Applications = Code +
Markup: A Guide to the
Microsoft® Windows®
Presentation Foundation

Charles Petzold

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/6476.aspx

9780735619579 Microsoft

Publication Date: August 2006 PI’QSS

Table of Contents

INtrodUCHION e vii
Your Background vii
This BOOK . ..o viii
Windows and Programming. viii
System RequUIremMents.o X
Prerelease Software X
Code SamPlEs . . oo X
Support for This Book xi
Questions and CommMENTS. i Xi
Author's Web Site. Xi
Special Thanks. e Xi
part1 Code

1 The Applicationand the Window 3
2 Basic Brushes. e 23
3 The ConceptofContent, 45
4 Buttons and OtherControls........... 65
5 Stackand Wrap ...t e 89
6 The DockandtheGrid 107
7 L@ 0 17 T3 131
8 Dependency Properties.oiiiiiiiiii i 141
9 Routed Input Events i 157
10 CustomElements. i 185
11 Single-ChildElements........, 203
12 CustomPanels e 235

What do think of this book? Microsoft is interested in hearing your feedback about this publication so we can

"W want to hear from yout o e e

vi

Table of Contents

13 ListBox Selection i e 257
14 The Menu Hierarchy it 289
15 Toolbarsand StatusBars............ il 317
16 TreeView and ListView. i 341
17 Printingand Dialog Boxesccoiiiiiiniiiinnnennnn. 375
18 The Notepad Clonet it 413
part It Markup
19 XAML (Rhymes withCamel)......... i it 457
20 Properties and Attributes. 487
21 RESOUICES. . ..ttt i i i e e 523
22 Windows, Pages, and Navigation 545
23 DataBinding...........oiiiiiiiii i i e e 605
24 StyleS . e 639
25 Templateso e e 663
26 DataEntry, DataViews ...ttt 719
27 Graphical Shapes i e 759
28 Geometriesand Paths......... il 783
29 Graphics Transforms i i i 819
30 ANimation e 859
31 Bitmaps, Brushes,and Drawings oiiiiian... 939
INdEX. . et e e 977
What do you think of this book? Microsoftis interested in hearing your feedback about this publication so we can

continually improve our books and learning resources for you. To participate in a brief

We want to hear from yOU! online survey, please visit: www.microsoft.com/learning/booksurvey/

Chapter 14

The Menu Hierarchy

The traditional focus of the user interface in a Windows application is the menu. The menu
occupies prime real estate at the top of the application window, right under the caption bar
and extending the full width of the window. In repose, the menu is commonly a horizontal list
of text items. Clicking an item on this top-level menu generally displays a boxed list of other
items, called a drop-down menu or a submenu. Each submenu contains other menu items
that can either trigger commands or invoke other nested submenus.

In short, the menu is a hierarchy. Every item on the menu is an object of type Menultem. The
menu itself is an object of type Menu. To understand where these two controls fit into the
other Windows Presentation Foundation controls, it is helpful to examine the following
partial class hierarchy:

Control
ContentControl
HeaderedContentControl
ItemsControl
HeaderedItemsControl
These four classes that derive from Control encompass many familiar controls:

m Controls that derive from ContentControl are characterized by a property named Content.
These controls include buttons, labels, tool tips, the scroll viewer, list box items, and
the window itself.

m The HeaderedContentControl derives from ContentControl and adds a Header property.
The group box falls under this category.

m [temsControl defines a property named Items that is a collection of other objects. This
category includes the list box and combo box.

B HeaderedItemsControls adds a Header property to the properties it inherits from Items-
Control. A menu item is one such control.

The Header property of the Menultem object is the visual representation of the item itself,
usually a short text string that is optionally accompanied by a small bitmap. Each menu item
also potentially contains a collection of items that appear in a submenu. These submenu
items are collected in the Items property. For menu items that invoke commands directly,
the Items collection is empty.

289

290

Partl: Code

For example, the first item on the top-level menu is typically File. This is a Menultem object.
The Header property is the text string “File” and the Items collection includes the Menultem
objects for New, Open, Save, and so forth.

The only part of the menu that doesn’t follow this pattern is the top-level menu itself. The top-
level menu certainly is a collection of items (File, Edit, View, and Help, for example) but there
is no header associated with this collection. For that reason, the top-level menu is an object of
type Menu, which derives from ItemsControl. This partial class hierarchy shows the menu-
related classes:

Control
ItemsControl
HeaderItemsControl
Menultem
MenuBase (abstract)
ContextMenu
Menu
Separator

The Separator control simply displays a horizontal or vertical line (depending on its context)
that’s often used on submenus to separate menu items into functional categories.

The items in the menu can actually be objects of almost any type, but you'll generally use
Menultem because it defines several properties and events commonly associated with menu
items. Like ButtonBase, Menultem defines a Click event and a Command property. Your pro-
gram can handle many menu items just as if they were buttons.

Menultem also defines a property named Icon that lets you put a little picture in the menu item
in a standard location. Interestingly, the Icon property is of type Object, which means you can
easily use an element from the Shapes library (as I'll demonstrate in this chapter).

Menu items can be checked, either to denote on/off options or to indicate one item selected
from a group of mutually exclusive items. Menultem includes a Boolean IsChecked property to
turn checkmarks on and off, and an IsCheckable property to automate the toggling of check-
marks. The Checked event is fired when the IsChecked property changes from false to true. The
Unchecked event indicates when IsChecked changes from true to false.

Sometimes it’s necessary for a program to disable certain items on a submenu. For example,
the Save option on the File menu should be disabled if the program currently has no docu-

ment to save. It is often most convenient to disable menu items when the submenu is being
displayed. Menultem defines a SubmenuOpened event to help out.

Chapter 14: The Menu Hierarchy 291

Constructing a menu generally begins at the top and proceeds downward. You first create an
object of type Menu:

Menu menu = new Menu();
Commonly, the first item is File:

MenuItem itemFile = new MenuItem();
itemFile.Header = "_File";

As in other controls, the underline character facilitates navigation with the keyboard. When
the user presses the Alt key, the F in “File” becomes underlined, and pressing the F key then
opens the File submenu. On the top-level menu, and in each submenu, underlined letters
should be unique.

