

Praise for

More About Software
Requirements:

Thorny Issues and Practical Advice
“A must-have—Weigers goes well beyond aphorisms with practical insights for everyone
involved in the requirements process. This book is an experience-based, insightful discussion
of what the software requirements expert ought to know to get better at his or her job. It’s the
book you should read after whatever book you read to get an introduction to the topic of soft-
ware requirements.

There’s a whole lot of reality in this relatively small volume. There is a section on ‘Managing
Scope Creep,’ and another on ‘The Fuzzy Line Between Requirements and Design,’ that are
worth the price of the book just because of the light they shine on some particularly difficult
issues. I like this book. Its author speaks with experience and authority, in a readable way,
with lots of nice illuminating anecdotes.”

—Robert L. Glass, Publisher/Editor, The Software Practitioner; Visiting Professor, Griffith
University, Australia

“In an easy-to-read format, More About Software Requirements offers practical answers to the
most vexing requirements problems faced by analysts and project managers. An essential
companion to Wiegers’s Software Requirements, it cuts to the chase with real-world wisdom for
practitioners. Use this book to find the bottom-line advice you need to succeed with your
requirements efforts.”

—Ellen Gottesdiener, EBG Consulting; Author, Requirements by Collaboration and Software
Requirements Memory Jogger

“Karl has done it again, he has captured the difficult requirement questions, provided sensible
solutions, and shown us the related pitfalls.

If you do anything with software requirements you will find answers to your difficult ques-
tions clearly addressed and solution pros and cons plainly delineated.”

—Ivy Hooks, Compliance Automation, Inc.

“Sage advice from a requirements master. And, fortunately, Wiegers is a great writer, too. Pro-
fessionals who take requirements seriously—and we all should take requirements seriously—
must read this book.”

—Norm Kerth, Principal, Elite Systems

“If you have requirements problems (and who doesn’t), this book will help. More About
Software Requirements is filled with pragmatic down-to-earth advice. Wiegers helps the entire
project team—project managers, developers, testers, and writers, not just the requirements
analysts—understand what’s happening with their requirements and how to fix those prob-
lems. Make this book required reading for your whole project team.”

—Johanna Rothman, President of Rothman Consulting Group, Inc.; Coauthor, Behind
Closed Doors: Secrets of Great Management; Author, Hiring the Best Knowledge Workers,
Techies & Nerds: The Secrets and Science of Hiring Technical People

“Karl Wiegers has added to the treasure trove of advice in Software Requirements, Second
Edition, by addressing some of the trickiest and most controversial issues in requirements
engineering. I get asked questions in the areas covered in More About Software Requirements all
the time.

The advice is sound; the writing is clear. This is a very useful, practical book.”

—Erik Simmons, Requirements Engineering Program Lead, Corporate Quality Network,
Intel Corporation

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2006 by Karl Wiegers

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by
any means without the written permission of the publisher.

Library of Congress Control Number 2005936071

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWE 0 9 8 7 6 5 4 3

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send
comments to mspinput@microsoft.com.

Microsoft, Excel, and Microsoft Press are either registered trademarks or trademarks of Microsoft Corpora-
tion in the United States and/or other countries. Other product and company names mentioned herein may be
the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided with-
out any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers,
or distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly
by this book.

Acquisitions Editor: Ben Ryan
Project Editor: Devon Musgrave
Copy Editor: Michelle Goodman
Indexer: Brenda Miller

Body Part No. X11-66734

v

Contents at a Glance

Part I On Essential Requirements Concepts
1 Requirements Engineering Overview .3

2 Cosmic Truths About Software Requirements . 11

Part II On the Management View of Requirements
3 The Business Value of Better Requirements. 21

4 How Long Do Requirements Take? . 29

5 Estimating Based on Requirements. 33

Part III On Customer Interactions
6 The Myth of the On-Site Customer. 51

7 An Inquiry, Not an Inquisition . 57

8 Two Eyes Aren’t Enough . 69

Part IV On Use Cases
9 Use Cases and Scenarios and Stories, Oh My! . 77

10 Actors and Users. 85

11 When Use Cases Aren’t Enough. 89

Part V On Writing Requirements
12 Bridging Documents . 103

13 How Much Detail Do You Need? . 105

14 To Duplicate or Not to Duplicate . 113

15 Elements of Requirements Style . 117

16 The Fuzzy Line Between Requirements and Design 129

Part VI On the Requirements Process
17 Defining Project Scope . 137

18 The Line in the Sand . 147

19 The Six Blind Men and the Requirements . 153

vi Contents at a Glance

Part VII On Managing Requirements
20 Handling Requirements for Multiple Releases 165

21 Business Requirements and Business Rules . 171

22 Measuring Requirements . 177

23 Exploiting Requirements Management Tools . 183

vii

Table of Contents

Preface . xiii

Part I On Essential Requirements Concepts

1 Requirements Engineering Overview .3

“Requirement” Defined . 3

Different Types of Requirements . 4

Business Requirements . 5

User Requirements . 5

Functional Requirements . 6

System Requirements. 6

Business Rules . 7

Quality Attributes . 7

External Interfaces . 7

Constraints. 7

Requirements Engineering Activities . 7

Looking Ahead . 9

2 Cosmic Truths About Software Requirements . 11

Requirements Realities . 11

Requirements Stakeholders. 14

Requirements Specifications . 16

Part II On the Management View of Requirements

3 The Business Value of Better Requirements. 21

Tell Me Where It Hurts. 21

What Can Better Requirements Do for You? . 23

The Investment . 25

The Return . 26

An Economic Argument . 28

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

viii Table of Contents

4 How Long Do Requirements Take? . 29

Industry Benchmarks. 29

Your Own Experience . 30

Incremental Approaches . 31

Planning Elicitation . 32

5 Estimating Based on Requirements. 33

Some Estimation Fundamentals . 33

Estimation Approaches . 35

Goals Aren’t Estimates . 37

Estimating from Requirements . 37

Measuring Software Size. 38

Story Points . 40

Use Case Points . 41

Testable Requirements . 45

The Reality of Estimation . 47

Part III On Customer Interactions

6 The Myth of the On-Site Customer. 51

User Classes and Product Champions. 51

Surrogate Users . 53

Now Hear This . 54

7 An Inquiry, Not an Inquisition . 57

But First, Some Questions to Avoid. 57

Questions for Eliciting Business Requirements . 59

User Requirements and Use Cases . 60

Questions for Eliciting User Requirements. 62

Open-Ended Questions. 65

Why Ask Why? . 66

8 Two Eyes Aren’t Enough . 69

Improving Your Requirements Reviews . 69

Table of Contents ix

Part IV On Use Cases

9 Use Cases and Scenarios and Stories, Oh My! . 77

Use Cases . 77

Scenarios . 79

User Stories . 82

10 Actors and Users. 85

11 When Use Cases Aren’t Enough. 89

The Power of Use Cases. 89

Project Type Limitations . 90

Event-Response Tables . 91

Use Cases Don’t Replace Functional Requirements. 93

Use Cases Reveal Functional Requirements . 96

Part V On Writing Requirements

12 Bridging Documents . 103

13 How Much Detail Do You Need? . 105

Who Makes the Call? . 105

When More Detail Is Needed . 107

When Less Detail Is Appropriate . 108

Implied Requirements . 110

Sample Levels of Requirements Detail . 110

14 To Duplicate or Not to Duplicate . 113

Cross-Referencing. 114

Hyperlinks . 114

Traceability Links. 115

Recommendation . 116

15 Elements of Requirements Style . 117

I Shall Call This a Requirement . 117

System Perspective or User Perspective? . 119

Parent and Child Requirements . 120

What Was That Again? . 121

Complex Logic . 121

Negative Requirements . 122

x Table of Contents

Omissions . 124

Boundaries . 125

Avoiding Ambiguous Wording . 126

16 The Fuzzy Line Between Requirements and Design 129

Solution Ideas and Design Constraints. 130

Solution Clues. 131

Part VI On the Requirements Process

17 Defining Project Scope . 137

Vision and Scope . 137

Context Diagram . 138

Use Case Diagram . 140

Feature Levels . 141

Managing Scope Creep . 143

18 The Line in the Sand . 147

The Requirements Baseline . 148

When to Baseline . 149

19 The Six Blind Men and the Requirements . 153

Limitations of Natural Language. 154

Some Alternative Requirements Views . 154

Why Create Multiple Views? . 157

Selecting Appropriate Views . 159

Reconciling Multiple Views. 161

Part VII On Managing Requirements

20 Handling Requirements for Multiple Releases 165

Single Requirements Specification . 166

Multiple Requirements Specifications. 167

Requirements Management Tools. 168

21 Business Requirements and Business Rules . 171

Business Requirements . 171

Business Rules. 172

Business Rules and Software Requirements. 173

Table of Contents xi

22 Measuring Requirements . 177

Product Size. 177

Requirements Quality . 178

Requirements Status. 179

Requests for Changes. 180

Effort. 181

23 Exploiting Requirements Management Tools . 183

Write Good Requirements First . 183

Expect a Culture Change . 184

Choose a Database-Centric or Document-Centric Tool . 184

Don’t Create Too Many Requirement Types or Attributes . 185

Train the Tool Users . 186

Assign Responsibilities . 186

Take Advantage of Tool Features . 186

References . 189

Index . 195

What do you think of this book?
We want to hear from you!

