

Microsoft
®
 Windows

®

Communication
Foundation Step by Step

John Sharp (Content Master)

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/10022.aspx

9780735623361
Publication Date: January 2007

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Table of Contents
Acknowledgments . xi

Introduction . xiii

1 Introducing Windows Communication Foundation 1

What Is Windows Communication Foundation? . 1

The Early Days of Personal Computer Applications . 1

Inter-Process Communications Technologies . 2

The Web and Web Services . 3

Using XML as a Common Data Format . 3

Sending and Receiving Web Service Requests . 4

Handling Security and Privacy in a Global Environment. 5

The Purpose of Windows Communication Foundation . 6

Building a WCF Service . 7

Defining Contracts . 12

Implementing the Service . 14

Configuring, Deploying, and Testing the WCF Service . 18

Building a WCF Client. 24

Service-Oriented Architectures and Windows Communication Foundation. 28

Summary . 30

2 Hosting a WCF Service . 31

How Does a WCF Service Work? . 31

Service Endpoints . 32

Processing a Client Request . 33

Hosting a WCF Service in a User Application . 35

Using the ServiceHost Class. 35

Building a Windows Presentation Foundation Application to Host a
WCF Service . 38

Reconfiguring the Service to Use Multiple Endpoints . 44
v

vi Table of Contents
Understanding Bindings . 47

The WCF Predefined Bindings . 47

Configuring Bindings . 50

Hosting a WCF Service in a Windows Service . 52

Summary . 57

3 Making Applications and Services Robust . 59

CLR Exceptions and SOAP Faults . 60

Throwing and Catching a SOAP Fault . 60

Using Strongly-Typed Faults . 65

Reporting Unanticipated Exceptions . 73

Managing Exceptions in Service Host Applications . 76

ServiceHost States and Transitions. 76

Handling Faults in a Host Application . 77

Handling Unexpected Messages in a Host Application 78

Summary . 80

4 Protecting an Enterprise WCF Service . 81

What Is Security?. 81

Authentication and Authorization in a Windows Environment. 83

Transport and Message Level Security . 84

Implementing Security in a Windows Domain . 86

Protecting a TCP Service at the Message Level . 86

Protecting an HTTP Service at the Transport Level . 93

Protecting an HTTP Service at the Message Level. 100

Authenticating Windows Users . 102

Authorizing Users . 108

Using Impersonation to Access Resources . 114

Summary . 116

5 Protecting a WCF Service over the Internet . 117

Authenticating Users and Services in an Internet Environment 118

Authenticating and Authorizing Users by Using the SQL Membership
Provider and the SQL Role Provider . 118

Authenticating and Authorizing Users by Using Certificates. 132

Authenticating a Service by Using a Certificate. 142

Summary . 148

Table of Contents vii
6 Maintaining Service Contracts and Data Contracts 149

Modifying a Service Contract . 150

Selectively Protecting Operations . 150

Versioning a Service . 156

Making Breaking and Nonbreaking Changes to a Service Contract. 163

Modifying a Data Contract . 165

Data Contract and Data Member Attributes. 166

Data Contract Compatibility . 176

Summary . 179

7 Maintaining State and Sequencing Operations 181

Managing State in a WCF Service. 182

Service Instance Context Modes . 193

Maintaining State with the PerCall Instance Context Mode. 198

Selectively Controlling Service Instance Deactivation . 204

Sequencing Operations in a WCF Service . 206

Summary . 211

8 Supporting Transactions . 213

Using Transactions in the ShoppingCartService Service . 214

Implementing OLE Transactions . 214

Implementing WS-AtomicTransaction Transactions. 229

Designing a WCF Service to Support Transactions . 231

Transactions and Service Instance Context Modes . 231

Transactions and Messaging . 232

Transactions and Multi-Threading . 232

Long-Running Transactions . 233

Summary . 233

9 Implementing Reliable Sessions . 235

Using Reliable Sessions. 235

Implementing Reliable Sessions with WCF . 236

Detecting and Handling Replay Attacks . 245

Configuring Replay Detection with WCF . 246

Summary . 251

viii Table of Contents
10 Programmatically Controlling the Configuration
and Communications . 253

The WCF Service Model . 253

Services and Channels . 254

Behaviors . 255

Composing Channels into Bindings. 256

Inspecting Messages . 261

Controlling Client Communications . 265

Connecting to a Service Programmatically . 265

Sending Messages Programmatically . 271

Summary . 274

11 Implementing OneWay and Asynchronous Operations 275

Implementing OneWay Operations. 276

The Effects of a OneWay Operation . 276

OneWay Operations and Timeouts . 277

Recommendations for Using OneWay Methods . 285

Invoking and Implementing Operations Asynchronously . 286

Invoking an Operation Asynchronously in a Client Application 286

Implementing an Operation Asynchronously in a WCF Service 287

Using Message Queues . 296

Summary . 301

12 Implementing a WCF Service for Good Performance 303

Using Service Throttling to Control Resource Use . 304

Configuring Service Throttling . 305

Transmitting Data by Using MTOM . 311

Sending Large Binary Data Objects to a Client Application 314

Streaming Data from a WCF Service . 318

Enabling Streaming in a WCF Service and Client Application 319

Designing Operations to Support Streaming. 319

Security Implications of Streaming. 320

Summary . 320

13 Routing Messages . 321

How the WCF Service Runtime Dispatches Operations . 322

ChannelDispatcher and EndpointDispatcher Objects Revisited 322

EndpointDispatcher Objects and Filters . 324

Table of Contents ix
Routing Messages to Other Services . 325

WCF and the WS-Addressing Specification . 337

The WS-Referral Specification and Dynamic Routing . 339

Summary . 340

14 Using a Callback Contract to Publish and Subscribe to Events 341

Implementing and Invoking a Client Callback . 342

Defining a Callback Contract . 342

Implementing an Operation in a Callback Contract . 343

Invoking an Operation in a Callback Contract . 345

Reentrancy and Threading in a Callback Operation . 346

Implementing a Duplex Channel . 347

Using a Callback Contract to Implement Events . 347

Delivery Models for Publishing and Subscribing . 358

Summary . 359

15 Managing Identity with Windows CardSpace . 361

Using Windows CardSpace to Access a WCF Service . 362

Implementing Claims-Based Security. 362

Using a Third-Party Identity Provider. 375

Claims-Based Authentication in a Federated Environment 377

Summary . 380

16 Integrating with ASP.NET Clients and Enterprise
Services Components . 381

Creating a WCF Service that Supports an ASP.NET Client . 381

Exposing a COM+ Application as a WCF Service. 390

Summary . 402

Index .403

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

Chapter 4

Protecting an Enterprise
WCF Service

After completing this chapter, you will be able to:

■ Describe the different aspects of security that you should consider when implement-
ing a WCF service.

■ Explain how to provide privacy and integrity of messages at the message level and
at the transport level when communicating between a client application and a WCF
service.

■ Explain how to configure a WCF service to authenticate users when running in a
Windows environment and how a client application can provide a user's credentials
to a WCF service for authentication.

■ Describe how to define and use roles to authorize access to operations in a WCF
service.

■ Summarize how a WCF service can use impersonation to provide fine-grained access
control over resources to authorized users.

Security is a fundamentally important aspect of any system, especially when a system com-
prises distributed applications and services. Security is also a very broad topic. For this reason,
you are going to consider how to implement security in several different scenarios, spread
across three chapters. This chapter concentrates on managing security within a single organi-
zation. In this environment, there is usually an inherent degree of trust between the comput-
ers running client applications and those hosting services. Users running applications are
frequently members of the same, well-defined security domain. Services have access to the
information in this security domain and can use it to authenticate users directly. In Chapter 5,
“Protecting a WCF Service over the Internet,” you will look at how to enforce security when cli-
ent applications and services run in different security domains separated by an insecure net-
work, where it is not possible, or even desirable, to directly authenticate users. In Chapter 15,
“Managing Identity with Windows CardSpace,” you will see how to implement an identity
meta-system to help authenticate users in a federated environment.

What Is Security?
Security is concerned with protecting users running client applications, services, and the mes-
sages that pass between them. Security encompasses a range of issues. The most common
aspects of security that most developers are familiar with include user authentication, where
81

82 Chapter 4 Protecting an Enterprise WCF Service
a user attempts to prove their identity, and authorization, where a service decides which
resources a user can access based on their identity. However, in a distributed environment,
security has many other facets. These include:

■ Maintaining confidentiality of communications between a client application and a ser-
vice. It is possible for applications to eavesdrop on the data being transmitted across the
network. For example, take a look at the number of software and hardware network ana-
lyzers available—many administrators use them for tracking connectivity and bandwidth
problems in a network, but an unscrupulous user could also track the packets passing
over the network for malicious purposes. The information in these packets could
include private financial data or confidential personal information that should not be
common knowledge even to other members of the same organization. Typically, you
achieve confidentiality by encrypting messages.

■ Preventing tampering or corruption of messages. In an environment where message con-
fidentiality is assured, it is still possible for a malicious user to intercept messages and
corrupt them before sending them to their final destination. You can use techniques
such as message hashing to generate a digital signature for the file, which a service can
use to help detect corrupt or modified messages.

