

To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/10329.aspx

Chapter 3

Leveraging PowerShell Providers
After completing this chapter, you will be able to:

■ Understand the role of providers in Windows PowerShell

■ Use the Get-PSProvider cmdlet

■ Use the Get-PSDrive cmdlet

■ Use the Get-Item cmdlet

■ Use the Set-Location cmdlet

■ Use the file system model to access data from each of the built-in providers

Windows PowerShell provides a consistent way to access information external to the shell
environment. To do this, it uses providers. These providers are actually .NET programs that
hide all the ugly details to provide an easy way to access information. The beautiful thing
about the way the provider model works is that all the different sources of information are
accessed in exactly the same manner. This chapter demonstrates how to leverage the Power-
Shell providers. All the scripts mentioned in this chapter can be found in the corresponding
scripts folder on the CD.

Identifying the Providers
By identifying the providers installed with Windows PowerShell, we can begin to under-
stand the capabilities intrinsic to a default installation. Providers expose information con-
tained in different data stores by using a drive and file system analogy. An example of this is
obtaining a listing of registry keys—to do this, you would connect to the registry “drive” and
use the Get-ChildItem cmdlet, which is exactly the same method you would use to obtain a
listing of files on the hard drive. The only difference is the specific name associated with
each drive. Providers can be created by anyone familiar with Windows .NET programming.
When a new provider is created, it is called a snap-in. A snap-in is a dynamic link library (dll)
file that must be installed into Windows PowerShell. After a snap-in has been installed, it
cannot be un-installed—however, the snap-in can be removed from the current Windows
PowerShell console.
45

46 Chapter 3 Leveraging PowerShell Providers
Just the Steps To obtain a listing of all the providers, use the Get-PSProvider cmdlet. Exam-
ple: get-psprovider. This command produces the following list on a default installation of the
Windows PowerShell:

Name Capabilities Drives
---- ------------ ------
Alias ShouldProcess {Alias}
Environment ShouldProcess {Env}
FileSystem Filter, ShouldProcess {C, D, E, F...}
Function ShouldProcess {Function}
Registry ShouldProcess {HKLM, HKCU}
Variable ShouldProcess {Variable}
Certificate ShouldProcess {cert}

Understanding the Alias Provider
In Chapter 1, Overview of Windows PowerShell, we presented the various Help utilities available
that show how to use cmdlets. The alias provider provides easy-to-use access to all aliases
defined in Windows PowerShell. To work with the aliases on your machine, use the Set-Location
cmdlet and specify the Alias:\ drive. You can then use the same cmdlets you would use to work
with the file system.

Tip With the alias provider, you can use a Where-Object cmdlet and filter to search for an
alias by name or description.

Working with the alias provider

1. Open Windows PowerShell.

2. Obtain a listing of all the providers by using the Get-PSProvider cmdlet. This is shown here:

Get-PSProvider

3. The PSDrive associated with the alias provider is called Alias. This is seen in the listing
produced by the Get-PSProvider cmdlet. Use the Set-Location cmdlet to change to the
Alias drive. Use the sl alias to reduce typing. This command is shown here:

sl alias:\

4. Use the Get-ChildItem cmdlet to produce a listing of all the aliases that are defined on the
system. To reduce typing, use the alias gci in place of Get-ChildItem. This is shown here:

GCI

5. Use a Where-Object cmdlet filter to reduce the amount of information that is returned by
using the Get-ChildItem cmdlet. Produce a listing of all the aliases that begin with the let-
ter s. This is shown here:

GCI | Where-Object {$_.name -like "s*"}

Chapter 3 Leveraging PowerShell Providers 47
6. To identify other properties that could be used in the filter, pipeline the results of the
Get-ChildItem cmdlet into the Get-Member cmdlet. This is shown here:

Get-ChildItem |Get-Member

7. Press the up arrow twice, and edit the previous filter to include only definitions that con-
tain the word set. The modified filter is shown here:

GCI | Where-Object {$_.definition -like "set*"}

8. The results of this command are shown here:

CommandType Name Definition
----------- ---- ----------
Alias sal Set-Alias
Alias sc Set-Content
Alias si Set-Item
Alias sl Set-Location
Alias sp Set-ItemProperty
Alias sv Set-Variable
Alias cd Set-Location
Alias chdir Set-Location
Alias set Set-Variable

9. Press the up arrow three times, and edit the previous filter to include only names of
aliases that are like the letter w. This revised command is seen here:

GCI | Where-Object {$_.name -like "*w*"}

10. The results from this command are similar to those shown here:

CommandType Name Definition
----------- ---- ----------
Alias fw Format-Wide
Alias gwmi Get-WmiObject
Alias where Where-Object
Alias write Write-Output
Alias pwd Get-Location

11. From the list above, note that where is an alias for the Where-Object cmdlet. Press the up
arrow one time to retrieve the previous command. Edit it to use the where alias instead of
spelling out the entire Where-Object cmdlet name. This revised command is seen here:

GCI | where {$_.name -like "*w*"}

Caution When using the Set-Location cmdlet to switch to a newly created PSDrive, you
must follow the name of the PSDrive with a colon. A trailing forward slash or backward slash
is optional. An error will be generated if the colon is left out, as shown in Figure 3-1. I prefer
to use the backward slash (\) because it is consistent with normal Windows file system operations.

48 Chapter 3 Leveraging PowerShell Providers
Figure 3-1 Using Set-Location without : results in an error

Understanding the Certificate Provider
In the preceding section, we explored working with the alias provider. Because the file system
model applies to the certificate provider in much the same way as it did the alias provider,
many of the same cmdlets can be used. To find information about the certificate provider, use
the Get-Help cmdlet. If you are unsure what articles in Help may be related to certificates, you
can use the wild card asterisk (*) parameter. This command is shown here:

get-help *cer*

The certificate provider gives you the ability to sign scripts and allows Windows PowerShell to
work with signed and unsigned scripts as well. It also gives you the ability search for, copy,
move, and delete certificates. Using the certificate provider, you can even open the Certificates
Microsoft Management Console (MMC). The commands used in the procedure are in the
ObtainingAListingOfCertificates.txt file.

