
To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/9541.aspx

978-0-7356-2279-1

© 2008 Ed Wilson. All rights reserved.

Windows PowerShell™
Scripting Guide

Ed Wilson

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title,
for early preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™
Scripting Guide from Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved),
and is provided without any express, statutory, or implied warranties

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Table of Contents
Introduction

 1 The Shell in Windows PowerShell
Installing Windows PowerShell

Interacting with the Shell

Introducing Cmdlets

Configuring Windows PowerShell

Security Issues with Windows PowerShell

Supplying Options for Cmdlets

Working with Get-Help

Working with Aliases to Assign Shortcut Names to Cmdlets

Additional Uses of Cmdlets

Summary

 2 Scripting Windows PowerShell
Why Use Scripting?

Configuring the Scripting Policy

Running Windows PowerShell Scripts

Use of Variables

Use of Constants

Using Flow Control Statements

Using the For Statement

Using Decision-Making Statements

Working with Data Types

Unleashing the Power of Regular Expressions

Using Command-Line Arguments

Summary

 3 Managing Logs
Identifying the Event Logs

Reading the Event Logs

Perusing General Log Files

Searching the Event Log

Managing the Event Log

Examining WMI Event Logs

Writing to Event Logs

Creating Your Own Event Logs

Summary

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

 4 Managing Services
Documenting the Existing Services

Setting the Service Configuration

Desired Configuration Maintenance

Confirming the Configuration

Producing an Exception Report

Summary

 5 Managing Sharing
Documenting Shares

Auditing Shares

Modifying Shares

Creating New Shares

Creating Multiple Shares

Deleting Shares

Deleting Only Unauthorized Shares

Summary

 6 Managing Printing
Inventorying Printers

Reporting on Printer Ports

Identifying Print Drivers

Installing Printer Drivers

Summary

 7 Desktop Maintenance
Maintaining Desktop Health

Monitoring Disk Space Utilization

Monitoring Performance

Summary

 8 Networking
Working with Network Settings

Configuring Network Adapter Settings

Configuring the Windows Firewall

Summary

 9 Configuring Desktop Settings
Working with Desktop Configuration Issues

Setting Screen Savers

Managing Desktop Power Settings

Changing the Power Scheme

Summary

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

 10 Managing Post-Deployment Issues
Setting the Time

Configuring the Time Source

Enabling User Accounts

Creating a Local User Account

Configuring the Screen Saver

Renaming the Computer

Shutting Down or Rebooting a Remote Computer

Summary

 11 Managing User Data
Working with Backups

Configuring Offline Files

Enabling the Use of Offline Files

Working with System Restore

Summary

 12 Troubleshooting Windows
Troubleshooting Startup Issues

Displaying Service Dependencies

Investigating Hardware Issues

Network Issues

Summary

 13 Managing Domain Users
Creating Organizational Units
Creating Domain Users

Creating Users from a .csv File

Creating Domain Groups

Modifying Domain Groups

Adding Multiple Users with Multiple Attributes

Summary

 14 Configuring the Cluster Service
Adding Clustered Resources to the Network Configuration

Adding Disks to Existing Applications

Performing Disk Management Tasks

Troubleshooting the Cluster Service

Summary

 15 Managing Internet Information Server 7.0
Creating a Web Site

Backing up a Web Site

Modifying IIS Options

Summary

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

 16 Installing and Configuring Certificate Services
Setting Up Certificate Services

Performing Certificate Services Maintenance

Summary

 17 Configuring Terminal Server
Configuring Windows Terminal Services

Managing Users

Deploying Applications

Configuring Printers

Summary

 18 Configuring Network Services
Configuring DNS

Configuring WINS

Configuring DHCP

Summary

 19 Working with Server Core
Examining Windows Server 2008 Core Edition

Managing Active Directory

Reporting Using WMI

Copying Files, Creating Folders

Remoting

Summary

Appendix A: Cmdlet Naming Conventions

Appendix B: Active X Data Object Provider Names

Appendix C: Windows PowerShell Frequently Asked Questions

Appendix D: Windows PowerShell Scripting Guidelines

Appendix E: General Troubleshooting Tips

Preview Content from Windows PowerShell™ Scripting Guide 1
Chapter 1

The Shell in Windows PowerShell
After completing this chapter, you will be able to:

• Install and configure Windows PowerShell

• Tackle security issues with Windows PowerShell

• Understand the basics of cmdlets

• Work with aliases to assign shortcut names to cmdlets

• Get help using Windows PowerShell

On the CD All the scripts used in this chapter are located on the CD-ROM that

accompanies this book in the \scripts\chapter01 folder.

Installing Windows PowerShell
Because Windows PowerShell is not installed by default on any operating system released
by Microsoft, it is important to verify the existence of Windows PowerShell on the
platform before the actual deployment of either scripts or commands. This can be as
simple as trying to execute a Windows PowerShell command and looking for errors. You
can easily accomplish this from inside a batch file by querying the value %errorlevel%.

Verifying Installation with VBScript

A more sophisticated approach to the task of verifying the existence of Windows
PowerShell on the operating system is to use a script that queries the
Win32_QuickFixEngineering Windows Management Instrumentation (WMI) class.
FindPowerShell.vbs is an example of using Win32_QuickFixEngineering in Microsoft Visual
Basic Scripting Edition (VBScript) to find an installation of Windows PowerShell.

The FindPowerShell.vbs script uses the WMI moniker to create an instance of the
SwbemServices object and then uses the execquery method to issue the query. The WMI
Query Language (WQL) query uses the like operator to retrieve hotfixes with a hotfixID
such as 928439, which is the hotfix ID for Windows PowerShell on Windows XP, Windows
Vista, Windows Server 2003, and Windows Server 2008. Once the hotfix is identified, the
script simply prints out the name of the computer stating that Windows PowerShell is
installed. This is shown in Figure 1-1.

Figure 1-1 The FindPowerShell.vbs script displays a pop-up box indicating that Windows PowerShell has
been found.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 2
If the hotfix is not found, the script indicates that Windows PowerShell is not installed. The
FindPowerShell.vbs script can easily be modified to include additional functionality you
may require on your specific network. For example, you may want to run the script against
multiple computers. To do this, you can turn strComputer into an array and type in
multiple computer names. Or, you can read a text file or perform an Active Directory
directory service query to retrieve computer names. You could also log the output from
the script rather than create a pop-up box.

FindPowerShell.vbs
Const RtnImmedFwdOnly = &h30

strComputer = "."

wmiNS = "\root\cimv2"

wmiQuery = "Select * from win32_QuickFixEngineering where hotfixid like '928439'"

Set objWMIService = GetObject("winmgmts:\\" & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery,,RtnImmedFwdOnly)

For Each objItem in colItems

 Wscript.Echo "PowerShell is present on " & objItem.CSName

Wscript.quit

Next

Wscript.Echo “PowerShell is not installed”

Deploying Windows PowerShell

Once Windows PowerShell is downloaded from http://www.microsoft.com/downloads, you
can deploy Windows PowerShell in your environment by using any of the standard
methods you currently use. A few of the methods customers use to deploy Windows
PowerShell deployment follow:

1. Create a Microsoft Systems Management Server (SMS) package and advertise it to the
appropriate organizational unit (OU) or collection.

2. Create a Group Policy Object (GPO) in Active Directory and link it to the
appropriate OU.

3. Call the executable by using a logon script.

If you are not deploying to an entire enterprise, perhaps the easiest way to install
Windows PowerShell is to simply double-click the executable and step through the wizard.

Keep in mind that Windows PowerShell is installed by using hotfix technology. This means
it is an update to the operating system, and not an add-on program. This has certain
advantages, including the ability to provide updates and fixes to Windows PowerShell
through operating system service packs and through Windows Update. But there are also
some drawbacks, in that hotfixes need to be uninstalled in the same order that they were
installed. For example, if you install Windows PowerShell on Windows Vista later install a

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 3
series of updates, then install Service Pack 1, and suddenly decide to uninstall Windows
PowerShell, you will need to back out Service Pack 1 and each hotfix in the appropriate
order. (Personally, at that point I think I would just back up my data, format the disks, and
reinstall Windows Vista. I think it would be faster. But all this is a moot point anyway, as
there is little reason to uninstall Windows PowerShell.)

