MCTS EXAM

70-502
Microsoft NET MCTS Self-Paced

Framework 3.5- Training Kit

Windows Presentation (Exam 70_502).

Foundation . ® :
Microsoft .NET

Framework 3.5—

Windows® Presentation

Foundation

Training Kit

Matthew A. Stoecker

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books12485.aspx

Microsoft
9780735625662 Press

© 2008 Matthew A. Stoecker. All rights reserved.

Table of Contents

Introduction e XXi
1 WPF Application Fundamentals. 1
Before You Begint 2
Lesson 1: Selecting an Application Type. 3
Application Type OVEIVIEW.ttt e e 3
Windows Applications. 4
Navigation Applications 9
XBAPS . 11
Security and WPF Applications 13
Choosing an Application Type. 14
Lab: Creating WPF Applications. i 15
Lesson SUMMaArY.t 19
LeSSON REVIEWottt 19
Lesson 2: Configuring Page-Based Navigation................................ 21
Using Pages. o 21
Hosting Pages in Frames. 21
Using Hyperlinks. o o 22
Using NavigationServiceuu i 23
Using the Journal 25
Handling Navigation Events. i 27
Using PageFunction ODJECES.ttt 30
Simple Navigation and Structured Navigation 32

Lab: The Pizza Kitchen. 32
LeSSON SUMMAIY. . . oot e e e e 38
LeSSON REVIEW oot 39

What do you think of this book? We want to hear from youl!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

vii

viii Table of Contents

Lesson 3: Managing Application Responsivenessc.uuunnnnnn. 41
Running a Background Process 42
Providing Parameters to the Process. 43
Returning a Value from a Background Process 44
Cancelling a Background Process.t 45
Reporting the Progress of a Background Process with
BackgroundWOorker 46
Using Dispatcher to Access Controls Safely on Another Thread............ 47
Freezable Objects 48
Lab: Practicing with BackgroundWorker 49
Lesson SUMMary 51
LeSSON REVIEW . . .\ 52

Chapter ReVIEW . . . 53

Chapter SUMMarY. 53

Ky oM. o 53

CaSE SCONAIIO . ..t 54
Case Scenario: Designing a Demonstration Program..................... 54

Suggested Practices 55

Take @ Practice Test. 55

2 Events, Commands, and Settings, 57

Before You Begin 57

Lesson 1: Configuring Events and Event Handling 59
ROULEAEVENTAIGS oot 61
Attaching an Event Handler L 62
The EventManager Class 63
Defininga New Routed Event o i i 64
Creating a Class-Level Event Handler 66
Application-Level Events 66
Lab: Practice with Routed Events 68
LeSSON SUMMATYttt e e 69
LeSSON REVIEW 70

Lesson 2: Configuring Commands.ttt 72
A High-Level Procedure for Implementinga Command 73

Invoking Commandsoon 74

Table of Contents ix

Command Handlers and Command Bindings. 75
Creating Custom Commands.ooi i 78

Lab: Creating a Custom Command, 80
LesSsOn SUMMaArY. 83
LeSSON REVIEW oottt 84
Lesson 3: Configuring Application Settings., 86
Creating Settingsat Design Time i i, 87
Loading Settingsat RunTimeo ... 88
Saving User Settingsat RunTime 88

Lab: Practice with Settingso 89
LeSSON SUMMaArY. . ..o 91
LeSSON REVIEWo 91
Chapter ReVIEW. 94
Chapter SUMMary e e e 94
Ky ToImMS oo 95
CaSE SCONAIIOS . . . vttt 95
Case Scenario 1: Validating User Input........ ... oo, 95

Case Scenario 2: Humongous Insurance User Interface.................... 96
Suggested Practices. 96
Take @ Practice Testo 97
3 Building the User Interface. i, 99
Before You Begin 99
Lesson 1: Using Content Controlst 101
WPF Controls OVerview.ooui e 101
Content Controls 101
Other Controls o 105
Using Attached Propertiesuuii i 110
Setting the Tab Order for Controls 111

Lab: Building a User Interface 111
Lesson SUMMaArY. 113
LeSSON REVIEWo 113
Lesson 2: Item Controls.ot 116
ListBox Control 116

ComboBox Control. e 117

X Table of Contents

TreeView CONtrol. 118
MENUS . . 119
ToolBar Controlo i 121
StatusBar Control 123
Virtualization in ltem Controls i 123

Lab: Practice with Item Controls. 124
LeSSON SUMMAIYttt e e e e e e e e 127
LeSSON REVIEW . . ottt 127
Lesson 3: Using Layout Controls. s 130
Control Layout Properties. ... 130
Layout Panels. oo 132
Accessing Child Elements Programmatically 143
Aligning Content. 144

Lab: Practice with Layout Controls., 146
LeSSON SUMMAIYottt e e e e e e e e e 148
LeSSON REVIEW . . o et 149
Chapter REVIEW.ttt e 150
Chapter SUMMarY. . ..o 150
Key Terms . o o 150
CaSE SCENAIIOS. . o\ttt et e e et et e e 151
Case Scenario 1: Streaming Stock Quotes. i, 151

Case Scenario 2: The Stock Watcher 151
Suggested PractiCes 152
Take a Practice Test. 152
4 Adding and ManagingContent, 153
Before YoU Begino o 153
Lesson 1: Creating and Displaying Graphics. 155
Brushes 155
SNAPES. oo 163
Transformations. 168
ClPPINg oo 171

Hit Testingo 171

Lab: Practice with Graphicso i 172

Table of Contents xi

Lesson SUMMaAryY. 173
LeSSON REVIEW ottt 174
Lesson 2: Adding Multimedia Content............ 176
Using SoundPlayer 176
MediaPlayer and MediaElement, 179
Handling Media-Specific Events, 182
Lab: Creating a Basic Media Player, 183
Lesson Summary. 185
LeSSON REVIEW 185
Lesson 3: Managing Binary Resources i i 187
Embedding Resources. ... 187
Loading RESOUICES\ e e e e et 188
Retrieving Resources Manually i 189
Content Files. o 190
Retrieving Loose Files with siteOfOrigin Pack URIs. 190
Lab: Using Embedded Resources., 191
Lesson Summary.o 192
LeSSON REVIEWt 192
Lesson 4: Managing Images.ottt 194
Thelmage Element 194
Stretching and Sizing Images. L. 194
Transforming Graphicsinto Images.o ... 196
Accessing Bitmap Metadata. 198
Lab: Practice with Images 200
Lesson SUMMary. 201
LeSSON REVIEW vt 202
Chapter REVIEW.ot 204
Chapter SUMMaArY e e 204
Ky TermMS o 204
CaSE SCONAMIOS . .« vttt ettt 205
Case Scenario 1: The Company with Questionable Taste 205
Case Scenario 2: The Image Reception Desk. 205
Suggested Practices.t 206

Take a Practice Testo 206

xii Table of Contents

5 Configuring Databinding 207
Before You Begin 208
Lesson 1: Configuring Databinding........... i, 209
The Binding Class 209

Bindingtoa WPF Element. 211
Bindingtoan Object i 212
Setting the BindingMode. 215
Setting the UpdateSourceTrigger Property 216
Lab: Practice with Bindingso i 217
LeSSON SUMMAIYottt e e e e e e 218
LeSSON ReVIEW . . o o 219
Lesson 2: Binding to Data SoUrces.t 221
Binding toa List 221
Binding an Item ControltoaList........o i, 221
Binding a Single PropertytoalList........... 223
Navigating a Collectionor List............... 223
Binding to ADO.NET Objectst 226
Setting the DataContext to an ADO.NET DataTable 226
Setting the DataContext to an ADO.NET DataSet 227
Binding to Hierarchical Data. i 228
Binding to Related ADO.NET Tables. 228
Binding to an Object with ObjectDataProviderccccoviuiunn. 230
Binding to XML Using the XmIDataProvider 231
Using XPath with XmIDataProvider 232
Lab: Accessing a Database. 232
Lesson SUMMary 235
LeSSON REVIEW 236
Lesson 3: Manipulating and DisplayingData...................ccoiiiiiiin. 238
Data Templateso 238
Setting the Data Template. 240
Sorting Dataoo 241
Applying Custom Sortingttt 242
GrOUPING -t 243

Creating Custom GroUpINgottt e 245

Table of Contents xiii

Filtering Data 246
Filtering ADO.NET Objectst 247

Lab: Practice with Data Templates and Groups......................... 248
LeSSON SUMMANY. . .« oottt e e e 252
LesSON ReVIEW. it 252
Chapter ReVIEW.o 255
Chapter SumMmary 255
Key Terms. . . 256

CaS€ SCENATIOS . . vttt ettt e e e e e 256
Case Scenario 1: Getting Information from the Field 256

Case Scenario 2: Viewing CustomerData.o.... 257
Suggested Practices. 257
Take @ Practice Test 258
6 Converting and ValidatingData.o ou.... 259
Before You Begint 259
Lesson 1: Converting Data 261
Implementing IValueConverter 0 i 261
Using Converters to Format Strings, 264
Using Converters to Return Objects i 268
Using Converters to Apply Conditional Formatting in Data Templates 269
Localizing Data with Converters o .. 271
Using Multi-value Converters 273
Lab: Applying String Formatting and Conditional Formatting............ 276
LeSSON SUMMATY. . . oot 279
LessON ReVIEW. it 279
Lesson 2: Validating Data and Configuring Change Notification 282
Validating Data. . ..o 282
Binding Validation Rules 282
Setting ExceptionValidationRule. 283
Implementing Custom ValidationRules............................... 283
Handling Validation Errors 284
Configuring Data Change Notification 287