Obtaining a listing of certificates

1. Open Windows PowerShell.

2. Set your location to the cert PSDrive. To do this, use the Set-Location cmdlet, as shown here:

Set-Location cert:\

3. Use the Get-ChildItem cmdlet to produce a list of the certificates, as shown here:

Get-ChildItem

4. The list produced is shown here:

Location : CurrentUser
StoreNames : {?, UserDS, AuthRoot, CA...}

Location : LocalMachine
StoreNames : {?, AuthRoot, CA, AddressBook...}

Chapter 3 Leveraging PowerShell Providers 49
5. Use the -recurse argument to cause the Get-ChildItem cmdlet to produce a list of all the
certificate stores. To do this, press the up arrow key one time, and add the -recurse argu-
ment to the previous command. This is shown here:

Get-ChildItem -recurse

6. Use the -path argument for Get-ChildItem to produce a listing of certificates in another
store, without having to use the Set-Location cmdlet to change your current location.
Using the gci alias, the command is shown here:

GCI -path currentUser

7. Your listing of certificate stores will look similar to the one shown here:

Name : ?

Name : UserDS

Name : AuthRoot

Name : CA

Name : AddressBook

Name : ?

Name : Trust

Name : Disallowed

Name : _NMSTR

Name : ?????k

Name : My

Name : Root

Name : TrustedPeople

Name : ACRS

Name : TrustedPublisher

Name : REQUEST

8. Change your working location to the currentuser\authroot certificate store. To do this,
use the sl alias followed by the path to the certificate store. This command is shown here:

sl currentuser\authroot

50 Chapter 3 Leveraging PowerShell Providers
9. Use the Get-ChildItem cmdlet to produce a listing of certificates in the currentuser\authroot
certificate store that contain the name C&W in the subject field. Use the gci alias to
reduce the amount of typing. Pipeline the resulting object to a Where-Object cmdlet, but
use the where alias instead of typing Where-Object. The code to do this is shown here:

GCI | where {$_.subject -like "*c&w*"}

10. On my machine, there are four certificates listed. These are shown here:

Thumbprint Subject
---------- -------
F88015D3F98479E1DA553D24FD42BA3F43886AEF O=C&W HKT SecureNet CA SGC Root, C=hk
9BACF3B664EAC5A17BED08437C72E4ACDA12F7E7 O=C&W HKT SecureNet CA Class A, C=hk
4BA7B9DDD68788E12FF852E1A024204BF286A8F6 O=C&W HKT SecureNet CA Root, C=hk
47AFB915CDA26D82467B97FA42914468726138DD O=C&W HKT SecureNet CA Class B, C=hk

11. Use the up arrow, and edit the previous command so that it will return only certificates
that contain the phrase SGC Root in the subject property. The revised command is
shown here:

GCI | where {$_.subject -like "*SGC Root*"}

12. The resulting output on my machine contains an additional certificate. This is shown
here:

Thumbprint Subject
---------- -------
F88015D3F98479E1DA553D24FD42BA3F43886AEF O=C&W HKT SecureNet CA SGC Root, C=hk
687EC17E0602E3CD3F7DFBD7E28D57A0199A3F44 O=SecureNet CA SGC Root, C=au

13. Use the up arrow, and edit the previous command. This time, change the Where-Object
cmdlet so that it filters on the thumbprint attribute that is equal to
F88015D3F98479E1DA553D24FD42BA3F43886AEF. You do not have to type that,
however; to copy the thumbprint, you can highlight it and press Enter in Windows Pow-
erShell, as shown in Figure 3-2. The revised command is shown here:

GCI | where {$_.thumbprint -eq "F88015D3F98479E1DA553D24FD42BA3F43886AEF"}

Figure 3-2 Highlight items to copy using the mouse

Chapter 3 Leveraging PowerShell Providers 51
Troubleshooting If copying from inside a Windows PowerShell window does not
work, then you probably need to enable Quick Edit Mode. To do this, right-click the
PowerShell icon in the upper left-hand corner of the Windows PowerShell window.
Choose Properties, and select Quick Edit Mode. This is shown in Figure 3-3.

Figure 3-3 Enable Quick Edit Mode to enable Clipboard Support

14. To see all the properties of the certificate, pipeline the certificate object to a Format-List
cmdlet and choose all the properties. The revised command is shown here:

GCI | where {$_.thumbprint -eq "F88015D3F98479E1DA553D24FD42BA3F43886AEF"} |
Format-List *

15. The output contains all the properties of the certificate object and is shown here:

PSPath : Microsoft.PowerShell.Security\Certificate::currentuser\aut
 hroot\F88015D3F98479E1DA553D24FD42BA3F43886AEF
PSParentPath : Microsoft.PowerShell.Security\Certificate::currentuser\aut
 hroot
PSChildName : F88015D3F98479E1DA553D24FD42BA3F43886AEF
PSDrive : cert
PSProvider : Microsoft.PowerShell.Security\Certificate
PSIsContainer : False
Archived : False
Extensions : {}
FriendlyName : CW HKT SecureNet CA SGC Root
IssuerName : System.Security.Cryptography.X509Certificates.X500Distingu
 ishedName
NotAfter : 10/16/2009 5:59:00 AM
NotBefore : 6/30/1999 6:00:00 AM
HasPrivateKey : False
PrivateKey :

52 Chapter 3 Leveraging PowerShell Providers
PublicKey : System.Security.Cryptography.X509Certificates.PublicKey
RawData : {48, 130, 2, 235...}
SerialNumber : 00
SubjectName : System.Security.Cryptography.X509Certificates.X500Distingu
 ishedName
SignatureAlgorithm : System.Security.Cryptography.Oid
Thumbprint : F88015D3F98479E1DA553D24FD42BA3F43886AEF
Version : 1
Handle : 75655840
Issuer : O=C&W HKT SecureNet CA SGC Root, C=hk
Subject : O=C&W HKT SecureNet CA SGC Root, C=hk

16. Open the Certificates MMC. This MMC is called Certmgr.msc and can be launched by
simply typing the name inside Windows PowerShell, as shown here:

Certmgr.msc

17. But it is more fun to use the Invoke-Item cmdlet to launch the Certificates MMC. To do
this, supply the PSDrive name of cert:\ to the Invoke-Item cmdlet. This is shown here:

Invoke-Item cert:\

18. Compare the information obtained from Windows PowerShell with the information dis-
played in the Certificates MMC. They are the same. The certificate is shown in Figure 3-4.