Microsoft is interested in hearing your feedback about this publication so we can
continually improve our books and learning resources for you. To participate in a brief
online survey, please visit: www.microsoft.com/learning/booksurvey/

xiii

Preface

Requirements engineering continues to be a hot topic in the software industry. More and
more development organizations realize that they cannot succeed unless they get the software
requirements right. Too often, the people responsible for leading the requirements process are
ill-equipped for this challenging role. They do the best they can, but it’s an uphill climb with-
out adequate training, coaching, resources, and experience.

As a consultant, trainer, and author, I receive many questions from practitioners about how to
handle difficult requirements issues. Certain questions come up over and over again. Alas,
there aren’t simple answers for many of these. Many books on requirements engineering have
been published during the last several years, including my own, Software Requirements, Second
Edition (Wiegers 2003a). These books provide solid guidance on the challenges of require-
ments elicitation, analysis, specification, validation, and management. However, additional
requirements topics are not covered well by the existing books. Also, some books contain
guidance that I believe is ill-founded.

This book addresses some of these recurrent questions that puzzle and frustrate require-
ments analysts, such as the following:

■ “How do I keep too much design from being embedded in the requirements?” (I heard
this question again the day before I wrote these words.)

■ “When should I baseline my requirements?”

■ “How can I convince my managers that we need to do a better job on our project
requirements?”

■ “What are some good questions to ask in requirements interviews?”

■ “Are use cases all I need for documenting the requirements?”

■ “We can’t get our customers to review the requirements specification. What should I
do?”

■ “What are some good metrics our organization should collect about our requirements?”

■ “We’re collecting requirements for multiple releases concurrently. How should I store
those?”

■ “How can I use requirements to estimate how long it will take to finish the project?”

■ “How can I write better requirements?”

I’ve addressed some other topics in this book simply because little has been written about
them. For instance, everyone talks about project scope, but the current books on require-
ments engineering say little about how to actually define scope. See Chapter 17, “Defining
Project Scope,” for some recommendations. Still other topics are included because I don’t see

xiv Preface

practitioners using some of the established techniques that can help them do a better job. As
an example, nearly all requirements specifications I see consist entirely of written text—there’s
not a picture to be found. However, the skilled analyst should have a rich tool kit of techniques
available for representing requirements information. Text is fine in many cases, but other sorts
of requirements “views” sometimes are more valuable. Chapter 19, “The Six Blind Men and
the Requirements,” addresses this topic.

The suggestions I propose in this book augment the “good practices” approach I took in my
earlier book. Many cross-references are provided to chapters in Software Requirements, Second
Edition, marked with the icon shown to the left of this paragraph. As with all such advice, you
need to think about how best to apply these suggestions to your specific situation. Organiza-
tions are different, projects are different, and cultures are different, so techniques that work in
one situation might not be just right for another. To illustrate the application of these prac-
tices, I’ve included many examples of actual project experiences, marked with the “true sto-
ries” icon shown to the left here.

Anyone involved with defining or understanding the requirements for a new or enhanced
software product will find this book useful. The primary audience consists of those team
members who perform the role of the requirements analyst on a software development
project, be this their full-time job or just something they do once in awhile. Part II of this book,
“On the Management View of Requirements,” is focused on aspects of requirements engineer-
ing that are of particular interest to project managers and senior managers. Customer repre-
sentatives who work with the software team will also find certain chapters valuable,
particularly those in Part III, “On Customer Interactions,” and Part IV, “On Use Cases.”

I should point out that all the practices I recommend assume that you’re dealing with reason-
able people. Sometimes an unreasonable customer will insist on a specific solution that isn’t
a good fit for the problem. Unreasonable funding sponsors might impose their own inappro-
priate preferences, overriding the thoughtful decisions made by actual user representatives.
Senior managers or influential customers sometimes demand impossible delivery dates for an
overly constrained project. If you face such a situation, try educating the difficult people to
help them understand the risks posed by the approaches they are demanding and the value of
using a better approach. People who appear unreasonable often are just uninformed. Some-
times, though, they truly are unreasonable. I can’t help you much with that.

You may download the templates and other process assets described in this book from the
Process Impact Web site, http://www.processimpact.com. Feel free to share your experiences
with me at kwiegers@acm.org.

I hope you’ll find this book a valuable supplement to your other resources for software
requirements engineering. But don’t just read the chapters and say, “That’s interesting.” Set
yourself a personal goal of finding at least three new practices that you want to try the next
few times you wear your analyst hat.

SR
2E

Preface xv

Acknowledgments

First, I thank the many people in my seminars who have asked some of these challenging
questions over the past several years, as well as the readers who have sent me e-mails with
their own thorny requirements issues. I’m grateful for the review input provided by Wayne
Allen, Michael Beshears, Steven Davis, Chris Fahlbusch, Lynda Fleming, Betty Luedke,
Jeannine McConnell, Terry Nooyen-Coyner, Debbie Shyne, David Standerford, Donna Swaim,
and Robin Tucker. The many comments I received from reviewers Ellen Gottesdiener, Andre
Gous, and Shannon Jackson were especially valuable. A special thanks goes to Erik Simmons,
who provided incisive suggestions on every chapter and greatly helped me sharpen the mes-
sage. Thanks also to the Microsoft Learning editorial and production teams, including acqui-
sitions editor Ben Ryan, copy editor Michelle Goodman, proofreaders Becka McKay and Sandi
Resnick, and artist Joel Panchot. I especially enjoyed the opportunity to work with project
editor Devon Musgrave again.

And finally, a big thank-you once again to my ever-cheerful wife, Chris Zambito. Fooled you
this time, hon!

11

Chapter 2

Cosmic Truths About Software
Requirements

In this chapter:

Requirements Realities . 11

Requirements Stakeholders . 14

Requirements Specifications . 16

As every consultant knows, the correct answer to nearly any question regarding software is, “It
depends.” This isn’t just a consultant’s cop-out—it’s true. The best advice for how to proceed
in a given situation depends on the nature of the project, its constraints, the culture of the
organization and team, the business environment, and other factors. But having worked with
many organizations, I’ve made some observations about software requirements that really do
seem to be universally applicable. This chapter presents some of these “cosmic truths” and
their implications for the practicing requirements analyst.

Requirements Realities

Cosmic Truth #1: If you don’t get the requirements right, it doesn’t
matter how well you execute the rest of the project.

Requirements are the foundation for all the project work that follows. I don’t mean the initial
SRS you come up with early in the project, but rather the full set of requirements knowledge
that is developed incrementally during the course of the project.

The purpose of a software development project is to build a product that provides value to
a particular set of customers. Requirements development attempts to determine the mix of
product capabilities and characteristics that will best deliver this customer value. This under-
standing evolves over time as customers provide feedback on the early work and refine their
expectations and needs. If this set of expectations isn’t adequately explored and crafted into
a set of product features and attributes, the chance of satisfying customer needs is slim.

As mentioned in the previous chapter, requirements validation is one of the vital subcompo-
nents of requirements development, along with elicitation, analysis, and specification. Valida-
tion involves demonstrating that the specified requirements will meet customer needs. One
useful technique for validating requirements is to work with suitable customer representatives

12 Part I: On Essential Requirements Concepts

to develop user acceptance criteria. These criteria define how customers determine whether
they’re willing to pay for the product or to begin using it to do their work. User acceptance
criteria typically stipulate that the product allows the users to properly perform their most
significant tasks, handles the common error conditions, and satisfies the users’ quality
expectations. User acceptance criteria aren’t a substitute for thorough system testing. They
do, however, provide a necessary perspective to determine whether the requirements are
indeed right.

Cosmic Truth #2: Requirements development is a discovery and
invention process, not just a collection process.

People often talk about “gathering requirements.” This phrase suggests that the requirements
are just lying around waiting to be picked like flowers or to be sucked out of the users’ brains
by the analyst. I prefer the term requirements elicitation to requirements gathering. Elicitation
includes some discovery and some invention, as well as recording those bits of requirements
information that customer representatives and subject matter experts offer to the analyst.
Elicitation demands iteration. The participants in an elicitation discussion won’t think of
everything they’ll need up front, and their thinking will change as the project continues.
Requirements development is an exploratory activity.

The analyst is not simply a scribe who records what customers say. The analyst is an investi-
gator who asks questions that stimulate the customers’ thinking, seeking to uncover hidden
information and generate new ideas. (See Chapter 7, “An Inquiry, Not an Inquisition.”) It’s
fine for an analyst to propose requirements that might meet customer needs, provided that
customers agree that those requirements add value before they go into the product (Robertson
2002). An analyst might ask a customer, “Would it be helpful if the system could do
<whatever idea he has>?” The customer might reply, “No, that wouldn’t do much for us.” Or
the customer might reply, “You could do that? Wow, that would be great! We didn’t even think
to ask for that feature, but if you could build it in, it would save our users a lot of time.” This
creativity is part of the value that the analyst adds to the requirements conversation. Just be
careful that analysts and developers don’t attempt to define a product from the bottom up
through suggested product features, rather than basing the requirements on an understand-
ing of stakeholder goals and a broad definition of success.

Cosmic Truth #3: Change happens.

It’s inevitable that requirements will change. Business needs evolve, new users or markets are
identified, business rules and government regulations are revised, and operating environ-
ments change over time. In addition, the business need becomes clearer as the key stakehold-
ers become better educated about what their true needs are.