Implementing INotifyPropertyChangedccccccviiunn. 287

xiv Table of Contents

Using ObservableCollection. i 288

Lab: Configuring Change Notification and Data Validation 289
LeSSON SUMMAIYottt e e e e e e e e e 294
LeSSON REVIEW . . .o 295
Chapter REVIEW.ttt e 300
Chapter SUMMary. . ..o 300
Key Terms . o o 300
CaSE SCONAIIOS. . . .ttt e 301
Case Scenario 1: The Currency Trading Review Console 301

Case Scenario 2: Currency TradingConsole i 301
Suggested PractiCes 302
Take @ Practice Test.ttt e 302
7 Stylesand Animation........ i 303
Before You Begin 303
Lesson L: Styles oo 305
USING Styles . . oo 305
Properties of Styles. ... 305

St erS. L 306
Creating a Style. 308
Implementing Style Inheritance 311
Lo o 1= £ 312
Property TrgQerso 313
MUR-ENIQQErS oo 314

Data Triggers and Multi-data-triggers. 315
EVent THgQers 315
Understanding Property Value Precedence 316
Lab: Creating High-Contrast Styles 318
LeSSON SUMMAIYottt et e e e e e 320
LeSSON REVIEW . . .ot 320
Lesson 2: ANImMationsottt 323
USINg ANIMatioNs 323
Important Properties of Animations 324

Storyboard ObjJects 326

Table of Contents Xv

Using Animations with Triggers i, 327
Managing the Playback Timeline 330
Animating Non-Double Types.o 332
Creating and Starting AnimationsinCode 335

Lab: Improving Readability with Animations........................... 336
Lesson SUMMary. 337
LessSON ReVIEW oo 338
Chapter REVIEW.o 339
Chapter SUMMarYo 339
Key TeImMS 340
Case SCENAMIOS . ..ottt 340
Case Scenario L:Cup Fever............... i i il 340

Case Scenario 2: A Far-Out User Interface 341
Suggested PractiCes.oo 341
Take @ Practice Test 342
8 Customizing the User Interface......... i it 343
Before YOU BEgin ... 343
Lesson 1: Integrating Windows Forms Controls 345
Using Windows Forms Controls. 345
Using Dialog Boxes in WPF Applications 345
WindowsFormsHOSt 349
Using MaskedTextBox in WPF Applications 351
Using the PropertyGrid in WPF Applications. 353

Lab: Practice with Windows Forms Elements. 354
LeSSON SUMMANY. . . oottt e e e e 356
LessON ReVIEW. ot 357
Lesson 2: Using Control Templatescoo i, 359
Using Control Templates. 359
Creating Control Templatest 359
Inserting a TriggerinaTemplate i 362
Respecting the Templated Parent's Properties 363
Applying Templateswitha Style 365

Viewing the Source Code for an Existing Template 365

xvi

9

Table of Contents

Using Predefined Part Namesina Template 366

Lab: Creating a Control Template. 367
Lesson SUMMaArY 369
LeSSON REVIEW 369
Lesson 3: Creating Custom and User Controls. oiin.... 372
Control Creation in WPF 372
Choosing Among User Controls, Custom Controls, and Templates.. 373
Implementing and Registering Dependency Properties 373
Creating User Controls. e 376
Creating Custom Controls. e 376
Consuming User Controls and Custom Controls........................ 377
Rendering a Theme-Based Appearance ..., 378

Lab: Creating a Custom Control. 380
LesSSON SUMMAIYottt e e e 383
LeSSON ReVIEW . . o oo 383
Chapter REVIEWottt e 385
Chapter SUMMaArY. . ..o e e 385
Key Terms. .. 385
CaSE SCENAIIOS. . . . ettt 386
Case Scenario 1: Full Supportfor Styles ... 386

Case Scenario 2: The Pizza Progress Bar ..., 386
Suggested PractiCes 387
Take a Practice Test.o 387
Resources, Documents, and Localization......................... 389
Before You Begin 389
Lesson 1: Logical RESOUICESttt 391
Using Logical Resourcesot 391
Logical ReSOUICESo 392
Creating a Resource Dictionaryt 395
Retrieving Resources in Code 396

Lab: Practice with Resources. i 397
LesSSON SUMMAIYot e e e 399

LESSON ReVIEW . . .ot 399

Table of Contents xvii

Lesson 2: Using Documents in WPF i 401
Flow DocUmMEeNtS. . ..o oot 401
Creating Flow Documents. 402

XPS DOCUMENTS . . oottt e e e e e 418
Viewing XPS DOCUMENTS. . ..ottt e 418
PrNtiNG ..o o 418
Printing DOCUMENtS.\t 419

The PrintDialog Class.o o 419

Lab: Creating a Simple Flow Document, .. 421
Lesson Summary. 422
LeSSON REVIEW ottt 423
Lesson 3: Localizing a WPF Application.............., 426
Localization. 426
Localizing an Application 427
Using Culture Settings in Validators and Converters 432

Lab: Localizing an Application 433
Lesson Summary.o 436
LeSSON REVIEWt 436
Chapter ReVIEW. 438
Chapter SUMMary e 438
Ky TermMS oo 438
CaSE SCONAIIO . . o ottt 439
Case Scenario: HelpfortheBeta............. iiiiiiiiin. 439
Suggested Practices.t 440
Take a Practice Test 440
10 Deploymentt e e e 441
Before You Begino 441
Lesson 1: Creating a Setup Project with Windows Installer. 443
Deploying a WPF Application ... 443
Choosing Between Windows Installer and ClickOnce 443
Deploying with Windows Installer. 444
Deploying a Stand-alone Application................. 445

Creating the Setup Project 445

xviii Table of Contents

Adding Files to the Setup Project with the File System Editor 445

Other Setup Project Editors. 448

Lab: Creating a Setup Project 448

LeSSON SUMMAIYttt e e e e e e e 450

LeSSON REVIEW . . .ot 450

Lesson 2: Deploying Your Application with ClickOnce........................ 451
Deploying with ClickOnce. 451
Deploying an Application Using ClickOnce 452
Configuring ClickOnce Update Options., 455

Deploying an XBAP with ClickOnce............ 458
Configuring the Application Manifest., 461
Associating a Certificate with the Application............... 463

Lab: Publishing Your Application with ClickOnce 464

LesSSON SUMMAIYot e e e e 465

LeSSON ReVIEW . . o oo 465

Chapter REVIEWottt e 469
Chapter SUMMaArY. ... ot e e e 469

Key Terms. .. 469

CaSE SCENAIIO . . v e e 470

Case Scenario: Buggy Beta 470
Suggested PractiCeso 470

Take a Practice Test.o i 471
AT . oottt e e 473
GlOSSaNY . . .ottt 499
X ..ttt 503

What do you think of this book? We want to hear from you!

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Chapter 2
Events, Commands, and Settings

Events and commands form the basis of the architecture for intra-application commu-
nication in Windows Presentation Foundation (WPF) applications. Routed events
can be raised by multiple controls and allow a fine level of control over user input.
Commands are a welcome addition to the Microsoft .NET Framework and provide a
central architecture for enabling and disabling high-level tasks. Application settings
allow you to persist values between application sessions. In this chapter, you will

learn to configure these features.

Exam objectives in this chapter:
m Configure event handling.

m Configure commands.

m Configure application settings.

Lessons in this chapter:

m Lesson 1: Configuring Events and Event Handling.
m Lesson 2: Configuring Commands

m Lesson 3: Configuring Application Settings

Before You Begin

To complete the lessons in this chapter, you must have

m Acomputer that meets or exceeds the minimum hardware requirements listed in

the “About This Book” section at the beginning of the book

m Microsoft Visual Studio 2005 Professional Edition installed on your computer

m An understanding of Microsoft Visual Basic or C# syntax and familiarity with

the NET Framework

57

58 Chapter 2 Events, Commands, and Settings

Real World
Matthew Stoecker

By using WPF routed events and commands, I find I have a much finer control
over how my user interfaces respond compared to in a Windows Forms appli-
cation. The Routed Event architecture allows me to implement complex event
handling strategies, and the Command architecture provides a way to approach
programming common tasks in my user interfaces.

Lesson 1: Configuring Events and Event Handling 59

Lesson 1: Configuring Events and Event Handling

Events in WPF programming are considerably different from those in traditional
Windows Forms programming. WPF introduces routed events, which can be raised
by multiple controls and handled by multiple handlers. Routed events allow you to add
multiple levels of complexity and sophistication to your user interface and the way it
responds to user input. In this lesson, you will learn about routed events, including
how to handle a routed event, define and register a new routed event, handle an
application lifetime event, and use the EventManager class.

After this lesson, you will be able to:

B Explain the difference between a direct event, a bubbling event, and a tunneling
event

Define and register a new routed event

Define static class event handlers

Handle an event in a WPF application

Handle an attached event in a WPF application

Handle application lifetime events
B Use the EventManager class
Estimated lesson time: 30 minutes

Events have been a familiar part of Microsoft Windows programming for years. An
event is a message sent by an object, such as a control or other part of the user interface,
that the program responds to (or handles) by executing code. While the traditional
NET event architecture is still present in WPF programming, WPF builds upon the
event concept by introducing routed events.

