of a base column in its input table, so it is 
valid to use that column name as input to PIVOT’s aggregate function (SUM(value)). 

 Also, you cannot spread attributes from more than one column (the column that appears  after 
the FOR keyword). If you need to pivot more than one column’s attributes (say, empid and 
YEAR(orderdate)), you can use a similar approach to the previous suggestion: in the derived 
table or CTE used as the input to the PIVOT operator, concatenate the values from all  columns 
you want to use as the spreading elements and assign the expression with a column alias 
(CAST(empid AS VARCHAR(10)) + ‘_’ + CAST(YEAR(orderdate) AS CHAR(4)) AS emp_year). Then, 
in the outer query, specify that column after PIVOT’s FOR keyword (FOR emp_year IN([1_2007], 
[1_2008], [1_2009], [2_2007], . . .)). 

C08626034.indd   464 2/13/2009   2:04:49 AM



 Chapter 8 Aggregating and Pivoting Data 465

Relational Division

 You can also use pivoting to solve relational division problems when the number of elements 
in the divisor set is fairly small. In my examples, I’ll use the OrderDetails table, which you 
 create and populate by running the following code: 

USE tempdb;

IF OBJECT_ID('dbo.OrderDetails') IS NOT NULL

  DROP TABLE dbo.OrderDetails;

CREATE TABLE dbo.OrderDetails

(

  orderid   VARCHAR(10) NOT NULL,

  productid INT         NOT NULL,

  PRIMARY KEY(orderid, productid)

  /* other colums */

);

GO

INSERT INTO dbo.OrderDetails(orderid, productid) VALUES

  ('A', 1),

  ('A', 2),

  ('A', 3),

  ('A', 4),

  ('B', 2),

  ('B', 3),

  ('B', 4),

  ('C', 3),

  ('C', 4),

  ('D', 4);

 A classic relational division problem is to return orders that contain a certain basket of 
products—say, products 2, 3, and 4. You use a pivoting technique to rotate only the relevant 
products into separate columns for each order. Instead of returning an actual attribute value, 
you produce a 1 if the product exists in the order and a 0 otherwise. Create a derived table 
out of the pivot query, and in the outer query fi lter only orders that contain a 1 in all product 
columns. Here’s the full query, which correctly returns orders A and B: 

SELECT orderid

FROM (SELECT

        orderid,

        MAX(CASE WHEN productid = 2 THEN 1 END) AS P2,

        MAX(CASE WHEN productid = 3 THEN 1 END) AS P3,

        MAX(CASE WHEN productid = 4 THEN 1 END) AS P4

      FROM dbo.OrderDetails

      GROUP BY orderid) AS P

WHERE P2 = 1 AND P3 = 1 AND P4 = 1;

C08626034.indd   465 2/13/2009   2:04:50 AM



466 Inside Microsoft SQL Server 2008: T-SQL Querying

 If you run only the derived table query, you get the following output with the pivoted products 
for each order: 

orderid    P2          P3          P4

---------- ----------- ----------- -----------

A          1           1           1

B          1           1           1

C          NULL        1           1

D          NULL        NULL        1

 To answer the request at hand using the new PIVOT operator, use the following query: 

SELECT orderid 

FROM (SELECT orderid, productid FROM dbo.OrderDetails) AS D

  PIVOT(MAX(productid) FOR productid IN([2],[3],[4])) AS P

WHERE [2] = 2 AND [3] = 3 AND [4] = 4;

 The aggregate function must accept a column as input, so I provided the productid itself. This 
means that if the product exists within an order, the corresponding value will contain the 
 actual productid and not 1. That’s why the fi lter looks a bit different here. 

 Note that you can make both queries more intuitive and similar to each other in their logic 
by using the COUNT aggregate instead of MAX. This way, both queries would produce a 1 
where the product exists and a 0 where it doesn’t (instead of NULL). Here’s what the query 
that does not use the PIVOT operator looks like: 

SELECT orderid

FROM (SELECT

        orderid,

        COUNT(CASE WHEN productid = 2 THEN productid END) AS P2,

        COUNT(CASE WHEN productid = 3 THEN productid END) AS P3,

        COUNT(CASE WHEN productid = 4 THEN productid END) AS P4

      FROM dbo.OrderDetails

      GROUP BY orderid) AS P

WHERE P2 = 1 AND P3 = 1 AND P4 = 1;

 And here’s the query you would use based on the PIVOT operator: 

SELECT orderid 

FROM (SELECT orderid, productid FROM dbo.OrderDetails) AS D

  PIVOT(COUNT(productid) FOR productid IN([2],[3],[4])) AS P

WHERE [2] = 1 AND [3] = 1 AND [4] = 1;

Aggregating Data

 You can also use a pivoting technique to format aggregated data, typically for  reporting 
 purposes. In my examples, I’ll use the Orders table, which you create and populate by 
 running the code in Listing 8-1. 

C08626034.indd   466 2/13/2009   2:04:50 AM



 Chapter 8 Aggregating and Pivoting Data 467

LISTING 8-1 Creating and populating the Orders table

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

  orderid   INT        NOT NULL,

  orderdate DATETIME   NOT NULL,

  empid     INT        NOT NULL,

  custid    VARCHAR(5) NOT NULL,

  qty       INT        NOT NULL,

  CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

GO

INSERT INTO dbo.Orders

  (orderid, orderdate, empid, custid, qty)

VALUES

  (30001, '20060802', 3, 'A', 10),

  (10001, '20061224', 1, 'A', 12),

  (10005, '20061224', 1, 'B', 20),

  (40001, '20070109', 4, 'A', 40),

  (10006, '20070118', 1, 'C', 14),

  (20001, '20070212', 2, 'B', 12),

  (40005, '20080212', 4, 'A', 10),

  (20002, '20080216', 2, 'C', 20),

  (30003, '20080418', 3, 'B', 15),

  (30004, '20060418', 3, 'C', 22),

  (30007, '20060907', 3, 'D', 30);

-- show the contents of the table

SELECT * FROM dbo.Orders;

 This generates the following output: 

orderid     orderdate               empid       custid qty

----------- ----------------------- ----------- ------ -----------

10001       2006-12-24 00:00:00.000 1           A      12

10005       2006-12-24 00:00:00.000 1           B      20

10006       2007-01-18 00:00:00.000 1           C      14

20001       2007-02-12 00:00:00.000 2           B      12

20002       2008-02-16 00:00:00.000 2           C      20

30001       2006-08-02 00:00:00.000 3           A      10

30003       2008-04-18 00:00:00.000 3           B      15

30004       2006-04-18 00:00:00.000 3           C      22

30007       2006-09-07 00:00:00.000 3           D      30

40001       2007-01-09 00:00:00.000 4           A      40

40005       2008-02-12 00:00:00.000 4           A      10

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

CREATE TABLE dbo.Orders

(

  orderid   INT        NOT NULL,

  orderdate DATETIME   NOT NULL,

  empid     INT        NOT NULL,

  custid    VARCHAR(5) NOT NULL,

  qty       INT        NOT NULL,

  CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

GO

INSERT INTO dbo.Orders

  (orderid, orderdate, empid, custid, qty)

VALUES

  (30001, '20060802', 3, 'A', 10),

  (10001, '20061224', 1, 'A', 12),

  (10005, '20061224', 1, 'B', 20),

  (40001, '20070109', 4, 'A', 40),

  (10006, '20070118', 1, 'C', 14),

  (20001, '20070212', 2, 'B', 12),

  (40005, '20080212', 4, 'A', 10),

  (20002, '20080216', 2, 'C', 20),

  (30003, '20080418', 3, 'B', 15),

  (30004, '20060418', 3, 'C', 22),

  (30007, '20060907', 3, 'D', 30);

-- show the contents of the table

SELECT * FROM dbo.Orders;

C08626034.indd   467 2/13/2009   2:04:50 AM



468 Inside Microsoft SQL Server 2008: T-SQL Querying

 Suppose you want to return a row for each customer, with the total yearly quantities in a 
 different column for each year. As with all pivoting problems, it boils down to identifying the 
grouping, spreading, and aggregation elements. In this case, the grouping element is the custid 
column, the spreading element is the expression YEAR(orderdate), and the  aggregate  function 
and element is SUM(qty). What remains is simply to use the solution templates I  provided 
 previously. Here’s the solution that does not use the PIVOT operator, followed by its output: 

SELECT custid,

  SUM(CASE WHEN orderyear = 2006 THEN qty END) AS [2006],

  SUM(CASE WHEN orderyear = 2007 THEN qty END) AS [2007],

  SUM(CASE WHEN orderyear = 2008 THEN qty END) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

GROUP BY custid;

custid 2006        2007        2008

------ ----------- ----------- -----------

A      22          40          10

B      20          12          15

C      22          14          20

D      30          NULL        NULL

 Here you can see the use of a derived table to isolate only the relevant elements for the 
 pivoting activity (custid, orderyear, qty). 

 One of the main issues with this pivoting solution is that you might end up with lengthy query 
strings when the number of elements you need to rotate is large. It’s not a problem in this 
case because we are dealing with order years, and there usually aren’t that many, but it could 
be a problem in other cases when the spreading column has a large number of values. In an 
effort to shorten the query string, you can use a matrix table that contains a column and a row 
for each attribute that you need to rotate (orderyear, in this case). Only column values in the 
intersections of corresponding rows and columns contain the value 1, and the other column 
values are populated with a NULL or a 0, depending on your needs. Run the following code 
to create and populate the Matrix table:  

USE tempdb;

GO

IF OBJECTPROPERTY(OBJECT_ID('dbo.Matrix'), 'IsUserTable') = 1

  DROP TABLE dbo.Matrix;

GO

CREATE TABLE dbo.Matrix

(

  orderyear INT NOT NULL PRIMARY KEY,

  y2006 INT NULL,

  y2007 INT NULL,

  y2008 INT NULL

);

INSERT INTO dbo.Matrix(orderyear, y2006) VALUES(2006, 1);

INSERT INTO dbo.Matrix(orderyear, y2007) VALUES(2007, 1);

INSERT INTO dbo.Matrix(orderyear, y2008) VALUES(2008, 1);

C08626034.indd   468 2/13/2009   2:04:50 AM



 Chapter 8 Aggregating and Pivoting Data 469

-- show the contents of the table

SELECT * FROM dbo.Matrix;

 This generates the following output: 

orderyear   y2006       y2007       y2008

----------- ----------- ----------- -----------

2006        1           NULL        NULL

2007        NULL        1           NULL

2008        NULL        NULL        1

 You join the base table (or table expression) with the Matrix table based on a match in orderyear. 
This means that each row from the base table will be matched with one row from Matrix—the 
one with the same orderyear. In that row, only the corresponding orderyear’s column value will 
contain a 1. So you can substitute the expression 

SUM(CASE WHEN orderyear = <some_year> THEN qty END) AS [<some_year>]

 with the logically equivalent expression 

SUM(qty*y<some_year>) AS [<some_year>]

 Here’s what the full query looks like: 

SELECT custid,

  SUM(qty*y2006) AS [2006],

  SUM(qty*y2007) AS [2007],

  SUM(qty*y2008) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

  JOIN dbo.Matrix AS M ON D.orderyear = M.orderyear

GROUP BY custid;

 If you need the number of orders instead of the sum of qty, in the original solution you produce 
a 1 instead of the qty column for each order and use the COUNT aggregate function, like so: 

SELECT custid,

  COUNT(CASE WHEN orderyear = 2006 THEN 1 END) AS [2006],

  COUNT(CASE WHEN orderyear = 2007 THEN 1 END) AS [2007],

  COUNT(CASE WHEN orderyear = 2008 THEN 1 END) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear

      FROM dbo.Orders) AS D

GROUP BY custid;

 This code generates the following output: 

custid 2006        2007        2008

------ ----------- ----------- -----------

A      2           1           1

B      1           1           1

C      1           1           1

D      1           0           0

C08626034.indd   469 2/13/2009   2:04:50 AM



470 Inside Microsoft SQL Server 2008: T-SQL Querying

 With the Matrix table, simply specify the column corresponding to the target year: 

SELECT custid,

  COUNT(y2006) AS [2006],

  COUNT(y2007) AS [2007],

  COUNT(y2008) AS [2008]

FROM (SELECT custid, YEAR(orderdate) AS orderyear

      FROM dbo.Orders) AS D

  JOIN dbo.Matrix AS M ON D.orderyear = M.orderyear

GROUP BY custid;

 Of course, using the PIVOT operator, the query strings are pretty much as short as they can 
get. You don’t explicitly specify the CASE expressions: those are constructed behind the scenes 
for you (you can actually see them by looking at the properties of the aggregate operator in 
the plan). In short, you don’t need to use the Matrix table approach with the PIVOT operator. 
Here’s the query using the PIVOT operator to calculate total yearly quantities per customer: 

SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

  PIVOT(SUM(qty) FOR orderyear IN([2006],[2007],[2008])) AS P;

 And here’s a query that counts the orders: 

SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear

      FROM dbo.Orders) AS D

  PIVOT(COUNT(orderyear) FOR orderyear IN([2006],[2007],[2008])) AS P;

 Remember that static queries performing pivoting require you to know ahead of time the list 
of attributes you’re going to rotate. For dynamic pivoting, you need to construct the query 
string dynamically.  

Unpivoting

 Unpivoting is the opposite of pivoting—namely, rotating columns to rows. Unpivoting is  usually 
used to normalize data, but it has other applications as well. 

 Note Unpivoting is not an exact inverse of pivoting—it won’t necessarily allow you to regenerate 
source rows that were pivoted. However, for the sake of simplicity, think of it as the opposite of pivoting. 

 In my examples, I’ll use the PvtCustOrders table, which you create and populate by running 
the following code: 

USE tempdb;

IF OBJECT_ID('dbo.PvtCustOrders') IS NOT NULL

  DROP TABLE dbo.PvtCustOrders;

GO

C08626034.indd   470 2/13/2009   2:04:50 AM



 Chapter 8 Aggregating and Pivoting Data 471

SELECT custid, 

  COALESCE([2006], 0) AS [2006],

  COALESCE([2007], 0) AS [2007],

  COALESCE([2008], 0) AS [2008]

INTO dbo.PvtCustOrders

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

  PIVOT(SUM(qty) FOR orderyear IN([2006],[2007],[2008])) AS P;

UPDATE dbo.PvtCustOrders

  SET [2007] = NULL, [2008] = NULL

WHERE custid = 'D';

-- Show the contents of the table

SELECT * FROM dbo.PvtCustOrders;

 This generates the following output: 

custid 2006        2007        2008

------ ----------- ----------- -----------

A      22          40          10

B      20          12          15

C      22          14          20

D      30          NULL        NULL

 The goal in this case is to generate a result row for each customer and year, containing the 
customer ID (custid), order year (orderyear), and quantity (qty). 

 I’ll start with a solution that does not use the native UNPIVOT operator. Here as well, try to 
think in terms of logical query processing as described in Chapter 1.  

 The fi rst step in the solution is to generate three copies of each base row—one for each year. 
You can achieve this by performing a cross join between the base table and a virtual auxiliary 
table that has one row per year. The SELECT list can then return custid and orderyear and also 
calculate the target year’s qty with the following CASE expression: 

CASE orderyear 

  WHEN 2006 THEN [2006] 

  WHEN 2007 THEN [2007] 

  WHEN 2008 THEN [2008] 

END AS qty

 You achieve unpivoting this way, but you also get rows corresponding to NULL values in the 
source table (for example, for customer D in years 2007 and 2008). To eliminate those rows, 
create a derived table out of the solution query and, in the outer query, eliminate the rows 
with the NULL in the qty column. 

 Note In practice, you’d typically store a 0 and not a NULL as the quantity for a customer with 
no orders in a certain year; the order quantity is known to be zero and not unknown. However, 
I used NULLs here to demonstrate the treatment of NULLs, which is a very common need in 
 unpivoting problems. 

C08626034.indd   471 2/13/2009   2:04:50 AM



472 Inside Microsoft SQL Server 2008: T-SQL Querying

 Here’s the complete solution, followed by its output: 

SELECT custid, orderyear, qty

FROM (SELECT custid, orderyear,

        CASE orderyear

          WHEN 2006 THEN [2006]

          WHEN 2007 THEN [2007]

          WHEN 2008 THEN [2008]

        END AS qty

      FROM dbo.PvtCustOrders

        CROSS JOIN

          (SELECT 2006 AS orderyear

           UNION ALL SELECT 2007

           UNION ALL SELECT 2008) AS OrderYears) AS D

WHERE qty IS NOT NULL;

custid orderyear   qty

------ ----------- -----------

A      2006        22

A      2007        40

A      2008        10

B      2006        20

B      2007        12

B      2008        15

C      2006        22

C      2007        14

C      2008        20

D      2006        30

D      2007        0

D      2008        0

 As of SQL Server 2008, you can replace the current defi nition of the derived table D with a 
table value constructor based on the VALUES clause, like so: 

SELECT custid, orderyear, qty

FROM (SELECT custid, orderyear,

        CASE orderyear

          WHEN 2006 THEN [2006]

          WHEN 2007 THEN [2007]

          WHEN 2008 THEN [2008]

        END AS qty

      FROM dbo.PvtCustOrders

        CROSS JOIN

          (VALUES(2006),(2007),(2008)) AS OrderYears(orderyear)) AS D

WHERE qty IS NOT NULL;

 Either way, using the native proprietary UNPIVOT table operator is dramatically simpler, as 
the following query shows: 

SELECT custid, orderyear, qty

FROM dbo.PvtCustOrders

  UNPIVOT(qty FOR orderyear IN([2006],[2007],[2008])) AS U;

 Unlike the PIVOT operator, I fi nd the UNPIVOT operator simple and intuitive, and  obviously 
it requires signifi cantly less code than the alternative solutions. UNPIVOT’s fi rst input is the 
 target column name to hold the source column values (qty). Then, following the FOR  keyword, 

C08626034.indd   472 2/13/2009   2:04:50 AM



 Chapter 8 Aggregating and Pivoting Data 473

you specify the target column name to hold the source column names (orderyear). Finally, 
in the parentheses of the IN clause, you specify the source column names that you want to 
 unpivot ([2006],[2007],[2008]). 

 Tip All source attributes that are unpivoted must share the same data type. If you want to 
 unpivot attributes defi ned with different data types, create a derived table or CTE where you fi rst 
convert all those attributes to SQL_VARIANT. The target column that will hold unpivoted  values 
will also be defi ned as SQL_VARIANT, and within that column, the values will preserve their 
 original types. 

 Note Like PIVOT, UNPIVOT requires a static list of column names to be rotated. Also, the 
UNPIVOT operator applies a logical phase that removes NULL rows. However, unlike in the other 
solutions where the removal of NULL rows is an optional phase, with the UNPIVOT operator it is 
not optional. 

Custom Aggregations

 Custom aggregations are aggregations that are not provided as built-in aggregate 
 functions—for example, concatenating strings, calculating products, performing bitwise 
 manipulations, calculating medians, and others. In this section, I’ll provide solutions to several 
custom aggregate requests. Some techniques that I’ll cover are generic, in the sense that you 
can use similar logic for other aggregate requests; other techniques are specifi c to one kind 
of aggregate request. 

 More Info One of the generic custom aggregate techniques uses cursors. For details about 
 cursors, including handling of custom aggregates with cursors, please refer to Inside Microsoft 
SQL Server 2008: T-SQL Programming (Microsoft Press, 2009). 

 In my examples, I’ll use the generic Groups table, which you create and populate by running 
the following code: 

USE tempdb;

IF OBJECT_ID('dbo.Groups') IS NOT NULL DROP TABLE dbo.Groups;

CREATE TABLE dbo.Groups

(

  groupid  VARCHAR(10) NOT NULL,

  memberid INT         NOT NULL,

  string   VARCHAR(10) NOT NULL,

  val      INT         NOT NULL,

  PRIMARY KEY (groupid, memberid)

);

GO

    

C08626034.indd   473 2/13/2009   2:04:50 AM



474 Inside Microsoft SQL Server 2008: T-SQL Querying

INSERT INTO dbo.Groups(groupid, memberid, string, val) VALUES

  ('a', 3, 'stra1', 6),

  ('a', 9, 'stra2', 7),

  ('b', 2, 'strb1', 3),

  ('b', 4, 'strb2', 7),

  ('b', 5, 'strb3', 3),

  ('b', 9, 'strb4', 11),

  ('c', 3, 'strc1', 8),

  ('c', 7, 'strc2', 10),

  ('c', 9, 'strc3', 12);

-- Show the contents of the table

SELECT * FROM dbo.Groups;

 This generates the following output: 

groupid    memberid    string     val

---------- ----------- ---------- -----------

a          3           stra1      6

a          9           stra2      7

b          2           strb1      3

b          4           strb2      7

b          5           strb3      3

b          9           strb4      11

c          3           strc1      8

c          7           strc2      10

c          9           strc3      12

 The Groups table has a column representing the group (groupid), a column representing 
a unique identifi er within the group (memberid), and some value columns (string and val) 
that need to be aggregated. I like to use such a generic form of data because it allows you 
to  focus on the techniques and not on the data. Note that this is merely a generic form of 
a  table containing data that you want to aggregate. For example, it could represent a Sales 
table where groupid stands for empid, val stands for qty, and so on. 

Custom Aggregations Using Pivoting

 One technique for solving custom aggregate problems is pivoting. You pivot the values that 
need to participate in the aggregate calculation; when they all appear in the same result 
row, you perform the calculation as a linear one across the columns. With a large number of 
elements you’ll end up with very lengthy query strings; therefore, this pivoting technique is 
limited to situations where each group has a small number of elements. Note that unless you 
have a sequencing column within the group, you need to calculate row numbers that will 
be used to identify the position of elements within the group. For example, if you need to 
 concatenate all values from the string column per group, what do you specify as the  pivoted 
attribute list (the spreading values)? The values in the memberid column are not known 
ahead of time, plus they differ in each group. Row numbers representing positions within the 
group solve this problem.  

C08626034.indd   474 2/13/2009   2:04:50 AM



 Chapter 8 Aggregating and Pivoting Data 475

String Concatenation Using Pivoting

 As the fi rst example, the following query calculates an aggregate string concatenation over 
the column string for each group with a pivoting technique: 

SELECT groupid,

    [1]

  + COALESCE(',' + [2], '')

  + COALESCE(',' + [3], '')

  + COALESCE(',' + [4], '') AS string

FROM (SELECT groupid, string,

        ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY memberid) AS rn

      FROM dbo.Groups AS A) AS D

  PIVOT(MAX(string) FOR rn IN([1],[2],[3],[4])) AS P;

 This query generates the following output: 

groupid    string

---------- -------------------------

a          stra1,stra2

b          strb1,strb2,strb3,strb4

c          strc1,strc2,strc3

 The query that generates the derived table D calculates a row number within the group 
based on memberid order. The outer query pivots the values based on the row numbers, and 
it performs linear concatenation. I’m assuming here that each group has at most four rows, 
so I specifi ed four row numbers. You need as many row numbers as the maximum number of 
elements you anticipate.  

 The COALESCE function is used to replace a NULL representing a nonexistent element with 
an empty string so as not to cause the result to become NULL. You don’t need the COALESCE 
function with the fi rst element ([1]) because at least one element must exist in the group; 
otherwise, the group won’t appear in the table. 

Aggregate Product Using Pivoting

 In a similar manner, you can calculate the product of the values in the val column for each group: 

SELECT groupid,

    [1]

  * COALESCE([2], 1)

  * COALESCE([3], 1)

  * COALESCE([4], 1) AS product

FROM (SELECT groupid, val,

        ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY memberid) AS rn

      FROM dbo.Groups AS A) AS D

  PIVOT(MAX(val) FOR rn IN([1],[2],[3],[4])) AS P;

 This query generates the following output: 

groupid    product

---------- -----------

a          42

b          693

c          960

C08626034.indd   475 2/13/2009   2:04:50 AM



476 Inside Microsoft SQL Server 2008: T-SQL Querying

 The need for an aggregate product is common in fi nancial applications—for example, to 
 calculate compound interest rates.  