■ Ensuring verifiable delivery of messages. Even if a malicious user cannot decipher inter-
cepted messages, the possibility of interception means that messages could either be
diverted and not delivered at all or delivered repeatedly (known as a “replay attack”).
Several schemes are available that can help detect replay attacks, including using a time-
stamp within a message (if the timestamp is outside reasonable limits when the service
receives the message, it can discard it) and assigning unique identifiers to messages (if
the service receives two messages with the same identifier, then it knows that there is a
problem!). Similarly, using a reliable message protocol can help to ensure that messages
are either delivered to the destination within a reasonable time or that the sender will be
alerted if they are not. You will learn more about reliable messaging in Chapter 9, “Imple-
menting Reliable Sessions.”

■ Preventing impersonation of services. Although not so common inside an enterprise as it
is when using the Internet, it is possible for one service to impersonate another to obtain
confidential data from a user. This phenomenon is sometimes known as “spoofing.” The
user running the client application thinks they are communicating with the real service
but are actually sending their details and other information to an entirely different service
that happens to respond in a similar manner. This means that it can be as important for
a client application to authenticate the service and verify that it is genuine as it is for a ser-
vice to authenticate the user running the client application. You will look at how you can
implement this form of two-way authentication by using certificates in Chapter 5.

It is worth remembering that there is no such thing as absolute security. Hackers and fraudsters
can invariably devise new and interesting ways to intercept, compromise, or otherwise disrupt
the message flow. The important point is to be aware of the threats and have a plan for introduc-

Chapter 4 Protecting an Enterprise WCF Service 83
ing countermeasures that can reduce their effects. Fortunately, WCF provides a highly extensi-
ble model that can adapt and evolve to meet many current security issues and (hopefully)
counter new threats as they appear. The WCF implementation of security is also relatively unob-
trusive. By careful design and configuration, you can separate many of the security-related
aspects of a client application and service from the business logic, enabling you to modify or
extend the security of your system without requiring that you rewrite large chunks of code.

Authentication and Authorization in a Windows Environment

To authenticate a user, a service must provide a means of enabling a user to identify herself
and then prove that identity. Inside a single organization, it is common to maintain a single
database of users and their means of identification. In a Windows environment, this typically
means using Active Directory. In a single organization, it is not unreasonable to expect that all
services and client applications have access to the same Active Directory database, and this
database defines the security domain for the system. A service can be configured to use infor-
mation held in the Active Directory database to authenticate users. When the user runs an
application that accesses the service, the application can prompt the user for their username
and password and transmit this information to the service. The service can query Active Direc-
tory to verify that the username is valid and the password is correct.

Note Many of the discussions on this chapter that refer to Active Directory also apply to
Windows computers that are not actually part of a domain but that maintain their own local
users and groups database. The exercises in this chapter have been tested on a stand-alone
computer running Microsoft Windows XP and Windows Vista.

In a Windows domain, a service can also identify users by using the Kerberos protocol, and a
WCF client application can verify the identity of a service by using the same protocol. How-
ever, Kerberos is only available if you have access to a Windows Server domain controller.
This chapter does not describe how to configure a WCF service and client application to
perform Kerberos authentication. For a brief summary of how Kerberos authentication works,
see the Kerberos V5 Authentication page on the Microsoft Web site at
http://technet2.microsoft.com/WindowsServer/f/?en/library
/d55683e8-1258-4555-93cb-77138d33beab1033.mspx.

This approach works regardless of where the user is actually running the client application; it
could be executing on a computer in the user’s bedroom connecting to the service across an
Intranet link, for example. However, a user located in the office might already be logged on to
an organization's security domain, so prompting them for the username and password again
becomes cumbersome (why should they need to keep on logging in?). Fortunately, the Win-
dows operating system provides support for this very common scenario. When a user suc-
cessfully logs in to a security domain, the details of the user’s credentials are cached in the
user’s login process. When the user runs an application that requires authentication with a
service, Windows can provide these details to the application, which can then forward them
to the service. This mechanism is known as Windows Integrated Security.

84 Chapter 4 Protecting an Enterprise WCF Service
Note In a very large organization, the security domain might span several Active Directory
databases managed independently by administrators in different parts of the organization. It
is possible to configure trust relationships between these separate domains, effectively pre-
senting them as a single security domain.

After a service has verified the identity of the user running the client application, it must then
determine whether the user has the appropriate authority to invoke the specified operations.
Typically, administrators assign users to roles, and the service developer can indicate which
roles are allowed to access which operations. WCF can utilize .NET Framework declarative
security to associate roles with operations. WCF can use a role provider to determine to which
roles a user belongs. The .NET Framework provides three role providers that you can use for
storing role information. These role providers are:

■ Windows Token Role Provider, which uses roles based on Active Directory groups.

■ SQL Role Provider, which uses roles stored in a SQL Server database.

■ Authorization Store Role Provider, which uses roles defined by using the Microsoft
Authorization Manager tool. This tool enables you to store role information in Active
Directory or in XML files.

More Info For detailed information on using Microsoft Authorization Manager to define
and implement roles, see the Authorization Manager page on the Microsoft Web site at http:/
/technet2.microsoft.com/WindowsServer/en/library/1b4de9c6-4df9-4b5a-83e9-
fb8d497723781033.mspx?mfr=true.

In this chapter, you will use the Windows Token Role Provider. This provider is ideal for use
inside an enterprise that uses Windows Integrated Security for authentication. In Chapter 5,
you will see how to use the SQL Role Provider as this is more suited to Internet-based services.

Transport and Message Level Security

User identity information has to be transported from a client application to a service. This
information is critical, and so it should be transmitted in as secure a manner as possible. This
normally means encrypting these details. Additionally, after the user has been authenticated,
the contents of messages passing between the client application and service might also
require some form of encryption, depending on the sensitivity of the information in these
messages. There are many ways that client applications and services can achieve this aim, but
the important point is that the client applications and the service must agree on the mecha-
nism that they use, and they must be able to decrypt messages sent by the other. Various stan-
dardization efforts have led to the use of public/private key cryptography being used to this
effect.

Chapter 4 Protecting an Enterprise WCF Service 85
More Info For a good introduction to public key cryptography, visit the Understanding
Public Key Cryptography page on the Microsoft Web site at http://www.microsoft.com/technet/
prodtechnol/exchange/guides/E2k3MsgSecGuide/6e75927b-bec3-475b-bf09-
764c8ffc7027.mspx?mfr=true.

When building Web services, you can perform authentication and encryption at two points
when sending and receiving messages: at the transport level and at the message level.

Transport Level Security

Transport level authentication is typically implemented at the operating system level before
the application or service receiving the message even knows that there is a message to receive!
A service can specify the type of credentials it requires, but it is the operating system’s respon-
sibility to ensure that the correct credentials are provided and to validate them.

Many communications protocols can encrypt and decrypt data as it is sent and received. The
most common example of such a protocol is HTTPS, which uses a technology called the
Secure Sockets Layer (SSL) to encrypt and decrypt data by using keys provided in certificates.
When a client application connects to a service by using the HTTPS protocol, the underlying
transport infrastructure for the client application and service can negotiate over the degree of
encryption to perform and exchange a certificate containing keys that they can use to encrypt
and decrypt messages. Because all of this happens at the transport level, it is transparent to
the client application and service; all they have to do is specify that they will communicate
using the HTTPS protocol. However, an administrator has to install and configure the appro-
priate certificates for the service host application. Unsurprisingly, you can also use transport
level security with the TCP protocol (SSL is itself based on TCP). Named pipes also support
transport level security.

More Info In this chapter, you will configure HTTPS for use with a self-hosted WCF ser-
vice. If you are hosting a WCF service in IIS, the configuration process is a little different. You
will learn more about configuring HTTPS with IIS in Chapter 5.

Message Level Security

Authentication at the message level is the responsibility of the service. The credentials of the
user are included in messages sent to the service, and the service has to verify that they are
valid. Additionally, message level privacy and integrity is also the responsibility of the client
application and service—they encrypt and decrypt messages themselves using an agreed
encryption algorithm and a negotiated set of encryption keys. Standards such as the WS-Secu-
rity specification from OASIS describe the message level security schemes that many Web ser-
vices implementations have adopted, and by following the recommendations of WS-Security
you can help to ensure the interoperability of your client applications and services with those
developed by using technologies other than WCF.

86 Chapter 4 Protecting an Enterprise WCF Service
Transport level security has the advantage over message level security that it can often rely on
hardware support and can be very efficient—encrypting and decrypting data can be a
resource-intensive process, so anything that improves performance is very welcome. Addition-
ally, transport level authentication checks are enforced before the client application actually
starts sending application level messages, so performing authentication at this level detects
authentication failures more quickly and with less network overhead. The primary disadvan-
tage of transport level security is that it operates on a point-to-point basis; by the time the ser-
vice receives a message, it has already been decrypted by the underlying transport
mechanism. In a situation where a service should simply forward a message on to another ser-
vice rather than process it, it has full access to the message contents. The service could modify
the message or extract confidential information before forwarding it. Using message level
encryption can help to mitigate this problem. Message level security provides end-to-end
encryption. A client application and the service acting as the final destination can agree on an
encryption key and an encryption algorithm to use for messages. When a message arrives at
the intermediate service, it is still encrypted. If the intermediate service does not have access
to the encryption key or has no knowledge of the selected encryption algorithm, it cannot eas-
ily decrypt the message.

