
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137619832
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137619832
https://plusone.google.com/share?url=http://www.informit.com/title/9780137619832
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137619832
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780137619832/Free-Sample-Chapter

Microsoft Visual C#
Step by Step
Tenth Edition

John Sharp

MICROSOFT VISUAL C# STEP BY STEP, TENTH EDITION
Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2022 by Agylia Group Ltd.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ISBN-13: 978-0-13-761983-2
ISBN-10: 0-13-761983-9

Library of Congress Control Number: 2022930224

ScoutAutomatedPrintCode

TRADEMARKS
Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

WARNING AND DISCLAIMER
Every effort has been made to make this book as complete and as accurate
as possible, but no warranty or fitness is implied. The information provided is
on an “as is” basis. The author, the publisher, and Microsoft Corporation shall
have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book or
from the use of the programs accompanying it.

SPECIAL SALES
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at corp-
sales@pearsoned.com or (800) 382-3419.

For government sales inquiries,
please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S.,
please contact intlcs@pearson.com.

Editor-in-Chief: Brett Bartow

Executive Editor: Loretta Yates

Sponsoring Editor: Charvi Arora

Development Editor: Kate Shoup

Managing Editor: Sandra Schroeder

Senior Project Editor: Tracey Croom

Production Editor: Dan Foster

Copy Editor: Dan Foster

Indexer: Valerie Haynes Perry

Proofreader: Kim Wimpsett

Technical Editor: David Franson

Editorial Assistant: Cindy Teeters

Cover Designer: Twist Creative, Seattle

Compositor: Danielle Foster

http://www.pearson.com/permissions
http://www.microsoft.com
mailto:corp-sales@pearsoned.com
mailto:corp-sales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

 iii

Pearson’s Commitment to Diversity, Equity,
and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all learn-
ers. We embrace the many dimensions of diversity, including but not limited to race,

ethnicity, gender, socioeconomic status, ability, age, sexual orientation, and religious or
political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to
deliver opportunities that improve lives and enable economic mobility. As we work with
authors to create content for every product and service, we acknowledge our responsibil-
ity to demonstrate inclusivity and incorporate diverse scholarship so that everyone can
achieve their potential through learning. As the world’s leading learning company, we
have a duty to help drive change and live up to our purpose to help more people create a
better life for themselves and to create a better world.

Our ambition is to purposefully contribute to a world where:

	■ Everyone has an equitable and lifelong opportunity to succeed through learning.

	■ Our educational products and services are inclusive and represent the rich diver-
sity of learners.

	■ Our educational content accurately reflects the histories and experiences of the
learners we serve.

	■ Our educational content prompts deeper discussions with learners and motivates
them to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any
concerns or needs with this Pearson product so that we can investigate and address them.

Please contact us with concerns about any potential bias at https://www.pearson.com/
report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

 v

Contents at a Glance

Acknowledgments xxi
About the author xxiii
Introduction xxv

PART I INTRODUCING MICROSOFT VISUAL C# AND
MICROSOFT VISUAL STUDIO 2022

CHAPTER 1 Welcome to C# 3

CHAPTER 2 Working with variables, operators, and expressions 45

CHAPTER 3 Writing methods and applying scope 73

CHAPTER 4 Using decision statements 111

CHAPTER 5 Using compound assignment and iteration statements 133

CHAPTER 6 Managing errors and exceptions 153

PART II UNDERSTANDING THE C# OBJECT MODEL

CHAPTER 7 Creating and managing classes and objects 181

CHAPTER 8 Understanding values and references 205

CHAPTER 9 Creating value types with enumerations and structures 231

CHAPTER 10 Using arrays 251

CHAPTER 11 Understanding parameter arrays 277

CHAPTER 12 Working with inheritance 289

CHAPTER 13 Creating interfaces and defining abstract classes 311

CHAPTER 14 Using garbage collection and resource management 339

PART III UNDERSTANDING THE C# OBJECT MODEL

CHAPTER 15 Implementing properties to access fields 365

CHAPTER 16 Handling binary data and using indexers 395

CHAPTER 17 Introducing generics 413

CHAPTER 18 Using collections 445

CHAPTER 19 Enumerating collections 469

CHAPTER 20 Decoupling application logic and handling events 483

vi Contents at a Glance

CHAPTER 21 Querying in-memory data by using query expressions 513

CHAPTER 22 Operator overloading 537

PART IV BUILDING UNIVERSAL WINDOWS PLATFORM
APPLICATIONS WITH C#

CHAPTER 23 Improving throughput by using tasks 559

CHAPTER 24 Improving response time by performing asynchronous
operations 599

CHAPTER 25 Implementing the user interface for a Universal Windows
Platform app 641

CHAPTER 26 Displaying and searching for data in a Universal Windows
Platform app 687

CHAPTER 27 Accessing a remote database from a Universal Windows
Platform app 717

Index 771

 vii

Contents

Acknowledgments . xxi

About the author . xxiii

Introduction .xxv

PART I INTRODUCING MICROSOFT VISUAL C# AND
MICROSOFT VISUAL STUDIO 2022

Chapter 1 Welcome to C# 3
Writing your first C# program . 3

Beginning programming with the Visual Studio 2022 environment 9

Writing your first program using Visual Studio 2022 . 14

Using namespaces . 21

Namespaces and assemblies . 23

Commenting code . 24

Creating a graphical application . 24

Examining the Universal Windows Platform app 37

Adding code to the graphical application .40

Summary .43

Quick Reference .44

Chapter 2 Working with variables, operators, and expressions 45
Understanding statements . 45

Using identifiers .46

Identifying keywords .46

Using variables .48

Naming variables .48

Declaring variables .48

Specifying numeric values . 49

viii Contents

Working with primitive data types . 50

Unassigned local variables . 51

Displaying primitive data type values . 51

Using arithmetic operators . 59

Operators and types . 59

Examining arithmetic operators . 61

Controlling precedence . 67

Using associativity to evaluate expressions . 68

Associativity and the assignment operator . 68

Incrementing and decrementing variables . 69

Prefix and postfix . 70

Declaring implicitly typed local variables. 70

Summary . 71

Quick Reference . 72

Chapter 3 Writing methods and applying scope 73
Creating methods . 73

Declaring a method . 74

Returning data from a method . 75

Using expression-bodied methods . 76

Calling methods . 77

Specifying the method call syntax . 77

Returning multiple values from a method . 80

Applying scope . 82

Defining local scope . 83

Defining class scope . 83

Overloading methods .84

Writing methods . 85

Using the Visual Studio Debugger to step through methods 89

Refactoring code . 96

Nesting methods . 97

 Contents ix

Using optional parameters and named arguments . 100

Defining optional parameters . 102

Passing named arguments . 102

Resolving ambiguities with optional parameters and
named arguments . 103

Summary . 108

Quick reference . 109

Chapter 4 Using decision statements 111
Declaring Boolean variables .111

Using Boolean operators . 112

Understanding equality and relational operators 112

Understanding conditional logical operators . 113

Short-circuiting . 114

Summarizing operator precedence and associativity 114

Pattern matching . 115

Using if statements to make decisions . 116

Understanding if statement syntax . 116

Using blocks to group statements . 117

Cascading if statements . 118

Using switch statements . 124

Understanding switch statement syntax . 124

Following the switch statement rules . 125

Using switch expressions with pattern matching . 129

Summary . 131

Quick reference . 132

Chapter 5 Using compound assignment and
iteration statements 133
Using compound assignment operators . 133

Writing while statements . 135

Writing for statements . 140

x Contents

Writing do statements . 142

Summary . 151

Quick reference . 151

Chapter 6 Managing errors and exceptions 153
Trying code and catching exceptions . 154

Unhandled exceptions . 155

Using multiple catch handlers . 156

Catching multiple exceptions . 157

Filtering exceptions . 158

Propagating exceptions . 163

Using checked and unchecked integer arithmetic . 165

Writing checked statements . 166

Writing checked expressions . 166

Throwing exceptions . 170

Using throw expressions . 174

Using a finally block . 175

Summary . 176

Quick reference . 177

PART II UNDERSTANDING THE C# OBJECT MODEL

Chapter 7 Creating and managing classes and objects 181
Understanding classification . 181

The purpose of encapsulation . 182

Defining and using a class . 182

Controlling accessibility . 184

Working with constructors . 186

Overloading constructors . 187

Deconstructing an object . 196

 Contents xi

Understanding static methods and data . 197

Creating a shared field . 198

Creating a static field by using the const keyword 199

Understanding static classes . 199

Static using statements .200

Anonymous classes .202

Summary .203

Quick reference .204

Chapter 8 Understanding values and references 205
Copying value type variables and classes .205

Understanding null values and nullable types . 211

The null-conditional and null-coalescing operators 212

Using nullable types . 213

Understanding the properties of nullable types 214

Using ref and out parameters . 215

Creating ref parameters . 216

Creating out parameters . 216

How computer memory is organized . 219

Using the stack and the heap .220

The System.Object class . 221

Boxing .222

Unboxing .222

Casting data safely .224

The is operator .224

The as operator .225

The switch statement revisited .225

Summary .229

Quick reference .229

xii Contents

Chapter 9 Creating value types with enumerations
and structures 231
Working with enumerations . 231

Declaring an enumeration . 231

Using an enumeration .232

Choosing enumeration literal values .233

Choosing an enumeration’s underlying type .233

Working with structures .236

Declaring a structure .237

Understanding differences between structures and classes238

Declaring structure variables .240

Understanding structure initialization .240

Copying structure variables .245

Summary .248

Quick reference .249

Chapter 10 Using arrays 251
Declaring array variables .252

Creating an array instance .252

Populating and using an array .253

Creating an implicitly typed array .254

Accessing an individual array element .255

Accessing a series of array elements .255

Iterating through an array .256

Passing arrays as parameters or return values for a method257

Copying arrays .259

Using multidimensional arrays .260

Creating jagged arrays . 261

Accessing arrays that contain value types .272

Summary .275

Quick reference .275

 Contents xiii

Chapter 11 Understanding parameter arrays 277
Overloading: a recap .277

Using array arguments .278

Declaring a params array .279

Using params object[] . 281

Using a params array .283

Comparing parameter arrays and optional parameters286

Summary .288

Quick reference .288

Chapter 12 Working with inheritance 289
What is inheritance? .289

Using inheritance .290

The System.Object class revisited .292

Calling base-class constructors .292

Assigning classes .293

Declaring new methods .295

Declaring virtual methods .296

Declaring override methods .297

Understanding protected access .300

Creating extension methods .305

Summary .309

Quick reference . 310

Chapter 13 Creating interfaces and defining abstract classes 311
Understanding interfaces . 311

Defining an interface . 312

Implementing an interface . 313

Referencing a class through its interface . 314

Working with multiple interfaces . 315

Explicitly implementing an interface . 316

Handling versioning with interfaces . 318

Interface restrictions . 319

Defining and using interfaces .320

xiv Contents

Abstract classes .329

Abstract methods .330

Sealed classes .330

Sealed methods . 331

Implementing and using an abstract class . 331

Summary .337

Quick reference .338

Chapter 14 Using garbage collection and resource
management 339
The life and times of an object .339

Writing finalizers .340

Why use the garbage collector? .343

How does the garbage collector work? . 344

Recommendations .345

Resource management .345

Disposal methods .346

Exception-safe disposal .346

The using statement and the IDisposable interface347

Calling the Dispose method from a finalizer .349

Implementing exception-safe disposal . 351

Handling asynchronous disposal .359

Summary . 361

Quick reference . 361

PART III UNDERSTANDING THE C# OBJECT MODEL

Chapter 15 Implementing properties to access fields 365
Implementing encapsulation by using methods .366

What are properties? .367

Using properties .370

Read-only properties . 371

Write-only properties . 371

Property accessibility .372

 Contents xv

Understanding property restrictions. .373

Declaring interface properties .375

Replacing methods with properties . 376

Pattern-matching with properties .380

Generating automatic properties . 381

Initializing objects by using properties .383

Automatic properties and immutability .385

Using records with properties to implement lightweight structures 388

Summary .392

Quick reference .393

Chapter 16 Handling binary data and using indexers 395
What is an indexer? .395

Storing binary values .396

Displaying binary values .397

Manipulating binary values .397

Solving the same problems using indexers .398

Understanding indexer accessors . 400

Comparing indexers and arrays . 401

Indexers in interfaces .403

Using indexers in a Windows application . 404

Summary . 410

Quick reference . 410

Chapter 17 Introducing generics 413
The problem: Issues with the object type . 413

The generics solution . 417

Generics vs. generalized classes . 419

Generics and constraints . 419

Creating a generic class .420

The theory of binary trees .420

Building a binary tree class by using generics .423

xvi Contents

Creating a generic method .433

Defining a generic method to build a binary tree434

Variance and generic interfaces .438

Covariant interfaces . 440

Contravariant interfaces . 441

Summary . 444

Quick reference . 444

Chapter 18 Using collections 445
What are collection classes? .445

The List<T> collection class .447

The LinkedList<T> collection class . 449

The Queue<T> collection class .450

The PriorityQueue<TElement, TPriority> collection class 451

The Stack<T> collection class .452

The Dictionary<TKey, TValue> collection class453

The SortedList<TKey, TValue> collection class454

The HashSet<T> collection class .455

Using collection initializers .457

Find methods, predicates, and lambda expressions .458

The forms of lambda expressions .460

Lambda expressions and anonymous methods 461

Comparing arrays and collections .462

Summary .466

Quick reference .467

Chapter 19 Enumerating collections 469
Enumerating the elements in a collection .469

Manually implementing an enumerator .470

Implementing the IEnumerable interface .475

Implementing an enumerator by using an iterator .477

A simple iterator .478

Defining an enumerator for the Tree<TItem> class by using
an iterator .479

 Contents xvii

Summary .482

Quick reference .482

Chapter 20 Decoupling application logic and handling events 483
Understanding delegates . 484

Examples of delegates in the .NET class library .485

The automated factory scenario .487

Declaring and using delegates .490

Lambda expressions and delegates .499

Enabling notifications by using events .500

Declaring an event . 501

Subscribing to an event .502

Unsubscribing from an event .502

Raising an event .502

Understanding user-interface events .503

Using events .504

Summary . 510

Quick reference . 511

Chapter 21 Querying in-memory data by using
query expressions 513
What is LINQ? . 513

Using LINQ in a C# application . 514

Selecting data . 516

Filtering data . 518

Ordering, grouping, and aggregating data . 519

Joining data . 521

Using query operators .522

Querying data in Tree<TItem> objects .525

LINQ and deferred evaluation .530

Summary .534

Quick reference .534

xviii Contents

Chapter 22 Operator overloading 537
Understanding operators .537

Operator constraints .538

Overloaded operators .539

Creating symmetric operators .540

Understanding compound assignment evaluation. 541

Declaring increment and decrement operators .542

Comparing operators in structures and classes .542

Defining operator pairs .543

Implementing operators . 544

Overriding the equality operators .547

Understanding conversion operators .550

Providing built-in conversions . 551

Implementing user-defined conversion operators552

Creating symmetric operators, revisited .553

Writing conversion operators .553

Summary .555

Quick reference .556

PART IV BUILDING UNIVERSAL WINDOWS PLATFORM
APPLICATIONS WITH C#

Chapter 23 Improving throughput by using tasks 559
Why perform multitasking by using parallel processing?559

The rise of the multicore processor .560

Implementing multitasking by using Microsoft .NET 561

Tasks, threads, and the ThreadPool .562

Creating, running, and controlling tasks .563

Using the Task class to implement parallelism566

Abstracting tasks by using the Parallel class .576

When not to use the Parallel class .580

 Contents xix

Canceling tasks and handling exceptions .582

The mechanics of cooperative cancellation .582

Handling task exceptions by using the AggregateException class . . .594

Using continuations with canceled and faulted tasks 596

Summary .596

Quick reference .597

Chapter 24 Improving response time by performing
asynchronous operations 599
Implementing asynchronous methods .600

Defining asynchronous methods: the problem600

Defining asynchronous methods: the solution603

Defining asynchronous methods that return values609

Asynchronous method pitfalls . 610

Asynchronous methods and the Windows Runtime APIs 611

Tasks, memory allocation, and efficiency . 613

Using PLINQ to parallelize declarative data access . 616

Using PLINQ to improve performance while iterating
through a collection . 616

Canceling a PLINQ query . 621

Synchronizing concurrent access to data . 621

Locking data .625

Synchronization primitives for coordinating tasks 625

Canceling synchronization .627

The concurrent collection classes .628

Using a concurrent collection and a lock to implement
thread-safe data access .629

Summary .639

Quick reference .639

Chapter 25 Implementing the user interface for a Universal
Windows Platform app 641
Features of a Universal Windows Platform app .643

Using the Blank App template to build a Universal Windows
Platform app .645

xx Contents

Implementing a scalable user interface .649

Implementing a tabular layout by using a Grid control659

Adapting the layout by using the Visual State Manager667

Applying styles to a UI .674

Summary .685

Quick reference .686

Chapter 26 Displaying and searching for data in a Universal
Windows Platform app 687
Implementing the Model-View-ViewModel pattern687

Displaying data by using data binding .688

Modifying data by using data binding .694

Using data binding with a ComboBox control699

Creating a ViewModel .702

Adding commands to a ViewModel .706

Summary . 715

Quick reference . 716

Chapter 27 Accessing a remote database from a Universal
Windows Platform app 717
Retrieving data from a database . 717

Creating an entity model .728

Creating and using a REST web service .735

Updating the UWP application to use the web service752

Searching for data in the Customers app . 761

Inserting, updating, and deleting data through a REST web service 767

Summary .769

Quick reference .770

Index .771

 xxi

Acknowledgments

Hoo boy! Welcome to the 10th edition. In the acknowledgments to previous editions,
I have made references to painting the Forth Railway Bridge and Sisyphus pushing the

rock as never-ending tasks. In the future, maybe the role of updating Microsoft C# Step By
Step will be added to this legendary list. That said, writing and updating books is far more
rewarding than wielding a brush or rolling a stone up a hill forever and a day, with the
added bonus that I can retire at some point.

