
To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/9541.aspx

978-0-7356-2279-1

© 2008 Ed Wilson. All rights reserved.

Windows PowerShell™
Scripting Guide

Ed Wilson

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title,
for early preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™
Scripting Guide from Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved),
and is provided without any express, statutory, or implied warranties

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Table of Contents
Introduction

 1 The Shell in Windows PowerShell
Installing Windows PowerShell

Interacting with the Shell

Introducing Cmdlets

Configuring Windows PowerShell

Security Issues with Windows PowerShell

Supplying Options for Cmdlets

Working with Get-Help

Working with Aliases to Assign Shortcut Names to Cmdlets

Additional Uses of Cmdlets

Summary

 2 Scripting Windows PowerShell
Why Use Scripting?

Configuring the Scripting Policy

Running Windows PowerShell Scripts

Use of Variables

Use of Constants

Using Flow Control Statements

Using the For Statement

Using Decision-Making Statements

Working with Data Types

Unleashing the Power of Regular Expressions

Using Command-Line Arguments

Summary

 3 Managing Logs
Identifying the Event Logs

Reading the Event Logs

Perusing General Log Files

Searching the Event Log

Managing the Event Log

Examining WMI Event Logs

Writing to Event Logs

Creating Your Own Event Logs

Summary

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

 4 Managing Services
Documenting the Existing Services

Setting the Service Configuration

Desired Configuration Maintenance

Confirming the Configuration

Producing an Exception Report

Summary

 5 Managing Sharing
Documenting Shares

Auditing Shares

Modifying Shares

Creating New Shares

Creating Multiple Shares

Deleting Shares

Deleting Only Unauthorized Shares

Summary

 6 Managing Printing
Inventorying Printers

Reporting on Printer Ports

Identifying Print Drivers

Installing Printer Drivers

Summary

 7 Desktop Maintenance
Maintaining Desktop Health

Monitoring Disk Space Utilization

Monitoring Performance

Summary

 8 Networking
Working with Network Settings

Configuring Network Adapter Settings

Configuring the Windows Firewall

Summary

 9 Configuring Desktop Settings
Working with Desktop Configuration Issues

Setting Screen Savers

Managing Desktop Power Settings

Changing the Power Scheme

Summary

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

 10 Managing Post-Deployment Issues
Setting the Time

Configuring the Time Source

Enabling User Accounts

Creating a Local User Account

Configuring the Screen Saver

Renaming the Computer

Shutting Down or Rebooting a Remote Computer

Summary

 11 Managing User Data
Working with Backups

Configuring Offline Files

Enabling the Use of Offline Files

Working with System Restore

Summary

 12 Troubleshooting Windows
Troubleshooting Startup Issues

Displaying Service Dependencies

Investigating Hardware Issues

Network Issues

Summary

 13 Managing Domain Users
Creating Organizational Units
Creating Domain Users

Creating Users from a .csv File

Creating Domain Groups

Modifying Domain Groups

Adding Multiple Users with Multiple Attributes

Summary

 14 Configuring the Cluster Service
Adding Clustered Resources to the Network Configuration

Adding Disks to Existing Applications

Performing Disk Management Tasks

Troubleshooting the Cluster Service

Summary

 15 Managing Internet Information Server 7.0
Creating a Web Site

Backing up a Web Site

Modifying IIS Options

Summary

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

 16 Installing and Configuring Certificate Services
Setting Up Certificate Services

Performing Certificate Services Maintenance

Summary

 17 Configuring Terminal Server
Configuring Windows Terminal Services

Managing Users

Deploying Applications

Configuring Printers

Summary

 18 Configuring Network Services
Configuring DNS

Configuring WINS

Configuring DHCP

Summary

 19 Working with Server Core
Examining Windows Server 2008 Core Edition

Managing Active Directory

Reporting Using WMI

Copying Files, Creating Folders

Remoting

Summary

Appendix A: Cmdlet Naming Conventions

Appendix B: Active X Data Object Provider Names

Appendix C: Windows PowerShell Frequently Asked Questions

Appendix D: Windows PowerShell Scripting Guidelines

Appendix E: General Troubleshooting Tips

Preview Content from Windows PowerShell™ Scripting Guide 1
Chapter 2

Scripting Windows PowerShell
After completing this chapter, you will be able to:

• Configure the scripting policy for Windows PowerShell

• Run Windows PowerShell scripts

• Use Windows PowerShell flow control statements

• Use decision-making and branching statements

• Identify and work with data types

• Use regular expressions to provide advanced matching capabilities

• Use command-line arguments

On the CD All the scripts used in this chapter are located on the CD that accompanies

this book in the \scripts\chapter02 folder.

Why Use Scripting?
For many network administrators writing scripts—any kind of scripts—is a dark art more
akin to reading tea leaves than administering a server. Indeed, while most large
corporations seem to always have a “scripting guy,” they rarely have more than one. This
is in spite of the efforts by Microsoft to promote Visual Basic Scripting Edition (VBScript) as
an administrative scripting language. While most professionals will agree that the ability
to quickly craft a script to make ad hoc changes to dozens of networked servers is a
valuable skill, few actually possess this skill. In reality, however, many of the corporate
“scripting guy” skills are more akin to knowing where to find a script that can easily be
modified than to actually understanding how to write a script from scratch.

Hopefully, this will change in the Windows PowerShell world. The Windows PowerShell
syntax was deliberately chosen to facilitate ease of use and ease of learning. Corporate
enterprise Windows administrators are the target audience.

So why use scripting? There are several reasons. First, a script makes it easy to document a
particular sequence of commands. If you need to produce a listing of all the shares on a
computer, you can use the Win32_share WMI class and the Get-WmiObject cmdlet to
retrieve the results, as shown here:

PS C:\> Get-wmiObject win32_share

Name Path Description

---- ---- -----------

ADMIN$ C:\Windows Remote Admin

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 2
C$ C:\ Default share

CCMLogs$ C:\Windows\system32\ccm\logs

CCMSetup$ C:\Windows\system32\ccmsetup

IPC$ Remote

IPC

music C:\music none

VPCache$ C:\Windows\system32\VPCache

WMILogs$ C:\Windows\system32\wbem\logs

But, suppose you only want to have a list of file shares? You may not be aware that a file
share is a type 0 share. So perhaps you need to search for this information on the Internet.
Once you have obtained the information, use the modified command shown here:

PS C:\> Get-WmiObject win32_share -Filter "type = '0'"

Name Path Description

---- --- -----------

CCMLogs$ C:\Windows\system32\ccm\logs

CCMSetup$ C:\Windows\system32\ccmsetup

music C:\music none

VPCache$ C:\Windows\system32\VPCache

WMILogs$ C:\Windows\system32\wbem\logs

You can see that not only do you need to remember the share type of 0, but the syntax is
a bit more complicated as well. So where do you write down this information? Here’s one
suggestion: When I was an administrator working on the Digital VAX, I kept a small
pocket-size notebook to store such cryptic commands. Of course, if I ever lost my little
notebook or failed to carry it, I was in big trouble!

