

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/10329.aspx

Table of Contents
Acknowledgments . xi
About This Book . xiii

1 Overview of Windows PowerShell .1
Understanding Windows PowerShell . 1
Using Cmdlets . 3

Installing Windows PowerShell . 3
Deploying Windows PowerShell . 4

Using Command Line Utilities . 5
Security Issues with Windows PowerShell . 7

Controlling Execution of PowerShell Cmdlets. 7
Confirming Commands . 8
Suspending Confirmation of Cmdlets . 10

Working with Windows PowerShell . 11
Accessing Windows PowerShell . 11
Configuring Windows PowerShell . 12

Supplying Options for Cmdlets. 13
Working with the Help Options . 14
Exploring Commands: Step-by-Step Exercises . 16
One Step Further: Obtaining Help . 18

2 Using Windows PowerShell Cmdlets . 21
Understanding the Basics of Cmdlets . 21

Using the Get-ChildItem Cmdlet . 22
Using the Format-Wide Cmdlet . 24

Leveraging the Power of Get-Command . 27
Using the Get-Member Cmdlet . 31
Using the New-Object Cmdlet . 36

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!
vii

viii Table of Contents
Creating a PowerShell Profile . 38
Working with Cmdlets: Step-by-Step Exercises . 40
One Step Further: Working with New-Object . 42

3 Leveraging PowerShell Providers . 45
Identifying the Providers . 45
Understanding the Alias Provider . 46
Understanding the Certificate Provider . 48
Understanding the Environment Provider . 53
Understanding the File System Provider. 56
Understanding the Function Provider . 60
Understanding the Registry Provider . 62
Understanding the Variable Provider . 64
Exploring the Certificate Provider: Step by Step Exercises. 67
One Step Further: Examining the Environment Provider . 68

4 Using PowerShell Scripts . 73
Why Write Windows PowerShell Scripts . 73
Enabling Script Support. 75

Running Windows PowerShell Scripts . 77
Understanding Variables and Constants . 80

Use of Variables . 80
Use of Constants . 84

Looping Through Code . 85
Using the For Each-Object Cmdlet . 86
Using the For Statement . 88
Using Do … While . 89
Using Do … Until . 90

Making Decisions . 92
Using If … Elseif … Else . 92
Using Switch. 93

Creating Multiple Folders: Step-by-Step Exercises . 94
One Step Further: Deleting Multiple Folders . 95

Table of Contents ix
5 Using WMI . 97
Understanding the WMI Model . 98
Working with Objects and Namespaces . 98
Listing WMI Providers. 102
Working with WMI Classes . 103
Querying WMI . 111
Obtaining Service Information: Step-by-Step Exercises . 113
One Step Further: Working with Printers . 116

6 Querying WMI. 119
Alternate Ways to Connect to WMI . 119
Tell Me Everything About Everything! . 125
Selective Data from All Instances . 127
Selecting Multiple Properties . 128
Choosing Specific Instances . 131
Utilizing an Operator . 133
Where Is the Where?. 136
Working with Software: Step-by-Step Exercises . 136
One Step Further: Windows Environment Settings . 139

7 Working with Active Directory . 145
Creating Objects in Active Directory . 145

Creating an Organizational Unit . 145
ADSI Providers . 147
LDAP Names. 148
Binding . 149

Creating Users . 153
Working with Users . 157

General User Information . 158
Creating the Address Page. 159
Deleting Users . 168
Creating Multiple Organizational Units: Step-by-Step Exercises 169
One Step Further: Creating Multivalued Users . 170

x Table of Contents
8 Leveraging the Power of ADO . 175
Connecting to Active Directory with ADO . 175
Creating More Effective Queries . 179

Using Alternative Credentials . 180
Modifying Search Parameters . 183

Searching for Specific Types of Objects . 186
What Is Global Catalog? . 188

Using the SQL Dialect to Query Active Directory . 192
Creating an ADO Query into Active Directory: Step-by-Step
Exercises . 193
One Step Further: Controlling How a Script Executes Against
Active Directory . 197

9 Managing Exchange 2007 . 199
Exploring the Exchange 2007 Cmdlets . 199
Configuring Recipient Settings . 200

Creating the User and the Mailbox . 201
Reporting User Settings . 204

Managing Storage Settings. 206
Examining the Database . 206

Managing Logging. 207
Creating User Accounts: Step-by-Step Exercises . 211
One Step Further: Configuring Message Tracking . 214

Appendix A: Cmdlets Installed with Windows PowerShell . 217

Appendix B: Cmdlet Naming. 221

Appendix C: Translating VBScript to Windows PowerShell. 223

Index . 289

Chapter 1

Overview of Windows PowerShell
After completing this chapter, you will be able to:

■ Understand basic use and capabilities of Microsoft Windows PowerShell

■ Install Windows PowerShell

■ Use basic command-line utilities inside Windows PowerShell

■ Use Windows PowerShell help

■ Run basic Windows PowerShell cmdlets

■ Get help on basic Windows PowerShell cmdlets

■ Configure Windows PowerShell to run scripts

The release of Windows PowerShell marks a significant advance for the Windows network
administrator. Combining the power of a full-fledged scripting language, with access to com-
mand-line utilities, Windows Management Instrumentation (WMI), and even VBScript, Pow-
erShell provides both the power and ease of use that have been missing from the Windows
platform since the beginning of time. All the scripts mentioned in this chapter can be found in
the corresponding scripts folder on the CD.

Understanding Windows PowerShell
Perhaps the biggest obstacle for a Windows network administrator in migrating to Windows
PowerShell is understanding what the PowerShell actually is. In some respects, it is like a
replacement for the venerable CMD (command) shell. As shown here, after the Windows
PowerShell is launched, you can use cd to change the working directory, and then use dir to
produce a directory listing in exactly the same way you would perform these tasks from the
CMD shell.

Windows PowerShell
Copyright (C) 2006 Microsoft Corporation. All rights reserved.

PS C:\Documents and Settings\edwilson> cd c:\
PS C:\> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 7/2/2006 12:14 PM audioBOOK
d---- 1/13/2006 9:34 AM bt
d---- 11/4/2006 2:57 AM Documents and Settings
1

2 Chapter 1 Overview of Windows PowerShell
d---- 2/6/2006 2:49 PM DsoFile
d---- 9/5/2006 11:30 AM fso
d---- 7/21/2006 3:08 AM fso2
d---- 11/15/2006 9:57 AM OutlookMail
d-r-- 11/20/2006 4:44 PM Program Files
d---- 7/16/2005 11:52 AM RAS
d---- 1/30/2006 9:30 AM smartPhone
d---- 11/1/2006 11:35 PM Temp
d---- 8/31/2006 6:48 AM Utils
d---- 1/30/2006 9:10 AM vb05sbs
d---- 11/21/2006 5:36 PM WINDOWS
-a--- 7/16/2005 10:39 AM 0 AUTOEXEC.BAT
-a--- 11/7/2006 1:09 PM 3988 bar.emf
--r-s 8/27/2006 6:37 PM 211 boot.ini
-a--- 7/16/2005 10:39 AM 0 CONFIG.SYS
-a--- 8/16/2006 11:42 AM 60 MASK.txt
-a--- 4/5/2006 3:09 AM 288 MRED1.log
-a--- 9/28/2006 11:20 PM 16384 mySheet.xls
-a--- 9/19/2006 4:28 AM 2974 new.txt
-a--- 11/15/2006 2:08 PM 6662 notepad
-a--- 9/19/2006 4:23 AM 4887 old.txt
-a--- 6/3/2006 11:11 AM 102 Platform.ini

PS C:\>

You can also combine “traditional” CMD interpreter commands with some of the newer utili-
ties such as fsutil. This is shown here:

PS C:\> md c:\test

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/23/2006 11:42 AM test

PS C:\> cd c:\test
PS C:\test> fsutil file createNew c:\test\myNewFile.txt 1000
File c:\test\myNewFile.txt is created
PS C:\test> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\test

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/23/2006 11:43 AM 1000 myNewFile.txt

PS C:\test> del *.txt
PS C:\test> cd c:\
PS C:\> rd c:\test
PS C:\>

We have been using Windows PowerShell in an interactive manner. This is one of the primary
uses of PowerShell and is accomplished by opening a PowerShell prompt and typing com-
mands. The commands can be entered one at a time, or they can be grouped together like a
batch file. We will look at this later because you need more information to understand it.

Chapter 1 Overview of Windows PowerShell 3
Using Cmdlets
In addition to using traditional programs and commands from the CMD.exe command inter-
preter, we can also use the commandlets (cmdlets) that are built into PowerShell. Cmdlets are
name-created by the Windows PowerShell team to describe the commands that are built into
PowerShell. They are like executable programs, but they take advantage of the facilities built
into Windows PowerShell, and therefore are easy to write. They are not scripts, which are
uncompiled code, because they are built using the services of a special .NET Framework
namespace. Windows PowerShell comes with more than 120 cmdlets that are designed to
assist the network administrator or consultant to leverage the power of PowerShell without
having to learn the PowerShell scripting language. These cmdlets are documented in Appen-
dix A. In general, the cmdlets follow a standard naming convention such as Get-Help, Get-
EventLog, or Get-Process. The get cmdlets display information about the item that is specified
on the right side of the dash. The set cmdlets are used to modify or to set information about
the item on the right side of the dash. An example of a set cmdlet is Set-Service, which can be
used to change the startmode of a service. An explanation of this naming convention is seen
in Appendix B.

Installing Windows PowerShell
It is unfortunate that Windows PowerShell is not installed by default on any of the current
Windows operating systems, including Windows Vista. It is installed with Exchange Server
2007 because Exchange leverages Windows PowerShell for management. This is a tremen-
dous advantage to Exchange admins because it means that everything that can be done
through the Exchange Admin tool can also be done from a PowerShell script or cmdlet.

Windows PowerShell can be installed on Windows XP SP2, Windows Server 2003 SP1, and
Windows Vista. Windows PowerShell requires Microsoft .NET Framework 2.0 (or greater)
and will generate the error shown in Figure 1-1 if this level of the .NET Framework is not
installed.

Figure 1-1 A Setup error is generated if .NET Framework 2.0 is not present

4 Chapter 1 Overview of Windows PowerShell
To prevent frustration during the installation, it makes sense to use a script that checks for the
operating system (OS), service pack level, and .NET Framework 2.0. A sample script that will
check for the prerequisites is DetectPowerShellRequirements.vbs, which follows.

DetectPowerShellRequirements.vbs
strComputer = "."
wmiNS = "\root\cimv2"
wmiQuery = "Select name from win32_Product where name like '%.NET Framework 2.0%'"
wmiQuery1 = "Select * from win32_OperatingSystem"

WScript.Echo "Retrieving settings on " & _ CreateObject("wscript.network").computername
 & " this will take some time ..."
Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)
Set colItems = objWMIService.ExecQuery(wmiQuery)
Set colItems1= objWMIService.ExecQuery(wmiQuery1,,RtnImmedFwdOnly)

If colItems.count <>1 Then
 WScript.Echo ".NET Framework 2.0 is required for PowerShell"
 Else
 WScript.Echo ".NET Framework 2.0 detected"
End If

For Each objItem1 In colItems1
 osVER= objItem1.version
 osSP= objItem1.ServicePackMajorVersion
Next

Select Case osVER
Case "5.1.2600"
 If osSP < 2 Then
 WScript.Echo "Service Pack 2 is required on Windows XP"
 Else
 WScript.Echo "Service Pack",osSP,"detected on",osVER
 End If
Case "5. 2.3790"
 If osSP <1 Then
 WScript.Echo "Service Pack 1 is required on Windows Server 2003"
 Else
 WScript.Echo "Service Pack",osSP,"detected on",osVER
 End if
Case "XXX"
 WScript.Echo "No service pack is required on Windows Vista"
Case Else
 WScript.Echo "Windows PowerShell does not install on Windows version " & osVER
End Select

Deploying Windows PowerShell
After Windows PowerShell is downloaded from http://www.Microsoft.com/downloads, you can
deploy Windows PowerShell to your enterprise by using any of the standard methods you
currently use. A few of the methods some customers have used to accomplish Windows
PowerShell deployment are listed next.

Chapter 1 Overview of Windows PowerShell 5
1. Create a Microsoft Systems Management Server (SMS) package and advertise it to the
appropriate Organizational Unit (OU) or collection.

2. Create a Group Policy Object (GPO) in Active Directory (AD) and link it to the appropri-
ate OU.

If you are not deploying to an entire enterprise, perhaps the easiest way to install Windows
Powershell is to simply double-click the executable and step through the wizard.

Note To use a command line utility in Windows PowerShell, launch Windows PowerShell by
using Start | Run | PowerShell. At the PowerShell prompt, type in the command to run.

Using Command Line Utilities
As mentioned earlier, command-line utilities can be used directly within Windows Power-
Shell. The advantages of using command-line utilities in Windows PowerShell, as opposed to
simply running them in the CMD interpreter, are the Windows PowerShell pipelining and for-
matting features. Additionally, if you have batch files or CMD files that already utilize existing
command-line utilities, they can easily be modified to run within the Windows PowerShell
environment. This command is in the RunningIpconfigCommands.txt file.

Running ipconfig commands

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Enter the command ipconfig /all. This is shown here:

PS C:\> ipconfig /all

3. Pipe the result of ipconfig /all to a text file. This is illustrated here:

PS C:\> ipconfig /all >ipconfig.txt

4. Use Notepad to view the contents of the text file. This is shown here:

PS C:\> notepad ipconfig.txt

Typing a single command into Windows PowerShell is useful, but at times you may need more
than one command to provide troubleshooting information, or configuration details to assist
with setup issues or performance problems. This is where Windows PowerShell really shines. In
the past, one would have to either write a batch file or type the commands manually.

Note Netdiag.exe referenced in the TroubleShoot.bat file is not part of the standard
Windows install, but is a resource kit utility that can be downloaded from
http://www.microsoft.com/downloads.

6 Chapter 1 Overview of Windows PowerShell
This is seen in the TroubleShoot.bat script that follows.

TroubleShoot.bat
ipconfig /all >C:\tshoot.txt
route print >>C:\tshoot.txt
netdiag /q >>C:\tshoot.txt
net statistics workstation >>C:\tshoot.txt

Of course, if you typed the commands manually, then you had to wait for each command to
complete before entering the subsequent command. In that case, it was always possible to
lose your place in the command sequence, or to have to wait for the result of each command.
The Windows PowerShell eliminates this problem. You can now enter multiple commands on
a single line, and then leave the computer or perform other tasks while the computer pro-
duces the output. No batch file needs to be written to achieve this capability.

Tip Use multiple commands on a single Windows PowerShell line. Type each complete
command, and then use a semicolon to separate each command.

The use of this procedure is seen in the Running multiple commands procedure. The com-
mand used in the procedure are in the RunningMultipleCommands.txt file.

Running multiple commands

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Enter the ipconfig /all command. Pipe the output to a text file called Tshoot.txt by using
the redirection arrow (>). This is the result:

ipconfig /all >tshoot.txt

3. On the same line, use a semicolon to separate the ipconfig /all command from the route
print command. Append the output from the command to a text file called Tshoot.txt by
using the redirect and append arrow (>>). The command to this point is shown as
follows:

ipconfig /all >tshoot.txt; route print >>tshoot.txt

4. On the same line, use a semicolon to separate the route print command from the netdiag
/q command. Append the output from the command to a text file called Tshoot.txt
by using the redirect and append arrow. The command to this point is shown here:

ipconfig /all >tshoot.txt; route print >>tshoot.txt; netdiag /q >>tshoot
.txt

Chapter 1 Overview of Windows PowerShell 7
5. On the same line, use a semicolon to separate the netdiag /q command from the net sta-
tistics workstation command. Append the output from the command to a text file called
Tshoot.txt by using the redirect and append arrow. The completed command looks like
the following:

ipconfig /all >tshoot.txt; route print >>tshoot.txt; netdiag /q >>tshoot
.txt; net statistics workstation >>tshoot.txt

Security Issues with Windows PowerShell
As with any tool as versatile as Windows PowerShell, there are bound to be some security con-
cerns. Security, however, was one of the design goals in the development of Windows Power-
Shell.

When you launch Windows PowerShell, it opens in your Documents And Settings folder; this
ensures you are in a directory where you will have permission to perform certain actions and
activities. This is far safer than opening at the root of the drive, or even opening in system root.

To change to a directory, you cannot automatically go up to the next level; you must explicitly
name the destination of the change directory operation.

The running of scripts is disabled by default and can be easily managed through group policy.

Controlling Execution of PowerShell Cmdlets
Have you ever opened a CMD interpreter prompt, typed in a command, and pressed Enter so
that you could see what it does? What if that command happened to be Format C:\? Are you
sure you want to format your C drive? In this section, we will look at some arguments that can
be supplied to cmdlets that allow you to control the way they execute. Although not all
cmdlets support these arguments, most of those included with Windows PowerShell do. The
three arguments we can use to control execution are -whatif, -confirm, and suspend. Suspend
is not really an argument that is supplied to a cmdlet, but rather is an action you can take at a
confirmation prompt, and is therefore another method of controlling execution.

Note To use -whatif in a Windows PowerShell prompt, enter the cmdlet. Type the -whatif
parameter after the cmdlet.

Most of the Windows PowerShell cmdlets support a “prototype” mode that can be entered
using the -whatif parameter. The implementation of -whatif can be decided on by the person
developing the cmdlet; however, it is the recommendation of the Windows PowerShell team
that developers implement -whatif. The use of the -whatif argument is seen in the procedure
below. The commands used in the procedure are in the UsingWhatif.txt file.

8 Chapter 1 Overview of Windows PowerShell
Using -whatif to prototype a command

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Start an instance of Notepad.exe. Do this by typing notepad and pressing the Enter key.
This is shown here:

notepad

3. Identify the Notepad process you just started by using the Get-Process cmdlet. Type
enough of the process name to identify it, and then use a wild card asterisk (*) to avoid
typing the entire name of the process. This is shown as follows:

get-process note*

4. Examine the output from the Get-Process cmdlet, and identify the process ID. The output
on my machine is shown here. Please note that in all likelihood, the process ID used by
your instance of Notepad.exe will be different from the one on my machine.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 39 2 944 400 29 0.05 1056 notepad

5. Use -whatif to see what would happen if you used Stop-Process to stop the process ID you
obtained in step 4. This process ID will be found under the Id column in your output.
Use the -id parameter to identify the Notepad.exe process. The command is as follows:

stop-process -id 1056 -whatif

6. Examine the output from the command. It tells you that the command will stop the
Notepad process with the process ID that you used in your command.

What if: Performing operation "Stop-Process" on Target "notepad (1056)"

Tip To confirm the execution of a cmdlet, launch Windows PowerShell by using Start | Run
| Windows PowerShell. At the Windows PowerShell prompt, supply the -whatif argument to the
cmdlet.

Confirming Commands
As we saw in the previous section, we can use -whatif to prototype a cmdlet in Windows Pow-
erShell. This is useful for seeing what a command would do; however, if we want to be
prompted before the execution of the command, we can use the -confirm argument. The
commands used in the Confirming the execution of cmdlets procedure are listed in the
ConfirmingExecutionOfCmdlets.txt file.

Chapter 1 Overview of Windows PowerShell 9
Confirming the execution of cmdlets

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Start an instance of Notepad.exe. Do this by typing notepad and pressing the Enter key.
This is shown here:

notepad

3. Identify the Notepad process you just started by using the Get-Process cmdlet. Type
enough of the process name to identify it, and then use a wild card asterisk (*) to avoid
typing the entire name of the process. This is illustrated here:

get-process note*

4. Examine the output from the Get-Process cmdlet, and identify the process ID. The output
on my machine is shown here. Please note that in all likelihood, the process ID used by
your instance of Notepad.exe will be different from the one on my machine.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 39 2 944 400 29 0.05 1768 notepad

5. Use the -confirm argument to force a prompt when using the Stop-Process cmdlet to stop
the Notepad process identified by the get-process note* command. This is shown here:

stop-process -id 1768 -confirm

6. The Stop-Process cmdlet, when used with the -confirm argument, displays the following
confirmation prompt:

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "notepad (1768)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

7. Type y and press Enter. The Notepad.exe process ends. The Windows PowerShell
prompt returns to the default ready for new commands, as shown here:

PS C:\>

Tip To suspend cmdlet confirmation, at the confirmation prompt from the cmdlet, type s
and press Enter

10 Chapter 1 Overview of Windows PowerShell
Suspending Confirmation of Cmdlets
The ability to prompt for confirmation of the execution of a cmdlet is extremely useful and at
times may be vital to assisting in maintaining a high level of system uptime. There are times
when you have typed in a long command and then remember that you need to do something
else first. For such eventualities, you can tell the confirmation you would like to suspend exe-
cution of the command. The commands used for suspending execution of a cmdlet are in the
SuspendConfirmationOfCmdlets.txt file.