You make the File item part of the top-level menu by adding it to the Items collection of the
Menu object:

menu.Items.Add(itemFile);
The first item on the File menu is often New:

MenuItem itemNew = new MenuItem();
itemNew.Header = "_New";
itemNew.Click += NewonClick;
itemFile.Items.Add(itemNew) ;

This New item is a command, so assign the Click event a handler to process that command.
Add the New item to the File collection:

itemFile.Items.Add(itemNew);
And so forth.

Here’s a program that displays a little text in its client area and constructs a menu. Only one
of the File items is implemented, but the menu includes a top-level Window item containing
four checkable items that let you change the properties of the window.

PeruseTheMenu.cs

using System;

using System.windows;

using System.Windows.Controls;
using System.windows.Input;
using System.windows.Media;

namespace Petzold.PeruseTheMenu

{

public class PeruseTheMenu : Window

292 Partl: Code

[STAThread]

public static void Main(Q)

{
Application app = new Application();
app.Run(new PeruseTheMenu());

}

public PeruseTheMenu()

{

Title = "Peruse the Menu";

// Create DockPanel.
pockPanel dock = new DockPanel();
Content = dock;

// Create Menu docked at top.

Menu menu = new Menu();
dock.cChildren.Add(menu) ;
DockPanel.Setbock(menu, Dock.Top);

// Create TextBlock filling the rest.
TextBlock text = new TextBlock();
text.Text = Title;

text.FontSize = 32; // ie, 24 points.
text.TextAlignment = TextAlignment.Center;
dock.children.Add(text);

// Create File menu.

MenuItem itemFile = new MenuItem();
itemFile.Header = "_File";
menu.Items.Add(itemFile);

MenuItem itemNew = new MenuItem();
itemNew.Header = "_New";

itemNew.Click += UnimplementedonClick;
itemFile.Items.Add(itemNew) ;

MenuItem itemOpen = new MenuItem();
itemOpen.Header = "_Open";
itemopen.Click += UnimpTlementedonClick;
itemFile.Items.Add(itemOpen);

MenuItem itemSave = new MenuItem();
itemSave.Header = "_Save";
itemSave.Click += UnimpTlementedoncClick;
itemFile.Items.Add(itemSave);

itemFile.Items.Add(new Separator());

MenuItem itemEXit = new MenuItem();
itemExit.Header = "E_xit";
itemExit.Click += ExitoncClick;
itemFile.Items.Add(itemEXxit);

Chapter 14: The Menu Hierarchy 293

// Create window menu.

MenuItem itemwindow = new MenuItem();
itemwindow.Header = "_window";
menu.Items.Add(itemwindow) ;

MenuItem itemTaskbar = new MenuItem();
itemTaskbar.Header = "_Show in Taskbar";
itemTaskbar.IsCheckable = true;
itemTaskbar.IsChecked = ShowInTaskbar;
itemTaskbar.Click += Taskbaronclick;
itemwindow.Items.Add(itemTaskbar);

MenuItem itemSize = new MenuItem();

itemSize.Header = "Size to _Content";

itemSize.IsCheckable = true;

itemSize.IsChecked = SizeToContent == SizeToContent.widthAndHeight;
itemSize.Checked += SizeonCheck;

itemSize.unchecked += SizeoncCheck;

itemwindow.Items.Add(itemSize);

MenuItem itemResize = new MenuItem();

itemResize.Header = "_Resizable";
itemResize.IsCheckable = true;
itemResize.IsChecked = ResizeMode == ResizeMode.CanResize;

itemResize.Click += ResizeonClick;
itemwindow.Items.Add(itemResize);

MenuItem itemTopmost = new MenuItem();
itemTopmost.Header = "_Topmost";
itemTopmost.IsCheckable = true;
itemTopmost.IsChecked = Topmost;
itemTopmost.Checked += TopmostOnCheck;
itemTopmost.uUnchecked += TopmostOnCheck;
itemwindow.Items.Add(itemTopmost);
}
void UnimplementedonClick(object sender, RoutedEventArgs args)
{
MenuItem item = sender as Menultem;
string strItem = item.Header.ToString().Replace("_", "");
MessageBox.Show("The " + strItem +
" option has not yet been implemented", Title);

}
void ExitonClick(object sender, RoutedEventArgs args)
{
Close(Q);
}
void TaskbaroncClick(object sender, RoutedEventArgs args)
{
MenuItem item = sender as MenuItem;
ShowInTaskbar = item.IsChecked;
}

void SizeonCheck(object sender, RoutedEventArgs args)

294

Partl: Code
{
MenuItem item = sender as MenuItem;
SizeToContent = item.IsChecked ? SizeToContent.widthAndHeight :
SizeToContent.Manual;
}
void ResizeonClick(object sender, RoutedEventArgs args)
{
MenuItem item = sender as MenuItem;
ResizeMode = item.IsChecked ? ResizeMode.CanResize :
ResizeMode.NoResize;
}
void TopmostonCheck(object sender, RoutedEventArgs args)
{
MenuItem item = sender as MenuItem;
Topmost = item.IsChecked;
}
}
3

Notice that the constructor begins by creating a DockPanel. Customarily the menu is docked
on the top of the client area, and unless you want to baffle users, your menus will appear
there as well. The DockPanel is the standard base panel for windows that have menus, tool-
bars, or status bars. You can get the same effect with a StackPanel or Grid, but the DockPanel is
standard.

The UnimplementedOnClick method handles the Click events for the New, Open, and Save
items. The Click handler for the Exit item calls Close on the Window object to end the program.
A Separator separates the Exit item from the others, as is common.

The four items on the Window menu all have their IsCheckable property set to true to enable
automatic toggling of the checkmark. The IsChecked property indicates whether a checkmark
currently appears or not. For the first and third items, the program installs a handler for the
Click event. For the second and fourth items, the program installs the same handler for the
Checked and Unchecked events. It doesn’t really matter which approach you use. Potentially
installing separate Checked and Unchecked handlers lets you perform actions without explic-
itly examining the IsChecked property. In this program, the Click, Checked, and Unchecked
event handlers all merely use the IsChecked property to set certain properties of the window.