Understanding Windows PowerShell
One issue with Windows PowerShell is grasping what it is. In fact, the first time I met
Jeffrey Snover, the chief architect for Windows PowerShell, one of the first things he
said was, “How do you describe Windows PowerShell to customers?”

So what is Windows PowerShell? Simply stated, Windows PowerShell is the next
generation command shell and scripting language from Microsoft that can be used to
replace both the venerable Cmd.exe command interpreter and the VBScript scripting
language.

This dualistic behavior causes problems for many network administrators who are used
to the Cmd.exe command interpreter with its weak batch language and the powerful
(but confusing) VBScript language for automating administrative tasks. These are not
bad tools, but they are currently used in ways that were not intended when they were
created more than a decade ago. The Cmd.exe command interpreter was essentially
the successor to the DOS prompt, and VBScript was more or less designed with Web
pages in mind. Neither was designed from the ground up for network administrators.

Interacting with the Shell
Once Windows PowerShell is launched, you can use it in the same manner as the Cmd.exe
command interpreter. For example, you can use dir to retrieve a directory listing. You can
also use cd to change the working directory and then use dir to produce a directory listing
just as you would perform these tasks from the CMD shell. This is illustrated in the
UsingPowerShell.txt example that follows, which shows the results of using these
commands.

UsingPowerShell.txt
PS C:\Users\edwils> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Users\edwils

Mode LastWriteTime Length Name

---- ------------- ------ ----

d-r-- 11/29/2006 1:32 PM Contacts

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 4
d-r-- 4/2/2007 12:51 AM Desktop

d-r-- 4/1/2007 6:53 PM Documents

d-r-- 11/29/2006 1:32 PM Downloads

d-r-- 4/2/2007 1:10 AM Favorites

d-r-- 4/1/2007 6:53 PM Links

d-r-- 11/29/2006 1:32 PM Music

d-r-- 11/29/2006 1:32 PM Pictures

d-r-- 11/29/2006 1:32 PM Saved Games

d-r-- 4/1/2007 6:53 PM Searches

d-r-- 4/2/2007 5:53 PM Videos

PS C:\Users\edwils> cd music

PS C:\Users\edwils\Music> dir

In addition to using traditional command interpreter commands, you can also use some of
the newer command line utilities such as Fsutil.exe, as shown here. Keep in mind that
access to Fsutil.exe requires administrative rights. If you launch the standard Windows
PowerShell prompt from the Windows PowerShell program group, you will not have
administrative rights, and the error shown in Figure 1-2 will appear.

Figure 1-2 Windows PowerShell respects user account control and by default will launch with normal
user privileges. This can generate errors when trying to execute privileged commands.

Fsutil.txt
PS C:\Users\edwils> sl c:\mytest

PS C:\mytest> fsutil file createNew c:\mytest\myNewFile.txt 1000

File c:\mytest\myNewFile.txt is created

PS C:\mytest> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\mytest

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 5
Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 5/8/2007 7:30 PM 1000 myNewFile.txt

PS C:\mytest>

Tip I recommend creating two Windows PowerShell shortcuts and saving them to the

Quick Launch bar. One shortcut launches with normal user permissions and the other

launches with administrative rights. By default you should use the normal user shortcut

and document those occasions that require administrative rights.

When you are finished working with the files and the folder, you can delete the file very
easily by using the del command. To keep from typing the entire file name, you can use
wildcards such as *.txt. This is safe enough, since you have first used the dir command to
ensure there is only one text file in the folder. Once the file is removed, you can use rd to
remove the directory. As shown in DeleteFileAndFolder.txt example that follows, these
commands work exactly the same as you would expect when working with the command
prompt.

DeleteFileAndFolder.txt
PS C:\> sl c:\mytest

PS C:\mytest> dir

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\mytest

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 5/8/2007 7:30 PM 1000 myNewFile.txt

PS C:\mytest> del *.txt

PS C:\mytest> cd c:\

PS C:\> rd c:\mytest

PS C:\> dir c:\mytest

Get-ChildItem : Cannot find path 'C:\mytest' because it does not exist.

At line:1 char:4

+ dir <<<< c:\mytest

PS C:\>

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 6
With these examples, you have been using the Windows PowerShell in an interactive
manner. This is one of the primary uses of Windows PowerShell. In fact, the Windows
PowerShell team expects that 80 percent of users will work with Windows PowerShell
interactively—simply as a better command prompt. You open up a Windows PowerShell
prompt and type in commands. The commands can be typed one at a time or they can be
grouped together like a batch file. This will be discussed later, as the process doesn’t work
by default.

Introducing Cmdlets
In addition to using traditional programs and commands from the Cmd.exe command
interpreter, you can also use the cmdlets that are built into Windows PowerShell. Cmdlet is
a name created by the Windows PowerShell team to describe these native commands.
They are like executable programs but because they take advantage of the facilities built
into Windows PowerShell, they are easy to write. They are not scripts, which are
uncompiled code, because they are built using the services of a special Microsoft .NET
Framework namespace. Because of their different nature, the Windows PowerShell team
came up with the new term cmdlet. Windows PowerShell comes with more than 120
cmdlets designed to assist network administrators and consultants to easily take
advantage of Windows PowerShell without having to learn the Windows PowerShell
scripting language. These cmdlets are documented in Appendix A, “Cmdlet Naming
Conventions.” In general, the cmdlets follow a standard naming convention such as Get-
Help, Get-EventLog, or Get-Process. The “get” cmdlets display information about the item
that is specified on the right side of the dash. The “set” cmdlets are used to modify or to
set information about the item on the right side of the dash. An example of a “set” cmdlet
is Set-Service, which can be used to change the startmode of a service. An explanation of
this naming convention is found in Appendix A, “Cmdlet Naming Conventions.”

Configuring Windows PowerShell
Once Windows PowerShell is installed on a platform, there are still some configuration
issues to address. This is in part due to the way the Windows PowerShell team at Microsoft
perceives the use of the tool. For example, the Windows PowerShell team believes that
80 percent of Windows PowerShell users will not utilize the scripting features of Windows
PowerShell; thus, the scripting capability is turned off by default.

Creating a Windows PowerShell Profile

There are many settings that can be stored in a Windows PowerShell profile. These items
can be stored in a psconsole file. To export the console configuration file, use the Export-
Console cmdlet as shown here:

PS C:\> Export-Console myconsole

The psconsole file is saved in the current directory by default, and will have an extension
of .psc1. The psconsole file is saved in an .xml format; a generic console file is shown here:

<?xml version="1.0" encoding="utf-8"?>

<PSConsoleFile ConsoleSchemaVersion="1.0">

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 7
 <PSVersion>1.0</PSVersion>

 <PSSnapIns />

</PSConsoleFile>

Configuring Windows PowerShell Start-up Options

There are several methods available to start Windows PowerShell. For example, if the logo
you receive when clicking the default Windows PowerShell icon seems to get in your way,
you can launch without it. You can start Windows PowerShell using different profiles and
even run a single Windows PowerShell command and exit the shell. If you need to start a
specific version of Windows PowerShell, you can do that as well by supplying a value for
the version parameter. Each of these options is illustrated in the following list.

1. Launch Windows PowerShell without the banner by using the -nologo argument as
shown here:

PowerShell -nologo

2. Launch a specific version of Windows PowerShell by using the -version argument:

PowerShell -version 1.0

3. Launch Windows PowerShell using a specific configuration file by specifying the
-psconsolefile argument:

PowerShell -psconsolefile myconsole.psc1

4. Launch Windows PowerShell, execute a specific command, and then exit by using the
-command argument. The command must be prefixed by the ampersand sign and
enclosed in curly brackets:

powershell -command "& {get-process}"

Security Issues with Windows PowerShell
As with any tool as versatile as Windows PowerShell, there are some security concerns.
Security, however, was one of the design goals in the development of Windows
PowerShell.

When you launch Windows PowerShell, it opens in your Users\userName folder; this
ensures you are in a directory where you will have permission to perform certain actions
and activities. This technique is far safer than opening at the root of the drive or opening
in the system root.

To change to a directory, you can’t automatically go up to the next level; you must
explicitly name the destination of the change directory operation (but you can use the
dotted notation with the Set-Location cmdlets as in Set-Location ..).

Running scripts is disabled by default but this can be easily managed with Group Policy or
login scripts.