Despite the fact that my name is on the cover, authoring a book such as this is far from
a one-man project. I’d like to thank the following people who have provided unstinting
support and assistance throughout this endeavor.

First, Loretta Yates at Pearson Education, who took on the role of prodding me into
action and ever-so-gently tying me down to well-defined deliverables and hand-off
dates. Without her initial impetus and cajoling, this project would not have gotten off
the ground.

Next, Charvi Arora and her tireless team of editors, especially Kate Shoup and Dan
Foster, who ensured that my grammar remained at least semi-acceptable and picked up
on the missing words and nonsense phrases in the text. Also, David Fransen, who had the
unenviable task of reviewing and testing the code and exercises. I know from experience
that this can be a thankless and frustrating task, but the hours spent and the resulting
feedback can only make for a better book. Of course, any errors that remain are entirely
my responsibility, and I am happy to listen to feedback from any reader.

As ever, I must also thank Diana, my better half, who keeps me sane, fed, and wa-
tered. During Covid-19 lockdown, she felt that our house wasn’t crowded enough, so she
brought two rather manic kittens into the family. The dogs are now terrified, but we have
endless hours of fun putting the curtains back up and playing “hunt the mouse/frog/
spider or whatever they have captured and brought indoors.” I wouldn’t have home-life
any other way.

And lastly, to James and Frankie, who have both now flown the nest. James has spent
the last couple of years working for the British government in Manila (he says). Judging
by the photos, it seems more like he has been on a touring holiday of the beaches of
Southeast Asia. Frankie has remained closer to home so she can pop in and catch the
mice/frogs/spiders from time to time. By the way, to those developers she manages at her
place of work, it’s time for you to make her a cup of tea!

 xxiii

About the author

JOHN SHARP is a principal technologist for CM Group Ltd, part of the Civica Group,
a software development and consultancy company in the United Kingdom. He is well
versed as a software consultant, developer, author, and trainer, with more than 35 years
of experience, ranging from Pascal programming on CP/M and C/Oracle application
development on various flavors of UNIX to the design of C# and JavaScript distributed
applications and development on Windows 11 and Microsoft Azure. He also spends much
of his time writing courseware for Microsoft, focusing on areas such as data science using
R and Python, big data processing with Spark and CosmosDB, SQL Server, NoSQL, web
services, Blazor, cross-platform development with frameworks such as Xamarin and MAUI,
and scalable application architectures with Azure.

 xxv

Introduction

A lot has changed in the last 20 years. For a laugh, I sometimes retrieve my copy of
Microsoft C# Step By Step, first edition, released in 2001, and wonder at my naive

innocence back in those days. Surely, C# was the peak of programming language per-
fection at that time. C# and the .NET Framework hit the world of development with a
bang, and the reverberations continue to this day. However, rather than dying away, they
rumble through software development with increased significance. Rather than being a
single-platform approach as the naysayers of 2001 originally screamed, C# and .NET have
shown themselves to be a complete multiplatform solution, whether you’re building ap-
plications for Windows, macOS, Linux, or Android. Additionally, C# and .NET have proved
themselves the runtime of choice for many cloud-based systems. Where would Azure be
without them?

In the past, most common programming languages went through occasional updates,
often spread several years apart. For example, if you look at Fortran, you will see stan-
dards named Fortran 66, Fortran 77, Fortran 90, Fortran 95, Fortran 2003, Fortran 2008,
and Fortran 2018. That’s seven updates in the last 55 years. While this relatively slow cycle
of change promotes stability, it can also lead to stagnation. The issue is that the nature of
problems that developers must address changes rapidly, and the tools they depend on
should ideally keep pace so that they can develop effective solutions. Microsoft .NET pro-
vides a continually evolving framework, and C# undergoes frequent updates to make the
best use of the platform. So, in contrast to Fortran, C# has undergone a rapid evolution
since it was first released—six versions in the last five years alone, with another update
due in 2022. The C# language still supports code written 20+ years ago, but these days the
additions and enhancements to the language enable you to create solutions using more
elegant code and concise constructs. For this reason, I make periodic updates to this book;
this is now the 10th edition!

If you’re interested, the following list contains a brief history of C#:

	■ C# 1.0 made its public debut in 2001.

	■ C# 2.0, with Visual Studio 2005, provided several important new features, includ-
ing generics, iterators, and anonymous methods.

	■ C# 3.0, which was released with Visual Studio 2008, added extension methods,
lambda expressions, and, most famously of all, the Language-Integrated Query
(LINQ) facility.

xxvi Introduction

	■ C# 4.0, released in 2010, provided further enhancements that improved its interop-
erability with other languages and technologies. These features included support
for named and optional arguments and the dynamic type, which indicates that the
language runtime should implement late binding for an object. Important additions
to the .NET Framework, released concurrently with C# 4.0, were the classes and types
that constitute the Task Parallel Library (TPL). Using the TPL, you can build highly scal-
able applications that can take full advantage of multicore processors.

	■ C# 5.0 added native support for asynchronous task-based processing through the
async method modifier and the await operator.

	■ C# 6.0 was an incremental upgrade with features designed to make life simpler for
developers. These features included items such as string interpolation (you need
never use String.Format again!), enhancements to the ways in which properties
are implemented, expression-bodied methods, and others.

	■ C# 7.0 through 7.3 added further enhancements to aid productivity and remove
some of the minor anachronisms of C#. For example, these versions enabled you to
implement property accessors as expression-bodied members, methods can return
multiple values in the form of tuples, the use of out parameters was simplified, and
switch statements were extended to support pattern- and type-matching. These
versions of the language also included many other smaller tweaks to address concerns
that many developers had, such as allowing the Main method to be asynchronous.

	■ C# 8.0, C# 9.0, and C# 10.0 continue this theme of enhancing the language to
improve readability and aid developer productivity. Some major additions included
records, which you can use to build immutable reference types; extensions to
pattern matching, enabling you to use this feature throughout the language and
not just in switch statements; top-level statements, which enable you to use C#
as a scripting language (you don’t always need to write a Main method); default
interface methods; static local functions; asynchronous disposable types; and many
other features, which are covered in this book.

It goes without saying that Microsoft Windows is an important platform for running C#
applications, but now you can also run code developed by using C# on other operating
systems, such as Linux, through the .NET runtime. This opens up possibilities for writ-
ing code that can run in multiple environments. Additionally, Windows supports highly
interactive applications that can share data and collaborate as well as connect to services
running in the cloud. The key notion in Windows is Universal Windows Platform (UWP)
apps—applications designed to run on any Windows 10 or Windows 11 device, whether a
full-fledged desktop system, a laptop, a tablet, or even an Internet of Things (IoT) device
with limited resources. Once you’ve mastered the core features of C#, gaining the skills to
build applications that can run on all these platforms is critical.

 Introduction xxvii

The cloud has become such an important element in the architecture of many systems—
ranging from large-scale enterprise applications to mobile apps running on portable
devices—that I decided to focus on this aspect of development in the final chapter of
the book.

The development environment provided by Visual Studio makes these features easy to
use, and the many new wizards and enhancements included in the latest version of Visual
Studio can greatly improve your productivity as a developer. I hope you have as much fun
working through this book as I had writing it!

Who should read this book

This book assumes that you are a developer who wants to learn the fundamentals of pro-
gramming with C# by using Visual Studio and the .NET version 6 or later. By the time you
complete this book, you will have a thorough understanding of C# and will have used it to
build responsive and scalable applications that can run on the Windows operating system.

Who should not read this book

This book is aimed at developers new to C# but not completely new to programming. As
such, it concentrates primarily on the C# language. This book is not intended to provide
detailed coverage of the multitude of technologies available for building enterprise-level
and global applications for Windows, such as ADO.NET, ASP.NET, Azure, or Windows
Communication Foundation. If you require more information on any of these items, you
might consider reading some of the other titles available from Microsoft Press.

Finding your best starting point in this book

This book is designed to help you build skills in several essential areas. You can use this
book if you’re new to programming or if you’re switching from another programming
language such as C, C++, Java, or Visual Basic. Use the following table to find your best
starting point.

xxviii Introduction

If you are Follow these steps

New to object-oriented programming 1. Install the practice files as described in the upcoming
section, “Code samples.”

 2. Work through Chapters 1 to 22 sequentially.
 3. Complete Chapters 23 to 27 as your level of experience

and interest dictates.

Familiar with procedural programming
languages, such as C, but new to C#

 1. Install the practice files as described in the upcoming
section, “Code samples.”

 2. Skim the first five chapters to get an overview of C# and
Visual Studio 2022, and then concentrate on Chapters 6
through 22.

 3. Complete Chapters 23 to 27 as your level of experience
and interest dictates.

Migrating from an object-oriented
language such as C++ or Java

 1. Install the practice files as described in the upcoming
section, “Code samples.”

 2. Skim the first seven chapters to get an overview of C# and
Visual Studio 2022, and then concentrate on Chapters 8
through 22.

 3. For information about building Universal Windows
Platform applications, read Chapters 23 to 27.

Switching from Visual Basic to C# 1. Install the practice files as described in the upcoming
section, “Code samples.”

 2. Work through Chapters 1 to 22 sequentially.
 3. For information about building Universal Windows

Platform applications, read Chapters 23 to 27.
 4. Read the “Quick reference” sections at the end of the

chapters for information about specific C# and Visual
Studio 2022 constructs.

Referencing the book after working
through the exercises

 1. Use the index or the table of contents to find information
about particular subjects.

 2. Read the “Quick reference” sections at the end of each
chapter to find a brief review of the syntax and techniques
presented in the chapter.

Most of the book’s chapters include hands-on samples that let you try out the concepts
you just learned. No matter which sections you choose to focus on, be sure to download
and install the sample applications on your system.

Conventions and features in this book

This book presents information by using conventions designed to make the information
readable and easy to follow.

	■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2, and so
on) listing each action you must take to complete the exercise.

	■ Boxed elements with labels such as “Note,” “Tip,” “Important,” and “More Info” pro-
vide additional information or alternative methods for completing a step successfully.

 Introduction xxix

	■ Text that you type (apart from code blocks) and screen elements you select appear
in bold.

	■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt key
while you press the Tab key.

System requirements

You will need the following hardware and software to complete the practice exercises in
this book:

	■ Windows 10 (Home, Professional, Education, or Enterprise) or Windows 11 (Home,
Professional, Education, or Enterprise).

	■ The most recent build of Visual Studio Community 2022, Visual Studio Professional
2022, or Visual Studio Enterprise 2022. (Make sure that you have installed any up-
dates.) As a minimum, you should select the following workloads when installing
Visual Studio 2022:

• Universal Windows Platform development

• .NET desktop development

• ASP.NET and web development

• Azure development

• Data storage and processing

• .NET Core cross-platform development

Note All the exercises and code samples in this book have been devel-
oped and tested using Visual Studio Community 2022. They should all
work, unchanged, in Visual Studio Professional 2022 and Visual Studio
Enterprise 2022.

	■ 1.8 GHz or faster 64-bit processor; quad-core or better recommended. ARM
processors are not supported.

	■ 4 GB of RAM.

	■ Hard disk space: minimum of 850 MB up to 210 GB of available space, depending
on features installed; typical installations require 20 to 50 GB of free space.

xxx Introduction

	■ Video card that supports a minimum display resolution of 720p (1280 by 720);
Visual Studio will work best at a resolution of WXGA (1366 by 768) or higher.

	■ Internet connection to download software or chapter examples.

Depending on your Windows configuration, you might require local administrator
rights to install or configure Visual Studio.

You also need to enable developer mode on your computer to be able to create and
run UWP apps. For details on how to do this, see “Enable Your Device for Development,” at
https://msdn.microsoft.com/library/windows/apps/dn706236.aspx.

Code samples

Most of the chapters in this book include exercises with which you can interactively try out
new material learned in the main text. You can download all the sample projects, in both
their pre-exercise and post-exercise formats, from the following page:

MicrosoftPressStore.com/VisualCsharp10e/downloads

Installing the code samples
Follow these steps to install the code samples on your computer so that you can use them
with the exercises in this book:

1. Unzip the CSharpSBS.zip file that you downloaded from the book’s website, ex-
tracting the files into your Documents folder.

2. If prompted, review the end-user license agreement. If you accept the terms, select
the Accept option and then click Next.

Note If the license agreement doesn’t appear, you can access it from the same
webpage where you downloaded the CSharpSBS.zip file.

Using the code samples
Each chapter in this book explains when and how to use the code samples for that chapter.
When it’s time to use a code sample, the book will list the instructions for how to open
the files.

https://msdn.microsoft.com/library/windows/apps/dn706236.aspx
http://MicrosoftPressStore.com/VisualCsharp10e/downloads

 Introduction xxxi

Important Many of the code samples depend on NuGet packages that are not
included with the code. These packages are downloaded automatically the first
time you build a project. As a result, if you open a project and examine the code
before doing a build, Visual Studio might report a large number of errors for
unresolved references. Building the project will resolve these references, and
the errors should disappear.

If you’d like to know all the details, here’s a list of the sample Visual Studio projects and
solutions, grouped by the folders in which you can find them. In many cases, the exercises
provide starter files and completed versions of the same projects that you can use as a
reference. The completed projects for each chapter are stored in folders with the suffix
“- Complete.”

Project/Solution Description

Chapter 1

 HelloWorld This project gets you started. It steps through the creation of a simple
program using a text editor. The program displays a text-based
greeting.

 HelloWorld2 This project demonstrates how to use the .NET Command Level
Interface (CLI) to build and run a simple C# application.

 TestHello This is a Visual Studio project that displays a greeting.

 HelloUWP This project opens a window that prompts the user for his or her name
and then displays a greeting.

Chapter 2

 PrimitiveDataTypes This project demonstrates how to declare variables by using each of
the primitive types, how to assign values to these variables, and how to
display their values in a window.

 MathOperators This program introduces the arithmetic operators (+ – * / %).

Chapter 3

 Methods In this project, you’ll reexamine the code in the MathOperators project
and investigate how it uses methods to structure the code.

 DailyRate This project walks you through writing your own methods, running the
methods, and stepping through the method calls by using the Visual
Studio 2015 debugger.

 DailyRate Using Optional
Parameters

This project shows you how to define a method that takes optional
parameters and call the method by using named arguments.

 Factorial This project demonstrates a recursive method that calculates the
factorial of a number.

xxxii Introduction

Project/Solution Description

Chapter 4

 Selection This project shows you how to use a cascading if statement to implement
complex logic, such as comparing the equivalence of two dates.

 SwitchStatement This simple program uses a switch statement to convert characters into
their XML representations.

 SwitchStatement using
Pattern Matching

This is an amended version of the SwitchStatement project that uses
pattern matching to simplify the logic in the switch statement.

Chapter 5

 WhileStatement This project demonstrates a while statement that reads the contents of a
source file one line at a time and displays each line in a text box on a form.

 DoStatement This project uses a do statement to convert a decimal number to its
octal representation.

Chapter 6

 MathOperators This project revisits the MathOperators project from Chapter 2 and
shows how various unhandled exceptions can make the program fail.
The try and catch keywords then make the application more robust so
that it no longer fails.

Chapter 7

 Classes This project covers the basics of defining your own classes, complete
with public constructors, methods, and private fields. It also shows how
to create class instances by using the new keyword and how to define
static methods and fields.

Chapter 8

 Parameters This program investigates the difference between value parameters
and reference parameters. It demonstrates how to use the ref and out
keywords.

Chapter 9

 StructsAndEnums This project defines a struct type to represent a calendar date.

Chapter 10

 Cards This project shows how to use arrays to model hands of cards in a
card game.

Chapter 11

 ParamsArray This project demonstrates how to use the params keyword to create a
single method that can accept any number of int arguments.

Chapter 12

 Vehicles This project creates a simple hierarchy of vehicle classes by using
inheritance. It also demonstrates how to define a virtual method.

 ExtensionMethod This project shows how to create an extension method for the int type,
providing a method that converts an integer value from base 10 to a
different number base.

 Introduction xxxiii

Project/Solution Description

Chapter 13

 Drawing This project implements part of a graphical drawing package. The
project uses interfaces to define the methods that drawing shapes
expose and implement.

Chapter 14

 GarbageCollectionDemo This project shows how to implement exception-safe disposal of
resources by using the Dispose pattern.

Chapter 15

 Drawing Using Properties This project extends the application in the Drawing project developed
in Chapter 13 to encapsulate data in a class by using properties.

 AutomaticProperties This project shows how to create automatic properties for a class and
use them to initialize instances of the class.

 Student enrollment This project demonstrates how to use records to model structured
immutable types.

Chapter 16

 Indexers This project uses two indexers: one to look up a person’s phone
number when given a name and the other to look up a person’s name
when given a phone number.