Suspending execution of a cmdlet

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Start an instance of Notepad.exe. Do this by typing notepad and pressing the Enter key.
This is shown here:

notepad

3. Identify the Notepad process you just started by using the Get-Process cmdlet. Type
enough of the process name to identify it, and then use a wild card asterisk (*) to avoid
typing the entire name of the process. This is shown here:

get-process note*

4. Examine the output from the Get-Process cmdlet, and identify the process ID. The output
on my machine is seen below. Please note that in all likelihood, the process ID used by
our instance of Notepad.exe will be different from the one on my machine.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 39 2 944 400 29 0.05 3576 notepad

5. Use the -confirm argument to force a prompt when using the Stop-Process cmdlet to stop
the Notepad process identified by the Get-Process Note* command. This is illustrated
here:

stop-process -id 3576 -confirm

6. The Stop-Process cmdlet, when used with the -confirm argument, displays the following
confirmation prompt:

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "notepad (3576)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

7. To suspend execution of the Stop-Process cmdlet, enter s. A triple arrow prompt will
appear, as follows:

PS C:\>>>

Chapter 1 Overview of Windows PowerShell 11
8. Obtain a list of all the running processes that begin with the letter n. Use the Get-Process
cmdlet to do this. The syntax is as follows:

get-process n*

9. On my machine, two processes appear. The Notepad process we launched earlier, and
another process. This is shown here:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 39 2 944 400 29 0.05 3576 notepad
 75 2 1776 2708 23 0.09 632 nvsvc32

10. Return to the previous confirmation prompt by typing exit. This is shown here:

exit

11. Once again, the confirmation prompt appears as follows:

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "notepad (3576)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

12. Type y and press Enter to stop the Notepad process. There is no further confirmation.
The prompt will now display the default Windows PowerShell PS>, as shown here:

PS C:\>

Working with Windows PowerShell
Windows PowerShell can be used as a replacement for the CMD interpreter. Its many built-in
cmdlets allow for large number of activities. These cmdlets can be used in a stand-alone fash-
ion, or they can be run together as a group.

Accessing Windows PowerShell
After Windows PowerShell is installed, it becomes available for immediate use. However,
using the Windows flag key on the keyboard and pressing the letter r to bring up a run com-
mand prompt, or “mousing around” and and using Start | Run | Windows PowerShell all the
time, becomes somewhat less helpful. I created a shortcut to Windows PowerShell and placed
that shortcut on my desktop. For me, and the way I work, this is ideal. This was so useful, as
a matter of fact, that I wrote a script to do this. This script can be called through a logon script
to automatically deploy the shortcut on the desktop. The script is called CreateShortCut-
ToPowerShell.vbs, and is as follows:

12 Chapter 1 Overview of Windows PowerShell
CreateShortCutToPowerShell.vbs
Option Explicit
Dim objshell
Dim strDesktop
Dim objshortcut
Dim strProg
strProg = "powershell.exe"

Set objshell=CreateObject("WScript.Shell")
strDesktop = objshell.SpecialFolders("desktop")
set objShortcut = objshell.CreateShortcut(strDesktop & "\powershell.lnk")
objshortcut.TargetPath = strProg
objshortcut.WindowStyle = 1
objshortcut.Description = funfix(strProg)
objshortcut.WorkingDirectory = "C:\"
objshortcut.IconLocation= strProg
objshortcut.Hotkey = "CTRL+SHIFT+P"
objshortcut.Save

Function funfix(strin)
funfix = InStrRev(strin,".")
funfix = Mid(strin,1,funfix)
End function

Configuring Windows PowerShell
Many items can be configured for Windows PowerShell. These items can be stored in a Psconsole
file. To export the Console configuration file, use the Export-Console cmdlet, as shown here:

PS C:\> Export-Console myconsole

The Psconsole file is saved in the current directory by default and has an extension of psc1.
The Psconsole file is saved in an xml format. A generic console file is shown here:

<?xml version="1.0" encoding="utf-8"?>
<PSConsoleFile ConsoleSchemaVersion="1.0">
 <PSVersion>1.0</PSVersion>
 <PSSnapIns />
</PSConsoleFile>

Controlling PowerShell launch options

1. Launch Windows PowerShell without the banner by using the -nologo argument. This is
shown here:

PowerShell -nologo

2. Launch a specific version of Windows PowerShell by using the -version argument. This
is shown here:

PowerShell -version 1

Chapter 1 Overview of Windows PowerShell 13
3. Launch Windows PowerShell using a specific configuration file by specifying the -pscon-
solefile argument. This is shown here:

PowerShell -psconsolefile myconsole.psc1

4. Launch Windows PowerShell, execute a specific command, and then exit by using the
-command argument. The command itself must be prefixed by the ampersand sign (&)
and enclosed in curly brackets. This is shown here:

powershell -command "& {get-process}"

Supplying Options for Cmdlets
One of the useful features of Windows PowerShell is the standardization of the syntax in
working with cmdlets. This vastly simplifies the learning of the new shell and language. Table
1-1 lists the common parameters. Keep in mind that all cmdlets will not implement these
parameters. However, if these parameters are used, they will be interpreted in the same man-
ner for all cmdlets because it is the Windows PowerShell engine itself that interprets the
parameter.

Note To get help on any cmdlet, use the Get-Help cmdletname cmdlet.

Table 1-1 Common Parameters

Parameter Meaning
-whatif Tells the cmdlet to not execute but to tell you what would happen

if the cmdlet were to run
-confirm Tells the cmdlet to prompt before executing the command
-verbose Instructs the cmdlet to provide a higher level of detail than a cmdlet

not using the verbose parameter
-debug Instructs the cmdlet to provide debugging information
-ErrorAction Instructs the cmdlet to perform a certain action when an error

occurs. Allowed actions are: continue, stop, silentlyContinue, and
inquire.

-ErrorVariable Instructs the cmdlet to use a specific variable to hold error informa-
tion. This is in addition to the standard $error variable.

-Outvariable Instructs the cmdlet to use a specific variable to hold the output
information

-OutBuffer Instructs the cmdlet to hold a certain number of objects before call-
ing the next cmdlet in the pipeline

14 Chapter 1 Overview of Windows PowerShell
Working with the Help Options
Windows PowerShell has a high level of discoverability; that is, to learn how to use Power-
Shell, you can simply use PowerShell. Online help serves an important role in assisting in this
discoverability. The help system in Windows PowerShell can be entered by several methods.
To learn about using Windows PowerShell, use the Get-Help cmdlet as follows:

get-help get-help

This command prints out help about the Get-Help cmdlet. The output from this cmdlet is illus-
trated here:

NAME
 Get-Help

SYNOPSIS
 Displays information about Windows PowerShell cmdlets and concepts

SYNTAX
 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string
 []>] [-role <string[]>] [-category <string[]>] [-full] [<CommonParameters>]

 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string
 []>] [-role <string[]>] [-category <string[]>] [-detailed] [<CommonParamete
 rs>]

 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string
 []>] [-role <string[]>] [-category <string[]>] [-examples] [<CommonParamete
 rs>]

 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string
 []>] [-role <string[]>] [-category <string[]>] [-parameter <string>] [<Comm
 onParameters>]

DETAILED DESCRIPTION
 The Get-Help cmdlet displays information about Windows PowerShell cmdlets a
 nd concepts. You can also use "Help {<cmdlet name> | <topic-name>" or "<cmd
 let-name> /?". "Help" displays the help topics one page at a time. The "/?"
 displays help for cmdlets on a single page.

RELATED LINKS
 Get-Command
 Get-PSDrive
 Get-Member

REMARKS
 For more information, type: "get-help Get-Help -detailed".
 For technical information, type: "get-help Get-Help -full".

The good thing about online help with the Windows PowerShell is that it not only displays
help about commands, which you would expect, but also has three levels of display: normal,
detailed, and full. Additionally, you can obtain help about concepts in Windows PowerShell.

Chapter 1 Overview of Windows PowerShell 15
This last feature is equivalent to having an online instruction manual. To retrieve a listing of all
the conceptual help articles, use the Get-Help about* command as follows:

get-help about*

Suppose you do not remember the exact name of the cmdlet you wish to use, but you remem-
ber it was a get cmdlet? You can use a wild card, such as an asterisk (*), to obtain the name of
the cmdlet. This is shown here:

get-help get*

This technique of using a wild card operator can be extended further. If you remember that
the cmdlet was a get cmdlet, and that it started with the letter p, you can use the following syn-
tax to retrieve the desired cmdlet:

get-help get-p*

Suppose, however, that you know the exact name of the cmdlet, but you cannot exactly
remember the syntax. For this scenario, you can use the -examples argument. For example, for
the Get-PSDrive cmdlet, you would use Get-Help with the -examples argument, as follows:

get-help get-psdrive -examples

To see help displayed one page at a time, you can use the help function, which displays the
help output text through the more function. This is useful if you want to avoid scrolling up
and down to see the help output. This formatted output is shown in Figure 1-2.

Figure 1-2 Using help to display information one page at a time

Getting tired of typing Get-Help all the time? After all, it is eight characters long, and one of
them is a dash. The solution is to create an alias to the Get-Help cmdlet. The commands used
for this are in the CreateAliasToGet-Help.txt file. An alias is a shortcut key stroke combination
that will launch a program or cmdlet when typed. In the creating an alias for the Get-Help
cmdlet procedure, we will assign the Get-Help cmdlet to the gh key combination.

16 Chapter 1 Overview of Windows PowerShell
Note To create an alias for a cmdlet, confirm there is not already an alias to the cmdlet by
using Get-Alias. Use Set-Alias to assign the cmdlet to a unique key stroke combination.

Creating an alias for the Get-Help cmdlet

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Retrieve an alphabetic listing of all currently defined aliases, and inspect the list for one
assigned to either the Get-Help cmdlet or the key stroke combination gh. The command
to do this is as follows:

get-alias |sort

3. After you have determined that there is no alias for the Get-Help cmdlet, and that none
is assigned to the gh key stroke combination, review the syntax for the Set-Alias cmdlet.
Use the -full argument to the Get-Help cmdlet. This is shown here:

get-help set-alias -full

4. Use the Set-Alias cmdlet to assign the gh key stroke combination to the Get-Help cmdlet.
To do this, use the following command:

set-alias gh get-help

Exploring Commands: Step-by-Step Exercises
In this exercise, we explore the use of command-line utilities in Windows PowerShell. You will
see that it is as easy to use command-line utilities in the Windows PowerShell as in the CMD
interpreter; however, by using such commands in the Windows PowerShell, you gain access to
new levels of functionality.

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Change to the C:\ root directory by typing cd C:\ inside the PowerShell prompt:

Cd c:\

3. Obtain a listing of all the files in the C:\ root directory by using the dir command:

dir

4. Create a directory off the C:\ root directory by using the md command:

Md mytest

5. Obtain a listing of all files and folders off the root that begin with the letter m:

Dir m*

Chapter 1 Overview of Windows PowerShell 17
6. Change the working directory to the PowerShell working directory. You can do this by
using the Set-Location command as follows:

Set-location $pshome

7. Obtain a listing of memory counters related to the available bytes by using the typeperf
command. This command is shown here:

typeperf "\memory\available bytes"

8. After a few counters have been displayed in the PowerShell window, use the ctrl-c com-
mand to break the listing.

9. Display the current boot configuration by using the bootcfg command:

Bootcfg

10. Change the working directory back to the C:\Mytest directory you created earlier:

set-location c:\mytest

11. Create a file named Mytestfile.txt in the C:\Mytest directory. Use the fsutil utility, and
make the file 1,000 bytes in size. To do this, use the following command:

fsutil file createnew mytestfile.txt 1000

12. Obtain a “directory listing” of all the files in the C:\Mytest directory by using the Get-
ChildItem cmdlet. This is shown here:

get-childitem

13. Print out the current date by using the Get-Date cmdlet. This is shown here:

get-date

14. Clear the screen by using the cls command. This is shown here:

cls

15. Print out a listing of all the cmdlets built into Windows PowerShell. To do this, use the
Get-Command cmdlet. This is shown here:

get-command

16. Use the Get-Command cmdlet to get the Get-Alias cmdlet. To do this, use the -name argu-
ment while supplying Get-Alias as the value for the argument. This is shown here:

get-command -name get-alias

17. This concludes the step-by-step exercise. Exit the Windows PowerShell by typing exit
and pressing Enter.

18 Chapter 1 Overview of Windows PowerShell
One Step Further: Obtaining Help
In this exercise, we use various help options to obtain assistance with various cmdlets.

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use the Get-Help cmdlet to obtain help about the Get-Help cmdlet. Use the command
Get-Help Get-Help as follows:

get-help get-help

3. To obtain detailed help about the Get-Help cmdlet, use the -detailed argument as follows:

get-help get-help -detailed

4. To retrieve technical information about the Get-Help cmdlet, use the -full argument. This
is shown here:

get-help get-help -full

5. If you only want to obtain a listing of examples of command usage, use the -examples
argument as follows:

get-help get-help -examples

6. Obtain a listing of all the informational help topics by using the Get-Help cmdlet and the
about noun with the asterisk (*) wild card operator. The code to do this is shown here:

get-help about*

7. Obtain a listing of all the help topics related to get cmdlets. To do this, use the Get-Help
cmdlet, and specify the word “get” followed by the wild card operator as follows:

get-help get*

8. Obtain a listing of all the help topics related to set cmdlets. To do this, use the Get-Help
cmdlet followed by the “set” verb followed by the asterisk wild card. This is shown here:

get-help set*

9. This concludes the one step further exercise. Exit the Windows PowerShell by typing
exit and pressing Enter.

Chapter 1 Overview of Windows PowerShell 19
Chapter 1 Quick Reference

To Do This
Use an external command-line utility Type the name of the command-line utility while

inside Windows PowerShell
Use multiple external command-line utilities sequen-
tially

Separate each command-line utility with a semicolon
on a single Windows PowerShell line

Obtain a list of running processes Use the Get-Process cmdlet
Stop a process Use the Stop-Process cmdlet and specify either the

name or the process ID as an argument
Model the effect of a cmdlet before actually perform-
ing the requested action

Use the -whatif argument

Instruct Windows PowerShell to startup, run a cmdlet,
and then exit

Use the PowerShell command while prefixing the
cmdlet with the ampersand sign and enclosing the
name of the cmdlet in curly brackets

Prompt for confirmation before stopping a process Use the Stop-Process cmdlet while specifying the
-confirm argument

Chapter 2

Using Windows PowerShell
Cmdlets

After completing this chapter, you will be able to:

■ Understand the basic use of Microsoft Windows PowerShell cmdlets

■ Use Get-Command to retrieve a listing of cmdlets

■ Configure search options

■ Configure output parameters

■ Use Get-Member

■ Use New-Object

The inclusion of a large amount of cmdlets in Windows PowerShell makes it immediately use-
ful to network administrators and others who need to perform various maintenance and
administrative tasks on their Windows servers and desktop systems. In this chapter, we
review several of the more useful cmdlets as a means of highlighting the power and flexibility
of Windows PowerShell. However, the real benefit of this chapter is the methodology we use
to discover the use of the various cmdlets. All the scripts mentioned in this chapter can be
found in the corresponding scripts folder on the CD.

Understanding the Basics of Cmdlets
In Chapter 1, Overview of Windows PowerShell, we learned about using the various help util-
ities available that demonstrate how to use cmdlets. We looked at a couple of cmdlets that are
helpful in finding out what commands are available and how to obtain information about
them. In this section, we describe some additional ways to use cmdlets in Windows
PowerShell.

Tip Typing long cmdlet names can be somewhat tedious. To simplify this process, type
enough of the cmdlet name to uniquely distinguish it, and then press the Tab key on the key-
board. What is the result? Tab Completion completes the cmdlet name for you. This also
works with argument names and other things you are entering. Feel free to experiment with
this great time-saving technique. You may never have to type get-command again!

Because the cmdlets return objects instead of “string values,” we can obtain additional infor-
mation about the returned objects. The additional information would not be available to us if
21

22 Chapter 2 Using Windows PowerShell Cmdlets
we were working with just string data. To do this, we can use the pipe character (|) to take
information from one cmdlet and feed it to another cmdlet. This may seem complicated, but
it is actually quite simple and, by the end of this chapter, will seem quite natural. At the most
basic level, consider obtaining a directory listing; after you have the directory listing, perhaps
you would like to format the way it is displayed—as a table or a list. As you can see, these are
two separate operations: obtaining the directory listing, and formatting the list. The second
task will take place on the right side of the pipe.

Using the Get-ChildItem Cmdlet
In Chapter 1, we used the dir command to obtain a listing of all the files in a directory. This
works because there is an alias built into Windows PowerShell that assigns the Get-ChildItem
cmdlet to the letter combination dir.

Just the Steps Obtaining a directory listing In a Windows PowerShell prompt, enter the
Get-ChildItem cmdlet followed by the directory to list. Example:

get-childitem C:\

In Windows PowerShell, there actually is no cmdlet called dir, nor does it actually use the dir
command. The alias dir is associated with the Get-ChildItem cmdlet. This is why the output
from dir is different in Windows PowerShell than in the CMD.exe interpreter. The alias dir is
used when we use the Get-Alias cmdlet to resolve the association, as follows:

PS C:\> get-alias dir

CommandType Name Definition
----------- ---- ----------
Alias dir Get-ChildItem

If you use the Get-ChildItem cmdlet to obtain the directory listing, it will obtain a listing the
same as dir because dir is simply an alias for Get-ChildItem. This is shown here:

PS C:\> get-childitem C:\

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 7/2/2006 3:14 PM audioBOOK
d---- 11/4/2006 4:57 AM Documents and Settings
d---- 2/6/2006 4:49 PM DsoFile
d---- 9/5/2006 2:30 PM fso
d---- 11/30/2006 2:08 PM fso1
d---- 7/21/2006 6:08 AM fso2
d---- 12/2/2005 5:41 AM German
d---- 9/24/2006 1:54 AM music
d---- 12/10/2006 6:54 AM mytest
d---- 12/13/2006 8:30 AM OutlookMail

Chapter 2 Using Windows PowerShell Cmdlets 23
d-r-- 11/20/2006 6:44 PM Program Files
d---- 7/16/2005 2:52 PM RAS
d---- 1/30/2006 11:30 AM smartPhone
d---- 11/2/2006 1:35 AM Temp
d---- 8/31/2006 9:48 AM Utils
d---- 1/30/2006 11:10 AM vb05sbs
d---- 12/5/2006 8:01 AM WINDOWS
-a--- 12/8/2006 7:24 PM 22950 a.txt
-a--- 12/5/2006 8:48 AM 23902 alias.txt
-a--- 7/16/2005 1:39 PM 0 AUTOEXEC.BAT
-a--- 11/7/2006 3:09 PM 3988 bar.emf
--r-s 8/27/2006 9:37 PM 211 boot.ini
-a--- 12/3/2006 7:36 AM 21228 cmdlets.txt
-a--- 12/13/2006 9:44 AM 273612 commandHelp.txt
-a--- 12/10/2006 7:34 AM 21228 commands.txt
-a--- 7/16/2005 1:39 PM 0 CONFIG.SYS
-a--- 12/7/2006 3:14 PM 8261 mySheet.xls
-a--- 12/7/2006 5:29 PM 2960 NetDiag.log
-a--- 12/5/2006 8:29 AM 16386 notepad
-a--- 6/3/2006 2:11 PM 102 Platform.ini
-a--- 12/7/2006 5:29 PM 10670 tshoot.txt
-a--- 12/4/2006 9:09 PM 52124 VistaResKitScripts.txt

If you were to use Get-Help and then dir, you would receive the same output as if you were to use
Get-Help Get-ChildItem. In Windows PowerShell, the two can be used in exactly the same fashion.

Just the Steps Formatting a directory listing using Format-List In a Windows Power-
Shell prompt, enter the Get-ChildItem cmdlet followed by the directory to list followed by the
pipe character and the Format-List cmdlet. Example:

get-childitem C:\ | format-list

Formatting output with the Format-List cmdlet

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of the C:\ directory.

get-childItem C:\

3. Use the Format-List cmdlet to arrange the output of Get-ChildItem.

get-childitem |format-list

4. Use the -property argument of the Format-List cmdlet to retrieve only a listing of the
name of each file in the root.

get-childitem C:\ | format-list -property name

5. Use the property argument of the Format-List cmdlet to retrieve only a listing of the name
and length of each file in the root.

get-childitem C:\ | format-list -property name, length

24 Chapter 2 Using Windows PowerShell Cmdlets
Using the Format-Wide Cmdlet
In the same way that we use the Format-List cmdlet to produce an output in a list, we can use
the Format-Wide cmdlet to produce a more compact output.