User Defi ned Aggregates (UDA)

 SQL Server allows you to create your own user-defi ned aggregates (UDAs). You write UDAs 
in a .NET language of your choice (for example, C# or Visual Basic), and you use them in 
T-SQL. This book is dedicated to T-SQL and not to the common language runtime (CLR), so 
I won’t explain CLR UDAs at great length. Rather, I’ll provide you with a couple of examples 
with step-by-step instructions and, of course, the T-SQL interfaces involved. Examples are 
 provided in both C# and Visual Basic. 

CLR Code in a Database

 This section discusses .NET common language runtime (CLR) integration in SQL Server; 
therefore, it’s appropriate to spend a couple of words explaining the reasoning behind 
CLR integration in a database. It is also important to identify the scenarios where using 
CLR objects is more appropriate than using T-SQL. 

 Developing in .NET languages such as C# and Visual Basic gives you an incredibly rich 
programming model. The .NET Framework includes literally thousands of prepared 
classes, and it is up to you to make astute use of them. .NET languages are not just 
data oriented like SQL, so you are not as limited. For example, regular expressions are 
extremely useful for validating data, and they are fully supported in .NET. SQL languages 
are set oriented and slow to perform row-oriented (row-by-row or one-row-at-a-time) 
operations. Sometimes you need row-oriented operations inside the database;  moving 
away from cursors to CLR code should improve the performance. Another benefi t of 
CLR code is that it can be much faster than T-SQL code for operations such as string 
 manipulation and iterations and in computationally intensive calculations.  

 SQL Server 2005 introduced CLR integration, and SQL Server 2008 enhances this 
 integration in a number of ways. Later in this section I’ll describe the enhancements 
that are applicable to UDAs. Although SQL Server supported programmatic extensions 
even before CLR integration was introduced, CLR integration in .NET code is superior in 
a number of ways. 

 For example, you could add functionality to earlier versions of SQL Server (before 2005) 
using extended stored procedures. However, such procedures can compromise the 
 integrity of SQL Server processes because their memory and thread management is not 
integrated well enough with SQL Server’s resource management. .NET code is managed 
by the CLR inside SQL Server, and because the CLR itself is managed by SQL Server, it is 
much safer to use than extended procedure code.  

C08626034.indd   476 2/13/2009   2:04:50 AM



 Chapter 8 Aggregating and Pivoting Data 477

 T-SQL—a set-oriented language—was designed to deal mainly with data and is optimized 
for data manipulation. You should not rush to translate all your T-SQL code to CLR code. 
T-SQL is still SQL Server’s primary language. Data access can be achieved through T-SQL 
only. If an operation can be expressed as a set-oriented one, you should program it in T-SQL.  

 You need to make another important decision before you start using CLR code inside 
SQL Server. You need to decide where your CLR code is going to run—at the server or 
at the client. CLR code is typically faster and more fl exible than T-SQL for computations, 
and thus it extends the opportunities for server-side computations. However, the server 
side is typically a single working box, and load balancing at the data tier is still in its 
infancy. Therefore, you should consider whether it would be more sensible to process 
those computations at the client side. 

 With CLR code, you can write stored procedures, triggers, user-defi ned functions, 
 user-defi ned types, and user-defi ned aggregate functions. The last two objects can’t 
be written with declarative T-SQL; rather, they can be written only with CLR code. 
A user- defi ned type (UDT) is the most complex CLR object type and demands extensive 
coverage. 

 More Info For details about programming CLR UDTs, as well as programming CLR  routines, 
please refer to Inside Microsoft SQL Server 2008: T-SQL Programming. 

 Let’s start with a concrete implementation of two UDAs. The steps involved in creating a 
 CLR-based UDA are as follows: 

 1.  Defi ne the UDA as a class in a .NET language. 

 2.  Compile the class you defi ned to build a CLR assembly. 

 3.  Register the assembly in SQL Server using the CREATE ASSEMBLY command in T-SQL. 

 4.  Use the CREATE AGGREGATE command in T-SQL to create the UDA that references the 
registered assembly. 

 Note You can register an assembly and create a CLR object from Microsoft Visual Studio 2008 
directly, using the project deployment option (from the Build menu item, choose the Deploy 
option). Direct deployment from Visual Studio is supported only with the Professional edition or 
higher; if you’re using the Standard edition, your only option is explicit deployment in SQL Server.  

 This section will provide examples for creating aggregate string concatenation and aggregate 
product functions in both C# and Visual Basic. You can fi nd the code for the C# classes in 
Listing 8-2 and the code for the Visual Basic classes in Listing 8-3. You’ll be provided with the 
requirements for a CLR UDA alongside the development of a UDA. 

C08626034.indd   477 2/13/2009   2:04:50 AM



478 Inside Microsoft SQL Server 2008: T-SQL Querying

LISTING 8-2 C# code for UDAs

using System;

using System.Data;

using Microsoft.SqlServer.Server;

using System.Data.SqlTypes;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

[Serializable]

[SqlUserDefinedAggregate(

   Format.UserDefined,              // use user defined serialization 

   IsInvariantToNulls = true,       // NULLs don't matter

   IsInvariantToDuplicates = false, // duplicates matter

   IsInvariantToOrder = false,      // order matters

   IsNullIfEmpty = false,           // do not yield a NULL for a set of zero strings

   MaxByteSize = -1)                // max size unlimited

]

public struct StringConcat : IBinarySerialize

{

  private StringBuilder sb;

  public void Init()

  {

    this.sb = new StringBuilder();

  }

  //two arguments

  public void Accumulate(SqlString v, SqlString separator)

  {

    if (v.IsNull)

    {

      return; // ignore NULLs approach

    }

    this.sb.Append(v.Value).Append(separator.Value);

  }

  public void Merge(StringConcat other)

  {

    this.sb.Append(other.sb);

  }

  public SqlString Terminate()

  {

    string output = string.Empty;

    if (this.sb != null && this.sb.Length > 0)

    {

      // remove last separator

      output = this.sb.ToString(0, this.sb.Length - 1);

    }

    return new SqlString(output);

  }

using System;

using System.Data;

using Microsoft.SqlServer.Server;

using System.Data.SqlTypes;

using System.IO;

using System.Text;

using System.Runtime.InteropServices;

[Serializable]

[SqlUserDefinedAggregate(

   Format.UserDefined,              // use user defined serialization 

   IsInvariantToNulls = true,       // NULLs don't matter

   IsInvariantToDuplicates = false, // duplicates matter

   IsInvariantToOrder = false,      // order matters

   IsNullIfEmpty = false,           // do not yield a NULL for a set of zero strings

   MaxByteSize = -1)                // max size unlimited

]

public struct StringConcat : IBinarySerialize

{

  private StringBuilder sb;

  public void Init()

  {

    this.sb = new StringBuilder();

  }

  //two arguments

  public void Accumulate(SqlString v, SqlString separator)

  {

    if (v.IsNull)

    {

      return; // ignore NULLs approach

    }

    this.sb.Append(v.Value).Append(separator.Value);

  }

  public void Merge(StringConcat other)

  {

    this.sb.Append(other.sb);

  }

  public SqlString Terminate()

  {

    string output = string.Empty;

    if (this.sb != null && this.sb.Length > 0)

    {

      // remove last separator

      output = this.sb.ToString(0, this.sb.Length - 1);

    }

    return new SqlString(output);

  }

C08626034.indd   478 2/13/2009   2:04:50 AM



 Chapter 8 Aggregating and Pivoting Data 479

  public void Read(BinaryReader r)

  {

    sb = new StringBuilder(r.ReadString());

  }

  public void Write(BinaryWriter w)

  {

    w.Write(this.sb.ToString());

  }

} // end StringConcat

[Serializable]

[StructLayout(LayoutKind.Sequential)]

[SqlUserDefinedAggregate(

   Format.Native,                   // use native serialization 

   IsInvariantToNulls = true,       // NULLs don't matter

   IsInvariantToDuplicates = false, // duplicates matter

   IsInvariantToOrder = false)]     // order matters

public class Product

{

  private SqlInt64 si;

  public void Init()

  {

    si = 1;

  }

  public void Accumulate(SqlInt64 v)

  {

    if (v.IsNull || si.IsNull)  // NULL input = NULL output approach

    {

      si = SqlInt64.Null;

      return;

    }

    if (v == 0 || si == 0)      // to prevent an exception in next if

    {

      si = 0;

      return;

    }

    // stop before we reach max v

    if (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value))

    {

      si = si * v;

    }

    else

    {

      si = 0;                 // if we reach too big v, return 0

    }

  }

  public void Merge(Product Group)

  {

    Accumulate(Group.Terminate());

  }

  public void Read(BinaryReader r)

  {

    sb = new StringBuilder(r.ReadString());

  }

  public void Write(BinaryWriter w)

  {

    w.Write(this.sb.ToString());

  }

} // end StringConcat

[Serializable]

[StructLayout(LayoutKind.Sequential)]

[SqlUserDefinedAggregate(

   Format.Native,                   // use native serialization 

   IsInvariantToNulls = true,       // NULLs don't matter

   IsInvariantToDuplicates = false, // duplicates matter

   IsInvariantToOrder = false)]     // order matters

public class Product

{

  private SqlInt64 si;

  public void Init()

  {

    si = 1;

  }

  public void Accumulate(SqlInt64 v)

  {

    if (v.IsNull || si.IsNull)  // NULL input = NULL output approach

    {

      si = SqlInt64.Null;

      return;

    }

    if (v == 0 || si == 0)      // to prevent an exception in next if

    {

      si = 0;

      return;

    }

    // stop before we reach max v

    if (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value))

    {

      si = si * v;

    }

    else

    {

      si = 0;                 // if we reach too big v, return 0

    }

  }

  public void Merge(Product Group)

  {

    Accumulate(Group.Terminate());

  }

C08626034.indd   479 2/13/2009   2:04:50 AM



480 Inside Microsoft SQL Server 2008: T-SQL Querying

  public SqlInt64 Terminate()

  {

    return (si);

  }

} // end Product

LISTING 8-3 Visual Basic code for UDAs

Imports System

Imports System.Data

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.Text

Imports System.IO

Imports System.Runtime.InteropServices

<Serializable(), _

 SqlUserDefinedAggregate( _

               Format.UserDefined, _

               IsInvariantToDuplicates:=False, _

               IsInvariantToNulls:=True, _

               IsInvariantToOrder:=False, _

               IsNullIfEmpty:=False, _

               MaxByteSize:=-1)> _

Public Structure StringConcat

  Implements IBinarySerialize

  Private sb As StringBuilder

  Public Sub Init()

    Me.sb = New StringBuilder()

  End Sub

  Public Sub Accumulate(ByVal v As SqlString, ByVal separator As SqlString)

    If v.IsNull Then

      Return

    End If

    Me.sb.Append(v.Value).Append(separator.Value)

  End Sub

  Public Sub Merge(ByVal other As StringConcat)

    Me.sb.Append(other.sb)

  End Sub

  Public Function Terminate() As SqlString

    Dim output As String = String.Empty

    If Not (Me.sb Is Nothing) AndAlso Me.sb.Length > 0 Then

      output = Me.sb.ToString(0, Me.sb.Length - 1)

    End If

    Return New SqlString(output)

  End Function

  public SqlInt64 Terminate()

  {

    return (si);

  }

} // end Product

Imports System

Imports System.Data

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.Text

Imports System.IO

Imports System.Runtime.InteropServices

<Serializable(), _

 SqlUserDefinedAggregate( _

               Format.UserDefined, _

               IsInvariantToDuplicates:=False, _

               IsInvariantToNulls:=True, _

               IsInvariantToOrder:=False, _

               IsNullIfEmpty:=False, _

               MaxByteSize:=-1)> _

Public Structure StringConcat

  Implements IBinarySerialize

  Private sb As StringBuilder

  Public Sub Init()

    Me.sb = New StringBuilder()

  End Sub

  Public Sub Accumulate(ByVal v As SqlString, ByVal separator As SqlString)

    If v.IsNull Then

      Return

    End If

    Me.sb.Append(v.Value).Append(separator.Value)

  End Sub

  Public Sub Merge(ByVal other As StringConcat)

    Me.sb.Append(other.sb)

  End Sub

  Public Function Terminate() As SqlString

    Dim output As String = String.Empty

    If Not (Me.sb Is Nothing) AndAlso Me.sb.Length > 0 Then

      output = Me.sb.ToString(0, Me.sb.Length - 1)

    End If

    Return New SqlString(output)

  End Function

C08626034.indd   480 2/13/2009   2:04:50 AM



 Chapter 8 Aggregating and Pivoting Data 481

  Public Sub Read(ByVal r As BinaryReader) _

    Implements IBinarySerialize.Read

    sb = New StringBuilder(r.ReadString())

  End Sub

  Public Sub Write(ByVal w As BinaryWriter) _

    Implements IBinarySerialize.Write

    w.Write(Me.sb.ToString())

  End Sub

End Structure

<Serializable(), _

 StructLayout(LayoutKind.Sequential), _

 SqlUserDefinedAggregate( _

               Format.Native, _

               IsInvariantToOrder:=False, _

               IsInvariantToNulls:=True, _

               IsInvariantToDuplicates:=False)> _

Public Class Product

  Private si As SqlInt64

  Public Sub Init()

    si = 1

  End Sub

  Public Sub Accumulate(ByVal v As SqlInt64)

    If v.IsNull = True Or si.IsNull = True Then

      si = SqlInt64.Null

      Return

    End If

    If v = 0 Or si = 0 Then

      si = 0

      Return

    End If

    If (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value)) _

      Then

      si = si * v

    Else

      si = 0

    End If

  End Sub

  Public Sub Merge(ByVal Group As Product)

    Accumulate(Group.Terminate())

  End Sub

  Public Function Terminate() As SqlInt64

    If si.IsNull = True Then

      Return SqlInt64.Null

    Else

      Return si

    End If

  End Function

End Class

  Public Sub Read(ByVal r As BinaryReader) _

    Implements IBinarySerialize.Read

    sb = New StringBuilder(r.ReadString())

  End Sub

  Public Sub Write(ByVal w As BinaryWriter) _

    Implements IBinarySerialize.Write

    w.Write(Me.sb.ToString())

  End Sub

End Structure

<Serializable(), _

 StructLayout(LayoutKind.Sequential), _

 SqlUserDefinedAggregate( _

               Format.Native, _

               IsInvariantToOrder:=False, _

               IsInvariantToNulls:=True, _

               IsInvariantToDuplicates:=False)> _

Public Class Product

  Private si As SqlInt64

  Public Sub Init()

    si = 1

  End Sub

  Public Sub Accumulate(ByVal v As SqlInt64)

    If v.IsNull = True Or si.IsNull = True Then

      si = SqlInt64.Null

      Return

    End If

    If v = 0 Or si = 0 Then

      si = 0

      Return

    End If

    If (Math.Abs(v.Value) <= SqlInt64.MaxValue / Math.Abs(si.Value)) _

      Then

      si = si * v

    Else

      si = 0

    End If

  End Sub

  Public Sub Merge(ByVal Group As Product)

    Accumulate(Group.Terminate())

  End Sub

  Public Function Terminate() As SqlInt64

    If si.IsNull = True Then

      Return SqlInt64.Null

    Else

      Return si

    End If

  End Function

End Class

C08626034.indd   481 2/13/2009   2:04:51 AM



482 Inside Microsoft SQL Server 2008: T-SQL Querying

 Use the following step-by-step instructions to create and deploy the assemblies in Visual 
Studio 2008. 

 Creating and Deploying an Assembly in Visual Studio 2008 

 1. In Visual Studio 2008, create a new C# or Visual Basic project based on your language 
preference. Use the Database folder and the SQL Server Project template. 

 Note This template is not available in Visual Studio 2008, Standard edition. If you’re working 
with the Standard edition, use the Class Library template and manually write all the code. 

 2. In the New Project dialog box, specify the following information: 

❏ Name UDAs 

❏ Location C:\ 

❏ Solution Name UDAs 

When you’re done entering the information, confi rm that it is correct. 

 3. At this point, you’ll be requested to specify a database reference. Create a new 
 database reference to the tempdb database in the SQL Server instance you’re  working 
with and choose it. The database reference you choose tells Visual Studio where to 
 deploy the UDAs that you develop. 

 4. After confi rming the choice of database reference, in the Solution Explorer window, 
right-click the UDAs project, select the menu items Add and Aggregate, and then 
choose the Aggregate template. If you’re using C#, rename the class Aggregate1.cs to 
UDAClasses.cs. If you’re using Visual Basic, rename Aggregate1.vb to UDAClasses.vb. 
Confi rm. 

 5. Examine the code of the template. You’ll fi nd that a UDA is implemented as a structure 
(struct in C#, Structure in Visual Basic). It can be implemented as a class as well. The 
fi rst block of code in the template includes namespaces that are used in the assembly 
(lines of code starting with using in C# and with Imports in Visual Basic). Add three 
more statements to include the following namespaces: System.Text, System.IO, and 
System.Runtime.InteropServices. (You can copy those from Listing 8-2 or Listing 8-3.) 
You’ll use the StringBuilder class from the System.Text namespace, the BinaryReader 
and BinaryWriter classes from the System.IO namespace, and the StructLayout attribute 
from the System.Runtime.InteropServices namespace (in the second UDA). 

  6. Rename the default name of the UDA—which is currently the same name as the name 
of the class (UDAClasses)—to StringConcat. 

  7. You’ll fi nd four methods that are already provided by the template. These are the methods 
that every UDA must implement. However, if you use the Class Library template for your 

Creating and Deploying an Assembly in Visual Studio 2008

C08626034.indd   482 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 483

project, you have to write them manually. Using the Aggregate template, all you have to 
do is fi ll them with your code. Following is a description of the four methods: 

❏  Init This method is used to initialize the computation. It is invoked once for each 
group that the query processor is aggregating. 

❏  Accumulate The name of the method gives you a hint at its purpose— 
accumulating the aggregate values, of course. This method is invoked once for 
each value (that is, for every single row) in the group that is being aggregated. 
It uses input parameters, and the parameters have to be of the data types 
 corresponding to the native SQL Server data types of the columns you are going 
to aggregate. The data type of the input can also be a CLR UDT. In SQL Server 
2005, UDAs  supported no more than one input parameter. In SQL Server 2008, 
UDAs support multiple input parameters. 

❏  Merge Notice that this method uses an input parameter with the type that is the 
aggregate class. The method is used to merge multiple partial computations of 
an aggregation. 

❏  Terminate This method fi nishes the aggregation and returns the result. 

  8. Add an internal (private) variable—sb—to the class just before the Init method. You 
can do so by simply copying the code that declares it from Listing 8-2 or Listing 8-3, 
depending on your choice of language. The variable sb is of type StringBuilder and will 
hold the intermediate aggregate value.  

  9. Override the current code for the four methods with the code implementing them from 
Listing 8-2 or Listing 8-3. Keep in mind the following points for each method: 

❏  In the Init method, you initialize sb with an empty string. 

❏  The Accumulate method accepts two input parameters (new in SQL Server 
2008)—v and separator. The parameter v represents the value to be concatenated, 
and the parameter separator is obviously the separator. If v is NULL, it is simply 
ignored, similar to the way built-in aggregates handle NULLs. If v is not NULL, the 
value in v and a separator are appended to sb.  

❏  In the Merge method, you are simply adding a partial aggregation to the current 
one. You do so by calling the Accumulate method of the current aggregation and 
adding the termination (fi nal value) of the other partial aggregation. The  input 
of the Merge function refers to the class name, which you revised earlier to 
StringConcat.  

❏  The Terminate method is very simple as well; it just returns the string representation 
of the aggregated value minus the superfl uous separator at the end. 

  10. Delete the last two rows of the code in the class from the template; these are a 
 placeholder for a member fi eld. You already defi ned the member fi eld you need at the 
beginning of the UDA. 

C08626034.indd   483 2/13/2009   2:04:51 AM



484 Inside Microsoft SQL Server 2008: T-SQL Querying

  11. Next, go back to the top of the UDA, right after the inclusion of the namespaces. 
You’ll fi nd attribute names that you want to include. Attributes help Visual Studio in 
 deployment, and they help SQL Server to optimize the usage of the UDA. UDAs have 
to include the Serializable attribute. Serialization in .NET means saving the values 
of the fi elds of a class persistently. UDAs need serialization for intermediate results. 
The format of the serialization can be native, meaning they are left to SQL Server or 
 defi ned by the user. Serialization can be native if you use only .NET value types; it has 
to be  user  defi ned if you use .NET reference types. Unfortunately, the string type is 
a  reference type in .NET. Therefore, you have to prepare your own serialization. You 
have to  implement the IBinarySerialize interface, which defi nes just two methods: Read 
and Write. The implementation of these methods in our UDA is very simple. The Read 
method uses the ReadString method of the StringBuilder class. The Write method uses 
the default ToString method. The ToString method is inherited by all .NET classes from 
the topmost class, called System.Object.  

 Continue implementing the UDA by following these steps: 

 11.1.  Specify that you are going to implement the IBinarySerialize interface in the 
structure. If you’re using C#, you do so by adding a colon and the name of the 
interface right after the name of the structure (the UDA name). If you’re using 
Visual Basic, you do so by adding Implements IBinarySerialize after the name of 
the structure. 

 11.2.  Copy the Read and Write methods from Listing 8-2 or Listing 8-3 to the end of 
your UDA. 

 11.3.  Change the Format.Native property of the SqlUserDefi nedAggregate attribute 
to Format.UserDefi ned. In SQL Server 2005, with user-defi ned serialization, 
your aggregate was limited to 8,000 bytes only. You had to specify how many 
bytes your UDA could return at maximum with the MaxByteSize property of 
the SqlUserDefi nedAggregate attribute. SQL Server 2008 lifts this restriction and 
 supports unlimited size (or more accurately, the maximum size supported by 
large object types like VARCHAR(MAX), which is currently 2 GB). A value of –1 in 
the MaxByteSize property indicates unlimited size. 

 12.  You’ll fi nd some other interesting properties of the SqlUserDefi nedAggregate attribute 
in Listings 8-2 and 8-3. Let’s explore them: 

❏  IsInvariantToDuplicates This is an optional property. For example, the MAX 
 aggregate is invariant to duplicates, while SUM is not.  

❏  IsInvariantToNulls This is another optional property. It specifi es whether the 
 aggregate is invariant to NULLs.  

❏  IsInvariantToOrder This property is reserved for future use. It is currently ignored 
by the query processor. Therefore, order is currently not guaranteed. If you want 
to concatenate elements in a certain order, you have to implement your own 
sorting logic either in the Accumulate or the Terminate methods. This naturally 
incurs extra cost and unfortunately cannot benefi t from index ordering. 

C08626034.indd   484 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 485

❏  IsNullIfEmpty This property indicates whether the aggregate returns a NULL if 
no values have been accumulated. 

  13. Add the aforementioned properties to your UDA by copying them from Listing 8-2 or 
Listing 8-3. Your fi rst UDA is now complete! 

  14. Listings 8-2 and 8-3 also have the code to implement a product UDA (Product). Copy 
the complete code implementing Product to your script. Note that this UDA involves 
 handling of big integers only. Because the UDA internally deals only with value types, it 
can use native serialization. Native serialization requires that the StructLayoutAttribute be 
specifi ed as StructLayout.LayoutKind.Sequential if the UDA is defi ned in a class and not 
a structure. Otherwise, the UDA implements the same four methods as your  previous 
UDA. An additional check in the Accumulate method prevents out-of-range values. 

  15. Save all fi les by choosing the File menu item and then choosing Save All. 

  16. Create the assembly fi le in the project folder by building the solution. You do this by 
choosing the Build menu item and then choosing Build Solution. 

  17. Deploy the assembly in SQL Server.  

 Note To automatically deploy the solution in SQL Server, you normally choose the 
Build menu item and then choose Deploy Solution. However, at the time of this writing, 
 automatic deployment in Visual Studio 2008 with Service Pack 1 fails if you use any of 
the new UDA features in SQL Server 2008 (multiple input parameters or the unlimited 
 maximum size). Therefore, I’ll provide instructions here to do explicit deployment. 