Try commenting out the following two lines of code:

itemTaskbar.IsChecked = ShowInTaskbar;
itemTaskbar.Click += TaskbaroncClick;

And replace them with these:

itemTaskbar.SetBinding(MenuItem.IsCheckedProperty, "ShowInTaskbar™);
itemTaskbar.DataContext = this;

Chapter 14: The Menu Hierarchy 295

You can also get rid of the entire TaskbarOnClick method, and the program will work the same.
This is a little taste of data binding. Basically you're telling the Menultem that the IsChecked
property should always be the same value as the ShowInTaskbar property of the this object
(the window). You can set such a data binding with the Topmost menu item as well, but you
can’t do it with the other two because the properties aren’t Booleans.

If you want a menu item to have a checkmark, and you don’t set the IsCheckable property to
true, you'll need to handle Click events and manually check and uncheck the item using the
IsChecked property. This approach is necessary when you use the menu to display a group of
mutually exclusive items, where checking any item causes the previously checked item to
become unchecked (much like a group of radio buttons). With a group of mutually exclusive
checked items, you'll leave the IsCheckable property in its default false setting so that there’s no
automatic toggling, and you'll probably set the IsChecked property on one of the items when
initially creating the items. You'll also handle all the checking and unchecking logic yourself in
the Click event handlers. Often it’s easiest to share a single Click handler for all the items in a
mutually exclusive group.

To keep track of the currently checked item in any mutually exclusive group, you'll probably
maintain a field of type Menultem named (for example) itemChecked:

MenuItem itemChecked;

You initialize this field in the window’s constructor. If you use a single Click event handler for
the whole group of mutually exclusive items, the Click event handler begins by unchecking
the currently checked item:

itemChecked.IsChecked = false;

The handler then saves the item being clicked as the new value of itemChecked, and checks
that item:

itemChecked = args.Source as MenuItem;
itemChecked.IsChecked = true;

The event handler can then do whatever specifically needs to be done for these items. Here’s
a program similar to the TuneTheRadio program in Chapter 5 that lets you change the
WindowStyle property of the window:

CheckTheWindowsStyle.cs

using System;

using System.windows;

using System.windows.Controls;
using System.windows.Input;
using System.windows.Media;

296 Partl: Code

namespace Petzold.CheckThewindowstyle

{
pubTlic class CheckThewindowStyle : window
{
MenuItem itemChecked;
[STAThread]
public static void Main(Q)
{

Application app = new Application();
app.Run(new CheckThewindowSstyle());
}
public CheckThewindowstyle()
{
Title = "Check the window Style";

// Create DockPanel.
DockPanel dock = new DockPanel();
Content = dock;

// Create Menu docked at top.

Menu menu = new Menu();
dock.children.Add(menu);
DockPanel.Setbock(menu, Dock.Top);

// Create TextBlock filling the rest.
TextBlock text = new TextBlock();
text.Text = Title;

text.FontSize = 32;

text.TextAlignment = TextAlignment.Center;
dock.children.Add(text);

// Create MenuItem objects to change windowStyle.
MenuItem itemStyle = new MenuItem();
itemStyle.Header = "_Style";
menu.Items.Add(itemStyle);

itemStyle.Items.Add(
CreateMenuItem("_No border or caption"”, windowStyle.None));

itemStyle.Items.Add(
CreateMenuItem("_Single-border window",
windowStyle.SingleBorderwindow)) ;

itemStyle.Items.Add(
CreateMenuItem("3_D-border window",
windowStyle.ThreebBorderwindow)) ;
itemStyle.Items.Add(
CreateMenuItem("_Tool window",
windowStyle.Toolwindow)) ;
}
MenuItem CreateMenuItem(string str, windowStyle style)
{
MenuItem item = new MenuItem();
item.Header = str;
item.Tag = style;

Chapter 14: The Menu Hierarchy 297

item.IsChecked = (style == windowStyle);
item.Click += StyleonClick;

if (item.IscChecked)
itemChecked = item;

return item;

}
void StyleoncClick(object sender, RoutedEventArgs args)
{
itemChecked.IsChecked = false;
itemChecked = args.Source as MenuItem;
itemChecked.IsChecked = true;
windowstyle = (WindowStyle)itemChecked.Tag;
}

Because the four items that appear on the Style menu are rather similar and share the same
Click event handler, the program defines a little method named CreateMenultem specifically to
create these items. Each item has a text string describing a particular member of the Window-
Style enumeration. The ever-handy Tag property of the Menultem object gets the enumeration
member itself. If the particular WindowStyle enumeration member is the same as the window’s
WindowStyle property, the method sets the IsChecked property to true and also sets the item-
Checked field to that item.

The Click event handler unchecks the itemChecked item, sets itemChecked to the clicked item,
and concludes by setting the WindowStyle property of the window based on the Tag property
of the clicked item.

If you think about it, the CheckTheWindowStyle program doesn’t really need to maintain the
itemChecked field. That’s simply for convenience. The program can always determine which
item is currently checked by searching through the Items collection of the Style item, or even
by examining the WindowStyle property of the window.

It’s not even necessary to check and uncheck the items in the Click event handler. Instead, the
program can prepare the submenu for viewing during the SubmenuOpened event and check
the correct item at that time. The following program demonstrates an alternative approach to
checking and unchecking menu items. Two menu items let you change the foreground and
background brushes of a TextBlock element.

CheckTheColor.cs

using System;
using System.Reflection;
using System.windows;

298

Part I:

Code

using System.windows.Controls;
using System.Windows.Input;
using System.windows.Media;
using System.Windows.Shapes;

namespace Petzold.CheckTheColor

{

pubTlic class CheckTheColor : window

TextBlock text;

[STAThread]
public static void Main(Q)

{

}

Application app = new Application();
app.Run(new CheckTheColor());

public checkThecolor()

{

Title = "Check the color";

// Create DockPanel.
DockPanel dock = new DockPanel();
Content = dock;

// Create Menu docked at top.

Menu menu = new Menu(Q);
dock.children.Add(menu);
DockPanel.Setbock(menu, Dock.Top);

// Create TextBlock filling the rest.

text = new TextBlock();

text.Text = Title;

text.TextAlignment = TextAlignment.Center;
text.FontSize = 32;

text.Background = SystemColors.windowBrush;
text.Foreground = SystemColors.windowTextBrush;
dock.children.Add(text);

// Create menu 1items.

