
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780137564446
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780137564446
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780137564446

Microsoft Azure Compute
The Definitive Guide

 Avinash Valiramani

A01_Valiramani_FM_pi-pxviii.indd 1 26/04/22 3:54 PM

Microsoft Azure Compute: The Definitive Guide
Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2022 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omis-
sions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-13-756444-6
ISBN-10: 0-13-756444-9

Library of Congress Control Number: 2022935534

ScoutAutomatedPrintCode

TRADEMARKS
Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

WARNING AND DISCLAIMER
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from
the use of the programs accompanying it.

SPECIAL SALES
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

EDITOR-IN-CHIEF
Brett Bartow

EXECUTIVE EDITOR
Loretta Yates

SPONSORING EDITOR
Charvi Arora

DEVELOPMENT EDITOR
Kate Shoup

MANAGING EDITOR
Sandra Schroeder

SENIOR PROJECT EDITOR
Tracey Croom

TECHNICAL EDITOR
Thomas Palathra

COPY EDITOR
Sarah Kearns

INDEXER
Timothy Wright

PROOFREADER
Donna Mulder

EDITORIAL ASSISTANT
Cindy Teeters

COVER DESIGNER
Twist Creative, Seattle

COMPOSITOR
codeMantra

GRAPHICS
codeMantra

A01_Valiramani_FM_pi-pxviii.indd 2 22/04/22 7:23 PM

http://www.pearson.com/permissions
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

 iii

Pearson’s Commitment to
Diversity, Equity, and Inclusion
Pearson is dedicated to creating bias-free content that reflects the diversity of all learners. We
embrace the many dimensions of diversity, including but not limited to race, ethnicity, gender,
socioeconomic status, ability, age, sexual orientation, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the potential to deliver
opportunities that improve lives and enable economic mobility. As we work with authors to
create content for every product and service, we acknowledge our responsibility to dem-
onstrate inclusivity and incorporate diverse scholarship so that everyone can achieve their
potential through learning. As the world’s leading learning company, we have a duty to help
drive change and live up to our purpose to help more people create a better life for themselves
and to create a better world.

Our ambition is to purposefully contribute to a world where:

■■ Everyone has an equitable and lifelong opportunity to succeed through learning.

■■ Our educational products and services are inclusive and represent the rich diversity of
learners.

■■ Our educational content accurately reflects the histories and experiences of the learners
we serve.

■■ Our educational content prompts deeper discussions with learners and motivates them
to expand their own learning (and worldview).

While we work hard to present unbiased content, we want to hear from you about any con-
cerns or needs with this Pearson product so that we can investigate and address them.

■■ Please contact us with concerns about any potential bias at
https://www.pearson.com/report-bias.html.

9780137564446_Print.indb 3 21/04/22 9:31 PM

https://www.pearson.com/report-bias.html

iv Contents

Contents at a Glance

Introduction to Azure compute services xii

Chapter 1 Azure virtual machines 1

Chapter 2 Azure virtual machine scale sets 57

Chapter 3 Azure App Service 135

Chapter 4 Azure Virtual Desktop 193

Chapter 5 Azure Container Instances 249

Chapter 6 Azure Functions 265
Index 289

9780137564446_Print.indb 4 21/04/22 9:31 PM

v

Contents

Introduction to Azure compute services xii

Chapter 1 Azure virtual machines 1
Overview .1

What is an Azure VM? 1
Operating system support 3
VM series 3
Azure regions 5
Compute sizing and pricing 6
Azure VM creation walkthrough 7

High-availability considerations . 14
Availability sets 14
Availability zones 18
Proximity placement groups 21

Storage disks for VMs . 25
Managed disks 25
Unmanaged disks 26
Disk roles 26
Disk SKUs 27

Networking for VMs . 28
Network interfaces 28
IP addresses 28
Network security groups 29

Cost-optimization options . 29
Reserved instances 29
Azure Hybrid Benefit 34
Spot instances 36
Dedicated hosts 40

A01_Valiramani_FM_pi-pxviii.indd 5 26/04/22 5:21 PM

vi Contents

Backups and disaster recovery . 49
Backup 49
Disaster recovery 52

Best practices . 54

Chapter 2 Azure virtual machine scale sets 57
Overview . 57

How Azure VMSS work 57
Why use a VMSS? 58
VMSS features 59
Scale sets versus VMs 61
VMSS creation walkthrough 61

Large VMSS . 69

Ensure high availability with VMSS . 73
Overprovisioning 73
Availability zones 75
Fault domains 79
Autoscaling 81
Vertical scaling 92
Load balancing 93

Maintain Azure VMSS . 95
Upgrade the scale set model 95
Perform automatic OS upgrades 98
Update golden OS images 100
Deploy the Application Health extension and
automated instance repairs 100
Use Instance Protection 104
Use proximity placement groups 106
Check and increase vCPU quotas 108
Enable termination notifications 108
Azure maintenance best practices 111

Networking considerations and best practices . 112

VMSS deployment best practices . 113

9780137564446_Print.indb 6 21/04/22 9:31 PM

viiContents

Use a custom golden image 113
Use the Custom Script Extension for app configuration 114
Use Windows PowerShell Desired State Configuration 114
Use cloud-init for Linux VMs 115

OS and data disks for scale sets . 115
Disk types 115
Managed disks 116
User-managed storage 117
Data disks 118

Strategies for cost optimization . 120
Spot instances 120
Reserved instances 124
Dedicated hosts 124
Azure Hybrid Benefit 127

Best practices . 130

Chapter 3 Azure App Service 135
Overview . 135

App Service plans 137
Azure App Service Environments 139

Planning deployment and operations . 150
Select an appropriate deployment source 151
Build pipelines 155
Deployment mechanism 155
Best practices 156

Networking considerations . 175
Service endpoints and private endpoints 176
VNet integration 177
Traffic Manager and Azure Front Door 178
Hybrid Connections 179
Network security groups 180
Route tables 180
Azure DNS private zones 180

9780137564446_Print.indb 7 21/04/22 9:31 PM

viii Contents

Backup and restore . 180

Disaster recovery . 184

Cost considerations . 186

Security recommendations . 188

Chapter 4 Azure Virtual Desktop 193
Overview . 193

Key features . 193

Core concepts . 195
Use cases 195
Architecture 195
AVD control plane 197
Session connectivity 197
Reverse Connect 197

Design considerations . 198
Service locations 198
Data storage location 198
Service limitations 199
Host pools 200
Validation pool 207
App groups 210
Workspaces 214

Session hosts . 217
Operating systems supported 218
Windows 10 Enterprise multi-session 219
VM sizing 219
Licensing 220
Scaling 220
High availability 221
Reserved instances 222
WVD agent 222
Deploying apps to session hosts 223
Windows OS servicing 224

9780137564446_Print.indb 8 21/04/22 9:31 PM

ixContents

Store user profile data .230
Data redundancy and high availability 230

Backups . 231

Disaster recovery .232
VM redundancy 233
vNETs 233
User identities 234
User profile data 234
Network shares (optional) 234
Applications 235
Best practices 235

Authentication .236
AVD service 236
Session-host access 236
Use built-in roles to provision access 236

Network considerations .237

Security .238
Security for the overall WVD environment 238
Security for session hosts 240

Integration with Azure DevTest Labs .242

Other best practices .243

Publish apps .244

Chapter 5 Azure Container Instances 249
Overview .249

Key features .249

Benefits of container services .250

Deployment considerations . 251
Container groups 251
Container orchestration 260
Container registry 260
Best practices 261

Security best practices .262

9780137564446_Print.indb 9 21/04/22 9:31 PM

x Contents

Chapter 6 Azure Functions 265
Overview .265

Azure Functions hosting options 265
Durable Functions 267
Triggers 267
Bindings 268

Deploy function apps .275
Deployment methods 275
Deployment technologies 276
Deployment slots 277

Event-driven scaling .278
Scaling management 279

Best practices .279
Reliability best practices 279
Organizing functions 280
Performance and scalability 282
Storage best practices 283
Security best practices 284

Index 289

9780137564446_Print.indb 10 21/04/22 9:31 PM

xi

About the Author

Avinash Valiramani is an IT Infrastructure and Cloud Architect with more than
15 years of expertise in areas of Microsoft Technologies such as Microsoft Azure,
Microsoft 365, Office365, Windows Server, Microsoft Exchange, SCCM, Intune,
Hyper-V, and others. He is a certified Architect on Azure and Microsoft365 and
primarily helps enterprises globally in their Cloud Roadmap Architecture and
Onboarding/Migration Strategies & Implementation. Avinash is publishing four
books on Microsoft Azure Best Practices series including this current one, collating
real-world experiences to deliver a comprehensive and concise experience for new
and budding technologists. Avinash also holds certifications in Barracuda, AWS,
Citrix, VMware, and many other IT/Security industry certifications to complement
his Microsoft expertise. He has authored a course of Azure Virtual Desktop for
Oreilly Media and is planning many others in the coming months. You can follow
Avinash on Twitter at @avaliramani.

Acknowledgments

I would like to thank Loretta Yates for trusting me with this huge responsibility.
These books would not have been possible without your confidence in me and I
will be forever grateful for that. I would like to thank Charvi Arora and the entire
Microsoft Press/Pearson team for their constant support and guidance on this proj-
ect. I would especially like to thank Kate Shoup for editing and reviewing this book
and for all her guidance and attention to detail throughout these series of books.
Kate, it has been a wonderful experience writing these four books with you and I
could not have asked for a better collaborator. Thanks to Thomas Palathra for his
thoughtful technical edits, Sarah Kearns for the amazing copy editing and Tracey
Croom for adding the final touches to bring this to fruition. This book is the fruit of
all our labor, and I am extremely happy we worked together on it.

I would also like to thank my family with gratitude, especially my brother Junaid
and uncle Chandru on this effort. Your assistance in helping me organize my life
and ensuring I could stay on track while wearing multiple hats was invaluable. This
has been the biggest reason I managed to get this mammoth series of books out
and it would not have been possible without all your support during this process.
I would like to thank my mom for all her strength and belief throughout the years
even when things were not going well and for believing in me throughout. Love
you all.

9780137564446_Print.indb 11 21/04/22 9:31 PM

xii

Introduction to Azure compute
services
Welcome to Azure Compute: The Definitive Guide. This book was developed to provide
in-depth information about the different Azure services that provide computing
capabilities and best practices based on real-life experiences with the product in use
in different environments. Azure Compute: The Definitive Guide is the first in a series of
what will eventually include three additional titles: Azure Monitoring and Management:
The Definitive Guide; Azure Networking: The Definitive Guide; and Azure Storage: The
Definitive Guide.

This book is largely based on the version of Azure compute services generally
available during 2021, taking into account the development work done on these
services over the years. At the time of this writing, a few features and functionalities
were under preview and could potentially change before they are generally avail-
able. Most of these will be covered in subsequent editions of this book.

Overview

Over the years, Microsoft has introduced different services related to Azure compute.
It started with Azure virtual machines (VMs) before introducing additional platform-as-
a-service solutions like Azure App Service, Azure Container Service, Azure Functions,
and Azure Virtual Desktop.

Following is a brief timeline of the announcement of each of these services in
public preview:

■■ Azure VMs June 2012

■■ Azure App Service March 2015

■■ Azure Container Service September 2015

■■ Azure virtual machine scale sets (VMSS) November 2015

■■ Azure Functions March 2016

■■ Azure Virtual Desktop March 2019

Each service added new dimensions and capabilities to Azure’s compute stack
that have provided customers with more varied options to leverage compute
services depending on their requirements. Over time, each service has helped
increase scalability and reliability while reducing the cost and complexity of
managing cloud infrastructure workloads.

A01_Valiramani_FM_pi-pxviii.indd 12 26/04/22 3:54 PM

xiiiIntroduction

As you go through each service in more detail in this book, you will find that
every service, if used correctly, has the potential to transform an organization’s
infrastructure and business applications environment. In subsequent chapters,
you will dive into each compute service to better understand how each one works
and associated best practices. You will initially focus on factors to consider when
selecting and designing each workload. Thereafter, you will focus on deployment
considerations and strategies, with step-by-step walkthroughs for a better under-
standing of deployment methods, followed by some best practices.

Cloud service categories

Let’s start by defining the different types of cloud service categories:

■■ Infrastructure as a service (IaaS) Using VMs with storage and network-
ing is generally referred to as infrastructure as a service (IaaS). This is a
traditional approach to using cloud services in line with on-premises work-
loads. Most on-premises environments use virtualization technologies such
as Hyper-V to virtualize Windows and Linux workloads. Migrating to IaaS
from such an environment is considered to be a much easier first step than
migrating to PaaS or FaaS (defined next). Over time, as an organization’s
understanding of various other types of cloud services grows, it can migrate
to PaaS or FaaS.

■■ Platform as a service (PaaS) One of the biggest benefits of using a cloud
service is the capability to offload the management of back-end infrastruc-
ture to the service provider. This model is called platform as a service (PaaS).
Examples of back-end infrastructure include different layers of the applica-
tion, such as the compute layer, storage layer, networking layer, security
layer, and monitoring layer. Organizations can use PaaS to free up their IT
staff to focus on higher-level tasks and core organizational needs instead of
on routine infrastructure monitoring, upgrade, and maintenance activities.
Azure App Service and Azure Container Service are examples of Azure PaaS
offerings.

■■ Function as a service (FaaS) Function as a service (FaaS) offerings go one
step beyond PaaS to enable organizations to focus only on their applica-
tion code, leaving the entire back-end infrastructure deployment and
management to the cloud service provider. This provides developers with
a great way to deploy their code without worrying about the back-end

9780137564446_Print.indb 13 21/04/22 9:31 PM

xiv Introduction

infrastructure deployment, scaling, and management. It also enables the use
of microservices architectures for applications. An example of an Azure FaaS
offering is Azure Functions.

Not all services fall cleanly within the scope of one of these cloud service
categories. For example:

■■ Azure Virtual Desktop, a virtualized Windows desktop hosting service,
combines IaaS and PaaS to provide a cohesive solution.

■■ Azure VMSS, an automated VM scaling service, combines IaaS and PaaS to
provide auto-scaling features.

Each of these cloud service categories has various features and limitations.
Limitations might relate to the application, technological know-how, and costs for
redevelopment, among others. As a result, most organizations use some combina-
tion of different types of services to maximize their cloud investments.

Each service provides a different level of control and ease of management.
For example:

■■ IaaS provides maximum control and flexibility in migration and use.

■■ FaaS provides maximum automation for workload deployment, manage-
ment, and use.

■■ PaaS provides a mix of both at varying levels, depending on the PaaS service
used.

Each service also offers varying levels of scalability. For example:

■■ IaaS requires the use of additional services to achieve true scalability and
load balancing—for example, VMSS or Azure Load Balancer.

■■ PaaS and FaaS services are generally designed with built-in scalability and
load-balancing features.

Cost-wise, each service provides varying levels of efficiency. For example:

■■ FaaS offerings charge for compute based only on the usage hours for
compute services, making it extremely cost-effective.

■■ IaaS products charge for compute services regardless of usage once the
compute service (for example, a VM) is online.

NOTE In addition to IaaS, PaaS, and FaaS, there is software as a service
(SaaS). This is another type of cloud service category. However, because it
is not applicable in the context of Microsoft Azure, this book will not delve
into it further.

9780137564446_Print.indb 14 21/04/22 9:31 PM

xvIntroduction

■■ PaaS offerings are a mixed bag depending on how the services are con-
figured. Some PaaS products charge for compute resources regardless of
usage, while others, if configured correctly, charge based on usage alone.

Migration factors and strategies

Along with these features and limitations, there are certain migration factors to con-
sider when deciding which category of cloud service might be the best solution in an
organization’s cloud journey. (See Figure I-1.) Of course, organizations can always start
with one category (IaaS) and migrate to a second category (PaaS or FaaS) over time as
their understanding of the cloud matures.

Let’s examine the flow chart shown in Figure I-1 in more detail:

■■ Lift-and-shift migration strategy In a lift-and-shift migration, the
organization migrates its existing on-premises environment as-is to the
cloud, without redeveloping or redesigning the application stack. This is a
preferred migration approach for organizations in which:

■■ A hardware refresh or procurement is planned.

