

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/10329.aspx

Chapter 2

Using Windows PowerShell
Cmdlets

After completing this chapter, you will be able to:

■ Understand the basic use of Microsoft Windows PowerShell cmdlets

■ Use Get-Command to retrieve a listing of cmdlets

■ Configure search options

■ Configure output parameters

■ Use Get-Member

■ Use New-Object

The inclusion of a large amount of cmdlets in Windows PowerShell makes it immediately use-
ful to network administrators and others who need to perform various maintenance and
administrative tasks on their Windows servers and desktop systems. In this chapter, we
review several of the more useful cmdlets as a means of highlighting the power and flexibility
of Windows PowerShell. However, the real benefit of this chapter is the methodology we use
to discover the use of the various cmdlets. All the scripts mentioned in this chapter can be
found in the corresponding scripts folder on the CD.

Understanding the Basics of Cmdlets
In Chapter 1, Overview of Windows PowerShell, we learned about using the various help util-
ities available that demonstrate how to use cmdlets. We looked at a couple of cmdlets that are
helpful in finding out what commands are available and how to obtain information about
them. In this section, we describe some additional ways to use cmdlets in Windows
PowerShell.

Tip Typing long cmdlet names can be somewhat tedious. To simplify this process, type
enough of the cmdlet name to uniquely distinguish it, and then press the Tab key on the key-
board. What is the result? Tab Completion completes the cmdlet name for you. This also
works with argument names and other things you are entering. Feel free to experiment with
this great time-saving technique. You may never have to type get-command again!

Because the cmdlets return objects instead of “string values,” we can obtain additional infor-
mation about the returned objects. The additional information would not be available to us if
21

22 Chapter 2 Using Windows PowerShell Cmdlets
we were working with just string data. To do this, we can use the pipe character (|) to take
information from one cmdlet and feed it to another cmdlet. This may seem complicated, but
it is actually quite simple and, by the end of this chapter, will seem quite natural. At the most
basic level, consider obtaining a directory listing; after you have the directory listing, perhaps
you would like to format the way it is displayed—as a table or a list. As you can see, these are
two separate operations: obtaining the directory listing, and formatting the list. The second
task will take place on the right side of the pipe.

Using the Get-ChildItem Cmdlet
In Chapter 1, we used the dir command to obtain a listing of all the files in a directory. This
works because there is an alias built into Windows PowerShell that assigns the Get-ChildItem
cmdlet to the letter combination dir.

Just the Steps Obtaining a directory listing In a Windows PowerShell prompt, enter the
Get-ChildItem cmdlet followed by the directory to list. Example:

get-childitem C:\

In Windows PowerShell, there actually is no cmdlet called dir, nor does it actually use the dir
command. The alias dir is associated with the Get-ChildItem cmdlet. This is why the output
from dir is different in Windows PowerShell than in the CMD.exe interpreter. The alias dir is
used when we use the Get-Alias cmdlet to resolve the association, as follows:

PS C:\> get-alias dir

CommandType Name Definition
----------- ---- ----------
Alias dir Get-ChildItem

If you use the Get-ChildItem cmdlet to obtain the directory listing, it will obtain a listing the
same as dir because dir is simply an alias for Get-ChildItem. This is shown here:

PS C:\> get-childitem C:\

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 7/2/2006 3:14 PM audioBOOK
d---- 11/4/2006 4:57 AM Documents and Settings
d---- 2/6/2006 4:49 PM DsoFile
d---- 9/5/2006 2:30 PM fso
d---- 11/30/2006 2:08 PM fso1
d---- 7/21/2006 6:08 AM fso2
d---- 12/2/2005 5:41 AM German
d---- 9/24/2006 1:54 AM music
d---- 12/10/2006 6:54 AM mytest
d---- 12/13/2006 8:30 AM OutlookMail

Chapter 2 Using Windows PowerShell Cmdlets 23
d-r-- 11/20/2006 6:44 PM Program Files
d---- 7/16/2005 2:52 PM RAS
d---- 1/30/2006 11:30 AM smartPhone
d---- 11/2/2006 1:35 AM Temp
d---- 8/31/2006 9:48 AM Utils
d---- 1/30/2006 11:10 AM vb05sbs
d---- 12/5/2006 8:01 AM WINDOWS
-a--- 12/8/2006 7:24 PM 22950 a.txt
-a--- 12/5/2006 8:48 AM 23902 alias.txt
-a--- 7/16/2005 1:39 PM 0 AUTOEXEC.BAT
-a--- 11/7/2006 3:09 PM 3988 bar.emf
--r-s 8/27/2006 9:37 PM 211 boot.ini
-a--- 12/3/2006 7:36 AM 21228 cmdlets.txt
-a--- 12/13/2006 9:44 AM 273612 commandHelp.txt
-a--- 12/10/2006 7:34 AM 21228 commands.txt
-a--- 7/16/2005 1:39 PM 0 CONFIG.SYS
-a--- 12/7/2006 3:14 PM 8261 mySheet.xls
-a--- 12/7/2006 5:29 PM 2960 NetDiag.log
-a--- 12/5/2006 8:29 AM 16386 notepad
-a--- 6/3/2006 2:11 PM 102 Platform.ini
-a--- 12/7/2006 5:29 PM 10670 tshoot.txt
-a--- 12/4/2006 9:09 PM 52124 VistaResKitScripts.txt

If you were to use Get-Help and then dir, you would receive the same output as if you were to use
Get-Help Get-ChildItem. In Windows PowerShell, the two can be used in exactly the same fashion.