Just the Steps Formatting a directory listing using Format-Wide In a Windows Power-
Shell prompt, enter the Get-ChildItem cmdlet followed by the directory to list followed by the
pipe character and the Format-Wide cmdlet. Example:

get-childitem C:\ | format-wide

Formatting output with the Format-Wide cmdlet

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of the C:\Windows directory.

get-childitem C:\Windows

3. Use the -recursive argument to cause the Get-ChildItem cmdlet to walk through a nested
directory structure, including only .txt files in the output.

get-childitem C:\Windows -recurse -include *.txt

4. A partial output from the command is shown here:

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Driver Cache

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/26/2004 6:29 AM 13512 yk51x86.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Help\Tours\mmTo
 ur

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/4/2004 8:00 AM 807 intro.txt
-a--- 8/4/2004 8:00 AM 407 nav.txt
-a--- 8/4/2004 8:00 AM 747 segment1.txt
-a--- 8/4/2004 8:00 AM 772 segment2.txt
-a--- 8/4/2004 8:00 AM 717 segment3.txt
-a--- 8/4/2004 8:00 AM 633 segment4.txt
-a--- 8/4/2004 8:00 AM 799 segment5.txt

5. Use the Format-Wide cmdlet to adjust the output from the Get-ChildItem cmdlet. Use
the -columns argument and supply a parameter of 3 to it. This is shown here:

get-childitem C:\Windows -recurse -include *.txt |format-wide -column 3

Chapter 2 Using Windows PowerShell Cmdlets 25
6. Once this command is run, you will see an output similar to this:

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Driver Cache

yk51x86.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Help\Tours\mmTo
 ur

intro.txt nav.txt segment1.txt
segment2.txt segment3.txt segment4.txt
segment5.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Microsoft.NET\F
 ramework\v1.1.4322\1033

SetupENU1.txt SetupENU2.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Microsoft.NET\F
 ramework\v2.0.50727\Microsoft .NET Framework 2.0

eula.1025.txt eula.1028.txt eula.1029.txt
eula.1030.txt eula.1031.txt eula.1032.txt
eula.1033.txt eula.1035.txt eula.1036.txt
eula.1037.txt eula.1038.txt eula.1040.txt
eula.1041.txt eula.1042.txt eula.1043.txt
eula.1044.txt eula.1045.txt eula.1046.txt
eula.1049.txt eula.1053.txt eula.1055.txt
eula.2052.txt eula.2070.txt eula.3076.txt
eula.3082.txt

7. Use the Format-Wide cmdlet to adjust the output from the Get-ChildItem cmdlet. Use the
property argument to specify the name property, and group the outputs by size. The
command shown here appears on two lines; however, when typed into Windows Pow-
erShell, it is a single command and needs to be on the same line:

get-childitem C:\Windows -recurse -include *.txt |format-wide -property
name -groupby length -column 3

8. A partial output is shown here. Note that although three columns were specified, if there
are not three files of the same length, only one column will be used:

 Length: 13512

yk51x86.txt

 Length: 807

intro.txt

 Length: 407

nav.txt

 Length: 747

segment1.txt

26 Chapter 2 Using Windows PowerShell Cmdlets
Just the Steps Formatting a directory listing using Format-Table In a Windows Pow-
erShell prompt, enter the Get-ChildItem cmdlet followed by the directory to list followed by
the pipe character and the Format-Table cmdlet. Example:

get-childitem C:\ | format-table

Formatting output with the Format-Table cmdlet

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of the C:\Windows directory

get-childitem C:\Windows

3. Use the -recursive argument to cause the Get-ChildItem cmdlet to walk through a nested
directory structure, include only .txt files in the output.

get-childitem C:\Windows -recurse -include *.txt

4. Use the Format-Table cmdlet to adjust the output from the Get-ChildItem cmdlet. This is
shown here:

get-childitem C:\Windows -recurse -include *.txt |format-table

5. The command results in the creation of a table, as follows:

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Driver Cache

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/26/2004 6:29 AM 13512 yk51x86.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Help\Tours\mmTo
 ur

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/4/2004 8:00 AM 807 intro.txt
-a--- 8/4/2004 8:00 AM 407 nav.txt
-a--- 8/4/2004 8:00 AM 747 segment1.txt
-a--- 8/4/2004 8:00 AM 772 segment2.txt
-a--- 8/4/2004 8:00 AM 717 segment3.txt
-a--- 8/4/2004 8:00 AM 633 segment4.txt
-a--- 8/4/2004 8:00 AM 799 segment5.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Microsoft.NET\F
 ramework\v1.1.4322\1033

 Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 3/6/2002 2:36 PM 38 SetupENU1.txt
-a--- 3/6/2002 2:36 PM 38 SetupENU2.txt

Chapter 2 Using Windows PowerShell Cmdlets 27
6. Use the -property argument of the Format-Table cmdlet and choose the name, length,
and last-write-time properties. This is shown here:

get-childitem C:\Windows -recurse -include *.txt |format-table -property
name, length, lastwritetime

7. This command results in producing a table with the name, length, and last write time as
column headers. A sample of this output is shown here:

Name Length LastWriteTime
---- ------ -------------
yk51x86.txt 13512 11/26/2004 6:29:00 AM
intro.txt 807 8/4/2004 8:00:00 AM
nav.txt 407 8/4/2004 8:00:00 AM
segment1.txt 747 8/4/2004 8:00:00 AM
segment2.txt 772 8/4/2004 8:00:00 AM
segment3.txt 717 8/4/2004 8:00:00 AM
segment4.txt 633 8/4/2004 8:00:00 AM

Leveraging the Power of Get-Command
Using the Get-Command cmdlet, you can obtain a listing of all the cmdlets installed on the
Windows PowerShell, but there is much more that can be done using this extremely versatile
cmdlet. One such method of using the Get-Command cmdlet is to use wild card characters.
This is shown in the following procedure:

Just the Steps Searching for cmdlets using wild card characters In a Windows Power-
Shell prompt, enter the Get-Command cmdlet followed by a wild card character. Example:

get-command *

Finding commands by using the Get-Command cmdlet

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use an alias to refer to the Get-Command cmdlet. To find the correct alias, use the Get-
Alias cmdlet as follows:

get-alias g*

3. This command produces a listing of all the aliases defined that begin with the letter g. An
example of the output of this command is shown here:

CommandType Name Definition
----------- ---- ----------
Alias gal Get-Alias
Alias gc Get-Content
Alias gci Get-ChildItem
Alias gcm Get-Command
Alias gdr Get-PSDrive

28 Chapter 2 Using Windows PowerShell Cmdlets
Alias ghy Get-History
Alias gi Get-Item
Alias gl Get-Location
Alias gm Get-Member
Alias gp Get-ItemProperty
Alias gps Get-Process
Alias group Group-Object
Alias gsv Get-Service
Alias gsnp Get-PSSnapin
Alias gu Get-Unique
Alias gv Get-Variable
Alias gwmi Get-WmiObject
Alias gh Get-Help

4. Using the gcm alias, use the Get-Command cmdlet to return the Get-Command cmdlet.
This is shown here:

gcm get-command

5. This command returns the Get-Command cmdlet. The output is shown here:

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Command Get-Command [[-ArgumentList]...

6. Using the gcm alias to get the Get-Command cmdlet, pipe the output to the Format-List
cmdlet. Use the wild card asterisk (*) to obtain a listing of all the properties of the Get-
Command cmdlet. This is shown here:

gcm get-command |format-list *

7. This command will return all the properties from the Get-Command cmdlet. The output
is shown here:

DLL : C:\WINDOWS\assembly\GAC_MSIL\System.Management.Automation\1.
 0.0.0__31bf3856ad364e35\System.Management.Automation.dll
Verb : Get
Noun : Command
HelpFile : System.Management.Automation.dll-Help.xml
PSSnapIn : Microsoft.PowerShell.Core
ImplementingType : Microsoft.PowerShell.Commands.GetCommandCommand
ParameterSets : {CmdletSet, AllCommandSet}
Definition : Get-Command [[-ArgumentList] <Object[]>] [-Verb <String[]>]
 [-Noun <String[]>] [-PSSnapin <String[]>] [-TotalCount <Int3
 2>] [-Syntax] [-Verbose] [-Debug] [-ErrorAction <ActionPrefe
 rence>] [-ErrorVariable <String>] [-OutVariable <String>] [-
 OutBuffer <Int32>]
 Get-Command [[-Name] <String[]>] [[-ArgumentList] <Object[]>
] [-CommandType <CommandTypes>] [-TotalCount <Int32>] [-Synt
 ax] [-Verbose] [-Debug] [-ErrorAction <ActionPreference>] [-
 ErrorVariable <String>] [-OutVariable <String>] [-OutBuffer
 <Int32>]

Name : Get-Command
CommandType : Cmdlet

Chapter 2 Using Windows PowerShell Cmdlets 29
8. Using the gcm alias and the Get-Command cmdlet, pipe the output to the Format-List cmdlet.
Use the -property argument, and specify the definition property of the Get-Command cmdlet.
Rather than retyping the entire command, use the up arrow on your keyboard to retrieve the
previous gcm Get-Command | Format-List * command. Use the Backspace key to remove the
asterisk and then simply add -property definition to your command. This is shown here:

gcm get-command | format-list -property definition

9. This command only returns the property definition for the Get-Command cmdlet. The
returned definition is shown here:

Definition : Get-Command [[-ArgumentList] <Object[]>] [-Verb <String[]>] [-Noun
 <String[]>] [-PSSnapin <String[]>] [-TotalCount <Int32>] [-Syntax
] [-Verbose] [-Debug] [-ErrorAction <ActionPreference>] [-ErrorVar
 iable <String>] [-OutVariable <String>] [-OutBuffer <Int32>]
 Get-Command [[-Name] <String[]>] [[-ArgumentList] <Object[]>] [-Co
 mmandType <CommandTypes>] [-TotalCount <Int32>] [-Syntax] [-Verbos
 e] [-Debug] [-ErrorAction <ActionPreference>] [-ErrorVariable <Str
 ing>] [-OutVariable <String>] [-OutBuffer <Int32>]

10. Because objects are returned from cmdlets instead of simply string data, we can also
retrieve the definition of the Get-Command cmdlet by directly using the definition prop-
erty. This is done by putting the expression inside parentheses, and using a “dotted nota-
tion,” as shown here:

(gcm get-command).definition

11. The definition returned from the previous command is virtually identical to the one
returned by using Format-List cmdlet.

12. Use the gcm alias and specify the -verb argument. Use se* for the verb. This is shown here:

gcm -verb se*

13. The previous command returns a listing of all the cmdlets that contain a verb beginning
with se. The result is as follows:

CommandType Name Definition
----------- ---- ----------
Cmdlet Select-Object Select-Object [[-Property] <...
Cmdlet Select-String Select-String [-Pattern] <St...
Cmdlet Set-Acl Set-Acl [-Path] <String[]> [...
Cmdlet Set-Alias Set-Alias [-Name] <String> [...
Cmdlet Set-AuthenticodeSignature Set-AuthenticodeSignature [-...
Cmdlet Set-Content Set-Content [-Path] <String[...
Cmdlet Set-Date Set-Date [-Date] <DateTime> ...
Cmdlet Set-ExecutionPolicy Set-ExecutionPolicy [-Execut...
Cmdlet Set-Item Set-Item [-Path] <String[]> ...
Cmdlet Set-ItemProperty Set-ItemProperty [-Path] <St...
Cmdlet Set-Location Set-Location [[-Path] <Strin...
Cmdlet Set-PSDebug Set-PSDebug [-Trace <Int32>]...
Cmdlet Set-Service Set-Service [-Name] <String>...
Cmdlet Set-TraceSource Set-TraceSource [-Name] <Str...
Cmdlet Set-Variable Set-Variable [-Name] <String...

30 Chapter 2 Using Windows PowerShell Cmdlets
14. Use the gcm alias and specify the -noun argument. Use o* for the noun. This is shown here:

gcm -noun o*

15. The previous command will return all the cmdlets that contain a noun that begins with
the letter o. This result is as follows:

CommandType Name Definition
----------- ---- ----------
Cmdlet Compare-Object Compare-Object [-ReferenceOb...
Cmdlet ForEach-Object ForEach-Object [-Process] <S...
Cmdlet Group-Object Group-Object [[-Property] <O...
Cmdlet Measure-Object Measure-Object [[-Property] ...
Cmdlet New-Object New-Object [-TypeName] <Stri...
Cmdlet Select-Object Select-Object [[-Property] <...
Cmdlet Sort-Object Sort-Object [[-Property] <Ob...
Cmdlet Tee-Object Tee-Object [-FilePath] <Stri...
Cmdlet Where-Object Where-Object [-FilterScript]...
Cmdlet Write-Output Write-Output [-InputObject] ...

16. Retrieve only the syntax of the Get-Command cmdlet by specifying the -syntax argument.
Use the gcm alias to do this, as shown here:

gcm -syntax get-command

17. The syntax of the Get-Command cmdlet is returned by the previous command. The out-
put is as follows:

Get-Command [[-ArgumentList] <Object[]>] [-Verb <String[]>] [-Noun <String[]>]
[-PSSnapin <String[]>] [-TotalCount <Int32>] [-Syntax] [-Verbose] [-Debug] [-Er
rorAction <ActionPreference>] [-ErrorVariable <String>] [-OutVariable <String>]
[-OutBuffer <Int32>]
Get-Command [[-Name] <String[]>] [[-ArgumentList] <Object[]>] [-CommandType <Co
mmandTypes>] [-TotalCount <Int32>] [-Syntax] [-Verbose] [-Debug] [-ErrorAction
<ActionPreference>] [-ErrorVariable <String>] [-OutVariable <String>] [-OutBuff
er <Int32>]

18. Try to use only aliases to repeat the Get-Command syntax command to retrieve the syn-
tax of the Get-Command cmdlet. This is shown here:

gcm -syntax gcm

19. The result of this command is the not the nice syntax description of the previous com-
mand. The rather disappointing result is as follows:

Get-Command

20. This concludes the procedure for finding commands by using the Get-Command cmdlet.

Quick Check

Q. To retrieve a definition of the Get-Command cmdlet, using the dotted notation,
what command would you use?

A. (gcm get-command).definition

Chapter 2 Using Windows PowerShell Cmdlets 31
Using the Get-Member Cmdlet
The Get-Member cmdlet retrieves information about the members of objects. Although this
may not seem very exciting, remember that because everything returned from a cmdlet is an
object, we can use the Get-Member cmdlet to examine the methods and properties of objects.
When the Get-Member cmdlet is used with Get-ChildItem on the filesystem, it returns a listing
of all the methods and properties available to work with the filesystem object.

Objects, Properties, and Methods
One of the more interesting features of Windows PowerShell is that cmdlets return
objects. An object is a thing that gives us the ability to either describe something or do
something. If we are not going to describe or do something, then there is no reason to
create the object. Depending on the circumstances, we may be more interested in the
methods, or the properties. As an example, let’s consider rental cars. I travel a great deal
in my role as a consultant at Microsoft, and I often need to obtain a rental car.

When I get to the airport, I go to the rental car counter, and I use the New-Object cmdlet
to create the rentalCAR object. When I use this cmdlet, I am only interest in the methods
available from the rentalCAR object. I will need to use the DriveDowntheRoad method,
the StopAtaRedLight method, and perhaps the PlayNiceMusic method. I am not, how-
ever, interested in the properties of the rentalCAR object.

At home, I have a cute little sports car. It has exactly the same methods as the rentalCAR
object, but I created the sportsCAR object primarily because of its properties. It is green
and has alloy rims, a convertible top, and a 3.5-liter engine. Interestingly enough, it has
exactly the same methods as the rentalCAR object. It also has the DriveDowntheRoad
method, the StopAtaRedLight method, and the PlayNiceMusic method, but the deciding
factor in creating the sportsCAR object was the properties, not the methods.

Just the Steps Using the Get-Member cmdlet to examine properties and methods In
a Windows PowerShell prompt, enter the Get-ChildItem cmdlet followed by the path to a
folder and pipe it to the Get-Member cmdlet. Example:

get-childitem C:\ | get-member

32 Chapter 2 Using Windows PowerShell Cmdlets
Using the Get-Member cmdlet

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use an alias to refer to the Get-Alias cmdlet. To find the correct alias, use the Get-Alias
cmdlet as follows:

get-alias g*

3. After you have retrieved the alias for the Get-Alias cmdlet, use it to find the alias for the
Get-Member cmdlet. One way to do this is to use the following command, simply using
gal in place of the Get-Alias name you used in the previous command:

gal g*

4. The listing of aliases defined that begin with the letter g appears as a result of the previ-
ous command. The output is shown here:

CommandType Name Definition
----------- ---- ----------
Alias gal Get-Alias
Alias gc Get-Content
Alias gci Get-ChildItem
Alias gcm Get-Command
Alias gdr Get-PSDrive
Alias ghy Get-History
Alias gi Get-Item
Alias gl Get-Location
Alias gm Get-Member
Alias gp Get-ItemProperty
Alias gps Get-Process
Alias group Group-Object
Alias gsv Get-Service
Alias gsnp Get-PSSnapin
Alias gu Get-Unique
Alias gv Get-Variable
Alias gwmi Get-WmiObject
Alias gh Get-Help

5. Use the gal alias to obtain a listing of all aliases that begin with the letter g. Pipe the results to
the Sort-Object cmdlet, and sort on the property attribute called definition. This is shown here:

gal g* |sort-object -property definition

6. The listings of cmdlets that begin with the letter g are now sorted, and the results of the
command are as follows:

CommandType Name Definition
----------- ---- ----------
Alias gal Get-Alias
Alias gci Get-ChildItem
Alias gcm Get-Command
Alias gc Get-Content
Alias gh Get-Help

Chapter 2 Using Windows PowerShell Cmdlets 33
Alias ghy Get-History
Alias gi Get-Item
Alias gp Get-ItemProperty
Alias gl Get-Location
Alias gm Get-Member
Alias gps Get-Process
Alias gdr Get-PSDrive
Alias gsnp Get-PSSnapin
Alias gsv Get-Service
Alias gu Get-Unique
Alias gv Get-Variable
Alias gwmi Get-WmiObject
Alias group Group-Object

7. Use the alias for the Get-ChildItem cmdlet and pipe the output to the alias for the Get-
Member cmdlet. This is shown here:

gci | gm

8. To only see properties available for the Get-ChildItem cmdlet, use the membertype argu-
ment and supply a value of property. Use Tab Completion this time, rather than the gci |
gm alias. This is shown here:

get-childitem | get-member -membertype property

9. The output from this command is shown here:

 TypeName: System.IO.DirectoryInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
LastAccessTime Property System.DateTime LastAccessTime {get;set;}
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}
LastWriteTime Property System.DateTime LastWriteTime {get;set;}
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}
Name Property System.String Name {get;}
Parent Property System.IO.DirectoryInfo Parent {get;}
Root Property System.IO.DirectoryInfo Root {get;}

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property System.String DirectoryName {get;}

34 Chapter 2 Using Windows PowerShell Cmdlets
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get;set;}
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}
LastWriteTime Property System.DateTime LastWriteTime {get;set;}
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}
Length Property System.Int64 Length {get;}
Name Property System.String Name {get;}

10. Use the membertype argument of the Get-Member cmdlet to view the methods available
from the object returned by the Get-ChildItem cmdlet. To do this, supply a value of
method to the membertype argument, as follows:

get-childitem | get-member -membertype method

11. The output from the previous list returns all the methods defined for the Get-ChildItem
cmdlet. This output is shown here:

 TypeName: System.IO.DirectoryInfo

Name MemberType Definition
---- ---------- ----------
Create Method System.Void Create(), System.Void Creat...
CreateObjRef Method System.Runtime.Remoting.ObjRef CreateOb...
CreateSubdirectory Method System.IO.DirectoryInfo CreateSubdirect...
Delete Method System.Void Delete(), System.Void Delet...
Equals Method System.Boolean Equals(Object obj)
GetAccessControl Method System.Security.AccessControl.Directory...
GetDirectories Method System.IO.DirectoryInfo[] GetDirectorie...
GetFiles Method System.IO.FileInfo[] GetFiles(String se...
GetFileSystemInfos Method System.IO.FileSystemInfo[] GetFileSyste...
GetHashCode Method System.Int32 GetHashCode()
GetLifetimeService Method System.Object GetLifetimeService()
GetObjectData Method System.Void GetObjectData(Serialization...
GetType Method System.Type GetType()
get_Attributes Method System.IO.FileAttributes get_Attributes()
get_CreationTime Method System.DateTime get_CreationTime()
get_CreationTimeUtc Method System.DateTime get_CreationTimeUtc()
get_Exists Method System.Boolean get_Exists()
get_Extension Method System.String get_Extension()
get_FullName Method System.String get_FullName()
get_LastAccessTime Method System.DateTime get_LastAccessTime()
get_LastAccessTimeUtc Method System.DateTime get_LastAccessTimeUtc()
get_LastWriteTime Method System.DateTime get_LastWriteTime()
get_LastWriteTimeUtc Method System.DateTime get_LastWriteTimeUtc()
get_Name Method System.String get_Name()
get_Parent Method System.IO.DirectoryInfo get_Parent()
get_Root Method System.IO.DirectoryInfo get_Root()
InitializeLifetimeService Method System.Object InitializeLifetimeService()
MoveTo Method System.Void MoveTo(String destDirName)
Refresh Method System.Void Refresh()
SetAccessControl Method System.Void SetAccessControl(DirectoryS...

Chapter 2 Using Windows PowerShell Cmdlets 35
set_Attributes Method System.Void set_Attributes(FileAttribut...
set_CreationTime Method System.Void set_CreationTime(DateTime v...
set_CreationTimeUtc Method System.Void set_CreationTimeUtc(DateTim...
set_LastAccessTime Method System.Void set_LastAccessTime(DateTime...
set_LastAccessTimeUtc Method System.Void set_LastAccessTimeUtc(DateT...
set_LastWriteTime Method System.Void set_LastWriteTime(DateTime ...
set_LastWriteTimeUtc Method System.Void set_LastWriteTimeUtc(DateTi...
ToString Method System.String ToString()

12. Use the up arrow key to retrieve the previous Get-ChildItem | Get-Member -MemberType
method command, and change the value method to m* to use a wild card to retrieve the
methods. The output will be exactly the same as the previous listing of members because
the only membertype beginning with the letter m on the Get-ChildItem cmdlet is the
MemberType method. The command is as follows:

get-childitem | get-member -membertype m*

13. Use the -inputobject argument to the Get-Member cmdlet to retrieve member definitions
of each property or method in the list. The command to do this is as follows:

get-member -inputobject get-childitem

14. The output from the previous command is shown here:

PS C:\> get-member -inputobject get-childitem

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method System.Int32 CompareTo(Object value),...
Contains Method System.Boolean Contains(String value)
CopyTo Method System.Void CopyTo(Int32 sourceIndex,...
EndsWith Method System.Boolean EndsWith(String value)...
Equals Method System.Boolean Equals(Object obj), Sy...
GetEnumerator Method System.CharEnumerator GetEnumerator()
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
get_Chars Method System.Char get_Chars(Int32 index)
get_Length Method System.Int32 get_Length()
IndexOf Method System.Int32 IndexOf(Char value, Int3...
IndexOfAny Method System.Int32 IndexOfAny(Char[] anyOf,...
Insert Method System.String Insert(Int32 startIndex...
IsNormalized Method System.Boolean IsNormalized(), System...
LastIndexOf Method System.Int32 LastIndexOf(Char value, ...
LastIndexOfAny Method System.Int32 LastIndexOfAny(Char[] an...
Normalize Method System.String Normalize(), System.Str...
PadLeft Method System.String PadLeft(Int32 totalWidt...
PadRight Method System.String PadRight(Int32 totalWid...
Remove Method System.String Remove(Int32 startIndex...
Replace Method System.String Replace(Char oldChar, C...
Split Method System.String[] Split(Params Char[] s...
StartsWith Method System.Boolean StartsWith(String valu...

