
Article 3

Integrating Outlook and Other
Applications with VBA

Every application in both the immediate suite of Microsoft® Office tools and the
extended family of Office applications uses Microsoft Visual Basic for Applications

(VBA) as its macro and programming language. This greatly simplifies the task of
writing code to manipulate more than one Office application. After you understand
the object models of the individual applications, you can write code to automate any of
them from your application of choice.

Note
The extended Office family includes products such as Microsoft Visio, Microsoft
OneNote, Microsoft Publisher, Microsoft InfoPath, and Microsoft Project, among others.
They are all VBA-enabled applications, which makes them ideal for integrating into
Office solutions.

This chapter picks up where Article 2, “Using VBA in Outlook,” left off. That chapter in-
troduced you to VBA, its essential components, and some simple procedures. Now this
chapter looks at some basic ways you can use VBA to make Office applications interact.
After you understand these fundamentals, you can extend your knowledge by learning
each application’s object model and finding new ways to make the products work in
harmony.

Note
You’ll find the code used to create the VBA applications in this chapter in the Author Ex-
tras section of the companion CD.

Starting Other Office Applications 44

Exchanging Data with Excel. . 47

Exchanging Data with Word. . 50

Exchanging Data with Access. . 55

Automating Outlook from Other Applications. 59

Outlook and XML . . 61

	 	 43

Starting Other Office Applications
Although Microsoft Office Outlook 2007 might be your primary Office application, you
probably need to use a variety of Office programs. For example, you might work with
tasks in Outlook and then review the task information in a Microsoft Word document
or a Microsoft Excel spreadsheet. To do this easily, you need to be able to launch these
other programs from Outlook.

The task of opening another Office application is simple because the applications share
a common language and the Office object model. To make the process easier, you tell
the VBA environment about the application you intend to use by adding a reference to
that application.

Outlook then gathers information about all the possible operations of the application
you referenced and can then display the possible operations as you work in the envi-
ronment, as if this were part of the native Outlook object model. This process is known
as early binding.

To add a reference to Excel, for example, follow these steps:

	 1.	 Start Outlook and choose Tools, Macro, Visual Basic Editor (or press Alt+F11) to
open the VBA Editor.

	 2.	 In the VBA Editor, choose Tools, References to open the References dialog box
(see Figure A3-1).

Figure A3-1 In this dialog box, you can add a reference to the Excel Object Library.

	 3.	 Click the entry for Microsoft Excel 12.0 Object Library.

	 4.	 Click OK.
A

rticle 3

44	 Article 3  Integrating Outlook and Other Applications with VBA

Now that you’ve added a reference to the Excel object model, you can open an instance
of Excel and any specific worksheet in it. The following code opens a specific Excel file:

Dim objExpenseEntry As Excel.Application

Set objExpenseEntry = New Excel.Application

objExpenseEntry.Visible = False

objExpenseEntry.Workbooks.Open "c:\temp\OutlookBook.xls"

objExpenseEntry.Visible = True

Because you added a reference to Excel, you can declare and instantiate the Excel.Appli-
cation object just as you can any other object in Outlook. After you have an instance of
Excel, you use the Visible and Open methods to open an Excel spreadsheet and display
the Excel application.

You can use the same approach to open any other Office application. In general, do the
following for the application you want to use:

	 1.	 Add a reference to the application.

	 2.	 Create an instance of the application in your code.

	 3.	 Manipulate the application using its standard object model.

	 4.	 Use the Visible property of the object to make the application visible.

Instantiation vs. Assignment

Instantiating refers to the process of creating an instance of an object. When you click
the Word icon on your desktop, for example, you are instantiating a copy of Word that
you can then use. The same is true when you use the following code from VBA:

Dim objX as Word.Application

This code says that at some time you’ll use a Word.Application object and objX will be the
placeholder for it. In the next line, you instantiate that object (create a new instance of
Word):

Set objX = New Word.Application

This process is different from an assignment. For objects, an assignment takes a new vari-
able you’ve created and points it at an already existing instance of an object rather than
creating a completely new instance. The following code declares a placeholder for an
Outlook folder type object: Dim objY as Outlook.MAPIFolder The next line indicates that
you have a placeholder for a folder type object and want it to point to the Tasks folder:

Set objY = Application.GetNamespace("MAPI").GetDefaultFolder(olFolderTasks)

Everything you do with this folder now affects the Tasks folder in Outlook.

	 45

A
rt

ic
le

 3

Starting Other Office Applications

To add code that opens Excel from within Outlook, follow these steps:

	 1.	 Start Outlook and choose Tools, Macro, Visual Basic Editor (or press Alt+F11) to
open the VBA Editor.

	 2.	 In the Project window, select Project1.

	 3.	 Expand the tree until you see the heading ThisOutlookSession and then select it.

	 4.	 Press F7 to open the Code window.

	 5.	 Choose Tools, References to open the References dialog box.

	 6.	 Scroll through the list in the dialog box until you find an entry for Microsoft Excel
11.0 Object Library and select it. Close the dialog box.