A key concept to remember in event routing is the control containment hierarchy. In
WPF user interfaces, controls frequently contain other controls. For example, a typical
user interface might consist of a top-level Window object, which contains a Grid object,
which itself might contain several controls, one of which could be a ToolBar control,
which in turn contains several Button controls. The routed event architecture allows for
an event that originates in one control to be raised by another control in the contain-
ment hierarchy. Thus, if the user clicks one of the Button controls on the toolbar, that
event can be raised by the Button, the ToolBar, the Grid, or the Window.

Why is it useful to route events? Suppose, for example, that you are designing a user
interface for a calculator program. As part of this application, you might have several

60

Chapter 2 Events, Commands, and Settings

Button controls enclosed within a Grid control. Suppose that you wanted all button
clicks in this grid to be handled by a single event handler? WPF raises the click event
from the Button, the Grid, and any other control in the control containment hierarchy.
As the developer, you can decide where and how the event is handled. Thus, you can
provide a single event handler for all Button Click events originating from Button
controls in the grid, simplifying code-writing tasks and ensuring consistency in event
handling.

Types of Routed Events There are three different types of routed events: direct, bubbling,
and tunneling.

Direct Events

Direct events are most similar to standard .NET events. Like a standard .NET event, a
direct event is raised only by the control in which it originates. Because other controls
in the control containment hierarchy do not raise these events, there is no opportu-
nity for any other control to provide handlers for these events. An example of a direct
event is the MouseLeave event.

Bubbling Events

Bubbling events are events that are raised first in the control where they originate and
then are raised by each control in that control’s control containment hierarchy, also
known as a visual tree. The MouseDown event is an example of a bubbling event.
Suppose that you have a Label contained inside a FlowPanel contained inside a
Window. When the mouse button is pressed over the Label, the first control to raise
the MouseDown event would be the Label. Then the FlowPanel would raise the Mouse-
Down event, and then finally the Window itself. You could provide an event handler
at any or all stages of the event process.

Tunneling Events

Tunneling events are the opposite of bubbling events. A tunneling event is raised first by
the topmost container in the visual tree and then down through each successive
container until it is finally raised by the element in which it originated. An example of
a tunneling event is the PreviewMouseDown event. In the previous example, although
the event originates with the Label control, the first control to raise the PreviewMouse-
Down event is the Window, then the FlowPanel, and then finally the Label. Tunneling
events allow you the opportunity to intercept and handle events in the window or
container before the event is raised by the specific control. This allows you to filter
input, such as keystrokes, at varying levels.

Lesson 1: Configuring Events and Event Handling 61

In the NET Framework, all tunneling events begin with the word “Preview,” such as
PreviewKeyDown, PreviewMouseDown, etc., and are typically defined in pairs with a
complementary bubbling event. For example, the tunneling event PreviewKeyDown is
paired with the bubbling event KeyDown. The tunneling event always is raised before
its corresponding bubbling event, thus allowing an opportunity for higher-level con-
trols in the visual tree to handle the event. Each tunneling event shares its instance of
event arguments with its paired bubbling event. This fact is important to remember
when handling events, and it will be discussed in greater detail later in this chapter.

RoutedEventArgs

All routed events include an instance of RoutedEventArgs (or a class that inherits
RoutedEventArgs) in their signatures. The RoutedEventArgs class contains a wealth of
information about the event and its source control. Table 2-1 describes the properties
of the RoutedEventArgs class.

Table 2-1 RoutedEventArgs Properties

Property Description

Handled Indicates whether or not this event has
been handled. By setting this property
to True, you can halt further event
bubbling or tunneling.

OriginalSource Gets the object that originally raised the
event. For most WPF controls, this will
be the same as the object returned by
the Source property. However, for some
controls, such as composite controls,
this property will return a different
object.

RoutedEvent Returns the RoutedEvent object for the
event that was raised. When handling
more than one event with the same
event handler, you might need to refer
to this property to distinguish which
event has been raised.

Source Returns the object that raised the event.

62 Chapter 2 Events, Commands, and Settings

All EventArgs for routed events inherit the RoutedEventArgs class, but many of them
provide additional information. For example, KeyboardEventArgs is used in keyboard
events and provides information about keystrokes. Likewise, MouseEventArgs, used in
mouse events, provides information about the state of the mouse when the event took
place.

Quick Check

m What are the three kinds of routed events in WPF and how do they differ?
Quick Check Answer

m Routed events in WPF come in three different types: direct, tunneling, and
bubbling. A direct event can be raised only by the element in which it orig-
inated. A bubbling event is raised first by the element in which it originates
and then is raised by each successive container in the visual tree. A tunnel-
ing event s raised first by the topmost container in the visual tree and then
down through each successive container until it is finally raised by the
element in which it originated. Tunneling and bubbling events allow ele-
ments of the user interface to respond to events raised by their contained
elements.

Attaching an Event Handler

The preferred way to attach an event handler is directly in the Extensible Application
Markup Language (XAML) code. You set the event to the name of a method with the
appropriate signature for that event. The following example demonstrates setting the
event handler for a Button control’s Click event, as shown in bold:

<Button Height="23" Margin="132,80,70,0" Name="buttonl"
VerticalAlignment="Top" Click="buttonl_Click">Button</Button>

Just like setting a property, you must supply a string value that indicates the name of
the method.

Attached Events

[tis possible for a control to define a handler for an event that the control cannot itself
raise. These incidents are called attached events. For example, consider Button controls
in a Grid. The Button class defines a Click event, but the Grid class does not. However,

Lesson 1: Configuring Events and Event Handling 63

you still can define a handler for buttons in the grid by attaching the Click event of the
Button control in the XAML code. The following example demonstrates attaching an
event handler for a Button contained in a Grid:

<Grid Button.Click="button_Click">
<Button Height="23" Margin="132,80,70,0" Name="buttonl"
VerticalAlignment="Top" >Button</Button>

</Grid>

Now every time a button contained in the Grid shown here is clicked, the button_Click
event handler will handle that event.

Handling a Tunneling or Bubbling Event

At times, you might want to halt the further handling of tunneling or bubbling events.
For example, you might want to suppress keystroke handling at a particular level in
the control hierarchy. You can handle an event and halt any further tunneling or
bubbling by setting the Handled property of the RoutedEventArgs instance to True, as
shown here:

" VB

Private Sub TextBox1l_KeyDown(ByVal sender As System.Object, _

ByVal e As System.Windows.Input.KeyEventArgs)
e.Handled = True

End Sub
// C#
private void textBox1l_KeyDown(object sender, KeyEventArgs e)
{
e.Handled = true;
}

Note that tunneling events and their paired bubbling events (such as PreviewKey-
Down and KeyDown) share the same instance of RoutedEventArgs. Thus, if you set the
Handled property to True on a tunneling event, its corresponding bubbling event also
is considered handled and is suppressed.

The EventManager Class

EventManager is a static class that manages the registration of all WPF routed events.
Table 2-2 describes the methods of the EventManager class.

64 Chapter 2 Events, Commands, and Settings

Table 2-2 EventManager Methods

Method Description

GetRoutedEvents Returns an array that contains all the

routed events that have been registered
in this application.

GetRoutedEventsForOwner Returns an array of all the routed events

that have been registered for a specified
element in this application.

RegisterClassHandler Registers a class-level event handler, as

discussed in the section “Creating a
Class-Level Event Handler,” later in this
chapter.

RegisterRoutedEvent Registers an instance-level event

handler, as discussed in the next section.

Defining a New Routed Event

You can use the EventManager class to define a new routed event for your WPE
controls. The following procedure describes how to define a new routed event.

P To define a new routed event

1.

Create a static, read-only definition for the event, as shown in this example:

' VB
Public Shared ReadOnly SuperClickEvent As RoutedEvent

// C#
public static readonly RoutedEvent SuperClickEvent;

Create a wrapper for the routed event that exposes it as a traditional .NET
Framework event, as shown in this example:

' VB
Public Custom Event SuperClick As RoutedEventHandler
AddHandTer(ByVal value As RoutedEventHandler)
Me.AddHand1er(SuperClickEvent, value)
End AddHandler

RemoveHandler(ByVal value As RoutedEventHandler)
Me.RemoveHandler (SuperClickEvent, value)
End RemoveHandler

Lesson 1: Configuring Events and Event Handling 65

RaiseEvent(ByVal sender As Object, _
ByVal e As System.Windows.RoutedEventArgs)
Me.RaiseEvent(e)
End RaiseEvent
End Event

// C#
public event RoutedEventHandler SuperClick

{
add
{
this.AddHandler (SuperClickEvent, value);
}

remove

{

this.RemoveHandler(SuperClickEvent, value);

}

Note that you need to use a different EventArgs class than RoutedEventArgs. You
need to derive a new class from RoutedEventArgs and create a new delegate that
uses those event arguments.

