

Praise for Agile Project Management

This book is the missing link for large enterprises seeking to apply an agile
approach to portfolio management.

—Mike Cohn, Author of Agile Estimating and Planning

Jochen Krebs has written a book that demystifies what happens in large
organizations where various interdependencies can mystify and confuse teams
making the journey to agile methods. It belongs on the bookshelves of forward-
thinking executives and project managers at all levels.

—Peter Rivera, SVP, Executive Creative and Program Director, AOL Programming

This book addresses a sorely neglected area in the overall discussion of Agile
methods. The solutions to many of the issues organizations face when adopting
Agile methods like Scrum and XP lie in effective portfolio management, and Jochen
has done well to bring this topic to the fore.

—Sanjiv Augustine, President Lithespeed, Author of Agile Project Management,
Co-Founder of Agile Project Leadership Network

This is an absolute must read. Jochen simplifies a very complex concept and delivers
a book that is easily read and provides a very pragmatic approach to Agile Portfolio
Management.

—Robert Eagan, Director of Global Project Management Methodology
for a major New York Financial Organization

Jochen Krebs’ new book, Agile Portfolio Management, breaks new ground in
the Agile canon by providing specific techniques for organizing work in Agile
organizations at the program and portfolio level. As larger IT organizations
adopt Agile broadly, many find that their legacy project selection, budgeting, and
portfolio management processes are impediments to realizing the full competitive
benefits their Agile development organizations can support. Joe’s book will provide

A01P625679.indd 1 6/17/2008 10:34:27 AM

organizations with some specific options for organizations to consider to increase
the cadence and quality of portfolio planning and management practices to match
the speed of modern Agile development shops.

—Evan Campbell, VP of Professional Services, Rally Software Development

In this unique and standard-setting book, Jochen Krebs gives the IT community a
much-needed, practical, and comprehensive roadmap for creating and managing
the agile portfolio.

—Doug DeCarlo, Principal, The Doug DeCarlo Group, and
author of eXtreme Project Management: Using Leadership,

Principles & Tools to Deliver Value in the face of Volatility

Finally, a practical Agile Project Management book for IT leadership and business
stakeholders alike. Jochen’s comprehensive review of Agile principles covers the
financial, process, and people perspectives of three crucial vectors in portfolio
management: Project, Asset, and Resource. A valuable reference book I will keep at
my desk, great for Agile champions in any organization, and a must read for CIOs,
PMO leaders, and product owners alike.

—Tiran Dagan, Director/Engagement Leader,
Strategic Initiatives & Analysis, GE/NBC Universal

In a global, hypercompetitive marketplace, we are now forced more than ever to
find ways to continuously identify, prioritize and execute software projects that
routinely result in rapid deployment of compelling products and services that
also routinely deliver improved enterprise innovation and profits. While Agile
Software Development practices have emerged to meet this growing imperative,
organizational decisioning and governance methods have remained rooted in
old-school management practices that cling to big design upfront funding and
execution models. Agile Portfolio Management successfully outlines a broad,
practical, and well-conceived framework for aligning organizational thinking and
practices that are purpose built for achieving maximum organizational agility and
value creation in a change-driven world. Jochen’s book is one I will ask all my CXO
clients to read as they strive to better understand how best to effectively govern
and exploit emerging Agile engineering practices so crucial to both survival and
systematic innovation.

—Brad Murphy, CEO North America, Valtech

A01P625679.indd 2 6/17/2008 10:34:27 AM

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Jochen Krebs

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008927279

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 3 2 1 0 9 8

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Excel, and Windows are either registered trademarks or trademarks of the Microsoft group of
companies. Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events
depicted herein are fictitious. No association with any real company, organization, product, domain name, e-mail address,
logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Lynn Finnel
Editorial Production: Waypoint Press
Illustration by: John Hersey

Body Part No. X14-95062

A02L625679.indd 2 6/18/2008 12:13:19 PM

To Melanie, with love and gratitude

A03D625679.indd 5 6/17/2008 11:35:07 AM

A03D625679.indd 6 6/17/2008 11:35:07 AM

 vii

Contents at a Glance

Part I Agile for Managers
 1 Motivations . 3
 2 Agile Software Development . 15
 3 Project Management . 31

Part II Defining, Planning, and Measuring Portfolios
 4 Foundation . 51
 5 Metrics . 67
 6 Return on Investment . 93
 7 Project Portfolio Management . 111
 8 Resource Portfolio Management . 139
 9 Asset Portfolio Management . 157
 10 Portfolios in Action . 165

Part III Organization and Environment

 11 Portfolio Management Using Scrum . 175
 12 Project Management Office . 187

 Appendix: Additional Resources . 199
 Index . 203

A05G625679.indd 7 6/16/2008 1:43:33 PM

A05G625679.indd 8 6/16/2008 1:43:33 PM

 ix

Table of Contents
Acknowledgments . xv

Introduction . xvii

Part I Agile for Managers

 1 Motivations . 3
Managing Expectations . 3

Late Changes . 4

Requirements Paralysis . 5

Ambiguity . 6

Too Many Requirements . 6

Too Few Requirements . 7

Change Control Board . 8

Time to Market . 9

Innovation . 10

Funding . 12

Summary . 13

 2 Agile Software Development . 15
Definitions . 15

What Is Agile? . 15

Agile Processes . 15

Agile Manifesto . 18

Agile Alliance . 20

Agile Project Leadership Network . 20

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

A06C625679.indd 9 6/24/2008 2:33:26 PM

x Table of Contents

Key Practices of Agile Development . 21

Iterative-Incremental Development . 21

Test-Driven Development . 23

Continuous Integration . 25

Face-to-Face Communication . 26

Things You Observe in an Agile Project . 26

Pair Programming . 26

Daily Stand-Up Meetings . 27

Stories About Requirements . 28

Team Rooms . 28

Frequent Releases . 29

Self-Organized Teams . 29

Summary . 30

 3 Project Management . 31
Traditional Project Management . 31

Work-Breakdown Structures . 32

Gantt Charts . 33

Critical Path Analyses . 35

Project Reports . 36

Summary About Challenges . 37

Agile Project Management . 37

Project Management Declaration of Interdependence 38

Roles and Responsibilities . 40

Roles . 40

Responsibilities . 42

Summary . 47

Part II Defining, Planning, and Measuring Portfolios

 4 Foundation . 51
Facts . 51

Organization . 53

Functional Organization . 53

Projectized Organization . 54

Matrix Organization . 55

Composite Structure . 57

Project Management Office . 57

A06C625679.indd 10 6/24/2008 2:33:26 PM

 Table of Contents xi

Terms and Definitions . 59

Project . 59

Program . 60

Portfolio . 61

Stakeholders . 62

Goals . 62

Too Many Projects . 63

Projects Rarely Get Terminated . 63

Not Enough Resources Are Available . 64

Lack of Metrics . 65

No Vision . 65

Summary . 66

 5 Metrics . 67
Metrics . 67

Progress (Velocity) . 68

Quality . 79

Team Morale . 85

Reporting . 87

Status Report . 87

Interpretation . 89

Summary . 91

 6 Return on Investment . 93
Goals and Objectives . 93

The Increment . 94

Financial Models . 97

Payback Period . 97

Net Present Value (NPV) . 100

Internal Rate of Return . 102

Cost-Benefit Analysis . 103

Benefits Provided by Projects . 103

Decreasing Benefits . 104

Benefits Deadline . 105

Increasing Benefits . 106

Risks . 106

Technology . 109

Summary . 110

A06C625679.indd 11 6/24/2008 2:33:26 PM

xii Table of Contents

 7 Project Portfolio Management . 111
Balancing the Project Portfolio . 111

Avoid Pursuing Too Many Projects at Once . 112

Balance Your Portfolio with Risky and Rewarding Projects 114

Balance a Portfolio with Visionary Projects . 121

Avoid Small Projects That Limit Vision and Impede Development 122

Initiating a Project . 123

Implementing a Process for Collecting Ideas . 123

Presenting the Business Case . 125

Assessing a Business Case . 127

Collecting and Managing Proposals . 127

Competitive Projects: May the Best Project Win 130

Selecting a Project . 132

Go/No-Go . 132

Pausing a Project . 134

Accelerating a Project . 135

Summary . 137

 8 Resource Portfolio Management . 139
Balancing the Resource Portfolio . 139

Lack of Vision . 140

Too Many Projects and Not Enough Resources . 142

Projects Require Different Skills . 144

Lack of Feedback from Resources . 146

Roles and Resource Pools . 148

Skills Transfer . 149

Agile Training . 149

Mentoring . 151

Globally Distributed Development . 151

Corporate Networks . 153

Certification . 154

Summary . 155

 9 Asset Portfolio Management . 157
Balancing the Asset Portfolio . 157

First It’s an Asset, and Then It’s a Roadblock . 158

Is Built to Last a Positive Attribute? . 161

Total Cost of Ownership . 163

Summary . 164

A06C625679.indd 12 6/24/2008 2:33:26 PM

 Table of Contents xiii

 10 Portfolios in Action . 165
The Portfolio Dashboard . 165

A Sample Scenario . 166

First Iteration . 167

Second Iteration . 168

Third Iteration . 169

Summary . 171

Part III Organization and Environment

 11 Portfolio Management Using Scrum . 175
Overview of Scrum . 175

Scrum Challenges . 177

Portfolio Backlogs . 179

Project Portfolio Backlog . 179

Resource Portfolio Backlog . 180

Asset Portfolio Backlog . 180

Roles . 181

Portfolio Owner . 181

Portfolio Master . 181

Portfolio Manager . 182

Activities . 182

Portfolio Sprint Planning Meeting . 182

Portfolio Scrum Meeting . 183

Portfolio Sprint Review Meeting . 183

Metrics . 183

Scrum Certification . 184

Summary . 186

 12 Project Management Office . 187
The Challenges of Managing Agile Projects . 187

Agile Project Teams Are Empowered and Self-Organized 188

Agile Processes Are Empirical . 189

Milestones Monitoring vs . Progress Reporting . 191

Best Practices for Project Management . 191

Defining the Roles and Responsibilities of an Agile PMO 192

The PMO and Portfolio Management . 193

Choosing the Right Tool for the Agile Job . 194

A06C625679.indd 13 6/24/2008 2:33:26 PM

xiv Table of Contents

Overhead and Profits . 194

Applying Models, Standards, and Regulations in an
Agile Environment . 195

Getting the Most from Your PMO . 196

Mentoring . 196

Staffing . 196

Training . 196

Manuals and Release Notes . 197

Release Teams . 197

Metrics . 197

Status . 197

Portfolios . 198

Summary . 198

 Appendix: Additional Resources . 199
Books and Articles . 199

Web Sites . 201

 Index . 203

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and
learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

A06C625679.indd 14 6/24/2008 2:33:26 PM

 xv

Acknowledgments
I would like to thank the following individuals for their invaluable feedback and in-depth
review during various stages of this project: Denise Cook, Marie Kalliney, and Roman Pichler.
Roger LeBlanc edited this book to completion throughout many review cycles and didn’t
stop when I thought it was done. Steve Sagman and Lynn Finnel edited and coordinated
this project and had an endless repertoire of good ideas to improve the product. The book
would not be what it is without your comments and passion for this topic. Thank you all!

Completing a project like this is not possible with just pure know-how. My family and
friends, especially, gave me the morale and support I needed: my Mum, Ute and Dad,
Frieder; my sister,Iris ,and Rainer Löw, Markus Löw, Torben Löw, Reinhold and Sieglinde
Oppenländer, Noreen and Charles Bramman, Rita O’Grady, Christopher Bramman, Gregory
Bramman, Lauren, and Richard French. Another very special thank you goes to Gerhard
Mauz, Markus Knierim, and Marcus Zimmermann—friends who keep me focused on what
is important in life.

A07A625679.indd 15 6/16/2008 1:48:09 PM

A07A625679.indd 16 6/16/2008 1:48:09 PM

 xvii

Introduction
If you have studied economics, you have seen the difference between tactical and strategic
planning. During the 1980s, the tactical window of actions was three to five years of plan-
ning, whereas strategic planning was beyond five years, up to ten. After the information age
took off during the 1990s, the rate of change with all its side effects significantly reduced this
planning window, and software development cycles decreased. By now, I don’t think that you
will find any organization that plans in the cycles of the 1980s anymore, especially not in the
information technology sector. As a matter of fact, I have heard managers tell me the joke,
“Tactical is what you do today; strategy is when you plan for tomorrow.” As with many jokes,
some truth lies in it.

The new rate of change also affects the way we will develop systems in the future—in
 particular, the larger ones. The longer the project schedules, the higher the chance the scope
of the project will be part of a strategy. And we know from many past experiences that a sys-
tem that results from a two-year project might not do what it was intended to do. One of the
reasons for this is that the planning accuracy in traditional projects is very coarse.

To address this problem, many organizations adopt or experiment with agile development—
an approach based on iterative-incremental development that breaks the project’s scope
into smaller, manageable pieces. From managements’ perspective, this approach is ideal be-
cause even the longest strategic project will have a tactical component: the iteration ahead.
And it is exactly this component that will allow executives, project managers, and the project
team to steer the project toward an imprecise vision. The transition to agile is not always
easy, but it is the same with every change. Change bears risks and opportunities, and agile
development offers many of them. This book will explore the opportunities agile presents for
the development organization and its leadership, and it will address the potential risks.

One of the motivations for writing this book was to share observations I have made through-
out my career, either inside or outside the project team. Many of these observations trace
back to the same root cause: the lack of trust I witnessed in all aspects of an organization.

During long-term traditionally managed projects, many project status reports—especially in
early phases of the project—are highly optimistic. First, it is extremely difficult for business
analysts or software engineers to know that they are behind schedule. Before or during anal-
ysis, it is impossible to know how much analysis there is in total. If they don’t know the total,
how can they know whether they are on track? Later in the project, if the project is delayed
because of new findings, the people who performed the analysis are long gone, having
moved on to new projects.

