
Article 2

Using VBA in Outlook

Microsoft® Visual Basic for Applications (VBA) is derived from the full Microsoft Visual
Basic language and is featured in a number of products. Most notably, it is the primary
programming language for all Microsoft Office applications.

In this chapter, you’ll be introduced to the VBA environment and some of the important
concepts required to work with VBA. After this, you’ll see some examples of simple
ways to use VBA within Microsoft Office Outlook® 2007 to automate common tasks. It
will help if you’re familiar with a programming language, but you’ll be able to run the
samples simply by following the instructions.

Note
You’ll find the code used to create the VBA applications in this chapter on the
companion CD.

There are a lot of great books on VBA—whether you’re a beginner or a more advanced
user. Check out the Microsoft Press Web site at mspress.microsoft.com and your favorite
bookstore for a title to fit your needs.

A Quick Look at Object Models
VBA was designed to be integrated into other applications. It allows a user to easily
work with the functionality of its parent language, Visual Basic, as well as to access
external functions and applications. To understand how to get the most out of VBA, it’s
important to understand the concept of an object model.

The term object model refers to the exposed functions of an application (the functions
belonging to an application that you can access from within code). These functions are
exposed as a set of objects, where each object has properties, methods, and events. The
object model contains a set of definitions, or classes, that you can use to create objects.

A Quick Look at Object Models. . 17

Understanding VBA in Relation to VBScript. 20

Overview of the VBA Development Environment. 20

Understanding the Outlook Object Model. 25

Creating an Outlook Application with VBA. 32

	 	 17

You might think of a class as a design. Consider an architect’s house plans. These de-
fine what the house should look like and what functions it should perform, but until
the builder builds the house, the plan doesn’t do anything except describe the house.
When the builder builds the house, he or she is creating an instance of the architect’s
design. Although the builder might make many instances of the design when building
a housing development, after a house (an instance) is created, it stands separate from
any other house in the development.

The way you use the object model in VBA is similar to the way the plan is used to build
a house. Select the set of functions you require, and then create an instance of the class
that defines them. To accomplish this, you use VBA keywords and syntax.

Referencing Objects
To use objects in VBA, you must add a reference to them. This tells VBA that a specific
group of objects exists and what classes are defined for these objects. To add a refer-
ence, start the VBA Editor and choose Tools, References. A list of objects is displayed.
To add a reference to an object definition, just select the box next to the appropriate
item in the list.

By looking at the Help file you can usually find out which references you need to set to
perform certain operations. Some of the major ones for the examples in this chapter
and the next are references to the object models of other Office applications. These ap-
pear in the list with the following names:

	 Excel—Microsoft Excel 12.0 Object Library

	 Word—Microsoft Word 12.0 Object Library

To access Outlook functionality from another application, you set a reference to the
Outlook object model:

	 Outlook—Microsoft Outlook 12.0 Object Library

For data access, it is useful to use ActiveX Data Objects (ADO):

	 Data access—Microsoft ActiveX Data Objects 2.8 Library

A number of object models for ADO are available; the most recent is ADO 2.8.

Declaring and Instantiating an Object
To create an instance of an object, you first declare the object using the Dim statement.
This statement dimensions a variable of that object type. The following statement, for
example, declares a new variable of the Word.Application type:

Dim objWord as Word.Application

A
rticle 2

18	 Article 2  Using VBA in Outlook

After you declare an object, you use the Set and New keywords to create an instance of
the object. The variable you declared previously is assigned to this instance, after which
you can start using the instance:

Set objWord = New Word.Application

You can now access all the functions and properties of the Word.Application object
through the newly defined instance.

Disposing of an instance
Whenever you create an instance of an object, especially an external application object,
remember to dispose of it once you’ve finished working with it. You dispose of it by set-
ting the object variable to Nothing:

Set objWord = Nothing

Note
VBA is supposed to clean up all object references and dispose of them automatically
when they fall out of scope, but often this does not happen. You are then left with ob-
jects that have no associations but are using memory. This situation can be especially
harmful if the object you created is a large application like Microsoft Word that uses a
significant amount of memory.

Properties, Methods, and Events
A property is a value associated with an object. An example of a property is the name of
the object. Properties can be read-only or read-write. You usually use properties to tell
an object how to represent itself or how to act.

A method is equivalent to a function in code, but it belongs to a specific object and can
be accessed only through that object rather than being generally available. You can
call the method of an object to perform a task and perhaps return a result. Methods
can take parameters. An event is used by the object you have instantiated to tell your
application that something is happening outside normal program flow. A great deal of
the Microsoft Windows architecture is based on the availability of events (referred to as
messages in relation to Windows).

	 	 19

A
rt

ic
le

 2

A Quick Look at Object Models

Understanding VBA in Relation to VBScript
Before Microsoft Outlook 2000, the only option for developing code applications in
Outlook was to use Microsoft Visual Basic, Scripting Edition (VBScript). Although
this allowed some customization, the introduction of VBA in Outlook 2000 allowed
developers a far greater level of control throughout the entire product, as well as easier
integration with other members of the Office family. VBA differs from VBScript in a
number of key ways. Most noticeably, VBA is a much friendlier environment in which to
work. This is a result of the editor supplied with the VBA engine and also because VBA
is closer than VBScript to a full-featured programming language such as Visual Basic.

An important difference between VBA and VBScript in Outlook is related to where you
use the two languages. VBA allows you far greater control over Outlook than VBScript,
which permits you to work only behind a particular custom form. In VBA, you can work
at an application level, where you can control many interactions between different areas
of Outlook as well as automate almost every interface action.

Overview of the VBA Development Environment
If you have programmed in one of the many VBA-enabled applications, you’ll be famil-
iar with the VBA environment in Outlook. It is the same environment used in all Office
products as well as in a number of third-party applications.

The VBA environment is hosted as a window separate from the main Outlook applica-
tion environment. To open the VBA Editor window from Outlook, choose Tools, Macro,
Visual Basic Editor.

