

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/10329.aspx

Chapter 1

Overview of Windows PowerShell
After completing this chapter, you will be able to:

■ Understand basic use and capabilities of Microsoft Windows PowerShell

■ Install Windows PowerShell

■ Use basic command-line utilities inside Windows PowerShell

■ Use Windows PowerShell help

■ Run basic Windows PowerShell cmdlets

■ Get help on basic Windows PowerShell cmdlets

■ Configure Windows PowerShell to run scripts

The release of Windows PowerShell marks a significant advance for the Windows network
administrator. Combining the power of a full-fledged scripting language, with access to com-
mand-line utilities, Windows Management Instrumentation (WMI), and even VBScript, Pow-
erShell provides both the power and ease of use that have been missing from the Windows
platform since the beginning of time. All the scripts mentioned in this chapter can be found in
the corresponding scripts folder on the CD.

Understanding Windows PowerShell
Perhaps the biggest obstacle for a Windows network administrator in migrating to Windows
PowerShell is understanding what the PowerShell actually is. In some respects, it is like a
replacement for the venerable CMD (command) shell. As shown here, after the Windows
PowerShell is launched, you can use cd to change the working directory, and then use dir to
produce a directory listing in exactly the same way you would perform these tasks from the
CMD shell.

Windows PowerShell
Copyright (C) 2006 Microsoft Corporation. All rights reserved.

PS C:\Documents and Settings\edwilson> cd c:\
PS C:\> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 7/2/2006 12:14 PM audioBOOK
d---- 1/13/2006 9:34 AM bt
d---- 11/4/2006 2:57 AM Documents and Settings
1

2 Chapter 1 Overview of Windows PowerShell
d---- 2/6/2006 2:49 PM DsoFile
d---- 9/5/2006 11:30 AM fso
d---- 7/21/2006 3:08 AM fso2
d---- 11/15/2006 9:57 AM OutlookMail
d-r-- 11/20/2006 4:44 PM Program Files
d---- 7/16/2005 11:52 AM RAS
d---- 1/30/2006 9:30 AM smartPhone
d---- 11/1/2006 11:35 PM Temp
d---- 8/31/2006 6:48 AM Utils
d---- 1/30/2006 9:10 AM vb05sbs
d---- 11/21/2006 5:36 PM WINDOWS
-a--- 7/16/2005 10:39 AM 0 AUTOEXEC.BAT
-a--- 11/7/2006 1:09 PM 3988 bar.emf
--r-s 8/27/2006 6:37 PM 211 boot.ini
-a--- 7/16/2005 10:39 AM 0 CONFIG.SYS
-a--- 8/16/2006 11:42 AM 60 MASK.txt
-a--- 4/5/2006 3:09 AM 288 MRED1.log
-a--- 9/28/2006 11:20 PM 16384 mySheet.xls
-a--- 9/19/2006 4:28 AM 2974 new.txt
-a--- 11/15/2006 2:08 PM 6662 notepad
-a--- 9/19/2006 4:23 AM 4887 old.txt
-a--- 6/3/2006 11:11 AM 102 Platform.ini

PS C:\>

You can also combine “traditional” CMD interpreter commands with some of the newer utili-
ties such as fsutil. This is shown here:

PS C:\> md c:\test

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 11/23/2006 11:42 AM test

PS C:\> cd c:\test
PS C:\test> fsutil file createNew c:\test\myNewFile.txt 1000
File c:\test\myNewFile.txt is created
PS C:\test> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\test

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/23/2006 11:43 AM 1000 myNewFile.txt

PS C:\test> del *.txt
PS C:\test> cd c:\
PS C:\> rd c:\test
PS C:\>

We have been using Windows PowerShell in an interactive manner. This is one of the primary
uses of PowerShell and is accomplished by opening a PowerShell prompt and typing com-
mands. The commands can be entered one at a time, or they can be grouped together like a
batch file. We will look at this later because you need more information to understand it.

