
Article 1

Programming Forms with VBScript

You can often develop a reasonably powerful custom solution in Microsoft® Office
Outlook® 2007 simply by creating and using Outlook forms with standard and

custom controls. However, this approach has limits. For example, what if you want a
new task to be created every time a user sends your custom form? What if you want to
send a meeting request when your form is submitted? What if you want to connect to a
database and fill in a drop-down list on your form with values from a specific database
table? Although it isn’t practical to explain how to code for all these problems in this
introductory chapter, the preceding list offers good examples of some of the tasks that
are difficult, if not impossible, to accomplish using only custom forms that have no
underlying custom program code. This chapter looks at developing custom form solu-
tions with computer code and custom fields. You’ll strengthen your understanding of
programming basics and learn how you can begin to apply this understanding to devel-
oping a custom Outlook solution.

To create a solution that involves working with dynamic data, launching new items, and
animating other programs, you could search for a control that already has these behav-
iors built in. However, don’t spend too much time looking, because you’re unlikely to
find a control with functionality so specifically tailored to your needs. The way to create
powerful forms is by writing code.

For some people, writing code in an Outlook solution simply means learning the syn-
tax of Microsoft Visual Basic Scripting Edition (VBScript) and some of the properties,
methods, and events of Outlook and Outlook forms. For other people, writing code
might seem much more daunting. No matter what your level of programming experi-
ence is, this chapter provides some basic knowledge you need to begin programming
Outlook forms.

Understanding Scripting .2

A Brief Overview of VBScript . .2

Understanding Objects and Properties 3

Understanding Events and Methods 4

Creating Scripts and Using the Editor 5

Referencing Controls .6

Using Methods . 8

Event Handling .9

Using Variables . .9

Using Constants . 11

Retrieving and Setting Field Values 12

Retrieving User-Defined and Other Properties 13

 1

Understanding Scripting
Programming languages such as C++, Microsoft Visual Basic, VBScript, and C#
(pronounced “C sharp”) provide access to computer resources at different levels. The
basic rule is that the “lower” you go, the more you need to know. Think of it as similar
to programming a microwave: when you enter a combination of settings to defrost a
chicken that weighs 1.3 pounds, you’re programming the oven to do certain things.
At a lower level, a program inside the microwave takes the settings you provide and
translates them into a cooking plan that the machine can execute. Most often, lower
level programming languages, which are usually designed for speed and scalability, are
used to create sophisticated, complex applications.

However, the learning curve for these languages can be prohibitive for someone who
wants to simply use some controls to create a form that sends an e-mail message. This
is where a higher level language such as VBScript steps in, giving the power of pro-
gramming to users who don’t have extensive backgrounds in computer science.

As the name implies, VBScript is a scripting language. A scripting language can create
an unlimited number of programmatic solutions relatively quickly. Always remember,
however, that you are trading true power and performance for simplicity and speed
of development. Unlike a compiled programming language, a scripted language is
interpreted—that is, the statements of instruction are reduced to a simple sequence of
statements that are then executed by what is called a command interpreter. For each
scripting language, a corresponding scripting engine provides this interpreter, along
with other basic services to execute the script. When you program Outlook forms, you
don’t need to do anything to install this engine or ensure that your scripts will actually
be executed. Outlook has this engine built in; all you need to do is open the Script Edi-
tor and begin writing code.

Because Outlook uses VBScript as the language for form development, you need to
know the syntax of VBScript. You also need to know which interfaces are available for
you to manipulate with lines of code. The next section provides this information.

A Brief Overview of VBScript
VBScript is a subset of the Microsoft Visual Basic programming language. The VBScript
engine is portable, which means the engine can be embedded in or used by many dif-
ferent programs, such as Microsoft Internet Explorer or Outlook. As mentioned earlier,
VBScript is already embedded in Outlook. You can begin writing form-based code, and
those who use your forms will benefit from the code behind the forms without install-
ing anything special to make the forms work. Because the VBScript engine is a true
subset of the complete Visual Basic language, it is less complex and therefore easier to
learn.

A
rticle 1

2 Article 1 Programming Forms with VBScript

Understanding Objects and Properties
Object is probably one of the most overused words in the world of computer program-
ming. Over time, the word has come to represent many different things to people in the
IT field. Because the focus of this book is not hard-core computer science, this chapter
is relatively introductory and covers only what you need to get your Outlook solution
moving along. In this context, the following section discusses the notion of an object
and what it means to your Outlook solution.