The objective of a change control process is not to inhibit change. Rather, the objective is to
manage change to ensure that the project incorporates the right changes for the right reasons.
You need to anticipate and accommodate changes to produce the minimum disruption and

Chapter 2: Cosmic Truths About Software Requirements 13

cost to the project and its stakeholders. However, excessive churning of the requirements after
they’ve been agreed upon suggests that elicitation was incomplete or ineffective—or that agree-
ment was premature. (See Chapter 18, “The Line in the Sand.”)

To help make change happen, establish a change control process. You can download a sample
from my Web site, http://www.processimpact.com/goodies.shtml. When I helped to implement
a change control process in an Internet development group at Eastman Kodak Company, the
team members properly viewed it as a structure, not as a barrier (Wiegers 1999). The group
found this process invaluable for dealing with its mammoth backlog of change requests.

Every project team also needs to determine who will be evaluating requested changes and
making decisions to approve or reject them. This group is typically called the change (or con-
figuration) control board, or CCB. A CCB should write a charter that defines its composition,
scope of authority, operating procedures, and decision-making process. A template for such a
charter is available from http://www.processimpact.com/goodies.shtml.

Nearly every software project becomes larger than originally anticipated, so expect your
requirements to grow over time. According to consultant Capers Jones (2000), requirements
growth typically averages 1 to 3 percent per month during design and coding. This can have
a significant impact on a long-term project. To accommodate some expected growth, build
contingency buffers—also known as management reserve—into your project schedules
(Wiegers 2002b). These buffers will keep your commitments from being thrown into disarray
with the first change that comes along.

I once spoke with a manager on a five-year project regarding requirements growth. I pointed
out that, at an average growth rate of 2 percent per month, his project was likely to be more
than double the originally estimated size by the end of the planned 60-month schedule. The
manager agreed that this was a possibility. When I asked if his plans anticipated this growth
potential, he gave the answer I expected: No. I’m highly skeptical that this project will be com-
pleted without enormous cost and schedule overruns.

When you know that requirements are uncertain and likely to change, use an incremental or
iterative development life cycle. Don’t attempt to get all the requirements “right” up front and
freeze them. Instead, specify and baseline the first set of requirements based on what is known
at the time. A baseline is a statement about the state of the requirements at a specific point in
time, such as “We believe that these requirements will meet customer needs and are a suitable
foundation for proceeding with design and construction.” Then implement that fraction of
the product, get some customer feedback, and move on to the next slice of functionality. This
is the intent behind agile development methodologies, the spiral model, iterative prototyping,
evolutionary delivery, and other incremental approaches to software development.

Finally, recognize that change always has a price. Even the act of reviewing a proposed change
and rejecting it consumes time. Software people need to educate their project stakeholders so
they understand that, sure, we can make that change you just requested, and here’s what it’s
going to cost. Then the stakeholders can make appropriate business decisions about which
desired changes should be incorporated and at what time.

14 Part I: On Essential Requirements Concepts

Requirements Stakeholders

Cosmic Truth #4: The interests of all the project stakeholders intersect
in the requirements process.

Consultant Tim Lister once defined project success as “meeting the set of all requirements
and constraints held as expectations by key stakeholders.” A stakeholder is an individual or
group who is actively involved in the project, who is affected by the project, or who can influ-
ence its outcome. Figure 2-1 identifies some typical software project stakeholder groups. Certain
stakeholders are internal to the project team, such as the project manager, developers, testers,
and requirements analysts. Others are external, including customers who select, specify, or
fund products; users who employ the systems; compliance certifiers; auditors; and marketing,
manufacturing, sales, and support groups. The requirements analyst has a central communi-
cation role, being responsible for interacting with all these stakeholders. Further, the analyst
is responsible for seeing that the system being defined will be fit for use by all stakeholders,
perhaps working with a system architect to achieve this goal.

Figure 2-1 Some typical software project stakeholders.

At the beginning of your project, identify your key stakeholder groups and determine which
individuals will represent the interests of each group. You can count on stakeholders having
conflicting interests that must be reconciled. They can’t all have veto power over each other.
You need to identify early on the decision makers who will resolve these conflicts, and these
decision makers must determine what their decision-making process will be. As my colleague
Christian Fahlbusch, a seasoned project manager, points out, “I have found that there is usu-
ally one primary decision maker on a project, oftentimes the key sponsor within the organiza-
tion. I don’t rest until I have identified that person, and then I make sure he is always aware of
the project’s progress.”

Other
Stakeholders

Developer

omer

ser

Proj
Man

Test

Analyst

Chapter 2: Cosmic Truths About Software Requirements 15

Cosmic Truth #5: Customer involvement is the most critical contributor
to software quality.

Various studies have confirmed that inadequate customer involvement is a leading cause of
the failure of software projects. Customers often claim they can’t spend time working on
requirements. However, customers who aren’t happy because the delivered product missed
the mark always find plenty of time to point out the problems. The development team is going
to get the customer input it needs eventually. It’s a lot cheaper—and a lot less painful—to get
that input early on, rather than after the project is ostensibly done.

Customer involvement requires more than a workshop or two early in the project. Ongoing
engagement by suitably empowered and enthusiastic customer representatives is a critical
success factor for software development. Following are some good practices for engaging cus-
tomers in requirements development:

■ Identify user classes. Customers are a subset of stakeholders, and users are a subset of
customers. You can further subdivide your user community into multiple user classes
that have largely distinct needs (Gause and Lawrence 1999). Unrepresented user classes
are likely to be disappointed with the project outcome.

■ Select product champions. You need to determine who will be the literal voice of the
customer for each user class. I call these people product champions. Ideally, product
champions are actual users who represent their user-class peers. See Chapter 6, “The
Myth of the On-Site Customer,” for more about product champions.

■ Build prototypes. Prototypes provide opportunities for user representatives to interact
with a simulation or portion of the ultimate system. (See Chapter 13 of Software Require-
ments, Second Edition.) Prototypes are far more tangible than written requirements spec-
ifications. However, prototypes aren’t a substitute for documenting the detailed
requirements.

■ Agree on customer rights and responsibilities. People who must work together rarely
discuss the nature of their collaboration. The analyst should negotiate with the cus-
tomer representatives early in the project to agree on the responsibilities each party has
with respect to the requirements process. An agreed-upon collaboration strategy is a
strong contributor to the participants’ mutual success. See Chapter 2 of Software Require-
ments, Second Edition for some suggestions of customer rights and responsibilities in the
requirements process.

Cosmic Truth #6: The customer is not always right, but the customer
always has a point.

It’s popular in some circles to do whatever any customer demands, claiming “The customer is
always right.” Of course, the customer is not always right! Sometimes customers are in a bad
mood, uninformed, or unreasonable. If you receive conflicting input from multiple customers,
which one of those customers is “always right”?

SR
2E

SR
2E

16 Part I: On Essential Requirements Concepts

The customer may not always be right, but the analyst needs to understand and respect what-
ever point each customer is trying to make through his request for certain product features or
attributes. The analyst needs to be alert for situations in which the customer could be in the
wrong. Rather than simply promising anything a customer requests, strive to understand the
rationale behind the customer’s thinking and negotiate an acceptable outcome. Following are
some examples of situations in which a customer might not be right:

■ Presenting solutions in the guise of requirements.

■ Failing to prioritize requirements or expecting the loudest voice to get top priority.

■ Not communicating business rules and other constraints, or trying to get around them.

■ Expecting a new software system to drive business-process changes.

■ Not supplying appropriate representative users to participate in requirements elicitation.

■ Failing to make decisions when analysts or developers need issues resolved.

■ Not accepting the need for tradeoffs in both functional and nonfunctional requirements.

■ Demanding impossible commitments.

■ Not accepting the cost of change.

Requirements Specifications

Cosmic Truth #7: The first question an analyst should ask about a
proposed new requirement is, “Is this requirement in scope?”

Anyone who’s been in the software business for long has worked on a project that has suffered
from scope creep. It is normal and often beneficial for requirements to grow over the course of
a project. Scope creep, though, refers to the uncontrolled and continuous increase in require-
ments that makes it impossible to deliver a product on schedule.

To control scope creep, you need to have the project stakeholders agree on a scope definition,
a boundary between the desired capabilities that lie within the scope for a given product
release and those that do not. (See Chapter 17, “Defining Project Scope,” for some scope-
definition techniques.) Then, whenever some stakeholder proposes a new functional require-
ment, feature, or use case, the analyst can ask, “Is this in scope?” To help answer this question,
some project teams write their scope definition on a large piece of cardstock, laminate it, and
bring it to their requirements elicitation discussions.

If a specific requirement is deemed out of scope one week, in scope the next, then out of scope
again later, the project’s scope boundary is not clearly defined. And that’s an open invitation
to scope creep.

Chapter 2: Cosmic Truths About Software Requirements 17

Cosmic Truth #8: Even the best requirements document cannot—
and should not—replace human dialogue.

Even the best requirements specification won’t contain every bit of information the develop-
ers and testers need to do their jobs. There will always be tacit knowledge that the stakehold-
ers assume (rightly or wrongly) that other participants already know, along with the explicit
knowledge that must be documented in the SRS. Analysts and developers will always need to
talk with knowledgeable users and subject matter experts to refine details, clarify ambiguities,
and fill in the blanks. This is the rationale behind having some key customers, such as prod-
uct champions, work intimately with the analysts and developers throughout the project. The
person performing the role of requirements analyst (even if this is one of the developers)
should coordinate these discussions to make sure that all the participants reach the same
understanding so that the pieces all fit together properly. A written specification is still valu-
able and necessary, though. A documented record of what stakeholders agreed to at a point in
time is more reliable than human memory.