Now suppose you are only interested in file shares that do not have a description assigned
to them. This command is shown here:

PS C:\> Get-WmiObject win32_share -Filter "type = '0' AND description = ''"

Name Path Description

---- ---- -----------

CCMLogs$ C:\Windows\system32\ccm\logs

CCMSetup$ C:\Windows\system32\ccmsetup

VPCache$ C:\Windows\system32\VPCache

WMILogs$ C:\Windows\system32\wbem\logs

At this point, you may feel the command and associated syntax are complicated enough
to justify writing a script. Creating the script is easy; simply copy it from the Windows
PowerShell console and paste it into a text file. Name the script and change the extension
to .ps1. You can then run the script from inside Windows PowerShell. The commands just

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 3
shown are saved in Share.txt in the chapter02 folder on the companion CD-ROM. The
script is named GetFileShares.ps1.

An additional advantage to configuring a command as a script is that you can easily make
modifications. Whereas the previous command was limited to reporting only on file
shares, you can make a change to the script to allow reporting on print shares, remote
administrative shares, IPC shares, or any other defined share type. You can modify the
script so you can choose a share type when you launch the script. To do this, use an if …
else statement to see if a command-line argument has been supplied to the script.

Tip To check for a command-line argument, look for $args, which is the automatic

variable created to hold command-line arguments.

If there is a command-line argument, use the value supplied to the command line. If no
value is supplied when the script is launched, then you must supply a default value to the
script. For this script, you will list file shares and inform the user that you are using default
values. The Get-WmiObject syntax is the same as you used previously in the VBScript days.
When writing a script, it’s also useful to display a usage string. The following script,
GetSharesWithArgs.ps1, includes an example command to assist you with typing the
correct syntax for the script.

GetSharesWithArgs.ps1
if($args)

 {

 $type = $args

 Get-WmiObject win32_share -Filter "type = $type"

 }

ELSE

 {

 Write-Host

 "

 Using defaults values, file shares type = 0.

 Other valid types are:

 2147483651 for disk drive admin share

 2147483649 for print queue admin share

 2147483650 for device admin share

 2147483651 for ipc$ admin share

 Example: C:\GetSharesWithArgs.ps1 '2147483651'

 "

 $type = '0'

 Get-WmiObject win32_share -Filter "type = $type"

 }

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 4
Another reason why network administrators write Windows PowerShell scripts is to run
the script as a scheduled task. In the Windows world there are multiple task scheduler
engines. Using the Win32_ScheduledJob WMI class you can create, monitor, and delete
scheduled jobs. This WMI class has been available since the Windows NT 4.0 days. Both
Windows XP and Windows Server 2003 have the Schtasks.exe utility, which offers more
flexibility than the Win32_ScheduledJob WMI class. Besides Schtasks.exe, Windows Vista
and Windows Server 2008 also include the Schedule.Service object to simplify the
configuration of scheduled jobs.

The script, ListProcessesSortResults.ps1, is something you may want to schedule to run
several times daily. The script produces a list of currently running processes and writes the
results to a text file as a formatted and sorted table.

ListProcessesSortResults.ps1
$args = "localhost","loopback","127.0.0.1"

foreach ($i in $args)

 {$strFile = "c:\mytest\"+ $i +"Processes.txt"

 Write-Host "Testing" $i "please wait ...";

 Get-WmiObject -computername $i -class win32_process |

 Select-Object name, processID, Priority, ThreadCount, PageFaults,

 PageFileUsage |

 Where-Object {!$_.processID -eq 0} | Sort-Object -property name |

 Format-Table | Out-File $strFile}

Configuring the Scripting Policy
Since scripting in Windows PowerShell is not enabled by default, it is important to verify
the level of scripting support provided on the platform before deployment of either
scripts or commands. If you attempt to run a Windows PowerShell script when the support
has not been enabled, you’ll receive an error message and the script won’t run. This error
message is shown in Figure 2-1.

This is referred to as the restricted execution policy. There are four levels of execution
policy that can be configured in Windows PowerShell with the Set-ExecutionPolicy cmdlet.
These four levels are listed in Table 2-1. The restricted execution policy can be configured
via Group Policy by using the Turn On Script Execution Group Policy setting in Active
Directory directory service. It can be applied to either the computer object or to the user
object. The computer object setting takes precedence over other settings.

Tip To retrieve the script execution policy use the Get-ExecutionPolicy cmdlet.

Configure user preferences for the restricted execution policy with the Set-ExecutionPolicy
cmdlet but note that these preferences won’t override settings configured by Group
Policy. Obtain the resulting set of restricted execution policy settings by using the Get-
ExecutionPolicy cmdlet.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 5

Figure 2-1 Attempting to run a script before scripting support is enabled generates an error.

Table 2-1 Script Execution Policy Levels
Level Meaning
Restricted Will not run scripts or configuration files.

AllSigned All scripts and configuration files must be signed by a trusted publisher.

RemoteSigned All scripts and configuration files downloaded from the Internet must be
signed by a trusted publisher.

Unrestricted All scripts and configuration files will run. Scripts downloaded from the
Internet will prompt for permission prior to running.

You should be aware that on Windows Vista, access to the registry key that contains the
script execution policy is restricted. A “normal” user will not be allowed to modify the key,
and even an administrator running with User Account Control (UAC) turned on will not be
allowed to modify the setting. If modification is attempted, the error shown in Figure 2-2
will be generated.

Figure 2-2 An attempt to run the Set-ExecutionPolicy cmdlet will fail if the user does not have
administrative rights.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 6
There are, of course several ways around the UAC issue. One choice is to simply turn off
UAC; in most circumstances this is an undesirable solution. A better solution is to right-
click the Windows PowerShell icon and select Run As Administrator as shown in
Figure 2-3.

Figure 2-3 To launch Windows PowerShell with administrative rights, you can right-click the icon, and
select Run As Administrator.

If you find right-clicking a bit too time-consuming (as I do!) you might prefer to create a
second Windows PowerShell shortcut. You might name this second shortcut admin_ps and
configure the shortcut properties to launch with administrative rights. For about 90
percent of all your administrative needs, the first shortcut should suffice. If, however, you
need “more power,” then choose the administrative one. The shortcut properties you can
use for the admin_ps “administrative PowerShell” shortcut are shown in Figure 2-4.