36 Chapter 2 Using Windows PowerShell Cmdlets
Substring Method System.String Substring(Int32 startIn...
ToCharArray Method System.Char[] ToCharArray(), System.C...
ToLower Method System.String ToLower(), System.Strin...
ToLowerInvariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System.Stri...
ToUpper Method System.String ToUpper(), System.Strin...
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[] trim...
TrimEnd Method System.String TrimEnd(Params Char[] t...
TrimStart Method System.String TrimStart(Params Char[]...
Chars ParameterizedProperty System.Char Chars(Int32 index) {get;}
Length Property System.Int32 Length {get;}

15. This concludes the procedure for using the Get-Member cmdlet.

 Quick Check

 Q. To retrieve a listing of aliases beginning with the letter g that is sorted on the
 definition property, what command would you use?

 A. gal g* | sort-object -property definition

Using the New-Object Cmdlet
The use of objects in Windows PowerShell provides many exciting opportunities to do things
that are not “built into” the PowerShell. You may recall from using VBScript that there is an
object called the wshShell object. If you are not familiar with this object, a drawing of the
object model is shown in Figure 2-1.

Figure 2-1 The VBScript wshShell object contributes many easy-to-use methods and properties
for the network administrator

CreateShortcut ExpandEnvironmentStrings LogEvent

AppActivate

Run

SendKeys

Popup

Exec

WshShell object
$wshshell = New-Object -comobject

"wscript.shell"

RegWrite RegRead RegDelete

CurrentDirectory

Environment

SpecialFolders

Chapter 2 Using Windows PowerShell Cmdlets 37
Just the Steps To create a new instance of the wshShell object, use the New-Object cmdlet
while specifying the -comobject argument and supplying the program ID of "wscript.shell".
Hold the object created in a variable. Example:

$wshShell = new-object -comobject "wscript.shell":

After the object has been created and stored in a variable, you can directly use any of the meth-
ods that are provided by the object. This is shown in the two lines of code that follow:

$wshShell = new-object -comobject "wscript.shell"
$wshShell.run("calc.exe")

In the previous code, we use the New-Object cmdlet to create an instance of the wshShell
object. We then use the run method to launch Calculator. After the object is created and
stored in the variable, you can use Tab Completion to suggest the names of the methods con-
tained in the object. This is shown in Figure 2-2.

Figure 2-2 Tab Completion enumerates methods provided by the object

Creating the wshShell object

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Create an instance of the wshShell object by using the New-Object cmdlet. Supply the
comobject argument to the cmdlet, and specify the program ID for the wshShell object,
which is “wscript.shell”. Hold the object that is returned into a variable called $wshShell.
The code to do this is as follows:

$wshShell = new-object -comobject "wscript.shell"

38 Chapter 2 Using Windows PowerShell Cmdlets
3. Launch an instance of Calculator by using the run method from the wshShell object.
Use Tab Completion to avoid having to type the entire name of the method. To use the
method, begin the line with the variable you used to hold the wshShell object, followed
by a period and the name of the method. Then supply the name of the program to run
inside parentheses and quotes, as shown here:

$wshShell.run("Calc.exe")

4. Use the ExpandEnvironmentStrings method to print out the path to the Windows direc-
tory. It is stored in an environmental variable called %windir%. The Tab Completion fea-
ture of Windows PowerShell is useful for this method name. The environment variable
must be contained in quotation marks, as shown here:

$wshShell.ExpandEnvironmentStrings("%windir%")

5. This command reveals the full path to the Windows directory on your machine. On my
computer, the output looks like the following:

C:\WINDOWS

Creating a PowerShell Profile
As you create various aliases and functions, you may decide you like a particular key stroke
combination and wish you could use your definition without always having to create it.

Tip I recommend reviewing the listing of all the aliases defined within Windows PowerShell
before creating very many new aliases. The reason is that it will be easy, early on, to create
duplicate settings (with slight variations).

Of course, you could create your own script that would perform your configuration if you
remembered to run it; however, what if you wish to have a more standardized method of work-
ing with your profile? To do this, you need to create a custom profile that will hold your set-
tings. The really useful feature of creating a Windows PowerShell profile is that after the
profile is created, it loads automatically when PowerShell is launched. The steps for creating a
Windows PowerShell profile are listed here:

Chapter 2 Using Windows PowerShell Cmdlets 39
Just the Steps Creating a Windows PowerShell prof ile
1. In a Windows PowerShell prompt, determine whether a profile exists by using the

following command:

 test-path $profile

2. If tests-profile returns false, create a new profile file by using the following command:

 new-item -path $profile -itemtype file -force

3. Open the profile file in Notepad by using the following command:

 notepad $profile

4. Add the following toNotepad:

 A useful alias such as gh for Get-Help. This is shown here:

 Set-alias gh get-help

 A useful function to the profile such as one to open the profile in Notepad to allow for
ease of editing the profile. This is shown here:

 function pro {notepad $profile}

5. When done editing, save the profile. Click Save As from the File menu, and ensure that
you choose ALL Files in the dialog box to avoid saving the profile with a .txt extension.
This is shown in Figure 2-3.

Figure 2-3 Ensure that Windows PowerShell can read the profile by saving it with the
All Files option, under Save As Type, in Notepad

40 Chapter 2 Using Windows PowerShell Cmdlets
Just the Steps Finding all aliases for a particular object If you know the name of an
object and you would like to retrieve all aliases for that object, you can use the Get-Alias
cmdlet to retrieve the list of all aliases. Then you need to pipe the results to the Where-Object
cmdlet and specify the value for the definition property. An example of doing this for the
Get-ChildItem cmdlet is as follows:

gal | where-object {$_.definition -match "get-childitem"}

Working with Cmdlets: Step-by-Step Exercises
In this exercise, we explore the use of the Get-ChildItem and Get-Member cmdlets in Windows
PowerShell. You will see that it is easy to use these cmdlets to automate routine administrative
tasks. We also continue to experiment with the pipelining feature of Windows PowerShell.

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use the Get-Alias cmdlet to retrieve a listing of all the aliases defined on the computer.
Pipe this output to a Where-Object cmdlet. Specify a match argument against the defini-
tion property that matches the name of the Get-ChildItem cmdlet. The code is as follows:

gal | where-object {$_.definition -match "get-childitem"}

3. The results from the previous command show three aliases defined for the Get-ChildItem
cmdlet, as shown here:

CommandType Name Definition
----------- ---- ----------
Alias gci Get-ChildItem
Alias ls Get-ChildItem
Alias dir Get-ChildItem

4. Using the gci alias for the Get-ChildItem cmdlet, obtain a listing of files and folders con-
tained in the root directory. This is shown here:

gci

5. To identify large files more quickly, pipe the output to a Where-Object cmdlet, and specify
the gt argument with a value of 1,000 to evaluate the length property. This is shown here:

gci | where-object {$_.length -gt 1000}

6. To remove the cluttered data from your Windows PowerShell window, use cls to clear the
screen. This is shown here:

cls

7. Use the Get-Alias cmdlet to resolve the cmdlet to which the cls alias points. You can use
the gal alias to avoid typing get-alias if you wish. This is shown here:

gal cls

Chapter 2 Using Windows PowerShell Cmdlets 41
8. Use the Get-Alias cmdlet to resolve the cmdlet to which the mred alias points. This is
shown here:

gal mred

9. It is likely that no mred alias is defined on your machine. In this case, you will see the fol-
lowing error message:

Get-Alias : Cannot find alias because alias 'mred' does not exist.
At line:1 char:4
+ gal <<<< mred

10. Use the Clear-Host cmdlet to clear the screen. This is shown here:

clear-host

11. Use the Get-Member cmdlet to retrieve a list of properties and methods from the Get-
ChildItem cmdlet. This is shown here:

get-childitem | get-member -membertype property

12. The output from the above command is shown here. Examine the output, and identify
a property that could be used with a Where-Object cmdlet to find the date that files have
been modified.

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property System.String DirectoryName {get;}
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get;set;}
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}
LastWriteTime Property System.DateTime LastWriteTime {get;set;}
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}
Length Property System.Int64 Length {get;}
Name Property System.String Name {get;}

13. Use the Where-Object cmdlet and choose the LastWriteTime property. This is shown here:

get-childitem | where-object {$_.LastWriteTime}

14. Use the up arrow and bring the previous command back up onto the command line.
Now specify the gt argument and choose a recent date from your previous list of files, so
you can ensure the query will return a result. My command looks like the following:

get-childitem | where-object {$_.LastWriteTime -gt "12/25/2006"}

15. Use the up arrow and retrieve the last command. Now direct the Get-ChildItem cmdlet to
a specific folder on your hard drive, such as C:\fso, which may have been created in the

42 Chapter 2 Using Windows PowerShell Cmdlets
step-by-step exercise from Chapter 1. You can, of course, use any folder that exists on
your machine. This command will look like the following:

get-childitem "C:\fso"| where-object {$_.LastWriteTime -gt "12/25/2006"}

16. Once again, use the up arrow and retrieve the last command. Add the recurse argument
to the Get-ChildItem cmdlet. If your previous folder was not nested, then you may want
to change to a different folder. You can, of course, use your Windows folder, which is
rather deeply nested. I used my VBScript workshop folder, and the command is shown
here (keep in mind that this command has wrapped and should be interpreted as a sin-
gle line):

get-childitem -recurse "d:\vbsworkshop"| where-object
{$_.LastWriteTime -gt "12/25/2006" }

17. This concludes this step-by-step exercise. Completed commands for this exercise are in
the StepByStep.txt file.

One Step Further: Working with New-Object
In this exercise, we create a couple of objects.

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Create an instance of the wshNetwork object by using the New-Object cmdlet. Use the
comobject argument, and give it the program ID for the wshNetwork object, which is
“wscript.network”. Store the results in a variable called $wshnetwork. The code looks like
the following:

$wshnetwork = new-object -comobject "wscript.network"

3. Use the EnumPrinterConnections method from the wshNetwork object to print out a
list of printer connections that are defined on your local computer. To do this, use the
wshNetwork object that is contained in the $wshnetwork variable. The command for this
is as follows:

$wshnetwork.EnumPrinterConnections()

4. Use the EnumNetworkDrives method from the wshNetwork object to print out a list of net-
work connections that are defined on your local computer. To do this, use the wshNetwork
object that is contained in the $wshnetwork variable. The command for this is as follows:

$wshnetwork.EnumNetworkDrives()

5. Use the up arrow twice and retrieve the $wshnetwork.EnumPrinterConnections() com-
mand. Use the $colPrinters variable to hold the collection of printers that is returned by
the command. The code looks as follows:

$colPrinters = $wshnetwork.EnumPrinterConnections()

Chapter 2 Using Windows PowerShell Cmdlets 43
6. Use the up arrow and retrieve the $wshnetwork.EnumNetworkDrives() command. Use the
Home key to move the insertion point to the beginning of the line. Modify the command
so that it holds the collection of drives returned by the command into a variable called
$colDrives. This is shown here:

$colDrives = $wshnetwork.EnumNetworkDrives()

7. Use the $userName variable to hold the name that is returned by querying the username
property from the wshNetwork object. This is shown here:

$userName = $wshnetwork.UserName

8. Use the $userDomain variable to hold the name that is returned by querying the User-
Domain property from the wshNetwork object. This is shown here:

$userDomain = $wshnetwork.UserDomain

9. Use the $computerName variable to hold the name that is returned by querying the User-
Domain property from the wshNetwork object. This is shown here:

$computerName = $wshnetwork.ComputerName

10. Create an instance of the wshShell object by using the New-Object cmdlet. Use the
comobject argument and give it the program ID for the wshShell object, which is
“wscript.shell”. Store the results in a variable called $wshShell. The code for this follows:

$wshShell = new-object -comobject "wscript.shell"

11. Use the Popup method from the wshShell object to produce a popup box that displays
the domain name, user name, and computer name. The code for this follows:

$wshShell.Popup($userDomain+"\$userName $computerName")

12. Use the Popup method from the wshShell object to produce a popup box that displays
the collection of printers held in the $colPrinters variable. The code looks as follows:

$wshShell.Popup($colPrinters)

13. Use the Popup method from the wshShell object to produce a popup box that displays
the collection of drives held in the $colDrives variable. The code is as follows:

$wshShell.Popup($colDrives)

14. This concludes this one step further exercise. Completed commands for this exercise are
in the OneStepFurther.txt file.

44 Chapter 2 Using Windows PowerShell Cmdlets
Chapter 2 Quick Reference

To Do This
Produce a list of all the files in a folder Use the Get-ChildItem cmdlet and supply a value for

the folder
Produce a list of all the files in a folder and in the sub-
folders

Use the Get-ChildItem cmdlet, supply a value for the
folder, and specify the recurse argument

Produce a wide output of the results of a previous
cmdlet

Use the appropriate cmdlet and pipe the resulting
object to the Format-Wide cmdlet

Produce a listing of all the methods available from the
Get-ChildItem cmdlet

Use the cmdlet and pipe the results into the
Get-Member cmdlet. Use the -membertype argument
and supply the Noun method

Produce a popup box Create an instance of the wshShell object by using the
New-Object cmdlet. Use the Popup method

Retrieve the currently logged-on user name Create an instance of the wshNetwork object by using
the New-Object cmdlet. Query the username
property

Retrieve a listing of all currently mapped drives Create an instance of the wshNetwork object by using
the New-Object cmdlet. Use the EnumNetworkDrives
method

Chapter 3

Leveraging PowerShell Providers
After completing this chapter, you will be able to:

■ Understand the role of providers in Windows PowerShell

■ Use the Get-PSProvider cmdlet

■ Use the Get-PSDrive cmdlet

■ Use the Get-Item cmdlet

■ Use the Set-Location cmdlet

■ Use the file system model to access data from each of the built-in providers

Windows PowerShell provides a consistent way to access information external to the shell
environment. To do this, it uses providers. These providers are actually .NET programs that
hide all the ugly details to provide an easy way to access information. The beautiful thing
about the way the provider model works is that all the different sources of information are
accessed in exactly the same manner. This chapter demonstrates how to leverage the Power-
Shell providers. All the scripts mentioned in this chapter can be found in the corresponding
scripts folder on the CD.

Identifying the Providers
By identifying the providers installed with Windows PowerShell, we can begin to under-
stand the capabilities intrinsic to a default installation. Providers expose information con-
tained in different data stores by using a drive and file system analogy. An example of this is
obtaining a listing of registry keys—to do this, you would connect to the registry “drive” and
use the Get-ChildItem cmdlet, which is exactly the same method you would use to obtain a
listing of files on the hard drive. The only difference is the specific name associated with
each drive. Providers can be created by anyone familiar with Windows .NET programming.
When a new provider is created, it is called a snap-in. A snap-in is a dynamic link library (dll)
file that must be installed into Windows PowerShell. After a snap-in has been installed, it
cannot be un-installed—however, the snap-in can be removed from the current Windows
PowerShell console.
45

46 Chapter 3 Leveraging PowerShell Providers
Just the Steps To obtain a listing of all the providers, use the Get-PSProvider cmdlet. Exam-
ple: get-psprovider. This command produces the following list on a default installation of the
Windows PowerShell:

Name Capabilities Drives
---- ------------ ------
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess {C, D, E, F...}
Function ShouldProcess {Function}
Registry ShouldProcess {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {cert}

Understanding the Alias Provider
In Chapter 1, Overview of Windows PowerShell, we presented the various Help utilities available
that show how to use cmdlets. The alias provider provides easy-to-use access to all aliases
defined in Windows PowerShell. To work with the aliases on your machine, use the Set-Location
cmdlet and specify the Alias:\ drive. You can then use the same cmdlets you would use to work
with the file system.

Tip With the alias provider, you can use a Where-Object cmdlet and filter to search for an
alias by name or description.

Working with the alias provider

1. Open Windows PowerShell.

2. Obtain a listing of all the providers by using the Get-PSProvider cmdlet. This is shown here:

Get-PSProvider

3. The PSDrive associated with the alias provider is called Alias. This is seen in the listing
produced by the Get-PSProvider cmdlet. Use the Set-Location cmdlet to change to the
Alias drive. Use the sl alias to reduce typing. This command is shown here:

sl alias:\

4. Use the Get-ChildItem cmdlet to produce a listing of all the aliases that are defined on the
system. To reduce typing, use the alias gci in place of Get-ChildItem. This is shown here:

GCI

5. Use a Where-Object cmdlet filter to reduce the amount of information that is returned by
using the Get-ChildItem cmdlet. Produce a listing of all the aliases that begin with the let-
ter s. This is shown here:

GCI | Where-Object {$_.name -like "s*"}

Chapter 3 Leveraging PowerShell Providers 47
6. To identify other properties that could be used in the filter, pipeline the results of the
Get-ChildItem cmdlet into the Get-Member cmdlet. This is shown here:

Get-ChildItem |Get-Member

7. Press the up arrow twice, and edit the previous filter to include only definitions that con-
tain the word set. The modified filter is shown here:

GCI | Where-Object {$_.definition -like "set*"}

8. The results of this command are shown here:

CommandType Name Definition
----------- ---- ----------
Alias sal Set-Alias
Alias sc Set-Content
Alias si Set-Item
Alias sl Set-Location
Alias sp Set-ItemProperty
Alias sv Set-Variable
Alias cd Set-Location
Alias chdir Set-Location
Alias set Set-Variable

9. Press the up arrow three times, and edit the previous filter to include only names of
aliases that are like the letter w. This revised command is seen here:

GCI | Where-Object {$_.name -like "*w*"}

10. The results from this command are similar to those shown here:

CommandType Name Definition
----------- ---- ----------
Alias fw Format-Wide
Alias gwmi Get-WmiObject
Alias where Where-Object
Alias write Write-Output
Alias pwd Get-Location

11. From the list above, note that where is an alias for the Where-Object cmdlet. Press the up
arrow one time to retrieve the previous command. Edit it to use the where alias instead of
spelling out the entire Where-Object cmdlet name. This revised command is seen here:

GCI | where {$_.name -like "*w*"}

Caution When using the Set-Location cmdlet to switch to a newly created PSDrive, you
must follow the name of the PSDrive with a colon. A trailing forward slash or backward slash
is optional. An error will be generated if the colon is left out, as shown in Figure 3-1. I prefer
to use the backward slash (\) because it is consistent with normal Windows file system operations.

48 Chapter 3 Leveraging PowerShell Providers
Figure 3-1 Using Set-Location without : results in an error

Understanding the Certificate Provider
In the preceding section, we explored working with the alias provider. Because the file system
model applies to the certificate provider in much the same way as it did the alias provider,
many of the same cmdlets can be used. To find information about the certificate provider, use
the Get-Help cmdlet. If you are unsure what articles in Help may be related to certificates, you
can use the wild card asterisk (*) parameter. This command is shown here:

get-help *cer*

The certificate provider gives you the ability to sign scripts and allows Windows PowerShell to
work with signed and unsigned scripts as well. It also gives you the ability search for, copy,
move, and delete certificates. Using the certificate provider, you can even open the Certificates
Microsoft Management Console (MMC). The commands used in the procedure are in the
ObtainingAListingOfCertificates.txt file.

Obtaining a listing of certificates

1. Open Windows PowerShell.

2. Set your location to the cert PSDrive. To do this, use the Set-Location cmdlet, as shown here:

Set-Location cert:\

3. Use the Get-ChildItem cmdlet to produce a list of the certificates, as shown here:

Get-ChildItem

4. The list produced is shown here:

Location : CurrentUser
StoreNames : {?, UserDS, AuthRoot, CA...}

Location : LocalMachine
StoreNames : {?, AuthRoot, CA, AddressBook...}

Chapter 3 Leveraging PowerShell Providers 49
5. Use the -recurse argument to cause the Get-ChildItem cmdlet to produce a list of all the
certificate stores. To do this, press the up arrow key one time, and add the -recurse argu-
ment to the previous command. This is shown here:

Get-ChildItem -recurse

6. Use the -path argument for Get-ChildItem to produce a listing of certificates in another
store, without having to use the Set-Location cmdlet to change your current location.
Using the gci alias, the command is shown here:

GCI -path currentUser

7. Your listing of certificate stores will look similar to the one shown here:

Name : ?

Name : UserDS

Name : AuthRoot

Name : CA

Name : AddressBook

Name : ?