A08I625679.indd 17 6/17/2008 7:38:57 AM

xviii Introduction

Second, we were long taught that project managers are “in charge.” They manage the
team, give assignments, and bear responsibility for the overall success of the project. All this
 pressure and all these expectations are directed toward one person, who is also in charge of
project communication. Given this scenario, how can we expect project communication to be
neutral? Isn’t it already an underlying form of mistrust for senior executives to ask for addi-
tional detailed weekly status reports? I saw these symptoms of dysfunction and mistrust over
and over again in my career.

Agile portfolio management does not eliminate written communication, but it ensures that
communication is based on existing agile metrics that are produced while the project is in
flight. Agile portfolio management establishes a clearly defined interface between the proj-
ect team and the executives, and this interface is based on agile principles. These principles
are based on trust and will have a positive impact in any transition toward organizational
agility.

I called the book Agile Portfolio Management because it is exactly the portfolio of active
projects in an organization that represents the future of the enterprise—tactically and stra-
tegically, whatever your definition of those terms is. The term “agile” should highlight not
only that the projects inside the portfolio are agile projects but also that the portfolio is built
upon agile principles and managed dynamically. This book shows that the modern agile en-
terprise is transparent and that it has clearly defined communication channels; therefore, this
book targets project managers and executives the same way.

This book is divided into the following three parts:

Part I: Agile for Managers
This introductory part is written for managers who want to know why agile software de-
velopment has become so popular within the past several years. It explains the most im-
portant agile practices commonly applied in agile software development and agile project
management.

Part II: Defining, Planning, and Measuring Portfolios
The second part is the largest section of the book. It explains practices relevant to agile
portfolio management. Practices included in this section are compiling metrics, establishing
a project selection process, evaluating resources, and calculating the return on investment.
These chapters capture the practices of modern portfolio management.

A08I625679.indd 18 6/17/2008 7:38:57 AM

 Introduction xix

Part III: Organization and Environment
The last part of the book provides some hands-on advice about how to orchestrate the most
popular agile development processes with agile portfolio management. I highlight how
Scrum-managed projects fit into the portfolio management process. In addition, this section
investigates the new role of the project management office (PMO) in an agile organization.

Who Is This Book For?
This book is primarily targeting project managers, portfolio managers, business analysts,
members of the PMO, and executive managers who are interested in adopting agile practices
and portfolio management. I hope it will give exactly this audience an easily digestible intro-
duction to this topic, with enough material to sponsor agility across the entire enterprise.

Although this book is not intended primarily for technical audiences, it might help them
to appreciate the motivations of individuals at various levels within an organization and
to better understand how factors external to the project factor into their work within the
enterprise.

Beyond being a benefit to the professionals in the audience, I hope that this book will also
help students currently pursuing business and science degrees to understand the impor-
tance and impact of agile development in our industry. They are the project managers of
tomorrow.

Find Additional Content Online
As new or updated material becomes available that complements this book, it will be posted
online on the Microsoft Press Online Developer Tools Web site. The type of material you
might find includes updates to book content, articles, errata, sample chapters, and more. This
Web site will be available soon at http://www.microsoft.com/learning/books/online/developer,
and it will be updated periodically.

Support for This Book
Every effort has been made to ensure the accuracy of this book and the companion
 content. As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article.

A08I625679.indd 19 6/17/2008 7:38:57 AM

xx Introduction

Microsoft Press provides support for books and companion content at the following
Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments
If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the sites above, please send them to Microsoft
Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Agile Portfolio Management Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above
addresses.

A08I625679.indd 20 6/17/2008 7:38:57 AM

 15

Chapter 2

Agile Software Development
In this chapter, I will define what agile software development stands for and look at the key
practices of agile development from a manager’s perspective. I’ll tie these practices to the
motivations introduced in the previous chapter.

Definitions
Let’s take a look at the agile lingo before we dive into the practices of agile software
development.

What Is Agile?
An agile methodology is a framework for software engineering that embraces change. For
example, software development is often complex, and requirements are, especially in the
beginning of a project, unknown or ambiguous. Therefore, an agile framework must have
built-in mechanisms to allow the project to tackle and reduce these uncertainties. These
mechanisms are listed as the key practices covered in this chapter. If only one of these key
practices is left out, an agile project is incomplete.

But agile also means that the framework itself is flexible and adapts to any situation. That
means that the same framework applied to two projects will have two different interpre-
tations. The agile approach is best described as empirical because the process itself must
be adapted to its environment, which is not necessarily the organization but could be the
 individual project. Agile is not a “one size fits all” solution.

Agile Processes
The following agile processes have been successfully adopted in the past in a wide range
of industries. Publications, training courses, and a substantial user community exist for each
of the processes listed. During this introductory part of the book, written for managers, I’ll
provide a quick definition of each of the popular agile processes and information about their
origin. Later, in Part 3 of this book, we’ll take an in-depth look at Scrum as an example of a
popular agile project management process.

C02625679.indd 15 6/16/2008 1:58:46 PM

16 Part I Agile for Managers

Extreme Programming
Extreme Programming (XP) was developed by Kent Beck, Ward Cunningham, and Ron
Jeffries during the 1990s as a set of dynamic programming practices. Today, XP is the most
often adopted agile methodology in the high-technology industry. The most noticeable
practices of XP are pair programming and test-driven development, which we will discuss
in more detail later in this chapter. Although XP provides planning practices for project
 management, it is often seen as an agile engineering process.

Scrum
Ken Schwaber and Jeff Sutherland, who developed Scrum in the 1990s, define it as a
 framework for agile project management rather than an agile process. Scrum has its origins
in lean manufacturing (which is described later in this section), iterative-incremental develop-
ment, and the Smalltalk engineering tools. Scrum provides a simple set of rules. Aside from
these simple rules, Scrum is extremely flexible and adaptive to emerging situations. Scrum is
a term used in rugby and not an acronym. In a nutshell, Scrum is quite different from exist-
ing project management practices. First, the role of a traditional project manager is shared
among three different roles: the product owner, the scrum master, and the team. Second,
two different backlogs are used to manage scope: the product backlog, which captures the
scope of the product, and the sprint backlog, which contains the detail work for the current
iteration. A sprint, which is the Scrum synonym for an iteration, is four weeks long. The entire
Scrum team meets daily for 15 minutes so that each member can give other team members
a quick update. Scrum is very popular in the agile industry. For that reason, I have dedicated
Chapter 11 to providing a more detailed overview of the framework—in particular, when it is
applied in the context of agile portfolio management.

Dynamic Systems Development Method
Also developed in the mid-1990s, the Dynamic Systems Development Method (DSDM) has its
roots in Rapid Application Development (RAD), an iterative-incremental process model that
uses prototypes at each stage of development. Compared with agile development, which
strives for working software at the end of each iteration, the prototypes might be incom-
plete and not functioning. The prototypes do provide, however, a great way of including all
stakeholders early in the requirements work, because the prototypes might be enough to get
feedback—for example, from end users. Prototypes can be created for all aspects of the sys-
tem, including its architecture. In reality, they are often used with graphical user interfaces.
DSDM consists of the following nine principles:

n Active user involvement

n Addressing business needs

n Baselining of high-level scope

C02625679.indd 16 6/16/2008 1:58:46 PM

17Chapter 2 Agile Software Development

n Communication and collaboration among all stakeholders

n Frequent delivery

n Team decision making

n Integrated testing

n Iterative-incremental development

n Reversible changes throughout development

Lean Development
Lean development, originated by Bob Charette, applies the principles of lean manufacturing
to software development. The result is a kit of 22 tools. The names of these tools still reflect
their manufacturing origin—for example, “eliminate waste.” Mary and Tom Poppendieck are
leading advocates of lean development in the agile software development industry, having
spoken and written extensively about it.

Unified Process
Listing the Unified Process (UP) here as an agile development process is not entirely correct.
Compared with the other processes, the Unified Process is a descriptive process rather than
an empirical one. That means the UP describes in text, like a hyperlinked version of a book,
what particular roles are required to do, when they do it, and how they do it. As with any
book, changes to it are more challenging to redistribute. Although the Unified Process is
based on architecture-centric, iterative-incremental development principles, the project
phases, disciplines, and relationships between roles and responsibilities provide less flexibility.
On the other hand, it is exactly the somewhat fixed description of the process that appeals to
large organizations that need to comply with a variety of standards and need to outline, for
example, a companywide policy for a software development process. Nonetheless, the UP
provides a tremendous step forward from the traditional waterfall process (large, separated,
and sequenced software engineering phases) and is often an intermediate step between
traditional processes and agile processes. There are two noteworthy flavors of the Unified
Process:

n IBM Rational Unified Process (RUP) The RUP is a result of merging three method-
ologies (Booch, Objectory, and OMT) during the early and mid-1990s into one uni-
fied approach. After Rational was acquired by IBM in 2003, an eclipse-based1 process
authoring tool called the IBM Rational Method Composer (RMC) was developed. The
eclipse framework provides a consistent platform for all toolmakers to develop and de-
ploy software products. By using such a framework, developers can organize different

1 www.eclipse.org

C02625679.indd 17 6/16/2008 1:58:46 PM

18 Part I Agile for Managers

tools under one umbrella and view them through perspectives. Therefore, RUP can
 easily be modified using the RMC.

n OpenUP OpenUP is an open-source process released in October 2006. A year earlier,
IBM Rational donated a significant amount of its “RUP for Small Projects” to the eclipse
community (which you can learn more about at http://www.eclipse.org/epf) with the
goal of developing a simple iterative-incremental process framework for small projects.
Like the commercial version of RUP, OpenUP comes with an eclipse-based free process
authoring tool called the Eclipse Process Framework (EPF).

Crystal Clear
The father of the crystal clear process is Alistair Cockburn. Crystal clear, like the other agile
processes, is rooted in iterative-incremental development. Alistair’s work is also heavily
focused on humans, invention, and the idea of developing software as a corporate game.
Interesting in this process is the emphasis of product and methodology fine-tuning at the
beginning and in the middle of the iteration. This approach enables every project to evolve
not only the system deliverables but also the chosen process itself. The ceremony of project
documentation is also delegated to the project level.

Crystal clear also requires the team members to be in close proximity, the identification of
real users, and that the team use basic code-versioning tooling. A major differentiator from
other processes is the consideration of project communication. The larger the team, the
more communication has to be factored in. Whereas a team of 5 or 10 members might eas-
ily fit into a team room with very effective communication channels, this setup might not be
applicable for a team of 50 or more members. Based on the size of the team, different flavors
of the crystal clear family can be adopted.

Agile Manifesto
The agile manifesto (which you can read at http://www.agilemanifesto.org) is the result of a
meeting at the Snowbird ski resort in Utah in 2001. Prior to that date, the individual agile
processes were referred to as lightweight. I think it was a good idea renaming it to agile be-
cause lightweight could have given the impression that it is easy to do and that heavy things
were left out. Lightweight could also lead someone to believe that it was incomplete. Once
you implement agile development practices, you will see that doing so can actually be dif-
ficult and that agile practices are not incomplete. The word agile, however, presents a chal-
lenge for the community. Nobody likes to admit that they are not agile, so some developers
who call themselves agile are, in reality, not agile in our definition of the practices.

Despite any small misgivings about the name, all 17 participants at the ski resort defined the
process and signed the manifesto, which was to become the measure of agility in the years
to come. I remember the release of the manifesto, which immediately gave the industry a

C02625679.indd 18 6/16/2008 1:58:46 PM

Chapter 2 Agile Software Development 19

tangible definition of agile and ground rules for adding new ideas in the future. Still today,
the manifesto provides clear direction and is used to discuss and compare agile methodolo-
gies, including those in this book. More important in my opinion, the manifesto provides one
common roof for all agilists, whatever their favorite agile methodology might be. Here are
the core values of the manifesto:

n Individuals and interaction take precedence over processes and tools.

n Working software takes precedence over comprehensive documentation.

n Customer collaboration takes precedence over contract negotiation.

n Responding to change takes precedence over following a plan.

Please note that the left side of each statement is valued more than the right side. What is
important and often misunderstood is that the manifesto does not recommend neglecting
the values of the right side—for example, project documentation. It simply means that the
values on the left are valued more highly. Every agile project team has to find the right bal-
ance as a team, but also they must find balance within the organization. Figure 2-1 illustrates
a value system for a sample project or organization when it interprets the agile manifesto.
In Figure 2-1, the arrows indicate how strictly or loosely the values on the left are balanced
compared with the values on the right. But even if the arrow is placed toward the right end, it
does not imply that the values on the left are overruled. It means that the organization needs
to consider other elements as well.

Individuals and interaction over
process and tools

Working software over
comprehensive documentation

Customer collaboration over
contract negotation

Responding to change over
following a plan

Figure 2-1 Example of a value system for an agile project

By the end of 2007, more than 4,700 professionals across the information technology (IT)
industry had agreed to and signed the manifesto. Among the 17 authors of the manifesto
were representatives from the Scrum, Extreme Programming, DSDM, and crystal clear
methodologies.

C02625679.indd 19 6/16/2008 1:58:46 PM

20 Part I Agile for Managers

Agile Alliance
The goals of the Agile Alliance (which you can read more about at www.agilealliance.org) are
to promote agile development in the software industry. With approximately 4,000 members
in December 2007, the Agile Alliance is the largest nonprofit community of agile profession-
als in the industry. The alliance promotes agile methodologies that comply with the agile
manifesto, offers funds to members who promote agile development, offers a library of agile
publications, and announces local events in the industry. The flagship of the Agile Alliance
is the yearly Agile conference. This five-day conference offers several programs, depending
on your interest, and a variety of speakers. The interest in this conference seems boundless.
Attendance increased from 675 participants in 2005 to 1,100 in 2006 and to more than 1,600
in 2007. Every year, the conference is sold out, and it seems the topics create a degree of
interest limited only by the size of the venue. I agree, large does not necessarily mean bet-
ter quality, but I believe the attendance records demonstrate that agile development has
 become a mainstream approach.