Objects
 At the simplest level, an object in your Outlook development environment represents
Outlook, the program itself, and other elements in Outlook (such as a text box) that
expose properties, methods, or events with which you can interact programmatically.
Outside the world of computing, the definition of an object is widely understood. For
example, you know that a book is an object. It has certain properties such as height,
weight, color, number of pages, title, author, and so on. You can also perform certain
actions with a book: you can open it, close it, turn pages one at a time, flip to the end,
return to the beginning, and fold the corners to mark your location.

A significant aspect of programming a custom solution using VBScript or Microsoft Vi-
sual Basic for Applications (VBA) is manipulating Outlook items. For example, you add
a text box to a form and then add or change the text it displays by setting a property
of that text box object. You display or close a form by using a Show or Hide method on
the form, treating the form as a complete object rather than showing or hiding the indi-
vidual controls on the form. When a user clicks a button on a form, that button object
generates a Click event. You add the code you want Outlook to execute when the button
is clicked.

Thinking of Outlook items as programmable objects will help you begin to understand
how you can create custom solutions with VBScript and VBA. Don’t think of your cus-
tom program as pages and pages of program code. Instead, think of it as a collection of
forms, controls, and other objects with properties you can set, either at design time or
through program code when the form runs, to make it perform the tasks you intend.

Properties
Properties are attributes of an object, describing some aspect of how an object behaves.
To return to an earlier analogy, an object in Outlook can have some of the same proper-
ties as a book. For example, a form has height, width, and other basic properties that
describe appearance.

A command button has properties such as height, width, position, caption, name, and
color. The more you know about the properties of the objects you use, the more you can
do with those objects. To set a property of an object, you must reference the object and

 3

A
rt

ic
le

 1

Understanding Objects and Properties

follow it with a period and then the name of the property. The following code sample
shows how to set the property of an object:

cmdAddAppointment.Caption = "Add Appt."

In this example, assume that your form contains a command button named cmdAd-
dAppointment. You manipulate the Caption property of that button by setting it to
some new value. How do you know that the button has this property? For any given
object, you must read documentation to know the available properties and other be-
haviors for that object. For example, a text box does not have a Caption property, but a
label does; both these controls have a Font property.

Notice that in the preceding example the Caption property required a string of char-
acters between quotes. This is because the Caption property is predefined to accept
characters strung together and not numbers, bitmaps, or other kinds of data. When you
work with properties, you need to learn which types of data each property accepts to
accurately apply property settings for your objects.

Understanding Events and Methods
Events and methods are two other powerful behaviors of a form or other object in
Outlook. To continue with the previous analogy, you can do a number of things with a
book: you can open it, close it, and so on. Put another way, the book possesses a num-
ber of methods, such as OpenBook, CloseBook, TurnPage, GoToEnd, GoToBeginning,
and AddBookMark. These method names are intuitive. The creators of any object model
usually give intuitive names to the methods that their object exposes.

You can also associate certain events with a book. For example, when you finish read-
ing the book, you might have to return it to the library. When you open the book for the
first time, you might have to remove the book’s dust jacket. To return to the microwave
analogy, when the microwave completes the cooking plan you’ve provided, this event
causes an alarm to sound. In other words, the microwave has a CookingPlanCompleted
event that fires when the time runs out. When this event occurs, the alarm sounds.

In the world of Outlook development, you’ll interact with many objects, some of which
expose certain events. Arguably, the most common event to fire is some kind of Click
event, which fires when a user clicks a command button or other control. Notice the ter-
minology: an event fires when something else happens. This is important to remember,
because it is easy to get methods and events confused. Just remember that methods are
actions you can take with an object, whereas events fire in response to an action—per-
haps in response to a method or the changing of a property setting.

A
rticle 1

4 Article 1 Programming Forms with VBScript

Creating Scripts and Using the Editor
Now that you have a little background information about the properties, methods,
and events of the objects you can include in your solution, you’re ready to begin
writing code.