Chapter 1 Overview of Windows PowerShell 3
Using Cmdlets
In addition to using traditional programs and commands from the CMD.exe command inter-
preter, we can also use the commandlets (cmdlets) that are built into PowerShell. Cmdlets are
name-created by the Windows PowerShell team to describe the commands that are built into
PowerShell. They are like executable programs, but they take advantage of the facilities built
into Windows PowerShell, and therefore are easy to write. They are not scripts, which are
uncompiled code, because they are built using the services of a special .NET Framework
namespace. Windows PowerShell comes with more than 120 cmdlets that are designed to
assist the network administrator or consultant to leverage the power of PowerShell without
having to learn the PowerShell scripting language. These cmdlets are documented in Appen-
dix A. In general, the cmdlets follow a standard naming convention such as Get-Help, Get-
EventLog, or Get-Process. The get cmdlets display information about the item that is specified
on the right side of the dash. The set cmdlets are used to modify or to set information about
the item on the right side of the dash. An example of a set cmdlet is Set-Service, which can be
used to change the startmode of a service. An explanation of this naming convention is seen
in Appendix B.

Installing Windows PowerShell
It is unfortunate that Windows PowerShell is not installed by default on any of the current
Windows operating systems, including Windows Vista. It is installed with Exchange Server
2007 because Exchange leverages Windows PowerShell for management. This is a tremen-
dous advantage to Exchange admins because it means that everything that can be done
through the Exchange Admin tool can also be done from a PowerShell script or cmdlet.

Windows PowerShell can be installed on Windows XP SP2, Windows Server 2003 SP1, and
Windows Vista. Windows PowerShell requires Microsoft .NET Framework 2.0 (or greater)
and will generate the error shown in Figure 1-1 if this level of the .NET Framework is not
installed.

Figure 1-1 A Setup error is generated if .NET Framework 2.0 is not present

4 Chapter 1 Overview of Windows PowerShell
To prevent frustration during the installation, it makes sense to use a script that checks for the
operating system (OS), service pack level, and .NET Framework 2.0. A sample script that will
check for the prerequisites is DetectPowerShellRequirements.vbs, which follows.

DetectPowerShellRequirements.vbs
strComputer = "."
wmiNS = "\root\cimv2"
wmiQuery = "Select name from win32_Product where name like '%.NET Framework 2.0%'"
wmiQuery1 = "Select * from win32_OperatingSystem"

WScript.Echo "Retrieving settings on " & _ CreateObject("wscript.network").computername
 & " this will take some time ..."
Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)
Set colItems = objWMIService.ExecQuery(wmiQuery)
Set colItems1= objWMIService.ExecQuery(wmiQuery1,,RtnImmedFwdOnly)

If colItems.count <>1 Then
 WScript.Echo ".NET Framework 2.0 is required for PowerShell"
 Else
 WScript.Echo ".NET Framework 2.0 detected"
End If

For Each objItem1 In colItems1
 osVER= objItem1.version
 osSP= objItem1.ServicePackMajorVersion
Next

Select Case osVER
Case "5.1.2600"
 If osSP < 2 Then
 WScript.Echo "Service Pack 2 is required on Windows XP"
 Else
 WScript.Echo "Service Pack",osSP,"detected on",osVER
 End If
Case "5. 2.3790"
 If osSP <1 Then
 WScript.Echo "Service Pack 1 is required on Windows Server 2003"
 Else
 WScript.Echo "Service Pack",osSP,"detected on",osVER
 End if
Case "XXX"
 WScript.Echo "No service pack is required on Windows Vista"
Case Else
 WScript.Echo "Windows PowerShell does not install on Windows version " & osVER
End Select

Deploying Windows PowerShell
After Windows PowerShell is downloaded from http://www.Microsoft.com/downloads, you can
deploy Windows PowerShell to your enterprise by using any of the standard methods you
currently use. A few of the methods some customers have used to accomplish Windows
PowerShell deployment are listed next.

Chapter 1 Overview of Windows PowerShell 5
1. Create a Microsoft Systems Management Server (SMS) package and advertise it to the
appropriate Organizational Unit (OU) or collection.