Just the Steps Formatting a directory listing using Format-List In a Windows Power-
Shell prompt, enter the Get-ChildItem cmdlet followed by the directory to list followed by the
pipe character and the Format-List cmdlet. Example:

get-childitem C:\ | format-list

Formatting output with the Format-List cmdlet

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of the C:\ directory.

get-childItem C:\

3. Use the Format-List cmdlet to arrange the output of Get-ChildItem.

get-childitem |format-list

4. Use the -property argument of the Format-List cmdlet to retrieve only a listing of the
name of each file in the root.

get-childitem C:\ | format-list -property name

5. Use the property argument of the Format-List cmdlet to retrieve only a listing of the name
and length of each file in the root.

get-childitem C:\ | format-list -property name, length

24 Chapter 2 Using Windows PowerShell Cmdlets
Using the Format-Wide Cmdlet
In the same way that we use the Format-List cmdlet to produce an output in a list, we can use
the Format-Wide cmdlet to produce a more compact output.

Just the Steps Formatting a directory listing using Format-Wide In a Windows Power-
Shell prompt, enter the Get-ChildItem cmdlet followed by the directory to list followed by the
pipe character and the Format-Wide cmdlet. Example:

get-childitem C:\ | format-wide

Formatting output with the Format-Wide cmdlet

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of the C:\Windows directory.

get-childitem C:\Windows

3. Use the -recursive argument to cause the Get-ChildItem cmdlet to walk through a nested
directory structure, including only .txt files in the output.

get-childitem C:\Windows -recurse -include *.txt

4. A partial output from the command is shown here:

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Driver Cache

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/26/2004 6:29 AM 13512 yk51x86.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Help\Tours\mmTo
 ur

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/4/2004 8:00 AM 807 intro.txt
-a--- 8/4/2004 8:00 AM 407 nav.txt
-a--- 8/4/2004 8:00 AM 747 segment1.txt
-a--- 8/4/2004 8:00 AM 772 segment2.txt
-a--- 8/4/2004 8:00 AM 717 segment3.txt
-a--- 8/4/2004 8:00 AM 633 segment4.txt
-a--- 8/4/2004 8:00 AM 799 segment5.txt

5. Use the Format-Wide cmdlet to adjust the output from the Get-ChildItem cmdlet. Use
the -columns argument and supply a parameter of 3 to it. This is shown here:

get-childitem C:\Windows -recurse -include *.txt |format-wide -column 3

Chapter 2 Using Windows PowerShell Cmdlets 25
6. Once this command is run, you will see an output similar to this:

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Driver Cache

yk51x86.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Help\Tours\mmTo
 ur

intro.txt nav.txt segment1.txt
segment2.txt segment3.txt segment4.txt
segment5.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Microsoft.NET\F
 ramework\v1.1.4322\1033

SetupENU1.txt SetupENU2.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Microsoft.NET\F
 ramework\v2.0.50727\Microsoft .NET Framework 2.0

eula.1025.txt eula.1028.txt eula.1029.txt
eula.1030.txt eula.1031.txt eula.1032.txt
eula.1033.txt eula.1035.txt eula.1036.txt
eula.1037.txt eula.1038.txt eula.1040.txt
eula.1041.txt eula.1042.txt eula.1043.txt
eula.1044.txt eula.1045.txt eula.1046.txt
eula.1049.txt eula.1053.txt eula.1055.txt
eula.2052.txt eula.2070.txt eula.3076.txt
eula.3082.txt

7. Use the Format-Wide cmdlet to adjust the output from the Get-ChildItem cmdlet. Use the
property argument to specify the name property, and group the outputs by size. The
command shown here appears on two lines; however, when typed into Windows Pow-
erShell, it is a single command and needs to be on the same line:

get-childitem C:\Windows -recurse -include *.txt |format-wide -property
name -groupby length -column 3

8. A partial output is shown here. Note that although three columns were specified, if there
are not three files of the same length, only one column will be used:

 Length: 13512

yk51x86.txt

 Length: 807

intro.txt

 Length: 407

nav.txt

 Length: 747

segment1.txt

26 Chapter 2 Using Windows PowerShell Cmdlets
Just the Steps Formatting a directory listing using Format-Table In a Windows Pow-
erShell prompt, enter the Get-ChildItem cmdlet followed by the directory to list followed by
the pipe character and the Format-Table cmdlet. Example:

get-childitem C:\ | format-table

Formatting output with the Format-Table cmdlet

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of the C:\Windows directory

get-childitem C:\Windows

3. Use the -recursive argument to cause the Get-ChildItem cmdlet to walk through a nested
directory structure, include only .txt files in the output.

get-childitem C:\Windows -recurse -include *.txt

4. Use the Format-Table cmdlet to adjust the output from the Get-ChildItem cmdlet. This is
shown here:

get-childitem C:\Windows -recurse -include *.txt |format-table

5. The command results in the creation of a table, as follows:

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Driver Cache

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 11/26/2004 6:29 AM 13512 yk51x86.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Help\Tours\mmTo
 ur

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 8/4/2004 8:00 AM 807 intro.txt
-a--- 8/4/2004 8:00 AM 407 nav.txt
-a--- 8/4/2004 8:00 AM 747 segment1.txt
-a--- 8/4/2004 8:00 AM 772 segment2.txt
-a--- 8/4/2004 8:00 AM 717 segment3.txt
-a--- 8/4/2004 8:00 AM 633 segment4.txt
-a--- 8/4/2004 8:00 AM 799 segment5.txt

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Windows\Microsoft.NET\F
 ramework\v1.1.4322\1033

 Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 3/6/2002 2:36 PM 38 SetupENU1.txt
-a--- 3/6/2002 2:36 PM 38 SetupENU2.txt

Chapter 2 Using Windows PowerShell Cmdlets 27
6. Use the -property argument of the Format-Table cmdlet and choose the name, length,
and last-write-time properties. This is shown here:

get-childitem C:\Windows -recurse -include *.txt |format-table -property
name, length, lastwritetime