Controlling the Execution of Cmdlets

Have you ever opened a CMD interpreter prompt, typed in a command, and pressed Enter
so you could see what happens? If that command happens to be Format C:\, are you sure

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 8
you want to format your C drive? There are several arguments that can be passed to
cmdlets to control the way they execute. These arguments will be examined in this
section.

Tip Most of the Windows PowerShell cmdlets support a “prototype” mode that can be

entered by using the -whatif parameter. The implementation of the whatif switch can be

decided by the person developing the cmdlet; however, the Windows PowerShell team

recommends that developers implement -whatif if the cmdlet will make changes to the

system.

Although not all cmdlets support these arguments, most of the cmdlets included with
Windows PowerShell do. The three ways to control execution are -whatif, -confirm, and
suspend. Suspend is not an argument that gets supplied to a cmdlet, but it is an action you
can take at a confirmation prompt, and is therefore another method of controlling
execution.

To use -whatif, first enter the cmdlet at a Windows PowerShell prompt. Then type the
-whatif parameter after the cmdlet. The use of the -whatif argument is illustrated in the
following WhatIf.txt example. On the first line, launch Notepad. This is as simple as typing
the word notepad as shown in the path. Next, use the Get-Process cmdlet to search for all
processes that begin with the name note. In this example, there are two processes with a
name beginning with notepad. Next, use the Stop-Process cmdlet to stop a process with
the name of notepad, but because the outcome is unknown, use the -whatif parameter.
Whatif tells you that it will kill two processes, both of which are named notepad, and it
also gives the process ID number so you can verify if this is the process you wish to kill.
Just for fun, once again use the Stop-Process cmdlet to stop all processes with a name
that begins with the letter n. Again, wisely use the whatif parameter to see what would
happen if you execute the command.

WhatIf.txt
PS C:\Users\edwils> notepad

PS C:\Users\edwils> Get-Process note*

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 45 2 1044 3904 53 0.03 3052 notepad

 45 2 1136 4020 54 0.05 3140 notepad

PS C:\Users\edwils> Stop-Process -processName notepad -WhatIf

What if: Performing operation "Stop-Process" on Target "notepad (3052)".

What if: Performing operation "Stop-Process" on Target "notepad (3140)".

PS C:\Users\edwils> Stop-Process -processName n* -WhatIf

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 9
What if: Performing operation "Stop-Process" on Target "notepad (3052)".

What if: Performing operation "Stop-Process" on Target "notepad (3140)".

So what happens if the whatif switch is not implemented? To illustrate this point, notice
that in the following WhatIf2.txt example, when you use the New-Item cmdlet to create a
new directory named myNewtest off the root, the whatif switch is implemented and it
confirms that the command will indeed create C:\myNewtest.

Note what happens, however, when you try to use the whatif switch on the Get-Help
cmdlet. You might guess it would display a message such as, “What if: Retrieving help
information for Get-Process cmdlet.” But what is the point? As there is no danger with the
Get-Help cmdlet, there is no need to implement whatif on Get-Help.

WhatIf2.txt
PS C:\Users\edwils> New-Item -Name myNewTest -Path c:\ -ItemType directory -WhatIf

What if: Performing operation "Create Directory" on Target

"Destination: C:\myNewTest".

PS C:\Users\edwils> get-help Get-Process -whatif

Get-Help : A parameter cannot be found that matches parameter name 'whatif'.

At line:1 char:28

+ get-help Get-Process -whatif <<<<

Best Practices The use of the -whatif parameter should be considered an essential tool

in the network administrator’s repertoire. Using it to model commands before execution

can save hours of work each year.

Confirming Commands

As you saw in the previous section, you can use -whatif to create a prototype cmdlet in
Windows PowerShell. This is useful for checking what a command will do. However, to be
prompted before the command executes, use the -confirm switch. In practice, using the -
confirm switch can generally take the place of -whatif, as you will be prompted before the
action occurs. This is shown in the ConfirmIt.txt example that follows.

In the ConfirmIt.txt file, first launch Calculator (Calc.exe). Because the file is in the path,
you don’t need to hard-code either the path or the extension. Next, use Get-Process with
the c* wildcard pattern to find all processes that begin with the letter c. Notice that there
are several process names on the list. The next step is to retrieve only the Calc.exe process.
This returns a more manageable result set. Now use the Stop-Process cmdlet with the -
confirm switch. The cmdlet returns the following information:

Confirm

Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "calc (2924)".

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 10
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend

[?] Help (default is "Y"):

You will notice this information is essentially the same as the information provided by the
whatif switch but it also provides the ability to perform the requested action. This can save
time when executing a large number of commands.

ConfirmIt.txt
PS C:\Users\edwils> calc

PS C:\Users\edwils> Get-Process c*

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 43 2 1060 4212 54 0.03 2924 calc

 1408 7 3364 6556 81 372 casha

 1132 16 23156 34680 129 3084 CcmExec

 599 5 1680 4956 88 620 csrss

 480 10 15812 20500 195 688 csrss

PS C:\Users\edwils> Get-Process calc

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 43 2 1060 4212 54 0.03 2924 calc

PS C:\Users\edwils> Stop-Process -Name calc -Confirm

Confirm

Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "calc (2924)".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?]

Help (default is "Y"): y

PS C:\Users\edwils> Get-Process c*

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 11
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 1412 7 3364 6556 81 372 casha

 1154 16 23224 34740 130 3084 CcmExec

 598 5 1680 4956 88 620 csrss

 477 10 15812 20488 195 688 csrss

Suspending Confirmation of Cmdlets

The ability to prompt for confirmation of a cmdlet’s execution is extremely useful and at
times may be vital in maintaining a high level of system uptime. For example, there are
times when you have typed in a long command and then remember that you must
perform another procedure first. In this case, simply suspend execution of the command.
The commands used in the suspending execution of a cmdlet and associated output are
shown in the following SuspendConfirmation.txt example.

In the SuspendConfirmation.txt file, first launch Microsoft Paint (Mspaint.exe). Because
Mspaint.exe is in the path, you don’t need to supply any path information to the file. You
then get the process information by using the Get-Process cmdlet. Use the ms* wildcard,
which matches any process name that begins with the letters ms. Once you have
identified the correct process, use the Stop-Process cmdlet and the confirm switch. Instead
of answering yes to the confirmation prompt, just suspend execution of the command so
you can run an additional command (perhaps you forgot the process ID number). Once
you have finished running the additional command, type exit to return to the suspended
command from the nested prompt. Once you have killed the mspaint process, you can
once again use the Get-Process cmdlet to confirm the process has been killed.

SuspendConfirmation.txt
PS C:\Users\edwils> mspaint

PS C:\Users\edwils> Get-Process ms*

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 98 4 5404 10492 72 0.09 3064 mspaint

PS C:\Users\edwils> Stop-Process -id 3064 -Confirm

Confirm

Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "mspaint (3064)".

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 12
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

s

PS C:\Users\edwils>>> Get-Process ms*

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

 97 4 5404 10496 72 0.09 3064 mspaint

PS C:\Users\edwils>>> exit

Confirm

Are you sure you want to perform this action?

Performing operation "Stop-Process" on Target "mspaint (3064)".

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help (default is "Y"):

y

PS C:\Users\edwils> Get-Process ms*

Supplying Options for Cmdlets
As you have seen in the previous sections, you can use -whatif and -confirm to control the
execution of cmdlets. One question students often ask me is, “How do I know what
options are available?” The answer is that the Windows PowerShell team created a set of
standard options. These standard options are called common parameters. When you look
at the syntax description for a cmdlet, often it will state that the cmdlet supports the
common parameters. This is shown here for the Get-Process cmdlet:

SYNTAX

 Get-Process [[-name] <string[]>] [<CommonParameters>]

 Get-Process -id <Int32[]> [<CommonParameters>]

 Get-Process -inputObject <Process[]> [<CommonParameters>]

One of the useful features of Windows PowerShell is the standardization of the syntax in
working with cmdlets. This vastly simplifies learning the new shell and language. Table 1-1
lists the common parameters. Keep in mind that all cmdlets will not implement all of these
parameters. However, if the parameters are used they will be interpreted in the same way
for all cmdlets because the Windows PowerShell engine interprets the parameters.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 13
Table 1-1 Common Parameters
Parameter Meaning
-whatif Tells the cmdlet not to execute; instead it will

tell you what would happen if the cmdlet were
to actually run.

-confirm Tells the cmdlet to prompt prior to executing
the command.

