
The Hidden Language of
Computer Hardware and Software

Charles Petzold

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2000 by Charles Petzold

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Petzold, Charles, 1953–
 Code / Charles Petzold.
 p. cm.
 Includes index.
 ISBN 0-7356-0505-X -- ISBN 0-7356-1131-9 (paperback)
 1. Computer programming. 2. Coding theory. I. Title.

 QA76.6 .P495 1999
 005.7’2 21--dc21 99-040198

ISBN: 978-0-7356-1131-3

Printed and bound in the United States of America.

16 17 18 19 20 21 22 23 24 QG 7 6 5 4 3 2

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide.
For further information about international editions, contact your local Microsoft
Corporation office or contact Microsoft Press International directly at fax
(425) 936-7329. Visit our Web site at mspress.microsoft.com. Send comments
to mspinput@microsoft.com.

Macintosh is a registered trademark of Apple Computer, Inc. Microsoft, MS-DOS, and
Windows are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries. Other product and company names mentioned
herein may be the trademarks of their respective owners.

Images of Charles Babbage, George Boole, Louis Braille, Herman Hollerith, Samuel
Morse, and John von Neumann appear courtesy of Corbis Images and were modified for
this book by Joel Panchot. The January 1975 cover of Popular Electronics is reprinted
by permission of Ziff-Davis and the Ziff family. All other illustrations in the book were
produced by Joel Panchot.

Unless otherwise noted, the example companies, organizations, products, people, and
events depicted herein are fictitious. No association with any real company, organization,
product, person, or event is intended or should be inferred.

Acquisitions Editor: Ben Ryan
Project Editor: Kathleen Atkins
Technical Editor: Jim Fuchs [2012-11-30]

iii

� Contents �

Preface iv

Chapter One Best Friends 3

Chapter Two Codes and Combinations 9

Chapter Three Braille and Binary Codes 15

Chapter Four Anatomy of a Flashlight 22

Chapter Five Seeing Around Corners 32

Chapter Six Telegraphs and Relays 40

Chapter Seven Our Ten Digits 47

Chapter Eight Alternatives to Ten 54

Chapter Nine Bit by Bit by Bit 69

Chapter Ten Logic and Switches 86

Chapter Eleven Gates (Not Bill) 102

Chapter Twelve A Binary Adding Machine 131

Chapter Thirteen But What About Subtraction? 143

Chapter Fourteen Feedback and Flip-Flops 155

Chapter Fifteen Bytes and Hex 180

Chapter Sixteen An Assemblage of Memory 190

Chapter Seventeen Automation 206

Chapter Eighteen From Abaci to Chips 238

Chapter Nineteen Two Classic Microprocessors 260

Chapter Twenty ASCII and a Cast of Characters 286

Chapter Twenty-One Get on the Bus 301

Chapter Twenty-Two The Operating System 320

Chapter Twenty-Three Fixed Point, Floating Point 335

Chapter Twenty-Four Languages High and Low 349

Chapter Twenty-Five The Graphical Revolution 364

Acknowledgments 383

Index 385

Preface to the
� Paperback Edition �

ode rattled around in my head for about a decade before I started
writing it. As I was contemplating Code and then writing it, and even
after the book was published, people would ask me, “What’s the

book about?”
I was always reluctant to answer this question. I’d mumble something

about “a unique journey through the evolution of the digital technologies
that define the modern age” and hope that would be sufficient.

But finally I had to admit it: “Code is a book about how computers work.”
As I feared, the reactions weren’t favorable. “Oh, I have a book like that,”

some people would say, to which my immediate response was, “No, no, no,
you don’t have a book like this one.” I still think that’s true. Code is not like
other how-computers-work books. It doesn’t have big color illustrations of
disk drives with arrows showing how the data sweeps into the computer.
Code has no drawings of trains carrying a cargo of zeros and ones.
Metaphors and similes are wonderful literary devices but they do nothing
but obscure the beauty of technology.

The other comment I heard was, “People don’t want to know how
computers work.” And this I’m sure is true. I personally happen to enjoy
learning how things work. But I also like to choose which things I learn about
and which I do not. I’d be hard pressed to explain how my refrigerator works,
for example.

Yet I often hear people ask questions that reveal a need to know something
about the inner workings of personal computers. One such common question
is, “What’s the difference between storage and memory?”

That’s certainly a critical question. The marketing of personal computers
is based on such concepts. Even novice users are expected to know how many
megas of the one thing and gigas of the other thing will be necessary for their
particular applications. Novice users are also expected to master the concept
of the computer “file” and to visualize how files are loaded from storage into
memory and saved from memory back to storage.