Chapter 17

 BinaryTree This solution shows you how to use generics to build a type-safe
structure that can contain elements of any type.

 BuildTree This project demonstrates how to use generics to implement a type-
safe method that can take parameters of any type.

Chapter 18

 Cards This project updates the code from Chapter 10 to show how to use
collections to model hands of cards in a card game.

Chapter 19

 BinaryTree This project shows you how to implement the generic IEnumerator<T>
interface to create an enumerator for the generic Tree class.

 IteratorBinaryTree This solution uses an iterator to generate an enumerator for the
generic Tree class.

Chapter 20

 Delegates This project shows how to decouple a method from the application
logic that invokes it by using a delegate. The project is then extended to
show how to use an event to alert an object to a significant occurrence,
and how to catch an event and perform any processing required.

Chapter 21

 QueryBinaryTree This project shows how to use LINQ queries to retrieve data from a
binary tree object.

xxxiv Introduction

Project/Solution Description

Chapter 22

 ComplexNumbers This project defines a new type that models complex numbers and
implements common operators for this type.

Chapter 23

 GraphDemo This project generates and displays a complex graph on a UWP form. It
uses a single thread to perform the calculations.

 Parallel GraphDemo This version of the GraphDemo project uses the Parallel class to
abstract out the process of creating and managing tasks.

 GraphDemo with
Cancellation

This project shows how to implement cancellation to halt tasks in a
controlled manner before they have completed.

 ParallelLoop This application provides an example showing when you should not
use the Parallel class to create and run tasks.

Chapter 24

 GraphDemo This is a version of the GraphDemo project from Chapter 23 that uses
the async keyword and the await operator to perform the calculations
that generate the graph data asynchronously.

 PLINQ This project shows some examples of using PLINQ to query data by
using parallel tasks.

 CalculatePI This project uses a statistical sampling algorithm to calculate an
approximation for pi. It uses parallel tasks.

 ParallelTest This program illustrates the dangers of allowing uncontrolled data
access to shared data by parallel threads.

Chapter 25

 Customers This project implements a scalable user interface that can adapt to
different device layouts and form factors. The user interface applies
XAML styling to change the fonts and background image displayed by
the application.

Chapter 26

 DataBinding This is a version of the Customers project that uses data binding to
display customer information retrieved from a data source in the user
interface. It also shows how to implement the INotifyPropertyChanged
interface so that the user interface can update customer information
and send these changes back to the data source.

 ViewModel This version of the Customers project separates the user interface from
the logic that accesses the data source by implementing the Model-
View-ViewModel pattern.

 Introduction xxxv

Project/Solution Description

Chapter 27

 Web Service This solution includes a web application that provides a REST web
service that the Customers application uses to retrieve customer
information and modify data held in a SQL Server database. The web
service uses the Entity Framework to access the database. The database
and the web service run using Azure.

 Customers with insert and
update features

This solution contains an updated version of the Customers project
that uses the REST web service to create new customers and modify the
details of existing customers.

Errata and book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site at:

MicrosoftPressStore.com/VisualCsharp10e/errata

If you discover an error that is not already listed, please submit it to us at the same page.

For additional book support and information, please visit:

MicrosoftPressStore.com/Support

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses. For help with Microsoft software or hardware, go to:

http://support.microsoft.com

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://MicrosoftPressStore.com/VisualCsharp10e/errata
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress

 205

C H A P T E R 8

Understanding values and
references

After completing this chapter, you will be able to:

	■ Explain the differences between a value type and a reference type.

	■ Understand null values and how nullable types work.

	■ Modify how arguments are passed as method parameters by using the ref and out keywords.

	■ Describe how computer memory is organized to support value types and reference types.

	■ Convert a value into a reference by using boxing.

	■ Convert a reference back to a value by using unboxing and casting.

Chapter 7, “Creating and managing classes and objects,” demonstrated how to declare your own
classes and how to create objects by using the new keyword. That chapter also showed you how

to initialize an object by using a constructor. In this chapter, you’ll learn how the characteristics of the
primitive types such as int, double, and char differ from the characteristics of class types.

Copying value type variables and classes

Most of the primitive types built into C#, such as int, float, double, and char (but not string, for
reasons that will be covered shortly), are collectively called value types. These types have a fixed size,
and when you declare a variable as a value type, the compiler generates code that allocates a block of
memory big enough to hold a corresponding value. For example, declaring an int variable causes the
compiler to allocate 4 bytes of memory (32 bits) to hold the integer value. A statement that assigns a
value (such as 42) to the int causes the value to be copied into this block of memory.

Class types such as Circle (described in Chapter 7) are handled differently. When you declare a
Circle variable, the compiler does not generate code that allocates a block of memory big enough to
hold a Circle object. All it does is allot a small piece of memory that can potentially hold the address
of (or a reference to) another block of memory containing a Circle object. (An address specifies the
location of an item in memory.) The memory for the actual Circle object is allocated only when the
new keyword is used to create the object.

206 PART II Understanding the C# object model

A class is an example of a reference type. Reference types hold references to blocks of memory. To
write effective C# code, you must understand the difference between value types and reference types.

Note The string type in C# is actually a class. This is because there is no standard size
for a string (different strings can contain different numbers of characters), and allocating
memory for a string dynamically when the program runs is far more efficient than doing so
statically at compile time. The description in this chapter of reference types such as classes
applies to the string type as well. In fact, the string keyword in C# is just an alias for the
System.String class.

Consider a situation in which you declare a variable named i as an int and assign it the value 42. If
you declare another variable called copyi as an int and then assign i to copyi, copyi will hold the
same value as i (42). However, even though copyi and i happen to hold the same value, two blocks
of memory contain the value 42: one block for i and the other block for copyi. If you modify the
value of i, the value of copyi does not change. Let’s see this in code:

int i = 42; // declare and initialize i
int copyi = i; /* copyi contains a copy of the data in i:
 i and copyi both contain the value 42 */
i++; /* incrementing i has no effect on copyi;
 i now contains 43, but copyi still contains 42 */

The effect of declaring a variable c as a class type, such as Circle, is very different. When you
declare c as a Circle, c can refer to a Circle object; the actual value held by c is the address of a
Circle object in memory. If you declare an additional variable named refc (also as a Circle object)
and you assign c to refc, refc will have a copy of the same address as c. In other words, there’s only
one Circle object, and both refc and c now refer to it. Here’s an example in code:

var c = new Circle(42);
Circle refc = c;

The following illustration shows both examples. The at sign (@) in the Circle objects represents a
reference holding an address in memory.

This difference is very important. It means that the behavior of method parameters depends on
whether they are value types or reference types. You’ll explore this difference in the next exercise.

 CHAPTER 8 Understanding values and references 207

Copying reference types and data privacy
If you actually want to copy the contents of a Circle object, c, into a different Circle object,
refc, instead of just copying the reference, you must make refc refer to a new instance of the
Circle class and then copy the data, field by field, from c into refc, like this:

var refc = new Circle();
refc.radius = c.radius; // Don’t try this

However, if any members of the Circle class are private (like the radius field), you won’t be
able to copy this data. Instead, you can make the data in the private fields accessible by exposing
them as properties and then use these properties to read the data from c and copy it into refc.
You’ll learn how to do this in Chapter 15, “Implementing properties to access fields.”

Alternatively, a class could provide a Clone method that returns another instance of the same
class but populated with the same data. The Clone method would have access to the private
data in an object and could copy this data directly to another instance of the same class. For
example, the Clone method for the Circle class could be defined as shown here:

class Circle
{
 private int radius;
 // Constructors and other methods omitted
 ...
 public Circle Clone()
 {
 // Create a new Circle object
 Circle clone = new Circle();

 // Copy private data from this to clone
 clone.radius = this.radius;

 // Return the new Circle object containing the copied data
 return clone;
 }
}

This approach is straightforward if all the private data consists of values, but if one or more
fields are themselves reference types (for example, if the Circle class is extended to contain a
Point object from Chapter 7, indicating the position of the Circle on a graph), these reference
types also need to provide a Clone method; otherwise, the Clone method of the Circle class
will simply copy a reference to these fields. This process is known as a deep copy. The alternative
approach, wherein the Clone method simply copies references, is known as a shallow copy.

The preceding code example also poses an interesting question: How private is private data?
Previously, you saw that the private keyword renders a field or method inaccessible from out-
side a class. However, this does not mean it can be accessed by only a single object. If you create
two objects of the same class, they can each access the private data of the other within the code
for that class.

208 PART II Understanding the C# object model

This sounds curious, but in fact, methods such as Clone depend on this feature. For example,
the statement clone.radius = this.radius; works only because the private radius field
in the clone object is accessible from within the current instance of the Circle class. So, private
actually means private to the class rather than private to an object. Don’t confuse private with
static, however. If you simply declare a field as private, each instance of the class gets its own
data. If a field is declared as static, each instance of the class shares the same data.

To use value parameters and reference parameters

1. Start Microsoft Visual Studio 2022, if it is not already running.

2. Open the Parameters solution, which is located in the \Microsoft Press\VCSBS\Chapter 8\
Parameters folder in your Documents folder.

The project contains three C# code files: Pass.cs, Program.cs, and WrappedInt.cs.

3. Display the Pass.cs file in the Code and Text Editor window.

This file defines a class called Pass that is currently empty apart from a // TODO: comment.

Tip You can use the Task List window to locate all // TODO: comments in a solution.

4. Add a public static method called Value to the Pass class, replacing the // TODO: comment.
This method should accept a single int parameter (a value type) called param and have the
return type void. The body of the Value method should simply assign the value 42 to param,
as shown in bold type in the following code example:

namespace Parameters
{
 class Pass
 {
 public static void Value(int param)
 {
 param = 42;
 }
 }
}

Note You’re defining this method using the static keyword to keep the exercise
simple. You can call the Value method directly on the Pass class without first creat-
ing a new Pass object. The principles illustrated in this exercise apply in the same
manner to instance methods.

 CHAPTER 8 Understanding values and references 209

5. Display the Program.cs file in the Code and Text Editor window and then locate the doWork
method of the Program class.

The doWork method is called by the Main method when the program starts running.
As explained in Chapter 7, the method call is wrapped in a try block and followed by a
catch handler.

6. Add four statements to the doWork method to perform the following tasks:

• Declare a local int variable called i and initialize it to 0.

• Write the value of i to the console by using Console.WriteLine.

• Call Pass.Value, passing i as an argument.

• Write the value of i to the console again.

By running Console.WriteLine before and after the call to Pass.Value, you can see
whether the Pass.Value method actually modifies the value of i. The completed doWork
method should look exactly like this:

static void doWork()
{
 int i = 0;
 Console.WriteLine(i);
 Pass.Value(i);
 Console.WriteLine(i);
}

7. On the Debug menu, select Start Without Debugging to build and run the program.

8. Confirm that the value 0 is written to the console window twice.

The assignment statement inside the Pass.Value method that updates the parameter and
sets it to 42 uses a copy of the argument passed in, and the original argument i is completely
unaffected.

9. Press Enter to close the application.

You’ll now see what happens when you pass an int parameter that’s wrapped within a class.

10. Display the WrappedInt.cs file in the Code and Text Editor window. This file contains the
WrappedInt class, which is empty apart from a // TODO: comment.

11. Add a public instance field called Number of type int to the WrappedInt class, as shown in
bold type in the following code:

namespace Parameters
{
 class WrappedInt
 {
 public int Number;
 }
}

210 PART II Understanding the C# object model

12. Display the Pass.cs file in the Code and Text Editor window. Add a public static method called
Reference to the Pass class. This method should accept a single WrappedInt parameter
called param and have the return type void. The body of the Reference method should
assign 42 to param.Number, as shown here:

public static void Reference(WrappedInt param)
{
 param.Number = 42;
}

13. Display the Program.cs file in the Code and Text Editor window. Comment out the existing code
in the doWork method and add four more statements to perform the following tasks:

• Declare a local WrappedInt variable called wi and initialize it to a new WrappedInt object
by calling the default constructor.

• Write the value of wi.Number to the console.

• Call the Pass.Reference method, passing wi as an argument.

• Write the value of wi.Number to the console again.

As before, with the calls to Console.WriteLine, you can see whether the call to
Pass.Reference modifies the value of wi.Number. The doWork method should now
look exactly like this (the new statements are in bold):

static void doWork()
{
 // int i = 0;
 // Console.WriteLine(i);
 // Pass.Value(i);
 // Console.WriteLine(i);
 var wi = new WrappedInt();
 Console.WriteLine(wi.Number);
 Pass.Reference(wi);
 Console.WriteLine(wi.Number);
}

14. On the Debug menu, select Start Without Debugging to build and run the application.

This time, the two values displayed in the console window correspond to the value of
wi.Number before and after the call to the Pass.Reference method. You should see that
the values 0 and 42 are displayed.

15. Press Enter to close the application and return to Visual Studio 2022.

To explain what the previous exercise shows, the value of wi.Number is initialized to 0 by the
compiler-generated default constructor. The wi variable contains a reference to the newly created
WrappedInt object (which contains an int). The wi variable is then copied as an argument to the
Pass.Reference method. Because WrappedInt is a class (a reference type), wi and param both
refer to the same WrappedInt object. Any changes made to the contents of the object through the
param variable in the Pass.Reference method are visible by using the wi variable when the method

 CHAPTER 8 Understanding values and references 211

completes. The following diagram illustrates what happens when a WrappedInt object is passed as an
argument to the Pass.Reference method.

Understanding null values and nullable types

When you declare a variable, it’s always a good idea to initialize it. With value types, it’s common to see
code such as this:

int i = 0;
double d = 0.0;

To initialize a reference variable such as a class, you can create a new instance of the class and assign
the reference variable to the new object, like this:

var c = new Circle(42);

This is all very well, but what if you don’t actually want to create a new object? Perhaps the purpose
of the variable is simply to store a reference to an existing object at some later point in your program.
In the following code example, the Circle variable copy is initialized, but later it is assigned a refer-
ence to another instance of the Circle class:

var c = new Circle(42);
var copy = new Circle(99); // Some random value for initializing copy
...
copy = c; // copy and c refer to the same object

After assigning c to copy, what happens to the original Circle object with a radius of 99 that you
used to initialize copy? Nothing refers to it anymore. In this situation, the runtime can reclaim the
memory by performing an operation known as garbage collection, which you’ll learn more about in
Chapter 14, “Using garbage collection and resource management." The important thing to understand
for now is that garbage collection is a potentially time-consuming operation, and that you should not
create objects that are never used because doing so is a waste of time and resources.

You could argue that if a variable will be assigned a reference to another object at some point in a
program, there’s no point to initializing it. This is poor programming practice, however, and can lead to
problems in your code. For example, you will inevitably find yourself in a situation in which you want to

212 PART II Understanding the C# object model

refer a variable to an object only if that variable does not already contain a reference, as shown in the
following code example:

var c = new Circle(42);
Circle copy; // Uninitialized !!!
...
if (copy == // only assign to copy if it is uninitialized, but what goes here?)
{
 copy = c; ; // copy and c refer to the same object
 ...
}

The purpose of the if statement is to test the copy variable to see whether it is initialized, but to
which value should you compare this variable? The answer is to use a special value called null.

In C#, you can assign the null value to any reference variable. The null value simply means that
the variable does not refer to an object in memory. You can use it like this:

Circle c = new Circle(42);
Circle copy = null; // Initialized
...
if (copy is null)
{
 copy = c; // copy and c refer to the same object
 ...
}

Note You can also use == null to check for a null reference. However, is null reads
more naturally. Similarly, you can use is not null as well as != null to check for a non-
null reference.

The null-conditional and null-coalescing operators
The null-conditional operator enables you to test for null values very succinctly. To use the null-
conditional operator, you append a question mark (?) to the name of your variable.

For example, suppose you attempt to call the Area method on a Circle object when the Circle
object has a null value:

Circle c = null;
Console.WriteLine($"The area of circle c is {c.Area()}");

In this case, the Circle.Area method throws a NullReferenceException, which makes sense
because you cannot calculate the area of a circle that does not exist.

To avoid this exception, you could test whether the Circle object is null before you attempt to
call the Circle.Area method:

if (c is not null)
{
 Console.WriteLine($"The area of circle c is {c.Area()}");
}

 CHAPTER 8 Understanding values and references 213

In this case, if c is null, nothing is written to the command window. Alternatively, you could use the
null-conditional operator on the Circle object before you attempt to call the Circle.Area method:

Console.WriteLine($"The area of circle c is {c?.Area()}");

The null-conditional operator tells the C# runtime to ignore the current statement if the variable
you have applied the operator to is null. In this case, the command window would display the follow-
ing text:

The area of circle c is

Both approaches are valid and might meet your needs in different scenarios. The null-conditional
operator can help you keep your code concise, particularly when you deal with complex properties
with nested reference types that could all be null valued.

Alongside the null-conditional operator, C# provides two null-coalescing operators. The first of
these, ??, is a binary operator that returns the value of the operand on the left if it isn’t null; other-
wise, it returns the value of the operand on the right. In the following example, variable c2 is assigned
a reference to c if c isn’t null; otherwise, it is assigned a reference to a new Circle object:

Circle c = ...; // might be null, might be a new Circle object
...
var c2 = c ?? new Circle(42) ;

The null-coalescing assignment operator, ??=, assigns the value of the operand on the right to the
operand on the left only if the left operand is null. If the left operand references some other value, it is
unchanged.