The environment consists of a number of windows and toolbars, some of which are
displayed in Figure A2-1. The Project, Properties, and Debugging windows are integral
to the VBA environment and can be docked on the edges of the environment. The Code
and Form editors operate as multiple-document interface (MDI) windows, similar to
the way multiple documents are displayed in Word or Microsoft Excel. They all appear
within the shell, and you can easily switch between them using the Window menu. To
view or hide any of these windows, use the View menu.

Figure A2-1. The VBA environment contains a number of windows and toolbars.

A
rticle 2

20	 Article 2  Using VBA in Outlook

The Project Window
The Project window displays the projects and files you work on. The files that make up
a project are arranged as a tree under the Project entry in the Project window.

Following are descriptions of the different sections of the project tree:

l	 Microsoft Outlook Objects This branch of the tree always exists and always con-
tains at least one object called ThisOutlookSession. This is where you place code
that works at the application level of Outlook. It represents the current instance of
Outlook and gives you access to the application so that you can add code for some
of the events that occur in Outlook. For example, if you want a task to occur when
Outlook starts up, you place code in the Startup event of the Application object.

l	 Forms This branch of the tree holds an entry for any forms you have built. These
are VB forms, which are not the same as Outlook forms. You would add VB forms
to your application to allow a user to perform tasks that were not related to any of
the custom areas of Outlook. For example, to perform a particular task, you might
need to collect information from the user. You could build a custom VB form that
is displayed when the user performs a specific task and that asks the user to pro-
vide some information.

For a demonstration of using a custom VB form in this way, see “Adding a Form” later in this
article.

l	 Modules  Under this branch of the tree, you find all the code modules that con-
tain general code. This is a sensible place to put common code that must be
available to many areas of the application. It is also a good place to store macro
code used by buttons to launch various parts of your Outlook application. Later
in this chapter, when you discover how to implement custom toolbar buttons,
you’ll see that the code used for this purpose is placed in a module. You can have
many modules in your project; it’s standard practice to divide your code into logi-
cal functional areas and to then implement each functional area as a different
module. For example, you might have some functions that perform operations
on contact information, some that perform operations with calendar items, some
that relate to the handling of errors, and some that are simply general code func-
tions that can be used by any of the functional areas. In such a case, you should
implement four modules called basContacts, basCalendar, basErrorHandling,
and basGeneral. (The bas prefix is historical, referring to the fact that these are
files containing BASIC code.)

l	 Class Modules  In this area, you can build class modules to utilize throughout
your code. Although they permit you to build functions, class modules, unlike
ordinary modules, require that to use the functions you must create an instance
of the class rather than simply calling the function name. Class modules are used
to encapsulate similar functionality in a single area that can be utilized like any
other objects in Outlook.

	 	 21

A
rt

ic
le

 2

Overview of the VBA Development Environment

Note
The discussion of how and why to use class modules to develop applications in an object-
oriented way is too complex to be covered here. I suggest that you consult books on
developing object-oriented applications to get an understanding of the techniques and
then apply these techniques in your Outlook applications by using classes. One useful
book on this subject is Programming Microsoft Visual Basic .NET, by Francesco Balena
(Microsoft Press, 2002).

Follow these steps to add a new file to your VBA project:

	 1.	 Choose Insert.

	 2.	 Choose one of the three file types (UserForm, Module, Class Module). Under the
appropriate branch of the project tree, a new file is displayed with a generic name.

	 3.	 Rename the file using the Properties window.

For instructions on renaming, see “The Properties Window,” on the facing page.

Although the files in the Project window are displayed and listed as separate items, they
are stored not as individual files but as placeholders to their storage in Outlook. You
can, however, import and export them as individual files to allow their use in other ap-
plications. Follow these steps to export a file:

	 1.	 In the Project window, select the file you want to export.

	 2.	 Choose File, Export File or right-click and choose Export File.

	 3.	 Select the directory to which you want to export the file.

	 4.	 Name the file.

You also can import any VB or VBA module or class file into an Outlook project.

Follow these steps to import a file:

	 1.	 Right-click anywhere in the Project window or choose File, Import File.

	 2.	 Locate the file to import and select it in the dialog box. The imported file appears
under the appropriate branch of the project tree.

All VBA code that you develop is saved in the VBAProject.OTM file. If you want to
distribute an application, you need to send the VBAProject.OTM file and have people
replace their existing VBAProject.OTM files with your new one. By default, the OTM file
is located in Application Data\Microsoft\Outlook folder of your user profile.

A
rticle 2

22	 Article 2  Using VBA in Outlook

The Properties Window
The Properties window is where you review and alter any configurable properties of the
selected object. For any file selected in the Project window, a Name property appears in
the Properties window, where you can change the name of the file. This window gets
quite a workout when you’re building a VB form because the form and every control you
place on it are each associated with many properties.

For example, after adding the Module type file to the project, follow these steps to
change the Name property of the file:

	 1.	 In the Project window, select the project file to rename. The Project window
changes to display information about the selected file—in this case, the name.

	 2.	 Select the Name property and change it to something meaningful, such as
basCommonFunctions.

	 3.	 Click away from the Name property, anywhere else in the VBA environment. The
name of the file in the Project window changes to reflect the altered property.

To demonstrate a more complex set of properties, add a UserForm type file to the
project.

Notice that the Properties window is now full of customizable properties (see
Figure A2-2).

Figure A2-2. Forms and controls have multiple properties that you can change in the Properties
window.

The Debugging Windows
A number of debugging tools are available for debugging your VBA applications. You
use these tools to investigate and alter the states of the objects in your code while the
code is executing. These tools appear with information in different debugging windows

	 	 23

A
rt

ic
le

 2

Overview of the VBA Development Environment

that are displayed at the base of the screen. You can open the debugging windows by
choosing View and then selecting the appropriate tools. Before you can use debugging
tools, the code must be in break mode. To get into break mode while code is executing,
press Ctrl+Break or set a breakpoint by selecting a line of code you’re interested in and
pressing F9. When the executing code reaches the breakpoint, the environment will go
into break mode, and you can use the debugging tools.

Debugging tools include the following:

l	 Immediate window  View values and execute statements while in break mode.

l	 Watch window  View watches you have set up in VBA. A watch is an expression
that evaluates as a program executes. This facility allows you to watch the value
change without having to reexecute it manually, as you do in the Immediate win-
dow.

l	 Locals window View the values of all local variables and objects.