Implementing message level security sounds like it could add quite a lot of work to the devel-
opment effort required for building a service. However, WCF greatly simplifies matters and
reduces the development effort required by incorporating much of the code required as part
of the standard bindings you can specify when configuring an endpoint for a service. All you
need to do is set the properties of your selected binding appropriately (you will see several
examples throughout this chapter).

Implementing Security in a Windows Domain
In the following exercises, you will see how to use transport and message level security in
some common scenarios that can arise within a single organization. Because it is easier to
demonstrate and explain things this way around, you will start by learning how to implement
message confidentiality by encrypting messages. You will then see how to authenticate users
running in a Windows environment, and finally, how to use the Windows Token Role pro-
vider to authorize access to operations.

Protecting a TCP Service at the Message Level

Message encryption is a very common requirement of most distributed systems; so much so
that the majority of the standard bindings available in the WCF library encrypt messages by
default. For example, the NetTcpBinding binding automatically encrypts data at the transport
level if you have configured SSL over TCP. The NetTcpBinding binding also supports encryp-
tion at the message level, giving you a greater degree of control over the encryption algorithm
used and without requiring you to configure SSL. You will use message level security to imple-
ment message encryption in the first exercise.

Chapter 4 Protecting an Enterprise WCF Service 87
Enable message level encryption for the NetTcpBinding binding for the WCF service

1. Using Visual Studio 2005, open the solution file ProductsService.sln located in the
Microsoft Press\WCF Step By Step\Chapter 4\ProductsService folder under your \My
Documents folder.

This solution contains three projects: the ProductsService service, the ProductsService-
Host application, and the ProductsClient. These projects are configured to catch and
handle SOAP faults, as described in Chapter 3, “Making Applications and Services
Robust.”

2. Expand the ProductsServiceHost project in Solution Explorer, right-click the App.config
file, and then click Edit WCF Configuration.

3. In the WCF Service Configuration Editor, right-click the Bindings folder and then click
New Binding Configuration.

4. In the Create a New Binding dialog box, select the netTcpBinding binding type and then
click OK.

The WCF Service Configuration Editor generates a binding configuration with the
default settings for the NetTcpBinding binding.

5. In the right pane of the WCF Service Configuration Editor, change the Name property of
the binding to ProductsServiceTcpBindingConfig.

6. Click the Security tab.

7. Change the Mode property to Message. Change the AlgorithmSuite property to Basic128.
Leave the MessageClientCredentialType property set to Windows.

These settings cause the binding to use message level security. Users will be expected to
provide a valid Windows username and password, and all messages will be encrypted by
using the Advanced Encryption Standard (AES) 128-bit algorithm. This is a widely used
algorithm that is relatively quick to perform but should provide sufficient privacy for
messages inside an organization (if you are sending messages across a public wide area
network such as the Internet, you might prefer to use Basic256, which is the default
value).

Note If you set the Mode to None, then the binding will not encrypt data and any
settings you specify for transport or message level security will be ignored. The Trans-
port mode selects transport level security (SSL) rather than message level security, and
the TransportWithMessageCredential mode uses message level security to provide the
identity of the user for authorization purposes, while performing encryption at the
transport level. Transport level encryption is usually more efficient than message level
encryption, although it requires more configuration on the part of the administrator.

88 Chapter 4 Protecting an Enterprise WCF Service
8. In the left pane of the WCF Service Configuration Editor, expand the Products.Prod-
uctsServiceImpl service in the Services folder, expand the Endpoints folder, and then
click the ProductsServiceTcpBinding endpoint.

9. In the right pane, set the BindingConfiguration property to
ProductsServiceTcpBindingConfig.

This action associates the binding configuration with the binding. All messages sent by
using the ProductsServiceTcpBinding will use message level security and will be
encrypted.

10. Save the configuration, and then exit the WCF Service Configuration Editor.

11. In Visual Studio 2005, open the file App.config in the ProductsServiceHost project. In
the <system.serviceModel> section, you should see the new binding configuration, and
the reference to this configuration in the ProductsServiceTcpBinding endpoint, as
follows:

…
<system.serviceModel>

<bindings>
<netTcpBinding>

<binding name="ProductsServiceTcpBindingConfig">
<security mode="Message">

<message algorithmSuite="Basic128" />
</security>

</binding>
</netTcpBinding>

</bindings>
<services>

<service behaviorConfiguration="ProductsBehavior"
 name="Products.ProductsServiceImpl">

…
<endpoint binding="netTcpBinding"

 bindingConfiguration="ProductsServiceTcpBindingConfig"
name="ProductsServiceTcpBinding" contract="Products.IProductsService" />

</service>
</services>
…

</system.serviceModel>

Be careful not to change anything in this file. Close the App.config file when you have fin-
ished examining it.

The service will expect clients that connect to the endpoint for this binding to use the same
message level security settings. You will configure the client next.

Enable message level encryption for the NetTcpBinding binding for the WCF client

1. In the ProductsClient project, edit the app.config file by using the WCF Service Config-
uration Editor.

Chapter 4 Protecting an Enterprise WCF Service 89
2. In the WCF Service Configuration Editor, right-click the Bindings folder and then click
New Binding Configuration.

Note The client configuration file already contains a binding configuration for the
basicHttpBinding that was generated in Chapter 1, “Introducing Windows Communica-
tion Foundation.” Be careful not to modify this binding configuration by mistake!

3. In the Create a New Binding dialog box, select the netTcpBinding binding type and then
click OK.

4. In the right pane of the WCF Service Configuration Editor, change the Name property of
the binding to ProductsClientTcpBindingConfig.

5. Click the Security tab.

6. Change the Mode property to Message. Change the AlgorithmSuite property to Basic128.
Leave the MessageClientCredentialType property set to Windows.

Note If you select a different algorithm suite for the client and server, they will not
be able to decipher each other’s communications. This will result in a runtime excep-
tion in the channel stack. If you are curious about this, try setting the AlgorithmSuite to
TripleDes (for example) and examine the exception that occurs when you run the solu-
tion later.

7. In the left pane of the WCF Service Configuration Editor, click the
NetTcpBinding_IProductsService node in the Endpoints folder, under the Client folder.

8. In the right pane, set the BindingConfiguration property to ProductsClientTcpBinding
Config.

9. Save the configuration, and then exit the WCF Service Configuration Editor.

10. Start the solution without debugging.

11. In the ProductsServiceHost form, click Start. If a Windows Security Alert dialog box
appears, click Unblock to allow the service to access the TCP port.

12. In the client console window, press Enter. Verify that the client application runs exactly
as before.

13. Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

This exercise has shown you how easy it is to configure a WCF service and client application
to secure messages by performing encryption, but how do you actually know that the mes-
sages have been encrypted? To answer this question, you can enable message tracing and then
examine the messages as they flow in and out of the service.

90 Chapter 4 Protecting an Enterprise WCF Service
Configure message tracing for the WCF service

1. In Visual Studio 2005, edit the App.config file for the ProductsServiceHost project by
using the WCF Service Configuration Editor.

2. In the WCF Service Configuration Editor, expand the Diagnostics folder and then click
Message Logging.

3. In the right pane displaying the message logging settings, set the following properties to
True:

❑ LogEntireMessage

❑ LogMessagesAtServiceLevel

❑ LogMessagesAtTransportLevel

The LogEntireMessage property specifies whether the trace output should include the
body of messages sent and received. Setting this property to True includes the body of
the message. The default value, False, only traces the message header. Setting the LogMes-
sagesAtServiceLevel property to True traces messages as they are presented to the service
and as they are output from the service. If you are using message level security, this trace
will show the unencrypted messages after they have been received and decrypted at the
message level (for incoming messages) or before they are encrypted (for outgoing mes-
sages). Setting the LogMessagesAtTransportLevel property to True traces messages as they
are sent to or received from the transport level. If you are using message level security,
the messages traced at this point will be encrypted, although if you are using transport
level security messages will already have been decrypted (for incoming messages) or not
yet encrypted (for outgoing messages) at this point.

Important Tracing at the message level records messages in their unencrypted
form. You should ensure that you protect the trace files that are generated and only let
authorized users examine this data.

4. In the left pane, right-click the Sources folder and then click New Source.

All tracing information for WCF is received from one or more trace sources. In this case,
you will use the MessageLogging source, which traces messages. You can also use other
sources. For example, the ServiceModel source traces events that occur in a service, such
as tracking when a service starts listening, receives requests, and sends responses.

5. In the right pane, set the Name property to System.ServiceModel.MessageLogging. Set the
Trace level property to Verbose.

6. In the left pane, right-click the Listeners folder, and then click New Listener.

A listener object is responsible for receiving data from the trace sources, formatting and
filtering them, and then sending them to a destination.