-verbose Instructs the cmdlet to provide a higher level of
detail than a cmdlet not using the verbose
parameter.

-debug Instructs the cmdlet to provide debugging
information.

-erroraction Instructs the cmdlet to perform a certain action
when an error occurs. Allowable actions are:
continue, stop, SilentlyContinue, and inquire.

-errorvariable Instructs the cmdlet to use a specific variable to
hold error information. This is in addition to the
standard $error variable.

-outvariable Instructs the cmdlet to use a specific variable to
hold the output information.

-outbuffer Instructs the cmdlet to hold a certain number of
objects prior to calling the next cmdlet in the
pipeline.

Working with Get-Help
Windows PowerShell has a high level of discoverability. That is, to learn how to use
Windows PowerShell you can simply use Windows PowerShell. Online help serves an
important role in assisting in this discoverability. The help system in Windows PowerShell
can be entered by several methods. To learn about using Windows PowerShell, use the
Get-Help cmdlet as shown here:

get-help get-help

This command prints out help about the Get-Help cmdlet. The output from this cmdlet is
shown here:

NAME

 Get-Help

SYNOPSIS

 Displays information about Windows PowerShell cmdlets and concepts.

SYNTAX

 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string

 []>] [-role <string[]>] [-category <string[]>] [-full] [<CommonParameters>]

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 14
 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string

 []>] [-role <string[]>] [-category <string[]>] [-detailed] [<CommonParamete

 rs>]

 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string

 []>] [-role <string[]>] [-category <string[]>] [-examples] [<CommonParamete

 rs>]

 Get-Help [[-name] <string>] [-component <string[]>] [-functionality <string

 []>] [-role <string[]>] [-category <string[]>] [-parameter <string>] [<Comm

 onParameters>]

DETAILED DESCRIPTION

 The Get-Help cmdlet displays information about Windows PowerShell cmdlets

 and concepts. You can also use "Help {<cmdlet name> | <topic-name>" or "<cmd

 let-name> /?". "Help" displays the help topics one page at a time. The "/?"

 displays help for cmdlets on a single page.

RELATED LINKS

 Get-Command

 Get-PSDrive

 Get-Member

REMARKS

 For more information, type: "get-help Get-Help -detailed".

 For technical information, type: "get-help Get-Help -full".

The awesome thing about online help for Windows PowerShell, is that not only does it
display help about commands—which you would expect—but it also has three different
levels of display: normal, detailed, and full. Additionally, you can obtain help about
concepts in Windows PowerShell. This last feature is equivalent to having an online
instruction manual. To retrieve a listing of all the conceptual help articles, use the Get-
Help about* command as shown here:

get-help about*

Suppose you do not remember the exact name of the cmdlet you wish to use but you
remember it was a “get” cmdlet. You can use a wildcard such as * to obtain the name of
the cmdlet. This is shown here:

get-help get*

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 15
This technique of using a wildcard operator can be extended further. If you remember the
cmdlet was a “get” cmdlet and it started with the letter p you could use the following
syntax to retrieve the desired cmdlet:

get-help get-p*

Suppose, however, that you know the exact name of the cmdlet but you can’t exactly
remember the syntax. For this scenario, you could use the -examples argument. To
retrieve several examples of the Get-PSDrive cmdlet, you could use Get-Help with the -
examples argument as shown here:

get-help get-psdrive -examples

To see help displayed one page at a time, you can use the help function which displays
the help output text through the more function. This is useful if you want to avoid
scrolling up and down to see the help output. This command is shown here:

get-help get-help | more

The formatted output from the more function is shown in Figure 1-3.

Figure 1-3 By using the more function, you can display lengthy help topics one page at a time.

To obtain detailed help about the Get-Help cmdlet, use the -detailed argument as shown
here.

get-help get-help -detailed

If you want to retrieve technical information about the Get-Help cmdlet, use the -full
argument. This is shown here:

get-help get-help -full

Getting tired of typing Get-Help over and over? After all, it is eight characters long and
one of them is a dash. The solution is to create an alias to the Get-Help cmdlet. An alias is
a shortcut keystroke combination that will launch a program or cmdlet when typed. In the
create Get-Help alias for this example, you can assign the Get-Help to the gh key
combination.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 16
Tip Before creating an alias for a cmdlet, confirm there is not already an alias to the

cmdlet by using Get-Alias. Then use Set-Alias to assign the cmdlet to a unique keystroke

combination.

Working with Aliases to Assign Shortcut Names to
Cmdlets

Aliases allow you to assign shortcut names to cmdlets. This can greatly simplify working at
the Windows PowerShell prompt and it will allow you to customize the command syntax
as you prefer. As an example, suppose you want to create an alias for the Get-Help
cmdlet. Instead of typing Get-Help, perhaps you prefer to type gh. This can be
accomplished in four simple steps. First, ensure there is not already an alias assigned to
the desired keystroke combination to avoid confusion. The next thing you might want to
do is review help for the Set-Alias cmdlet. Once you have done this, call the Set-Alias
cmdlet and pass the new name you want to create and the name of the cmdlet you wish
to alias. After you have created the alias, you may want to use Get-Alias to verify the alias
was created properly. The completed code from this section is in the GhAlias.txt file in the
chapter01 folder on the companion CD-ROM.

1. Retrieve an alphabetic listing of all currently defined aliases and inspect the list for
one assigned to either the Get-Help cmdlet or for the keystroke combination gh. The
command to do this is shown here:

get-alias |sort

2. Once you have determined there is no alias for the Get-Help cmdlet and that none is
assigned to the gh keystroke combination, review the syntax for the Set-Alias cmdlet.
Use the -full argument to the Get-Help cmdlet. This is shown here:

get-help set-alias -full

3. Use the Set-Alias cmdlet to assign the gh keystroke combination to the Get-Help
cmdlet. To do this, use the following command:

set-alias gh get-help

4. Use the Get-Alias cmdlet to verify the alias was properly created. To do this, use the
following command:

Get-Alias gh

Tip If the syntax of Set-Alias is a little confusing, you can use named parameters instead

of the default positional binding. In addition, I recommend using either the whatif switch

or the confirm switch. You can also specify a description for the alias. The modified syntax

would look like this.

Set-Alias -Name gh -Value Get-Help -Description "mred help alias" -WhatIf

As you have seen, Windows PowerShell can be used as a replacement to the CMD
interpreter. But it also has a large number of built-in cmdlets that provide the opportunity

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 17
to perform a plethora of activities. These cmdlets can be used either in a stand-alone
fashion or they can be run together as a group.

Accessing Windows PowerShell
Once Windows PowerShell is installed, it immediately becomes available for use.
However, pressing R while pressing the Windows flag key on your keyboard to bring
up the Windows Run dialog box or mousing around—doing the old Start button/Run
dialog box thing and typing PowerShell all the time—becomes somewhat less helpful. I
created a shortcut to Windows PowerShell and placed that shortcut on my desktop. For
me and the way I work, this is ideal. This is so useful, in fact, that I wrote a script to
perform this function. This script can be called via a logon script, to automatically
create the shortcut on the desktop. The script is named
CreateShortCutToPowerShell.vbs:

CreateShortCutToPowerShell.vbs
Option Explicit

Dim objshell

Dim strDesktop

Dim objshortcut

Dim strProg

strProg = "powershell.exe"

Set objshell=CreateObject("WScript.Shell")

strDesktop = objshell.SpecialFolders("desktop")

set objShortcut = objshell.CreateShortcut(strDesktop & "\powershell.lnk")

objshortcut.TargetPath = strProg

objshortcut.WindowStyle = 1

objshortcut.Description = funfix(strProg)

objshortcut.WorkingDirectory = "C:\"

objshortcut.IconLocation= strProg

objshortcut.Hotkey = "CTRL+SHIFT+P"

objshortcut.Save

Function funfix(strin)

funfix = InStrRev(strin,".")

funfix = Mid(strin,1,funfix)

End function

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 18
Additional Uses of Cmdlets
Now that you have learned about using the help utilities and working with aliases, it’s time
to examine some additional ways to use cmdlets in Windows PowerShell.

Tip To save time when typing the cmdlet name, simply type enough of the cmdlet name

to uniquely distinguish it, and then press the Tab key. What is the result? Tab completion

finishes the cmdlet name for you. This also works with argument names and other

procedures. Feel free to experiment with this great timesaving technique. You may never

have to type get-command again!