Note
For a view of the Immediate window, see Figure A2-1. The Immediate window is
displayed at the bottom of the VBA environment.

The Code Window
When you double-click a file in the Project window, a new window opens in the main
area of the screen. If you selected Module, ClassModule, or ThisOutlookSession, the
Code window is displayed. You use this window to add code to Outlook.

The Object Window
If you double-click a form in the Project window, the Object window opens, displaying
a graphical view of the form. To display the code for that form, do one of the following:

l	 Double-click the form or a control on it.

l	 Right-click the form entry in the Project window and choose View Code.

l	 Choose View, Code.

VBA Toolbars
You can use three special toolbars when building VBA applications. Most of the func-
tions available by clicking toolbar buttons are also available on a menu and are usually
accessible through a shortcut key combination as well.

l	 The Debug toolbar gives you easy access to the debugging tools.

A
rticle 2

24	 Article 2  Using VBA in Outlook

l	 The Edit toolbar contains the tools that make you more productive when writing
code.

l	 The UserForm toolbar aids in building VB forms.

Understanding the Outlook Object Model
Once you’re comfortable with the VBA environment, it’s time to have a look around
Outlook’s object model. If you’re familiar with object models in other Office applica-
tions, you’ll notice that the Outlook object model is slightly different. This is a result, for
the most part, of the relatively late inclusion of VBA and the different role that Outlook
as an application plays. Whereas other Office applications such as Word and Excel are
frameworks within which other objects (documents, workbooks, and sheets) are hosted
and manipulated, Outlook is very much an application in its own right.

An entire book could be written about the more than 30 objects and collections in the
Outlook object model. This section gives only an introduction to the key objects and
collections that are required to start developing applications. Use the Microsoft Visual
Basic Help, accessed from within the VBA Editor by pressing F1, to find out about the
other objects in the Outlook object model.

Here is a brief look at some key objects:

l	 Items  The basic units of information in Outlook. An e-mail message, an appoint-
ment on your calendar, and a contact entry are all examples of items.

l	 Folders  The basic storage units. Folders contain items. Outlook has many folders,
such as the Inbox, Sent Items, and Tasks folders.

l	 Explorers  The visual representation of the items in a folder. Outlook uses Ex-
plorers to display items. Examples of Explorers are the e-mail pane associated
with the Inbox and the daily calendar view you see when you select the Calendar
folder. Any one folder can be associated with a number of Explorers. For example,
the Calendar folder has several Explorers so that you can display calendar items
in different ways.

l	 Inspectors  The Outlook forms used to display an item. Inspectors are to items
what Explorers are to folders: that is, the graphical Outlook representation of the
information.

These objects are explained more fully in the next section. Before looking at these im-
portant Outlook objects in more detail, however, it’s important to understand what is
meant by the term collection. Some pieces of the object model are flagged as an object
only, and others are flagged as an object and a collection. A collection is a group of
objects that have the same type. For example, your Inbox contains a number of e-mail
messages. Each message is a mail item object, and the Inbox folder contains a collection
of these mail items. You can get at a particular member of a collection by using the Item
method of the collection and giving it an index that is an integer value or a value that

	 	 25

A
rt

ic
le

 2

Understanding the Outlook Object Model

matches the default property of an object in the collection. For example, the following
code returns the second e-mail message in the Inbox:

Set emlSecond = fdrInbox.Items.Item(2)

Alternatively, you can use a name that refers to the object. This example returns the
e-mail folder called Outlook Book in the Folders collection:

Set fdrOutlookBook = myFolders.Item("Outlook Book")

To make the code that displays the second e-mail message work correctly, do the
following:

	 1.	 Start Outlook and choose Tools, Macro, Visual Basic Editor (or press Alt+F11) to
open the VBA Editor.

	 2.	 In the Project window, select Project1 and expand the tree until you see
ThisOutlook- Session.

	 3.	 Select ThisOutlookSession and press F7 to open the Code window.

	 4.	 Enter the following in the Code window:

Sub GetEmailItem()

	 Dim emlSecond As MailItem

 Dim nsMyNameSpace As NameSpace

 Dim fdrInbox As MAPIFolder

 Set nsMyNameSpace = Application.GetNamespace("MAPI")

 Set fdrInbox = nsMyNameSpace.GetDefaultFolder(olFolderInbox)

 Set emlSecond = fdrInbox.Items.Item(2)

 MsgBox "Second e-mail : " & vbCrLf & vbCrLf & _

 emlSecond.Subject & vbCrLf & emlSecond.Body

End Sub

	 5.	 Go back to the main Outlook window and choose Tools, Macro, Macros.

	 6.	 Select ThisOutlookSession.GetEmailItem and click the Run button. A dialog box
opens, containing the e-mail message.

Application, Namespaces, and Folders
At the core of the Outlook object model is the Application object, referred to as the root
object because the rest of the hierarchy grows from it. The Application object provides ac-
cess to all other Outlook objects. If you’re accessing the Outlook object hierarchy from
an external application, you must create an instance of the Application object before you
can access any other objects. If you’re working in Outlook, an instance of the Applica-
tion object is always in existence; to access it, you use the Application keyword.

Although the Application object gives you access to many fundamental building block
objects in Outlook, you must create an instance of the Namespace object if you want to
access Outlook data. The Namespace object is an abstract root for Outlook data sources,

A
rticle 2

26	 Article 2  Using VBA in Outlook

which means that although you don’t use it directly, it provides access to the objects
below it in the object tree. Currently, the only data source supported is Messaging
Application Programming Interface (MAPI), which allows access to all Outlook data
stored in the user’s mail files. To get at the Namespace object of the Outlook application,
use the GetNameSpace method of the Application object:

Application.GetNamespace("MAPI")

As you know, information in Outlook is maintained in folders. Some folders, such as
Inbox, Outbox, and Sent Items, contain mail items; other folders contain other types
of items. After obtaining an instance of the Namespace object, you can easily connect to
any folders in Outlook. The Namespace object has a GetDefaultFolder method that takes
a parameter of type olDefaultFolders. Type olDefaultFolders represents one of the default
Outlook folders and can be any of the constants shown in Table A2-1.