■■ Scaling or security limitations require the organization to migrate to the
cloud as quickly as possible, with the least amount of disruption.

■■ A lift-and-shift migration strategy generally involves less effort because
no code changes are necessary. Application components remain as-is
and are migrated in their current state to the cloud. This is generally the
preferred approach for organizations that want to mainly use IaaS to host
their application and database workloads.

■■ Cloud-optimized strategy With cloud-optimized migrations, the organi-
zation redesigns or recodes its application as necessary to use PaaS and FaaS
services. This enables the organization to use microservice architectures,
enabling it to truly benefit from the scalability and cost benefits that a cloud
service like Azure provides.

Organizations can use a lift-and-shift migration strategy, a cloud-optimized
migration strategy, or a combination of the two. For example, an organization
might use the flexibility provided by cloud services to start its migration using a
lift-and-shift approach to quickly benefit from the scaling and global availability of
Azure. Then, over time, the organization could migrate to more cloud-optimized
PaaS and FaaS services.

9780137564446_Print.indb 15 21/04/22 9:31 PM

xvi Introduction

Lift-and-shift or
cloud-optimized?

Cloud-optimized

Migrate

Migrate or
build new?

Do you require
full control?

Microservices
architecture?

Event-driven workload with
short-lived processes?

Needs full-fledged
orchestration?

No

Azure
App Service

Azure
Functions

Azure
Container
Instances

No

Yes

Virtual
machinesYesBuild new

Needs
full-fledged
orchestration?

Already using
Azure App
Service

No

No

No

No

Yes

Start

Lift-and-shift

Can be
contained?

Web/API app?
(ASP.NET, Node.js, etc)

Azure
App Service

Virtual
machines

Azure App
Service

container

Yes No

Yes

No

FIGURE I-1 Cloud-migration considerations. Please refer to https://docs.microsoft.
com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree for
more information on Figure I-01.

Who this book is for

Microsoft Azure Compute: The Definitive Guide is for anyone interested in Azure infra-
structure solutions: IT and cloud administrators, security professionals, developers, and
engineers.

This book is designed to be useful for the entire spectrum of Azure users.
Whether you have basic experience on Azure or other on-premises or cloud vir-
tualization technologies, or you are an expert, my hope is that you will still derive
value from this book. This book provides introductory, intermediate, and advanced
coverage on each compute service.

The book especially targets those who are working in medium to large
enterprise organizations and have at least one year of experience in administer-
ing, deploying, managing, monitoring, upgrading, migrating, and designing

A01_Valiramani_FM_pi-pxviii.indd 16 26/04/22 5:47 PM

http://ASP.NET
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree

xviiIntroduction

infrastructure services such as virtual machines, as well as related infrastructure
such as storage, networking, and backups.

How this book is organized

This book is organized into six chapters:

Chapter 1: Azure virtual machines

Chapter 2: Azure virtual machine scale sets

Chapter 3: Azure App Service

Chapter 4: Azure Virtual Desktop

Chapter 5: Azure Container Instances

Chapter 6: Azure Functions

Each chapter focuses on a specific Azure compute service and includes in-depth
coverage of the inner workings of each service, walkthroughs to guide you on how
to build and test the service, and real-world best practices to help you maximize
your Azure investments.

The approach adopted for the book is a unique mix of didactic, narrative, and
experiential instruction. Didactic instruction is used to introduce to you the core
aspects of each service. Narrative instruction leverages what you already under-
stand to help you grasp new concepts. Finally, the experiential instruction con-
veys real-world experiences and challenges of small and large environments and
the factors to consider while designing and implementing your own workloads.
This includes step-by-step guided walkthroughs on how to configure each Azure
compute service and its related features and options to gain all the benefits each
service has to offer.

System requirements

To follow along with this book, you’ll need an Azure subscription. At the time of this
writing, Microsoft provides a 30-day, $200 trial subscription, which you can use to
explore most of the services discussed in this book. Some services, however, such
as dedicated hosts, are not supported by this trial subscription; these require a paid
subscription.

9780137564446_Print.indb 17 21/04/22 9:31 PM

xviii Introduction

The following list details the minimum system requirements needed to
run the content in the book’s companion website (MicrosoftPressStore.com/
AzureComputeTDG/detail):

■■ Windows 10/11, with the latest updates from Microsoft Update Service

■■ Azure PowerShell (https://docs.microsoft.com/en-us/powershell/azure/
install-az-ps)

■■ Azure CLI (https://docs.microsoft.com/en-us/cli/azure/install-azure-cli)

■■ Display monitor capable of 1024 x 768 resolution

■■ Microsoft mouse or compatible pointing device

About the companion content

The companion content for this book can be downloaded from the following page:

MicrosoftPressStore.com/AzureComputeTDG/downloads

The companion content includes the following:

■■ PowerShell code for each walkthrough in the book (where applicable)

■■ CLI code for each walkthrough in the book (where applicable)

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. You can access updates to this book—in the form of a list of submitted errata and
their related corrections—at:

MicrosoftPressStore.com/AzureComputeTDG/errata

If you discover an error that is not already listed, please submit it to us at the
same page.

For additional book support and information, please visit

MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is not
offered through the previous addresses. For help with Microsoft software or hard-
ware, go to http://support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

9780137564446_Print.indb 18 21/04/22 9:31 PM

http://MicrosoftPressStore.com/
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
http://MicrosoftPressStore.com/AzureComputeTDG/downloads
http://MicrosoftPressStore.com/AzureComputeTDG/errata
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress

135

C h a p t e r 3

Azure App Service

Overview

Azure App Service is a compute service within Azure that enables you to host web appli-
cations, mobile application back ends, and REST APIs. Some key features of Azure App
Service include the following:

■■ It provides DevOps integration capabilities to allow for continuous deployment of
code using Azure DevOps, Docker Hub, GitHub, and other third-party solutions.

■■ It allows for development in different programming languages like .NET Core, .NET,
Node.js, PHP, Python, Java, and others.

■■ It allows for both Windows- and Linux-based applications to run at scale.

Although App Service can help address the requirements of most app deployments,
there are a few key points to consider when deciding it is the best service for hosting an
app. Some primary reasons to use Azure App Service are as follows:

■■ Automated management OS management activities, including patching and
maintenance, are automated. This applies even to the language frameworks sup-
ported by the service. This frees development and engineering resources from the
burden of managing the back-end platform so they can focus on more business-
critical application-development activities.

■■ Support for multiple frameworks In addition to the different programming
languages that can be used by App Service, it can also leverage PowerShell scripts
and other types of executables for background services.

■■ Robust scaling Both manual and automated scaling operations are supported—
including scaling up, down, in, and out. This can help organizations of all sizes
embarking on their cloud journey obtain the maximum benefit from their cloud
spends.

■■ Global deployment App Service deployments are supported across Microsoft’s
globally dispersed regions and datacenters. This allows for app hosting in regions
closest to the users.

■■ High availability and uptime guarantees In addition to workloads hosted
on the free and shared tiers of services, App Service workloads are guaranteed a
99.95% uptime.

9780137564446_Print.indb 135 21/04/22 9:32 PM

136 Chapter 3 Azure App Service

■■ Optimized for DevOps builds Continuous integration and deployment can be
achieved by leveraging App Service in conjunction with Azure DevOps, Azure Container
Registry, GitHub, Bitbucket, and Docker Hub. This allows for multiple staging and dev/
test environments that can be used for testing, validation, and production.

■■ Support for PowerShell and CLI management Apps can be managed using Azure
PowerShell, the command-line interface (CLI), or the Azure Portal to help in DevOps and
automation activities.

■■ Integration with Docker and containers Apps can be dockerized and hosted as
custom containers in App Service. Both Windows- and Linux-based containers are sup-
ported. This enables engineers with skills in managing Docker to quickly get up to speed
managing Azure App Service.

■■ Adherence to global compliance standards Compliance with ISO, SOC, and PCI
standards is built in.

■■ Easy to integrate with existing authentication solutions Various secure authenti-
cation solutions can be easily leveraged, enabling users to employ existing Azure Active
Directory, Microsoft, Google, Facebook, and Twitter accounts.

■■ Built-in support for mobile apps Mobile app features such as user authentication,
notification services, offline data sync, social integration, and automated scaling are all
built-in, making it easy to build and deploy apps.

■■ Ability to run code and scripts in a serverless architecture On-demand scripts
and code snippets can be executed without deploying back-end servers using serverless
computing. This saves time, resources, and money, as compute costs are charged only
for actual use.

■■ Connectors for enterprise, SaaS, and internet-based services App Service has
ready connectors for integration with enterprise applications, SaaS applications, and
internet-based services, making it easy to integrate with the most commonly used plat-
forms and applications.

■■ Hybrid connectivity Support for hybrid connections is available to allow access to
on-premises data sources.

■■ Built-in application templates There are numerous application templates available
in the Azure Marketplace, including templates for WordPress, Drupal, and Umbraco,
to name a few. The list of templates available is quite extensive and is being updated
constantly.

■■ Visual Studio and Visual Studio Code integration Deep integration with Visual
Studio and Visual Studio Code allows for streamlined app building, deployment, and
troubleshooting.

■■ Support for Linux languages and frameworks Linux containers can be run natively
or using custom containers (known as Web App for Containers). This allows for the use
of built-in Linux images for languages such as .NET Core, Python, Node.js, JRE, PHP, and
others. Custom containers help address scenarios not covered by the built-in images.

9780137564446_Print.indb 136 21/04/22 9:32 PM

 Overview Chapter 3 137

App Service plans
App Service plans identify the hardware computing resources made available to the App
Service to run the required web, API, and mobile apps. Depending on what plan you select,
computing resources are dedicated solely to your organization or shared among customers.
The App Service plan also defines the specifications of the back-end VM series that is allocated.
This, in turn, affects the number of applications that can be hosted using those resources.

When you create an App Service plan, you must define certain parameters for that plan.
These include the following:

■■ The pricing tier (Free, Shared, Dedicated, Isolated, etc.)

■■ The region in which the apps will run (Central US, West Europe, East Asia, etc.)

■■ The size of the VM instances required (small, medium, large)

■■ The total number of VM instances required

Once the preceding parameters are defined, the resources identified in the plan are cre-
ated in the selected region. Thereafter, the resources are made available for the hosting of the
required apps.

Choosing the right pricing tier is key. Table 3-1 reviews the four pricing tiers.

TABLE 3-1 Pricing tiers

Pricing tier Description Key features

Free Allows you to host one or more
web apps without having to pay
any associated compute charges.

The underlying hardware is shared between customers.
You can run only 10 apps.

You can have 10 free plans per region.

There are time limits on CPU usage. These make this
pricing tier ideal for test/dev workloads, and web APIs
generally run quickly.

There are limits on memory, storage, bandwidth, scal-
ability, and security features.

Uptime SLAs do not apply.

Shared Similar to the Free tier in that the
underlying hardware is shared,
but offers more flexibility in
terms of CPU usage and so on.

The underlying hardware is shared between customers.

You can run 100 apps.

You can have 10 plans within a single resource group.

You can have unlimited shared plans per region.

There are limits on memory, storage, bandwidth, scal-
ability, and security features. However, CPU usage limits
apply 240 minutes per day.

A per-app charge applies.

Uptime SLAs do not apply.

NOTE One App Service plan can be used to deploy and run multiple apps.

9780137564446_Print.indb 137 21/04/22 9:32 PM

138 Chapter 3 Azure App Service

Pricing tier Description Key features

Dedicated Provides compute resources that
are dedicated to that customer.
There are different levels avail-
able in this plan—Basic, Standard,
Premium, PremiumV2, and Pre-
miumV3—and each defines the
number of VM instances that the
apps in the plan get access to.

A per-instance charge applies, regardless of the number
of apps running.

You can scale out by increasing the number of VM
instances available.

You can scale up by moving from one dedicated tier to a
higher one to increase the size of the VM instances.

This tier supports several additional features, including
features that relate to backups, security, auto-scaling,
and integration with traffic management.

An uptime SLA of 99.95% applies.

Isolated Provides a dedicated set of VMs
hosted in an Azure virtual net-
work environment to support
compute isolation.

Plans in this tier are deployed into an App Service Envi-
ronment (ASE), described in more detail later in this
chapter.

Fixed charges to run the environment apply, as well as
variable charges based on the number of instances.

This tier provides maximum scale-out capabilities.

Fine-grained control over ingress and egress applica-
tion network traffic is supported.

All security and scaling features are available for apps
running on this tier.

An uptime SLA of 99.95% applies.

NOTE As you can see, the higher the tier, the more features become available to
improve security, scalability, and reliability.

Single versus multiple App Service plans

You can host multiple apps as part of the same App Service plan, potentially
reducing your overall compute costs. Because multiple apps share the underly-

ing resources allocated to the App Service plan, it is important to monitor their use.

Before you add a new app to your App Service plan, make sure its requirements
align with available resources in the plan. Take these factors into consideration
when deciding whether to host an app in an existing App Service plan or create a
new plan for the app:

■■ Does the app have the same scaling needs as the rest of the apps in the cur-
rent plan?

■■ Do the app’s resource requirements (current and future) align with the avail-
able resources in the current plan?

■■ Does the app have any security or feature requirements that cannot be met
by the existing plan?

■■ Does the app need to be isolated from other apps?

9780137564446_Print.indb 138 21/04/22 9:32 PM

 Overview Chapter 3 139

Azure App Service Environments
Earlier, I mentioned that the Isolated pricing tier deploys apps in an App Service Environments
(ASE). An ASE is a dedicated, fully isolated environment provisioned to run apps with high
levels of security and scalability. An ASE can host Windows or Linux web apps, mobile apps,
function apps, and Docker containers.

Although all application workloads can be hosted in an ASE, considering the cost implica-
tions, there are certain workload types that are more appropriate for ASEs than others. When
deciding if an ASE is the best choice for an app, consider these factors:

■■ Does the app require complete isolation and secure access to on-premises resources?

■■ Does the app have high memory requirements that are not met by the Dedicated tier?

■■ Does the app require a very high level of scalability?

If the answer to all or most of these questions is yes, then an ASE might be the appropriate
choice.

Here is a list of some examples of functionality that is only possible when using an ASE:

■■ Hosting apps in a single-tenant environment

■■ Using private or internal Certificate Authority certificates

■■ Publishing a dedicated outbound IP address for all the apps hosted in the ASE

■■ Publishing and accessing apps only on a private internal IP address

■■ Providing the highest level of scaling possible across all App Service plans

■■ Securing outbound network traffic with additional network controls available with
integrations that are not part of the app

An ASE is assigned exclusive access to a dedicated set of compute and network resources
and is accessible only from a single subscription. Each subscription supports the deployment of
100 App Service plan instances. These can be deployed in one of three ways:

■■ A single App Service plan with 100 instances

■■ 100 App Service plans with single instances in each plan

■■ A combination of the two

An ASE is composed of two components:

■■ Front ends Front ends provide HTTP and HTTPS endpoints for ingress termination
and load-balancing. Front ends are added automatically as scaling operations take
place to handle the additional load.

■■ Workers Workers host the apps deployed by a customer. You specify the size of the
workers when you select your App Service plan tier.

NOTE Adding an app to an existing App Service plan might seem cost-effective, but if
doing so will affect application performance or potentially cause outages, it might not
be worth it.

9780137564446_Print.indb 139 21/04/22 9:32 PM

140 Chapter 3 Azure App Service

Both components are managed services and are deployed or removed automatically as
the App Service plans are sized. Because of this design, the charges associated with an ASE are
fixed every month based on the plan that is selected. Additionally, every vCPU in the plan has
an associated cost, which will be levied when resources are consumed.

There are two different ways to provision network access for an ASE, depending on its
public access requirements:

■■ External ASE An internet-facing ASE is deployed with a public IP address so the apps
hosted on the ASE can be accessed externally.

■■ Internal ASE An internal ASE is deployed using an internal load balancer (ILB) IP
address so it is accessible only on internal networks. This would include any networks
connected over VPN or ExpressRoute.