The storage-and-memory question is usually answered with an analogy:
“Memory is like the surface of your desk and storage is like the filing
cabinet.” That’s not a bad answer as far as it goes. But I find it quite
unsatisfactory. It makes it sound as if computer architecture were patterned
after an office. The truth is that the distinction between memory and storage

C

is an artificial one and exists solely because we don’t have a single storage
medium that is both fast and vast as well as nonvolatile. What we know
today as “von Neumann architecture”—the dominant computer architecture
for over 50 years—is a direct result of this technical deficiency.

Here’s another question that someone once asked me: “Why can’t you run
Macintosh programs under Windows?” My mouth opened to begin an
answer when I realized that it involved many more technical issues than I’m
sure my questioner was prepared to deal with in one sitting.

I want Code to be a book that makes you understand these things, not
in some abstract way, but with a depth that just might even rival that of
electrical engineers and programmers. I also hope that you might recognize
the computer to be one of the crowning achievements of twentieth century
technology and appreciate it as a beautiful thing in itself without metaphors
and similes getting in the way.

Computers are constructed in a hierarchy, from transistors down at the
bottom to the information displayed on our computer screens at the top.
Moving up each level in the hierarchy—which is how Code is structured—
is probably not as hard as most people might think. There is certainly a lot
going on inside the modern computer, but it is a lot of very common and
simple operations.

Although computers today are more complex than the computers of 25
years or 50 years ago, they are still fundamentally the same. That’s what’s
so great about studying the history of technology: The further back in time
you go, the simpler the technologies become. Thus it’s possible to reach a
point where it all makes relatively easy sense.

In Code, I went as far back as I could go. Astonishingly, I found that I
could go back into the nineteenth century and use early telegraph equipment
to show how computers are built. In theory at least, everything in the first
17 chapters of Code can be built entirely using simple electrical devices that
have been around for over a century.

This use of antique technology gives Code a fairly nostalgic feel, I think.
Code is a book that could never be titled The Faster New Faster Thing or
Business @ the Speed of a Digital Nervous System. The “bit” isn’t defined
until page 68; “byte” isn’t defined until page 180. I don’t mention transistors
until page 142, and that’s only in passing.

So, while Code goes fairly deep into the workings of the computer (few
other books show how computer processors actually work, for example),
the pace is fairly relaxed. Despite the depth, I tried to make the trip as
comfortable as possible.

But without little drawings of trains carrying a cargo of zeros and ones.

Charles Petzold
August 16, 2000

code (kod) ...

3.a. A system of signals used to represent letters or numbers in
transmitting messages.

b. A system of symbols, letters, or words given certain
arbitrary meanings, used for transmitting messages
requiring secrecy or brevity.

4. A system of symbols and rules used to represent instructions
to a computer…

— The American Heritage Dictionary of the English Language

15

Chapter Three

Braille and
Binary Codes

amuel Morse wasn’t the first person to successfully translate the let-
ters of written language to an interpretable code. Nor was he the first
person to be remembered more as the name of his code than as him-

self. That honor must go to a blind French teenager born some 18 years after
Samuel Morse but who made his mark much more precociously. Little is
known of his life, but what is known makes a compelling story.

Louis Braille was born in 1809 in Coupvray,
France, just 25 miles east of Paris. His father
was a harness maker. At the age of three—an age
when young boys shouldn’t be playing in their
fathers’ workshops—he accidentally stuck a
pointed tool in his eye. The wound became in-
fected, and the infection spread to his other eye,
leaving him totally blind. Normally he would
have been doomed to a life of ignorance and
poverty (as most blind people were in those days),
but young Louis’s intelligence and desire to learn
were soon recognized. Through the intervention
of the village priest and a schoolteacher, he first
attended school in the village with the other
children and at the age of 10 was sent to the Royal Institution for Blind Youth
in Paris.

S

16 Chapter Three

One major obstacle in the education of the blind is, of course, their in-
ability to read printed books. Valentin Haüy (1745–1822), the founder of
the Paris school, had invented a system of raised letters on paper that could
be read by touch. But this system was very difficult to use, and only a few
books had been produced using this method.

The sighted Haüy was stuck in a paradigm. To him, an A was an A was
an A, and the letter A must look (or feel) like an A. (If given a flashlight to
communicate, he might have tried drawing letters in the air as we did be-
fore we discovered it didn’t work very well.) Haüy probably didn’t realize
that a type of code quite different from the printed alphabet might be more
appropriate for sightless people.