  18. Explicit deployment of the UDAs in SQL Server involves running the CREATE ASSEMBLY 
command to import the intermediate language code from the assembly fi le into 
the target database (tempdb in our case) and the CREATE AGGREGATE command to 
 register each aggregate. If you used C# to defi ne the UDAs, run the following code 
while connected to the tempdb database:  

CREATE ASSEMBLY UDAs

  FROM ‘C:\UDAs\UDAs\bin\Debug\UDAs.dll’;

CREATE AGGREGATE dbo.StringConcat

(

  @value     AS NVARCHAR(MAX),

  @separator AS NCHAR(1)

)

RETURNS NVARCHAR(MAX)

EXTERNAL NAME UDAs.StringConcat;

CREATE AGGREGATE dbo.Product

(

  @value     AS BIGINT

)

RETURNS BIGINT

EXTERNAL NAME UDAs.Product;

C08626034.indd   485 2/13/2009   2:04:51 AM



486 Inside Microsoft SQL Server 2008: T-SQL Querying

 If you used Visual Basic, run the following code: 

CREATE ASSEMBLY UDAs

  FROM ‘C:\UDAs\UDAs\bin\UDAs.dll’;

CREATE AGGREGATE dbo.StringConcat

(

  @value     AS NVARCHAR(MAX),

  @separator AS NCHAR(1)

)

RETURNS NVARCHAR(MAX)

EXTERNAL NAME UDAs.[UDAs.StringConcat];

CREATE AGGREGATE dbo.Product

(

  @value     AS BIGINT

)

RETURNS BIGINT

EXTERNAL NAME UDAs.[UDAs.Product];

 The assembly should be cataloged at this point, and both UDAs should be created.  

 You can check whether the deployment was successful by browsing the sys.assemblies and 
sys.assembly_modules catalog views, which are in the tempdb database in our case. Run the 
following code to query those views: 

SELECT * FROM sys.assemblies;

SELECT * FROM sys.assembly_modules;

 Note that to run user-defi ned assemblies in SQL Server, you need to enable the server 
 confi guration option ‘clr enabled’ (which is disabled by default). You do so by running the 
 following code:  

EXEC sp_configure 'clr enabled', 1;

RECONFIGURE WITH OVERRIDE;

 This requirement is applicable only if you want to run user-defi ned assemblies; this option is 
not required to be turned on if you want to run system-supplied assemblies. 

 That’s basically it. You use UDAs just like you use any built-in aggregate function—and that’s 
one of their great advantages compared to other solutions to custom aggregates. To test the 
new functions, run the following code, and you’ll get the same results returned by the other 
solutions to custom aggregates I presented earlier: 

SELECT groupid, dbo.StringConcat(string, N',') AS string

FROM dbo.Groups

GROUP BY groupid;

SELECT groupid, dbo.Product(val) AS product

FROM dbo.Groups

GROUP BY groupid;

C08626034.indd   486 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 487

 Note that the StringConcat function expects a non-NULL separator as input and will fail if 
provided with a NULL. Of course, you can add logic to the function’s defi nition to use some 
default separator when a NULL is specifi ed. 

Specialized Solutions

 Another type of solution for custom aggregates is developing a specialized, optimized 
 solution for each aggregate. The advantage is usually the improved performance of the 
 solution. The disadvantage is that you probably won’t be able to use similar logic for other 
aggregate calculations. 

Specialized Solution for Aggregate String Concatenation

 A specialized solution for aggregate string concatenation uses the PATH mode of the FOR 
XML query option. This beautiful (and extremely fast) technique was devised by Michael Rys, 
a program manager with the Microsoft SQL Server development team, and Eugene Kogan, 
a technical lead on the Microsoft SQL Server Engine team. The PATH mode provides an 
easier way to mix elements and attributes than the EXPLICIT directive. Here’s the specialized 
 solution for aggregate string concatenation: 

SELECT groupid,

  STUFF((SELECT ',' + string AS [text()]

         FROM dbo.Groups AS G2

         WHERE G2.groupid = G1.groupid

         ORDER BY memberid

         FOR XML PATH('')), 1, 1, '') AS string

FROM dbo.Groups AS G1

GROUP BY groupid;

 The subquery basically returns an ordered path of all strings within the current group. 
Because an empty string is provided to the PATH clause as input, a wrapper element is not 
generated. An expression with no alias (for example, ‘,’ + string) or one aliased as [text()] is 
inlined, and its contents are inserted as a text node. The purpose of the STUFF function is 
simply to remove the fi rst comma (by substituting it with an empty string). 

Dynamic Pivoting  Now that you are familiar with a fast, specialized solution to string 
 concatenation, you can put it to use to achieve dynamic pivoting. Recall from the “Pivoting” 
section that the static solutions for pivoting in SQL Server require you to explicitly list the 
spreading values (the values in the spreading element). Consider the following static query, 
which I covered earlier in the “Pivoting” section: 

SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

  PIVOT(SUM(qty) FOR orderyear IN([2006],[2007],[2008])) AS P;

C08626034.indd   487 2/13/2009   2:04:51 AM



488 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note that this query is against the dbo.Orders table that you created and populated  earlier 
by running the code in Listing 8-1. Here you have to explicitly list the order years in the 
IN clause. If you want to make this solution more dynamic, query the distinct order years 
from the table and use the FOR XML PATH technique to construct the comma-separated 
list of years. You can use the QUOTENAME function to convert the integer years to Unicode 
 character strings and add brackets around them. Also, using QUOTENAME is critical to 
 prevent SQL Injection if this technique is used for a nonnumeric spreading column. The query 
that produces the comma-separated list of years looks like this: 

SELECT

  STUFF(

    (SELECT N',' + QUOTENAME(orderyear) AS [text()]

     FROM (SELECT DISTINCT YEAR(orderdate) AS orderyear

           FROM dbo.Orders) AS Years

     ORDER BY orderyear

     FOR XML PATH('')), 1, 1, '');

 Note that this useful technique has some limitations, though not serious ones, because 
it’s  XML based. For example, characters that have special meaning in XML, like ‘<’, will be 
 converted to codes (like &lt;), yielding the wrong pivot statement. 

 What’s left is to construct the whole query string, store it in a variable and use the sp_executesql 
stored procedure to execute it dynamically, like so: 

DECLARE @sql AS NVARCHAR(1000);

SET @sql = N'SELECT *

FROM (SELECT custid, YEAR(orderdate) AS orderyear, qty

      FROM dbo.Orders) AS D

  PIVOT(SUM(qty) FOR orderyear IN(' +

STUFF(

  (SELECT N',' + QUOTENAME(orderyear) AS [text()]

   FROM (SELECT DISTINCT YEAR(orderdate) AS orderyear

         FROM dbo.Orders) AS Years

   ORDER BY orderyear

   FOR XML PATH('')), 1, 1, '') + N')) AS P;';

EXEC sp_executesql @stmt = @sql;

Specialized Solution for Aggregate Product

 Keep in mind that to calculate an aggregate product, you have to scan all values in the 
group. So the performance potential your solution can reach is to achieve the calculation by 
 scanning the data only once, using a set-based query. In the case of an aggregate product, 
this can be achieved using mathematical manipulation based on logarithms. I’ll rely on the 
following logarithmic equations: 

 Equation 1: loga(b) = x if and only if  ax = b  

C08626034.indd   488 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 489

 Equation 2: loga(v1 * v2 * . . . * vn) = loga(v1) + loga(v2) + . . . + loga(vn)  

 Basically, what you’re going to do here is a transformation of calculations. You have support 
in T-SQL for the LOG, POWER, and SUM functions. Using those, you can generate the missing 
product. Group the data by the groupid column, as you would with any built-in aggregate. 
The expression SUM(LOG10(val)) corresponds to the right side of Equation 2, where the base 
a is equal to 10 in our case, because you used the LOG10 function. To get the product of the 
elements, all you have left to do is raise the base (10) to the power of the right side of the 
equation. In other words, the expression POWER(10., SUM(LOG10(val))) gives you the product 
of elements within the group. Here’s what the full query looks like: 

SELECT groupid, POWER(10., SUM(LOG10(val))) AS product

FROM dbo.Groups

GROUP BY groupid;

 This is the fi nal solution if you’re dealing only with positive values. However, the logarithm 
function is undefi ned for zero and negative numbers. You can use pivoting techniques to 
identify and deal with zeros and negatives as follows: 

SELECT groupid,

  CASE

    WHEN MAX(CASE WHEN val = 0 THEN 1 END) = 1 THEN 0

    ELSE 

      CASE WHEN COUNT(CASE WHEN val < 0 THEN 1 END) % 2 = 0

        THEN 1 ELSE -1

      END * POWER(10., SUM(LOG10(NULLIF(ABS(val), 0))))

  END AS product

FROM dbo.Groups

GROUP BY groupid;

 The outer CASE expression fi rst uses a pivoting technique to check whether a 0 value 
 appears in the group, in which case it returns a 0 as the result. The ELSE clause invokes 
 another CASE expression, which also uses a pivoting technique to count the number of 
 negative values in the group. If that number is even, it produces a +1; if it’s odd, it produces 
a –1. The purpose of this calculation is to determine the numerical sign of the result. The sign 
(–1 or +1) is then multiplied by the product of the absolute values of the numbers in the 
group to give the  desired product. 

 Note that NULLIF is used here to substitute zeros with NULLs. You might expect this part 
of the expression not to be evaluated at all if a zero is found. But remember that the 
 optimizer can consider many different physical plans to execute your query. As a result, you 
can’t be certain of the actual order in which parts of an expression will be evaluated. By 
substituting zeros with NULLs, you ensure that you’ll never get a domain error if the LOG10 
function ends up being invoked with a zero as an input. This use of NULLIF, together with 
the use of ABS, allows this solution to accommodate inputs of any sign (negative, zero, 
and positive). 

C08626034.indd   489 2/13/2009   2:04:51 AM



490 Inside Microsoft SQL Server 2008: T-SQL Querying

 You could also use a pure mathematical approach to handle zeros and negative values using 
the following query: 

SELECT groupid,

  CAST(ROUND(EXP(SUM(LOG(ABS(NULLIF(val,0)))))*

    (1-SUM(1-SIGN(val))%4)*(1-SUM(1-SQUARE(SIGN(val)))),0) AS INT)

 AS product

FROM dbo.Groups

GROUP BY groupid;

 This example shows that you should never lose hope when searching for an effi cient solution. 
If you invest the time and think outside the box, in most cases you’ll fi nd a solution. 

Specialized Solutions for Aggregate Bitwise Operations

 In this section, I’ll introduce specialized solutions for aggregating the T-SQL bitwise 
 operations—bitwise OR (|), bitwise AND (&), and bitwise XOR (̂ ). I’ll assume that you’re 
 familiar with the basics of bitwise operators and their uses and provide only a brief  overview. 
If you’re not, please refer fi rst to the section “Bitwise Operators” in SQL Server Books Online. 

 Bitwise operations are operations performed on the individual bits of integer data. Each bit has two 
possible values, 1 and 0. Integers can be used to store bitmaps, or strings of bits, and in fact they are 
used internally by SQL Server to store metadata information—for example, properties of  indexes 
(clustered, unique, and so on) and properties of databases (readonly, restrict access,  autoshrink, and 
so on). You might also choose to store bitmaps yourself to represent sets of binary attributes—for 
example, a set of permissions where each bit represents a different permission.  

 Some experts advise against using such a design because it violates 1NF (fi rst normal form, 
which requires attributes to be atomic). You might well prefer to design your data in a more 
normalized form, where attributes like this are stored in separate columns. I don’t want to 
get into a debate about which design is better. Here I’ll assume a given design that does 
store bitmaps with sets of fl ags, and I’ll assume that you need to perform aggregate bitwise 
 activities on these bitmaps. I just want to introduce the techniques for cases where you do 
fi nd the need to use them. 

 Bitwise OR (|) is usually used to construct bitmaps or to generate a result bitmap that 
 accumulates all bits that are turned on. In the result of bitwise OR, bits are turned on (that is, 
have value 1) if they are turned on in at least one of the separate bitmaps. 

 Bitwise AND (&) is usually used to check whether a certain bit (or a set of bits) is turned on by 
ANDing the source bitmap and a mask. It’s also used to accumulate only bits that are turned 
on in all bitmaps. It generates a result bit that is turned on if that bit is turned on in all the 
individual bitmaps. 

 Bitwise XOR (̂ ) is usually used to calculate parity or as part of a scheme to encrypt data. For 
each bit position, the result bit is turned on if it is on in an odd number of the individual bitmaps.  

C08626034.indd   490 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 491

 Note Bitwise XOR is the only bitwise operator that is reversible. That’s why it’s used for parity 
calculations and encryption. 

 Aggregate versions of the bitwise operators are not provided in SQL Server, and I’ll  provide 
solutions here to perform aggregate bitwise operations. I’ll use the same Groups table 
that I used in my other custom aggregate examples. Assume that the integer column val 
represents a bitmap. To see the bit representation of each integer, fi rst create the function 
DecToBase by running the following code: 

IF OBJECT_ID('dbo.DecToBase') IS NOT NULL

  DROP FUNCTION dbo.DecToBase;

GO

CREATE FUNCTION dbo.DecToBase(@val AS BIGINT, @base AS INT)

  RETURNS VARCHAR(63)

AS

BEGIN

  DECLARE @r AS VARCHAR(63), @alldigits AS VARCHAR(36);

  SET @alldigits = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ';

  SET @r = '';

  WHILE @val > 0

  BEGIN

    SET @r = SUBSTRING(@alldigits, @val % @base + 1, 1) + @r;

    SET @val = @val / @base;

  END

  RETURN @r;

END

GO

 The function accepts two inputs: a 64-bit integer holding the source bitmap and a base in 
which you want to represent the data. Use the following query to return the bit representation 
of the integers in the val column of Groups:  

SELECT groupid, val, 

  RIGHT(REPLICATE('0', 32) + CAST(dbo.DecToBase(val, 2) AS VARCHAR(64)),

        32) AS binval

FROM dbo.Groups;

 This code generates the following output (only the 10 rightmost digits of binval are shown): 

groupid    val         binval

---------- ----------- ---------

a          6           00000110

a          7           00000111

b          3           00000011

b          7           00000111

b          3           00000011

b          11          00001011

c          8           00001000

c          10          00001010

c          12          00001100

C08626034.indd   491 2/13/2009   2:04:51 AM



492 Inside Microsoft SQL Server 2008: T-SQL Querying

 The binval column shows the val column in base 2 representation, with leading zeros to  create 
a string with a fi xed number of digits. Of course, you can adjust the number of  leading zeros 
according to your needs, which I did to produce the outputs I’ll show. To avoid  distracting 
you from the techniques I want to focus on, however, the code for that  adjustment is not in 
my code samples. 

Aggregate Bitwise OR  Without further ado, let’s start with calculating an aggregate  bitwise 
OR. To give tangible context to the problem, imagine that you’re maintaining  application 
 security in the database. The groupid column represents a user, and the val  column  represents 
a bitmap with permission states (either 1 for granted or 0 for not granted) of a role the user is a 
member of. You’re after the effective permissions bitmap for each user (group), which should be 
calculated as the aggregate bitwise OR between all bitmaps of roles the user is a member of. 

 The main aspect of a bitwise OR operation that I’ll rely on in my solutions is the fact that it’s 
equivalent to the arithmetic sum of the values represented by each distinct bit value that is 
turned on in the individual bitmaps. Within an integer, a bit represents the value 2(bit_pos-1). 
For example, the bit value of the third bit is 22 = 4. Take, for example, the bitmaps for user 
c: 8 (1000), 10 (1010), and 12 (1100). The bitmap 8 has only one bit turned on—the bit value 
 representing 8; 10 has the bits representing 8 and 2 turned on; and 12 has the 8 and 4 bits 
turned on. The distinct bits turned on in any of the integers 8, 10, and 12 are the 2, 4, and 
8 bits, so the aggregate bitwise OR of 8, 10, and 12 is equal to 2 + 4 + 8 = 14 (1110). 

 The following solution relies on the aforementioned logic by extracting the individual bit 
 values that are turned on in any of the participating bitmaps. The extraction is achieved 
 using the expression MAX(val & <bitval>). The query then performs an arithmetic sum of the 
 individual bit values: 

SELECT groupid,

    MAX(val & 1)

  + MAX(val & 2)

  + MAX(val & 4)

  + MAX(val & 8)

-- ...

  + MAX(val & 1073741824) AS agg_or

FROM dbo.Groups

GROUP BY groupid;

 This query generates the following output: 

groupid    agg_or      binval

---------- ----------- --------

a          7           00000111

b          15          00001111

c          14          00001110

 Note that I added a third column (binval) to the output showing the 10 rightmost digits of 
the binary representation of the result value. I’ll continue to do so with the rest of the queries 
that apply aggregate bitwise operations.  

C08626034.indd   492 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 493

 Similarly, you can use SUM(DISTINCT val & <bitval>) instead of MAX(val & <bitval>) because 
the only possible results are <bitval> and 0: 

SELECT groupid,

    SUM(DISTINCT val & 1)

  + SUM(DISTINCT val & 2)

  + SUM(DISTINCT val & 4)

  + SUM(DISTINCT val & 8)

-- ...

  + SUM(DISTINCT val & 1073741824) AS agg_or

FROM dbo.Groups

GROUP BY groupid;

 Both solutions suffer from the same limitation—lengthy query strings—because of 
the need for a different expression for each bit value. In an effort to shorten the  query 
strings, you can use an auxiliary table. You join the Groups table with an  auxiliary table 
that  contains all relevant bit values, using val & bitval = bitval as the join  condition. 
The result of the join will include all bit values that are turned on in any of the  bitmaps. 
You can then fi nd SUM(DISTINCT <bitval>) for each group. You can easily  generate 
the  auxiliary table of bit values from the Nums table used earlier. Filter as many 
 numbers as the bits that you might need and raise 2 to the power n–1. Here’s the 
complete solution: 

SELECT groupid, SUM(DISTINCT bitval) AS agg_or

FROM dbo.Groups

  JOIN (SELECT POWER(2, n-1) AS bitval

        FROM dbo.Nums

        WHERE n <= 31) AS Bits

    ON val & bitval = bitval

GROUP BY groupid;

Aggregate Bitwise AND  In a similar manner, you can calculate an aggregate bitwise 
AND. In the permissions scenario, an aggregate bitwise AND represents the most restrictive 
 permission set. Just keep in mind that a bit value should be added to the arithmetic sum only 
if it’s turned on in all bitmaps. So fi rst group the data by groupid and bitval and fi lter only the 
groups where MIN(val & bitval) > 0, meaning that the bit value was turned on in all  bitmaps. 
In an outer query, group the data by groupid and perform the arithmetic sum of the bit 
 values from the inner query: 

SELECT groupid, SUM(bitval) AS agg_and

FROM (SELECT groupid, bitval

      FROM dbo.Groups,

        (SELECT POWER(2, n-1) AS bitval

         FROM dbo.Nums

         WHERE n <= 31) AS Bits

      GROUP BY groupid, bitval

      HAVING MIN(val & bitval) > 0) AS D

GROUP BY groupid;

C08626034.indd   493 2/13/2009   2:04:51 AM



494 Inside Microsoft SQL Server 2008: T-SQL Querying

 This query generates the following output: 

groupid    agg_and     binval

---------- ----------- --------

a          6           00000110

b          3           00000011

c          8           00001000

Aggregate Bitwise XOR  To calculate an aggregate bitwise XOR operation, fi lter only the 
groupid, bitval groups that have an odd number of bits turned on, as shown in the following 
code, which illustrates an aggregate bitwise XOR using Nums: 

SELECT groupid, SUM(bitval) AS agg_xor

FROM (SELECT groupid, bitval

      FROM dbo.Groups,

        (SELECT POWER(2, n-1) AS bitval

         FROM dbo.Nums

         WHERE n <= 31) AS Bits

      GROUP BY groupid, bitval

      HAVING SUM(SIGN(val & bitval)) % 2 = 1) AS D

GROUP BY groupid;

 This query produces the following output: 

groupid    agg_xor     binval

---------- ----------- --------

a          1           00000001

b          12          00001100

c          14          00001110

Median

 As another example of a specialized custom aggregate solution, I’ll use the statistical median 
calculation. Suppose that you need to calculate the median of the val column for each group. 
There are two different defi nitions of median. Here we will return the middle value in case we 
have an odd number of elements and the average of the two middle values in case we have 
an even number of elements. 

 The following code shows a technique for calculating the median: 

WITH Tiles AS

(

  SELECT groupid, val,

    NTILE(2) OVER(PARTITION BY groupid ORDER BY val) AS tile

  FROM dbo.Groups

),

GroupedTiles AS

(

  SELECT groupid, tile, COUNT(*) AS cnt,

    CASE WHEN tile = 1 THEN MAX(val) ELSE MIN(val) END AS val

  FROM Tiles

  GROUP BY groupid, tile

)

C08626034.indd   494 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 495

SELECT groupid,

  CASE WHEN MIN(cnt) = MAX(cnt) THEN AVG(1.*val)

       ELSE MIN(val) END AS median

FROM GroupedTiles

GROUP BY groupid;

 This code generates the following output: 

groupid    median

---------- ----------

a          6.500000

b          5.000000

c          10.000000

 The Tiles CTE calculates the NTILE(2) value within the group, based on val order. When you 
have an even number of elements, the fi rst half of the values gets tile number 1, and the 
 second half gets tile number 2. In an even case, the median is supposed to be the average 
of the highest value within the fi rst tile and the lowest in the second. When you have an 
odd number of elements, remember that an additional row is added to the fi rst group. This 
means that the highest value in the fi rst tile is the median. 

 The second CTE (GroupedTiles) groups the data by group and tile number, returning the row 
count for each group and tile as well as the val column, which for the fi rst tile is the maximum 
value within the tile and for the second tile is the minimum value within the tile. 

 The outer query groups the two rows in each group (one representing each tile). A CASE 
 expression in the SELECT list determines what to return based on the parity of the group’s 
row count. When the group has an even number of rows (that is, the group’s two tiles have 
the same row count), you get the average of the maximum in the fi rst tile and the minimum 
in the second. When the group has an odd number of elements (that is, the group’s two tiles 
have different row counts), you get the minimum of the two values, which happens to be the 
maximum within the fi rst tile, which, in turn, happens to be the median. 

 Using the ROW_NUMBER function, you can come up with additional solutions to fi nding the 
median that are more elegant and somewhat simpler. Here’s the fi rst example: 

WITH RN AS

(

  SELECT groupid, val,

    ROW_NUMBER()

      OVER(PARTITION BY groupid ORDER BY val, memberid) AS rna,

    ROW_NUMBER()

      OVER(PARTITION BY groupid ORDER BY val DESC, memberid DESC) AS rnd

  FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE ABS(rna - rnd) <= 1

GROUP BY groupid;

C08626034.indd   495 2/13/2009   2:04:51 AM



496 Inside Microsoft SQL Server 2008: T-SQL Querying

 The idea is to calculate two row numbers for each row: one based on val, memberid (the 
 tiebreaker) in ascending order (rna) and the other based on the same attributes in  descending 
order (rnd). Two sequences sorted in opposite directions have an interesting mathematical 
 relationship that you can use to your advantage. The absolute difference between the two 
is smaller than or equal to 1 only for the elements that need to participate in the median 
 calculation. Take, for example, a group with an odd number of elements; ABS(rna – rnd) is equal 
to 0 only for the middle row. For all other rows, it is greater than 1. Given an even  number of 
elements, the difference is 1 for the two middle rows and greater than 1 for all others. 

 The reason for using memberid as a tiebreaker is to guarantee determinism of the row 
 number calculations. Because you’re calculating two different row numbers, you want to 
make sure that a value that appears at the nth position from the beginning in ascending 
 order appears at the nth position from the end in descending order. 

 Once the values that need to participate in the median calculation are isolated, you just need 
to group them by groupid and calculate the average per group. 