You need more detail in the requirements specifications if you aren’t going to have opportuni-
ties for frequent conversations with user representatives and other decision makers. (See
Chapter 13, “How Much Detail Do You Need?”) A good example of this is when you’re out-
sourcing the implementation of a requirements specification that your team created. Expect to
spend considerable time on review cycles to clarify and agree on what the requirements mean.
Also expect delays in getting questions answered and decisions made, which can slow down
the entire project. This very issue was a major contributing factor in a lawsuit I know of
between a software package vendor and a customer (Wiegers 2003b). The vendor allowed no
time in the schedule for review following some requirements elicitation workshops, planning
instead to begin construction immediately. Months later, many key requirements issues had
not yet been resolved and the actual project status didn’t remotely resemble the project plan.

Cosmic Truth #9: The requirements might be vague, but the product
will be specific.

Specifying requirements precisely is hard! You’re inventing something new, and no one is
exactly sure what the product should be and do. People sometimes are comfortable with
vague requirements. Customers might like them because it means they can redefine those
requirements later on to mean whatever they want them to mean at any given moment. Devel-
opers sometimes favor vague requirements because they allow the developers to build what-
ever they want to build. This is all great fun, but it doesn’t lead to high-quality software.

Ultimately, you are building only one product, and someone needs to decide just what that
product will be. If customers and analysts don’t make the decisions, the developers will be
forced to. This is a sign that the key stakeholders are abdicating their responsibility to make
requirements-level decisions, leaving those decisions to people who know far less about the
problem.

18 Part I: On Essential Requirements Concepts

Don’t use uncertainty as an excuse for lack of precision. Acknowledge the uncertainty and
find ways to address it, such as through prototyping. A valuable adjunct to simply specifying
each requirement is to define fit criteria that a user or tester could employ to judge whether the
requirement was implemented correctly and as intended (Robertson and Robertson 1999).
Attempting to write such fit criteria will quickly reveal whether a requirement is stated pre-
cisely enough to be verifiable.

Cosmic Truth #10: You’re never going to have perfect requirements.

Requirements are never finished or complete. There is no way to know for certain that you
haven’t overlooked some requirement, and there will always be some requirements that the
analyst won’t feel it is necessary to record. Rather than declaring the requirements “done” at
some point, define a baseline. (See Chapter 18.) Once you’ve established a baseline, follow
your change control process to modify the requirements, recognizing the implications of mak-
ing changes. It’s folly to think you can freeze the requirements and allow no changes after
some initial elicitation activities.

Striving for perfection can lead to analysis paralysis. Analysis paralysis, in turn, can have a
backlash effect. Stakeholders who have been burned once by a project that got mired in
requirements issues are reluctant to invest in requirements development on their next project.

You don’t succeed in business by writing a perfect SRS. From a pragmatic perspective, require-
ments development strives for requirements that are good enough to allow the team to proceed
with design, construction, and testing at an acceptable level of risk. The risk is the threat of
having to do expensive and unnecessary rework. Have team members who will need to base
their own work on the requirements review them to judge whether they provide a suitably
solid foundation for that subsequent work. Keep this practical goal of “good enough” in mind
as you pursue your quest for quality requirements.

89

Chapter 11

When Use Cases Aren’t Enough

In this chapter:

The Power of Use Cases . 89

Project Type Limitations . 90

Event-Response Tables . 91

Use Cases Don’t Replace Functional Requirements . 93

Use Cases Reveal Functional Requirements . 96

Use cases are recognized as a powerful technique for exploring user requirements. The great
benefit they provide is to bring a user-centric and usage-centered perspective to requirements
elicitation discussions. The analyst employs use cases to understand what the user is trying to
accomplish and how he envisions his interactions with the product leading to the intended
user value. Putting the user at the center is much better than focusing on product features,
menus, screens, and functions that characterize traditional requirements discussions. And the
structure that use cases provide is far superior to the nearly worthless technique of asking
users, “What do you want?” or “What are your requirements?”

As with most new software development techniques, use cases have acquired a bit of a mys-
tique, some misconceptions, overblown hype, and polarized camps of enthusiasts who will all
try to teach you the One True Use Case Way. In this chapter, I share my perspectives on when
use cases work well, when they don’t, and what to do when use cases aren’t a sufficient solu-
tion to the requirements problem.

The Power of Use Cases

I’m a strong believer in the use case approach. Use cases are an excellent way to structure the
dialogue with users about the goals they need to accomplish with the help of the system.
Users can relate to and review use cases because the analyst writes them from the user’s point
of view, describing aspects of the user’s business. In my experience, once they get past the
discomfort of trying a new technique, users readily accept the use case method as a way to
explore requirements.

I’m often asked how to write requirements specifications so that users can read and under-
stand them and also so that they contain all the detail that developers need. In many cases,
one requirements representation won’t meet both of these objectives. Users can compre-
hend use cases, but they might balk at reviewing a more detailed functional requirements
specification. Use cases give developers an overall understanding of the system’s behavior

90 Part IV: On Use Cases

that fragments of individual functionality cannot. However, developers usually need consider-
ably more information than use cases provide so that they know just what to build. In many
circumstances, the combination of employing use cases to represent user requirements and a
software requirements specification to contain functional and nonfunctional requirements
meets both sets of needs.

Project Type Limitations

My experience has shown that use cases are an effective technique for many, but not all, types
of projects. Use cases focus on the user’s interactions with the system to achieve a valuable
outcome. Therefore, use cases work great for interactive end-user applications, including Web
sites. They’re also useful for kiosks and other types of devices with which users interact.

However, use cases are less valuable for projects involving data warehouses, batch processes,
hardware products with embedded control software, and computationally intensive applica-
tions. In these sorts of systems, the deep complexity doesn’t lie in the user-system interac-
tions. It might be worthwhile to identify use cases for such a product, but use case analysis
will fall short as a technique for defining all the system’s behavior.

I once worked on a computational program that modeled the behavior of a multi-stage photo-
graphic system. This software used a Monte Carlo statistical simulation to perform many com-
plex calculations and it presented the results graphically to the user. The user-system dialog
needed to set up each simulation run was quite simple. (I know this because I built the user
interface.) The complexity resided behind the scenes, in the computational algorithms used
and the reporting of results. Use cases aren’t very helpful for eliciting the requirements for
these aspects of a system.

Use cases have limitations for systems that involve complex business rules to make decisions
or perform calculations. Consider an airline flight reservation system, one of the classic exam-
ples used to illustrate use cases. Use cases are a fine technique for exploring the interactions
between the traveler and the reservation system to describe the intended journey and the
parameters associated with it. But when it comes to calculating the fare for a specific flight itin-
erary, a use case discussion won’t help. Such calculations are driven by the interaction of
highly complex business rules, not by how the user imagines conversing with the system.

Nor are use cases the best technique for understanding certain real-time systems that involve
both hardware and software components. Think about a complex highway intersection. It
includes sensors in the road to detect cars, traffic signals, buttons pedestrians can press to
cross the street, pedestrian walk signals, and so forth. Use cases don’t make much sense for
specifying a system of this nature. Here are some possible use cases for a highway intersection:

■ A driver wants to go through the intersection.

■ A driver wants to turn left when coming from a particular direction.

■ A pedestrian wants to cross one of the streets.

Chapter 11: When Use Cases Aren’t Enough 91

These approximate use cases, but they aren’t very illuminating. Exploring the interactions
between these actors (drivers and pedestrians) and the intersection-control software system
just scratches the surface of what’s happening with the intersection. The use cases don’t pro-
vide nearly enough information for the analyst to define the functionality for the intersection-
control software.

Use cases aren’t particularly helpful for specifying the requirements for batch processes or
time-triggered functions, either. My local public library’s information system automatically
sends me an e-mail to remind me when an item I’ve borrowed is due back soon. This e-mail is
generated by a scheduled process that checks the status of borrowed items during the night
(the one I received today was sent at 1:06 AM) and sends out notifications. Some analysts
regard “time” to be an actor so that they can structure this system behavior in the form of a
use case. I don’t find that helpful, though. If you know the system needs to perform a time-
triggered function, just write the functional requirements for that function, instead of packaging
it into a contrived use case.

Event-Response Tables

A more effective technique for identifying requirements for certain types of systems is to con-
sider the external events the system must detect. Depending on the state of the system at the
time a given event is detected, the system produces a particular response. Event-response
tables are a convenient way to collect this information (Wiegers 2003a). Events could be sig-
nals received from sensors, time-based triggers (such as scheduled program executions), or
user actions that cause the system to respond in some way. Event-response tables are related
to use cases. In fact, the trigger that initiates a use case is sometimes termed a business event.

The highway intersection system described earlier has to deal with various events, including
these:

■ A sensor detects a car approaching in one of the through lanes.

■ A sensor detects a car approaching in a left-turn lane.

■ A pedestrian presses a button to request to cross a street.

■ One of many timers counts down to zero.

Exactly what happens in response to an external event depends on the state of the system at
the time it detects the event. The system might initiate a timer to prepare to change a light
from green to amber and then to red. The system might activate a Walk sign for a pedestrian
(if the sign currently reads Don’t Walk), or change it to a flashing Don’t Walk (if the sign cur-
rently says Walk), or change it to a solid Don’t Walk (if it’s currently flashing). The analyst
needs to write the functional requirements to specify ways to detect the events and the deci-
sion logic involved in combining events with states to produce system behaviors. Table 11-1
presents a fragment of what an event-response table might look like for such a system. Each
expected system behavior consists of a combination of event, system state, and response.