As the cmdlets return objects instead of “string values” you can obtain additional
information about the returned objects. This additional information would not be
available if you were working with just string data. To obtain additional information, use
the pipe character (|), then take information from one cmdlet and feed it to another
cmdlet. This may seem complicated, but in reality, it is quite simple. By the end of this
chapter, the procedure should seem quite natural.

At the most basic level, consider the simple example of obtaining and formatting a
directory listing. After you retrieve the directory listing, you may want to format the way it
is displayed, perhaps as either a table or a list. As you can see, there are two separate
operations: obtaining the directory listing and formatting the list. This formatting task
takes place on the right side of the pipe after the directory listing has been gathered. This
is the way pipelines work. Now, let’s examine them in action while looking at the Get-
ChildItem cmdlet.

Using the Get-ChildItem Cmdlet

Earlier in this chapter you used the dir command to obtain a listing of all the files in a
directory. This works because there is an alias built into Windows PowerShell that assigns
the Get-ChildItem cmdlet to the letter combination dir. We can verify this by using the
Get-Alias cmdlet. This is shown in the GetDirAlias.txt file.

GetDirAlias.txt
PS C:\> Get-Alias dir

CommandType Name Definition

----------- ---- ----------

Alias dir Get-ChildItem

In Windows PowerShell, there really is no cmdlet named dir, nor does it actually use the
dir command. The alias dir is associated with the Get-ChildItem cmdlet. This is why the
output from dir is different in Windows PowerShell than it is in the Cmd.exe interpreter.
The alias dir is shown here when you use the Get-Alias cmdlet to resolve the association.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 19
Tip When using Get-ChildItem to produce a directory listing, use the force switch if you

want to view hidden and system files and folders. It would look like this: Get-ChildItem -

Force.

Formatting Output

There are four format cmdlets included with Windows PowerShell. Of these cmdlets, you
will routinely use three: Format-List, Format-Wide and Format-Table. The fourth cmdlet,
Format-Custom, can display output in a fashion that is neither a list, table, or wide format.
It accomplishes this by using a *.format.ps1xml file. You can use either the default view
contained in the *.format.ps1xml files or you can define your own format.ps1xml file.

Let’s look at formatting output utilizing the remaining three format cmdlets beginning
with the most useful of the three: Format-List.

Format-List

Format-List is one of the core cmdlets you will use time and again. For example, if you use
the Get-WmiObject cmdlet to look at the properties of the Win32_LogicalDisk class, you
will receive a minimum listing of the default properties of the class. This listing is shown
here.

PS C:\> Get-WmiObject Win32_LogicalDisk

DeviceID : C:

DriveType : 3

ProviderName :

FreeSpace : 10559041536

Size : 78452355072

VolumeName : Sea Drive

Although in many cases this behavior is fine, there are times when you may be interested
in the other properties of the class. The first thing to do when exploring other properties
that may be available is to use the wildcard *. This will list all the properties as shown here:

PS C:\> Get-WmiObject Win32_LogicalDisk | Format-List *

Status :

Availability :

DeviceID : C:

StatusInfo :

__GENUS : 2

__CLASS : Win32_LogicalDisk

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 20
__SUPERCLASS : CIM_LogicalDisk

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_LogicalDisk.DeviceID="C:"

__PROPERTY_COUNT : 40

__DERIVATION : {CIM_LogicalDisk, CIM_StorageExtent,

CIM_LogicalDevice, CIM_LogicalElement...}

__SERVER : M5-1875135

__NAMESPACE : root\cimv2

__PATH : \\M5-1875135\root\cimv2:Win32_LogicalDisk.DeviceID="C:"

Access : 0

BlockSize :

Caption : C:

Compressed : False

ConfigManagerErrorCode :

ConfigManagerUserConfig :

CreationClassName : Win32_LogicalDisk

Description : Local Fixed Disk

DriveType : 3

ErrorCleared :

ErrorDescription :

ErrorMethodology :

FileSystem : NTFS

FreeSpace : 10559041536

InstallDate :

LastErrorCode :

MaximumComponentLength : 255

MediaType : 12

Name : C:

NumberOfBlocks :

PNPDeviceID :

PowerManagementCapabilities :

PowerManagementSupported :

ProviderName :

Purpose :

QuotasDisabled :

QuotasIncomplete :

QuotasRebuilding :

Size : 78452355072

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 21
SupportsDiskQuotas : False

SupportsFileBasedCompression : True

SystemCreationClassName : Win32_ComputerSystem

SystemName : M5-1875135

VolumeDirty :

VolumeName : Sea Drive

VolumeSerialNumber : F0FE15F7

Once you have looked at all the properties that are available for a particular class, you can
then choose only the properties you are interested in. Replace the wildcard * with the
property names gleaned from the preceding listing. This technique is shown here:

PS C:\> Get-WmiObject Win32_LogicalDisk | Format-List Name, FileSystem, FreeSpace

Name : C:

FileSystem : NTFS

FreeSpace : 10559029248

Instead of typing a long list of property names, you can choose a range of property names
by using wildcard characters. To see only the property names that begin with the letter f,
you can use the technique shown here:

PS C:\> Get-WmiObject Win32_LogicalDisk | Format-List f*

FileSystem : NTFS

FreeSpace : 10558660608

If you want to see properties that begin with n and with f, then you need to introduce
square brackets as shown here:

PS C:\> Get-WmiObject Win32_LogicalDisk | Format-List [nf]*

FileSystem : NTFS

FreeSpace : 10558238720

Name : C:

NumberOfBlocks :

These commands, with their associated complete output can be found in the Format-
List.txt file in the chapter01 folder on the companion CD-ROM.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 22
Format-Table

The Format-Table cmdlet provides a number of features that make it especially well suited
for network management tasks. In particular, it produces columns of data that allow for
quick viewing. As with Format-List and Format-Wide, you can choose the properties you
wish to display, and in so doing, easily eliminate distracting data from annoyingly verbose
cmdlets. In the example shown here, first take a recursive look through the hard drive to
find all the log files (those designated with the .log extension). While the output is
considerable, it has been trimmed here to show a sample of the output. The Format-Table
cmdlet is used to produce the output from the Get-ChildItem cmdlet shown here:

PS C:\> Get-ChildItem c:\ -Recurse -Include *.log | Format-Table

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\Backup_Extras_92705

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 8/3/2004 6:34 PM 3931872 setupapi.log

-a--- 8/2/2004 9:32 PM 206168 Windows Update.log

-a--- 6/8/2004 12:41 AM 170095 wmsetup.log

In addition to relying on the default behavior of the cmdlet, you can also choose specific
properties. One issue with this approach, as shown here, is that the formatting uses the
existing screen resolution for the window, thus you often end up with columns on
opposite sides of the window. This can be acceptable for a quick-and-dirty column list,
but it is not a format for saving data.

PS C:\> Get-ChildItem c:\ -Recurse -Include *.log | Format-Table

-Property name, length, lastWriteTime

Name Length

LastWriteTime

------ -------------

setupapi.log 3931872

8/3/2004 6:34:53 PM

Windows Update.log 206168

8/2/2004 9:32:06 PM

wmsetup.log 170095

6/8/2004 12:41:32 AM

Debug.log 0

8/23/2006 8:10:38 PM

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 23
AVCheck.Log 191694

5/8/2007 9:28:05 AM

AVCheckServer.Log 7762

5/8/2007 9:28:05 AM

To produce a list that uses the window size a bit more efficiently, you can specify the
autosize switch. There is only one thing to keep in mind when using the autosize switch: It
needs to know the length of the longest item to be stored in each column. To do this, the
switch must wait until all objects have been enumerated, then it will determine the
maximum length of each column and determine the size of the listing. This can cause the
command execution to block until all items have enumerated, so this process takes a while
to complete. You may not want to wait for the autosize to enumerate a large collection of
objects if you are in a hurry, for example, working on a server-down issue. For small object
sets, the performance hit is negligible; however, with a command that takes a long time to
complete, such as this one, the difference is noticeable. The difference in output, however,
is also noticeable (and you will probably feel it is worth the wait to have a more
manageable output).