Where do you write it? Theoretically, you can write the code in any program you want—
in Microsoft Word, Notepad, or any other text editor. However, where you write the
code is not as important as where it must reside to be able to run. Outlook has a win-
dow, or code editor, where all code must be placed before it can run. To access this code
editor in Outlook, open a form for editing and click View Code in the Form group of the
form’s ribbon. In either case, the window shown in Figure A1-1 appears. Any code that
you want to run for your Outlook form must be contained in this window.

Figure A1-1. You can write and run the code for your form in the Script Editor window .

Object Library Help
The Outlook Script Editor provides roughly the same level of functionality as Notepad or
another basic text editor. However, the menu bar of this editor does contain the Outlook
Object Library Help, shown in Figure A1-2. The Object Library will come in handy as you
develop your programming skills in Outlook. To access this help, choose Help, Microsoft
Office Outlook Object Library Help from the editor’s command bar. It’s helpful to take
some time to understand the Outlook object model.

 5

A
rt

ic
le

 1

Creating Scripts and Using the Editor

Figure A1-2. Use Outlook Object Library Help when writing code for Outlook .

The other features of the Script Editor—an Event Handler window and an Object Brows-
er window—are useful for entering text as well as viewing available events and objects.
Both windows, which are accessible from the Script menu, open simple dialog boxes
that allow you to insert small bits of text into the Script Editor window.

The problem is that the text excerpts provided in these windows are not displayed in
any contextual way, so unless you already know the full object model, the textual exci-
sions don’t make much sense.

When you’ve finished writing your code sample, all you need to do is close the Script
Editor window. Choose File, Close or close the window by clicking the X in the upper
right corner. You don’t need to do anything special to save the script; it is automatically
stored with the form when you publish or save the form.

For information about publishing and saving forms, see “Publishing and Sharing Forms,” on
page 713 in the book.

Referencing Controls
One of the most common problems faced by Outlook forms programmers is trying to
access the properties and methods of controls. This is because Outlook requires you to
perform an extra step before you can acquire a reference to a control on a form. In other
languages, such as Visual Basic or VBA, you can begin to use methods for a control as
soon as you place that control on a form, simply by using its name. For example, if you
draw a combo list box control on a form in Visual Basic and name it cboEmployees, you
can use the following code to add items to the list in the control:

cboEmployees.AddItem "Employee One"

A
rticle 1

6 Article 1 Programming Forms with VBScript

Note
The name of the combo box object in this example is prefixed with cbo to indicate that
it is a combo box. This type of prefix, called Hungarian notation, helps you identify the
type and function of a control when you’re browsing or editing your script code. For
more information on Hungarian notation and a list of prefixes, see Microsoft Knowledge
Base article 173738.

In Outlook’s VBScript environment, it is not possible to add items to the list the way
you do in Visual Basic (for reasons that are beyond the scope of this book). To begin
adding items to cboEmployees with VBScript, you first need to declare a variable and
set cboEmployees equal to that new variable. You then use the new variable to execute
methods and set properties.

The following code sample illustrates how to get a reference to a control named
cboEmployees on a form and then add an item to that control programmatically:

Dim cboEmployeesRef

Set cboEmployeesRef = Item.GetInspector._

ModifiedFormPages("P.2").Controls("cboEmployees")

cboEmployeesRef.AddItem "Employee One"

Notice the new variable in play here, cboEmployeesRef. This is actually just an empty
container that you use to fill with a pointer to the real combo box control, cboEmploy-
ees. Figure A1-3 shows the form.

Figure A1-3. This example places a combo box control on an Outlook form .

The control is on the second page of the form; the caption for this page is P.2. You use
this name in your code to find out which page the control was placed on. Then you sift
through the collection of controls on this page of the form to find the one that interests
you—in this case, cboEmployees. You next set your variable equal to the control you’ve
found on this form page. With the variable now acting on behalf of the real control, you

 7

A
rt

ic
le

 1

Referencing Controls

can use the properties and methods of that control by referencing the variable, in this
case, cboEmployeesRef.

Special reference names
Although you need the special reference to the control to be able to work with proper-
ties and methods on an Outlook form, you don’t use the special reference name when
dealing with events. In other words, although you must write cboEmployeesRef.AddItem
to add an item, the events associated with cboEmployees are listed under that name and
not under the name cboEmployeesRef. Confused? Don’t worry—you aren’t the first to
find it a little befuddling. After you work with forms for a short while, you’ll find it a little
more comprehensible.

