
To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/11630.aspx

978-0-7356-2447-4

© 2008 Microsoft Corporation. All rights reserved.

Windows Server® 2008
TCP/IP Protocols and
Services

Joseph Davies

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title,
for early preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP
Protocols and Services from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation,
all rights reserved), and is provided without any express, statutory, or implied warranties

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Table of Contents
Part I The Network Interface Layer

 1 Local Area Network (LAN) Technologies
LAN Encapsulations

Ethernet

Token Ring

FDDI

IEEE 802.11

Summary

 2 Wide Area Network (WAN) Technologies
WAN Encapsulations

Point-to-Point Encapsulation

Frame Relay

Summary

 3 Address Resolution Protocol (ARP)
Overview of ARP

ARP Frame Structure

Windows Vista

Inverse ARP (InARP)

Proxy ARP

Summary

 4 Point-to-Point Protocol (PPP)
PPP Connection Process

PPP Connection Termination

Link Control Protocol

PPP Authentication Protocols

Callback and the Callback Control Protocol

Network Control Protocols

Network Monitor Example

PPP over Ethernet

Summary

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Part II Internet Layer Protocols

 5 Internet Protocol (IP)
Introduction to IP

The IP Datagram

The IP Header

Fragmentation

IP Options

Summary

 6 Internet Control Message Protocol (ICMP)
ICMP Message Structure

ICMP Messages

Ping.exe Tool

Tracert.exe Tool

Pathping.exe Tool

Summary

 7 Internet Group Management Protocol (IGMP)
Introduction to IP Multicast and IGMP

IGMP Message Structure

IGMP Support inWindows Server Longhorn

IGMP Support in Windows Vista and Server 2008

Summary

 8 Internet Protocol Version 6 (IPv6)
The Disadvantages of IPv4

IPv6 Addressing

Core Protocols of IPv6

Differences between IPv4 and IPv6

Summary

Part III Transport Layer Protocols

 9 User Datagram Protocol
Introduction to UDP

Uses for UDP

The UDP Message

The UDP Header

UDP Ports

The UDP Pseudo Header

Summary

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

 10 Transmission Control Protocol (TCP) Basics
Introduction to TCP

The TCP Segment

The TCP Header

TCP Ports

TCP Flags

The TCP Pseudo Header

TCP Urgent Data

TCP Options

Summary

 11 Transmission Control Protocol (TCP) Connections
The TCP Connection

TCP Connection Establishment

TCP Half-Open Connections

TCP Connection Maintenance

TCP Connection Termination

TCP Connection Reset

TCP Connection States

Summary

 12 Transmission Control Protocol (TCP) Data Flow
Basic TCP Data Flow Behavior

TCP Acknowledgments

TCP Sliding Windows

Small Segments

Sender-Side Flow Control

Summary

 13 Transmission Control Protocol (TCP) Retransmission and Time-Out
Retransmission Time-Out and Round-Trip Time

Retransmission Behavior

Calculating the RTO

Fast Retransmit

Summary

Part IV Application Layer Protocols and Services

 14 Dynamic Host Configuration Protocol (DHCP) Server Service
DHCP Messages

DHCP Message Exchanges

DHCP Options

DHCP Support in Windows Server Longhorn and Windows Vista

Summary

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

 15 Domain Name System (DNS)
DNS Messages

DNS Message Exchanges

DNS Support in Windows Server Longhorn and Windows Vista

Summary

 16 Windows Internet Name Service (WINS)
NetBIOS over TCP/IP Messages

WINS Message Exchanges

Summary

 17 RADIUS and Internet Authentication Service
RADIUS Message Structure

RADIUS Messages

RADIUS Message Exchanges

RADIUS Support in Windows Server Longhorn

Summary

 18 Internet Protocol Security (IPSec)
IPSec Overview

IPSec Headers

Internet Key Exchange

Authenticated IP

ISAKMP Message Structure

Main Mode Negotiation

Quick Mode Negotiation

Retransmit Behavior

IPSec NAT Traversal

Summary

 19 Virtual Private Networks (VPNs)
PPTP

L2TP/IPSec

SSTP

Summary

Glossary

Bibliography

Index

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 1
Chapter 10

Transmission Control Protocol
(TCP) Basics

There are two protocols at the Transport Layer that TCP/IP applications typically use for
transporting data: Transmission Control Protocol (TCP) and User Datagram Protocol
(UDP). This chapter describes the characteristics of TCP and the fields in the TCP header.

Introduction to TCP
TCP, defined in RFC 793, is the Transport Layer protocol that provides a reliable data-
transfer service and a method to pass TCP-encapsulated data to an Application Layer
protocol. TCP has the following characteristics:

Connection-oriented
• Before data can be transferred, two Application Layer processes must formally

negotiate a TCP connection using the TCP connection establishment process. TCP
connections are formally closed using the TCP connection termination process. For
more information about TCP connection processes, see Chapter 11, “Transmission
Control Protocol (TCP) Connections.”

Full duplex
• For each TCP peer, the TCP connection consists of two logical pipes: an outgoing pipe

and an incoming pipe. With the appropriate Network Interface Layer technology, data
can be flowing out of the outgoing pipe and into the incoming pipe simultaneously.
The TCP header contains both the sequence number of the outgoing data and an
acknowledgment of the incoming data.

Reliable
• Data sent on a TCP connection is sequenced and a positive acknowledgment is

expected from the receiver. If no acknowledgment is received, the segment is
retransmitted. At the receiver, duplicate segments are discarded and segments arriving
out of sequence are placed back in the proper sequence. A TCP checksum is always
used to verify the bit-level integrity of the TCP segment.

Byte stream
• TCP views the data sent over the incoming and outgoing logical pipes as a continuous

stream of bytes. The sequence number and acknowledgment number in each TCP
header are defined along byte boundaries. TCP is not aware of record or message
boundaries within the byte stream. The Application Layer protocol must provide the
proper parsing of the incoming byte stream.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 2
Sender- and receiver-side flow control
• To avoid sending too much data at one time and congesting the routers of the

network, TCP implements sender-side flow control that gradually scales the amount of
data sent at one time. To avoid having the sender send data that the receiver cannot
buffer, TCP implements receiver-side flow control that indicates the number of bytes
that the receiver can receive. For more information on how TCP implements sender-
and receiver-side flow control, see Chapter 12, “Transmission Control Protocol (TCP)
Data Flow.”

