
To learn more about this book, visit Microsoft Learning at
http://www.microsoft.com/MSPress/books/11448.aspx

978-0-7356-2438-2

© 2008 William Stanek. All rights reserved.

Windows Server® 2008
Inside Out

William R. Stanek

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title,
for early preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside
Out from Microsoft Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and
is provided without any express, statutory, or implied warranties

Table of Contents
FrontMatter

Part 1: Windows Server 2008 Overview

 1 Introducing Windows Server 2008

 2 Planning for Windows Server 2008

 3 Installing Windows Server 2008

 4 Upgrading to Windows Server 2008

Part 2: Managing Windows Server 2008 Systems

 5 Configuring Windows Server 2008

 6 Windows Server 2008 MMC Administration

 7 Managing Windows Server 2008

 8 Managing and Troubleshooting Hardware

 9 Managing the Registry

 10 Performance Monitoring and Tuning

 11 Comprehensive Performance Analysis and Logging

Part 3: Managing Windows Server 2008 Storage and File Systems

 12 Storage Management

 13 Managing Windows Server 2008 File Systems

 14 File Sharing and Security

 15 Encrypting Files, Folders, and Drives

 16 Integrating Windows and Unix File Systems

 17 Using Distributed File Systems

 18 Using Volume Shadow Copy

 19 Managing File Server Resources

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Part 4: Managing Windows Server 2008 Networking and Print
Services

 20 Managing TCP/IP Networking

 21 Managing DHCP

 22 Architecting DNS Infrastructure

 23 Implementing and Managing DNS

 24 Implementing and Maintaining WINS

 25 Installing and Maintaining Print Services

 26 Using Remote Desktop for Administration

 27 Deploying Terminal Server

 28 Managing Network Policy and Access Services

Part 5: Managing Active Directory and Security

 29 Active Directory Architecture

 30 Designing and Managing Domain Structure

 31 Organizing Active Directory

 32 Configuring Active Directory Sites and Replication

 33 Implementing Active Directory

 34 Deploying Read-only Domain Controllers

 35 Managing Users, Groups and Computers

 36 Managing Group Policy

 37 Active Directory Site Administration

Part 6: Windows Server 2008 Disaster Planning and Recovery

 38 Planning for High Availability

 39 Preparing and Deploying Server Clusters

 40 Disaster Planning

 41 Backup and Recovery

BackMatter

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 1
Part 5

Managing Active Directory and
Security

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 2
Chapter 29

Active Directory Architecture
Active Directory is an extensible directory service that enables you to manage network
resources efficiently. A directory service does this by storing detailed information about
each network resource, which makes it easier to provide basic lookup and authentication.
Being able to store large amounts of information is a key objective of a directory service,
but the information must be also organized so that it is easily searched and retrieved.

Active Directory provides for authenticated search and retrieval of information by dividing
the physical and logical structure of the directory into separate layers. Understanding the
physical structure of Active Directory is important for understanding how a directory
service works. Understanding the logical structure of Active Directory is important for
implementing and managing a directory service.

Active Directory Physical Architecture
Active Directory’s physical layer controls the following features:

• How directory information is accessed

• How directory information is stored on the hard disk of a server

Active Directory Physical Architecture: A Top-Level View

From a physical or machine perspective, Active Directory is part of the security subsystem
(see Figure 29-1). The security subsystem runs in user mode. User-mode applications do
not have direct access to the operating system or hardware. This means that requests from
user-mode applications have to pass through the executive services layer and must be
validated before being executed.

User mode

Kernel mode

Executive services

Win32
application

Win32
application

Active
Directory

Security
subsystem

Directory
service module

Figure 29-1 Top-level overview of Active Directory architecture.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 3
Note Being part of the security subsystem makes Active Directory an integrated part of

the access control and authentication mechanism built into Microsoft Windows Server

2008. Access control and authentication protect the resources in the directory.

Each resource in Active Directory is represented as an object. Anyone who tries to gain
access to an object must be granted permission. Lists of permissions that describe who or
what can access an object are referred to as Access Control Lists (ACL). Each object in the
directory has an associated ACL.

You can restrict permissions across a broader scope by using policy. The security
infrastructure of Active Directory uses policy to enforce security models on several objects
that are grouped logically. Trust relationships between groups of objects can also be set
up to allow for an even broader scope for security controls between trusted groups of
objects that need to interact. From a top-level perspective, that’s how Active Directory
works, but to really understand Active Directory, you need to delve into the security
subsystem.