Using Methods
Methods are invoked by referencing the programmable object followed by a period and
the method name. Let’s go back to the form with cboEmployees. Suppose that you want
to execute the AddItem method of the cboEmployees combo box. First you must build
and use a form on which you can place the combo box.

Follow these steps to create the form:

 1. While in Outlook, open a new standard message form in design mode.

 2. Leave the Message form page alone for now. To make the second page visible,
click its tab, click Page in the Design group on the Ribbon, and choose Display
This Page.

 3. Add a label control to the form and position it in the upper left corner of the form.

For details on adding controls such as labels to a form, see “Adding and Arrang-
ing Controls,” page 699.

 4. Add a combo box control to the form and position it just to the right of the label
control.

 5. Right-click the label, choose Properties from the shortcut menu, and set the label’s
caption equal to Employees:.

 6. Right-click the combo box, choose Properties from the shortcut menu, and set its
name to cboEmployees.

 7. Verify that your form now looks like the preceding one shown in Figure 40-3.

Now you must prepopulate this combo box with a few values so that when the user
opens the form, the combo box provides a list of employees. To do this, you need to
write code in an event handler for the item itself. To simplify things for this example,

A
rticle 1

8 Article 1 Programming Forms with VBScript

assume that you’ll place explicit values in the control’s list. (In the real world, you’d
use a few more lines of code to dynamically populate the control with an available list
of employees or e-mail addresses from a database.) This code goes in the Item_Open
event, which fires when a user opens the form. (Event handling is discussed in the fol-
lowing section.) For now, place the following code in the Script Editor:

Private cboEmployeesRef

Sub Item_Open()

 Set cboEmployeesRef = Item.GetInspector._ ModifiedFormPages("P.2").Controls_

 ("cboEmployees")

 cboEmployeesRef.AddItem "Employee One"

 cboEmployeesRef.AddItem "Employee Two"

 cboEmployeesRef.AddItem "Employee Three"

 cboEmployeesRef.AddItem "Administrator"

 cboEmployeesRef.ListIndex = 0

End Sub

If this seems confusing, it’s because of the assumption that you know what you’re sup-
posed to type after the AddItem method is invoked. The only way you could know
this is by reading documentation to learn how the combo box in this example works.
Reading code others have written can also help you learn the properties, methods, and
events of the objects you use. If you fail to type the correct syntax or you try to execute
a method that doesn’t exist, Outlook presents an error message. As you fix problems in
your code, pay careful attention to the messages you receive.

Event Handling
In the code sample used in the preceding section, you wrote code for adding employees
to the combo box between the following lines:

Sub Item_Open()

End Sub

These lines bracket what is known as a procedure. Think of a procedure as a small
program that runs inside your form. In this example, the procedure runs in correspon-
dence with a specific event. The code between Sub Item_Open() and End Sub runs
whenever the form is opened. Because this procedure is tied to an event, it is called an
event handler. You place the code to populate the combo box in this event handler be-
cause you want the combo box to be filled every time the form is opened.

Other common event handlers are Item_Close, Item_Send, and CommandButton_
Click.

Using Variables
You’ll find variables useful when you develop an Outlook form solution; they are useful
in other programming environments as well. If you ever took algebra, the notion of a

 9

A
rt

ic
le

 1

Event Handling

variable will be familiar to you. If you’ve never heard of or used variables before, don’t
worry; they’re easily understood. This section takes a look at an example of variables
outside the computing world and also discusses scope.

Scope
In VBScript (as in any programming language), there exists the notion of scope. Scope
refers to the context in which a variable is active. Say that you’re going to the movies
with friends. Two friends stand in line for you while you park the car. While one friend
(Friend1) waits for you at one movie theater, another friend (Friend2) waits for you at
a different movie theater. Friend1’s scope is the line where she is waiting. The same is
true of Friend2. Just because Friend1 is first in line at one theater doesn’t mean that
your place is first in line at the other theater. The scopes are separate.