7. This command results in producing a table with the name, length, and last write time as
column headers. A sample of this output is shown here:

Name Length LastWriteTime
---- ------ -------------
yk51x86.txt 13512 11/26/2004 6:29:00 AM
intro.txt 807 8/4/2004 8:00:00 AM
nav.txt 407 8/4/2004 8:00:00 AM
segment1.txt 747 8/4/2004 8:00:00 AM
segment2.txt 772 8/4/2004 8:00:00 AM
segment3.txt 717 8/4/2004 8:00:00 AM
segment4.txt 633 8/4/2004 8:00:00 AM

Leveraging the Power of Get-Command
Using the Get-Command cmdlet, you can obtain a listing of all the cmdlets installed on the
Windows PowerShell, but there is much more that can be done using this extremely versatile
cmdlet. One such method of using the Get-Command cmdlet is to use wild card characters.
This is shown in the following procedure:

Just the Steps Searching for cmdlets using wild card characters In a Windows Power-
Shell prompt, enter the Get-Command cmdlet followed by a wild card character. Example:

get-command *

Finding commands by using the Get-Command cmdlet

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use an alias to refer to the Get-Command cmdlet. To find the correct alias, use the Get-
Alias cmdlet as follows:

get-alias g*

3. This command produces a listing of all the aliases defined that begin with the letter g. An
example of the output of this command is shown here:

CommandType Name Definition
----------- ---- ----------
Alias gal Get-Alias
Alias gc Get-Content
Alias gci Get-ChildItem
Alias gcm Get-Command
Alias gdr Get-PSDrive

28 Chapter 2 Using Windows PowerShell Cmdlets
Alias ghy Get-History
Alias gi Get-Item
Alias gl Get-Location
Alias gm Get-Member
Alias gp Get-ItemProperty
Alias gps Get-Process
Alias group Group-Object
Alias gsv Get-Service
Alias gsnp Get-PSSnapin
Alias gu Get-Unique
Alias gv Get-Variable
Alias gwmi Get-WmiObject
Alias gh Get-Help

4. Using the gcm alias, use the Get-Command cmdlet to return the Get-Command cmdlet.
This is shown here:

gcm get-command

5. This command returns the Get-Command cmdlet. The output is shown here:

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Command Get-Command [[-ArgumentList]...

6. Using the gcm alias to get the Get-Command cmdlet, pipe the output to the Format-List
cmdlet. Use the wild card asterisk (*) to obtain a listing of all the properties of the Get-
Command cmdlet. This is shown here:

gcm get-command |format-list *

7. This command will return all the properties from the Get-Command cmdlet. The output
is shown here:

DLL : C:\WINDOWS\assembly\GAC_MSIL\System.Management.Automation\1.
 0.0.0__31bf3856ad364e35\System.Management.Automation.dll
Verb : Get
Noun : Command
HelpFile : System.Management.Automation.dll-Help.xml
PSSnapIn : Microsoft.PowerShell.Core
ImplementingType : Microsoft.PowerShell.Commands.GetCommandCommand
ParameterSets : {CmdletSet, AllCommandSet}
Definition : Get-Command [[-ArgumentList] <Object[]>] [-Verb <String[]>]
 [-Noun <String[]>] [-PSSnapin <String[]>] [-TotalCount <Int3
 2>] [-Syntax] [-Verbose] [-Debug] [-ErrorAction <ActionPrefe
 rence>] [-ErrorVariable <String>] [-OutVariable <String>] [-
 OutBuffer <Int32>]
 Get-Command [[-Name] <String[]>] [[-ArgumentList] <Object[]>
] [-CommandType <CommandTypes>] [-TotalCount <Int32>] [-Synt
 ax] [-Verbose] [-Debug] [-ErrorAction <ActionPreference>] [-
 ErrorVariable <String>] [-OutVariable <String>] [-OutBuffer
 <Int32>]

Name : Get-Command
CommandType : Cmdlet

Chapter 2 Using Windows PowerShell Cmdlets 29
8. Using the gcm alias and the Get-Command cmdlet, pipe the output to the Format-List cmdlet.
Use the -property argument, and specify the definition property of the Get-Command cmdlet.
Rather than retyping the entire command, use the up arrow on your keyboard to retrieve the
previous gcm Get-Command | Format-List * command. Use the Backspace key to remove the
asterisk and then simply add -property definition to your command. This is shown here:

gcm get-command | format-list -property definition

9. This command only returns the property definition for the Get-Command cmdlet. The
returned definition is shown here:

Definition : Get-Command [[-ArgumentList] <Object[]>] [-Verb <String[]>] [-Noun
 <String[]>] [-PSSnapin <String[]>] [-TotalCount <Int32>] [-Syntax
] [-Verbose] [-Debug] [-ErrorAction <ActionPreference>] [-ErrorVar
 iable <String>] [-OutVariable <String>] [-OutBuffer <Int32>]
 Get-Command [[-Name] <String[]>] [[-ArgumentList] <Object[]>] [-Co
 mmandType <CommandTypes>] [-TotalCount <Int32>] [-Syntax] [-Verbos
 e] [-Debug] [-ErrorAction <ActionPreference>] [-ErrorVariable <Str
 ing>] [-OutVariable <String>] [-OutBuffer <Int32>]

10. Because objects are returned from cmdlets instead of simply string data, we can also
retrieve the definition of the Get-Command cmdlet by directly using the definition prop-
erty. This is done by putting the expression inside parentheses, and using a “dotted nota-
tion,” as shown here:

(gcm get-command).definition

11. The definition returned from the previous command is virtually identical to the one
returned by using Format-List cmdlet.