Active Directory Within the Local Security Authority

Within the security subsystem, Active Directory is a subcomponent of the Local Security
Authority (LSA). As shown in Figure 29-2, the LSA consists of many components which
provide the security features of Windows Server 2008 and ensure that access control and
authentication function as they should. Not only does the LSA manage local security
policy, it also performs the following functions:

• Generates security identifiers

• Provides the interactive process for logon

• Manages auditing

Directory service
(Ntdsa.dll)

NTLM
(Msv1_0.dll)

KDC
(Kdcsvc.dll)

Kerberos
(Kerberos.dll)

SSL
(Schannel.dll)

RPC
RPC

Authentication provider
(Secur32.dll)

NET LOGON
(Netlogon.dll)

LSA Server
(Lsarsrv.dll)

Security Accounts Manager
(Samsrv.dll)

LDAP

RPC

Figure 29-2 Windows Server 2008 security subsystem using Active Directory.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 4
When you work through the security subsystem as it is used with Active Directory, you’ll
find the three following key areas:

Authentication mechanisms
• NTLM (Msv1_0.dll) used for Windows NT LAN Manager (NTLM) authentication

• Kerberos (Kerberos.dll) and Key Distribution Center (Kdcsvc.dll) used for Kerberos V5
authentication

• SSL (Schannel.dll) used for Secure Sockets Layer (SSL) authentication

• Authentication provider (Secur32.dll) used to manage authentication

Logon/access control mechanisms
• NET LOGON (Netlogon.dll) used for interactive logon via NTLM. For NTLM

authentication, NET LOGON passes logon credentials to the directory service module
and returns the security identifiers for objects to clients making requests.

• LSA Server (Lsasrv.dll) used to enforce security policies for Kerberos and SSL. For
Kerberos and SSL authentication, LSA Server passes logon credentials to the directory
service module and returns the security identifiers for objects to clients making
requests.

• Security Accounts Manager (Samsrv.dll) used to enforce security policies for NTLM.

Directory service component
• Directory service (Ntdsa.dll) used to provide directory services for Windows Server

2008. This is the actual module that allows you to perform authenticated searches and
retrieval of information.

As you can see, users are authenticated before they can work with the directory service
component. Authentication is handled by passing a user’s security credentials to a domain
controller. After they are authenticated on the network, users can work with resources and
perform actions according to the permissions and rights they have been granted in the
directory. At least, this is how the Windows Server 2008 security subsystem works with
Active Directory.

When you are on a network that doesn’t use Active Directory or when you log on locally
to a machine other than a domain controller, the security subsystem works as shown in
Figure 29-3. Here, the directory service is not used. Instead, authentication and access
control are handled through the Security Accounts Manager (SAM). This is, in fact, the
model used for authentication and access control in Microsoft Windows NT 4. In this
model, information about resources is stored in the SAM, which itself is stored in the
Registry.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 5
Directory service
(Ntdsa.dll)

NTLM
(Mcv1_0.dll)

KDC
(Kdcsvc.dll)

Kerberos
(Kerberos.dll)

SSL
(Schannel.dll)

RPC
RPC

Authentication provider
(Secur32.dll)

NET LOGON
(Netlogon.dll)

LSA Server
(Lsasrv.dll)

Security Accounts Manager
(Samsrv.dll)

LDAP

RPC

SAM in
Registry

Figure 29-3 Windows Server 2008 security subsystem without Active Directory.

Directory Service Architecture

As you’ve seen, incoming requests are passed through the security subsystem to the
directory service component. The directory service component is designed to accept
requests from many different kinds of clients. As shown in Figure 29-4, these clients use
specific protocols to interact with Active Directory.

LDAP

Interfaces

NTDSA.DLL

Extensible Storage Engine (ESE)
(ESENT.DLL)

Directory System Agent (DSA)

Database layer

REPL MAPI SAM

LDAP, ADSI,
Outlook clients

Replication with other
directory servers

(RPC, SMTP over IP)
Outlook
clients Windows NT 4

Active
Directory
data store

Figure 29-4 The directory service architecture.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 6
Protocols and Client Interfaces

The primary protocol for Active Directory access is Lightweight Directory Access Protocol
(LDAP). LDAP is an industry-standard protocol for directory access that runs over TCP/IP.
Active Directory supports LDAP versions 2 and 3. Clients can use LDAP to query and
manage directory information, depending on the level of permissions they have been
granted, by establishing a TCP connection to a computer, called a domain controller,
running the directory service. The default TCP port used by LDAP clients is 389 for
standard communications and 636 for SSL.

Active Directory supports intersite and intrasite replication through the REPL interface,
which uses either Remote Procedure Calls (RPCs) or Simple Mail Transport Protocol over
Internet Protocol (SMTP over IP), depending on how replication is configured. Each
domain controller is responsible for replicating changes to the directory to other domain
controllers, using a multimaster approach. Unlike Windows NT 4, which used a single
primary domain controller and one backup domain controller, the multimaster approach
used in Active Directory allows updates to be made to the directory, via any domain
controller and then replicated to other domain controllers.