Table A2-1  olDefaultFolders Constants

Constant Purpose

olFolderCalendar Returns a folder containing all calendar items

olFolderContacts Returns a folder containing all contact items

olFolderDeletedItems Returns a folder containing all deleted mail items

olFolderDrafts Returns a folder containing all draft mail items

olFolderInbox Returns a folder containing all Inbox mail items

olFolderJournal Returns a folder containing all journal items

OlFolderNotes Returns a folder containing all note items

OlFolderOutbox Returns a folder containing all Outbox mail items

OlFolderSentMail Returns a folder containing all sent mail items

olFolderTasks Returns a folder containing all task items

OlPublicFoldersAllPublicFolders Returns a folder containing all public folder items

For example, you can use the following code to create an object that represents all con-
tact items:

Dim fdrContacts As Outlook.MAPIFolder

Set fdrContacts = Application.GetNamespace("MAPI") _

	 .GetDefaultFolder(olFolderContacts)

The fdrContacts variable has been declared as a MAPIFolder and assigned the Contacts
folder. You could instead declare an Application object and a Namespace object as well,
but unless you’re going to use them repeatedly, it’s just as efficient to use the defined
Application property and the GetNamespace method call.

	 	 27

A
rt

ic
le

 2

Understanding the Outlook Object Model

Efficient Use of the Application and Namespace Objects

If you want to retrieve a number of folders to work with, the following code is efficient
because it retrieves an Application object and a Namespace object once and then uses
them repeatedly:

Dim objApplication As Outlook.Application

Dim objNameSpace As Outlook.NameSpace

Dim fdrContacts As Outlook.MAPIFolder

Dim fdrNotes as Outlook.MAPIFolder

Set objApplication = Application

Set objNameSpace = objApplication.GetNamespace("MAPI")

Set fdrContacts = objNameSpace.GetDefaultFolder(olFolderContacts)

Set fdrNotes = objNameSpace.GetDefaultFolder(olFolderNotes)

'<Insert code here to work with the Contacts and Notes folders>

Set objApplication = Nothing

Set objNameSpace = Nothing

Set fdrContacts = Nothing

Set fdrNotes = Nothing

The following steps guide you through creating code that sets up objects for the Notes
and Calendar folders and then allows you to display contents from within each folder:

	 1.	 Start Outlook and choose Tools, Macro, Visual Basic Editor (or press Alt+F11) to
open the VBA Editor.

	 2.	 In the Project window, select Project1 and expand the tree until you see the
heading ThisOutlookSession.

	 3.	 Select ThisOutlookSession and press F7 to open the Code window.

	 4.	 Enter the following code in the Code window:

Sub ContactsAndNotes()

Dim objApplication As Outlook.Application

Dim objNameSpace As Outlook.NameSpace

Dim fdrContacts As Outlook.MAPIFolder

Dim fdrNotes As Outlook.MAPIFolder

Set objApplication = Application

Set objNameSpace = objApplication.GetNamespace("MAPI")

Set fdrContacts = _ objNameSpace.GetDefaultFolder(olFolderContacts)

Set fdrNotes = _ objNameSpace.GetDefaultFolder(olFolderNotes)

MsgBox fdrNotes.Name & " (" & fdrNotes.Parent & ")"

MsgBox fdrContacts.Name & " (" & fdrContacts.Parent & ")"

Set objApplication = Nothing

Set objNameSpace = Nothing

Set fdrContacts = Nothing

Set fdrNotes = Nothing

End Sub

	 5.	 Go back to the main Outlook window and choose Tools, Macro, Macros.

	 6.	 Select ThisOutlookSession.ContactsAndNotes and click Run. Two dialog boxes are
displayed. The first contains the name of the Notes folder followed by the name of
its parent folder; the second contains the name of the Contacts folder followed by
the name of its parent folder.

A
rticle 2

28	 Article 2  Using VBA in Outlook

Explorers, Inspectors, and Items
So far, you have been introduced to the Outlook objects required to access data in
Outlook. An item is one piece of Outlook data. For example, an appointment on your
calendar is stored in Outlook as an appointment item. When you use Outlook to look
at items in folders, you’re actually using an Explorer object for that particular item type.
Outlook provides different Explorers for the different types of items. If you use the Out-
look interface to look at Article 2 Using VBA in Outlook A29 Part 9: Developing Custom
Forms and Applications your calendar, contacts, notes, and journal items, you can see
how markedly different the Explorers for the various items are.

The Application object contains a collection of Explorers that represent all the different
Explorers available in Outlook. A number of methods are available for retrieving a spe-
cific Explorer object from Outlook:

l	 Use the Item method of the Explorers collection.

l	 Use the ActiveExplorer method, which returns the currently active Explorer in
Outlook, if there is one:

Dim expActive As Outlook.Explorer

Set expActive = Application.ActiveExplorer()

l	 For a specific folder, use the GetExplorer method to return an instance of the Ex-
plorer for that folder:

Dim expContacts as Outlook.Explorer

Set expContacts = fdrContacts.GetExplorer

After you have an Explorer object, you can display that Explorer by calling the Activate
method:

expContacts.Activate

Whereas the Explorer object is used to display a collection of items, an Inspector is
used to display a specific item. You can think of an Inspector as the form you see when
you look at a particular type of item. The ability to access Inspectors in code is useful if
you want to create your own item and then allow your user to customize it. As with the
Explorers, a collection of Inspectors is associated with the Application object. You can
retrieve a specific Inspector in a number of ways:

l	 If an Inspector is open, a call to the ActiveInspector method returns that Inspec-
tor. You can access details of the item displayed in the Inspector by using the Cur-
rentItem method:

Dim insActive As Outlook.Inspector

Dim itmCurrent As Object

Set insActive = Application.ActiveInspector

Set itmCurrent = insActive.CurrentItem

	 	 29

A
rt

ic
le

 2

Understanding the Outlook Object Model

l	 You can access the Inspector associated with an item by using the GetInspector
method:

Dim insAppointments As Outlook.Inspector

Dim itmAppointment As Outlook.AppointmentItem

Set insAppointments = itmAppointment.GetInspector

After you have an Inspector object, you can display it and its associated item by calling
the Activate method:

insAppointments.Activate

An alternative to creating an Inspector object is to create a new item and then call the
item’s Display method to display the item and thus the item’s Inspector:

Dim fdrCalendar As Outlook.MAPIFolder

Dim itmAppointment As Outlook.AppointmentItem

Set fdrCalendar = Application.GetNamespace("MAPI").GetDefaultFolder(olFolderCalendar)

Set itmAppointment = fdrCalendar.Items.Add

With itmAppointment

	 .Subject = "Custom Appointment generated from Code"

	 .Body = "Created in code and then displayed for you to edit"

	 .Display

End With

To make the code that displays Explorers and Inspectors work, follow these steps:

	 1.	 Start Outlook and choose Tools, Macro, Visual Basic Editor (or press Alt+F11) to
open the VBA Editor.

	 2.	 In the Project window, select Project1 and expand the tree until you see
ThisOutlook- Session.

	 3.	 Select ThisOutlookSession and press F7 to open the Code window.

	 4.	 Enter the following code in the Code window:

Sub ShowExplorers()

 Dim objApplication As Outlook.Application

 Dim objNameSpace As Outlook.NameSpace

 Dim fdrContacts As Outlook.MAPIFolder

 Dim expContacts As Outlook.Explorer

 Set objApplication = Application

 Set objNameSpace = objApplication.GetNamespace("MAPI")

 Set fdrContacts = objNameSpace.GetDefaultFolder(olFolderContacts)

 Set expContacts = fdrContacts.GetExplorer

 expContacts.Activate

 Set objApplication = Nothing

 Set objNameSpace = Nothing

 Set fdrContacts = Nothing

 Set expContacts = Nothing

End Sub

A
rticle 2

30	 Article 2  Using VBA in Outlook

Sub ShowContactsInspector()

 Dim itmContact As Outlook.ContactItem

 Dim insContact As Outlook.Inspector

 Dim fdrContacts As Outlook.MAPIFolder

 Set fdrContacts = GetNamespace("MAPI").GetDefaultFolder(olFolderContacts)

 Set itmContact = fdrContacts.Items.Add

 With itmContact

 .FirstName = "Auto"

 .LastName = "Created"

 .Body = "Created using the GetInspector method of an item"

 End With

 Set insContact = itmContact.GetInspector

 insContact.Activate

 Set itmContact = Nothing

 Set insContact = Nothing

 Set fdrContacts = Nothing

End Sub

Sub ShowAppointmentInspector()

 Dim fdrCalendar As Outlook.MAPIFolder

 Dim itmAppointment As Outlook.AppointmentItem

 Set fdrCalendar = GetNamespace("MAPI").GetDefaultFolder(olFolderCalendar)

 Set itmAppointment = fdrCalendar.Items.Add

 With itmAppointment

 .Subject = "Custom Appointment generated from Code"

 .Body = "Displayed by using the Display method of the item"

 .Display

 End With

 Set fdrCalendar = Nothing

 Set itmAppointment = Nothing

End Sub

	 5.	 Go back to the main Outlook window and choose Tools, Macro, Macros.

	 6.	 Select one of the three new functions you have just built (ThisOutlookSession.
ShowExplorers, ThisOutlookSession.ShowContactsInspector, or ThisOutlookSession.
ShowAppointmentInspector) and click Run. ShowExplorers displays the Contacts
Explorer; ShowContactsInspector displays the Contacts Inspector, which allows you
to add a new contact; and ShowAppointmentInspector displays the Appointment
Inspector, which allows you to enter a new calendar appointment.

	 	 31

A
rt

ic
le

 2

Understanding the Outlook Object Model

Troubleshooting
Your macro doesn’t show up

If you’ve written a macro in VBA, and it doesn’t appear when you open the Macro dialog
box (press Alt+F8 from the main Outlook window), you can perform a number of checks:

l	 Only Sub procedures appear in the Macro dialog box. Make sure that the proce-
dures you’ve written begin with Sub <name> rather than Function <name>.

l	 The Sub procedures must be public. If your procedure is declared as Private Sub
<name>, it will not appear.

l	 Only Sub procedures declared in either the ThisOutlookSession module or a code
module can be seen in the Macro dialog box. Even public Sub procedures declared
in classes cannot be seen, as you must instantiate the class to use them. The same
is true of Sub procedures declared in forms.

Creating an Outlook Application with VBA
Now that you have seen how the VBA Editor works and how the Outlook object model
allows you to interact with Outlook, it’s time to discuss how you can use this knowl-
edge to build an application in Outlook. You can enhance Outlook in many ways by
developing a custom Outlook application. One way is to use the features of Outlook to
perform tasks that are not specifically Outlook tasks but can be implemented in an Out-
look interface. For example, you might enhance the Outlook calendar system so that
users could record information—in your company’s time-entry system—about the work
they perform. If users already record their appointments for the day using the calendar,
you could add custom application code that examines this information and exports it
as data for your time-entry system, which means that users wouldn’t have to enter the
information twice.

Another way to benefit from building custom Outlook applications is to automate tasks
in Outlook that would otherwise require users to perform a significant amount of work.
For example, users often have hundreds of contacts stored in their copy of Outlook. If
they deal with large companies, they might have many contacts for a single company. If
that company rebrands itself with a new name, all the contacts for the company would
need to be updated.

The rest of this chapter looks at adding custom Outlook functionality to automate the
process involved in the example just mentioned. The application consists of a number
of elements:

l	 Outlook data-access functions to manipulate contact details

l	 Two custom forms for entering information and reviewing details

l	 A custom toolbar and button to give the user access to the functionality

l	 A printing function so that users can review the information

A
rticle 2

32	 Article 2  Using VBA in Outlook

Accessing Outlook Data
One of the main reasons for adding custom VBA code to Outlook is to allow access to
some of the data stored in Outlook. Using the objects described earlier, you can easily
access data stored in Outlook and then utilize it in another form. In this example, you
need to update the company name of all contacts from a specific company because the
company has rebranded itself.