12. Use the gcm alias and specify the -verb argument. Use se* for the verb. This is shown here:

gcm -verb se*

13. The previous command returns a listing of all the cmdlets that contain a verb beginning
with se. The result is as follows:

CommandType Name Definition
----------- ---- ----------
Cmdlet Select-Object Select-Object [[-Property] <...
Cmdlet Select-String Select-String [-Pattern] <St...
Cmdlet Set-Acl Set-Acl [-Path] <String[]> [...
Cmdlet Set-Alias Set-Alias [-Name] <String> [...
Cmdlet Set-AuthenticodeSignature Set-AuthenticodeSignature [-...
Cmdlet Set-Content Set-Content [-Path] <String[...
Cmdlet Set-Date Set-Date [-Date] <DateTime> ...
Cmdlet Set-ExecutionPolicy Set-ExecutionPolicy [-Execut...
Cmdlet Set-Item Set-Item [-Path] <String[]> ...
Cmdlet Set-ItemProperty Set-ItemProperty [-Path] <St...
Cmdlet Set-Location Set-Location [[-Path] <Strin...
Cmdlet Set-PSDebug Set-PSDebug [-Trace <Int32>]...
Cmdlet Set-Service Set-Service [-Name] <String>...
Cmdlet Set-TraceSource Set-TraceSource [-Name] <Str...
Cmdlet Set-Variable Set-Variable [-Name] <String...

30 Chapter 2 Using Windows PowerShell Cmdlets
14. Use the gcm alias and specify the -noun argument. Use o* for the noun. This is shown here:

gcm -noun o*

15. The previous command will return all the cmdlets that contain a noun that begins with
the letter o. This result is as follows:

CommandType Name Definition
----------- ---- ----------
Cmdlet Compare-Object Compare-Object [-ReferenceOb...
Cmdlet ForEach-Object ForEach-Object [-Process] <S...
Cmdlet Group-Object Group-Object [[-Property] <O...
Cmdlet Measure-Object Measure-Object [[-Property] ...
Cmdlet New-Object New-Object [-TypeName] <Stri...
Cmdlet Select-Object Select-Object [[-Property] <...
Cmdlet Sort-Object Sort-Object [[-Property] <Ob...
Cmdlet Tee-Object Tee-Object [-FilePath] <Stri...
Cmdlet Where-Object Where-Object [-FilterScript]...
Cmdlet Write-Output Write-Output [-InputObject] ...

16. Retrieve only the syntax of the Get-Command cmdlet by specifying the -syntax argument.
Use the gcm alias to do this, as shown here:

gcm -syntax get-command

17. The syntax of the Get-Command cmdlet is returned by the previous command. The out-
put is as follows:

Get-Command [[-ArgumentList] <Object[]>] [-Verb <String[]>] [-Noun <String[]>]
[-PSSnapin <String[]>] [-TotalCount <Int32>] [-Syntax] [-Verbose] [-Debug] [-Er
rorAction <ActionPreference>] [-ErrorVariable <String>] [-OutVariable <String>]
[-OutBuffer <Int32>]
Get-Command [[-Name] <String[]>] [[-ArgumentList] <Object[]>] [-CommandType <Co
mmandTypes>] [-TotalCount <Int32>] [-Syntax] [-Verbose] [-Debug] [-ErrorAction
<ActionPreference>] [-ErrorVariable <String>] [-OutVariable <String>] [-OutBuff
er <Int32>]

18. Try to use only aliases to repeat the Get-Command syntax command to retrieve the syn-
tax of the Get-Command cmdlet. This is shown here:

gcm -syntax gcm

19. The result of this command is the not the nice syntax description of the previous com-
mand. The rather disappointing result is as follows:

Get-Command

20. This concludes the procedure for finding commands by using the Get-Command cmdlet.

Quick Check

Q. To retrieve a definition of the Get-Command cmdlet, using the dotted notation,
what command would you use?

A. (gcm get-command).definition

Chapter 2 Using Windows PowerShell Cmdlets 31
Using the Get-Member Cmdlet
The Get-Member cmdlet retrieves information about the members of objects. Although this
may not seem very exciting, remember that because everything returned from a cmdlet is an
object, we can use the Get-Member cmdlet to examine the methods and properties of objects.
When the Get-Member cmdlet is used with Get-ChildItem on the filesystem, it returns a listing
of all the methods and properties available to work with the filesystem object.

Objects, Properties, and Methods
One of the more interesting features of Windows PowerShell is that cmdlets return
objects. An object is a thing that gives us the ability to either describe something or do
something. If we are not going to describe or do something, then there is no reason to
create the object. Depending on the circumstances, we may be more interested in the
methods, or the properties. As an example, let’s consider rental cars. I travel a great deal
in my role as a consultant at Microsoft, and I often need to obtain a rental car.

When I get to the airport, I go to the rental car counter, and I use the New-Object cmdlet
to create the rentalCAR object. When I use this cmdlet, I am only interest in the methods
available from the rentalCAR object. I will need to use the DriveDowntheRoad method,
the StopAtaRedLight method, and perhaps the PlayNiceMusic method. I am not, how-
ever, interested in the properties of the rentalCAR object.

At home, I have a cute little sports car. It has exactly the same methods as the rentalCAR
object, but I created the sportsCAR object primarily because of its properties. It is green
and has alloy rims, a convertible top, and a 3.5-liter engine. Interestingly enough, it has
exactly the same methods as the rentalCAR object. It also has the DriveDowntheRoad
method, the StopAtaRedLight method, and the PlayNiceMusic method, but the deciding
factor in creating the sportsCAR object was the properties, not the methods.