92 Part IV: On Use Cases

State-transition diagrams and statechart diagrams are other ways to represent this informa-
tion at a higher level of abstraction. Use cases just aren’t enormously helpful in this situation.

Here’s another type of project for which use cases aren’t sufficient. I enjoy watching auto races,
probably because I raced stock cars myself (alas, with little success) as a teenager. Several shop-
ping malls throughout the United States have NASCAR race-car simulators. These consist of
small car bodies mounted on motion-control bases. The customer is a driver in a computer-
controlled simulated race. Each driver’s view of the racetrack is projected on a screen in front of
his car. The driver is racing against whatever other customers happen to be competing in that
race as well as against several simulated drivers that the computer controls. The car body
tilts and sways on its motion-control base during the race in response to the driver’s actions. A
synthesized voice provides information to the driver over a speaker, warning when other cars
are nearby and reporting the driver’s position and how many laps are left in the race. It’s a blast!

Defining the requirements for this complex system of interacting hardware and software com-
ponents demands more than use cases. There aren’t that many use cases for the driver. He can

Table 11-1 Partial Event-Response Table for a Highway Intersection

Event System State Response

Road sensor detects vehicle
entering left-turn lane.

Left-turn signal is red.
Cross-traffic signal is
green.

Start green-to-amber countdown timer
for cross-traffic signal.

Green-to-amber countdown
timer reaches zero.

Cross-traffic signal is
green.

1. Turn cross-traffic signal amber.

2. Start amber-to-red countdown timer.

Amber-to-red countdown
timer reaches zero.

Cross-traffic signal is
amber.

1. Turn cross-traffic signal red.

2. Wait 1 second.

3. Turn left-turn signal green.

4. Start left-turn-signal countdown timer.

Pedestrian presses a specific
walk-request button.

Pedestrian sign is solid
Don’t Walk. Walk-
request countdown
timer is not activated.

Start walk-request countdown timer.

Pedestrian presses walk-
request button.

Pedestrian sign is solid
Don’t Walk. Walk-
request countdown
timer is activated.

Do nothing.

Walk-request countdown
timer reaches zero plus the
amber display time.

Pedestrian sign is solid
Don’t Walk.

Change all green traffic signals to amber.

Walk-request countdown
timer reaches zero.

Pedestrian sign is solid
Don’t Walk.

1. Change all amber traffic signals to red.

2. Wait 1 second.

3. Set pedestrian sign to Walk.

4. Start don’t-walk countdown timer.

Chapter 11: When Use Cases Aren’t Enough 93

press the accelerator and the brake pedal, turn the steering wheel, and shift gears, but these
aren’t truly use cases—they’re events. A great deal of the product’s complexity lies not in the
user interactions but under the hood (literally, in this case). An event-response approach will
go much farther toward understanding the requirements for this kind of system. So although
use cases are valuable for systems in which much of the complexity lies in the interactions
between the user and the computer, they are not effective for some other types of products.

Use Cases Don’t Replace Functional Requirements

One book about use cases states, “To sum up, all functional requirements can be captured as
use cases, and many of the nonfunctional requirements can be associated with use cases”
(Bittner and Spence 2003). I agree with the second part of this sentence but not with the first
part. It is certainly true that use cases are a powerful technique for discovering the functional
requirements for a system being developed. However, this statement suggests that use cases
are the only tool needed for representing a software system’s functionality.

This notion that all functional requirements can fit into a set of use cases and that use cases
contain all the functional requirements for a system appears in many of the books and meth-
odologies that deal with use cases. The thinking seems to be that the use cases are the func-
tional requirements. If the analyst writes good use cases, the developers are supposed to be
able to build the system from that information, along with nonfunctional requirements infor-
mation that’s included in a supplementary specification.1 Nonfunctional requirements, such
as performance, usability, security, and availability goals, typically relate to a specific use case
or even to a particular flow within a use case.

Unfortunately, despite the thousands of students I’ve taught in requirements seminars over
the years, I have yet to meet a single person who has found this pure use case approach to
work! Perhaps some people have successfully done it, but I haven’t met any of them. On the
contrary, dozens of requirements analysts have told me, “We gave our use cases to the devel-
opers and they got the general idea, but the use cases just didn’t contain enough information.
The developers had to keep asking questions to get the additional requirements that weren’t
in the use cases.” I suppose you could argue that they must not have been very good use cases.
But when dozens of people report the same unsatisfactory experience when trying to apply a
particular methodology, I question the methodology’s practicality.

1. There’s an interesting conflict in the current use case literature. Bittner and Spence (2003) provide the follow-
ing definition for supplementary requirements: “Functional or nonfunctional requirements that are traceable to a
particular use case are said to supplement the use case description” (their italics). However, the Unified Software
Development Process, which is heavily use case driven, offers a definition of supplementary requirement that is
directly contradictory: “A generic requirement that cannot be connected to a particular use case…” (Jacobson,
Booch, and Rumbaugh 1999). It’s no wonder practitioners get confused. It’s generally agreed that a supplemental
specification is needed to contain at the very least those nonfunctional requirements that the use cases do not
describe.

94 Part IV: On Use Cases

There are three problems with adhering to this philosophy of use case purity. First, your use
cases must contain all the functional detail that the analysts need to convey to the developers.
That requires writing highly detailed use cases. The sample use cases in some books do
include some complex examples. But elaborate use cases become hard to read, review, and
understand.

The second problem with this approach is that it forces you to invent use cases to hold all the
functional requirements because a use case is the only container you have available to
describe system functionality. However, some system functionality does not fit appropriately
into a use case. I have seen many new use case practitioners struggle to create inappropriate
use cases to hold all the bits of functionality, to no useful end.

Logging in to an ATM or a Web site is an example that illustrates this problem. Bittner and
Spence (2003) provide this good definition of use case:

Describes how an actor uses a system to achieve a goal and what the system does for the
actor to achieve that goal. It tells the story of how the system and its actors collaborate
to deliver something of value for at least one of the actors.

By this definition, logging in to a system is not a legitimate use case because it provides no
value to the person who is logging in. No one logs in to a system and feels as though he
accomplished something as a result. Logging in is a means to an end, a necessary step to being
able to perform use cases that do provide value. Nevertheless, the functionality to permit login
and everything associated with it (such as business rules or integrity requirements regarding
passwords) must be defined somewhere. If you’re using only use cases to capture functional
requirements, you wind up inventing artificial use cases—those that don’t provide user value—
just to have a place to store certain chunks of functionality. This artificiality does not add value
to the requirements development process.

A third shortcoming of the use case–only philosophy is that use cases are organized in a way
that makes good sense to users but not to developers. As Figure 11-1 illustrates, a use case
consists of multiple small packages of information. A typical use case template contains sec-
tions for preconditions, postconditions, the normal flow of events, zero or more alternative
flows (labeled with Alt. in Figure 11-1), zero or more exceptions (labeled with Ex.), possibly
some business rules, and perhaps some additional special requirements.

These small packages are easy to understand and review, but they make it hard for the devel-
oper to see how the pieces fit together. As a developer, I find it more informative to see all the
related requirements grouped together in a logical sequence. Suppose I read a functional
requirement that implements a step in the normal flow. I want to see the requirements dealing
with branch points into alternative flows and conditions that could trigger exceptions imme-
diately following that one functional requirement. I’d like to see the requirements that handle
each business rule in context, juxtaposed with the relevant system functionality.

Chapter 11: When Use Cases Aren’t Enough 95

Figure 11-1 Use case organization (left) differs from SRS organization (right).

As Figure 11-1 illustrates, the functional requirements that come from the various chunks of a
use case can be sprinkled throughout a hierarchically organized SRS. Traceability analysis
becomes important so that you can make sure every functional requirement associated with
the use case traces back to a specific part of the use case. You also want to ensure that every
piece of information in the use case leads to the necessary functionality in the SRS. In short,
the way a use case is organized is different from the way many developers prefer to work.

It gets even more confusing if you’re employing use cases to describe the bulk of the function-
ality but have placed additional functional requirements that don’t relate to specific use cases
into a supplemental specification (Leffingwell and Widrig 2003). This approach forces the
developer to get some information from the use case documentation and then to scour the
supplemental specification for other relevant inputs. Before your analysts impose a particular
requirements-packaging strategy on the developers, have these two groups work together to
determine the most effective ways to communicate requirements information. (See Chapter 12,
“Bridging Documents.”)

My preference is for the analyst to create an SRS as the ultimate deliverable for the developers
and testers. This SRS should contain all the known functional and nonfunctional require-
ments, regardless of whether they came from use cases or other sources. Functional require-
ments that originated in use cases should be traced back to those use cases so that readers and
analysts know where they came from.

Preconditions

Business Rules

Postconditions

Alt.

Ex.

Normal
Flow

96 Part IV: On Use Cases

Use Cases Reveal Functional Requirements

Rather than expecting use cases to contain 100 percent of the system’s functionality, I prefer
to employ use cases to help the analyst discover the functional requirements. That is, the use
cases become a tool rather than being an end unto themselves. Users can review the use cases
to validate whether a system that implemented the use cases would meet their needs. The ana-
lyst can study each use case and derive the functional requirements the developer must imple-
ment to realize the use case in software. I like to store those functional requirements in a
traditional SRS, although you could add them to the use case description if you prefer.