2. Create a Group Policy Object (GPO) in Active Directory (AD) and link it to the appropri-
ate OU.

If you are not deploying to an entire enterprise, perhaps the easiest way to install Windows
Powershell is to simply double-click the executable and step through the wizard.

Note To use a command line utility in Windows PowerShell, launch Windows PowerShell by
using Start | Run | PowerShell. At the PowerShell prompt, type in the command to run.

Using Command Line Utilities
As mentioned earlier, command-line utilities can be used directly within Windows Power-
Shell. The advantages of using command-line utilities in Windows PowerShell, as opposed to
simply running them in the CMD interpreter, are the Windows PowerShell pipelining and for-
matting features. Additionally, if you have batch files or CMD files that already utilize existing
command-line utilities, they can easily be modified to run within the Windows PowerShell
environment. This command is in the RunningIpconfigCommands.txt file.

Running ipconfig commands

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Enter the command ipconfig /all. This is shown here:

PS C:\> ipconfig /all

3. Pipe the result of ipconfig /all to a text file. This is illustrated here:

PS C:\> ipconfig /all >ipconfig.txt

4. Use Notepad to view the contents of the text file. This is shown here:

PS C:\> notepad ipconfig.txt

Typing a single command into Windows PowerShell is useful, but at times you may need more
than one command to provide troubleshooting information, or configuration details to assist
with setup issues or performance problems. This is where Windows PowerShell really shines. In
the past, one would have to either write a batch file or type the commands manually.

Note Netdiag.exe referenced in the TroubleShoot.bat file is not part of the standard
Windows install, but is a resource kit utility that can be downloaded from
http://www.microsoft.com/downloads.

6 Chapter 1 Overview of Windows PowerShell
This is seen in the TroubleShoot.bat script that follows.

TroubleShoot.bat
ipconfig /all >C:\tshoot.txt
route print >>C:\tshoot.txt
netdiag /q >>C:\tshoot.txt
net statistics workstation >>C:\tshoot.txt

Of course, if you typed the commands manually, then you had to wait for each command to
complete before entering the subsequent command. In that case, it was always possible to
lose your place in the command sequence, or to have to wait for the result of each command.
The Windows PowerShell eliminates this problem. You can now enter multiple commands on
a single line, and then leave the computer or perform other tasks while the computer pro-
duces the output. No batch file needs to be written to achieve this capability.

Tip Use multiple commands on a single Windows PowerShell line. Type each complete
command, and then use a semicolon to separate each command.

The use of this procedure is seen in the Running multiple commands procedure. The com-
mand used in the procedure are in the RunningMultipleCommands.txt file.

Running multiple commands

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Enter the ipconfig /all command. Pipe the output to a text file called Tshoot.txt by using
the redirection arrow (>). This is the result:

ipconfig /all >tshoot.txt

3. On the same line, use a semicolon to separate the ipconfig /all command from the route
print command. Append the output from the command to a text file called Tshoot.txt by
using the redirect and append arrow (>>). The command to this point is shown as
follows:

ipconfig /all >tshoot.txt; route print >>tshoot.txt

4. On the same line, use a semicolon to separate the route print command from the netdiag
/q command. Append the output from the command to a text file called Tshoot.txt
by using the redirect and append arrow. The command to this point is shown here:

ipconfig /all >tshoot.txt; route print >>tshoot.txt; netdiag /q >>tshoot
.txt

Chapter 1 Overview of Windows PowerShell 7
5. On the same line, use a semicolon to separate the netdiag /q command from the net sta-
tistics workstation command. Append the output from the command to a text file called
Tshoot.txt by using the redirect and append arrow. The completed command looks like
the following:

ipconfig /all >tshoot.txt; route print >>tshoot.txt; netdiag /q >>tshoot
.txt; net statistics workstation >>tshoot.txt

Security Issues with Windows PowerShell
As with any tool as versatile as Windows PowerShell, there are bound to be some security con-
cerns. Security, however, was one of the design goals in the development of Windows Power-
Shell.

When you launch Windows PowerShell, it opens in your Documents And Settings folder; this
ensures you are in a directory where you will have permission to perform certain actions and
activities. This is far safer than opening at the root of the drive, or even opening in system root.