Just the Steps Using the Get-Member cmdlet to examine properties and methods In
a Windows PowerShell prompt, enter the Get-ChildItem cmdlet followed by the path to a
folder and pipe it to the Get-Member cmdlet. Example:

get-childitem C:\ | get-member

32 Chapter 2 Using Windows PowerShell Cmdlets
Using the Get-Member cmdlet

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use an alias to refer to the Get-Alias cmdlet. To find the correct alias, use the Get-Alias
cmdlet as follows:

get-alias g*

3. After you have retrieved the alias for the Get-Alias cmdlet, use it to find the alias for the
Get-Member cmdlet. One way to do this is to use the following command, simply using
gal in place of the Get-Alias name you used in the previous command:

gal g*

4. The listing of aliases defined that begin with the letter g appears as a result of the previ-
ous command. The output is shown here:

CommandType Name Definition
----------- ---- ----------
Alias gal Get-Alias
Alias gc Get-Content
Alias gci Get-ChildItem
Alias gcm Get-Command
Alias gdr Get-PSDrive
Alias ghy Get-History
Alias gi Get-Item
Alias gl Get-Location
Alias gm Get-Member
Alias gp Get-ItemProperty
Alias gps Get-Process
Alias group Group-Object
Alias gsv Get-Service
Alias gsnp Get-PSSnapin
Alias gu Get-Unique
Alias gv Get-Variable
Alias gwmi Get-WmiObject
Alias gh Get-Help

5. Use the gal alias to obtain a listing of all aliases that begin with the letter g. Pipe the results to
the Sort-Object cmdlet, and sort on the property attribute called definition. This is shown here:

gal g* |sort-object -property definition

6. The listings of cmdlets that begin with the letter g are now sorted, and the results of the
command are as follows:

CommandType Name Definition
----------- ---- ----------
Alias gal Get-Alias
Alias gci Get-ChildItem
Alias gcm Get-Command
Alias gc Get-Content
Alias gh Get-Help

Chapter 2 Using Windows PowerShell Cmdlets 33
Alias ghy Get-History
Alias gi Get-Item
Alias gp Get-ItemProperty
Alias gl Get-Location
Alias gm Get-Member
Alias gps Get-Process
Alias gdr Get-PSDrive
Alias gsnp Get-PSSnapin
Alias gsv Get-Service
Alias gu Get-Unique
Alias gv Get-Variable
Alias gwmi Get-WmiObject
Alias group Group-Object

7. Use the alias for the Get-ChildItem cmdlet and pipe the output to the alias for the Get-
Member cmdlet. This is shown here:

gci | gm

8. To only see properties available for the Get-ChildItem cmdlet, use the membertype argu-
ment and supply a value of property. Use Tab Completion this time, rather than the gci |
gm alias. This is shown here:

get-childitem | get-member -membertype property

9. The output from this command is shown here:

 TypeName: System.IO.DirectoryInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
LastAccessTime Property System.DateTime LastAccessTime {get;set;}
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}
LastWriteTime Property System.DateTime LastWriteTime {get;set;}
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}
Name Property System.String Name {get;}
Parent Property System.IO.DirectoryInfo Parent {get;}
Root Property System.IO.DirectoryInfo Root {get;}

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property System.String DirectoryName {get;}

34 Chapter 2 Using Windows PowerShell Cmdlets
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get;set;}
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}
LastWriteTime Property System.DateTime LastWriteTime {get;set;}
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}
Length Property System.Int64 Length {get;}
Name Property System.String Name {get;}

10. Use the membertype argument of the Get-Member cmdlet to view the methods available
from the object returned by the Get-ChildItem cmdlet. To do this, supply a value of
method to the membertype argument, as follows:

get-childitem | get-member -membertype method

11. The output from the previous list returns all the methods defined for the Get-ChildItem
cmdlet. This output is shown here:

 TypeName: System.IO.DirectoryInfo

Name MemberType Definition
---- ---------- ----------
Create Method System.Void Create(), System.Void Creat...
CreateObjRef Method System.Runtime.Remoting.ObjRef CreateOb...
CreateSubdirectory Method System.IO.DirectoryInfo CreateSubdirect...
Delete Method System.Void Delete(), System.Void Delet...
Equals Method System.Boolean Equals(Object obj)
GetAccessControl Method System.Security.AccessControl.Directory...
GetDirectories Method System.IO.DirectoryInfo[] GetDirectorie...
GetFiles Method System.IO.FileInfo[] GetFiles(String se...
GetFileSystemInfos Method System.IO.FileSystemInfo[] GetFileSyste...
GetHashCode Method System.Int32 GetHashCode()
GetLifetimeService Method System.Object GetLifetimeService()
GetObjectData Method System.Void GetObjectData(Serialization...
GetType Method System.Type GetType()
get_Attributes Method System.IO.FileAttributes get_Attributes()
get_CreationTime Method System.DateTime get_CreationTime()
get_CreationTimeUtc Method System.DateTime get_CreationTimeUtc()
get_Exists Method System.Boolean get_Exists()
get_Extension Method System.String get_Extension()
get_FullName Method System.String get_FullName()
get_LastAccessTime Method System.DateTime get_LastAccessTime()
get_LastAccessTimeUtc Method System.DateTime get_LastAccessTimeUtc()
get_LastWriteTime Method System.DateTime get_LastWriteTime()
get_LastWriteTimeUtc Method System.DateTime get_LastWriteTimeUtc()
get_Name Method System.String get_Name()
get_Parent Method System.IO.DirectoryInfo get_Parent()
get_Root Method System.IO.DirectoryInfo get_Root()
InitializeLifetimeService Method System.Object InitializeLifetimeService()
MoveTo Method System.Void MoveTo(String destDirName)
Refresh Method System.Void Refresh()
SetAccessControl Method System.Void SetAccessControl(DirectoryS...