 You can avoid the need to calculate two separate row numbers by deriving the second from 
the fi rst. The descending row numbers can be calculated by subtracting the ascending row 
numbers from the count of rows in the group and adding one. For example, in a group of four 
elements, the row that got an ascending row number 1 would get the descending row number 
4–1+1 = 4. Ascending row number 2 would get the descending row number 4–2+1 = 3 and 
so on. Deriving the descending row number from the ascending one eliminates the need for a 
tiebreaker. You’re not dealing with two separate calculations; therefore, nondeterminism is not 
an issue anymore. 

 So the calculation rna – rnd becomes the following: rn – (cnt-rn+1) = 2*rn – cnt – 1. Here’s a 
query that implements this logic: 

WITH RN AS

(

  SELECT groupid, val,

    ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY val) AS rn,

    COUNT(*) OVER(PARTITION BY groupid) AS cnt

  FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE ABS(2*rn - cnt - 1) <= 1

GROUP BY groupid;

 Here’s another way to fi gure out which rows participate in the median calculation based on 
the row number and the count of rows in the group: rn IN((cnt+1)/2, (cnt+2)/2). For an odd 
number of elements, both expressions yield the middle row number. For example, if you 
have 7 rows, both (7+1)/2 and (7+2)/2 equal 4. For an even number of elements, the fi rst 
 expression yields the row number just before the middle point, and the second yields the 

C08626034.indd   496 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 497

row number just after it. If you have 8 rows, (8+1)/2 yields 4, and (8+2)/2 yields 5. Here’s the 
query that implements this logic: 

WITH RN AS

(

  SELECT groupid, val,

    ROW_NUMBER() OVER(PARTITION BY groupid ORDER BY val) AS rn,

    COUNT(*) OVER(PARTITION BY groupid) AS cnt

  FROM dbo.Groups

)

SELECT groupid, AVG(1.*val) AS median

FROM RN

WHERE rn IN((cnt+1)/2, (cnt+2)/2)

GROUP BY groupid;

Mode

 The last specialized solution of a custom aggregate that I’ll cover is for the mode of a 
 distribution. The mode is the most frequently occurring value. As an example of mode 
 calculation, consider a request to return for each customer the ID of the employee who 
handled the most orders for that customer, according to the Sales.Orders table in the 
InsideTSQL2008 database. In case of ties, you need to determine what you want to do. One 
option is to return all tied employees; another option is to use a tiebreaker to determine 
which to return—for example, the one with the higher employee ID. 

 The fi rst solution that I’ll present is based on ranking calculations. I’ll fi rst describe a solution 
that applies a tiebreaker, and then I’ll explain the required revisions for the solution to return 
all ties.  

 You group the rows by customer ID and employee ID. You calculate a count of orders per 
group, plus a row number partitioned by customer ID, based on the order of count  descending 
and employee ID descending. The rows with the employee ID that is the mode—with the 
higher employee ID used as a tiebreaker—have row number 1. What’s left is to defi ne a table 
 expression based on the query and in the outer query fi lter only the rows where the row 
 number is equal to 1, like so: 

USE InsideTSQL2008;

WITH C AS

(

  SELECT custid, empid, COUNT(*) AS cnt,

    ROW_NUMBER() OVER(PARTITION BY custid

                      ORDER BY COUNT(*) DESC, empid DESC) AS rn

  FROM Sales.Orders

  GROUP BY custid, empid

)

SELECT custid, empid, cnt

FROM C

WHERE rn = 1;

C08626034.indd   497 2/13/2009   2:04:51 AM



498 Inside Microsoft SQL Server 2008: T-SQL Querying

 This query generates the following output, shown here in abbreviated form: 

custid      empid       cnt

----------- ----------- -----------

1           4           2

2           3           2

3           3           3

4           4           4

5           3           6

6           9           3

7           4           3

8           4           2

9           4           4

10          3           4

11          6           2

12          8           2

...

 If you want to return all ties, simply use the RANK function instead of ROW_NUMBER and 
calculate it based on count ordering alone (without the employee ID tiebreaker), like so: 

WITH C AS

(

  SELECT custid, empid, COUNT(*) AS cnt,

    RANK() OVER(PARTITION BY custid

                ORDER BY COUNT(*) DESC) AS rn

  FROM Sales.Orders

  GROUP BY custid, empid

)

SELECT custid, empid, cnt

FROM C

WHERE rn = 1;

 This time, as you can see in the following output, ties are returned: 

custid      empid       cnt

----------- ----------- -----------

1           1           2

1           4           2

2           3           2

3           3           3

4           4           4

5           3           6

6           9           3

7           4           3

8           4           2

9           4           4

10          3           4

11          6           2

11          4           2

11          3           2

12          8           2

...

C08626034.indd   498 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 499

 In case you do want to apply a tiebreaker, you can use another solution that is very 
 effi cient. It is based on the concatenation technique that I presented earlier in the chapter. 
Write a query that groups the data by customer ID and employee ID, and for each group, 
 concatenate the count of rows and the employee ID to a single value (call it binval). Defi ne 
a table expression based on this query. Have the outer query group the data by customer 
ID and calculate for each customer the maximum binval. This maximum value contains the 
max count and within it the maximum employee ID. What’s left is to extract the count and 
 employee ID from the binary value by using the SUBSTRING function and convert the values 
to the original types. Here’s the complete solution query: 

SELECT custid,

  CAST(SUBSTRING(MAX(binval), 5, 4) AS INT) AS empid,

  CAST(SUBSTRING(MAX(binval), 1, 4) AS INT) AS cnt  

FROM (SELECT custid, 

        CAST(COUNT(*) AS BINARY(4)) + CAST(empid AS BINARY(4)) AS binval

      FROM Sales.Orders

      GROUP BY custid, empid) AS D

GROUP BY custid;

 As an exercise, you can test the solutions against a table with a large number of rows. You 
will see that this solution is very fast. 

Histograms

 Histograms are powerful analytical tools that express the distribution of items. For example, 
suppose you need to fi gure out from the order information in the Sales.OrderValues view how 
many small, medium, and large orders you have, based on the order values. In other words, 
you need a histogram with three steps. The extreme values (the minimum and  maximum 
 values) are what defi nes values as small, medium, or large. Suppose for the sake of simplicity 
that the  minimum order value is 10 and the maximum is 40. Take the difference between the 
two extremes (40 – 10 = 30) and divide it by the number of steps (3) to get the step size. In this 
case, it’s 30 divided by 3, which is 10. So the boundaries of step 1 (small) would be 10 and 20; 
for step 2 (medium), they would be 20 and 30; and for step 3 (large), they would be 30 and 40. 

 To generalize this, let mn = MIN(val) and mx = MAX(val) and let stepsize = (mx – mn) / 
@numsteps. Given a step number n, the lower bound of the step (lb) is mn + (n – 1) * stepsize 
and the higher bound (hb) is mn + n * stepsize. Something is tricky here. What predicate do 
you use to bracket the elements that belong in a specifi c step? You can’t use val BETWEEN 
lb and hb because a value that is equal to hb appears in this step and also in the next step, 
where it equals the lower bound. Remember that the same calculation yielded the higher 
bound of one step and the lower bound of the next step. One approach to deal with this 
problem is to increase each of the lower bounds besides the fi rst by one so that they exceed 
the previous step’s higher bounds. With integers, this is a fi ne solution, but with another 
data type (such as NUMERIC in our case) it doesn’t work because there are potential values 
 between adjacent steps but not within either one—between the cracks, so to speak. 

C08626034.indd   499 2/13/2009   2:04:51 AM



500 Inside Microsoft SQL Server 2008: T-SQL Querying

 What I like to do to solve the problem is keep the same value in both bounds, and instead 
of using BETWEEN, I use val >= lb and val < hb. This technique has its own issues, but I fi nd 
it easier to deal with than the previous technique. The issue here is that the item with the 
highest quantity (40, in our simplifi ed example) is left out of the histogram. To solve this, 
I add a very small number to the maximum value before calculating the step size:  stepsize 
= ((1E0*mx + 0.0000000001) – mn) / @numsteps. This technique allows the item with 
the  highest value to be included, and the effect on the histogram is otherwise negligible. 
I  multiplied mx by the fl oat value 1E0 to protect against the loss of the upper data point 
when val is typed as MONEY or SMALLMONEY. 

 So you need the following ingredients to generate the lower and higher bounds of the 
 histogram’s steps: @numsteps (given as input), step number (the n column from the Nums 
auxiliary table), mn, and stepsize, which I described earlier.  

 Here’s the T-SQL code required to produce the step number, lower bound, and higher bound 
for each step of the histogram: 

USE InsideTSQL2008;

DECLARE @numsteps AS INT;

SET @numsteps = 3;

SELECT n AS step,

  mn + (n - 1) * stepsize AS lb,

  mn + n * stepsize AS hb

FROM dbo.Nums

  CROSS JOIN 

    (SELECT MIN(val) AS mn,

       ((1E0*MAX(val) + 0.0000000001) - MIN(val))

       / @numsteps AS stepsize

     FROM Sales.OrderValues) AS D

WHERE n < = @numsteps;

 This code generates the following output: 

step        lb                     hb

----------- ---------------------- ----------------------

1           12.5                   5470.83333333337

2           5470.83333333337       10929.1666666667

3           10929.1666666667       16387.5000000001

 You might want to encapsulate this code in a user-defi ned function to simplify the queries 
that return the actual histograms, like so: 

IF OBJECT_ID('dbo.HistSteps') IS NOT NULL

  DROP FUNCTION dbo.HistSteps;

GO

CREATE FUNCTION dbo.HistSteps(@numsteps AS INT) RETURNS TABLE

AS

RETURN

  SELECT n AS step,

    mn + (n - 1) * stepsize AS lb,

    mn + n * stepsize AS hb

C08626034.indd   500 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 501

  FROM dbo.Nums

    CROSS JOIN

      (SELECT MIN(val) AS mn,

         ((1E0*MAX(val) + 0.0000000001) - MIN(val))

         / @numsteps AS stepsize

       FROM Sales.OrderValues) AS D

  WHERE n < = @numsteps;

GO

 To test the function, run the following query, which will give you a three-row histogram steps 
table:  

SELECT * FROM dbo.HistSteps(3) AS S;

 To return the actual histogram, simply join the steps table and the OrderValues view on the 
predicate I described earlier (val >= lb AND val < hb), group the data by step number, and 
return the step number and row count: 

SELECT step, COUNT(*) AS numorders

FROM dbo.HistSteps(3) AS S

  JOIN Sales.OrderValues AS O

    ON val >= lb AND val < hb

GROUP BY step;

 This query generates the following histogram: 

step        numorders

----------- -----------

1           803

2           21

3           6

 You can see that there are 803 small orders, 21 medium orders, and 6 large order. To return a 
histogram with 10 steps, simply provide 10 as the input to the HistSteps function: 

SELECT step, COUNT(*) AS numorders

FROM dbo.HistSteps(10) AS S

  JOIN Sales.OrderValues AS O

    ON val >= lb AND val < hb

GROUP BY step;

 This query generates the following output: 

step        numorders

----------- -----------

1           578

2           172

3           46

4           14

5           3

6           6

7           8

8           1

10          2

C08626034.indd   501 2/13/2009   2:04:51 AM



502 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note that because you’re using an inner join, empty steps are not returned like in the case of 
step 9. To return empty steps also, you can use the following outer join query: 

SELECT step, COUNT(val) AS numorders

FROM dbo.HistSteps(10) AS S

  LEFT OUTER JOIN Sales.OrderValues AS O

    ON val >= lb AND val < hb

GROUP BY step;

 As you can see in the output of this query, empty steps are included this time: 

step        numorders

----------- -----------

1           578

2           172

3           46

4           14

5           3

6           6

7           8

8           1

9           0

10          2

 Note Notice that COUNT(val) is used here and not COUNT(*). COUNT(*) would incorrectly 
return 1 for empty steps because the group has an outer row. You have to provide the COUNT 
function an attribute from the nonpreserved side (Orders) to get the correct count. 

 There’s another alternative to taking care of the issue with the step boundaries and the 
predicate used to identify a match. You can simply check whether the step number is 1, in 
which case you subtract 1 from the lower bound. Then, in the query generating the actual 
histogram, you use the predicate val > lb AND val <= hb. 

 Another approach is to check whether the step is the last, and if it is, add 1 to the higher 
bound. Then use the predicate val >= lb AND val < hb. 

 Here’s the revised function implementing the latter approach: 

ALTER FUNCTION dbo.HistSteps(@numsteps AS INT) RETURNS TABLE

AS

RETURN

  SELECT n AS step,

    mn + (n - 1) * stepsize AS lb,

    mn + n * stepsize + CASE WHEN n = @numsteps THEN 1 ELSE 0 END AS hb

  FROM dbo.Nums

    CROSS JOIN

      (SELECT MIN(val) AS mn,

         (1E0*MAX(val) - MIN(val)) / @numsteps AS stepsize

    FROM Sales.OrderValues) AS D

  WHERE n < = @numsteps;

GO

C08626034.indd   502 2/13/2009   2:04:51 AM



 Chapter 8 Aggregating and Pivoting Data 503

 And the following query generates the actual histogram: 

SELECT step, COUNT(val) AS numorders

FROM dbo.HistSteps(3) AS S

  LEFT OUTER JOIN Sales.OrderValues AS O

    ON val >= lb AND val < hb

GROUP BY step;

Grouping Factor

 In earlier chapters, Chapter 6 in particular, I described a concept called a grouping factor. I used 
it in a problem to isolate islands, or ranges of consecutive elements in a sequence. Recall that 
the grouping factor is the factor you end up using in your GROUP BY clause to identify the 
group. In the earlier problem, I demonstrated two techniques to calculate the grouping factor. 
One method was calculating the maximum value within the group ( specifi cally, the smallest 
value that is both greater than or equal to the current value and  followed by a gap). The other 
method used row numbers. 

 Because this chapter covers aggregates, it is appropriate to revisit this very practical problem. 
In my examples here, I’ll use the Stocks table, which you create and populate by running the 
following code: 

USE tempdb;

IF OBJECT_ID('Stocks') IS NOT NULL DROP TABLE Stocks;

CREATE TABLE dbo.Stocks

(

  dt    DATE NOT NULL PRIMARY KEY,

  price INT  NOT NULL

);

GO

INSERT INTO dbo.Stocks(dt, price) VALUES

  ('20090801', 13),

  ('20090802', 14),

  ('20090803', 17),

  ('20090804', 40),

  ('20090805', 40),

  ('20090806', 52),

  ('20090807', 56),

  ('20090808', 60),

  ('20090809', 70),

  ('20090810', 30),

  ('20090811', 29),

  ('20090812', 29),

  ('20090813', 40),

  ('20090814', 45),

  ('20090815', 60),

  ('20090816', 60),

C08626034.indd   503 2/13/2009   2:04:51 AM



504 Inside Microsoft SQL Server 2008: T-SQL Querying

  ('20090817', 55),

  ('20090818', 60),

  ('20090819', 60),

  ('20090820', 15),

  ('20090821', 20),

  ('20090822', 30),

  ('20090823', 40),

  ('20090824', 20),

  ('20090825', 60),

  ('20090826', 60),

  ('20090827', 70),

  ('20090828', 70),

  ('20090829', 40),

  ('20090830', 30),

  ('20090831', 10);

CREATE UNIQUE INDEX idx_price_dt ON Stocks(price, dt);

 The Stocks table contains daily stock prices.  

 Note Stock prices are rarely restricted to integers, and there is usually more than one stock, but 
I’ll use integers and a single stock for simplifi cation purposes. Also, stock markets usually don’t have 
activity on Saturdays; because I want to demonstrate a technique over a sequence with no gaps, 
I introduced rows for Saturdays as well, with the same value that was stored in the preceding Friday. 

 The request is to isolate consecutive periods where the stock price was greater than or equal 
to 50. Figure 8-2 has a graphical depiction of the stock prices over time, and the arrows 
 represent the periods you’re supposed to return. 

80

70

60

50

40

30

20

10

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 2728 29 30 31

Va
l

Stock Values

Date

FIGURE 8-2 Periods in which stock values were greater than or equal to 50

C08626034.indd   504 2/13/2009   2:04:52 AM



 Chapter 8 Aggregating and Pivoting Data 505

 For each such period, you need to return the starting date, ending date, duration in days, 
and the peak (maximum) price. 

 Let’s start with a solution that does not use row numbers. The fi rst step here is to fi lter 
only the rows where the price is greater than or equal to 50. Unlike the traditional problem 
where you really have gaps in the data, here the gaps appear only after fi ltering. The whole 
 sequence still appears in the Stocks table. You can use this fact to your advantage. Of course, 
you could take the long route of calculating the maximum date within the group (the fi rst 
date that is both later than or equal to the current date and followed by a gap). However, a 
much simpler and faster technique to calculate the grouping factor would be to return the 
fi rst date that is greater than the current, on which the stock’s price is less than 50. Here, you 
still get the same grouping factor for all elements of the same target group, yet you need 
only one nesting level of subqueries instead of two. 

 Here’s the query: 

SELECT MIN(dt) AS startrange, MAX(dt) AS endrange,

  DATEDIFF(day, MIN(dt), MAX(dt)) + 1 AS numdays,

  MAX(price) AS maxprice

FROM (SELECT dt, price,

        (SELECT MIN(dt)

         FROM dbo.Stocks AS S2

         WHERE S2.dt > S1.dt

          AND price < 50) AS grp

      FROM dbo.Stocks AS S1

      WHERE price >= 50) AS D

GROUP BY grp;

 This query generates the following output, which is the desired result: 

startrange endrange   numdays     maxprice

---------- ---------- ----------- -----------

2009-08-06 2009-08-09 4           70

2009-08-15 2009-08-19 5           60

2009-08-25 2009-08-28 4           70

 Of course, post fi ltering, you could consider the problem as a classic islands problem in a 
temporal sequence scenario and address it with the very effi cient technique that uses the 
ROW_NUMBER function, as I described in Chapter 6: 

SELECT MIN(dt) AS startrange, MAX(dt) AS endrange,

  DATEDIFF(day, MIN(dt), MAX(dt)) + 1 AS numdays,

  MAX(price) AS maxprice

FROM (SELECT dt, price,

        DATEADD(day, -1 * ROW_NUMBER() OVER(ORDER BY dt), dt) AS grp

      FROM dbo.Stocks AS S1

      WHERE price >= 50) AS D

GROUP BY grp;

C08626034.indd   505 2/13/2009   2:04:52 AM



506 Inside Microsoft SQL Server 2008: T-SQL Querying

Grouping Sets

 A grouping set is simply a set of attributes that you group by, such as in a query that has the 
following GROUP BY clause: 

GROUP BY custid, empid, YEAR(orderdate)

 You defi ne a single grouping set—(custid, empid, YEAR(orderdate)). Traditionally, aggre-
gate queries defi ne a single grouping set, as demonstrated in the previous example. SQL 
Server supports features that allow you to defi ne multiple grouping sets in the same query 
and  return a single result set with aggregates calculated for the different grouping sets. 
The  ability to defi ne multiple grouping sets in the same query was available prior to SQL 
Server 2008 in the form of options called WITH CUBE and WITH ROLLUP and a helper 
 function called GROUPING. However, those options were neither standard nor fl exible 
enough. SQL Server 2008 introduces several new features that allow you to defi ne multiple 
grouping sets in the same query. The new features include the GROUPING SETS, CUBE, and 
ROLLUP subclauses of the GROUP BY clause (not to be confused with the older WITH CUBE 
and WITH ROLLUP options) and the helper function GROUPING_ID. These new features are 
 ISO  compliant and substantially more fl exible than the older, nonstandard ones.  

 Before I provide the technicalities of the grouping sets–related features, I’d like to explain the 
motivation for using those and the kind of problems that they solve. If you’re interested only 
in the technicalities, feel free to skip this section. 

 Consider a data warehouse with a large volume of sales data. Users of this data warehouse 
 frequently need to analyze aggregated views of the data by various dimensions, such as 
 customer, employee, product, time, and so on. When a user such as a sales manager starts the 
analysis process, the user asks for some initial aggregated view of the data—for example, the 
total quantities for each customer and year. This request translates in more technical terms to a 
request to aggregate data for the grouping set (custid, YEAR(orderdate)). The user then  analyzes 
the data, and based on the fi ndings the user makes the next request—say, to return total 
quantities for each year and month. This is a request to aggregate data for a new grouping 
set—(YEAR(orderdate), MONTH(orderdate)). In this manner the user keeps asking for different 
aggregated views of the data—in other words, to aggregate data for different grouping sets. 

 To address such analysis needs of your system’s users, you could develop an application that 
generates a different GROUP BY query for each user request. Each query would need to 
scan all applicable base data and process the aggregates. With large volumes of data, this 
 approach is very ineffi cient, and the response time will probably be unreasonable.  

 To provide fast response time, you need to preprocess aggregates for all grouping sets that 
users might ask for and store those in the data warehouse. For example, you could do this 
 every night. When the user requests aggregates for a certain grouping set, the aggregates will 
be readily available. The problem is that given n dimensions, 2n possible grouping sets can be 
constructed from those dimensions. For example, with 10 dimensions you get 1,024 grouping 
sets. If you actually run a separate GROUP BY query for each, it will take a very long time to 
process all aggregates, and you might not have a suffi cient processing window for this. 

C08626034.indd   506 2/13/2009   2:04:52 AM



 Chapter 8 Aggregating and Pivoting Data 507

 This is where the new grouping features come into the picture. They allow you to calculate 
aggregates for multiple grouping sets without rescanning the base data separately for each. 
Instead, SQL Server scans the data the minimum number of times that the optimizer fi gures 
is optimal, calculates the base aggregates, and on top of the base aggregates calculates the 
super aggregates (aggregates of aggregates). 

 Note that the product Microsoft SQL Server Analysis Services (SSAS, or just AS)  specializes 
in preprocessing aggregates for multiple grouping sets and storing them in a  specialized 
 multidimensional database. It provides very fast response time to user requests, which are made 
with a language called Multidimensional Expressions (MDX). The  recommended  approach 
to handling needs for dynamic analysis of aggregated data is to implement an Analysis 
Services solution. However, some organizations don’t need the scale and  sophistication levels 
 provided by Analysis Services and would rather get the most they can from their relational data 
 warehouse with T-SQL. For those organizations, the new grouping features provided by SQL 
Server can come in very handy. 

 The following sections describe the technicalities of the grouping sets–related features 
 supported by SQL Server 2008. 