To change to a directory, you cannot automatically go up to the next level; you must explicitly
name the destination of the change directory operation.

The running of scripts is disabled by default and can be easily managed through group policy.

Controlling Execution of PowerShell Cmdlets
Have you ever opened a CMD interpreter prompt, typed in a command, and pressed Enter so
that you could see what it does? What if that command happened to be Format C:\? Are you
sure you want to format your C drive? In this section, we will look at some arguments that can
be supplied to cmdlets that allow you to control the way they execute. Although not all
cmdlets support these arguments, most of those included with Windows PowerShell do. The
three arguments we can use to control execution are -whatif, -confirm, and suspend. Suspend
is not really an argument that is supplied to a cmdlet, but rather is an action you can take at a
confirmation prompt, and is therefore another method of controlling execution.

Note To use -whatif in a Windows PowerShell prompt, enter the cmdlet. Type the -whatif
parameter after the cmdlet.

Most of the Windows PowerShell cmdlets support a “prototype” mode that can be entered
using the -whatif parameter. The implementation of -whatif can be decided on by the person
developing the cmdlet; however, it is the recommendation of the Windows PowerShell team
that developers implement -whatif. The use of the -whatif argument is seen in the procedure
below. The commands used in the procedure are in the UsingWhatif.txt file.

8 Chapter 1 Overview of Windows PowerShell
Using -whatif to prototype a command

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Start an instance of Notepad.exe. Do this by typing notepad and pressing the Enter key.
This is shown here:

notepad

3. Identify the Notepad process you just started by using the Get-Process cmdlet. Type
enough of the process name to identify it, and then use a wild card asterisk (*) to avoid
typing the entire name of the process. This is shown as follows:

get-process note*

4. Examine the output from the Get-Process cmdlet, and identify the process ID. The output
on my machine is shown here. Please note that in all likelihood, the process ID used by
your instance of Notepad.exe will be different from the one on my machine.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 39 2 944 400 29 0.05 1056 notepad

5. Use -whatif to see what would happen if you used Stop-Process to stop the process ID you
obtained in step 4. This process ID will be found under the Id column in your output.
Use the -id parameter to identify the Notepad.exe process. The command is as follows:

stop-process -id 1056 -whatif

6. Examine the output from the command. It tells you that the command will stop the
Notepad process with the process ID that you used in your command.

What if: Performing operation "Stop-Process" on Target "notepad (1056)"

Tip To confirm the execution of a cmdlet, launch Windows PowerShell by using Start | Run
| Windows PowerShell. At the Windows PowerShell prompt, supply the -whatif argument to the
cmdlet.

Confirming Commands
As we saw in the previous section, we can use -whatif to prototype a cmdlet in Windows Pow-
erShell. This is useful for seeing what a command would do; however, if we want to be
prompted before the execution of the command, we can use the -confirm argument. The
commands used in the Confirming the execution of cmdlets procedure are listed in the
ConfirmingExecutionOfCmdlets.txt file.

Chapter 1 Overview of Windows PowerShell 9
Confirming the execution of cmdlets

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Start an instance of Notepad.exe. Do this by typing notepad and pressing the Enter key.
This is shown here:

notepad

3. Identify the Notepad process you just started by using the Get-Process cmdlet. Type
enough of the process name to identify it, and then use a wild card asterisk (*) to avoid
typing the entire name of the process. This is illustrated here:

get-process note*

4. Examine the output from the Get-Process cmdlet, and identify the process ID. The output
on my machine is shown here. Please note that in all likelihood, the process ID used by
your instance of Notepad.exe will be different from the one on my machine.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 39 2 944 400 29 0.05 1768 notepad

5. Use the -confirm argument to force a prompt when using the Stop-Process cmdlet to stop
the Notepad process identified by the get-process note* command. This is shown here:

stop-process -id 1768 -confirm

6. The Stop-Process cmdlet, when used with the -confirm argument, displays the following
confirmation prompt:

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "notepad (1768)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