Circle c = ...; // might be null, might be a new Circle object
Circle c3 = ...; // might be null, might be a new Circle object
...
var c3 ??= c; // Only assign c3 if it is null, otherwise leave unchanged;

Using nullable types
The null value is very useful for initializing reference types. Sometimes, though, you need an equiva-
lent value for value types. null is itself a reference, so you cannot assign it to a value type. The follow-
ing statement is therefore illegal in C#:

int i = null; // illegal

However, C# defines a modifier that you can use to declare that a variable is a nullable value type. A
nullable value type behaves similarly to the original value type, but you can assign the null value to it.
You use the question mark (?) to indicate that a value type is nullable, like this:

int? i = null; // legal

You can ascertain whether a nullable variable contains null by testing it in the same way as you test
a reference type.

if (i is null)
 ...

214 PART II Understanding the C# object model

You can assign an expression of the appropriate value type directly to a nullable variable. The
following examples are all legal:

int? i = null;
int j = 99;
i = 100; // Copy a value type constant to a nullable type
i = j; // Copy a value type variable to a nullable type

You should note that the converse is not true. You cannot assign a nullable variable to an ordinary
value type variable. So, given the definitions of variables i and j from the preceding example, the
following statement is not allowed:

j = i; // illegal

This makes sense when you consider that the variable i might contain null, and j is a value type
that cannot contain null. This also means that you cannot use a nullable variable as a parameter to a
method that expects an ordinary value type. If you recall, the Pass.Value method from the preceding
exercise expects an ordinary int parameter, so the following method call will not compile:

int? i = 99;
Pass.Value(i); // Compiler error

Note Take care not to confuse nullable types with the null-conditional operator. Nullable
types are indicated by appending a question mark to the type name, whereas the null-
conditional operator is appended to the variable name.

Understanding the properties of nullable types
A nullable type exposes a pair of properties that you can use to determine whether the type actually
has a non-null value and what this value is. The HasValue property indicates whether a nullable type
contains a value or is null. You can retrieve the value of a non-null nullable type by reading the Value
property, like this:

int? i = null;
...
if (!i.HasValue)
{
 // If i is null, then assign it the value 99
 i = 99;
}
else
{
 // If i is not null, then display its value
 Console.WriteLine(i.Value);
}

 CHAPTER 8 Understanding values and references 215

In Chapter 4, “Using decision statements,” you saw that the NOT operator (!) negates a Boolean
value. The preceding code fragment tests the nullable variable i, and if it does not have a value (it
is null), it assigns it the value 99; otherwise, it displays the value of the variable. In this example,
using the HasValue property does not provide any benefit over testing for a null value directly.
Additionally, reading the Value property is a long-winded way of reading the contents of the variable.
However, these apparent shortcomings are caused by the fact that int? is a very simple nullable type.
You can create more complex value types and use them to declare nullable variables where the advan-
tages of using the HasValue and Value properties become more apparent. You’ll see some examples
in Chapter 9, “Creating value types with enumerations and structures.”

Note The Value property of a nullable type is read-only. You can use this property to read
the value of a variable but not to modify it. To update a nullable variable, use an ordinary
assignment statement.

Using ref and out parameters

Ordinarily, when you pass an argument to a method, the corresponding parameter is initialized with
a copy of the argument. This is true regardless of whether the parameter is a value type (such as an
int), a nullable type (such as int?), or a reference type (such as a WrappedInt). This arrangement
means that it’s impossible for any change to the parameter to affect the value of the argument passed
in. For example, in the following code, the value output to the console is 42, not 43. The doIncrement
method increments a copy of the argument (arg) and not the original argument, as demonstrated here:

static void doIncrement(int param)
{
 param++;
}

static void Main()
{
 int arg = 42;
 doIncrement(arg);
 Console.WriteLine(arg); // writes 42, not 43
}

In the preceding exercise, you saw that if the parameter to a method is a reference type, any
changes made by using that parameter change the data referenced by the argument passed in. The key
point is this: although the data that was referenced changed, the argument passed in as the parameter
did not. It still references the same object. In other words, although it’s possible to modify the object
that the argument refers to through the parameter, it’s not possible to modify the argument itself—for
example, to set it to refer to a completely different object. Most of the time, this guarantee is very use-
ful and can help reduce the number of bugs in a program. Occasionally, however, you might want to
write a method that actually needs to modify an argument. C# provides the ref and out keywords so
that you can do this.

216 PART II Understanding the C# object model

Creating ref parameters
If you prefix a parameter with the ref keyword, the C# compiler generates code that passes a ref-
erence to the actual argument rather than a copy of the argument. When using a ref parameter,
anything you do to the parameter you also do to the original argument because the parameter and
the argument both reference the same data.

When you pass an argument as a ref parameter, you must also prefix the argument with the ref
keyword. This syntax provides a useful visual cue to the programmer that the argument might change.
Here’s the preceding example again, this time modified to use the ref keyword:

static void doIncrement(ref int param) // using ref
{
 param++;
}

static void Main()
{
 int arg = 42;
 doIncrement(ref arg); // using ref
 Console.WriteLine(arg); // writes 43
}

This time, the doIncrement method receives a reference to the original argument rather than a
copy, so any changes the method makes by using this reference actually change the original value.
That’s why the value 43 is displayed on the console.

Remember that C# enforces the rule that you must assign a value to a variable before you can read
it. This rule also applies to method arguments; you cannot pass an uninitialized value as an argument
to a method even if an argument is defined as a ref argument. For example, in the following example,
arg is not initialized, so this code will not compile. This failure occurs because the statement param++;
within the doIncrement method is really an alias for the statement arg++; and this operation is
allowed only if arg has a defined value:

static void doIncrement(ref int param)
{
 param++;
}

static void Main()
{
 int arg; // not initialized
 doIncrement(ref arg);
 Console.WriteLine(arg);
}

Creating out parameters
The compiler checks whether a ref parameter has been assigned a value before calling the method.
However, there might be times when you want the method itself to initialize the parameter. You can do
this with the out keyword.

 CHAPTER 8 Understanding values and references 217

The out keyword is syntactically similar to the ref keyword. You can prefix a parameter with the
out keyword so that the parameter becomes an alias for the argument. As when using ref, anything
you do to the parameter, you also do to the original argument. When you pass an argument to an out
parameter, you must also prefix the argument with the out keyword.

The keyword out is short for output. When you pass an out parameter to a method, the method
must assign a value to it before it finishes or returns, as shown in the following example:

static void doInitialize(out int param)
{
 param = 42; // Initialize param before finishing
}

The following example does not compile because doInitialize does not assign a value to param:

static void doInitialize(out int param)
{
 // Do nothing
}

Because an out parameter must be assigned a value by the method, you’re allowed to call the
method without initializing its argument. For example, the following code calls doInitialize to
initialize the variable arg, which is then displayed on the console:

static void doInitialize(out int param)
{
 param = 42;
}

static void Main()
{
 int arg; // not initialized
 doInitialize(out arg); // legal
 Console.WriteLine(arg); // writes 42
}

Note You can combine the declaration of an out variable with its use as a parameter rather
than performing these tasks separately. For example, you could replace the first two state-
ments in the Main method in the previous example with this single line of code:

doInitialize(out int arg);

In the next exercise, you’ll practice using ref parameters.

To use ref parameters

1. Return to the Parameters project in Visual Studio 2022.

2. Display the Pass.cs file in the Code and Text Editor window.

218 PART II Understanding the C# object model

3. Edit the Value method to accept its parameter as a ref parameter.

The Value method should look like this:

class Pass
{
 public static void Value(ref int param)
 {
 param = 42;
 }
 ...
}

4. Display the Program.cs file in the Code and Text Editor window.

5. Uncomment the first four statements.

Notice that the third statement of the doWork method, Pass.Value(i), indicates an error.
The error occurs because the Value method now expects a ref parameter.

6. Edit this statement so that the Pass.Value method call passes its argument as a ref parameter.

Note Leave the four statements that create and test the WrappedInt object as they are.

The doWork method should now look like this:

class Program
{
 static void doWork()
 {
 int i = 0;
 Console.WriteLine(i);
 Pass.Value(ref i);
 Console.WriteLine(i);
 ...
 }
}

7. On the Debug menu, select Start Without Debugging to build and run the program.

This time, the first two values written to the console window are 0 and 42. This result shows
that the call to the Pass.Value method has successfully modified the argument i.

8. Press Enter to close the application and return to Visual Studio 2022.

Note You can use the ref and out modifiers on reference type parameters as well as
on value type parameters. The effect is the same: the parameter becomes an alias for
the argument.

 CHAPTER 8 Understanding values and references 219

How computer memory is organized

Computers use memory to hold programs that are being executed and the data that those programs
use. To understand the differences between value and reference types, it’s helpful to understand how
data is organized in memory.

Operating systems and language runtimes such as those used by C# frequently divide the memory
used for holding data into two separate areas, each of which is managed in a distinct manner. These
two areas of memory are traditionally called the stack and the heap. The stack and the heap serve dif-
ferent purposes:

	■ When you call a method, the memory required for its parameters and its local variables is
acquired from the stack. When the method finishes (because it either returns or throws an ex-
ception), the memory acquired for the parameters and local variables is automatically released
back to the stack to be made available again when another method is called. Method param-
eters and local variables on the stack have a well-defined lifespan: They come into existence
when the method starts, and they disappear as soon as the method completes.

The same lifespan applies to variables defined in any block of code enclosed by opening and
closing braces. In the following code example, the variable i is created when the body of the
while loop starts, but it disappears when the while loop finishes, and execution continues
after the closing brace:

while (...)
{
 int i = …; // i is created on the stack here
 ...
}
// i disappears from the stack here

	■ When you create an object (an instance of a class) by using the new keyword, the memory
required to build the object is acquired from the heap. You’ve seen that the same object can
be referenced from several places by using reference variables. When the last reference to an
object disappears, the memory used by the object becomes available again (although it might
not be reclaimed immediately). Objects created on the heap therefore have a more indetermi-
nate lifespan; an object is created by using the new keyword, but it disappears only sometime
after the last reference to the object is removed. Chapter 14 includes a more detailed discussion
of how heap memory is reclaimed.

Note All value types are created on the stack. By default, reference types (objects) are cre-
ated on the heap, although the reference itself is on the stack. (There are some exceptions
to this rule, which you’ll learn about in later chapters.) Nullable objects are actually reference
types, and they are created on the heap.

220 PART II Understanding the C# object model

The names stack and heap come from the way in which the runtime manages the memory:

	■ Stack memory is organized like boxes stacked neatly on top of one another. When a method is
called, each parameter is placed in a box that is added to the top of the stack. Each local vari-
able is likewise assigned a box, which is placed on top of the boxes already on the stack. When
a method finishes, think of it as being like a box being removed from the stack.

	■ Heap memory is like a large pile of boxes strewn around a room rather than stacked neatly on
top of one another. Each box has a label indicating whether it is in use. When a new object is
created, the runtime searches for an empty box and allocates it to the object. The reference to
the object is stored in a local variable on the stack. The runtime keeps track of the number of
references to each box. (Remember: two variables can refer to the same object.) When the last
reference disappears, the runtime marks the box as not in use; at some point in the future, it
empties the box and makes it available.

Using the stack and the heap
Now let’s examine what happens when a method named Method is called:

void Method(int param)
{
 Circle c;
 c = new Circle(param);
 ...
}

Suppose the argument passed into param is the value 42. When the method is called, a block of
memory (just enough for an int) is allocated from the stack and initialized with the value 42. As execu-
tion moves inside the method, another block of memory big enough to hold a reference (a memory
address) is also allocated from the stack, but left uninitialized. This is for the Circle variable, c. Next,
another piece of memory big enough for a Circle object is allocated from the heap. This is what the
new keyword does. The Circle constructor runs to convert this raw heap memory to a Circle object. A
reference to this Circle object is stored in the variable c. The following illustration shows this process:

At this point, you should note two things:

	■ Although the object is stored on the heap, the reference to the object (the variable c) is stored
on the stack.

	■ Heap memory is not infinite. If heap memory is exhausted, the new operator will throw an
OutOfMemoryException exception, and the object will not be created.

 CHAPTER 8 Understanding values and references 221

Note The Circle constructor could also throw an exception. If it does, the memory
allocated to the Circle object will be reclaimed, and the value returned by the constructor
will be null.

When the method ends, the parameters and local variables go out of scope. The memory acquired
for c and param is automatically released back to the stack. The runtime notes that the Circle object
is no longer referenced and at some point in the future will arrange for its memory to be reclaimed by
the heap. (See Chapter 14.)

The System.Object class
One of the most important reference types in .NET is the Object class in the System namespace.
To fully appreciate the significance of the System.Object class, you must understand inheritance,
which is described in Chapter 12, “Working with inheritance.” For now, simply accept that all classes
are specialized types of System.Object and that you can use System.Object to create a variable
that can refer to any reference type. System.Object is such an important class that C# provides the
object keyword as an alias for System.Object. In your code, you can use object, or you can write
System.Object. They mean the same thing.

Tip Use the object keyword rather than System.Object. It’s more direct, and it’s consis-
tent with other keywords that are synonyms for classes, such as string for System.String
and others that are covered in Chapter 9.

In the following example, the variables c and o both refer to the same Circle object. The fact that
the type of c is Circle and the type of o is object (the alias for System.Object) in effect provides
two different views of the same item in memory.

Circle c;
c = new Circle(42);
object o;
o = c;

The following diagram illustrates how the variables c and o refer to the same item on the heap:

222 PART II Understanding the C# object model

Boxing
As you have just seen, variables of type object can refer to any item of any reference type. However,
variables of type object can also refer to a value type. For example, the following two statements ini-
tialize the variable i (of type int, a value type) to 42 and then initialize the variable o (of type object,
a reference type) to i:

int i = 42;
object o = i;

The second statement requires a little explanation to appreciate what’s actually happening.
Remember that i is a value type and that it lives on the stack. If the reference inside o referred directly
to i, the reference would refer to the stack. However, references should refer to objects on the heap.
Creating uncontrolled references to items on the stack could seriously compromise the robustness of
the runtime and potentially create a security flaw, so it is not allowed. Therefore, the runtime allocates a
piece of memory from the heap, copies the value of integer i to this piece of memory, and then refers
the object o to this copy. This automatic copying of an item from the stack to the heap is called boxing.
The following diagram shows the result:

Important If you modify the original value of the variable i, the value on the heap refer-
enced through o will not change. Likewise, if you modify the value on the heap, the original
value of the variable will not change.

Unboxing
Because a variable of type object can refer to a boxed copy of a value, it’s only reasonable to allow
you to get at that boxed value through the variable. You might expect to be able to access the boxed
int value that a variable o refers to by using a simple assignment statement such as this:

int i = o;

However, if you try this syntax, you’ll get a compile-time error. If you think about it, it’s fairly sensible
that you can’t use the int i = o; syntax. After all, o could be referencing absolutely anything and
not just an int. Consider what would happen in the following code if this statement were allowed:

Circle c = new Circle();
int i = 42;
object o;
o = c; // o refers to a circle
i = o; // what is stored in i?

 CHAPTER 8 Understanding values and references 223

To obtain the value of the boxed copy, you must use what is known as a cast. This is an operation
that checks whether converting an item of one type to another is safe before actually making the copy.
You prefix the object variable with the name of the type in parentheses, as in this example:

int i = 42;
object o = i; // boxes
i = (int)o; // compiles okay

The effect of this cast is subtle. The compiler notices that you’ve specified the type int in the cast.
Next, the compiler generates code to check what o actually refers to at runtime. It could be absolutely
anything. Just because your cast says o refers to an int, that doesn’t mean it actually does. If o really
does refer to a boxed int and everything matches, the cast succeeds, and the compiler-generated
code extracts the value from the boxed int and copies it to i. (In this example, the boxed value is then
stored in i.) This is called unboxing. The following diagram shows what’s happening:

On the other hand, if o does not refer to a boxed int, there is a type mismatch, causing the cast to
fail. The compiler-generated code throws an InvalidCastException exception at runtime. Here’s an
example of an unboxing cast that fails:

Circle c = new Circle(42);
object o = c; // doesn’t box because Circle is a reference variable
int i = (int)o; // compiles okay but throws an exception at runtime

The following diagram illustrates this case:

You’ll use boxing and unboxing in later exercises. Keep in mind that boxing and unboxing are
expensive operations because of the amount of checking required and the need to allocate additional
heap memory. Boxing has its uses, but injudicious use can severely impair the performance of a pro-
gram. You’ll see an alternative to boxing in Chapter 17, “Introducing generics.”

224 PART II Understanding the C# object model

Casting data safely

By using a cast, you can specify that, in your opinion, the data referenced by an object has a specific type
and that it’s safe to reference the object by using that type. The key phrase here is “in your opinion.” The
C# compiler will not check that this is the case, but the runtime will. If the type of object in memory does
not match the cast, the runtime will throw an InvalidCastException, as described in the preceding
section. You should be prepared to catch this exception and handle it appropriately if it occurs.

However, catching an exception and attempting to recover if the type of an object is not what you
expected it to be is a rather cumbersome approach. C# provides two more very useful operators that
can help you perform casting in a much more elegant manner: the is and as operators.