Figure 2-4 To configure the Windows PowerShell shortcut to run with administrative rights, choose the
Run As Administrator check box found under Advanced Properties.

Running Windows PowerShell Scripts
You can’t simply double-click a Windows PowerShell script and have it run. You cannot
type the name in the Start | Run dialog box, either. If you are inside Windows PowerShell,
you can run scripts if you have enabled the execution policy, but you need to type the
entire path to the script you want to run and make sure to include the .ps1 extension.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 7
If you need to run a script from outside Windows PowerShell, you must type the full path
to the script, but you must also feed it as an argument to the PowerShell.exe program. In
addition, you probably want to specify the -noexit switch so you can read the output from
the script inside the Windows PowerShell console. This syntax is shown in Figure 2-5.

Figure 2-5 To run a Windows PowerShell script from outside the console, use the -noexit argument to
allow you to see the results of the script.

Use of Variables
When working with Windows PowerShell, the default is that you don’t need to declare
variables prior to use; the variable is declared when you use it to hold data. All variable
names must be preceded with a dollar sign. There are a number of special variables in
Windows PowerShell. These variables are created automatically and each has a special
meaning. Table 2-2 lists the special variables and their associated meanings.

Table 2-2 Use of Special Variables
Name Use

$^ Contains the first token of the last line input into the shell.

$$ Contains the last token of the last line input into the shell.

$_ The current pipeline object; used in script blocks, filters, Where-
Object, ForEach-Object, and switch.

$? Contains the success/fail status of the last statement.

$args Used in creating functions requiring parameters.

$error If an error occurred, the error object is saved in the $error variable.

$executioncontext The execution objects available to cmdlets.

$foreach Refers to the enumerator in a foreach loop.

$home The user’s home directory; set to %HOMEDRIVE%\%HOMEPATH%.

$input Input is piped to a function or code block.

$match A hash table consisting of items found by the -match operator.

$myinvocation Information about the currently executing script or command line.

$pshome The directory where Windows PowerShell is installed.

$host Information about the currently executing host.

$lastexitcode The exit code of the last native application to run.

$true Boolean TRUE.

$false Boolean FALSE.

$null A null object.

$this In the types.ps1xml file and some script block instances this
represents the current object.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 8
$ofs Output field separator used when converting an array to a string.

$shellid The identifier for the shell. This value is used by the shell to
determine the execution policy and what profiles are run at startup.

$stacktrace Contains detailed stack trace information about the last error.

Use of Constants
Constants in Windows PowerShell are like variables with two important exceptions: Their
value never changes, and they cannot be deleted. Constants are created by using the Set-
Variable cmdlet and specifying the -option argument to be equal to constant.

BestPractices When referring to a constant in the body of the script, you must preface

it with the dollar sign—just like any other variable. However, when creating the constant

(or even a variable) by using the Set-Variable cmdlet, as you specify the name argument

you don’t include a dollar sign.

In the GetHardDiskDetails.ps1 script that follows, there is a constant named $intDriveType
with a value of 3 assigned. This constant is used because the Win32_LogicalDisk WMI class
uses a value of 3 in the disktype property to describe a local fixed disk. When using
Where-Object and a value of 3, you eliminate network drives, removable drives, and ram
drives from the items returned.

The $intDriveType constant is only used with the Where filter line. The value of
$strComputer, however, will change once for each computer name that is specified in the
array $aryComputers. In the GetHardDiskDetails.ps1 script, the value of $strComputer will
change twice. The first time through the loop it will be equal to “loopback” and the
second time through the loop it will be equal to “localhost.” Even if you add 250 different
computer names, the effect will be the same—the value of $strComputer will change each
time through the loop.

GetHardDiskDetails.ps1
$aryComputers = "loopback", "localhost"

Set-Variable -name intDriveType -value 3 -option constant

foreach ($strComputer in $aryComputers)

 {"Hard drives on: " + $strComputer

 Get-WmiObject -class win32_logicaldisk -computername $strComputer|

 Where {$_.drivetype -eq $intDriveType}}

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 9
Using Flow Control Statements
Once scripting support is enabled on Windows PowerShell, you have access to some
advanced flow control cmdlets. However, this does not mean you cannot do flow control
inside the console. You can certainly use flow control statements inside the console. This is
shown here:

PS C:\> Get-Process | foreach ($_.name) { if ($_.name -eq "system") {

Write-Host "system process is ID : " $_.ID } }

The problem is the amount of typing. It may be preferable to save such a command in a
script. Besides saving a long command in a file, there is also an advantage in readability.
For example, you can line up the curly brackets and the other components of the
commands. You can also avoid hard-coding process names into the script and instead,
save them as variables. This makes it easy to modify the script or even to write the script
to accept command-line arguments. In the GetProcessById.ps1 script shown here, you can
see these options exhibited.

GetProcessById.ps1
$strProcess = "system"

Get-Process |

foreach ($_.name) {

 if ($_.name -eq $strProcess)

 {

 Write-Host "system process is ID : " $_.ID

 }

}

Adding Parameters to ForEach-Object

In the GetWmiAndQuery.ps1 script, the ForEach-Object cmdlet produces a listing from all
the WMI classes that have names containing usb. This particular script is very useful in that
it produces a listing of both the process name and associated process ID (PID). In addition,
the GetProcessByID.ps1 script is a good candidate to modify to accept a command-line
argument. Begin with the list switch from the Get-WmiObject cmdlet; you’ll end up with a
complete listing of all WMI classes in the default WMI namespace. Pipeline the resulting
object into the Where-Object cmdlet and filter the result set by the name property when
it is like the value contained in the variable $strClass.

Using the Begin Parameter

Use the -begin parameter of the ForEach-Object cmdlet to write the name used to
generate the WMI class listings. This action does not affect the current pipeline object.
In fact, neither the -begin parameter or the -end parameter interact with the current
pipeline object. But they are great places to perform pre-processing and post-processing.
The -process parameter is used to contain the script block that will interact with the

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 10
current pipeline object. This is the default parameter, and doesn’t need to be named. The
Get-WmiAndQuery.ps1 script is shown here.

GetWmiAndQuery.ps1
$strClass = "usb"

Get-WmiObject -List |

Where { $_.name -like "*$strClass*" } |

ForEach-Object -begin `

 {

 Write-Host "$strClass wmi listings"

 Start-Sleep 3

 } `

-Process `

 {

 Get-wmiObject $_.name

 }

In the ProcessUsbHub.ps1 script, the Get-WmiObject cmdlet retrieves instances of the
Win32_USBHub class. Once we have a collection of usb hub objects, we pipeline the object
to the ForEach-Object cmdlet. Suggestion: To make the script easier to read, line up all the
-begin, -process and -end parameters on the left side of the script. However, you will have
to use the “backtick” or grave accent to indicate line continuation.