Sample Data

 In my examples I will use the Orders table that you create and populate in tempdb by 
 running the code provided earlier in Listing 8-1. This code is provided here again for your 
convenience: 

SET NOCOUNT ON;

USE tempdb;

IF OBJECT_ID('dbo.Orders', 'U') IS NOT NULL DROP TABLE dbo.Orders;

GO

CREATE TABLE dbo.Orders

(

  orderid   INT        NOT NULL,

  orderdate DATETIME   NOT NULL,

  empid     INT        NOT NULL,

  custid    VARCHAR(5) NOT NULL,

  qty       INT        NOT NULL,

  CONSTRAINT PK_Orders PRIMARY KEY(orderid)

);

GO

INSERT INTO dbo.Orders

  (orderid, orderdate, empid, custid, qty)

VALUES

  (30001, '20060802', 3, 'A', 10),

  (10001, '20061224', 1, 'A', 12),

  (10005, '20061224', 1, 'B', 20),

  (40001, '20070109', 4, 'A', 40),

  (10006, '20070118', 1, 'C', 14),

C08626034.indd   507 2/13/2009   2:04:52 AM



508 Inside Microsoft SQL Server 2008: T-SQL Querying

  (20001, '20070212', 2, 'B', 12),

  (40005, '20080212', 4, 'A', 10),

  (20002, '20080216', 2, 'C', 20),

  (30003, '20080418', 3, 'B', 15),

  (30004, '20060418', 3, 'C', 22),

  (30007, '20060907', 3, 'D', 30);

The GROUPING SETS Subclause

 SQL Server 2008 allows you to defi ne multiple grouping sets in the same query by using 
the new GROUPING SETS subclause of the GROUP BY clause. Within the outermost pair of 
parentheses, you specify a list of grouping sets separated by commas. Each grouping set is 
expressed by a pair of parentheses containing the set’s elements separated by commas. For 
example, the following query defi nes four grouping sets: 

SELECT custid, empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY GROUPING SETS

(

  ( custid, empid, YEAR(orderdate) ),

  ( custid, YEAR(orderdate)        ),

  ( empid, YEAR(orderdate)         ),

  ()

);

 The fi rst grouping set is (custid, empid, YEAR(orderdate)), the second is (custid, YEAR(orderdate)), 
the third is (empid, YEAR(orderdate)), and the fourth is the empty grouping set (), which is used 
to calculate grand totals. This query generates the following output: 

custid empid       orderyear   qty

------ ----------- ----------- -----------

A      1           2006        12

B      1           2006        20

NULL   1           2006        32

C      1           2007        14

NULL   1           2007        14

B      2           2007        12

NULL   2           2007        12

C      2           2008        20

NULL   2           2008        20

A      3           2006        10

C      3           2006        22

D      3           2006        30

NULL   3           2006        62

B      3           2008        15

NULL   3           2008        15

A      4           2007        40

NULL   4           2007        40

A      4           2008        10

NULL   4           2008        10

NULL   NULL        NULL        205

A      NULL        2006        22

B      NULL        2006        20

C08626034.indd   508 2/13/2009   2:04:52 AM



 Chapter 8 Aggregating and Pivoting Data 509

C      NULL        2006        22

D      NULL        2006        30

A      NULL        2007        40

B      NULL        2007        12

C      NULL        2007        14

A      NULL        2008        10

B      NULL        2008        15

C      NULL        2008        20

 Note To specify a single-element grouping set, the parentheses are optional. (A one-element 
grouping set means the same as a simple group by item.) If you simply list elements directly 
within the outer pair of parentheses of the GROUPING SETS clause itself, as opposed to listing 
them within an inner pair of parentheses, you get a separate grouping set made of each element. 
For example, GROUPING SETS( a, b, c ) defi nes three grouping sets: one with the element a, 
one with b and one with c. GROUPING SETS( (a, b, c) ) defi nes a single grouping set made of the 
 elements a, b, c. 

 As you can see in the output of the query, NULLs are used as placeholders in inapplicable 
attributes. You could also think of these NULLs as indicating that the row represents an 
 aggregate over all values of that column. This way, SQL Server can combine rows associated 
with different grouping sets to one result set. So, for example, in rows associated with the 
grouping set (custid, YEAR(orderdate)), the empid column is NULL. In rows associated with the 
empty grouping set, the columns empid, custid, and orderyear are NULLs and so on. 

 Compared to a query that unifi es the result sets of four GROUP BY queries, our query that 
uses the GROUPING SETS subclause requires much less code. It has a performance advantage 
as well. Examine the execution plan of this query shown in Figure 8-3. 

FIGURE 8-3 Execution plan of query with GROUPING SETS subclause 

 Observe that even though the query defi nes four grouping sets, the execution plan shows 
only two scans of the data. In particular, observe that the fi rst branch of the plan shows two 
Stream Aggregate operators. The Sort operator sorts the data by empid, YEAR(orderdate), 
custid. Based on this sorting, the fi rst Stream Aggregate operator calculates the  aggregates 
for the grouping set (custid, empid, YEAR(orderdate)); the second Stream Aggregate  operates 

C08626034.indd   509 2/13/2009   2:04:52 AM



510 Inside Microsoft SQL Server 2008: T-SQL Querying

on the results of the fi rst and calculates the aggregates for the grouping set (empid, 
YEAR(orderdate)) and the empty grouping set. The second branch of the plan sorts the data 
by YEAR(orderdate), custid to allow the Stream Aggregate operator that follows to calculate 
aggregates for the grouping set (custid, YEAR(orderdate)). 

 Following is a query that is logically equivalent to the previous one, except that this one  actually 
invokes four GROUP BY queries—one for each grouping set—and unifi es their  result sets: 

SELECT custid, empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY custid, empid, YEAR(orderdate)

UNION ALL

SELECT custid, NULL AS empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY custid, YEAR(orderdate)

UNION ALL

SELECT NULL AS custid, empid, YEAR(orderdate) AS orderyear, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY empid, YEAR(orderdate)

UNION ALL

SELECT NULL AS custid, NULL AS empid, NULL AS orderyear, SUM(qty) AS qty

FROM dbo.Orders;

 The execution plan for this query is shown in Figure 8-4. You can see that the data is scanned 
four times.

FIGURE 8-4 Execution plan of code unifying four GROUP BY queries 

 SQL Server 2008 allows you to defi ne up to 4,096 grouping sets in a single query. 

C08626034.indd   510 2/13/2009   2:04:52 AM



 Chapter 8 Aggregating and Pivoting Data 511

The CUBE Subclause

 SQL Server 2008 also introduces the CUBE subclause of the GROUP BY clause (not to be 
 confused with the older WITH CUBE option). The CUBE subclause is merely an abbreviated 
way to express a large number of grouping sets without actually listing them in a GROUPING 
SETS subclause. CUBE accepts a list of elements as input and defi nes all possible grouping sets 
out of those, including the empty grouping set. In set theory, this is called the power set of a 
set. The power set of a set V is the set of all subsets of V. Given n elements, CUBE  produces 
2n grouping sets. For example, CUBE(a, b, c) is equivalent to GROUPING SETS( (a, b, c), (a, b), 
(a, c), (b, c), (a), (b), (c), () ). 

 The following query uses the CUBE option to defi ne all four grouping sets that can be made 
of the elements custid and empid: 

SELECT custid, empid, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY CUBE(custid, empid);

 This query generates the following output: 

custid empid       qty

------ ----------- -----------

A      1           12

B      1           20

C      1           14

NULL   1           46

B      2           12

C      2           20

NULL   2           32

A      3           10

B      3           15

C      3           22

D      3           30

NULL   3           77

A      4           50

NULL   4           50

NULL   NULL        205

A      NULL        72

B      NULL        47

C      NULL        56

D      NULL        30

 The following query using the GROUPING SETS subclause is equivalent to the previous query: 

SELECT custid, empid, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY GROUPING SETS

  ( 

    ( custid, empid ),

    ( custid        ),

    ( empid         ),

    ()

  );

C08626034.indd   511 2/13/2009   2:04:52 AM



512 Inside Microsoft SQL Server 2008: T-SQL Querying

 Note that each of the elements in the list you provide to CUBE as input can be made of either a 
single attribute or multiple attributes. The previous CUBE expression used two  single-attribute 
elements. To defi ne a multi-attribute element, simply list the element’s  attributes in parentheses. 
As an example, the expression CUBE( x, y, z ) has three single- attribute  elements and defi nes 
eight grouping sets: (x, y, z), (x, y), (x, z), (y, z), (x), (y), (z), (). The expression CUBE( (x, y), z ) has 
one two-attribute element and one single-attribute  element and defi nes four grouping sets: 
(x, y, z), (x, y), (z), ().  

 Prior to SQL Server 2008, you could achieve something similar to what the CUBE subclause 
gives you by using a WITH CUBE option that you specifi ed after the GROUP BY clause, like so: 

SELECT custid, empid, SUM(qty) AS qty

FROM dbo.Orders

GROUP BY custid, empid

WITH CUBE;

 This is an equivalent to our previous CUBE query, but it has two drawbacks. First, it’s not 
standard, while the new CUBE subclause is. Second, when you specify the WITH CUBE option, 
you cannot defi ne additional grouping sets beyond the ones defi ned by CUBE, while you can 
with the new CUBE subclause.  

The ROLLUP Subclause

 The new ROLLUP subclause of the GROUP BY clause is similar to the CUBE subclause. It also 
 allows defi ning multiple grouping sets in an abbreviated way. However, while CUBE defi nes 
all possible grouping sets that can be made of the input elements (the power set), ROLLUP 
 defi nes only a subset of those. ROLLUP assumes a hierarchy between the input elements. For 
example, ROLLUP(a, b, c) assumes a hierarchy between the elements a, b, and c. When there is 
a  hierarchy, not all possible grouping sets that can be made of the input elements make sense 
in terms of having business value. Consider, for example, the hierarchy country, region, city. You 
can see the business value in the grouping sets (country, region, city), (country, region), (country), 
and (). But as grouping sets, (city), (region), (region, city) and (country, city) have no business 
 value. For example, the grouping set (city) has no business value because different cities can 
have the same name, and a business typically needs totals by city, not by city name. When 
the input elements represent a hierarchy, ROLLUP produces only the grouping sets that make 
 business sense for the hierarchy. Given n elements, ROLLUP will produce n + 1 grouping sets. 

 The following query shows an example of using the ROLLUP subclause: 

SELECT

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

C08626034.indd   512 2/13/2009   2:04:52 AM



 Chapter 8 Aggregating and Pivoting Data 513

 Out of the three input elements, ROLLUP defi nes four (3 + 1) grouping sets—(YEAR(orderdate), 
MONTH(orderdate), DAY(orderdate)), (YEAR(orderdate), MONTH(orderdate)), (YEAR(orderdate)), 
and (). This query generates the following output: 

orderyear   ordermonth  orderday    qty

----------- ----------- ----------- -----------

2006        4           18          22

2006        4           NULL        22

2006        8           2           10

2006        8           NULL        10

2006        9           7           30

2006        9           NULL        30

2006        12          24          32

2006        12          NULL        32

2006        NULL        NULL        94

2007        1           9           40

2007        1           18          14

2007        1           NULL        54

2007        2           12          12

2007        2           NULL        12

2007        NULL        NULL        66

2008        2           12          10

2008        2           16          20

2008        2           NULL        30

2008        4           18          15

2008        4           NULL        15

2008        NULL        NULL        45

NULL        NULL        NULL        205

 This query is equivalent to the following query that uses the GROUPING SETS subclause to 
defi ne the aforementioned grouping sets explicitly: 

SELECT

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  (

    ( YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ),

    ( YEAR(orderdate), MONTH(orderdate)                 ),

    ( YEAR(orderdate)                                   ),

    ()

  );

 Like with CUBE, each of the elements in the list you provide to ROLLUP as input can be made of 
either a single attribute or multiple attributes. As an example, the expression ROLLUP( x, y, z ) 
defi nes four grouping sets: (x, y, z), (x, y), (x), (). The expression ROLLUP( (x, y), z ) defi nes three 
grouping sets: (x, y, z), (x, y), ().  

C08626034.indd   513 2/13/2009   2:04:52 AM



514 Inside Microsoft SQL Server 2008: T-SQL Querying

 Similar to the WITH CUBE option that I described earlier, previous versions of SQL Server  prior 
to SQL Server 2008 supported a WITH ROLLUP option. Following is a query that is equivalent 
to the previous ROLLUP query, except that it uses the older WITH ROLLUP option: 

SELECT

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY YEAR(orderdate), MONTH(orderdate), DAY(orderdate)

WITH ROLLUP;

 Like the WITH CUBE option, the WITH ROLLUP option is nonstandard and doesn’t allow you 
to defi ne further grouping sets in the same query. 

Grouping Sets Algebra

 One beautiful thing about the design of the grouping sets–related features implemented in 
SQL Server 2008 is that they support a whole algebra of operations that can help you defi ne 
a large number of grouping sets using minimal coding. You have support for operations that 
you can think of as multiplication, division, and addition. 

Multiplication

 Multiplication means producing a Cartesian product of grouping sets. You perform 
 multiplication by separating GROUPING SETS subclauses (or the abbreviated CUBE and 
ROLLUP subclauses) by commas. For example, if A represents a set of attributes a1, a2, . . ., 
an, and B represents a set of attributes b1, b2, . . ., bn, and so on, the product GROUPING 
SETS( (A), (B), (C) ), GROUPING SETS( (D), (E) ) is equal to GROUPING SETS ( (A, D), (A, E), 
(B, D), (B, E), (C, D), (C, E) ). 

 Consider the following query and try to fi gure out which grouping sets it defi nes: 

SELECT custid, empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  CUBE(custid, empid),

  ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

 First, expand the CUBE and ROLLUP subclauses to the corresponding GROUPING SETS 
 subclauses, and you get the following query: 

SELECT custid, empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

C08626034.indd   514 2/13/2009   2:04:52 AM



 Chapter 8 Aggregating and Pivoting Data 515

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  ( 

    ( custid, empid ),

    ( custid        ),

    ( empid         ),

    ()

  ),

  GROUPING SETS

  (

    ( YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ),

    ( YEAR(orderdate), MONTH(orderdate)                 ),

    ( YEAR(orderdate)                                   ),

    ()

  );

 Now apply the multiplication between the GROUPING SETS subclauses, and you get the 
 following query: 

SELECT custid, empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  (

    ( custid, empid, YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ),

    ( custid, empid, YEAR(orderdate), MONTH(orderdate)                 ),

    ( custid, empid, YEAR(orderdate)                                   ),

    ( custid, empid                                                    ),

    ( custid, YEAR(orderdate), MONTH(orderdate), DAY(orderdate)        ),

    ( custid, YEAR(orderdate), MONTH(orderdate)                        ),

    ( custid, YEAR(orderdate)                                          ),

    ( custid                                                           ),

    ( empid, YEAR(orderdate), MONTH(orderdate), DAY(orderdate)         ),

    ( empid, YEAR(orderdate), MONTH(orderdate)                         ),

    ( empid, YEAR(orderdate)                                           ),

    ( empid                                                            ),

    ( YEAR(orderdate), MONTH(orderdate), DAY(orderdate)                ),

    ( YEAR(orderdate), MONTH(orderdate)                                ),

    ( YEAR(orderdate)                                                  ),

    ()

  );

Division

 When multiple grouping sets in an existing GROUPING SETS subclause share common 
 elements, you can separate the common elements to another GROUPING SETS subclause 
and multiply the two. The concept is similar to arithmetic division, where you divide operands 
of an expression by a common element and pull it outside the parentheses. For example, 
(5×3 + 5×7) can be expressed as (5)×(3 + 7). Based on this logic, you can sometimes reduce 

C08626034.indd   515 2/13/2009   2:04:52 AM



516 Inside Microsoft SQL Server 2008: T-SQL Querying

the amount of code needed to defi ne multiple grouping sets. For example, see if you can 
 reduce the code in the following query while preserving the same grouping sets: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  ( 

    ( custid, empid, YEAR(orderdate), MONTH(orderdate) ),

    ( custid, empid, YEAR(orderdate)                   ),

    ( custid,        YEAR(orderdate), MONTH(orderdate) ),

    ( custid,        YEAR(orderdate)                   ),

    ( empid,         YEAR(orderdate), MONTH(orderdate) ),

    ( empid,         YEAR(orderdate)                   )

  );

 Because YEAR(orderdate) is a common element to all grouping sets, you can move it to 
 another GROUPING SETS subclause and multiply the two, like so: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  (

    ( YEAR(orderdate)                 ) 

  ),

  GROUPING SETS

  ( 

    ( custid, empid, MONTH(orderdate) ),

    ( custid, empid                   ),

    ( custid,        MONTH(orderdate) ),

    ( custid                          ),

    ( empid,         MONTH(orderdate) ),

    ( empid                           )

  );

 Note that when a GROUPING SETS subclause contains only one grouping set, it is equivalent 
to listing the grouping set’s elements directly in the GROUP BY clause. Hence, the previous 
query is logically equivalent to the following: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,

C08626034.indd   516 2/13/2009   2:04:52 AM



 Chapter 8 Aggregating and Pivoting Data 517

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  YEAR(orderdate), 

  GROUPING SETS

  ( 

    ( custid, empid, MONTH(orderdate) ),

    ( custid, empid                   ),

    ( custid,        MONTH(orderdate) ),

    ( custid                          ),

    ( empid,         MONTH(orderdate) ),

    ( empid                           )

  );

 You can reduce this form even further. Notice in the remaining GROUPING SETS subclause 
that three subsets of elements appear once with MONTH(orderdate) and once without. 
Hence, you can reduce this form to a multiplication between a GROUPING SETS subclause 
containing those three and another containing two grouping sets, (MONTH(orderdate)) and 
the empty grouping set, like so: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  YEAR(orderdate),

  GROUPING SETS

  ( 

    ( custid, empid ),

    ( custid        ),

    ( empid         )

  ),

  GROUPING SETS

  (

    ( MONTH(orderdate) ),

    ()               

  );

Addition

 Recall that when you separate GROUPING SETS, CUBE, and ROLLUP subclauses by  commas, 
you get a Cartesian product between the sets of grouping sets that each represents. But 
what if you have an existing GROUPING SETS subclause and you just want to add—not 
multiply—the grouping sets that are defi ned by a CUBE or ROLLUP subclause? This can 
be achieved by specifying the CUBE or ROLLUP subclause (or multiple ones) within the 
 parentheses of the GROUPING SETS subclause. 

C08626034.indd   517 2/13/2009   2:04:52 AM



518 Inside Microsoft SQL Server 2008: T-SQL Querying

 For example, the following query demonstrates adding the grouping sets defi ned by a 
ROLLUP subclause to the grouping sets defi ned by the hosting GROUPING SETS subclause: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  ( 

    ( custid, empid ),

    ( custid        ),

    ( empid         ),

    ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate))

  );

 This query is a logical equivalent of the following query: 

SELECT

  custid, 

  empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  GROUPING SETS

  ( 

    ( custid, empid ),

    ( custid        ),

    ( empid         ),

    ( YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ),

    ( YEAR(orderdate), MONTH(orderdate)                 ),

    ( YEAR(orderdate)                                   ),

    ()

  );

 Unfortunately, there is no built-in option to do subtraction. For example, you can’t somehow 
express the idea of CUBE( a, b, c, d ) minus GROUPING SETS ( (a, c), (b, d), () ). Of course, you can 
achieve this with the EXCEPT set operation and other techniques but not as a direct  algebraic 
operation on grouping sets–related subclauses. 

The GROUPING_ID Function

 In your applications you may need to be able to identify the grouping set with which each  result 
row of your query is associated. Relying on the NULL placeholders may lead to  convoluted 
code, not to mention the fact that if a column is defi ned in the table as allowing NULLs, a NULL 
in the result will be ambiguous. SQL Server 2008 introduces a very convenient tool for this 

C08626034.indd   518 2/13/2009   2:04:52 AM



 Chapter 8 Aggregating and Pivoting Data 519

 purpose in the form of a function called GROUPING_ID. This function accepts a list of  attributes 
as input and constructs an integer bitmap where each bit represents the  corresponding 
 attribute (the rightmost bit represents the rightmost input attribute). The bit is 0 when the 
 corresponding attribute is a member of the grouping set and 1 otherwise.  

 You provide the function with all attributes that participate in any grouping set as input, and 
you will get a unique integer representing each grouping set. So, for example, the expression 
GROUPING_ID( a, b, c, d ) would return 0 ( 0×8 + 0×4 + 0×2 + 0×1 ) for rows associated with 
the grouping set ( a, b, c, d ), 1 ( 0×8 + 0×4 + 0×2 + 1×1 ) for the grouping set ( a, b, c ), 2 
( 0×8 + 0×4 + 1×2 + 0×1 ) for the grouping set ( a, b, d ), 3 ( 0×8 + 0×4 + 1×2 + 1×1 ) for the 
grouping set ( a, b ), and so on. 

 The following query demonstrate the use of the GROUPING_ID function: 

SELECT 

  GROUPING_ID(

    custid, empid,

    YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ) AS grp_id,

  custid, empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

FROM dbo.Orders

GROUP BY

  CUBE(custid, empid),

  ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

 This query generates the following output: 

grp_id  custid empid  orderyear  ordermonth  orderday  qty

------- ------ ------ ---------- ----------- --------- ----

0       C      3      2006       4           18        22

16      NULL   3      2006       4           18        22

0       A      3      2006       8           2         10

24      NULL   NULL   2006       4           18        22

25      NULL   NULL   2006       4           NULL      22

16      NULL   3      2006       8           2         10

24      NULL   NULL   2006       8           2         10

25      NULL   NULL   2006       8           NULL      10

0       D      3      2006       9           7         30

16      NULL   3      2006       9           7         30

...

 For example, the grp_id value 25 represents the grouping set ( YEAR(orderdate), 
MONTH(orderdate) ). These attributes are represented by the second (value 2) and third 
(value 4) bits. However, remember that the bits representing members that participate in the 
grouping set are turned off. The bits representing the members that do not participate in the 
grouping set are turned on. In our case, those are the fi rst (1), fourth (8), and fi fth (16) bits 
representing the attributes DAY(orderdate), empid and custid, respectively. The sum of the 
values of the bits that are turned on is 1 + 8 + 16 = 25. 

C08626034.indd   519 2/13/2009   2:04:52 AM



520 Inside Microsoft SQL Server 2008: T-SQL Querying

 The following query helps you see which bits are turned on or off in each integer bitmap 
generated by the GROUPING_ID function with fi ve input elements: 

SELECT

  GROUPING_ID(e, d, c, b, a) as n,

  COALESCE(e, 1) as [16],

  COALESCE(d, 1) as [8],

  COALESCE(c, 1) as [4],

  COALESCE(b, 1) as [2],

  COALESCE(a, 1) as [1]

FROM (VALUES(0, 0, 0, 0, 0)) AS D(a, b, c, d, e)

GROUP BY CUBE (a, b, c, d, e)

ORDER BY n;

 This query generates the following output: 

n           16          8           4           2           1

----------- ----------- ----------- ----------- ----------- -----------

0           0           0           0           0           0

1           0           0           0           0           1

2           0           0           0           1           0

3           0           0           0           1           1

4           0           0           1           0           0

5           0           0           1           0           1

6           0           0           1           1           0

7           0           0           1           1           1

8           0           1           0           0           0

9           0           1           0           0           1

10          0           1           0           1           0

11          0           1           0           1           1

12          0           1           1           0           0

13          0           1           1           0           1

14          0           1           1           1           0

15          0           1           1           1           1

16          1           0           0           0           0

17          1           0           0           0           1

18          1           0           0           1           0

19          1           0           0           1           1

20          1           0           1           0           0

21          1           0           1           0           1

22          1           0           1           1           0

23          1           0           1           1           1

24          1           1           0           0           0

25          1           1           0           0           1

26          1           1           0           1           0

27          1           1           0           1           1

28          1           1           1           0           0

29          1           1           1           0           1

30          1           1           1           1           0

31          1           1           1           1           1

 Remember—when the bit is off, the corresponding member is part of the grouping set. 

 As mentioned, the GROUPING_ID function was introduced in SQL Server 2008. You could 
 produce a similar integer bitmap prior to SQL Server 2008, but it involved more work. You 
could use a function called GROUPING that accepts a single attribute as input and returns 0 if 

C08626034.indd   520 2/13/2009   2:04:52 AM



 Chapter 8 Aggregating and Pivoting Data 521

the attribute is a member of the grouping set and 1 otherwise. You could construct the  integer 
bitmap by multiplying the GROUPING value of each attribute by a different power of 2 and 
summing all values. Here’s an example of implementing this logic in a query that uses the older 
WITH CUBE option: 

SELECT

  GROUPING(custid)          * 4 +

  GROUPING(empid)           * 2 +

  GROUPING(YEAR(orderdate)) * 1 AS grp_id,

  custid, empid, YEAR(orderdate) AS orderyear,

  SUM(qty) AS totalqty

FROM dbo.Orders

GROUP BY custid, empid, YEAR(orderdate)

WITH CUBE;

 This query generates the following output: 

grp_id      custid empid       orderyear   totalqty

----------- ------ ----------- ----------- -----------

0           A      1           2006        12

0           B      1           2006        20

4           NULL   1           2006        32

0           A      3           2006        10

0           C      3           2006        22

0           D      3           2006        30

4           NULL   3           2006        62

6           NULL   NULL        2006        94

0           C      1           2007        14

4           NULL   1           2007        14

...