MenuItem itemColor = new MenuItem();
itemColor.Header = "_Color";
menu.Items.Add(itemColor);

MenuItem itemForeground = new MenuItem();
itemForeground.Header = "_Foreground";
itemForeground.SubmenuOpened += ForegroundonOpened;
itemColor.Items.Add(itemForeground);

FillwithColors(itemForeground, ForegroundonClick);

MenuItem itemBackground = new MenuItem();
itemBackground.Header = "_Background";
itemBackground.SubmenuOpened += BackgroundonOpened;
itemColor.Items.Add(itemBackground) ;

}

void FillwithColors(MenuItem itemParent, RoutedEventHandler handler)

{

}

void Foregroundonopened(object sender, RoutedEventArgs args)

{

}

void Backgroundonopened(object sender, RoutedEventArgs args)

{

}

void ForegroundonClick(object sender, RoutedEventArgs args)

{

}

void BackgroundonClick(object sender, RoutedEventArgs args)

{

Chapter 14: The Menu Hierarchy

FillwithColors(itemBackground, BackgroundoncClick);

foreach (PropertyInfo prop in typeof(Colors).GetProperties())

{
color clr = (Color)prop.Getvalue(null, null);
int iCount = 0;
icount += clr.R == 0 || clr.R == 255 ? 1 :
icount += clr.G == 0 || clr.G == 255 ? 1 :
icount += clr.B == 0 || clr.B == 255 ? 1 :
if (clr.A == 255 && iCount > 1)
{
MenuItem item = new MenuItem();
item.Header = "_" + prop.Name;
item.Tag = clr;
item.Click += handler;
itemParent.Items.Add(item);
}
}

MenuItem itemParent = sender as MenulItem;

foreach (MenuItem item in itemParent.Items)
item.IsChecked =

((text.Foreground as SolidcColorBrush).Color == (Color)item.Tag);

MenuItem itemParent = sender as MenuItem;

foreach (MenuItem item in itemParent.Items)
item.IsChecked =

((text.Background as SsolidColorBrush).Color == (Color)item.Tag);

MenuItem item = sender as MenuItem;
color clr = (Color)item.Tag;
text.Foreground = new SolidColorBrush(clr);

MenuItem item = sender as MenuItem;
Color clr = (Color)item.Tag;
text.Background = new SolidColorBrush(clr);

299

300

Partl: Code

The program creates a top-level menu item of Color and a submenu containing the two items
Foreground and Background. For each of these items, the FillWithColors method adds individ-
ual color items to the nested submenu. The logic is a little elaborate because it restricts the
menu to only those colors where at least two of the Red, Green, and Blue primaries are either
0 or 255. (Remove that logic if you want to see how a large menu is handled under the
Windows Presentation Foundation.)

For the Foreground menu item, the ForegroundOnOpened method handles the Submenu-
Opened event, while the ForegroundOnClick method handles the Click events for each of
the colors on the Foreground submenu. (The Background menu works similarly.) The
ForegroundOnOpened handler loops through the items in the Items property and sets the
value of the IsChecked property to true if the item corresponds to the current foreground color
of the TextBlock, and false otherwise. The ForegroundOnClick method doesn’t have to bother
with checking and unchecking and needs only to create a new brush for the TextBlock.

Can we get the actual colors into the menu? Yes, of course, and the Menultem class has an Icon
property intended for little pictures (or whatever) at the left side of the item. In the if block in
the FillWithColors method, any time after the Menultem has been created, add the following
code. I've already provided the using directive for System. Windows.Shapes.

Rectangle rect = new Rectangle();
rect.Fill = new SolidcolorBrush(clr);
rect.width = 2 * (rect.Height = 12);
item.Icon = rect;

The checkmarks share the space with any Icon property that may be set.

You'll probably recall the ColorGrid control from Chapter 11 and the similar (but simpler)
ColorGridBox control from Chapter 13. You can use these controls as menu items, and the
following program shows how. This project requires a link to the ColorGridBox.cs file. Notice
that this program contains a using directive for that project.

SelectColorFromMenuGrid.cs

using Petzold.SelectColorFromGrid;
using System;

using System.windows;

using System.Windows.Controls;
using System.windows.Input;

using System.windows.Media;

namespace Petzold.SelectColorFromMenuGrid

{
pubTlic class SelectColorFromMenuGrid : window
{
[STAThread]
public static void Main(Q)

Chapter 14: The Menu Hierarchy 301

Application app = new Application();
app.Run(new SelectColorFromMenuGrid());
}
public selectColorFromMenuGrid()
{

Title = "Select Color from Menu Grid";

// Create DockPanel.
DockPanel dock = new DockPanel();
Content = dock;

// Create Menu docked at top.

Menu menu = new Menu(Q);
dock.children.Add(menu);
DockPanel.Setbock(menu, Dock.Top);

// Create TextBlock filling the rest.
TextBlock text = new TextBlock();
text.Text = Title;

text.FontSize = 32;

text.TextAlignment = TextAlignment.Center;
dock.children.Add(text);

// Add items to menu.

MenuItem itemColor = new MenuItem();
itemColor.Header = "_cColor";
menu.Items.Add(itemColor);

MenuItem itemForeground = new MenuItem();
itemForeground.Header = "_Foreground";
itemColor.Items.Add(itemForeground);

// Create ColorGridBox and bind with Foreground of window.
colorGridBox clrbox = new ColorGridBox();
clrbox.SetBinding(ColorGridBox.SelectedvalueProperty, "Foreground");
clrbox.DataContext = this;

itemForeground.Items.Add(clrbox);

MenuItem itemBackground = new MenuItem();
itemBackground.Header = "_Background";
itemColor.Items.Add(itemBackground);

// Create ColorGridBox and bind with Background of window.

clrbox = new ColorGridBox();
clrbox.SetBinding(ColorGridBox.SelectedvalueProperty, "Background");
clrbox.DataContext = this;

itemBackground.Items.Add(c1rbox) ;

As in the previous program, this program creates a top-level item of Color with Foreground
and Background items in the Color submenu. Instead of adding multiple items to the

302

Partl: Code

Foreground and Background submenus, the program adds just one item to each—an object of
type ColorGridBox. Because ColorGridBox was written so that the SelectedValue property is an
object of type Brush, it is possible to avoid event handlers entirely and simply provide bindings
between the SelectedValueProperty dependency property of the ColorGridBox and the Fore-
ground and Background properties of the window.