Tip The environment variable %computername% is always available and can be used to

extract the computer name for a script. An easy way to retrieve the value of this variable is

to use the Get-Item cmdlet to grab the value from the env:\ psdrive. The value property

contains the computer name. This is illustrated here: (Get-Item env:\computerName)

value.

The -begin section uses a code block to write the name of computer using the Write-Host
cmdlet. Use a sub-expression to get the computer name from the env:\ psdrive; use the
%computername% variable and extract its value.

Using the Process Parameter

In the -process section, simply use the current pipeline object (indicated by the $_
automatic variable) to print the pnpDeviceID property from the Win32_USBHub WMI class.
Again, use the grave accent to indicate line continuation.

Using the End Parameter

The last section of the ProcessUsbHub.ps1 script contains the -end parameter. Use the
Write-Host cmdlet to print a string that indicates the command completed, and use a
sub-expression to print the value returned by the Get-Date cmdlet. The
ProcessUsbHub.ps1 script is listed here.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 11
ProcessUsbHub.ps1
Get-WmiObject win32_usbhub |

foreach-object `

-begin { Write-Host "Usb Hubs on:" $(Get-Item env:\computerName).value } `

-process { $_.pnpDeviceID} `

-end { Write-Host "The command completed at $(get-date)" }

Using the For Statement
Similar to the ForEach-Object cmdlet, the for statement is used to control execution of a
script block as long as a condition is true. Most of the time, you will use the for statement
to perform an action a certain number of times. In the line of code that follows, notice the
basic for construction. Use parentheses to separate the expression being evaluated from
the code block contained in curly brackets. The evaluated expression is composed of three
sections. The first section is a variable $a; you assign the value of 1 to it. The second
section contains the condition to be evaluated. In the code shown here, as long as the
variable $a is less than or equal to the number 3, the command in the code block section
continues to run. The last section of the evaluation expression adds the number 1 to the
variable $a. The code block is a simple printout of the word hello.

for ($a = 1; $a -le 3 ; $a++) {"hello"}

The PingArange.ps1 script shown here is a very useful little script because it can be used
to ping a range of Internet protocol(IP) addresses and will tell you whether or not the
computer is responding to Internet control messaging packets(ICMP) packets. This is
helpful in doing network discovery or in ensuring a computer is talking to the network.
The $intPing variable is set to 10 and defined as an integer. Next, the $intNetwork variable
is assigned the string 127.0.0. and is defined as a string.

The for statement is used to execute the remaining code the number of times specified
in the $intPing variable. The counter variable is created on the for statement line. This
counter variable, named $i, is assigned the value of 1. As long as $i is less than or equal
to the value set in the $intPing variable, the script will continue to execute. The final step,
completed inside the evaluator section of the for statement, is to add one to the
value of $i.

The code block begins with the curly bracket. Inside the code block, first create a variable
named $strQuery; this is the string that holds the WMI query. Placing this in a separate
variable makes it easier to use $intNetwork along with the $i counter variable; these are
used to create a valid IP address for the WMI query that results in a ping.

The $wmi variable is used to hold the collection of objects that is returned by the
Get-WmiObject cmdlet. By using the optional query argument of the Get-WmiObject
cmdlet, you are able to supply a WMI query. The statuscode property contains the result
of the ping operation. A 0 indicates success, any other number means the ping failed. To
present this information in a clear fashion, use an if … else statement to evaluate the
statuscode property.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 12
PingArange.ps1
[int]$intPing = 10

[string]$intNetwork = "127.0.0."

for ($i=1;$i -le $intPing; $i++)

{

$strQuery = "select * from win32_pingstatus where address = '" +

$intNetwork + $i + "'"

 $wmi = get-wmiobject -query $strQuery

 "Pinging $intNetwork$i ... "

 if ($wmi.statuscode -eq 0)

 {"success"}

 else

 {"error: " + $wmi.statuscode + " occurred"}

Using Decision-Making Statements
The ability to make decisions to control branching in a script is a fundamental technique.
In fact, this is the basis of automation. A condition is detected and evaluated, and a course
of action is determined. If you are able to encapsulate your logic into a script, you are well
on your way to having servers that monitor themselves. As an example, when you open
Task Manager on the server, what is the first thing you do? I often sort the list of processes
by memory consumption. The GetTopMemory.ps1 script, shown here, does this.

GetTopMemory.ps1
Get-Process |

Sort-Object workingset -Descending |

Select-Object -First 5

The GetTopMemory.ps1 script might be useful because it saves time in sorting a list. But
what do you do next? Do you kill the top memory consuming process? If you do, then
there is no decision to make. However, suppose you want to kill off only user mode
processes that consume more than 100 MB of memory? That may be a more constructive
and better choice. This will require some decision-making capability. Let us first examine
the classic if … elseif … else decision structure.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 13
Using If … Elseif … Else

The most basic decision-making statement is the if … elseif … else structure. This structure
is easy to use because it is perfectly natural and is implied in normal conversation. For
example, consider the following conversation between two American tourists in
Copenhagen:

If (sunny and warm)

 { go to NyHavn }

Elseif (cloudy and cool)

 { go to Tivoli }

Else

 { take s-tog to Malmo }

Even if you don’t speak Danish, you will be able to follow the conversation. If it is sunny
and warm, then the tourists will go to NyHavn. The first condition evaluation is whether
the weather is going to be sunny and warm. The condition is always enclosed in smooth
parentheses. The script block that will be executed if the condition is true is in curly
brackets. In this example, if the weather is sunny and warm, the tourists will go to NyHavn
(a beautiful port with lots of outdoor cafes). However, if the weather is cloudy and cool,
they will go to Tivoli (an amusement park in the center of Copenhagen). If neither of these
conditions is true, for example, if it is raining or snowing, the tourists will take the train to
Malmo (a city in Sweden famous for its shopping).

To use the GetServiceStatus.ps1 script, you will first obtain a listing of all the services on
the computer. Do this by using the Get-Service cmdlet. Once you have a listing of the
services, use the Sort-Object cmdlet to sort the list of services based on their status. Next,
use foreach to walk through the collection of services. As you iterate through the services,
use if … elseif … else to evaluate the status. If the service is stopped, use the color red to
display the name and status. If the service is running, use green to display the name and
status. If the service is in a different state (such as pause), default to yellow to display the
name and status. A decision matrix such as this is very uopseful in allowing you to quickly
scan a long list of services. The GetServiceStatus.ps1 script is shown here. The constant
color values that can be used with the Write-Host cmdlet are detailed in the table that
follows.