Materialize Grouping Sets

 Recall that before I started describing the technicalities of the grouping sets–related features, 
I explained that one of their uses is to preprocess aggregates for multiple grouping sets 
and store those in the data warehouse for fast retrieval. The following code demonstrates 
 materializing aggregates for multiple grouping sets, including an integer identifi er of the 
grouping set calculated with the GROUPING_ID function in a table called MyGroupingSets: 

USE tempdb;

IF OBJECT_ID('dbo.MyGroupingSets', 'U') IS NOT NULL  DROP TABLE dbo.MyGroupingSets;

GO

SELECT 

  GROUPING_ID(

    custid, empid,

    YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ) AS grp_id,

  custid, empid,

  YEAR(orderdate) AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate) AS orderday,

  SUM(qty) AS qty

INTO dbo.MyGroupingSets

C08626034.indd   521 2/13/2009   2:04:53 AM



522 Inside Microsoft SQL Server 2008: T-SQL Querying

FROM dbo.Orders

GROUP BY

  CUBE(custid, empid),

  ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate));

CREATE UNIQUE CLUSTERED INDEX idx_cl_grp_id_grp_attributes

  ON dbo.MyGroupingSets(grp_id, custid, empid, orderyear, ordermonth, orderday);

 The index created on the table MyGroupingSets is defi ned on the grp_id column as the fi rst 
key to allow effi cient retrieval of all rows associated with a single grouping set. For example, 
consider the following query, which asks for all rows associated with the grouping set ( custid, 
YEAR(orderdate), MONTH(orderdate) ): 

SELECT *

FROM dbo.MyGroupingSets

WHERE grp_id = 9;

 This query generates the following output: 

grp_id      custid empid       orderyear   ordermonth  orderday    qty

----------- ------ ----------- ----------- ----------- ----------- -----------

9           A      NULL        2006        8           NULL        10

9           A      NULL        2006        12          NULL        12

9           A      NULL        2007        1           NULL        40

9           A      NULL        2008        2           NULL        10

9           B      NULL        2006        12          NULL        20

9           B      NULL        2007        2           NULL        12

9           B      NULL        2008        4           NULL        15

9           C      NULL        2006        4           NULL        22

9           C      NULL        2007        1           NULL        14

9           C      NULL        2008        2           NULL        20

9           D      NULL        2006        9           NULL        30

 Figure 8-5 shows the plan for this query. 

FIGURE 8-5 Execution plan of query that fi lters a single grouping set 

 This plan is very effi cient. It scans only the rows that are associated with the requested 
grouping set because they reside in a consecutive section in the leaf of the clustered index. 

 Provided that you are using aggregates that are additive measures, like SUM, COUNT, and 
AVG, you can apply incremental updates to the stored aggregates with only the delta of 
 additions since you last processed those aggregates. You can achieve this by using the new 
MERGE statement that was introduced in SQL Server 2008. Here I’m just going to show the 
code to demonstrate how this is done. For details about the MERGE statement, please refer 
to Chapter 10, “Data Modifi cation.” 

C08626034.indd   522 2/13/2009   2:04:53 AM



 Chapter 8 Aggregating and Pivoting Data 523

 Run the following code to simulate another day’s worth of order activity (April 19, 2008): 

INSERT INTO dbo.Orders

  (orderid, orderdate, empid, custid, qty)

VALUES

  (50001, '20080419', 1, 'A', 10),

  (50002, '20080419', 1, 'B', 30),

  (50003, '20080419', 2, 'A', 20),

  (50004, '20080419', 2, 'B',  5),

  (50005, '20080419', 3, 'A', 15)

 Then run the following code to incrementally update the stored aggregates with the new 
day’s worth of data: 

WITH LastDay AS

(

  SELECT 

    GROUPING_ID(

      custid, empid,

      YEAR(orderdate), MONTH(orderdate), DAY(orderdate) ) AS grp_id,

    custid, empid,

    YEAR(orderdate) AS orderyear,

    MONTH(orderdate) AS ordermonth,

    DAY(orderdate) AS orderday,

    SUM(qty) AS qty

  FROM dbo.Orders

  WHERE orderdate = '20080419'

  GROUP BY

    CUBE(custid, empid),

    ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate))

)

MERGE INTO dbo.MyGroupingSets AS TGT

USING LastDay AS SRC

  ON     (TGT.grp_id    = SRC.grp_id)

     AND (TGT.orderyear  = SRC.orderyear

          OR (TGT.orderyear IS NULL AND SRC.orderyear IS NULL))

     AND (TGT.ordermonth = SRC.ordermonth

          OR (TGT.ordermonth IS NULL AND SRC.ordermonth IS NULL))

     AND (TGT.orderday   = SRC.orderday

          OR (TGT.orderday IS NULL AND SRC.orderday IS NULL))

     AND (TGT.custid   = SRC.custid

          OR (TGT.custid IS NULL AND SRC.custid IS NULL))

     AND (TGT.empid    = SRC.empid

          OR (TGT.empid IS NULL AND SRC.empid IS NULL))

WHEN MATCHED THEN

  UPDATE SET

    TGT.qty += SRC.qty

WHEN NOT MATCHED THEN

  INSERT (grp_id, custid, empid, orderyear, ordermonth, orderday)

  VALUES (SRC.grp_id, SRC.custid, SRC.empid, SRC.orderyear, SRC.ordermonth, SRC.orderday);

 The code in the CTE LastDay calculates aggregates for the same grouping sets as in the  original 
query but fi lters only the last day’s worth of data. The MERGE statement then  increments the 
quantities of groups that already exist in the target by adding the new  quantities and inserts 
the groups that don’t exist in the target. 

C08626034.indd   523 2/13/2009   2:04:53 AM



524 Inside Microsoft SQL Server 2008: T-SQL Querying

Sorting

 Consider a request to calculate the total quantity aggregate for all grouping sets in the 
 hierarchy order year > order month > order day. You can achieve this, of course, by simply 
using the ROLLUP subclause. However, a tricky part of the request is that you need to sort 
the rows in the output in a hierarchical manner, that is, days of a month, followed by the 
month total, months of a year followed by the yearly total, and fi nally the grand total. This 
can be achieved with the help of the GROUPING function as follows: 

SELECT 

  YEAR(orderdate)  AS orderyear,

  MONTH(orderdate) AS ordermonth,

  DAY(orderdate)   AS orderday,

  SUM(qty)         AS totalqty

FROM dbo.Orders

GROUP BY

  ROLLUP(YEAR(orderdate), MONTH(orderdate), DAY(orderdate))

ORDER BY

  GROUPING(YEAR(orderdate)) , YEAR(orderdate),

  GROUPING(MONTH(orderdate)), MONTH(orderdate),

  GROUPING(DAY(orderdate))  , DAY(orderdate);

 Remember that the GROUPING function returns 0 when the element is a member of a 
grouping set (representing detail) and 1 when the element isn’t (representing an  aggregate). 
Because we want to present detail before aggregates, the GROUPING function is very 
 convenient. We want to fi rst see the detail of years and at the end the grand total. Within 
the detail of years, we want to sort by year. Within each year, we want to fi rst see the detail 
of months and then the year total. Within the detail of months, we want to sort by month. 
Within the month we want to sort by the detail of days and then month total. Within the 
 detail of days, we want to sort by day. 

 This query generates the following output: 

orderyear   ordermonth  orderday    totalqty

----------- ----------- ----------- -----------

2006        4           18          22

2006        4           NULL        22

2006        8           2           10

2006        8           NULL        10

2006        9           7           30

2006        9           NULL        30

2006        12          24          32

2006        12          NULL        32

2006        NULL        NULL        94

2007        1           9           40

2007        1           18          14

2007        1           NULL        54

2007        2           12          12

2007        2           NULL        12

2007        NULL        NULL        66

C08626034.indd   524 2/13/2009   2:04:53 AM



 Chapter 8 Aggregating and Pivoting Data 525

2008        2           12          10

2008        2           16          20

2008        2           NULL        30

2008        4           18          15

2008        4           19          80

2008        4           NULL        95

2008        NULL        NULL        125

NULL        NULL        NULL        285

Conclusion

 This chapter covered various solutions to data-aggregation problems that reused fundamental 
querying techniques I introduced earlier in the book. It also introduced new techniques, such 
as dealing with tiebreakers by using concatenation, calculating a minimum using the MAX 
function, pivoting, unpivoting, calculating custom aggregates by using specialized techniques, 
and more. This chapter also covered the new grouping sets features in SQL Server 2008 
and showed how you can use those to effi ciently address the need for dynamic analysis of 
aggregates. 

 As you probably noticed, data-aggregation techniques involve a lot of logical manipulation. 
If you’re looking for ways to improve your logic, you can practice pure logical puzzles, which 
have a lot in common with querying problems in terms of the thought processes involved. 
You can fi nd pure logic puzzles in Appendix A. 

C08626034.indd   525 2/13/2009   2:04:53 AM



C08626034.indd   526 2/13/2009   2:04:53 AM



  779

Index

Symbols and Numbers
#CachedPages sample table, 592–94
.NET

CLR database code, 476–77
reference types, 484

� (set membership operator), 44–45
@expression argument, 610–11
@length argument, 610–11
@myOD variable, 605
@offset argument, 610–11

A
abstraction
Accumulate method, 482–83
Actual Execution Plan, 653
acyclic graphs, 660
ad hoc paging, 350–51
ad hoc queries, 136
Add Outer Rows phase, 5, 11
adjacency list model, 99–100
AFTER triggers, 110
aggregate functions

OVER clause, 29
subqueries, 14

aggregate product, pivoting, 475
aggregate window functions, 454
aggregation, 445. See also pivoting

bitwise operations specialized solution, 490–94
cumulative, 453–57
custom, 473–99
duration by query, 155–57
OVER clause, 445–48
PIVOT operator, 24
product specialized solution, 488–90
query signature, 157–59
running, 451–52
sliding, 457–59
specialized solutions, 487–99
string concatenation specialized solution, 487–88
tiebreakers, 448–51
top wait isolation, 137–38
user-defi ned aggregates (UDA), 476–82
year-to-date, 459–60

Aldous, David, 292
algebra, relational, 90–104
algorithms, 43–44, 277–79. See also complexity

binary search, 282
joins, 421–29
linear complexity, 133–34
LISLP problem solution, 292

O(n log n), 288–89
quadratic sorting, 288
running time comparsions, 286
scale, 279–82
sorting, 287–89
swapping, 289
ultra sort, 289

aliases
column, 319–20, 322
reuse, 16
SELECT list, 14–15
table, 606

ALL predicate, 316–18
all-at-once operations, 14–15
allocation order scans, 192, 208–19
allocation units, 189
alphabetical order, 43, 57–58
ALTER DATABASE option, 647
ALTER INDEX statement, 258
ALTER TABLE SWITCH, 645–46
An Introduction to Database Systems (Date), 83, 125
Analysis Services, wait analysis, 140
analytical ranking functions, 330–32

NTILE, 354–59
RANK and DENSE RANK, 352–54
ROW_NUMBER, 332–52
tile number, 354–59

ancestors, iteration/recursion, 681–84
Anchor Member, 328–30
anchor rows, 549–50, 592
And operator, 68–70

ALL predicate, 317
logical transformations, 556–59

ANSI SQL, 1
aggregate window functions, 454
constraints, 105
cross joins, 396–97
cursors, 17
INSERT VALUES clause, 562
join logical processing order, 409
join syntax, 389–90
nonsupported joins, 401
NULL values, 111
ORDER BY clause, 16
outer joins, 399
OVER clause subclauses, 459
relations, 103
semicolon termination, 322
set operations, 436
two-valued logic, 623

anti-semi joins, 415–16
antisymmetric relation properties, 75–76

Z02I626034.indd   779 2/21/2009   2:01:57 AM



780 ANY predicate

ANY predicate, 316–18
APPLY operator, 21–22, 527, 535–36

TOP n for each group, 537–43
arguments

common table expressions, 323
derived tables, 320–21

arrays, 287
separating elements, 429–35

assembly creation and deployment, 482–87
assignment SELECT, 612–14
assignment UPDATE, 614–16
asterisk, 306
asymptotic complexity, 283
atomic types, 86
attributes

pivoting, 460–64
relations, 85–87
scalar, 86–87
tuples, 84
types, 86

AUTO_CREATE_STATISTICS property, 228
auxiliary table of numbers, 359–62
average fragmentation in percent, 256–57
AVG aggregate, 453–57

B
bag theory, 64–65
balanced trees, 191
base columns, 14
bcp.exe, 565
BEFORE triggers, 109
benchmarks, row numbering, 344–48
Ben-Gan, Gabriel, 757
Ben-Gan, Itzik, 44
Bernoulli sampling algorithm, 268
BETWEEN predicate, 651–52
Big Oh notation, 283–84
BigNumSeq table, 364
bill of materials (BOM) example, 663–66
bin packing problem, 281
binary search algorithm, 282
bitmap fi lters, 426–28
Bitmap operator, 426–28
bitmap pages, 190–91
bitwise AND operation, 490–94
bitwise operations specialized solution, 

490–94
bitwise OR operation, 490–94
bitwise XOR operation, 490–94
BLOBs, 290
block sequence values, 597–98
blocking sequences, 596
BOM sample table, 663–66
Boolean algebra, 74
Boolean expressions, 65–66

restriction expression, 91–92
T-SQL, 67

Boolean operators, 90–91
Boyce-Codd normal form, 117–19
braces, 45
B-trees, 189. See also subtrees; trees

INSERT SELECT statement scenarios, 578–89
BULK INSERT statement, 567–68
BULK rowset provider, 565–67
bushy plans, 411–14

C
C# code

UDA creation, 477–82
user-defi ned functions, 160–61

cache
clearing, 171–72
query execution plans, 171

calculus, relational, 90–104
candidate keys, 105–06
cardinal numbers, 59–60
cardinality

notation, 56
sets, 56–57

Cartesian Product phase, 3, 7–8
Cartesian products, 53–54

cross joins, 390–91
Cascade implementation, 107–08
CASE expressions

aggregate product specialized solution, 489
EXISTS predicate, 310–12
NTILE function, 355
outer joins, 400
PIVOT operator, 24
pivoting, 462–63
unsupported logical phrases, 442

characteristic function defi nition, 55
CHARINDEX function, 432
CHECK constraints, 108–09, 670

MERGE statement, 632
CHECKSUM, 554
Chen, Peter, 87
chiastic relationships, 410–11
Cities sample table, 666–70
CLR (Common Language Runtime). See Common 

Language Runtime (CLR)
Clustered Index Scan operator. See index scans; 

clustered indexes
Clustered Index Seek operator. 

See index seek; clustered indexes
clustered indexes, 191–95

index seek + ordered partial scan, 250
index tuning, 169–70
ordered scan, 202–04
seek + ordered partial scan, 233–38
unordered index scan, 245
unordered scan, 198–201

clustering key, 196
CMEMTHREAD wait, 136

Z02I626034.indd   780 2/21/2009   2:01:57 AM



 cursors 781

COALESCE expression, 312
COALESCE function, 475
concurrency

wait analysis, 137
Codd, Edgar F., 1
code revision, query tuning, 269–76
collation, 57–58
columns

aliases, 14–16, 319–20, 322
base, 14
Boyce-Codd normal form, 117–19
copy generation, 26–27
extraction of elements, 27
fi fth normal form, 120–21
fi rst normal form, 113–15
foreign key, 106–08
fourth normal form, 119–20
identity, 595–96
IDENTITY property, 110
included nonkey, 237
key, 105–06
nonunique sort column method, 

with tiebreaker, 337–38
nonunique sort column method, 

without tiebreaker, 338–40
pivoting. See pivoting
second normal form, 115–16
SELECT list ordering, 17
set operations, 32
spreading, 24
third normal form, 116–17
unique sort column method, 335–37

Common Language Runtime (CLR)
database code, 476–77
user-defi ned data type, 188
user-defi ned functions, 160–61

common table expressions (CTEs), 
321–22

arguments, 323
auxiliary table of numbers, 362
column aliases, 322
data modifi cation, 324–25
DELETE statement, 606
EmpsPaths, 722–26
EmpsRn, 722–26
inline function defi nitions, 325–26
level limiting, 680
multiple, 323
multiple references, 324
recursive, 327–30
Tiles, 495
unsupported logical phrases, 442
UPDATE statement, 608
views, 325–26
WITH keyword, 322

compatibility mode, 398
compatibility views, 171
Completed event classes, 150

complexity, 277–79. See also algorithms
asymptotic, 283
best- and worst-case, 283
Big Oh notation, 283–84
comparisons, 285–86
constant, 283
exponential and superexponential, 

134–35
linear, 133–34
polynomial and nonpolynomial, 284–85
sublinear, 282
technical defi nitions, 283

composable DML, 636–38
composite joins, 397
Concatenation operator, 330
connected graphs, 660
consistency vs. correctness, 105
constant complexity, 283
Constant Scan operator, 643–45, 651–52

parallelism, 652–57
constraints, 104–05

check. See CHECK constraints
declarative, 105–09
join dependency, 121
order of enforcement, 110

context, mathematics and, 41–43
contrapositives, 71
control-of-fl ow statements, 65–66
correctness vs. consistency, 105
correlated subqueries, 297–98, 302

EXISTS predicate, 305–14
tiebreaker, 302–06

COUNT aggregate, 466
COUNT(*), 14, 30, 655
COUNT(O.orderid), 14
COUNT(val), 502
covering indexes, 201
CREATE AGGREGATE command, 485
CREATE ASSEMBLY command, 485
CREATE CLUSTERED INDEX statement, 645
CREATE INDEX command, 548, 647–48
CREATE STATISTICS command, 645, 647
CREATE SYNONYM command, 360
CROSS APPLY operator, 21, 536
Cross Join phase. See Cartesian Product phase
cross joins, 7, 390–95. See also 

Cartesian Product phase
CTEs (common table expressions). See 

common table expressions (CTEs)
CUBE subclass, 506
CUBE subclause, 511–12
cumulative aggregation, 453–57
cursors, 17

custom aggregations, 473
gaps solution, 374
islands solution, 383–84
query tuning, 268–76
row number calculation, 341–42

Z02I626034.indd   781 2/21/2009   2:01:58 AM



782 custom aggregation

custom aggregation, 473–99
pivoting, 474–99

custom sequences, 596–600
CustomerData sample table, 567
Customers sample table, 306, 308

cross joins, 390–95
hash joins, 425–26
merge joins, 424–25
MERGE statement, 616–17
multiple joins, 408–11
triggers, 627
UPDATE statement, 607

CustomersDim sample table, 629
CustomersStage sample table, 616–17
CXPACKET wait, 136, 145
cycles, iteration/recursion, 691–94

D
Dafni, Adi, 757
DAG (directed acyclic graph). 

See directed acyclic graph (DAG)
data

aggregation. See aggregation
bad, domains and, 47–48
collection, 187
deletion, 601–06
duplicate, removal, 601–03
insertion, 561–601
integrity, 104–11. See also constraints
large value type updates, 610–11
maintenance, materialized path, 

695–701
merging, 616–28
model, 83
modifi cation, CTEs, 324–25
modifi cation, TOP option, 531–33
OUTPUT clause, 628–38
preparation, sample, 259–65
processing, 83
schema, 83
structure, 277, 279
temporal, 122
trend identifi cation, 291
type. See types
updating, 606–16

data collector, 187
data defi nition language (DDL), 460

partitioned views and tables, 640
triggers, 109

data integrity
domain, 108–09
enforcing, 109–11
entity, 105–06
referential, 106–08

Data Manipulation Language (DML), 460
composable, 636–38
constraints, 105

relations, 103–04
triggers, 109

Data Modeling Essentials (Simsion and Witt), 
111–12

database
data integrity. See data integrity
FULL recovery model, 571–74
generalization, 124–25
I/O analysis, 145–48
ID, 256
non-FULL recovery mode, 574–75
NULL values, 110–11
relational model. See relational database model
schema, 104
specialization, 124–25

Database Design for Smarties (Muller), 112
Database Engine Tuning Advisor, 187
DATE type, 48

binary string conversion, 450
date values, 42
Date, C. J., 83, 122, 125
DATEADD function, 368, 373, 392
DATEDIFF function, 373
DATETIME type, 417

accuracy level, 458
binary string conversion, 450

DBCC DROPCLEANBUFFERS, 118
DBCC FLUSHPROCINDB, 171
DBCC FREEPROCCACHE, 171
DBCC FREESYSTEMCACHE, 171–72
DBCC IND, 213–14
dbo.Customers table, 5–7
dbo.EmpYearValues table, 24–28
dbo.Orders table, 5–7
DDL (data defi nition language). 

See data defi nition language (DDL)
DecToBase function, 491
defi nitions, 38–39

cardinality, 56
Cartesian products, 54
characteristic function of a set, 55
complexity, 283
logical operators, 69
ordered pairs and tuples, 53
propositions and predicates, 66
set complement, 62
set difference, 63
set partition, 63
subsets, 61
undefi ned terms, 39
union and intersect, 62–63

defragmentation utilities, 258
Degree of Parallelism event, 653
DELETE statement, 103–04, 601

OUTPUT clause, 630–32
TOP option, 531–33

DELETE trigger, 627–28
DeMorgan, Augustus, 70

Z02I626034.indd   782 2/21/2009   2:01:58 AM



 external sorting 783

DeMorgans laws, 70
denormalization, 122–24
DENSE_RANK function, 352–54, 383
derived tables, 318–19

arguments, 320–21
column aliases, 319–20
multiple references, 321
nesting, 320–21

Designing Database Solutions 
(Sarka, Leonard, Loria, and Wiernik), 122

determinism, 333–34
RANK and DENSE_RANK functions, 353
TOP option, 529–30

Diaconis, Persi, 292
Difference operator, 93–94
direct subordinates, 717–18
directed acyclic graph (DAG), 666

transitive closure, 740–45
directed graphs, 659–60
Discard Results option, 344
Disk Usage collection set, 148
Disk Usage Summary report, 148
DISTINCT clause, 15–16, 369, 

371, 742–43
DISTINCT COUNT, 299
DISTINCT phase, 5
DISTINCT predicate, 414
Distribute Streams Parallelism operator, 652–57
Divide operator, 95–97
dividend relation, 95–97
divisor relation, 95–97
dm_db_index_operational_stats, 256
dm_db_index_usage_stats, 256
dm_db_index_physical_stats, 257
DMFs (Dynamic Management Functions). 

See specifi c DMFs
DML (Data Manipulation Language). 

See Data Manipulation Language (DML)
DMOs (Dynamic Management Objects), 172. 

See also specifi c DMOs
DMVs (Dynamic Management Views). 

See specifi c DMVs
domain integrity, 108–09
domain-key normal form, 122
domains, 84

bad data, 47–48
calculus, 102–03
check constraint, 108–09
modeling, 49

DROP statistics command, 645
DROP TABLE statement, 601
dta.exe command-line utility, 187
Dynamic Management Functions (DMFs). 

See specifi c DMFs
Dynamic Management Objects (DMOs), 172. 

See also specifi c DMOs
Dynamic Management Views (DMVs). 