You've seen how handling the SubmenuOpen event can be useful for checking items on the
menu. Handling this event is particularly common in programs that need to disable certain
menu items. The Edit menu is one common example. A program that has the ability to
transfer text in and out of the clipboard shouldn’t enable the Paste item unless the clipboard
actually contains text. The Cut, Copy, and Delete options should be enabled only if the
program is able to copy something to the clipboard.

The following program does nothing but implement an Edit menu that lets you Cut, Copy,
Paste, and Delete the text in a TextBlock element. The project also includes four bitmaps as
application resources that it uses to create Image elements that it sets to the Icon property of
each menu item. (I obtained these images from the library shipped with Microsoft Visual
Studio; however, these images originally had resolutions of 72 dots per inch so I changed
them to 96 DPL.)

CutCopyAndPaste.cs

using System;

using System.windows;

using System.wWindows.Controls;
using System.Windows.Input;

using System.windows.Media;

using System.windows.Media.Imaging;

namespace Petzold.CutCopyAndPaste
{
pubTlic class CutCopyAndPaste : window
{
TextBlock text;
protected MenuItem itemCut, itemCopy, itemPaste, itemDelete;

[STAThread]

public static void Main(Q)

{
Application app = new Application();
app.Run(new CutCopyAndPaste());

}

public CutCopyAndpPaste()

{

Title = "Cut, Copy, and Paste";

Chapter 14: The Menu Hierarchy 303

// Create DockPanel.
DockPanel dock = new DockPanel();
Ccontent = dock;

// Create Menu docked at top.

Menu menu = new Menu();
dock.children.Add(menu);
DockPanel.Setbock(menu, Dock.Top);

// Create TextBlock filling the rest.

text = new TextBlock();

text.Text = "Sample clipboard text";
text.HorizontalAlignment = HorizontalAlignment.Center;
text.VerticalAlignment = VerticalAlignment.Center;
text.FontSize = 32;

text.Textwrapping = TextWrapping.wrap;
dock.cChildren.Add(text);

// Create Edit menu.

MenuItem itemEdit = new MenuItem();
itemEdit.Header = "_Edit";
itemedit.Submenuopened += EditOnOpened;
menu.Items.Add(itemEdit);

// Create items on Edit menu.
itemCut = new MenuItem();
itemCut.Header = "Cu_t";
itemCut.Click += cutoncClick;
Image img = new Image();
img.Source = new BitmapImage(
new Uri("pack://application:,,/Images/CutHS.png"));
itemCut.Icon = img;
itemEdit.Items.Add(itemCut);

itemCopy = new MenuItem();
itemCopy.Header = "_Copy";
itemCopy.Click += CopyonClick;
img = new Image();
img.Source = new BitmapImage(
new Uri("pack://application:,,/Images/CopyHS.png™));
itemCopy.Icon = img;
itemedit.Items.Add(itemCopy);

itemPaste = new MenuItem();
itemPaste.Header = "_Paste";
itemPaste.Click += PasteonClick;
img = new Image();
img.Source = new BitmapImage(
new Uri("pack://application:,,/Images/PasteHS.png"));
itemPaste.Icon = img;
itemEdit.Items.Add(itemPaste);

304

Partl: Code
itemDelete = new MenuItem();
itemDelete.Header = "_Delete";
itembDelete.Click += DeleteonClick;
img = new Image();
img.Source = new BitmapImage(
new Uri("pack://application:,,/Images/DeleteHS.png"));
itemDelete.Icon = img;
itemedit.Items.Add(itemDelete);
}
void Editonopened(object sender, RoutedEventArgs args)
{
itemCut.IsEnabled =
itemCopy.IsEnabled =
itemDelete.IsEnabled = text.Text != null && text.Text.Length > 0;
itemPaste.IsEnabled = Clipboard.ContainsText();
}
protected void cutonClick(object sender, RoutedEventArgs args)
{
CopyoncClick(sender, args);
DeleteonClick(sender, args);
}
protected void CopyonClick(object sender, RoutedEventArgs args)
{
if (text.Text != null && text.Text.Length > 0)
Clipboard.SetText (text.Text);
}
protected void PasteonClick(object sender, RoutedEventArgs args)
{
if (Clipboard.cContainsText())
text.Text = Clipboard.GetText();
}
protected void DeleteonClick(object sender, RoutedEventArgs args)
{
text.Text = null;
}
}
}

The program stores the Cut, Copy, Paste, and Delete Menultem objects as fields and accesses
them during the EditOnOpened event handler. The handler enables Cut, Copy, and Delete
only if the TextBlock contains at least one character of text. To enable the Paste item, the
handler uses the return value from the static Clipboard.ContainsText method.

The PasteOnClick method uses the static Clipboard. GetText method to copy text from the
clipboard. Similarly, CopyOnClick calls Clipboard.SetText. The Delete command doesn’t need
to access the clipboard and simply sets the Text property of the TextBlock element to null. The
CutOnClick event handler take advantage of the fact that a Cut is simply a Copy followed by
a Delete by calling CopyOnClick and DeleteOnClick.

The CutCopyAndPaste program has the standard underlined characters for the Edit menu. A
user can trigger the Paste command by pressing Alt, E, P for example. However, these edit

Chapter 14: The Menu Hierarchy 305

commands also have standard keyboard shortcuts called accelerators: Ctrl+X for Cut, Ctrl+C
for Copy, Ctrl+V for Paste, and the Delete key for Delete. You'll notice that these aren’t
implemented in the CutCopyAndPaste program.

It’s fairly easy to get the text “Ctrl+X” displayed alongside the Cut item. Just set the Input-
GestureText property of the menu item:

itemCut.InputGestureText = "Ctrl+x";

However, actually triggering a Cut command when the user types Ctrl+X is something else
entirely. It does not happen automatically and you have two options to make it happen: You
can handle the keyboard input on your own (which I'll show shortly) or you can use com-
mand bindings (which T'll show after that).

If you decide to handle the keyboard input on your own, you should treat that input as high
priority. In other words, you want to examine keyboard input for possible menu accelerators
before anybody else gets hold of that input, and that means youw'll probably override the
OnPreviewKeyDown method of the window. If a keystroke corresponds to an enabled menu
item, carry out the command and set the Handled property of the event arguments to true.