PS C:\> Get-ChildItem c:\ -Recurse -Include *.log | Format-Table

-Property name, length, lastWriteTime -AutoSize

Name Length LastWriteTime

---- ------ -------------

setupapi.log 3931872 8/3/2004 6:34:53 PM

Windows Update.log 206168 8/2/2004 9:32:06 PM

wmsetup.log 170095 6/8/2004 12:41:32 AM

Debug.log 0 8/23/2006 8:10:38 PM

AVCheck.Log 191694 5/8/2007 9:28:05 AM

The last thing to look at in conjunction with Format-Table is pairing it with the Sort-
Object cmdlet. Sort-Object allows you to organize data by property and to display it in a
sorted fashion. In this example, the alias for Sort-Object (sort) is used, which reduces the
amount of typing necessary. The command is still rather long and is wrapped here for
readability. (To be honest, when commands begin to reach this length, I have a tendency
to turn the process into a script.) When you examine the following command, notice that
the data is sorted before feeding it to the Format-Table cmdlet. Please note that by
default the Sort-Object cmdlet sorts in ascending (smallest to largest) order. If desired,
you can specify the -descending switch to see the files organized from largest to smallest.

PS C:\>Get-ChildItem c:\ -Recurse -Include *.log | Sort -Property

length | Format-Table name, lastwriteTime, length -AutoSize

Name LastWriteTime Length

---- ------------- ------

PASSWD.LOG 5/10/2007 2:44:58 AM 0

sam.log 11/29/2006 1:14:33 PM 0

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 24
poqexec.log 2/1/2007 6:50:49 PM 0

ChkAcc.log 5/10/2007 2:45:00 AM 0

Debug.log 8/23/2006 8:10:38 PM 0

setuperr.log 3/16/2007 7:18:17 AM 0

setuperr.log 4/4/2007 6:34:54 PM 0

netlogon.log 2/1/2007 7:04:44 PM 3

There are also other ways to sort. For example, you can sort the list of log files by date
modified in descending order. By doing this, you can see the most recently modified log
files. To perform this procedure, you need to modify the sort object. The remainder of the
command is the same. A portion of this output is shown here. It is interesting to note that
the majority of these logs were modified during the log-on process.

PS C:\> Get-ChildItem c:\ -Recurse -Include *.log | Sort -Property

lastWriteTime -descending | Format-Table name, lastwriteTime, length -AutoSize

Name LastWriteTime Length

---- ------------- ------

mtrmgr.log 5/10/2007 4:56:52 AM 1538364

LocationServices.log 5/10/2007 4:56:26 AM 830557

StateMessage.log 5/10/2007 4:55:00 AM 129595

Scheduler.log 5/10/2007 4:55:00 AM 393352

StatusAgent.log 5/10/2007 4:53:24 AM 723564

edb.log 5/10/2007 4:51:49 AM 131072

PolicyEvaluator.log 5/10/2007 4:51:25 AM 1672613

ClientLocation.log 5/10/2007 4:51:24 AM 330046

FSPStateMessage.log 5/10/2007 4:51:18 AM 228879

CBS.log 5/10/2007 4:46:55 AM 28940091

CertificateMaintenance.log 5/10/2007 4:42:17 AM 206472

CcmExec.log 5/10/2007 4:00:51 AM 537177

wmiprov.log 5/10/2007 3:03:11 AM 19503

PolicyAgentProvider.log 5/10/2007 2:54:02 AM 252866

UpdatesHandler.log 5/10/2007 2:53:19 AM 108552

CIAgent.log 5/10/2007 2:53:19 AM 99114

ScanAgent.log 5/10/2007 2:53:18 AM 354939

UpdatesDeployment.log 5/10/2007 2:53:18 AM 1106297

SrcUpdateMgr.log 5/10/2007 2:53:02 AM 151452

smssha.log 5/10/2007 2:52:02 AM 107104

execmgr.log 5/10/2007 2:52:02 AM 150942

InventoryAgent.log 5/10/2007 2:52:02 AM 34034

ServiceWindowManager.log 5/10/2007 2:52:02 AM 139955

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 25
SdmAgent.log 5/10/2007 2:49:46 AM 172101

UpdatesStore.log 5/10/2007 2:49:43 AM 64787

WUAHandler.log 5/10/2007 2:49:39 AM 14590

CAS.log 5/10/2007 2:49:35 AM 198955

PeerDPAgent.log 5/10/2007 2:49:35 AM 7900

PolicyAgent.log 5/10/2007 2:49:35 AM 246873

RebootCoordinator.log 5/10/2007 2:49:35 AM 20420

InternetProxy.log 5/10/2007 2:49:34 AM 85825

ClientIDManagerStartup.log 5/10/2007 2:49:34 AM 158351

WindowsUpdate.log 5/10/2007 2:46:46 AM 1553462

edb.log 5/10/2007 2:46:43 AM 65536

setupapi.dev.log 5/10/2007 2:46:38 AM 6469237

setupapi.app.log 5/10/2007 2:46:38 AM 2722285

WMITracing.log 5/10/2007 2:45:57 AM 16777216

ChkAcc.log 5/10/2007 2:45:00 AM 0

PASSWD.LOG 5/10/2007 2:44:58 AM 0

If you look at the Format-Table.txt file in the chapter01 folder, you will notice there are
many errors in the log file. This is because the Get-ChildItem cmdlet attempted to access
directories and files that are protected, causing access-denied messages. During
development these errors are helpful to let you know that you are not accessing files and
folders; however, they become problematic once you begin to analyze the data. An
example of one of these errors is shown here:

Get-ChildItem : Access to the path 'C:\Windows\CSC' is denied.

At line:1 char:14

The error message is helpful in that it tells you the name of the cmdlet that caused the
error and the action that provoked the error. You can eliminate these types of errors by
using the -ErrorAction common parameter on the Get-ChildItem cmdlet, specifying the
SilentlyContinue keyword. This modified line of code is shown here:

PS C:\> Get-ChildItem c:\ -Recurse -Include *.log -errorAction SilentlyContinue

| Sort -Property lastWriteTime -descending | Format-Table name, lastwriteTime,

length -AutoSize

Format-Wide

The Format-Wide cmdlet, is not nearly as useful as Format-Table or Format-List. This is
due to the limitation of displaying only one property per object. It can be useful, however,
to have such a list. For example, suppose you only want a list of the processes running on
your computer. You can use Get-Process cmdlet, and pipeline the resulting object to the
Format-Wide cmdlet. This is shown here:

PS C:\> Get-Process | Format-Wide

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 26

ApMsgFwd ApntEx

Apoint audiodg

casha CcmExec

csrss csrss

dwm explorer

FwcAgent Idle

InoRpc InoRT

InoTask lsass

lsm mobsync

MSASCui powershell

powershell PowerShellIDE

rundll32 SearchFilterHost

SearchIndexer SearchProtocolHost

services SLsvc

smss spoolsv

SRUserService svchost

svchost svchost

svchost svchost

svchost svchost

svchost svchost

svchost svchost

svchost svchost

svchost svchost

System taskeng

taskeng ThpSrv

ThpSrv TODDSrv

wininit winlogon

WINWORD wmdc

WmiPrvSE WmiPrvSE

The output, while serviceable, uses a lot of lines on the console and it also wastes quite a
bit of screen real estate. A better output can be obtained by using the -column parameter.
This is illustrated here:

PS C:\> Get-Process | Format-Wide -Column 4

Although the four-column output cuts the list length by half, it still does not maximize all
the available screen space. Though it might be possible to write a script that will figure out
the optimum value of the column parameter, such as the following DemoFormatWide.ps1
script, it is hardly worth the time and the trouble to pursue such an undertaking.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 27
DemoFormatWide.ps1
function funGetProcess()

{

 if ($args)

 {

 Get-Process |

 Format-Wide -autosize

 }

 else

 {

 Get-Process |

 Format-Wide -column $i

 }

}

cls

$i = 1

for

 ($i ; $i -le 10 ; $i++)

{

 Write-Host -ForegroundColor red "`$i is equal to $i"

 funGetProcess

}

 Write-Host -ForeGroundColor red "Now use format-wide -autosize"

 funGetProcess("auto")

A better option for finding the optimum screen configuration for Format-Wide is to use
the -autosize switch, shown here:

PS C:\> Get-Process | Format-Wide -AutoSize

Using the Get-Command Cmdlet

There are three cmdlets that are analogous to the three key spices used in Cajun cooking.
You can make anything in the Cajun style of cooking if you remember: salt, pepper, and
paprika. You want to make Cajun green beans? Add some salt, pepper, and paprika. You
want to work with Windows PowerShell? Remember the “Cajun” cmdlets: Get-Help, Get-
Command, and Get-Member. Calling on these three cmdlets, you can master Windows
PowerShell. Since you have already looked at Get-Help, the next cmdlet to examine is
Get-Command.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 28
The most basic use of Get-Command is to produce a listing of commands available to
Windows PowerShell. This is useful if you want to quickly see which cmdlets are available.
This elementary use of Get-Command is illustrated here. One point to notice is that the
definition is truncated.