For older messaging clients, Active Directory supports the Messaging Application
Programming Interface (MAPI). MAPI allows messaging clients to access Active Directory
(which is used by Microsoft Exchange for storing information), primarily for address book
lookups. Messaging clients use Remote Procedure Calls (RPCs) to establish connection
with the directory service. UDP port 135 and TCP port 135 are used by the RPC Endpoint
Mapper. Current messaging clients use LDAP instead of RPC.

For clients running Windows NT 4, Active Directory supports the Security Accounts
Manager (SAM) interface, which also uses RPCs. This allows Windows NT 4 clients to
access the Active Directory data store the same way they would access the SAM database.
The SAM interface is also used during replication with Windows NT 4 backup domain
controllers.

Directory System Agent and Database Layer

Clients and other servers use the LDAP, REPL, MAPI, and SAM interfaces to communicate
with the directory service component (Ntdsa.dll) on a domain controller. From an abstract
perspective, the directory service component consists of the following:

• Directory System Agent (DSA), which provides the interfaces through which clients and
other servers connect

• Database Layer, which provides an Application Programming Interface (API) for
working with the Active Directory data store

From a physical perspective, the DSA is really the directory service component, and the
database layer resides within it. The reason for separating the two is that the database
layer performs a vital abstraction. Without this abstraction, the physical database on the
disk would not be protected from the applications the DSA interacts with. Furthermore,
the object-based hierarchy used by Active Directory would not be possible. Why? Because
the data store is in a single data file using a flat (record-based) structure, while the
database layer is used to represent the flat file records as objects within a hierarchy of

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 7
containers. Like a folder that can contain files as well as other folders, a container is simply
a type of object that can contain other objects as well as other containers.

Each object in the data store has a name relative to the container in which it is stored. This
name is aptly called the object’s relative distinguished name (RDN). An object’s full name,
also referred to as an object’s distinguished name (DN), describes the series of containers,
from the highest to the lowest, of which the object is a part.

To make sure every object stored in Active Directory is truly unique, each object also has a
globally unique identifier (GUID), which is generated when the object is created. Unlike an
object’s RDN or DN, which can be changed by renaming an object or moving it to
another container, the GUID can never be changed. It is assigned to an object by the DSA
and it never changes.

The DSA is responsible for ensuring that the type of information associated with an object
adheres to a specific set of rules. This set of rules is referred to as the schema. The schema
is stored in the directory and contains the definitions of all object classes and describes
their attributes. In Active Directory, the schema is the set of rules that determine the kind
of data that can be stored in the database, the type of information that can be associated
with a particular object, the naming conventions for objects, and so on.

Inside Out
The schema saves space and helps validate attributes

The schema serves to separate an object’s definition from its actual values. Thanks to
the schema, Active Directory doesn’t have to write information about all of an
object’s possible attributes when it creates the object. When you create an object,
only the defined attributes are stored in the object’s record. This saves a lot of space
in the database. Furthermore, as the schema not only specifies the valid attributes
but also the valid values for those attributes, Active Directory uses the schema both
to validate the attributes that have been set on an object and to keep track of what
other possible attributes are available.

The DSA is also responsible for enforcing security limitations. It does this by reading the
security identifiers (SIDs) on a client’s access token and comparing it with that of the SID
for an object. If a client has appropriate access permissions, it is granted access to an
object. If a client doesn’t have appropriate access permissions, it is denied access.

Finally, the DSA is used to initiate replication. Replication is the essential functionality that
ensures that the information stored on domain controllers is accurate and consistent with
changes that have been made. Without proper replication, the data on servers would
become stale and outdated.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 8
Extensible Storage Engine

The Extensible Storage Engine (ESE) is used by Active Directory to retrieve information
from and write information to the data store. The ESE uses indexed and sequential storage
with transactional processing, as follows:

• Indexed storage Indexing the data store allows the ESE to access data quickly without
having to search the entire database. In this way, the ESE can rapidly retrieve, write,
and update data.

• Sequential storage Sequentially storing data means that the ESE writes data as a
stream of bits and bytes. This allows data to be read from and written to specific
locations.

• Transactional processing Transactional processing ensures that changes to the
database are applied as discrete operations that can be rolled back if necessary.

Any data that is modified in a transaction is copied to a temporary database file. This gives
two views of the data that is being changed: one view for the process changing the data
and one view of the original data that is available to other processes until the transaction
is finalized. A transaction remains open as long as changes are being processed. If an error
occurs during processing, the transaction can be rolled back to return the object being
modified to its original state. If Active Directory finishes processing changes without errors
occurring, the transaction can be committed.

As with most databases that use transactional processing, Active Directory maintains a
transaction log. A record of the transaction is written first to an in-memory copy of an
object, then to the transaction log, and finally to the database. The in-memory copy of an
object is stored in the version store. The version store is an area of physical memory (RAM)
used for processing changes. If a domain controller has 400 megabytes (MB) of RAM or
more, the version store is 100 MB. If a domain controller has less than 400 MB of RAM, the
version store is 25 percent of the physical RAM.