7. In the right pane, set the Name property to MessageLog.

Chapter 4 Protecting an Enterprise WCF Service 91
8. In the InitData property, click the ellipses button. In the Save Log As dialog box, move to
the Microsoft Press\WCF Step By Step\Chapter 4 folder under your \My Documents
folder. Set the file name to Products.svclog, and then click Save.

The InitData property specifies the name of the file that the listener will use for saving
trace data. When tracing starts, if this file does not exist, the listener will create it; other-
wise, it will append trace information to the end of any existing data in the file.

9. In the TraceOutputOptions property, click the dropdown arrow. Clear all items in the list.
The trace output options are useful if you are tracing messages for multiple client appli-
cations and you need to be able to correlate the different request and response messages.
In this example, you will be running a single client application, so this additional infor-
mation is not really necessary.

10. Verify that the TypeName property is set to System.Diagnostics.XmlWriter.TraceListener.
The listener can output data in several formats. However, you will be using another tool
called the Service Trace Viewer to examine the trace output, and this tool expects the
data to be in XML format.

11. Click Add at the bottom of the right pane. In the Add Tracing Source dialog box, select
the System.ServiceModel.MessageLogging source, and then click OK.

12. Save the configuration, and then exit the WCF Service Configuration Editor.

Run the WCF client and service and examine the trace output

1. Start the solution without debugging.

2. In the ProductsServiceHost form, click Start.

3. In the client console window, press Enter. Verify that the client application still runs
correctly.

4. Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

5. On the Windows Start menu, point to All Programs, point to Microsoft Windows SDK,
point to Tools, and then click Service Trace Viewer.

6. In the Service Trace Viewer, on the File menu, click Add.

7. In the Open dialog box, move to the Microsoft Press\WCF Step By Step\Chapter
4\ProductsService folder under your \My Documents folder, select the file Prod-
ucts.svclog, and then click Open.

8. In the Service Trace Viewer, in the left pane, click the Message tab. You will see a list of
messages sent and received by the service, identified by their Action values.

Tip Expand the Action column in this pane to see more of the name for each action.

At the top of this list are a number of messages in the http://schemas.xmlsoap.org/ws/
2005/02/trust namespace. These messages are concerned with sending and verifying

92 Chapter 4 Protecting an Enterprise WCF Service
the user’s identity, and negotiating the encryption mechanism and encryption keys that
the client application and WCF service will use for sending and receiving messages.
These messages are followed by the application messages received and sent by the WCF
service, identified by the http://tempuri.org namespace.

9. Click the first message with the action http://tempuri.org/IProductsService/ListProducts.
Note that each action occurs twice. This is because you traced each message twice: once
at the message level and once at the transport level.

10. In the lower right pane, click the Message tab. The window will display the entire SOAP
message. This is the version of the message passed from the transport level to the mes-
sage level. The message has a rather lengthy SOAP header, which you can examine at
your leisure. The interesting part is the SOAP body, at the end of the message. This is the
encrypted ListProducts request received from the client application. The <e:Cipher-
Value> element contains the data for the request, as highlighted in the following image:

11. In the left pane, click the second message with the action http://tempuri.org/IProd-
uctsService/ListProducts. In the right pane, scroll to the end of the Message window. This
is the unencrypted version of the message passed from the message level to the service:

Chapter 4 Protecting an Enterprise WCF Service 93
12. In the left pane, click the first message with the action http://tempuri.org/IProductsSer-
vice/ListProductsResponse. In the right pane, examine the message body in the Message
window. You can see that this is an unencrypted message containing the list of products
returned in response to the ListProducts request. This message is the output from the
service to the message level and so has not yet been encrypted.

13. In the left pane, click the second message with the action http://tempuri.org
/IProductsService/ListProductsResponse. In the right pane, scroll to the bottom of the Mes-
sage window and examine the message body. This time you can see that this is the
encrypted response sent by the message level to the transport level for transmission
back to the client.

14. Examine the other messages. When you have finished, close the Service Trace Viewer.

Protecting an HTTP Service at the Transport Level

If you recall, the ProductsServiceHost application exposes two endpoints for clients to con-
nect to: one based on the TCP protocol and the other using HTTP. The HTTP endpoint is con-
figured to use the BasicHttpBinding binding. The BasicHttpBinding binding conforms to the
WS-BasicProfile 1.1 specification and is intended for use with existing legacy Web services
and clients. It is fully interoperable with ASP.NET Web services. By default, this binding pro-
vides minimal security; it does not support message level encryption or authentication, for
example. To implement message confidentiality and remain interoperable with ASP.NET Web
services, you should use transport level security. This requires you to configure HTTPS.

Note The BasicHttpBinding binding also supports message level security. Ordinary
ASP.NET Web services and client applications do not implement the WS-Security specifica-
tion, and so will not be able to communicate with a service that implements message level
security. However, Microsoft Web Services Enhancements (WSE) does support WS-Security,

94 Chapter 4 Protecting an Enterprise WCF Service
so Web services that you create by using WSE can communicate with a WCF service through
an endpoint based on the BasicHttpBinding binding by using message level security.

Specify transport level security for the BasicHttpBinding binding for the WCF service

1. In Visual Studio 2005, in the ProductsServiceHost project in Solution Explorer, edit the
App.config file by using the WCF Service Configuration Editor.

2. In the WCF Service Configuration Editor, right-click the Bindings folder and then click
New Binding Configuration.

3. In the Create a New Binding dialog box, select the basicHttpBinding binding type and
then click OK.

4. In the right pane of the WCF Service Configuration Editor, change the Name property of
the binding to ProductsServiceBasicHttpBindingConfig.

5. Click the Security tab. Set the Mode to Transport.

In this mode, message security is provided by using HTTPS. You must configure SSL for
the service by using a certificate. The client authenticates the service by using the ser-
vice’s SSL certificate. The service authenticates the client by using the mechanism spec-
ified by the TransportClientCredentialType property. The default value of None does not
provide any authentication—you will examine some of the other values you can specify
for this property later in this chapter.

6. In the left pane of the WCF Service Configuration Editor, expand the ProductsServices-
Impl service in the Services folder, expand the Endpoints folder, and then click the Prod-
uctsServiceHttpEndpoint endpoint.

7. In the right pane, set the BindingConfiguration property to ProductsServiceBasicHttpBind-
ingConfig.

8. HTTP Web services that implement transport level security must specify the https
scheme, so change the Address property as follows:

https://localhost:8000/ProductsService/ProductsService.svc

9. Save the configuration, and exit the WCF Service Configuration Editor.

10. Rebuild the ProductsServiceHost project.

The next step is to reconfigure and modify the client to connect to the service by using the
endpoint corresponding to the BasicHttpBinding binding.

Specify transport level security for the BasicHttpBinding binding for the WCF client

1. In the ProductsClient project, edit the app.config file by using the WCF Service Config-
uration Editor.

Chapter 4 Protecting an Enterprise WCF Service 95
2. In the WCF Service Configuration Editor, expand the Bindings folder and then click the
BasicHttpBinding_IProductsService binding.

3. In the right pane of the WCF Service Configuration Editor, change the Name property of
the binding to ProductsClientBasicHttpBindingConfig. (This is to make the name of the
binding consistent with the other bindings you have created. The original binding name
was generated by the svcutil utility back in Chapter 1.)

4. Click the Security tab. Change the Mode to Transport.

5. In the left pane of the WCF Service Configuration Editor, click the
BasicHttpBinding_IProductsService endpoint in the Endpoints folder, under the Client
folder.

6. In the right pane, change the address to use the https scheme as shown below, and verify
that the BindingConfiguration property has changed to ProductsClientBasicHttpBinding-
Config:

https://localhost:8000/ProductsService/ProductsService.svc

7. Save the configuration, and then exit the WCF Service Configuration Editor.

8. In Visual Studio 2005, in Solution Explorer, open the Program.cs file for the ProductsCli-
ent project.

9. In the Main method, update the statement that creates the proxy object to connect to the
WCF service by using the endpoint named BasicHttpBinding_IProductsService:

ProductsServiceClient proxy = new ProductsServiceClient("BasicHttpBinding_
IProductsService");

10. Rebuild the ProductsClient project.

If you try and run the client and service at this point, the client will fail with a Commu-
nicationException, like this:

This error occurs because you have not yet configured transport security for the HTTPS pro-
tocol. In the next exercise, you will create a certificate for the WCF service, and configure SSL
for the service by using the httpcfg utility.

96 Chapter 4 Protecting an Enterprise WCF Service
Configure the WCF HTTP endpoint with an SSL certificate

1. On the Windows Start menu, point to All Programs, point to Microsoft Windows SDK,
and then click CMD Shell.

A command prompt window opens, with an environment configured for running the
Windows SDK tools.

2. In the command prompt window, type the following command:

makecert –sr LocalMachine –ss My –n CN=HTTPS-Server –sky exchange –sk HTTPS-Key

The makecert utility is a useful tool for creating test certificates that you can use for devel-
opment purposes. The command shown here creates a certificate that is stored in the
Personal certificates store for the LocalMachine account. For detailed information about
the options for the makecert utility, see the Windows SDK Documentation installed with
the Windows SDK.