The job of handling keyboard input to trigger menu items is eased somewhat by the Key-
Gesture class. You can define an object of type KeyGesture for Ctrl+X like this:

KeyGesture gestCut = new KeyGesture(Key.X, Modifierkeys.Control);

This class doesn’t include much, and the only reason to use it is to make use of the Matches
method that accepts an InputEventArgs argument. You can call the Matches method during the
OnPreviewKeyDown override using the KeyEventArgs argument delivered with that event.
(KeyEventArgs derives from InputEventArgs.) The Matches method will recognize that its argu-
ment is actually a KeyEventArgs, and returns true if the key being pressed is the same as the key
defined in the KeyGesture object. The processing in your OnPreviewKeyDown override might
look like this:

if (gestCut.Matches(null, args))
{
cutonClick(this, args);
args.Handled = true;

}

You can pass the KeyEventArgs object directly to CutOnClick because KeyEventArgs derives
from RoutedEventArgs. However, this code doesn’t check whether a Cut item is actually valid
before calling the Click handler. One simple approach you might consider is checking
whether the itemCut menu item is enabled. But that won’t work because itemCut is enabled
and disabled only when the drop-down menu is displayed.

Fortunately, you'll notice that the CopyOnClick and PasteOnClick methods in the CutCopyAnd-
Paste program don’t actually perform the Copy and Paste operations unless the commands

306

Part I:

Code

are valid. Those checks allow the following program to inherit from CutCopyAndPaste to imple-
ment the standard keyboard accelerators for the Edit menu. This project requires a link to the
CutCopyAndPaste.cs source code file. There’s no using directive for that project’s namespace;
instead, the class definition refers to the fully qualified name of the CutCopyAndPaste class.

ControlXCV.cs

System;

System.Windows;
System.Windows.Controls;
System.Windows.Input;
System.Windows .Media;

namespace Petzold.ControlXcv

{

pubTlic class ControlXcv : Petzold.CutCopyAndPaste.CutCopyAndPaste

{

KeyGesture gestCut = new KeyGesture(Key.X, ModifierKeys.Control);
KeyGesture gestCopy = new KeyGesture(Key.C, Modifierkeys.Control);
KeyGesture gestPaste = new KeyGesture(key.V, ModifierKeys.Control);
KeyGesture gestDelete = new KeyGesture(Key.Delete);

[STAThread]

public new static void Main()

{
Application app = new Application();
app.Run(new ControlXxcv(Q));

}

public ControlXxcv(Q)

{
Title = "Control X, C, and V";
itemCut.InputGestureText = "Ctrl+x";
itemCopy.InputGestureText = "Ctrl+C";
itemPaste.InputGestureText = "Ctrl+v";
itemDelete.InputGestureText = "Delete";

}

protected override void OnPreviewKeyDown(KeyEventArgs args)

{

base.onKkeyDown(args) ;
args.Handled = true;

if (gestcCut.Matches(null, args))
cutonClick(this, args);

else if (gestCopy.Matches(null, args))
copyoncClick(this, args);

else if (gestPaste.Matches(null, args))
pPasteonClick(this, args);

Chapter 14: The Menu Hierarchy 307

else if (gestDelete.Matches(null, args))
DeleteonClick(this, args);

else
args.Handled = false;

Whenever you inherit from a class that defines a Main method (as the CutCopyAndPaste class
does) and you supply a new Main method (as the ControlXCV class does) you need to tell
Visual Studio which Main method is the true entry point to the program. Select Project Prop-
erties and change Startup Object to the class with the Main method you want to use.

The program defines and sets the four KeyGesture objects as fields, and also needs to set the
InputGestureText property of each Menultem to the corresponding string. (Unfortunately,
KeyGesture itself doesn’t provide that information through its ToString method or otherwise.)
The OnPreviewKeyDown method begins by setting the Handled property of its event argu-
ments to true, and then resets it to false if the key doesn’t match one of the define gestures.

If you have more than just a few KeyGesture objects floating around, you'll probably want to
store them in a collection. You can define a field that creates a generic Dictionary like this:

Dictionary<KeyGesture, RoutedEventHandler> gests =
new Dictionary<KeyGesture, RoutedEventHandler>(Q);

The constructor of your window can fill it up with the KeyGesture objects and their associated
event handlers:

gests.Add(new KeyGesture(Key.X, ModifierKeys.Control), cutonClick);
gests.Add(new KeyGesture(Key.C, ModifierKkeys.Control), CopyonClick);
gests.Add(new KeyGesture(Key.V, Modifierkeys.Control), PasteonClick);
gests.Add(new KeyGesture(Key.Delete), DeleteonClick);

The OnPreviewKeyDown method can then search for a match and call the corresponding event
handler by looping through the dictionary:

foreach (KeyGesture gest in gests.Keys)
if (gest.Matches(null, args))
{
gests[gest] (this, args);
args.Handled = true;

}

The first statement in the if block line indexes the Dictionary object named gests with the
matching KeyGesture object named gest. The result is the RoutedEventHandler object, which the
statement calls by passing arguments of this and the KeyEventArgs object.

308

Partl: Code

If you’d rather not call the Click event handlers directly, you could instead define a Dictionary
with the Menultem as the Value:

Dictionary<KeyGesture, MenuItem> gests =
new Dictionary<KeyGesture, MenuItem>();

You add entries to this dictionary like so:
gests.Add(new KeyGesture(Key.X, Modifierkeys.Control), itemCut);
And now the OnKeyDown processing looks like this:

foreach (KeyGesture gest in gests.Keys)
if (gest.Matches(null, args))
gests[gest].RaiseEvent(
new RoutedEventArgs(MenuItem.ClickEvent, gests[gest]));

By this time you may have concluded that command bindings probably provide a simpler
approach, and they certainly do. The CommandTheButton program in Chapter 4 showed
how to use command bindings with a button. Using them with menu items is quite similar.
Generally you'll be using static properties of type RoutedUICommand from the Application-
Commands class and (for more esoteric applications) from the ComponentCommands, Editing-
Commands, MediaCommands, and NavigationCommands classes, but you can also make your
own, as I'll demonstrate.

To use one of the predefined static properties, you set the Command property of the Menultem
like this:

itemCut.Command = ApplicationCommands.Cut;

If you don’t set the Header property of the Menultem, it will use the Text property of the Routed-
UlCommand, which is almost OK except there’s no preceding underline. Regardless, the
Menultem automatically adds the “Ctrl+X” text to the menu item.