Agile Project Leadership Network
Just as the Agile Alliance represents the agile manifesto, so does the Agile Project Leadership
Network (APLN) represent the project management declaration of interdependence (PMDOI).
The core values of the PMDOI are as follows:

n We increase return on investment by making continuous flow of value our focus.

n We deliver reliable results by engaging customers in frequent interactions and shared
ownership.

n We expect uncertainty and manage for it through iterations, anticipation, and
adaptation.

n We unleash creativity and innovation by recognizing that individuals are the ultimate
source of value and creating an environment where they can make a difference.

n We boost performance through group accountability for results and shared
 responsibility for team effectiveness.

n We improve effectiveness and reliability through situation-specific strategies, processes,
and practices.

The APLN is a nonprofit organization consisting of a community of project leaders organized
into local chapters. During the remainder of this book, I’ll connect the principles of the agile
manifesto with the principles of the PMDOI. Furthermore, I’ll apply these principles in the
context of portfolio management in Part 2.

C02625679.indd 20 6/16/2008 1:58:46 PM

Chapter 2 Agile Software Development 21

Key Practices of Agile Development
“I am breaking my two-year projects into two major phases: requirements and coding.
Does that make my project agile?” The answer to this question is clearly no. Beyond that
simple answer, we need to deliver an explanation of what will give a project an agile spin.
The various agile processes have some successful patterns in common, which are isolated
as key practices. These key practices are so essential to any agile project that they will affect
the energy, spirit, and eventually the success of the agile project. These practices are, in no
 particular order:

n Iterative-incremental development.

n Test-driven development.

n Continuous integration.

n Face-to-face communication.

Let’s explore each of the key practices in more detail in the following subsections.

Iterative-Incremental Development
This practice is, from a management perspective, the most noticeable change toward an
 agile approach. Instead of executing every software development cycle (requirements, de-
sign, programming, and so on) only once in the entire project (which is the traditional or
 waterfall way of doing it), iterative development enforces repetition and semi-parallelism
of the development activities. That means the activities are extremely narrow and close to
one another. They seem to blend, and the order of activities can change. That might sound
strange, but you will see later in this chapter why this is a very good idea.

As a rule of thumb, the shorter the iterations, the better. That’s why agile processes require a
time frame for each iteration that is typically between 2 and 6 weeks.

The second aspect of this practice is the actual increment. Whereas the iteration provides
the rhythm for the project, the increment demonstrates the actual progress of the project, as
 illustrated in Figure 2-2. Viewed in that way, it looks as if the project progresses by stepping
up a staircase.

Iteration 3

Increment 2

Increment 1

Progress

Iteration 1{
{

Time

Iteration 2

Figure 2-2 Incremental development and progress

C02625679.indd 21 6/16/2008 1:58:47 PM

22 Part I Agile for Managers

In agile development, progress is measured in working software. For example, a project that
focuses on a throwaway prototype during the first iteration and defining requirements in the
next iteration has not demonstrated progress, based on the definition of agile. Similar to a
pizza, a project must be cut in slices. The difference is, however, that we won’t know in the
beginning how many slices we will need and what kind of pizza it will be. We will figure it out
as the project continues, slice by slice.

To state it another way, a project will have a few very high-level requirements, and the
project team will take one of these requirements (for example, the highest-priority item
first) and drill down into more detail. Then the team approaches the more detailed require-
ments, writes unit tests (as described in the “Test-Driven Development” section), designs
and programs the code, and executes test cases periodically. At the end of the iteration,
one high-level requirement, a slice of the project, is completed. Now, this is where iterative-
incremental development really shines. One requirement is converted into working software
and can be demonstrated to the customer just two weeks after the project was kicked off.
Think about where your waterfall project would be two weeks into the project. Even better,
by taking this approach, we opened an early feedback loop to the customer, who can now
make changes and help navigate the project in the right direction (as illustrated in Figure 2-3)
according to their expectations.

Goal

Time

Point of feedback
from stakeholders

Figure 2-3 Feedback and direction for an iterative-incremental project

In my experience, I’ve seen many projects implement an iterative-incremental approach,
but the majority of the customers have not taken advantage of this feedback loop. We have
told so many users (wrongly) in the past that software requirements have to be complete
and clearly defined up front that we will have to bring customers back to the natural way of
building applications—that is, back to an agile way. The feedback loop has huge potential for
many projects and shows that transitioning to agile development is a process that includes
the customer as well.

C02625679.indd 22 6/16/2008 1:58:47 PM

Chapter 2 Agile Software Development 23

Within each iteration, stakeholders will shape the direction of the increment for the scope of
the iteration. In between iterations, more significant (and less disruptive) adjustments to the
scope of the project are possible and often welcome. Stakeholders who are not involved in
the progress of the project on a day-to-day basis are required to take part between itera-
tions. That way, the development team also gets important feedback from peripheral stake-
holders and can meet their expectations as well. According to authors Gause and Weinberg
(mentioned in Chapter 1, “Motivations”), this is also called the “Yes, but...” syndrome.
Whatever follows the “but…” are changes in the direction of refining the project. The shorter
the cycles between the input and the feedback from stakeholders the better. That is one of
the motivations to keep the iterations very short.

We will make heavy use of this feedback loop when agile projects are part of the portfolio.

Besides being able to better manage expectations, the customers and the project team also
benefit from iterative-incremental development in many different ways. Nothing is more
rewarding than hearing, iteration by iteration, that the team did a good job. Even if they did
not, negative feedback allows the team to rectify things in the next iteration or even within
the current one. In contrast, in the traditional approach, the verdict comes in so late that the
project team cannot take corrective actions. Iterative-incremental development also over-
comes requirements paralysis and the issue of ending up with too few requirements. It might
sound surprising, but agile, in some respects, introduces more discipline into the process
than other project methodologies—such as the discipline to deliver working software in two-
week increments. What customer does not like that?

Other advantages of iterative-incremental development include the following:

n The highest risks can be reduced or eliminated in early iterations.

n Confidence in planning and estimation increases iteration by iteration.

n Based on past iterations, trends for a completion date can be determined.

n Completed means completed, not 90 percent done.

n Morale is increased through constant feedback.

Iterative-incremental development is a tremendous change to the traditional development
processes currently in place in most organizations. However, this degree of change is worth
undertaking, as it immediately provides invaluable benefits.

Test-Driven Development
I know this might make a lot of executives nervous, but many organizations have a lot of
 untested software code in production. To be fair, though, not even the software engineers
are aware of that. One of the reasons is that developers write their code, debug it, make
corrections to it, and so forth. What emerges is a network of classes, objects, and methods

C02625679.indd 23 6/16/2008 1:58:47 PM

24 Part I Agile for Managers

with a variety of conditions and loops. Nested within these clauses are statements that might
never be executed because the conditions that guard (and protect) these statements from
execution will never be fulfilled. But who says the condition will go unfulfilled forever?

Agile development promotes a practice of test-driven development (TDD). The idea behind
this practice is that the developer writes the unit test prior to the actual code. If you don’t
know what to test, how do you know what to code? The result is a unit test that tests the ac-
tual object but does not interfere with the object itself. The test object contains messages for
all the various guards and conditions and makes sure the object acts as planned.

In agile projects, these unit tests are commonly automated, including the code coverage.
That way, the project team can monitor the number of classes and the number of unit tests. If
the unit tests are falling behind the number of classes, somebody on the team is not practic-
ing test-driven development and unverified code might have entered the code base.

Test-driven development will have a significant positive impact on the quality of a project.
The test cases evolve alongside the iterations; therefore, the code base that exists after each
iteration is tested. Remember the waterfall approach, where the writing and execution of test
cases are commonly performed at the end of the project? And that is exactly when budgets
get tight and resources begin transitioning out to other projects.

The idea behind TDD is to capture the unit test code in its own component, separated from
the component that implements the functionality. The activity of writing the test code and
the functionality are almost parallel, with the test code slightly ahead of the game. Often the
unit test as well as the functionality is developed by the same developer (pair). Then both
components are compiled and the unit test executes behavior on the component. The results
either pass or fail and are recorded. Through the separation of the test and the functionality,
a build and, eventually, the release can be easily assembled by simply leaving the test object
behind. That also means that the component does not need to be recompiled, which assures
that the component with the last time-stamp is the component that passed the test.

With the test cases stored parallel to the actual code using an agile approach, it takes only a
small step to automate the execution of these unit tests. This is exactly what agile developers
do by using tools to execute the tests when certain triggers occur.

But even if teams are more casual about the timing of writing unit tests, tremendous
 organizational value can still be achieved. Once the behavior of the team has changed to
make writing unit tests a common practice, the team can make a relatively easy transition
to the final step—writing them prior to the actual code.

Without any unit tests, regression testing would be extremely challenging and tedious, if
not impossible. The automation of the unit tests, and therefore regression testing, must be
the basis for test-driven development, which will bring us to the next topic—continuous
integration.

C02625679.indd 24 6/16/2008 1:58:47 PM

Chapter 2 Agile Software Development 25

Continuous Integration
The integration of components and the testing that goes along with it is nothing new for
software engineers. Where agile development substantially differs is in its continuous ap-
proach. One of the major issues with the traditional approach is that the testing of the inte-
gration is deferred to late phases in the project, and the architecture is expected to just fall
into place. In reality, projects can blow up right at the worst possible moment, when little
project budget and time are left. Patching problems with workarounds and mediocre ap-
proaches might help get the system out the door, but new issues are just waiting to pop up
again. There has to be a better way.

One approach with iterative-incremental development is to integrate items at the end of
each iteration, but that means that you have this peak and stress at the end of each iteration.
So why not, instead, implement ongoing integration? That is exactly what agile teams do.
Figure 2-4 shows steps in a continuous integration approach. All of these steps are commonly
automated.

Check-out Check-in

Developer test/compile

Develop2

3

1 4

5

6

Triggers integration test

Build

Object Code Base

Figure 2-4 Continuous integration

Even the trigger for performing the integration can be linked to regular software engineer-
ing activities—for example, checking code in through a configuration management system
(subversion or CVS [Concurrent Versioning System]). With a continuous integration infrastruc-
ture in place, the team, management, and executives in the organization know what the most
recent successful version of the system is. When a developer on a waterfall project reports

C02625679.indd 25 6/16/2008 1:58:47 PM

26 Part I Agile for Managers

100 percent done for a certain requirement, that means something totally different than
when an agile developer reports something as being 100 percent done. In agile projects, 100
percent means developed, tested, and integrated.

Continuous integration is relatively easy to achieve from a technical perspective. Many
open-source tools have been developed to support the agile development team with its
continuous integration efforts. Once the environment is in place, source and version control,
execution of tests, creation of software builds, and the continuous deployment of builds are
delegated to reliable tools.

Face-to-Face Communication
When I began working with IT projects, there was no such thing as electronic communica-
tion. Yes, there was e-mail, which was used to distribute information to the masses, but proj-
ect team members were usually located in close proximity to one another, if not in the same
room. Although we did not have the alternatives we have today, there is something about
verbal and nonverbal communication that electronic communication cannot replace. Think
about foreign accents or body language, for example. Agile development factors in this loss
in communication and forces team members to collaborate directly with one another, person
to person, without electronic firewalls. Especially when business analysts and software devel-
opers work together, face-to-face communication is essential. Anonymously sharing require-
ments documents just opens the door to misinterpretation and misunderstandings—not to
mention that written information travels so much slower than verbal communication. Just
to be clear, I’m not saying that no requirements are documented—they are co-developed,
clarified, or negotiated between team members. Last but not least, we are all humans, and
a project is a social network. We need these networks to increase morale and fun. I have
never come across a project team that worked in an exclusively distributed way and actually
had fun.

Things You Observe in an Agile Project
If we compare our agile toolkit with a menu in a restaurant, the foregoing key practices
are entrees. In addition, many agile projects make heavy use of complementary tools (side
dishes) that either support or enhance the impact of the key practices. Although they seem
optional, they should not be ignored.

Pair Programming
Two people work together at the same time on the same code using one keyboard. Pair
 programming has often had a stigma attached to it in traditional organizations. “Why would
I pay two people to do the job of one?” Well, in reality two people often do the job of three!

C02625679.indd 26 6/16/2008 1:58:47 PM

Chapter 2 Agile Software Development 27

In the past, I’ve taught developers in training courses for Java or Smalltalk. During the course,
I offered every student the opportunity to pair up with another student during the exercises.
Some thought it was a good idea; others argued that they did not pay good money to not
have access to the keyboard all the time. Of course, I did not force anybody either way; I just
offered the option. I admit, originally the idea was a bit selfish, because I could not assist 10
engineers with individual feedback all the time. It turns out that some of the pairs helped
each other with the most basic questions and needed less attention from me. Because they
did work out so many things together, they used the instructor time for the tougher ques-
tions. At the end of the week, the pairs completed much more course work than the individ-
uals. As a matter of fact, the individuals often held the pairs up in their learning goals. And as
a positive side effect, the pairs usually had more fun and shared more laughs.

One of the secrets of pair programming is psychological. Adults, especially, learn most effec-
tively by doing rather than listening or reading. The knowledge is internalized by the learner
the first time someone explains or demonstrates it to that person. That is exactly what hap-
pens in pair programming. One person does a thing the other person might not know about.
Through the question and answer process, the expert explains and the listener receives the
knowledge. Now, equipped with the knowledge, the former listener practices it, and so forth.
As a positive side effect, two people then know the same code. Think about the benefits of
that in terms of sick days, vacation time, and other employee fluctuation.

Building pairs to increase productivity is not new. As a matter of fact, the army uses pairs of
soldiers especially during battle at the front. Two soldiers together are more likely to stand
up to an attack than individuals. Police departments also often operate with pairs of officers
assigned to a case. That reduces slack but it also provides support in the event of a critical
situation.

Daily Stand-Up Meetings
Short daily meetings are commonly practiced in Scrum projects, which we will focus on in a
later chapter. The art of these projects is that no other meetings are scheduled besides these
daily stand-up meetings, which should not last longer than 15 minutes. If you have ever tried
to keep a meeting with 5 to 8 people in the 15-minute range, you know how difficult it can
be. In Scrum, for example, every team member provides answers to three questions only:

n What have you done since the last meeting?

n What are you planning on doing until the next meeting?

n What issues and impediments are you facing that prevent you from accomplishing
these things?