3. Use EventManager to register the new event in the constructor of the class that
owns this event. You must provide the name of the event, the routing strategy
(direct, tunneling, or bubbling), the type of delegate that handles the event, and
the type of the class that owns it. An example is shown here:

' VB

EventManager.RegisterRoutedEvent ("SuperClick", _
RoutingStrategy.Bubble, GetType(RoutedEventArgs), GetType(Windowl))

// C#
EventManager.RegisterRoutedEvent ("SuperClick",
RoutingStrategy.Bubble, typeof(RoutedEventHandler), typeof(Windowl));

Raising an Event

Once an event is defined, you can raise it in code by creating a new instance of Routed-
EventArgs and using the RaiseEvent method, as shown here:

' VB
Dim myEventArgs As New RoutedEventArgs(myControl.myNewEvent)
MyBase.RaiseEvent(myEventArgs)

// C#
RoutedEventArgs myEventArgs = new RoutedEventArgs(myControl.myNewEvent);
RaiseEvent(myEventArgs);

66 Chapter 2 Events, Commands, and Settings

Creating a Class-Level Event Handler

You can use the EventManager class to register a class-level event handler. A class-level
event handler handles a particular event for all instances of a class, and is always
invoked before instance handlers. Thus, you can screen and suppress events before
they reach instance handlers. The following procedure describes how to implement a
class-level event handler.

P To create a class-level event handler

1. Create a static method to handle the event. This method must have the same
signature as the event. An example is shown here:

' VB

Private Shared Sub SuperClickHandlerMethod(ByVal sender As Object, _
ByVal e As RoutedEventArgs)
' Handle the event here

End Sub

// C#
private static void SuperClickHandlerMethod(object sender, RoutedEventArgs e)
{
// Handle the event here
}

2. In the static constructor for the class for which you are creating the class-level
event handler, create a delegate to this method, as shown here:
' VB

Dim SuperClickHandler As New RoutedEventHandler(_
AddressOf SuperClickHandlerMethod)

// C#
RoutedEventHandler SuperClickHandler = new
RoutedEventHandTler (SuperClickHandlerMethod) ;
3. Also in the static constructor, call EventManager.RegisterClassHandler to register
the class-level event handler, as shown here:
' VB

EventManager.RegisterClassHandler (GetType (Windowl), _
SuperClickEvent, SuperClickHandler)

// C#
EventManager.RegisterClassHandler (typeof (Windowl),
SuperClickEvent,SuperClickHandler);

Application-Level Events

Every WPF application is wrapped by an Application object. The Application object pro-
vides a set of events that relate to the application’s lifetime. You can handle these events

Lesson 1: Configuring Events and Event Handling 67

to execute code in response to application startup or closure. The Application object
also provides a set of events related to navigation in page-based applications. These
events were discussed in Chapter 1, “WPF Application Fundamentals.” Table 2-3
describes the available application-level events, excluding the navigation events.

Table 2-3 Selected Application-Level Events

Event Description

Activated Occurs when you switch from another
application to your program. It also is raised the
first time you show a window.

Deactivated Occurs when you switch to another program.

DispatcherUnhandled Exception

Raised when an unhandled exception occurs in
your application. You can handle an unhandled
exception in the event handler for this event by
setting the DispatcherUnhandledException-
EventArgs.Handled property to True.

Exit Occurs when the application is shut down for any
reason.

SessionEnding Occurs when the Windows session is ending,
such as when the user shuts down the computer
or logs off.

Startup Occurs as the application is started.

Application events are standard .NET events (rather than routed events), and you can
create handlers for these events in the standard .NET way. The following procedure
explains how to create an event handler for an application-level event.

P To create an application-level event handler

1.

In Visual Studio, in the Solution Explorer, right-click Application.xaml (in Visual
Basic) or App.xaml (in C#) and choose View Code to open the code file for the

Application object.

Create a method to handle the event, as shown here:

' VB

Private Sub App_Startup(ByVal sender As Object, _

ByVal e As StartupEventArgs)
' Handle event here
End Sub

68 Chapter 2 Events, Commands, and Settings

// C#
void App_Startup(object sender, StartupEventArgs e)

{
// Handle the event here
}

In XAML view for the Application object, add the event handler to the Applica-
tion declaration, as shown in bold here:

<AppTication x:Class="Application"
xmIns="http://schemas.microsoft.com/winfx/2006/xam1/presentation”
xmins:x="http://schemas.microsoft.com/winfx/2006/xaml1"
StartupUri="Windowl.xam1" Startup="App_Startup">

Lab: Practice with Routed Events

In this lab, you practice using routed events. You create event handlers for the TextBox
.TextChanged event in three different controls in the visual tree and observe how the
event is raised and handled by each one.

Exercise: Creating an Event Handler

1. In Visual Studio, create a new WPF application.

2. From the Toolbox, drag a TextBox and three RadioButton controls onto the
design surface. Note that at this point, these controls are contained by a Grid
control that is in itself contained in the top-level Window control. Thus any
bubbling events raised by the TextBox will bubble up first to the Grid and then to
the Window.

3. In XAML view, set the display contents of the RadioButton controls as follows:

RadioButton Content

RadioButtonl Handle Textbox.TextChanged in TextBox

RadioButton2 Handle Textbox.TextChanged in Grid

RadioButton3 Handle Textbox.TextChanged in Window

4. In the XAML for the TextBox, just before the />, type TextChanged and then

press the Tab key twice. An entry for an event handler is created and a corre-
sponding method is created in the code. The event-handler entry should look
like the following:

TextChanged="TextBox1_TextChanged"

10.

Lesson 1: Configuring Events and Event Handling 69

In the XAML for the Grid, type TextBoxBase.TextChanged and then press the
Tab key twice to generate an event handler. The added XAML should look like this:

TextBoxBase.TextChanged="Grid_TextChanged"

In the XAML for the Window, type TextBoxBase.TextChanged and then press
the Tab key twice to generate an event handler. The added XAML should look
like this:

TextBoxBase.TextChanged="Window_TextChanged"
In Code view, add the following code to the Textbox1_TextChanged method:

' VB
MessageBox.Show("Event raised by Textbox")
e.Handled = RadioButtonl.IsChecked

// C#
MessageBox.Show("Event raised by Textbox");
e.Handled = (bool)radioButtonl.IsChecked;

Add the following code to the Grid_TextChanged method:

' VB
MessageBox.Show("Event raised by Grid")
e.Handled = RadioButton2.IsChecked

// C#
MessageBox.Show("Event raised by Grid");
e.Handled = (bool)radioButton2.IsChecked;

Add the following code to the Window_TextChanged method:

' VB
MessageBox.Show("Event raised by Window")
e.Handled = RadioButton3.IsChecked

// C#

MessageBox.Show("Event raised by Window");

e.Handled = (bool)radioButton3.IsChecked;

Press F5 to build and run your application. Type a letter in the TextBox. Three
message boxes are displayed, each one indicating the control that raised the
event. You can handle the event by choosing one of the radio buttons to halt
event bubbling in the event handlers.

Lesson Summary

WPF applications introduce a new kind of event called routed events. Routed
events are raised by WPF controls.

There are three kinds of routed events: direct, bubbling, and tunneling. Direct
events are raised only by the control in which they originate. Bubbling and

70

Chapter 2 Events, Commands, and Settings

tunneling events are raised by the control in which they originate and all controls
that are higher in the visual tree.

A tunneling event is raised first by the top-level control in the visual tree and
tunnels down through the tree until it is finally raised by the control in which it
originates. A bubbling event is raised first by the control in which the event orig-
inates and then bubbles up through the visual tree until it is finally raised by the
top-level control in the visual tree.

You can attach events that exist in contained controls to controls that are higher
in the visual tree.

The EventManager class exposes methods that allow you to manage events in
your application. You can register a new routed event by using the EventManager
.RegisterRoutedEvent class. You can create a class-level event handler by using
EventManager.RegisterClassHandler.

The Application object raises several events that can be handled to execute code
at various points in the application’s lifetime. You can handle application-level
events in the code for the Application object.

Lesson Review

You can use the following questions to test your knowledge of the information in
Lesson 1, “Configuring Events and Event Handling.” The questions are also available
on the companion CD of this book if you prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the "Answers” section at the end of the book.

Suppose you have the following XAML code:

<Window x:Class="WpfApplicationl.Windowl"
xmlns="http://schemas.microsoft.com/winfx/2006/xam1/presentation"
xmins:x="http://schemas.microsoft.com/winfx/2006/xam1"
Title="Windowl" Height="300" Width="300"
ButtonBase.Click="Window_Click">
<Grid ButtonBase.Click="Grid_Click">
<StackPanel Margin="47,54,31,108" Name="stackPanell"
ButtonBase.Click="stackPanell_Click">
<Button Height="23" Name="buttonl" Width="75">Button</Button>
</StackPanel>
</Grid>
</Window>

Lesson 1: Configuring Events and Event Handling

Which method will be executed first when buttonl is clicked?

A.
B.
C.
D.

Buttonl_Click
stackPanell_Click
Grid_Click
Window_Click

2. Suppose you have the following XAML code:

<Window x:Class="WpfApplicationl.Windowl"
xmIns="http://schemas.microsoft.com/winfx/2006/xaml/presentation”
xmins:x="http://schemas.microsoft.com/winfx/2006/xam1"
Title="Windowl" Height="300" Width="300" MouseDown="Window_MouseDown">
<Grid PreviewMouseDown="Grid_PreviewMouseDown">

<StackPanel Margin="47,54,31,108" Name="stackPanell"
PreviewMouseDown="stackPanell_PreviewMouseDown">
<Button Click="buttonl_Click"™ Height="23" Name="buttonl"
Width="75">Button</Button>
</StackPanel>

</Grid>
</Window>

Which method will be executed first when buttonl is clicked?