Important Certificates that you create by using the makecert utility should not be
used in a production environment as they are not certified by a verifiable certification
authority. Remember that the service sends this certificate to the client to prove its
identity. The client must be able to trust that this certificate was created by a reliable
source that can verify the veracity of the service. When deploying a production service,
you should obtain your certificates from recognized certification authority, such as
VeriSign or Thawte. Alternatively, you can use Windows Certificate Services, which
enables an enterprise to generate its own certificates.

To use the httpcfg utility to configure SSL for the service, you need to find the thumb-
print of the certificate. The thumbprint is a hexadecimal string that uniquely identifies
the certificate. You can obtain this information by using the Certificates Microsoft Man-
agement Console snap-in.

3. In the command prompt window, type the following command:

mmc

This command starts the Microsoft Management Console, displaying the default Con-
sole Root window.

4. In the File menu, click Add/Remove Snap-In.

5. In the Add/Remove Snap-In dialog box, click Add.

6. In the Add Standalone Snap-In dialog box, select the Certificates snap-in and then click
Add.

7. In the Certificates Snap-In dialog box, select Computer account and then click Next.

8. In the Select Computer dialog box, select Local computer and then click Finish.

9. In the Add Standalone Snap-In dialog box, click Close.

10. In the Add/Remove Snap-In dialog box, click OK.

Chapter 4 Protecting an Enterprise WCF Service 97
11. In the Console Root window, expand the Certificates node, expand the Personal folder,
and then click the Certificates folder. The HTTPS-Server certificate that you created by
using the makecert utility should be displayed:

12. Double-click the HTTPS-Server certificate.

13. In the Certificate window, click the Details tab. Scroll to the bottom of the window dis-
playing the details of the certificate. Click the Thumbprint property, and make a note of
the hexadecimal string displayed in the lower window:

98 Chapter 4 Protecting an Enterprise WCF Service
Tip You might find it useful to simply select the text in the lower window and copy it
to the Windows clipboard.

14. Click OK, close the Microsoft Management Console window, and return to the com-
mand prompt window.

15. In the command prompt window, type the command shown below. Replace the hexa-
decimal string following the –h flag with the digits from the certificate thumbprint
(remove all spaces from the thumbprint string first):

httpcfg set ssl –i 0.0.0.0:8000 –h c390e7a4491cf97b96729167bf50186a4b68e052

If this command is successful, it should report the message “HttpSetServiceConfigura-
tion completed with 0.”

Note Be very careful to specify the correct thumbprint. If you type an invalid thumb-
print, the command still succeeds, but the client will not be able to communicate with
the service as the thumbprint does not refer to a valid certificate.

This command binds the certificate with the thumbprint indicated with the –h flag to
the port indicated by the –i flag. The port is specified as the IP address of the computer
followed by the port. Specifying an IP address of 0.0.0.0 denotes the local computer.

Note Under Windows Vista, use the netsh command to configure SSL rather than
httpcfg., like this: netsh http add sslcert ipport=0.0.0.0:8000 certhash=
c390e7a4491cf97b96729167bf50186a4b68e052 appid={00112233-4455-6677-8899-
AABBCCDDEEFF}. The certhash parameter specifies the thumbprint. The appid param-
eter is a GUID that identifies this binding of the certificate to the port; you can use any
unique GUID.

Warning When a client application receives a certificate from a server, the WCF
runtime attempts to ascertain that the certificate is valid and that the authority that
issued it is trusted. The WCF runtime will fail this check when using the certificate that
you have just installed. The following exercise shows how to force the WCF runtime to
override this check and allow this certificate to be used. You should never do this in a
production environment! The code is provided as-is, and without further explanation (it
is not the author’s work—it was written by developers at Microsoft and is included in
one of the WCF technology samples provided with the Windows SDK). In the real
world, you should go out and buy a valid certificate.

Add code to the WCF client to override certificate validation checking

1. In Visual Studio 2005, edit the Program.cs file for the ProductsClient project.

2. Add the following using statements to the list at the top of the file:

Chapter 4 Protecting an Enterprise WCF Service 99
using System.Security.Crytography.X509Certificates;
using System.Net;

3. Add the following class to the ProductsClient namespace, underneath the Program
class:

Note The code for this class is available in the PermissiveCertificatePolicy.cs file in
the Chapter 4 folder, if you don’t want to type it in manually.

// WARNING: This code is only needed for test certificates such as those
// created by makecert. It is not recommended for production code.
class PermissiveCertificatePolicy
{

string subjectName;
static PermissiveCertificatePolicy currentPolicy;
PermissiveCertificatePolicy(string subjectName)
{

this.subjectName = subjectName;
ServicePointManager.ServerCertificateValidationCallback +=

new System.Net.Security.RemoteCertificateValidationCallback
(RemoteCertValidate);

}

public static void Enact(string subjectName)
{

currentPolicy = new PermissiveCertificatePolicy(subjectName);
}

bool RemoteCertValidate(object sender, X509Certificate cert,

X509Chain chain, System.Net.Security.SslPolicyErrors error)
{

if (cert.Subject == subjectName)
{

return true;
}

return false;

}
}

4. Add the following statement shown in bold to the Main method of the Program class,
immediately before creating the proxy object:

…
PermissiveCertificatePolicy.Enact("CN=HTTPS-Server");
ProductServiceClient proxy = new ProductServiceClient(…);
…

Run the WCF client and service

1. Start the solution without debugging.

2. In the ProductsServiceHost form, click Start.

100 Chapter 4 Protecting an Enterprise WCF Service
3. In the client console window, press Enter. Verify that the client application runs
correctly.

4. Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

Protecting an HTTP Service at the Message Level

You can configure the BasicHttpBinding binding to provide message level security by selecting
the Message security mode for the binding. In this mode, the service uses SOAP message level
security to encrypt the message. The service must have a certificate installed, and the client
uses the public key from the service’s certificate to perform the encryption. The service can
send the certificate containing its public key at the start of the message exchange, or an
administrator can install the service certificate on the client computer before the client appli-
cation (in which case you must specify how to locate the service certificate in the client certif-
icate store by adding a service behavior using the <serviceCredentials> element to the client
configuration file). You will learn more about this in Chapter 5. Additionally, the only authen-
tication mechanism supported by a WCF service that uses this mode requires that the client
application identifies itself with a certificate—you cannot use authentication mechanisms such
as Windows Integrated Security with this mode.

One other option is to use the TransportWithMessageCredential security mode. This is a
hybrid combination of message level and transport level security. The service uses the HTTPS
protocol and a certificate to provide message integrity and confidentiality. Client authentica-
tion is handled at the message level by using SOAP message security, and the client applica-
tion can provide a username and password to identify the user. You will learn more about this
security mode in Chapter 5.

If you really want to implement message level security for a WCF service with the minimum of
fuss and configuration, you can opt to use the WSHttpBinding binding. The WSHttpBinding
binding conforms to the current WS-* specifications and follows the WS-Security specifica-
tion for encrypting messages and authenticating users by default. The following exercises
demonstrate how to use the WSHttpBinding binding to implement message level security
over HTTP.

Configure the WCF service to use the WSHttpBinding binding

1. In Visual Studio 2005, edit the App.config file for the ProductsServiceHost project by
using the WCF Service Configuration Editor.

2. In the left pane, expand the Products.ProductsServiceImpl node under the Services
folder, right-click Endpoints, and then click New Service Endpoint.

3. In the right pane, set the properties of the endpoint to the values in the following table.
Leave all other properties with their default value:

Chapter 4 Protecting an Enterprise WCF Service 101
Notice that the scheme used for the address of this endpoint is http, and not https.

4. Save the changes, and exit the WCF Service Configuration Editor.

5. Rebuild the ProductsServiceHost project.

Configure the WCF client to use the WSHttpBinding binding

1. Edit the app.config file for the ProductsClient project by using the WCF Service Config-
uration Editor.

2. In the left pane, right-click Endpoints in the Client folder, and then click New Client
Endpoint.

3. In the right pane, set the properties of the endpoint to the values in the following table:

4. Save the changes, and exit the WCF Service Configuration Editor.

5. In Visual Studio 2005, edit the Program.cs file in the ProductsClient project. In the Main
method, change the code that creates the proxy object to use the new binding, as follows:

ProductsServiceClient proxy = new
ProductsServiceClient("WSHttpBinding_IProductsService");

6. Rebuild the ProductsClient project.

Run the WCF client and service and examine the trace output

1. Using Windows Explorer, delete the existing trace file Products.svclog in the Microsoft
Press\WCF Step By Step\Chapter 4\ProductsService folder under your \My Documents
folder.

2. In Visual Studio 2005, start the solution without debugging.

3. In the ProductsServiceHost form, click Start. In the client console window, press Enter.
Verify that the client application still runs correctly. Press Enter to close the client con-
sole window. Stop the service and close the ProductsServiceHost form.