What an agile project manager is interested in are the deliverables and tangible results.
That is, in my experience, the point where the daily stand-up meeting most frequently

C02625679.indd 27 6/16/2008 1:58:48 PM

28 Part I Agile for Managers

fails. Because we are used to weekly or monthly status reports, we like to elaborate on
 accomplishments to justify our existence in the project. But seriously, how much tangible
output can someone produce in eight hours of work? But these small accomplishments
 demonstrate daily progress to other team members. Also, quite an important difference from
other, traditional, status meetings is the fact that the team members report to each other, not
to the project manager.

Stories About Requirements
Stories on index cards are a very common practice in extreme programming. They can
be estimated and planned for, and picked up by pairs of developers. Using the following
template

<as a > I want <the feature> so that I can <business value>

the team can produce requirement cards and post these cards in the team room. Once
 reviewed and prioritized, the cards are subject to iteration planning, and team members sign
up to test and develop the items on the cards. Stories just seem to have the right style and
are the right size for agile teams to work with requirements.

Writing these stories is not as easy as it might first look. Many project teams struggle with
coming up with the right size for the story. Some stories are too granular and user interface
focused (for example, “As a customer, I want an OK button so that I can save the changes
made to my account information”); other stories are too broad (for example, “As a customer, I
want to order a product online so that I can save time going to the store myself”).

Team Rooms
The majority of agile projects are based in a single team room, which makes face-to-face
communication very easy. In the past, project teams posted their index cards on the wall or
on whiteboards and signed up for pair programming by simply looking around the room.
Even today, with more tools and technology available to facilitate agile projects, the team
room still plays an integral part. Instead of physical index cards posted on the wall, stories are
captured on electronic “cards” and projected against the wall or against whiteboards turned
into smart-boards with more features to store results more quickly and more conveniently.
The idea behind all this innovation, however, is the same. The entire project team always
shares and works with the same information and collaboratively works toward the same
goal. Therefore, electronic communication across continents is less efficient than commu-
nication among team members in the same room. In addition to overcoming difficulties in
conducting the daily meetings, geographically distributed projects are challenged by meet-
ing the goals of continuous integration, stakeholder feedback, iteration planning, and pair
programming.

C02625679.indd 28 6/16/2008 1:58:48 PM

Chapter 2 Agile Software Development 29

Frequent Releases
A build is a collection of tested and integrated software components that can be released
either internally for verification or externally in a production environment. A build process—
which includes the compilation, testing, and integration of all software—can either pass or
fail. When a build passes, it represents the last good build. That build is something a test
engineer, business analyst, or other stakeholder can work from and use as a test against the
original story. A release, on the other hand, is a good build that has enough functionality to
be released—internally or externally. For example, consider a project that is estimated to last
for 12 months. During the first phase, a group of stories is aligned to create a release after 8
months of the project. The second phase of the project (months 9–12) include the other logi-
cal group of requirements. The first release can be used inside the organization or unleashed
externally. The concept of builds and releases has tremendous influence on agile portfolio
management, which I’ll discuss in the second part of this book.

Self-Organized Teams
When you observe an agile project, you’ll notice, for example, that a pair of developers agree
during the daily meeting to tackle a story card—taking ownership and responsibility for a
story card for at least a few hours or until the story is implemented. They refer to themselves
as self-managed or self-organized. Surprisingly, at the end of each stand-up meeting, you’ll
notice that almost magically the work got divided and distributed without any top-down
commands. During the next stand-up meeting, team members will report their progress to
one another, which means they are also controlling one another. The traditional command-
control paradigm we are so used to working in has shifted to a team-organized approach.
Does that mean a manager is not needed anymore in an agile project? Because the team is
already self-managed, all it needs is a leader. The person in that role will drop duties and re-
sponsibilities that the team has already taken over, but he or she will pick up new challenges,
especially those related to project leadership. Here are just a few examples:

n Facilitating the iteration retrospectives

n Prioritizing the stories for the project and iteration with the business

n Estimating requirements

n Communicating the progress of the project

n Removing organizational and technical obstacles for the team

You might argue that these are responsibilities project managers already had in the past. Yes,
but please remember, the leader’s sole responsibility is to inject the vision into the project
and keep the team focused without a command-and-control style. It sounds like an easy job
for future project managers in agile projects, but reality shows that the opposite is the case.
Good leaders can steer a project without the team feeling that it is being led. Team members

C02625679.indd 29 6/16/2008 1:58:48 PM

30 Part I Agile for Managers

can just do their jobs while the leader creates an environment where everyone feels that
 everybody is working toward the same goals.

Summary
This chapter covered the most fundamental principles of agile development. These are iter-
ative-incremental development, test-driven design, continuous integration, and face-to-face
communication. Additionally, we discussed the techniques that enable agile development—
for example, requirements captured in stories, the use of team rooms, and the use of pair
programming. After reading this chapter, you should have a sense of the culture in an agile
development team and have a vision of how these practices tackle the most common chal-
lenges in today’s businesses.

Now that we’ve viewed the world through the glasses of an agile developer, we’ll look at
 agility from a different angle in the following chapter—from the perspective of the agile
project manager.

If you are interested in drilling down into more detail in one of these key practices, you will
find cross-references for additional recommended reading in the bibliography section at the
end of this book.

C02625679.indd 30 6/16/2008 1:58:48 PM

31

Chapter 3

Project Management
During the first two chapters, agile software development was introduced from a manager’s
perspective and we discussed why organizations are getting more and more interested in
agile development. Following agile principles requires a rethinking of the traditional project
management style as well. In this chapter, I’ll showcase why certain project management
practices need to be removed or adjusted while new agile management practices need to
be acquired. These new skills are necessary for a true agile organizational transformation.
Therefore, this chapter focuses on two major topics: the challenges with traditional project
management in an agile environment, followed by a new agile-based definition of the role
of project manager. Only the correct interpretation of agile development and agile project
management will enable agile portfolio management. This chapter will be our bridge to the
next part of the book.

Traditional Project Management
Project management is a well-established discipline across all industries. I once met a senior
project manager who managed large enterprise information technology (IT) projects. Within
his organization, he was extremely successful and had a great reputation. As it turned out,
he had actually very little knowledge of information technology. His background was in
manufacturing.

First I thought that, because of the size of the projects, his position was so elevated that
knowledge in IT might not be necessary. But then he told me that he had experiences with all
sizes of IT projects. The keys of his success were that he trusts the team and focuses on lead-
ership and stakeholder management. He also gave me a clear understanding of why project
management is a discipline on its own, which is not necessarily dependent on knowledge
inside a particular industry. Too many insights can even block the real view of the project, he
explained.

I thought about my meeting with him for a long time. I was skeptical and tried to imagine
myself in a situation where I was, for example, managing a project in the construction in-
dustry. I then realized that even though agile project management was far from being an
established concept, he had created his own recipe for project management. Years later, it
did not surprise me that agile project management was founded on very similar principles:
trust, shared ownership, and stakeholder collaboration. Ironically, the Project Management
Institute (PMI), which takes a lot of heat from the agile community, promotes project man-
agement as a cross-industry discipline. The issue is that several concepts from the PMBOK

C03625679.indd 31 6/16/2008 2:00:00 PM

32 Part I Agile for Managers

are difficult to endorse when applied in an agile context. The PMBOK is short for the Project
Management Body of Knowledge, which is the framework released by the PMI. According to
this process, a project steps through clearly defined and separated phases. This proves to
be extremely challenging for IT projects, where requirements and expectations frequently
change.

The following are four typical deliverables that are commonly created in traditional projects
and promoted through the PMBOK:

n Work-breakdown structures

n Gantt charts

n Critical path analyses

n Project reports

Let’s take a look at them in more detail and see what challenges they might present if
 applied in an agile context.

Work-Breakdown Structures
In traditional development processes, breakdown structures are hierarchical decompositions,
often used in the context of work. With a work-breakdown structure (WBS), work is broken
down into activities and tasks, and then these work items are broken down into more detail.
(See Figure 3-1.) Sometimes cost-breakdown structures and product-work-breakdown struc-
tures are created in parallel to the WBS, always using the same approach, which is to drill
down into more detail from the top down.

Level 1

Level 2

Level 3 1.1.1 1.1.2 1.2.1 1.3.1 1.3.2

1. Main
Project

1.1 1.2 1.3

Figure 3-1 Work-breakdown structure (WBS)

The lowest level in the WBS hierarchy is also called a work-package, which is the level at
which estimation is performed and assignments are done. The levels higher in the hierarchy
are always combinations of the lower elements. So the bigger the project scope, the more
branches there are in the WBS. The challenge with work-breakdown structures traces back to
the problem of producing at an early stage a so-called master plan of work. Any work that is

C03625679.indd 32 6/16/2008 2:00:00 PM

 Chapter 3 Project Management 33

not listed in the WBS won’t be estimated. As a result, any work performed that is not in the
WBS will produce cost overruns. We could argue that the WBS could be constantly updated
to reflect the changes caused by scope changes, but that is hardly done in practice. The
structure is difficult to adjust.

Another issue with estimating work up front is that the development team has not had the
chance to work together and verify the estimates. If one estimate is significantly off, there is a
chance that the other estimates are also out of line. Corrections of estimates while the project
is under way are difficult to incorporate.

From a psychological perspective, the WBS is owned and managed by the project manager.
Work is assigned to team members, and completion is controlled. This top-down, command-
and-control management style does not work with agile teams, and it violates the principle
of using a team-managed and team-organized approach.

I’ve met project managers who have told me that they will need the WBS for their own
 benefit, even though they won’t tell the agile team about it. These managers were so accus-
tomed to this work product that they continued using it. It is hard to be against something
that gives the project manager confidence, but if the team is not using it, why bother? Are
the costs of creating and maintaining a WBS for a project manager justified? Shouldn’t the
agile project manager work on something else and make better use of her time? Shouldn’t
she work on something more important and relevant for the project team—for example,
 removing organizational impediments or facilitating a planning session?

Instead of seeing the project from the perspective of “work to be performed,” the agile team
takes a different view. They look at the features and functionality of the system and docu-
ment them as stories on index cards. Because the tasks in every iteration are the same, the
focus of work is the story card. The activities for the iterations run parallel to one another;
there is no requirements iteration or testing iteration in agile development. The activities
are merged together and are continuously performed in parallel. The cards are estimated
and prioritized, and the ones found relevant for the business are assigned to iterations.
Remember, the feedback loop established through iterative-incremental development easily
allows for this.

Gantt Charts
A Gantt chart illustrates the orchestration of the tasks according to timing and dependen-
cies. In traditional projects, this format is frequently used to depict the project schedule. (See
Figure 3-2.)

C03625679.indd 33 6/16/2008 2:00:00 PM

34 Part I Agile for Managers

Task 1

Task 2

Time

Task 3

Task 4

Task 5

Task 6

Task 7

Task 8

Figure 3-2 A Gantt chart

Very much like the WBS, the Gantt chart lays out the project schedule up front. The prob-
lem is the lack of predictability and accuracy of the schedule, especially for tasks late in the
project. The planning window with the highest accuracy is the short time frame ahead of the
day of planning. That is why iterations are so intuitive for many managers. Imagine a project
manager in the beginning of a new long-term project. Ask him what the scope of work will
be in iteration 20? It seems almost ridiculous to expect the manager to know, right? It is hu-
man nature that we think about the first iteration, the second iteration, and maybe a rough
sketch of iteration 3. Iteration 3 will be refined once we start with iteration 2, and so forth.

Agile teams, however, know the project goals and have a rough estimate of how to get there.
They know where the features and requirements stand at any given moment and the amount
of progress expected to be achieved in an iteration.

Try the following experiment the next time you meet with a traditional project team. Ask
for the project schedule, which is most likely shown as a Gantt chart. Then compare the
 actual day (the present day) with the plan. Ask a team member, “Based on this plan, you are
 currently working on task XY, correct?”

Based on my experience, the answer is most commonly an excuse for why the team is not
working on that task, such as the schedule being outdated. The team’s good spirit and best
instincts are directed most of the time to working dynamically with the project manager
instead of following a plan. Developers follow their instinct and trust their common sense.
Without those, the project schedule would collapse anyway, because there are so many tasks
unaccounted for in the original schedule that just seem to pop up. I have also never seen
a project team start work in the morning by looking at the latest edition of the schedule.
“Based on the schedule, I should be working on XY.” Call it unprofessional or undisciplined;
it just hasn’t happened in my world.

C03625679.indd 34 6/16/2008 2:00:00 PM

 Chapter 3 Project Management 35

In all fairness, maintaining the schedule is a full-time job on its own because projects are
naturally very dynamic. Occasionally, especially when executives like to get an overview of
the progress of the project, it is a team effort to get the Gantt chart up to date. I call this
pastcasting (instead of forecasting) because the schedule’s past is put back in order. For vari-
ous reasons, the plan’s history might be put back in order, but it provides no value to the
project itself.

In agile projects, which embrace change and a dynamic way of building systems, planning
with Gantt charts encounters limitations and is too expensive to maintain. Most important,
such planning does not reflect what is really going on in the agile team. An agile team
can tell you, however, what its plan for the next iteration is and, possibly, the plan for the
 following iteration also.

Critical Path Analyses
Performing a critical path analysis is a technique used to identify the shortest way through
the project schedule. Any delay of any task on the critical path will delay the completion date.
Figure 3-3 demonstrates that activity E cannot start before C and D are completed.

A B C

D

E

Figure 3-3 Task dependencies

Knowing and monitoring the critical path allows project managers to control the progress of
the project. One form of illustrating the project schedule and its critical path is the activity-
on-node diagram. Each node carries the following information:

n Earliest start

n Latest start

n Earliest finish

n Latest finish

n Duration

n Number

n Name of the activity

By subtracting the earliest start from the latest start, the float is determined. If, for example,
the earliest start is day 12 in a schedule and the latest start is day 18, we have a float of 6
days. That means this task could be delayed up to 6 days without having to sacrifice the

C03625679.indd 35 6/16/2008 2:00:00 PM

36 Part I Agile for Managers

overall schedule. Therefore, this task is not on the critical path. Every task without any float is,
however, on the critical path.