Segmentation of Application Layer data
• TCP segments data obtained from the Application Layer process so that it will fit

within an IP datagram sent on the Network Interface Layer link. TCP peers inform each
other of the maximum-sized segment that they can receive and adjust the maximum
size using Path Maximum Transmission Unit (PMTU) discovery.

One-to-one delivery
• TCP connections are a logical point-to-point circuit between two Application Layer

protocols. TCP does not provide a one-to-many delivery service.

TCP is typically used when an Application Layer protocol requires a reliable data transfer
service.

MoreInfo All of the RFCs referenced in this chapter can be found in the

\Standards\Chap10_TCP folder on the companion CD-ROM.

The TCP Segment
A TCP segment, consisting of a TCP header and its optional payload (a segment), is
identified in the IP header with IP Protocol number 6. The segment can be a maximum
size of 65,495 bytes: 65,535 minus the minimum-size IP header (20 bytes) and the
minimum-size TCP header (20 bytes). The resulting IP datagram is then encapsulated with
the appropriate Network Interface Layer header and trailer. Figure 10-1 displays the
resulting frame.

TCP segment

IP datagram

Network Interface Layer frame

IP header Segment
Network
Interface
header

Network
Interface

trailer

TCP
header

Figure 10-1 TCP segment encapsulation showing the IP header and Network Interface Layer header and
trailer.

In the IP header of TCP segments, the Source IP Address field indicates the unicast address
of the host interface that sent the TCP segment. The Destination IP Address field indicates
the unicast address of the destination host (or intermediate router if the packet is source
routed).

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 3
The TCP Header
The TCP header is of variable length, consisting of the fields shown in Figure 10-2. When
TCP options are not present, the TCP header is 20 bytes long.

Source Port

Destination Port

Sequence Number

Acknowledgment Number

Data Offset

Reserved

Flags

Window

Checksum

Urgent Pointer

Options and Padding
Figure 10-2 The structure of the TCP header.

The fields in the TCP header are defined as follows:

Source Port
• A 2-byte field that indicates the source Application Layer protocol sending the TCP

segment. The combination of the source IP address in the IP header and the source
port in the TCP header indicates a source socket—a unique, globally significant address
from which the segment was sent.

Destination Port
• A 2-byte field that indicates the destination Application Layer protocol. The

combination of the destination IP address in the IP header and the destination port in
the TCP header indicates a destination socket—a unique, globally significant address to
which the segment is sent.

Sequence Number
• A 4-byte field that indicates the outgoing byte-stream-based sequence number of the

segment’s first byte. The Sequence Number field is always set, even when there is no
data in the segment. In this case, the Sequence Number field is set to the number of
the outgoing byte stream’s next byte. When establishing a TCP connection, TCP
segments with a SYN (Synchronization) flag value of 1 set the Sequence Number field
to the Initial Sequence Number (ISN). This indicates that the first byte in the outgoing
byte stream sent on the connection is ISN + 1.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 4
Acknowledgment Number
• A 4-byte field that indicates the sequence number of the next byte in the incoming

byte stream that the receiver of the incoming byte stream expects to receive. The
acknowledgment number provides a positive acknowledgment that all bytes in the
incoming byte stream up to, but not including, the acknowledgment number were
received. The acknowledgment number is significant in all TCP segments with the ACK
(Acknowledgment) flag set.

Data Offset
• A 4-bit field that indicates where the TCP segment data begins. The Data Offset field is

also the TCP header’s size. Just as in the IP header’s Header Length field, the Data
Offset field is the number of 32-bit words (4-byte blocks) in the TCP header. For the
smallest TCP header (no options), the Data Offset field is set to 5 (0x5), indicating that
the segment data begins in the twentieth byte offset starting from the beginning of
the TCP segment (the offset starts its count at 0). With a Data Offset field set to its
maximum value of 15 (0xF), the largest TCP header, including TCP options, can be 60
bytes long.

Reserved
• A 4-bit field that is reserved for future use. The sender sets these bits to 0.

Flags
• An 8-bit field that indicates the eight TCP flags defined in RFCs 793 and 3168. The

eight TCP flags, known as CWR (Congestion Window Reduced), ECE (Explicit
Congestion Notification [ECN]-Echo), URG (Urgent), ACK, PSH (Push), RST (Reset), SYN,
and FIN (Finish), are discussed in greater detail in the “TCP Flags” section of this
chapter.

Window
• A 2-byte field that indicates the number of bytes that the receiver of the incoming

byte stream allows the other TCP peer to send. By advertising the window size with
each segment, a TCP receiver is telling the sender how much data can be sent and
successfully received and stored. The sender should not be sending more data than
the receiver can receive. If the receiver cannot receive any more data, it advertises a
window size of 0 bytes. With a window size of 0, the sender cannot send any more
data until the window size is a nonzero value. The advertisement of the window size is
an implementation of receiver-side flow control. The use of this field is extended to
larger window sizes with the TCP Window Scale option, discussed in the “TCP Options”
section of this chapter.

Checksum
• A 2-byte field that provides a bit-level integrity check for the TCP segment (TCP

header and segment). The Checksum field’s value is calculated in the same way as the
IP header checksum, over all the 16-bit words in a TCP pseudo header, the TCP
header, the segment, and, if needed, a padding byte of 0x00. The padding byte is used
only if the segment length is an odd number of bytes. The value of the Checksum field
is set to 0 during the checksum calculation. For more information, see “The TCP
Pseudo Header” section in this chapter.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 5
Urgent Pointer
• A 2-byte field that indicates the location of urgent data in the segment. The Urgent

Pointer field and urgent data are discussed in the “TCP Urgent Data” section of this
chapter.

Options
• One or more TCP options can be added to the TCP header but must be done in 4-byte

increments so that the TCP header size can be indicated with the Data Offset field. TCP
options are discussed in the “TCP Options” section of this chapter.

An example of a TCP segment is Capture 10-01, a Network Monitor trace that is included
in the \Captures folder on the companion CD-ROM. The following is frame 1 from
Capture 10-01, as displayed with Network Monitor 3.1:

 Frame:

+ Ethernet: Etype = Internet IP (IPv4)

+ Ipv4: Next Protocol = TCP, Packet ID = 57288, Total IP Length = 1500

- Tcp: Flags=....A..., SrcPort=FTP data(20), DstPort=1163, Len=1460,

Seq=1038577021 - 1038578481, Ack=3930983524, Win=17520 (scale factor not

found)

 SrcPort: FTP data(20)

 DstPort: 1163

 SequenceNumber: 1038577021 (0x3DE76D7D)

 AcknowledgementNumber: 3930983524 (0xEA4E0C64)

 - DataOffset: 80 (0x50)

 DataOffset: (0101....) (20 bytes)

 Reserved: (....000.)