The origins of an alternative type of code came from an unexpected
source. Charles Barbier, a captain of the French army, had by 1819 devised
a system of writing he called écriture nocturne, or “night writing.” This
system used a pattern of raised dots and dashes on heavy paper and was
intended for use by soldiers in passing notes to each other in the dark when
quiet was necessary. The soldiers were able to poke these dots and dashes
into the back of the paper using an awl-like stylus. The raised dots could then
be read with the fingers.

The problem with Barbier’s system is that it was quite complex. Rather
than using patterns of dots and dashes that corresponded to letters of the
alphabet, Barbier devised patterns that corresponded to sounds, often requir-
ing many codes for a single word. The system worked fine for short mes-
sages in the field but was distinctly inadequate for longer texts, let alone
entire books.

Louis Braille became familiar with Barbier’s system at the age of 12. He
liked the use of raised dots, not only because it proved easy to read with the
fingers but also because it was easy to write. A student in the classroom
equipped with paper and a stylus could actually take notes and read them
back. Louis Braille diligently tried to improve the system and within three
years (at the age of 15) had come up with his own, the basics of which are
still used today. For many years, the system was known only within the
school, but it gradually made its way to the rest of the world. In 1835, Louis
Braille contracted tuberculosis, which would eventually kill him shortly after
his 43rd birthday in 1852.

Today, enhanced versions of the Braille system compete with tape-
recorded books for providing the blind with access to the written word, but
Braille still remains an invaluable system and the only way to read for people
who are both blind and deaf. In recent years, Braille has become more fa-
miliar in the public arena as elevators and automatic teller machines are made
more accessible to the blind.

What we’re going to do in this chapter is dissect Braille code and see how
it works. We don’t have to actually learn Braille or memorize anything. We
just want some insight into the nature of codes.

In Braille, every symbol used in normal written language—specifically,
letters, numbers, and punctuation marks—is encoded as one or more raised

Braille and Binary Codes 17

dots within a two-by-three cell. The dots of the cell are commonly numbered
1 through 6:

1

2

3

4

5

6

In modern-day use, special typewriters or embossers punch the Braille dots
into the paper.

Because embossing just a couple pages of this book in Braille would be
prohibitively expensive, I’ve used a notation common for showing Braille
on the printed page. In this notation, all six dots in the cell are shown. Large
dots indicate the parts of the cell where the paper is raised. Small dots indi-
cate the parts of the cell that are flat. For example, in the Braille character

dots 1, 3, and 5 are raised and dots 2, 4, and 6 are not.
What should be interesting to us at this point is that the dots are binary.

A particular dot is either flat or raised. That means we can apply what we’ve
learned about Morse code and combinatorial analysis to Braille. We know
that there are 6 dots and that each dot can be either flat or raised, so the total
number of combinations of 6 flat and raised dots is 2 × 2 × 2 × 2 × 2 × 2, or
26, or 64.

Thus, the system of Braille is capable of representing 64 unique codes.
Here they are—all 64 possible Braille codes:

18 Chapter Three

If we find fewer than 64 codes used in Braille, we should question why
some of the 64 possible codes aren’t being used. If we find more than 64
codes used in Braille, we should question either our sanity or fundamental
truths of mathematics, such as 2 plus 2 equaling 4.

To begin dissecting the code of Braille, let’s look at the basic lowercase
alphabet:

For example, the phrase “you and me” in Braille looks like this:

Notice that the cells for each letter within a word are separated by a little
bit of space; a larger space (essentially a cell with no raised dots) is used
between words.

This is the basis of Braille as Louis Braille devised it, or at least as it ap-
plies to the letters of the Latin alphabet. Louis Braille also devised codes for
letters with accent marks, common in French. Notice that there’s no code
for w, which isn’t used in classical French. (Don’t worry. The letter will show
up eventually.) At this point, only 25 of the 64 possible codes have been
accounted for.

Upon close examination, you’ll discover that the three rows of Braille
illustrated above show a pattern. The first row (letters a through j) uses only
the top four spots in the cell—dots 1, 2, 4, and 5. The second row duplicates
the first row except that dot 3 is also raised. The third row is the same ex-
cept that dots 3 and 6 are raised.