The other crucial step is creating a command binding based on the RoutedUICommand object,
and adding it to the CommandBindings collection of the window:

commandBindings.Add(new CommandBinding(ApplicationCommands.cCut,
CutOnExecute, CutCanExecute));

This command binding automatically provides for keyboard handling of the standard
accelerators associated with the commands. As you'll see, the accelerator is defined within
the RoutedUICommand object. The command binding associates the command with the
CommandBinding events CanExecute and Executed. When using RoutedUICommand objects,
there is no need to provide an event handler specifically to enable and disable the items on
the Edit menu. The enabling and disabling occurs via the CanExecute handlers by setting
the CanExecute property of the CanExecuteRoutedEventArgs to true or false. You can share
CanExecute handlers among several menu items if appropriate.

Here’s a program that implements command bindings for the four standard items on the

Edit menu.

Chapter 14: The Menu Hierarchy

CommandTheMenu.cs

using System;

using System.windows;

using System.windows.Controls;
using System.Windows.Input;
using System.windows.Media;

namespace Petzold.CommandTheMenu

commandTheMenu : window

TextBlock text;

public static void Main(Q)

Application app = new Application();
app.Run(new CommandThemenu());

{
pubTlic class
{
[STAThread]
{
}

public CommandTheMenu()

{

Title = "Command the Menu";

// Create DockPanel.
DockPanel dock = new DockPanel();
Content = dock;

// Create Menu docked at top.

Menu

dock.

menu = new Menu();
children.Add(menu) ;

DockPanel.Setbock(menu, Dock.Top);

// Create TextBlock filling the rest.

text

text.
text.

text

= new TextBlock();
Text = "Sample clipboard text";
HorizontalAlignment = HorizontalAlignment.Center;

.VerticalAlignment = VerticalAlignment.Center;
text.
text.
dock.

FontSize = 32; // ie, 24 points
TextWrapping = TextwWrapping.wrap;
children.Add(text);

// Create Edit menu.
MenuItem itemEdit = new MenuItem();
itemEdit.Header = "_Edit";

menu.

Items.Add(itemEdit);

309

310

Part I:

Code

// Create items on Edit menu.

MenuItem itemCut = new MenuItem();
itemCut.Header = "Cu_t";

itemCut.Command = ApplicationCommands.Cut;
itemEdit.Items.Add(itemCut);

MenuItem itemCopy = new MenuItem();
itemCopy.Header = "_Copy";

itemCopy.Command = ApplicationCommands.Copy;
itemedit.Items.Add(itemCopy);

MenuItem 1itemPaste = new MenuItem();
itemPaste.Header = "_Paste";

itemPaste.Command = ApplicationCommands.Paste;
itemEdit.Items.Add(itemPaste);

MenuItem itemDelete = new MenuItem();
itemDelete.Header = "_Delete";
itemDelete.Command = ApplicationCommands.Delete;
itemEdit.Items.Add(itemDelete);

// Add command bindings to window collection.
commandBindings.Add(new CommandBinding(ApplicationCommands.cCut,
CutOnExecute, CutCanExecute));
CommandBindings.Add(new CommandBinding(ApplicationCommands.Copy,
CopyOnExecute, CutCanExecute));
commandBindings.Add(new CommandBinding(ApplicationCommands.Paste,
PasteOnExecute, PasteCanExecute));
commandBindings.Add(new CommandBinding(ApplicationCommands.Delete,
DeleteOnExecute, CutCanExecute));
}
void CutCanExecute(object sender, CanExecuteRoutedEventArgs args)
{
args.CaneExecute = text.Text != null && text.Text.Length > 0;
}
void PasteCaneExecute(object sender, CanExecuteRoutedEventArgs args)
{
args.CanExecute = Clipboard.ContainsText();
}
void CutontExecute(object sender, ExecutedRoutedEventArgs args)
{
AppTlicationCommands.Copy.Execute(null, this);
ApplicationCommands.Delete.Execute(null, this);
}
void CopyOnExecute(object sender, ExecutedRoutedEventArgs args)
{
Clipboard.setText(text.Text);
}
void PasteOnExecute(object sender, ExecutedRoutedEventArgs args)
{
text.Text = Clipboard.GetText();
}

void DeleteOnExecute(object sender, ExecutedRoutedEventArgs args)

Chapter 14: The Menu Hierarchy 311

text.Text = null;

Notice that Cut, Copy, and Delete all share the same CanExecute handler.

Although it’s nice to implement the standard Edit items with command bindings, it’s even more
fun to create new ones. You can add this code to the CommandTheMenu program at the end of
the constructor. The object here is to create a new command called Restore that restores the
TextBlock to its original text. The Restore command has a keyboard shortcut of Ctrl+R.

Because a particular RoutedUICommand can be associated with multiple key gestures, a collec-
tion must be defined even if you want only one gesture:

InputGestureCollection collGestures = new InputGestureCollection();
Add the appropriate KeyGesture to this collection:
collGestures.Add(new KeyGesture(Key.R, ModifierKkeys.Control));
And then create a RoutedUICommand:

RoutedUICommand commRestore =
new RouteduICommand("_Restore", "Restore", GetType(), collGestures);

The first argument to the constructor becomes the Text property and the second is the Name
property. (Notice that I've added an underline to the Text property.) The third argument is the
owner (which can be simply the Window object) and the fourth argument is a collection of
keyboard gestures.

Now the Menultem can be defined and added to the menu:

MenuItem itemRestore = new MenuItem();
itemRestore.Header = "_Restore";
itemRestore.Command = commRestore;
itemedit.Items.Add(itemRestore);

Setting the Header property isn’t required because it picks up the Text property from the
RoutedUICommand. The command must also be added to the window’s command collection.
Here’s where event handlers are specified:

commandBindings.Add(new CommandBinding(commRestore, RestoreOntExecute));

The RestoreOnExecute handler simply restores the TextBlock text to its original value:
void RestoreOntExecute(object sender, ExecutedRoutedEventArgs args)

{

text.Text = "Sample clipboard text";

}

312

Partl: Code

The programs so far in this chapter have dealt with the Menu control that normally sits near
the top of the window. The Windows Presentation Foundation also includes a ContextMenu
control, customarily invoked in response to a click of the right mouse button.