 NS: (.......0) Nonce Sum not significant

 - Flags:A...

 CWR: (0.......) CWR not significant

 ECE: (.0......) ECN-Echo not significant

 Urgent: (..0.....) Not Urgent Data

 Ack: (...1....) Acknowledgement field significant

 Push: (....0...) No Push Function

 Reset: (.....0..) No Reset

 Syn: (......0.) Not Synchronize sequence numbers

 Fin: (.......0) Not End of data

 Window: 17520 (scale factor not found)

 Checksum: 46217 (0xB489)

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 6
 UrgentPointer: 0 (0x0)

 TCPPayload:

+ Ftp: Data Transfer To Client,DstPort = 1163,size = 1460 bytes

Note Network Monitor 3.1 parses the last bit of the Reserved field of the TCP header as

the Nonce Sum field, which is defined in RFC 3540. TCP/IP in Windows Server 2008 and

Windows Vista does not support RFC 3540.

TCP Ports
A TCP port defines a location for the delivery of TCP connection data. Included in each
TCP segment is the source port that indicates the Application Layer process from which
the segment was sent, and a destination port that indicates the Application Layer process
to which the segment was sent. There are port numbers that are assigned by the Internet
Assigned Numbers Authority (IANA) to specific Application Layer protocols.

Table 10-1 shows assigned TCP port numbers used by components of Windows Server
2008 and Windows Vista.

Table 10-1. Well-Known TCP Port Numbers
Port Number Application Layer Protocol

20 FTP Server (data channel)

21 FTP Server (control channel)

23 Telnet Server

25 Simple Mail Transfer Protocol (SMTP)

69 Trivial File Transfer Protocol (TFTP)

80 Hypertext Transfer Protocol (HTTP; Web server)

139 NetBIOS Session Service

443 HTTP protocol over Transport Layer Security (TLS)

445 Direct-Hosted Server Message Block (SMB)

See http://www.iana.org/assignments/port-numbers for the most current list of IANA-
assigned TCP port numbers.

Typically, the server side of an Application Layer protocol listens on the well-known port
number. The client side of an Application Layer protocol uses either the well-known port
number or, more commonly, a dynamically allocated port number. These dynamically
allocated port numbers are used for the duration of the process and are known also as
ephemeral or short-lived ports.

A Windows Sockets application using the GetServByName() function can refer to a TCP
port number by name. The name is resolved to a TCP port number through the Services
file stored in the %SystemRoot%\System32\Drivers\Etc folder.

A sending node determines the destination port (using either a specified value or the
GetServByName() function) and the source port (using either a specified value, or by
obtaining a dynamically allocated port through Windows Sockets). The sending node then

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 7
passes the source IP address, destination IP address, source port, destination port, and the
data to be sent to TCP/IP. The TCP component segments the data as needed. The TCP
component calculates the Checksum field and indicates the TCP segment with the
appropriate source IP address and destination IP address to the IP component.

When receiving a TCP segment at the destination, IP verifies the IP header. Then, based on
the value of 6 in the Protocol field, IP passes the TCP segment, the source IP address, and
the destination IP address to the TCP component. After verifying the TCP Checksum field,
the TCP component verifies the destination port. If a process is listening on the port, the
TCP segment is passed to the application. If no process is listening on the port, TCP sends
a TCP Connection Reset segment to the sender. For more information about the TCP
Connection Reset segment, see Chapter 11, “Transmission Control Protocol (TCP)
Connections.”

Figure 10-3 shows the demultiplexing of received TCP connection data based on the TCP
destination port.

File Transfer
Protocol

(control channel)

TCP Port 21

Hypertext
Transfer

Protocol (HTTP)

TCP Port 80

Telnet
Service

TCP Port 23

NetBIOS
Session
Service

TCP Port 139

TCP

IP

Protocol 6

Figure 10-3 The demultiplexing of a TCP segment to the appropriate Application Layer protocol using
the IP Protocol field and the TCP Destination Port field.

BestPractices TCP ports are separate from UDP ports, even for the same port number. A

TCP port represents one side of a TCP connection for an Application Layer protocol. A

UDP port represents a UDP message queue for an Application Layer protocol. The

Application Layer protocol using the TCP port is not necessarily the same Application

Layer protocol using the UDP port. For example, the Extended Filename Server (EFS)

protocol uses TCP port 520, and the Routing Information Protocol (RIP) uses UDP port

520. Clearly these are separate Application Layer protocols. Therefore, it is not good

practice to refer to a port by just its port number, which is ambiguous. Always refer to

either a TCP port number or a UDP port number.

TCP Flags
Figure 10-4 shows the eight TCP flags in the Flags field of the TCP header that are defined
in RFCs 793 and 3168.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 8
URG

ACK

PSH

RST

SYN

FIN
Figure 10-4 The eight TCP flags in the Flags field of the TCP header.

The TCP flags are defined as follows:

CWR (congestion window has been reduced)
• Indicates that the sending host has received a TCP segment with the ECE flag set. The

congestion window is an internal variable maintained by TCP to manage the size of
the send window. For more information, see Chapter 12, “Transmission Control
Protocol (TCP) Data Flow.”

ECE (TCP peer is ECN-capable)
• Indicates that a TCP peer is ECN-capable during the TCP 3-way handshake and to

indicate that a TCP segment was received on the connection with the ECN field in the
IP header set to 11. For more information about ECN, see Chapter 12, “Transmission
Control Protocol (TCP) Data Flow.”

URG (Urgent Pointer field is significant)
• Indicates that the segment portion of the TCP segment contains urgent data and the

Urgent Pointer field should be used to determine the location of the urgent data in
the segment. Urgent data is discussed in more detail in the section “TCP Urgent Data,”
later in this chapter.

ACK (Acknowledgment field is significant)
• Indicates that the Acknowledgment field contains the next byte expected on the

connection. The ACK flag is always set, except for the first segment of a TCP
connection establishment.