	 7.	 Enter the following code in the Code window:

Public Sub OpenExcel()

	 Dim objExcel As Excel.Application

	 Set objExcel = New Excel.Application

	 With objExcel

		 .Visible = False

		 .Workbooks.Open "c:\temp\OutlookBook.xls"

		 .Visible = True

	 End With

End Sub

	 8.	 Create an Excel file named OutlookBook.xls and place it in the C:\Temp
directory.

	 9.	 Return to the main Outlook window and choose Tools, Macro, Macros.

	 10.	 Select ThisOutlookSession.OpenExcel and click Run. The new Excel spreadsheet
that you created opens in Excel.

Using the Object Browser
To find out what you can do with an object for which you’ve created a reference, you can
use a tool called the Object Browser, which can be opened from the View menu or by
pressing F2 in the VBA Editor. With this tool, you can view either all the referenced librar-
ies or a specific one. You can also look at all the declared properties, methods, events,
and constants that are available for use. You can search on a keyword to see whether a
property or function with that name is supported and to see how it’s defined. For more
information on using the Object Browser, consult the Help files.

A
rticle 3

46	 Article 3  Integrating Outlook and Other Applications with VBA

Exchanging Data with Excel
Now that Excel is open, along with the workbook OutlookBook.xls, it’s easy to ex-
change data with the workbook. For example, in Article 2, you created an application
that changed the company name for all contacts in a specific company (see “Creating
an Outlook Application with VBA,” page A32). Here, you can add a routine that saves
the contact details as an Excel spreadsheet that you can then distribute to others in the
company. The following procedure performs this routine:

Public Sub ExportContacts(strCompany As String)

	 Dim fdrContacts As Outlook.MAPIFolder

	 Dim fdrContactsByCompany As Outlook.Items

	 Dim objExcel As Excel.Application

	 Dim objWorkbook As Excel.Workbook

	 Dim objWorksheet As Excel.Worksheet

	 Dim itmContacts As Outlook.ContactItem

	 Dim iCol As Integer

	 Dim iRow As Integer Set fdrContacts = _

 Application.GetNamespace("MAPI") _

 .GetDefaultFolder(olFolderContacts)

	 Set fdrContactsByCompany = _

	 fdrContacts.Items.Restrict("[CompanyName] = '" & _

 strCompany & "'")

	 Set objExcel = New Excel.Application

	 Set objWorkbook = objExcel.Workbooks.Add

	 Set objWorksheet = objWorkbook.Worksheets.Add

	 objWorksheet.Name = "Contacts for " & strCompany

	 Set itmContacts = fdrContactsByCompany.GetFirst

	 If itmContacts Is Nothing Then

		 MsgBox "There are no contacts for that company. " & _

 		 "Please enter a different company name."

		 Exit Sub

	 End If

	 iRow = 1

	 For iCol = 0 To itmContacts.ItemProperties.Count - 1

		 objWorksheet.Cells(iRow, iCol + 1) = _

 itmContacts.ItemProperties(iCol).Name

	 Next iCol

	 iRow = iRow + 1

	 For Each itmContacts In fdrContacts.Items _

	 .Restrict("[CompanyName] = '" & strCompany & "'")

		 For iCol = 0 To itmContacts.ItemProperties.Count - 1

			 Debug.Print itmContacts.ItemProperties(iCol).Name

			 If itmContacts.ItemProperties(iCol).Type = olText Then

				 objWorksheet.Cells(iRow, iCol + 1) = _

				 itmContacts.ItemProperties(iCol).Value

			 End If

		 Next iCol

		 iRow = iRow + 1

	 Next

	 objExcel.Visible = True

End Sub

	 47

A
rt

ic
le

 3

Exchanging Data with Excel

You should be familiar with a large portion of this code from Article 2. Here’s the part of
the code that opens a new copy of Excel, adds a workbook and worksheet, and names
the worksheet after the company name used as the filter:

Set objExcel = New Excel.Application

Set objWorkbook = objExcel.Workbooks.Add

Set objWorksheet = objWorkbook.Worksheets.Add

objWorksheet.Name = "Contacts for " & strCompany

After an Excel object is available, it’s time to start adding data to it. Begin by adding a
row that will be the header for the columns of data. To do this, you use a collection as-
sociated with a contact item that holds all the different properties associated with that
item. Each of these properties has a name, so it’s a simple task to loop through them,
writing the name value to cells in the first row of the Excel worksheet using the work-
sheet object’s Cells method. This method allows you to specify a row and column loca-
tion for the cell to access:

iRow = 1

For iCol = 0 To itmContacts.ItemProperties.Count - 1

	 objWorksheet.Cells(iRow, iCol + 1) = _

	 itmContacts.ItemProperties(iCol).Name

Next iCol

After all the headings have been added, it’s time to add data to the worksheet. You do
this using two nested loops. The outside loop steps through each contact item that
matches the company name value. The inner loop then steps through each property of
the specific item; if it’s a text type property, it’s saved in the appropriate cell in the work-
sheet:

iRow = iRow + 1

For Each itmContacts In fdrContacts.Items _

	 .Restrict("[CompanyName] = '" & strCompany & "'")

	 For iCol = 0 To itmContacts.ItemProperties.Count - 1

	 If itmContacts.ItemProperties(iCol).Type = olText Then

		 objWorksheet.Cells(iRow, iCol + 1) = _

		 itmContacts.ItemProperties(iCol).Value

	 End If

	 Next iCol

	 iRow = iRow + 1

Next

The If itmContacts.ItemProperties(iCol).Type = olText Then test is
performed to ensure that any data an Excel cell can’t store, such as data of type object,
is not written to Excel. To guard against errors, check each property before writing it
to Excel to make sure it’s a valid type. Another way to handle this issue would be to
specify exactly which properties you want to write to Excel and then, rather than loop-
ing through every property of the item object, just write lines of code to export each
selected property.