The transaction log serves as a record of all changes that have yet to be committed to the
database file. The transaction is written first to the transaction log to ensure that even if
the database shuts down immediately afterward, the change is not lost and can take
effect. To ensure this, Active Directory uses a checkpoint file to track the point up to which
transactions in the log file have been committed to the database file. After a transaction is
committed to the database file, it can be cleared out of the transaction log.

The actual update of the database is written from the in-memory copy of the object in the
version store and not from the transaction log. This reduces the number of disk I/O
operations and helps ensure that updates can keep pace with changes. When many
updates are made, however, the version store can reach a point where it is overwhelmed.
This happens when the version store reaches 90 percent of its maximum size. When this
happens, the ESE temporarily stops processing cleanup operations that are used to return
space after an object is modified or deleted from the database.

Because changes need to be replicated from one domain controller to another, an object
that is deleted from the database isn’t fully removed. Instead, most of the object’s
attributes are removed and the object’s Deleted attribute is set to TRUE to indicate that it
has been deleted. The object is then moved to a hidden Deleted Objects container where

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 9
its deletion can be replicated to other domain controllers. In this state, the object is said to
be tombstoned. To allow the tombstoned state to be replicated to all domain controllers,
and thus removed from all copies of the database, an attribute called tombstoneLifetime
is also set on the object. The tombstoneLifetime attribute specifies how long the
tombstoned object should remain in the Deleted Objects container. The default lifetime is
60 days.

The ESE uses a garbage-collection process to clear out tombstoned objects after the
tombstone lifetime has expired and performs automatic online defragmentation of the
database after garbage collection. The interval at which garbage collection occurs is a
factor of the value set for the garbageCollPeriod attribute and the tombstone lifetime. By
default, garbage collection occurs every 12 hours. When there are more than 5,000
tombstoned objects to be garbage-collected, the ESE removes the first 5,000 tombstoned
objects, and then uses the CPU availability to determine if garbage collection can
continue. If no other process is waiting for the CPU, garbage collection continues for up to
the next 5,000 tombstoned objects whose tombstone lifetime has expired and the CPU
availability is again checked to determine if garbage collection can continue. This process
continues until all the tombstoned objects whose tombstone lifetime has expired are
deleted or another process needs access to the CPU.

Data Store Architecture

After you have examined the operating system components that support Active Directory,
the next step is to see how directory data is stored on a domain controller’s hard disks. As
Figure 29-5 shows, the data store has a primary data file and several other types of related
files, including working files and transaction logs.

Data
table

Link
table

Security
descriptor

table

Primary data file
(Ntds.dit)

Working Files

Primary log file
(Edb.log)

Secondary log file
(Edb000001.log)

Secondary log file
(Edb000002.log)

Reserve log file (Res1.log)

Reserve log file (Res2.log)

Transaction logs

Active Directory
Data Store

Checkpoint file (Edb.chk)

Temporary data (Tmp.edb)

Figure 29-5 The Active Directory data store.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 10
These files are used as follows:

• Primary data file (Ntds.dit) Physical database file that holds the contents of the
Active Directory data store

• Checkpoint file (Edb.chk) Checkpoint file that tracks the point up to which the
transactions in the log file have been committed to the database file

• Temporary data (Tmp.edb) Temporary workspace for processing transactions

• Primary log file (Edb.log) Primary log file that contains a record of all changes that
have yet to be committed to the database file

• Secondary log files (Edb00001.log, Edb00002.log, …) Additional logs files that are
used as needed

• Reserve log files (EdbRes00001.jrs, EdbRes00002.jrs, …) Files that are used to
reserve space for additional log files if the primary log file becomes full

The primary data file contains three indexed tables:

• Active Directory data table The data table contains a record for each object in the
data store, which can include object containers, the objects themselves, and any other
type of data that is stored in Active Directory.

• Active Directory link table The link table is used to represent linked attributes. A
linked attribute is an attribute that refers to other objects in Active Directory. For
example, if an object contains other objects (that is, it is a container), attribute links are
used to point to the objects in the container.

• Active Directory security descriptor table The security descriptor table contains the
inherited security descriptors for each object in the data store. Windows Server 2008
uses this table so that inherited security descriptors no longer have to be duplicated
on each object. Instead, inherited security descriptors are stored in this table and
linked to the appropriate objects. This makes Active Directory authentication and
control mechanisms much more efficient than they were in Microsoft Windows 2000.

Think of the data table as having rows and columns; the intersection of a row and a
column is a field. The table’s rows correspond to individual instances of an object. The
table’s columns correspond to attributes defined in the schema. The table’s fields are
populated only if an attribute contains a value. Fields can be a fixed or a variable length. If
you create an object and define only 10 attributes, only these 10 attributes will contain
values. Although some of those values might be fixed length, other might be variable
length.