PSH (the Push function)
• Indicates that the contents of the TCP receive buffer should be passed to the

Application Layer protocol. The data in the receive buffer must consist of a contiguous
block of data from the left edge of the buffer. In other words, there cannot be any
missing segments of the byte stream up to the segment containing the PSH flag; the
data cannot be passed to the Application Layer protocol until missing segments arrive.
Normally, the TCP receive buffer is flushed (the contents are passed to the Application
Layer protocol) when the receive buffer fills with contiguous data or during normal
TCP connection maintenance processes. The PSH flag overrides this default behavior
and immediately flushes the TCP receive buffer. The PSH flag is used also for
interactive Application Layer protocols such as Telnet, in which each keystroke in the
virtual terminal session is sent with the PSH flag set. Another example is the setting of
the PSH flag on the last segment of a file transferred with FTP. Data sent with the PSH
flag does not have to be immediately acknowledged.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 9
RST (Reset the connection)
• Indicates that the connection is being aborted. For active connections, a node sends a

TCP segment with the RST flag in response to a TCP segment received on the
connection that is incorrect, causing the connection to fail. The sending of an RST
segment for an active connection forcibly terminates the connection, causing data
stored in send and receive buffers or in transit to be lost. For TCP connections being
established, a node sends an RST segment in response to a connection establishment
request to deny the connection attempt.

SYN (Synchronize sequence number)
• Indicates that the segment contains an ISN. During the TCP connection establishment

process, TCP sends a TCP segment with the SYN flag set. Each TCP peer acknowledges
the receipt of the SYN flag by treating the SYN flag as if it were a single byte of data.
The Acknowledgment Number field for the acknowledgment of the SYN segment is
set to ISN + 1.

FIN (Finish sending data)
• Indicates that the TCP segment sender is finished sending data on the connection.

When a TCP connection is gracefully terminated, each TCP peer sends a TCP segment
with the FIN flag set. A TCP peer does not send a TCP segment with the FIN flag set
until all outstanding data to the other TCP peer has been sent and acknowledged.
Each peer acknowledges receipt of the FIN flag by treating it as if it were a single byte
of data. When both TCP peers have sent segments with the FIN flag set and received
acknowledgment of their receipt, the TCP connection is terminated.

The TCP Pseudo Header
The TCP pseudo header is used to associate the TCP segment with the IP header. The TCP
pseudo header is added to the beginning of the TCP segment only during the checksum
calculation and is not sent as part of the TCP segment. The use of the TCP pseudo header
assures the receiver that a routing or fragmentation process did not improperly modify
key fields in the IP header.

Figure 10-5 illustrates the TCP pseudo header.

Source IP Address

Destination IP Address

Unused

Protocol

Length

= 0

= 6

Figure 10-5 The structure of the TCP pseudo header.

The TCP pseudo header consists of the Source IP Address field, the Destination IP Address
field, an Unused field set to 0x00, the Protocol field for TCP (set to 6), and the length of
the TCP segment. When sending a TCP segment, TCP knows all of these values. When
receiving a TCP segment, IP indicates all of these values to TCP.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 10
TCP calculates the TCP checksum over the combination of the TCP pseudo header, the
TCP segment, and, if needed, a 0x00 padding byte. The checksum calculation relies on
summing 16-bit words. Therefore, the quantity over which the checksum is calculated
must be an even number of bytes. The padding byte is used only if the segment length is
an odd number of bytes. The padding byte is not included in the IP length and is not sent
as part of the TCP segment. Figure 10-6 shows the resulting quantity for the calculation of
the TCP Checksum field.

TCP
pseudo header

TCP
header Segment

12 bytes 0 to 65,495 bytes Padding
(1 byte)

TCP segment

Figure 10-6 The resulting quantity used for the TCP checksum calculation.

Note Unlike the IP security (IPsec) Authentication header, the TCP pseudo header and

Checksum field are not providing data authentication or data integrity for the fields in the

IP header and the TCP segment. IP header and TCP port number fields can be modified as

long as the TCP checksum is updated. This is how a Network Address Translator (NAT)

works. A NAT is a router that translates public and private addresses during the

forwarding process. For example, when translating a source IP address from a private

address to a public address, the NAT also recalculates the TCP Checksum field.

TCP Urgent Data
Normal data sent on a TCP connection is data corresponding to the incoming and
outgoing byte stream data. In some data-transfer situations, there must be a method of
sending control data to interrupt a process or inform the Application Layer protocol of
asynchronous events. This control data is known as out of band data—data that is not part
of the TCP byte stream but is needed to control the data flow. Out of band data for TCP
connections can be implemented in the following ways:

• Use a separate TCP connection for the out of band data. The separate TCP
connection sends control commands and status information without being combined
on the data stream of the data connection. This is the method used by FTP. FTP uses a
TCP connection on port 21 for control commands such as logins, gets (downloading
files to the FTP client), and puts (uploading files to the FTP server), and a separate TCP
connection on port 20 for the sending or receiving of file data.

• Use TCP urgent data. TCP urgent data is sent on the same TCP connection as the
data. TCP urgent data is indicated by setting the URG flag, and the urgent data is
distinguished from the nonurgent data using the Urgent Pointer field. Urgent data
within the TCP segment must be processed before the nonurgent data. Urgent data is
used by the Telnet protocol to send control commands, even though the advertised
receive window of the Telnet server is 0.

The interpretation of the Urgent Pointer value depends on the TCP implementation’s
adherence to either RFC 793, the original TCP RFC, or RFC 1122, which defines

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 11
requirements for Internet hosts. The difference between the two interpretations is the
following:

• RFC 793 defines the value of the Urgent Pointer field as the positive offset from the
beginning of the TCP segment to the first byte of nonurgent data.

• RFC 1122 defines the value of the Urgent Pointer field as the positive offset from the
beginning of the TCP segment to the last byte of urgent data.

These two definitions of the Urgent Pointer field differ by one byte. Both hosts on a TCP
connection must use the same interpretation, otherwise data corruption could occur.
There is no interoperability of these two interpretations, nor is there a mechanism to
negotiate the interpretation during the TCP connection establishment process.

The definition of the Urgent Pointer field in RFC 793 was made in error (the correct
interpretation is actually given later in the RFC during the discussion of event processing
in Section 3.9). The correct use of the Urgent Pointer field is the RFC 1122 version, but
numerous implementations of TCP use the RFC 793 definition.

Figure 10-7 shows the placement of urgent data within the TCP segment and the RFC 793
and RFC 1122 interpretation of the Urgent Pointer field.

TCP header . . .

Urgent data
(n bytes)

RFC 1122
RFC 793

Urgent Pointer = n

Non-urgent data

. . .

Urgent Pointer = n - 1

Figure 10-7 The location of TCP urgent data within a TCP segment.