PS C:\> Get-Command

CommandType Name Definition

----------- ---- ----------

Cmdlet Add-Content Add-Content

[-Path] <String[]> [-Value] <Object[...

Cmdlet Add-History Add-History

[[-InputObject] <PSObject[]>] [-Pass...

Cmdlet Add-Member Add-Member

[-MemberType] <PSMemberTypes> [-Name]...

Cmdlet Add-PSSnapin Add-PSSnapin

[-Name] <String[]> [-PassThru] [-Ve...

Cmdlet Clear-Content Clear-Content

[-Path] <String[]> [-Filter <Strin...

Cmdlet Clear-Item Clear-Item

[-Path] <String[]> [-Force] [-Filter ...

By default, Get-Command is limited to producing a listing of cmdlets; therefore the
cmdlet field is redundant. A nicer format of the list can be achieved by pipelining the
resulting object into the Format-List cmdlet and choosing only the name and definition.
This is illustrated here. As you can see in the code, this is a much easier to read output and
it provides the syntactical definition of each command:

PS C:\> Get-Command | Format-List name, definition

Name : Add-Content

Definition : Add-Content [-Path] <String[]> [-Value] <Object[]> [-PassThru]

[-Filter <String>] [-Include <String[]>] [-Exclude <String[]>] [-Force]

[-Credential<PSCredential>] [-Verbose] [-Debug] [-ErrorAction <ActionPreference>]

[-ErrorVariable<String>] [-OutVariable <String>] [-OutBuffer <Int32>] [-WhatIf]

[-Confirm][-Encoding <FileSystemCmdletProviderEncoding>] Add-Content

[-LiteralPath] <String[]> [-Value] <Object[]> [-PassThru][-Filter <String>]

[-Include <String[]>] [-Exclude <String[]>] [-Force] [-Credential<PSCredential>]

[-Verbose] [-Debug] [-ErrorAction <ActionPreference>] [-ErrorVariable

<String>] [-OutVariable <String>] [-OutBuffer <Int32>] [-WhatIf] [-Confirm]

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 29
[-Encoding <FileSystemCmdletProviderEncoding>]

Name : Add-History

Definition : Add-History [[-InputObject] <PSObject[]>] [-Passthru] [-Verbose]

[-Debug] [-ErrorAction <ActionPreference>] [-ErrorVariable <String>] [-OutVariable

String>] [-OutBuffer <Int32>]

So far, we have looked at normal usage of the Get-Command cmdlet. However, a more
interesting method uses our knowledge of the noun and verb combination of cmdlet
names. Armed with this information, we can look for commands that have a noun-called
process in the name of the cmdlet This command would look like the following:

PS C:\> Get-Command -Noun process

CommandType Name Definition

----------- ---- ----------

Cmdlet Get-Process Get-Process

[[-Name] <String[]>] [-Verbose] [-De...

Cmdlet Stop-Process Stop-Process

[-Id] <Int32[]> [-PassThru] [-Verbo...

Using this procedure, if you want to find a cmdlet that contains the letter p in the noun
portion of the name, you can use wildcards to assist. This can reduce typing and help you
explore available cmdlets. This command is shown here:

PS C:\> get-command -Noun p*

CommandType Name Definition

----------- ---- ----------

Cmdlet Add-PSSnapin Add-PSSnapin

[-Name] <String[]> [-PassThru] [-Ve...

Cmdlet Convert-Path Convert-Path

[-Path] <String[]> [-Verbose] [-Deb...

Cmdlet Get-PfxCertificate Get-PfxCertificate

[-FilePath] <String[]> [-Verb...

Cmdlet Get-Process Get-Process

[[-Name] <String[]>] [-Verbose] [-De...

Cmdlet Get-PSDrive Get-PSDrive

[[-Name] <String[]>] [-Scope <String...

Cmdlet Get-PSProvider Get-PSProvider

[[-PSProvider] <String[]>] [-Verb...

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 30
Cmdlet Get-PSSnapin Get-PSSnapin

[[-Name] <String[]>] [-Registered] ...

Cmdlet Join-Path Join-Path

[-Path] <String[]> [-ChildPath] <Strin...

Cmdlet New-PSDrive New-PSDrive

[-Name] <String> [-PSProvider] <Stri...

Cmdlet Out-Printer Out-Printer

[[-Name] <String>] [-InputObject <PS...

Cmdlet Remove-PSDrive Remove-PSDrive

[-Name] <String[]> [-PSProvider <...

Cmdlet Remove-PSSnapin Remove-PSSnapin

[-Name] <String[]> [-PassThru] [...

Cmdlet Resolve-Path Resolve-Path

[-Path] <String[]> [-Credential <PS...

Cmdlet Set-PSDebug Set-PSDebug

[-Trace <Int32>] [-Step] [-Strict] [...

Cmdlet Split-Path Split-Path

[-Path] <String[]> [-LiteralPath <Str...

Cmdlet Stop-Process Stop-Process

[-Id] <Int32[]> [-PassThru] [-Verbo...

Cmdlet Test-Path Test-Path

[-Path] <String[]> [-Filter <String>] ...

Cmdlet Write-Progress Write-Progress

[-Activity] <String> [-Status] <S...

By default, the Get-Command cmdlet displays only cmdlets; however, it can retrieve other
items as well—even .exe files and .dll files. This is because Get-Command will display
information about every item you can run in Windows PowerShell. An example of this is
shown here in a listing of commands that contains the word file in the name. One point to
remember: Only Windows PowerShell entities are displayed.

PS C:\> get-command -Name *file*

CommandType Name Definition

----------- ---- ----------

Application avifile.dll

C:\Windows\system32\avifile.dll

Application filemgmt.dll

C:\Windows\system32\filemgmt.dll

Application FileSystem.format.ps1xml

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 31
C:\Windows\System32\WindowsPowerShell\v1.0\FileS...

Application filetrace.mof

C:\Windows\System32\Wbem\filetrace.mof

Application forfiles.exe

C:\Windows\system32\forfiles.exe

You can easily correct this behavior by using the -commandType parameter and limiting
the search to cmdlets. This modified command is shown here.

PS C:\> get-command -Name *file* -CommandType cmdlet

CommandType Name Definition

----------- ---- ----------

Cmdlet Out-File Out-File

[-FilePath] <String> [[-Encoding] <Stri

These examples give you an idea of the types of searches you can perform with the Get-
Command cmdlet. These commands and their associated output are contained in the Get-
Command.txt file in the chapter01 folder on the companion CD-ROM.

Exploring with the Get-Member Cmdlet

The third important cmdlet provided with Windows PowerShell is Get-Member. Some
students look askance when I introduce Get-Member as one of the three “Cajun” cmdlets.
Indeed, I had one student who raised his hand and asked what it was good for. This is a
fair question. The thing that makes Get-Member so useful is that it can tell you which
properties and methods are supported by an object. If you remember that everything in
Windows PowerShell is an object, then you are well on your way to achieving
enlightenment with this command. Perhaps a simple example will illustrate the value of
this cmdlet.

If you have a folder named mytest, and use the Get-Item cmdlet to obtain an object that
represents the folder, you can store this reference in a variable named $a. This is shown
here:

PS C:\> $a = Get-Item c:\mytest

Once you have an instance of the folder object contained in the $a variable, you can
examine the methods and properties of a folder object by pipelining the object into the
Get-Member cmdlet. This command and associated output are shown here:

PS C:\> $a | Get-Member

 TypeName: System.IO.DirectoryInfo

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 32
Name MemberType Definition

---- ---------- ----------

Create Method System.Void Create(), System.Void

Create(DirectorySecurity directorySecurity)

CreateObjRef Method System.Runtime.Remoting.ObjRef

CreateObjRef(Type requestedType)

CreateSubdirectory Method System.IO.DirectoryInfo

CreateSubdirectory(String path), System.IO.Director...