The following code has two strings that represent the original company name and
its new name. For each item where the company name matches the strFrom variable,
change the name to the string contained in strTo and call the Save method of the item:

Public Sub UpdateCompanyName(ByRef strFrom As String, ByRef strTo As String)

	 Dim fdrContacts As Outlook.MAPIFolder

	 Dim objContactItem as Outlook.ContactItem 'Create an instance of the Contacts

	 folder.

	 Set fdrContacts = Application.GetNamespace("MAPI") _

		 .GetDefaultFolder(olFolderContacts) 'Loop through all contact items checking

		 the CompanyName and 'changing it if necessary.

	 For Each objContactItem In fdrContacts.Items

	 If objContactItem.CompanyName = strFrom Then

	 objContactItem.CompanyName = strTo

	 objContactItem.Save

	 End If

	 Next

End Sub

The preceding method looks at every contact item individually. This is not very effi-
cient, however, especially if you have a large number of contacts. To improve efficiency,
try using the following code in place of the For…Each loop. Rather than checking every
item, this code uses the Restrict method of the Items collection of the folder object,
which lets you apply a filter to the items before working with them. In this case, you
should include only items in which the CompanyName property is equal to the value of
the strFrom variable passed to the procedure. For a contacts list of 400 items, this re-
duces the processing time from 4 seconds to 1 second:

'Loop through the appropriate Contact items changing the Company Name.

For Each objContactItem In _

	 fdrContacts.Items.Restrict("[CompanyName] = '" & strFrom & "'")

	 objContactItem.CompanyName = strTo

	 objContactItem.Save

Next

Adding a Form
The procedure in the preceding section converts one string value to another. One way
to find out what these values are is to ask the user by adding a custom form to the ap-
plication. To add a form to the project, right-click in the Project window and choose In-
sert, UserForm. The new form is displayed along with its properties and the Toolbox of
controls. Add controls to the form until it looks like the form shown in Figure A2-3.

	 	 33

A
rt

ic
le

 2

Creating an Outlook Application with VBA

Figure A2-3. Use this VBA form to tell the program the original and changed name of the
company.

Add the following code to the form’s Code window. It calls the Load function to instan-
tiate the form and passes the strFrom and strTo variables to the UpdateCompanyName
procedure:

Dim bContinue as Boolean

Public Function Load(strFrom As String, strTo As String) As Boolean

	 'Initialize the cancel boolean.

	 bContinue = True

	 BuildComboList 'Show the form.

	 frmCompanyNameChange.Show

	 If bContinue Then

	 strFrom = cmbFrom

	 strTo = txtTo

	 End If

	 Load = bContinue

End Function

This code maintains a bContinue Boolean value that stores information about whether
to continue processing code when the form exits. It is also responsible for calling a
function to fill the combo box with current company names and for displaying the
form. The code to build the combo box list of existing companies follows:

Private Sub BuildComboList()

	 Dim fdrContacts As Outlook.MAPIFolder

	 Dim objContact As Outlook.ContactItem

	 Dim strCompanyName As String 'Create an instance of the Contacts folder.

	 Set fdrContacts = Application.GetNamespace("MAPI") _

	 .GetDefaultFolder(olFolderContacts)

	 fdrContacts.Items.Sort "[CompanyName]", False 'Loop through the contact items

	 extracting unique company names.

	 For Each objContact In fdrContacts.Items

	 If Trim(objContact.CompanyName) <> Trim(strCompanyName) Then

	 cmbFrom.AddItem

		 objContact.CompanyName

	 	strCompanyName = objContact.CompanyName

	 End If

	 Next

End Sub

A
rticle 2

34	 Article 2  Using VBA in Outlook

This code uses the Sort method of the folder’s Items collection to arrange the company
names in order. This permits the function to loop through everything and discard du-
plicate values.

Finally, to allow you to execute the function you’ve just created from within Outlook,
add the following procedure, which is associated with the toolbar button. This proce-
dure calls the Load method of the CompanyNameChange form and then calls the Update-
CompanyName procedure to change the company name:

Public Sub ChangeCompany()

	 Dim strFrom As String

	 Dim strTo As String

	 If frmCompanyNameChange.Load(strFrom, strTo) Then

		 UpdateCompanyName strFrom, strTo

	 End If

End Sub

Creating Custom Toolbar Buttons
Now that you’ve written some code, you need a way to let users access the functions.
Some of this can be accomplished automatically by events that occur within Outlook,
but often you need to add elements to the main Outlook interface to allow users to
execute a piece of the code. A great way to do this is to add command bars and toolbar
buttons to the Outlook application.

Two options are available for customizing command bars. The first is to add and change
the command bars from the Outlook interface, as demonstrated in Chapter 26, “Cus-
tomizing the Outlook Interface.” This is a good technique if the changes you’re making
are to your own copy of Outlook and they are permanent.

The second technique is to add the command bars using VBA. This gives you greater
control over when the toolbars are added and removed and is particularly useful if you
want a command bar or toolbar buttons to appear only at specific times. To add a com-
mand bar to the Outlook interface, you can use the following code:

Dim tlbCustomBar As CommandBar

Set tlbCustomBar = Application.ActiveExplorer.CommandBars _

 .Add(Name:="Custom Applications", Position:=msoBarTop, _

 Temporary:=True)

tlbCustomBar.Visible = True

This code declares an object of type CommandBar that will be used locally to perform
commands on the command bar. To create a new command bar, you use the Add
method of the CommandBars collection; this is a property of an Explorer object. To cus-
tomize the new command bar, you can pass a number of parameters to the Add method.
Temporary:=True tells the command bar to exist only as long as Outlook is open. If you
were to close Outlook and reopen it again without rerunning this procedure, the com-
mand bar would no longer exist.