Pay attention to where you declare variables and to the words you use to declare them,
because these factors determine the scope of your variable. The words, or statements,
for declaring a variable in VBScript are Dim, Public, or Private. Use Dim only when
you declare a variable within a procedure or function. Public and Private are used to
declare variables at the beginning of a code module. Private is the most commonly used
statement; use it when coding Outlook forms. You use Public to make variables or pro-
cedures in the module available to other code modules. Because this isn’t possible in
Outlook form development, you don’t need to worry about the Public statement.

Variables
Think of a variable as a temporary container for something else. In the movie example,
you asked two friends to wait in line for you while you parked the car. Your friends were
actually the variables—they represented you. In computing terms, a variable is a named
place in computer memory. You can give a variable just about any name you want. This
variable will hold a place in memory and store some other data, such as a number or a
string of characters. Whatever is contained in the variable is the value of that variable,
and you can set, change, and read the value when needed.

Declaration
Before you can start using a variable, you should declare that variable. In VBScript, you
aren’t actually obligated to declare variables, but doing so is always a good idea. It’s also
a good idea to add comments to variable declarations that are obscure or less easily
understood, thereby allowing readers of your code to understand what the variable rep-
resents. When you declare a variable, you’re telling the scripting engine that you have
a variable of a specific name and that any time this name is used, the variable is being
used. Again, declare variables by using a Dim or Private statement.

In the code sample on page A8, you used the Private statement to declare a variable
called cboEmployeesRef. This variable held a pointer, or reference, to the actual combo
box control. The scope of this variable is global because you made the declaration at the
beginning of the module and not in a specific procedure or function. As you become
more comfortable with programming, you’ll find that you might make many declara-

A
rticle 1

10 Article 1 Programming Forms with VBScript

tions, both within and outside procedures. The following code sample is taken from a
rather sophisticated form:

Private mobjSession ' CDO Session

Private mobjNS ' Namespace

Private mstrCurrentUserName ' Name of current form user form user

Private mstrCustomerID ' CustomerID retrieved from database

Sub cmdModifyCustomer_Click()

 On Error Resume Next

 Dim objMessage ' Temporary message holder

 Dim objRecipient ' Recipient object that will receive message

 Dim strEmployeeID ' The assigned Customer Agent's ID

End Sub

Notice how the variables were declared and commented. Notice also that the subproce-
dure contains its own variable declarations. These are usually made at the beginning of
a procedure and not throughout, making the code more readable. Remember that other
people will inevitably need to read, understand, and support your code, so it is more
than just a professional courtesy to write, organize, format, and comment your code
carefully.

Using Constants
Like variables, constants are containers for data. You can place a text string in a variable
or in a constant and then reference and use both in much the same way. The essential
difference between variables and constants is this: after you set the values of constants
at design time, the program can only read these values at run time. Variables, however,
allow the program to change their value when appropriate. Given this difference, con-
stants are declared and used to hold information that you don’t want to change while
the program is being executed. For example, suppose that your code contains some
procedures that all need to use the following string: “Region: 2330n; Section: 4; Dis-
trict: 5.” Typing this in over and over in each procedure would be tedious. In addition,
what if the company reorganized Section 4 into Sections 4A and 4B and also renamed
the region? You would then have to go into your code and replace the string in each
procedure. The risk for error and the amount of effort required (even with the magic of
Copy/Paste) is higher than if you were simply to declare a constant in one part of your
code and use that constant in all the procedures. Your constant declaration would look
like the code shown here:

Const AGENT_LOCATION = "Region: 2330n; Section: 4; District: 5."

Const PO_AUTHCENTER = &HA02D001E ' Hex value for PO authorization

This code contains another constant (PO_AUTHCENTER) that illustrates an especially
useful aspect of constants: they can make esoteric values readable. The code contains
a hexadecimal value that corresponds to an authorization number for purchase orders.
The hexadecimal value won’t make much sense to other people who have to read the
code. Furthermore, if your code contains several of these cryptic values, you’ll probably
become confused as well. Using constants allows you to assign this enigmatic value a
user-friendly name that will make sense.

 11

A
rt

ic
le

 1

Using Constants

Declare constants at the beginning of your code module, and use the Const keyword,
followed by the name of the constant in uppercase characters. Using all uppercase let-
ters is a common practice that allows readers of your code to easily determine whether
the name they are about to use is a variable or a constant. Make sure your constant
name is user-friendly and comprehensible within the context of your business solution.
Using names that are too short or known only to you will diminish some of the advan-
tages that constants provide. After you provide a name for your constant, type an equal
sign followed by the value of the constant.