See specifi c DMVs
dynamic pivoting, 487–88

E
edges, 99–100
Element Of operator, 90–91
elements, separating, 429–35
ellipsis, 45
employee organization chart example, 661–63
Employees sample table, 661–63

cross joins, 390–95
self joins, 402–04
TOP n, 539–42

EmpOrders sample table, 451–52
empty sets, 54–55, 315
encapsulated types, 86
English-to-mathematics translation, 35–44
entity

defi ned, 87
primitive, 124

Entity Attribute Value (EAV), 460–61
entity integrity, 105–06
enumeration, sets, 45
equality, 39
Equals operator, 90–91
equi-joins, 94, 402–03
errors

composite joins, 397
duplicate key, 312
ORDER BY table expressions, 18–19
partitioned views updates, 640
subqueries, 314–16

Estimated Execution Plan, 644
Estimated Subtree Cost, 178
Evaluate Expressions phase, 5
EXCEPT DISTINCT operation, 437–38
EXCEPT operation, 31–32, 435–39
excluded middle, law of, 68
exclusive locks, 257–58
Exclusive or, 70
execution plan, 2

analysis, 174–85
cached, 169–71
graphical, 174–85

EXISTS predicate
asterisk use, 306
correlated subqueries, 305–14
minimum missing values, 309–12
semi joins, 414–16
vs. IN predicate, 307

expand-collapse technique, 404
exponential complexity, 134–35
expressions

logical transformations, 556–59
TOP option, 530–31

Extend operator, 98
T-SQL support, 103–04

extents, 188–89
external column aliasing, 319–20
external fragmentation, 256–57
external sorting, 287

Z02I626034.indd   783 2/21/2009   2:01:58 AM



784 factorial function

F
factorial function, 281–82
faithfulness, 49–51
FALSE values, 9
FAST_FORWARD cursor, 268–69
Fermats Last Theorem, 110
fi fth normal form, 120
fi llfactor, 194, 257
fi ltering

bitmap fi lters, 426–28
indexes, statistics and, 239–42

fi lters, 8. See also specifi c fi lters
fi rst normal form, 113–15

bitwise operations, 490
fi rst page request, 548–49
FLOAT data type, 41
fn_dblog function, 569
fn_trace_gettable function, 149, 155
FOR keyword, 464
FOR XML PATH option, 214
FOR XML query option, 487–88
FORCE ORDER hint, 406

bushy plans, 413
foreign keys, 106–08

nested loops, 423
forests, 661
format fi le, 565
Format.Native property, 484
Format.UserDefi ned property, 484
forwarding pointers, 191
fourth normal form, 119–20
fragmentation, 256–58

logical index, 233–34
logical scan, 192–93

Freedman, Craig, 429
FROM clause

derived tables, 318
MERGE statement, 618
TABLESAMPLE, 265

FROM phase, 3, 7
FULL keyword, 397–401
FULL recovery model, 571–74
FULLSCAN, 647–48
functional dependencies

multivalued dependency, 120
normal forms, 112

functions, 43. See also specifi c functions
aggregate. See aggregate functions
aggregate window, 454
analytical ranking, 330–32
inline defi nitions, CTEs, 325–26

fuzzy logic, 75

G
Galindo-Legaria, Cesar, 273
gaps, 363–86
Gather Stream operator, 653–57

generalization
database, 124–25
relational database model, 124–26

GetAncestor method, 717–18
GetDescendant method, 711–12
GetFirstRows, 591–94
GetLevel method, 708
GetNextPage, 549–51
GetNextRows, 591–94
GetPrevPage, 551–52
GetReparentedValue, 712–14
GetSequence procedure, 598
GetTopProducts sample table, 535
Global Aggregation operator, 655
globally unique identifi ers (GUIDs), 600–01

random, 212
temporary tables, 216

graph theory, 99–100
graphical execution plans, 174–85
graphs, 659–60. See also specifi c graphs
GROUP BY ALL, inner joins, 395–97
GROUP BY clause

derived tables, 319
grouping sets, 506–07
relational division, 299
self joins, 404
subclasses, 506

GROUP BY phase, 5, 12–13
grouping factor, 503–05
GROUPING function, 524
grouping sets, 12–13, 506–07

algebra, 514–18
CUBE subclause, 511–12
GROUPING SETS subclause, 508–10
GROUPING_ID function, 518–21
materialize, 521–23
PIVOT operator, 23
ROLLUP subclause, 512–14
sample data, 507
sorting, 524

GROUPING SETS subclass, 506
GROUPING SETS subclause, 508–10

addition, 517–18
division, 515–17
multiplication, 514–15

GROUPING_ID function, 506, 518–21
Groups sample table, 473–74

median, 554
GUIDs (globally unique identifi ers). 

See globally unique identifi ers (GUIDs)

H
Halpin, Terry, 88, 111–12
hash algorithm, 428
Hash Match operator, 426
hash tables, 425–28
HAVING clause, 80

cumulative aggregations, 455–57

Z02I626034.indd   784 2/21/2009   2:01:58 AM



 induced order 785

HAVING phase, 5, 13–14
heaps, 189–91

INSERT SELECT statement scenarios, 575–78
Heisenberg Uncertainty Principle, 149
Heisenberg, Werner, 149
hierarchies, 99–100, 661
HIERARCHYID data type, 719

list sorting, 726–30
materialized path, 706–14
normalizing, 719–23
parent-child conversion, 724–26

hints, 185–86
joins, 407–14

histograms, 499–503
HOBT, 189
Hungarian notation, 89

I
I/O subsystem

AND logic costs, 558–59
current and previous occurrence matching, 545
OR logic costs, 558–59
performance analysis, 145–48
query costs, 224, 229
reads, index seek cost, 193
STATISTICS IO option, 172–73
TOP n costs, 539, 542
wait analysis, 136–37, 143, 145

IBinarySerialize interface, 484
identity, 39
IDENTITY function, 342–44
IDENTITY property

inserting values, 110
SELECT INTO statement, 564
sequence mechanisms, 595–96

IF EXISTS, 626
IF keyword, 65–66
if.then statements, 70–72
ijk dialect, 40
IN predicate

vs. EXISTS predicate, 307
IN_ROW_DATA allocation units, 189
Include Actual Execution Plan, 654
INCLUDE clause, 548

fi ltered indexes, 240–41
included nonkey columns, 237
increasing subsequences, 291
Index Allocation Map (IAM) pages, 

190–91
allocation order scans, 192

index ID, 256
index keys

updates, 219–23
index order scans, 204, 208
Index Scan operator, 205

allocation order scans, 208–12
index order scans, 219

index scans, 544
allocation order scans, 192, 208–19
APPLY operator, 546
index order scans, 204, 208
ordered clustered index, 202–04
ordered covering nonclustered index scan, 

204–07
Storage Engine, 207–23, 256
strategy analysis, 244–56
unordered clustered index, 198–201, 245
unordered covering index scan, 245–46
unordered covering nonclustered index, 201–02

index seek, 193, 544
clustered index seek + ordered partial scan, 

233–38, 250
covering nonclustered index seek + ordered partial 

scan, 251
nonclustered index seek + ordered 

partial scan + lookups, 223–28, 247–50
partion elimination, 649–50
subtree removal, 700–01
TOP n, 539
unordered nonclustered index scan + lookups, 

228–33, 246–47
Index Seek operator, 223–26
indexed views, 242–44
indexes

access methods, 197–239. 
See also index scans; index seek

clustered. See clustered indexes
costs, 238
covering, 201
covering index seek + ordered partial scan, 251
fi ltered, statistics and, 239–42
fragmentation, 192–93, 256–58
index seek + ordered partial scan + lookups, 247–50
intersection, 238–39
joins and, 421–23
level calculations, 193–95
nonclustered index seek + ordered 

partial scan + lookups method, 223–28
on a clustered table, 196–97
on a heap, 195–96
ordered covering scan, 204–07
pages and extents, 188–89
partitioning, 258–59
performance monitoring, 256
rebuilding, 257–58
rebuilds, 648
reorganizing, 251
strategy analysis, 244–56
tuning, 169–70, 188–97. See index tuning
unordered covering scan, 201–02, 245–46
unordered index scan + lookups, 246–47
unordered nonclustered index scan + lookups, 

228–33
INDEXPROPERTY function, 193
induced order, 59

Z02I626034.indd   785 2/21/2009   2:01:58 AM



786 Information Modeling and Relational Databases

Information Modeling and Relational Databases 
(Halpin and Morgan), 88, 111–12

Information Principle, 83
Init method, 482–83
inline column aliasing, 319–20
inline function defi nitions, CTEs, 325–26
inner joins, 395–97

sliding total sample, 417–20
strategy forcing, 428–29

input expressions
TOP option, 530–31

INSERT EXEC statement, 590–94
INSERT loop, 360
INSERT SELECT FROM OPENROWSET 

statement, 566
minimal logging, 567–68

INSERT SELECT statement
CASE expression, 310–12
minimal logging, 567–68
minimal logging summary, 590
TABLOCK hint, heap, B-tree, TF-610, key range 

scenarios, 575–89
INSERT statement, 103–04

auxiliary table of numbers, 360–62
MERGE statement, 617–21
OUTPUT clause, 629–30
TOP option, 531–33

INSERT TOP, 532
INSERT trigger, 627–28
INSERT VALUES statement, 562
insertion sort, 288
Inside Microsoft SQL Server 2008, 105, 109, 

122, 127, 318
INSTEAD OF triggers, 109
instructions, 43–44
integrity

domain, 108–09
entity, 105–06
referential, 106–08

interchangeability, principle of, 88
internal fragmentation, 257
INTERSECT operation, 435–36, 439–40

precedence, 440
Intersect operator, 93, 31–32

T-SQL support, 103–04
intersect, set, 62–63
IntervalWaits function, 139–40
INTO clause, 441
intractable problems, 285
IP address, 704–30
irrefl exive relation properties, 75–76
IsDescendantOf method, 715–16
IsInvariantToDuplicates property, 

484–85
IsInvariantToNulls property, 484–85
IsInvariantToOrder property, 484–85
islands, 363–86

variation, 384–86
IsNullIfEmpty property, 484–85

isolation levels, 211–12
iteration/recursion, 670

ancestors, 681–84
cycles, 691–94
sorting, 688–91
subgraph/subtree with path enumeration, 

685–88
subordinates, 671–81

iterative/procedural query tuning vs. set-based 
approaches, 268–76

J
Jensen, Clifford, 757
join hints, 185–86
JOIN keyword, 185, 428–29
Join operator, 94

T-SQL support, 103–04
joins, 389

algorithims, 421–29
anti-semi, 415–16
composite, 397
cross, 390–95
DELETE statement, 603–06
dependency constraints, 121
equi-, 94, 402–03
hash, 428
hints, 407–14
inner, 395–97
logical evaluation order, 408–11
logical processing phase, 390
many-to-many, 423
merge, 423–25
multiple, 405–06
nested loops, 422–23
nonsupported, 401
old vs. new style, 389–403
outer, 397–401
self, 402–04
semi, 98
semi joins, 414–16
theta, 94
UPDATE statement, 606–10

K
Kass, Steve, 35, 267–68, 277
Kelly, Andrew J., 127
key lookups, 196–97
key-range, INSERT SELECT statement scenarios, 

579–89
keys. See also foreign keys; primary keys

Boyce-Codd normal form, 117–19
duplicate, 312
entity integrity, 105–06
fi rst normal form, 113–15
natural vs. surrogate, 106

Z02I626034.indd   786 2/21/2009   2:01:58 AM



 Merge Interval operator 787

NULL values, 106
second normal form, 115–16
third normal form, 116–17
uniqueness and applicability, 106

Kogan, Eugene, 487
k-tuples, 53

L
L_SUPPKEY, 648
large object (LOB) data, 565–67
large value type updates, 610–11
LargeOrders sample table, 533, 630
LastDay CTE, 523
latch waits, 137
law of excluded middle, 68
LCK waits, 137
leaf level, 191–95

split pages, 192–93
leaf nodes, 718, 738–39
leaf_row_size, 193
left input, 20–21

APPLY operator, 21–22
LEFT keyword, 397–401
LEFT OUTER join, 543
left semi joins, 414–16
Leonard, Andy, 122
LIKE condition, 702
LIKE predicate, 232, 727
linear complexity, 133–34
LINEITEM sample table, 641–45
LINEITEMPART sample table, 641–45
lists, 287
LOB_DATA allocation units, 189
locks

exclusive, 257–58
index rebuilds, 257–58
shared, 219, 257–58
wait analysis, 137

LOG function, 489–90
logging

analysis, 569–71
minimally logged operations, 567–90
testing insert scenarios, 571–89

logic. See also fuzzy logic; predicate logic
puzzles, 757–77
three-valued, 9, 74
two-valued, 623

logical equivalence, 70
logical index fragmentation, 233–34

allocation order scans, 208–19
logical operators, 68–70. See also 

specifi c operators
logical query processing, 1–2

OVER clause, 29–31
phases, 2–5, 7–20. See also specifi c phases
phases, joins and, 390

sample query, 5–7
set operators, 31–32
table operators, 20–28

logical reads, 251–52
logical scan fragmentation, 192–93, 256–57
logical transformations, 556–59
longest increasing subsequence length problem 

(LISLP), 291–95
lookups

cost, 196
key, 196–97
RID, 196

Loria, Javier, 122

M
Machanic, Adam, 757
magnetic tape storage, 287
Management data warehouse, 187
manual partitioning, 88
materialize grouping sets, 521–23
materialized path, 694–95

data maintenance, 695–701
querying, 701–06

materialized path, HIERARCHYID data type, 
706–08

data maintenance, 708–14
querying, 715–19

mathematics
context, 41–43
conventions, 39–40
defi nitions, 38–39
equality, identity, and sameness, 39
functions, parameters, and values, 43
graph theory, 99–100
grouping sets algebra, 514–18
instructions and algorithms, 43–44
median, 494–97, 554–56
mode, 497–99
numbers, 41
relational algebra and calculus, 90–104
set S, 35–37
well-defi nedness, 37–38

Matrix sample table, 468–69
MAX(order date), 302
MAX(ordered), 302–05

tiebreaker, 448–51
MAX(requireddate), 302–05
MaxByteSize property, 484
MAXDOP hint, 257
MAXRECURSION hint, 329–30, 680–81
MDX (Multidimensional Expressions), 507
median, 494–97

TOP option, 554–56
memory, wait analysis, 143
merge algorithm, 423–25
Merge Interval operator, 351

Z02I626034.indd   787 2/21/2009   2:01:58 AM



788 MERGE INTO clause

MERGE INTO clause, 618
Merge method, 482–83
MERGE predicate, 617–18
MERGE statement, 103–04, 294, 617–21

multiple WHEN clauses, 623–24
OUTPUT clause, 634–36
predicate addition, 621–23
triggers, 627–28
values, 626–27

Messages sample table, 632
metadata table queries, 648
Microsoft SQL Server Customer 

Advisory Team, 158
minimally logged operations, 567–90
minimum missing values

EXISTS predicate, 309–12
outer joins, 400–01

Minus operator, 93–94
T-SQL support, 103–04

missing values
EXISTS predicate, 309–12
outer joins, 400–01

mode, 497–99
modeling, 111–12

domains, 49
Object-Role Modeling (ORM), 111–12
relational databases, 88

modifi cations
TOP option, 531–33

modus ponens, 70
MonthlyOrders sample table, 417–20
Moran, Brian, 149
Morgan, Tony, 88, 111–12
Muller, Robert J., 112
Multidimensional Expressions (MDX), 507
multipage access, 351–52
multiple joins, 405–06
multiple references

common table expressions, 324
table expressions, 321

multiset theory, 64–119
multivalued dependencies, 120
multivalued subqueries, 297–98
mutator operators, 86
MyGroupingSets sample table, 521–22
MyOrders sample table, 557

N
naming conventions, 49–51. See also notation

Hungarian notation, 89
relational database model, 89

National Institute of Standards and Technology 
(NIST), 659

Natural Join operator, 94
natural keys, 106
natural numbers, 86

nave set theory, 52
nested loop algorithm, 422–23
Nested Loops operator, 544

parallel query plans, 654–57
partition elimination, 649

nested sets
left and right value assignment, 731–36
querying, 737–39

nesting, derived tables, 320–21
network waits, 145
NEWID function, 553, 601
NEWSEQUENTIALID function, 601
next page request, 549–51
next pointers, 204
NIST (National Institute of Standards 

and Technology), 659
No Action implementation, 107–08
NOCOUNT option, 618–19
nodes, 99–100
NOEXPAND hint, 244
NOLOCK hint

allocation order, 215–19
index order scan, 223

non_leaf_row_size, 194
nonblocking sequences, 598–600
non-equi-join joins

sliding total sample, 417–20
non-FULL recovery mode, 574–75
nonpolynomial complexity, 284–85
nonscalar types, 86–87
nonunique sort column method

with tiebreaker, 337–38
without tiebreaker, 338–40

NORECOMPUTE option, 647
normal forms

additional, 122
Boyce-Codd, 117–19
domain-key, 122
fi fth, 120
fi rst, 113–15
fourth, 119–20
functional dependencies, 112
higher, 119–22
second, 115–16
sixth, 122
third, 116–17

normalization, 111–22. 
See also normal forms

normalizing
HIERARCHYID data type, 719–23

Not Equals operator, 90–91
NOT EXISTS predicate, 742

semi joins, 415–16
vs. NOT IN predicate, 307–09

NOT IN predicate
semi joins, 415–16
vs. NOT EXISTS predicate, 307–09

Not operator, 68–70

Z02I626034.indd   788 2/21/2009   2:01:58 AM



 order 789

notation
Big Oh, 283–84
cardinality, 56
Hungarian, 89
ordered pairs and tuples, 53
set theory, 45–46
set-builder, 45–46
sets, 45–46
shorthand, 56

NP switch, 428
NTILE function, 354–59
NULL values, 9, 48

@expression, @length, and 
@value arguments, 611

aggregate product specialized solution, 489
COALESCE function, 475
EXCEPT DISTINCT operation, 437
fi ltered indexes, 239
GROUP BY phase, 13
GROUPING SETS subclause, 509
GROUPING_ID function, 518–21
HIERARCHYID data type, 710
in databases, 110–11
IN predicate, 307
INTERSECT operation, 439
key constraints, 106
multiple joins, 408
NOT EXISTS and NOT in predicate, 

307–09
ORDER BY clause, 19–20
outer joins, 399
pivoting, 462–63
ranking functions, 336
row removal, UNPIVOT operator, 28
set operations, 32
specialization, 124–25
UNIQUE constraint, 241–42
UNPIVOT operator, 471

NULLIF, 489
num_leaf_pages, 194
num_rows, 193
numbers

cardinal, 59–60
mathematics and, 41
natural, 86
ordinal, 59–60
whichth, 60–61

numerical order, 57
Nums sample table, 131, 359–62

cross joins, 390–95
missing values, returning, 

375–83
NumSeq table, 363–64
NVARCHAR data type, 188–89
NVARCHAR(MAX) data type, 189
NVARCHAR(MAX) type

updating, 610–11

O
O(n log n)

LISLP problem, 292
sorting algorithms, 288–89

object ID, 256
Object-Role Modeling (ORM), 88, 111–12
order

trichotomy, 58–59
offl ine index rebuilding, 257–58
OLEDB wait, 137
OLTP (online transaction processing). 

See online transaction processing (OLTP)
ON clause

bushy plans, 413
inner joins, 395–97
MERGE statement, 618
multiple joins, 409–11

ON fi lter, 3
OUTER JOIN clause, 12

ON fi lter phase, 8–10
online index rebuilding, 257–58
online transaction processing (OLTP)

MERGE statement, 616
wait analysis, 136

open schema, 460–62
OPENROWSET function, 565
OpenSchema sample table, 461–62
operators. See also specifi c operators

Boolean, 90–91
Codds, 91–97
cost percentages, 178
mutator, 86
relational algebra, 98–102
relations. See relations
relations and tuples, 90–91
selector, 86
set, 31–32
table, 20–28
ToolTip information, 179–85
type, 86

optimization. See also query optimizer
indexing strategies analysis, 244–56
nested loops, 421–22
partitioned views and partitioned tables, 640

optimized bitmap fi lters, 426–28
optimizer. See query optimizer
OPTION clause, 185
Or operator, 68–70

IN predicate, 316–17
logical transformations, 556–59

order, 57
alphabetical, 57–58
induced, 59
numerical, 57
sets, 57–61
total, 59

Z02I626034.indd   789 2/21/2009   2:01:58 AM



790 ORDER BY clause

ORDER BY clause, 205
cross joins, 393
derived tables, 318–19
ranking function, 331, 334
TOP option, 16, 527, 534–35

ORDER BY list, 353
ORDER BY operation, 91, 436
ORDER BY phase, 5, 16–20

OVER clause, 30–31
Order property, 208–12

index order scans, 219
OrderDetails sample table, 465

TOP n, 537–38
OrderDups sample table, 602–03
ordered pairs, 53–54
Ordered property, 204–05

allocation order vs. index order scans, 
207–08

Orders sample table, 131, 269–76, 
306–07, 507

data aggregation, 466–68
hash joins, 425–26
merge joins, 424–25
multiple joins, 408–11
TOP n, 537–38

OrdersArchive sample table, 631
ordinal numbers, 59–60
ORM (Object-Role Modeling), 88, 

111–12
orthogonal design, 125–26
OUTER APPLY operator, 21, 536
OUTER JOIN clause, 12
outer joins, 11, 397–401

fi lters, 12
sliding total sample, 417–20

OUTER keyword, 398
OVER clause, 29–31

aggregation, 445–70
ranking functions, 331
subcaluses, 459

Ozer, Stuart, 158

P
Pack operator, 100–01
Page Free Space (PFS) pages, 191
page splits, 191

allocation order scans, 208–12
page_density, 194
PAGEIOLATCH_SH wait, 142
pages, 188–89
paging

multipage access, 351–52
row numbers, 349–52
TOP option, 547–52

parallel queries, 228–31
parallel query plans, 136

wait analysis, 145
Parallelism operators, 228, 652–57

parallelism, partitioning and, 652–57
parameters, 43
parent-child representation conversion, 

724–26
parentheses, 322, 528

chiastic relationships, 410–11
Partial Aggregation operator, 655
PARTITION BY clause, 30

OVER clause, 447–48
ranking functions, 331–32
Segment operator, 333

partition ID, 256
partitioned row numbers, 344
partitioned tables, 639–40

partition elimination, 649–52
query plans, 641–45
statistics, 645–48
vs. partitioned views, 640

partitioned views, 639–40
partitioning. See also partitioned tables

manual, 88
parallelism, 652–57
partitioned views, 639–40
ranking functions, 334
subqueries, 340–41

partitions sets, 63–64
Parts sample table, 663–66
Pascal, Fabian, 119
path enumeration, 685–88
PATH mode, 487–88
path queries, 716–17
penguin dialect, 39–40
PERCENT keyword, 265
PERCENT option, 528, 555
performance

row number calculation, 344–49
selectivity and query cost, 253–55
tracing effects on, 149–50
tuning methodology, 131–34
workload tracing, 150–55

performance counters, 143–44
Performance sample database, 127–31

join algorithms, 421
performance testing

data preparation, 259–65
TABLESAMPLE, 265–68

PerfWorkloadTraceStart procedure, 151
physical query processing, 2
PIVOT operator, 22–24, 463–64, 466, 470

phases, 23–24
pivoting, 460

aggregate product, 475
attributes, 460–64
custom aggregation, 474–99
data aggregation, 466–70
dynamic, 487–88
relational division, 465–66
string concatenation, 475
unpivoting, 470–73

Z02I626034.indd   790 2/21/2009   2:01:58 AM



 query optimizer 791

PivotTables
wait analysis, 140–42

plan guides, 124
plan handles, 168
plan hash, 168
point queries, 233–34
Poletti, Marcello, 757
polynomial complexity, 284–85
pool cache, 171–72
POWER function, 489–90
Practical Issues in Database Management 

(Pascal), 119
precedence

set operations, 440
predicate logic, 35, 65

alternatives, 73–75
DeMorgans laws, 70
generalizations, 73–75
implications, 70–72
law of excluded middle, 68
logical equivalence, 70
operators, 68–70
predicates. See predicates
programming languages, 65–66
propositions, 66–68
quantifi cation, 72–73
relations, 75–80

predicates, 66–68
MERGE statement additions, 621–23
proposition creation from, 67–68
quantifi ed, negating, 73
relations and, 87–88
truth value, 68
uncommon, subqueries, 316–18

preserved tables, 11
previous page request, 551–52
previous pointers, 204
primary keys, 105–06

nested loops, 423
primitive entities, 124
principle of interchangeability, 88
process-level analysis, 148–50

performance workload tracing, 150–55
query statistics, 167–69
trace data analysis, 155–67

product aggregate specialized solution, 
488–90

Product operator, 92–93
T-SQL support, 103–04

Profi ler, 186
programming languages

dialects, 40
fourth-generation, 277
predicate logic, 65–66

Project operator, 92
proof by contradiction, 68
proof by contrapositive, 71
propositional functions, 35

propositions, 66–68
creation from predicates, 67–68
relations and, 87–88

proto-tuple, 103
PvtCustOrders sample table, 470

Q
quadratic scaling, 280
quadratic sorting algorithms, 288
quantifi cation

multiple, 73
predicate logic, 72–73

quantifi ed statements, 72
multiple, 73
negating, 72–73

queries. See also query optimizer; query plan; 
query tuning

ad hoc, 136
aggregation, 156–67
compilation, 640
cost and performance statistics, 253–55
cost percentages, 178–79
execution plan. See execution plan
fi lters. See specifi c fi lters
HIERARCHYID data type, 715–19
materialized path, 701–06
nested sets, 737–39
ORDER BY clause, 31
parallel, 228–31
partitioned tables. See partitioned tables
path, 716–17
plan guides, 124
point, 233–34
processing. See logical query processing; physical 

query processing
range, 233–34
recursive, CTEs, 327–30
run time measurement, 173–74
S set sample application, 77–80
sample, 5–7
selectivity vs. query cost, 253–55
set operations. See set operations
set-based, 268–76
signature, 157–67
statistics, 167–69
subqueries. See subqueries
wait analysis. See wait analysis

query hash, 168
query hints, 185–86
query optimizer, 2

bitmap fi lter, 427
Database Engine Tuning Advisor, 187
hash table, 425–28
hints, 185–86
join hints, 407–14
join strategy forcing, 428–29
joins, 412–13