A
rticle 3

48	 Article 3  Integrating Outlook and Other Applications with VBA

To add code that opens Excel and exports contacts from Outlook into an Excel work-
book, follow these steps:

	 1.	 Start Outlook and choose Tools, Macro, Visual Basic Editor (or press Alt+F11) to
open the VBA Editor.

	 2.	 In the Project window, select Project1.

	 3.	 Expand the tree to one level, expand the Modules branch, and then select the
basChangeCompanyName module (which you built in Article 2).

	 4.	 Press F7 to open the Code window.

	 5.	 Enter the following code in the Code window:

Public Sub ExportContacts(strCompany As String)

	 Dim fdrContacts As Outlook.MAPIFolder

	 Dim fdrContactsByCompany As Outlook.Items

	 Dim objExcel As Excel.Application

	 Dim objWorkbook As Excel.Workbook

	 Dim objWorksheet As Excel.Worksheet

	 Dim itmContacts As Outlook.ContactItem

	 Dim iCol As Integer

	 Dim iRow As Integer

	 Set fdrContacts = _

	 GetNamespace("MAPI").GetDefaultFolder(olFolderContacts)

	 Set fdrContactsByCompany = _

 fdrContacts.Items.Restrict("[CompanyName] = '" & _

 strCompany & "'")

	 Set objExcel = New Excel.Application

	 Set objWorkbook = objExcel.Workbooks.Add

	 Set objWorksheet = objWorkbook.Worksheets.Add

	 objWorksheet.Name = "Contacts for " & strCompany

	 Set itmContacts = fdrContactsByCompany.GetFirst

	 If itmContacts Is Nothing Then

		 MsgBox "There are no contacts for that company. " & _

 "Please enter a different company name."

		 Exit Sub

	 End If

	 iRow = 1

	 For iCol = 0 To itmContacts.ItemProperties.Count - 1

		 objWorksheet.Cells(iRow, iCol + 1) = _

		 itmContacts.ItemProperties(iCol).Name

	 Next iCol

	 iRow = iRow + 1

	 For Each itmContacts In _

	 fdrContacts.Items.Restrict("[CompanyName] = '" & _

	 strCompany & "'")

		 For iCol = 0 To itmContacts.ItemProperties.Count - 1

			 Debug.Print itmContacts.ItemProperties(iCol).Name

	 49

A
rt

ic
le

 3

Exchanging Data with Excel

			 If itmContacts.ItemProperties(iCol).Type = olText Then

				 objWorksheet.Cells(iRow, iCol + 1) = _

				 itmContacts.ItemProperties(iCol).Value

			 End If

		 Next iCol

		 iRow = iRow + 1

	 Next

	 objExcel.Visible = True

End Sub

	 6.	 Open the frmCompanyNameChange form (which you created in Article 2) and
add a button to it. Give the button the caption Excel and the name cmdExcel.

	 7.	 Press F7 to open the Code window and enter this code:

Private Sub cmdExcel_Click()

	 ExportContacts cmbFrom

End Sub

	 8.	 Return to Outlook and choose Tools, Macro, Macros. Select AddToolbar from the
list and click Run. Click the Change Company Name button (which you created
in Article 2). The form appears with the new Excel button.

	 9.	 Select a company in the combo box and click Excel. Excel opens, displaying a list
of all the contacts for the selected company.

Exchanging Data with Word
A great way to use Outlook, Word, and VBA is to send a letter to a contact while viewing
that contact’s information. You can accomplish this by using some VBA code to auto-
mate Word.

Before you start, add a reference to the Word object model the same way you did for Ex-
cel on page A46, except that this time you select Microsoft Word 12.0 Object Library in
the list. This gives you access to all the objects in Word that are available using VBA.

The following procedure uses Word to create a letter document for each of the currently
selected contacts:

Private Sub SendLetterToContact()

	 Dim itmContact As Outlook.ContactItem

	 Dim selContacts As Selection

	 Dim objWord As Word.Application

	 Dim objLetter As Word.Document

	 Dim secNewArea As Word.Section

	 Set selContacts = Application.ActiveExplorer.Selection

	 If selContacts.Count > 0 Then

		 Set objWord = New Word.Application

		 For Each itmContact In selContacts

			 Set objLetter = objWord.Documents.Add

			 objLetter.Select

A
rticle 3

50	 Article 3  Integrating Outlook and Other Applications with VBA

			 objWord.Selection.InsertAfter

			 itmContact.FullName

			 objLetter.Paragraphs.Add

			 If itmContact.CompanyName <> "" Then

				 objWord.Selection.InsertAfter

				 itmContact.CompanyName

				 objLetter.Paragraphs.Add

			 End If

			 objWord.Selection.InsertAfter

			 itmContact.BusinessAddress

			 objWord.Selection.Paragraphs.Alignment = wdAlignParagraphRight

			 With objLetter

				 .Paragraphs.Add

				 .Paragraphs.Add

			 End With

			 With objWord.Selection

				 .Collapse wdCollapseEnd

				 .InsertAfter "Dear " & itmContact.FullName

				 .Paragraphs.Alignment = wdAlignParagraphLeft

			 End With

			 Set secNewArea = objLetter.Sections.Add(Start:=wdSectionContinuous)

			 With secNewArea.Range

				 .Paragraphs.Add

				 .Paragraphs.Add

				 .InsertAfter "<Insert text of letter here>"