Retrieving and Setting Field Values
Outlook has a number of item types that form the basis of practically any collaborative
Outlook solution. Each item type has a number of fields or properties that you can set
and read in your code. You can easily set these fields or properties by referencing the
Item object and the property in question.

The following code sets the Subject field of a MailItem:

Item.Subject = cboEmployeesRef.List(cboEmployeesRef.ListIndex)

This code sets the Subject property of the Item object to the text value of the currently
selected item in the combo box.

The value of the Subject property is also accessible for reading purposes. For example,
you might want to put code in the Item_Send event to first check to see whether the
Subject field is blank. If it is blank, set the value equal to the text shown in the combo
box; otherwise, leave the value as the user typed it. The code would look like this:

If Len(Item.Subject) = 0 Then

 Item.Subject = cboEmployeesRef.List(cboEmployeesRef.ListIndex)

End If

The preceding code checks the length of the Subject property. If the length of that
property is 0, you know that the user has not typed any text into the Subject field. You
can then let the code do a little work for the user by automatically adding a value to the
field.

Retrieving User-Defined and Other Properties
You can create your own custom properties. These are properties that your solution re-
quires but are not provided by the item types available to you. For example, if you deal
with employees, you might want to have a property that refers to an ID for the division
in which an employee works. None of the item types that Outlook provides has a Divi-
sionID property. The good news is that you can add a new property for this data. These
user-defined properties, sometimes called user-defined fields, can also be bound to con-
trols. In Chapter 28, “Designing and Using Forms,” you learned to bind controls to item

A
rticle 1

12 Article 1 Programming Forms with VBScript

properties. You can bind these same controls to a user-defined property the same way
you bind them to a regular, built-in property.

The sample form in this chapter contains a list of employees. A senior manager selects
an employee and sends the message to someone who is supposed to interview the em-
ployee. When the user receives the message and opens it, she or he is given the oppor-
tunity to click a button and automatically add a task to a private task list. This task will
already contain the name of the person to be interviewed in the subject line.

This form will be defined with two pages, both with Compose and Read areas. The
Compose area of the second page includes a combo box that will be populated with
employee names. The Read area of the second page contains a couple of labels, one
of which will be bound to a user-defined property. This page should look like the one
shown in Figure A1-4. To get to this stage, you need to create a new property for the
form, named EmployeeToInterview.

Figure A1-4. The Read area of the second form page contains two label controls .

Follow these steps to create the new user-defined property:

 1. Activate the separate Read and Compose areas by choosing Form, Separate Read
Layout.

 2. With the form selected, choose the All Fields tab in design mode. You should see
the pane shown in Figure A1-5.

 13

A
rt

ic
le

 1

Retrieving User-Defined and Other Properties

Figure A1-5. Use the All Fields tab to create a new user-defined property .

 3. Click New and type the name of the new property (EmployeeToInterview). Click
OK. Optionally, you can type a default value for this user-defined property in the
Value column.

Notice that this user-defined property stores text. When you create a user-defined prop-
erty, you can decide what type of data the property will hold. You can also prescribe the
format of the data the property holds. For example, if you define a new property called
AmountSaved and choose the Currency data type, you could choose how to display the
currency values—for example, you might want to omit decimal values and keep the fig-
ures at the dollar level only.

When you create user-defined properties, you can bind controls to them. In this case,
you bind the second label (lblEmployee) on the Read area of the second page to the
user-defined property EmployeeToInterview. You also add code so that when the user
sends the form, the value of the new property is set equal to the value shown in the
combo box. Without this additional code, the value shown in the label bound to the
user-defined property would not be the dynamic value the user has chosen in the com-
bo box. In other words, you have created a user-defined property for this item. When
the user chooses an employee from the combo box and sends the message, the value
of the combo box is stored in the user-defined property. When the recipient reads the
message, the label on the second page is already populated with the value of the user-
defined property. The following code is necessary to make the form function properly:

Private cboEmployeesRef

Sub Item_Open()

 If Item.Size = 0 Then

 Item.To = “Administrator”