GetServiceStatus.ps1
Get-Service |

Sort-Object status -descending |

foreach {

 if ($_.status -eq "stopped")

 {Write-Host $_.name $_.status -ForegroundColor red}

 elseif ($_.status -eq "running")

 {Write-Host $_.name $_.status -ForegroundColor green}

 else

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 14
 {Write-Host $_.name $_.status -ForegroundColor yellow}

}

Black DarkBlue DarkGreen DarkCyan

DarkRed DarkMagenta DarkYellow Gray

DarkGray Blue Green Cyan

Red Magenta Yellow White

Using Switch

In other programming languages, switch would be called the select case statement. The
switch statement is used to evaluate a condition against a series of potential matches. In
this way, it is essentially a streamlined if … elseif statement. When using the switch
statement, the condition to be evaluated is contained in side parentheses. Then, each
condition to be evaluated is placed inside a curly bracket within the code block. This is
shown in the following command:

$a=5;switch ($a) { 4{"four detected"} 5{"five detected"} }

In the DisplayComputerRoles.ps1 script that follows, the script begins by using the $wmi
variable to hold the object that is returned by using the Get-WmiObject cmdlet. The
domainrole property of the Win32_computersystem class is returned as a coded value. To
produce an output that is more readable, the switch statement is used to match the value
of the domainrole property to the appropriate text value.

DisplayComputerRoles.ps1
$wmi = get-wmiobject win32_computersystem

"computer " + $wmi.name + " is: "

switch ($wmi.domainrole)

 {

 0 {"`t Stand alone workstation"}

 1 {"`t Member workstation"}

 2 {"`t Stand alone server"}

 3 {"`t Member server"}

 4 {"`t Back up domain controller"}

 5 {"`t Primary domain controller"}

 default {"`t The role can not be determined"}

 }

Evaluating Command-Line Arguments

Switch is ideally suited to evaluate command-line arguments. In the GetDriveArgs.ps1
script example that follows, you can use a function named funArg to evaluate the value of
the automatic variable $args. This automatic variable contains arguments supplied to the
command line when a script is run. This is a convenient variable to use when working with

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 15
command-line arguments. Switch is used to evaluate the value of $args. Four parameter
arguments are allowed with this script. The all argument does a WMI query to retrieve
basic information on all logical disks on the computer. The argument c is used to return
only information about the C drive. An interesting trick: The floppy drive is typically
enumerated first, and the second element in the array is the C drive. If this is not the case
on your system, you can change it. The purpose of the script is simply to point out the use
of switch to parse command-line arguments. Using the array element number is a nice
way to retrieve WMI information in Windows PowerShell. The free argument is used to
only return free disk space on the C drive.

The help argument is used to print a help statement. It uses a here string to make it easy
to type in the help message. The help message displays the purpose of the script and
several examples of command lines.

GetDriveArgs.ps1
Function funArg()

{

switch ($args)

{

 "all" { gwmi win32_logicalDisk }

 "c" { (gwmi win32_logicaldisk)[1] }

 "free" { (gwmi win32_logicaldisk)[1].freespace }

 "help" { $help = @"

This script will print out the drive information for

All drives, only the c drive, or the free space on c:

It also will print out a help topic

EXAMPLE:

 >GetDriveArgs.ps1 all

 Prints out information on all drives

 >GetDriveArgs.ps1 c

 Prints out information on only the c drive

 >GetDriveArgs.ps1 free

 Prints out freespace on the c drive

"@ ; Write-Host $help }

}

}

#$args = "help"

funArg($args)

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 16
Using Switch Wildcards

One of the more interesting uses of the switch command is the use of wildcards. This can
open up new opportunities to write clear and compact code that is both powerful and
easy to implement. The SwitchIPconfig.ps1 script holds the results of the ipconfig /all
command in the $a variable. Use switch with the -wildcard argument and feed it the text
to parse inside the smooth parenthesis. Then, open the script block with the curly brackets
and type the pattern to match. In this case, it is a simple *DHCP Server* phrase. In the
script block that will execute when the pattern match is found, use the Write-Host cmdlet
to print the current line inside the switch block. The interesting point is the use of the
$switch automatic variable as the enumerator. Specify the current property and retrieve
the current line that is processing. In this way, you can print the line you are interested in
examining. The SwitchIPconfig.ps1 script is shown here.

SwitchIPConfig.ps1
$a = ipconfig /all

switch -wildCard ($a)

 {

 "*DHCP Server*" { Write-Host $switch.current }

 }

Using Switch with Regular Expressions

Unlike a normal select case statement, the switch statement has the ability to work with
regular expressions. When looking for valuable information, you can use the switch
statement to open a text file, read the file into memory, and then use regular expressions
to parse the file. Regular expressions can be as simple as matching a particular word or
phrase or as complicated as validating a legitimate e-mail address. The SwitchRegEx.ps1
script that follows examines a sample text file for two words: test and good. If either word
is found, the entire line containing the matched word prints.

Following the switch statement, you can use the -regex parameter to indicate that you
want to use regular expressions as the matching tool. The value to switch on, inside the
smooth parentheses, is actually a sub-expression that opens and reads the text file. The $
in front of the curly brackets surrounding the path to a text file is the command to open
and read the text file into memory. Open the switch with the curly brackets and place
each pattern to match inside single quotations. The code block that will execute if the
regular expression is matched is also contained in curly brackets, and in this example it is a
simple write-host. Once again, use the $switch enumerator to retrieve the current line
where the pattern match occurs.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 17
SwitchRegEx.ps1
switch -regex (${c:\testa.txt})

{

 'test' {Write-Host $switch.current}

 'good' {Write-Host $switch.current}

}

The text of the TestA.txt file is shown here. This example will assist you in evaluating the
output from the script.

Testa.txt
This was a test file.

This was a good file.

This was a good test file.

Perhaps a more useful example of using the regular expression feature of the switch
statement is the VersionOfVista.ps1 script. Assign the string version to the $strPattern
variable, and hold the output of the net config workstation command into the $text
variable. Then, use the -regex parameter on the switch statement and feed it the content
stored in the $text variable, and look for the pattern that is stored in the $strPattern
variable. Once you find it, print the entire line by using the current property of the
automatic variable $switch. The nice thing about this script is that it tells you what version
of Windows Vista you have. The entire output from net config workstation command is 19
lines long. To compare results, here is a sample output from VersionOfVista.ps1.