7. Type y and press Enter. The Notepad.exe process ends. The Windows PowerShell
prompt returns to the default ready for new commands, as shown here:

PS C:\>

Tip To suspend cmdlet confirmation, at the confirmation prompt from the cmdlet, type s
and press Enter

10 Chapter 1 Overview of Windows PowerShell
Suspending Confirmation of Cmdlets
The ability to prompt for confirmation of the execution of a cmdlet is extremely useful and at
times may be vital to assisting in maintaining a high level of system uptime. There are times
when you have typed in a long command and then remember that you need to do something
else first. For such eventualities, you can tell the confirmation you would like to suspend exe-
cution of the command. The commands used for suspending execution of a cmdlet are in the
SuspendConfirmationOfCmdlets.txt file.

Suspending execution of a cmdlet

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Start an instance of Notepad.exe. Do this by typing notepad and pressing the Enter key.
This is shown here:

notepad

3. Identify the Notepad process you just started by using the Get-Process cmdlet. Type
enough of the process name to identify it, and then use a wild card asterisk (*) to avoid
typing the entire name of the process. This is shown here:

get-process note*

4. Examine the output from the Get-Process cmdlet, and identify the process ID. The output
on my machine is seen below. Please note that in all likelihood, the process ID used by
our instance of Notepad.exe will be different from the one on my machine.

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 39 2 944 400 29 0.05 3576 notepad

5. Use the -confirm argument to force a prompt when using the Stop-Process cmdlet to stop
the Notepad process identified by the Get-Process Note* command. This is illustrated
here:

stop-process -id 3576 -confirm

6. The Stop-Process cmdlet, when used with the -confirm argument, displays the following
confirmation prompt:

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "notepad (3576)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

7. To suspend execution of the Stop-Process cmdlet, enter s. A triple arrow prompt will
appear, as follows:

PS C:\>>>

Chapter 1 Overview of Windows PowerShell 11
8. Obtain a list of all the running processes that begin with the letter n. Use the Get-Process
cmdlet to do this. The syntax is as follows:

get-process n*

9. On my machine, two processes appear. The Notepad process we launched earlier, and
another process. This is shown here:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 39 2 944 400 29 0.05 3576 notepad
 75 2 1776 2708 23 0.09 632 nvsvc32

10. Return to the previous confirmation prompt by typing exit. This is shown here:

exit

11. Once again, the confirmation prompt appears as follows:

Confirm
Are you sure you want to perform this action?
Performing operation "Stop-Process" on Target "notepad (3576)".
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):

12. Type y and press Enter to stop the Notepad process. There is no further confirmation.
The prompt will now display the default Windows PowerShell PS>, as shown here:

PS C:\>

Working with Windows PowerShell
Windows PowerShell can be used as a replacement for the CMD interpreter. Its many built-in
cmdlets allow for large number of activities. These cmdlets can be used in a stand-alone fash-
ion, or they can be run together as a group.

Accessing Windows PowerShell
After Windows PowerShell is installed, it becomes available for immediate use. However,
using the Windows flag key on the keyboard and pressing the letter r to bring up a run com-
mand prompt, or “mousing around” and and using Start | Run | Windows PowerShell all the
time, becomes somewhat less helpful. I created a shortcut to Windows PowerShell and placed
that shortcut on my desktop. For me, and the way I work, this is ideal. This was so useful, as
a matter of fact, that I wrote a script to do this. This script can be called through a logon script
to automatically deploy the shortcut on the desktop. The script is called CreateShortCut-
ToPowerShell.vbs, and is as follows:

12 Chapter 1 Overview of Windows PowerShell
CreateShortCutToPowerShell.vbs
Option Explicit
Dim objshell
Dim strDesktop
Dim objshortcut
Dim strProg
strProg = "powershell.exe"

Set objshell=CreateObject("WScript.Shell")
strDesktop = objshell.SpecialFolders("desktop")
set objShortcut = objshell.CreateShortcut(strDesktop & "\powershell.lnk")
objshortcut.TargetPath = strProg
objshortcut.WindowStyle = 1
objshortcut.Description = funfix(strProg)
objshortcut.WorkingDirectory = "C:\"
objshortcut.IconLocation= strProg
objshortcut.Hotkey = "CTRL+SHIFT+P"
objshortcut.Save