Name : Trust

Name : Disallowed

Name : _NMSTR

Name : ?????k

Name : My

Name : Root

Name : TrustedPeople

Name : ACRS

Name : TrustedPublisher

Name : REQUEST

8. Change your working location to the currentuser\authroot certificate store. To do this,
use the sl alias followed by the path to the certificate store. This command is shown here:

sl currentuser\authroot

50 Chapter 3 Leveraging PowerShell Providers
9. Use the Get-ChildItem cmdlet to produce a listing of certificates in the currentuser\authroot
certificate store that contain the name C&W in the subject field. Use the gci alias to
reduce the amount of typing. Pipeline the resulting object to a Where-Object cmdlet, but
use the where alias instead of typing Where-Object. The code to do this is shown here:

GCI | where {$_.subject -like "*c&w*"}

10. On my machine, there are four certificates listed. These are shown here:

Thumbprint Subject
---------- -------
F88015D3F98479E1DA553D24FD42BA3F43886AEF O=C&W HKT SecureNet CA SGC Root, C=hk
9BACF3B664EAC5A17BED08437C72E4ACDA12F7E7 O=C&W HKT SecureNet CA Class A, C=hk
4BA7B9DDD68788E12FF852E1A024204BF286A8F6 O=C&W HKT SecureNet CA Root, C=hk
47AFB915CDA26D82467B97FA42914468726138DD O=C&W HKT SecureNet CA Class B, C=hk

11. Use the up arrow, and edit the previous command so that it will return only certificates
that contain the phrase SGC Root in the subject property. The revised command is
shown here:

GCI | where {$_.subject -like "*SGC Root*"}

12. The resulting output on my machine contains an additional certificate. This is shown
here:

Thumbprint Subject
---------- -------
F88015D3F98479E1DA553D24FD42BA3F43886AEF O=C&W HKT SecureNet CA SGC Root, C=hk
687EC17E0602E3CD3F7DFBD7E28D57A0199A3F44 O=SecureNet CA SGC Root, C=au

13. Use the up arrow, and edit the previous command. This time, change the Where-Object
cmdlet so that it filters on the thumbprint attribute that is equal to
F88015D3F98479E1DA553D24FD42BA3F43886AEF. You do not have to type that,
however; to copy the thumbprint, you can highlight it and press Enter in Windows Pow-
erShell, as shown in Figure 3-2. The revised command is shown here:

GCI | where {$_.thumbprint -eq "F88015D3F98479E1DA553D24FD42BA3F43886AEF"}

Figure 3-2 Highlight items to copy using the mouse

Chapter 3 Leveraging PowerShell Providers 51
Troubleshooting If copying from inside a Windows PowerShell window does not
work, then you probably need to enable Quick Edit Mode. To do this, right-click the
PowerShell icon in the upper left-hand corner of the Windows PowerShell window.
Choose Properties, and select Quick Edit Mode. This is shown in Figure 3-3.

Figure 3-3 Enable Quick Edit Mode to enable Clipboard Support

14. To see all the properties of the certificate, pipeline the certificate object to a Format-List
cmdlet and choose all the properties. The revised command is shown here:

GCI | where {$_.thumbprint -eq "F88015D3F98479E1DA553D24FD42BA3F43886AEF"} |
Format-List *

15. The output contains all the properties of the certificate object and is shown here:

PSPath : Microsoft.PowerShell.Security\Certificate::currentuser\aut
 hroot\F88015D3F98479E1DA553D24FD42BA3F43886AEF
PSParentPath : Microsoft.PowerShell.Security\Certificate::currentuser\aut
 hroot
PSChildName : F88015D3F98479E1DA553D24FD42BA3F43886AEF
PSDrive : cert
PSProvider : Microsoft.PowerShell.Security\Certificate
PSIsContainer : False
Archived : False
Extensions : {}
FriendlyName : CW HKT SecureNet CA SGC Root
IssuerName : System.Security.Cryptography.X509Certificates.X500Distingu
 ishedName
NotAfter : 10/16/2009 5:59:00 AM
NotBefore : 6/30/1999 6:00:00 AM
HasPrivateKey : False
PrivateKey :

52 Chapter 3 Leveraging PowerShell Providers
PublicKey : System.Security.Cryptography.X509Certificates.PublicKey
RawData : {48, 130, 2, 235...}
SerialNumber : 00
SubjectName : System.Security.Cryptography.X509Certificates.X500Distingu
 ishedName
SignatureAlgorithm : System.Security.Cryptography.Oid
Thumbprint : F88015D3F98479E1DA553D24FD42BA3F43886AEF
Version : 1
Handle : 75655840
Issuer : O=C&W HKT SecureNet CA SGC Root, C=hk
Subject : O=C&W HKT SecureNet CA SGC Root, C=hk

16. Open the Certificates MMC. This MMC is called Certmgr.msc and can be launched by
simply typing the name inside Windows PowerShell, as shown here:

Certmgr.msc

17. But it is more fun to use the Invoke-Item cmdlet to launch the Certificates MMC. To do
this, supply the PSDrive name of cert:\ to the Invoke-Item cmdlet. This is shown here:

Invoke-Item cert:\

18. Compare the information obtained from Windows PowerShell with the information dis-
played in the Certificates MMC. They are the same. The certificate is shown in Figure 3-4.

Figure 3-4 Certmgr.msc can be used to examine certificate properties

19. This concludes this procedure.

Chapter 3 Leveraging PowerShell Providers 53
Understanding the Environment Provider
The environment provider in Windows PowerShell is used to provide access to the system
environment variables. If you open a CMD (command) shell and type set, you will obtain a
listing of all the environment variables defined on the system. If you use the echo command
in the CMD shell to print out the value of %windir%, you will obtain the results seen in Figure 3-5.

Figure 3-5 Use set in a CMD prompt to see environment variables

Environment variables are used by various applications and other utilities as a shortcut to pro-
vide easy access to specific files, folders, and configuration data. By using the environment
provider in Windows PowerShell, you can obtain a listing of the environment variables. You
can also add, change, clear, and delete these variables.

Obtaining a listing of environment variables

1. Open Windows PowerShell.

2. Obtain a listing of the PSDrives by using the Get-PSDrive cmdlet. This is shown here:

Get-PSDrive

3. Note that the Environment PSDrive is called env. Use the env name with the Set-Location
cmdlet and change to the environment PSDrive. This is shown here:

Set-Location env:\

4. Use the Get-Item cmdlet to obtain a listing of all the environment variables on the sys-
tem. This is shown here:

Get-Item *

5. Use the Sort-Object cmdlet to produce an alphabetical listing of all the environment vari-
ables by name. Use the up arrow to retrieve the previous command, and pipeline the
returned object into the Sort-Object cmdlet. Use the property argument, and supply
name as the value. This command is shown here:

get-item * | Sort-Object -property name

54 Chapter 3 Leveraging PowerShell Providers
6. Use the Get-Item cmdlet to retrieve the value associated with the environment variable
windir. This is shown here:

get-item windir

7. Use the up arrow and retrieve the previous command. Pipeline the object returned to the
Format-List cmdlet and use the wild card character to print out all the properties of the
object. The modified command is shown here:

get-item windir | Format-List *

8. The properties and their associated values are shown here:

PSPath : Microsoft.PowerShell.Core\Environment::windir
PSDrive : Env
PSProvider : Microsoft.PowerShell.Core\Environment
PSIsContainer : False
Name : windir
Key : windir
Value : C:\WINDOWS

9. This concludes this procedure. Do not close Windows PowerShell. Leave it open for the
next procedure.

Creating a new environment variable

1. You should still be in the Environment PSDrive from the previous procedure. If not, use
the Set-Location env:\ command).

2. Use the Get-Item cmdlet to produce a listing of all the environment variables. Pipeline the
returned object to the Sort-Object cmdlet using the property of name. To reduce typing,
use the gi alias and the sort alias. This is shown here:

GI * | Sort -Property Name

3. Use the New-Item cmdlet to create a new environment variable. The path argument will
be dot (.) because you are already on the env:\ PSDrive. The -name argument will be
admin, and the value argument will be your given name. The completed command is
shown here:

New-Item -Path . -Name admin -Value mred

4. Use the Get-Item cmdlet to ensure the admin environment variable was properly created.
This command is shown here:

Get-Item admin

5. The results of the previous command are shown here:

Name Value
---- -----
admin mred

Chapter 3 Leveraging PowerShell Providers 55
6. Use the up arrow to retrieve the previous command. Pipeline the results to the Format-
List cmdlet, and choose All Properties. This command is shown here:

Get-Item admin | Format-List *

7. The results of the previous command include the PSPath, PSDrive, and additional infor-
mation about the newly created environment variable. These results are shown here:

PSPath : Microsoft.PowerShell.Core\Environment::admin
PSDrive : Env
PSProvider : Microsoft.PowerShell.Core\Environment
PSIsContainer : False
Name : admin
Key : admin
Value : mred

8. This concludes this procedure. Leave PowerShell open for the next procedure.

Renaming an environment variable

1. Use the Get-ChildItem cmdlet to obtain a listing of all the environment variables. Pipeline
the returned object to the Sort-Object cmdlet and sort the list on the name property. Use
the gci and sort aliases to reduce typing. The code to do this is shown here:

GCI | Sort -Property name

2. The admin environment variable should be near the top of the list of system variables. If
it is not, then create it by using the New-Item cmdlet. The path argument has a value of
dot (.); the name argument has the value of admin; and the value argument should be
the user’s given name. If this environment variable was created in the previous exercise,
then PowerShell will report that it already exists. This is shown here:

New-Item -Path . -Name admin -Value mred

3. Use the Rename-Item cmdlet to rename the admin environment variable to super. The
path argument combines both the PSDrive name and the environment variable name.
The NewName argument is the desired new name without the PSDrive specification.
This command is shown here:

Rename-Item -Path env:admin -NewName super

4. To verify that the old environment variable admin has been renamed super, press the up
arrow two or three times to retrieve the gci | sort -property name command. This is com-
mand is shown here:

GCI | Sort -Property name

5. This concludes this procedure. Do not close the Windows PowerShell. Leave it open for
the next procedure.

56 Chapter 3 Leveraging PowerShell Providers
Removing an environment variable

1. Use the Get-ChildItem cmdlet to obtain a listing of all the environment variables. Pipeline
the returned object to the Sort-Object cmdlet and sort the list on the name property. Use
the gci and sort aliases to reduce typing. The code to do this is shown here:

GCI | Sort -Property name

2. The super environment variable should be in the list of system variables. If it is not, then
create it by using the New-Item cmdlet. The path argument has a value of dot (.); the
name argument has the value of super; and the value argument should be the user’s
given name. If this environment variable was created in the previous exercise, then
PowerShell will report that it already exists. This is shown here:

New-Item -Path . -Name super -Value mred

3. Use the Remove-Item cmdlet to remove the super environment variable. The name of the
item to be removed is typed following the name of the cmdlet. If you are still in the
env:\ PSDrive, you will not need to supply a -path argument. The command is shown
here:

Remove-Item super

4. Use the Get-ChildItem cmdlet to verify that the environment variable super has been
removed. To do this, press the up arrow 2 or 3 times to retrieve the gci | sort -property
name command. This command is shown here:

GCI | Sort -Property name

5. This concludes this procedure.

Understanding File System Provider
The file system provider is the easiest Windows PowerShell provider to understand—it pro-
vides access to the file system. When Windows PowerShell is launched, it automatically opens
on the C:\PSDrive. Using the Windows PowerShell filesystem provider, you can create both
directories and files. You can retrieve properties of files and directories, and you can delete
them as well. In addition, you can open files and append or overwrite data to the files. This
can be done with inline code, or by using the pipelining feature of Windows PowerShell. The
commands used in the procedure are in the IdentifyingPropertiesOfDirectories.txt, Creating-
FoldersAndFiles.txt, and ReadingAndWritingForFiles.txt files.

Working with directory listings

1. Open Windows PowerShell.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of the C:\ drive. Use the gci
alias to reduce typing. This is shown here:

GCI C:\

Chapter 3 Leveraging PowerShell Providers 57
3. Use the up arrow to retrieve the gci C:\ command. Pipeline the object created into a
Where-Object cmdlet, and look for containers. This will reduce the output to only direc-
tories. The modified command is shown here:

GCI C:\ | where {$_.psiscontainer}

4. Use the up arrow to retrieve the gci C:\ | where {$_.psiscontainer} command and use the
exclamation point (!), meaning not, to retrieve only items in the PSDrive that are not
directories. The modified command is shown here:

GCI C:\ | where {!$_.psiscontainer}

5. This concludes this procedure. Do not close Windows PowerShell. Leave it open for the
next procedure.

Identifying properties of directories

1. Use the Get-ChildItem cmdlet and supply a value of C:\ for the path argument. Pipeline
the resulting object into the Get-Member cmdlet. Use the gci and gm aliases to reduce typ-
ing. This command is shown here:

GCI -Path C:\ | GM

2. The resulting output contains methods, properties, and more. Filter the output by pipe-
lining the output into a Where-Object cmdlet and specifying the membertype attribute as
equal to property. To do this, use the up arrow to retrieve the previous gci -path C:\ | gm
command. Pipeline the resulting object into the Where-Object cmdlet and filter on the
membertype attribute. The resulting command is shown here:

GCI -Path C:\ | GM | Where {$_.membertype -eq "property"}

3. The previous gci -path C:\ | gm | where {$_.membertype -eq "property"} command returns
information on both the System.IO.DirectoryInfo and the System.IO.FileInfo objects. To
reduce the output to only the properties associated with the System.IO.FileInfo object,
we need to use a compound Where-Object cmdlet. Use the up arrow to retrieve the gci
-path C:\ | gm | where {$_.membertype -eq "property"} command. Add the And conjunction
and retrieve objects that have a typename that is like *file*. The modified command is
shown here:

GCI -Path C:\ | GM | where {$_.membertype -eq "property" -AND $_.typename -like
"*file*"}

4. The resulting output only contains the properties for a System.IO.FileInfo object. These
properties are shown here:

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}

58 Chapter 3 Leveraging PowerShell Providers
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property System.String DirectoryName {get;}
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get;set;}
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}
LastWriteTime Property System.DateTime LastWriteTime {get;set;}
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}
Length Property System.Int64 Length {get;}
Name Property System.String Name {get;}

5. This concludes this procedure. Do not close Windows PowerShell. Leave it open for the
next procedure.

Creating folders and files

1. Use the Get-Item cmdlet to obtain a listing of files and folders. Pipeline the resulting
object into the Where-Object cmdlet and use the PsIsContainer property to look for fold-
ers. Use the name property to find names that contain the word my in them. Use the gi
alias and the where alias to reduce typing. The command is shown here:

GI * | Where {$_.PsisContainer -AND $_.name -Like "*my*"}

2. If you were following along in the previous chapters, you will have a folder called Mytest
off the root of the C:\ drive. Use the Remove-Item cmdlet to remove the Mytest folder.
Specify the recurse argument to also delete files contained in the C:\Mytest folder. If
your location is still set to Env, then change it to C or search for C:\Mytest. The com-
mand is shown here:

RI mytest -recurse

3. Press the up arrow twice and retrieve the gi * | where {$_.PsisContainer -AND $_.name
-Like "*my*"} command to confirm the folder was actually deleted. This command is
shown here:

GI * | Where {$_.PsisContainer -AND $_.name -Like "*my*"}

4. Use the New-Item cmdlet to create a folder named Mytest. Use the path argument to
specify the path of C:\. Use the name argument to specify the name of Mytest, and use
the type argument to tell Windows PowerShell the new item will be a directory. This
command is shown here:

New-Item -Path C:\ -Name mytest -Type directory

5. The resulting output, shown here, confirms the operation:

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 1/4/2007 2:43 AM mytest

Chapter 3 Leveraging PowerShell Providers 59
6. Use the New-Item cmdlet to create an empty text file. To do this, use the up arrow and
retrieve the previous new-item -path C:\ -name Mytest -type directory command. Edit the
path argument so that it is pointing to the C:\Mytest directory. Edit the name argument
to specify a text file named Myfile, and specify the type argument as file. The resulting
command is shown here:

New-Item -Path C:\mytest -Name myfile.txt -type file

7. The resulting message, shown here, confirms the creation of the file:

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\mytest

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 1/4/2007 3:12 AM 0 myfile.txt

8. This concludes this procedure. Do not close Windows PowerShell. Leave it open for the
next procedure.

Reading and writing for files

1. Delete Myfile.txt (created in the previous procedure). To do this, use the Remove-Item
cmdlet and specify the path argument as C:\Mytest\Myfile.txt. This command is shown
here:

RI -Path C:\mytest\myfile.txt

2. Use the up arrow twice to retrieve the new-item -path C:\Mytest -name Myfile.txt -type file.
Add the -value argument to the end of the command line, and supply a value of my file.
This command is shown here:

New-Item -Path C:\mytest -Name myfile.txt -Type file -Value "My file"

3. Use the Get-Content cmdlet to read the contents of Myfile.txt. This command is shown
here:

Get-Content C:\mytest\myfile.txt

4. Use the Add-Content cmdlet to add additional information to the Myfile.txt file. This
command is shown here:

Add-Content C:\mytest\myfile.txt -Value "ADDITIONAL INFORMATION"

5. Press the up arrow twice and retrieve the get-content C:\Mytest\Myfile.txt command,
which is shown here:

Get-Content C:\mytest\myfile.txt

6. The output from the get-content C:\Mytest\Myfile.txt command is shown here:

My fileADDITIONAL INFORMATION

60 Chapter 3 Leveraging PowerShell Providers
7. Press the up arrow twice, and retrieve the add-content C:\mytest\Myfile.txt -value "ADDI-
TIONAL INFORMATION" command to add additional information to the file. This com-
mand is shown here:

Add-Content C:\mytest\myfile.txt -Value "ADDITIONAL INFORMATION"

8. Use the up arrow to retrieve the get-content C:\Mytest\Myfile.txt command, which is
shown here:

Get-Content C:\mytest\myfile.txt

9. The output produced is shown here. Notice that the second time, the "ADDITIONAL
INFORMATION" command was added to a new line.

My fileADDITIONAL INFORMATION
ADDITIONAL INFORMATION

10. Use the Set-Information cmdlet to overwrite the contents of the Myfile.txt file. Specify the
value argument as "Setting information". This command is shown here:

Set-Content C:\mytest\myfile.txt -Value "Setting information"

11. Use the up arrow to retrieve the get-content C:\Mytest\Myfile.txt command, which is
shown here:

Get-Content C:\mytest\myfile.txt

12. The output from the Get-Content command is shown here:

Setting information

13. This concludes this procedure.

Understanding the Function Provider
The Function provider provides access to the functions defined in Windows PowerShell. By
using the function provider you can obtain a listing of all the functions on your system. You
can also add, modify, and delete functions. The function provider uses a file system–based
model, and the cmdlets learned earlier also apply to working with functions. The commands
used in the procedure are in the ListingAllFunctionsOnTheSystem.txt file.

Listing all functions on the system

1. Open Windows PowerShell.

2. Use the Set-Location cmdlet to change the working location to the function PSDrive. This
command is shown here:

Set-Location function:\

3. Use the Get-ChildItem cmdlet to enumerate all the functions. Do this by using the gci
alias, as shown here:

GCI

Chapter 3 Leveraging PowerShell Providers 61
4. The resulting list contains many functions that use Set-Location to the different drive let-
ters. A partial view of this output is shown here:

CommandType Name Definition
----------- ---- ----------
Function prompt 'PS ' + $(Get-Location) + $(...
Function TabExpansion ...
Function Clear-Host $spaceType = [System.Managem...
Function more param([string[]]$paths); if...
Function help param([string]$Name,[string[...
Function man param([string]$Name,[string[...
Function mkdir param([string[]]$paths); New...
Function md param([string[]]$paths); New...
Function A: Set-Location A:
Function B: Set-Location B:
Function C: Set-Location C:
Function D: Set-Location D:

5. To return only the functions that are used for drives, use the Get-ChildItem cmdlet and
pipe the object returned into a Where-Object cmdlet. Use the default $_ variable to filter
on the definition attribute. Use the like argument to search for definitions that contain
the word set. The resulting command is shown here:

GCI | Where {$_.definition -like "set*"}

6. If you are more interested in functions that are not related to drive mappings, then you
can use the notlike argument instead of like. The easiest way to make this change is to
use the up arrow and retrieve the gci | where {$_.definition -like "set*"} and then change the
filter from like to notlike. The resulting command is shown here:

GCI | Where {$_.definition -notlike "set*"}

7. The resulting listing of functions is shown here:

CommandType Name Definition
----------- ---- ----------
Function prompt 'PS' + $(Get-Location) + $(...
Function TabExpansion ...
Function Clear-Host $spaceType = [System.Managem...
Function more param([string[]]$paths); if...
Function help param([string]$Name,[string[...
Function man param([string]$Name,[string[...
Function mkdir param([string[]]$paths); New...
Function md param([string[]]$paths); New...
Function pro notepad $profile

8. Use the Get-Content cmdlet to retrieve the text of the md function. This is shown here:

Get-Content md

9. The content of the md function is shown here:

param([string[]]$paths); New-Item -type directory -path $paths

10. This concludes this procedure.

62 Chapter 3 Leveraging PowerShell Providers
Understanding the Registry Provider
The registry provider provides a consistent and easy way to work with the registry from within
Windows PowerShell. Using the registry provider, you can search the registry, create new reg-
istry keys, delete existing registry keys, and modify values and access control lists (ACLs)
from within Windows PowerShell. The commands used in the procedure are in the Under-
standingTheRegistryProvider.txt file. Two PSDrives are created by default. To identify the
PSDrives that are supplied by the registry provider, you can use the Get-PSDrive cmdlet, pipe-
line the resulting objects into the Where-Object cmdlet, and filter on the provider property
while supplying a value that is like the word registry. This command is shown here:

get-psDrive | where {$_.Provider -like "*Registry*"}

The resulting list of PSDrives is shown here:

Name Provider Root CurrentLocation
---- -------- ---- ---------------
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE

Obtaining a listing of registry keys

1. Open Windows PowerShell.

2. Use the Get-ChildItem cmdlet and supply the HKLM:\ PSDrive as the value for the path
argument. Specify the software key to retrieve a listing of software applications on the
local machine. The resulting command is shown here:

GCI -path HKLM:\software

3. A partial listing of similar output is shown here. The corresponding keys, as seen in Rege-
dit.exe, are shown in Figure 3-6.