Figure 3-4 Certmgr.msc can be used to examine certificate properties

19. This concludes this procedure.

Chapter 3 Leveraging PowerShell Providers 53
Understanding the Environment Provider
The environment provider in Windows PowerShell is used to provide access to the system
environment variables. If you open a CMD (command) shell and type set, you will obtain a
listing of all the environment variables defined on the system. If you use the echo command
in the CMD shell to print out the value of %windir%, you will obtain the results seen in Figure 3-5.

Figure 3-5 Use set in a CMD prompt to see environment variables

Environment variables are used by various applications and other utilities as a shortcut to pro-
vide easy access to specific files, folders, and configuration data. By using the environment
provider in Windows PowerShell, you can obtain a listing of the environment variables. You
can also add, change, clear, and delete these variables.

Obtaining a listing of environment variables

1. Open Windows PowerShell.

2. Obtain a listing of the PSDrives by using the Get-PSDrive cmdlet. This is shown here:

Get-PSDrive

3. Note that the Environment PSDrive is called env. Use the env name with the Set-Location
cmdlet and change to the environment PSDrive. This is shown here:

Set-Location env:\

4. Use the Get-Item cmdlet to obtain a listing of all the environment variables on the sys-
tem. This is shown here:

Get-Item *

5. Use the Sort-Object cmdlet to produce an alphabetical listing of all the environment vari-
ables by name. Use the up arrow to retrieve the previous command, and pipeline the
returned object into the Sort-Object cmdlet. Use the property argument, and supply
name as the value. This command is shown here:

get-item * | Sort-Object -property name

54 Chapter 3 Leveraging PowerShell Providers
6. Use the Get-Item cmdlet to retrieve the value associated with the environment variable
windir. This is shown here:

get-item windir

7. Use the up arrow and retrieve the previous command. Pipeline the object returned to the
Format-List cmdlet and use the wild card character to print out all the properties of the
object. The modified command is shown here:

get-item windir | Format-List *

8. The properties and their associated values are shown here:

PSPath : Microsoft.PowerShell.Core\Environment::windir
PSDrive : Env
PSProvider : Microsoft.PowerShell.Core\Environment
PSIsContainer : False
Name : windir
Key : windir
Value : C:\WINDOWS

9. This concludes this procedure. Do not close Windows PowerShell. Leave it open for the
next procedure.

Creating a new environment variable

1. You should still be in the Environment PSDrive from the previous procedure. If not, use
the Set-Location env:\ command).

2. Use the Get-Item cmdlet to produce a listing of all the environment variables. Pipeline the
returned object to the Sort-Object cmdlet using the property of name. To reduce typing,
use the gi alias and the sort alias. This is shown here:

GI * | Sort -Property Name

3. Use the New-Item cmdlet to create a new environment variable. The path argument will
be dot (.) because you are already on the env:\ PSDrive. The -name argument will be
admin, and the value argument will be your given name. The completed command is
shown here:

New-Item -Path . -Name admin -Value mred

4. Use the Get-Item cmdlet to ensure the admin environment variable was properly created.
This command is shown here:

Get-Item admin

5. The results of the previous command are shown here:

Name Value
---- -----
admin mred

Chapter 3 Leveraging PowerShell Providers 55
6. Use the up arrow to retrieve the previous command. Pipeline the results to the Format-
List cmdlet, and choose All Properties. This command is shown here:

Get-Item admin | Format-List *

7. The results of the previous command include the PSPath, PSDrive, and additional infor-
mation about the newly created environment variable. These results are shown here:

PSPath : Microsoft.PowerShell.Core\Environment::admin
PSDrive : Env
PSProvider : Microsoft.PowerShell.Core\Environment
PSIsContainer : False
Name : admin
Key : admin
Value : mred

8. This concludes this procedure. Leave PowerShell open for the next procedure.

Renaming an environment variable

1. Use the Get-ChildItem cmdlet to obtain a listing of all the environment variables. Pipeline
the returned object to the Sort-Object cmdlet and sort the list on the name property. Use
the gci and sort aliases to reduce typing. The code to do this is shown here:

GCI | Sort -Property name

2. The admin environment variable should be near the top of the list of system variables. If
it is not, then create it by using the New-Item cmdlet. The path argument has a value of
dot (.); the name argument has the value of admin; and the value argument should be
the user’s given name. If this environment variable was created in the previous exercise,
then PowerShell will report that it already exists. This is shown here:

New-Item -Path . -Name admin -Value mred

3. Use the Rename-Item cmdlet to rename the admin environment variable to super. The
path argument combines both the PSDrive name and the environment variable name.
The NewName argument is the desired new name without the PSDrive specification.
This command is shown here:

Rename-Item -Path env:admin -NewName super

4. To verify that the old environment variable admin has been renamed super, press the up
arrow two or three times to retrieve the gci | sort -property name command. This is com-
mand is shown here:

GCI | Sort -Property name

5. This concludes this procedure. Do not close the Windows PowerShell. Leave it open for
the next procedure.

56 Chapter 3 Leveraging PowerShell Providers
Removing an environment variable

1. Use the Get-ChildItem cmdlet to obtain a listing of all the environment variables. Pipeline
the returned object to the Sort-Object cmdlet and sort the list on the name property. Use
the gci and sort aliases to reduce typing. The code to do this is shown here:

GCI | Sort -Property name

2. The super environment variable should be in the list of system variables. If it is not, then
create it by using the New-Item cmdlet. The path argument has a value of dot (.); the
name argument has the value of super; and the value argument should be the user’s
given name. If this environment variable was created in the previous exercise, then
PowerShell will report that it already exists. This is shown here:

New-Item -Path . -Name super -Value mred

3. Use the Remove-Item cmdlet to remove the super environment variable. The name of the
item to be removed is typed following the name of the cmdlet. If you are still in the
env:\ PSDrive, you will not need to supply a -path argument. The command is shown
here:

Remove-Item super

4. Use the Get-ChildItem cmdlet to verify that the environment variable super has been
removed. To do this, press the up arrow 2 or 3 times to retrieve the gci | sort -property
name command. This command is shown here:

GCI | Sort -Property name

5. This concludes this procedure.

Understanding File System Provider
The file system provider is the easiest Windows PowerShell provider to understand—it pro-
vides access to the file system. When Windows PowerShell is launched, it automatically opens
on the C:\PSDrive. Using the Windows PowerShell filesystem provider, you can create both
directories and files. You can retrieve properties of files and directories, and you can delete
them as well. In addition, you can open files and append or overwrite data to the files. This
can be done with inline code, or by using the pipelining feature of Windows PowerShell. The
commands used in the procedure are in the IdentifyingPropertiesOfDirectories.txt, Creating-
FoldersAndFiles.txt, and ReadingAndWritingForFiles.txt files.

Working with directory listings

1. Open Windows PowerShell.

2. Use the Get-ChildItem cmdlet to obtain a directory listing of the C:\ drive. Use the gci
alias to reduce typing. This is shown here:

GCI C:\

Chapter 3 Leveraging PowerShell Providers 57
3. Use the up arrow to retrieve the gci C:\ command. Pipeline the object created into a
Where-Object cmdlet, and look for containers. This will reduce the output to only direc-
tories. The modified command is shown here:

GCI C:\ | where {$_.psiscontainer}

4. Use the up arrow to retrieve the gci C:\ | where {$_.psiscontainer} command and use the
exclamation point (!), meaning not, to retrieve only items in the PSDrive that are not
directories. The modified command is shown here:

GCI C:\ | where {!$_.psiscontainer}

5. This concludes this procedure. Do not close Windows PowerShell. Leave it open for the
next procedure.

Identifying properties of directories

1. Use the Get-ChildItem cmdlet and supply a value of C:\ for the path argument. Pipeline
the resulting object into the Get-Member cmdlet. Use the gci and gm aliases to reduce typ-
ing. This command is shown here:

GCI -Path C:\ | GM

2. The resulting output contains methods, properties, and more. Filter the output by pipe-
lining the output into a Where-Object cmdlet and specifying the membertype attribute as
equal to property. To do this, use the up arrow to retrieve the previous gci -path C:\ | gm
command. Pipeline the resulting object into the Where-Object cmdlet and filter on the
membertype attribute. The resulting command is shown here:

GCI -Path C:\ | GM | Where {$_.membertype -eq "property"}

3. The previous gci -path C:\ | gm | where {$_.membertype -eq "property"} command returns
information on both the System.IO.DirectoryInfo and the System.IO.FileInfo objects. To
reduce the output to only the properties associated with the System.IO.FileInfo object,
we need to use a compound Where-Object cmdlet. Use the up arrow to retrieve the gci
-path C:\ | gm | where {$_.membertype -eq "property"} command. Add the And conjunction
and retrieve objects that have a typename that is like *file*. The modified command is
shown here:

GCI -Path C:\ | GM | where {$_.membertype -eq "property" -AND $_.typename -like
"*file*"}

4. The resulting output only contains the properties for a System.IO.FileInfo object. These
properties are shown here:

 TypeName: System.IO.FileInfo

Name MemberType Definition
---- ---------- ----------
Attributes Property System.IO.FileAttributes Attributes {get;set;}
CreationTime Property System.DateTime CreationTime {get;set;}
CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}

58 Chapter 3 Leveraging PowerShell Providers
Directory Property System.IO.DirectoryInfo Directory {get;}
DirectoryName Property System.String DirectoryName {get;}
Exists Property System.Boolean Exists {get;}
Extension Property System.String Extension {get;}
FullName Property System.String FullName {get;}
IsReadOnly Property System.Boolean IsReadOnly {get;set;}
LastAccessTime Property System.DateTime LastAccessTime {get;set;}
LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}
LastWriteTime Property System.DateTime LastWriteTime {get;set;}
LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}
Length Property System.Int64 Length {get;}
Name Property System.String Name {get;}

5. This concludes this procedure. Do not close Windows PowerShell. Leave it open for the
next procedure.

Creating folders and files

1. Use the Get-Item cmdlet to obtain a listing of files and folders. Pipeline the resulting
object into the Where-Object cmdlet and use the PsIsContainer property to look for fold-
ers. Use the name property to find names that contain the word my in them. Use the gi
alias and the where alias to reduce typing. The command is shown here:

GI * | Where {$_.PsisContainer -AND $_.name -Like "*my*"}

2. If you were following along in the previous chapters, you will have a folder called Mytest
off the root of the C:\ drive. Use the Remove-Item cmdlet to remove the Mytest folder.
Specify the recurse argument to also delete files contained in the C:\Mytest folder. If
your location is still set to Env, then change it to C or search for C:\Mytest. The com-
mand is shown here:

RI mytest -recurse

3. Press the up arrow twice and retrieve the gi * | where {$_.PsisContainer -AND $_.name
-Like "*my*"} command to confirm the folder was actually deleted. This command is
shown here:

GI * | Where {$_.PsisContainer -AND $_.name -Like "*my*"}

4. Use the New-Item cmdlet to create a folder named Mytest. Use the path argument to
specify the path of C:\. Use the name argument to specify the name of Mytest, and use
the type argument to tell Windows PowerShell the new item will be a directory. This
command is shown here:

New-Item -Path C:\ -Name mytest -Type directory

5. The resulting output, shown here, confirms the operation:

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 1/4/2007 2:43 AM mytest

Chapter 3 Leveraging PowerShell Providers 59
6. Use the New-Item cmdlet to create an empty text file. To do this, use the up arrow and
retrieve the previous new-item -path C:\ -name Mytest -type directory command. Edit the
path argument so that it is pointing to the C:\Mytest directory. Edit the name argument
to specify a text file named Myfile, and specify the type argument as file. The resulting
command is shown here:

New-Item -Path C:\mytest -Name myfile.txt -type file

7. The resulting message, shown here, confirms the creation of the file:

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\mytest

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 1/4/2007 3:12 AM 0 myfile.txt

8. This concludes this procedure. Do not close Windows PowerShell. Leave it open for the
next procedure.

Reading and writing for files

1. Delete Myfile.txt (created in the previous procedure). To do this, use the Remove-Item
cmdlet and specify the path argument as C:\Mytest\Myfile.txt. This command is shown
here:

RI -Path C:\mytest\myfile.txt

2. Use the up arrow twice to retrieve the new-item -path C:\Mytest -name Myfile.txt -type file.
Add the -value argument to the end of the command line, and supply a value of my file.
This command is shown here:

New-Item -Path C:\mytest -Name myfile.txt -Type file -Value "My file"

3. Use the Get-Content cmdlet to read the contents of Myfile.txt. This command is shown
here:

Get-Content C:\mytest\myfile.txt

4. Use the Add-Content cmdlet to add additional information to the Myfile.txt file. This
command is shown here:

Add-Content C:\mytest\myfile.txt -Value "ADDITIONAL INFORMATION"

5. Press the up arrow twice and retrieve the get-content C:\Mytest\Myfile.txt command,
which is shown here:

Get-Content C:\mytest\myfile.txt

6. The output from the get-content C:\Mytest\Myfile.txt command is shown here:

My fileADDITIONAL INFORMATION

60 Chapter 3 Leveraging PowerShell Providers
7. Press the up arrow twice, and retrieve the add-content C:\mytest\Myfile.txt -value "ADDI-
TIONAL INFORMATION" command to add additional information to the file. This com-
mand is shown here:

Add-Content C:\mytest\myfile.txt -Value "ADDITIONAL INFORMATION"

8. Use the up arrow to retrieve the get-content C:\Mytest\Myfile.txt command, which is
shown here:

Get-Content C:\mytest\myfile.txt

9. The output produced is shown here. Notice that the second time, the "ADDITIONAL
INFORMATION" command was added to a new line.

My fileADDITIONAL INFORMATION
ADDITIONAL INFORMATION

10. Use the Set-Information cmdlet to overwrite the contents of the Myfile.txt file. Specify the
value argument as "Setting information". This command is shown here:

Set-Content C:\mytest\myfile.txt -Value "Setting information"

11. Use the up arrow to retrieve the get-content C:\Mytest\Myfile.txt command, which is
shown here:

Get-Content C:\mytest\myfile.txt

12. The output from the Get-Content command is shown here:

Setting information

13. This concludes this procedure.

Understanding the Function Provider
The Function provider provides access to the functions defined in Windows PowerShell. By
using the function provider you can obtain a listing of all the functions on your system. You
can also add, modify, and delete functions. The function provider uses a file system–based
model, and the cmdlets learned earlier also apply to working with functions. The commands
used in the procedure are in the ListingAllFunctionsOnTheSystem.txt file.

Listing all functions on the system

1. Open Windows PowerShell.

2. Use the Set-Location cmdlet to change the working location to the function PSDrive. This
command is shown here:

Set-Location function:\

3. Use the Get-ChildItem cmdlet to enumerate all the functions. Do this by using the gci
alias, as shown here:

GCI

Chapter 3 Leveraging PowerShell Providers 61
4. The resulting list contains many functions that use Set-Location to the different drive let-
ters. A partial view of this output is shown here:

CommandType Name Definition
----------- ---- ----------
Function prompt 'PS ' + $(Get-Location) + $(...
Function TabExpansion ...
Function Clear-Host $spaceType = [System.Managem...
Function more param([string[]]$paths); if...
Function help param([string]$Name,[string[...
Function man param([string]$Name,[string[...
Function mkdir param([string[]]$paths); New...
Function md param([string[]]$paths); New...
Function A: Set-Location A:
Function B: Set-Location B:
Function C: Set-Location C:
Function D: Set-Location D:

5. To return only the functions that are used for drives, use the Get-ChildItem cmdlet and
pipe the object returned into a Where-Object cmdlet. Use the default $_ variable to filter
on the definition attribute. Use the like argument to search for definitions that contain
the word set. The resulting command is shown here:

GCI | Where {$_.definition -like "set*"}

6. If you are more interested in functions that are not related to drive mappings, then you
can use the notlike argument instead of like. The easiest way to make this change is to
use the up arrow and retrieve the gci | where {$_.definition -like "set*"} and then change the
filter from like to notlike. The resulting command is shown here:

GCI | Where {$_.definition -notlike "set*"}

7. The resulting listing of functions is shown here:

CommandType Name Definition
----------- ---- ----------
Function prompt 'PS' + $(Get-Location) + $(...
Function TabExpansion ...
Function Clear-Host $spaceType = [System.Managem...
Function more param([string[]]$paths); if...
Function help param([string]$Name,[string[...
Function man param([string]$Name,[string[...
Function mkdir param([string[]]$paths); New...
Function md param([string[]]$paths); New...
Function pro notepad $profile