				 .Paragraphs.Add

				 .Paragraphs.Add

			 End With

			 Set secNewArea = objLetter.Sections.Add(Start:=wdSectionContinuous)

			 With secNewArea.Range

				 .Paragraphs.Add

				 .InsertAfter "Regards"

				 .Paragraphs.Add

				 .Paragraphs.Add

				 .InsertAfter Application.GetNamespace("MAPI").CurrentUser

			 End With

		 Next

		 objWord.Visible = True

	 End If

End Sub

The first section of code declares all the variables and objects you’ll use. Notice the use
of both Outlook and Word objects:

Dim itmContact As Outlook.ContactItem

Dim selContacts As Selection

Dim objWord As Word.Application

Dim objLetter As Word.Document

Dim secNewArea As Word.Section

	 51

A
rt

ic
le

 3

Exchanging Data with Word

The second section investigates Outlook to access the selected items. The program
creates a Selection object from the currently selected items; as long as at least one item
is selected, an instance of Word is created using the New Word.Application call. The
program then loops through each item in the Selection collection and displays Word by
setting the Word.Application object’s Visible property to True:

Set selContacts = Application.ActiveExplorer.Selection

If selContacts.Count > 0 Then

	 Set objWord = New Word.Application

	 For Each itmContact In selContacts

		 'Construct Letter Here

	 Next

	 objWord.Visible = True

End If

The heart of the letter construction is performed in the loop, where the documents are
created and populated. The program starts by creating a new document in Word using
the Add method of the document’s collection:

Set objLetter = objWord.Documents.Add

After this, you can start inserting data into the newly created document. You use the
InsertAfter method of the Word.Selection object, which adds lines of text, and the Add
method of the Paragraphs object, which adds new paragraphs (blank lines) to the
document:

objLetter.Select

objWord.Selection.InsertAfter itmContact.FullName 	

objLetter.Paragraphs.Add

If itmContact.CompanyName <> "" Then

	 objWord.Selection.InsertAfter itmContact.CompanyName

	 objLetter.Paragraphs.Add

End If

objWord.Selection.InsertAfter itmContact.BusinessAddress

objWord.Selection.Paragraphs.Alignment = wdAlignParagraphRight

With objLetter

	 .Paragraphs.Add

	 .Paragraphs.Add

End With

With objWord.Selection

	 .Collapse wdCollapseEnd

	 .InsertAfter "Dear " & itmContact.FullName

	 .Paragraphs.Alignment = wdAlignParagraphLeft

End With

Set secNewArea = objLetter.Sections.Add(Start:=wdSectionContinuous)

With secNewArea.Range

	 .Paragraphs.Add

	 .Paragraphs.Add

	 .InsertAfter "<Insert text of letter here>"

	 .Paragraphs.Add

	 .Paragraphs.Add

End With

Set secNewArea = objLetter.Sections.Add(Start:=wdSectionContinuous)

A
rticle 3

52	 Article 3  Integrating Outlook and Other Applications with VBA

To finish the letter, you need to add a signoff. The program extracts the name of the cur-
rent user of Outlook and inserts this in the letter:

With secNewArea.Range

	 .Paragraphs.Add .InsertAfter "Regards"

	 .Paragraphs.Add

	 .Paragraphs.Add

	 .InsertAfter Application.GetNamespace("MAPI").CurrentUser

End With

When you’ve finished, the final letter looks similar to the one shown in Figure A3-2.

Figure A3-2.  This letter in Word was generated from an Outlook contact item.

This solution leaves Word visible for the user to work with. It would be simple to com-
pletely automate the letter production by inserting any text for the body of the letter at
this time and then saving it automatically:

objLetter.SaveAs "c:\temp\" & itmContact.FullName & ".doc"

objLetter.Close

To add code that prepares a set of letters for selected contacts, follow these steps:

	 1.	 Start Outlook and choose Tools, Macro, Visual Basic Editor (or press Alt+F11) to
open the VBA Editor.

	 2.	 In the Project window, select Project1.

	 3.	 Choose Insert, Module to add a custom module to the project.

	 4.	 In the Project window, select the new module.

	 5.	 Go to the Properties window (press F4 to display the window if it’s not visible)
and change the module name to basExternalApps.

	 53

A
rt

ic
le

 3

Exchanging Data with Word

	 6.	 Press F7 to open the Code window for the module.

	 7.	 Choose Tools, References to open a dialog box displaying a list of items.

	 8.	 Scroll through this list until you find the entry for Microsoft Word 12.0 Object
Library and then select it. Close the dialog box.

	 9.	 Enter the following code in the Code window:

Sub AddToolbar2()

	 Dim tlbCustomBar As CommandBar

	 Dim btnNewCustom As CommandBarButton

	 Set tlbCustomBar = Application.ActiveExplorer.CommandBars _

	 .Add(Name:="Custom External Applications", _

	 Position:=msoBarTop, Temporary:=True)

	 tlbCustomBar.Visible = True

	 Set btnNewCustom = _

	 tlbCustomBar.Controls.Add(Type:=msoControlButton)

	 btnNewCustom.OnAction = "SendLetterToContact"

	 btnNewCustom.Style = msoButtonIconAndCaption

	 btnNewCustom.Caption = "Send Letter to Contact"

End Sub

Public Function SendLetterToContact()