Since the days of Louis Braille, the Braille code has been expanded in
various ways. Currently the system used most often in published material
in English is called Grade 2 Braille. Grade 2 Braille uses many contractions
in order to save trees and to speed reading. For example, if letter codes appear
by themselves, they stand for common words. The following three rows
(including a “completed” third row) show these word codes:

Braille and Binary Codes 19

Thus, the phrase “you and me” can be written in Grade 2 Braille as this:

So far, I’ve described 31 codes—the no-raised-dots space between words
and the 3 rows of 10 codes for letters and words. We’re still not close to the
64 codes that are theoretically available. In Grade 2 Braille, as we shall see,
nothing is wasted.

First, we can use the codes for letters a through j combined with a raised
dot 6. These are used mostly for contractions of letters within words and
also include w and another word abbreviation:

For example, the word “about” can be written in Grade 2 Braille this way:

Second, we can take the codes for letters a through j and “lower” them
to use only dots 2, 3, 5, and 6. These codes are used for some punctuation
marks and contractions, depending on context:

The first four of these codes are the comma, semicolon, colon, and period.
Notice that the same code is used for both left and right parentheses but that
two different codes are used for open and closed quotation marks.

20 Chapter Three

We’re up to 51 codes so far. The following 6 codes use various unused
combinations of dots 3, 4, 5, and 6 to represent contractions and some
additional punctuation:

� � � � � �
st
/

ing ble
#

ar ' com
-

The code for “ble” is very important because when it’s not part of a word,
it means that the codes that follow should be interpreted as numbers. These
number codes are the same as those for letters a through j:

Thus, this sequence of codes

means the number 256.
If you’ve been keeping track, we need 7 more codes to reach the maxi-

mum of 64. Here they are:

The first (a raised dot 4) is used as an accent indicator. The others are used
as prefixes for some contractions and also for some other purposes: When
dots 4 and 6 are raised (the fifth code in this row), the code is a decimal point
in numbers or an emphasis indicator, depending on context. When dots 5
and 6 are raised, the code is a letter indicator that counterbalances a num-
ber indicator.

And finally (if you’ve been wondering how Braille encodes capital letters)
we have dot 6—the capital indicator. This signals that the letter that follows
is uppercase. For example, we can write the name of the original creator of
this system as

This is a capital indicator, the letter l, the contraction ou, the letters i and s,
a space, another capital indicator, and the letters b, r, a, i, l, l, and e. (In actual
use, the name might be abbreviated even more by eliminating the last two
letters, which aren’t pronounced.)

Braille and Binary Codes 21

In summary, we’ve seen how six binary elements (the dots) yield 64 pos-
sible codes and no more. It just so happens that many of these 64 codes
perform double duty depending on their context. Of particular interest is the
number indicator and the letter indicator that undoes the number indicator.
These codes alter the meaning of the codes that follow them—from letters
to numbers and from numbers back to letters. Codes such as these are of-
ten called precedence, or shift, codes. They alter the meaning of all subse-
quent codes until the shift is undone.

The capital indicator means that the following letter (and only the fol-
lowing letter) should be uppercase rather than lowercase. A code such as
this is known as an escape code. Escape codes let you “escape” from the
humdrum, routine interpretation of a sequence of codes and move to a new
interpretation. As we’ll see in later chapters, shift codes and escape codes
are common when written languages are represented by binary codes.

385

Note: Page numbers in italics refer to illustrations.

� Index �

Numbers
6800 microprocessor, 260–61, 281–83,

284
8080 microprocessor, 260–83, 284

A
abacus, 238
accumulator, 208, 211–13, 215, 232,

264, 268, 270–72, 282–83, 321
adding machines, 131–42, 148–49,

194, 207–8
Aiken, Howard, 243, 354
ALGOL programming language,

354–60, 362, 363
algorithms, 50, 236, 354–63
al-Khwarizmi, Muhammed

ibn-Musa, 50
Allen, Paul, 362
Altair, 283–84, 302, 304, 362
ALU (Arithmetic Logic Unit), 232, 269
Ampère, André Marie, 28
analog computers, 231
Analytical Engine, 101, 240, 241, 362
API (application programming

interface), 330–32, 371, 373, 381
Apple Computer

Apple II, 284, 366, 372

Apple Computer, continued
Apple Lisa, 370
Macintosh, 285, 334, 370, 372–73,

375, 378, 381
argument, 233
Aristotle, 86, 87, 91
Arithmetic Logic Unit (ALU). See ALU