I’m often asked, “Which comes first: use cases or functional requirements?” The answer is use
cases. Use cases represent requirements at a higher level of abstraction than do the detailed
functional requirements. I like to focus initially on understanding the user’s goals so that we
can see how they might use the product to achieve those goals. From that information, the
analyst can derive the necessary functionality that must be implemented so that the users can
perform those use cases and achieve their goals.

Functional requirements—or hints about them—lurk in various parts of the use case. The
remainder of this chapter describes a thought process an analyst can go through to identify
the less obvious functional requirements from the elements of a use case description.

Preconditions

Preconditions state conditions that must be true before the actor can perform the use case.
The system must test whether each precondition is true. However, use case descriptions rarely
state what the system should do if a precondition is not satisfied. The analyst needs to deter-
mine how best to handle these situations.

Suppose a precondition for one use case states, “The patron’s account must be set up for pay-
roll deduction.” How does the system behave if the patron attempts to perform this use case
but his account is not yet set up for payroll deduction? Should the system notify the patron
that he can’t proceed? Or should the system perhaps give the patron the opportunity to regis-
ter for payroll deduction and then proceed with the use case? Someone has to answer these
questions and the SRS is the place to provide the answers.

Postconditions

Postconditions describe outcomes that are true at the successful conclusion of the use case.
The steps in the normal flow naturally lead to certain postconditions that indicate the user’s
goal has been achieved. Other conditions, however, might not be visible to the user and there-
fore might not become a part of a user-centric use case description.

Consider an automated teller machine. After a cash withdrawal, the ATM software needs to
update its record of the amount of cash remaining in the machine by subtracting the amount
withdrawn. Perhaps if the cash remaining drops below a predetermined threshold the system

Chapter 11: When Use Cases Aren’t Enough 97

is supposed to notify someone in the bank to reload the machine with additional money.
I doubt any user will ever convey this information during a discussion of user requirements,
yet the developer needs to know about this functionality.

How can you best communicate this knowledge to the developers and testers? There are two
options. One is to leave the use case at the higher level of abstraction that represents the user’s
view and have the requirements analyst derive the additional requirements through analysis.
The analyst can place those requirements in an SRS that is organized to best meet the devel-
oper’s needs. The second alternative is for the analyst to include those additional details
directly in the use case description. That behind-the-scenes information is not part of the
user’s view of the system as a black box. Instead, you can think of that information as being
white-box details about the internal workings of the use case that the analyst must convey to
the developer.

Normal and Alternative Flows

The functionality needed to carry out the dialogue between the actor and the system is usually
straightforward. Simply reiterating these steps in the form of functional requirements doesn’t
add knowledge, although it might help organize the information more usefully for the devel-
oper. The analyst needs to look carefully at the normal flow and alternative flows to see if
there’s any additional functionality that isn’t explicitly stated in the use case description. For
example, under what conditions should the system offer the user the option to branch down
an alternative flow path? Also, does the system need to do anything to reset itself so that it’s
ready for the next transaction after the normal flow or an alternative flow is fully executed?

Exceptions

The analyst needs to determine how the system could detect each exception and what it
should do in each case. A recovery option might exist, such as asking the user to correct an
erroneous data entry. If recovery isn’t possible, the system might need to restore itself to the
state that existed prior to beginning the use case and log the error. The analyst needs to identify
the functionality associated with such recovery and restore activities and communicate that
information to the developer.

Business Rules

Many use cases are influenced by business rules. The use case description should indicate
which business rules pertain. It’s up to the analyst to determine exactly what functionality the
developer must implement to comply with each rule or to enforce it. These derived functional
requirements should be recorded somewhere (I recommend documenting them in the SRS),
rather than just expecting every developer to figure out the right way to comply with the per-
tinent business rules.

98 Part IV: On Use Cases

Special Requirements and Assumptions

The use case might assume that, for instance, the product’s connection to the Internet is work-
ing. But what if it’s not? The developer must implement some functionality to test for this
error condition and handle it in an appropriate way.

In my experience, the process of having the analyst examine a use case in this fashion to
derive pertinent functional requirements adds considerable value to the requirements devel-
opment process. There’s always more functionality hinted at in the use case than is obvious
from simply reading it. Someone needs to discern this latent functionality. I would prefer to
have an analyst do it rather than a developer. If your developers are sufficiently skilled at
requirements analysis they could carry out this task, but they might not view it as part of their
responsibilities.

I recently spoke to a highly experienced developer who said it was much more helpful to
receive requirements information organized in a structured way from the analyst than to have
to figure out those details on his own. This developer preferred to rely on the analyst’s greater
experience with understanding the problem domain and deriving the pertinent functional
requirements. Not only did this result in better requirements, but it also allowed the developer
to focus his talents and energy where he added the most value—in designing and coding the
software.

My philosophy of employing use cases as a tool to help me discover functional requirements
means that I don’t feel a need to force every bit of functionality into a use case. It also gives me
the option of writing use cases at whatever level of detail is appropriate. I might write some
use cases in considerable detail to elaborate all their alternative flows, exceptions, and special
requirements. I could leave other use cases at a high level, containing just enough information
for me to deduce the pertinent functional requirements on my own. That is, I view use cases
as a means to an end. The functional requirements are that “end,” regardless of where you
choose to store them or whether you even write them down at all.

Deriving functional requirements from the use case always takes place on the journey from
ideas to executable software. The question is simply a matter of who you want to have doing
that derivation and when. (See Chapter 13, “How Much Detail Do You Need?”) If you deliver
only use cases without all the functional detail to developers, each developer must derive the
additional functionality on his own. A developer with little requirements analysis expertise
might overlook some of these requirements. It’s also unlikely that all developers will record
the functional requirements they identify. This makes it hard for testers to know exactly what
they need to test. It also increases the chance that someone will inadvertently fail to imple-
ment certain necessary functionality. If you’re outsourcing construction of the software, you
can’t expect the vendor’s developers to accurately determine the unstated functionality from
a use case description.

You will almost always have additional functional requirements that do not fit nicely into a
particular use case. Earlier in this chapter, I mentioned the example of logging in to a system.

Chapter 11: When Use Cases Aren’t Enough 99

Clearly, that functionality must be implemented, but I don’t consider it to be a use case. You
might also have functional requirements that span multiple use cases. Consider the behavior
the system should exhibit if a required connection to the Internet goes down. The Internet
connection could fail while the user is executing any use case. Therefore, this error condition
doesn’t constitute an exception flow associated with a specific use case. It needs to be detected
and handled in multiple operations. The analyst can place all the functional requirements that
are not associated with or derived from a particular use case into the logically appropriate sec-
tion of the SRS.

As an alternative to creating separate use case and SRS documents, you could select use cases
as the organizing structure for the bulk of the functional requirements in the SRS. IEEE (Insti-
tute of Electrical and Electronics Engineers) Standard 830-1998, “IEEE Recommended Prac-
tice for Software Requirements Specifications,” provides guidance on how to create an SRS
(IEEE 1998). According to this standard, you might organize the functional requirements by
system mode, user class, objects, feature, stimulus (or external event), response, or functional
hierarchy. You could also combine or nest these organizing schemes. You might have func-
tional requirements grouped by stimulus within user class, for example. There is no univer-
sally optimal way to organize your functional requirements. Remember that the paramount
objective is clear communication to all stakeholders who need to understand the require-
ments.

I have found use cases to be a highly valuable technique for exploring requirements on many
types of projects. But I also value the structured software requirements specification as an
effective place to adequately document the functional requirements. Keep in mind that these
documents are simply containers for different types of requirements information. You can just
as readily store use cases, functional requirements, and other types of requirements informa-
tion in the database of a requirements management tool. Just don’t expect use cases to replace
all your other strategies for discovering and documenting software requirements.

195

Index

Numbers
3D function points, estimating, 39

A
A/B construct, avoiding ambiguous language and, 127
abstraction scale, 79, 129, 159
acceptance criteria, user, 11
activity diagrams, 159, 161
actors, 85–88

interaction with use cases, 41–42, 140
naming, 88
primary, 77, 87
secondary, 87

adjusted use case points, 44
adverbs, 63

avoiding ambiguous language, 128
cautions, 128
use cases, 77

agile software development methodologies, 31, 51, 82
airline flight reservation kiosk project, 61
algorithms, 176
alternative flows (of use cases)

additional functionality, 97
vs. exceptions, 80

ambiguity, 121–128
avoiding, 126–128
confusing terminology, 4
natural language, 154

analogy, 36
analysis, 8
analysis models, 138-139, 140, 155, 157, 158, 159–161
analysis paralysis, 18, 30, 161
assumptions, 67, 98
attributes (requirements types), 132, 148, 166, 168,