	 Dim itmContact As Outlook.ContactItem

	 Dim selContacts As Selection

	 Dim objWord As Word.Application

	 Dim objLetter As Word.Document

	 Dim secNewArea As Word.Section

	 Set selContacts = Application.ActiveExplorer.Selection

	 If selContacts.Count > 0 Then

		 Set objWord = New Word.Application

		 For Each itmContact In selContacts

			 Set objLetter = objWord.Documents.Add

			 objLetter.Select

			 objWord.Selection.InsertAfter itmContact.FullName

			 objLetter.Paragraphs.Add

			 If itmContact.CompanyName <> "" Then

				 objWord.Selection.InsertAfter itmContact.CompanyName

				 objLetter.Paragraphs.Add

			 End If

			 objWord.Selection.InsertAfter itmContact.BusinessAddress

			 objWord.Selection.Paragraphs.Alignment = _

			 wdAlignParagraphRight

			 With objLetter

				 .Paragraphs.Add

				 .Paragraphs.Add

			 End With

			 With objWord.Selection

				 .Collapse wdCollapseEnd

				 .InsertAfter "Dear " & itmContact.FullName

				 .Paragraphs.Alignment = wdAlignParagraphLeft

			 End With

A
rticle 3

54	 Article 3  Integrating Outlook and Other Applications with VBA

			 Set secNewArea = _

			 objLetter.Sections.Add(Start:=wdSectionContinuous)

			 With secNewArea.Range

				 .Paragraphs.Add

				 .Paragraphs.Add

				 .InsertAfter "<Insert text of letter here>"

				 .Paragraphs.Add

				 .Paragraphs.Add

			 End With

			 Set secNewArea = _

			 objLetter.Sections.Add(Start:=wdSectionContinuous)

			 With secNewArea.Range

				 .Paragraphs.Add

				 .InsertAfter "Regards"

				 .Paragraphs.Add

				 .Paragraphs.Add

				 .InsertAfter

				 Application.GetNamespace("MAPI").CurrentUser

			 End With

		 Next

		 objWord.Visible = True

	 End If

End Function

	 10.	 Go back to the main Outlook window and choose Tools, Macro, Macros.

	 11.	 Select AddToolbar2 in the list, and then click Run. A new custom button with the
name Send Letter To Contact is added to the toolbar.

	 12.	 Switch to the Contacts folder in Outlook and select one or more contacts.

	 13.	 Click the button labeled Send Letter To Contact to display one Word document
for each selected contact.

INSIDE OUT Press F1 if you need help
If you get stuck while programming in VBA, your first course of action should be to press
the F1 key to launch the context-sensitive Help feature. The Help window will provide
information about whatever you’re currently working with, be it a keyword, an object
property, or a window in the environment.

Exchanging Data with Access
Now that you’ve seen how to manipulate Word and Excel from Outlook using instances
of the Word.Application or Excel.Application object, it’s time to look at how you can bring
data into Outlook from Microsoft Access. Suppose that you have an Access application

	 55

A
rt

ic
le

 3

Exchanging Data with Word

that holds details of projects and associated tasks and you need to import the task data
from Access and turn it into Outlook tasks. To accomplish this, you could use the fol-
lowing code:

Public Sub ImportTasksFromAccess()

	 Dim fdrTasks As Outlook.MAPIFolder

	 Dim itmTask As Outlook.TaskItem

	 Dim rsTasks As ADODB.Recordset

	 Dim conTasks As ADODB.Connection

	 Dim strConnectionString As String

	 'Set the connection string and open the connection

	 Set conTasks = New ADODB.Connection

	 strConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;” & _

				 "Data Source=C:\Temp\OutlookBook.mdb;” & _

				 "Persist Security Info=False”

	 conTasks.Open strConnectionString

	 'Attempt to retrieve task records from the database for the given job

	 Set rsTasks = New ADODB.Recordset

	 rsTasks.Open "select * from Tasks” , _

	 conTasks, adOpenStatic, adLockReadOnly

	 Set fdrTasks = _

 Application.GetNamespace("MAPI”).GetDefaultFolder(olFolderTasks)

	 'Add tasks

	 Do While Not rsTasks.EOF

		 Set itmTask = fdrTasks.Items.Add

		 With itmTask

			 'Add custom properties to the task item

			 .UserProperties.Add "TaskID”, olText

			 'Populate the task properties

			 .UserProperties("TaskID”) = rsTasks.Fields("TaskID”)

			 .Subject = rsTasks.Fields("Name”)

			 .Body = IIf(IsNull(rsTasks.Fields("Description”)), "”, _

				 rsTasks.Fields("Description”))

			 .PercentComplete = rsTasks.Fields("PercentComplete”)

			 .Save

		 End With

		 rsTasks.MoveNext

	 Loop

End Sub

This procedure uses ActiveX Data Objects (ADO), which provides a simple way to read
data in a Microsoft data store such as Access or SQL Server. The code reads the Access
database and then stores all retrieved task records as Outlook tasks. ADO is an efficient
way to extract data from either an Access database or a more complex database system
such as SQL Server. To change this procedure to work with SQL Server or a different
Access database, you need to alter only the Connection string.

For every record in the ADO recordset, the Items.Add method creates a new task item
in the Tasks folder. The basic properties of each task are then assigned values from the
record.