Function funfix(strin)
funfix = InStrRev(strin,".")
funfix = Mid(strin,1,funfix)
End function

Configuring Windows PowerShell
Many items can be configured for Windows PowerShell. These items can be stored in a Psconsole
file. To export the Console configuration file, use the Export-Console cmdlet, as shown here:

PS C:\> Export-Console myconsole

The Psconsole file is saved in the current directory by default and has an extension of psc1.
The Psconsole file is saved in an xml format. A generic console file is shown here:

<?xml version="1.0" encoding="utf-8"?>
<PSConsoleFile ConsoleSchemaVersion="1.0">
 <PSVersion>1.0</PSVersion>
 <PSSnapIns />
</PSConsoleFile>

Controlling PowerShell launch options

1. Launch Windows PowerShell without the banner by using the -nologo argument. This is
shown here:

PowerShell -nologo

2. Launch a specific version of Windows PowerShell by using the -version argument. This
is shown here:

PowerShell -version 1

Chapter 1 Overview of Windows PowerShell 13
3. Launch Windows PowerShell using a specific configuration file by specifying the -pscon-
solefile argument. This is shown here:

PowerShell -psconsolefile myconsole.psc1

4. Launch Windows PowerShell, execute a specific command, and then exit by using the
-command argument. The command itself must be prefixed by the ampersand sign (&)
and enclosed in curly brackets. This is shown here:

powershell -command "& {get-process}"

Supplying Options for Cmdlets
One of the useful features of Windows PowerShell is the standardization of the syntax in
working with cmdlets. This vastly simplifies the learning of the new shell and language. Table
1-1 lists the common parameters. Keep in mind that all cmdlets will not implement these
parameters. However, if these parameters are used, they will be interpreted in the same man-
ner for all cmdlets because it is the Windows PowerShell engine itself that interprets the
parameter.

Note To get help on any cmdlet, use the Get-Help cmdletname cmdlet.

Table 1-1 Common Parameters

Parameter Meaning
-whatif Tells the cmdlet to not execute but to tell you what would happen

if the cmdlet were to run
-confirm Tells the cmdlet to prompt before executing the command
-verbose Instructs the cmdlet to provide a higher level of detail than a cmdlet

not using the verbose parameter
-debug Instructs the cmdlet to provide debugging information
-ErrorAction Instructs the cmdlet to perform a certain action when an error

occurs. Allowed actions are: continue, stop, silentlyContinue, and
inquire.

-ErrorVariable Instructs the cmdlet to use a specific variable to hold error informa-
tion. This is in addition to the standard $error variable.

-Outvariable Instructs the cmdlet to use a specific variable to hold the output
information

-OutBuffer Instructs the cmdlet to hold a certain number of objects before call-
ing the next cmdlet in the pipeline

14 Chapter 1 Overview of Windows PowerShell
Working with the Help Options
Windows PowerShell has a high level of discoverability; that is, to learn how to use Power-
Shell, you can simply use PowerShell. Online help serves an important role in assisting in this
discoverability. The help system in Windows PowerShell can be entered by several methods.
To learn about using Windows PowerShell, use the Get-Help cmdlet as follows:

get-help get-help

This command prints out help about the Get-Help cmdlet. The output from this cmdlet is illus-
trated here:

NAME
 Get-Help

SYNOPSIS
 Displays information about Windows PowerShell cmdlets and concepts

SYNTAX
 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string
 []>] [-role <string[]>] [-category <string[]>] [-full] [<CommonParameters>]

 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string
 []>] [-role <string[]>] [-category <string[]>] [-detailed] [<CommonParamete
 rs>]

 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string
 []>] [-role <string[]>] [-category <string[]>] [-examples] [<CommonParamete
 rs>]

 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string
 []>] [-role <string[]>] [-category <string[]>] [-parameter <string>] [<Comm
 onParameters>]

DETAILED DESCRIPTION
 The Get-Help cmdlet displays information about Windows PowerShell cmdlets a
 nd concepts. You can also use "Help {<cmdlet name> | <topic-name>" or "<cmd
 let-name> /?". "Help" displays the help topics one page at a time. The "/?"
 displays help for cmdlets on a single page.