The public virtual IP (VIP) or the ILB IP serve as the endpoints for the termination of the dif-
ferent protocols for client connectivity. Because there is no direct access to the VMs running in
the ASE, you can create network security groups (NSGs) to manage the network traffic within
the subnet where the ASE is housed. If a site-to-site VPN or ExpressRoute connection to the
on-premises environment is in place, the apps hosted in the ASE can communicate with
on-premises resources.

App Service walkthrough
The following sections step you through the process of creating a basic web app using the Azure
Portal, Azure PowerShell, and Azure CLI. You will use sample GitHub code provided by Microsoft
to create a static HTML website, which you will use later to create a Hello World web app.

USING THE AZURE PORTAL

To create a sample static HTML website for the Hello World web app using the Azure Portal,
follow these steps:

 1. Log in to the Azure Portal and type app services in the search bar.

 2. Under Services, click App Services. (See Figure 3-1.)

FIGURE 3-1 Selecting the App Services service in the Azure Portal.

 3. Click either the Create button or the Create App Service button to launch the Create
Web App wizard. (See Figure 3-2.)

NOTE You will create the same web app using all three methods. Be sure to adjust the
web app’s name for each deployment.

9780137564446_Print.indb 140 21/04/22 9:32 PM

 Overview Chapter 3 141

FIGURE 3-2 Creating the first App Service.

 4. In the Basics tab, enter the following information for the web app (see Figure 3-3):

■■ Subscription Select the subscription that will host the web app.

■■ Resource Group Select an existing resource group or create a new one to host the
web app.

■■ Name Enter a unique name for the web app. If the name you enter is already in use,
the wizard will prompt you to select another name.

■■ Publish Select the publishing model for the web app. Your options are Code and
Docker Container. In this case, choose Code.

■■ Runtime Stack Choose the runtime stack that corresponds to the app—here,
.NET 5.

■■ Operating System Choose an operating system for the app VM—in this case,
Windows.

■■ Region Select the Azure region you want to host the app.

FIGURE 3-3 Setting up the basic configuration for the app.

 5. Still in the Basics tab, under App Service Plan, select an existing App Service plan.
Alternatively, to create a new plan, click Create New, type a name for the new plan, and
click OK. (See Figure 3-4.)

9780137564446_Print.indb 141 21/04/22 9:32 PM

142 Chapter 3 Azure App Service

FIGURE 3-4 Defining a new App Service plan.

 6. In the Sku and Size section, click the Change Size link. (See Figure 3-5.)

FIGURE 3-5 Setting the SKU and size for the App Service plan.

 7. In the Spec Picker window, choose an appropriate pricing tier based on your resource
and feature requirements. In this case, click Dev / Test. Then choose the F1 plan (the
Free pricing tier) and click Apply. (See Figure 3-6.)

FIGURE 3-6 Set the SKU and size.

9780137564446_Print.indb 142 21/04/22 9:32 PM

 Overview Chapter 3 143

Choose a pricing tier

As you’ve learned, there are various pricing tiers available. Figure 3-7 shows
additional Dev / Test pricing tiers, with the B1 tier selected; Figure 3-8 shows

the recommended pricing tiers for production workloads; and Figure 3-9 shows
recommended tiers for isolated workloads.

FIGURE 3-7 Options for the Shared and Basic tiers.

9780137564446_Print.indb 143 21/04/22 9:32 PM

144 Chapter 3 Azure App Service

FIGURE 3-8 Tiers for production workloads.

9780137564446_Print.indb 144 21/04/22 9:32 PM

 Overview Chapter 3 145

FIGURE 3-9 Tiers for isolated workloads.

 8. Click Next twice. Then, in the Monitoring tab, next to Enable Application Insights,
select the No option button and click Next. (See Figure 3-10.)

FIGURE 3-10 Choosing settings in the Monitoring tab.

 9. In the Tags tab, enter any tags that you would like to apply to identify the resources for
the App Service. For example, type ms-resource in the Name column and WebApp in
the Value column. (See Figure 3-11.) Then click Next.

9780137564446_Print.indb 145 21/04/22 9:32 PM

146 Chapter 3 Azure App Service

FIGURE 3-11 Setting up tags for the web app.

 10. In the Review + Create tab, review your settings and click Create to create the web
app. (See Figure 3-12.)

FIGURE 3-12 Reviewing the web app settings.

 11. After the web app is created, click it. (In this example, it’s called MBSPWebApp01.)
Then, in the Overview section of the web app’s page in the Azure Portal, copy the URL
for the web app (located in the upper-right corner). (See Figure 3-13.)

9780137564446_Print.indb 146 21/04/22 9:32 PM

 Overview Chapter 3 147

FIGURE 3-13 Copying the web app URL.

 12. Paste the URL in your web browser’s address bar to see the associated website. It will
look like the one shown in Figure 3-14.

FIGURE 3-14 The default web app website.

Now you’ll build the web app.

 13. In the Deployment section of the web app’s page in the Azure Portal, click Deploy-
ment Center.

 14. In the Settings tab, click the Source drop-down list and select External Git. (See
Figure 3-15.)

FIGURE 3-15 Setting the deployment source.

9780137564446_Print.indb 147 21/04/22 9:32 PM

148 Chapter 3 Azure App Service

 15. Under External Git, type https://github.com/Azure-Samples/html-docs-hello-world.git
in the Repository box, type master in the Branch box, and select the Public option but-
ton next to Repository Type. (See Figure 3-16.)

FIGURE 3-16 Setting the External Git configuration.

 16. Click Save to apply the changes. This will reload the code from the repository and
restart the web app.

 17. Verify the app details. (See Figure 3-17.)

FIGURE 3-17 The external Git configuration.

 18. Click Browse to return to the website.

 19. The website has changed, as shown in Figure 3-18, indicating that the Git repository was
successfully cloned to build your web app.

9780137564446_Print.indb 148 21/04/22 9:32 PM

https://github.com/Azure-Samples/html-docs-hello-world.git

 Overview Chapter 3 149

FIGURE 3-18 Sample Azure App Service static HTML site.

USING AZURE POWERSHELL

You can create a sample static HTML website for the Hello World web app with Azure PowerShell
using the New-AzAppServicePlan and New-AzWebApp commands. The following code shows you
how. (Note that you need to connect to the Azure subscription using PowerShell first.)

Note that you need to make the following replacements in the code:

■■ Replace the app name with a unique name or add (Get-Random) to the end of the name
to randomize it.

■■ Replace the Location variable with the desired Azure region.

■■ Replace the resource group name with an existing resource group or a different name
(optional).

After the script successfully completes, browse to the web app URL to verify the application
has been created successfully:

Set the public GitHub repository URL, AppName and Location variables.

$githubrepo="https://github.com/Azure-Samples/html-docs-hello-world.git"

$appname="MBSPWebApp01"

$location="East US"

$resourcegroup="AppServiceRG01"

Create a resource group to host the App Service.

New-AzResourceGroup -Name $resourcegroup -Location $location

Create an App Service plan in Free tier.

New-AzAppServicePlan -Name $appname -Location $location -ResourceGroupName $resource-

group -Tier Free

Create a web app using the App Service Plan.

New-AzWebApp -Name $appname -Location $location -AppServicePlan $appname -ResourceGroup-

Name $resourcegroup

Configure GitHub deployment from your GitHub repo and deploy once.

$PropertiesObject = @{

 repoUrl = "$githubrepo";

 branch = "master";

 isManualIntegration = "true";

}

9780137564446_Print.indb 149 21/04/22 9:32 PM

https://github.com/Azure-Samples/html-docs-hello-world.git"

150 Chapter 3 Azure App Service

Set-AzResource -Properties $PropertiesObject -ResourceGroupName $resourcegroup

-ResourceType Microsoft.Web/sites/sourcecontrols -ResourceName $appname/web

-ApiVersion 2015-08-01 -Force

USING THE AZURE CLI

You can create a sample static HTML website for the Hello World web app with the Azure CLI
using the az appservice plan create and az webapp create commands. The following code
shows you how. (Note that you need to connect to the Azure subscription using the Azure
CLI first.)

Note that you need to make the following replacements in the code:

■■ Replace the app name with a unique name or add ($RANDOM) to the end of the name to
randomize it.

■■ Replace the Location variable with the desired Azure region.

■■ Replace the resource group name with an existing resource group or a different name
(optional).

After the script successfully completes, browse to the web app URL to verify the application
has been created successfully:

#!/bin/bash

Set the public GitHub repository URL, AppName and Location variables.

githubrepo=https://github.com/Azure-Samples/html-docs-hello-world.git

appname=MBSPWebApp01

location=EastUS

resourcegroup=AppServiceRG01

Create a resource group to host the App Service.

az group create --location $location --name $resourcegroup

Create an App Service plan in Free tier.

az appservice plan create --name $appname --resource-group $resourcegroup --sku FREE

Create a web app using the App Service Plan.

az webapp create --name $appname --resource-group $resourcegroup --plan $appname

Configure GitHub deployment from your GitHub repo and deploy once.

az webapp deployment source config --name $appname --resource-group $resourcegroup

--repo-url $githubrepo --branch master --manual-integration

Planning deployment and operations

There are three main components to take into consideration when planning a deployment to
Azure App Service:

■■ Deployment sources

■■ Build pipelines

■■ Deployment mechanisms

9780137564446_Print.indb 150 21/04/22 9:32 PM

https://github.com/Azure-Samples/html-docs-hello-world.git

 Planning deployment and operations Chapter 3 151

Each of these is used differently in every environment, as each environment has unique use
cases and development needs. It is difficult to take a one-size-fits-all approach when plan-
ning a deployment, so it will serve you well to understand these three main components. First,
though, let’s discuss appropriate deployment sources.

Select an appropriate deployment source
One of the first steps in the deployment process is to identify the location where the applica-
tion code will reside during the development, test, and production phases. There are two main
options for this:

■■ A single centralized source for all phases This approach involves using a central-
ized source such as GitHub, Azure Repos, or Bitbucket, where all the code can reside for
deployments as needed.

■■ A hybrid approach This approach involves using a combination of sources: a cen-
tralized source for testing and production and a local source on the developer’s local
storage for development.

The recommended approach for any enterprise environment is to identify a centralized
source so that all the code repository structures can be built and maintained centrally, and
code backups can be performed on a regular basis. For example, App Service has built-in inte-
gration with GitHub, which can be easily set up when the GitHub environment is online.

Deployment source walkthrough
The following sections step you through the process of setting up a different deployment
source for the static web app you created earlier using the Azure Portal, Azure PowerShell, and
Azure CLI. If you are following along, then make sure to adjust the web app name and variables
as needed for each deployment.

USING THE AZURE PORTAL

To select a deployment source using the Azure Portal, follow these steps:

 1. In the Azure Portal, select the web app you created earlier.

 2. In the left pane, under Deployment, click Deployment Center.

 3. In the Settings tab, click the Source drop-down list and choose GitHub. (See
Figure 3-19.)

NOTE Be sure to adjust the web app’s name for each deployment.

9780137564446_Print.indb 151 21/04/22 9:32 PM

152 Chapter 3 Azure App Service

FIGURE 3-19 Selecting a new deployment source.

 4. Click the Authorize button. (See Figure 3-20.)

FIGURE 3-20 Authorizing the deployment source (in this case, GitHub).

 5. In the Authorize Azure App Service dialog box, click the Authorize AzureAppService
button. (See Figure 3-21.)

In the GitHub login window that opens, enter your login credentials to begin the inte-
gration process. This may take a few minutes. When the integration process is complete,
you’ll see the options shown in Figure 3-22.

 6. Open the Organization drop-down and choose the appropriate organization.

 7. Open the GitHub Repository drop-down and choose the desired repository.

 8. Open the Branch drop-down list and choose the branch you want to connect the
app to.

 9. Under Build, open the Runtime Stack drop-down list and choose the appropriate
runtime stack based on your environment. Then open the Version drop-down list and
select the appropriate version. (See Figure 3-23.) Finally, click Save.

9780137564446_Print.indb 152 21/04/22 9:32 PM

 Planning deployment and operations Chapter 3 153

FIGURE 3-21 Authorizing the deployment source (GitHub).

FIGURE 3-22 Setting the organization, repository, and branch under GitHub.

FIGURE 3-23 Selecting the runtime stack and version.

9780137564446_Print.indb 153 21/04/22 9:32 PM

154 Chapter 3 Azure App Service

Azure shows a summary of the configuration settings. (See Figure 3-24.)

FIGURE 3-24 Summary of the final config is shown.

USING AZURE POWERSHELL

You can use Azure PowerShell to select a deployment source, as shown here. (Remember to
adjust the value of each variable as needed for your environment.)

#Set the Webapp and GitHub variables

$githubrepository="{URL-of-required-GitHub-repo}"

$githubtoken="{GitHub-access-token}"

$webappname="{Name-Of-WebApp}"

$webapplocation="{WebApp-Azure-Region}"

Setup GitHub token

$PropertyObject = @{token = $githubtoken;}

Set-AzResource -PropertyObject $PropertyObject -ResourceId /providers/Microsoft.Web/

sourcecontrols/GitHub -ApiVersion 2015-08-01 -Force

Configure GitHub deployment from the required GitHub repo

$PropertyObject = @{

 repoUrl = "$githubrepository";

 branch = "master";

}

Set the Webapp with the GitHub configuration

9780137564446_Print.indb 154 21/04/22 9:32 PM

 Planning deployment and operations Chapter 3 155

Set-AzResource -PropertyObject $PropertyObject -ResourceGroupName {resource-group-name}

-ResourceType Microsoft.Web/sites/sourcecontrols -ResourceName $webappname/web

-ApiVersion 2015-08-01 -Force

USING THE AZURE CLI

You can use the Azure CLI to select a deployment source, as shown here. (Remember to adjust
the value of each variable as needed for your environment.)

#Set the Webapp and GitHub variables

githubrepos={URL-Of-GitHub-Repository}

githubtoken={GitHub-Access-Token}

WebApp={WebAppName}

ResourceGroup={ResourceGroupName}

Configure continuous deployment from GitHub.

az webapp deployment source config --name $WebApp --resource-group $ResourceGroup

--repo-url $githubrepos --branch master --git-token $githubtoken

Build pipelines
A build pipeline helps automate the process of compiling, testing, and packaging source code
for deployment. The pipeline reads the source code data from the deployment source and
performs a series of predefined steps to prepare it for deployment.

The programming language used for the app build will determine the commands employed
during the build process. This process can be executed using Azure Pipelines, a third-party
solution, or locally.

Deployment mechanism
After an application package has been built, it is deployed into the web app. This action is
called the deployment mechanism. App Service supports multiple deployment mechanisms:

■■ Kudu This open-source engine handles continuous deployments, provides HTTP
endpoints, and manages all Git deployments in Azure App Service.

■■ FTP You can use this protocol to upload files from a source website directly to the
web app.

■■ WebDeploy This client-server tool, designed by Microsoft, syncs application content
and configuration to web apps.

After the selected deployment mechanism copies the code to the web app, every VM
instance running the app receives a notification regarding the availability of the new files. Each
instance syncs the new files from the shared location in the web app’s /wwwroot directory.

9780137564446_Print.indb 155 21/04/22 9:32 PM

156 Chapter 3 Azure App Service

Best practices
Following are several best practices that relate to deployment.

Deployment slots
Deployment slots provide an easy way to deploy and manage code rollouts. A deployment
slot creates a live App Service inside the App Service plan. You can use this to load code for
testing; then, when testing is complete, you can swap the slot so the code moves to staging or
production.

In the back end, the deployment slot is already live on worker instances, ready to receive
connections. After the swap is performed, all settings applied to the staging or production slot
will be applied to the code in the test slot (depending on which slot is selected). This makes it
important to use App Service settings and connection strings to store all the required data-
base and unique app settings required for staging or production. If this configuration is stored
in the application code, the staging or production application will write to the test database
instances.

It is highly recommended to use deployment slots when deploying new code to staging or
production because it makes it easier to swap the previous version of the code in case of any
issues. This can reduce downtime while also automating the entire DevOps pipeline workflow
to build, test, and validate new code before rolling it out into production.