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software

SKC VC Name Property
--- -- ---- --------
 2 0 781 {}
 1 0 8ec {}
 4 0 Adobe {}
 12 0 Ahead {}
 2 1 Analog Devices {ProductDir}
 2 0 Andrea Electronics {}
 1 0 Application Techniques {}

4. This concludes this procedure. Do not close Windows PowerShell. Leave it open for the
next procedure.

Chapter 3 Leveraging PowerShell Providers 63
Figure 3-6 A Regedit.exe similar view of HKEY_LOCAL_MACHINE\SOFTWARE

Searching for hotfixes

1. Use the Get-ChildItem cmdlet and supply a value for the path argument. Use the HKLM:\
PSDrive and supply a path of Software\Microsoft\Windows NT\CurrentVersion\Hot-
fix. Because there is a space in Windows NT, you will need to use a single quote (') to
encase the command. You can use Tab completion to assist with the typing. The com-
pleted command is shown here:

GCI -Path 'HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\HotFix'

2. The resulting similar list of hotfixes is seen in the output here, in abbreviated fashion:

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Micros
oft\Windows NT\CurrentVersion\HotFix

SKC VC Name Property
--- -- ---- --------
 1 8 KB873333 {Installed, Comments, Backup Dir, Fix...
 1 8 KB873339 {Installed, Comments, Backup Dir, Fix...
 1 8 KB883939 {Installed, Comments, Backup Dir, Fix...
 1 8 KB885250 {Installed, Comments, Backup Dir, Fix...

3. To retrieve information on a single hotfix, you will need to add a Where-Object cmdlet.
You can do this by using the up arrow to retrieve the previous gci -path 'HKLM:\SOFT-
WARE\Microsoft\Windows NT\CurrentVersion\HotFix' command and pipelining the
resulting object into the Where-Object cmdlet. Supply a value for the name property, as
seen in the code listed here. Alternatively, supply a “KB” number from the previous output.

GCI -Path 'HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\HotFix' | where
{$_.Name -like "*KB928388"}

4. This concludes this procedure.

64 Chapter 3 Leveraging PowerShell Providers
Understanding the Variable Provider
The variable provider provides access to the variables that are defined within Windows
PowerShell. These variables include both user-defined variables, such as $mred, and system-
defined variables, such as $host. You can obtain a listing of the cmdlets designed to work
specifically with variables by using the Get-Help cmdlet and specifying the asterisk (*) vari-
able. The commands used in the procedure are in the UnderstandingTheVariableProvider.txt
and WorkingWithVariables.txt files. To return only cmdlets, we use the Where-Object cmdlet
and filter on the category that is equal to cmdlet. This command is shown here:

Get-Help *variable | Where-Object {$_.category -eq ÒcmdletÓ}

The resulting list contains five cmdlets but is a little jumbled and difficult to read. So let’s mod-
ify the preceding command and specify the properties to return. To do this, use the up arrow
and pipeline the returned object into the Format-List cmdlet. Add the three properties we are
interested in: name, category, and synopsis. The revised command is shown here:

Get-Help *variable | Where-Object {$_.category -eq "cmdlet"} |
Format-List name, category, synopsis

The resulting output is much easier to read and understand. It is shown here:

Name : Get-Variable
Category : Cmdlet
Synopsis : Gets the variables in the current console.

Name : New-Variable
Category : Cmdlet
Synopsis : Creates a new variable.

Name : Set-Variable
Category : Cmdlet
Synopsis : Sets the value of a variable. Creates the variable if one with the requested
name does not exist.

Name : Remove-Variable
Category : Cmdlet
Synopsis : Deletes a variable and its value.

Name : Clear-Variable
Category : Cmdlet
Synopsis : Deletes the value of a variable.

Working with variables

1. Open Windows PowerShell.

2. Use the Set-Location cmdlet to set the working location to the variable PSDrive. Use the
sl alias to reduce typing needs. This command is shown here:

SL variable:\

Chapter 3 Leveraging PowerShell Providers 65
3. Produce a complete listing of all the variables currently defined in Windows PowerShell.
To do this, use the Get-ChildItem cmdlet. You can use the alias gci to produce this list. The
command is shown here:

Get-ChildItem

4. The resulting list is jumbled. Use the up arrow to retrieve the Get-ChildItem command,
and pipeline the resulting object into the Sort-Object cmdlet. Sort on the name property.
This command is shown here:

Get-ChildItem | Sort {$_.Name}

5. The output from the previous command is shown here:

Name Value
---- -----
$ }
? True
^ Get-ChildItem
_
args {}
ConfirmPreference High
ConsoleFileName
DebugPreference SilentlyContinue
Error {System.Management.Automation.ParseException:...
ErrorActionPreference Continue
ErrorView NormalView
ExecutionContext System.Management.Automation.EngineIntrinsics
false False
FormatEnumerationLimit 4
HOME C:\Documents and Settings\edwils.NORTHAMERICA
Host System.Management.Automation.Internal.Host.In...
input System.Array+SZArrayEnumerator
LASTEXITCODE 0
lastWord get-c
line get-c
MaximumAliasCount 4096
MaximumDriveCount 4096
MaximumErrorCount 256
MaximumFunctionCount 4096
MaximumHistoryCount 64
MaximumVariableCount 4096
mred mred
MyInvocation System.Management.Automation.InvocationInfo
NestedPromptLevel 0
null
OutputEncoding System.Text.ASCIIEncoding
PID 292
PROFILE C:\Documents and Settings\edwils.NORTHAMERICA...
ProgressPreference Continue
PSHOME C:\WINDOWS\system32\WindowsPowerShell\v1.0
PWD Variable:\
ReportErrorShowExceptionClass 0
ReportErrorShowInnerException 0
ReportErrorShowSource 1

66 Chapter 3 Leveraging PowerShell Providers
ReportErrorShowStackTrace 0
ShellId Microsoft.PowerShell
StackTrace at System.Number.StringToNumber(String str...
true True
VerbosePreference SilentlyContinue
WarningPreference Continue
WhatIfPreference 0

6. Use the Get-Variable cmdlet to retrieve a specific variable. Use the ShellId variable. You
can use Tab completion to speed up typing. The command is shown here:

Get-Variable ShellId

7. Use the up arrow to retrieve the previous Get-Variable ShellId command. Pipeline the
object returned into a Format-List cmdlet and return all properties. This is shown here:

Get-Variable ShellId | Format-List *

8. The resulting output includes the description of the variable, value, and other informa-
tion shown here:

Name : ShellId
Description : The ShellID identifies the current shell. This is used by #Requires.
Value : Microsoft.PowerShell
Options : Constant, AllScope
Attributes : {}

9. Create a new variable called administrator. To do this, use the New-Variable cmdlet. This
command is shown here:

New-Variable administrator

10. Use the Get-Variable cmdlet to retrieve the new administrator variable. This command is
shown here:

Get-Variable administrator

11. The resulting output is shown here. Notice that there is no value for the variable.

Name Value
---- -----
administrator

12. Assign a value to the new administrator variable. To do this, use the Set-Variable cmdlet.
Specify the administrator variable name, and supply your given name as the value for the
variable. This command is shown here:

Set-Variable administrator -value mred

13. Use the up arrow one time to retrieve the previous Get-Variable administrator command.
This command is shown here:

Get-Variable administrator

Chapter 3 Leveraging PowerShell Providers 67
14. The output displays both the variable name and the value associated with the variable.
This is shown here:

Name Value
---- -----
administrator mred

15. Use the Remove-Variable cmdlet to remove the administrator variable you previously cre-
ated. This command is shown here:

Remove-Variable administrator

16. Use the up arrow one time to retrieve the previous Get-Variable administrator command.
This command is shown here:

Get-Variable administrator

17. The variable has been deleted. The resulting output is shown here:

Get-Variable : Cannot find a variable with name 'administrator'.
At line:1 char:13
+ Get-Variable <<<< administrator

18. This concludes this procedure.

Exploring the Certificate Provider: Step-by-Step Exercises
In this exercise, we explore the use of the Certificate provider in Windows PowerShell.

1. Start Windows PowerShell.

2. Obtain a listing of all the properties available for use with the Get-ChildItem cmdlet by
piping the results into the Get-Member cmdlet. To filter out only the properties, pipeline
the results into a Where-Object cmdlet and specify the membertype to be equal to prop-
erty. This command is shown here:

Get-ChildItem |Get-Member | Where-Object {$_.membertype -eq "property"}

3. Set your location to the certificate drive. To identify the certificate drive, use the Get-
PSDrive cmdlet. Use the Where-Object cmdlet and filter on names that begin with the let-
ter c. This is shown here:

Get-PSDrive |where {$_.name -like "c*"}

4. The results of this command are shown here:

Name Provider Root CurrentLocation
---- -------- ---- ---------------
C FileSystem C:\
cert Certificate \

68 Chapter 3 Leveraging PowerShell Providers
5. Use the Set-Location cmdlet to change to the certificate drive.

Sl cert:\

6. Use the Get-ChildItem cmdlet to produce a listing of all the certificates on the machine.

GCI

7. The output from the previous command is shown here:

Location : CurrentUser
StoreNames : {?, UserDS, AuthRoot, CA...}

Location : LocalMachine
StoreNames : {?, AuthRoot, CA, AddressBook...}

8. The listing seems somewhat incomplete. To determine whether there are additional cer-
tificates installed on the machine, use the Get-ChildItem cmdlet again, but this time spec-
ify the recurse argument. Modify the previous command by using the up arrow. The
command is shown here:

GCI -recurse

9. The output from the previous command seems to take a long time to run and produces
hundreds of lines of output. To make the listing more readable, pipe the output to a text
file, and then open the file in Notepad. The command to do this is shown here:

GCI -recurse >C:\a.txt;notepad.exe a.txt

10. This concludes this step-by-step exercise.

One Step Further: Examining the Environment Provider
In this exercise, we work with the Windows PowerShell Environment provider.

1. Start Windows PowerShell.

2. Use the New-PSDrive cmdlet to create a drive mapping to the alias provider. The name of
the new PSDrive will be al. The PSProvider is alias, and the root will be dot (.). This com-
mand is shown here:

new-PSDrive -name al -PSProvider alias -Root .

3. Change your working location to the new PSDrive you called al. To do this, use the sl
alias for the Set-Location cmdlet. This is shown here:

SL al:\

4. Use the gci alias for the Get-ChildItem cmdlet, and pipeline the resulting object into the
Sort-Object cmdlet by using the sort alias. Supply name as the property to sort on. This
command is shown here:

GCI | Sort -Property name

Chapter 3 Leveraging PowerShell Providers 69
5. Use the up arrow to retrieve the previous gci | sort -property name command and modify
it to use a Where-Object cmdlet to return aliases only when the name is greater than the
letter t. Use the where alias to avoid typing the entire name of the cmdlet. The resulting
command is shown here:

GCI | sort -Property name | Where {$_.Name -gt "t"}c

6. Change your location back to the C:\ drive. To do this, use the sl alias and supply the
C:\ argument. This is shown here:

SL C:\

7. Remove the PSDrive mapping for al. To do this, use the Remove-PSDrive cmdlet and sup-
ply the name of the PSDrive to remove. Note, this command does not want a trailing
colon (:) or colon with backslash (:\). The command is shown here:

Remove-PSDrive al

8. Use the Get-PSDrive cmdlet to ensure the al drive was removed. This is shown here:

Get-PSDrive

9. Use the Get-Item cmdlet to obtain a listing of all the environment variables. Use the path
argument and supply env:\ as the value. This is shown here:

Get-Item -Path env:\

10. Use the up arrow to retrieve the previous command, and pipeline the resulting object
into the Get-Member cmdlet. This is shown here:

Get-Item -Path env:\ | Get-Member

11. The results from the previous command are shown here:

 TypeName: System.Collections.Generic.Dictionary'2+ValueCollection[[System.St
ring, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e0
89],[System.Collections.DictionaryEntry, mscorlib, Version=2.0.0.0, Culture=neu
tral, PublicKeyToken=b77a5c561934e089]]

Name MemberType Definition
---- ---------- ----------
CopyTo Method System.Void CopyTo(DictionaryEntry[] array, Int32...
Equals Method System.Boolean Equals(Object obj)
GetEnumerator Method System.Collections.Generic.Dictionary`2+ValueColl...
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
get_Count Method System.Int32 get_Count()
ToString Method System.String ToString()
PSDrive NoteProperty System.Management.Automation.PSDriveInfo PSDrive=Env
PSIsContainer NoteProperty System.Boolean PSIsContainer=True
PSPath NoteProperty System.String PSPath=Microsoft.PowerShell.Core\En...
PSProvider NoteProperty System.Management.Automation.ProviderInfo PSProvi...
Count Property System.Int32 Count {get;}

70 Chapter 3 Leveraging PowerShell Providers
12. Press the up arrow twice to return to the get-item -path env:\ command. Use the Home
key to move your insertion point to the beginning of the line. Add a variable called
$objEnv and use it to hold the object returned by the get-item -path env:\ command. The
completed command is shown here:

$objEnv=Get-Item -Path env:\

13. From the listing of members of the environment object, find the count property. Use this
property to print out the total number of environment variables. As you type $o, try to
use Tab completion to avoid typing. Also try to use Tab completion as you type the c in
count. The completed command is shown here:

$objEnv.Count

14. Examine the methods of the object returned by get-item -path env:\. Notice there is a
Get_Count method. Let’s use that method. The code is shown here:

$objEnv.Get_count

15. When this code is executed, however, the results define the method rather than execute
the Get_Count method. These results are shown here:

MemberType : Method
OverloadDefinitions : {System.Int32 get_Count()}
TypeNameOfValue : System.Management.Automation.PSMethod
Value : System.Int32 get_Count()
Name : get_Count
IsInstance : True

16. To retrieve the actual number of environment variables, we need to use empty parenthe-
ses is at the end of the method. This is shown here:

$objEnv.Get_count()

17. If you want to know exactly what type of object you have contained in the $objEnv vari-
able, you can use the GetType method, as shown here:

$objEnv.GetType()

18. This command returns the results shown here:

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
False True ValueCollection System.Object

19. This concludes this one step further exercise.

Chapter 3 Leveraging PowerShell Providers 71
Chapter 3 Quick Reference

To Do This
Produce a listing of all variables defined in a Windows
PowerShell session

Use the Set-Location cmdlet to change location to the
variable PSDrive, then use the Get-ChildItem cmdlet

Obtain a listing of all the aliases Use the Set-Location cmdlet to change location to the
alias PSDrive, then use the Get-ChildItem cmdlet to
produce a listing of aliases. Pipeline the resulting
object into the Where-Object cmdlet and filter on the
name property for the appropriate value

Delete a directory that is empty Use the Remove-Item cmdlet and supply the name of
the directory

Delete a directory that contains other items Use the Remove-Item cmdlet and supply the name of
the directory and specify the recurse argument

Create a new text file Use the New-Item cmdlet and specify the -path argu-
ment for the directory location. Supply the name
argument, and specify the type argument as file.
Example: new-item -path C:\Mytest -name Myfile.txt
-type file

Obtain a listing of registry keys from a registry hive Use the Get-ChildItem cmdlet and specify the appro-
priate PSDrive name for the -path argument. Com-
plete the path with the appropriate registry path.
Example: gci -path HKLM:\software

Obtain a listing of all functions on the system Use the Get-ChildItem cmdlet and supply the PSDrive
name of function:\ to the path argument. Example:
gci -path function:\

Chapter 8

Leveraging the Power of ADO
After completing this chapter, you will be able to:

■ Understand the use of ADO in Windows PowerShell scripts

■ Connect to Active Directory to perform a search

■ Control the way data are returned

■ Use compound query filters

Connecting to Active Directory with ADO
In this section, you will learn a special query technique to search Active Directory using
ActiveX Data Objects (ADO). The technique is exactly the same technique you will use to
search other databases. You will be able to use the results returned by that custom query
to perform additional tasks. For example, you could search Active Directory for all users
who don’t have telephone numbers assigned to them. You could then send that list to the
person in charge of maintaining the telephone numbers. Even better, you could modify
the search so that it returns the user names and their managers’ names. You could then
take the list of users with no phone numbers that is returned and send e-mail to the man-
agers to update the phone list in Active Directory. The functionality incorporated in your
scripts is primarily limited by your imagination. The following list summarizes uses of the
search technology:

■ Query Active Directory for a list of computers that meet a given search criterion

■ Query Active Directory for a list of users who meet a given search criterion

■ Query Active Directory for a list of printers that meet a given search criterion

■ Use the data returned from the preceding three queries to perform additional operations

All the scripts mentioned in this chapter can be found in the corresponding scripts folder on
the CD.
175

176 Chapter 8 Leveraging the Power of ADO
Just the Steps To search Active Directory

1. Create a connection to Active Directory by using ADO.

2. Use the Open() method of the object to access Active Directory.

3. Create an ADO Command object and assign the ActiveConnection property to the Connection
object.

4. Assign the query string to the CommandText property of the Command object.

5. Use the Execute() method to run the query and store the results in a RecordSet object.

6. Read information in the result set using properties of the RecordSet object.

7. Close the connection by using the Close() method of the Connection object.

The script BasicQuery.ps1 (shown later) illustrates how to search Active Directory by using
ADO. Keep in mind that BasicQuery.ps1 can be used as a template script to make it easy to
perform Active Directory queries using ADO.

The BasicQuery.ps1 script begins with defining the query that will be used. The string is
stored in the $strQuery variable. When querying Active Directory using ADO, there are two
ways the query can be specified. The one used here is called the Lightweight Directory Access
Protocol (LDAP) dialect. The other means of specifying the query is called the SQL dialect and
will be explored later in this chapter.

The LDAP dialect string is made up of four parts. Each of the parts is separated by a semico-
lon. If one part is left out, then the semicolon must still be present. This is actually seen in the
BasicQuery.ps1 script because we do not supply a value for the filter portion. This line of code
is shown here:

$strQuery = "<LDAP://dc=nwtraders,dc=msft>;;name;subtree"

Table 8-1 illustrates the LDAP dialect parts. In the BasicQuery.ps1 script, the filter is left out of
the query. The base portion is used to specify the exact point of the connection into Active
Directory. Here we are connecting to the root of the NwTraders.msft domain. We could con-
nect to an organizational unit (OU) called MyTestOU by using the distinguished name, as
shown here:

ou=myTestOU,dc=nwtraders,dc=msft

Table 8-1 LDAP Dialect Query Syntax

Base Filter Attributes
Search
Scope

<LDAP://dc=nwtrad-
ers,dc=msft>

(objectCategory=computer) name subtree

Chapter 8 Leveraging the Power of ADO 177
When we create the filter portion of the LDAP dialect query, we specify the attribute name on
the left and the value for the attribute we are looking for on the right. If I were looking for
every object that had a location of Atlanta, then the filter would look like the one shown here:

(l=Atlanta)

The attribute portion of the LDAP query is a simple list of attributes you are looking for, each
separated by a comma. If after you had found objects in Atlanta, you wanted to know the
name and category of the objects, your attribute list would look like the following:

Name, objectCategory

The search scope is the last portion of the LDAP dialect query. There are three possible values
for the search scope. The first is base. If we specify the search scope as base, then it will only
return the single that was the target of the query, that is, the base portion of the query. Using
base is valuable if you want to determine whether an object is present in active directory.

The second allowable value for the search scope is oneLevel. When you use the search scope
of oneLevel, it will return the Child objects of the base of your query. It does not, however, per-
form a recursive query. If your base is an OU, then it will list the items contained in the OU.
But it will not go into any child OUs and list their members. This is an effective query tech-
nique and should be considered standard practice.

The last allowable value for the search scope is subtree. Subtree begins at the base of your
query and then recurses into everything under the base of your query. It is sometimes referred
to in the Platform Software Development Kit (SDK) as the deep search option because it will
dig deeply into all sublevels of your Active Directory hierarchy. If you target the domain root,
then it will go into every OU under the domain root, and then into the child OUs, and so
forth. This should be done with great care because it can generate a great deal of network traf-
fic and a great deal of workload on the server. If you do need to perform such a query, then
you should perform the query asynchronously, and use paging to break the result set into
smaller chunks. This will level out the network utilization. In addition, you should try to
include one attribute that is indexed. If the attributes you are interested in are replicated to the
Global Catalog (GC), then you should query the GC instead of connecting to rootDSE (DSA-
specific entry). These techniques will all be examined in this chapter.