	 	 35

A
rt

ic
le

 2

Creating an Outlook Application with VBA

After you’ve added a command bar to the environment, you also need to add buttons.
Follow three basic steps when adding buttons to a command bar:

	 1.	 Add the button to the command bar.

	 2.	 Associate the button with a function.

	 3.	 Format the button.

To add a button to the command bar, use the following code:

Dim btnNew As CommandBarButton

Set btnNew = tlbCustomBar.Controls.Add(Type:=msoControlButton)

You can associate a button with either the operation of any other button or menu in
Outlook or with a custom function you’ve written in VBA. To associate the button with
a built-in function, you must pass another parameter to the Add method:

Set btnNew = tlbCustomBar.Controls.Add(Type:=msoControlButton, _

 Id:=Application.CommandBars("Edit").Controls("Paste").ID)

This example adds a button to the custom toolbar that will perform the Paste function.
The ID property takes an integer value, which in this case is retrieved from an existing
control; you can achieve the same result by using id:=22.

If you want to allow the toolbar button to call a custom VBA procedure, you must set
the OnAction property. Ensure that your function is declared as public and then enter
the following code after creating the button to associate it with the named function:

Set btnNewCustom = _

 tlbCustomBar.Controls.Add(Type:=msoControlButton)

btnNewCustom.OnAction = "ChangeCompany"

This code associates the new button with a procedure called ChangeCompany.

Finally, when adding a button, you can format it by setting its style, giving it a caption,
and perhaps giving it an icon. Buttons can have many styles that determine how they
are displayed. To change the style, use the Style property:

btnNewCustom.Style = msoButtonIconAndCaption

To add a caption, use the Caption property. The Caption property specifies the text that
is displayed on the button (if the chosen button style has a caption):

btnNewCustom.Caption = "Change Company Name"

Printing
As a final enhancement to the process of changing the company name for all contacts
of that company, you can implement some print functionality. This will allow the us-
ers to view all the contacts that will be affected before the operation takes place and
will give them the option to print a list of names, an individual contact detail, or all the
contact details.

A
rticle 2

36	 Article 2  Using VBA in Outlook

When using code to print information from Outlook, remember that all print methods
use the default printer of the machine on which they are being performed. If there is
no default printer or if the printer is unavailable, an error occurs. For this example, you
can create the VBA form shown in Figure A2-4.

Figure A2-4. This form allows users to see and print details of all the contacts affected by the
company name change.

The list box contains a list of the contact names affected by the company name change.
The buttons allow the user to print the list (by printing the form), to print contact de-
tails for one contact, or to print all contacts. To print the form, you use the form’s Print-
Form method. Place the following code in the button click event handler. Me refers to
the current form:

Me.PrintForm

The following function prints contact information. This code takes a contact name as a
string and then uses the Find method of the Contacts folder to return a ContactItem ob-
ject. The PrintOut method of the item is used to print the object:

Private Sub PrintContact(strContactFullName As String)

	 Dim fdrContacts As Outlook.MAPIFolder

	 Dim objContactItem As Outlook.ContactItem

	 Dim strFullName As String 'Create an instance of the Contacts folder.

	 Set fdrContacts = Application.GetNamespace("MAPI") _

 .GetDefaultFolder(olFolderContacts)

	 Set objContactItem = _

 fdrContacts.Items.Find _

 ("[FullName] = '" & strContactFullName & "'") objContactItem.PrintOut

End Sub

	 	 37

A
rt

ic
le

 2

Creating an Outlook Application with VBA

To complete this form, use the following code to fill the list box with relevant items:

Public Sub LoadList(strCompany As String)

	 Dim fdrContacts As Outlook.MAPIFolder

	 Dim objContactItem As Object

	 Dim i As Integer

	 Dim arrContacts() As String

	 'Create an instance of the Contacts folder

	 Set fdrContacts = Application.GetNamespace("MAPI") _

 .GetDefaultFolder(olFolderContacts)

	 For Each objContactItem In fdrContacts.Items _

	 .Restrict("[CompanyName] = '" & strCompany & "'")

		 If TypeOf objContactItem Is Outlook.ContactItem Then

		 i = i + 1

		 ReDim Preserve arrContacts(2, i)

	 End If

	 	arrContacts(0, i - 1) = objContactItem.FullName

	 Next

	 lstAffectedContacts.Column = arrContacts

End Function

This function again creates a folder using the Restrict method, but this time it loops
through the returned contacts and builds an array of contact names that can be used as
the list for the list box.

To add code that changes the names of contacts for a company, follow these steps:

	 1.	 Start Outlook and choose Tools, Macro, Visual Basic Editor (or press Alt+F11) to
open the VBA Editor.

	 2.	 In the Projects window, select Project1.

	 3.	 Choose Insert, Module to add a custom module to the project.

	 4.	 Select the new module in the Project window, and then go to the Properties
window. (Press F4 to show the window if it is not visible.)

	 5.	 Change the module name to basChangeCompanyName.

	 6.	 Press F7 to open the Code window for the module.

	 7.	 Enter the following code in the Code window:

Public Sub UpdateCompanyName(ByRef strFrom As String, ByRef strTo As String)

	Dim fdrContacts As Outlook.MAPIFolder

	Dim objContactItem As Outlook.ContactItem

	'Create an instance of the Contacts folder

	Set fdrContacts = Application.GetNamespace("MAPI") _

 .GetDefaultFolder(olFolderContacts)

A
rticle 2

38	 Article 2  Using VBA in Outlook

	'Loop through the appropriate Contact items changing the Company Name

	For Each objContactItem In _

		 fdrContacts.Items.Restrict("[CompanyName] = '" & _

		 strFrom & "'")

		 objContactItem.CompanyName = strTo

		 objContactItem.Save

	 Next

End Sub

Public Function ChangeCompany()

	 Dim strFrom As String

 	Dim strTo As String

 	If frmCompanyNameChange.Load(strFrom, strTo) Then

 	UpdateCompanyName strFrom, strTo

 End If

End Function

Sub AddToolbar()

	 Dim tlbCustomBar As CommandBar

 	Dim btnNew As CommandBarButton

 	Dim btnNewCustom As CommandBarButton

 	Set tlbCustomBar = Application.ActiveExplorer _

	 .CommandBars _

 .Add(Name:="Custom Applications", _

	 Position:=msoBarTop, Temporary:=True)

	 tlbCustomBar.Visible = True

	 Set btnNew = _

	 tlbCustomBar.Controls.Add(Type:=msoControlButton)

	 Set btnNew = _

	 tlbCustomBar.Controls.Add(Type:=msoControlButton, _

 	 ID:=ActiveExplorer.CommandBars("Edit") _

	 .Controls("Paste").ID)

	 Set btnNewCustom = _

	 tlbCustomBar.Controls.Add(Type:=msoControlButton)

 	btnNewCustom.OnAction = "ChangeCompany"

 	btnNewCustom.Style = msoButtonIconAndCaption

 	btnNewCustom.Caption = "Change Company Name"

End Sub

	 8.	 Add a custom form to the project by choosing Insert, UserForm.

	 9.	 Drag four label controls, a combo box control, a text box control, and two buttons
to this form. Refer back to Figure 44-3 to see how to arrange them and change the
captions for these controls as appropriate. Name them as follows:

l	 Name the combo box control cmbFrom.

l	 Name the text box control txtTo.

l	 Name the OK button cmdOK.

l	 Name the Cancel button cmdCancel.