4. Start the Service Trace Viewer tool, and open the Products.svclog file.

Property Value

Name ProductsServiceWSHttpEndpoint

Address http://localhost:8010/ProductsService/ProductsService.svc

Binding wsHttpBinding

Contract Products.IProductsService

Property Value

Name WSHttpBinding_IProductsService

Address http://localhost:8010/ProductsService/ProductsService.svc

Binding wsHttpBinding

Contract ProductsClient.ProductsService.IProductsService

102 Chapter 4 Protecting an Enterprise WCF Service
5. In the Service Trace Viewer, in the left pane, click the Message tab.

6. Click the first message with the action http://tempuri.org/IProductsService/ListProducts.
In the lower right pane, click the Message tab. You can see that the message has been
encrypted—the body element of the message contains encrypted data.

7. In the left pane, click the second message with the action http://tempuri.org/IProd-
uctsService/ListProducts. In the right pane, scroll to the end of the Message window. This
is the unencrypted version of the message passed from the message level to the service.

8. Examine the two ListProductsResponse messages. As with the NetTcpBinding example
earlier in this chapter, you can see the encrypted version of the message being output by
the service to the message level and the encrypted version of the message passing from
the message level to the transport level.

9. Close the Service Trace Viewer.

The WSHttpBinding binding uses the 256-bit version of the AES encryption algorithm to
encrypt data by default. You can select a different algorithm by creating a binding behavior and
specifying the algorithm to use in the AlgorithmSuite property of the behavior, as you did when
configuring message level security for the NetTcpBinding binding earlier in this chapter.

Authenticating Windows Users

So far, you have seen how to configure the NetTcpBinding, BasicHttpBinding, and WSHttp-
Binding bindings to support confidentiality and privacy by encrypting messages. However,
transporting messages securely is only useful if a service can verify the identity of the user run-
ning the client application. In the exercises that follow, you will look at how a service can
authenticate a user when the client application and service are both running within the same
Windows domain. In Chapter 5, you will see how to perform authentication when a client and
service are located in different, possibly non-Windows, security domains.

You will start by adding code to the ProductsService service that displays the name of the user
calling the ListProducts operation. You will then be able to see the effect that the authentica-
tion options available in WCF have on the identity passed from a client application to a service.

Note You can configure authentication to be largely transparent to the WCF service. You
will see in the exercises in this section that most of the actual authentication process is per-
formed by the WCF runtime executing the service. All the service needs to do is specify the
type of authentication it requires.

Display the name of the user calling an operation in the WCF service

1. In Visual Studio 2005, add a reference to the System.Windows.Forms assembly to the
ProductsService project.

2. Open the ProductsService.cs file.

Chapter 4 Protecting an Enterprise WCF Service 103
This file contains the code that implements the operations for the ProductsService
service.

3. Add the following using statements to the list at the top of the file:

using System.Threading;
using System.Windows.Forms;

4. Locate the ListProducts method in the ProductsServiceImpl class. Add the following state-
ments as the first two lines of the method:

string userName = Thread.CurrentPrincipal.Identity.Name;
MessageBox.Show("Username is " + userName,

"ProductsService Authentication");

The first statement retrieves the name of the Windows user that the current thread is
running on behalf of. The second statement displays the username in a message box.

5. Edit the Program.cs file in the ProductsClient project. In the Main method, change the
code that creates the proxy object to use the BasicHttpBinding binding, as follows:

ProductsServiceClient proxy = new
ProductsServiceClient("BasicHttpBinding_IProductsService");

6. Start the solution without debugging.

7. In the ProductsServiceHost form, click Start. In the client console window, press Enter.

A message box appears, displaying the user name sent by the client application. The user
name will appear to be missing. This is not an error. By default, the BasicHttpBinding
binding does not send authentication information about users. All messages are sent as
the anonymous user.

8. Click OK, and verify that the client application still runs correctly.

9. Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

In the next set of exercises, you will revisit the BasicHttpBinding binding and implement user
authentication. Many of the authentication options available for this binding apply to other
bindings as well.

Configure the BasicHttpBinding binding for the WCF service to use Basic authentication

1. Edit the App.config file in the ProductsServiceHost project by using the WCF Service
Configuration Editor.

104 Chapter 4 Protecting an Enterprise WCF Service
2. In the left pane, expand the Bindings folder and click the ProductsServiceBasicHttp-
BindingConfig node.

3. In the right pane, click the Security tab.

Notice that the TransportClientCredentialType property is currently set to None, so the
service is not expecting client applications to provide authentication information about
users, and anyone who can connect to the service can send it messages and invoke
operations.

4. Set the TransportClientCredentialType property to Basic.

When using Basic authentication, the client application must provide a username and
password, which is transmitted to the service. The WCF runtime executing the service
can use this information to authenticate the user running the client application, and if
the user is valid, it will provide the identity of the user to the service.

5. Save the configuration, and close the WCF Service Configuration Editor.

6. Start the solution.

7. In the ProductsServiceHost form, click Start. In the client console window, press Enter.

The client fails with a MessageSecurityException exception, “The HTTP request is unau-
thorized with client authentication scheme ‘Anonymous’… .” The WCF runtime for the
service was expecting the client application to provide a username and password, which
it has not done.

8. Close the client console window, stop the service, and close the ProductsServiceHost
form.

Modify the WCF client to supply the user credentials to the service

1. In Visual Studio 2005, edit the app.config file in the ProductsClient project by using the
WCF Service Configuration Editor.

2. In the left pane, expand the Bindings folder and click the ProductsClientBasicHttpBind-
ingConfig node.

3. In the right pane, click the Security tab.

4. Set the TransportClientCredentialType property to Basic.

5. Save the configuration, and close the WCF Service Configuration Editor.

6. Edit the Program.cs file in the ProductsClient project.

7. In the Main method, add the following statements shown in bold immediately after the
code that creates the proxy object. Replace LON-DEV-01 with the name of your domain
or computer (if you are not currently a member of a domain), replace Student with your
username, and replace Pa$$w0rd with your password:

ProductsServiceClient proxy = new
ProductsServiceClient("BasicHttpBinding_IProductsService");

Chapter 4 Protecting an Enterprise WCF Service 105
proxy.ClientCredentials.UserName.UserName = "LON-DEV-01\\Student";
proxy.ClientCredentials.UserName.Password = "Pa$$w0rd";

The ClientCredentials property of a WCF proxy object provides a mechanism for a client
application to provide the credentials to send to the service. The UserName property of
ClientCredentials can hold a username and password. Other properties are available,
such as ClientCertificate, which enable you to supply different types of credentials infor-
mation as required by the service configuration.

Warning This code is for illustrative purposes in this exercise only. In a production
application, you should prompt the user for their name and password. You should
never hard-code these details into an application.

8. Start the solution without debugging.

9. In the ProductsServiceHost form, click Start. In the client console window, press Enter.

A message box appears, displaying the user name sent by the client application. This
time, the user name appears as expected, verifying that the operation is executing with
the credentials of the user.

10. Click OK, and verify that the client application still runs correctly.

11. Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

Using Basic authentication, you can provide the username and password of the user, and the
WCF runtime executing the service will check that these credentials are valid. If you provide
an invalid username of password, the WCF runtime will reject the request and the client will
receive another MessageSecurityException exception with the message “The HTTP request
was forbidden… .”

Basic authentication is a good solution if the user running the client application is not cur-
rently logged into the security domain used by the service.

Note You can also configure the NetTCPBinding and WSHttpBinding bindings at the mes-
sage level to require Username authentication. This is very similar to Basic authentication at
the transport level as far as client application is concerned, although somewhat different as
far as the service is concerned, as it takes responsibility for authenticating the user itself (typ-
ically using a custom database of usernames and passwords). However, usernames and pass-
words are not encrypted at the message level, so WCF insists that the underlying transport
provide encryption to prevent the credential details being transmitted across an open net-
work as clear text.

106 Chapter 4 Protecting an Enterprise WCF Service
If the user is logged in to the domain, then you can make use of Windows Integrated Security
to provide the user's credentials automatically, rather than prompting the user for them again
(or worse still, hard-coding them in your application!).

Configure the BasicHttpBinding binding for the WCF service and client to use
Windows authentication

1. Edit the App.config file in the ProductsServiceHost project by using the WCF Service
Configuration Editor.

2. In the left pane, expand the Bindings folder, and click the ProductsServiceBasicHttp-
BindingConfig node.

3. In the right pane, click the Security tab.

4. Set the TransportClientCredentialType property to Windows.

5. Save the configuration and close the WCF Service Configuration Editor.

6. In Visual Studio 2005, edit the app.config file in the ProductsClient project by using the
WCF Service Configuration Editor.

7. Repeat the process in steps 2 through 5, above and set the TransportClientCredentialType
property of the ProductsClientBasicHttpBindingConfig binding configuration to Win-
dows.

8. Save the configuration, and close the WCF Service Configuration Editor.

9. Edit the Program.cs file in the ProductsClient project.

10. In the Main method, comment out the two statements that add the username and pass-
word to the ClientCredentials property of the proxy object.

11. Start the solution without debugging.

12. In the ProductsServiceHost form, click Start. In the client console window, press Enter.

The message box appears displaying your Windows username, which was sent by the
client application. However, rather than you having to supply the username and pass-
word, the WCF runtime executing the client application picked this information up from
the user's process automatically.