After the query is defined, we need to create two objects. We will use the New-Object cmdlet to
create these objects. The first object to create is the ADODB.Connection object. The line of
code used to create the Connection object is shown here:

$objConnection = New-Object -comObject "ADODB.Connection"

This object is a com object and is contained in the variable $objConnection. The second object that
is needed is the ADODB.Command object. The code to create the Command object is shown here:

objCommand = New-Object -comObject "ADODB.Command"

178 Chapter 8 Leveraging the Power of ADO
After the two objects are created, we need to open the connection into Active Directory. To
open the connection, we use the Open method from the ADODB.Connection object. When
we call the Open method, we need to specify the name of the provider that knows how to read
the Active Directory database. For this, we will use the ADsDSOObject provider. This line of
code is shown here:

$objConnection.Open("Provider=ADsDSOObject;")

After the connection into the Active Directory database has been opened, we need to associate
the Command object with the Connection object. To do this, we use the ActiveConnection
property of the Command object. The line of code that does this is shown here:

$objCommand.ActiveConnection = $objConnection

Now that we have an active connection into Active Directory, we can go ahead and assign the
query to the command text of the Command object. To do this, we use the CommandText
property of the Command object. In the BasicQuery.ps1 script, we use the following line of
code to do this:

$objCommand.CommandText = $strQuery

After everything is lined up, we call the Execute method of the Command object. The Execute
method will return a RecordSet object, which is stored in the $objRecordSet variable. This line
of code is shown here:

$objRecordSet = $objCommand.Execute()

To examine individual records from the RecordSet object, we use the do … until statement to
walk through the collection. The script block of the do … until statement is used to retrieve
the Name property from the RecordSet object. To retrieve the specific property, we retrieve the
Fields.Item property and specify the property we retrieved from the attributes portion of the
query. We then pipeline the resulting object into the Select-Object cmdlet and choose both
the name and the Value property. This line of code is shown here:

$objRecordSet.Fields.item("name") |Select-Object Name,Value

To move to the next record in the recordset, we need to use the MoveNext method from the
RecordSet object. This line of code is shown here:

$objRecordSet.MoveNext()

The complete BasicQuery.ps1 script is shown here:

BasicQuery.ps1
$strQuery = "<LDAP://dc=nwtraders,dc=msft>;;name;subtree"

$objConnection = New-Object -comObject "ADODB.Connection"
$objCommand = New-Object -comObject "ADODB.Command"
$objConnection.Open("Provider=ADsDSOObject;")
$objCommand.ActiveConnection = $objConnection
$objCommand.CommandText = $strQuery

Chapter 8 Leveraging the Power of ADO 179
$objRecordSet = $objCommand.Execute()

Do
{
 $objRecordSet.Fields.item("name") |Select-Object Name,Value
 $objRecordSet.MoveNext()
}
Until ($objRecordSet.eof)

$objConnection.Close()

Quick Check

Q. What technology is utilized to search Active Directory?

A. DO is the technology that is used to search Active Directory.

Q. Which part of the script is used to perform the query?

A. The command portion of the script is used to perform the query.

Q. How are results returned from an ADO search of Active Directory?

A. The results are returned in a recordset.

Creating More Effective Queries
The BasicQuery.ps1 script is a fairly wasteful script in that all it does is produce a list of user
names and print them out. Although the script illustrates the basics of making a connection
into Active Directory by using ADO, it is not exactly a paradigm of efficiency. ADO, however,
is a very powerful technology, and there are many pieces of the puzzle we can use to make the
script more efficient and more effective. The first thing we need to do is to understand the
objects we have that we can use with ADO. These objects are listed in Table 8-2.

Table 8-2 Objects Used to Search Active Directory

Object Description
Connection An open connection to an OLE DB data source such as ADSI
Command Defines a specific command to execute against the data source
Parameter An optional collection for any parameters to provide to the Command object
RecordSet A set of records from a table, a Command object, or SQL syntax A RecordSet

object can be created without any underlying Connection object
Field A single column of data in a recordset
Property A collection of values supplied by the provider for ADO
Error Contains details about data access errors. Refreshed when an error occurs in a

single operation

180 Chapter 8 Leveraging the Power of ADO
When we use ADO to talk to Active Directory, we often are working with three different
objects: the Connection object, the Command object, and the RecordSet object. The Command
object is used to maintain the connection, pass along the query parameters, and perform such
tasks as specifying the page size and search scope and executing the query. The Connec-
tion object is used to load the provider and to validate the user’s credentials. By default,
it utilizes the credentials of the currently logged-on user. If you need to specify alternative
credentials, you can use the properties listed in Table 8-3. To do this, we need to use the
Properties property of the Connection object. After we have the Connection object, and
we use Properties to get to the properties, we then need to use Item to supply value for the
specific property item we want to work with.

Using Alternative Credentials
As network administration becomes more granular, with multiple domains, work groups,
OUs, and similar grouping techniques, it becomes less common for everyone on the IT
team to be a member of the Domain Admins group. If the script does not impersonate a
user who is a member of the Domain Admins group, then it is quite likely it will need to
derive permissions from some other source. One method to do this is to supply alterna-
tive credentials in the script. To do this, we need to specify certain properties of the Con-
nection object.

Just the Steps To create a connection in Active Directory using alternative credentials

1. Create the ADODB.Connection object

2. Use the Provider property to specify the ADsDSOObject provider

3. Use Item to supply a value for the properties “User ID” and “Password”

4. Open the connection while supplying a value for the name of the connection

Table 8-3 Authentication Properties for the Connection Object

Property Description
User ID A string that identifies the user whose security context is used when perform-

ing the search. (For more information about the format of the user name
string, see IADsOpenDSObject::OpenDSObject in the Platform SDK.) If the
value is not specified, the default is the logged-on user or the user imperson-
ated by the calling process.

Password A string that specifies the password of the user identified by “User ID”
Encrypt Password A Boolean value that specifies whether the password is encrypted. The

default is False.
ADSI Flag A set of flags from the ADS_AUTHENTICATION_ENUM enumeration. The flag

specifies the binding authentication options. The default is zero.

Chapter 8 Leveraging the Power of ADO 181
The technique outlined in the using alternative credentials step-by-step exercise is shown
here. This code is from the QueryComputersUseCredentials.ps1 script, which is developed in
the querying active directory using alternative credentials procedure.

$objConnection = New-Object -comObject "ADODB.Connection"
$objConnection.provider = "ADsDSOObject"
$objConnection.properties.item("user ID") = $strUser
$objConnection.properties.item("Password") = $strPwd
$objConnection.open("modifiedConnection")

Querying Active Directory using alternative credentials

1. Open the QueryComputers.ps1 script in Notepad or in your favorite Windows Power-
Shell script editor and save it as yournameQueryComputersUseCredentials.ps1.

2. On the first noncommented line, define a new variable called $strBase, and use it to
assign the LDAP connection string. This variable is used to define the base of the
query into Active Directory. For this example, we will connect to the root of the
NwTraders.msft domain. To do this, the string is enclosed in angle brackets and
begins with the moniker LDAP. The base string is shown here:

"<LDAP://dc=nwtraders,dc=msft>"

The new line of code is shown here:

$strBase = "<LDAP://dc=nwtraders,dc=msft>"

3. Create a new variable called $strFilter. This will be used to hold the filter portion of our
LDAP syntax query. Assign a string that specifies the objectCategory attribute when it is
equal to the value of computer. This is shown here:

$strFilter = "(objectCategory=computer)"

4. Create a new variable called $strAttributes and assign the string of name to it. This
variable will be used to hold the attributes to search on in Active Directory. This line of
code is shown here:

$strAttributes = "name"

5. Create a variable called $strScope. This variable will be used to hold the search scope
parameter of our LDAP syntax query. Assign the value of subtree to it. This line of code
is shown here:

$strScope = "subtree"

6. Modify the $strQuery line of code so that it uses the four variables we created:

$strQuery = "<LDAP://dc=nwtraders,dc=msft>;;name;subtree"

The advantage of this is that each of the four parameters that are specified for the LDAP
syntax query can easily be modified by simply changing the value of the variable.
This preserves the integrity of the worker section of the script. The order of the four

182 Chapter 8 Leveraging the Power of ADO
parameters is base, filter, attributes, and scope. Thus, the revised value to assign to the
$strQuery variable is shown here:

$strQuery = "$strBase;$strFilter;$strAttributes;$strScope"

7. Create a new variable called $strUser and assign the string “LondonAdmin” to it. This is
the name of the useraccount to use to make the connection to Active Directory. This line
of code is shown here:

$strUser = "LondonAdmin"

8. Create a new variable called $strPassword and assign the string Password1 to it. This is
the password that will be used when connecting into the NwTraders.msft domain by
using the LondonAdmin account. This is shown here:

$strPwd = "Password1"

9. Between the $objConnection = New-Object -comObject "ADODB.Connection" command and
the $objCommand = New-Object -comObject "ADODB.Command" command, insert four
blank lines. This space will be used for rearranging the code and for inserting new prop-
erties on the Connection object. The revised code is shown here:

$objConnection = New-Object -comObject "ADODB.Connection"

$objCommand = New-Object -comObject "ADODB.Command"

10. Move the $objConnection.provider = "ADsDSOObject;" line of code from its position
below the $objCommand = New-Object –comObject “ADODB.Command" line of code to
below the line of code that creates the Connection object. After you have the code moved,
remove the trailing semicolon because it is not needed. This revised code is shown here:

$objConnection = New-Object -comObject "ADODB.Connection"
$objConnection.provider = "ADsDSOObject"

11. Use the Item method of the properties collection of the Connection object to assign the
value contained in the $strUser variable to the “User ID” property. This line of code is
shown here:

$objConnection.properties.item("user ID") = $strUser

12. Use the Item method of the properties collection of the Connection object to assign the
value contained in the $strPassword variable to the “Password” property. This line of code
is shown here:

$objConnection.properties.item("Password") = $strPwd

13. The last line of code we need to modify from the old script is the $objConnec-
tion.Open("Provider=ADsDSOObject;") line. Because we needed to move the provider
string up earlier in the code to enable us to modify the properties, we have already

Chapter 8 Leveraging the Power of ADO 183
specified the provider. So, now we only need to open the connection. When we open the
connection, we give it a name “modifiedConnection” that we would be able to use later
on in the script if we so desired. The revised line of code is shown here:

$objConnection.open("modifiedConnection")

14. Save and run your script. If it does not perform as expected, compare it with the Query-
ComputersUseCredentials.ps1 script.

15. This concludes the querying Active Directory using alternative credentials procedure.

Modifying Search Parameters
A number of search options are available to the network administrator. The use of these search
options will have an extremely large impact on the performance of your queries against Active
Directory. It is imperative, therefore, that you learn to use the following options. Obviously,
not all options need to be specified in each situation. In fact, in many situations, the defaults
will perform just fine. However, if a query is taking a long time to complete, or you seem to be
flooding the network with unexpected traffic, you might want to take a look at the Search
properties in Table 8-4.

Table 8-4 ADO Search Properties for Command Object

Property Description
Asynchronous A Boolean value that specifies whether the search is synchronous or

asynchronous. The default is False (synchronous). A synchronous search
blocks until the server returns the entire result (or for a paged search,
the entire page). An asynchronous search blocks until one row of the
search results is available, or until the time specified by the Timeout
property elapses.

Cache Results A Boolean value that specifies whether the result should be cached on
the client side. The default is True; ADSI caches the resultset. Turning off
this option might be desirable for large resultsets.

Chase Referrals A value from ADS CHASE_REFERRALS_ENUM that specifies how the
search chases referrals. The default is ADS_CHASE_REFERRALS EXTER-
NAL = 0x40. To set ADS_CHASE_REFERRALS_NEVER, set to 0.

Column Names Only A Boolean value that indicates that the search should retrieve only the
name of attributes to which values have been assigned. The default is
False.

Deref (dereference) Aliases A Boolean value that specifies whether aliases of found objects are
resolved. The default is False.

PageSize An integer value that turns on paging and specifies the maximum
number of objects to return in a resultset. The default is no page size,
which means that after 1000 items have been delivered from Active
Directory, that is it. To turn on paging, you must supply a value for page
size, and it must be less than the SizeLimit property. (For more informa-
tion, see PageSize in the Platform SDK, which is available online from
http://msdn2.microsoft.com/.)

184 Chapter 8 Leveraging the Power of ADO
In the previous section, when we used alternative credentials in the script, we specified vari-
ous properties on the Connection object. We will use the same type of procedure to modify
search parameters, but this time we will specify values for various properties on the Com-
mand object. As an example, suppose we wanted to perform an asychronous query of Active
Directory. We would need to supply a value of true for the asynchronous property. The tech-
nique is exactly the same as supplying alternative credentials: create the object, and use the
Item method to specify a value for the appropriate property. This piece of code, taken from the
AsynchronousQueryComputers.ps1 script, is shown here:

$objCommand = New-Object -comObject "ADODB.Command"
$objCommand.ActiveConnection = $objConnection
$objCommand.Properties.item("Asynchronous") = $blnTrue

Important When specifying properties for the Command object, ensure you have the active-
Connection associated with a valid Connection object before making the assignment. Otherwise,
you will get an error stating the property is not valid—which can be very misleading.

Note that you should specify a page size. In Windows Server 2003, Active Directory is limited
to returning 1000 objects from the results of a query when no page size is specified. The
PageSize property tells Active Directory how many objects to return at a time. When this prop-
erty is specified, there is no limit on the number of returned objects Active Directory can pro-
vide. If you specify a size limit, the page size must be smaller. The exception would be if you

SearchScope A value from the ADS_SCOPEENUM enumeration that specifies the
search scope. The default is ADS_SCOPE_SUBTREE.

SizeLimit An integer value that specifies the size limit for the search. For Active
Directory, the size limit specifies the maximum number of returned
objects. The server stops searching once the size limit is reached and
returns the results accumulated up to that point. The default is No
Limit.

Sort on A string that specifies a comma-separated list of attributes to use as
sort keys. This property works only for directory servers that support
the LDAP control for server-side sorting. Active Directory supports the
sort control, but this control can affect server performance, particularly
when the resultset is large. Be aware that Active Directory supports only
a single sort key. The default is No Sorting.

TimeLimit An integer value that specifies the time limit, in seconds, for the search.
When the time limit is reached, the server stops searching and returns
the results accumulated to that point. The default is No Time Limit.

Timeout An integer value that specifies the client-side timeout value, in seconds.
This value indicates the time the client waits for results from the server
before quitting the search. The default is No Timeout.

Table 8-4 ADO Search Properties for Command Object

Property Description

Chapter 8 Leveraging the Power of ADO 185
want an unlimited size limit of 0, then obviously the PageSize property would be larger than
the value of 0. In the SizeLimitQueryUsers.ps1 script, after creating a Command object,
associating the connection with the activeConnection property, we use the Item method of
the properties collection to specify a size limit of 4. When the script is run, it only returns four
users. The applicable portion of the code is shown here:

$objCommand = New-Object -comObject "ADODB.Command"
$objCommand.ActiveConnection = $objConnection
$objCommand.Properties.item("Size Limit") = 4

Controlling script execution

1. Open the QueryComputersUseCredentials.ps1 script, and save it as
yournameQueryTimeOut.ps1.

2. Edit the query filter contained in the string that is assigned to the variable $strFilter so
that the filter will return items when the ObjectCategory is equal to User. The revised
line of code is shown here:

$strFilter = "(objectCategory=User)"

3. Delete the line that creates the $strUser variable and assigns the LondonAdmin User to it.

4. Delete the line that creates the $strPwd variable and assigns the string Password1 to it.

5. Delete the two lines of code that assign the value contained in the $strUser variable to the
User ID property, and the one that assigns the value contained in the $strPwd variable to
the Password property of the Connection object. These two lines of code are shown
commented-out here:

#$objConnection.properties.item("user ID") = $strUser
#$objConnection.properties.item("Password") = $strPwd

6. Inside the parentheses of the Open command that opens the Connection object to
Active Directory, delete the Reference string that is contained inside it. We are able to
delete this string because we did not use it to refer to the connection later in the script.
The modified line of code is shown here:

$objConnection.open()

7. Under the line of code that assigns the Connection object that is contained in the $obj-
Connection variable to the ActiveConnection property of the Command object, we want
to add the value of 1 to the TimeLimit property of the Command object. To do this, use
the property name TimeLimit, and use the Item method to assign it to the properties col-
lection of the Command object. The line of code that does this is shown here:

$objCommand.properties.item("Time Limit")=1

8. Save and run your script. If it does not produce the desired results, compare it with
QueryTimeOut.ps1.

9. This concludes the controlling script execution procedure.

186 Chapter 8 Leveraging the Power of ADO
Searching for Specific Types of Objects
One of the best ways to improve the performance of Active Directory searches is to limit the
scope of the search operation. Fortunately, searching for a specific type of object is one of the
easiest tasks to perform. For example, to perform a task on a group of computers, limit your
search to the computer class of objects. To work with only groups, users, computers, or print-
ers, specify the objectClass or the objectCategory attribute in the search filter. The objectCat-
egory attribute is a single value that specifies the class from which the object in Active Directory
is derived. In other words, users are derived from an objectCategory called users. All the prop-
erties you looked at in Chapter 7, “Working with Active Directory,” when we were creating
objects in Active Directory are contained in a template called an objectCategory. When you cre-
ate a new user, Active Directory does a lookup to find out what properties the user class con-
tains. Then it copies all those properties onto the new user you just created. In this way, all
users have the same properties available to them.

Just the Steps To limit the Active Directory search

1. Create a connection to Active Directory by using ADO.

2. Use the Open method of the object to access Active Directory.

3. Create an ADO Command object, and assign the ActiveConnection property to the Connection
object.

4. Assign the query string to the CommandText property of the Command object.

5. In the query string, specify the objectCategory of the target query.

6. Choose specific fields of data to return in response to the query.

7. Use the Execute method to run the query and store the results in a RecordSet object.

8. Read information in the result set using properties of the RecordSet object.

9. Close the connection by using the Close method of the Connection object.

In the QueryComputers.ps1 script, you use ADO to query Active Directory with the goal of
returning a recordset containing selected properties from all the computers with accounts in
the directory.

To make the script easier to edit, we abstracted each of the four parts of the LDAP dialect
query into a separate variable. The $strBase variable in the QueryComputers.ps1 script is
used to hold the base of the ADO query. The base is used to determine where the script
will make its connection into Active Directory. The line of code that does this in the
QueryComputers.ps1 script is shown here:

$strBase = "<LDAP://dc=nwtraders,dc=msft>"

Chapter 8 Leveraging the Power of ADO 187
The filter is used to remove the type of objects that are returned by the ADO query. In the
QueryComputers.ps1 script, we filter on the value of the objectCategory attribute when it
has a value of computer. This line of code is shown here:

$strFilter = "(objectCategory=computer)"

The attributes to be selected from the query are specified in the $strAttributes variable. In the
QueryComputers.ps1 script, we choose only the Name attribute. This line of code is shown
here:

$strAttributes = "name"

The search scope determines how deep the query will go. There are three possible values for
this: base, oneLevel, and subtree. Base searches only at the level where the script connects.
OneLevel tells ADO to go one level below where the $strbase connection is made. Subtree is prob-
ably the most commonly used and tells ADO to make a recursive query through Active Directory.
This is the kind of query we do in QueryComputers.ps1. This line of code is shown here:

$strScope = "subtree"

The $strQuery is used to hold the query used to query from Active Directory. When it is
abstracted into variables, it becomes easy to modify. The revised code is shown here:

$strQuery = "$strBase;$strFilter;$strAttributes;$strScope"

The complete QueryComputers.ps1 is shown here:

QueryComputers.ps1
$strBase = "<LDAP://dc=nwtraders,dc=msft>"
$strFilter = "(objectCategory=computer)"
$strAttributes = "name"
$strScope = "subtree"
$strQuery = "$strBase;$strFilter;$strAttributes;$strScope"

$objConnection = New-Object -comObject "ADODB.Connection"
$objCommand = New-Object -comObject "ADODB.Command"
$objConnection.Open("Provider=ADsDSOObject;")
$objCommand.ActiveConnection = $objConnection
$objCommand.CommandText = $strQuery
$objRecordSet = $objCommand.Execute()

Do
{
 $objRecordSet.Fields.item("name") |Select-Object Name,Value
 $objRecordSet.MoveNext()
}
Until ($objRecordSet.eof)

$objConnection.Close()

188 Chapter 8 Leveraging the Power of ADO
Querying multiple attributes

1. Open Notepad or your favorite Windows PowerShell editor.

2. Open QueryComputers.ps1, and save it as yournameQueryComputersByName.ps1.

3. Edit the $strFilter line so that it includes the additional attribute name. To do this using
the LDAP dialect, we will need to first add an extra set of parentheses around the entire
filter expression. This is shown here:

$strFilter = "((objectCategory=computer))"

4. Between the first set of double parentheses, we will add the ampersand character (&),
which will tell the LDAP dialect search filter we want both of the attributes we are getting
ready to supply. This is shown here:

$strFilter = "(&(objectCategory=computer))"

5. At end of the first search filter expression, we want to add a second expression. We
want to search by both Computer Type objects and usernames. This modified line of
code is shown here:

$strFilter = "(&(objectCategory=computer)(name=london))"

6. Save and run your script. It should produce a script output that lists all computer
accounts named London.

7. This concludes the querying multiple attributes procedure.

What Is Global Catalog?
As you become more proficient in writing your scripts, and as you begin to work your magic
on the enterprise on a global scale, you will begin to wonder why some queries seem to take
forever and others run rather fast. After configuring some of the parameters you looked at
earlier, you might begin to wonder whether you’re hitting a Global Catalog (GC) server. A
Global Catalog server is a server that contains all the objects and their associated attributes
from your local domain. If all you have is a single domain, it doesn’t matter whether you’re
connecting to a domain controller or a GC server because the information will be the same.
If, however, you are in a multiple domain forest, you might very well be interested in which GC
server you are hitting. Depending on your network topology, you could be executing a
query that is going across a slow WAN link. You can control replication of attributes by
selecting the Global Catalog check box. You can find this option by opening the Active
Directory Schema MMC, highlighting the Attributes container. The Active Directory Schema
MMC is not available by default in the Administrative Tools program group. For informa-
tion on how to install it, visit the following URL: http://technet2.microsoft.com/
WindowsServer/en/library/2218144f-bb92-454e-9334-186ee7c740c61033.mspx?mfr=true.

In addition to controlling the replication of attributes, the erstwhile administrator might also
investigate attribute indexing (Fig. 8-1.) Active Directory already has indexes built on certain

Chapter 8 Leveraging the Power of ADO 189
objects. However, if an attribute is heavily searched on, you might consider an additional
index. You should do this, however, with caution because an improperly placed index is worse
than no index at all. The reason for this is the time spent building and maintaining an index.
Both of these operations use processor time and disk I/O.