The is operator
You’ve seen the is operator before, when checking for a null value, but it actually enables you to
check for the type of any reference object. You can use the is operator to verify that the type of an
object is what you expect it to be, like this:

var wi = new WrappedInt();
...
object o = wi;
if (o is WrappedInt)
{
 WrappedInt temp = (WrappedInt)o; // This is safe; o is a WrappedInt
 ...
}

The is operator takes two operands: a reference to an object on the left, and the name of a type (or
null) on the right. If the type of the object referenced on the heap matches the type specified by the
is operator, is evaluates to true; otherwise, is evaluates to false. The preceding code attempts to
cast the reference to the object variable o only if it knows that the cast will succeed.

Another form of the is operator enables you to abbreviate this code by combining the type check
and the assignment, like this:

WrappedInt wi = new WrappedInt();
...
object o = wi;
...
if (o is WrappedInt temp)
{
 ... // Use temp here
}

In this example, if the test for the WrappedInt type is successful, the is operator creates a new
reference variable (called temp) and assigns it a reference to the WrappedInt object.

 CHAPTER 8 Understanding values and references 225

The as operator
The as operator fulfills a similar role to is but in a slightly truncated manner. You use the as operator
like this:

WrappedInt wi = new WrappedInt();
...
object o = wi;
WrappedInt temp = o as WrappedInt;
if (temp is not null)
{
 ... // Cast was successful
}

Like the is operator, the as operator takes an object and a type as its operands. The runtime
attempts to cast the object to the specified type. If the cast is successful, the result is returned and, in
this example, is assigned to the WrappedInt variable temp. If the cast is unsuccessful, the as operator
evaluates to the null value and assigns that to temp instead.

Note There’s a little more to the is and as operators than is described here; Chapter 12
discusses them in greater detail.

The switch statement revisited
If you need to check a reference against several types, you can use a series of if…else statements in
conjunction with the is operator. The following example assumes that you have defined the Circle,
Square, and Triangle classes. The constructors take the radius (radius) or side length (side) of the
geometric shape as the parameter:

var c = new Circle(42); // Circle of radius 42
var s = new Square(55); // Square of side 55
var t = new Triangle(33); // Equilateral triangle of side 33
...
object o = s;
...
if (o is Circle myCircle)
{
 ... // o is a Circle, a reference is available in myCircle
}
else if (o is Square mySquare)
{
 ... // o is a Square, a reference is available in mySquare
}
else if (o is Triangle myTriangle)
{
 ... // o is a Triangle, a reference is available in myTriangle
}

226 PART II Understanding the C# object model

As with any lengthy set of if…else statements, this approach can quickly become cumbersome and
difficult to read. Fortunately, you can use the switch statement in this situation, as follows:

switch (o)
{
 case Circle myCircle:
 ... // o is a Circle, a reference is available in myCircle
 break;

 case Square mySquare:
 ... // o is a Square, a reference is available in mySquare
 break;

 case Triangle myTriangle:
 ... // o is a Triangle, a reference is available in myTriangle
 break;

 default:
 throw new ArgumentException("variable is not a recognized shape");
 break;
}

In both examples (using the is operator and the switch statement), the scope of the variables
created (myCircle, mySquare, and myTriangle) is limited to the code inside the corresponding if
block or case block.

case selectors in switch statements also support when expressions, which you can use to further
qualify the situation under which the case is selected. For example, the following switch statement
shows case selectors that match different sizes of geometric shapes:

switch (o)
{
 case Circle myCircle when myCircle.Radius > 10:
 ...
 break;
 case Square mySquare when mySquare.SideLength == 100:
 ...
 break;
 ...
}

 CHAPTER 8 Understanding values and references 227

Pointers and unsafe code
This sidebar is purely for your information and is aimed at developers who are familiar with C or
C++. If you’re new to programming, feel free to ignore this information.

If you have already written programs in languages such as C or C++, much of the discussion in
this chapter concerning object references might be familiar in that both languages have a con-
struct that provides similar functionality: a pointer. A pointer is a variable that holds the address
of, or a reference to, an item in memory (on the heap or the stack).

A special syntax is used to identify a variable as a pointer. For example, the following state-
ment declares the variable pi as a pointer to an integer:

int *pi;

Although the variable pi is declared as a pointer, it does not actually point anywhere until you
initialize it. For example, to use pi to point to the integer variable i, you can use the following
statements and the address-of operator (&), which returns the address of a variable:

int *pi;
int i = 99;
...
pi = &i;

You can access and modify the value held in the variable i through the pointer variable pi like
this:

 *pi = 100;

This code updates the value of the variable i to 100 because pi points to the same memory
location as the variable i.

One of the main problems that developers learning C and C++ encounter is understanding the
syntax used by pointers. The * operator has at least two meanings (in addition to being the arith-
metic multiplication operator), and there’s often great confusion about when to use & rather than *.

The other issue with pointers is that it’s easy to point somewhere invalid or to forget to point
somewhere at all, and then try to reference the data pointed to. The result will be either garbage
or a program that fails with an error because the operating system detects an attempt to access
an illegal address in memory.

Finally, there are several security flaws in many existing systems resulting from the misman-
agement of pointers. Some environments (not Windows) fail to enforce checks that a pointer
does not refer to memory that belongs to another process, opening up the possibility that confi-
dential data could be compromised.

228 PART II Understanding the C# object model

Reference variables were added to C# to avoid all these problems. If you really want to, you
can continue to use pointers in C#, but you must mark the code as unsafe. The unsafe keyword
can be used to mark a block of code or an entire method, as shown here:

public static void Main(string [] args)
{
 int x = 99, y = 100;
 unsafe
 {
 swap (&x, &y);
 }
 Console.WriteLine($"x is now {x}, y is now {y}");
}

public static unsafe void swap(int *a, int *b)
{
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
}

When you compile programs containing unsafe code, you must specify the Allow Unsafe
Code option when building the project. To do this, right-click the project in Solution Explorer and
then select Properties. In the Properties window, select the Build tab, select Allow Unsafe Code,
and then, on the File menu, select Save All.

Unsafe code also affects how memory is managed. Objects created in unsafe code are said to
be unmanaged. Although situations that require you to access memory in this way are not com-
mon, you might encounter some, especially if you’re writing code that needs to perform some
low-level Windows operations.

You’ll learn about the implications of using code that accesses unmanaged memory in more
detail in Chapter 14.

 CHAPTER 8 Understanding values and references 229

Summary

In this chapter, you learned about some important differences between value types that hold their
value directly on the stack and reference types that refer indirectly to their objects on the heap. You
also learned how to use the ref and out keywords on method parameters to gain access to the argu-
ments. You saw how assigning a value (such as the int 42) to a variable of the System.Object class
creates a boxed copy of the value on the heap and then causes the System.Object variable to refer to
this boxed copy. You also saw how assigning a variable of a value type (such as an int) from a variable
of the System.Object class copies (or unboxes) the value in the System.Object class to the memory
used by the int.

	■ If you want to continue to the next chapter, keep Visual Studio 2022 running and turn to
Chapter 9.

	■ If you want to exit Visual Studio 2022 now, on the File menu, select Exit. If you see a Save dialog,
select Yes and save the project.

Quick reference

To Do this

Copy a value type variable Simply make the copy. Because the variable is a value type, you will have two copies of the
same value. For example:
int i = 42;
int copyi = i;

Copy a reference type variable Simply make the copy. Because the variable is a reference type, you will have two
references to the same object. For example:
Circle c = new Circle(42);
Circle refc = c;

Declare a variable that can hold a
value type or the null value

Declare the variable by using the ? modifier with the type. For example:
int? i = null;

Pass an argument to a ref
parameter

Prefix the argument with the ref keyword. This makes the parameter an alias for the
actual argument rather than a copy of the argument. The method may change the value
of the parameter, and this change is made to the actual argument rather than to a local
copy. For example:
static void Main()
{
 int arg = 42;
 doWork(ref arg);
 Console.WriteLine(arg);
}

Pass an argument to an out
parameter

Prefix the argument with the out keyword. This makes the parameter an alias for the
actual argument rather than a copy of the argument. The method must assign a value to
the parameter, and this value is made to the actual argument. For example:
static void Main()
{
 int arg;
 doWork(out arg);
 Console.WriteLine(arg);
}

230 PART II Understanding the C# object model

To Do this

Box a value Initialize or assign a variable of type object with the value. For example:
object o = 42;

Unbox a value Cast the object reference that refers to the boxed value to the type of the value variable.
For example:
int i = (int)o;

Cast an object safely Use the is operator to test whether the cast is valid. For example:
WrappedInt wi = new WrappedInt();
...
object o = wi;
if (o is WrappedInt temp)
{
 ...
}
Alternatively, use the as operator to perform the cast, and test whether the result is null.
For example:
WrappedInt wi = new WrappedInt();
...
object o = wi;
WrappedInt temp = o as WrappedInt;
if (temp != null)
 ...

 771

Index

! (NOT) operator, 112, 114, 215
!= (not equal to) operator, 112–113
| (OR) operator, 397
|| (OR) operator, 113–114
() (parentheses)

matching, 17
terminology, 68
wrapping expressions in, 524

+ (plus sign), meaning in book, xxix
; (semicolon), using with do statements, 142
‘ (single quotation mark), 129
− (subtraction) operator, 59
[] (square brackets)

terminology, 68
using with arrays, 252

~ (tilde), using with finalizers, 341
// TODO: comments, 190, 208, 307–308, 617,

619–620
^ (XOR) operator, 398

A
abstract classes. See also classes

implementing and using, 331–335
and methods, 329–330, 338

abstract keyword, 337
accessibility, controlling, 184–186
Action type, using with tasks, 563
Action<T, ...> and Func<T, ...> delegate types, 486
adapter methods, 500
AddCardToHand method, 465
AddItemToLocalCache helper method,

Cache-Aside pattern, 613
addition (+) operator, 60, 133

SYMBOLS
&= compound assignment operator, 398
? modifier

using with enumeration variables, 232
using with structure variables, 240

+= operator, using with strings, 134
== and != operators, and structs, 547
+ (addition) operator, 60, 133
& (AND) operator, 397–398
* (asterisk) after file name, Visual Studio 2022,

19
@ (at sign), using with Circle objects, 206
\ (backslash), 129
{} (curly braces)

matching, 17
terminology, 68

-- (decrement) operator, 69, 134, 542
/ (division) operator, 59
$ (dollar sign) symbol, using with strings, 60
“ (double quotation mark), 129
[.] ellipsis character, 41
= (equal sign) assignment operator, 49, 112–113
== (equal to) operator, 112–113
// (forward slashes), using for comments, 24, 39
> (greater than) operator, 113
>= (greater than or equal to) operator, 113
++ (increment) unary operator, 69–70, 134
=> (lambda) operator, 459
< (less than) operator, 113
<= (less than or equal to) operator, 113
<< (left-shift) operator, 397–398
&& (logical AND) operator, 113–114
* (multiplication) operator, 59
~ (NOT) operator, 397

772 Index

addresses and customers, LINQ example

addresses and customers, LINQ example,
514–516

AddToAccumulator method, 581–582
addValues method, 65, 74, 77–78
ADO.NET, 728
Adventure Works Customers app, 645–649,

718. See also UWP apps
AdventureWorks database

Customer table, 723
installing, 719–724
removing unneeded columns, 724–728
setting up, 719–724

AdventureWorks web API project, 729–730
AdventureWorksService

fetching data from, 755–759
modifying customer records, 768
NuGet Package Manager, 731
operations, 736–744

AggregateException class, task exceptions,
594–596

aggregating data, 519–521
Alt key. See keyboard shortcuts
AND (&) operator, 397–398
AND (&&) operator, 113–114
anonymous classes, 202–203. See also classes
App.config, Solution Explorer, 14
application logic, developing, 85
applications

building, 44
running in debug mode, 476–476
running without debugging, 19, 44

AppStyles.xaml file, displaying, 676, 679,
681–682

App.xaml source file, Solution Explorer pane,
38–39, 677

ArgumentException class, 279
argumentList in method call, 78
arguments, passing to methods, 215. See also

named arguments and parameters
arithmetic operators

assignment operator, 68–69
associativity, 68–69
combining with assignment operators, 134
controlling precedence, 67–68
evaluating expressions, 68

examining, 61–67
implementing, 544–547
numeric types and infinite values, 61
remainder, 60
string interpolation, 60
and types, 59–61

array arguments, using, 278–279
array elements

accessing, 255–256, 275
iterating through, 275

array instances, creating, 252–253
array variables, declaring, 252, 275
arrays. See also parameter arrays

accessing elements, 255–256
comparing to collections, 462–466
containing value types, 272–275
copying, 259–260
creating instances of, 275
finding number of elements in, 275
foreach statement, 256–257
implicitly typed, 254–255
vs. indexers, 395, 401–403
initializing elements of, 275
jagged, 261–271, 276
multidimensional, 260–271, 276
naming, 252
parameters in Main method, 258
parameters or return values for methods,

257–259
passing as parameters, 256–257
populating and using, 253–254
properties and indexers, 402
as reference types, 259
returning from methods, 258
System.Array class, 469
using square brackets ([]) with, 252
using to implement card game, 262–271
vs. variables, 251

The Art of Computer Programming, 420
as operator, 225
ASP.NET Core SSL Certificate, 741
ASP.NET Core web API project, creating web

services in, 735, 738
ASP.NET web API, 740–741, 767–768

http://ADO.NET
http://ASP.NET
http://ASP.NET
http://ASP.NET

 Index 773

blocks

assignment operators. See also compound
assignment operators

and associativity, 68–69
combining arithmetic operators with, 134
equal sign (=), 49

associativity
and assignment operator, 68–69
of operators, 538
using to evaluate expressions, 68

asssemblies, and namespaces, 23
asterisk (*) after file name, Visual Studio 2022, 19
async keyword, 603
async modifier, using with delegates, 606
asynchronicity and scalability, 600
asynchronous disposal, handing, 359–360.

See also Dispose method; exception-safe
disposal

asynchronous methods. See also PLINQ
(Parallel LINQ); threads

ConfigureAwait(false), 610
defining and calling, 603
defining to return values, 609
efficiency, 613–614
IAsyncResult design pattern, 614
implementing, 639
memory allocation, 5
naming, 607
pitfalls, 610–611
problem, 600–603
solution, 603–608
tasks, 613–614
and Windows Runtime APIs, 611–613

asynchronous operations, overview, 599–600
at sign (@), using with Circle objects, 206
audit-nnnnnn.xml file, opening, 492
Auditor class, 506
AuditOrder method, 494
AuditService project, 493
automated factory scenario, 487–490
automatic properties. See also properties

creating, 394
defining, 386–387
generating, 381–383
and immutability, 385–387

await keyword, 603
await operator, asynchronous operations, 360,

587, 604–605, 609
Azure account, signing up for, 719
Azure API app, REST web service published

as, 770
Azure SQL Database server

creating, 719–724
Firewall settings, 723

B
background images, applying, 679
backslash (\), 129
BankAccount class, 374
Barrier class, 627
base classes, 314
base-class constructors, calling, 292–293, 310.

See also constructors
BasicCollection<T> class, 478
binary notation, specifying integer values as, 410
binary operators, 538
binary tree class, building using generics,

423, 426–433
binary trees

building with generic methods, 434–436
greater than expression, 421
theory of, 420–423

binary values
displaying, 397
manipulating, 397–398
storing, 396

BinaryTree, retrieving data from, 525–529
binding properties of controls and objects, 716
BitArray class, 446
bits variable, using, 398–399
bitwise operators, 398
Black.Hole method, 282
Blank App template, Adventure Works

Customers app, 645–649
blocking wait operation, canceling, 640
blocks

using to group statements, 117–118
using with while statements, 136

774 Index

bold text, explained

bold text, explained, xxix
book

audience and starting point, xxvii–xxviii
conventions, xxviii–xxix
errata and support, xxxv

bool data type, 50, 112
bool keyword, type and structure, 237
Boolean expressions

creating, 132
do statements, 142–143
while and for statements, 142
and while loops, 139
and while statements, 135

Boolean operators
additive category, 115
assignment category, 115
conditional AND category, 115
conditional logical operators, 113
conditional OR category, 115
equality and relational operators, 112–113
equality category, 115
multiplicative category, 115
operator precedence and associativity,

114–115
pattern matching, 115
primary category, 114
relational category, 115
short-circuiting, 114
unary category, 114

Boolean values
negating, 112, 114
true, 399

Boolean variables
catchErrors, 158
declaring, 111–112, 132

boxing and unboxing, 222–223
boxing values, 230
braces ({}), terminology, 68
break

and continue statements, 143
and switch statements, 126

breakpoints, inserting with Visual Studio
Debugger, 94

browse and search modes, ViewModel,
762–766

Build Solution, selecting, 18
built-in conversions, providing, 551
Button class, 503
Button control. See also More button

listing event names for, 40
separating business logic, 716

Button element, 41
buttons, adding to views in UWP apps, 713
byte keyword, type and structure, 237

C
C#

case-sensitivity, 14, 46
as free format language, 46
history of, xxv–xxvi

C# code, compiling, 18
C# programs. See programs
Cache-Aside pattern, 613–614
cached and deferred evaluation, LINQ queries,

531–532
calculateClick method, 79, 81, 163–164, 171
CalculateFactorial function, 99
CalculateInterest method, 381
Calculator class, 352, 356
camelCase notation, 48, 185
CanBrowse property, 763
Cancel method, adding, 765
canceled tasks, using continuations with, 596.