Software version Windows Vista (TM) Enterprise

VersionOfVista.ps1
$strPattern = "version"

$text = net config workstation

switch -regex ($text)

{

 $strPattern { Write-Host $switch.current }

}

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 18
Working with Data Types
Windows PowerShell is a strongly typed language that acts as if it were typeless. This is
because Windows PowerShell does a good job of detecting data types and acting on
them accordingly. If something appears to be a string, Windows PowerShell will treat it as
a string. As an example, consider these three statements:

PS C:\> 1 + 1

2

PS C:\> 12:00 + :30

Unexpected token ':00' in expression or statement.

At line:1 char:6

+ 12:00 <<<< + :30

PS C:\> a + b

The term 'a' is not recognized as a cmdlet, function, operable program,

or script file. Verify the term and try again At line:1 char:2 + a <<<< + b

PS C:\>

Notice that only one statement completed without error—the one containing added
1 + 1. Windows PowerShell properly detected these as numbers and allowed the addition
to proceed. However, it is impossible to add letters or time.

However, if you put the letters a and b within double quotation marks and then add them,
you will notice that the action succeeds. This is shown here:

PS C:\> "a" + "b"

Ab

This behavior is not surprising, and in fact, is to be expected. Double quotation marks turn
the letters a and b into string values and concatenates the two letters. You can see this if
you pipeline the letter a into the Get-Member cmdlet as shown here. Notice that the first
line of output indicates the letter a is an object of the type system.string. Also observe that
there are many properties and methods you can use on a system.string object.

PS C:\> "a" | get-member

 TypeName: System.String

Name MemberType Definition

---- ---------- ----------

Clone Method System.Object Clone()

System.Int32 CompareTo(String strB)

Contains Method System.Boolean Contains(String value)

CopyTo Method System.Void CopyTo(Int32 sourceIndex, Char[]

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 19
destination, Int32 destinationIn

EndsWith Method System.Boolean EndsWith(String value),

System.Boolean EndsWith(String value,

Equals Method System.Boolean Equals(Object obj),

System.Boolean Equals(String value), Syste...

GetEnumerator Method System.CharEnumerator GetEnumerator()

GetHashCode Method System.Int32 GetHashCode()

GetType Method System.Type GetType()

GetTypeCode Method System.TypeCode GetTypeCode()

get_Chars Method System.Char get_Chars(Int32 index)

get_Length Method System.Int32 get_Length()

IndexOf Method System.Int32 IndexOf(Char value, Int32

startIndex, Int32 count), System.Int32...

IndexOfAny Method System.Int32 IndexOfAny(Char[] anyOf, Int32

startIndex, Int32 count), System....

Insert Method System.String Insert(Int32 startIndex, String

value)

IsNormalized Method System.Boolean IsNormalized(), System.Boolean

IsNormalized(NormalizationForm

LastIndexOf Method System.Int32 LastIndexOf(Char value, Int32

startIndex, Int32 count), System.I...

LastIndexOfAny Method System.Int32 LastIndexOfAny(Char[] anyOf, Int32

startIndex, Int32 count), Sys...

Normalize Method System.String Normalize(), System.String

Normalize(NormalizationForm normaliz...

PadLeft Method System.String PadLeft(Int32 totalWidth),

System.String PadLeft(Int32 totalWid...

PadRight Method System.String PadRight(Int32 totalWidth),

System.String PadRight(Int32 totalW...

Remove Method System.String Remove(Int32 startIndex, Int32

count), System.String Remove(Int...

Replace Method System.String Replace(Char oldChar, Char

newChar), System.String Replace(Stri...

Split Method System.String[] Split(Params Char[]

separator), System.String[] Split(Char[] ...

StartsWith Method System.Boolean StartsWith(String value),

System.Boolean StartsWith(String val...

Substring Method System.String Substring(Int32 startIndex),

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 20
System.String Substring(Int32 star...

ToCharArray Method System.Char[] ToCharArray(), System.Char[]

ToCharArray(Int32 startIndex, Int3...

ToLower Method System.String ToLower(), System.String

ToLower(CultureInfo culture)

ToLowerInvariant Method System.String ToLowerInvariant()

ToString Method System.String ToString(), System.String

ToString(IFormatProvider provider)

ToUpper Method System.String ToUpper(), System.String

ToUpper(CultureInfo culture)

ToUpperInvariant Method System.String ToUpperInvariant()

Trim Method System.String Trim(Params Char[] trimChars),

System.String Trim()

TrimEnd Method System.String TrimEnd(Params Char[]

trimChars)

TrimStart Method System.String TrimStart(Params Char[]

trimChars)

Chars ParameterizedProperty System.Char Chars(Int32 index) {get

If you pipeline the number 1 into the Get-Member cmdlet, you will see that it is a
system.int32 object, with a smaller listing of methods available than is available with the
string class:

PS C:\> 1 | get-member

 TypeName: System.Int32

Name MemberType Definition

---- ---------- ----------

CompareTo Method System.Int32 CompareTo(Int32 value), System.Int32

CompareTo(Object value)

Equals Method System.Boolean Equals(Object obj), System.Boolean

Equals(Int32 obj)

GetHashCode Method System.Int32 GetHashCode()

GetType Method System.Type GetType()

GetTypeCode Method System.TypeCode GetTypeCode()

ToString Method System.String ToString(), System.String

ToString(IFormatProvider provider), System.String ToS...

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 21
Once you have figured out how to use Get-Member to verify the reason for the behavior
of an object, you can use the type constraint objects to confirm an object of a specific data
type. If you want 12:00 to be interpreted as a date time object, use the [datetime] type
constraint to cast the string 12:00 into a date time object. This is shown here:

PS C:\> [datetime]"12:00" | get-member

 TypeName: System.DateTime

Name MemberType Definition

---- ---------- ----------

Add Method System.DateTime Add(TimeSpan value)

AddDays Method System.DateTime AddDays(Double value)

AddHours Method System.DateTime AddHours(Double value)

AddMilliseconds Method System.DateTime AddMilliseconds(Double value)

AddMinutes Method System.DateTime AddMinutes(Double value)

AddMonths Method System.DateTime AddMonths(Int32 months)

AddSeconds Method System.DateTime AddSeconds(Double value)

AddTicks Method System.DateTime AddTicks(Int64 value)

AddYears Method System.DateTime AddYears(Int32 value)

CompareTo Method System.Int32 CompareTo(Object value),

System.Int32 CompareTo(DateTime value)

Equals Method System.Boolean Equals(Object value),

System.Boolean Equals(DateTime value)

GetDateTimeFormats Method System.String[] GetDateTimeFormats(),

System.String[] GetDateTimeFormats(IFormat...