Figure 8-1 Heavily queried attributes often benefit from indexing

Querying a global catalog server

1. Open the BasicQuery.ps1 script in Notepad or another Windows PowerShell editor and
save the file as yournameQueryGC.ps1

2. On the first noncommented line of your script, declare a variable called $strBase. This
variable will be used to control the connection into the global catalog server in Active
Directory. To do this, instead of using the LDAP moniker, we will use the GC moniker.
The rest of the path will be the same because it uses the Distinguished Name of target.
For this procedure, let’s connect to the OU called MyTestOU in the NwTraders.msft
domain. The line of code to do this is shown here:

$strBase = <GC://ou=MyTestOU,dc=nwtraders,dc=msft>

3. On the next line, create a variable called $strFilter. This variable will be used to hold the filter
portion of the query. The filter will be used to return only objects from Active Directory that
have the objectCategory attribute set to User. The line of code that does this is shown here:

$strFilter = "(objectCategory=user)"

190 Chapter 8 Leveraging the Power of ADO
4. Create a variable called $strAttributes that will be used to hold the attributes to retrieve
from Active Directory. For this script, we are only interested in the Name attribute. The
line of code that does this is shown here:

$strAttributes = "name"

5. Create a variable called $strScope. This variable will hold the string oneLevel that is used to
tell Active Directory that we want the script to obtain a list of the users in the MyTestOU only.
We do not need to perform a recursive type of query. This line of code is shown here:

$strScope = "oneLevel"

6. Modify the $strQuery line so that it uses the four variables we defined for each of the four
parts of the LDAP dialect query. The four variables are $strBase, $strFilter, $strAttributes,
and $strScope in this order. Make sure you use a semicolon to separate the four parts
from one another. Move the completed line of code to the line immediately beneath the
$strScope-“oneLevel” line. The completed line of code is shown here:

$strQuery = "$strBase;$strFilter;$strAttributes;$strScope"

7. Save and run your script. It should run without errors. If it does not produce the
expected results, compare your script with the QueryGC.ps1 script.

8. This concludes the querying a global catalog server procedure.

Querying a specific server

1. Open the QueryGC.ps1 script in Notepad or your favorite Windows PowerShell script
editor, and save the script as yournameQuerySpecificServer.ps1.

2. Edit the string assigned to the $strBase variable so that you use the LDAP moniker instead
of the GC moniker. After the ://, type the name of the server. Do not use CN=, as would
normally be used for the Distinguished Name attribute. Instead, just type the name of the
server followed by a forward slash (\). The completed line of code is shown here:

$strBase = "<LDAP://London/ou=MyTestOU,dc=nwtraders,dc=msft>"

3. Save and run your script. If your script does not work properly, compare it with the
QuerySpecificServer.ps1 script.

4. This concludes the querying a specific server procedure.

Querying a specific server by IP address

1. Open the QuerySpecificServer.ps1 script in Notepad or your favorite Windows Power-
Shell script editor and save it as yournameQuerySpecificServerByIP.ps1.

2. Edit the string that is assigned to the $strBase variable so that you are supplying the
LDAP moniker with an IP address instead of a Host name. The revised line of code is
shown here:

$strBase = "<LDAP://192.168.1.1/ou=MyTestOU,dc=nwtraders,dc=msft>"

Chapter 8 Leveraging the Power of ADO 191
3. Save and run your script. If your script does not run properly, compare it with the
QuerySpecificServerByIP.ps1 script.

4. This concludes the querying a specific server by IP address procedure.

Using the base search scope

1. Open the QuerySpecificServer.ps1 script in Notepad, or some other Windows Power-
Shell script editor. Save the script as yournameSearchBase.ps1.

2. Change the $strScope line so that it will point to base instead of oneLevel. This revised
line of code is shown here:

$strScope = "base"

3. Because a base query connects to a specific object, there is no point in having a filter.
Delete the $strFilter line, and remove the $strFilter variable from the second position of
the $strQuery string that is used for the LDAP dialect query. The revised $strQuery line
of code is shown here:

$strQuery = "$strBase;;$strAttributes;$strScope"

4. Because the base query will only return a single object, it does not make sense to per-
form a do … until loop. Delete the line that has the opening Do, and delete the line with
the Until ($objRecordSet.eof).

5. Delete the opening and the closing curly brackets. Delete the $objRecordSet.MoveNext()
command because there are no more records to move to.

6. Go to the $strAttributes variable and modify it so that we retrieve both the objectCategory
and the Name attributes. The revised line of code is shown here:

$strAttributes = "objectCategory,name"

7. Copy the $objRecordSet.Fields.item("name") |Select-Object value line of code, and
paste it just below the first one. Edit the first $objRecordSet.Fields.item line of code so
that it will retrieve the objectCategory attribute from the recordset. The two lines of code
are shown here:

$objRecordSet.Fields.item("objectCategory") |Select-Object value
$objRecordSet.Fields.item("name") |Select-Object value

8. Save and run your script. If it does not perform correctly, compare it with the Search
Base.ps1 script.

9. This concludes the using the base search scope procedure.

192 Chapter 8 Leveraging the Power of ADO
Using the SQL Dialect to Query Active Directory
For many network professionals, the rather cryptic way of expressing the query into Active
Directory is at once confusing and irritating. Because of this confusion, we also have an SQL
dialect we can use to query Active Directory. The parts that make up an SQL dialect query are
listed in Table 8-5. Of the four parts that can make up an SQL dialect query, only two parts are
required: the Select statement and the from keyword that indicates the base for the search. An
example of this use is shown here. A complete script that uses this type of query is the Select-
NameSQL.ps1 script.

Select name from 'LDAP://ou=MyTestOu,dc=nwtraders,dc=msft'

The Where statement is used to specify the filter for the Active Directory query. This is similar
to the filter used in the LDAP dialect queries. The basic syntax of the filter is attributeName =
value. But as in any SQL query, we are free to use various operators, as well as and, or or, and
even wild cards. An example of a query using Where is shown here (keep in mind this is a sin-
gle line of code that was wrapped for readability). A complete script that uses this type of
query is the QueryComputersSQL.ps1 script.

Select name from 'LDAP://ou=MyTestOu,dc=nwtraders,dc=msft'where
objectCategory='computer'

The order by clause is the fourth part of the SQL dialect query. Just like the Where clause, it is
also optional. In addition to selecting the property to order by, you can also specify two key-
words: ASC for ascending and DESC for descending. An example of using the order by clause
is shown here. A complete script using this query is the QueryUsersSQL.ps1 script.

Select adsPath, cn from 'LDAP://dc=nwtraders,dc=msft' where
objectCategory='user'order by sn DESC

The SQLDialectQuery.ps1 script is different from the BasicQuery.ps1 script only in the dialect
used for the query language. The script still creates both a Connection object and a Command
object, and works with a RecordSet object in the output portion of the script. In the SQLDia-
lectQuery.ps1 script, we hold the SQL dialect query in three different variables. The $strAt-
tributes variable holds the select portion of the script. $strBase is used to hold the AdsPath
attribute, which contains the complete path to the target of operation. The last variable used
in holding the query is the $strFilter variable, which holds the filter portion of the query.
Using these different variables makes the script easier to modify and easier to read. The
$strQuery variable is used to hold the entire SQL dialect query. If you are curious to see the

Table 8-5 SQL Dialect

Select From Where Order by
Comma separated list
of attributes

AdsPath for the base of
the search enclosed in
single quotation marks

Optional Used for the
filter

Optional. Used for
server side sort control.
A comma separated list
of attributes

Chapter 8 Leveraging the Power of ADO 193
query put together in its entirety, you can simply print out the value of the variable by adding
the $strQuery line under the line where the query is put back together.

SQLDialectQuery.ps1
$strAttributes = "Select name from "
$strBase = "'LDAP://ou=MyTestOu,dc=nwtraders,dc=msft'"
$strFilter = " where objectCategory='computer'"
$strQuery = "$strAttributes$strBase$strFilter"

$objConnection = New-Object -comObject "ADODB.Connection"
$objCommand = New-Object -comObject "ADODB.Command"
$objConnection.Open("Provider=ADsDSOObject;")
$objCommand.ActiveConnection = $objConnection
$objCommand.CommandText = $strQuery
$objRecordSet = $objCommand.Execute()

Do
{
 $objRecordSet.Fields.item("name") |Select-Object Name,Value
 $objRecordSet.MoveNext()
}
Until ($objRecordSet.eof)

$objConnection.Close()

Creating an ADO Query into Active Directory: Step-by-
Step Exercises

In this exercise, we will explore the use of various queries against Active Directory. We will use
both simple and compound query filters as we return data, beginning with the generic and
moving on to the more specific.

1. Launch the CreateMultipleUsers.ps1 script from the scripts folder for this chapter. This
script will create 60 users with city locations from three different cities, and four different
departments. We will use the different users and departments and cities in our Active
Directory queries. By default, the script will create the users in the MyTestOU in the
NwTraders.msft domain. If your Active Directory configuration is different, then edit the
Active Directory Service Interfaces (ADSI) connection string shown here. If you are
unsure of how to do this, refer back to Chapter 7, “Working with Active Directory.”

$objADSI = [ADSI]"LDAP://ou=myTestOU,dc=nwtraders,dc=msft"

2. Open Notepad or another Windows PowerShell script editor.

3. On the first line, declare a variable called $strBase. This variable will be used to hold the
base for our LDAP syntax query into Active Directory. The string will use angle brackets
at the beginning and the end of the string. We will be connecting to the MyTestOU in the
NwTraders.msft domain. The line of code that does this is shown here:

$strBase = "<LDAP://ou=mytestOU,dc=nwtraders,dc=msft>"

194 Chapter 8 Leveraging the Power of ADO
4. On the next line, declare a variable called $strFilter. This variable will hold the string that
will be used for the query filter. It will filter out every object that is not a User object. The
line of code that does this is shown here:

$strFilter = "(objectCategory=User)"

5. Create a variable called $strAttributes. This variable will hold the attribute we wish to
retrieve from Active Directory. For this lab, we only want the name of the object. This line
of code is shown here:

$strAttributes = "name"

6. On the next line, we need to declare a variable called $strScope that will hold the search
scope parameter. For this exercise, we will use the subtree parameter. This line of code
is shown here:

$strScope = "subtree"

7. On the next line, we put the four variables together to form our query string for the ADO
query into Active Directory. Hold the completed string in a variable called $strQuery.
Inside quotes, separate each of the four variables by a semicolon, which is used by the
LDAP dialect to distinguish the four parts of the LDAP dialect query. The line of code to
do this is shown here:

$strQuery = "$strBase;$strFilter;$strAttributes;$strScope"

8. Create a variable called $objConnection. The $objConnection variable will be used to hold
an ADODB.Connection COM object. To create the object, use the New-Object cmdlet.
This line of code is shown here:

$objConnection = New-Object -comObject "ADODB.Connection"

9. Create a variable called $objCommand that will be used to hold a new instance of the
COM object “ADODB.Command”. The code to do this is shown here:

$objCommand = New-Object -comObject "ADODB.Command"

10. Open the Connection object by calling the Open method. Supply the name of the pro-
vider to use while opening the connection. For this lab, we will use the AdsDSOObject
provider. The line of code that does is shown here:

$objConnection.Open("Provider=ADsDSOObject")

11. Now we need to associate the Connection object we just opened with the ActiveConnec-
tion property of the Command object. To do this, simply supply the Connection object
contained in the $objConnection variable to the ActiveConnection property of the Com-
mand object. The code that does this is shown here:

$objCommand.ActiveConnection = $objConnection

Chapter 8 Leveraging the Power of ADO 195
12. Now we need to supply the text for the Command object. To do this, we will use the query
contained in the variable $strQuery and assign it to the CommandText property of the Com-
mand object held in the $objCommand variable. The code that does this is shown here:

$objCommand.CommandText = $strQuery

13. It is time to execute the query. To do this, call the Execute method of the Command
object. It will return a RecordSet object, so use the variable $objRecordSet to hold the
RecordSet object that comes back from the query.

$objRecordSet = $objCommand.Execute()

14. Use a do … until statement to walk through the recordset until you reach the end of file.
While you are typing this, go ahead and open and close the curly brackets. This will take
four lines of code, which are shown here:

Do
{

}
Until ($objRecordSet.eof)

15. Inside the curly brackets, retrieve the Name attribute from the recordset by using the
Item method from the Fields property. Pipeline the resulting object into a Select-Object
cmdlet and retrieve only the value property. This line of code is shown here:

$objRecordSet.Fields.item("name") |Select-Object Value

16. Call the MoveNext method to move to the next record in the RecordSet object contained
in the $objRecordSet variable. This line of code is shown here:

$objRecordSet.MoveNext()

17. After the until ($objRecordSet.eof) line of code, call the Close method from the Record-
Set object to close the connection into Active Directory. This line of code is shown here:

$objConnection.Close()

18. Save your script as yournameQueryUsersStepByStep.ps1. Run your script. You should
see the name of 60 users come scrolling forth from the Windows PowerShell console. If
this is not the case, compare your script with the QueryUsersStepByStep.ps1 script.
Note, in the QueryUsersStepByStep.ps1 script, there are five $strFilter lines … only one
that is not commented out. This is so you will have documentation on the next steps.
When this code is working, it is time to move on to a few more steps.

19. Now we want to modify the filter so that it will only return users who are in the Charlotte
location. To do this, copy the $strFilter line and paste it below the current line of code.
Now, comment out the original $strFilter. We now want to use a compound query:
objects in Active Directory that are of the category user, and a location attribute of Char-
lotte. From Chapter 7, you may recall the attribute for location is l. To make a compound

196 Chapter 8 Leveraging the Power of ADO
query, enter the search parameter inside parentheses, inside the grouping parentheses,
after the first search filter. This modified line of code is shown here:

$strFilter = "(&(objectCategory=User)(l=charlotte))"

20. Save and run your script. Now, we want to add an additional search parameter. Copy
your modified $strFilter line, and paste it beneath the line you just finished working on.
Comment out the previous $strFilter line. Just after the location filter of Charlotte, add
a filter for only users in Charlotte who are in the HR department. This revised line of
code is shown here:

$strFilter = "(&(objectCategory=User)(l=charlotte)(department=hr))"

21. Save and run your script. Now copy your previous $strFilter line of code, and paste it
below the line you just modified. This change is easy. You want all users in Charlotte who
are not in HR. To make a not query, place the exclamation mark (bang) operator inside
the parentheses you wish the operator to affect. This modified line of code is shown here:

$strFilter = "(&(objectCategory=User)(l=charlotte)(!department=hr))"

22. Save and run your script. Because this is going so well, let’s add one more parameter to
our search filter. So, once again copy the $strFilter line of code you just modified, and
paste it beneath the line you just finished working on. This time, we want users who are
in Charlotte or Dallas and who are not in the HR department. To do this, add a l=dallas
filter behind the l=charlotte filter. Put parentheses around the two locations, and then
add the pipeline character (|) in front of the l=charlotte parameter. This revised line of
code is shown here. Keep in mind that it is wrapped for readability, but should be on one
logical line in the script.

$strFilter = "(&(objectCategory=User)(|(l=charlotte)(l=dallas))(!department=hr))"

23. Save and run your script. In case you were getting a little confused by all the copying and
pasting, here are all the $strFilter commands you have typed in this section of the step-
by-step exercise:

$strFilter = "(objectCategory=User)"
#$strFilter = "(&(objectCategory=User)(l=charlotte))"
#$strFilter = "(&(objectCategory=User)(l=charlotte)(department=hr))"
#$strFilter = "(&(objectCategory=User)(l=charlotte)(!department=hr))"
#$strFilter = "(&(objectCategory=User)(|(l=charlotte)(l=dallas))(!department=hr))"

24. This concludes this step-by-step exercise.

One Step Further: Controlling How a Script Executes
Against Active Directory

In this exercise, we will control the way we return data from Active Directory.

1. To make it easier to keep up the number of users returned from our Active Directory que-
ries, run the DeleteMultipleUsers.ps1 script. This will delete the 60 users we created for
the previous step-by-step exercise.

Chapter 8 Leveraging the Power of ADO 197
2. Run the Create2000Users.ps1 script. This script will create 2000 users for you to use in
the MyTestOU OU.

3. Open the QueryUsersStepbyStep.ps1 script and save it as yournameOneStepFurther-
QueryUsers.ps1.

4. Because we are not interested in running finely crafted queries in this exercise (rather, we are
interested in how to handle large amounts of objects that come back), delete all the $strFilter
commands except for the one that filters out User objects. This line of code is shown here:

$strFilter = "(objectCategory=User)"

5. Save and run your script. You will see 1000 user names scroll by in your Windows
PowerShell console window. After about 30 seconds (on my machine anyway), you
will finally see MyLabUser997 show up. The reason it is MyLabUser997 instead of
MyLabUser1000 is that this OU already had three users when we started (myBoss,
myDirect1, and myDirect2). This is OK; it is easy to see that the query returned the
system default of 1000 objects.

6. We know, however, there are more than 2000 users in the MyTestOU, and we have only
been able to retrieve 1000 of them. To get past the query limit that is set for Active Direc-
tory, we need to turn on paging. This is simple. We assign a value for the PageSize prop-
erty to be less than the 1000 object limit. To do this, we use the Item method of the
properties collection on the Command object and assign the value of 500 to the Page-
Size property. This line of code is shown here. Place this code just above this line, which
creates the RecordSet object: $objRecordSet = $objCommand.Execute().

$objCommand.Properties.item("Page Size") = 500

7. After you have made the change, save and run your script. You should see all 2000 user
objects show up … however, the results may be a little jumbled. Without using a Sort-
Object or specifying the Sort property on the server, the values are not guaranteed to be
in order. This script takes about a minute or so on my computer.

8. To tell Active Directory we do not want any size limit, specify the SizeLimit property as
0. We can do this by using the Item method of the properties collection on the Com-
mand object. This line of code is shown here:

$objCommand.Properties.item("Size Limit") = 0

9. To make the script a bit more efficient, change the script to perform an asynchronous query
(synchronous being the default). This will reduce the network bandwidth consumed and
will even out the processor load on your server. To do this, declare a variable called $blnTrue
and set it equal to the Boolean type. Assign the value –1 to it. Place this code just under the
line that creates the $strQuery variable. This line of code is shown here:

$blnTrue = [bool]-1

10. Under the line of code that sets the size limit, use the Item method of the properties col-
lection to assign the value true to the asynchronous property of the Command object.

198 Chapter 8 Leveraging the Power of ADO
Use the Boolean value you created and stored in the $blnTrue variable. This line of code
is shown here:

$objCommand.Properties.item("Asynchronous") = $blnTrue

11. Save and run your script. You should see the script run perhaps a little faster because it
is doing an asynchronous query. If your script does not run properly, compare your
script with the OneStepFurtherQueryUsers.ps1 script.

12. To clean up after this lab, run the Delete2000Users.ps1 script. It will delete the 2000
users we created at the beginning of the exercise.

13. This concludes this one step further exercise.

Chapter 8 Quick Reference

To Do This
Make an ADO connection into Active Directory Use the ADsDSOObject provider with ADO to talk to

Active Directory

Perform an Active Directory query Use the Field object to hold attribute data

Tell ADO search to cache results on the client side of
the connection

Use the “Cache results” property

Directly query a Global Catalog (GC) server Use GC:// in your connection moniker, instead of
using LDAP://, as shown here:
GC://

Directly query a specific server in Active Directory Use LDAP:// in your connection moniker, followed by
a trailing backslash (/), as shown here:
LDAP://London/

Query for multiple attributes in Active Directory using
the LDAP dialect

Open a set of parentheses. Inside the set of parenthe-
ses, type your attribute name and value for each of
the attributes you wish to query. Enclose them in
parentheses. At the beginning of the expression
between the first two sets of parentheses, use the
ampersand (&) operator, as shown here:
(&(objectCategory=computer)(name=london))

Use server side sorting when using the SQL dialect Use the order by parameter followed by either the
ASC or the DESC keyword, as shown here:
'user'order by sn DESC

Return more than 1000 objects from an Active
Directory ADO query

Turn on paging by specifying the PageSize property
on the Command object, and supply a value for Size-
Limit property

Connect to Active Directory using alternative
credentials

Specify the User ID and Password properties on the
Connection object

	Cover
	Table of Contents
	Chapter 1: Overview of Windows PowerShell
	Understanding Windows PowerShell
	Using Cmdlets
	Installing Windows PowerShell
	Deploying Windows PowerShell

	Using Command Line Utilities
	Security Issues with Windows PowerShell
	Controlling Execution of PowerShell Cmdlets
	Confirming Commands
	Suspending Confirmation of Cmdlets

	Working with Windows PowerShell
	Accessing Windows PowerShell
	Configuring Windows PowerShell

	Supplying Options for Cmdlets
	Working with the Help Options
	Exploring Commands: Step-by-Step Exercises
	One Step Further: Obtaining Help

	Chapter 2: Using Windows PowerShell Cmdlets
	Understanding the Basics of Cmdlets
	Using the Get-ChildItem Cmdlet
	Using the Format-Wide Cmdlet

	Leveraging the Power of Get-Command
	Using the Get-Member Cmdlet
	Using the New-Object Cmdlet
	Creating a PowerShell Profile
	Working with Cmdlets: Step-by-Step Exercises
	One Step Further: Working with New-Object

	Chapter 3: Leveraging PowerShell Providers
	Identifying the Providers
	Understanding the Alias Provider
	Understanding the Certificate Provider
	Understanding the Environment Provider
	Understanding File System Provider
	Understanding the Function Provider
	Understanding the Registry Provider
	Understanding the Variable Provider
	Exploring the Certificate Provider: Step-by-Step Exercises
	One Step Further: Examining the Environment Provider

	Chapter 8: Leveraging the Power of ADO
	Connecting to Active Directory with ADO
	Creating More Effective Queries
	Using Alternative Credentials
	Modifying Search Parameters

	Searching for Specific Types of Objects
	What Is Global Catalog?
	Using the SQL Dialect to Query Active Directory

	Creating an ADO Query into Active Directory: Step-by- Step Exercises
	One Step Further: Controlling How a Script Executes Against Active Directory