184–186
attributes (system properties), 4

B
baseline of project requirements, 9, 13, 18, 147–151

checklist for when to establish, 150–151
defined, 147

basic flow (of use cases), 80
batch processes, use case limitations and, 91
behavioral requirements, 6
better requirements, 21–28
blind men fable, 153
bookmarks, 114
boolean logic, ambiguity and, 121
bottom-up estimation, 35, 37

boundary, system, 138-–140
boundary values, ambiguity and, 125
Box, George, 4
bridging documents, 103–104
budgets, requirements baseline and, 149
buffers, contingency, 13, 35, 38, 145, 149
business case document, 137
business events, 91
business objectives, 171–172
business requirements, 5

vs. business rules, 171–172
elicitation questions, 59

business rules, 7, 97, 171–176
defined, 172
elicitation questions, 67
requirements management tools, 115
reuse opportunities, 175
vs. software requirements, 173–172, 176
use case limitations, 90

business rules catalogs, 172
business value of good requirements, 23–25

C
cafeteria ordering system project, 138–142
can, used in writing requirements, 118
case studies. See project case studies
case-management software system project (FBI), 22
CCB (change control board), 13
champions. See product champions
change control board (CCB), 13
change control process, 12, 18, 147, 149
changes, 179–181

measuring change activity, 180
origin of, 181
status of change requests, 181

CHAOS Reports, 21
check-in and check-out procedures (SRS), 166
check-in and check-out version control, 166
checklists

baseline of project requirements, 150–151
requirements documentation reviews, 70

Chemical Tracking System project, 86
child requirements, 120, 177
class diagrams, 160
classes, 185
clients. See customers
code, estimating lines of, 38
commitments, 9
company policies, 172
complex boolean logic, ambiguity and, 121

196

complexity of use cases, 42
computations, business rules and, 176
conditions, ambiguity and, 121
cone of uncertainty, 34
configuration control board (CCB), 13
constraints, 4, 7, 130–133
Construction phase (RUP), 31
consultants, 26
consumers of bridging documents, 103
context diagrams, 138–140, 159

vs. use case diagrams, 140
context-free questions, 65
contingency buffers, 13, 35, 38, 145, 149
cost models, 36
counts, 38, 39
creeping featurism. See scope creep
cross-referencing information, 114
customer is always right adage, 15
customers

cosmic truths and, 14–16
expectations, 11
importance of involvement, 15
on-site, 51–55
project problems and failures, 22
rights and responsibilities, 15

D
data dictionaries, 160
data field definitions, 160
data flow diagrams, 159
databases, storing requirements information in, 115,

148, 184
decision tables and decision trees, 155, 160
defects, cost and causes of, 27
design, 129–133
detail, level of when assessing requirements, 105–111
developers

constraints, 7, 130
ear of the developer (EOD), 55
reactions to use cases, 89, 94
as reviewers, 71
story points, 40
use cases, 93–98
vague requirements, 17, 106

dialog, importance of, 17
dialog maps, 160
documentation, 17, 26

cross-referencing, 114
inspecting, 69–73, 178
requirements baseline, 147
requirements duplication, 113–116
requirements reuse, 88
reviewing, 69–73, 178

document-centric requirements management tools, 184

documents, limitations of, 113–116, 167
downloads

CCB template, 13
change control process sample, 13
current requirements practice self-assessment, 25
project documents templates, 25
requirements documentation reviews checklist, 70
SRS, 167
use cases template, 78
vision and scope documents template, 137, 172

duplicating requirements information, 113

E
ear of the developer (EOD), 55
EFactors (environmental factors), 43–44
effectiveness metric, 179
efficiency metric, 179
effort, 181

estimation equation, 37
story points, 40
use case points, 44

e.g., avoiding ambiguous language and, 126
Elaboration phase (RUP), 31
elicitation, 8, 12, 57–68

asking why, 66–68, 131
planning, 32

entity-relationship diagrams, 160
environmental factors (EFactors), 43–44
EOD (ear of the developer), 55
e-projects, project problems and failures and, 22
estimates, 33–47

facilitating, 23
vs. goals, 37
methods, 35
realities, 47
requirements level of detail, 108

estimating. See estimates
estimation equation, 37
event-response tables, 91–93, 160
events

business rules, 97
external, 91
responses and, 91

exceptions, exception paths, and exception flows (of
use cases), 80, 97

exclusions, 138
expectations, 11
experience, using to estimate future requirements, 30
expert opinion, 36
extensions (of use cases). See alternative flows (of use

cases)
external entities, 138
external interfaces, 7
Extreme Programming methodology, 51, 82

complexity of use cases

197

F
FAA (Federal Aviation Administration) certification,

requirements traceability and, 108
fable of six blind men, 153
favored user classes, 85
FBI, case-management software system project and, 22
FDA (Food and Drug Administration) certification,

requirements traceability and, 108
feature creep. See scope creep
feature levels, 141–142
feature roadmaps, 142
features, 6, 140–141

defined, 141
vs. product vision and project scope, 142

featuritis. See scope creep
Federal Aviation Administration (FAA) certification,

requirements traceability and, 108
Federal Bureau of Investigation, case-management

software system project and, 22
financial business objectives, 171–172
fit criteria, 18
flow of events (of use cases), 79, 80–83
flowcharts, 159, 161
flows, 138

context diagram, 138
use cases, 42–43

Food and Drug Administration (FDA) certification,
requirements traceability and, 108

format descriptions, 159
function points, estimating, 38
functional requirements, 3, 6

aligning with business objectives, 172
associated with features, 6, 141
attributes of, 132, 148, 166, 168, 184–186
example illustrating (home alarm system project),

105, 110–111
measuring, 177
object status, 160
requirements traceability, 108
triggered by business rules, 173–174
vs. use cases, 41, 93–99
user task descriptions, 161
writing, 119–128

G
glossary of software engineering terminology, 147
goal-question-metric (GQM), 177
goals vs. estimates, 37
government regulations, 7, 172, 173, 176
GQM (goal-question-metric), 177

graphical analysis models, 138–139, 140, 155, 157, 158,
159–161

H
happy path (of use cases), 80
hierarchical requirements, 120
home alarm system project, 105, 110–111
human dialog, importance of, 17
hyperlinks, 114, 158

I
i.e., avoiding ambiguous language and, 126
IEEE (Institute of Electrical and Electronics Engineers),

SRS and, 99
IEEE Standard Glossary of Software Engineering

Terminology, 147
implied requirements, 67, 110
Inception phase (RUP), 31
incompleteness in requirements, 124–125
incremental approaches to requirements development,

31
industry benchmarks, 29
industry standards, 7, 172, 173
inspection of requirements documents. See

documentation, inspecting
inspections, 69–73
Institute of Electrical and Electronics Engineers (IEEE),

SRS and, 99
interface specifications, 159
interfaces, external, 7
Internet age, project problems and failures and, 22
inverse requirements, 122
iteration in requirements development, 9
iterative software development, 31, 148

K-L
Karner, Gustav, 41
laws, 172
levels, feature, 141–142
levels of requirements, 5
limitations, product, 138
limitations of requirements documents, 115, 169

M
main course (of use cases), 80
main success scenario (of use cases), 80
management tools. See requirements management tools
marketing requirements document, 137

marketing requirements document

198

mathematical expressions, 157
may, used in writing requirements, 118
measurement. See metrics
metaquestions, 66
metrics, 177–182
might, used in writing requirements, 118
models, analysis, 138–139, 140, 155, 157, 158, 159–161
multimedia technology, multiple requirements views

and, 158
must, used in writing requirements, 118

N
naming

actors, 88
baselines, 147
use cases, 61, 77, 79

NASA projects, cost and schedule overruns and, 24
natural language, 8, 159

alternatives to, 73, 154–157
limitations, 154
user stories, 82

near-synonyms, avoiding ambiguous language and, 126
negative requirements, 122
nonfinancial business objectives, 171–172
nonfunctional requirements, 93, 95

business rules as source of, 174
requirements sizing, 178
use case points and, 434

normal flow (of use cases), 80, 81, 97

O
omissions, 73, 157, 178
on-site customer, 51–55
open-ended questions, 65
outsourcing, 17

requirements level of detail, 107
use cases, 98

P
package solutions, 106, 109–110
parent requirements, 120
PBR (perspective-based reading), for requirements

reviews, 72
peer deskchecks, 71
peer reviews, 69–73
perfection, 18
personas, 54, 85
perspective-based reading (PBR), for requirements

reviews, 72
photographs, multiple requirements views and, 158
Planguage, 119, 161
postconditions, 96
preconditions, 96
predictions, 33

primary actor, 77, 87
primary scenario (of use cases), 80
prioritizing requirements, 23
problems attributable to poor requirements, 22–23
procedure descriptions, 159
procedures, check-in and check-out (SRS), 166
processes, developing, 25
product champions, 15, 51

identifying user classes, 88
implementing requirements reviews, 71

product design, 23
product features. See features
product releases, 147, 165–169
product requirements, 6
product size, 177
product vision, 137, 142
productivity

estimation equation, 37
measuring, 44, 181
project velocity, 40

project case studies
airline flight reservation kiosk, 61
cafeteria ordering system, 138, 140, 141
Chemical Tracking System, 86
FBI case-management software system, 22
home alarm system, 105, 110–111

project charter, 137
project scope, 137–145

defined, 137
exclusions, 138
increasing, 144
limitations, 138
requirements baseline, 147, 148
scope creep, 143–145

project velocity, 40
projects

causes of problems and failures, 21–23
estimation equation, 37
life cycle, 31
requirements development, time required for, 29–32
selecting, 23

pronouns, avoiding ambiguous language and, 126
prototypes, 156

building, 15
user interfaces, 160

Q-R
quality attributes, 5, 7, 110, 185

business rules as source of, 174–175
questions

context-free, 65
for eliciting business requirements, 59–60
for eliciting user requirements, 62–65
open-ended, 65–66
to avoid asking, 57–58

mathematical expressions

199

rationale
behind constraints, 130
behind requirements, 67
requirement attribute, 168, 185, 186