Although this technique seems extremely powerful for controlling projects and puts
 emphasis on the critical tasks in the project, it has its shortcomings when applied in an agile
project. A typical sequence for traditional project management is to have the up-front plan-
ning followed by the execution. The controlling mechanism of the critical path analysis does
not include the adaptive development that takes place in an agile project. As a matter of fact,
in agile projects tasks are performed in parallel—for example, writing small units of tests fol-
lowed by the appropriate messages and methods in objects. A clear separation of tasks is not
possible. The detailed level of the tasks would be measured in minutes rather than in hours
and days, which are typically the unit of measure captured on an activity-on-node diagram.

In addition, agile projects are not considered to be late as long as the iteration is completed
on time. Instead, agile teams measure how much progress has been accomplished within the
last iteration. This approach creates a totally different perspective about a project’s schedule.

On agile projects, the critical path is nested inside the iteration, and every iteration is on the
critical path. Daily stand-up meetings expose the most critical impediments. Suppose a team
planned 50 story points and completed 55. They made more progress than planned. If they
again plan 50 points for the following iteration and then complete 58, the team seems to be
able to deliver more than planned. Having a rough estimate for the entire project, the aver-
age progress can be used to draw conclusions on the final delivery. Having each iteration
serve as feedback about progress based on tangible output seems to be more effective than
projecting the completion of tasks on paper.

Project Reports
Project reports present the state of the project to stakeholders. They provide information
about how the project is doing compared with its original plan. In a perfect world, a project
manager can ask her team members about the progress of a task. We know by now that IT
projects are often far from a perfect world. So there are basically two problems with this ap-
proach. First, the plan is often outdated and cannot be compared with reality, and second,
the tasks are too broad to measure as “done” or “not done.”

For example, a broad schedule might include a task of “Write User Guide,” which is estimated
to take 100 person-days. It is extremely difficult for a technical writer to give a status report
on this task not knowing what is left to complete. A typical answer is 50 percent, 80 percent,
or 90 percent done. Also, the last 10 percent might take three times as long as the first 90
percent. So how predictable is this form of status reporting?

Executives who believe in status reports might be disappointed when they realize that a
 project that was reporting positive figures all of a sudden has to report the breaking news,
“We are running late…” Whoever believes that the project status reports are exclusively

C03625679.indd 36 6/16/2008 2:00:00 PM

 Chapter 3 Project Management 37

 created by the project manager is misinformed. Usually, status reports are a team effort that
takes a lot of energy out of the entire team. But worse, while the team is providing status up-
dates and explaining the work it has performed, team members are not making progress on
the project itself.

Again, agile project teams use the increment and the iterative rhythm to report their status.
For example, using two-week iterations, a project team can demonstrate its accomplishments
in producing executable software. The features and requirements are either done or not
done, and every claim or measurement is tangible. Using the earlier example, a team can re-
port that a feature was not only converted to running software during an iteration, but it was
also documented in the user-guide documentation. Executable software, a build, automated
test cases, and a piece of documentation have been completed. All aspects of a manageable
piece of functionality have been completed.

In addition, executives and stakeholders can always sneak into the daily stand-up meetings
and observe the mood, progress, and issues of the project firsthand.

Summary About Challenges
By examining four typical work products found in traditional project management, you saw
the challenges that arise when they are applied in the context of agile projects. The way that
scope (via WBS), schedule (via Gantt charts), and progress (via progress reports) are man-
aged and controlled (through critical-path analyses) must be adjusted to techniques that are
easier to apply in the context of agile project management. The fundamental idea of project
management is, however, still the same. We are still planning work, but agile projects plan
around requirements, provide schedules through iterations, analyze the progress (iteratively
and daily), and report on the progress to stakeholders through demonstrations and tangible
progress.

Keep in mind that the challenges presented here concerning the traditional work products
are based on their use in agile IT projects. In other, more predictable and reliable, industries,
or in very short projects, their use and application might be appropriate. This is, however,
outside my judgment.

Agile Project Management
By now, we know we want to make use of agile development practices in our IT organiza-
tion, but we also know that the traditional project management techniques just do not map
1:1 to our style anymore. So let’s take a look at the role of an agile project manager and that
person’s responsibilities and techniques for carrying out those responsibilities. Before we do
that, let’s look at the principles of the project management declaration of interdependence
(PMDOI) to reiterate fundamental differences in agile project management.

C03625679.indd 37 6/16/2008 2:00:00 PM

38 Part I Agile for Managers

Project Management Declaration of Interdependence
In addition to adhering to the agile manifesto, agile project managers agree to the project
management declaration of interdependence. The following six core values of the PMDOI will
give you a good idea of the role of an agile project manager. The PMDOI is consistent with
the agile manifesto, but the core values provide a much clearer definition of agile project
management. Let’s see how the core values relate to the fundamental motivations for agility
(which were presented in Chapter 1, “Motivations”). Please note that each core value starts
with “We.” Agile project managers are a community of professionals who signed the declara-
tion. Also notice that the core values are heavily influenced by the key principle of iterative-
incremental development.

n We increase return on investment by making continuous flow of value our
 focus. Instead of delivering the value of a project in one single piece, agile projects
deliver in increments. Therefore, agile projects not only tackle the issues imposed by
traditional project management, they also provide a cost-benefit standard as well. This
is possible because the value of the project is continuously evaluated. Instead of hoo-
raying because “We got it done!” agile project teams hooray because “The right thing
is done.” The “right” thing is determined by the stakeholders, who define the value of
the project to the organization. The agile project manager leads the team to this goal,
iteration by iteration.

Increasing the return on investment requires feature-thinking by all participants.
Features add benefits to an organization. The positive impact of some features might
be stronger than others. Therefore, the sooner the benefits can be put to use, the high-
er the return on investment. We will see in subsequent chapters how we can schedule
high-priority features to be developed early in the project to increase the return on
investment.

n We deliver reliable results by engaging customers in frequent interactions and
shared ownership. The end of an iteration is a technical and functional checkpoint
for all participants of the project. Equipped with the latest successful build, the project
team can demonstrate what functionality has been completed. Delivering in small in-
tervals showcases the reliability of the project team and makes executives confident in
the ability of the team. Teams and stakeholders together compare the delivered func-
tionality with the desired outcome. After five iterations, it will be challenging for your
customer to argue that the system does not meet his expectations because he agreed
to significant portions of the requirements during the previous four iterations. The cus-
tomer plays an integral part in these interactions and owns the direction of the project.

n We expect uncertainty and manage for it through iterations, anticipation, and ad-
aptation. Remember the “Yes, but…” syndrome from the previous chapter? Your team
delivered, but it did not deliver the right thing. Iterative development is the pattern
used to close the feedback loop. In agile projects, the customer decides how significant

C03625679.indd 38 6/16/2008 2:00:01 PM

 Chapter 3 Project Management 39

the progress of an iteration was; the customer does this through feedback, redirection,
and change requests. Change is common, especially in early iterations. It is the respon-
sibility of the project managers to steer the project toward the vision.

n We unleash creativity and innovation by recognizing that individuals are the
 ultimate source of value and creating an environment where they can make a
 difference. Every project team member provides value. However, sometimes team
members just don’t search hard enough to find their best possible role. Generally
speaking, software engineers have a good work ethic and like to add value to a project.
I can’t recall meeting anybody at any time in my career who did not want to deliver
something great. As a project manager, you should embrace interesting ideas and sug-
gestions and create a stage for anybody to submit them. Google, for example, encour-
ages their employees to work 20 percent of the time on projects that interest them.
Great innovative solutions, such as Gmail and Google News, were the result of this
policy. Make this source of ideas your strength.

n We boost performance through group accountability for results and shared
 responsibility for team effectiveness. My favorite question to pose to project teams
is, “Who estimates work?” When the answer is not “We do,” some work needs to be
done to improve project management. Agile project managers need to be facilitators
and moderators who lead the team to success. They should not be the estimators. The
team estimates the work, which is prioritized by the business. It is also a team member’s
(or a pair’s) responsibility to sign up for work. Think about this. Someone estimates
work and then voluntarily signs up for it, and this initiative is combined with good work
ethics. These are major ingredients for a successful delivery. Additionally, every team
member reports to the rest of the team, not to the project manager.

n We improve effectiveness and reliability through situationally specific strategies,
processes, and practices. There is a huge difference between being efficient and be-
ing effective. We can streamline a development process and make it highly efficient,
but it might not be effective. Effectiveness contains results that have an impact on
goals—for example, the implementation of a feature can have a cost-effective result.
Knowing that effectiveness is the higher standard, the project goals can change over
time, and so can the development process itself. Adapting to new situations is es-
sential to your team’s success, but the agile project manager must lead in this regard.
Watching the effectiveness and reliability of the process and project are an integral
part of the project manager role. As a simple example, a project team thought it would
be a good idea to start the day with the daily stand-up meeting. They scheduled it
for 9:00 a.m. Although penalties were assessed for late arrivals, team members had a
tough time being on time. The organization had this early-arrival culture tattooed onto
it, so the team had adopted it even though it was not effective for them. In the first ret-
rospective, the team decided to have the daily stand-up meeting later in the day. They
adjusted, became more effective in their meetings, and moved on.

C03625679.indd 39 6/16/2008 2:00:01 PM

40 Part I Agile for Managers

roles and responsibilities
Now that you know the challenges of traditional project management and the key
 principles of the PMDOI, it is time to focus directly on agile project managers—who they
are and what their duties are. The following roles and responsibilities define what agile
 project managers are.

Roles
There are primarily two roles in agile project management: the project manager and
lead business analyst. Scrum has developed the de facto standard for many agile project
 managers. I decided to provide a definition for both terminologies.

Project Manager
The term project management is deeply rooted in our professional world. Even though in the
agile world the project manager would be better described as a project leader, I’ll go along
with this widely used term. The distinction between manager and leader, however, is still im-
portant for defining the role of an agile project manager. Instead of managing projects, the
project leader steers the project team and constantly shapes the vision. The definition of the
Agile Project Leadership Network (APLN) reflects this fact. An agile project manager creates a
team-managed platform, which encourages the values of the PMDOI. In addition, the project
manager applies the key practices for agile development.

Becoming a project manager is often falsely seen as receiving a promotion. Yes, someone
with special skills, which we will discuss in more detail soon, was appointed to play this role,
but the role is as specialized as any other role taken on by team members. In traditional
projects, the team often sees the project manager as an outsider who controls the team’s
progress and gives out work assignments. Good project managers who follow the agile proj-
ect management approach are part of the team and are within the team’s social boundary.
Instead of having a command-control role, the agile project manager collaborates with the
team as part of a unit.

The difference between manager and leader might appear to be subtle, but it has a signifi-
cant impact on team morale. As a result, the agile project manager’s role is probably best
described as facilitator or moderator.

In Scrum, the scrum master assures that the rules of scrum are correctly interpreted. In this
case, the scrum master executes the daily scrum meeting, conducts the retrospectives, and
plans the iteration with other roles by using the project backlog. Chapter 11 takes a closer
look at Scrum and how scrum principles are implemented for portfolio management. It also
includes an explanation of the terms used in Scrum.

C03625679.indd 40 6/16/2008 2:00:01 PM

 Chapter 3 Project Management 41

Scrum Master
In Scrum, the role of a project manager is gone. Instead of managing and leading the
 development effort of the project, the scrum master implements the rules of Scrum in a
 project and makes sure the team’s path is clear so that the team can stay productive. This
emphasis on leading becomes clear in what is known in Scrum as sprint backlog planning,
where the project team is empowered to plan and schedule its own work. The sprint back-
log contains a list of tasks to be tackled throughout the upcoming sprint, which represents
in Scrum a fixed-length iteration of 30 days. The backlog contains a to-do list of activities
and deliverables the team needs to tackle. Once the team has entered the sprint, the scrum
master facilitates the daily scrum meeting and removes impediments for the team, such as
environmental, administrative, or team-related hurdles. Especially in large organizations in
which a large project spans organizational hierarchies, the scrum master must be an influ-
ential mediator and determined to facilitate the project across departmental boundaries. In
such projects, the scrum master must also stand up for the team so that its requests are met;
a compromised resolution is often the least desirable outcome.

The role of a scrum master translates probably best to that of a change agent or servant
leader who works for the team so that it becomes more productive and effective over time.
In Scrum, the responsibilities of traditional project management are divided among three
 different roles: the product owner, the scrum master, and of course the team.

Business Analyst
Remember the principle of shared ownership and engaging customers at frequent intervals?
In internal and large-scale projects, business analysts often serve as the voice of the cus-
tomer. Agile projects are so dependent on them that they are an integral part of any agile
process. In an ideal world, the business analyst works full-time on the project, also inside the
team boundary.

Based on my experience, defining this role in an organization is the most challenging of all.
Because of the structure of the organization, the business analyst is often part of a different
reporting chain. In situations like that, the business analyst is part of or reports to product
management, marketing, accounting, and so on, whereas the project team reports to the
chief information officer (CIO) or chief technology officer (CTO). This separation creates a gap
between these two parties that has to be bridged during the project. The challenge for the
project manager is to make the business analysts feel comfortable around all the technical
specialists. Sharing the same project room and having direct communication channels is a
major element in the agile success story.

Still today, I see so-called agile projects where requirements are handed over from the
 business analysts to the software development team for implementation. Organizations
 interested in offshore development even have to deal with language, time, and cultural
 barriers. In situations like this, the interpretation of agile is often just a little too loose.

C03625679.indd 41 6/16/2008 2:00:01 PM

42 Part I Agile for Managers

Think about the difference in time and money consumed when a developer has a quick
question to clarify a requirement. Asking the person on the other side of the table versus
writing an e-mail message and waiting until the other person has time to reply. Often e-mail
threads introduce more confusion than initially existed. Globally distributed development,
where project team members work more anonymously and in a more isolated way, need
wise project organization to overcome these challenges. We’ll take a closer look at this topic
in Part 3 of this book.