To configure the interpretation of the TCP Urgent Pointer field for TCP in Windows Server
2008 and Windows Vista, use the following registry value:

TcpUseRFC1122UrgentPointer
Key: HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Value type: REG_DWORD

Valid range: 0-1

Default: 0

Present by default: No

Set this registry value to 1 to use the RFC 1122 interpretation of the Urgent Pointer field
or to 0 to use the RFC 793 interpretation (the default).

TCP Options
Just like options in the IP header extend IP functionality, TCP options extend TCP
functionality. There are a variety of defined TCP options that are used for negotiating
maximum segment sizes, window scaling factors, performing selective acknowledgments,
recording timestamps, and providing padding for 4-byte boundaries. A node is not
required to support all TCP options; however, the support for processing TCP options is

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 12
required. The presence of TCP options is indicated by a Data Offset field with a value
greater than 5 (0x5) (the TCP header is longer than 20 bytes).

A TCP option is either a single byte or multiple bytes. For multiple-byte options, the TCP
option is in type-length-value format, where the length is the length in bytes of the entire
option. Figure 10-8 shows the structure of multiple-byte TCP options. A TCP option type is
known as an option kind.

Option Kind

Option Length

Option Octets . . .
Figure 10-8 The structure of multiple-byte TCP options.

End Of Option List and No Operation

To implement 4-byte boundary support for TCP options, RFC 793 defines the following
single-byte TCP options:

The End Of Option List
• The option kind set to 0 (0x00), which indicates that no other options follow. The End

Of Option List option is not used to delimit TCP options. If the set of TCP options falls
along a 4-byte boundary, this option is not needed.

The No Operation
• The option kind set to 1 (0x01), which is used between TCP options for 4-byte

alignment. The No Operation option is not required, so TCP implementations must be
able to correctly interpret TCP options that are not on 4-byte boundaries.

Maximum Segment Size Option

The TCP maximum segment size (MSS) is the largest segment that can be sent on the
connection. To obtain the MSS value, take the IP Maximum Transmission Unit (MTU) and
subtract the IP header size and the TCP header size. Figure 10-9 shows the relationship
between the IP MTU and the TCP MSS. For a typical IP header (without options) and a
typical TCP header (without options), the MSS is 40 bytes less than the IP MTU.

IP MTU

TCP MSS

Segment TCP IP

Figure 10-9 The TCP MSS defined in terms of the IP MTU and the TCP and IP header sizes.

A TCP peer uses the TCP MSS option to indicate the MSS that it can receive. The TCP MSS
option is included only in TCP segments with the SYN flag set during the TCP connection
establishment process. Figure 10-10 shows the TCP MSS option structure.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 13
Option Kind

Option Length

Maximum Segment Size

= 2

= 4

Figure 10-10 The structure of the TCP MSS option.

The fields in the TCP MSS option are defined as follows:

Option Kind
• Set to 2 (0x02) to indicate the MSS option kind.

Option Length
• Set to 4 (0x04) to indicate that the size of the entire MSS option is 4 bytes.

Maximum Segment Size
• Two bytes that indicate the MSS of received segments. For IP datagrams sent on an

Ethernet network segment using Ethernet II encapsulation, the MSS is 1460 (an IP MTU
of 1500 minus 40 bytes for minimum-sized IP and TCP headers).

An example of the TCP MSS option is Capture 10-02, a Network Monitor trace that is
included in the \Captures folder on the companion CD-ROM. The following is the TCP
SYN segment from Capture 10-02 (frame 1), as displayed with Network Monitor 3.1:

 Frame:

+ Ethernet: Etype = Internet IP (IPv4)

+ Ipv4: Next Protocol = TCP, Packet ID = 10474, Total IP Length = 48

- Tcp: Flags=.S......, SrcPort=1162, DstPort=FTP control(21), Len=0,

Seq=3928116524, Ack=0, Win=16384 (scale factor not found)

 SrcPort: 1162

 DstPort: FTP control(21)

 SequenceNumber: 3928116524 (0xEA224D2C)

 AcknowledgementNumber: 0 (0x0)

 - DataOffset: 112 (0x70)

 DataOffset: (0111....) (28 bytes)

 Reserved: (....000.)

 NS: (.......0) Nonce Sum not significant

 - Flags: .S......

 CWR: (0.......) CWR not significant

 ECE: (.0......) ECN-Echo not significant

 Urgent: (..0.....) Not Urgent Data

 Ack: (...0....) Acknowledgement field not significant

 Push: (....0...) No Push Function

 Reset: (.....0..) No Reset

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 14
 Syn: (......1.) Synchronize sequence numbers

 Fin: (.......0) Not End of data

 Window: 16384 (scale factor not found)

 Checksum: 34126 (0x854E)

 UrgentPointer: 0 (0x0)

 - TCPOptions:

 - MaxSegmentSize:

 type: Maximum Segment Size. 2(0x2)

 OptionLength: 4 (0x4)

 MaxSegmentSize: 1460 (0x5B4)

 + NoOption:

 + NoOption:

 + SACKPermitted:

When two TCP peers exchange their MSS during the connection establishment process,
both peers adjust their initial MSS to the minimum value reported by both. For example,
when an Ethernet node sends an MSS of 1460 and an 802.11 wireless node sends an MSS
of 2272 (the 802.11 IP MTU of 2312, minus 40 bytes), both nodes agree to send
maximum-sized TCP segments of 1460 bytes. The initial MSS is adjusted on an ongoing
basis through PMTU discovery. For example, two 802.11 wireless nodes on two separate
network segments—connected by routers over Ethernet network segments—exchange a
TCP MSS of 2272. However, the wireless nodes begin sending 2272-byte TCP segments,
and PMTU discovery messages adjust the MSS for the connection to 1460. For more
information about PMTU, see Chapter 6, “Internet Control Message Protocol (ICMP).”

The TCP MSS option does not prevent problems that could occur between two hosts on
the same network segment (subnet) that are separated by a Network Interface Layer
technology with a lower IP MTU size. For example, Host A and Host B in Figure 10-11 are
802.11 wireless nodes connected to separate wireless access points (APs) that are
connected by an Ethernet backbone.