Note If you omitted to comment out the lines that populated the ClientCredentials
object, the solution still works; the credentials provided are simply ignored. However,
note the ClientCredentials property has a Windows property that you can use to pro-
vide a domain, username, and password to the service if you want the service to run as
a different Windows user. Any values that you specify in the Windows property override
those retrieved from the user's login process. The usual warnings about hard-coding
usernames and password in your code still apply:

Chapter 4 Protecting an Enterprise WCF Service 107
proxy.ClientCredentials.Windows.ClientCredential.Domain = "LON-DEV-01";
proxy.ClientCredentials.Windows.ClientCredential.UserName = "Administrator";
proxy.ClientCredentials.Windows.ClientCredential.Password = "P@ssw0rd";

13. Click OK in the message box, and verify that the client application still runs correctly.

14. Press Enter to close the client console window. Stop the service and close the Prod-
uctsServiceHost form.

When you use Windows Integrated Security, usernames and passwords are not transmitted as
clear text. You can use Windows Integrated Security at the message level with the NetTCP-
Binding and WSHttpBinding bindings without needing to implement encryption at the trans-
port level.

Examine the authentication mechanism used by the NetTcpBinding binding

1. Edit the App.config file in the ProductsServiceHost project by using the WCF Service
Configuration Editor.

2. In the left pane, expand the Bindings folder, and click the ProductsServiceBasicTcpBind-
ingConfig node.

3. In the right pane, click the Security tab.

4. Verify that the MessageClientCredentialType property is set to Windows.

You have been using Windows Integrated Security without realizing it in earlier exer-
cises!

Note The WSHttpBinding binding also defaults to using Windows Integrated
Security.

5. Close the WCF Service Configuration Editor without saving changes.

6. Edit the Program.cs file for the ProductsClient project and modify the statement that cre-
ates the proxy object to use the NetTcpBinding binding, as follows:

ProductsServiceClient proxy = new
ProductsServiceClient("NetTcpBinding_IProductsService");

7. Start the solution without debugging.

8. In the ProductsServiceHost form, click Start. In the client console window, press Enter.

The familiar message box appears, displaying your Windows user name, proving that
the NetTcpBinding automatically picks up your identity from Windows.

9. Click OK, and allow the client application to finish. Press Enter to close the client con-
sole window. Stop the service and close the ProductsServiceHost form.

108 Chapter 4 Protecting an Enterprise WCF Service
Authorizing Users

After a service has established the identity of the user, it can then determine whether the ser-
vice should perform the requested operations for the user. Different operations in a service
could be considered more privileged than others. For example, in the ProductsService service,
you might wish to let any staff who work in the warehouse query the product information in
the AdventureWorks database but limit access to operations such as ChangeStockLevel, which
modify data, to staff members who are stock controllers. WCF can use the features of the .NET
Framework to enable a developer to specify which users and roles have the authority to
request operations. You can perform this task declaratively (by using attributes) or impera-
tively (by adding code to the operations).

The authorization mechanism used by WCF requires access to a database defining users and
the roles that they can fulfill. If you are performing authentication by using Active Directory, it
makes sense to use the Active Directory database to hold the roles for each user as well. There-
fore, the first step is to ensure that the WCF service is configured to retrieve roles from Active
Directory by using the Windows Token Role Provider.

Configure the WCF service to use the Windows Token Role Provider

1. Edit the App.config file in the ProductsServiceHost project by using the WCF Service
Configuration Editor.

2. In the left pane, expand the Advanced folder, expand the Service Behaviors folder and
then click the ProductsBehavior node.

The ProductsBehavior behavior currently contains the serviceDebug element. You added
this behavior to the service in Chapter 3.

3. In the right pane, click Add.

4. In the Adding Behavior Element Extension Sections dialog box, select serviceAuthoriza-
tion and then click Add.

The serviceAuthorization behavior is added to the list of behaviors.

5. In the left pane, click serviceAuthorization under the ProductsBehavior node.

6. In the right pane, verify that the PrincipalPermissionMode property is set to UseWindows-
Groups.

By default, WCF uses the Windows Token Role Provider to authenticate users, so you
don't actually need to change anything. However, you can configure the serviceBehavior
element to specify a different role provider, such as the SQL Role Provider or the Autho-
rization Store Role Provider mentioned earlier in this chapter. (You will configure the ser-
vice to use the SQL Role Provider in Chapter 5.)

7. Save the configuration and close the WCF Service Configuration Editor.

Chapter 4 Protecting an Enterprise WCF Service 109
The next step is to define the roles that can request the operations in the WCF service. When
using the Windows Token Role Provider, Active Directory groups correspond to roles, so you
define groups in the Active Directory database and add users to these groups.

Note The following exercise assumes you do not have access to the Active Directory data-
base for your organization, so it uses the Windows local users and groups database instead.
The principles are the same, however.

Create groups for warehouse staff and stock controller staff

1. On the Windows Start menu, right-click My Computer, and then click Manage.

The Computer Management console appears.

2. In the Computer Management console, under the System Tools node, expand the Local
Users and Groups node, right-click the Groups folder, and then click New Group.

3. In the New Group dialog box, enter WarehouseStaff for the Group name, and then click
Create.

4. Still in the New Group dialog box, enter StockControllers for the Group name, and then
click Create.

5. Click Close to close the New Group dialog box.

The two new groups should appear in the list of groups in right pane of the Computer
Management console.

6. In the left pane of the Computer Management console, right-click the Users folder and
then click New User.

7. In the New User dialog box, use the values in the following table to set the properties of
the user and then click Create.

8. Add another user by specifying the values in the following table, and then click Create
again.

Property Value

User name Fred

Password Pa$$w0rd

Confirm password Pa$$w0rd

User must change password at next logon Unchecked

Property Value

User name Bert

Password Pa$$w0rd

110 Chapter 4 Protecting an Enterprise WCF Service
9. Click Close the close the New User dialog box.

10. In the left pane of the Computer Management console, click the Users folder.

The two new users should appear in the list in the right pane of the Computer Manage-
ment console.

11. In the right pane of the Computer Management console, right-click Bert and then click
Properties.

12. In the Bert Properties dialog box, click the Member Of tab and then click Add.

13. In the Select Groups dialog box, type WarehouseStaff in the text box and then click OK.

Bert is added to the WarehouseStaff group.

14. In the Bert Properties dialog box, click OK.

15. In the right pane of the Computer Management console, right-click Fred and then click
Properties.

16. In the Fred Properties dialog box, click the Member Of tab and then click Add.

17. In the Select Groups dialog box, type WarehouseStaff in the text box and then click OK.

18. Click Add again. In the Select Groups dialog box, type StockControllers in the text box
and then click OK.

Fred is added to the WarehouseStaff and StockControllers groups—he has two roles.

19. In the Fred Properties dialog box, click OK.

20. Close the Computer Management console.

You can now use the groups you have just defined to specify the roles that can request each of
the operations in the ProductsService service. To show how to specify authorization declara-
tively and imperatively, you will use attributes to specify the role for the operations that simply
query the AdventureWorks database, but you will write code to specify the role that can modify
the database.

Specify the roles for the WCF service operations

1. In Visual Studio 2005, open the ProductsService.cs file in the ProductsService project.

2. Add the following using statements to the list at the top of the file:

using System.Security;
using System.Security.Permissions;
using System.Security.Principal;

Confirm password Pa$$w0rd

User must change password at next logon Unchecked

Property Value

Chapter 4 Protecting an Enterprise WCF Service 111
3. Locate the ListProducts method in the ProductsServiceImpl class. Add the following
attribute, shown in bold, to this method:

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]
public List<string> ListProducts()
{

…
}

The PrincipalPermission attribute specifies the authorization requirements of the
method. In this case, the SecurityAction.Demand parameter indicates that the method
requires that the user meet the criteria specified by the following parameters. The Role
parameter indicates that the user must be a member of the WarehouseStaff role.

You can identify specific users by using the optional Name parameter. However, if you
specify Name and Role, then the user must match both criteria to be granted access (if
the user is not a member of the specified role, they will not be allowed to execute the
method). If you require users to be granted access to the method if they have a specific
name or are a member of a specific group, you can use the PrincipalPermission attribute
twice, like this:

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]
// LON-DEV-01\Student is not a member of the WarehouseStaff group
[PrincipalPermission(SecurityAction.Demand, Name="LON-DEV-01\\Student")]
public List<string> ListProducts()
{

…
}

You can also specify SecurityAction.Deny as the first parameter to the PrincipalPermission
attribute. If you do this, the specified users and roles will be explicitly denied access to
the method.