Records in the data table are stored in data pages that have a fixed size of 8 kilobytes (KB,
or 8,192 bytes). Each data page has a page header, data rows, and free space that can
contain row offsets. The page header uses the first 96 bytes of each page, leaving 8,096
bytes for data and row offsets. Row offsets indicate the logical order of rows on a page,
which means that offset 0 refers to the first row in the index, offset 1 refers to the second
row, and so on. If a row contains long, variable-length data, the data may not be stored
with the rest of the data for that row. Instead, Active Directory can store an 8-byte pointer
to the actual data, which is stored in a collection of 8-KB pages that aren’t necessarily
written contiguously. In this way, an object and all its attribute values can be much larger
than 8 KB.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 11
The primary log file has a fixed size of 10 MB. When this log fills up, Active Directory
creates additional (secondary) log files as necessary. The secondary log files are also
limited to a fixed size of 10 MB. Active Directory uses the reserve log files to reserve space
on disk for log files that may need to be created. As several reserve files are already
created, this speeds up the transactional logging process when additional logs are
needed.

By default, the primary data file, working files, and transaction logs are all stored in the
same location. On a domain controller’s system volume, you’ll find these files in the
%SystemRoot%\NTDS folder. Although these are the only files used for the data store,
there are other files used by Active Directory. For example, policy files and other files, such
as startup and shutdown scripts used by the DSA, are stored in the
%SystemRoot%\SYSVOL folder.

Note A distribution copy of Ntds.dit is also placed in the %SystemRoot%\System32

folder. This is used to create a domain controller when you install Active Directory on a

server running Windows Server 2008. If the file doesn’t exist, the Active Directory

Installation Wizard will need the installation CD to promote a member server to be a

domain controller.

Inside Out
The log files have attributes you can examine

When you stop Active Directory Domain Services, you can use the Extensible
Storage Engine Utility (esentutl.exe) to examine log file properties. At an elevated
command prompt, enter esentutl.exe –ml LogName where LogName is the name
of the log file to examine, such as edb.log, to obtain detailed information on the log
file, including base name, creation time, format version, log sector sizes, and logging
parameters. While Active Directory Domain Services is offline, you can also use
esentutl.exe to perform defragmentation, integrity checks, copy, repair, and recovery
operations. To learn more about this utility, enter esentutl.exe at an elevated
command prompt. Following the prompts, you can then enter the letter
corresponding to the operation you want to learn more about. For example, enter
esentutl.exe and then press the D key to learn the defragmentation options.

Active Directory Logical Architecture
The logical layer of Active Directory determines how you see the information contained in
the data store and also controls access to that information. The logical layer does this by
defining the namespaces and naming schemes used to access resources stored in the
directory. This provides a consistent way to access directory-stored information regardless
of type. For example, you can obtain information about a printer resource stored in the
directory in much the same way that you can obtain information about a user resource.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 12
To better understand Active Directory’s logical architecture, you need to understand the
following topics:

• Active Directory objects

• Active Directory domains, trees, and forests

• Active Directory trusts

• Active Directory namespaces and partitions

• Active Directory data distribution

Active Directory Objects

Because so many different types of resources can be stored in the directory, a standard
storage mechanism was needed and Microsoft developers decided to use the LDAP model
for organizing data. In this model, each resource that you want to represent in the
directory is created as an object with attributes that define information you want to store
about the resource. For example, the user object in Active Directory has attributes for a
user’s first name, middle initial, last name, and logon name.

An object that holds other objects is referred to as a container object or simply a container.
The data store itself is a container that contains other containers and objects. An object
that doesn’t contain other objects is a leaf object. Each object created within the directory
is of a particular type or class. The object classes are defined in schema and include the
following types:

• User

• Group

• Computer

• Printer

When you create an object in the directory, you must comply with the schema rules for
that object class. Not only do the schema rules dictate the available attributes for an
object class, they also dictate which attributes are mandatory and which attributes are
optional. When you create an object, mandatory attributes must be defined. For example,
you can’t create a user object without specifying the user’s full name and logon name. The
reason is that these attributes are mandatory.

Some rules for attributes are defined in policy as well. For example, the default security
policy for Windows Server 2008 specifies that a user account must have a password and
the password must meet certain complexity requirements. If you try to create a user
account without a password or with a password that doesn’t meet these complexity
requirements, the account creation will fail because of the security policy.

The schema can be extended or changed as well. This allows administrators to define new
object classes, to add attributes to existing objects, and to change the way attributes are
used. However, you need special access permissions and privileges to work directly with
the schema.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 13
Active Directory Domains, Trees, and Forests

Within the directory, objects are organized using a hierarchical tree structure called a
directory tree. The structure of the hierarchy is derived from the schema and is used to
define the parent-child relationships of objects stored in the directory.