Delete Method System.Void Delete(), System.Void

Delete(Boolean recursive)

Equals Method System.Boolean Equals(Object obj)

GetAccessControl Method System.Security.AccessControl.DirectorySecurity

GetAccessControl(), System

GetDirectories Method System.IO.DirectoryInfo[]

GetDirectories(), System.IO.DirectoryInfo[GetFiles Method

System.IO.FileInfo[] GetFiles(String searchPattern), System.IO.FileInfo[] G...

GetFileSystemInfos Method System.IO.FileSystemInfo[]

GetFileSystemInfos(String searchPattern), System...

GetHashCode Method System.Int32 GetHashCode()

GetLifetimeService Method System.Object GetLifetimeService()

GetObjectData Method System.Void GetObjectData

*(SerializationInfo info, StreamingContext context)

GetType Method System.Type GetType()

get_Attributes Method System.IO.FileAttributes get_Attributes()

get_CreationTime Method System.DateTime get_CreationTime()

get_CreationTimeUtc Method System.DateTime get_CreationTimeUtc()

get_Exists Method System.Boolean get_Exists()

get_Extension Method System.String get_Extension()

get_FullName Method System.String get_FullName()

get_LastAccessTime Method System.DateTime get_LastAccessTime()

get_LastAccessTimeUtc Method System.DateTime get_LastAccessTimeUtc()

get_LastWriteTime Method System.DateTime get_LastWriteTime()

get_LastWriteTimeUtc Method System.DateTime get_LastWriteTimeUtc()

get_Name Method System.String get_Name()

get_Parent Method System.IO.DirectoryInfo get_Parent()

get_Root Method System.IO.DirectoryInfo get_Root()

InitializeLifetimeService Method System.Object InitializeLifetimeService()

MoveTo Method System.Void MoveTo(String destDirName)

Refresh Method System.Void Refresh()

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 33
SetAccessControl Method System.Void

SetAccessControl(DirectorySecurity directorySecurity)

set_Attributes Method System.Void set_Attributes(FileAttributes

value)

set_CreationTime Method System.Void set_CreationTime(DateTime

value)

set_CreationTimeUtc Method System.Void set_CreationTimeUtc(DateTime

value)

set_LastAccessTime Method System.Void set_LastAccessTime(DateTime

value)

set_LastAccessTimeUtc Method System.Void set_LastAccessTimeUtc(DateTime

value)

set_LastWriteTime Method System.Void set_LastWriteTime(DateTime

value)

set_LastWriteTimeUtc Method System.Void set_LastWriteTimeUtc(DateTime

value)

ToString Method System.String ToString()

PSChildName NoteProperty System.String PSChildName=mytest

PSDrive NoteProperty System.Management.Automation.PSDriveInfo

PSDrive=C

PSIsContainer NoteProperty System.Boolean PSIsContainer=True

PSParentPath NoteProperty System.String

PSParentPath=Microsoft.PowerShell.Core\FileSystem::C:\

PSPath NoteProperty System.String

PSPath=Microsoft.PowerShell.Core\FileSystem::C:\mytest

PSProvider NoteProperty System.Management.Automation.ProviderInfo

PSProvider=Microsoft.PowerShell.C...

Attributes Property System.IO.FileAttributes Attributes

{get;set;}

CreationTime Property System.DateTime CreationTime {get;set;}

CreationTimeUtc Property System.DateTime CreationTimeUtc {get;set;}

Exists Property System.Boolean Exists {get;}

Extension Property System.String Extension {get;}

FullName Property System.String FullName {get;}

LastAccessTime Property System.DateTime LastAccessTime {get;set;}

LastAccessTimeUtc Property System.DateTime LastAccessTimeUtc {get;set;}

LastWriteTime Property System.DateTime LastWriteTime {get;set;}

LastWriteTimeUtc Property System.DateTime LastWriteTimeUtc {get;set;}

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 34
Name Property System.String Name {get;}

Parent Property System.IO.DirectoryInfo Parent {get;}

Root Property System.IO.DirectoryInfo Root {get;}

Mode ScriptProperty System.Object Mode {get=$catr = "";...

From the listing of folder members, you can see there is a parent property. You can use
the parent property information to find the genus of the mytest folder. This is shown here:

PS C:\> $a.parent

Mode LastWriteTime Length Name

---- ------------- ------ ----

d--hs 5/11/2007 2:39 PM C:\

Perhaps you are interested in knowing when the folder was last accessed. To check on this,
you can use the LastAccessTime property as shown here:

PS C:\> $a.LastAccessTime

Friday, May 11, 2007 2:39:12 PM

If you want to confirm the object contained in $a is indeed a folder, you can use the
PsIsContainer property. The Get-Member output tells you that PsIsContainer is a Boolean
value, and so it will reply as either true or false. This command is shown here:

PS C:\> $a.PsIsContainer

True

Maybe you would like to use one of the methods. You can use the moveTo method to
move the folder to another location. Get-Member tells you that the moveTo method must
have a string input that points to a destination directory. So, move the mytest folder to
c:\movedFolder, then use the Test-Path cmdlet to check if the folder was moved to the
new location. These commands are illustrated here:

PS C:\> $a.MoveTo("C:\movedFolder")

PS C:\> Test-Path c:\movedFolder

True

PS C:\> Test-Path c:\mytest

False

PS C:\>

To confirm the name of the folder you now have represented by the object in the $a
variable, you can use the name property. This is shown here with the associated output:

PS C:\> $a.name

movedFolder

If you want to delete the folder, you can use the delete method. This is shown here. To
confirm it is actually deleted, use dir m* to verify it is gone. These commands are shown
here. Note that the folder has now been deleted.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

Preview Content from Windows PowerShell™ Scripting Guide 35
PS C:\> $a.Delete()

PS C:\> dir m*

 Directory: Microsoft.PowerShell.Core\FileSystem::C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 4/21/2007 4:56 PM Maps

d---- 5/5/2007 3:51 PM music

-a--- 2/1/2007 6:17 PM 54 MASK.txt

All of these commands and their associated output are contained in the Get-Member.txt
file in the chapter01 folder on the companion CD-ROM.

Working with the .NET Framework
It might be interesting to note that these commands are actually commands that come
from the .NET Framework. These are not Windows PowerShell commands at all. Of
course the Get-Item, Get-Member, and Test-Path cmdlets are Windows PowerShell
commands but System.IO.DirectoryInfo does not come from Windows PowerShell. This
means you use the same methods and properties from Windows PowerShell as a
professional developer using Visual Basic .NET or C#. This also means that much more
information is available to you by using the Microsoft Developer Network (MSDN) and
the Windows Software Development Kit (SDK). The good news for you: If you can’t find
information using the online help (by using Get-Help), you can always refer to the
MSDN Web site or the Windows SDK for assistance.

Summary
This chapter examined the different ways to determine if Windows PowerShell is installed
on a computer and the steps involved in configuring Windows PowerShell for use in a
corporate enterprise environment. The chapter covered the creation of Windows
PowerShell profiles and explored various methods of launching both Windows PowerShell
and Windows PowerShell commands. It included extending the features of Windows
PowerShell via the creation of custom aliases and functions. The chapter concluded with a
discussion of three Windows PowerShell cmdlets: Get-Help, Get-Command, and Get-
Member.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows PowerShell™ Scripting Guide from
Microsoft Press (ISBN 978-0-7356-2279-1, copyright 2008 Ed Wilson, all rights reserved), and is provided without any
express, statutory, or implied warranties.

	Cover
	Table of Contents
	Chapter 1: The Shell in Windows PowerShell
	Installing Windows PowerShell
	Verifying Installation with VBScript
	Deploying Windows PowerShell

	Interacting with the Shell
	Introducing Cmdlets
	Configuring Windows PowerShell
	Creating a Windows PowerShell Profile
	Configuring Windows PowerShell Start-up Options

	Security Issues with Windows PowerShell
	Controlling the Execution of Cmdlets
	Confirming Commands
	Suspending Confirmation of Cmdlets

	Supplying Options for Cmdlets
	Working with Get-Help
	Working with Aliases to Assign Shortcut Names to Cmdlets
	Additional Uses of Cmdlets
	Using the Get-ChildItem Cmdlet
	Formatting Output
	Using the Get-Command Cmdlet
	Exploring with the Get-Member Cmdlet

	Summary