See also cooperative cancellation; tasks
cancellation functionality, adding to

GraphDemo, 584–589
cancellation of tasks, determining, 588–589,

592–594
cancellation token, 582–584
cancelling Parallel.For and Parallel.ForEach, 589
CanExecute method, ViewModel, 706–708
CanExecuteChanged method, ViewModel, 706
CanSearch property, 763
Card Game application, 263, 271
card game

implementing using collections, 462–466
implementing with arrays, 262–271

cascading if statements, 118–123

 Index 775

collection initializers, using

case labels, using with switch statements,
125–126

casting data safely, 224–226
casting objects safely, 230
catch block, 506
catch handlers, using, 154–157
catchall handler, using, 173
catchErrors Boolean variable, 158
catching exceptions, 50, 155, 157–158, 173–174,

177. See also try/catch statement block
char data type, 50
character pairs, matching, 17
characters, reading from strings, 126–129
checked expressions, writing, 166–168. See also

expressions
checked statements, writing, 166
CheckoutButtonClicked method, 494, 498
CheckoutController class, adding event to,

505–510
CheckoutController component, creating,

495–499
circle, calculating area of, 629–630
Circle and Square classes

modifying, 334–335
using with interfaces, 322–328

Circle class, 182–188, 198, 382–383
Circle objects, using at sign (@) with, 206
Class icon, IntelliSense, 17
class keyword, using, 182–184
class libraries, splitting into assemblies, 23
class methods. See static methods and data
class scope, defining, 83–84
class types

declaring variables as, 206
handling, 205–206

classes. See also abstract classes; anonymous
classes; derived classes; interfaces; partial
classes; sealed classes

and assemblies, 23
assigning, 293–295
and base classes, 314
copying, 205–211
creating hierarchy of, 300–305
defining, 204
defining and using, 182–184

and encapsulation, 182
fields in, 185
locating methods in, 56
vs. objects, 183
as reference types, 206
vs. structures, 238–240
using finalizer, 351–353
using namespaces with, 22
writing constructors for, 188

classes and structures, comparing behaviors of,
246–247

classification, understanding, 181–182
CLI (command-line interface), 3
Click attribute, 41
Clone methods

using with arrays, 260
using with classes, 207–208

cloud
deploying web services to, 746–751
importance of, xxvii

CLR (common language runtime), 336, 600
code

avoiding duplication in, 329
commenting out blocks of, 531
trying, 154–165

Code and Text Editor window
opening, 54
using with graphical applications, 24–36
Visual Studio 2022, 13

code samples, using, xxx–xxxv
collection classes. See also concurrent

collection classes; thread-safe collection
adding thread safety to methods in, 629
defining, 311–312
Dictionary<TKey, TValue>, 453–454
HashSet<T>, 455–457
LinkedList<T>, 449–450
List<T>, 447–449
making enumerable, 482
overview, 445–446
PriorityQueue<TElement, TPriority>,

451–452
SortedList<TKey, TValue>, 454–455
Stack<T>, 452–453

collection initializers, using, 457–458

776 Index

collections

collections. See also enumerating collections
adding items to, 467
comparing to arrays, 462–466
creating, 467
finding number of elements in, 467
iterating through elements of, 467
locating items in, 467
in memory, 522
removing items from, 467
using to implement card game, 462–466

COM (Component Object Model), 100
ComboBox control

and data binding, 699–701
data binding, 704–705
UWP app, 655–656

command bars, resource for, 713
Command class, implementing, 706–709
command-line interface (CLI), 3
commands

dir, 5, 7
dotnet run, 6
run, 6

commenting code, 24. See also (forward
slashes (//); // TODO: comments

commenting out blocks of code, 531
common language runtime (CLR), 336, 600
compareClick method, 120
CompareTo method, 312, 526
compiling C# code, 18
Complex struct, System.Numerics namespace,

544–547
compound assignment operators, using, 133–134,

398, 541. See also assignment operators
computer memory. See also memory allocation

and efficiency
boxing, 222
organization of, 219–220
stack and heap, 220–221
System.Object class, 221
unboxing, 222–223

concurrent collection classes. See also
collection classes

adding thread safety, 629–638
and locks, 629–638
types, 628

concurrent operations, being careful with, 622
conditional logical operators, 113
ConfigureAwait(false), asynchronous

methods, 610
Console Application template, Visual Studio

2022, 12–13
console applications

creating using .NET CLI, 44
creating in Visual Studio 2022, 10–14
explained, 3
instance methods, 194–196
vs. UWP (Universal Windows Platform)

app, 96
Console class, 16, 277–278
Console.Write method, 87
Console.WriteLine method

data management, 521
parameter arrays, 277–278, 282

Console.Write(v) statement, 94
const field, declaring, 204
const keyword, using, 199
constructors. See also base-class constructors;

deconstructor
calling, 201
declaring and calling, 204
deconstructing objects, 196–197
defaults, 186
defining, 384
overloading, 187–189
overview, 186–187
partial classes, 188
writing, 188–194

continuations, using with tasks, 565, 596,
601–603

continue and break statements, 143
Continue button, Visual Studio Debugger, 93
ContinueWith method, 564–566
contravariant interfaces, defining, 441–444
controller, adding to REST web service,

736–737
controller classes, creating, 740–741
controls

dragging on forms, 33
enabling for data binding, 716
enabling using data binding, 716

 Index 777

databases

conversion operators
defining, 550–555
writing, 553–555

conversion operators, defining, 556. See also
operators

cooperative cancellation, 582–594. See also
canceled tasks; tasks

copying
arrays, 259–260
classes, 205–211
reference type variables, 229
reference types, 207–208
structure variables, 245–248
value type variables, 205–211, 229

Count function, invoking, 524
Count property, 712
CountdownEvent class, 626
covariant interfaces, defining, 440–441,

443–444
CPU use, increasing for Task objects, 576
CPU-bound code and Parallel class, 580
.cs suffix, 5
Ctrl key. See keyboard shortcuts
curly braces ({}), matching, 17
Current property, 704
Customer class, INotifyPropertyChanged

interface, 696–699
Customer information

displaying, 689–694
modifying with two-way data binding,

694–699
ViewModel for, 702–705

customers
displaying, 759–761
retrieving blocks of, 744–745

customers and addresses, LINQ example,
514–516

Customers app
extending, 768
scalable user interface, 649–659
searching for data in, 761–767

Customers entity model, creating, 730–734
Customers form

defining styles for, 675–685
Next and Previous buttons, 713–715

CustomersController class, Scaffold wizard,
738–739

D
data

aggregating, 519–521
casting safely, 224–226
deleting through REST web services, 767–768
enumerating in order, 519, 534
filtering, 518–519, 523
grouping, 519–521, 523, 534
inserting through REST web services,

767–768
joining, 521–522, 535
locking, 625
ordering, 519–521, 523
retrieving, 519, 717–719
searching and sorting, 437
selecting for LINQ, 516–518
storage in LINQ, 515
synchronizing concurrent access to, 621–624
updating through REST web services,

767–768
data access. See PLINQ (Parallel LINQ)
data binding

ComboBox control, 704–705
controls and objects, 716
enabling controls for, 716
implementing for title ComboBox controls,

700–701
overview, 688
TextBox control, 704–705
using to modify data, 694–699
using with ComboBox control, 699–701
using to display Customer information,

689–694
UWP apps, 672

“Data Consistency Primer,” 768
data privacy and copying reference types,

207–208
data types. See primitive data types
databases

removing columns from, 724–728
retrieving data from, 717–719

778 Index

DataTypes project

DataTypes project, 493
Date struct, 243, 246
dateCompare method, 120
dates, comparing, 123
DbContext class, Entity Framework, 732–733
DbSets, defining, 733
DealCardFromPack method, 464
Debug menu. See also Visual Studio Debugger

arithmetic operators, 547
automatic properties, 387
calculating pi, 634–635
cancellation functionality, 587
Card Game application, 263, 271
card game using collections, 466
catching unhandled exceptions, 174
checked expressions, 167–168
CheckoutController class, 509
CheckoutController component, 499
class using finalizer, 352–353
Complex struct, 547
console applications, 18
constructors and objects, 192
conversion operators, 555
Customers app, 658–659
data binding, 693–695, 701
deferred and cached evaluation, 532–533
do statements, 150
enumerations, 235
exception handling, 169
expression-bodied methods, 76
fetching data from web service, 758
GraphDemo single-threaded application,

569, 575, 579, 607–608
graphical application, 41–42
hierarchy of classes, 303–305
IDisposable interface, 355
if statements, 119
indexers in Windows application, 405,

409–410
inheriting from DrawingShape class, 335
INotifyPropertyChanged interface, 696–699
InsertIntoTree method, 436
instance methods, 196
locks for serializing method calls, 638

MathOperators project, 61–62
method definitions, 76
Next and Previous buttons, 714
object initializers, 387
objects and disposal, 356
OperationCanceledException exception, 593
optional parameters, 106–108
parallelized LINQ query, 618, 620
params array and optional parameters,

287–288
preventing object disposal, 357
primitive data type values, 52–53, 58
propagating exceptions, 164
properties, 379
ref parameters, 218
retrieving data from BinaryTree, 527–530
Square and Circle classes, 328
static using statements, 202
structure types, 244
structures and classes, 247
styles for Customers form, 684
switch expressions, 131
tabular layout and Grid control, 666
task cancellation, 593
task status, 590
thread-safe collection, 637
throwing exceptions, 170–172
Tree<TItem> class, 432
try/catch statement block, 159
unhandled exceptions, 155, 159
user interface, 35
Utils.Sum method, 285
value and reference parameters, 209
verifying disposal of objects, 359
ViewModel for customer information, 705
Visual State Manager and layout, 674
while statements, 136

debug mode, running applications in, 44
Debug toolbar

commands on, 148
displaying, 91–92, 109

debugging in Visual Studio 2022, 19, 41–42
decimal data type, 50
decimal keyword, type and structure, 237

 Index 779

DrawingShape abstract class

decision statements
Boolean operators, 112–115
Boolean variables, 111–112
if statements, 116–123
switch expressions with pattern matching,

129–131
switch statements, 124–129

deconstructor, implementing, 196–197. See also
constructors

decrement (--) operators, 69, 134, 542
decrementing and incrementing, 134
decrementing variables, 69–70, 72
default keyword, using with TreeEnumerator

class, 472
deferred and cached evaluation, LINQ queries,

531–532
Delegate icon, IntelliSense, 17
delegate type, declaring, 511
delegates

automated factory scenario, 487–490
CheckoutController component, 495–499
creating instance of, 511
declaring and using, 490
Func<T, ...> and Action<T, ...>, 486
vs. function pointers, 485
invoking, 511
and lambda expressions, 499–500
in .NET class library, 485–486
purpose of, 483
understanding, 484–485
using async modifier with, 606
Wide World Importers application, 491–495

Delegates project, 493–494
DELETE button, UWP apps, 744
DELETE request, 768
DeleteCustomer method, 740
deleting

data through REST web service, 767–768
unneeded columns from database, 727

DeliveryService project, 493
Dequeue method, 416
derived classes. See also classes

creating from base classes, 310
methods in, 295

Design Patterns: Elements of Reusable Object-
Oriented Software, 500

Design View window
displaying forms in, 41
Visual Studio 2022, 27–36, 672
zooming in and out of, 54

destructors vs. finalizers, 342
developer mode, enabling, xxx
Developer Mode, using with graphical

applications, 26
Dictionary<TKey, TValue> collection class, 446,

453–454
dir command, running, 5, 7
Dispatcher object, 603–604
dispatch-nnnnnn.txt file, opening, 493
disposal methods, calling, 346–347
Dispose method. See also asynchronous

disposal
calling from finalizer, 349–350
purpose of, 348
and thread safety, 357–358

DistanceTo method, 194
Distinct method, 524
divideValues method, 66
division (/) operator, 59
DLLs (dynamic-link libraries), 5. See also

SystemRuntime.dll assembly
do statements, writing, 142–150
doAdditionalProcessing method, 623, 633
doAuditing method, 506
Document Outline window, displaying, 63
doFirstLongRunningOperation method, 605
dollar sign ($) symbol, using with strings, 60
doMoreAdditionalProcessing method, 623
doShipping method, 507
dotnet run command, using, 6
double data type, 50
double keyword, type and structure, 237
double quotation mark (“), 129
double variable, initializing, 195
doWork method, 244, 526
DoWorkWithData method, 101
Drawing Pad window, opening, 328, 380
DrawingShape abstract class, 331–335

780 Index

duplication in code, avoiding

duplication in code, avoiding, 329
dynamic-link libraries (DLLs), 5. See also

SystemRuntime.dll assembly

E
ellipsis character [.], 41
else statements, 116, 123
encapsulation

implementing by using methods, 366–367
purpose of, 182

Entity Framework
DbContext class, 732
mapping layer, 728
SQL SELECT commands, 728
using, 770
using with relational databases, 718
version availability, 731

entity model, creating, 728–734, 770
Enum icon, IntelliSense, 17
Enumerable class, System.Linq namespace,

522–523
enumerable collections

filtering rows from, 534
projecting fields from, 534

enumerating collections, 469–470. See also
collections

enumeration variables
assigning to values, 249
declaring, 249
nullable versions of, 232

enumerations
choosing literal values, 233
choosing underlying types, 233–236
creating and using, 234–236
declaring, 231, 249
using, 232

enumerators. See also IEnumerable interface
adding to Tree<TItem> class, 480–481
defining for Tree<TItem> class, 479–480
implementing, 470–474, 477–482
as pointers, 470
testing, 476–477, 481

Equal method, 548
equal sign (=) assignment operator, 49, 112

equal to (==) operator, 112–113
equality and relational operators, 112–113
equality operators, overriding, 547–550
equi-joins, support in LINQ, 524
Error List window, displaying, 19, 548
errors, occurrence of, 154
errors and exceptions, overview, 153
Event icon, IntelliSense, 17
EventArgs argument, 504
events

adding to CheckoutController class, 505–510
declaring, 501, 511
raising, 502–503, 512
subscribing to, 502, 511
unsubscribing from, 502, 512
user interface, 503–504
using, 504–510
using to enable notifications, 500–503

Example class
defining class scope, 83
and IDisposable interface, 350
using enumeration, 232

Exception family, 157
exception handling, Visual Studio debugger,

169
exceptions. See also

OperationCanceledException exception
catching, 154–155, 157–158, 177
filtering, 158–163
propagating, 163–164
raised by tasks, 598
throwing, 170–175, 177

exception-safe disposal. See also asynchronous
disposal

class using finalizer, 351–353
finally block, 346–347
implementing IDisposable interface,

353–355, 362
preventing objects from disposed, 356–358
verifying object disposal, 358–359

Execute method, ViewModel, 706–708
Exists method, 485
explicit conversion, 551–552
expression-bodied methods, defining,

76–77, 109

 Index 781

garbage collection

expressions. See also checked expressions
catching, 172–173
comparing values of, 132
evaluating using associativity, 68–69

Extensible Application Markup Language
(XAML). See XAML (Extensible Application
Markup Language)

extension methods. See also methods
creating, 305–309
defining for types, 310
icon, 17
and LINQ, 517
using with BinaryTree, 525–529

Extract Method Wizard, 97. See also methods

F
factorials, calculating, 98–100
factory scenario. See automated factory

scenario
failing operations, retrying, 740
fall-through, stopping, 126
faulted tasks, using continuations with, 596.