A
rticle 3

56	 Article 3  Integrating Outlook and Other Applications with VBA

In this example, you add a UserProperty to the Task object for storing the ID value of the
Task record. You use a UserProperty to access a custom field. To add a UserProperty to an
item, you use the Add method of the UserProperties collection associated with the item,
giving the property a name and a type:

.UserProperties.Add "TaskID”, olText

You can then assign data to it by referencing the specific property as you would any
other collection item:

.UserProperties("TaskID”) = rsTasks.Fields("TaskID”)

To add code that opens Access and imports information, follow these steps:

	 1.	 Copy the OutlookBook.mdb file (from this CD) to C:\Temp.

	 2.	 Start Outlook and choose Tools, Macro, Visual Basic Editor (or press Alt+F11) to
open the VBA Editor.

	 3.	 In the Project window, select Project1.

	 4.	 Select the basExternalApps module, which you created in the preceding section.

	 5.	 Press F7 to open the Code window for the module.

	 6.	 Choose Tools, References to open the References dialog box.

	 7.	 Scroll through the list until you find Microsoft ActiveX Data Objects 2.8 and then
select it. (If 2.7 is not available, select the highest number in the list.) Close the
dialog box.

	 8.	 Enter the following code in the Code window:

Public Sub ImportTasksFromAccess()

	 Dim fdrTasks As Outlook.MAPIFolder

	 Dim itmTask As Outlook.TaskItem

	 Dim rsTasks As ADODB.Recordset

	 Dim conTasks As ADODB.Connection

	 Dim strConnectionString As String

	 'Set the connection string and open the connection

	 Set conTasks = New ADODB.Connection

	 strConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;” & _

		 "Data Source=C:\Temp\OutlookBook.mdb;” & _

			 "Persist Security Info=False”

	 conTasks.Open strConnectionString

	 'Attempt to retrieve task records from the database for the given job

	 Set rsTasks = New ADODB.Recordset

	 rsTasks.Open "select * from Tasks” , _

	 conTasks, adOpenStatic, adLockReadOnly

	 Set fdrTasks = _

 	 GetNamespace("MAPI”).GetDefaultFolder(olFolderTasks)

	 'Add tasks

	 Do While Not rsTasks.EOF

		 Set itmTask = fdrTasks.Items.Add

	 57

A
rt

ic
le

 3

Exchanging Data with Access

		 With itmTask

			 'Add custom properties to the task item

			 .UserProperties.Add "TaskID”, olText

			 'Populate the task properties

			 .UserProperties("TaskID”) = rsTasks.Fields("TaskID”) 			

		 .Subject = rsTasks.Fields("Name”)

			 .Body = IIf(IsNull(rsTasks.Fields("Description”)), "”, _

 			 rsTasks.Fields("Description”))

			 .PercentComplete = rsTasks.Fields("PercentComplete”)

			 .Save

		 End With

		 rsTasks.MoveNext

	 Loop

End Sub

	 9.	 Locate the AddToolbar2 procedure and add the following code to the end of it
(before the End Sub statement):

Set btnNewCustom = _

 tlbCustomBar.Controls.Add(Type:=msoControlButton)

btnNewCustom.OnAction = "ImportTasksFromAccess”

btnNewCustom.Style = msoButtonIconAndCaption

btnNewCustom.Caption = "Import Tasks From Access”

	 10.	 Go back to the main Outlook window and choose Tools, Macro, Macros.

	 11.	 In the list, select AddToolbar2, and then click Run. A new custom menu button
with the name Import Tasks From Access is added to the toolbar.

	 12.	 Switch to the Tasks folder in Outlook and click Import Tasks From Access. Tasks
are created within Outlook that represent the tasks stored in the OutlookBook.
mdb database.

INSIDE OUT Using ADO
When you use ADO, it’s important to ensure that all users have the same version of ADO
installed on their computers. If the versions differ, you could get unpredictable results
from any code written using ADO.

To check the ADO version from code, you can use the Version property of the ADO
Connection object. Declare an ADO Connection object, as shown here:

Dim ado as New ADODB.Connection

and then investigate the Version property:

ado.Version

You can now display a message asking users to update if they’re running a different
version.

A
rticle 3

58	 Article 3  Integrating Outlook and Other Applications with VBA

Automating Outlook from Other Applications
You’ve seen how to integrate other applications by writing code in Outlook to manipu-
late them. It’s just as easy to add code to other VBA-enabled applications to automate
Outlook functionality. A common task in an external application is to use Outlook to
send an e-mail message. In the following example, Outlook is automated from Excel to
send an e-mail message that includes the current workbook:

Sub SendCurrentWorkbook(streMail As String)

	 Dim objOutlook As Outlook.Application

	 Dim itmNewEMail As Outlook.MailItem

	 Dim itmNewTask As Outlook.TaskItem

	 Set objOutlook = New Outlook.Application

	 Set itmNewEMail = objOutlook.CreateItem(olMailItem)

	 With itmNewEMail

		 .To = streMail

		 If ActiveWorkbook.Path = "” Then

			 ActiveWorkbook.Save

		 End If

		 .Attachments.Add ActiveWorkbook.Path & "\” & ActiveWorkbook.Name 		

	 .send

	 End With

End Sub

This function shows how to automate Outlook to send e-mail messages by creating an
instance of Outlook, as you did with Word and Excel, using the Outlook.Application ob-
ject. After this object exists, you work just as if you were inside Outlook, creating a mail
item and adding an attachment to it. To send the current workbook for review, use the
SendForReview method:

ActiveWorkbook.SendForReview stremail, , False, True

Troubleshooting
When an external application tries to access Outlook, access is blocked

When an external application tries to automate e-mail within Outlook, the security fea-
tures of Outlook step in to block the access. You’ll receive a message asking you whether
you want to allow the external application to access your e-mails. This blocking is in-
tended to stop viruses such as the Melissa virus from replicating by automatically send-
ing themselves in e-mails from Outlook. Currently, there is no workaround for this issue,
as any possible fix would allow viruses to bypass the security. You can choose to allow
access, but you should do this only when you’re certain that the application making the
request is under your control.