Chapter 2 Using Windows PowerShell Cmdlets 35
set_Attributes Method System.Void set_Attributes(FileAttribut...
set_CreationTime Method System.Void set_CreationTime(DateTime v...
set_CreationTimeUtc Method System.Void set_CreationTimeUtc(DateTim...
set_LastAccessTime Method System.Void set_LastAccessTime(DateTime...
set_LastAccessTimeUtc Method System.Void set_LastAccessTimeUtc(DateT...
set_LastWriteTime Method System.Void set_LastWriteTime(DateTime ...
set_LastWriteTimeUtc Method System.Void set_LastWriteTimeUtc(DateTi...
ToString Method System.String ToString()

12. Use the up arrow key to retrieve the previous Get-ChildItem | Get-Member -MemberType
method command, and change the value method to m* to use a wild card to retrieve the
methods. The output will be exactly the same as the previous listing of members because
the only membertype beginning with the letter m on the Get-ChildItem cmdlet is the
MemberType method. The command is as follows:

get-childitem | get-member -membertype m*

13. Use the -inputobject argument to the Get-Member cmdlet to retrieve member definitions
of each property or method in the list. The command to do this is as follows:

get-member -inputobject get-childitem

14. The output from the previous command is shown here:

PS C:\> get-member -inputobject get-childitem

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method System.Int32 CompareTo(Object value),...
Contains Method System.Boolean Contains(String value)
CopyTo Method System.Void CopyTo(Int32 sourceIndex,...
EndsWith Method System.Boolean EndsWith(String value)...
Equals Method System.Boolean Equals(Object obj), Sy...
GetEnumerator Method System.CharEnumerator GetEnumerator()
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
get_Chars Method System.Char get_Chars(Int32 index)
get_Length Method System.Int32 get_Length()
IndexOf Method System.Int32 IndexOf(Char value, Int3...
IndexOfAny Method System.Int32 IndexOfAny(Char[] anyOf,...
Insert Method System.String Insert(Int32 startIndex...
IsNormalized Method System.Boolean IsNormalized(), System...
LastIndexOf Method System.Int32 LastIndexOf(Char value, ...
LastIndexOfAny Method System.Int32 LastIndexOfAny(Char[] an...
Normalize Method System.String Normalize(), System.Str...
PadLeft Method System.String PadLeft(Int32 totalWidt...
PadRight Method System.String PadRight(Int32 totalWid...
Remove Method System.String Remove(Int32 startIndex...
Replace Method System.String Replace(Char oldChar, C...
Split Method System.String[] Split(Params Char[] s...
StartsWith Method System.Boolean StartsWith(String valu...

36 Chapter 2 Using Windows PowerShell Cmdlets
Substring Method System.String Substring(Int32 startIn...
ToCharArray Method System.Char[] ToCharArray(), System.C...
ToLower Method System.String ToLower(), System.Strin...
ToLowerInvariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System.Stri...
ToUpper Method System.String ToUpper(), System.Strin...
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[] trim...
TrimEnd Method System.String TrimEnd(Params Char[] t...
TrimStart Method System.String TrimStart(Params Char[]...
Chars ParameterizedProperty System.Char Chars(Int32 index) {get;}
Length Property System.Int32 Length {get;}

15. This concludes the procedure for using the Get-Member cmdlet.

 Quick Check

 Q. To retrieve a listing of aliases beginning with the letter g that is sorted on the
 definition property, what command would you use?

 A. gal g* | sort-object -property definition

Using the New-Object Cmdlet
The use of objects in Windows PowerShell provides many exciting opportunities to do things
that are not “built into” the PowerShell. You may recall from using VBScript that there is an
object called the wshShell object. If you are not familiar with this object, a drawing of the
object model is shown in Figure 2-1.

Figure 2-1 The VBScript wshShell object contributes many easy-to-use methods and properties
for the network administrator

CreateShortcut ExpandEnvironmentStrings LogEvent

AppActivate

Run

SendKeys

Popup

Exec

WshShell object
$wshshell = New-Object -comobject

"wscript.shell"

RegWrite RegRead RegDelete

CurrentDirectory

Environment

SpecialFolders

Chapter 2 Using Windows PowerShell Cmdlets 37
Just the Steps To create a new instance of the wshShell object, use the New-Object cmdlet
while specifying the -comobject argument and supplying the program ID of "wscript.shell".
Hold the object created in a variable. Example:

$wshShell = new-object -comobject "wscript.shell":

After the object has been created and stored in a variable, you can directly use any of the meth-
ods that are provided by the object. This is shown in the two lines of code that follow:

$wshShell = new-object -comobject "wscript.shell"
$wshShell.run("calc.exe")

In the previous code, we use the New-Object cmdlet to create an instance of the wshShell
object. We then use the run method to launch Calculator. After the object is created and
stored in the variable, you can use Tab Completion to suggest the names of the methods con-
tained in the object. This is shown in Figure 2-2.

Figure 2-2 Tab Completion enumerates methods provided by the object

Creating the wshShell object

1. Start the Windows PowerShell by using Start | Run | Windows PowerShell. The Power-
Shell prompt will open by default at the root of your Documents And Settings.