(Arithmetic Logic Unit)
Art of Computer Programming series

(Knuth), 360
ASCII (American Standard Code

for Information Interchange),
286–300, 311–13, 315

high-level programming language
and, 351, 356–57, 365–67, 373,
378–79, 381

operating systems and, 320–21,
323–24, 327–31

assembly language, 236
associative law, 88–89, 92, 103
“As We May Think” (Bush),

364–65, 369
AT&T (American Telephone and

Telegraph), 246, 248, 333. See
also Bell Telephone Laboratories

Atanasoff, John V., 244
automation, 206–37

386 Code

B
Babbage, Charles, 101, 240, 240,

241, 362
bandwidth, 310
Barbier, Charles, 16, 101, 240–42
Bardeen, John, 247
base two logarithm, 76
BASIC, 361–62
Baudot code, 288–90, 295
Baudot, Emile, 288
BCD (binary-coded decimal), 271, 292,

296–97, 338
Bell, Alexander Graham, 248, 377
Bell Systems Technical Journal, 246
Bell Telephone Laboratories, 243,

246–47, 249, 333, 362, 373,
377, 380. See also AT&T
(American Telephone and
Telegraph)

big-endian method, 283
binary-coded decimal (BCD). See BCD

(binary-coded decimal)
binary (base two) number system,

61–85, 182
adding machines and, 131–43
automation and, 208
bytes and, 181
conversion to/from, 184–85
flip-flops and, 177
signed/unsigned numbers in, 154
switches and, 95–96

bits (binary digits). See also bytes
carry, 136
least-significant (rightmost),

141, 142
logic gates and, 104
most-significant (leftmost), 141
origin of the term, 67–68
overview of, 69–85
photographic film and, 76–79, 88
sign, 153
sum, 136
use of the term, by Shannon,

103, 246

Boole, George, 87, 87, 95, 101, 129–30,
359. See also Boolean algebra

Boolean algebra, 87–103, 130,
246, 269–70, 359–60, 363. See
also Boole, George

Braille, 5, 31, 242, 287. See also
Braille, Louis

basic description of, 14–21
binary digits and, comparison of, 70
simplicity of, in comparison to

Morse code, 85
Braille, Louis, 15, 15, 16, 18.

See also Braille
Brattain, Walter, 247
Bricklin, Dan, 366
British Broadcasting Corporation, 7
buffers, 128–29
bugs, 236, 274, 275
Burks, Arthur W., 245
bus, 301–19
Bush, Vannevar, 364, 369, 380
Busicom, 258
Byron, Augusta Ada, 240, 362
bytes, 180–89. See also bits (binary

digits)
definition of, 180
high-order (leftmost), 216–17
low-order (rightmost), 216,

217, 222

C
C programming language, 362–63
calculators, 188, 231, 239
Carroll, Lewis (Charles Dodgson), 86
cathode-ray tubes (CRTs). See CRTs

(cathode-ray tubes)
CD-ROM (CD Read-Only Memory),

378, 380
CDs (compact discs). See compact

discs (CDs)
Census data, 241–42
character sets, 286–300. See also ASCII

(American Standard Code for
Information Interchange)

Index 387

chip, 250–59
clocks, 209, 222, 263. See also

oscillators
flip-flops and, 158, 166–68, 170–78
memory and, 191–92
speed of, 258, 259, 261

closed architecture, 303
CMOS (complementary metal-oxide

semiconductor), 251, 256
COBOL, 361
coincidence (equivalence) gate, 136
Colossus computer, 244
comments, 235–36
common connections, 34, 36
commutative rule, 88, 89
compact discs (CDs), 43, 376–78, 380
complementary metal-oxide

semiconductor. See CMOS
(complementary metal-oxide
semiconductor)

compression, 375–76, 379–80
computability, concept of, 244, 258
conditional jumps, 228
conductors, 28, 35, 38, 39
Constitution of the United States,

40, 241
contacts, electrical, 34–35
control signals, 214–15
counters, 177–78, 232
CPUs (central processing units). See

microprocessors
CRTs (cathode-ray tubes), 309–15,

320, 365, 368–70
current, 28–29
cybernetics, 246
cyberspace, 246

D
Daguerre, Louis, 40
daguerreotypes, 40
data paths, 180
De Morgan, Augustus, 129–30

De Morgan’s Laws, 129–30
decimal (base ten) number system,

47–53, 336–37
adding machines and, 132
alternatives to, 54–68
bits and, 69–70
bytes and, 181
conversion to/from, 184–89
flip-flops and, 177
floating-point numbers and, 341
hexadecimal number system and,

184–89
subtraction and, 147

decoders, 121–22, 129, 197–200
Dickson, William, 314
Difference Engine, 101, 240
digital data, 231
Digital Equipment Corporation, 354
Dodgson, Charles (Lewis Carroll), 86
DRAM (dynamic random access

memory), 308–9
Dummer, Geoffrey, 250
dynamic random access memory

(DRAM). See DRAM (dynamic
random access memory)