RELATED LINKS
 Get-Command
 Get-PSDrive
 Get-Member

REMARKS
 For more information, type: "get-help Get-Help -detailed".
 For technical information, type: "get-help Get-Help -full".

The good thing about online help with the Windows PowerShell is that it not only displays
help about commands, which you would expect, but also has three levels of display: normal,
detailed, and full. Additionally, you can obtain help about concepts in Windows PowerShell.

Chapter 1 Overview of Windows PowerShell 15
This last feature is equivalent to having an online instruction manual. To retrieve a listing of all
the conceptual help articles, use the Get-Help about* command as follows:

get-help about*

Suppose you do not remember the exact name of the cmdlet you wish to use, but you remem-
ber it was a get cmdlet? You can use a wild card, such as an asterisk (*), to obtain the name of
the cmdlet. This is shown here:

get-help get*

This technique of using a wild card operator can be extended further. If you remember that
the cmdlet was a get cmdlet, and that it started with the letter p, you can use the following syn-
tax to retrieve the desired cmdlet:

get-help get-p*

Suppose, however, that you know the exact name of the cmdlet, but you cannot exactly
remember the syntax. For this scenario, you can use the -examples argument. For example, for
the Get-PSDrive cmdlet, you would use Get-Help with the -examples argument, as follows:

get-help get-psdrive -examples

To see help displayed one page at a time, you can use the help function, which displays the
help output text through the more function. This is useful if you want to avoid scrolling up
and down to see the help output. This formatted output is shown in Figure 1-2.

Figure 1-2 Using help to display information one page at a time

Getting tired of typing Get-Help all the time? After all, it is eight characters long, and one of
them is a dash. The solution is to create an alias to the Get-Help cmdlet. The commands used
for this are in the CreateAliasToGet-Help.txt file. An alias is a shortcut key stroke combination
that will launch a program or cmdlet when typed. In the creating an alias for the Get-Help
cmdlet procedure, we will assign the Get-Help cmdlet to the gh key combination.

16 Chapter 1 Overview of Windows PowerShell
Note To create an alias for a cmdlet, confirm there is not already an alias to the cmdlet by
using Get-Alias. Use Set-Alias to assign the cmdlet to a unique key stroke combination.

Creating an alias for the Get-Help cmdlet

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Retrieve an alphabetic listing of all currently defined aliases, and inspect the list for one
assigned to either the Get-Help cmdlet or the key stroke combination gh. The command
to do this is as follows:

get-alias |sort

3. After you have determined that there is no alias for the Get-Help cmdlet, and that none
is assigned to the gh key stroke combination, review the syntax for the Set-Alias cmdlet.
Use the -full argument to the Get-Help cmdlet. This is shown here:

get-help set-alias -full

4. Use the Set-Alias cmdlet to assign the gh key stroke combination to the Get-Help cmdlet.
To do this, use the following command:

set-alias gh get-help

Exploring Commands: Step-by-Step Exercises
In this exercise, we explore the use of command-line utilities in Windows PowerShell. You will
see that it is as easy to use command-line utilities in the Windows PowerShell as in the CMD
interpreter; however, by using such commands in the Windows PowerShell, you gain access to
new levels of functionality.

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Change to the C:\ root directory by typing cd C:\ inside the PowerShell prompt:

Cd c:\

3. Obtain a listing of all the files in the C:\ root directory by using the dir command:

dir

4. Create a directory off the C:\ root directory by using the md command:

Md mytest

5. Obtain a listing of all files and folders off the root that begin with the letter m:

Dir m*

Chapter 1 Overview of Windows PowerShell 17
6. Change the working directory to the PowerShell working directory. You can do this by
using the Set-Location command as follows:

Set-location $pshome

7. Obtain a listing of memory counters related to the available bytes by using the typeperf
command. This command is shown here:

typeperf "\memory\available bytes"