One technique, which is out of the ordinary but extremely powerful, is that the development
team is allowed to work only when the business analysts are present in the room. Part-time
and casual assignments immediately bounce back to the business as an impediment.

Product Owner
Scrum has a different view with regard to the business representation as well. Instead of
 requirements being written and clarified by team members, they are written by the product
owner. This person is a highly visible figure in a scrum project and in the organization. The
product owner is primarily responsible for the project’s success. The product owner is also
responsible for planning each release and works on the specifications for and refinement of
the features for the team to develop.

The product owner sits in the driver’s seat in terms of authority and prioritization of features.
This role is the primary go-to person from a project portfolio management perspective, but
it is also the point of contact for the entire project team when questions about the features
of the current sprint emerge.

Project Team
Especially for Scrum projects, the team itself takes over many project management activities
we know from traditional projects. A self-organized and empowered project team plans the
work and assigns work to themselves. If the team prefers to work in pairs, team members
sign up and form pairs on their own.

From a reporting perspective, the project team members derive the metrics of the project
from their own daily activities, and they broadcast the metrics among the team, product
owner, scrum master, and other external project stakeholders. That mechanism keeps the
metrics and reports unfiltered and unmassaged.

Responsibilities
The following tasks are typically performed by an agile project manager during or in be-
tween iterations, or they are co-performed by an agile project manager and other project

C03625679.indd 42 6/16/2008 2:00:01 PM

 Chapter 3 Project Management 43

team members, such as business analysts, developers, or sponsors. Most commonly the team
and business analyst work hand-in-hand with the agile project manager.

Removing Impediments
Every project usually has plenty of impediments—small, unforeseen issues here and there,
major problems, and organizational obstacles. Even worse, they can pop up anytime, most
commonly at the worst moment. I’ve seen plenty of teams that have had difficulties getting
started because of unknown passwords, insufficient server rights, lack of software licenses,
lack of access to rooms, and other internal administrative procedures. Official escalation
procedures are commonly used to resolve these issues, but even those procedures can take
weeks and sometimes months to clear the issue.

In addition to administrative issues, challenges related to technologies and requirements
commonly arise. There are two mechanisms in agile projects that deal with these impedi-
ments. First, the daily stand-up meeting, where issues are expressed and captured for reso-
lution, and second, the role of the project manager (scrum master), who is responsible for
tackling issues that impede team progress. Therefore, the agile project manager must be
willing to go the extra mile within the organization and serve the team. You can see here that
the role of a project manager can be quite different from a development role. An introverted
brilliant test engineer might not like becoming an agile project manager.

During the daily meetings, the team repeatedly expresses an issue until it is resolved. In re-
turn, the project manager reports progress on resolving impediments back to the team. So
everyone should have at least a little progress to report on—the team reports development
activities, and the project manager reports about impediments.

If other stakeholders participate occasionally in one of the daily stand-up meetings, everyone
should sense the urgency and importance of certain open issues. Just to be clear, paving the
path for a project and removing impediments could be a full-time job in itself.

Iteration Planning
Iterations are usually between 2 and 6 weeks long. The shorter the better, especially in the
early stages of the project. Many times, I’ve been asked if the iteration length can vary. In
my experience, fixed-length iterations throughout the entire project work best. I have seen
projects in which project managers started with two 4-week iterations and then switched to
a 2-week rhythm. There are several good reasons why this can be a good idea. One reason is
that it can reduce the pressure of a 2-week iteration for new agile teams. Once the team gets
more familiar with iterative-incremental development, a reduction to shorter iterations might
be beneficial. Changing the length of iterations (for example, 2, 3, 4, 2, and then 5 weeks)
based on the intensity of the planned stories is, however, not recommended and not needed.
There are great books available that assist you with assigning requirements (stories, use
cases, and nonfunctional requirements) to iterations instead of the other way around. Stories

C03625679.indd 43 6/16/2008 2:00:01 PM

44 Part I Agile for Managers

documented on index cards are common among agile developers, as are the techniques for
iteration planning.

If an agile project uses use cases instead of stories, the procedure of iteration planning re-
mains similar. A use case represents a collection of start-to-end business scenarios. Some of
them are common and typical; other scenarios might be alternatives or exceptional cases
and less frequently executed. The challenge with use cases is that some of them are long and
complex, whereas others are easier. In addition, dependencies exist between them. If you
look closer at use cases, you’ll notice that they usually consist of an abundance of scenarios.
Therefore, instead of tackling the entire use case, the team must focus on individual scenar-
ios. With that approach, even dependencies between the scenarios can be resolved. A posi-
tive aspect of documenting requirements with use cases is that identifying and documenting
these scenarios in this format flows naturally with the work that business analysts perform
regularly. Figure 3-4 (which abbreviates use case as UC) shows how the implementation of a
use case is done incrementally, scenario by scenario.

UC A
Scenario

1

UC B
Scenario

2

UC C
Scenario

1

UC B
Scenario

1

UC B
Scenario

3

UC C
Scenario

2

UC C
Scenario

3

UC C
Scenario

4

UC A
Scenario

2

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Defined
during

predecessor
Iteration Planned

Defined
during

predecessor
Iteration

Figure 3-4 Iteration plan with use-case (UC) scenarios

Although a rough outline and the high-priority requirements are determined by the
 customer, the project manager facilitates the iteration planning session with the rest of the
team. That way, dependencies between requirements can be considered and the best pos-
sible plan for the upcoming iteration can be assembled, according to the wish list of the
customer.

In the second part of this book, when I outline the agile portfolio management approach,
you’ll see how essential iteration planning is. We will then apply the practice of iterative
 development to the organizational level and get the entire organization into a rhythm.

Retrospectives
Retrospectives are not lessons learned. They are much more. Traditional lessons-learned
 sessions are scheduled at the end of a project. Not only is it too late at that point for the

C03625679.indd 44 6/16/2008 2:00:01 PM

 Chapter 3 Project Management 45

team to rectify behavior and remember all the “lessons,” it is also challenging to get all the
people at a table together when the project is over. Agile teams perform retrospectives in
between iterations. The project manager facilitates the retrospective, which includes iteration
review and iteration planning (preview). Psychologically, the term lessons learned also implies
that there was something to learn. That is not always the case and can lead to a negative im-
pression that something else could have been done instead by changing the project and the
process.

Estimation
There are two famous questions that customers ask project managers: “How long will the
project take?” and “How much will the project cost?” Especially at the beginning of a proj-
ect, these questions are extremely difficult, if not impossible, to answer. If you ask a team to
 estimate the answers to these questions based on a few index cards or use-case scenarios,
the likelihood of getting a good estimate turned around is higher. If you ask a team after
a few iterations to estimate the time and cost of completing tasks on a few new cards, the
 accuracy of the estimate gets better and better. Why?

With every retrospective, the team reflects on the past iteration. Some requirements might
have been underestimated; others might have been overestimated. The team’s estimate of
upcoming requirements takes the experience from previous estimations into consideration.

Traditional project managers, who have usually been transitioned from an engineering role
to a project manager role, tend to produce estimates themselves or influence the estima-
tion of others. This heroic attitude of “I could get it done in two days instead of four” does
not really help if team members cannot get it done in two days. There is also no proof that
the manager could get it done anyway. This kind of assistance does not add any value to the
team. Sometimes project managers influence the team through a backdoor approach such
as, “Do you agree that this task takes about two days?” Do estimation practices like that really
help your project, your customer, and the expectations?

To prevent this issue, agile project managers stay out of the estimation exercise unless they
play both roles on the team. In agile projects, the development team, and only the devel-
opment team, produces the estimates. The agile project manager captures and tracks the
estimation results and, of course, the actual results. Remember, the project manager should
“lead” the project and connect with the customer and sponsors, rather than micromanaging
people. The selected estimation technique should be easy and quick to adopt—for example,
a Wide-Band-Delphi (discussed in Chapter 5, “Metrics and Reporting”). Another effective
method is having team members hold up a certain number of fingers for estimated efforts
and size and then averaging the results.

For example, a project team gets together and publicly estimates the effort. Everybody’s
input has been heard, a quick average is taken, and the process is continued for the next es-
timation. Even if a story was underestimated or overestimated, it will balance out over time,

C03625679.indd 45 6/16/2008 2:00:01 PM

46 Part I Agile for Managers

just like the calls from umpires in baseball. An alternative, but more time-consuming, method
is to collect the estimate from the team members anonymously. That reduces the chances
that, especially during early estimating sessions, team members are unduly influenced by
their colleagues.

By the way, the planning poker game (which you can learn more about at http://www.
planningpoker.com) is a variation of the Wide-Band-Delphi estimation technique.

Reporting
As with estimating, the quality of the reporting gets better over the course of the iterations.
An agile project manager has extremely powerful tools to report status almost in real time.
But to keep the team focused on its deliverables, the exchange of these metrics is suggested
in between iterations only. Considering that the iterations are only 2–6 weeks long, it is still a
very frequent exchange of reliable information. Reporting in agile projects is extremely pow-
erful because teams can always share internally and externally the requirements that have
been completed (stories), the progress (size of stories) of the project, and the quality (defects)
of the system. When asked, the project manager can accurately answer the following ques-
tions: “What has been done?” “How are we doing ?” and “How good is the system?” This is
enough information to judge whether the past iteration was a success.

Remember, all the data is naturally created by the agile developers and business analysts
while they are working. No extra effort is necessary to generate the data.

Daily Stand-Up Meeting
The agile project manager facilitates the daily stand-up meeting, ensures that the meeting
starts on time, and ensures that it is conducted in a timely manner, usually no longer than 15
minutes. If the team is geographically dispersed, the meeting time needs to be synchronized
and resources need to be synchronized and prepared. Facilitation of this meeting includes
ensuring that team members report status to each other in a collegial way and side discus-
sions are eliminated. Impediments that might be expressed during the meeting are captured
as a to-do list for the project manager. The challenges of this activity are to keep the team
on track and the meeting on time. To simplify the logistics of this meeting, it is usually con-
ducted at the same time each day and within the team room. Because the daily stand-up
meeting is open to the public, bystanders can receive additional ad hoc status updates from
the project team.

Leading
During the iteration, leadership skills are needed to keep the team moving. Typical is-
sues within the team are that trivial or very challenging defects have not been tackled, a
build broke and no developer took ownership to resolve the issue, two developers pair up

C03625679.indd 46 6/16/2008 2:00:01 PM

 Chapter 3 Project Management 47

too much and need to mix more with the rest of the team, and requirements need to be
 negotiated. The agile project manager reminds team members to get things done, asks for
status updates for critical items throughout the day, and captures completion.

The agile project manager also represents the team to the outside world and also protects
the team from the outside world. Too much interference can distract the team from its goals.
Agile project managers report to the executive manager and portfolio managers, as we will
see in the second part of this book.

Summary
This chapter introduced the roles and responsibilities of an agile project manager, and it
explained how they differ from traditional project management. We explored typical tasks
of an agile project manager—in particular, the tasks of estimating, reporting, planning, per-
forming retrospectives, and performing day-to-day activities such as removing impediments.

C03625679.indd 47 6/16/2008 2:00:01 PM

C03625679.indd 48 6/16/2008 2:00:01 PM

 203

Index

A
accelerating projects, 135–136
accountability and responsibility, 39

of agile PMOs, 192
project manager responsibilities, 42–47

acquisition of tools, 194
active projects, number of. See project portfolio

management; too many projects
adapting to situations, 39

lack of vision, 65, 140–142
Agile Alliance, 20
Agile conferences, 20
agile development

features of, 26–30
key processes of, 21–26

agile manifesto, 18
agile methodology, defined, 15
agile portfolio management, 49–66, 165–171

applications. See application portfolio
management

assets. See asset portfolio management
industry demand for, 51–52
metrics. See metrics; reporting
organization, 53–57

composite, 57
functional, 53
matrix, 55
projectized, 54

PMO and, 193, 198. See also project management
office

projects and. See project portfolio management
resource portfolio management. See resource

portfolio management
return on investment. See ROI
sample scenario, 166–171

dashboard view, 165–166
first iteration, 167
second iteration, 168
third iteration, 169

in Scrum, 179–184
activities and meetings, 182
meetings, 182
metrics, 183
roles, 181

stakeholders, 62
terms and definitions, 59
typical problems with, 62–66

agile processes, list of, 15–18
Agile Project leadership Network (APLN), 20, 40

agile project management, 37–39
agile training, 149–151
ambiguity in requirements, 6, 152
analogous estimation of estimating progress, 77
analysis, financial. See financial analysis models
anonymous estimates, 46
APLN (Agile Project leadership Network), 20, 40
application portfolio management. See asset

portfolio management
assessing business case, 127
assessing status reports (how to), 89–91
asset portfolio backlog, 180
asset portfolio management, 157–164. See also

portfolio management
assets that become roadblocks, 158–161
“built to last”, 161–163
sample scenario, 166–171

first iteration, 167
second iteration, 168
third iteration, 169

in Scrum, 180
total cost of ownership, 163–164

assigning people to projects
multiple projects, 112
typecasting, 140
when projects are closing, 146

attrition, 141
automated quality metrics, 80–83

B
backlogs. See portfolio backlogs; sprint backlog
balanced matrix organizations, 57
balancing the asset portfolio, 157–164

assets that become roadblocks, 158–161
“built to last”, 161–163
total cost of ownership, 163–164

balancing the project portfolio, 111–123
risk and reward, 114–120

example scenario, 167–169
managing portfolio evolution, 117

small projects, deemphasizing, 122–123
too many projects, 63, 112–114

administrative costs, 113
failing to find closure, 114
productivity costs of, 112–113
resource portfolio and, 142–143
small projects, 122–123

visionary projects, 121

Z02I625679.indd 203 6/16/2008 4:45:24 PM

204

balancing the resource portfolio, 139–148
diversity of skills, 144–146
feedback from project team, 146–148
too many projects. See too many projects
vision, lack of, 140–142

barometer, morale, 85
Beck, Kent, 16
benefits, project. See also productivity penalties

financial, 97–103. See also funding
risk, 106–109

kinds of, 103–106
risk, 106–109

benefits deadline, 105
best practices for project management, 191
bonus for project ideas, 124
bottom-up method for estimating progress, 77
bubble diagrams, 116, 117
budgeting. See funding
builds, releases vs., 29
“built to last”, 161–163
burn-down (velocity), 71. See also progress (velocity)