A
B.
C.
D.

Window_MouseDown
Grid_PreviewMouseDown
stackPanel1_PreviewMouseDown
button1_Click

71

You are writing an application that consists of a single WPF window. You have

code that you want to execute when the window first appears and every time the
window is activated. What application event or events should you handle to
accomplish this goal?

A.

B
C.
D

Activated

Startup

Activated and Startup
Deactivated and Startup

72

Chapter 2 Events, Commands, and Settings

Lesson 2: Configuring Commands

WPF introduces new objects called commands. Commands represent high-level tasks
that are performed in the application. For example, Paste is an example of a command—
it represents the task of copying an object from the clipboard into a container. WPF
provides a cohesive architecture for creating commands, associating them with appli-
cation tasks, and hooking those commands up to user interface (UI) elements. In this
lesson, you will learn to use the built-in command library, associate these commands
with Ul elements, define command handlers, add a gesture to a command, and define
custom commands.

After this lesson, you will be able to:

B Explain the different parts of a command
Associate a command with a Ul element
Add a gesture to a command
Execute a command

Associate a command with a command handler

Disable a command
m Create a custom command
Estimated lesson time: 30 minutes

Commands, such as Cut, Copy, and Paste, represent tasks. In past versions of the
NET Framework, there was no complete architecture for associating code with tasks.
For example, suppose you wanted to implement a Paste task in your application. You
would create the code to execute the task, and then associate your Ul element with
that code via events. For example, you might have a Menultem element that triggers
the code when selected. You also might have context menu items and perhaps even a
Button control. In past versions of the .NET Framework, you would have had to create
event handlers for each control with which you want to associate the task. In addition,
you would have had to implement code to inactivate each of these controls if the task
was unavailable. While not an impossible task, doing this requires tedious coding
that can be fraught with errors.

Commands allow you to use a centralized architecture for tasks. You can associate any
number of Ul controls or input gestures to a command and bind that command to a
handler that is executed when controls are activated or gestures are performed.
Commands also keep track of whether or not they are available. If a command is
disabled, UI elements associated with that command are disabled, too.

Lesson 2: Configuring Commands 73

Command architecture consists of four principal parts. There is the Command object
itself, which represents the task. Then there are command sources. A command source
is a control or gesture that triggers the command when invoked. The command handler
is a method that is executed when the command is invoked, and CommandBinding is
an object that is used by the .NET Framework to track what commands are associated
with which sources and handlers.

The .NET Framework provides several predefined commands that are available for
use by developers. These built-in commands are static objects that are properties of
five static classes, which are the following:

ApplicationCommands
ComponentCommands
EditingCommands

MediaCommands

NavigationCommands

Each of these classes exposes a variety of static command objects that you can use in
your applications. While some of these commands have default input bindings
(for example, the ApplicationCommands.Open command has a default binding to the
key combination Ctrl+O), none of these commands has any inherent functionality—
you must create bindings and handlers for these commands to use them in your
application.

A High-Level Procedure for Implementing a Command

The following section describes a high-level procedure for implementing command
functionality. The steps of this procedure are discussed in greater detail in the
subsequent sections.

» To implement a command

1. Decide on the command to use, whether it is one of the static commands
exposed by the NET Framework or a custom command.

2. Associate the command with any controls in the user interface and add any
desired input gestures to the command.

3. Create a method to handle the command.

Create a CommandBinding that binds the Command object to the command han-
dler and optionally to a method that handles Command. CanExecute.

74 Chapter 2 Events, Commands, and Settings

5. Add the command binding to the Commands collection of the control or Window
where the command is invoked.

Invoking Commands

Once a command has been implemented, you can invoke it by associating it with a
control, using a gesture, or invoking it directly from code.

Associating Commands with Controls

Many WPF controls implement the ICommandSource interface, which allows them to
have a command associated with them that is fired automatically when that control is
invoked. For example, Button and Menultem controls implement ICommandSource
and thus expose a Command property. When this property is set to a command, that
command is executed automatically when the control is clicked. You can set a
command for a control in XAML, as shown here:

<Button Command="ApplicationCommands.Find" Height="23"
HorizontalAlignment="Right" Margin="0,0,38,80" Name="Button3"
VerticalAlignment="Bottom" Width="75">Button</Button>

Invoking Commands with Gestures

You also can register mouse and keyboard gestures with Command objects that invoke
the command when those gestures occur. The following example code shows how to
add a mouse gesture and a keyboard gesture to the InputGestures collection of the
Application.Find command:

' VB

AppTlicationCommands.Find.InputGestures.Add(New _
MouseGesture(MouseAction.LeftClick, ModifierKeys.Control))

AppTicationCommands.Find.InputGestures.Add(New _
KeyGesture(Key.Q, ModifierKeys.Control))

// C#

AppTlicationCommands.Find.InputGestures.Add(new
MouseGesture(MouseAction.LeftClick, ModifierKeys.Control));

AppTicationCommands.Find.InputGestures.Add(new
KeyGesture(Key.Q, ModifierKeys.Control));

Once the code in the previous example is executed, the Find command executes
either when the Ctrl key is held down and the left mouse button is clicked, or when
the Ctrl key and the Q key are held down together (Ctrl+Q).

Lesson 2: Configuring Commands 75

Invoking Commands from Code

You might want to invoke a command directly from code, such as in response to an
event in a control that does not expose a Command property. To invoke a command
directly, simply call the Command.Execute method, as shown here:

' VB
ApplicationCommands.Find.Execute(aParameter, TargetControl)

XgpgﬁcationCommands.Find.Execute(aParameter, TargetControl);

In this example, aParameter represents an object that contains any required parameter
data for the command. If no parameter is needed, you can use null (Nothing in Visual
Basic). TargetControl is a control where the command originates. The run time will
start looking for CommandBindings in this control and then bubble up through the
visual tree until an appropriate CommandBinding is found.

Command Handlers and Command Bindings

As stated before, just invoking a command doesn’t actually do anything. Commands
represent tasks, but they do not contain any of the code for the tasks they represent.
To execute code when a command is invoked, you must create a CommandBinding
that binds the command to a command handler.

Command Handlers

Any method with the correct signature can be a command handler. Command handlers
have the following signature:

' VB

Private Sub myCommandHandler(ByVal sender As Object, _
ByVal e As ExecutedRoutedEventArgs)
' Handle the command here

End Sub

// C#

private void myCommandHandler(object sender, ExecutedRoutedEventArgs e)

{

// Handle the command here
}

ExecutedRoutedEventArgs is derived from RoutedEventArgs and thus exposes all the
members that RoutedEventArgs does. In addition, it exposes a Command property that
returns the Command object that is being handled.

76

Chapter 2 Events, Commands, and Settings

Command Bindings

The CommandBinding object provides the glue that holds the whole command archi-
tecture together. A CommandBinding associates a command with a command handler.
Adding a CommandBinding to the CommandBindings collection of the Window or a
control registers the CommandBinding and allows the command handler to be called
when the command is invoked. The following code demonstrates how to create and
register a CommandBinding:

' VB

Dim abinding As New CommandBinding()

abinding.Command = ApplicationCommands.Find

AddHandler abinding.Executed, AddressOf myCommandHandler
Me.CommandBindings.Add(abinding)

// C#

CommandBinding abinding = new CommandBindingQ);

abinding.Command = ApplicationCommands.Find;

abinding.Executed += new ExecutedRoutedEventHandler (myCommandHandler);
this.CommandBindings.Add(abinding);

In the preceding example, you first create a new CommandBinding object. You then
associate that CommandBinding object with a Command object. Next, you specify the
command handler that will be executed when the command is invoked, and finally,
you add the CommandBinding object to the CommandBindings collection of the Win-
dow. Thus, if an object in the window invokes the command, the corresponding com-
mand handler will be executed.

You also can define CommandBindings directly in the XAML. You can create a new
binding and declaratively set the command it is associated with and the associated
handlers. The following example demonstrates a new CommandBinding in the Com-
mandBinding collection of the window that associates the Application.Find command
with a handler:

<Window.CommandBindings>
<CommandBinding Command="ApplicationCommands.Find"
Executed="myCommandHandler" />
</Window.CommandBindings>

Command Bubbling

Note that all controls have their own CommandBindings collection in addition to the
window’s CommandBindings collection. This is because commands, like routed events,
bubble up through the visual tree when they are invoked. Commands look for a bind-
ing first in the CommandBindings collection of the control in which they originate, and

Lesson 2: Configuring Commands 77

then in the CommandBindings collections of controls higher on the visual tree. Like a
routedEvent, you can stop further processing of the command by setting the Handled
property of the ExecutedRoutedEventArgs parameter to True, as shown here:

' VB

Private Sub myCommandHandler(ByVal sender As Object, _
ByVal e As ExecutedRoutedEventArgs)
' Stops further Command bubbling
e.Handled = True

End Sub

// C#
private void myCommandHandler(object sender, ExecutedRoutedEventArgs e)
{

// Handle the command here

e.Handled = true;

}

Exam Tip Bubbling and tunneling are concepts that are new to WPF and that play important
roles both in commands and how WPF handles routed events. Be certain that you understand the
concepts of bubbling and tunneling events and bubbling commands for the exam. Remember that
a command or event doesn't need to be handled by the same element in which it originates.