A logical grouping of objects that allows central management of those objects is called a
domain. In the directory tree, a domain is itself represented as an object. It is in fact the
parent object of all the objects it contains. Unlike Windows NT 4, which limited the
number of objects you could store in a domain, an Active Directory domain can contain
millions of objects. Because of this, you probably do not need to create separate user and
resource domains as was done commonly with Windows NT 4.0. Instead, you can
create a single domain that contains all the resources you want to manage centrally. In
Figure 29-6, a domain object is represented by a large triangle and the objects it contains
are as shown.

User User

Computer

Printer Printer

Computer Computer

User

Figure 29-6 An Active Directory domain.

Domains are only one of several building blocks for implementing Active Directory
structures. Other building blocks include the following:

• Active Directory trees, which are logical groupings of domains

• Active Directory forests, which are logical groupings of domain trees

As described above, a directory tree is used to represent a hierarchy of objects, showing
the parent-child relationships between those objects. Thus, when we’re talking about a
domain tree, we’re looking at the relationship between parent and child domains. The
domain at the top of the domain tree is referred to as the root domain (think of this as an
upside-down tree). More specifically, the root domain is the first domain created in a new

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 14
tree within Active Directory. When talking about forests and domains, there is an
important distinction made between the first domain created in a new forest—a forest
root domain—and the first domain created in each additional tree within a forest—a root
domain.

In the example shown in Figure 29-7, cohovineyard.com is the root domain in an Active
Directory forest with a single tree, that is, it is the forest root domain. As such,
cohovineyard.com is the parent of the sales.cohovineyard.com domain and the
mf.cohovineyard.com domain. The mf.cohovineyard.com domain itself has a related
subdomain: bottling.mf.cohovineyard.com. This makes mf.cohovineyard.com the parent of
the child domain bottling.mf.cohovineyard.com.

cohovineyard.com

mf.cohovineyard.com

bottling.mf.cohovineyard.com

sales.cohovineyard.com

Figure 29-7 An Active Directory forest with a single tree.

The most important thing to note about this and all domain trees is that the namespace is
contiguous. Here, all the domains are part of the cohovineyard.com namespace. If a
domain is a part of a different namespace, it can be added as part of a new tree in the
forest. In the example shown in Figure 29-8, a second tree is added to the forest. The root
domain of the second tree is cohowinery.com, and this domain has cs.cohowinery.com as
a child domain.

cohovineyard.com

mf.cohovineyard.com

bottling.mf.cohovineyard.com

sales.cohovineyard.com

cohowinery.com

cs.cohowinery.com

Trust relationship

Figure 29-8 An Active Directory forest with multiple trees.

You create a forest root domain by installing Active Directory on a stand-alone server and
establishing the server as the first domain controller in a new forest. To add an additional

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 15
tree to an existing forest, you install Active Directory on a stand-alone server and
configure the server as a member of the forest, but with a domain name that is not part of
the current namespace being used. You make the new domain part of the same forest to
allow associations called trusts to be made between domains that belong to different
namespaces.

Active Directory Trusts

In Active Directory, two-way transitive trusts are established automatically between
domains that are members of the same forest. Trusts join parent and child domains in the
same domain tree and join the roots of domain trees. Because trusts are transitive, this
means that if domain A trusts domain B and domain B trusts domain C, domain A trusts
domain C as well. As all trusts in Active Directory are two-way and transitive, by default
every domain in a forest implicitly trusts every other domain. It also means that resources
in any domain are available to users in every domain in the forest. For example, with the
trust relationships in place, a user in the sales.cohovineyard.com domain could access a
printer or other resources in the cohovineyard.com domain or even the
cs.cohowinery.com domain.

However, the creation of a trust doesn’t imply any specific permission. Instead, it implies
only the ability to grant permissions. No privileges are automatically implied or inherited
by the establishment of a trust relationship. The trust doesn’t grant or deny any
permission. It only exists to allow administrators to be able to grant permissions.

There are several key terms used to describe trusts, including the following:

• Trusting domain A domain that establishes a trust is referred to as a trusting domain.
Trusting domains allow access by users from another domain (the trusted domain).

• Trusted domain A domain that trusts another domain is referred to as a trusted
domain. Users in trusted domains have access to another domain (the trusting
domain).

To make it easier for administrators to grant access throughout a forest, Active Directory
allows you to designate two types of administrators:

• Enterprise administrators Enterprise administrators, which are the designated
administrators of the enterprise. Enterprise administrators can manage and grant
access to resources in any domain in the Active Directory forest.

• Domain administrators Domain administrators, which are the designated
administrators of a particular domain. Domain administrators in a trusting domain can
access user accounts in a trusted domain and set permissions that grant access to
resources in the trusting domain.