GetHashCode Method System.Int32 GetHashCode()

GetType Method System.Type GetType()

GetTypeCode Method System.TypeCode GetTypeCode()

get_Date Method System.DateTime get_Date()

get_Day Method System.Int32 get_Day()

get_DayOfWeek Method System.DayOfWeek get_DayOfWeek()

get_DayOfYear Method System.Int32 get_DayOfYear()

get_Hour Method System.Int32 get_Hour()

get_Kind Method System.DateTimeKind get_Kind()

get_Millisecond Method System.Int32 get_Millisecond()

get_Minute Method System.Int32 get_Minute()

get_Month Method System.Int32 get_Month()

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 22
get_Second Method System.Int32 get_Second()

get_Ticks Method System.Int64 get_Ticks()

get_TimeOfDay Method System.TimeSpan get_TimeOfDay()

get_Year Method System.Int32 get_Year()

IsDaylightSavingTime Method System.Boolean IsDaylightSavingTime()

Subtract Method System.TimeSpan Subtract(DateTime value),

System.DateTime Subtract(TimeSpan value)

ToBinary Method System.Int64 ToBinary()

ToFileTime Method System.Int64 ToFileTime()

ToFileTimeUtc Method System.Int64 ToFileTimeUtc()

ToLocalTime Method System.DateTime ToLocalTime()

ToLongDateString Method System.String ToLongDateString()

ToLongTimeString Method System.String ToLongTimeString()

ToOADate Method System.Double ToOADate()

ToShortDateString Method System.String ToShortDateString()

ToShortTimeString Method System.String ToShortTimeString()

ToString Method System.String ToString(), System.String

ToString(String format), System.String T...

ToUniversalTime Method System.DateTime ToUniversalTime()

Date Property System.DateTime Date {get;}

Day Property System.Int32 Day {get;}

DayOfWeek Property System.DayOfWeek DayOfWeek {get;}

DayOfYear Property System.Int32 DayOfYear {get;}

Hour Property System.Int32 Hour {get;}

Kind Property System.DateTimeKind Kind {get;}

Millisecond Property System.Int32 Millisecond {get;}Property

 System.Int32 Minute {get;}

Month Property System.Int32 Month {get;}

Second Property System.Int32 Second {get;}

Ticks Property System.Int64 Ticks {get;}

TimeOfDay Property System.TimeSpan TimeOfDay {get;}

Year Property System.Int32 Year {get;}

DateTime ScriptProperty System.Object DateTime {get=if

($this.DisplayHint -ieq "Date")...

There is no reason to use Get-Member to determine the data type of a particular object if
you are only interested in the name of the object. To do this, you can use the getType()
method as shown here. In the first case, you confirm that 12:00 is indeed a string. In the

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 23
second case, you cast the string into a datetime data type, and confirm it by once again
using the getType() method as shown here:

PS C:\> "12:00".getType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True String System.Object

PS C:\> ([dateTime]"12:00").getType()

IsPublic IsSerial Name BaseType

-------- -------- ---- --------

True True DateTime System.ValueType

All of these commands are in the DataTypes.txt file found in the chapter02 folder on the
companion CD-ROM. Additional data type aliases are shown in Table 2-3.

Table 2-3 Data Type Aliases
Alias Type
[int] 32-bit signed integer

[long] 64-bit signed integer

[string] Fixed length string of Unicode characters

[char] A Unicode 16-bit character

[bool] True False value

[byte] An 8-bit unsigned integer

[double] Double-precision 64-bit floating point number

[datetime] DateTime data type

[decimal] A 128-bit decimal value

[single] Single precision 32-bit floating point number

[array] An array of values

[xml] XML objects

[hashtable] A hashtable object (similar to a dictionary object)

Unleashing the Power of Regular Expressions
One of the interesting features of Windows PowerShell is the ability to work with regular
expressions. Regular expressions are optimized to manipulate text. You’ve learned about
using regular expressions with the switch statement to match a particular word, however,
you can do as much with the -wildcard switch. Now you’ll learn some of the more
advanced tasks you can complete with regular expressions. Table 2-4 lists the escape
sequences you can use with regular expressions.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 24
Table 2-4 Escape Sequences
Character Description
ordinary characters Characters other than . $ ^ { [(|) * + ? \ match

themselves.

\a Matches a bell (alarm) \u0007.

\b Matches a backspace \u0008 if in a [] character class; in
regular expression is word boundary.

\t Matches a tab \u0009.

\r Matches a carriage return \u000D.

\v Matches a vertical tab \u000B.

\f Matches a form feed \u000C.

\n Matches a new line \u000A.

\e Matches an escape \u001B.

\040 Matches an ASCII character as octal (up to three digits);
numbers with no leading zero are backreferences if they
have only one digit or if they correspond to a capturing
group number. For example, the character \040
represents a space.

\x20 Matches an ASCII character using hexadecimal
representation (exactly two digits).

\cC Matches an ASCII control character; for example, \cC is
control-C.

\u0020 Matches a Unicode character using hexadecimal
representation (exactly four digits).

The RegExTab.ps1 script illustrates using an escape sequence in a regular expression script.
It opens a text file and looks for tabs. The easiest way to work with regular expressions is
to store the pattern in its own variable. This makes it easy to modify and to experiment
without worrying about breaking the script (simply use the # sign to comment out the
line, then create a new line with the same name and a different value).

The RegExTab.ps1 script specifies \t as the pattern. According to Table 2-4 this means you
look for tabs. Feed the pattern, contained in $strPattern, to the [regex] type accelerator as
shown here:

$regex = [regex]$strPattern

Next, store the content of the TabLine.txt text file into the $text variable by using the
syntax shown here:

$text = ${C:\Chapter02\tabline.txt}

Then, use the matches method to parse the text file and look for matches with the pattern
specified in the $strPattern. Notice that you have already associated the pattern with the
regular expression object in the $regex variable. Count the number of times you have a
match. The complete Regextab.ps1 script is shown here.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 25
RegExTab.ps1
$strPattern = "\t"

$regex = [regex]$strPattern

$text = ${C:\Chapter02\tabline.txt}

$mc = $regex.matches($text)

$mc.count

Table 2-5 lists the character patterns that can be used with regular expressions for
performing advanced pattern matching.

Table 2-5 Character Patterns
Character Description

[character_group] Matches any character in the specified character group. For
example, to specify all vowels, use [aeiou]. To specify all
punctuation and decimal digit characters, use [\p{P}\d].

[^character_group] Matches any character not in the specified character group.
For example, to specify all consonants, use [^aeiou]. To
specify all characters except punctuation and decimal digit
characters, use [^\p{P}\d].