Disabling Commands

Any command that is not associated with a CommandBinding is automatically dis-
abled. No action is taken when that command is invoked, and any control that has its
Command property set to that command appears as disabled. However, there might
be times that you want to disable a command that is in place and associated with con-
trols and CommandBindings. For example, you might want the Print command to be
disabled until the focus is on a document. The command architecture allows you to
designate a method to handle the Command.CanExecute event. The CanExecute event
is raised at various points in the course of application execution to determine whether
a command is in a state that will allow execution.

Methods that handle the CanExecute event include an instance of CanExecuteRouted
EventArgs as a parameter. This class exposes a property called CanExecute that is a bool-
ean value. If CanExecute is true, the command can be invoked. If it is false, the command
is disabled. You can create a method that handles the CanExecute event, determines
whether or not the application is in an appropriate state to allow command execution,
and sets e.CanExecute to the appropriate value.

78

Chapter 2 Events, Commands, and Settings

P To handle the CanExecute event

1.

Create a method to handle the CanExecute event. This method should query the
application to determine whether the application’s state is appropriate to allow
the command to be enabled. An example is shown here:

' VB

Private canExecute As Boolean

Private Sub abinding_CanExecute(ByVal sender As Object, _
ByVal e As CanExecuteRoutedEventArgs)
e.CanExecute = canExecute

End Sub

// C#
bool canExecute;
void abinding_CanExecute(object sender, CanExecuteRoutedEventArgs e)

{

e.CanExecute = canExecute;
}
In this example, the method returns the value represented by a private variable
called canExecute. Presumably, the application sets this to False whenever it
requires the command to be disabled.

Set the CanExecute handler on the CommandBinding to point to this method, as
shown here:

' VB
' Assumes that you have already created a CommandBinding called abinding
AddHandler abinding.CanExecute, AddressOf abinding_CanExecute

// C#
// Assumes that you have already created a CommandBinding called abinding
abinding.CanExecute += new CanExecuteRoutedEventHandler(abinding_CanExecute);

Alternatively, create a new binding in XAML and specify the handler there, as
shown here in bold:

<Window.CommandBindings>
<CommandBinding Command="ApplicationCommands.Find"
Executed="CommandBinding_Executed"
CanExecute="abinding_CanExecute" />
</Window.CommandBindings>

Creating Custom Commands

Although a wide variety of pre-existing commands is at your disposal, you might want
to create your own custom commands. The best practice for custom commands is
to follow the example set in the .NET Framework and create static classes (in C#) or

Lesson 2: Configuring Commands 79

modules (in Visual Basic) that expose static instances of the custom command. This
keeps multiple instances of the command from being created. You also can provide any
custom configuration for the command in the static constructor of the class—for exam-
ple, if you want to map any input gestures to the command. The following example
shows how to create a static class that exposes a custom command called Launch:
' VB
Public Module MyCommands

Private launch_command As RoutedUICommand

Sub New()

Dim myInputGestures As New InputGestureCollection
myInputGestures.Add(New KeyGesture(Key.L, ModifierKeys.Control))

Taunch_command = New RoutedUICommand("Launch", "Launch", _
GetType (MyCommands), myInputGestures)
End Sub
Pub1lic ReadOnly Property Launch() As RoutedUICommand
Get
Return Taunch_command
End Get
End Property
End Module
// C#
pubTlic class MyCommands
{
private static RoutedUICommand Taunch_command;
static MyCommands()
{
InputGestureCollection myInputGestures = new
InputGestureCollection();
myInputGestures.Add(new KeyGesture(Key.L, ModifierKeys.Control));
Taunch_command = new RoutedUICommand("Launch", "Launch",
typeof (MyCommands), myInputGestures);
}
public RoutedUICommand Launch
{
get
{
return launch_command;
}
}
}

In this example, a static class or module is created to contain the custom command,
which is exposed through a read-only property. In the static constructor, a new Input-
GesturesCollection is created and a key gesture is added to the collection. This collec-
tion is then used to initialize the instance of RoutedUICommand that is returned
through the read-only property.

80 Chapter 2 Events, Commands, and Settings

Using Custom Commands in XAML

Once you have created a custom command, you are ready to use it in code. If you want
to use it in XAML, however, you also must map the namespace that contains the cus-
tom command to a XAML namespace. The following procedure describes how to use
a custom command in XAML.

P To use a custom command in XAML

1.
2.

Create your custom command, as described previously.

Add a namespace mapping to your Window XAML. The following example dem-

onstrates how to map a namespace called WpfApplication13.CustomCommands.

Note that in this example, that would mean that your custom commands are

kept in a separate namespace:

<Window x:Class="Windowl"
xmlns="http://schemas.microsoft.com/winfx/2006/xam1/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xam1"

xm1ns :CustomCommands="c1r-namespace:WpfApplicationl3.CustomCommands"
Title="Windowl" Height="300" Width="300">

<!-The rest of the XAML is omitted-->
</Window>

Use the newly mapped XAML namespace in your XAML code, as shown here:

<Button Command="CustomCommands :MyCommands.Launch" Height="23"
HorizontalAlignment="Left" Margin="60,91,0,0" Name="Buttonl" VerticalAlignment="Top"
Width="75">Button</Button>

Lab: Creating a Custom Command

In this lab, you create a custom command and then connect your command to Ul
elements by using a CommandBinding.

Exercise 1: Creating a Custom Command

1.
2.

From the CD, open the partial solution for this exercise.

From the Project menu, choose Add Class (in C#) or Add Module (in Visual
Basic). Name the new item CustomCommands and click OK. Set the access
modifier of this class or module to public.

If you are working in C#, add the following using statement to your class:
using System.Windows.Input;

Otherwise, go on to Step 4.

Lesson 2: Configuring Commands 81

Add a read-only property named Launch and a corresponding member variable
that returns an instance of a RoutedUICommand, as shown here. (Note that these
should be static members in C#.)

' VB
Private Taunch_command As RoutedUICommand
Public ReadOnly Property Launch() As RoutedUICommand
Get
Return Taunch_command
End Get
End Property

// C#
private static RoutedUICommand Taunch_command;
public static RoutedUICommand Launch
{
get
{

return Taunch_command;

3

Add a constructor to your module (in Visual Basic) or a static constructor
to your class (in C#) that creates a new InputGestureCollection, adds an appro-
priate input gesture to be associated with this new command, and then
initializes the member variable that returns the custom command, as shown
here:

' VB
Sub New()
Dim myInputGestures As New InputGestureCollection
myInputGestures.Add(New KeyGesture(Key.L, ModifierKeys.Control))
Taunch_command = New RoutedUICommand('Launch", "Launch", _
GetType(CustomCommands), myInputGestures)
End Sub

// C#
static CustomCommands()
{
InputGestureCollection myInputGestures = new
InputGestureCollection();
myInputGestures.Add(new KeyGesture(Key.L, ModifierKeys.Control));
Taunch_command = new RoutedUICommand("Launch", "Launch",
typeof (CustomCommands), myInputGestures);
}

From the Build menu, choose Build Solution to build your solution.

82 Chapter 2 Events, Commands, and Settings

Exercise 2: Using Your Custom Command

1.

In XAML view, add the following code to your Window markup to create a reference
to the class that contains your custom command:

xmlns:Local="clr-namespace:YourProjectNamespaceGoesHere"

The previous code in bold should be replaced with the namespace name of your
project.

In XAML view, add the following attribute to both your Button control and your
Launch Menultem:

Command="Local:CustomCommands .Launch"
In the Window1 code view, add the following method:

' VB

Private Sub Launch_Handler(ByVal sender As Object, _
ByVal e As ExecutedRoutedEventArgs)
MessageBox.Show("Launch invoked")

End Sub

// C#

private void Launch_Handler(object sender, ExecutedRoutedEventArgs e)

{

MessageBox.Show("Launch invoked");
3
From the Toolbox, drag a CheckBox control onto the form. Set the content of the
control to “Enable Launch Command”.

In the code view for Windowl, add the following method:

' VB

Private Sub LaunchEnabled_Handler(ByVal sender As Object, _
ByVal e As CanExecuteRoutedEventArgs)
e.CanExecute = CheckBox1l.IsChecked

End Sub

// C#
private void LaunchEnabled_Handler(object sender,
CanExecuteRoutedEventArgs e)

{
e.CanExecute = (bool)checkBox1l.IsChecked;

}

Create or replace the constructor for Windowl that creates and registers
a CommandBinding for the Launch command. This CommandBinding should bind
the Launch.Executed event to the Launch_Handler method and bind the
Launch.CanExecute event to the LaunchEnabled_Handler method. An example is
shown here:

Lesson 2: Configuring Commands 83

' VB

PubTic Sub New()
InitializeComponent()
Dim abinding As New CommandBinding()
abinding.Command = CustomCommands.Launch
AddHandler abinding.Executed, AddressOf Launch_Handler
AddHandler abinding.CanExecute, AddressOf LaunchEnabled_Handler
Me.CommandBindings.Add(abinding)

End Sub

// C#

pubTic Windowl()

{
InitializeComponent();
CommandBinding abinding = new CommandBinding();
abinding.Command = CustomCommands.Launch;
abinding.Executed += new ExecutedRoutedEventHandler(Launch_Handler);
abinding.CanExecute += new

CanExecuteRoutedEventHandler(LaunchEnabled_Handler);

this.CommandBindings.Add(abinding);

}

Press F5 to build and run your application. Note that when the application
starts, the Button and Launch menu item are disabled. Select the check box to
enable the command. Now you can invoke the command from the button, from
the menu, or by using the Ctrl+L input gesture.