Going back to the example, an enterprise administrator in this forest could grant access to
resources in any domain in the forest. If Jim, in the sales.cohovineyard.com domain,
needed access to a printer in the cs.cohowinery.com domain, an enterprise administrator
could grant this access. As cs.cohowinery.com is the trusting domain and
sales.cohovineyard.com is the trusted domain in this example, a domain administrator in
the cs.cohowinery.com could grant permission to use the printer as well. A domain

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 16
administrator for sales.cohovineyard.com could not grant such permissions, however, as
the printer resource exists in a domain other than the one the administrator controls.

To continue working with Figure 29-8, take a look at the arrows that designate the trust
relationships. For a user in the sales.cohovineyard.com domain to access a printer in the
cs.cohowinery.com domain, the request must pass through the following series of trust
relationships:

1. The trust between sales.cohovineyard.com and cohovineyard.com

2. The trust between cohovineyard.com and cohowinery.com

3. The trust between cohowinery.com and cs.cohowinery.com

The trust path defines the path that an authentication request must take between the two
domains. Here, a domain controller in the user’s local domain (sales.cohovineyard.com)
would pass the request to a domain controller in the cohovineyard.com domain. This
domain controller would in turn pass the request to a domain controller in the
cohowinery.com domain. Finally, the request would be passed to a domain controller in
the cs.cohowinery.com domain, which would ultimately grant or deny access.

In all, the user’s request has to pass through four domain controllers—one for each
domain between the user and the resource. Because the domain structure is separate
from your network’s physical structure, the printer could actually be located right beside
the user’s desk and the user would still have to go through this process. If you expand this
scenario to include all the users in the sales.cohovineyard.com domain, you could
potentially have many hundreds of users whose requests have to go through a similar
process to access resources in the cs.cohowinery.com domain.

Omitting the fact that the domain design in this scenario is very poor—because if many
users are working with resources, those resources are ideally in their own domain or a
domain closer in the tree—one solution for this problem would be to establish a shortcut
trust between the user’s domain and the resource’s domain. With a shortcut trust, you
could specify that cs.cohowinery.com explicitly trusts sales.cohovineyard.com. Now when a
user in the sales.cohovineyard.com requests a resource in the cs.cohowinery.com domain,
the local domain administrator knows about the cs.cohowinery.com and can directly
submit the request for authentication. This means that the sales.cohovineyard.com
domain controller sends the request directly to a cs.cohowinery.com domain controller.

Shortcut trusts are meant to help make more efficient use of resources on a busy network.
On a network with a lot of activity, the explicit trust can reduce the overhead on servers
and on the network as a whole. Shortcut trusts shouldn’t be implemented without careful
planning. They should only be used when resources in one domain will be accessed by
users in another domain on a regular basis. They don’t need to be used between two
domains that have a parent-child relationship, because a default trust already exists
explicitly between a parent and a child domain.

With Active Directory, you can also make use of external trusts that work the same they
did in Windows NT 4. External trusts are manually configured and are always
nontransitive. One of the primary reasons for establishing an external trust is to create a
trust between an Active Directory domain and a legacy Windows NT domain. In this way,
existing Windows NT domains continue to be available to users while you are

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 17
implementing Active Directory. For example, you could upgrade your company’s main
domain from Windows NT 4 to Windows Server 2008, and then create external trusts
between any other Windows NT domains. You should create these external trusts as
two-way trusts to ensure that users can access resources as their permissions allow.

Active Directory Namespaces and Partitions

Any data stored in the Active Directory database is represented logically as an object.
Every object in the directory has a relative distinguished name (RDN). That is, every object
has a name relative to the parent container in which it is stored. The relative name is the
name of the object itself and is also referred to as an object’s common name. This relative
name is stored as an attribute of the object and must be unique for the container in which
it is located. Following this, no two objects in a container can have the same common
name, but two objects in different containers could have the same name.

In addition to an RDN, objects also have a distinguished name (DN). An object’s DN
describes the object’s place in the directory tree and is logically the series of containers
from the highest to the lowest in which the object is stored. It is called a distinguished
name because it serves to distinguish like-named objects and as such must be unique in
the directory. No two objects in the directory will have the same distinguished name.

Every object in the directory has a parent, except the root of the directory tree, which is
referred to as the rootDSE. The rootDSE represents the top of the logical namespace for a
directory. It has no name per se. Although there is only one rootDSE, the information
stored in the rootDSE specifically relates to the domain controller on which the directory is
stored. In a domain with multiple domain controllers, the rootDSE will have a slightly
different representation on each domain controller. The representation relates to the
capability and configuration of the domain controller in question. In this way, Active
Directory clients can determine the capabilities and configuration of a particular domain
controller.

Below the rootDSE, every directory tree has a root domain. The root domain is the first
domain created in an Active Directory forest and is also referred to as the forest root
domain. After it is established, the forest root domain never changes, even if you add new
trees to the forest. The LDAP distinguished name of the forest root domain is:
DC=ForestRootDomainName where DC is an LDAP identifier for a domain component and
ForestRootDomainName is the actual name of the forest root domain. Each level within
the domain tree is broken out as a separate domain component. For example, if the forest
root domain is cohovineyard.com, the domain’s distinguished name is
DC=cohovineyard,DC=com.