	 59

A
rt

ic
le

 3

Automating Outlook from Other Applications

Because you’ve sent an e-mail for someone to review, it would be useful to add a task to
remind you to follow up on that review in a specified number of days. To do this, add
the following block of code to the example procedure:

Set itmNewTask = objOutlook.CreateItem(olTaskItem)

With itmNewTask

	 .Subject = "Excel Workbook sent to - " & streMail

	 .Body = "Follow up on details”

	 .DueDate = Date + 3

	 .Attachments.Add ActiveWorkbook.Path & "\” & ActiveWorkbook.Name

	 .Save

End With

This code creates a new task item with a due date three days from today and attaches
the Excel workbook so that you’ll have a record of what is being reviewed. You can send
this task and the Excel file to someone by adding the following code:

.Recipients.Add streMail

.Assign

.send

Here, another recipient is added to the list, and then the Assign method of the task item
is called. This method allows a task to be assigned (delegated) to another user and must
be used to alter the task item before it can be sent to any other user. The item is then
sent using Outlook. If you go into Outlook and look in the Sent Items folder, you can
see all the items that have been created and sent by this procedure.

To add code that sends an Excel workbook, follow these steps:

	 1.	 Start Excel with a new worksheet.

	 2.	 Choose Tools, Macro, Visual Basic Editor (or press Alt+F11) to open the VBA
Editor in Excel.

	 3.	 Select the project in the Project window, and then choose Insert, Module.

	 4.	 Name the module basSendExcelWorkBk and press F7 to open the Code window
for the module.

	 5.	 Choose Tools, References to open the References dialog box.

	 6.	 Scroll through the list until you find Microsoft Outlook 12.0 Object Library and
then select it. Close the dialog box.

	 7.	 Enter the following code in the Code window:

Option Explicit

Sub EMailWorkbook()

	 SendCurrentWorkbook "nunnm@plural.com”

End Sub

Sub SendCurrentWorkbook(streMail As String)

	 Dim objOutlook As Outlook.Application

	 Dim itmNewEMail As Outlook.MailItem

A
rticle 3

60	 Article 3  Integrating Outlook and Other Applications with VBA

	 Dim itmNewTask As Outlook.TaskItem

	 Set objOutlook = New Outlook.Application

	 Set itmNewEMail = objOutlook.CreateItem(olMailItem)

	 With itmNewEMail

		 .To = streMail

		 If ActiveWorkbook.Path = "” Then

			 ActiveWorkbook.Save

		 End If

		 .Attachments.Add ActiveWorkbook.Path & "\” & _

		 ActiveWorkbook.Name

		 .Send

	 End With

	 Set itmNewTask = objOutlook.CreateItem(olTaskItem)

	 With itmNewTask

		 .Subject = "Excel Workbook sent to - " & streMail

		 .Body = "Follow up on details”

		 .DueDate = Date + 3

		 .Attachments.Add ActiveWorkbook.Path & "\” & _

		 ActiveWorkbook.Name

		 .Save

		 .Assign

		 .Recipients.Add streMail

		 .Send

End With

End Sub

	 8.	 Replace the e-mail address nunnm@plural.com with an e-mail address you can
use.

	 9.	 With the cursor still in the function, press F5 to run the code. An e-mail is sent
to the selected address with the Excel workbook as an attachment, and a task is
placed in the Outlook Tasks folder.

Outlook and XML
Extensible Markup Language (XML) is the new standard format for data exchange
throughout the IT industry. In Office 2007, Excel and Access have native support for
XML as a data transfer method. Outlook can join in by using a little bit of VBA code to
automate the building of XML.

You can use the following procedure to save the contents of a folder as XML:

Sub SaveAsXML()

	 Dim fdrActive As Outlook.MAPIFolder

	 Dim rsXML As ADODB.Recordset

	 Set fdrActive = ActiveExplorer.CurrentFolder

	 Set rsXML = New ADODB.Recordset

	 Dim itmType As Object

	 Dim iCol As Integer

	 On Error Resume Next

	 61

A
rt

ic
le

 3

Outlook and XML

	 rsXML.AddNew

	 For Each itmType In fdrActive.Items

		 For iCol = 0 To itmType.ItemProperties.Count - 1

			 If itmType.ItemProperties.Item(iCol).Type = olText Then

				 rsXML.Fields.Append _

				 itmType.ItemProperties.Item(iCol).Name, adVarChar, 5000

			 End If

		 Next iCol

	 Next

	 If rsXML.State = adStateClosed Then

		 rsXML.Open

	 End If

	 On Error GoTo NextItem

	 For Each itmType In fdrActive.Items

		 rsXML.AddNew

	 For iCol = 0 To itmType.ItemProperties.Count - 1

		 If itmType.ItemProperties.Item(iCol).Type = olText Then

			 rsXML.Fields(itmType.ItemProperties.Item(iCol).Name).Value = _

			 IIf(IsNull(itmType.ItemProperties.Item(iCol).Value), "”, _

			 itmType.ItemProperties.Item(iCol).Value)