Deployment slots are not supported on the Free, Shared, or Basic tier plans; they are sup-
ported, however, on all plans from the Standard plan onward. For enterprise environments in
which DevOps processes are in place, this would generally be the minimum plan selected. Each
deployment slot has its own unique URL, which you can use to access the code in that slot for
testing at no additional cost.

Along with the codebase is a group of settings that get swapped, as follows:

■■ General application settings, such as the framework version, web sockets, and so on

■■ Connection strings (you can configure these to remain with the slot)

■■ App settings (you can configure these to remain with the slot)

■■ Public certificates

■■ WebJobs content

■■ Handler mappings

NOTE If you scale a deployment slot up or out, all the slots on the App Service will be
scaled accordingly, as they all share the same App Service plan.

9780137564446_Print.indb 156 21/04/22 9:32 PM

 Planning deployment and operations Chapter 3 157

There are also settings that are not transferred during a swap. You should take these into
consideration and manage the code accordingly to ensure that the right settings are applied at
the time of the swap. Following is a list of some of these settings:

■■ Publishing endpoints

■■ Custom domain names

■■ Non-public certificates and TLS/SSL settings

■■ Scale settings

■■ WebJobs schedulers

■■ IP restrictions

■■ The Always On setting

■■ Diagnostic settings

Deployment slots walkthrough
The following sections step you through the process of setting up deployment slots for your
web app using the Azure Portal, Azure PowerShell, and the Azure CLI.

USING THE AZURE PORTAL

To set up deployment slots using the Azure Portal, follow these steps:

 1. In the Azure Portal, display the page for the web app you created earlier.

 2. In the left pane, under Deployment, click Deployment Slots. (See Figure 3-25.)

FIGURE 3-25 Setting up deployment slots.

 3. If the web app is on the Free, Shared, or Basic tier, you will see the message shown in
Figure 3-26. Click Upgrade to upgrade to a Standard or Premium plan. Then, in the
Spec Picker window (see Figure 3-27), select a Standard or Premium plan that supports
deployment slots, and click Apply.

NOTE Be sure to adjust the web app’s name and variables for each deployment.

9780137564446_Print.indb 157 21/04/22 9:32 PM

158 Chapter 3 Azure App Service

FIGURE 3-26 Upgrading the App Service plan for slot support.

FIGURE 3-27 Selecting a Standard or Premium App Service Plan.

 4. Click the Add Slot button to start the Add a Slot wizard. (See Figure 3-28.)

FIGURE 3-28 Adding a new slot.

9780137564446_Print.indb 158 21/04/22 9:32 PM

 Planning deployment and operations Chapter 3 159

 5. In the Add a Slot wizard (see Figure 3-29), enter a unique name for the new slot in the
Name box. Then open the Clone Settings From drop-down list and specify whether
the settings for the slot should be cloned from an existing web app or slot, and if so,
which one. Finally, click Add.

FIGURE 3-29 Selecting the new slot settings.

The new slot appears under the main production slot and any other existing slots for the
web app. (See Figure 3-30.)

FIGURE 3-30 Multiple deployment slots.

 6. Obtain the slot’s URL by clicking the slot’s name. The URL is displayed in the upper-right
corner of the slot’s Overview tab. (See Figure 3-31.)

FIGURE 3-31 The new deployment slot’s URL.

 7. Click the URL to load the default App Service website in your web browser rather than
the custom HTML site you built earlier. (See Figure 3-32.)

9780137564446_Print.indb 159 21/04/22 9:32 PM

160 Chapter 3 Azure App Service

FIGURE 3-32 The website associated with the new deployment slot’s URL.

 8. Click the Deployment Center button on the web page to open the slot’s Deployment
Center page with the Settings tab displayed. Notice that the Source setting is blank. (See
Figure 3-33.)

FIGURE 3-33 The slot’s Deployment Center page.

 9. Open the Source drop-down list and choose the same GitHub account you used earlier,
but with a different branch.

USING AZURE POWERSHELL

You can create a deployment slot with Azure PowerShell by using the New-AzWebAppSlot
command. The following code shows you how to perform this configuration for an existing
web app:

$ResourceGroup = “AppServiceRG01”

$WebApp = “MBSPWebApp01”

New-AzWebAppSlot -ResourceGroupName $ResourceGroup -name $WebApp -slot dev

9780137564446_Print.indb 160 21/04/22 9:32 PM

 Planning deployment and operations Chapter 3 161

USING THE AZURE CLI

You can create a deployment slot with the Azure CLI using the az webapp deployment slot
create command. The following Bash script shows you how to perform this configuration for
an existing web app:

az webapp deployment slot create --name MBSPWebapp01 --resource-group AppServiceRG01

--slot Dev

Deploy code continuously only in staging or testing
You should set up the continuous deployment of code only for staging or testing slots. Setting
up continuous deployment for production slots can result in code going live without proper
controls.

You should also set up production branch integrations against a dummy slot in the App
Service. After the code is deployed in the slot, performing a swap to make the code live is a
better approach, as it provides more control over the deployment and allows easy rollback in
case of issues.

Use Azure DevOps
Azure DevOps can help with the automated continuous deployment of containers to the App
Service. Similarly, you can use the Deployment Center for the continuous delivery of containers
to the App Service. After the integration is performed, new commits to the branch will result in
the automated building, tagging, and deployment of the updated container.

NOTE You can also use Azure PowerShell to list all available deployment slots
(Get-AzWebAppSlot), delete a deployment slot (Remove-AzWebAppSlot), set up a
deployment slot (Set-AzWebAppSlot), and swap a deployment slot for a web page
(Switch-AzWebAppSlot).

NOTE You can also use the Azure CLI to list all available deployment slots (az webapp
deployment slot list), delete a deployment slot (az webapp deployment slot
delete), set up a deployment slot (az webapp deployment slot auto-swap), and swap
a deployment slot for a web page (az webapp deployment slot swap).

TIP Follow a similar approach to point a new build to staging to avoid unintended
code activations.

9780137564446_Print.indb 161 21/04/22 9:32 PM

162 Chapter 3 Azure App Service

GitHub Actions
GitHub Actions makes it easy to build, test, and deploy code directly from GitHub to App
Service. You should employ GitHub Actions if you are using GitHub as a deployment source to
help automate code deployments with proper controls and change tracking.

Multiple instances for production applications
For production applications, it is highly recommended that when you design and code the
app, you keep in mind that multiple instances of the application will need to run simultane-
ously. This might require you to code the app to handle multiple VM instances running the app
without sync issues when reading or writing data.

Running a production app with one VM instance creates a single point-of-failure. Instead,
you should try to run the application with at least two or three instances, splitting your
resource requirements across them, instead of one large instance. This will also help you when
any upgrades are performed on the underlying VM instances, because the load will be redi-
rected to the other available instances, preventing any downtime. Fortunately, you can easily
achieve this by using the scale-out services provided by your App Service plan. (See Figure
3-34.) It is recommended that you set up automated scaling when handling increased resource
or load requirements; setting up a minimum number of instances for the app up front can help
mitigate a lot of basic issues.

FIGURE 3-34 Scaling for multiple instances.

9780137564446_Print.indb 162 21/04/22 9:32 PM

 Planning deployment and operations Chapter 3 163

Collocation
It is a good practice to host all interconnected workloads in the same region—in other words,
to collocate them. This helps reduce the following:

■■ Latency between workloads

■■ Costs incurred due to data transfer between regions

■■ Complexity in design and high-availability builds

Enable Always On
Always On is an App Service feature that ensures that VM instances are kept alive, even if there
are no ingress requests or traffic to the VM instances for more than 20 minutes. This can help
prevent the instance from going offline due to an idle timeout, thereby creating a cold-start
situation that leads to delayed response times. Always On is disabled by default, but you easily
enable it using the Azure Portal (see Figure 3-35), Azure PowerShell, or Azure CLI.

FIGURE 3-35 Enabling the Always On setting.

NOTE Unless there are business or security reasons for hosting workloads across
regions, it is better to collocate them.

9780137564446_Print.indb 163 21/04/22 9:32 PM

164 Chapter 3 Azure App Service

Disable ARR Affinity
When a client session is unexpectedly disconnected from an app, the general practice is to
reconnect the user to the same app instance so the previous session can be continued. One
way to do this is to enable the Application Request Routing (ARR) Affinity setting. However,
when ARR Affinity is enabled, the app uses affinity cookies, which cause some VM instances to
become overloaded with sessions and create load-balancing issues.

To avoid this scenario, it is recommended that you either build a stateless application or store
the state information in a back-end service like a database or cache. Once that is in place, you
can disable the ARR Affinity setting (see Figure 3-36), which should improve app performance.

FIGURE 3-36 Disabling ARR Affinity.

Production hardware for production apps
As discussed, there are various App Service tiers available for deployment, and each tier offers
specific hardware SKUs to meet different requirements. If the App Service plan is being used
for a production application deployment, it is advisable to select hardware in the Production
tier. (See Figure 3-37.) This ensures that the hardware resources available to the application are
consistent and can be scaled automatically as required.

Define Health Check parameters
App Service has a Health Check feature that monitors the health status of running instances
and automatically removes unhealthy instances from the load balancer to avoid disruption in
service. This feature is disabled by default; however, it is recommended that you enable it. After
you do, define the path that the service should poll on a regular basis to identify unhealthy
instances. Be sure the path you select is available on all instances and is critical for the func-
tioning of the application. This will help determine the accurate status of the application. (See
Figure 3-38.)

9780137564446_Print.indb 164 21/04/22 9:32 PM

 Planning deployment and operations Chapter 3 165

FIGURE 3-37 Selecting the production tier.

FIGURE 3-38 Configuring Health Check.

NOTE The Health Check feature works only when there are two or more VM instances
running in the app. If the app has only a single instance, traffic will not be blocked, even
if that instance is deemed unhealthy, as there is no alternative to failover.

9780137564446_Print.indb 165 21/04/22 9:32 PM

166 Chapter 3 Azure App Service

Application Initialization
Application Initialization is a great feature to warm up a new application instance before it is
made available to users. You can query a single URL path or multiple URL paths in the applica-
tion to warm them up or trigger a script to preload cache. If not set, it can result in application
instances being put into service at the time of any restart or scale-out operation, without being
ready to service clients.

In such cases, the recommended approach is to set App Initialization in the web.config file
to define the different custom URL paths that need to be queried to confirm that the appli-
cation is completely online before the instance is put into service. If multiple URL paths are
defined, App Service will wait for all the paths to confirm their status (success or failure) before
the instance is made live.

Auto-Heal
Auto-Heal is an App Service feature that enables you to trigger custom actions based on high
memory usage, high CPU usage, and so on. The custom actions currently supported include
the following:

■■ Email alerts to admins or stakeholders

■■ Automated worker process recycling

■■ Memory dump collection for investigation

This is a great feature, and you can configure it using the web.config tool, the Azure Portal,
Azure PowerShell, or the Azure CLI.

Auto-Heal walkthrough
The following section steps you through the process of setting up Auto-Heal using the Azure
Portal.

TIP Set this up if you notice that new app instances are causing timeouts, access
failures, or other unexpected behavior when they come online.

9780137564446_Print.indb 166 21/04/22 9:32 PM

 Planning deployment and operations Chapter 3 167

USING THE AZURE PORTAL

To set up Auto-Heal using the Azure Portal, follow these steps:

 1. In the left pane of the web app’s configuration page, click Diagnose and Solve
Problems. Then, in the right pane, click Diagnostic Tools. (See Figure 3-39.)

FIGURE 3-39 Selecting the Diagnostic Tools option.

9780137564446_Print.indb 167 21/04/22 9:32 PM

168 Chapter 3 Azure App Service

 2. Click Auto-Heal. (See Figure 3-40.)

FIGURE 3-40 Selecting Auto-Heal.

 3. Next to Custom Auto-Heal Rules Enabled, click On. Then define the desired condi-
tions, actions, and override options based on your app requirements and click Save.
(See Figure 3-41.)

FIGURE 3-41 Enabling Auto-Heal.

Monitor disk space usage
The Azure Portal has an option to monitor App Service quotas, which you can use to monitor
an app’s file system usage. For example, you might monitor this to ensure that the web folder
has a minimum of 1 GB of free disk space for faster application restarts and scale-outs. (See
Figure 3-42 and Figure 3-43.)

9780137564446_Print.indb 168 21/04/22 9:32 PM

 Planning deployment and operations Chapter 3 169

FIGURE 3-42 Quota check.

FIGURE 3-43 File system storage usage.

9780137564446_Print.indb 169 21/04/22 9:32 PM

170 Chapter 3 Azure App Service

Enable Application Insights
Application Insights is an Azure Monitor feature to detect and analyze performance anomalies,
debug code errors, and provide a better understanding of user behavior when using the app.

App Insights includes a feature called the Profiler. This feature enables you to capture the
performance of the application and obtain detailed traces to identify hot code paths. (A hot
code path is the one that take the longest to respond when handling a web request.) This can
help you identify bottlenecks within an app and any dependencies. It also allows you to target
development or troubleshooting efforts more appropriately.

Configure monitoring and alerts
Set up monitoring for important parameters and define alerts based on appropriate thresh-
olds. These alerts can be defined on the App Service or the App Service Plan level. There are a
few recommendations for monitoring and alerting that can be configured as follows:

■■ Average Working Memory Set This helps identify the average amount of memory in
MiBs used by the app. It’s recommended to set this value based on the expected aver-
age memory requirements so that any breach is alerted.

■■ Average CPU Percentage This helps identify the average CPU used across all the app
instances. It’s recommended to set this value high enough that alerts can help either
scaling or remediation actions to be taken before any service interruptions.

■■ HTTP Server Errors This helps to monitor specific HTTP status codes to identify errors
or issues being encountered in web requests. It’s recommended to set the value to
monitor and alert for high instances of HTTP status codes greater than or equal to 400
and less than 500.

■■ Average Response Time This helps to monitor app responsiveness. If this value is too
high, then it might indicate ongoing or imminent problems with the app. It’s recom-
mended to set this value for alerting based on stress testing to identify appropriate
thresholds for the hosted app.

■■ Average Memory Percentage This helps to monitor the average memory used in all
the instances of the app. It’s recommended to set this value high enough that alerts can
help either scaling or remediation actions to be taken before any service interruptions.

Deploy in multiple regions
One of the best ways to achieve high availability and ensure disaster recovery for an app is to
deploy it across multiple regions. Doing so can help ensure that any regional outage does not
impact app availability. This will require various other considerations as we’ve covered in the
Disaster Recovery section later in this chapter.

TIP Profiler works only with .NET applications. If you build an app using .NET, it is
highly recommended that you set up Profiler to obtain these deep insights.

9780137564446_Print.indb 170 21/04/22 9:32 PM

 Planning deployment and operations Chapter 3 171

However, if possible, incorporate this into the application design at the earliest stage
possible.

A multi-region design can also help in routing requests to the closest datacenter based on
the user’s region. This can be achieved using Azure Front Door or Azure Traffic Manager to
manage all the ingress traffic and route it appropriately. This can also help load-balance traffic
between multiple geographies providing global load-balancing.

Plan new app deployments in existing plans
Generally, when a new workload is deployed, there is a temporary spike in resource require-
ments while the workload is completely online and servicing requests, at which point things
stabilize and return to earlier levels until user traffic hits the new workload. If you are deploying
a new workload using an existing App Service plan, you should check the CPU and memory
usage to make sure there is enough spare capacity to handle this deployment spike.

If CPU or memory utilization reaches or exceeds 90%, you should bring additional VM
instances online so the overall load goes down. Then you can deploy the new workload. After
deployment, the App Service plan can be scaled down based on the new average resource
requirements.

Scaling
Scaling is critical for applications using App Service. It can provide both performance benefits
and cost savings—which can be maximized if the scaling occurs automatically.

You can achieve scaling (up or down) by changing your App Service plan tier. Be aware,
however, that while a lower-tier plan will reduce your costs, it could have an impact on perfor-
mance and feature availability. Therefore, it is important to identify which features you need
in order to meet your application performance requirements and use this information when
selecting your plan. For example:

■■ Dev and test phase Use the Free tier so no compute charges are levied.