2. Create an instance of the wshShell object by using the New-Object cmdlet. Supply the
comobject argument to the cmdlet, and specify the program ID for the wshShell object,
which is “wscript.shell”. Hold the object that is returned into a variable called $wshShell.
The code to do this is as follows:

$wshShell = new-object -comobject "wscript.shell"

38 Chapter 2 Using Windows PowerShell Cmdlets
3. Launch an instance of Calculator by using the run method from the wshShell object.
Use Tab Completion to avoid having to type the entire name of the method. To use the
method, begin the line with the variable you used to hold the wshShell object, followed
by a period and the name of the method. Then supply the name of the program to run
inside parentheses and quotes, as shown here:

$wshShell.run("Calc.exe")

4. Use the ExpandEnvironmentStrings method to print out the path to the Windows direc-
tory. It is stored in an environmental variable called %windir%. The Tab Completion fea-
ture of Windows PowerShell is useful for this method name. The environment variable
must be contained in quotation marks, as shown here:

$wshShell.ExpandEnvironmentStrings("%windir%")

5. This command reveals the full path to the Windows directory on your machine. On my
computer, the output looks like the following:

C:\WINDOWS

Creating a PowerShell Profile
As you create various aliases and functions, you may decide you like a particular key stroke
combination and wish you could use your definition without always having to create it.

Tip I recommend reviewing the listing of all the aliases defined within Windows PowerShell
before creating very many new aliases. The reason is that it will be easy, early on, to create
duplicate settings (with slight variations).

Of course, you could create your own script that would perform your configuration if you
remembered to run it; however, what if you wish to have a more standardized method of work-
ing with your profile? To do this, you need to create a custom profile that will hold your set-
tings. The really useful feature of creating a Windows PowerShell profile is that after the
profile is created, it loads automatically when PowerShell is launched. The steps for creating a
Windows PowerShell profile are listed here:

Chapter 2 Using Windows PowerShell Cmdlets 39
Just the Steps Creating a Windows PowerShell prof ile
1. In a Windows PowerShell prompt, determine whether a profile exists by using the

following command:

 test-path $profile

2. If tests-profile returns false, create a new profile file by using the following command:

 new-item -path $profile -itemtype file -force

3. Open the profile file in Notepad by using the following command:

 notepad $profile

4. Add the following toNotepad:

 A useful alias such as gh for Get-Help. This is shown here:

 Set-alias gh get-help

 A useful function to the profile such as one to open the profile in Notepad to allow for
ease of editing the profile. This is shown here:

 function pro {notepad $profile}

5. When done editing, save the profile. Click Save As from the File menu, and ensure that
you choose ALL Files in the dialog box to avoid saving the profile with a .txt extension.
This is shown in Figure 2-3.

Figure 2-3 Ensure that Windows PowerShell can read the profile by saving it with the
All Files option, under Save As Type, in Notepad

40 Chapter 2 Using Windows PowerShell Cmdlets
Just the Steps Finding all aliases for a particular object If you know the name of an
object and you would like to retrieve all aliases for that object, you can use the Get-Alias
cmdlet to retrieve the list of all aliases. Then you need to pipe the results to the Where-Object
cmdlet and specify the value for the definition property. An example of doing this for the
Get-ChildItem cmdlet is as follows:

gal | where-object {$_.definition -match "get-childitem"}

Working with Cmdlets: Step-by-Step Exercises
In this exercise, we explore the use of the Get-ChildItem and Get-Member cmdlets in Windows
PowerShell. You will see that it is easy to use these cmdlets to automate routine administrative
tasks. We also continue to experiment with the pipelining feature of Windows PowerShell.

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Use the Get-Alias cmdlet to retrieve a listing of all the aliases defined on the computer.
Pipe this output to a Where-Object cmdlet. Specify a match argument against the defini-
tion property that matches the name of the Get-ChildItem cmdlet. The code is as follows:

gal | where-object {$_.definition -match "get-childitem"}

3. The results from the previous command show three aliases defined for the Get-ChildItem
cmdlet, as shown here:

CommandType Name Definition
----------- ---- ----------
Alias gci Get-ChildItem
Alias ls Get-ChildItem
Alias dir Get-ChildItem

4. Using the gci alias for the Get-ChildItem cmdlet, obtain a listing of files and folders con-
tained in the root directory. This is shown here:

gci

5. To identify large files more quickly, pipe the output to a Where-Object cmdlet, and specify
the gt argument with a value of 1,000 to evaluate the length property. This is shown here:

gci | where-object {$_.length -gt 1000}

6. To remove the cluttered data from your Windows PowerShell window, use cls to clear the
screen. This is shown here:

cls

7. Use the Get-Alias cmdlet to resolve the cmdlet to which the cls alias points. You can use
the gal alias to avoid typing get-alias if you wish. This is shown here:

gal cls

Chapter 2 Using Windows PowerShell Cmdlets 41
8. Use the Get-Alias cmdlet to resolve the cmdlet to which the mred alias points. This is
shown here:

gal mred

9. It is likely that no mred alias is defined on your machine. In this case, you will see the fol-
lowing error message:

Get-Alias : Cannot find alias because alias 'mred' does not exist.
At line:1 char:4
+ gal <<<< mred

10. Use the Clear-Host cmdlet to clear the screen. This is shown here:

clear-host

11. Use the Get-Member cmdlet to retrieve a list of properties and methods from the Get-
ChildItem cmdlet. This is shown here:

get-childitem | get-member -membertype property

12. The output from the above command is shown here. Examine the output, and identify
a property that could be used with a Where-Object cmdlet to find the date that files have
been modified.