 Set cboEmployeesRef = Item.GetInspector._

 ModifiedFormPages(“P.2”).Controls(“cboEmployees”)

 cboEmployeesRef.AddItem “Employee One”

 cboEmployeesRef.AddItem “Employee Two”

 cboEmployeesRef.AddItem “Employee Three”

A
rticle 1

14 Article 1 Programming Forms with VBScript

 cboEmployeesRef.AddItem “Administrator”

 cboEmployeesRef.ListIndex = 0

 End If

End Sub

Sub Item_Send()

 If Len(Item.Subject) = 0 Then

 Item.Subject = cboEmployeesRef.List(cboEmployeesRef.ListIndex)

 End If

 Item.UserProperties.Item(“EmployeeToInterview”).Value = _

 cboEmployeesRef.List(cboEmployeesRef.ListIndex)

End Sub

In this simple example, you both set and retrieve the values of the user-defined prop-
erty.

However, there’s a little more to be said about user-defined properties. After you create
a user-defined property, how can you be sure that recipients and users of your form will
have access to it? What do you need to be able to manage these properties and ensure
their integration in a solution? The short answer to these questions is that user-defined
properties exist in the place where you publish your form.

For information on publishing forms, see “Publishing and Sharing Forms,” page 653.

For example, assume that you create a form to specify travel preferences, such as air-
plane seating choice and meal types. You create new user-defined properties for each
piece of information and publish the form to your Inbox. Those properties are now
available in your Inbox; you’ll find them listed when you use the Field Chooser dialog
box. As it happens, your form is so successful that you need to make it available to oth-
ers, and you choose to publish the form in a public folder called Travel Planning. When
you do this, the user-defined properties you created become available to anyone who
opens your posts in that folder.

For information on using the Field Chooser, see “Outlook Fields,” page 696.

Custom Formula and Combination Fields
Formula fields and combination fields allow you to join together multiple fields and
manipulate their data. In some cases, the piece of information you want users to view
in a list of sent items will be a field value that has been altered by a function, such as
one that makes all characters in a field expressed in uppercase. In another example,
think of an instance in which two fields contain important values for your solution, but
users are accustomed to seeing the two values placed together, such as a given name
and a surname. Rather than forcing users to enter three fields—one for the given name,
one for the last name, and one for the union of the two—you can create a combination
field that automatically displays the combination of the two other fields. Both formula
and combination fields are constructed in much the same way as the other user-defined
properties you’ve learned to create. However, instead of choosing a data type such as
Text or Number, you choose Formula or Combination.

 15

A
rt

ic
le

 1

Retrieving User-Defined and Other Properties

To create a combination field, follow these steps:

 1. Open the form you’re modifying in design mode.

 2. Select the All Fields tab and click New.

 3. Type a field name and select Combination for the type.

 4. Click Edit.

 5. Select the first option in the Combine Field Values By frame.

 6. Click Field to add a field. Repeat this step for as many fields as you want to insert.

 7. Click OK twice to complete the field addition.

Before you click OK, your New Field dialog box should look like Figure A1-6.

Figure A1-6. Create a combination field to simplify the way users view information .

In step 5, you chose the first option. The two options have to do with how empty field
values are displayed. For example, in the case of combination fields, one or more of
the fields might be empty, whereas others will contain complete values. You can have
Outlook display all the complete fields by selecting the first option. On the other hand,
if you combine two or more field values and you want only the first nonempty field to
display, choose the second option.

For example, you might choose this option when you want to use either a person’s first
name (if it has a value) or the person’s nickname (if it has a value), but not both. In this
case, you would include both fields in the combination but select the second option.
Only the first field with a value is shown.

You create a formula field in much the same way you create a combination field, except
that you choose the Formula type instead of the Combination type. When you click
Edit, you see a Field button and a Function button in the dialog box, allowing you to
insert functions as well as field names. The Function button greatly enhances the power
of the field you have created by making available a large number of functions related to
time, date, financial formulas, textual operations, and mathematical formulas.

The ability to employ user-defined properties expands what you can do with an Out-
look solution. User-defined properties allow you to extend Outlook forms and item
types to include information tailored to your organization and operations. Creating
user-defined properties is a common task for building customized form-based solu-
tions, and the properties should correspond to data elements in the environment where
they will be used.

A
rticle 1

16 Article 1 Programming Forms with VBScript