See also tasks
FFT (Fourier transform), 633
field names and properties, 369
fields. See also shared fields

hiding using methods, 366–367
projecting from enumerable collection, 534
projecting with Select method, 518
and variables, 83–84

file I/O, 612. See also I/O operations
FileOpenPicker class, 612
FileProcessor class, 341–342
files

creating, 5
opening, 137

filtering data, 523
finalizers

calling Dispose method from, 349–350
vs. destructors, 342
recommendations, 345
using with classes, 351–353

finalizers, writing, 340–342, 361

finally block
using, 175–177, 506
using with exception-safe disposal, 346–347

Find and Replace command, 55
Find method, 459, 485
FindCustomerAsync method, 764–765
FindCustomers method, 745
FinishFolding method, 500
Firewall settings, Azure SQL Database server,

723
first-in, first-out structure, 413–414
float data type, 50
float keyword, type and structure, 237
folders, creating, 719–714
for statements, writing, 140–142
foreach loop, using with grouped data, 520
foreach statement

calculating pi, 633
retrieving data from BinaryTree, 528
using with arrays, 256–257, 469
using with iterators, 479
using with List<T> collection, 447

form terminology, using with applications, 28
FormatException type, 155, 157, 160
forms. See also Windows Forms app

displaying in Design View, 41
dragging controls on, 33

Fortran, updates of, xxv
forward slashes (//), using for comments,

24, 39. See also commenting code
Fourier transform (FFT), 633
Frame object, creating, 39
free format language, C# as, 46
Func<T, ...> and Action<T, ...> delegate types, 486
function pointers vs. delegates, 485
functions vs. methods, 4

G
Gamma, Erich, 500
garbage collection. See also objects

forcing, 361
function of, 344–345
using, 343–344, 351

782 Index

GC class

GC class, 357
Generate Method Stub Wizard, using, 86–89,

109. See also methods
generateGraphData method, 569, 573–574,

578–579, 585, 593
generateGraphDataAsync method, 607–608
generic classes

binary trees, 420–423
Tree<TItem>, 426–433

generic interfaces and variance
contravariant interfaces, 441–443
covariant interfaces, 440–441
overview, 438–440

generic methods. See also methods
creating, 433–434, 444
InsertIntoTree, 434–436

generic types, using, 444
generics

and constraints, 419
vs. generalized classes, 419
issues with object type, 413–416
solution, 417–418
using to build binary tree class, 423, 426–433

gestures, UWP apps, 643
get accessor, implementing, 406–407
get and set keywords, using with properties, 368
GetCachedeValue helper method, Cache-Aside

pattern, 613
GetCustomers method, 739–740
GetDataAsync method, 756–757, 765
GetEnumerator method, 470, 478
GetHashCode method, overriding, 548
globally unique identifier (GUID), 492
Grade class, 385
Grade struct, 388–389
GraphDemo single-threaded application,

566–571
asynchronous method, 606–608
cancellation functionality, 584–589
modifying to use Task objects, 573–576

graphical applications
adding code, 40–43
creating, 24–36
.NET MAUI (Multi-platform Application User

Interface), 43

UWP (Universal Windows Platform) app,
37–39

Windows Forms app, 43
WinU13, 42
WPF (Windows Presentation Foundation), 43

graphical user interface (GUI), 3
greater than (>) operator, 113
greater than or equal to (>=) operator, 113
Grid control

using to implement tabular layout, 659–667
using with Visual State Manager, 669–670

Grid.Row attribute, adding to TextBlock
control, 662

GroupBy method, 520, 528
grouping data, 519–521, 523
GUI (graphical user interface), 3
GUID (globally unique identifier), 492

H
hard disk space requirement, xxix
HashSet<T> collection class, 455–457
Haskell programming language, 458
HeaderStyle, adding, 679
heap and stack, using, 219–221
“Hello World!” application

building, 3–6
using .NET CLI tools, 6–9

Hello YourName! message, displaying, 14–21
HelloUWP namespace, 38–39
HelloWorld2.csproj file, 8
Helm, Richard, 500
helper methods, 97–100
hexadecimal notation, specifying integer

values as, 410
hill-climbing algorithm, Windows Runtime

(WinRT), 563
Horse class, 329
Hour struct, 539–540, 542–543, 552
HTTP DELETE request, handling, 740
HTTP POST request, responding to, 740
HTTP PUT request, sending, 740
HttpClient object, creating and initializing, 756

 Index 783

Interface icon, IntelliSense

I
IAsyncOperation interface, 612
IAsyncResult design pattern, 614–615
IColor interface, defining, 320–322
ICommand interface, ViewModel, 706
IComparable<T> interface, 471–472, 475,

480, 526
IDE (interactive development environment), 3
idempotency in REST web services, 768
identifiers, using, 45–46
IDisposable interface

implementing, 353–355
and using statement, 347–350

IDraw interface, defining, 320–322
IEnumerable interface. See also enumerations

vs. IEnumerator, 470
implementing, 470, 475–477
and LINQ, 515

IEnumerator<TItem> interface, 473
if statements

accidental assignments, 117
nesting, 118–123
using, 116–123, 132, 136
writing, 119–123

immutable properties, creating, 382
immutable types, creating and instantiating, 394
implicit conversion, 551
implicitly typed local variables, declaring,

70–71. See also variables
Important items, explained, xxviii
increment operators, declaring, 542
incrementing and decrementing, 134
incrementing variables, 69–70, 72
index accessors, 400–401
indexers. See also interface indexer

vs. arrays, 395, 401–403
binary values, 396–398
calling, 407–409
creating for classes, 410
creating for structures, 410
defining in interfaces, 410
features of, 400
implementing, 411
in interfaces, 403–404

and operators, 538
overview, 395
properties and arrays, 402
solving problems, 398–400
using in Windows applications, 404–410
writing, 406–407

inequality (!=) operator, 112–113
Infinity value, 61
inheritance

assigning classes, 293–295
calling base-class constructors, 292–293
calling base-class constructures, 310
declaring methods, 295–296
declaring override methods, 297–298, 310
declaring virtual methods, 296–297, 310
extension methods, 305–310
hierarchy of classes, 301–305
and interfaces, 330
overview, 289–290
protected access, 300–305
System.Object class, 292
using, 290–292
virtual methods and polymorphism, 298–299

initializing variables, 211
INotifyPropertyChanged interface, Customer

class, 696–699
InsertIntoTree method

testing, 436
writing, 434–436

instance methods, writing and calling, 194–196
int, referring to minimum value of, 165
int data type, 50
int keyword, type and structure, 237
int types, 396
int variable type, 49. See also long integers
Int32 method, .NET libraries, 59
IntBits struct, 399–400
integer arithmetic, checked and unchecked,

165–168, 177
integer values, displaying as binary or

hexadecimal, 410
Intel, 560
IntelliSense, 15–17, 195
interactive development environment (IDE), 3
Interface icon, IntelliSense, 17

784 Index

interface indexer, implementing

interface indexer, implementing, 411.
See also indexers

interface properties. See also properties
declaring, 375–381
implementing, 393

interfaces. See also classes
declaring, 338
declaring properties in, 393
defining, 312–313, 318, 320–328
explicitly implementing, 316–317
extending, 318
handling versioning with, 318–319
Hungarian notation, 313
IDraw and IColor, 320–322
implementing, 313–314, 338
indexers in, 403–404
and inheritance, 330
inheriting from, 314
overview, 311–312
reducing coding errors, 314
referencing classes through, 314–315
restrictions, 313, 319–320
Square and Circle classes, 322–328
working with, 315

Internet connection requirement, xxx
InvalidOperationException, 172
I/O operations, waiting for completion, 600.

See also file I/O
is operator

using, 224
using in pattern matching, 115

IsCardAlreadyDealt method, 464
IsSearching property, 763
IStoreWrapper<T> interface, 440
iterators, using to implement enumerators,

477–481
IWrapper<T> interface, 439–440

J
jagged arrays, creating, 261–271, 276
Johnson, Ralph, 500
join operator, using, 524
joining data, 521–522

K
keyboard shortcuts

Quick Find dialog, 55
Visual Studio Debugger, 91–92
zooming in and out of Design View, 54

keywords, identifying, 46–47
Knuth, Donald E., 420

L
lambda expressions

and anonymous methods, 461
body of, 459–460
and delegates, 499–500
forms of, 460–461

lambda (=>) operator, 459
(Language-Integrated Query (LINQ), 599.

See also PLINQ (Parallel LINQ)
aggregating data, 519–521
commenting out blocks of code, 531
data storage, 515
and deferred evaluation, 530–533
equi-joins, 524
expressions in on clause, 524
filtering data, 518–519
grouping data, 519–521
joining data, 521–522
ordering data, 519–521
overview, 513–514
query operators, 522–524
querying data in Tree<TItem> objects,

525–530
selecting data, 516–518
summarizing information, 524
using in C# application, 514–516

large methods, 97–100
layout, adapting using Visual State Manager,

667–674
left-shift (<<) operator, 397–398
Length property, using with arrays, 256
less than (<) operator, 113
less than or equal to (<=) operator, 113
lightweight structures, implementing, 388–392
LinkedList<T> collection class, 446, 449–450

 Index 785

methods

LINQ (Language-Integrated Query), 599.
See also PLINQ (Parallel LINQ)

aggregating data, 519–521
commenting out blocks of code, 531
data storage, 515
and deferred evaluation, 530–533
equi-joins, 524
expressions in on clause, 524
filtering data, 518–519
grouping data, 519–521
joining data, 521–522
ordering data, 519–521
overview, 513–514
query operators, 522–524
querying data in Tree<TItem> objects, 525–530
selecting data, 516–518
summarizing information, 524
using in C# application, 514–516

LINQ queries
forcing results for, 535
parallelizing, 639
parallelizing over collection, 616–618
parallelizing to join collections, 619–621

List<T> collection class, 446–449, 485
literal values, 49
local scope, defining, 83
local variables. See unassigned local variables
locking data, 625
locks

thread safety and Dispose method, 357–358
using to serialize method calls, 638

logical AND (&&) operator, 113–114
logical OR (||) operator, 113–114
long data type, 50
long integers, 50. See also int variable type
long keyword, type and structure, 237
loops, nesting, 135

M
Main method

array parameters in, 258
and asynchronous methods, 604
calling doWork method, 189
using, 9

MainPage class, 509
MainPage constructor, 704
MainPage form, displaying and activating, 39
MainPage.xaml.cs, displaying, 37
Mammal class, 291–299
ManualResetEventSlim class, 626
Math class, 183, 197, 199
MathOperators application, performing

calculations in, 63–66
MathOperators application, 61–62, 67
memory allocation and efficiency, 613–614.

See also computer memory
method calls, serializing with locks, 638
method definitions, viewing, 105
Method icon, IntelliSense, 17
method signature, explained, 295
methodName, 74, 78
methods. See also abstract classes; extension

methods; Extract Method Wizard;
Generate Method Stub Wizard; generic
methods; override methods; statements;
summary methods; virtual methods;
Visual Studio Debugger

accepting arguments, 288
call syntax, 77–80
calling, 109
constructors as, 186–187
declaring, 74–75, 109, 295–296
in derived classes, 295
and encapsulation, 366–367
explained, 73
expression-bodied methods, 76–77
finding, 458–460
vs. functions, 4
locating in classes, 56
nesting, 97–100
with optional parameters, 104–108
overloading, 84
overriding vs. hiding, 297
passing arguments to, 215
replacing with properties, 376–380
return types and void, 74
returning arrays from, 258
returning data from, 75
returning values from, 80–82, 109

786 Index

methods

methods (continued)
specifying call syntax, 77–80
specifying for tasks, 597
stepping into and out of, 109
syntax, 74
tuples, 80–82
and var keyword, 74
variables in, 185
writing, 85–89

Microsoft IntelliSense, Visual Studio 2022,
15–17, 195

Microsoft .NET and multitasking. See also tasks
overview, 561
tasks, threads, and ThreadPool, 562–563

Microsoft Press, contacting, xxxv
Microsoft Windows platform, significance of,

xxvi
Min method, using with params array, 279–280
models and views, communication between, 702
Model-View-ViewModel (MVVM) pattern,

implementing, 687–688
Moore, Gordon E., 560
Moore’s Law, 560–561
More button, adding, 759–761. See also

Button control
More Info items, explained, xxviii
MoveNext method, 473–474
multicore processor, rise of, 560–561
multidimensional arrays, using, 260–271
multiplication (*) operator, 59
multiplyValues method, 66
multitasking and parallel processing, 559–560
multitasking using Microsoft .NET. See also tasks

overview, 561
tasks, threads, and ThreadPool, 562–563

MVVM (Model-View-ViewModel) pattern,
implementing, 687–688

MyFileUtil application, 259

N
named arguments and parameters, 100–108.

See also arguments
nameof operator, 699
Namespace icon, IntelliSense, 17

namespaces
and asssemblies, 23
using, 21–22

NaN (not a number) value, 61
narrowing conversion, 551
nested loops, creating, 135
nested methods, creating, 109
nesting

if statements, 118–123
methods, 97–100

.NET class library
collection types, 446
exception classes, 170

.NET CLI (command-line interface)
building and running projects, 6–9
creating console applications, 44

.NET Framework, 11, 23, 625

.NET libraries
and features, 336
Int32 method, 59

.NET MAUI (Multi-platform Application User
Interface), 43

new keyword, 337
Next and Previous buttons, ViewModel,

713–715
NextCustomer command, ViewModel, 710–715
NOT (~) operator, 397
NOT (!) operator, 112, 114, 215
not equal to (!=) operator, 112–113
not a number (NaN) value, 61
Notepad, accessing, 4
Notes, explained, xxviii
notifications, enabling by using events,

500–503
NuGet Package Manager,

AdventureWorksService, 731
null values and nullable types, 211–215, 229
nullable types, properties of, 214–215
null-coalescing operator, 213
null-conditional operator, 212–214
NullReferenceException exception, 489
number generator, System. Random class, 252
numeric types and infinite values, 61
numeric values, specifying, 49–50.

See also values

 Index 787

parallelizing

O
object initializers, using, 386–387
object keyword, 221, 237
object types and generics, 413–416, 438
ObjectComparer object, 442
objects. See also garbage collection

binding and data values, 716
binding properties of controls to, 716
casting safely, 230
vs. classes, 183
creating, 189–194, 201, 339
creating references to, 343
deconstructing, 196–197
enabling to notify bindings, 716
garbage collector, 343–345
initializing using properties, 383–387, 394
instantiating using generic types, 444
managing lifetimes of, 343
preventing from being disposed, 356–358
recommendations, 345
verifying disposal of, 358–359
writing finalizers, 340–342

OK button, writing code for, 40–42
okClick method, adding to MainPage class,

40–41
OnPropertyChanged method, 697
opening files, 137
OperationCanceledException exception,

592–594. See also exceptions
operator pairs, defining, 543–544
operator precedence and associativity,

summarizing, 114–115
operators. See also conversion operators;

symmetric operators
associativity, 538
comparing in structures and classes,

542–543
compound assignment evaluation, 541
constraints, 538
implementing, 544–547, 556
increment and decrement, 542
and indexers, 538
overloading, 539–540
precedence, 537
semantics, 537

symmetric, 540–541
understanding, 537–538

optional parameters, using, 100–108
optMethod method, 103
OR (|) operator, 397
OR (||) operator, 113–114
OrderByDescending method, 519
ordering data, 519–521, 523
out and ref parameters, using, 215–218
out parameters

creating, 216–218
passing arguments to, 229

overflow checking, Visual Studio 2022, 165
OverflowException, occurrence of, 169, 551
overloaded operators, 539–540
overloading

methods, 84
and parameter arrays, 277–278

override keyword, 337
override methods, declaring, 297–298, 310.

See also methods

P
Parallel class

avoiding use of, 580–581
using to abstract tasks, 576–580

Parallel LINQ (PLINQ). See also asynchronous
methods; LINQ (Language-Integrated
Query)

cancelling queries, 621
and declarative data access, 616
performance and collections, 616–621

parallel processing and multitasking, 559–560
parallel tasks. See also tasks

calculating pi, 634–636
loop iterations, 597
statement sequences, 597

Parallel.For and Parallel.ForEach, canceling, 589
parallelism

implementing using Task class, 566–576
increasing, 580

parallelizing
declarative data access, 616–621
LINQ queries, 639

788 Index

ParallelPI method

ParallelPI method, 636
ParallelTest method, 623–624
parameter arrays. See also arrays

array arguments, 278–279
and Console.WriteLine method, 282
vs. optional parameters, 286–288
and overloading, 277–278
using, 277

parameterList in method declaration, 74
parameters

of containing types, 539
and named arguments, 100–109
naming parameters, 539
specifying by name, 102

Parameters solution, opening, 208
params array

declaring, 279–281
using, 283–285
writing, 283–284

params object[], using, 281–282
parentheses (())

matching, 17
terminology, 68
wrapping expressions in, 524

partial classes, 188. See also classes
Pass.Reference method, 211
passwords, protecting, 734
pattern matching

with properties, 380–381
using switch expressions with, 129–131
using, 115

performance and PLINQ, 616–621
Performance Profiler, GraphDemo single-

threaded application, 571–573
Person class, 272
Person objects, array of, 272
Person struct, 437, 458–459, 485
Phone Book application, 405
pi, calculating, 629–636
PI field, Math class, 197
PickMultipleFileAsync method, 612
PickSingleFileAsync method, 612
pixel (px) suffix, 32
PlayingCard class, 264

PLINQ (Parallel LINQ). See also asynchronous
methods; LINQ (Language-Integrated
Query)

cancelling queries, 621
and declarative data access, 616
performance and collections, 616–621

PLINQ queries
canceling, 621
enabling cancellation in, 639

plotButton_Click method, 567, 574, 586,
606, 608

plotXY method, 569
plus sign (+), meaning in book, xxix
Point class, 191–192, 196, 200
pointers

enumerators as, 470
and memory management, 437–438
Span<T> type, 437–438
and unsafe code, 227–228

pointsList collection, 636–637
Polygon class, 386
polymorphism and virtual methods, 298–299
POST button, 744
POST request, 768
PostCustomer method, 740
precedence of operators, 67–68, 72, 537–538
predicates, finding, 458–460
prefix and postfix, 70
Previous and Next buttons, View Model,

713–715
PreviousCustomer command, ViewModel,

710–715
primitive data types

displaying values, 51–58
overview, 50, 205
unassigned local variables, 51
using in code, 53–58

PriorityQueue<TElement, TPriority> collection
class, 446, 451–452

private and static keywords, writing, 201
private fields, instance methods, 194
private keyword, 337
processor requirement, xxix
Program class, 189
Program.cs, Solution Explorer, 8–9, 14, 209–210

 Index 789

relational and equality operators

programming languages, updates of, xxv
programs

using Visual Studio 2022, 14–21
writing, 3–9

project file, example of, 5
projects

adding, 495
building and running with .NET CLI, 6–9
locating items in, 55
opening, 52

properties. See also automatic properties;
interface properties; read-only properties;
records with properties; write-only
properties

accessibility, 372
arrays and indexers, 402
declaring, 368
declaring in interfaces, 393
expression-bodied members, 369
and field names, 369
getters and setters, 367–368
implementing, 376
modifying set accessors, 697
overview, 367–370
pattern-matching with, 380–381
and public fields, 381
read-only, 371
read/write, 370, 393
replacing methods with, 376–380
restrictions, 373
simulating assignment (=) operator, 538
in Solution Explorer, 14
and types, 378
using, 370, 374, 376–380
using to initialize objects, 383–387, 394
write-only, 371–372, 393

properties of controls, binding to properties of
objects, 716

protected access, 300–305
protected keyword, 337
public and private keywords, using,