Lesson Summary

Commands provide a central architecture for managing high-level tasks. The
NET Framework provides a library of built-in commands that map to common
tasks that can be used in your applications.

Commands can be invoked directly, by an input gesture such as a MouseGesture
or a KeyGesture, or by activating a custom control. A single command can be
associated with any number of gestures or controls.

CommandBindings associate commands with command handlers. You can spec-
ify a method to handle the Executed event of a command and another method to
handle the CanExecute event of a command.

Methods handling the CanExecute event of a command should set the CanExecute
property of the CanExecuteRoutedEventArgs to False when the command should
be disabled.

Commands can be bound by any number of CommandBindings. Commands
exhibit bubbling behavior. When invoked, commands first look for a binding in

84

Chapter 2 Events, Commands, and Settings

the collection of the element that the command was invoked in, and then look
in each higher element in the visual tree.

m You can create custom commands. When you have created a custom command,
you must map the namespace in which it exists to a XAML namespace in your
XAML view.

Lesson Review

You can use the following questions to test your knowledge of the information in
Lesson 2, “Configuring Commands.” The questions are also available on the companion
CD if you prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the "Answers” section at the end of the book.

1. Which of the following is required to bind a command to a command handler?
(Choose all that apply.)

A. Instantiate a new instance of CommandBinding

Set the CommandBinding. Command property to a command
Add one or more input gestures to your command

Add a handler for the CommandBinding. Executed event

Add a handler for the CommandBinding. CanExecute event

MmUY 0w

Add CommandBinding to the CommandBindings collection of the Window or
other control associated with the command

2. You are working with an application that exposes a command named Launch.
This command is registered in the CommandBindings collection of a control
called Windowl1 and requires a String parameter. Which of the following code
snippets invokes the command from code correctly?

A.

' VB
Launch.CanExecute = True
Launch.Execute("Boom", Windowll)

// C#
Launch.CanExecute = true;
Launch.Execute("Boom", Windowll);

Lesson 2: Configuring Commands

' VB
Launch.Execute("Boom™)

// C#
Launch.Execute("Boom") ;

' VB
Launch.Execute("Boom", Windowll)

// C#
Launch.Execute("Boom", Windowll);

' VB
Windowll.CanExecute(Launch, True)
Launch.Execute("Boom", Windowll)

// C#
Windowll.CanExecute(Launch, true);
Launch.Execute("Boom", Windowll);

85

86

Chapter 2 Events, Commands, and Settings

Lesson 3: Configuring Application Settings

The .NET Framework allows you to create and access values that persist from applica-
tion session to application session. The values are called settings. Settings can represent
any kind of information that an application might need from session to session, such as
user preferences, the address of a Web server, or any other kind of necessary informa-
tion. In this lesson, you will learn to create and access settings. You will learn the differ-
ence between a user setting and an application setting, and you will learn to load and
save settings at run time.

After this lesson, you will be able to:
B Explain the difference between a user setting and an application setting
B Create a new setting at design time
B Load settings at run time
B Save user settings at run time
Estimated lesson time: 15 minutes

Settings can be used to store information that is valuable to the application but might
change from time to time. For example, you can use settings to store user preferences,
such as the color scheme of an application, or the address of a Web server used by the
application.

Settings have four properties:

m Name, which indicates the name of the setting. This is used to access the setting

atrun time.

m Type, which represents the data type of the setting.

m Value, which is the value returned by the setting.

m Scope, which can be either User or Application.
The Name, Type, and Value properties should be fairly self-explanatory. The Scope
property, however, bears a little closer examination. The Scope property can be set to
either Application or User. A setting with Application scope represents a value that is

used by the entire application regardless of the user, whereas an application with User
scope is more likely to be user-specific and less crucial to the application.

An important distinction between user settings and application settings is that user
settings are read/write. They can be read and written to at run time, and newly written

Lesson 3: Configuring Application Settings 87

values can be saved by the application. In contrast, Application settings are read-only
and the values can be changed only at design time or by editing the Settings file
between application sessions.

Creating Settings at Design Time

Visual Studio provides an editor to create settings for your application at design time.
This editor is shown in Figure 2-1.

Application Synchronize Load Web Settings | [Z] View Code z

Cornpile
Application settings allow you to store and retrieve property settings and other
Debug information for your application dynarmically, For example, the application can
save a user's color preferences, then retrieve thern the next time it runs, Learn

References mare about application setfings..,
Resources

Marme Type Scope Walue
Cervi
o rryFavariteColor lSystem‘Dra.‘. - || User '|.B\ue
Settings* rrySetting IString > | Application Best App EVER!
Signing & I e

Figure 2-1 The Settings Editor

The Settings Editor allows you to create new settings and set each of their four prop-
erties. The Name property, the name that you use to retrieve the setting value, must be
unique in the application. The Type property represents the type of the setting. The
Scope property is either Application, which represents a read-only property, or User,
which represents a read-write setting. Finally, the Value property represents the value
returned by the setting. The Value property must be of the type specified by the Type

property.
P To create a setting at design time
1. Ifyouareworking in C#, in Solution Explorer, under Properties, locate and double-

click Settings.settings to open the Settings Editor. If you are working in Visual Basic,
in Solution Explorer, double-click MyProject and select the Settings tab.

Set the Name, Type, Scope, and Value for the new setting.

If your application has not yet been saved, choose Save All from the File menu to
save your application.

88 Chapter 2 Events, Commands, and Settings

Loading Settings at Run Time

At run time, you can access the values contained by the settings. In Visual Basic,
settings are exposed through the My object, whereas in C#, you access settings
through the Properties.Settings. Default object. At design time, individual settings
appear in IntelliSense as properties of the Settings object and can be treated in code as
such. Settings are strongly typed and are retrieved as the same type as specified when
they were created. The following example code demonstrates how to copy the value
from a setting to a variable:

' VB

Dim aString As String
aString = My.Settings.MyStringSetting

// C#
String aString;
aString = Properties.Settings.Default.MyStringSetting;

Saving User Settings at Run Time

You can save the value of user settings at run time. To change the value of a user
setting, simply assign it a new value, just as you would any property or field. Then you
must call the Save method to save the new value. An example is shown here:

' VB

My.Settings.Headline = "This is tomorrow's headline"
My.Settings.Save

// C#
Properties.Settings.Default.Headline = "This is tomorrow's headline";
Properties.Settings.Default.Save();

Quick Check
m What is the difference between a user setting and an application setting?
Quick Check Answer
m A user setting is designed to be user-specific, such as a background color.
User settings can be written at run time and can vary from user to user. An
application setting is designed to be constant for all users of an application,

such as a database connection string. Application settings are read-only at
run time.

Lesson 3: Configuring Application Settings 89

Lab: Practice with Settings

In this lab you create an application that uses settings. You define settings while build-
ing the application, read the settings, apply them in your application, and enable the
user to change one of the settings.

Exercise: Using Settings
1. In Visual Studio, create a new WPF application.

2. In Solution Explorer, expand Properties and double-click Settings.settings (in C#)
or double-click My Project and choose the Settings tab (in Visual Basic) to open
the Settings Editor.

3. Add two settings, as described in this table:

Name Type Scope Value
ApplicationName ~ String Application Settings App
BackgroundColor ~ System.Windows.Media.Color ~ User #0000t

Note that you will have to browse to find the System.Windows.Media type, then
expand the node to find the System.Windows.Media.Color type.