■■ General testing/pre-production release Use the Shared tier to leverage additional
features such as custom DNS and various resources.

■■ Production release Use the Basic Dedicated tier to use SSL/TLS with more resources
for scaling.

Scaling up or down by changing plans occurs almost immediately and requires no changes
to the code or application configuration. All apps in the App Service plan are affected when

NOTE As your needs change or your performance metrics indicate a problem with the
selected tier, you can choose a different tier—moving to a higher tier or a lower one
based on your storage, compute, or memory requirements.

9780137564446_Print.indb 171 21/04/22 9:32 PM

172 Chapter 3 Azure App Service

scaling occurs; if you update to a higher-tier plan, each app in the plan will be able to use the
new features that become available. Generally, scaling up provides access to features including
(but not limited to) the following:

■■ More CPU, memory, and disk space

■■ Autoscaling

■■ Custom domains and SSL/TLS certificates

■■ Deployment slots

In contrast, scaling down by changing plans removes or reduces the feature set, depending
on which plan you choose.

In addition to scaling up or down, you can also scale out or in. Scaling out increases the
number of VM instances allocated to run your app(s). For example, in the Dedicated tier, with
the Premium V2 and V3 plans, you can deploy 30 VM instances, whereas in the Isolated tier,
you can scale out to 100 VM instances. Scaling in is the reverse of these scenarios; you might
scale in to reduce costs or unused capacity.

All scaling operations can be performed manually or automatically—if your App Service
plan tier supports this. Autoscaling is available only in the Standard and Premium plans on
the Dedicated tier and the ASE hosted on the Isolated tier. You can perform automatic scaling
based on schedules and/or metric-based rules that trigger the scaling operation.

NOTE Of course, this will also increase the cost of the App Service plan.

NOTE When you scale out, it applies to all apps running on the App Service plan on all
new instances. So, each new instance runs all the apps in the plan.

Per-app scaling

Per-app scaling enables you to scale each app in an App Service plan indepen-
dently, meaning you can configure an app to run on only a certain number of

instances. For example, if your App Service plan supports 20 instances, but one of
your apps requires only five instances to handle peak loads, you can use per-app
scaling to set the scaling limit to five for that app. This enables you to make more
appropriate use of the resources available in the App Service plan by assigning
more resources only to the apps that require this.

9780137564446_Print.indb 172 21/04/22 9:32 PM

 Planning deployment and operations Chapter 3 173

Scaling walkthrough
The following sections step you through the process of setting up scaling for your web app
using the Azure Portal, Azure PowerShell, and Azure CLI.

USING THE AZURE PORTAL

To set up scaling using the Azure Portal, follow these steps:

 1. In the left pane of the web app’s configuration page, under Settings, click Scale Up
(App Service Plan). Then, in the right pane, do one of the following:

■■ Click the Manual Scale option button. Then, in the Manual Scale settings, drag the
Instance Count slider to 2. (See Figure 3-44.)

FIGURE 3-44 Manual scale configuration.

■■ If you require a more advanced or custom configuration, select the Custom Auto-
scale option button and specify when you want the custom autoscaling operation to
be automatically performed. (See Figure 3-45.)

Per-app scaling is enabled at the App Service plan level and can be configured
thereafter independently for each app. Using this feature well can help you achieve
the highest level of app density per App Service plan.

9780137564446_Print.indb 173 21/04/22 9:32 PM

174 Chapter 3 Azure App Service

FIGURE 3-45 Custom autoscale configuration.

USING AZURE POWERSHELL

You can set up scaling with Azure PowerShell when you use the New-AzAppServicePlan com-
mand to create the App Service plan and employ the -NumberofWorkers and -PerSiteScaling
switches. The following code shows you how:

#Define the variables for your environment

$ResourceGroup = “{ResourceGroupName}”

$AppServicePlan = “{Name-Of-AppServicePlan}”

$Location = “{AzureRegionName}”

#Set scaling config during plan creation

New-AzAppServicePlan -ResourceGroupName $ResourceGroup -Name $AppServicePlan

-Location $Location -Tier Standard -WorkerSize Small -NumberofWorkers 3

-PerSiteScaling $true

9780137564446_Print.indb 174 21/04/22 9:32 PM

 Networking considerations Chapter 3 175

USING THE AZURE CLI

You can set up scaling with the Azure CLI when you use the az appservice plan create com-
mand to create the App Service plan and employ the --per-site-scaling and --number-of-
workers switches. The following Bash script shows you how:

#Set the web app variables

WebappName="AppService$random"

Location="EastUS"

ResourceGroup = “ResourceGroup01”

Set scaling config during plan creation

az appservice plan create --name $WebAppName --resource-group $ResourceGroup

--location $Location --sku S1 --number-of-workers 3 --per-site-scaling

Migrate to Azure App Service
One of the key questions in any environment is how best to migrate an existing on-premises
app to App Service. To aid with this, Azure provides a free service called App Service Migration
Assistant. (See Figure 3-46.) You can use this service to quickly scan and assess an existing web
app to determine if it is suitable for migration. If the Migration Assistant service determines
that the app is suitable for migration, you can use it to migrate the app to App Service. It is
highly recommended that you use this free service to speed up and streamline app migrations.

FIGURE 3-46 Azure App Service Migration Assistant.

Networking considerations

As discussed, you must consider numerous deployment and operational issues when deciding
on the most appropriate strategy to set up a new App Service in Azure. Similarly, you need to
consider various networking solutions. The following sections cover the different networking
services that are supported for integration with Azure App Service and some best practices
associated with each.

By default, App Service allows all hosted apps to be accessible over the public internet.
Although that might be appropriate for a large number of customer-facing apps, numerous
internal or protected applications require more granular control over inbound and outbound

9780137564446_Print.indb 175 21/04/22 9:32 PM

176 Chapter 3 Azure App Service

traffic. You can set up numerous Azure services and App Service features to provide the
required level of protection. Each service can help in addressing the requirements in different
ways; thus, it is important to understand how each one works to design the right strategy for
App Service networking.

Service endpoints and private endpoints
Azure App Service offers two types of deployment scenarios:

■■ Free, Shared, Basic, Standard, Premium, PremiumV2, and PremiumV3 pricing
SKUs Apps are hosted on a multi-tenant infrastructure.

■■ Isolated SKU App Service plan A single-tenant ASE hosts all the apps directly in the
client’s Azure virtual network.

In a multi-tenant scenario, service endpoints enable you to define inbound traffic restric-
tions, allowing traffic only from a set of trusted subnets to connect to the web app. In this way,
you can restrict traffic to only required resources such as VMs, other ASEs, or even other apps
that use VNet Integration.

Private endpoints are available only in the PremiumV2 and PremiumV3 tier App Service
plans. They allow apps hosted on the multi-tenant infrastructure to be securely connected to
the customer’s virtual private network. So, all inbound traffic to the web app from the custom-
er’s virtual network flows over a secure and private connection. (See Figure 3-47.)

Some key benefits of using a private endpoint include the following:

■■ You can restrict inbound app access to resources in a specific virtual network.

■■ Users and resources within the connected virtual network can access apps using an
internal private IP.

■■ You can use a web application firewall (WAF) used along with a private endpoint for
enhanced protection.

■■ Data leakage and data theft are difficult, as the app is accessible only on a protected
network.

Some limitations when using private endpoints include the following:

■■ A web app can support only 100 private endpoints.

■■ Remote debugging is not supported.

■■ FTP access to the web app is not allowed.

NOTE  You can configure service endpoints using the Azure Portal, Azure PowerShell, 
and the Azure CLI.

9780137564446_Print.indb 176 21/04/22 9:32 PM

 Networking considerations Chapter 3 177

On-Prem Environment

Azure Region B

Azure Region A

Azure

vNET Peering

User attempting access over internet

Azure VM

Azure VM

Private Endpoint App ServiceWebApp with
Private Link

VPN Gateway ExpressRoute
circuit

Servers
User

On-prem users/servers communicating
with the web app over ExpressRoute or

Azure VPN Gateway via Private Link

User Desktop

Traffic blocked

as

FIGURE 3-47 Private endpoint connections.

VNet integration
VNet integration helps multi-tenant apps access resources in other Azure VNet and intercon-
nected networks. It provides outbound access from the app to the VNet and connected net-
works. This makes it possible for the app to access any resource located inside those networks.

This feature has two variations:

■■ Regional integration This is when the integration is with a VNet within the same
Azure region as the app. Regional integration requires a dedicated subnet in the VNet
for integration.

■■ Gateway-required integration This is when the integration is with a VNet in another
Azure region or with a classic VNet in the same region. Here, an Azure virtual network
gateway is provisioned in the destination VNet for the integration.

 NOTE VNet integration is an advanced feature and available only with the Standard
and Premium plans.

M03_Valiramani_C03_p135-p192.indd 177 22/04/22 2:56 PM

178 Chapter 3 Azure App Service

Regional VNet integration
As mentioned, regional VNet integration is when the App Service is integrated with a VNet in
the same Azure region as the app. This enables apps to access resources located within:

■■ The same region as the app

■■ Any VNet peered with the integrated VNet

■■ Any networks connected via ExpressRoute to the integrated VNet

■■ Service-endpoint secured services

■■ Private endpoint resources

Some restrictions with regional VNet integration include the following:

■■ The integration subnet must be unused and dedicated to only one App Service plan.

■■ The integration subnet must be /28 or larger.

■■ Classic VNet is not supported.

■■ Only one regional VNet is supported per App Service plan.

Gateway-required VNet integration
Gateway-required VNet integration is useful when an app requires access to resources
located in:

■■ An Azure VNet in a region different from the app

■■ An Azure classic virtual network in the same or different region

This requires an Azure Virtual Network gateway configured with an SSTP point-to-site VPN
for the integration. Once integrated, the apps can get access to resources located within:

■■ Any VNet peered with the integrated VNet

■■ Any networks connected via VPN to the integrated VNet

Some restrictions with gateway-required VNet integration include the following:

■■ No support for Azure ExpressRoute connections.

■■ Only one VNet at a time can be connected.

■■ An App Service Plan supports a maximum of five VNet integrations.

Traffic Manager and Azure Front Door
You can use Traffic Manager and Azure Front Door to control and distribute requests from web
clients across App Service endpoints. These endpoints, which are geographically dispersed,
are set to Active or Passive; based on the routing logic applied, traffic is redirected, taking into
account the availability and load on the App Service endpoint.

Azure Traffic Manager is a global DNS-based load-balancing service that distributes traffic
among back-end application nodes based on a load-balancing algorithm you select. It pro-
vides a public endpoint that diverts incoming client requests to the available application node
hosted in Azure or in another external service.

9780137564446_Print.indb 178 21/04/22 9:32 PM

 Networking considerations Chapter 3 179

Azure Front Door is great for application acceleration and global HTTP(S) load balancing.
It provides more features than Traffic Manager and is highly recommended for use with App
Service. It supports SSL offloading, Application layer processing, AnyCast routing, and content
caching for faster performance and security against DDoS attacks.

Three primary routing algorithms overlap between Traffic Manager and Front Door:

■■ Latency/performance The closest app is selected based on the lowest network
latency to the back ends.

■■ Priority Priority is given to the primary app defined in the configuration. Other loca-
tions hosting the same app are set up as backups so that traffic can be failed over if the
primary is unavailable.

■■ Weighted Traffic is distributed across a set of apps evenly or based on a weight
assigned to each app.

In addition to these three, Traffic Manager provides one additional routing algorithm:

■■ Performance Users are redirected to the closest app region based on their network
latency to the app location.

Similarly, Azure Front Door provides one additional routing algorithm:

■■ Geographic Users are redirected to apps that are closest to their geographic location.

Hybrid Connections
The Hybrid Connections feature helps connect an app to on-premises resources over a secure
port. It does this by setting up a relay agent, called Hybrid Connection Manager (HCM), that
requires access to both the on-premises endpoint and App Service over port 443. Once the
relay agent is operational, the app hosted in Azure can access resources on any TCP-enabled
host endpoint on any port or application protocol. The connection is secured using TLS 1.2; in
addition, shared access signature (SAS) keys authenticate and authorize resource access.

Some of the main benefits of using Hybrid Connections are as follows:

■■ Secure access to on-premises resources over private or public networks.

■■ Service-based provisioning, making it fast to set up and configure.

■■ Works on port 443, making it easier to handle across most firewalls.

■■ Multiple networks can be accessed using the same relay agent.

■■ No dependency on application protocol, language, or port requirements, as long as TCP
support is available.

However, Hybrid Connections has a few limitations:

■■ It only supports TCP. It does not support the UDP protocol.

■■ It cannot be used to mount network-enabled drives remotely to the app.

■■ It uses dynamic port mapping for app access.

9780137564446_Print.indb 179 21/04/22 9:32 PM

180 Chapter 3 Azure App Service

Network security groups
You can use network security groups (NSGs) to block both ingress and egress traffic to all
resources in a VNet. For apps that use the regional VNet integration feature:

■■ Egress traffic can be managed using NSGs.

■■ Ingress traffic management requires the use of the Access Restrictions feature.

Route tables
Route tables help to set up custom routes required to enforce a specific routing configuration.
You can use route tables to route outbound traffic as needed.

Azure DNS private zones
Once an app is integrated into a VNet, the DNS server configured for the VNet is applied to the
app as well. If the VNet is set to use Azure DNS private zones, this would cause issues for the
app, because by default, it does not support private DNS zones. However, you can enable this
support configuring application settings to force all outbound traffic from the app via the VNet
and require the use of the Azure DNS private zone.

Backup and restore

Azure App Service has a built-in backup and restore feature available for the Standard, Pre-
mium, and Isolated tiers. This feature allows you to create backups manually or on an auto-
mated schedule. Backups can be retained indefinitely, which is useful for organizations with
long-term data-retention requirements.

The Azure App Service backup feature can currently back up the following:

■■ File contents

■■ The application configuration

■■ Databases interconnected for use with the app, including Azure SQL Database, Azure
Database for MySQL, and Azure Database for PostgreSQL

Some key features of this built-in backup service are as follows:

■■ Each backup is triggered as a full backup rather than an incremental backup. This makes
restore operations fast and reliable, as dependencies on earlier backups are reduced.

■■ Restore operations can restore to the existing app or to a new app. This is useful in sce-
narios in which you need to create a new test or dev environment from a recent backup.

■■ You can schedule backups using the Azure Portal, Azure PowerShell, or the Azure CLI.

It’s important to be aware of a few limitations when setting up the backup feature:

■■ Backups are supported for a maximum of 10 GB of app and database content. In
addition, backups of individual databases can have a maximum size of 4 GB. Backups
exceeding this size will fail.

9780137564446_Print.indb 180 21/04/22 9:32 PM

 Backup and restore Chapter 3 181

■■ This feature is supported only for the Standard and Premium Dedicated tiers and the
Isolated tier.

■■ If VNet integration is in place, the backup and restore features cannot be used at the
same time.

■■ The Azure storage required to store the backups should be in the same subscription,
and preferably the same region, as the App Service.

■■ The firewall service for the storage account should not be configured or online.

■■ Backups for in-app MySQL databases are automatic, without the need for any configu-
ration steps. However, if manual configuration settings, such as connection strings, are
put in place, automated backups will not work correctly.

■■ TLS encryption for MySQL or PostgreSQL will cause backups to fail. If that is a require-
ment for the environment, consider a third-party backup solution.

Backup walkthrough
The following sections step you through the process of setting up backups for your web app
using the Azure Portal, Azure PowerShell, and the Azure CLI.

USING THE AZURE PORTAL

To set up backups using the Azure Portal, follow these steps:

 1. In the left pane of the web app’s configuration page, under Settings, click Backup. (See
Figure 3-48.) By default, no backups are configured.

FIGURE 3-48 Backup configuration for web apps.

NOTE Adjust the storage names per your requirements.

9780137564446_Print.indb 181 21/04/22 9:32 PM

182 Chapter 3 Azure App Service

 2. Under Backup, click the Backup Is Not Configured. Click Here to Configure Backup
for Your App link. (See Figure 3-49.)

FIGURE 3-49 Backup is not configured.