8. Use the Get-Content cmdlet to retrieve the text of the md function. This is shown here:

Get-Content md

9. The content of the md function is shown here:

param([string[]]$paths); New-Item -type directory -path $paths

10. This concludes this procedure.

62 Chapter 3 Leveraging PowerShell Providers
Understanding the Registry Provider
The registry provider provides a consistent and easy way to work with the registry from within
Windows PowerShell. Using the registry provider, you can search the registry, create new reg-
istry keys, delete existing registry keys, and modify values and access control lists (ACLs)
from within Windows PowerShell. The commands used in the procedure are in the Under-
standingTheRegistryProvider.txt file. Two PSDrives are created by default. To identify the
PSDrives that are supplied by the registry provider, you can use the Get-PSDrive cmdlet, pipe-
line the resulting objects into the Where-Object cmdlet, and filter on the provider property
while supplying a value that is like the word registry. This command is shown here:

get-psDrive | where {$_.Provider -like "*Registry*"}

The resulting list of PSDrives is shown here:

Name Provider Root CurrentLocation
---- -------- ---- ---------------
HKCU Registry HKEY_CURRENT_USER
HKLM Registry HKEY_LOCAL_MACHINE

Obtaining a listing of registry keys

1. Open Windows PowerShell.

2. Use the Get-ChildItem cmdlet and supply the HKLM:\ PSDrive as the value for the path
argument. Specify the software key to retrieve a listing of software applications on the
local machine. The resulting command is shown here:

GCI -path HKLM:\software

3. A partial listing of similar output is shown here. The corresponding keys, as seen in Rege-
dit.exe, are shown in Figure 3-6.

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\software

SKC VC Name Property
--- -- ---- --------
 2 0 781 {}
 1 0 8ec {}
 4 0 Adobe {}
 12 0 Ahead {}
 2 1 Analog Devices {ProductDir}
 2 0 Andrea Electronics {}
 1 0 Application Techniques {}

4. This concludes this procedure. Do not close Windows PowerShell. Leave it open for the
next procedure.

Chapter 3 Leveraging PowerShell Providers 63
Figure 3-6 A Regedit.exe similar view of HKEY_LOCAL_MACHINE\SOFTWARE

Searching for hotfixes

1. Use the Get-ChildItem cmdlet and supply a value for the path argument. Use the HKLM:\
PSDrive and supply a path of Software\Microsoft\Windows NT\CurrentVersion\Hot-
fix. Because there is a space in Windows NT, you will need to use a single quote (') to
encase the command. You can use Tab completion to assist with the typing. The com-
pleted command is shown here:

GCI -Path 'HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\HotFix'

2. The resulting similar list of hotfixes is seen in the output here, in abbreviated fashion:

 Hive: Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE\SOFTWARE\Micros
oft\Windows NT\CurrentVersion\HotFix

SKC VC Name Property
--- -- ---- --------
 1 8 KB873333 {Installed, Comments, Backup Dir, Fix...
 1 8 KB873339 {Installed, Comments, Backup Dir, Fix...
 1 8 KB883939 {Installed, Comments, Backup Dir, Fix...
 1 8 KB885250 {Installed, Comments, Backup Dir, Fix...

3. To retrieve information on a single hotfix, you will need to add a Where-Object cmdlet.
You can do this by using the up arrow to retrieve the previous gci -path 'HKLM:\SOFT-
WARE\Microsoft\Windows NT\CurrentVersion\HotFix' command and pipelining the
resulting object into the Where-Object cmdlet. Supply a value for the name property, as
seen in the code listed here. Alternatively, supply a “KB” number from the previous output.

GCI -Path 'HKLM:\SOFTWARE\Microsoft\Windows NT\CurrentVersion\HotFix' | where
{$_.Name -like "*KB928388"}

4. This concludes this procedure.

64 Chapter 3 Leveraging PowerShell Providers
Understanding the Variable Provider
The variable provider provides access to the variables that are defined within Windows
PowerShell. These variables include both user-defined variables, such as $mred, and system-
defined variables, such as $host. You can obtain a listing of the cmdlets designed to work
specifically with variables by using the Get-Help cmdlet and specifying the asterisk (*) vari-
able. The commands used in the procedure are in the UnderstandingTheVariableProvider.txt
and WorkingWithVariables.txt files. To return only cmdlets, we use the Where-Object cmdlet
and filter on the category that is equal to cmdlet. This command is shown here:

Get-Help *variable | Where-Object {$_.category -eq ÒcmdletÓ}

The resulting list contains five cmdlets but is a little jumbled and difficult to read. So let’s mod-
ify the preceding command and specify the properties to return. To do this, use the up arrow
and pipeline the returned object into the Format-List cmdlet. Add the three properties we are
interested in: name, category, and synopsis. The revised command is shown here:

Get-Help *variable | Where-Object {$_.category -eq "cmdlet"} |
Format-List name, category, synopsis

The resulting output is much easier to read and understand. It is shown here:

Name : Get-Variable
Category : Cmdlet
Synopsis : Gets the variables in the current console.

Name : New-Variable
Category : Cmdlet
Synopsis : Creates a new variable.

Name : Set-Variable
Category : Cmdlet
Synopsis : Sets the value of a variable. Creates the variable if one with the requested
name does not exist.

Name : Remove-Variable
Category : Cmdlet
Synopsis : Deletes a variable and its value.

Name : Clear-Variable
Category : Cmdlet
Synopsis : Deletes the value of a variable.