Like ToolTip, ContextMenu is a property as well as a class. And like ToolTip again, a Context-
Menu property is defined by both FrameworkElement and FrameworkContentElement. If you’d
like, you can define a ContextMenu object that is associated with a particular element, and
then assign that ContextMenu object to the ContextMenu property of the element. The context
menu then opens whenever the user right-clicks that element. You can install event handlers
to initialize the menu when it opens, and to be notified of clicks and checks.

If you don’t set the ContextMenu object to the ContextMenu property of some element, you
need to open the context menu “manually’—probably in response to a MouseRightButtonUp
event. Fortunately, opening the context menu is as easy as setting the IsOpen property to true.
By default, the context menu appears at the location of the mouse pointer.

The following program is similar to the ToggleBoldAndItalic program from Chapter 3. It dis-
plays a famous quotation and lets you right-click each word with the mouse. A context menu is
displayed that lists formatting options Bold, Italic, Underline, Overline, Strikethrough, and Base-
line. The program creates only one ContextMenu object for use with all the words of the text, and
doesn’t attempt to keep track of the formatting of each word. Instead, whenever the context
menu is displayed, it is initialized with the formatting of the particular word being clicked.

PopupContextMenu.cs

using System;

using System.windows;

using System.Windows.Controls;
using System.windows.Documents;
using System.windows.Input;
using System.windows.Media;

namespace Petzold.PopupContextMenu
{
public class PopupContextMenu : Window
{
ContextMenu menu;
MenuItem itemBold, itemItalic;
MenuItem[] 1itemDecor;
Inline inlcClicked;

[STAThread]

public static void Main(Q)

{
Application app = new Application();
app.Run(new PopupContextMenu());

Chapter 14: The Menu Hierarchy

public PopupContextmMenu()

{

Title = "Popup Context Menu";

// Create ContextMenu.
menu = new ContextMenu();

// Add an item for "Bold".
itemBold = new MenuItem();
itemBold.Header = "Bold";
menu.Items.Add(itemBold);

// Add an item for "Italic".
itemItalic = new MenuItem();
itemItalic.Header = "Italic";
menu.Items.Add(itemItalic);

// Get all the TextDecorationLocation members.
TextDecorationLocation[] Tlocs =
(TextDecorationLocation[])
Enum.GetValues(typeof(TextDecorationLocation));

// Create an array of MenuItem objects and fill them up.
itemDecor = new MenuItem[locs.Length];

for (int i = 0; i < locs.Length; i++)

{
TextDecoration decor = new TextDecoration();
decor.Location = locs[i];

itembecor[i] = new MenuItem();
itembecor[i].Header = locs[i].ToStringQ);
itemDecor[i].Tag = decor;
menu.Items.Add(itemDecor[i]);

// Use one handler for the entire context menu.
menu.AddHandTer (MenuItem.Cl1ickEvent,
new RoutedeEventHandler (MenuonClick));

// Create a TextBlock as content of the window.
TextBlock text = new TextBlock();

text.FontSize = 32;

text.HorizontalAlignment = HorizontalAlignment.Center;
text.verticalAlignment = VerticalAlignment.Center;
Content = text;

// Break a famous quotation up into words.

string strQuote = "To be, or not to be, that is the question”;

string[] strwords = strQuote.Split(Q);

// Make each word a Run, and add to the TextBlock.
foreach (string str in strwords)
{

RUn run = new Run(str);

313

314 Partl: Code

// Make sure that TextDecorations is an actual collection!
run.TextDecorations = new TextDecorationCollection();
text.Inlines.Add(run);

text.Inlines.Add(" ");

}
protected override void OnMouseRightButtonUp(MouseButtonEventArgs args)
{

base.onMouseRightButtonuUp(args) ;

if ((inlclicked = args.Source as Inline) != null)

{
// Check the menu items according to properties of the InLine.
itemBold.IsChecked = (inlClicked.Fontweight == Fontweights.Bold);
itemItalic.IsChecked = (inlcClicked.FontStyle == FontStyles.Italic);

foreach (MenuItem item in itemDecor)
item.IsChecked = (inlclicked.TextDecorations.Contains
(item.Tag as TextDecoration));

// Display context menu.
menu.IsOpen = true;
args.Handled = true;

}
void MenuonClick(object sender, RoutedEventArgs args)
{

MenuItem item = args.Source as MenuItem;
item.IsChecked A= true;

// Change the Inline based on the checked or unchecked item.
if (item == itemBold)
inlclicked.Fontweight =
(item.IsChecked ? Fontweights.Bold : FontWeights.Normal);

else if (item == itemItalic)
in1Clicked.FontStyle =
(item.IsChecked ? FontStyles.Italic : FontStyles.Normal);

else
{
if (item.IscChecked)
in1CTlicked.TextDecorations.Add(item.Tag as TextDecoration);
else
inl1cClicked.TextDecorations.Remove(item.Tag as TextDecoration);
}

(inlclicked.Parent as TextBlock).Invalidatevisual(Q);

Chapter 14: The Menu Hierarchy 315

The first part of the window constructor is devoted to creating the ContextMenu object. After
adding Bold and Italic items to the menu, the window constructor obtains the members of the
TextDecorationLocation enumeration. These members are Underline, Overline, Strikethrough,
and Baseline. The constructor uses the AddHandler method of the ContextMenu to assign

a single Click handler for all the menu items.

The Split method of the String class divides the quotation into words. These are made into
objects of type Run and patched together into a single TextBlock object. Notice that a
TextDecorationCollection is explicitly created for each Run object. This collection does not exist
by default and the TextDecorations property is normally null.

Although the OnMouseRightButtonUp method seemingly obtains mouse events to the window,
event routing provides that if an Inline object is clicked, the Source property of the event argu-
ments will indicate that object. (Recall that Run derives from Inline.) The event handler can
then initialize the menu based on the properties of the clicked word.

The MenuOnClick manually toggles the IsChecked property of the clicked item. This isn’t really
necessary because the menu disappears when it’s clicked, but the event handler uses the new
value of this IsChecked property to determine how to change the formatting of the clicked
Inline object.

[began this chapter by noting that the menu occupies a regal position near the top of the
window. As you know, directly below the menu is often a toolbar, and (sometimes almost as
important) a status bar often sits at the bottom of a window. These are the subjects of the
next chapter.

	Cover
	Table of Contents
	Chapter 14: The Menu Hierarchy