 3. In the Backup Configuration page, enter the following information (see Figure 3-50):

■■ Backup Storage Click the container in which you want to store the backup.

■■ Scheduled Backup Click On.

■■ Backup Every Specify how frequently backups should occur, in days or hours.

■■ Start Backup Schedule From Specify the date, time, and time zone when the
backup schedule should start.

■■ Retention (Days) Specify how long (in days) the backup should be retained.

■■ Keep At Least One Backup Click Yes to ensure that at least one backup is always
retained.

FIGURE 3-50 Configuring backup settings.

9780137564446_Print.indb 182 21/04/22 9:32 PM

 Backup and restore Chapter 3 183

USING AZURE POWERSHELL

You can set up backups for a web app with Azure PowerShell using the New-AzWebAppBackup
command. This command triggers a one-time backup. To schedule a backup, you must use the
Edit-AzWebAppBackupConfiguration command.

To trigger a one-time backup, use the following code:

#Set variables

$resourcegroup="AppServiceRG01"

$appname="mywebapp$(Get-Random -Minimum 100000 -Maximum 999999)"

$storageaccountname="backupsstorage"

$storagecontainer="backups"

$location="East US 2"

$backupname="BackupOnce"

Generate an SAS token for the storage container, valid for one month.

$sastokenUrl = New-AzStorageContainerSASToken -Name $storagecontainer -Permission rwdl

-Context $storageaccountname.Context -ExpiryTime (Get-Date).AddMonths(1) -FullUri

Create a one-time backup

New-AzWebAppBackup -ResourceGroupName $resourcegroup -Name $appname -StorageAccountUrl

$sastokenUrl -BackupName $backupname

To schedule a backup, use the following code:

#Set variables

$resourcegroup="AppServiceRG01"

$appname="MSBPAPP01"

$storageaccountname="backupsstorage"

$storagecontainer="backups"

$location="East US 2"

Generate an SAS token for the storage container, valid for 1 year.

$sastokenUrl = New-AzStorageContainerSASToken -Name $storagecontainer -Permission rwdl

-Context $storageaccountname.Context -ExpiryTime (Get-Date).AddYears(1) -FullUri

Schedule a backup every day, beginning in two hours, and retain for 30 days

Edit-AzWebAppBackupConfiguration -ResourceGroupName $resourcegroup -Name $appname

-StorageAccountUrl $sastokenUrl -FrequencyInterval 1 -FrequencyUnit Day

-KeepAtLeastOneBackup -StartTime (Get-Date).AddHours(2) -RetentionPeriodInDays 30

USING THE AZURE CLI

You can set up backups for a web app with the Azure CLI using the az webapp config backup
create command. This command triggers a one-time backup. To schedule a backup, you must
use the az webapp config backup update command.

To trigger a one-time backup, use the following code:

#!/bin/bash

#Set variables

resourcegroupname="AppServiceRG01"

9780137564446_Print.indb 183 21/04/22 9:32 PM

184 Chapter 3 Azure App Service

appname=MSBP-APP01

storagename=backupsstorage

location="EastUS2"

backupcontainer="backups"

backupname="backuponce"

expirydate=$(date -I -d "$(date) + 2 months")

Generates an SAS token for the storage container, valid for one month.

sastoken=$(az storage container generate-sas --account-name $storagename

--name $backupcontainer --expiry $expirydate --permissions rwdl --output tsv)

Construct the SAS URL for the container

sastokenurl=https://$storagename.blob.core.windows.net/$backupcontainer?$sastoken

Create a one-time backup

az webapp config backup create --resource-group $resourcegroupname --webapp-name

$appname --backup-name $backupname --container-url $sastokenurl

To schedule a backup, use the following code:

#!/bin/bash

#Set variables

resourcegroupname="AppServiceRG01"

appname=MSBP-APP01

storagename=backupsstorage

location="EastUS2"

backupcontainer="appbackup"

expirydate=$(date -I -d "$(date) + 1 month")

Generate an SAS token for the storage container, valid for one month.

sastoken=$(az storage container generate-sas --account-name $storagename

--name $backupcontainer --expiry $expirydate --permissions rwdl --output tsv)

Construct the SAS URL for the container

sastokenurl=https://$storagename.blob.core.windows.net/$backupcontainer?$sastoken

Schedule a backup every day and retain for 10 days

az webapp config backup update --resource-group $resourcegroupname --webapp-name

$appname --container-url $sastokenurl --frequency 1d --retain-one true --retention 10

Disaster recovery

In the event of a region-wide failure of the Azure infrastructure, causing App Service and all
hosted apps to go offline, you would need to bring App Service back online in another avail-
able region and restore your data within that new region. You can achieve this in multiple ways,
including the following:

■■ Multi-site architecture You can set up App Service in such a way that the same apps
are published across multiple Azure regions and the database is replicated geographi-
cally. Moreover, you can set up any interdependent components in a multi-site design

9780137564446_Print.indb 184 21/04/22 9:32 PM

https://$storagename.blob.core.windows.net/$backupcontainer?$sastoken
https://$storagename.blob.core.windows.net/$backupcontainer?$sastoken

 Disaster recovery Chapter 3 185

or set them up to work with high availability (HA). This type of design is also called an
active-active datacenter design.

■■ Standby site You can preconfigure the standby region with all required apps and
interconnected services and replicate required data to that site. The standby site can
then be brought online in the event of a disaster. This type of design is also called an
active-passive with hot standby design.

■■ Cold recovery A cold recovery is where a failover site is identified, and all required
services and data are restored and brought online on that site after a disaster, either
manually or automatically. This type of design is also called an active-passive with cold
standby design.

There are numerous factors to consider when developing a disaster-recovery strategy,
especially for cold-recovery scenarios. Be sure to consider the following points in your
planning:

■■ Identify all interconnected components within the App Service and decide on the best
strategy to make them either region-independent or restorable in another region when
required. These should include (but are not limited to) the following:

■■ Deployment slot configurations

■■ TLS/SSL certificates

■■ Azure Key Vault configuration, including secrets, certificates, and managed identities

■■ Integrations with load balancers, Azure Traffic Manager, WAFs, or Azure Firewall

■■ Integrations using Hybrid Connections, site-to-site VPNs, or ExpressRoute

■■ Integrations with third-party services that must be rebuilt

■■ Refer to the product documentation or configuration of each service to validate data
replication or availability in the desired failover region in the event of a disaster.

■■ Identify and document the steps to restore each service (and the configuration required
to reintegrate it, if needed), and the order in which each service should be restored.

■■ Test the restoration procedure, if possible, on a regular basis.

■■ Identify the testing parameters after restoration to validate a successful restore.

■■ Regularly review procedures and processes in place to ensure any changes in the envi-
ronment, in product features, or in Microsoft’s terms of service are taken into account in
the event a restoration operation becomes necessary.

 NOTE Only the Premium tier supports moving an app from one region to another.
However, in a disaster scenario, Microsoft enables this functionality for all App Service
plans. So, apps can be migrated, restored, or downloaded, regardless of plan.

9780137564446_Print.indb 185 21/04/22 9:32 PM

186 Chapter 3 Azure App Service

Cost considerations

It’s relatively easy to set up and scale up Azure App, but you can incur unwanted costs if you
don’t plan and monitor it. To better gauge and manage your monthly spend, it is therefore
important to understand the different elements in the App Service environment that are sub-
ject to charge.

The main resource charges are associated with compute resources for VM instances. These
charges depend on the App Service plan tier and the number of VM instances deployed. The
charges levied are based on the number of times the instances are online. It is highly recom-
mended to monitor the usage of instances and identify areas where you can better manage it.
This can help you significantly decrease your spending.

In addition to compute resources, Microsoft charges for some additional resources, includ-
ing the following:

■■ App Service domains

■■ App Service certificates

■■ IP-based certificate bindings

■■ Storage for backup and diagnostic logging

■■ A virtual network for the Isolated tier ASE

There are various ways to optimize costs associated with App Service and related workloads.
Here are just a few:

■■ Host multiple apps in a single plan One of the best ways to optimize costs is to col-
locate multiple apps within the same App Service plan. This will require you to analyze
application and API loads to determine which apps to host together. On a related note,
you can move apps to different App Service plans within the same region and resource
group to optimize usage over time based on load analysis. You’ll want to consider this
when deciding which plan to use to host your app.

■■ Use the Free or Shared tier to host test and dev workloads Using the Free or
Shared tier for dev and test workloads can help keep costs low during those stages.
These tiers are also an excellent choice for most environments for hosting functions,
scripts, and code snippets, depending on their runtime and SLA requirements.

NOTE Your monthly bill will provide a detailed breakdown of the charges associated
with each of these different resources.

NOTE Hosting multiple apps on a plan results in higher app density. This can help you
reduce the number of plans you need, thereby optimizing costs.

9780137564446_Print.indb 186 21/04/22 9:32 PM

 Cost considerations Chapter 3 187

■■ Use the Standard tier or above to host production workloads Using the Standard
tier or above to host production workloads ensures those workloads are covered by the
App Service SLA. This is because the hardware available on these tiers provides much
better performance than the hardware resources allocated to the Free and Shared tiers.
The Standard and above tiers also offer better memory, storage, security, and scaling
features.

■■ Use autoscaling Be aware that the cost of running workloads on the Standard or
higher tiers is much higher. Therefore, to optimize costs, you should use autoscaling to
remove VM instances when they are inactive. Autoscaling is supported in the Standard
Dedicated tiers and can be used both to scale out and to scale in, ensuring that only the
compute resources required are online.

■■ Reserve instances The Dedicated PremiumV3 and Isolated tiers enable you to reserve
and pre-pay for instances at a discount for use later on. You can reserve between one
and three years in advance; the longer the reservation period, the cheaper it is. If you
know the minimum number of compute resources you will require for the next one to
three years, it would be advisable to reserve them to obtain the significant cost benefit.

■■ Set up budgets Setting up a budget can help stakeholders keep better track of their
costs and (hopefully) eliminate overspending. You can set up alerts to notify application
admins if spending does exceed your budget, enabling them to take immediate action
to reduce the spend.

■■ Monitor your spending Once your budget is in place, it is important to monitor your
costs on a regular basis to identify unwanted spends and areas that might be ripe for
optimization. Trend analysis of this data can also help in forecasting for future planning.

■■ Analyze in PowerBI or Excel You can export the data you collect over time when
monitoring costs to Microsoft PowerBI or Microsoft Excel to analyze historical trends
across datasets. You can do this on a scheduled basis—daily, weekly, or monthly—
making it possible to perform a long-term analysis.

■■ Avoid post-deletion charges Even if you delete all the apps in an App Service plan,
charges for that plan, and the number of VM instances deployed, will continue to apply.
To avoid incurring these charges, you should delete the plan or scale it down to the Free
tier. You can also remove other associated resources manually, such as the following:

■■ Virtual networks created for the Isolated tier

■■ The Key Vault used to store TLS/SSL certificates

NOTE If you use more compute resources than you reserved, the additional compute
resources will be charged at the normal rate rather than the discounted rate. Therefore,
you should monitor the usage of the apps hosted in the App Service plan over time to
determine if additional reservations are required.

9780137564446_Print.indb 187 21/04/22 9:32 PM

188 Chapter 3 Azure App Service

■■ Log Analytics workspaces for log ingestion and analysis

■■ Backup and diagnostic logging storage accounts

Security recommendations

There are numerous security recommendations to consider when hosting apps on App Service.
These are some of the most common ones:

■■ Use the latest version if possible Make sure the platforms, frameworks, program-
ming languages, and protocols used by your apps are up to date. This can significantly
reduce the attack surface.

■■ Turn off anonymous access Anonymous access is one of the leading causes of data
theft. Unless there is a need to allow anonymous requests, it is recommended that you
disable it completely. If you absolutely must allow anonymous requests, expose only
the app elements that require anonymous access while securing all other APIs or access
points.

■■ Use the built-in authentication module Rather than using custom code, employ the
built-in authentication module to handle all authentication and authorization requests.
This helps reduce coding errors that might pose a security threat—not to mention sav-
ing you time and effort.

■■ Protect access to back-end resources Make sure back-end resources are protected
by using authentication. This authentication could call for either the user’s identity or
their managed identity. Managed identity is an identity managed by the Azure platform
itself. This makes it easy to maintain because it eliminates the need to rotate secrets
manually.

■■ Map custom domains and use certificates It is a good practice to map custom
domains for apps. This makes it easier for end-users to access the app. App Service sup-
ports several types of certificates, based on security needs:

■■ Free App Service Managed certificate This is a free certificate issued by DigiCert,
which is automatically renewed every six months. Be aware that this certificate has
some limitations. For example, it does not allow exports, it is not supported with ASE,
and it does not support wildcard certifications. In addition, it does not support client
authentication and does not integrate with Traffic Manager. However, if these are
acceptable, then it is a great option.

■■ App Service certificate This is a certificate issued by GoDaddy. There are two
types currently available: Standard and Wildcard. The certificate is stored in Azure
Key vault and automatically renewed.

■■ Third-party certificate This is a certificate procured from a trusted third-party
certificate provider. These certificates can either be imported into Azure Key Vault
and then imported into App Service or imported directly into App Service.

9780137564446_Print.indb 188 21/04/22 9:32 PM

 Security recommendations Chapter 3 189

■■ Private certificate This is a certificate created by the customer using an internal
PKI infrastructure. This certificate is best for apps used for internal testing or for apps
used by internal employees on managed devices. This certificate requires the certifi-
cate chain to be deployed on the device. The certificate can be imported into Azure
Key Vault and then imported into App Service or imported directly into App Service.

■■ Use certificates to limit access If you need to limit access to the application to
specific clients, using a certificate for client authentication is highly recommended, as it
blocks connections from clients missing the required certificate.

■■ Use HTTPS instead of HTTP Although App Service allows both HTTP and HTTPS
connections, it is highly recommended that all HTTP requests be redirected to HTTPS.
This ensures that all connections are secured by default using the SSL/TLS certificate
deployed for HTTPS. All authentication and client communication would take place on a
secure channel, reducing traffic snooping.

■■ Disable TLS 1.0 Industry standards such as PCI DSS have deemed TLS 1.0 as an unse-
cure protocol. It is highly recommended that you disable TLS 1.0, forcing all apps to use
TLS 1.1 or, preferably, TLS 1.2. Figure 3-51 shows the settings to use HTTPS only and to
disable TLS 1.0.

FIGURE 3-51 Setting HTTPS only and specifying the minimum TLS version.

■■ Encrypt communication When integrating apps with other Azure services such as
Azure Storage, Azure SQL Database, or other database services, all communication
between the workloads remains within the Azure back end. However, that traffic is on
shared network infrastructure within Azure. Therefore, it is highly recommended that
you encrypt this traffic to ensure that all communication is secure at all times.

IMPORTANT Be sure to provision a well-known SSL/TLS certificate so client browsers
connect over HTTPS without errors.

9780137564446_Print.indb 189 21/04/22 9:32 PM

190 Chapter 3 Azure App Service

■■ Secure FTP traffic Use the FTP protocol judiciously, only when required. In addition,
use it only over SSL/TLS so that all communication is secure. In short, avoid using FTP
unless absolutely necessary.

■■ Use Key Vault or environment variables Use Azure Key Vault and managed identity
for secure storage, access, and management of application secrets. This includes API
tokens, database credentials, and private keys that are otherwise included in the appli-
cation code. If you cannot use managed identities, then it is recommended that you
use environment variables in app settings and connection strings to store these values.
These are stored securely with encryption and are decrypted just before being passed
on to the application’s process memory. The Azure platform manages the encryption
keys and rotates them on a regular basis, making the system very difficult to breach.

■■ Define IP restrictions (if necessary) Depending on your application access require-
ments, access to the app can be restricted for certain IP addresses or IP ranges only. This
can help secure access especially for highly sensitive apps where the users accessing the
application are known and access has to be limited to known networks only.

■■ Define dynamic access restrictions For apps hosted on a Windows-based App Ser-
vice, you can prevent external distributed denial of service (DDoS) attacks defining the
following parameters to dynamically restrict access:

■■ Deny IP address based on the number of concurrent requests.