Both wireless APs and their connected wireless clients and the Ethernet backbone are on
the same network segment as the router. Therefore, when Hosts A and B exchange their
MSSs, both agree to send maximum-sized TCP segments with a size of 2272 bytes.
However, when they begin to send bulk data with maximum-sized segments, the wireless
APs, acting as Layer 2 translating bridges, have no facilities for translating 2272-byte
802.11 payloads to 1500-byte Ethernet payloads. Therefore, the wireless APs silently
discard the maximum-sized TCP segments. The wireless AP is not an IP router and does
not send PMTU discovery messages to the TCP peers to lower their MSS. Maximum-sized
TCP segments cannot be sent between the two TCP peers.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 15
Ethernet
backbone

FDDI ring

FDDI ring

Ethernet switch

Ethernet switch
Router

Host A

Host B

Figure 10-11 Hosts connected to two wireless APs that are connected by an Ethernet backbone.

If Host A were an FTP server and Host B were an FTP client, the user at Host B would be
able to connect and log in to the FTP server. However, when the user issued a get or put
instruction to send a file, TCP segments at the maximum size would be dropped by the
wireless APs.

The only solution to this problem is to adjust the IP MTU on the wireless nodes to the
lowest value supported by all the Network Interface Layer technologies on the network
segment. For example, you could use the netsh interface ipv4 set interface mtu
command or the MTU registry value described in Chapter 5, “Internet Protocol (IP),” to
lower the IP MTU of the two wireless adapters to 1500.

TCP Window Scale Option

The TCP window size defined in RFC 793 is a 16-bit field for a maximum receive window
size of 65,535 bytes. This means that a sender can have only 65,535 bytes of data in transit
before having to wait for an acknowledgment. This is not an issue on typical local area
network (LAN) and wide area network (WAN) links, but it is possible on newer LAN and
WAN technologies operating at gigabit-per-second speeds with a sizable transit delay to
have more than 65,535 bytes in transit. If TCP cannot fill the logical pipe between the
sender and receiver and keep it filled, it is operating at lower efficiency.

The TCP Window Scale option described in RFC 1323 allows the receiver to advertise a
larger window size than 65,535 bytes. The Window Scale option includes a window scaling
factor that, when exponentially combined with the 16-bit window size in the TCP header,
increases the receive window size to a maximum of 1,073,741,824 bytes, or 1 gigabyte
(GB). The Window Size option is sent only in a SYN segment during the connection
establishment process. TCP peers can indicate different window scaling factors used for
their receive window sizes. The receiver of the TCP connection establishment request
(the SYN segment) cannot send a Window Scale option unless the initial SYN segment
contains it.

Figure 10-12 illustrates the TCP Window Scale option structure.

Option Kind

Option Length

Shift Count

= 3

= 3

Figure 10-12 The structure of the TCP Window Scale option.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 16
The fields in the TCP Window Scale option are defined as follows:

Option Kind
• Set to 3 (0x03) to indicate the Window Scale option kind.

Option Length
• Set to 3 (0x03) to indicate that the size of the entire TCP option is three bytes.

Shift Count
• One byte that indicates the scaling factor as the exponent of 2. For example, for a Shift

Count of 5, the scaling factor is 25, or 32. The exponent is used rather than a whole
number so that implementations can take advantage of binary shift programming
techniques to quickly calculate the actual window size. For example, for a Shift Count
of 5, the actual window size is the binary value of the Window field with five zeros
added (the Window field is left-shifted by 5). The maximum value of the Shift Count is
14 for a window scaling factor of 214, or 16,384. Combined with the original window
size of 216, the maximum window size is 216×214 = 230, or 1,073,741,824 bytes.

An example of a TCP Window Scale option is Capture 10-03, a Network Monitor trace that
is included in the \Captures folder on the companion CD-ROM. The following is the TCP
SYN segment from Capture 10-03 (frame 1), as displayed with Network Monitor 3.1:

 Frame:

+ Ethernet: Etype = Internet IP (IPv4)

+ Ipv4: Next Protocol = TCP, Packet ID = 594, Total IP Length = 52

- Tcp: Flags=.S......, SrcPort=49786, DstPort=NETBIOS Session

Service(139), Len=0, Seq=2626199192, Ack=0, Win=8192 (scale factor not

found)

 SrcPort: 49786

 DstPort: NETBIOS Session Service(139)

 SequenceNumber: 2626199192 (0x9C889E98)

 AcknowledgementNumber: 0 (0x0)

 + DataOffset: 128 (0x80)

 + Flags: .S......

 Window: 8192 (scale factor not found)

 Checksum: 15591 (0x3CE7)

 UrgentPointer: 0 (0x0)

 - TCPOptions:

 + MaxSegmentSize:

 + NoOption:

 - WindowsScaleFactor:

 type: Window scale factor. 3(0x3)

 Length: 3 (0x3)

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 17
 ShiftCount: 8 (0x8)

 + NoOption:

 + NoOption:

 + SACKPermitted:

Notice the use of the TCP No Operation option (NoOption) preceding the Window Scale
option to align the Window Scale option on 4-byte boundaries.

When the Window Scale option is used, the window size advertised in each TCP segment
for the connection is scaled by the factor indicated in the peer’s SYN segment. Therefore,
the TCP header’s Window field is no longer a byte counter of the amount of space left in
the receive buffer. Rather, the Window field is a block counter in which the block size in
bytes is the scaling factor. For example, for a TCP peer using a Shift Count of 3, the
Window field in outgoing TCP segments is actually indicating the number of 8-byte blocks
remaining in the receive buffer.

By default, TCP for Windows Server 2008 and Windows Vista always uses window scaling
with a scaling factor of 8, for a 16-megabyte (MB) receive window. To disable window
scaling, use the netsh interface tcp set global autotuninglevel=disabled command.
When window scaling is disabled, TCP uses a window size based on the link speed of the
sending interface. For more information about how TCP for Windows Server 2008 and
Windows Vista uses the receive window to maximize incoming data, see Chapter 12,
“Transmission Control Protocol (TCP) Data Flow.”

Note When tracing TCP connection data, make sure that you also look at the

connection establishment process to determine whether window scaling is being used.

Otherwise, you might misinterpret the Window field value during the connection.

Selective Acknowledgment Option

The acknowledgment scheme for TCP was originally designed as a positive cumulative
acknowledgment scheme in which the receiver sends a segment with the ACK flag set and
the Acknowledgment field set to the next byte the receiver expects to receive. This use of
the Acknowledgment field provides an acknowledgment of all bytes up to, but not
including, the sequence number in the Acknowledgment field. This scheme provides
reliable byte-stream data transfer, but can result in lower TCP throughput in environments
with high packet losses.