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property System.String DirectoryName {get;}
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get;set;}
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}
LastWriteTime Property System.DateTime LastWriteTime {get;set;}
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}
Length Property System.Int64 Length {get;}
Name Property System.String Name {get;}

13. Use the Where-Object cmdlet and choose the LastWriteTime property. This is shown here:

get-childitem | where-object {$_.LastWriteTime}

14. Use the up arrow and bring the previous command back up onto the command line.
Now specify the gt argument and choose a recent date from your previous list of files, so
you can ensure the query will return a result. My command looks like the following:

get-childitem | where-object {$_.LastWriteTime -gt "12/25/2006"}

15. Use the up arrow and retrieve the last command. Now direct the Get-ChildItem cmdlet to
a specific folder on your hard drive, such as C:\fso, which may have been created in the

42 Chapter 2 Using Windows PowerShell Cmdlets
step-by-step exercise from Chapter 1. You can, of course, use any folder that exists on
your machine. This command will look like the following:

get-childitem "C:\fso"| where-object {$_.LastWriteTime -gt "12/25/2006"}

16. Once again, use the up arrow and retrieve the last command. Add the recurse argument
to the Get-ChildItem cmdlet. If your previous folder was not nested, then you may want
to change to a different folder. You can, of course, use your Windows folder, which is
rather deeply nested. I used my VBScript workshop folder, and the command is shown
here (keep in mind that this command has wrapped and should be interpreted as a sin-
gle line):

get-childitem -recurse "d:\vbsworkshop"| where-object
{$_.LastWriteTime -gt "12/25/2006" }

17. This concludes this step-by-step exercise. Completed commands for this exercise are in
the StepByStep.txt file.

One Step Further: Working with New-Object
In this exercise, we create a couple of objects.

1. Start Windows PowerShell by using Start | Run | Windows PowerShell. The PowerShell
prompt will open by default at the root of your Documents And Settings.

2. Create an instance of the wshNetwork object by using the New-Object cmdlet. Use the
comobject argument, and give it the program ID for the wshNetwork object, which is
“wscript.network”. Store the results in a variable called $wshnetwork. The code looks like
the following:

$wshnetwork = new-object -comobject "wscript.network"

3. Use the EnumPrinterConnections method from the wshNetwork object to print out a
list of printer connections that are defined on your local computer. To do this, use the
wshNetwork object that is contained in the $wshnetwork variable. The command for this
is as follows:

$wshnetwork.EnumPrinterConnections()

4. Use the EnumNetworkDrives method from the wshNetwork object to print out a list of net-
work connections that are defined on your local computer. To do this, use the wshNetwork
object that is contained in the $wshnetwork variable. The command for this is as follows:

$wshnetwork.EnumNetworkDrives()

5. Use the up arrow twice and retrieve the $wshnetwork.EnumPrinterConnections() com-
mand. Use the $colPrinters variable to hold the collection of printers that is returned by
the command. The code looks as follows:

$colPrinters = $wshnetwork.EnumPrinterConnections()

Chapter 2 Using Windows PowerShell Cmdlets 43
6. Use the up arrow and retrieve the $wshnetwork.EnumNetworkDrives() command. Use the
Home key to move the insertion point to the beginning of the line. Modify the command
so that it holds the collection of drives returned by the command into a variable called
$colDrives. This is shown here:

$colDrives = $wshnetwork.EnumNetworkDrives()

7. Use the $userName variable to hold the name that is returned by querying the username
property from the wshNetwork object. This is shown here:

$userName = $wshnetwork.UserName

8. Use the $userDomain variable to hold the name that is returned by querying the User-
Domain property from the wshNetwork object. This is shown here:

$userDomain = $wshnetwork.UserDomain

9. Use the $computerName variable to hold the name that is returned by querying the User-
Domain property from the wshNetwork object. This is shown here:

$computerName = $wshnetwork.ComputerName

10. Create an instance of the wshShell object by using the New-Object cmdlet. Use the
comobject argument and give it the program ID for the wshShell object, which is
“wscript.shell”. Store the results in a variable called $wshShell. The code for this follows:

$wshShell = new-object -comobject "wscript.shell"

11. Use the Popup method from the wshShell object to produce a popup box that displays
the domain name, user name, and computer name. The code for this follows:

$wshShell.Popup($userDomain+"\$userName $computerName")

12. Use the Popup method from the wshShell object to produce a popup box that displays
the collection of printers held in the $colPrinters variable. The code looks as follows:

$wshShell.Popup($colPrinters)

13. Use the Popup method from the wshShell object to produce a popup box that displays
the collection of drives held in the $colDrives variable. The code is as follows:

$wshShell.Popup($colDrives)

14. This concludes this one step further exercise. Completed commands for this exercise are
in the OneStepFurther.txt file.

44 Chapter 2 Using Windows PowerShell Cmdlets
Chapter 2 Quick Reference

To Do This
Produce a list of all the files in a folder Use the Get-ChildItem cmdlet and supply a value for

the folder
Produce a list of all the files in a folder and in the sub-
folders

Use the Get-ChildItem cmdlet, supply a value for the
folder, and specify the recurse argument

Produce a wide output of the results of a previous
cmdlet

Use the appropriate cmdlet and pipe the resulting
object to the Format-Wide cmdlet

Produce a listing of all the methods available from the
Get-ChildItem cmdlet

Use the cmdlet and pipe the results into the
Get-Member cmdlet. Use the -membertype argument
and supply the Noun method

Produce a popup box Create an instance of the wshShell object by using the
New-Object cmdlet. Use the Popup method

Retrieve the currently logged-on user name Create an instance of the wshNetwork object by using
the New-Object cmdlet. Query the username
property

Retrieve a listing of all currently mapped drives Create an instance of the wshNetwork object by using
the New-Object cmdlet. Use the EnumNetworkDrives
method

	Cover
	Chapter 2: Using Windows PowerShell Cmdlets
	Understanding the Basics of Cmdlets
	Using the Get-ChildItem Cmdlet
	Using the Format-Wide Cmdlet

	Leveraging the Power of Get-Command
	Using the Get-Member Cmdlet
	Using the New-Object Cmdlet
	Creating a PowerShell Profile
	Working with Cmdlets: Step-by-Step Exercises
	One Step Further: Working with New-Object