	 10.	 Name the form frmCompanyNameChange.

	 	 39

A
rt

ic
le

 2

Creating an Outlook Application with VBA

	 11.	 Press F7 to switch from Form view to Code view, and then enter the following
code in the Code window:

Dim bContinue As Boolean

Public Function Load(strFrom As String, strTo As String) As Boolean

	 'Initialize the cancel boolean.

	 bContinue = True

	 BuildComboList

	 'Show the form

 	frmCompanyNameChange.Show

	 If bContinue Then

 strFrom = cmbFrom

	 strTo = txtTo

 End If

	 Load = bContinue

End Function

Private Sub BuildComboList()

 	Dim fdrContacts As Outlook.MAPIFolder

 	Dim objContact As Outlook.Object

 	Dim strCompanyName As String

 	'Create an instance of the Contacts folder.

 	Set fdrContacts = Application.GetNamespace("MAPI") _

 .GetDefaultFolder(olFolderContacts)

 	fdrContacts.Items.Sort "[CompanyName]", False

 	'Loop through the contact items extracting unique company names

 	For Each objContact In fdrContacts.Items

 	If TypeOf objContact Is Outlook.ContactItem Then

	 If Trim(objContact.CompanyName) <> Trim(strCompanyName) _

	 Then

		 cmbFrom.AddItem

		 objContact.CompanyName strCompanyName = objContact.CompanyName

	 End If

 End If

 Next

End Sub

Private Sub cmdCancel_Click()

	 bContinue = False

	 Unload Me

End Sub

Private Sub cmdOK_Click()

	 bContinue = True

	 Unload Me

End Sub

	 12.	 Add a second custom form to the project by choosing Insert, UserForm.
A

rticle 2

40	 Article 2  Using VBA in Outlook

	 13.	 Drag a list box control and five buttons to this form. Arrange them and change
their captions so that they look like the form shown in Figure A2-4. Name them
as follows:

l	 Name the list box control lstAffectedContacts.
l	 Name the Print List button cmdPrintList.
l	 Name the Print Contact button cmdPrintContact.
l	 Name the Print All button cmdPrintAll.
l	 Name the Cancel button cmdCancel.
l	 Name the OK button cmdOK.

	 14.	 Name the form frmPrintContacts.

	 15.	 Press F7 to switch from Form view to Code view, and then enter the following
code in the Code window:

Private Sub cmdCancel_Click()

 Unload Me

End Sub

Private Sub cmdOK_Click()

 Unload Me

End Sub

Private Sub cmdPrintAll_Click()

	 Dim i As Integer

	For i = 0 To lstAffectedContacts.ListCount - 1

 	PrintContact lstAffectedContacts.List(i)

 Next i

End Sub

Private Sub cmdPrintContact_Click()

	 PrintContact lstAffectedContacts

End Sub

Private Sub cmdPrintList_Click()

 Me.PrintForm

End Sub

Private Sub PrintContact(strContactFullName As String)

 	Dim fdrContacts As Outlook.MAPIFolder

 	Dim objContactItem As Outlook.ContactItem

 	Dim strFullName As String

 	'Create an instance of the Contacts folder.

 	Set fdrContacts = Application.GetNamespace("MAPI") _

 .GetDefaultFolder(olFolderContacts) Set objContactItem = _

 fdrContacts.Items.Find("[FullName] = '" & _

 strContactFullName & "'")

 	objContactItem.PrintOut

 	Set objContactItem = Nothing

End Sub

	 	 41

A
rt

ic
le

 2

Creating an Outlook Application with VBA

Public Sub LoadList(strCompany As String)

	Dim fdrContacts As Outlook.MAPIFolder

	Dim objContactItem As Outlook.ContactItem

	 Dim i As Integer

	Dim arrContacts() As String

	'Create an instance of the Contacts folder

	Set fdrContacts = Application.GetNamespace("MAPI") _

 .GetDefaultFolder(olFolderContacts)

	For Each objContactItem In fdrContacts.Items _

 .Restrict("[CompanyName] = '" & strCompany & "'")

 	If TypeOf objContactItem Is Outlook.ContactItem Then

	 i = i + 1

	 ReDim Preserve arrContacts(2, i)

	 arrContacts(0, i - 1) = objContactItem.FullName

	 End If

 Next

 	lstAffectedContacts.Column = arrContacts

End Sub

Public Function Load(strCompany As String)

 LoadList strCompany

	 'Show the form.

	 frmPrintContacts.Show

End Function

	 16.	 Add another button to the frmCompanyNameChange form with the caption
View Contacts and the name cmdViewContacts. You use this button to open the
second form.

	 17.	 Double-click View Contents to open the Code window, and enter the following
code:

Private Sub cmdViewContacts_Click()

	frmPrintContacts.Load cmbFrom

End Sub

	 18.	 Go back to the main Outlook window and choose Tools, Macro, Macros. Select
AddToolbar from the list and click Run. Two new toolbar buttons should now
be visible in Outlook. One has a Paste icon and the other is labeled Change
Company Name.

	 19.	 Click the second button, and your first form is displayed.

	 20.	 Select a company in the box, type the new company name in the text box, and
then click OK. The company names of all contacts are changed.

A
rticle 2

42	 Article 2  Using VBA in Outlook