Rational Unified Process (RUP), 31
realities of software requirements, 11–13
real-time systems, 90
releases, 147, 165–169
report layouts, 159
requests for changes, 180
requirements, 3–10. See also functional requirements;

nonfunctional requirements; software
requirements specification (SRS)

baseline for. See baseline of project requirements
as basis for estimates, 37–47
vs. business rules, 173–172, 176
causes of project problems and failures, 21–23
changes in, 12, 21, 22
cosmic truths, 11–18
duplicating in documentation, 113–116
eliciting. See elicitation
grouping into structured lists, 156
implied, 67, 110
importance of getting them right, 11
incompleteness in, 124–125
inverse, 122
level of detail, 105–111
measuring, 177–182
missing, 73, 157, 178
negative, 122
prioritizing, 23
quality assessments, 178
reuse, 88
ROI, 21–28
special, 98
specifying, 17
status tracking, 179
time required for, 29–32
types of, 4–7
views of, 153–161
writing. See writing requirements

requirements baseline. See baseline of project
requirements

requirements creep. See scope creep
requirements development, 7

incremental approaches, 31
time required, 29–32

requirements documents. See documents, limitations
of; requirements management tools, software
requirements specification; vision and scope
document

requirements engineering, 3, 25
activities of, 7–10
ROI, 21
types of requirements, 4–7

requirements information, 5–4

requirements levels, 5
requirements management, 7
requirements management tools, 26, 115, 183–187

multiple software releases, 168–169
requirements baseline document, 148, 168

requirements specification, 3–7
requirements traceability, 108, 156
requirements types, 185
requirements volatility, calculating, 180
resources for further reading

context-free questions, 65
elicitation, 57
IEEE Standard Glossary of Software Engineering

Terminology, 147
management tools, 26
open-ended questions, 65
peer reviews, 69
requirements engineering process, 3
software estimation, 33
testable requirements, 45
word-usage errors, 127
writing requirements, 117

return on investment. See ROI (return on investment)
reusing

business rules, 175
descriptions, 88
requirements documentation, 88

reviewing requirements. See developers, as reviewers;
documentation, reviewing; requirements
specification

reviews, 69–73
rework, 27, 28
roadmaps, feature, 142
ROI (return on investment), 21–28

expectations, 26
measuring, 25

RUP (Rational Unified Process), 31

S
scenarios, 77, 79–82, 161

defined, 80, 82
executing, 81
use cases and, 79–82

scheduling, requirements baseline and, 149
scope, project. See project scope
scope creep, 16, 137, 143–145
screen designs, 156
screen layouts, 160
secondary actors, 87
sequence diagrams, 161
shall, used in writing requirements, 117
should, used in writing requirements, 118
similar-sounding words, avoiding ambiguous language

and, 127

similar-sounding words

200

six blind men fable, 153
size, 177–182

correlating with project effort, 181
estimation equation, 37
measuring, 38–39

software requirements specification (SRS), 5
ambiguity in, 121–128, 154
baseline version of, 148–149
bridging documents, 103–104
check-in and check-out procedures, 166
checklist for reviewing, 70
IEEE recommendations for creating, 99
limitations of, 115, 169
master, 166
multiple product releases and, 165–168
perfection, 18
product releases, 165–169
requirements baseline document, 148
requirements reviews, 72
template, 167
use cases, 95–97

software size, estimating. See size
solutions, focus on, 129–133
sound clips, multiple requirements views and, 158
special requirements, 98
specifications, 8, 16–18
SRS. See software requirements specification (SRS)
staffing, requirements baseline and, 149
stakeholders

cosmic truths, 14–16
defined, 14
requirements baseline, 147
use cases, 77
users, 85–88

Standish Group's CHAOS Reports, 21
statechart (state-transition) diagrams, 91, 158, 159, 160
status tracking of requirements, 179
story points

estimating, 39, 40
requirements sizing, 177

storyboards, 160
structured lists, 156
surrogate users, 53
swimlane diagrams, 159
synonyms, avoiding ambiguous language and, 126
system boundary, 138–140
system requirements, 6

T
tables, storing similar requirements in, 156
technical complexity factors (TFactors), 43–44
technology limitations, 4

templates
CCB charter, 13
downloading, 25
SRS, 167
use cases, 78
vision and scope documents, 137, 172

terminators, 138
terminology, as source of confusion, 4
test cases, 155, 161
testable requirements, 39, 45–47

child requirements, 177
requirements level of detail, 107

testing
performing effectively, 24
requirements level of detail, 107

TFactors (technical complexity factors), 43–44
time constraints, 37
tools

requirements management, 26, 115, 183–187
version control, 166

top-down estimation, 36, 37
traceability, of requirements. See requirements

traceability
traceability links (traces), storing requirements

information in, 115, 186
tracking status of requirements, 179
training, 26, 186
Transition phase (RUP), 31

U
UAW (unadjusted actor weights), 42
UCP. See use case points
UML (Unified Modeling Language)

graphical analysis models, 155
use case diagrams, 87, 140

unadjusted actor weights (UAW), 42
unadjusted use case points (UUCP), 42
unadjusted use case weights (UUCW), 42
uncertainty, cone of, 34
Unified Modeling Language (UML)

graphical analysis models, 155
use case diagrams, 87, 140

usage-centered perspective, 83, 89, 104
use case diagrams, 87, 140, 159
use case points, 41–45

calculating (counting), 41
estimating, 39
limitations, 45
requirements sizing, 177

use case specifications, 161

six blind men fable

201

use cases, 39, 60–62, 77–82, 89–99
actors, 85–88
checklist, 70
defined, 77, 94
functional requirements, 93–99
limitations, 90, 92
merging, 79
multiple requirements views, 157
naming, 61, 77, 79
rating complexity, 42
requirements management tools, 115
requirements reviews, 72
scenarios, 79–82
template for documenting, 78
vs. user stories, 41

user acceptance criteria, 11
user classes, 51, 85

identifying, 15, 88
requirements baseline definition, 151

user interface control descriptions, 160
user representatives. See also user classes

product champions, 51
surrogates for, 53–54

user requirements, 5, 60–65
aligning with business objectives, 172
elicitation questions, 62–65
use cases, 79

user stories, 40, 77, 82–83
defined, 82
splitting into multiple, 82
vs. use cases, 41
user task descriptions, 161

users, 85–88
reactions to use cases, 89, 94
requirements reviews, 71
surrogate, 53

UUCP (unadjusted use case points), 42
UUCW (unadjusted use case weights), 42

V
vagueness in requirements, 17
validation, 9, 11
VCF case-management software system project (FBI),

22
verbs, 61, 63, 77
version control tools, 166
video clips, multiple requirements views and, 158
views, requirements, 153–154
vision and scope documents, 137, 172
vision statement, 137
visual representations of requirements, 155
voice of the customer (VOC), 55, 58

requirements reviews, 71
use cases and user stories, 77–83

W
waterfall software development life cycle, 8
Web sites

Process Impact, 13
requirements management tools, 115
use case benefits, 90
word-usage errors, 127

why questions, 66–68, 131
Wideband Delphi estimation technique, 36
words, avoiding ambiguity with similar-sounding, 127
writing requirements, 9, 117–128

ambiguity, 121–128
business rules influencing, 174
requirements management tools, 183

writing requirements

About the Author

Karl E. Wiegers is Principal Consultant with Process Impact, a
software process consulting and education company in Portland,
Oregon. His interests include requirements engineering, peer
reviews, process improvement, project management, risk manage-
ment, and software metrics. Previously, he spent 18 years at East-
man Kodak Company, where he held positions as a photographic
research scientist, software developer, software manager, and soft-
ware process and quality improvement leader. Karl received a B.S.
degree in chemistry from Boise State College, and M.S. and Ph.D.
degrees in organic chemistry from the University of Illinois. He is
a member of the IEEE, IEEE Computer Society, and ACM.

Karl’s most recent book is More About Software Requirements: Thorny Issues and Practical Advice
(Microsoft Press, 2006). He also wrote Software Requirements, Second Edition (Microsoft Press,
2003), Peer Reviews in Software: A Practical Guide (Addison-Wesley, 2002), and Creating a Soft-
ware Engineering Culture (Dorset House, 1996), as well as 160 articles on software develop-
ment, chemistry, and military history. Karl is a two-time winner of the Productivity Award
from Software Development magazine. Karl has served on the Editorial Board for IEEE Software
magazine and as a contributing editor for Software Development magazine. He is a frequent
speaker at software conferences and professional society meetings. In his spare time, Karl
enjoys playing guitar, drinking wine, watching movies, and studying military history. You
can reach him at http://www.processimpact.com.

	Cover
	Copyright page

	Contents at a Glance
	Table of Contents
	Preface
	Acknowledgments

	Chapter 2: Cosmic Truths About Software Requirements
	Requirements Realities
	Requirements Stakeholders
	Requirements Specifications

	Chapter 11: When Use Cases Aren’t Enough
	The Power of Use Cases
	Project Type Limitations
	Event-Response Tables
	Use Cases Don’t Replace Functional Requirements
	Use Cases Reveal Functional Requirements

	Index
	Numbers
	A, B, C
	D, E
	F, G, H, I, K, L, M
	N, O, P, Q
	R, S
	T, U
	V, W

	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