E
EBCDIC character code, 295–97, 356
Ebert, Roger, 73–74, 96
Eccles, William Henry, 161
Eckert, J. Presper, 244, 246
Eckert-Mauchly Computer

Corporation, 246
Edison, Thomas, 30, 314, 375
EDVAC (Electronic Discrete Variable

Automatic Computer), 245
electromagnets, 41, 44–46, 156–57,

317
logic gates and, 106, 108–10
memory and, 205

electrons, 23, 27–29, 33–34, 37
Engelbart, Douglas, 369, 370

388 Code

ENIAC (Electronic Numerical
Integrator and Computer),
244, 245

error checking, 81, 82–83
escape code, 21
even parity, 81
expansion slots, 302

F
Fairchild Semiconductor Corporation,

250
feedback, 155–79
Feynman, Richard, 360
file systems, 325, 333
film critics, 73–75, 85, 96
fixed-point numbers, 335–48
Fleming, John Ambrose, 243
flip-flops, 155–79, 249–50

automation and, 207, 226
chips and, 254–55
edge-triggered, 170–73, 178–79,

226–27
level-triggered, 166, 170, 173, 191
memory and, 191

floating-point numbers, 335–38
floppy disks, 318
foreign languages, 47, 181, 298, 300
Forest, Lee de, 243
Formal Logic (De Morgan), 129
FORTRAN, 354, 360, 361
French Telegraph Service, 288
frequency dividers, 175–76
function tables, 162, 169

G
Gates, Bill, 102, 362
Gibson, William, 246
gigabyte, 202
GNU project, 334
Goldstine, Herman H., 245

Goto instruction, 226
graphical user interface (GUI). See GUI

(graphical user interface)
ground, use of the term, 34–35
guard patterns, 80–81
GUI (graphical user interface), 370, 371
Gunter, Edmund, 239

H
hard disks, 318–19
hardware, use of the term, 232
Harvard Mark I/II computers, 243
Haüy, Valentin, 16, 42
Hertz, Heinrich Rudolph, 159, 175, 310
hexadecimal (base 16) number system,

183–89, 234, 288–97, 321, 349
high-level programming language,

349–63
Hindu-Arabic (Indo-Arabic) number

system, 50–53
Hoff, Ted, 258
Hollerith, Herman, 241, 241
Hollerith cards, 241–42
Hopper, Grace Murray, 243, 354

I
IBM (International Business Machines),

180–81, 242, 246, 261, 284–85,
332–33

ASCII and, 295
floating-point hardware and, 247
high-level programming language

and, 361–62, 366–67, 371–72
peripheral devices and, 303–4, 314,

317–18
punch cards, 295–97, 295, 317, 361
video displays and, 366–67

IC (integrated circuit), 250–59, 301.
See also chip

Index 389

information
as a choice among two or more

possibilities, 72–73
retention of, through flip-flop

circuits, 161
theory, 246

initialization code, 323
input devices, 105, 231, 261–62
integrated circuit (IC). See chip; IC

(integrated circuit)
Intel, 258–61, 284, 303, 309, 320, 327,

332, 348
International Telecommunication

Union (ITU), 288
interrupts, 280–81, 332
inverters, 119, 129, 149–50, 157

automation and, 215–16
memory and, 195

ITU (International Telecommunication
Union). See International
Telecommunication Union (ITU)

J
Jacquard, Joseph Marie, 239
Jacquard loom, 239–41
Java, 381–82
Jobs, Steven, 284, 370
Jordan, F. W., 161

K
Kemeny, John, 361
Keuffel & Esser Company, 239
keyboard, 315–17, 322–24, 349, 369
Kilby, Jack, 250
Kildall, Gary, 326
kilobytes, 201–3
kinetograph devices, 314
Knuth, Donald, 360
Kurtz, Thomas, 361

L
labels, 234–35
language

foreign, 47, 181, 298, 300
high-level programming, 349–63
machine (machine code), 232, 236,

321, 349–63
speech and, 5
use of the term, 232

last-in-first-out (LIFO) storage. See
LIFO (last-in-first-out) storage

Law of Contradiction, 91
Laws of Thought, The (Boole), 101
Leibniz, Gottfried Wilhelm von, 87, 239
LIFO (last-in-first-out) storage, 273
Linux, 334
little-endian method, 283
logarithms, 76, 231, 236, 238–40,