184–186, 300
public constructor, using, 186–187
public fields and properties, 381
public keyword, 337

PUT button, 744
PUT request, 768
PutCustomer method, 740
px (pixel) suffix, 32
Pythagoras’ theorem, using, 195

Q
QBF (Query By Forms), 761–762
query operators

using, 522–524
using with BinaryTree, 529–530

querying data in Tree<TItem> objects, 525–530
Queue class, 413–417
Queue<T> collection class, 446, 450–451
Quick Find dialog, displaying, 55
QuickWatch dialog, accessing, 161

R
radius, declaring as private field, 184–185
RAM requirement, xxix
read access, sharing, 640
ReaderWriterLockSlim class, 626–627
ReadLine method, 87
read-only properties, 371. See also properties
read/write property, declaring, 370, 393
record types, defining and using, 390–392
records with properties, implementing

lightweight structures, 388–392.
See also properties

ref and out parameters, using, 215–218
ref parameters

creating, 216
passing arguments to, 229
using, 208–211, 217–218

reference type variables, copying, 229
reference types

arrays as, 259
classes as, 206
copying, 207–208

reference variables, initializing, 211
References, Solution Explorer, 14
reflection and equality operators, 547
relational and equality operators, 112–113

790 Index

relational database

relational database
tables in, 522
and web services, 718

remainder operator, 60
remainderValues method, 66
RenderTransform property, 681
requestPayment method, 494
resource management

disposal methods, 346
Dispose method and finalizer, 349–350
exception-safe disposal, 346–347
overview, 345
using statement and IDisposable interface,

347–348
resources, releasing, 361
response time, issues with, 599
responsiveness, improving, 559
REST web service. See also UWP apps; web

services
accessing URLs, 735
adding controllers, 736–737
adding data items to, 770
creating and consuming, 770
creating and using, 735–744
data management, 767–768
deleting data, 767–768
and entity model, 770
HTTP protocol, 735
idempotency in, 768
inserting data, 767–768
publishing as Azure API app, 770
PUT requests, 768
remote access, 770
retrieving data from, 770
updating data, 767–768, 770

result = clause in method call, 78
RetrieveInOrder method, using with classes, 311
RetrieveValue helper method, Cache-Aside

pattern, 613
return statements

adding to DistanceTo method, 195
using with methods, 74
and switch statements, 126

returnType in method declaration, 74
rows, filtering from enumerable collection, 534

run command, using, 6
Run To Cursor, using with do statement, 147
running statements, 151

S
Save As command, using, 5
sbyte keyword, type and structure, 237
Scaffold wizard, CustomersController class, 738
scalability, improving, 560
scope

applying, 82
class scope, 83–84
local scope, 83
overloading methods, 84
and variables, 82
writing methods, 85–89

ScreenPosition struct, 366–368, 371–372, 376
sealed classes, creating, 330–335, 338.

See also classes
sealed keyword, 337
search and browse modes, ViewModel,

762–766
Search method, defining, 765
searching

for data in Customers app, 761–767
enhancing in UWP apps, 745–746
and sorting data, 437

Select method
and summary methods, 520–521
using with LINQ, 516–518

semantics, defined, 46
SemaphoreSlim class, 626
semicolon (;), using with do statements, 142
SerialPI method, 631–633, 636
SerialTest method, 623–624
server firewall, setting for AdventureWorks

database, 722
set accessors, using with properties, 379, 697
set and get keywords, using with

properties, 368
shared fields, creating, 198–199. See also fields
short keyword, type and structure, 237
short-circuiting, 114
Show Steps, using with do statement, 147

 Index 791

Swagger generator

ShowAsync() method, 41
showStepsClick method, 145
single quotation mark (‘), 129
.sln suffix, 52
slowMethod method, 601, 604
Solution Explorer pane, Visual Studio 2022, 13–14
Solution ‘TestHello,’ Solution Explorer, 13
solutions, loading, 52
SortedList<TKey, TValue> collection class,

446, 454–455
sorting and searching data, 437
Span<T> type, 437–438
SQL (Structured Query Language), 514
SQL SELECT commands, Entity Framework, 728
square, calculating area of, 629–630
Square and Circle classes

accessing members, 340
modifying, 334–335
testing, 326–328
using with interfaces, 322–326

square brackets ([])
terminology, 68
using with arrays, 252

stack and heap, using, 219–221
Stack<T> collection class, 446, 452–453
statement scope, understanding, 142
statements. See also methods

associating with different values, 132
break, 143
continue, 143
do, 142–150
executing, 151
for, 140–142
grouping with blocks, 117–118
overview, 45–46
running, 151
while, 135–140

static classes, understanding, 199
static fields, declaring and accessing, 204
static keyword, using to define methods, 208
static members, writing, 200–202
static methods and data

overview, 197–198
shared fields, 198
static classes, 199

static fields, 199
statis using statements, 200–202

static methods, calling, 200–202, 204
static properties, declaring, 371
static using statements, 200–202
Step Into, using with do statement, 148–150
stepping through methods. See Visual

Studio Debugger
steps, showing, 147
StopWatch type, 568
string data type, 50
string interpolation, 60, 72
string keyword, type and class, 237
string type, 206
strings, reading characters of, 126–129
Struct icon, IntelliSense, 17
struct keyword, using, 237, 240
structs, == and != operators, 547
structure types

creating and using, 242–245
declaring, 249

structure variables
copying, 245–247
declaring, 240, 249
initializing to values, 249
nullable versions of, 240

Structured Query Language (SQL), 514
structures

vs. classes, 238–240
declaring, 237–238
handling large ones, 248
initialization, 240–245
and operators, 238
types, 236–237
using, 238

structures and classes, comparing behaviors of,
246–247

styles, applying to UI, 674–685
subtraction (−) operator, 59
subtractValues method, 66
summary functions, invoking, 524
summary methods, using with Select method,

520–521. See also methods
support and errata, xxxv
Swagger generator, 733–734

792 Index

switch expressions, using with pattern matching

switch expressions, using with pattern
matching, 129–131

switch statements, using, 124–129, 225–226
symmetric operators, creating, 540–541, 553.

See also operators
synchronization, canceling, 627–628
synchronization primitives, coordinating tasks,

625–627
synchronizing

access to shared pool of resources, 640
concurrent access to data, 621–624
tasks and implementing thread-safe

access, 640
threads to wait for events, 640

Synchronous I/O anti-pattern, 600
syntax, defined, 46
System namespace, 22
system requirements, xxix–xxx
System.Array class, 256, 469
System.Collections.Generic namespace,

418, 442, 445
System.Console class, 23
System.Diagnostics.Stopwatch object, watch

variable, 568
System.IComparable and System.

IComparable<T> interfaces, 424–425
System.Linq namespace, Enumerable class,

522–523
System.Numerics namespace, Complex struct,

544–547
System.Object class, 221, 292
System.Random class, 252
SystemRuntime.dll assembly, 23. See also DLLs

(dynamic-link libraries)
System.Threading namespace, 625

T
tabular layout, implementing using Grid

control, 659–667
TabularHeaderStyle style, 680
Task class

features of, 562
using to implement parallelism,

566–576, 622

task exceptions, handing using
AggregateException class, 594–596

Task List window, using, 208
Task objects

increasing CPU use, 576
using with GraphDemo application, 573–576

Task type, using, 601
Task<TResult> class, 609
TaskContinuationOptions type, 565
TaskCreationOptions enumeration, 564–565
tasks. See also canceled tasks; cooperative

cancellation; faulted tasks; multitasking
using Microsoft .NET; parallel tasks

abstracting using Parallel class, 576–580
cancellation token, 582–584
confirming cancellation, 588–589
controlling, 563–565
cooperative cancellation, 582–594
creating, 563–565
creating and running, 597
creating continuations, 564
displaying status of, 590–592
enabling cancellation, 598
handling exceptions, 598
memory allocation and efficiency, 613–614
running, 563–565
scheduling, 564
specifying methods for, 597
synchronization primitives for coordination

of, 625–627
synchronizing for thread-safe access, 640
threads and ThreadPool, 562–563
waiting for finishing, 597

TemperatureMonitor class, 502
TestHello, Solution Explorer, 14, 22
text file viewer, creating, 136
TextBlock controls

Grid.Row attribute, 662
vs. TextBox control, 30, 32, 34
using with Visual State Manager, 671

TextBox controls
data binding, 704–705
using, 601
using with Visual State Manager, 671
UWP app, 651–657

 Index 793

UWP apps

thread safety
adding to methods in collection classes, 629
and Dispose method, 357–358

threads. See also asynchronous methods
and garbage collection, 344–345
making wait for events, 640
synchronizing, 640
and ThreadPool, 562–563
using to calculate pi, 631–634

thread-safe collection, 636. See also
collection classes

Thread.Sleep method, 582
throw and switch statements, 126
throw exceptions, using, 174–175
tilde (~), using with finalizers, 341
Time struct, 238–241
Tips, explained, xxviii
title ComboBox controls, implementing data

binding for, 700–701
// TODO: comments, 190, 208, 307–308, 617,

619–620. See also commenting code
Toolbox, showing and hiding, 31
ToString method, 243–244, 268, 296, 312,

390, 525
Tree<TItem> class

adding enumerator to, 480–481
creating, 426–430
IEnumerable<TItem> interface, 475–476
testing, 430–433
using iterator with, 479–481

Tree<TItem> objects, querying data in,
525–530

TreeEnumerator class, creating, 470–474
triangle, modeling, 383–385
Triangle public class, 383–384
try block

calculating pi, 632–633
writing, 154–155, 592–593

try/catch statement block, 159–163, 506.
See also catching exceptions

tuples and methods, 80–82
type inference and new operator, 184

U
UI (user interface)

applying styles to, 674–685
creating, 29–36
error reporting, 752–755
long-running operations, 752–755
updating, 766–767
updating for ViewModel, 766–767
windows in, 28

uint keyword, type and structure, 237
Universal Windows Platform (UWP)

device families, 642
WinUI 3.0 and Win32 API, 642

ulong keyword, type and structure, 237
unary operators, 69, 538
unassigned local variables, 51
unhandled exceptions, 155–156, 159–163,

173–174
user interface (UI)

applying styles to, 674–685
creating, 29–36
error reporting, 752–755
long-running operations, 752–755
updating, 766–767
updating for ViewModel, 766–767
windows in, 28

user-defined conversion operators, 552
user-interface events, 503–504
ushort keyword, type and structure, 237
using directive

explained, 22–23
and IDisposable interface, 347–348
static keyword in, 200–202
thread safety and Dispose method, 358
ViewModel, 708

Util class, 279
Utils.Sum method, testing, 285
UWP (Universal Windows Platform)

device families, 642
WinUI 3.0 and Win32 API, 642

UWP apps. See also Adventure Works
Customers app; REST web service;
web services

adapting layout, 667–674
adding buttons to views, 713

794 Index

UWP apps

UWP apps (continued)
adding commands to ViewModel, 706–715
adding More button, 759–761
AdventureWorks REST web service

operations, 736–744
AdventureWorks web API project, 729–730
applying styles to UI, 674–685
Azure SQL Database server, 719–724
building with Blank App template, 645–649
capabilities supported, 645
connecting to, 719–723
vs. Console apps, 96
creating, 44, 686
creating entity models, 728–734
creating ViewModel, 702–706
custom styles, 686
Customers entity model, 730–734
data binding, 672, 688–694, 699–701
deploying web service to clous, 746–751
displaying customers, 759–761
displaying data, 688–694
enhanced searching, 745–746
examining, 37–39
features of, xxvi, 643–645
form factors and orientations, 661–665
gestures, 643
implementing enhanced searching, 745–746
lifetime, 643–644
Model-View-ViewModel pattern, 687–688
nameof operator, 699
overview, 641–642
Package.appxmanifest file, 644
packaging, 644
pages in, 28
partial classes, 188
removing unwanted columns, 724–728
REST web service, 735–751
restricted operations, 644
retrieving block of customers, 744–745
retrieving data from databases, 717–728
running in debug mode, 36
scalable user interface, 649–659, 686
searching for data, 761–767
structures created in, 388
tabular layout with Grid control, 659–667

testing, 666–667
updating to use web services, 752–761
uploading to Windows Store, 644
user interface, 686
Visual State Manager, 667–674
Windows Runtime, 336

V
value parameters, using, 208–201, 208–211
value type variables, copying, 205–211, 229
value types, explained, 205
values. See also numeric values

assigning to variables, 132, 216
boxing and unboxing, 230
changing for variables, 133–134
comparing for expressions, 132
determining equivalency, 132
returning from methods, 80–82, 109
in variables, 48, 72

ValueTask generic type, 614
var keyword

and methods, 74
using with LINQ, 518

variables. See also implicitly typed local
variables

adding amounts to, 151
vs. arrays, 251
assigning values to, 72, 132, 216
camelCase notation, 48
changing values of, 72, 133–134
declaring, 48–49, 72, 206
and fields, 83–84
identifying as pointers, 227
incrementing and decrementing, 69–70, 72
initializing, 211
in methods, 185
naming, 48, 369
and scope, 82
specifying numeric values, 49–50
subtracting amounts from, 151

variables defined with type parameter,
initializing, 475

Variant type, 71
Vehicles solution, opening, 301

 Index 795

Windows Runtime APIs, asynchronous methods

video card requirement, xxx
View method, creating, 765
ViewModel

adding commands to, 706–715
browse and search modes, 762–766
Command class, 706–709
control, 702–705
Next and Previous buttons, 713–715
NextCustomer command, 710–715
PreviousCustomer command, 710–715
XAML markup, 706

views
adding buttons to, 713
and models, 702

virtual keyword, 337, 375
virtual methods. See also methods

declaring, 296–297, 310
and polymorphism, 298–299

Visual State Manager, using to adapt layout,
667–674

Visual Studio 2022
asterisk (*) after file name, 19
building and running console application,

18–21
Code and Text Editor window, 13
configuring project dialog, 11–12
Console Application template, 12–13
console application, 10–14
console applications, 44
Design View window, 27
Error List window, 19
graphical applications, 25–28
Microsoft IntelliSense, 15–17
overflow checking, 165
overview, 9–14
Solution Explorer pane, 13–14, 20–21
Start Debugging command, 19
user interface, 29–36
UWP app, 44
writing programs, 14–21

Visual Studio Community 2022 requirement, xxix
Visual Studio Debugger. See also Debug menu;

methods
amending code, 94–96
breakpoints, 94

calculating factorials, 98–100
Continue button, 93
nesting methods, 97–100
refactoring code, 96–97
stepping through methods, 89–93

Visual Studio debugger, exception handling
with, 169

Vlissides, John, 500

W
Wait method, using with tasks, 594, 602
wait operation, canceling, 640
watch variable, System.Diagnostics.Stopwatch

object, 568
web services. See also REST web service;

UWP apps
building, 718
creating in ASP.NET Core web API project, 735
DELETE request, 768
deploying to cloud, 746–751
POST request, 768
and relational database, 718
updating UWP apps for, 752–761
updating UWP apps for, 752–761

Where method, using with LINQ, 518–519
where operator, using to filter data, 523
while loop

creating, 138–139
rephrasing as for loop, 141
variable if in, 135

while statements
structure, 140
writing, 135–140

Wide World Importers application, 491–495
widening conversion, 551
Windows 10 requirement, xxix
Windows application, using indexers in,

404–410
Windows Forms app, 43. See also forms
Windows Presentation Foundation (WPF)

graphical app, 43
Windows Runtime APIs, asynchronous

methods, 611–613

http://ASP.NET

796 Index

Windows Runtime (WinRT)

Windows Runtime (WinRT)
compatibility with, 336–337
hill-climbing algorithm, 563
iterative strategy, 563
overview, 641
tasks and schedules, 562

WinU13 graphical application, 42
WPF (Windows Presentation Foundation)

graphical app, 43
WrappedInt object, 211
Wrapper struct, 402–403
write access, making exclusive, 640
WriteLine function, 4
WriteLine method, 16–17
write-only properties, 371–372, 378, 383, 393.

See also properties
writing

and calling instance methods, 194–196
checked expressions, 166–168
checked statements, 166
constructors, 188–194
conversion operators, 553–555
and creating objects, 189–194
do statements, 142–150
finalizers, 340–342, 361

if statements, 119–123
indexers, 406–407
InsertIntoTree method, 434–436
methods, 85–89
params array method, 283–284
private and static keywords, 201
for statements, 140–142
static members, 200–202
try block, 592–593
try/catch statement block, 159–163
while statements, 135–140

X
XAML (Extensible Application Markup

Language), 28–29, 31, 33, 96
XAML markup

Next and Previous buttons, 714
UWP app, 647–648, 650, 652, 654–657,

662–665, 668–673, 675–676, 678–681, 685
ViewModel, 706

XML representation, mapping characters to,
126–129

XOR (̂) operator, 398

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Acknowledgments
	About the author
	Introduction
	Chapter 8 Understanding values and references
	Copying value type variables and classes
	Understanding null values and nullable types
	The null-conditional and null-coalescing operators
	Using nullable types
	Understanding the properties of nullable types

	Using ref and out parameters
	Creating ref parameters
	Creating out parameters

	How computer memory is organized
	Using the stack and the heap
	The System.Object class
	Boxing
	Unboxing

	Casting data safely
	The is operator
	The as operator
	The switch statement revisited

	Summary
	Quick reference

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