If a segment at the beginning of the current send window is not received and all other
segments are, the data received cannot be acknowledged until the missing segment
arrives. The sender begins to retransmit the segments of the current send window until
the acknowledgment for all the segments received has arrived. The sender needlessly
retransmits some segments, consequently wasting network bandwidth. This problem is
exacerbated in environments such as satellite links, with high bandwidth and high delay,
when TCP has a large window size. The more segments in the send window, the more
segments can be retransmitted unnecessarily when segments are lost.

RFC 2018 describes a method of selective acknowledgment using TCP options that
selectively acknowledges the noncontiguous data blocks that have been received. A

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 18
sender that receives a selective acknowledgment can retransmit just the missing blocks,
preventing the sender from waiting for the retransmission time-out for the
unacknowledged segments and retransmitting segments that have successfully arrived.

The selective acknowledgment scheme defines the following two different TCP options:

• The Selective Acknowledgment (SACK)-Permitted option to negotiate the use of
selective acknowledgments during the connection establishment process

• The SACK option to indicate the noncontiguous data blocks that have been received

The SACK-Permitted Option

The SACK-Permitted option is sent in segments with the SYN flag set and indicates that
the TCP peer can receive and interpret the TCP SACK option when data is flowing on the
connection. The SACK-Permitted option is 2 bytes consisting of an Option Kind set to 4
(0x04) and an Option Length set to 2 (0x02), as shown in Figure 10-13.

Option Kind

Option Length

= 4

= 2
Figure 10-13 The structure of the TCP SACK-Permitted option.

An example of a TCP SACK-Permitted option is Capture 10-04, a Network Monitor trace
that is included in the \Captures folder on the companion CD-ROM. The following is the
TCP SYN segment from Capture 10-04 (frame 1), as displayed with Network Monitor 3.1:

 Frame:

+ Ethernet: Etype = Internet IP (IPv4)

+ Ipv4: Next Protocol = TCP, Packet ID = 10474, Total IP Length = 48

- Tcp: Flags=.S......, SrcPort=1162, DstPort=FTP control(21), Len=0,

Seq=3928116524, Ack=0, Win=16384 (scale factor not found)

 SrcPort: 1162

 DstPort: FTP control(21)

 SequenceNumber: 3928116524 (0xEA224D2C)

 AcknowledgementNumber: 0 (0x0)

 + DataOffset: 112 (0x70)

 + Flags: .S......

 Window: 16384 (scale factor not found)

 Checksum: 34126 (0x854E)

 UrgentPointer: 0 (0x0)

 - TCPOptions:

 + MaxSegmentSize:

 + NoOption:

 + NoOption:

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 19
 - SACKPermitted:

 type: SACK permitted. 4(0x4)

 OptionLength: 2 (0x2)

Notice the use of the two TCP No Operation option (NoOption) fields preceding the
SACK-Permitted option to align the SACK-Permitted option on 4-byte boundaries.

The SACK Option

The SACK option is sent as needed in segments of the open connection with the ACK flag
set. As Figure 10-14 shows, the SACK option is a variable-size option, depending on how
many contiguous blocks are being acknowledged.

Option Kind
Option Length

Left Edge of 1st Block
Right Edge of 1st Block

...

=5

Left Edge of nst Block
Right Edge of nst Block
Figure 10-14 The structure of the TCP SACK option.

The fields in the TCP SACK option are defined as follows:

Option Kind
• Set to 5 (0x05) to indicate the SACK option kind.

Option Length
• Set to 10 (a single noncontiguous block), 18 (two noncontiguous blocks), 26 (three

noncontiguous blocks), or 34 (four noncontiguous blocks) bytes to indicate the size of
the entire TCP option.

Left Edge of Nth Block
• A 4-byte field that indicates the sequence number of this block’s first byte.

Right Edge of Nth Block
• A 4-byte field that indicates the next sequence number expected to be received

immediately following this block.

An example of a TCP SACK option is Capture 10-05, a Network Monitor trace that is
included in the \Captures folder on the companion CD-ROM. The following is the TCP
segment from Capture 10-05 (frame 1), as displayed with Network Monitor 3.1:

 Frame:

+ Ethernet: Etype = Internet IP (IPv4)

+ Ipv4: Next Protocol = TCP, Packet ID = 64013, Total IP Length = 64

- Tcp: Flags=....A..., SrcPort=1242, DstPort=NETBIOS Session

Service(139), Len=0, Seq=925293, Ack=55053434, Win=32767 (scale factor

not found)

 SrcPort: 1242

 DstPort: NETBIOS Session Service(139)

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 20
 SequenceNumber: 925293 (0xE1E6D)

 AcknowledgementNumber: 55053434 (0x3480C7A)

 + DataOffset: 176 (0xB0)

 + Flags:A...

 Window: 32767 (scale factor not found)

 Checksum: 17262 (0x436E)

 UrgentPointer: 0 (0x0)

 - TCPOptions:

 + NoOption:

 + NoOption:

 + TimeStamp:

 + NoOption:

 + NoOption:

 - SACK:

 type: SACK. 5(0x5)

 Length: 10 (0xA)

 - Blocks:

 LeftEdge: 55054882 (0x3481222)

 RightEdge: 55059226 (0x348231A)

In the trace, the sender of this segment is acknowledging the receipt of all contiguous
bytes in the byte stream up to, but not including, byte 55053434, and the receipt of the
block of contiguous data from bytes 55054882 through 55059225. There is a missing
segment consisting of the bytes 55053434 through 55054881. Notice the use of the Nop
options (NoOption) to align the SACK option on 4-byte boundaries.

TCP in Windows Server 2008 and Windows Vista always uses selective acknowledgments
and the SACK options.

For more information on the use of selective acknowledgments to retransmit data, see
Chapter 13, “Transmission Control Protocol (TCP) Retransmission and Time-Out.”

Note TCP in Windows Server 2008 and Windows Vista no longer supports the SackOpts

registry value.

TCP Timestamps Option

To set the retransmission time-out (RTO) on TCP segments sent, TCP monitors the round-
trip time (RTT) on an ongoing basis. Normally, TCP calculates the RTT of a TCP segment
and its acknowledgment once for every full send window of data. Although this works well
in many environments, for high-bandwidth and high-delay environments such as satellite
links with large window sizes, the sampling rate of one segment for each window size

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 21
cannot monitor the RTT to determine the current RTO and prevent unnecessary
retransmissions.

To calculate the RTT on any TCP segment, the segment is sent with the TCP Timestamps
option described in RFC 1323. This option places a timestamp value based on a local clock
on an outgoing TCP segment. The acknowledgment for the data in the TCP segment
echoes back the timestamp, and the RTT can be calculated from the segment’s echoed
timestamp and the time (relative to the local clock) that the segment’s acknowledgment
arrived.