340, 346–47
logic, 85, 86–101, 285. See also

logic gates
character sets and, 295
tables, 194–95, 197

logic gates, 102–30, 214, 307–8
binary addition and, 134–38
chips and, 252–55
flip-flops and, 159–64, 167, 169
memory and, 191, 195, 197, 205
semiconductors and, 249
subtraction and, 148, 150, 151
vacuum tubes and, 243–44, 249

Longfellow, Henry Wadsworth, 70–72
Lowell, Amy, 312

M
machine code (machine language), 232,

236, 321, 349–63
magnetic storage, 317–18
Maltin, Leonard, 74–75
Marquez, Gabriel Garcia, 5
Mathematical Analysis of Logic, The

(Boole), 129

390 Code

“Mathematical Theory of
Communication, A”
(Shannon), 246

Mauchly, John, 244
McCarthy, John, 363
Memex, 364, 380
memory, 190–205, 243, 355–56. See also

RAM (random access memory)
1-bit, 167
basic description of, 231
high-level programming language

and, 349
magnetic core, 245
mercury delay line, 245
microprocessors and, 261–85
operating systems and, 320, 321
peripheral devices and, 319
storage and, difference between, 319

memory-mapped I/O, 280
microprocessors, 231–32, 246–48. See

also 6800 microprocessor; 8080
microprocessor

high-level programming language
and, 349–50, 352

invention of, 250–59
memory and, 261–85
operating systems and, 320
peripheral devices and, 302, 303,

305, 317
single-chip, 261
two classic, 260–85

Microsoft Corporation, 102, 362
MS-DOS operating system, 332,

333, 354–55, 365, 371, 372
Windows operating system, 334,

372–73, 378
MIT (Massachusetts Institute of

Technology), 103, 333, 364, 367
mnemonics, 232–33, 264, 267, 349
Moore, Gordon E., 251, 258. See also

Moore’s Law
Moore’s Law, 251, 285, 309

Morse, Samuel, 9, 15, 40, 40, 42, 44,
101, 240. See also Morse code

Morse code, 1–14, 31–32, 40–46, 382.
See also Morse, Samuel

binary digits and, comparison of, 70
character sets and, 287, 289
invention of, 9–10
telegraph system and, 33–39
UPC codes and, 80, 83–85

MOS Technology, 284
motherboard, 302
Motorola, 259–60, 281, 283, 285,

348, 370
MS-DOS (Microsoft Disk Operating

System), 332, 333, 354–55, 365,
371, 372

Multics, 333
multitasking, 334
Murray code, 288
Murray, Donald, 288

N
nanoseconds, 253
Napier, John, 238, 239
Napier’s Bones, 239
National Semiconductor, 260
negation, 146
negative transition, 173
networks, 103, 104
Neumann, John von, 245, 245, 246,

363, 367, 372
neutrons, 23–24
Newton, Isaac, 87
nibble, definition of, 181
nines’ complement, 144–45
Nobel Prize, 247
noise, 72
Noyce, Robert, 250, 253, 258
NPN transistors, 248
number systems, 47–70, 335–48. See

also specific number systems
Nyquist, Harry, 377

Index 391

O
OCR (optical character recognition),

80, 376
octal (base eight) number system,

55–60, 63, 181–82
odd parity, 81
Ohm, Georg Simon, 29
Ohm’s Law, 39
One Hundred Years of Solitude

(Marquez), 5
ones’ complement, 146, 150–51, 154
opcodes, 213, 215, 217–19, 263–64,

270–72, 276–77, 279–82, 285
open architecture, 303
operands, 87, 92–94
operating systems, 319, 320–34,

370–71
optical character recognition (OCR).

See OCR (optical character
recognition)

Organon (Aristotle), 86
Orlando, Tony, 69, 71
oscillators, 157–59, 173–76, 178, 209,

222, 262
oscilloscope, 367
Oughtred, William, 239
output devices, 105, 231, 261–62

P
parity, 81
Pascal, Blaise, 239
Pascal programming language, 362
Paterson, Tim, 332
Pentium microprocessors, 284–85, 348.