Scum, 183
business analysts, 41, 178
business cases, 125–127

assessing, 127
presenting, 125–127

business vision. See vision

C
canceling projects, 63, 132–134

to free up resource s, 136
CBA. See cost-benefit analysis
CCBs (change control boards), 8
certification, 154

Scrum, 184
challenging proposed projects, 128
change control, reporting on, 88
change control boards (CCBs), 8
Charette, Bob, 17
choosing projects, 132–136

competitive projects, 130–132. See also
simultaneous projects
example scenario, 168

funneling proposals, 127–130
example scenario, 168–169
resource synchronization, 140

classroom training, 145
closing projects, 114

when to reassign resources, 146–148
CMMI (Capability Maturity Model Integration), 195
coaching, 145. See also training

CSC (Certified Scrum Coach), 185
Scrum, 185

Cockburn, Alistair, 18
Cocomo method for estimating progress, 78
code coverage, 82
collecting ideas for new projects, 123–124

funneling proposals, 127–130
example scenario, 168–169
resource synchronization, 140

collecting proposals, 127–130
co-location of team members, 26, 152
comments (in status reports), 89
communication

accelerating projects, 136
crystal clear process, 18
with customers

business cases, 126
feedback loop, 22, 38
project reports, 36

face-to-face, 26, 28
feedback loop to customer, 22, 38
functional organizations, 54
in matrix organizations, 56
pair programming, 26

compensation rate, internal, 180
competition, 9
competitive projects, 130–132. See also simultaneous

projects
example scenario, 168

complexity factors. See ECF (Environment Complexity
Factor); TCF (Technical Complexity Factor)

component integration, continuous. See continuous
integration

composite structure, 57
constructive cost model. See Cocomo method for

estimating progress
consulting with experienced subcontractors,

144–146
consumer costs, calculating, 163–164
continuous flow of value, 38
continuous integration, 21
contradictory requirements, 5–6
“cool factor”, 121
corporate networks, 153
costs

business cases, 125–127
assessing, 127
presenting, 125–127

competitive projects and proof of technologies,
130

cost-benefit analysis, 103, 107
cost-breakdown structures, 32
cost-value evolution, 96
having too many projects, 112–114
internal compensation rate, 180
of PMO, 194
productivity penalties. See also benefits, project

balancing the resource portfolio

Z02I625679.indd 204 6/16/2008 4:45:24 PM

 205

costs (continued)
moving resources from closing projects, 146
pausing projects, 134
project switching, 112–113, 119–120
small projects, 122
too many projects, 112–113

return on investment. See ROI
roadblock assets, 158–160
total cost of ownership, 163–164
of training and education, 145

crashing projects, 135
critical path analyses, 35–36

fast-tracking, 135
crystal clear process, 18
CSC (Certified Scrum Coach), 185
CSM (Certified Scrum Master), 184
CSP (Certified Scrum Practitioner), 185
CSPO (Certified Scrum Product Owner), 184
CST (Certified Scrum Trainer), 185
culture, organizational, 53
Cunningham, Ward, 16
customers, communicating with

business cases, 126
feedback loop, 22, 38
project reports, 36

D
daily stand-up meetings, 27, 46

PMO attendance at, 197
dashboard view, portfolio management, 165–166

sample scenario, 166–171
deadlines for project benefits, 105
debugging. See defects
decelerating projects, 136
declaration of interdependence. See PMDOI
decreasing benefits, 104–105
dedication to project teams, 193
defects

fixing, progress estimation and, 79
open, total test cases vs. (metric), 81
per story (metric), 84
time to resolve (metric), 84
total number of (metric), 81

deliverables of traditional project management,
32–37

DeMarco, Tom, 112
deployment. See also releases

competitive projects, 131
late requirements changes after, 4

descriptions for suggested projects, 124
developmental increments, 21. See also iterative-

incremental development
morale changes and, 86
payback periods and, 98–100

proof of technologies (POT) within, 130
use case point progress estimation, 76
value of, 94–97

diminishing returns, 104
direct staffing requests, 196
discounted cash flow method, 108
discounting, 100
distance learning, 150
diversity of resources (skills), 144–146
drop box for submitting ideas, 124
DSDM (Dynamic Systems Development Method), 16
dynamic requirements, 5

E
ECF (Environment Complexity Factor), 72, 74
education, skills. See training
effectiveness, situational adaptation and. See

situational adaptation
electronic submission of project ideas, 124
e-mail messages, 41
empirical, agile approach as, 15, 178, 189–191
empowerment of teams, 188–189
ending projects, 114

when to reassign resources, 146–148
enhancement projects, 7
Environment Complexity Factor (ECF), 72, 74
epics, 95
estimation

of cost. See costs
financial analysis models, 97–103. See also funding

risk, 106–109
process of, 45
of project end, resources and, 146–148
of velocity (progress)

analogous estimation, 77
bottom-up method, 77
Cocomo method, 78
expert method, 77
function points, 78
story points, 68–72
use-case points, 72–76
Wide-Band Delphi method, 78

evaluating costs. See costs
evaluating status reports (how to), 89–91
executing projects. See asset portfolio management;

initiating new projects
expectations, managing, 3–9

feedback loop to customer, 23
experimenting. See also risk

business cases and, 125
with small projects, 122
with visionary projects, 121

external resources (outsourcing), 142
Extreme Programming (XP), 16

Extreme Programming (XP)

Z02I625679.indd 205 6/16/2008 4:45:24 PM

206

F
face-to-face communication, 26

working in team rooms, 28
fast-tracking projects, 135
feature-thinking, 38, 162
feedback from project team, 146–148
feedback loop to customer, 22, 38
filtering requirements, 6
financial analysis models, 97–103. See also funding

risk, 106–109
financial benefits, realizing. See cost-benefit analysis;

ROI
finger-pointing phase, 5
fixing defects. See defects; testing
float, 35
forecasting. See estimation
formal training, 145
frameworks for project management, 191
frequent releases, 29
function points for estimating progress, 78
functional organization, 53
funding, 12–13
funnels (proposal management), 127–130

example scenario, 168–169
resource synchronization, 140

G
Gantt charts, 33
globally distributed development, 151–153
go/no-go decision (projects), 132–134
goals, 93–94
gold-plating, 114
group accountability. See accountability and

responsibility

H
hiring, corporate networks for, 153
holiday schedule, 141

I
IBM Rational Unified Process (RUP), 17
idea management, 123–124

funneling proposals, 127–130
example scenario, 168–169
resource synchronization, 140

impediments
counting (as metric), 84
removing, 43

reporting on, 88
increasing benefits, 106
increments of development, 21. See also iterative-

incremental development
morale changes and, 86
payback periods and, 98–100
proof of technologies (POT) within, 130
use case point progress estimation, 76
value of, 94–97

indirect staffing requests, 196
individuals, valuing, 19, 20, 182

over project tools, 194
team moral metrics, 85–87

industry standards and models, 195
initiating new projects, 9, 123–132

business cases, 125–127
assessing, 127
presenting, 125–127

creating assets, 157
experimenting (visionary projects), 121
idea management, 123–124
parallel execution (competitive projects), 130–132.

See also simultaneous projects
example scenario, 168

proposal management, 127–130
innovation, 10

project funnels, 140
integration of components, continuous. See

continuous integration
interdependence, declaration of. See PMDOI
internal compensation rate, 180
internal rate of return (IRR), 102
interpretation of status reports, 89–91
intranets, for submitting project ideas, 124
introducing new projects. See new projects, initiating
investments, projects as, 9
IRR (internal rate of return), 102
iteration planning, 43
iterative-incremental development, 21–23

business cases vs., 125
critical path and, 36
go/no-go decision points, 132–134
iteration planning, 43
mapping net present value, 100
morale changes and, 86
pausing or accelerating projects, 134–136
reflection on past iterations. See retrospectives
replacing legacy systems, 160
risk-reward evolution, 117
sample scenario, 166–171
starting with small projects, 122
status reporting, 37. See also project reports
switching projects between, 112–113. See also task

switching
evaluating costs of, 119–120

time-out, for an iteration, 141

face-to-face communication

Z02I625679.indd 206 6/16/2008 4:45:24 PM

 207

J
Jeffries, Ron, 16

K
key issues, reporting, 88
key metrics, choosing, 67
key practices of agile development, 21–26
knowledge transfer. See training

L
lack of metrics, 65. See also metrics
lack of requirements. See requirements, having too

few
lack of resources, 64
lack of vision

as problem, 65
resource portfolio and, 140–142

language barriers, 152
last good build, 29
late requirements changes, 4
leadership

management vs., 40
as project manager responsibility, 46
in self-organized teams, 29

lean development, 17
legacy systems, 158–161
lessons learned sessions, 44
lightweight processes, 18
long-distance learning, 150

M
maintaining legacy systems, 158–161
managing agile projects, 187–196

empowered, self-organized teams, 188–189
industry standards and models, 195
monitoring milestones, 191
PMO roles and responsibilities, 192
portfolio management, 193, 198
tools standardization, 194

managing expectations, 3–9
feedback loop to customer, 23

manifesto, agile, 18
manual quality metrics, 83–84
manuals, creating, 197
matrix organization, 55
measuring progress, 191. See also metrics; reporting;

velocity
measuring quality. See quality (metrics)

meetings
daily stand-up meetings, 27, 46

PMO attendance at, 197
Scrum, 176, 182

mentoring, 144–146, 151
PMO members as, 193, 196

meta-mentoring, 151
methodologies for project management, 191
metrics, 67–91. See also reporting

choosing key metrics, 67
interpreting, 89–91
lack of, 65
PMO assistance with, 197
for progress. See velocity
for quality, 79–84

automated, 80–83
manual, 83–84

Scrum, 183
for team morale, 85–87

milestones
monitoring, 191
sign-off for project phases, 4. See also milestones

models, industry-level, 195
monitoring milestones, 191
morale, measuring, 85–87
multiple projects, assigning people to, 112. See also

too many projects
multitasking, 112

N
names for suggested projects, 124
net present value (NPV), 100–101
Netflix, 10
new projects, initiating, 9, 123–132

business cases, 125–127
assessing, 127
presenting, 125–127

creating assets, 157
experimenting (visionary projects), 121
idea management, 123–124
parallel execution (competitive projects), 130–132.

See also simultaneous projects
example scenario, 168

proposal management, 127–130
no-go projects, 115, 116, 132–134
NPV (net present value), 100–101

O
objectives. See goals
object-oriented systems, 5, 159
off-the-job training, 149. See also training

off-the-job training

Z02I625679.indd 207 6/16/2008 4:45:24 PM

208

online training, 150
on-the-job training, 149. See also training
open defects

per story (metric), 84
time to resolve (metric), 84
total number of test cases vs. (metric), 81

OpenUP process, 18
opportunity costs, 100
organization, 53–57

composite, 57
functional, 53
matrix, 55
projectized, 53
standardization of tools in, 194

outdated technologies, 158–161
outsourcing, 142
overhead costs of PMO, 194. See also costs
ownership

portfolio owners, 182
product owners, 181
total cost of, 163–164

P
pair programming, 26
parallel execution of projects, 130–132. See also

simultaneous projects
example scenario, 168

partial releases, 197
pastcasting, 35
patching. See small projects
pausing projects, 134

to free up resources, 136
payback period, 97–100

risks and, 107
penalties to productivity. See also benefits, project

moving resources from closing projects, 146
pausing projects, 134
project switching, 112–113, 119–120
small projects, 122
too many projects, 112–113

penalty from task switching, 112
people. See also communication; social networks

diversity of skills, 144–146
face-to-face communication, 26, 28
internal compensation rate, 180
lack of resources, 64
managing resources. See resource portfolio

management
meetings. See meetings
outsourcing, 142
pair programming, 26
PMO assistance with staffing, 196
product owners, staffing, 178

as ultimate source of value, 39
vacations and holidays, 141

perceived complexity. See ECF (Environment
Complexity Factor); TCF (Technical Complexity
Factor)

performance factor (PF), 75
personal separation among team members, 152
person-day estimation, 69
personnel. See resource portfolio management
PF (performance factor), 75
phases of projects. See milestones
physical separation among team members, 26, 152
planning for innovation, 12
planning iterations, 43
planning poker game, 46
PMDOI (project management declaration of

interdependence), 20, 38
PMI (Project Management Institute), 31
PMO. See project management office
PMO (project management office). See project

management office
point system for estimation. See estimation of

velocity
political agendas, 56
Poppendieck, Mary and Tom, 17
portfolio backlogs (Scrum), 179–180
portfolio management, 49–66, 165–171

applications. See application portfolio
management

assets. See asset portfolio management
industry demand for, 51–52
metrics. See metrics; reporting
organization, 53–57

composite, 57
functional, 53
matrix, 55
projectized, 54

PMO and, 193, 198. See also project management
office

projects and. See project portfolio management
resources. See resource portfolio management
return on investment. See ROI
sample scenario, 166–171

dashboard view, 165–166
first iteration, 167
second iteration, 168
third iteration, 169

in Scrum, 179–184
activities and meetings, 182
meetings, 182
metrics, 183
roles, 181

stakeholders, 62
terms and definitions, 59
typical problems with, 62–66

online training

Z02I625679.indd 208 6/16/2008 4:45:24 PM

 209

portfolio managers (Scrum), 182
portfolio masters (Scrum), 181
portfolio owners (Scrum), 181
portfolios, defined, 61
POT (proof of technologies), 130
practices, situational. See situational adaptation
present value, 100
prioritizing

having too many requirements, 6
of portfolio backlogs (Scrum), 181

processes. See agile processes, list of
processes, situational. See situational adaptation
product backlog, 175
product manuals, creating, 197
product owners, 42, 175, 178

certification (Scrum), 184
productivity penalties. See also benefits, project

moving resources from closing projects, 146
pausing projects, 134
project switching, 112–113, 119–120
small projects, 122
too many projects, 112–113