When Active Directory is installed on the first domain controller in a new forest, three
containers are created below the rootDSE:

• Forest Root Domain container, which is the container for the objects in the forest root
domain

• Configuration container, which is the container for the default configuration and all
policy information

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 18
• Schema container, which is the container for all objects, classes, attributes, and
syntaxes

From a logical perspective, these containers are organized as shown in Figure 29-9. The
LDAP identifier for an object’s common name is CN. The DN for the Configuration
container is CN=configuration,DC=ForestRootDomainName and the DN for the Schema
container is CN=schema,CN=configuration,DC=ForestRootDomainName. In the
cohovineyard.com domain, the DNs for the Configuration and Schema containers are
CN=configuration,DC=cohovineyard,DC=com and
CN=schema,CN=configuration,DC=cohovineyard,DC=com, respectively. As you can see,
the distinguished name allows you to walk the directory tree from the relative name of the
object you are working with to the forest root.

Domain trees

Forest root domain partition

Forest root domain
container

Configuration
container

Configuration partition

Schema
container

Schema partition

Directory root
(roodDSE)

Figure 29-9 The directory tree in a new forest.

As shown in the figure, the forest root domain and the Configuration and Schema
containers exist within their own individual partitions. Active Directory uses partitions to
logically apportion the directory so that each domain controller does not have to store a
complete copy of the entire directory. To do this, object names are used to group objects
into logical categories so that the objects can be managed and replicated as appropriate.
The largest logical category is a directory partition. All directory partitions are created as
instances of the domainDNS object class.

As far as Active Directory is concerned, a domain is a container of objects that is logically
partitioned from other container objects. When you create a new domain in Active
Directory, you create a new container object in the directory tree, and that container is in
turn contained by a domain directory partition for the purposes of management and
replication.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

Preview Content from Windows Server® 2008 Inside Out 19
Active Directory Data Distribution

Active Directory uses partitions to help distribute three general types of data:

• Domain-wide data, which is data replicated to every domain controller in a domain

• Forest-wide data, which is data replicated to every domain controller in a forest

• Application data, which is data replicated to an arbitrary set of domain controllers

Every domain controller stores at least one domain directory partition as well as two
forest-wide data partitions: the schema partition and the configuration partition. Data in a
domain directory partition is replicated to every domain controller in the domain as a
writeable replica.

Forest-wide data partitions are replicated to every domain controller in the forest. The
configuration partition is replicated as a writeable replica. The schema partition is
replicated as a read-only replica and the only writeable replica is stored on a domain
controller that is designated as having the schema operations master role. Other
operations master roles are defined as well.

Active Directory can replicate application-specific data that is stored in an application
partition such as the default application partitions used with zones in Domain Name
System (DNS) that are integrated with Active Directory. Application partition data is
replicated on a forest-wide, domain-wide, or other basis to domain controllers that have a
particular application partition. If a domain controller doesn’t have an application
partition, it doesn’t receive a replica of the application partition.

Note Application partitions can be created on domain controllers running only

Windows Server 2008 and later. Domain controllers running Windows 2000 or earlier

versions of Windows do not recognize application partitions.

In addition to full replicas that are distributed for domains, Active Directory distributes
partial replicas of every domain in the forest to special domain controllers designated as
global catalog servers. The partial replicas stored on global catalog servers contain
information on every object in the forest and are used to facilitate searches and queries
for objects in the forest. Because only a subset of an object’s attributes is stored, the
amount of data replicated to and maintained by a global catalog server is significantly
smaller than the total size of all object data stored in all the domains in the forest.

Every domain must have at least one global catalog server. By default, the first domain
controller installed in a domain is set as that domain’s global catalog server. You can
change the global catalog server, and you can designate additional servers as global
catalog servers as necessary.

PREVIEW CONTENT This excerpt contains uncorrected manuscript from an upcoming Microsoft Press title, for early
preview, and is subject to change prior to release. This excerpt is from Windows Server® 2008 Inside Out from Microsoft
Press (ISBN 978-0-7356-2438-2, copyright 2008 William Stanek, all rights reserved), and is provided without any express,
statutory, or implied warranties.

	Cover
	Table of Contents
	Managing Active Directory and Security
	Active Directory Architecture
	Active Directory Physical Architecture
	Active Directory Physical Architecture: A Top-Level View
	Active Directory Within the Local Security Authority
	Directory Service Architecture
	Data Store Architecture

	Active Directory Logical Architecture
	Active Directory Objects
	Active Directory Domains, Trees, and Forests
	Active Directory Trusts
	Active Directory Namespaces and Partitions
	Active Directory Data Distribution