See also microprocessors
petabyte, 202
Pfleumer, Fritz, 317
phonograph, 376
photographic film, 76–79, 85
pixels, 311–13, 367–68, 370
Polonius, 144
pop, 273

positional number systems, 50
Poulsen, Valdemar, 317
“Preliminary Discussion of the Logical

Design of an Electronic
Computing Instrument” (Burks,
Goldstine, and Neumann), 245

printing telegraph, 288
protocols, 381
push, 273

Q
quaternary number system, 60–61, 63

R
Radio Shack, 38, 39, 110, 244, 284
RAM (random access memory). See

also memory; RAM arrays
automation and, 208–15, 219,

220–32, 236–37
basic description of, 198–99
microprocessors and, 258, 261, 263,

272–73, 284
operating systems and, 320,

325, 328
peripheral devices and, 301–2,

304–8, 312–13, 314, 317, 319
quantities of, 201–3
as volatile memory, 205

RAM arrays, 199–205, 249, 250, 256.
See also RAM (random access
memory)

automation and, 208–15, 220–27,
231–32, 236–37

microprocessors and, 263, 284
peripheral devices and, 304–5, 308

random access memory (RAM). See
RAM (random access memory)

read-only memory (ROM). See ROM
(read-only memory)

registers, 264–67, 275–79, 282

392 Code

Remington Rand, 246, 317, 354
resistance, 28–30, 37–39
resolution, 311, 314
Revere, Paul, 70–72
Ritchie, Dennis M., 333, 362
ROM (read-only memory), 312–13,

324–25, 332

S
scanning devices, 79–81, 83
Scheutz, Edvard, 241
Scheutz, George, 241
semiconductors, 247–49, 260
Shannon, Claude, 103, 105, 130, 246
Shockley, William, 247, 249
Shockley Semiconductor Laboratories,

249
short circuits, 30
Sieve of Eratosthenes, 359, 360
signed binary numbers, 154
Siskel, Gene, 73–74
Socrates, 86, 91–92
software

engineers, 232
use of the term, 232

solid-state electronics, 248
speaker wire, 38–39
SRAM (static random access memory),

308–9
stable states, 161
stacks, 273–76, 282
static random access memory (SRAM).

See SRAM (static random access
memory)

Stibitz, George, 243, 246, 380
Stroustrup, Bjarne, 373
Sun Microsystems, 381
syllogism, 86, 91
“Symbolic Analysis of Replay and

Switching Circuits” (Shannon),
103, 105, 130

synchronicity, 158

T
Tabulating Machine Company, 242
tabulation machines, 241–42
TANSTAAFL principle, 222
tape systems, 317–18
Technical Reference manual (IBM), 303
telegraph systems, 33–46, 101, 105–6,

242. See also Morse code
telephone systems, 72, 75–76, 242, 317
teletypewriters, 288–90
television screens, 310–11, 314
tens’ complement, 152, 153–54
terabyte, 202
Texas Instruments, 250, 251, 257
Thompson, Ken, 333
Torvalds, Linus, 334
transistors, 142, 247–50, 260–61, 285,

305. See also TTL (transistor-
transistor logic)

trigonometry, 231, 236, 239
true/false values, 85–86, 93
TTL (transistor-transistor logic),

251–56, 305, 308. See also
transistors

TTL Data Book for Design Engineers,
251–56

Tukey, John Wilder, 68
Turing, Alan M., 244, 258–59
Turing Test, 244

U
Unicode, 300
UNIVAC (Universal Automatic

Computer), 246, 354
Universal Product Code (UPC). See

UPC (Universal Product Code)
UNIX, 246, 333–34, 362
UPC (Universal Product Code), 79–85

Index 393

V
vacuum tubes, 37–38, 142, 243,

247, 249
variables, 355–56
video displays, 311–15, 321, 324, 332,

334, 349, 366–70, 372
virtual memory, 334
VisiCalc, 366–67
voltage, 27–30, 37–39, 43

flip-flops and, 157, 159
logic gates and, 107–9, 113–14, 120

Volto, Count Alessandro, 28
von Neumann architecture, 245
von Neumann bottleneck, 245

W
Warnock, John, 374
Watson, Thomas J., 242
Watt, James, 31
white space, 234
Wiener, Norbert, 246
Wilson, Flip, 371
Windows (Microsoft). See Microsoft

Corporation, Windows
operating system

Wirth, Niklaus, 362
Wozniak, Stephen, 284
WYSIWYG (What You See Is What

You Get), 371

X
Xerox PARC, 369, 370, 372

Z
Zenith, 251
Zuse, Conrad, 243

	Cover
	Copyright page

	Contents
	Preface to the Paperback Edition
	code (kod) ...
	Chapter Three: Braille and Binary Codes
	Index
	Numbers
	A
	B, C
	D, E
	F, G, H, I
	J, K, L, M
	N
	O, P, Q, R
	S, T, U
	V, W, X, Z