product-work-breakdown structures, 32
professional (corporate) networks, 153
profitability of PMO, 195
program managers, 60
programs

defined, 60
in portfolios, 61

progress (velocity), 68–79
accelerating projects, 136
estimating

analogous estimation, 77
bottom-up method, 77
Cocomo method, 78
expert method, 77
function points, 78
story points, 68–72
use-case points, 72–76
Wide-Band Delphi method, 78

goals and, 96
isolated focus on, 79

progress reporting. See reporting
project management, 31–47

agile, 37–39
in functional organizations, 54
roles and responsibilities, 40–47
traditional, 31–37

challenges of, 37
project management declaration of

interdependence. See PMDOI
Project Management Institute (PMI), 31
project management office (PMO), 57, 63, 187–198

challenges of managing agile projects, 187–196
empowered, self-organized teams, 188–189

industry standards and models, 195
monitoring milestones, 191
overhead costs and profitability, 194
portfolio management, 193, 198
roles and responsibilities, 192
tools standardization, 194

getting the most from, 196–198
as portfolio managers (Scrum), 182
submitting project ideas to, 123

project managers, 29, 40
declaration of interdependence. See PMDOI
in functional organizations, 54
in projectized structures, 54
roles and responsibilities, 40–47

project metrics. See metrics
project portfolio backlog, 179
project portfolio management, 61, 111–137. See also

portfolio management
asset creation, 157
balancing the project portfolio, 111–123. See also

too many projects
risk and reward, 114–120, 167–169
small projects, deemphasizing, 122–123
visionary projects, 121

initiating new projects, 9, 123–132
business cases, 125–127
experimenting (visionary projects), 121
funneling proposals, 127–130, 140, 168–169
idea management, 123–124
parallel execution (competitive projects). See
competitive projects

pausing or accelerating projects, 134–136
sample scenario, 166–171
in Scrum, 179
selecting projects, 132–134

project reports (status reporting), 36, 87–89
insufficient, resource management and, 148
interpreting, 89–91

project requirements. See entries at requirements
project schedule. See schedules
project switching, 112, 113. See also task switching

resource management and, 140, 142
project teams. See teams
project tools, standardizing, 194
projectized organization, 54
projects, 122–123

benefits of. See also productivity penalties
financial, 97–103, 106–109. See also funding
kinds of, 103–106
risk, 106–109

competitive, 130–132. See also simultaneous
projects
example scenario, 168

defined, 59
financial analysis of, 97–103. See also funding

risk, 106–109

projects

Z02I625679.indd 209 6/16/2008 4:45:24 PM

210

projects (continued)
funneling proposals into, 127–130

example scenario, 168–169
resource synchronization, 140

goals and, 93
pausing or accelerating, 134–136
phases of. See milestones
risks. See risks
selecting. See choosing projects
temporary nature of, 59, 114
terminating (canceling), 63
too many at once, 63, 112–114

administrative costs, 113
failing to find closure, 114
productivity costs of, 112–113
resource portfolio and, 142–143
small projects, 122–123

proof of technologies (POT), 130
proposal management, 127–130

Q
quality (metrics), 79–84

automated, 80–83
manual, 83–84

quality of a system (asset), 158
questionnaires for morale measurement, 86

R
RAD (Rapid Application Development), 16
Rational Method Composer (RMC), 17
Rational Unified Process (RUP), 17
recruiting, corporate networks for, 153
reflection on past iterations. See retrospectives
regulations, industry-level, 195
release notes, writing, 197
release teams, 197
releases

competitive projects, 131
frequent, 29
incremental. See increments of development
partial, 197
payback periods and, 98–100

reliability, situational adaptation and. See situational
adaptation

removing impediments, 43
replacing legacy systems, 158–161
reporting, 46, 87–91. See also metrics

interpretation of metrics, 89–91
milestone monitoring, 191
PMO attendance at daily meetings, 197
Scrum, 177, 183

status reporting, 36, 87–89
insufficient, resource management and, 148
interpreting, 89–91

requirements
ambiguity among, 6, 152
business cases vs., 125
expectations vs., 3
having too few, 7
having too many, 6
reporting on, 88, 191
unwanted (unnecessary features), 162
user stories for. See stories

requirements paralysis, 5
requirements stories, 28–29

defects per story (metric), 84
estimating progress with story points, 68–72
goals and, 95
iteration length and, 44
Scrum process, 176

resolving defects. See defects
resource insufficiency, 64
resource pools, 148
resource portfolio backlog, 180
resource portfolio management, 61, 64, 139–155.

See also portfolio management
accelerating projects, 136
balancing the resource portfolio, 139–148

diversity of skills, 144–146
feedback from project team, 146–148
too many projects, 112, 142–143
vision, lack of, 140–142

certification, 154
corporate networks, 153
globally distributed development, 151–153
product owners, staffing, 178
roles and resource pools, 148
sample scenario, 166–171

first iteration, 167
second iteration, 168
third iteration, 169

in Scrum, 180
skills transfer, 149–151
support for roadblock systems, 158–161

responsibility. See accountability and responsibility
retrospectives, 44

PMO attendance at, 197
return on investment (ROI), 93–110. See also costs

competitive projects and proof of technologies,
130

continuous flow of value, 38
conversion projects, 159
cost-value evolution, 96
financial analysis models, 97–103
increments and, 94–97
project benefits, types of, 103–106

projects (continued)

Z02I625679.indd 210 6/16/2008 4:45:25 PM

 211

return on investment (ROI) (continued)
risks, 106–109
technology and, 109

reward, balancing risk against, 114–120
example scenario, 167–169
go/no-go decision points, 132–134
portfolio evolution, 117

rewarding project ideas, 124
risks, 106–109

balancing with reward, 114–120
example scenario, 167–169
portfolio evolution, 117

go/no-go decision points, 132–134
reporting on, 88
technology, 109–110

RMC (Rational Method Composer), 17
roadblock assets, 158–161
ROI (return on investment), 93–110. See also costs

competitive projects and proof of technologies,
130

continuous flow of value, 38
conversion projects, 159
cost-value evolution, 96
financial analysis models, 97–103
increments and, 94–97
project benefits, types of, 103–106
risks, 106–109
technology and, 109

roles in agile project management, 40–42
agile PMOs, 192
resource pools, 148
Scrum, 181–182

RUP (Rational Unified Process), 17

S
scenarios, 44
schedules

Gantt charts, 33
reporting on, 88

Schwaber, Ken, 16
Scrum, 16, 175–186

activities and meetings, 182
certification, 184
challenges, 177
metrics, 183
portfolio backlogs, 179–180
roles, 181–182
scrum master, 41

scrum master, 177
certification, 184
removing impediments, 177

selecting projects, 132–136

competitive projects, 130–132. See also
simultaneous projects
example scenario, 168

funneling proposals, 127–130
example scenario, 168–169
resource synchronization, 140

self-advertisement, 146
self-organized teams, 29, 188–189
separation among team members, 26, 152
shared responsibility. See accountability and

responsibility
sign-off for project phases, 4. See also milestones
silos, 53
simultaneous projects

competitive projects, 130–132
example scenario, 168

example scenario, 168
managing. See project portfolio management
too many, 63, 112–114

administrative costs, 113
failing to find closure, 114
productivity costs of, 112–113
resource portfolio and, 142–143
small projects, 122–123

situational adaptation, 39
lack of vision, 65, 140–142

skills diversity, 144–146
skills transfer, 149–151
small projects, 122–123
social networks, 26, 153

pair programming, 27
team moral metrics, 85–87
team rooms, 28

sprint (Scrum), 16
sprint backlog, 41, 175
sprint planning meetings, 182
staffing. See people; resource portfolio management
stakeholders. See customers, communicating with
standardization of tools within organization, 194
standards, industry-level, 195
Standish Group, 162
stand-up meetings, daily, 27, 46

PMO attendance at, 197
starting new projects. See initiating new projects
State of Agile survey (2007), 52
status reports, 36, 87–89

insufficient, resource management and, 148
interpreting, 89–91

stories, 28–29
defects per story (metric), 84
estimating progress with story points, 68–72
goals and, 95
iteration length and, 44
Scrum process, 176

stories

Z02I625679.indd 211 6/16/2008 4:45:25 PM

212

strategy. See also vision
with applications. See application portfolio

management
with assets. See asset portfolio management
project strategies

business case. See business cases
impedance of small projects, 122–123
selecting projects. See choosing projects
starting projects. See initiating new projects
visionary projects. See visionary projects

with resources. See resource portfolio
management

situational. See situational adaptation
strong matrix organizations, 57
structure, organizational, 53–57
submitting new project ideas, 123–124

funneling proposals, 127–130
example scenario, 168–169
resource synchronization, 140

support for roadblock systems, 158–161
surveys for morale measurement, 86
Sutherland, Jeff, 16
switching tasks. See project switching; task switching
system quality, measuring. See quality (metrics)
systems portfolio. See asset portfolio management

T
task splitting, 64
task switching, 64, 112

resource management and, 140, 142
tasks, fast-tracking and, 135
TCF (Technical Complexity Factor), 72, 73–74
TDD (test-driven development), 23
team morale, measuring, 85–87
team surveys, 86
teams, 193. See also people

communication. See also communication
as empowered, 188–189
meetings. See meetings
PMO dedication to, 193
project teams, 42
release teams, 197
self-organized, 29, 188–189
speed of, 71. See also velocity (progress)
Wide-Band Delphi method for estimating

progress, 78
working in team rooms, 28

Technical Complexity Factor (TCF), 72, 73–74
technical information, in status reports, 89
technology

about, 109
assets that become roadblocks, 158–161
“cool factor”, 121

temporary nature of projects, 59, 114
terminating projects, 63
test cases vs. open defects (metric), 81
test-driven development (TDD), 23
testing. See also defects

component integration and, 21
late requirements changes from, 4
progress estimation and, 79

themes, 95
time to market, 9
time to resolve defects (metric), 84
time value of money, 99
time-out, for an iteration, 141
titles for suggested projects, 124
too few requirements, 7
too many projects, 63, 112–114

administrative costs, 113
failing to find closure, 114
productivity costs of, 112–113
resource portfolio and, 142–143
small projects, 122–123

too many requirements, 6
tools standardization with organization, 191
top 10 list of proposals, 129
total cost of ownership, 163–164
total number of defects (metric), 81
tracking progress. See velocity
traditional project management, 31–37

challenges of, 37
training, 144–146, 149–151

certification. See certification
PMO assistance with, 196
Scrum, 185

transferring knowledge. See training
transition from legacy systems, 160
typecasting employees, 140

U
UCP (Use Case Points), 75. See also use cases,

estimating progress with
Unadjusted Use Case Points (UUCP), 72–73
uncertainty management, 38
Unified Process (UP), 17
unique nature of projects, 59
unit tests, 24

total number of (metric), 83
unit-test code coverage (metric), 82
unwanted requirements, 162
UP (Unified Process), 17
use cases, 44, 72

estimating progress with, 72–76
user stories. See stories
UUCP (Unadjusted Use Case Points), 72–73

strategy

Z02I625679.indd 212 6/16/2008 4:45:25 PM

 213

V
vacations, 141
value measurements. See metrics
value of individuals. See individuals, valuing
velocity (progress), 71. See also progress
virtual teams. See physical separation among team

members
vision

impeding, with small projects, 122
lack of, 65, 140–142
visionary features, 8
visionary projects, 121

visual modeling, 76

W
waterfall-phased development, 17, 21, 22

meeting goals, 95
WBS (work-breakdown structure), 32–33

weak matrix organizations, 57
Weinberg, Gerald, 113
Wide-Band Delphi method for estimating progress,

78
work breaks, 141
work package, 32
work-breakdown structures (WBS), 32–33
workforce. See people; resource portfolio

management
writing manuals and release notes, 197

X
XP (Extreme Programming), 16

Y
“Yes, but...” syndrome, 23

“Yes, but...” syndrome

Z02I625679.indd 213 6/16/2008 4:45:25 PM

Z02I625679.indd 214 6/16/2008 4:45:25 PM

Jochen Krebs
Jochen Krebs is an accomplished agile mentor and instructor. He is also the founder of
Incrementor (www.incrementor.com), an agile coaching and training services company in
New York. His focus is agile project management and requirements management, where
he works directly with project management offices and their portfolios. During his 15+
year professional career, he has worked in various industries in several different roles—for
 example, as an object-oriented developer, project manager, instructor, consultant, and
 mentor. Jochen received his MSc from the Open University in Computing for Commerce
and Industry.

Jochen is also the co-author of the RUP Reference and Certification Guide and has written
numerous articles about agile practices in a variety of magazines. He frequently speaks at
conferences and companies and spearheads the local chapter of the Agile Project Leadership
Network (APLN) in New York. German-born, Jochen Krebs currently lives in Katonah,
New York with his wife, Melanie.

Z03B625679.indd 1 6/16/2008 2:26:28 PM

	Cover
	Copyright Page

	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Part I: Agile for Managers
	Part II: Defining, Planning, and Measuring Portfolios
	Part III: Organization and Environment
	Who Is This Book For?
	Find Additional Content Online
	Support for This Book
	Questions and Comments

	Chapter 2: Agile Software Development
	Definitions
	What Is Agile?
	Agile Processes
	Agile Manifesto
	Agile Alliance
	Agile Project Leadership Network

	Key Practices of Agile Development
	Iterative-Incremental Development
	Test-Driven Development
	Continuous Integration
	Face-to-Face Communication

	Things You Observe in an Agile Project
	Pair Programming
	Daily Stand-Up Meetings
	Stories About Requirements
	Team Rooms
	Frequent Releases
	Self-Organized Teams

	Summary

	Chapter 3: Project Management
	Traditional Project Management
	Work-Breakdown Structures
	Gantt Charts
	Critical Path Analyses
	Project Reports
	Summary About Challenges

	Agile Project Management
	Project Management Declaration of Interdependence

	Roles and Responsibilities
	Roles
	Responsibilities

	Summary

	Index
	About the Author