Working with variables

1. Open Windows PowerShell.

2. Use the Set-Location cmdlet to set the working location to the variable PSDrive. Use the
sl alias to reduce typing needs. This command is shown here:

SL variable:\

Chapter 3 Leveraging PowerShell Providers 65
3. Produce a complete listing of all the variables currently defined in Windows PowerShell.
To do this, use the Get-ChildItem cmdlet. You can use the alias gci to produce this list. The
command is shown here:

Get-ChildItem

4. The resulting list is jumbled. Use the up arrow to retrieve the Get-ChildItem command,
and pipeline the resulting object into the Sort-Object cmdlet. Sort on the name property.
This command is shown here:

Get-ChildItem | Sort {$_.Name}

5. The output from the previous command is shown here:

Name Value
---- -----
$ }
? True
^ Get-ChildItem
_
args {}
ConfirmPreference High
ConsoleFileName
DebugPreference SilentlyContinue
Error {System.Management.Automation.ParseException:...
ErrorActionPreference Continue
ErrorView NormalView
ExecutionContext System.Management.Automation.EngineIntrinsics
false False
FormatEnumerationLimit 4
HOME C:\Documents and Settings\edwils.NORTHAMERICA
Host System.Management.Automation.Internal.Host.In...
input System.Array+SZArrayEnumerator
LASTEXITCODE 0
lastWord get-c
line get-c
MaximumAliasCount 4096
MaximumDriveCount 4096
MaximumErrorCount 256
MaximumFunctionCount 4096
MaximumHistoryCount 64
MaximumVariableCount 4096
mred mred
MyInvocation System.Management.Automation.InvocationInfo
NestedPromptLevel 0
null
OutputEncoding System.Text.ASCIIEncoding
PID 292
PROFILE C:\Documents and Settings\edwils.NORTHAMERICA...
ProgressPreference Continue
PSHOME C:\WINDOWS\system32\WindowsPowerShell\v1.0
PWD Variable:\
ReportErrorShowExceptionClass 0
ReportErrorShowInnerException 0
ReportErrorShowSource 1

66 Chapter 3 Leveraging PowerShell Providers
ReportErrorShowStackTrace 0
ShellId Microsoft.PowerShell
StackTrace at System.Number.StringToNumber(String str...
true True
VerbosePreference SilentlyContinue
WarningPreference Continue
WhatIfPreference 0

6. Use the Get-Variable cmdlet to retrieve a specific variable. Use the ShellId variable. You
can use Tab completion to speed up typing. The command is shown here:

Get-Variable ShellId

7. Use the up arrow to retrieve the previous Get-Variable ShellId command. Pipeline the
object returned into a Format-List cmdlet and return all properties. This is shown here:

Get-Variable ShellId | Format-List *

8. The resulting output includes the description of the variable, value, and other informa-
tion shown here:

Name : ShellId
Description : The ShellID identifies the current shell. This is used by #Requires.
Value : Microsoft.PowerShell
Options : Constant, AllScope
Attributes : {}

9. Create a new variable called administrator. To do this, use the New-Variable cmdlet. This
command is shown here:

New-Variable administrator

10. Use the Get-Variable cmdlet to retrieve the new administrator variable. This command is
shown here:

Get-Variable administrator

11. The resulting output is shown here. Notice that there is no value for the variable.

Name Value
---- -----
administrator

12. Assign a value to the new administrator variable. To do this, use the Set-Variable cmdlet.
Specify the administrator variable name, and supply your given name as the value for the
variable. This command is shown here:

Set-Variable administrator -value mred

13. Use the up arrow one time to retrieve the previous Get-Variable administrator command.
This command is shown here:

Get-Variable administrator

Chapter 3 Leveraging PowerShell Providers 67
14. The output displays both the variable name and the value associated with the variable.
This is shown here:

Name Value
---- -----
administrator mred

15. Use the Remove-Variable cmdlet to remove the administrator variable you previously cre-
ated. This command is shown here:

Remove-Variable administrator

16. Use the up arrow one time to retrieve the previous Get-Variable administrator command.
This command is shown here:

Get-Variable administrator

17. The variable has been deleted. The resulting output is shown here:

Get-Variable : Cannot find a variable with name 'administrator'.
At line:1 char:13
+ Get-Variable <<<< administrator

18. This concludes this procedure.

Exploring the Certificate Provider: Step-by-Step Exercises
In this exercise, we explore the use of the Certificate provider in Windows PowerShell.

1. Start Windows PowerShell.

2. Obtain a listing of all the properties available for use with the Get-ChildItem cmdlet by
piping the results into the Get-Member cmdlet. To filter out only the properties, pipeline
the results into a Where-Object cmdlet and specify the membertype to be equal to prop-
erty. This command is shown here:

Get-ChildItem |Get-Member | Where-Object {$_.membertype -eq "property"}

3. Set your location to the certificate drive. To identify the certificate drive, use the Get-
PSDrive cmdlet. Use the Where-Object cmdlet and filter on names that begin with the let-
ter c. This is shown here:

Get-PSDrive |where {$_.name -like "c*"}

4. The results of this command are shown here:

Name Provider Root CurrentLocation
---- -------- ---- ---------------
C FileSystem C:\
cert Certificate \

68 Chapter 3 Leveraging PowerShell Providers
5. Use the Set-Location cmdlet to change to the certificate drive.

Sl cert:\

6. Use the Get-ChildItem cmdlet to produce a listing of all the certificates on the machine.

GCI

7. The output from the previous command is shown here:

Location : CurrentUser
StoreNames : {?, UserDS, AuthRoot, CA...}

Location : LocalMachine
StoreNames : {?, AuthRoot, CA, AddressBook...}

8. The listing seems somewhat incomplete. To determine whether there are additional cer-
tificates installed on the machine, use the Get-ChildItem cmdlet again, but this time spec-
ify the recurse argument. Modify the previous command by using the up arrow. The
command is shown here:

GCI -recurse

9. The output from the previous command seems to take a long time to run and produces
hundreds of lines of output. To make the listing more readable, pipe the output to a text
file, and then open the file in Notepad. The command to do this is shown here:

GCI -recurse >C:\a.txt;notepad.exe a.txt

10. This concludes this step-by-step exercise.

One Step Further: Examining the Environment Provider
In this exercise, we work with the Windows PowerShell Environment provider.

1. Start Windows PowerShell.

2. Use the New-PSDrive cmdlet to create a drive mapping to the alias provider. The name of
the new PSDrive will be al. The PSProvider is alias, and the root will be dot (.). This com-
mand is shown here:

new-PSDrive -name al -PSProvider alias -Root .