■■ Deny IP address based on the number of requests over a period of time.

■■ Use the Isolated pricing tier for network isolation The Isolated tier is best used
for apps that require all network infrastructure to be isolated and dedicated for use by
a single organization only. If your organization has compliance or security needs that
require such enforcement, use the Isolated tier.

■■ Protect communications when accessing on-premises resources On-premises
resources can be accessed using Hybrid Connections, via site-to-site VPNs, or by
connecting the ASE directly to an on-premises environment. Each of these methods
provides secure access to resources. Based on the network topology in place, select the
best method for your environment, making sure all communication is directed over the
selected channel only.

■■ Use NSGs for ingress traffic Use NSGs to protect and manage ingress traffic and
network access. Expose only the required endpoints and prevent access to others.
Periodically review the NSG configuration to make sure no unwanted endpoints are
exposed.

■■ Leverage Azure Security Center You should use the Azure Security Center service to
periodically carry out security assessments. You should also implement recommenda-
tions issued by Azure Security Center to plug security holes and employ its Integrated
Threat Intelligence functionality to prevent traffic from known-malicious IP addresses.

9780137564446_Print.indb 190 21/04/22 9:32 PM

 Security recommendations Chapter 3 191

■■ Use Azure Policy Use Azure Policy to define and implement built-in policies for App
Service, such as HTTPS enforcement, minimum allowed TLS version, and enforcement of
a virtual network service endpoint.

■■ Use Azure Activity Log to monitor changes After policy definitions are in place,
you can use Azure Activity Log to monitor configuration changes to network resources,
network settings, and any resources related to App Service.

■■ Use Azure Monitor for centralized logging You can store Azure Activity and App
Service Diagnostic Logs in Azure storage, Log Analytics, or event hubs. Azure Monitor
then uses these to centrally monitor events and changes.

■■ Encrypt source data at rest It is a recommended practice to encrypt applica-
tion source data at rest. This means encrypting the data stored in Azure storage with
platform- or customer-managed encryption keys and using Azure Key Vault to inject
application secrets at runtime as part of the application settings.

■■ Use WAF for inbound traffic Secure access to an internet-facing application using
the WAF deployed in front of the app. Then use service endpoints and access restric-
tions on the WAF to secure ingress traffic. A WAF protects internet-facing applications
from DDoS attacks, URI filtering, and SQL injection attacks.

■■ Use Azure Firewall for outbound traffic Use the Azure Firewall service to centrally
divert all outbound traffic. This allows the enforcement of traffic-management policies
and captures and monitors logs for centralized analysis.

9780137564446_Print.indb 191 21/04/22 9:32 PM

289

Index

A
A-series VMs, 3
Accelerated Networking, 112
ACIs (Azure Container

Instances), 249
benefits of, 250–251
best practices, 261–262
building a container instance,

254
deployment considerations

container groups, 251–252
container instance

resources, 253
networking, 253
resource grouping, 252
service limits, 252–253
storage, 254

features, 249–250
security, 262–263
use cases, 249

Active Directory, 228–230
advanced autoscaling, 83
AIR (automated instance repairs)

service, 101
alerts, Azure App Service, 170
app groups, 210–211

creating
using Azure CLI, 213
using Azure PowerShell,

213
using the Azure Portal,

211–213
Application Health extension,

configuring, 101–102

Application Insights, 170
architecture, AVD (Azure Virtual

Desktop), 195–196
ARM (Azure Resource Manager)

template, 252
ASE (App Service Environments),

139–140
ASGs (application security

groups), 113
assigning, VMs to an availability

zone
using Azure CLI, 21
using Azure Portal, 19–20
using Azure PowerShell,

20–21
authentication, AVD (Azure

Virtual Desktop), 236
AVD service, 236
built-in roles, 236–237

automatic OS image upgrades
using Azure CLI, 100
using Azure PowerShell,

99–100
using the Azure Portal, 99

autoscaling, 81–82
advanced, 83
Azure Application Insights,

82
Azure Diagnostics extension

for VMs, 82
best practices, 83–84
configuring, 84

using Azure CLI, 91–92
using Azure PowerShell,

90–91

using the Azure Portal,
85–90

host-based metrics, 82
availability sets, 14–15

AVD (Azure Virtual Desktop),
221

creating
using Azure CLI, 17–18
using Azure Portal, 16–17
using Azure PowerShell, 17

availability zones, 18–19
assigning to a VM

using Azure CLI, 21
using Azure Portal, 19–20
using Azure PowerShell,

20–21
AVD (Azure Virtual Desktop),

221–222
configuring

using Azure CLI, 78
using Azure PowerShell, 78
using the Azure Portal, 77

VMSS (Azure VM scale sets)
placement groups, 75–76
single-zone, 76
zone balancing, 76–77

AVD (Azure Virtual Desktop), 193
Active Directory options,

228–230
app groups, 210–213
app publishing, 244–247
architecture, 195–196
authentication, 236

AVD service, 236

Z01_Valiramani_Index_p289-p302.indd 289 26/04/22 5:16 PM

290

 AVD (Azure Virtual Desktop)

built-in roles, 236–237
session-host access, 236

backups, 231–232
benefits of, 194
best practices, 243
control plane, 197
data redundancy, 230–231
design considerations, 198

data storage location,
198–199

service limitations, 199–200
service locations, 198

disaster recovery, 232–233
applications, 235
best practices, 235
network shares, 234–235
redundancy, 233
user identities, 234
user profile data, 234
vNETs, 233–234

features, 193–194
high availability, 221

availability sets, 221
availability zones, 221–222

host pools, 200
creating, 202–207
load balancing for pooled

host pools, 201
types of, 200–201
validation pools, 207–210

integration with Azure
DevTest Labs, 242–243

network considerations,
237–238

Reverse Connect, 197–198
RIs (reserved instances), 222
security

for the overall WVD
environment, 238–240

for session hosts, 240–242
session connectivity, 197
session hosts, 217–218,

219–220
creating, 224–228
licensing, 220

scaling, 220
supported operating

systems, 218–219
VM sizing, 219–220
web app deployment,

223–224
Windows 10 Enterprise

multi-session, 219
use cases, 195
VM redundancy, 233
Windows OS servicing, 224
workspaces, creating, 214

using Azure CLI, 217
using Azure PowerShell,

217
using the Azure Portal,

214–217
WVD agent, 222

registration, 222
updates, 223

az appservice plan create
command, 150

az container create command,
259–260

az desktopvirtualization
applicationgroup create
command, 213

az desktopvirtualization
hostpool create command,
207

az network private-dns zone
create command, 69

az ppg create command, 24–25
az vm availability-set create

command, 17–18
az vm create command, 39
az vm host group create

command, 126–127
az webapp config backup create

command, 183–184
az webapp create command, 150
az webapp deployment slot

create command, 161
AzPrivateDNSZone command,

68–69

Azure App Service, 135, 150–151.
See also web apps
Always On, 163
Application Initialization, 166
ARR Affinity, 164
Auto-Heal, 166–168
Azure DevOps and, 161
backup and restore, 180–181

using Azure CLI, 183–184
using Azure Portal, 181–182
using Azure PowerShell,

183
collocation, 163
cost considerations, 186–188
deploying workloads in

existing plans, 171
deployment source,

selecting, 151
using Azure CLI, 155
using Azure PowerShell,

154–155
using the Azure Portal,

151–154
disaster recovery, 184–185
enable Application Insights,

170
endpoints, 176
environments, 139–140
Health Check parameters,

164–181
Hybrid Connections, 179
migrating to, 175
monitor disk space usage,

168–169
monitoring and alerts, 170
NSG (network security

group), 180
plans, 137

pricing tiers, 137–138,
143–146

single versus multiple,
138–139

production hardware for
production apps, 164–165

reasons to use, 135–136

Z01_Valiramani_Index_p289-p302.indd 290 21/04/22 10:28 PM

291

Azure Portal

route tables, 180
scaling, 171–172
security recommendations,

188–191
VNet integration, 177

gateway-required, 178
regional, 178

Azure Application Insights, 82
Azure Backup, 51–52, 231–232
Azure CLI. See also commands

app groups, creating, 213
autoscaling policies,

configuring, 91–92
availability sets, creating,

17–18
availability zones,

configuring, 78
Azure App Service, selecting

deployment source, 155
Azure Hybrid Benefit,

configuring, 36
container instance, building,

259–260
dedicated hosts, configuring,

48–49, 126–127
deployment slots, setting up,

161
host pools, creating, 207
large scale sets, creating,

72–73
load balancing, configuring,

94–95
proximity placement groups,

creating, 24–25
scaling web apps, 175
scheduling backups, 183–184
spot instances, configuring,

39
upgrading the scale set

model, 98
validation pools, configuring,

210
VMs, creating, 13–14
VMSS (Azure VM scale sets)

AIR, configuring, 103–104

automatic OS image
upgrades, 100

creating, 69
Instance Protection,

configuring, 106
overprovisioning, 74–75
proximity placement

groups, defining, 108
spot instances, configuring,

123–124
termination notification,

configuring, 111
web apps, creating, 150
workspaces, creating, 217

Azure DevOps, 161
Azure DevTest Labs, 242–243
Azure Front Door, 178–179.

See also networking
Azure Functions, 265

bindings, 268
Durable Functions, 267
event-driven scaling, 278–279
function apps

best practices, 279–280
creating, 269–275
deployment, 275–278
organizing, 280–281
performance and

scalability, 282–283
scaling, 279
security, 284–287
storage best practices,

283–284
hosting options, 265

Consumption Plan, 266
Dedicated plan, 266–267
Premium plan, 266

triggers, 267–268
Azure Hybrid Benefit, 34–36, 127

for Linux VMSS, 129–130
for Windows VMSS, 128–129

Azure Portal
app groups, creating, 211–213
autoscaling policies,

configuring, 85–90

availability sets, creating,
16–17

availability zones,
configuring, 77

Azure App Service, selecting
a deployment source,
151–154

Azure Backup, configuring,
51–52

Azure Hybrid Benefit,
configuring, 35

backups, setting up, 181–182
container instance, building,

254–259
dedicated hosts, configuring,

43–47, 125
deployment slots, setting up,

157–160
function apps, creating,

269–275
host pools, creating, 202
large scale sets, creating,

71–72
load balancing, configuring,

93–94
proximity placement groups,

creating, 21–24
reservations, creating, 31–34
scaling web apps, 173–174
session hosts, creating,

224–228
spot instances, configuring,

38–39
validation pools, configuring,

208–209
VMs

assigning to an availability
zone, 19–21

creating, 7–13
VMSS (Azure VM scale sets)

AIR, configuring, 102–103
automatic OS image

upgrades, 99
configuring the Application

Health exension, 101–102

Z01_Valiramani_Index_p289-p302.indd 291 21/04/22 10:28 PM

292

 Azure Portal

creating, 62–68
Instance Protection,

configuring, 105
overprovisioning, 74
proximity placement

groups, defining, 107
spot instances, configuring,

120–121
upgrading the scale set

model, 96–97
user-managed storage,

configuring, 117–118
web apps, creating, 140–149
workspaces, creating,

214–217
Azure PowerShell, 1–2

app groups, creating, 213
assigning VMs to an

availability zone, 20–21
autoscaling policies,

configuring, 90–91
availability sets, creating, 17
availability zones,

configuring, 78
Azure App Service, selecting

a deployment source,
154–155

Azure Hybrid Benefit,
configuring, 36

backups, setting up, 183
commands

AzPrivateDNSZone, 68–69
New-AzAppServicePlan,

149–150, 174
New-AzAvailabilitySet, 17
New-AzContainerGroup,

259
New-AzHost, 47–48
New-AzHostGroup, 47–48
New-

AzProximityPlacement
Group, 24

New-
AzureRmAutoscaleRule,
90–91

New-AzVM, 20–21
New-AzVMConfig, 39
New-AzWebAppBackup,

183
New-AzWebAppSlot,

160–161
New-

AzWvdApplicationGroup,
213

New-AzWvdHostPool,
206–207

New-AzWvdWorkspace,
217

container instance, building,
259

dedicated hosts, configuring,
47–48, 125–126

deployment slots, setting up,
160–161

host pools, creating, 206–207
large scale sets, creating, 72
load balancing, configuring,

94
proximity placement groups,

creating, 24
scaling web apps, 174
spot instances, configuring,

39
upgrading the scale set

model, 97–98
validation pools, configuring,

209–210
VMs, creating, 13
VMSS (Azure VM scale sets)

AIR, configuring, 103
automatic OS image

upgrades, 99–100
creating, 68–69
Instance Protection,

configuring, 105
overprovisioning, 74
proximity placement

groups, defining,
107–108

spot instances, configuring,
123

termination notification,
configuring, 110–111

web apps, creating, 149–150
workspaces, creating, 217

Azure Site Recovery,
configuring, 53–54

Azure Traffic Manager, 178–179.
See also networking

B
backups, 49–50, 180–181.

See also Azure Backup
AVD (Azure Virtual Desktop)

and, 231–232
scheduling, 183
using Azure CLI, 183–184
using Azure Portal, 181–182
using Azure PowerShell, 183

best practices
for ACIs (Azure Container

Instances), 261–262
for autoscaling, 83–84
AVD (Azure Virtual Desktop),

235, 243
Azure App Service

deployment, 156–157
function app, 279–280,

283–284
for maintaining an Azure

VMSS, 111–112
networking, 112–113
security, 130–133
VMSS deployment

use a golden image,
113–114

use cloud-init for Linux
VMs, 115

use the CSE (Custom Script
Extension), 114

use Windows PowerShell
DSC, 114

Z01_Valiramani_Index_p289-p302.indd 292 21/04/22 10:28 PM

293

 container(s)

workload, 54–56
best-effort zone balance, 76–77
bindings, 268
breadth-first load balancing, 201
Bs-series VMs, 3–4
build pipeline, 155
BYOL (bring your own licensing),

41

C
cloud-init, 115
code

deployment slots and, 161
GitHub Actions, 162

collocation, 163
commands

az appservice plan create, 150
az container create, 259–260
az desktopvirtualization

applicationgroup create,
213

az desktopvirtualization
hostpool create, 207

az network private-dns zone
create, 69

az ppg create, 24–25
az vm availability-set create,

17–18
az vm create, 39
az vm host group create,

126–127
az webapp config backup

create, 183–184
az webapp create, 150
az webapp deployment slot

create, 161
Azure PowerShell

AzPrivateDNSZone, 68–69
New-AzAppServicePlan,

149–150, 174
New-AzAvailabilitySet, 17

New-AzContainerGroup,
259

New-AzHost, 47–48
New-AzHostGroup, 47–48
New-

AzProximityPlacement
Group, 24

New-
AzureRmAutoscaleRule,
90–91

New-AzVM, 20–21
New-AzVMConfig, 39
New-AzWebAppBackup,

183
New-AzWebAppSlot,

160–161
New-

AzWvdApplicationGroup,
213

New-AzWvdHostPool,
206–207

New-AzWvdWorkspace,
217

compute service. See also Azure
Functions, sizing and pricing,
6–7

configuring
autoscaling policies, 84

using Azure CLI, 91–92
using Azure PowerShell,

90–91
using the Azure Portal,

85–90
availability zones

using Azure CLI, 78
using Azure PowerShell, 78
using the Azure Portal, 77

Azure Backup, using Azure
Portal, 51–52

Azure Hybrid Benefit
using Azure CLI, 36
using Azure PowerShell, 36
using the Azure Portal, 35

Azure Site Recovery, 53–54
dedicated hosts

using Azure CLI, 48–49
using Azure Portal, 43–47
using Azure PowerShell,

47–48
spot instances

using Azure CLI, 39
using Azure PowerShell, 39
using the Azure Portal,

38–39
validation pools

using Azure CLI, 210
using Azure Portal,

208–209
using Azure PowerShell,

209–210
VMSS (Azure VM scale sets)

AIR (automated instance
repairs) service, 102–104

Application Health
extension, 101–102

availability zones, 77–78
dedicated hosts, 124–127
fault domains, 79–81
Instance Protection,

104–106
load balancing, 93–95
termination notification,

108–111
container(s), 161. See also ACIs

(Azure Container Instances)
groups, 251–252
instance, 254

building with Azure CLI,
259–260

building with Azure Portal,
254–259

building with Azure
PowerShell, 259

orchestration, 260
registry, 260–261

Z01_Valiramani_Index_p289-p302.indd 293 21/04/22 10:28 PM

294

 control plane, AVD (Azure Virtual Desktop)

control plane, AVD (Azure
Virtual Desktop), 197

cost optimization
Azure Hybrid Benefit, 34–36,

127
dedicated hosts, 124–127
RIs (reserved instances),

29–31, 124
spot instances, 36–39,

120–124
creating

app groups
using Azure CLI, 213
using Azure PowerShell,

213
using the Azure Portal,

211–213
availability sets

using Azure CLI, 17–18
using Azure Portal, 16–17
using Azure PowerShell, 17

function apps, 269–275
host pools, 202

using Azure CLI, 207
using Azure Portal, 202
using Azure PowerShell,

206–207
large scale sets

using Azure CLI, 72–73
using Azure PowerShell, 72
using the Azure Portal,

71–72
proximity placement groups

using Azure CLI, 24–25
using Azure PowerShell, 24
using the Azure Portal,

21–24
RIs (reserved instances),

31–34
session hosts, 224–228
VMs

using Azure PowerShell, 13
using the Azure Portal,

7–13

VMs (virtual machines), using
Azure CLI, 13–14

VMSS (Azure VM scale sets)
using Azure CLI, 69
using Azure PowerShell,

68–69
using the Azure Portal,

62–68
web apps, 140

using Azure CLI, 150
using Azure PowerShell,

149–150
using the Azure Portal,

140–149
workspaces

using Azure CLI, 217
using Azure PowerShell,

217
using the Azure Portal,

214–217
CSE (Custom Script Extension),

114

D
data disks, 26, 118–120
datacenters, regions, 5–6, 18–19
DC-series VMs, 4
dedicated hosts, 40

benefits of
co-location with other

non-dedicated host-
based VMs, 42

high availability, 42–43
maintenance activity

management, 41
support for Windows and

Linux, 42
VM SKU consolidation,

40–41
configuring

using Azure CLI, 48–49,
126–127

using Azure PowerShell,
47–48, 125–126

using the Azure Portal,
43–47, 125

depth-first load balancing, 201
disaster recovery, 52–53.