8. After a few counters have been displayed in the PowerShell window, use the ctrl-c com-
mand to break the listing.

9. Display the current boot configuration by using the bootcfg command:

Bootcfg

10. Change the working directory back to the C:\Mytest directory you created earlier:

set-location c:\mytest

11. Create a file named Mytestfile.txt in the C:\Mytest directory. Use the fsutil utility, and
make the file 1,000 bytes in size. To do this, use the following command:

fsutil file createnew mytestfile.txt 1000

12. Obtain a “directory listing” of all the files in the C:\Mytest directory by using the Get-
ChildItem cmdlet. This is shown here:

get-childitem

13. Print out the current date by using the Get-Date cmdlet. This is shown here:

get-date

14. Clear the screen by using the cls command. This is shown here:

cls

15. Print out a listing of all the cmdlets built into Windows PowerShell. To do this, use the
Get-Command cmdlet. This is shown here:

get-command

16. Use the Get-Command cmdlet to get the Get-Alias cmdlet. To do this, use the -name argu-
ment while supplying Get-Alias as the value for the argument. This is shown here:

get-command -name get-alias

17. This concludes the step-by-step exercise. Exit the Windows PowerShell by typing exit
and pressing Enter.

18 Chapter 1 Overview of Windows PowerShell
One Step Further: Obtaining Help
In this exercise, we use various help options to obtain assistance with various cmdlets.

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use the Get-Help cmdlet to obtain help about the Get-Help cmdlet. Use the command
Get-Help Get-Help as follows:

get-help get-help

3. To obtain detailed help about the Get-Help cmdlet, use the -detailed argument as follows:

get-help get-help -detailed

4. To retrieve technical information about the Get-Help cmdlet, use the -full argument. This
is shown here:

get-help get-help -full

5. If you only want to obtain a listing of examples of command usage, use the -examples
argument as follows:

get-help get-help -examples

6. Obtain a listing of all the informational help topics by using the Get-Help cmdlet and the
about noun with the asterisk (*) wild card operator. The code to do this is shown here:

get-help about*

7. Obtain a listing of all the help topics related to get cmdlets. To do this, use the Get-Help
cmdlet, and specify the word “get” followed by the wild card operator as follows:

get-help get*

8. Obtain a listing of all the help topics related to set cmdlets. To do this, use the Get-Help
cmdlet followed by the “set” verb followed by the asterisk wild card. This is shown here:

get-help set*

9. This concludes the one step further exercise. Exit the Windows PowerShell by typing
exit and pressing Enter.

Chapter 1 Overview of Windows PowerShell 19
Chapter 1 Quick Reference

To Do This
Use an external command-line utility Type the name of the command-line utility while

inside Windows PowerShell
Use multiple external command-line utilities sequen-
tially

Separate each command-line utility with a semicolon
on a single Windows PowerShell line

Obtain a list of running processes Use the Get-Process cmdlet
Stop a process Use the Stop-Process cmdlet and specify either the

name or the process ID as an argument
Model the effect of a cmdlet before actually perform-
ing the requested action

Use the -whatif argument

Instruct Windows PowerShell to startup, run a cmdlet,
and then exit

Use the PowerShell command while prefixing the
cmdlet with the ampersand sign and enclosing the
name of the cmdlet in curly brackets

Prompt for confirmation before stopping a process Use the Stop-Process cmdlet while specifying the
-confirm argument

	Cover
	Chapter 1: Overview of Windows PowerShell
	Understanding Windows PowerShell
	Using Cmdlets
	Installing Windows PowerShell
	Deploying Windows PowerShell

	Using Command Line Utilities
	Security Issues with Windows PowerShell
	Controlling Execution of PowerShell Cmdlets
	Confirming Commands
	Suspending Confirmation of Cmdlets

	Working with Windows PowerShell
	Accessing Windows PowerShell
	Configuring Windows PowerShell

	Supplying Options for Cmdlets
	Working with the Help Options
	Exploring Commands: Step-by-Step Exercises
	One Step Further: Obtaining Help