Z02I626034.indd   791 2/21/2009   2:01:58 AM



792 query optimizer

query optimizer (continued)
logical transformations, 556–59
merge joins, 423–25
paging, 350–52
relational algebra operators, 101–02
scan order, 273–76
semi joins, 415

query plans
parallel, 136, 145
parallelism, 652–57
partitioned tables, 641–45

query processing. See logical query processing; 
physical query processing

Query Statistics History report, 167
query tuning, 127

course of action determination, 145
database/fi le level analysis, 145–48
index tuning, 187–259. See also index tuning
indexes and queries, 169–70
methodology, 131–34
process level analysis, 148–69
sample data, 127–31
set-based vs. iterative/procedural approaches, 268–76
tools, 171–87
wait analysis, 134–43
wait correlation with queues, 143–44

queues, wait correlation, 143–44
quick sort, 289
QUOTENAME function, 488
quotient relation, 95–97

R
RAND function, 552–54
random vs. sequential, 193
Range Expression, 650–52
ranges, 108–09

missing and existing, 363–86
queries, 233–34

RANK function, 352–54
mode, 498

ranking functions, 60–61
analytical. See analytical ranking functions
gaps solution, 372–73
NULL values, 336

RDBMS (relational database management systems), 
1, 83. See also relational database model

read committed isolation level, 219
Read method, 484
read uncommitted isolation, 219
READPAST hint, 633
real numbers, 41, 51
recursion. See iteration/recursion
recursive common table expressions, 327–30
Recursive Member, 328–30
Redistribute Streams operator, 653–57
references, multiple

common table expressions, 324
table expressions, 321

referential integrity, 106–08
refl exive relation properties, 75–76
RegexReplace function, 160–61
relational algebra, 90–104

operators, 98–102
T-SQL support, 103–04

relational calculus, 90–104
T-SQL support, 103–04

relational database management systems (RDBMS), 
1, 83

relational database management systems (RDMBS), 83. 
See also relational database model

relational database model, 83
algebra and calculus, 90–104
data integrity, 104–11
denormalization, 122–24
generalization and specialization, 124–26
naming conventions, 89
normalization, 111–22
relations, tuples and types, 84–89
summary, 89–90
views, 88–89

relational division, 312–14
pivoting, 465–66

relations
attributes, 85–87
divisor, dividend, and quotient, 95–97
operators, 90–91
properties of, 75–76
propositions and predicates, 87–88
relational database model, 84–89
universe, 76
virtual, 88–89

relvar, 126
Rename operator, 98

T-SQL support, 103–04
Repartition Streams operator, 228
REPEATTABLE clause, 266
REPLACE function, 433–34
representation, faithful, 49–51
Resource Governor, 171–72
Restrict operator, 91–92

T-SQL support, 103–04
restriction expression, 91–92
Results to Text output mode, 435
reverse logic, 72

relational division problems, 312–14
RID lookup operation, 196
right input, 20–21

APPLY operator, 21–22
RIGHT keyword

outer joins, 397–401
right semi joins, 414–16
Rincon, Eladio, 127
RNBenchmark table, 344–48
Road System example, 666–70
Roads sample table, 666–70
ROLLUP subclass, 506
ROLLUP subclause, 512–14

Z02I626034.indd   792 2/21/2009   2:01:58 AM



 sequence mechanisms 793

root pages, 193
roots node, 738–39
ROUND function, 570
row number calculation

benchmarks, 348–49
cursors, 341–42
IDENTITY-based, 342–44
nonpartitioned, 343
partitioned, 344
performance considerations, 344–49
subqueries, 335–41

row numbers
benchmarks, 348–49
calculation. See row numbers calculation
paging, 349–52

row overfl ow pages, 188
ROW_NUMBER function, 330–52, 433–34

benchmarks, 348–49
cross joins, 392–93
current and previous occurrence matching, 546–47
median, 495
TOP n, 542

ROW_OVERFLOW_DATA allocation units, 189
ROWMODCTR, 647
rows

anchor, 549–50, 592
copy generation, 26–27
current and previous occurrence matching, 543–47
duplicate, 15
duplicate data removal, 601–03
foreign key, 106–08
grouping, 23
index levels, 193–95
keys, 105–06
NULL values removal, 28
pivoting. See pivoting
random, TOP option, 552–54
removal, 28
set operations, 31–32
size limits, 188–89
TOP option, 16
value constructors, 607–08

ROWS keyword, 265
ROWS option, 266
rows_per_leaf_page, 194
rows_per_non_leaf_page, 194
rowsets, 88
RPCCompleted event class, 150
running aggregation, 451–52
Russell, Bertrand, 52
Russell’s Paradox, 52, 96, 110–11
Rys, Michael, 487

S
S set, 46

sample application, 77–80
Sales sample table, 330–31
Sales.MyShippers sample table, 314–16

Sales.Orders sample table, 497
SalesRN CTE, 350
sameness, 39
sample data. See also specifi c sample tables

grouping sets, 507
Performance database, 127–31
preparation, 259–65
TABLESAMPLE, 265–68

Sarka, Dejan, 44, 122, 757
Scalar operator, 650
scalar subqueries, 297–98
scalar types, 86–87
scale, algorithms, 279–82
SCOPE_IDENTITY function, 629
second normal form, 115–16
Segment operator, 207, 333
SELECT clause, 331
SELECT INTO statement, 216, 563–64

FULL recovery model, 571–74
minimal logging, 567–68
non-FULL recovery mode, 574–75

SELECT list
aliases, 14–15
asterisk use, 306
bushy plans, 414
column order, 17
DATEADD function, 392
derived tables, 319
DISTINCT clause, 16, 369, 371
pivoting, 462
self joins, 404
unpivot operator, 471

SELECT phase, 5, 14–16
ORDER BY clause, 29–30

SELECT query, 278
partition elimination, 649–52
TOP option, 527–35

SELECT statement, 103–04
assignments, 611–14
NOLOCK hint, 216
showplan, 643–45

SELECT TOP, 528–29
SELECT_INTO statement, 343–44
selection sort, 288
selectivity, 224, 251

logical reads and, 251–52
performance statistics and query cost, 253–55
point determination, 248–49
vs. logical reads, 252
vs. query cost, 253–55

selector operators, 86
self joins, 402–04
self-contained subqueries, 297–302
semi joins, 98, 414–16
semicolons, 322
Semijoin operator, 98
SEQUEL, 1
sequence mechanisms

custom sequences, 596–600
IDENTITY property, 595–96

Z02I626034.indd   793 2/21/2009   2:01:58 AM



794 Sequence Project operator

Sequence Project operator, 333
sequential access, 287
Serializable attribute, 484
Server Activity collections, 148
Server Activity History report, 139
Server Actual History report, 148
server instance

partitioned view, 639
wait analysis, 134–37

Server Management Objects (SMO), 187
Server Management Studio (SMSS)

cross joins, 396–97
Discard Results option, 329–44

Sessions sample table, 260–65
Set Default implementation, 107–08
SET FORCEPLAN ON statement, 406
Set Null implementation, 107–08
set operations, 31–32, 435–36

EXCEPT, 437–39
INTERSECT, 439–40
INTO clause, 441
NULL values, 32
precedence, 440
UNION, 436–37
unsupported logical phrases, circumventing, 

441–42
set operators, 31–32, 56–63
set S. See S set
SET STATISTICS IO option, 351
set theory, 35, 44. See also sets

domains of discourse, 46–49
faithfulness, 49–51
generalizations, 64–65
multiset theory, 64–65
nave, 52
notation, 45–46
ordered pairs, tuples, and Cartesian products, 53–54
Russell’s Paradox, 52
set membership operator defi nition, 44–45
set U, 46
empty sets, 54–55

set-based query tuning vs. iterative/procedural 
approaches, 268–76

sets. See also set operations; set operators; set theory
cardinality, 56–57
characteristic function, 77–80
characteristic function defi nition, 55
complement, 62
difference, 63
empty, 54–55, 315
enumeration, 45
membership operator defi nition, 44–45
nested. See nested sets
notation, 45–46
operators. See set operators
order, 57–61
partitions, 63–64
set-builder notation, 45–46

subsets, 61–62
union and intersection, 62–63
universe. See U set
well-defi nedness, 46

shared locks, 219, 257–58
Shippers sample table, 269–76, 566
SHOWPLAN_XML option, 186
SIMPLE recovery model, 575
Simsion, Graeme, 111–12
Singh, Simon, 110
single sequence values, 596–97
SINGLE_BLOB type, 566
SINGLE_CLOB type, 566
SINGLE_NCLOB type, 566
sixth normal form, 122
sliding aggregation, 457–59
sliding total, previous year, example, 417–20
sliding window scenario, 642
SMO (Server Management Objects), 187
SMSS (Server Management Studio). See Server 

Management Studio (SMSS)
Solid Quality Mentors, 127
SOME predicate, 316–18
Sort operator, 286, 509–10
SORT_IN_TEMP_DB option, 257
sorting

algorithms, 285–86
external, 287
grouping sets, 524
HIERARCHYID data type, 726–30
insertion and selection, 288
iteration/recursion, 688–91
O(n log N) algorithms, 288–89
quadratic algorithms, 288
quick sort, 289
running time comparsions, 285–86
swapping, 289
ultra sort, 289

source code, 43–44
sp_autostats, 647
sp_confi gure, 653
sp_create_plan_guide, 124
sp_get_query_template procedure, 157
sp_updatestats, 142–43
specialization

database, 124–25
relational database model, 124–26

specialized solutions, 487–99
bitwise operations, 490–94
product, 488–90
string concatenation, 487–88

spread by element, 464
spreading, PIVOT operator, 24
SPStmtCompleted event class, 150
SQL

pronunciation origin, 1
relations, 103

SQL handle, 168

Z02I626034.indd   794 2/21/2009   2:01:58 AM



 System.Object class 795

SQL Server 2005
partitioning, 641–45
query plans, parallelism, 654–57
showplan, 649–52

SQL Server 2008
CLR database code, 476–77
constraints, order of enforcement, 110
data collection and Management 

data warehouse, 187
hash joins, 425–26
hints, 185
partitioning, 639–57
query plans, parallelism, 654–57
showplan, 649–52
Timestamp type, 109–10
tracing, 149–50
triggers support, 109
XML type, 109

SQL Server Magazine, 757
SQL_VARIANT data type, 188–89, 461

UNPIVOT operator, 473
SQLBatchCompleted event class, 150
SQLStmtCompleted event class, 150
SqlUserDefi nedAggregate attribute, 

484–85
statistics

automatic maintenance, 142–43
cloning, 187
fi ltered indexes, 239–42
partitioned tables, 645–48
queries, 167–69

statistics cloning, 187
STATISTCS IO, 172–73
STATISTICS IO option, 172–73
STATISTICS TIME option, 173–74
STATISTICS XML option
Storage Engine, 207–23
stored procedures, 109
Stream Aggregate operator, 509–10, 655
string concatenation, 449

aggregate specialized solution, 487–88
pivoting, 475

StringBuilder class, 484
StringConcat function, 487
strings, searching, 289–90
StructLayoutAttribute, 485
STUFF function, 610–11
subgraph/subtree, with path enumeration, 

685–88
sublinear complexity, 282
subordinates

direct, 717–18
iteration/recursion, 671–81

subqueries, 297–98
aggregate functions, 14
correlated. See correlated subqueries
gaps solution 1, 366–69

gaps solution 2, 369–71
misbehaving, 314–16
multivalued, 297–98
partitioning, 340–41
RANK and DENSE_RANK functions, 352–54
row number calculation, 335–41
scalar, 297–98
self joins, 404
self-contained, 297–302
table-valued, 297–98
uncommon predicates, 316–18

subsequences, increasing, 291
Subset Of operator, 90–91
subsets, 61–62
SUBSTRING function, 214, 431

mode, 499
subtrees

cost, 178
moving, 697–99, 712–14
querying, 715–17
removal, 700–01

subtypes, 124
SUM aggregate, 453–57
SUM function, 489–90
SUM(qty) function, 468
superexponential complexity, 134–35
Superset Of operator, 90–91
supertypes, 124
surrogate keys, 106
swapping algorithms, 289
SWITCH command, 645–46
SWITCH OUT command, 647
symmetric relation properties, 75–76
syntax, joins, 389–90
sys.assemblies, 486
sys.assembly_modules, 486
sys.dm_db_missing_index_columns, 232
sys.dm_db_missing_index_details, 232
sys.dm_db_missing_index_group_stats, 232
sys.dm_db_missing_index_groups, 232
sys.dm_exec_cached_plans, 171
sys.dm_exec_plan_attributes, 171
sys.dm_exec_query_plan, 168, 171
sys.dm_exec_query_stats, 167–69
sys.dm_exec_sql_text, 168, 171
sys.dm_io_virtual fi le_stats, 145–48
sys.dm_os_performance_counters, 

143–44
sys.dm_os_wait_stats, 134–37
sys.syscacheobjects, 171
sys.system_internals_allocation_units, 

189–90
SYSDATETIME function, 173–74
SYSTEM keyword, 265
SYSTEM method, 265–66
system types, 87
System.Object class, 484

Z02I626034.indd   795 2/21/2009   2:01:58 AM



796 table expressions

T
table expressions, 318

common (CTEs), 321–30. See also common table 
expressions (CTEs)

derived tables, 318–21
interchangeability, 89
left and right input, 20–21
ORDER BY clause, 18–20
TOP option, 18–20

table hints, 185–86
table operators, 20–28. See also specifi c operators

processing order, 11
table scan, 198–201, 245, 557
Table Scan operator, 643–45
Table Spool operator, 263
tables

aliases, 606
auxiliary table of numbers, 359–62
clustered, nonclustered indexes, 196–97
constraints, 109–10
derived. See derived tables
foreign key, 106–08
heaps, 189–91
joins. See table joins
key, 105–06
metadata query, 648
normalization. See normal forms; normalization
organization, 189
parent and child relations, 106–08
partitioned. See partitioned tables
partitioning, 258–59
pivoting. See pivoting
preserved, 11

TABLESAMPLE, 265–68
table-valued subqueries, 297–98
TABLOCK hint, 211–12, 215, 566, 568

INSERT statement heap, B-tree, TF-610, key range 
scenarios, 575–89

minimal logging summary, 590
Talmage, Ron, 757
Tchernitsky, Nicolay, 757
TClose operator, 99–100
temp db database, 137, 148
temporal data, 122
TempSeq table, 364–65
Terminate method, 482–83
testing, insert scenarios, 571–89
TF-610, INSERT SELECT statement scenarios, 579–89
theta joins, 94
third normal form, 116–17
three-valued logic, 9, 74
tiebreaker, 302–06

aggregation, 448–51
determinism, 334
median, 496
mode, 498–99
nonunique sort column method, 337–38
TOP option, 529–30

tile number functions, 354–59
Tiles CTE, 495
TOP n for each group, 537–43
Top operator, 207, 308
TOP option, 16, 527

determinism, 529–30
input expressions, 530–31
matching current and previous occurrences, 

543–47
median, 554–56
modifi cations, 531–33
on steroids, 534–35
paging, 547–52
random rows, 552–54
table expressions, 18–20
TOP n for each group, 537–43

TOP PERCENT option, 554
TOP phase, 5
ToString method, 484, 711
total order, 59
TPC-H benchmark, 641–45
tracing, 149–50, 186

data analysis, 155–67
performance workload, 150–55

transaction log, wait analysis, 136, 148
transactions, 105
Transact-SQL. See T-SQL
transitive closure, 99–100, 740

directed acyclic graphs, 740–45
undirected cyclic graphs, 745–54

transitive relation properties, 75–76
translation, English to mathematics, 35–44
tree diagrams, 99–100
trees, 660–61. See also subtrees

left and right values assignment, 731–36
trend identifi cation, 291
trend marker practical application, 290–92
trichotomy, 58–59
triggers, 109

denormalization, 123–24
MERGE statement, 627–28

TRUE values, 9
true/false expressions. See Boolean expressions
TRUNCATE TABLE statement, 600–01
truth value, 68
T-SQL, 1–2

Boolean expressions, 67
cycle detection, 691
HIERARCHYID data type, 707
joins logical processing order, 409
joins, nonsupported, 401
LISLP problem solution, 292–95
MAX attribute, 449
relational algebra and calculus support, 

103–04
semicolon termination, 322
statement assignments, 611
UPDATE syntax, 596
vs. CLR, function implementation, 159

Z02I626034.indd   796 2/21/2009   2:01:58 AM



 WHEN NOT MATCHED THEN clause 797

tuples, 53–54
attributes, 84
calculus, 102–03
header, 103
heading, 84
operators, 90–91
properties, 84
relational database nodel, 84–89
sets. See relations

two-valued logic, 623
types

atomic, 86
constraints, 109
defi ned, 85
encapsulated, 86
operators, 86, 90–91
relational database model, 84–89
scalar vs. nonscalar, 86–87
subtypes and supertypes, 124
system, 87
user-defi ned, 87
vs. domains, 84

U
U set, 46

empty sets, 54–55
UDAs (user-defi ned aggregates), 476–82
ultra sort, 289
undefi ned terms, 39
undirected cyclic graphs, 745–54
undirected cyclic weighted graphs, 670
undirected graphs, 659–60
UNION ALL operation, 437
UNION ALL operator, 31–32
UNION DISTINCT operation, 437
UNION operation, 31–32, 435–37
Union operator, 92–93

T-SQL support, 103–04
union, set, 62–63
UNIQUE constraint

NULL values, 241–42
unique sort column method, 335–37
UNIQUEIDENTIFIER value, 600
uniquifi er, 191, 196
UNKNOWN values, 9, 74

EXISTS predicate, 305–06
IN predicate, 307

Unpack operator, 100–01
UNPIVOT operator, 24–28, 471–73

phases, 25–28
unpivoting, 470–73
UPDATE statement, 103–04

assignments, 614–16
joins, 606–10
MERGE statement, 617–21
OUTPUT clause, 632–34
TOP option, 531–33

UPDATE STATISTICS command, 645, 647
UPDATE trigger, 627–28
updating data, 606–16
updating, partitioned views, 

639–40
UPDLOCK hint, 710
USE PLAN hint, 122–24
user-defi ned aggregates (UDAs), 476–82
user-defi ned functions

auxiliary table of numbers, 362
inline, CTEs, 325–26

user-defi ned types, 87
USING clause

MERGE statement, 618

V
vacuous truths, 71–72
values, 43
VALUES clause, 472–73, 561–84
VARBINARY data type, 188–89
VARBINARY(MAX) data type, 189

updating, 610–11
VARCHAR data type, 188–89
VARCHAR(MAX) data type, 189, 484, 688

updating, 610–11
variables

functional dependencies, 112
types, 86

vertices, 99–100
views, 88–89

common table expressions, 325–26
compatibility, 171
indexed, 242–44
updatable, 109

Visual Studio 2008, assembly creation and 
deployment, 482–87

W
wait analysis

instance level, 134–37
top wait isolation, 137–38
wait information collection, 139–43

weighted graphs, 666
well-defi nedness, 37–38

sets, 46
WHEN clause, 623–24
WHEN MATCHED clause, 624

MERGE statement, 621
multiple, 623–24

WHEN MATCHED THEN clause, 618–20
WHEN NOT MATCHED BY SOURCE 

clause, 624
WHEN NOT MATCHED clause

MERGE statement, 623, 624
WHEN NOT MATCHED THEN clause

MERGE statement, 618–20

Z02I626034.indd   797 2/21/2009   2:01:58 AM



798 WHERE clause

WHERE clause
inner joins, 395–97
outer joins, 399–401

WHERE fi lter, 399. See also WHERE phase
OUTER JOIN clause, 12

WHERE phase, 5, 11–12
whichth number, 60–61
Wiernik, Adolfo, 122
window-based calculations, 29, 445
WITH clause, table hints, 185
WITH CUBE option, 506, 511–12
WITH keyword, CTEs, 322
WITH ROLLUP option, 506, 514
WITH statement, multiple CTEs, 323
WITH TIES option, 16

TOP option, 530

Witt, Graham, 111–12
WRITE method, 484, 610–11
WRITELOG wait, 136

X
XML

showplans, 185–86
triggers and validations, 109

Y
YEAR(orderdate), 468
year-to-date aggregation, 459–60

Z02I626034.indd   798 2/21/2009   2:01:58 AM



About the Authors

Itzik Ben-Gan

Itzik Ben-Gan is a mentor and cofounder of Solid Quality Mentors. 
An SQL Server Microsoft MVP (Most Valuable Professional) since 
1999, Itzik has delivered numerous training events around the world 
 focused on T-SQL querying, query tuning, and programming. Itzik 
is the author of several books about T-SQL. He has written many 
articles for SQL Server Magazine as well as articles and white papers 
for MSDN. Itzik’s speaking engagements include Tech Ed, DevWeek, 
PASS, SQL Server Magazine Connections, various user groups around 
the world, and Solid Quality Mentors events. 

Lubor Kollar

Lubor Kollar is Group Program Manager in Microsoft Corp. He has 
been working in SQL Server development organization since 1996. 
Prior to joining Microsoft, he was developing various DB2 engines 
at IBM. Currently Lubor is leading SQL Server Customer Advisory Team 
(SQL CAT) working on the most challenging SQL Server  deployments 
around the world. SQL CAT is responsible for maintaining tight 
 connections  between the users and creators of new SQL Server  releases. 
Another goal of SQL CAT is to spread the wisdom learned from the 
most  advanced SQL Server deployments. One of the major channels 
easily accessible to the widest audience is the www.sqlcat.com Web site.

Dejan Sarka

Dejan Sarka focuses on development of database and business 
 intelligence applications. Besides projects, he spends about half of 
his time on training and mentoring. He is a frequent speaker at some 
of the most important international conferences, including PASS, 
TechEd, and SqlDevCon. He is also indispensable at regional Microsoft 
events—for example, the NT Conference (the biggest Microsoft 
conference in Central and Eastern Europe). He is the founder of 
the Slovenian SQL Server and .NET Users Group. Dejan is the main 
 author, coauthor, or guest author of seven books about  databases 

and SQL Server. Dejan also developed two courses for Solid Quality Learning: Data Modeling 
Essentials and Data Mining with SQL Server 2008.

Z03A626034.indd   799 2/20/2009   4:21:25 PM



Steve Kass

Steve Kass holds a Ph.D. in mathematics from the University 
of Wisconsin, and he is a professor of Mathematics and 
Computer Science at Drew University, where he has taught 
since 1988. An SQL Server Microsoft MVP since 2002, he has 
written for SQL Server Magazine and spoken at SQL Server 
Magazine Connections events and to user groups in 
the New York City area. Steve’s  mathematical work has 
 appeared in Complex Systems and the Journal of Algebra.

Z03A626034.indd   800 2/20/2009   4:21:26 PM


	Cover
	Table of Contents
	Chapter 8
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
    /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
    /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
    /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
    /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
    /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
    /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
    /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
    /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
    /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
    /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
    /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
    /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
    /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
    /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
    /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
    /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
    /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
    /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
    /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
    /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive true
      /IncludeLayers true
      /IncludeProfiles true
      /MultimediaHandling /EmbedAll
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