		 End If

	 Next iCol

	 rsXML.Update

	

	 NextItem:

 		 Next

		 On Error GoTo 0

		 rsXML.Save "c:\temp\” & fdrActive.Name & ".xml”, adPersistXML

End Sub

This procedure has two key pieces of code. The first uses ADO to create a new recordset
in memory and adds all the possible fields for the types of items that are being pro-
cessed. This is accomplished by looping through the ItemProperties collection, much as
you did when writing data to Excel, and appending fields with the same names as the
properties to the recordset object:

For iCol = 0 To itmType.ItemProperties.Count - 1

	 If itmType.ItemProperties.Item(iCol).Type = olText Then

		 rsXML.Fields.Append _

		 itmType.ItemProperties.Item(iCol).Name, adVarChar, 5000

	 End If

Next iCol

The second core piece of code is the one that writes the data into the recordset and then
saves that data as an XML file. For every item in the folder, the code adds a new record

A
rticle 3

62	 Article 3  Integrating Outlook and Other Applications with VBA

to the ADO recordset and fills each of its fields with the corresponding Outlook item
value:

For Each itmType In fdrActive.Items

	 rsXML.AddNew

	 For iCol = 0 To itmType.ItemProperties.Count - 1

		 If itmType.ItemProperties.Item(iCol).Type = olText Then

			 rsXML.Fields(itmType.ItemProperties.Item(iCol).Name).Value = _

			 IIf(IsNull(itmType.ItemProperties.Item(iCol).Value), "”, _

itmType.ItemProperties.Item(iCol).Value)

		 End If

	 Next iCol

	 rsXML.Update

Next

To save the data as XML, simply call the Save method of the ADO recordset object and
save it as an XML type file:

rsXML.Save "c:\temp\” & fdrActive.Name & ".xml”, adPersistXML

This exports a file using the ADO Persist method, which stores the ADO recordset data
as XML-Data Reduced (XDR) format. You could just as easily have reimported the data
into an ADO recordset by using the Open method of an ADO recordset object and open-
ing a file:

rsData.Open mstrXMLPath & "TimeTasks.xml”, , , , adCmdFile

The procedure shown here for exporting XML data is generic and will fail if the folder
you’re exporting contains multiple different item types or if some of the items have
custom parameters and some don’t. To solve these problems, you might want to take a
more customized route, in which you make a decision about exactly what to export in-
stead of looping through all the properties. The preceding method exports everything,
including a number of ID values that are not required outside Outlook.

To add code that exports a folder as an XML file, do the following:

	 1.	 Start Outlook and choose Tools, Macro, Visual Basic Editor (or press Alt+F11) to
open the VBA Editor.

	 2.	 In the Project window, select Project1.

	 3.	 Select the basExternalApps module, which you created previously.

	 4.	 Press F7 to open the Code window for the module.

	 63

A
rt

ic
le

 3

Outlook and XML

	 5.	 Enter the following code in the Code window:

Sub SaveAsXML()

	 Dim fdrActive As Outlook.MAPIFolder

	 Dim rsXML As ADODB.Recordset

	 Set fdrActive = ActiveExplorer.CurrentFolder

	 Set rsXML = New ADODB.Recordset

	 Dim itmType As Object

	 Dim iCol As Integer

	 On Error Resume Next

	 rsXML.AddNew

	 For Each itmType In fdrActive.Items

		 For iCol = 0 To itmType.ItemProperties.Count - 1

			 If itmType.ItemProperties.Item(iCol).Type = olText Then

				 rsXML.Fields.Append _

				 itmType.ItemProperties.Item(iCol).Name, adVarChar, 5000

			 End If

		 Next iCol

	 Next

	 If rsXML.State = adStateClosed Then

		 rsXML.Open

	 End If

	 On Error GoTo NextItem

	 For Each itmType In fdrActive.Items

		 rsXML.AddNew

		 For iCol = 0 To itmType.ItemProperties.Count - 1

			 If itmType.ItemProperties.Item(iCol).Type = olText Then

				 rsXML.Fields(itmType.ItemProperties.Item(iCol).Name).Value = _

				 IIf(IsNull(itmType.ItemProperties.Item(iCol).Value), "”, _

				 itmType.ItemProperties.Item(iCol).Value)

			 End If

		 Next iCol

		 rsXML.Update

	 NextItem:

		 Next

		 On Error GoTo 0

		 rsXML.Save "c:\temp\” & fdrActive.Name & ".xml”, adPersistXML

End Sub

	 6.	 Locate the AddToolbar2 procedure and add the following code to the end of it:

Set btnNewCustom = _

 tlbCustomBar.Controls.Add(Type:=msoControlButton)

btnNewCustom.OnAction = "SaveAsXML”

btnNewCustom.Style = msoButtonIconAndCaption

btnNewCustom.Caption = "Save Current Folder As XML”

	 7.	 Go back to the main Outlook window and choose Tools, Macro, Macros.

	 8.	 In the list, select AddToolbar2 and then click Run. A new custom menu button
with the name Save Current Folder As XML is added to the toolbar.

	 9.	 Select a folder in Outlook and click Save Current Folder As XML. An XML file
containing the contents of that folder is created and placed in C:\Temp.

A
rticle 3

64	 Article 3  Integrating Outlook and Other Applications with VBA