4. Apply the PrincipalPermission attribute with the WarehouseStaff group to the GetProd-
uct and CurrentStockLevel methods, as shown in bold below:

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]
public Product GetProduct(string ProductNumber)
{

…
}

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]
public int GetStockLevel(string ProductNumber)
{

…
}

5. Locate the ChangeStockLevel method. Add the following code, shown in bold, to the
start of this method:

public bool ChangeStockLevel(…)
{

112 Chapter 4 Protecting an Enterprise WCF Service
 // Determine whether the user is a member of the StockControllers role
WindowsPrincipal user = new WindowsPrincipal(

(WindowsIdentity)Thread.CurrentPrincipal.Identity);
if (!(user.IsInRole("StockControllers")))
{

// If the user is not in the StockControllers role,
// throw a SecurityException
throw new SecurityException("Access denied");

} …
}

The first statement retrieves the identity information for the user and uses it to create a
WindowsPrincipal object. Note that the identity returned by the current thread must be
cast to a WindowsIdentity object. A WindowsPrincipal object is a representation of the
user. It exposes the IsInRole method that this code uses to determine whether the user
is a member of the StockControllers role. The IsInRole method returns true if the user is
a member of the role, false otherwise. If the user is not a member of the role, the code
throws a SecurityException exception with the message “Access Denied.”

Warning It is tempting to provide more detail in the SecurityException exception.
This practice is not recommended, as it could provide an attacker with useful informa-
tion that they might be able to use to try and infiltrate your system. Keep the exception
message bland!

Test the authorization for the WCF service

1. Start the solution without debugging.

2. In the ProductsServiceHost form, click Start. In the client console window, press Enter.

Assuming you are not currently logged in to Windows as Fred or Bert, the client appli-
cation stops and reports the message “Access is denied” when attempting to invoke the
ListProducts operation. This is because the authenticated Windows account for the cli-
ent application must be a member of the WarehouseStaff role:

3. Press Enter to close the client console window, and then stop the service and close the
ProductsServiceHost form.

Chapter 4 Protecting an Enterprise WCF Service 113
4. In the ProductsClient project in Solution Explorer, open the Program.cs file.

5. In the Main method, add the following statements shown in bold immediately after the
statement that creates the proxy object. Replace the value “LON-DEV-01” specified in the
Domain property with the name of your computer:

ProductsServiceClient proxy = new
ProductsServiceClient("NetTcpBinding_IProductsService");

proxy.ClientCredentials.Windows.ClientCredential.Domain = "LON-DEV-01";
proxy.ClientCredentials.Windows.ClientCredential.UserName = "Bert";
proxy.ClientCredentials.Windows.ClientCredential.Password = "Pa$$w0rd";

These statements explicitly set the Windows credentials for the user to those of Bert. The
WCF runtime on the client will send these credentials to the service, rather than using
those in the user’s login process.

6. Start the solution again, without debugging.

7. In the ProductsServiceHost form, click Start. In the client console window, press Enter.

This time, Bert is a member of the WarehouseStaff role and is granted access to the List-
Products, GetProduct, and CurrentStockLevel operations.

8. When the ListProducts method runs, it displays the message box confirming that the
identity of the authenticated user is Bert. Click OK to continue execution. The first three
tests run successfully, but when the client application attempts to perform test 4, which
requires invoking the ChangeStockLevel operation, Bert has not been granted access to
this method, and so the test fails with the “Access is denied” message:

9. Press Enter to close the client console window, and then stop the service and close the
ProductsServiceHost form.

10. Return to the Program.cs file in the code view window.

11. In the Main method, change the Windows username of the user to Fred, like this:

proxy.ClientCredentials.Windows.ClientCredential.Domain = "LON-DEV-01";
proxy.ClientCredentials.Windows.ClientCredential.UserName = "Fred";
proxy.ClientCredentials.Windows.ClientCredential.Password = "Pa$$w0rd";

114 Chapter 4 Protecting an Enterprise WCF Service
12. Build and start the solution again without debugging.

13. In the ProductsServiceHost form, click Start. In the client console window, press Enter.

Fred is a member of the WarehouseStaff role and the StockControllers role, and so he is
able to invoke all the operations in the ProductsService service.

14. When the ListProducts method displays the message box with the name of the authen-
ticated user, verify that the username is Fred and then click OK.

15. The client application performs all four tests successfully. Press Enter to close the client
console window, and then stop the service and close the ProductsServiceHost form.

Using Impersonation to Access Resources

Authenticating a user establishes the identity of the user to the WCF service, which can then
perform authorization checks to verify that the user should be allowed to perform the
requested operation. The method that implements the operation might require access to
resources on the computer running the WCF service. By default, the service will attempt to
gain access to these resources by using its own credentials. For example, when a method in
the ProductsService service connects to the AdventureWorks database, it does so as the account
running the service. When using Windows authentication, it is possible to specify that the
WCF service should access resources by using the authenticated identity of the user instead.
So, if Fred has been granted access to the AdventureWorks database, the WCF service can con-
nect to SQL Server as Fred and will have access to all the database resources to which Fred
has been granted access. If the user connects as Bert, the WCF service might be able to use a
different set of resources in the database, depending on Bert’s access rights. The same princi-
ple applies to other resources, such as files, folders, and network shares. Using impersonation
gives an administrator fine-grained control over the ability of a WCF service to read or write
possibly sensitive information and can provide an additional degree of security—just because
the user can connect to the WCF service, they might not be able to perform operations that
retrieve or modify confidential data unless the administrator has explicitly granted the user
access to this data.

You can enable impersonation for an operation by setting the Impersonation property of the
OperationBehavior attribute, like this (shown in bold):

[PrincipalPermission(SecurityAction.Demand, Role="WarehouseStaff")]
[OperationBehavior(Impersonation=ImpersonationLevel.Required)]
public List<string> ListProducts
{

…
}

Specifying the value ImpersonationLevel.Required enforces impersonation. The client applica-
tion must also agree to this requirement and specify the level of impersonation that the WCF
service application can use (you will see how to do this shortly). You can also specify the
ImpersonationLevel.Allowed, which enables the WCF service to impersonate the user if the cli-

Chapter 4 Protecting an Enterprise WCF Service 115
ent application permits, but executes as the identity running the service application if not, and
ImpersonationLevel.NotAllowed, which disables impersonation.

If you need to specify an impersonation level setting for all operations, you can set the Imper-
sonateCallerForAllOperations attribute of the <serviceBehavior> element of the service behavior
to true in the service configuration file, as shown in bold below:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

…
<system.serviceModel>

…
<services>

<service behaviorConfiguration="ProductsBehavior" name="Products.ProductsServiceImpl">
…

</services>
<behaviors>

<serviceBehaviors>
<behavior name="ProductsBehavior">

<serviceAuthorization principalPermissionMode="UseWindowsGroups"
impersonateCallerForAllOperations="false" />

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

</configuration>

You configure the client application to indicate the level of impersonation that the service can
use by defining a behavior for the endpoint and specifying the AllowedImpersonationLevel
property. The following fragments of a client configuration file highlight the pertinent ele-
ments:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<system.serviceModel>
<behaviors>

<endpointBehaviors>
<behavior name="ImpersonationBehavior">

<clientCredentials>
<windows allowedImpersonationLevel="Impersonation" />
…

</clientCredentials>
</behavior>

</endpointBehaviors>
</behaviors>

 …
<client>

…
<endpoint
 address="http://localhost:8010/ProductsService/ProductsService.svc"
behaviorConfiguration="ImpersonationBehavior"
binding="wsHttpBinding"

116 Chapter 4 Protecting an Enterprise WCF Service
contract="ProductsClient.ProductsService.IProductsService"
name="WSHttpBinding_IProductsService" />

</client>
</system.serviceModel>

</configuration>

You can specify one of the following values for the AllowedImpersonationLevel property:

■ Impersonate. The service can use the user's identity when accessing local resources on the
computer hosting the service. However, the service cannot access resources on remote
computers.

■ Delegation. The service can use the user's identity when accessing local resources on the
computer hosting the service and on remote computers. The service can pass the iden-
tity of the user on to remote services, which may authenticate the user and perform oper-
ations impersonating this user.

■ Identify. The service can use the user's credentials to authenticate the user and authorize
access to operations but cannot impersonate the user.

■ Anonymous. The service does not use the user's identity to authenticate the user but can
use the user's credentials to perform access checks against resources accessed by the ser-
vice. This setting is only valid for transport mechanisms such as named pipes that con-
nect a client application to a service executing on the same computer. If the service is
running on a remote computer, the setting is handled in the same way as the “Identify”
option.

■ None. The service does not attempt to impersonate the user.

Summary
In this chapter, you have seen how to use the features of WCF bindings to control the degree
of protection afforded to a WCF service. You have seen how to configure encryption for mes-
sages flowing between a client application and a service, at the message level and at the trans-
port level. You have learned how to specify the authentication mode for a binding and how to
pass Windows credentials from a client application to a WCF service. You have also learned
how to authorize access to operations for authenticated users and how to provide access to
resources based on a user’s authenticated identity by using impersonation.

	Cover
	Table of Contents
	Chapter 4: Protecting an Enterprise WCF Service
	What Is Security?
	Authentication and Authorization in a Windows Environment
	Transport and Message Level Security

	Implementing Security in a Windows Domain
	Protecting a TCP Service at the Message Level
	Protecting an HTTP Service at the Transport Level
	Protecting an HTTP Service at the Message Level
	Authenticating Windows Users
	Authorizing Users
	Using Impersonation to Access Resources

	Summary