Including the Timestamps option in the SYN segment during the connection
establishment process indicates its use for the connection. Both sides of the TCP
connection can selectively use timestamps. Once indicated during connection
establishment, the timestamp can be included in TCP segments at the discretion of the
sending TCP peer.

Figure 10-15 shows the TCP Timestamps option structure.

F10xx15 (Art Missing)

Figure 10-15. The structure of the TCP Timestamps option.

The fields in the TCP Timestamps option are defined as follows:

Option Kind
• Set to 8 (0x08) to indicate the Timestamps option kind.

Option Length
• Set to 10 (0x0A) to indicate that the size of the entire TCP option is 10 bytes.

TS Value
• A 4-byte field that indicates the timestamp value of this TCP segment. The TS Value is

calculated from an internal clock that is based on real time. The TS Value increases
over time and wraps around when needed.

TS Echo Reply
• A 4-byte field set on a TCP segment that acknowledges data received (with the ACK

flag set) that is set to the same value as the TS Value for the received segment being
acknowledged. In other words, the TS Echo Reply is an echo of the TS Value of the
acknowledged segment.

Figure 10-16 illustrates an example of the values of the TS Value and TS Echo Reply for an
exchange of data between two hosts.

F10xx16 (Art Missing)

Figure 10-16. An example of the use of the TCP Timestamps option.

Host A’s internal clock starts its TS Value at 100. Host B’s internal clock starts its TS Value
at 9000. Segments 1 through 4 are for two data blocks sent by Host A. Segments 5 and 6
are for a data block sent by Host B. Notice how the TS Echo Reply value for the
acknowledgments is set to the TS Value of the segments they are acknowledging. To
prevent gaps in the sending of data from increasing the RTT, the TS Echo Reply is used for
RTT measurement only if the segment is an acknowledgment of new data sent.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 22
An example of the use of the TCP Timestamps option is Capture 10-06, a Network
Monitor trace that is included in the \Captures folder on the companion CD-ROM. The
following is frame 1 containing the TCP Timestamps option and frame 2 containing the
corresponding acknowledgment, as displayed with Network Monitor 3.1:

 Frame:

+ Ethernet: Etype = Internet IP (IPv4)

+ Ipv4: Next Protocol = TCP, Packet ID = 6677, Total IP Length = 1500

- Tcp: Flags=....A..., SrcPort=NETBIOS Session Service(139),

DstPort=1242, Len=1448, Seq=55050538 - 55051986, Ack=925293, Win=16564

(scale factor not found)

 SrcPort: NETBIOS Session Service(139)

 DstPort: 1242

 SequenceNumber: 55050538 (0x348012A)

 AcknowledgementNumber: 925293 (0xE1E6D)

 + DataOffset: 128 (0x80)

 + Flags:A...

 Window: 16564 (scale factor not found)

 Checksum: 48513 (0xBD81)

 UrgentPointer: 0 (0x0)

 - TCPOptions:

 + NoOption:

 + NoOption:

 - TimeStamp:

 type: Timestamp. 8(0x8)

 Length: 10 (0xA)

 TimestampValue: 4677 (0x1245)

 TimestampEchoReply: 7114 (0x1BCA)

 TCPPayload:

+ Nbtss: NbtSS Continue payload, Length = 1448

__

 Frame:

+ Ethernet: Etype = Internet IP (IPv4)

+ Ipv4: Next Protocol = TCP, Packet ID = 62989, Total IP Length = 52

- Tcp: Flags=....A..., SrcPort=1242, DstPort=NETBIOS Session

Service(139), Len=0, Seq=925293, Ack=55051986, Win=32722 (scale factor

not found)

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 23
 SrcPort: 1242

 DstPort: NETBIOS Session Service(139)

 SequenceNumber: 925293 (0xE1E6D)

 AcknowledgementNumber: 55051986 (0x34806D2)

 + DataOffset: 128 (0x80)

 + Flags:A...

 Window: 32722 (scale factor not found)

 Checksum: 47929 (0xBB39)

 UrgentPointer: 0 (0x0)

 - TCPOptions:

 + NoOption:

 + NoOption:

 - TimeStamp:

 type: Timestamp. 8(0x8)

 Length: 10 (0xA)

 TimestampValue: 7126 (0x1BD6)

 TimestampEchoReply: 4677 (0x1245)

Notice that in the second frame the TS Echo Reply field (TimestampEchoReply) is set to
4677, echoing the TS Value field (TimestampValue) of the first frame.

In Windows Server 2008 and Windows Vista, the use of TCP timestamps can be controlled
by the netsh interface tcp set global timestamps=disabled|enabled|default
command. By default, TCP timestamps are disabled.

You can also use the following registry value:

Tcp1323Opts
Key:HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

Value type: REG_DWORD

Valid range: 0 or 2

Default value: 0

Present by default: No

Set this value to 0 to disable timestamps. Set this value to 2 to enable timestamps. The
default behavior of TCP is to not use timestamps. For more information on RTT, RTO, and
retransmission behavior, see Chapter 13, “Transmission Control Protocol (TCP)
Retransmission and Time-Out.”

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

Preview Content from Windows Server® 2008 TCP/IP Protocols and Services 24
Summary
TCP provides connection-oriented and reliable data transfer for applications that require
end-to-end guaranteed delivery service. Application Layer protocols use TCP for one-to-
one traffic. The TCP header provides sequencing, acknowledgment, a checksum, and the
identification of source and destination port numbers to multiplex TCP segment data to
the proper Application Layer protocol. TCP options are used to indicate maximum
segment sizes and window scaling, indicate and provide selective acknowledgments, and
provide timestamps for better RTT determination.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 TCP/IP Protocols and Services
from Microsoft Press (ISBN 978-0-7356-2447-4, copyright 2008 Microsoft Corporation, all rights reserved), and is provided
without any express, statutory, or implied warranties.

	Cover
	Table of Contents
	Chapter 10: Transmission Control Protocol (TCP) Basics
	Introduction to TCP
	The TCP Segment
	The TCP Header
	TCP Ports
	TCP Flags
	The TCP Pseudo Header
	TCP Urgent Data
	TCP Options
	End Of Option List and No Operation
	Maximum Segment Size Option
	TCP Window Scale Option
	Selective Acknowledgment Option
	TCP Timestamps Option

	Summary