4. In XAML view, add the following XAML to the Grid element to add a ListBox with
four items and a Button to your user interface:

<ListBox Margin="15,15,0,0" Name="TistBox1l" Height="78"
HorizontalAlignment="Left" VerticalAlignment="Top" Width="107">
<ListBoxItem>Red</ListBoxItem>
<ListBoxItem>Blue</ListBoxItem>
<ListBoxItem>Green</ListBoxItem>
<ListBoxItem>Tomato</ListBoxItem>

</ListBox>

<Button Margin="15,106,110,130" Name="buttonl">Change Background
Color</Button>

5. In the designer, double-click buttonl to open the code view to the default
handler for the Click event. Add the following code:

' VB
If Not TistBoxl.SelectedItem Is Nothing Then
Dim astring As String = CType(listBoxl.SelectedItem, _
ListBoxItem).Content.ToString
Select Case astring
Case "Red"
My.Settings.BackgroundColor = Colors.Red

20 Chapter 2 Events, Commands, and Settings

Case "Blue"
My.Settings.BackgroundColor = Colors.Blue
Case "Green"
My.Settings.BackgroundColor = Colors.Green
Case "Tomato"
My.Settings.BackgroundColor = Colors.Tomato
End Select
Me.Background = New _
System.Windows.Media.SolidColorBrush(My.Settings.BackgroundColor)
My.Settings.Save()
End If

// C#
if (' (1listBox1l.SelectedItem == null))
{
String astring =
((ListBoxItem)1istBox1l.SelectedItem).Content.ToStringQ);
switch (astring)
{
case "Red":
Properties.Settings.Default.BackgroundColor = Colors.Red;
break;
case "Blue":
Properties.Settings.Default.BackgroundColor = Colors.Blue;
break;
case "Green":
Properties.Settings.Default.BackgroundColor = Colors.Green;
break;
case "Tomato":
Properties.Settings.Default.BackgroundColor = Colors.Tomato;
break;
}
this.Background = new
System.Windows.Media.SolidColorBrush(
Properties.Settings.Default.BackgroundColor);
Properties.Settings.Default.Save();
}

6. Create or replace the constructor for this class with the following code to read
and apply the settings:

' VB
Public Sub New(Q)
InitializeComponent()
Me.Title = My.Settings.ApplicationName
Me.Background = New _
System.Windows.Media.SolidColorBrush(My.Settings.BackgroundColor)
End Sub

// C#
public Windowl()
{

InitializeComponent();

Lesson 3: Configuring Application Settings 91

this.Title = Properties.Settings.Default.ApplicationName;
this.Background = new
System.Windows.Media.SolidColorBrush(
Properties.Settings.Default.BackgroundColor);
}

7. Press F5 to build and run your application. Note that the title of the window is the
value of your ApplicationName setting and the background color of your window
is the value indicated by the BackgroundColor setting. You can change the back-
ground color by selecting an item in the ListBox and clicking the button. After
changing the background color, close the application and restart it. Note that the
background color of the application at startup is the same as it was when the pre-

vious application session ended.

Lesson Summary

m Settings allow you to persist values between application sessions. You can add
new settings at design time by using the Settings Editor.

m Settings can be one of two different scopes. Settings with Application scope are
read-only at run time and can be changed only by altering the Settings file
between application sessions. Settings with User scope are read-write at run time.

m You can access settings in code through My.Settings in Visual Basic, or Proper-
ties.Settings. Default in C#.

Lesson Review

You can use the following questions to test your knowledge of the information in
Lesson 3, “Configuring Application Settings.” The questions are also available on the
companion CD if you prefer to review them in electronic form.

NOTE Answers

Answers to these questions and explanations of why each answer choice is correct or incorrect are
located in the "Answers” section at the end of the book.

1. Which of the following code snippets correctly sets the value of a setting called
Title and persists it?

A.

' VB
My.Settings("Title") = "New Title"
My.Settings.Save

92 Chapter 2 Events, Commands, and Settings

// C#
Properties.Settings.Default["Title"] = "New Title";
Properties.Settings.Default.Save();
B.
' VB
My.Settings("Title") = "New Title"
// C#
Properties.Settings.Default["Title"] = "New Title";
C.
' VB
My.Settings.Title = "New Title"
My.Settings.Save()
// C#
Properties.Settings.Default.Title = "New Title";
Properties.Settings.Default.Save(Q);
D.

' VB
My.Settings.Title = "New Title"

// C#
Properties.Settings.Default.Title = "New Title";
2. Which of the following code snippets reads a setting of type System.Windows
Media.Color named MyColor correctly?

A.

' VB

Dim aColor As System.Windows.Media.Color

aColor = CType(My.Settings.MyColor, System.Windows.Media.Color)

// C#

System.Windows.Media.Color aColor;

aColor = (System.Windows.Media.Color)Properties.Settings.Default.MyColor;
B.

' VB
Dim aColor As System.Windows.Media.Color
aColor = My.Settings.MyColor.ToColor()

// C#
System.Windows.Media.Color aColor;
aColor = Properties.Settings.Default.MyColor.ToColor(Q);

Lesson 3: Configuring Application Settings

' VB
Dim aColor As Object
aColor = My.Settings.MyColor

// C#
Object aColor;
aColor = Properties.Settings.Default.MyColor;

' VB
Dim aColor As System.Windows.Media.Color
aColor = My.Settings.MyColor

// C#
System.Windows.Media.Color aColor;
aColor = Properties.Settings.Default.MyColor;

93

94 Chapter 2 Review

Chapter Review

To practice and reinforce the skills you learned in this chapter further, you can do any
or all of the following:

Review the chapter summary.
Review the list of key terms introduced in this chapter.

Complete the case scenarios. These scenarios set up real-world situations involving
the topics of this chapter and ask you to create a solution.

Complete the suggested practices.

Take a practice test.

Chapter Summary

Routed events can be raised by multiple Ul elements in the visual tree. Bubbling
events are raised first by the element in which they originate and then bubble up
through the visual tree. Tunneling events are raised first by the topmost element
in the visual tree and tunnel down to the element in which the event originates.
Direct events are raised only by the element in which they originate.

Elements in the visual tree can handle events that they do not themselves define.
These are called attached events. You can define a handler for an attached eventin
the XAML that defines the element.

You can use the EventManager class to register a new routed event and to register
a class event handler.

Commands provide an architecture that allows you to define high-level tasks,
connect those tasks to a variety of inputs, define handlers that execute code
when commands are invoked, and determine when a command is unavailable.

You can use the built-in library of commands or create custom commands for
your application. Commands can be triggered by controls, input gestures, or
direct invocation.

The CommandBinding object binds commands to command handlers.

Settings allow you to create applications that persist between application
sessions. Application scope settings are read-only at run time, and user scope
settings are read-write at run time.

Settings are exposed as strongly typed properties on the My.Settings object
(in Visual Basic) and the Properties.Settings. Default object (in C#).

Chapter 2 Review 95

Key Terms

Do you know what these key terms mean? You can check your answers by looking up
the terms in the glossary at the end of the book.

Application Setting
Bubbling Event
Command
Command Handler
Direct Event

Event Handler
Gesture

Routed Event
Setting

Tunneling Event

User Setting

Case Scenarios

In the following case scenarios, you will apply what you've learned about how to use
commands, events, and settings to design user interfaces. You can find answers to
these questions in the “Answers” section at the end of this book.

Case Scenario 1: Validating User Input

You're creating a form that will be used by Humongous Insurance data entry personnel
to input data. The form consists of several TextBox controls that receive input. Data
entry is expected to proceed quickly and without errors, but to help ensure this you will
be designing validation for this form. This validation is somewhat complex—there is a
set of characters that is not allowed in any text box on the form, and each text box has
additional limitations that differ from control to control. You would like to implement
this validation scheme with a minimum of code in order to make troubleshooting and
maintenance simple.

926 Chapter 2 Review

Question

Answer the following question for your manager:

m What strategies can we use to implement these requirements?

Case Scenario 2: Humongous Insurance User Interface

The front end for this database is just as complex as the validation requirements. You
are faced with a front end that exposes many menu options. Furthermore, for expert
users, some of the more commonly used menu items can be triggered by holding
down the Ctrl key while performing various gestures with the mouse. Functionality
invoked by the menu items sometimes will be unavailable. Finally, you need to allow
the operator to edit data in this window quickly and easily.

Technical Requirements

All main menu items must have access keys, and some have mouse shortcuts.

Availability of menu items must be communicated to the user in a way that is
easy to understand but does not disrupt program flow.

You must ensure that when a menu item is unavailable, corresponding shortcut
keys and mouse gestures are also inactivated.

Certain TextBox controls on the form must fill in automatically when appropriate
keystrokes are entered.

Question

How can this functionality be implemented?

Suggested Practices

Create a rudimentary text editor with buttons that implement the Cut, Copy,
and Paste commands.

Create an application that stores a color scheme for each user and automatically
loads the correct color scheme when the user opens the application.

Build an application that consists of a window with a single button that the user
can chase around the window with the mouse but can never actually click.

Chapter 2 Review 97

Take a Practice Test

The practice tests on this book’s companion CD offer many options. For example, you
can test yourself on just the content covered in this chapter, or you can test yourself on
all the 70-502 certification exam content. You can set up the test so that it closely sim-
ulates the experience of taking a certification exam, or you can set it up in study mode
so that you can look at the correct answers and explanations after you answer each
question.

MORE INFO Practice tests

For details about all the practice test options available, see the section “How to Use the Practice
Tests,” in this book’s Introduction.

	Cover
	Table of Contents
	Chapter 2: Events, Commands, and Settings
	Before You Begin
	Lesson 1: Configuring Events and Event Handling
	RoutedEventArgs
	Attaching an Event Handler
	The EventManager Class
	Defining a New Routed Event
	Creating a Class-Level Event Handler
	Application-Level Events
	Lab: Practice with Routed Events
	Lesson Summary
	Lesson Review

	Lesson 2: Configuring Commands
	A High-Level Procedure for Implementing a Command
	Invoking Commands
	Command Handlers and Command Bindings
	Creating Custom Commands
	Lab: Creating a Custom Command
	Lesson Summary
	Lesson Review

	Lesson 3: Configuring Application Settings
	Creating Settings at Design Time
	Loading Settings at Run Time
	Saving User Settings at Run Time
	Lab: Practice with Settings
	Lesson Summary
	Lesson Review

	Chapter Review
	Chapter Summary
	Key Terms
	Case Scenarios
	Case Scenario 1: Validating User Input
	Case Scenario 2: Humongous Insurance User Interface

	Suggested Practices
	Take a Practice Test