3. Change your working location to the new PSDrive you called al. To do this, use the sl
alias for the Set-Location cmdlet. This is shown here:

SL al:\

4. Use the gci alias for the Get-ChildItem cmdlet, and pipeline the resulting object into the
Sort-Object cmdlet by using the sort alias. Supply name as the property to sort on. This
command is shown here:

GCI | Sort -Property name

Chapter 3 Leveraging PowerShell Providers 69
5. Use the up arrow to retrieve the previous gci | sort -property name command and modify
it to use a Where-Object cmdlet to return aliases only when the name is greater than the
letter t. Use the where alias to avoid typing the entire name of the cmdlet. The resulting
command is shown here:

GCI | sort -Property name | Where {$_.Name -gt "t"}c

6. Change your location back to the C:\ drive. To do this, use the sl alias and supply the
C:\ argument. This is shown here:

SL C:\

7. Remove the PSDrive mapping for al. To do this, use the Remove-PSDrive cmdlet and sup-
ply the name of the PSDrive to remove. Note, this command does not want a trailing
colon (:) or colon with backslash (:\). The command is shown here:

Remove-PSDrive al

8. Use the Get-PSDrive cmdlet to ensure the al drive was removed. This is shown here:

Get-PSDrive

9. Use the Get-Item cmdlet to obtain a listing of all the environment variables. Use the path
argument and supply env:\ as the value. This is shown here:

Get-Item -Path env:\

10. Use the up arrow to retrieve the previous command, and pipeline the resulting object
into the Get-Member cmdlet. This is shown here:

Get-Item -Path env:\ | Get-Member

11. The results from the previous command are shown here:

 TypeName: System.Collections.Generic.Dictionary'2+ValueCollection[[System.St
ring, mscorlib, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e0
89],[System.Collections.DictionaryEntry, mscorlib, Version=2.0.0.0, Culture=neu
tral, PublicKeyToken=b77a5c561934e089]]

Name MemberType Definition
---- ---------- ----------
CopyTo Method System.Void CopyTo(DictionaryEntry[] array, Int32...
Equals Method System.Boolean Equals(Object obj)
GetEnumerator Method System.Collections.Generic.Dictionary`2+ValueColl...
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
get_Count Method System.Int32 get_Count()
ToString Method System.String ToString()
PSDrive NoteProperty System.Management.Automation.PSDriveInfo PSDrive=Env
PSIsContainer NoteProperty System.Boolean PSIsContainer=True
PSPath NoteProperty System.String PSPath=Microsoft.PowerShell.Core\En...
PSProvider NoteProperty System.Management.Automation.ProviderInfo PSProvi...
Count Property System.Int32 Count {get;}

70 Chapter 3 Leveraging PowerShell Providers
12. Press the up arrow twice to return to the get-item -path env:\ command. Use the Home
key to move your insertion point to the beginning of the line. Add a variable called
$objEnv and use it to hold the object returned by the get-item -path env:\ command. The
completed command is shown here:

$objEnv=Get-Item -Path env:\

13. From the listing of members of the environment object, find the count property. Use this
property to print out the total number of environment variables. As you type $o, try to
use Tab completion to avoid typing. Also try to use Tab completion as you type the c in
count. The completed command is shown here:

$objEnv.Count

14. Examine the methods of the object returned by get-item -path env:\. Notice there is a
Get_Count method. Let’s use that method. The code is shown here:

$objEnv.Get_count

15. When this code is executed, however, the results define the method rather than execute
the Get_Count method. These results are shown here:

MemberType : Method
OverloadDefinitions : {System.Int32 get_Count()}
TypeNameOfValue : System.Management.Automation.PSMethod
Value : System.Int32 get_Count()
Name : get_Count
IsInstance : True

16. To retrieve the actual number of environment variables, we need to use empty parenthe-
ses is at the end of the method. This is shown here:

$objEnv.Get_count()

17. If you want to know exactly what type of object you have contained in the $objEnv vari-
able, you can use the GetType method, as shown here:

$objEnv.GetType()

18. This command returns the results shown here:

IsPublic IsSerial Name BaseType
-------- -------- ---- --------
False True ValueCollection System.Object

19. This concludes this one step further exercise.

Chapter 3 Leveraging PowerShell Providers 71
Chapter 3 Quick Reference

To Do This
Produce a listing of all variables defined in a Windows
PowerShell session

Use the Set-Location cmdlet to change location to the
variable PSDrive, then use the Get-ChildItem cmdlet

Obtain a listing of all the aliases Use the Set-Location cmdlet to change location to the
alias PSDrive, then use the Get-ChildItem cmdlet to
produce a listing of aliases. Pipeline the resulting
object into the Where-Object cmdlet and filter on the
name property for the appropriate value

Delete a directory that is empty Use the Remove-Item cmdlet and supply the name of
the directory

Delete a directory that contains other items Use the Remove-Item cmdlet and supply the name of
the directory and specify the recurse argument

Create a new text file Use the New-Item cmdlet and specify the -path argu-
ment for the directory location. Supply the name
argument, and specify the type argument as file.
Example: new-item -path C:\Mytest -name Myfile.txt
-type file

Obtain a listing of registry keys from a registry hive Use the Get-ChildItem cmdlet and specify the appro-
priate PSDrive name for the -path argument. Com-
plete the path with the appropriate registry path.
Example: gci -path HKLM:\software

Obtain a listing of all functions on the system Use the Get-ChildItem cmdlet and supply the PSDrive
name of function:\ to the path argument. Example:
gci -path function:\

	Cover
	Chapter 3: Leveraging PowerShell Providers
	Identifying the Providers
	Understanding the Alias Provider
	Understanding the Certificate Provider
	Understanding the Environment Provider
	Understanding File System Provider
	Understanding the Function Provider
	Understanding the Registry Provider
	Understanding the Variable Provider
	Exploring the Certificate Provider: Step-by-Step Exercises
	One Step Further: Examining the Environment Provider