[firstCharacter-lastCharacter] Matches any character in a range of characters. For example,
to specify the range of decimal digits from '0' through '9', the
range of lowercase letters from 'a' through 'f', and the range
of uppercase letters from 'A' through 'F', use [0-9a-fA-F].

. Matches any character except \n. If modified by the
Singleline option, a period matches any character.

\p{name} Matches any character in the Unicode general category or
named block specified by name (for example, Ll, Nd, Z,
IsGreek, and IsBoxDrawing).

\P{name} Matches any character not in Unicode general category or
specified named block

\w Matches any word character. Equivalent to the Unicode
general categories
[\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}\p{Pc}\p{Lm}]. If ECMAScript-
compliant behavior is specified with the ECMAScript option,
\w is equivalent to [a-zA-Z_0-9].

\W Matches any nonword character. Equivalent to the Unicode
general categories
[^\p{Ll}\p{Lu}\p{Lt}\p{Lo}\p{Nd}\p{Pc}\p{Lm}]. If ECMAScript-
compliant behavior is specified with the ECMAScript option,
\W is equivalent to [^a-zA-Z_0-9].

\s Matches any white-space character. Equivalent to the escape
sequences and Unicode general categories
[\f\n\r\t\v\x85\p{Z}]. If ECMAScript-compliant behavior is
specified with the ECMAScript option, \s is equivalent to [
\f\n\r\t\v].

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 26
\S Matches any non-white-space character. Equivalent to the
escape sequences and Unicode general categories
[^\f\n\r\t\v\x85\p{Z}]. If ECMAScript-compliant behavior is
specified with the ECMAScript option, \S is equivalent to [^
\f\n\r\t\v].

\d Matches any decimal digit. Equivalent to \p{Nd} for Unicode
and [0-9] for non-Unicode, ECMAScript behavior.

\D Matches any nondigit character. Equivalent to \P{Nd} for
Unicode and [^0-9] for non-Unicode, ECMAScript behavior.

Suppose you want to identify white space in a file. To do this, you can use the match
pattern \s which is listed in Table 2-5 as a character pattern. The ability to find white space
in a text file is quite useful, because for many items, the end of line separator is just white
space. To illustrate working with white space, examine the following RegWhiteSpace.ps1
script.

The first line of the script includes a line of text to use for testing against. The pattern
comes from Table 2-5 and is a simple \s, which tells the regular expression you want to
match on white space. Then use the $matches variable to hold the match object returned
by the match static method of the regex type accelerator.

After printing out the results of the match, move to phase two, which is to replace, using
the same pattern. To do this, feed the pattern to the replace method along with the
variable containing the unadulterated text message. Go ahead and print the value of
$strReplace that now contains the modified object.

RegWhiteSpace.ps1
$strText = "a nice line of text. We will search for an expression"

$Pattern = "\s"

$matches = [regex]::match($strText, $pattern)

"Result of using the match method, we get the following:"

$matches

$strReplace = [regex]::replace($strText, $pattern, "_")

"Now we will replace, using the same pattern. We will use

an underscore to replace the space between words:"

$strReplace

Using Command-Line Arguments
Modifying a script at run time is an important time-saving, labor-saving, and flexibility-
preserving technique. In many companies, first-level support is given the ability to run
scripts but not to create scripts. The first-level support personnel do not have access to
script editors, nor are they expected to know how to modify a script at design time. The

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 27
solution is to use command-line arguments that modify the behavior of the script. In this
manner, the scripts become almost like custom-written utilities that are edited by the user,
rather than components that are modified via a series of switches and parameters. An
example of this technique is shown here in the ArgsShare.ps1 script.

The ArgsShare.ps1 script defines a simple function that is used to perform the WMI query.
It takes a single argument from the command line when the script is run. This will
determine the kind of shares that are returned.

An if … else statement is used to determine if a command-line argument is present. If it is
not present, then a friendly help message is displayed that suggests running help for the
script. In reality, anything that is not a recognized as a valid argument will result in
displaying the help string. The help message suggests the common question mark switch.

Once it is determined a valid command-line argument is present, the switch statement will
assign the appropriate value to the $strShare variable, and will then call the WMI function.
This procedure allows a user to type in a simple noun such as: admin, print, file, ipc, or all
and generate the appropriate WMI query. However, WMI expects a valid share type
integer. By using switch in this way, you generate the appropriate WMI query based upon
input received from the command line. If an unexpected command-line argument is
supplied, the default switch is used; this simply prints out the help message. You can
change this to perform an all type of query or some other default WMI query, if desired.
You can even paste the your default WMI query into the if(!args) statement and allow the
default query to run when there is no argument present. This mimics the behavior of
some Windows command-line utilities. The ArgsShare.ps1 script is shown here.

ArgsShare.ps1
Function FunWMI($strShare)

 {

 Get-WmiObject win32_share -Filter "type = $strShare"

 }

if(!$args)

{ "you must supply an argument. Try ArgsShare.ps1 ?"}

ELSE

{

$strShare = $args

switch ($strShare)

 {

 "admin" { $strShare = 2147483648 ; funwmi($strShare) }

 "print" { $strShare = 2147483649 ; funwmi($strShare) }

 "file" { $strShare = 0 ; funwmi($strShare) }

 "ipc" { $strShare = 2147483651 ; funwmi($strShare) }

 "all" { Get-WmiObject win32_share }

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 28
 Default { Write-Host "You must supply either: admin, print, file, ipc, or all `n

 Example: > ArgsShare.ps1 admin" }

 }

}

Summary
In this chapter we first examined the scripting policy provided by Windows PowerShell.
We looked at the steps involved in configuring Windows PowerShell for scripting use. We
examined the various flow control statements, and examined scripts that use flow control
for advanced scripting needs. We looked at implementing decision making in Windows
PowerShell and saw how encapsulated logic can vastly simplify network administration
tasks by acting upon routine events when they are presented to the script. Finally, we
explored the use of regular expressions to provide advanced pattern-matching capabilities
to both scripts and cmdlets.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

	Cover
	Table of Contents
	Chapter 2: Scripting Windows PowerShell
	Why Use Scripting?
	Configuring the Scripting Policy
	Running Windows PowerShell Scripts
	Use of Variables
	Use of Constants
	Using Flow Control Statements
	Adding Parameters to ForEach-Object
	Using the Begin Parameter
	Using the Process Parameter
	Using the End Parameter

	Using the For Statement
	Using Decision-Making Statements
	Using If … Elseif … Else
	Using Switch

	Working with Data Types
	Unleashing the Power of Regular Expressions
	Using Command-Line Arguments
	Summary