See also Azure Site Recovery
AVD (Azure Virtual Desktop),

232–233
applications, 235
best practices, 235
network shares, 234–235
user identities, 234
user profile data, 234

Azure App Service, 184–185
D-series VMs, 4

E-F
endpoints, Azure App Service,

176
E-series VMs, 4
fault domains, 15, 18, 79–81
front ends, 139
F-series VMs, 4
function apps. See also Azure

Functions
best practices, 279–280
bindings, 268
creating, 269–275
deployment, 275

methods, 275–276
slots, 277–278
technologies, 276–277

organizing, 280–281
performance and scalability,

282–283
scaling, 279
security, 284–287
storage best practices,

283–284
triggers, 267–268

Z01_Valiramani_Index_p289-p302.indd 294 21/04/22 10:28 PM

295

maintaining an Azure VMSS

G
gateway-required VNet

integration, 178
GitHub, 151, 162
golden OS images, updating,

100
GRS (geo-redundant storage),

231

H
high availability, 14

availability sets, 14–15
creating using Azure CLI,

17–18
creating using Azure

Portal, 16–17
creating using Azure

PowerShell, 17
availability zones, 18–21
AVD (Azure Virtual Desktop),

221
availability sets, 221
availability zones, 221–222

dedicated hosts and, 42–43
VMSS (Azure VM scale sets)

availability zones, 75–78
overprovisioning, 73–75

VMSS and, 59
host pools, 200

creating, 202
using Azure CLI, 207
using Azure Portal,

202–206
using Azure PowerShell,

206–207
types of, 200–201
validation pools, setting up,

207–208
using Azure CLI, 210
using Azure Portal,

208–209

using Azure PowerShell,
209–210

H-series VMs, 4

I
IaaS (infrastructure as a service),

VMSS (Azure VM scale sets)
and, 58

Instance Protection, configuring,
104, 105
using Azure CLI, 106
using Azure PowerShell, 105

IP addresses, 28–29

J-K-L
large scale sets, 69–71

creating
using Azure CLI, 72–73
using Azure PowerShell, 72
using the Azure Portal,

71–72
latency, regions and, 6
licensing

AVD session hosts, 220
Azure Hybrid Benefit, 34–36
BYOL (bring your own

licensing), 41
Linux

Azure Hybrid Benefit and,
129–130

cloud-init, 115
dedicated hosts support, 42
VM support, 3

load balancing, 93
configuring

using Azure CLI, 94–95
using Azure PowerShell,

94
using the Azure Portal,

93–94

for pooled host pools, 201
LRS (locally redundant storage),

230

M
maintaining an Azure VMSS, 95

best practices, 111–112
check and increase vCPU

quotas, 108
configuring Instance

Protection, 104
using Azure CLI, 106
using Azure PowerShell,

105
using the Azure Portal, 105

defining proximity placement
groups, 106
using Azure CLI, 108
using Azure PowerShell,

107–108
using the Azure Portal, 107

deploying the Application
Health extension and
automated instance
repairs, 100–101
using Azure CLI, 103–104
using Azure PowerShell,

103
using the Azure Portal,

101–103
enabling termination

notifications, 108–109
choosing a termination

day, 110
using Azure PowerShell,

110
using the Azure Portal,

109, 111
performing automatic OS

upgrades
using Azure CLI, 100
using Azure PowerShell,

99–100

Z01_Valiramani_Index_p289-p302.indd 295 21/04/22 10:28 PM

296

 maintaining an Azure VMSS

using the Azure Portal, 99
updating golden OS images,

100
upgrade the scale set model,

95–96
using Azure CLI, 98
using Azure PowerShell,

97–98
using the Azure Portal,

96–97
managed disks, 25, 50, 116–117
migrating, to Azure App Service,

175
monitoring, Azure App Service,

170
multi-region design, web apps,

170–171

N
networking

ACIs (Azure Container
Instances) and, 253

AVD (Azure Virtual Desktop),
237–238

Azure App Service
endpoints, 176
VNet integration, 177–178

best practices, 112–113
Hybrid Connections, 179
IP addresses, 28–29
NICs (network interface

connections), 28
NSG (network security

group), 180
route tables, 180
security, best practices,

130–133
New-AzAppServicePlan

command, 149–150, 174
New-AzAvailabilitySet

command, 17

New-AzContainerGroup
command, 259

New-AzHost command, 47–48
New-AzHostGroup command,

47–48
New-

AzProximityPlacementGroup
command, 24

New-AzureRmAutoscaleRule
command, 90–91

New-AzVMConfig command,
39

New-AzWebAppBackup
command, 183

New-AzWebAppSlot command,
160–161

New-AzWvdApplicationGroup
command, 213

New-AzWvdHostPool
command, 206–207

New-AzWvdWorkspace
command, 217

NICs (network interface
connections), 28, 113

non-persistent desktop
experience, 200

N-series VMs, 4
NSGs (network security groups),

29, 113, 180

O
operating systems, VMs and, 3.

See also Linux; Windows
organizing, function apps,

280–281
OS disk, 26
overprovisioning, VMSS (Azure

VM scale sets)
using Azure CLI, 74–75
using Azure PowerShell, 74
using the Azure Portal, 74

P
Paas (platform as a service),

VMSS (Azure VM scale sets)
and, 57–58

performance, function apps,
282–283

persistent desktop experience,
200

personal host pool, 200
placement groups, VMSS (Azure

VM scale sets), 75–76
platform images, 114
policies, autoscaling, 84–92
pooled host pools, 200–201
pricing, VMs, 6–7
private endpoints, Azure App

Service, 176
private IP addresses, 28–29
proximity placement groups, 21

creating
using Azure CLI, 24–25
using Azure PowerShell, 24
using the Azure Portal,

21–24
defining, 106

using Azure CLI, 108
using Azure PowerShell,

107–108
using the Azure Portal, 107

public IP addresses, 29
publishing apps, 244–247

Q-R
RBAC (Role-Based Access

Controls), built-in roles,
236–237

RDP (Remote Desktop Protocol),
197

regional VNet integration, 178
regions, 5–6. See also proximity

placement groups

Z01_Valiramani_Index_p289-p302.indd 296 21/04/22 10:28 PM

297

VMs (virtual machines)

availability zones, 18–21
latency and, 6

registration, WVD agent, 222
Reverse Connect, 197–198
RIs (reserved instances), 29, 124

adjusting the size of, 30–31
AVD (Azure Virtual Desktop)

and, 222
cost savings and, 30
creating, 31–34

S
scaling. See also autoscaling

AVD session hosts, 220
Azure App Service, 171–172
function apps, 279
vertical, 92
VMSS (Azure VM scale sets),

60
web apps, 172–173

using Azure CLI, 175
using Azure Portal, 173–174
using Azure PowerShell,

174
scheduling backups, 183
security

ACIs (Azure Container
Instances), 262–263

AVD (Azure Virtual Desktop)
for the overall WVD

environment, 238–240
for session hosts, 240–242

Azure App Service, 188–191
best practices, 130–133
function apps, 284–287

service endpoints, Azure App
Service, 176

session connectivity, AVD (Azure
Virtual Desktop), 197

session hosts, AVD (Azure
Virtual Desktop), 217–218

creating, 224–228
licensing, 220
RIs (reserved instances), 222
scaling, 220
security, 240–242
supported operating

systems, 218–219
web app deployment,

223–224
Windows 10 Enterprise multi-

session, 219
single-zone scale sets, 76
SKUs, 19

dedicated hosts and, 40–41
disk, 27–28

snapshots, 50
spot instances, 36–37, 120–121

configuring
using Azure CLI, 39,

123–124
using Azure Portal, 38–39
using Azure PowerShell,

39, 123
using the Azure Portal,

121–122
eviction models, 37

storage disks, 25
disk roles, 26–27
disk SKUs, 27–28
managed disks, 25, 50,

116–117
unmanaged disks, 26
user-managed storage,

117–118
strict zone balance, 76

T-U
temporary disks, 26
triggers, 267–268
unmanaged disks, 26
update domain, 15, 18

updating, golden OS images,
100

upgrading, VMSS (Azure VM
scale sets)
automatic OS image

upgrades, 99–100
using Azure CLI, 98
using Azure PowerShell,

97–98
using the Azure Portal, 96–97

use cases
ACIs (Azure Container

Instances), 249
AVD (Azure Virtual Desktop),

195
VMs (virtual machines), 2

user-managed storage, 117–118

V
validation pools, 207–208

configuring
using Azure CLI, 210
using Azure Portal,

208–209
using Azure PowerShell,

209–210
vCPU quotas, 108
vertical scaling, 92
virtualization environment, 1
VMs (virtual machines), 2–3

assigning to an availability
zone
using Azure CLI, 21
using Azure Portal, 19–20
using Azure PowerShell,

20–21
availability sets, 14–15

creating using Azure CLI,
17–18

creating using Azure
Portal, 16–17

Z01_Valiramani_Index_p289-p302.indd 297 21/04/22 10:28 PM

298

 VMs (virtual machines)

creating using Azure
PowerShell, 17

availability zones, 18–19
backups, 49–50
compute sizing and pricing,

6–7
creating

using Azure CLI, 13–14
using Azure Portal, 7–13
using Azure PowerShell, 13

dedicated hosts, 40–43
fault domain, 15
high-availability options, 14
NICs (network interface

connections), 28
NSG (network security

group), 29
operating system support, 3
proximity placement groups,

creating, 21–25
regions, 5–6
RIs (reserved instances),

29–31
adjusting the size of, 30–31
cost savings, 30
creating, 31–34

versus scale sets, 61
series, 3–5
sizing and pricing, 219–220
SKUs, 19
storage disks, 25

managed, 25
roles, 26–27
SKUs, 27–28
unmanaged, 26

update domain, 15
use cases, 2
vCPU quotas, 108
vertical scaling, 92

VMSS (Azure VM scale sets),
57–58. See also large scale sets
AIR (automated instance

repairs) service,
configuring
using Azure CLI, 103–104

using Azure PowerShell,
103

using the Azure Portal,
102–103

Application Health extension,
configuring, 101–102

automatic OS image
upgrades, 98–99
using Azure CLI, 100
using Azure Portal, 99
using Azure PowerShell,

99–100
autoscaling, 81–82

advanced, 83
Azure Application Insights,

82
Azure Diagnostics

extension for VMs, 82
configuring, 84–92
host-based metrics, 82

availability zones, 75
configuring, 77–78
placement groups, 75–76
single-zone, 76
zone balancing, 76–77

Azure Hybrid Benefit
for Linux, 129–130
for Windows, 128–129

best practices, 130–133
creating

using Azure CLI, 69
using Azure PowerShell,

68–69
using the Azure Portal,

62–68
data disks, 118–120
dedicated hosts, configuring,

124–125
using Azure CLI, 126–127
using Azure PowerShell,

125–126
using the Azure Portal, 125

deployment best practices
use a golden image,

113–114

use cloud-init for Linux
VMs, 115

use the CSE (Custom Script
Extension), 114

use Windows PowerShell
DSC, 114

disk types, 115, 116
fault domains, configuring,

79–81
features, 59–60
golden OS images, updating,

100
Instance Protection,

configuring, 104
using Azure CLI, 106
using Azure PowerShell,

105
using the Azure Portal, 105

large, 69–71
load balancing, configuring,

93–95
managed disks, 116–117
overprovisioning

using Azure CLI, 74–75
using Azure PowerShell, 74
using the Azure Portal, 74

proximity placement groups,
defining, 106
using Azure CLI, 108
using Azure PowerShell,

107–108
using the Azure Portal, 107

reasons for using, 58
RIs (reserved instances), 124
scale set model, upgrading

using Azure CLI, 98
using Azure PowerShell,

97–98
using the Azure Portal,

96–97
scaling, 60
spot instances, configuring,

120–121
using Azure CLI, 123–124

Z01_Valiramani_Index_p289-p302.indd 298 21/04/22 10:28 PM

299

ZRS (zone redundant storage)

using Azure PowerShell,
123

using the Azure Portal,
120–121

termination notification,
configuring, 108–109
choosing a termination

day, 110
using Azure CLI, 111
using Azure PowerShell,

110–111
using the Azure Portal, 109

user-managed storage,
117–118

versus VMs, 61
vNETs

AVD (Azure Virtual Desktop)
and, 233–234

Azure App Service and,
177–178

W
web apps. See also function apps

app groups, 210–213
build pipeline, 155
creating, 140

using Azure CLI, 150
using Azure PowerShell,

149–150

using the Azure Portal,
140–142

deploying to session hosts,
223–224

deployment mechanism, 155
deployment slots, 156–157

code, 161
setting up using Azure CLI,

161
setting up using Azure

Portal, 157–160
setting up using Azure

PowerShell, 160–161
migrating to Azure App

Service, 175
multiple instances for

production applications,
162

multi-region design, 170–171
production hardware for

production apps, 164–165
scaling, 172–173

using Azure CLI, 175
using Azure Portal, 173–174
using Azure PowerShell,

174
Windows, 219

AVD (Azure Virtual Desktop)
and, 218–219

Azure Hybrid Benefit and,
128–129

dedicated hosts support, 42
PowerShell, 114
VM support, 3

workers, 139
workloads

best practices, 54–56
collocation, 163
cost-optimization options,

RIs (reserved instances),
29–34

deploying in existing plans,
171

latency and, 6
workspaces, creating

using Azure CLI, 217
using Azure PowerShell, 217
using the Azure Portal,

214–217
WVD agent, 222

registration, 222
updates, 223

X-Y-Z
YAML file, 252
zone balancing, 76–77
zone-redundant scale sets, 76
ZRS (zone redundant storage),

231

Z01_Valiramani_Index_p289-p302.indd 299 21/04/22 10:28 PM

	Cover
	Title
	Copyright Page
	Contents at a Glance
	Contents
	Introduction to Azure compute services
	Chapter 3 Azure App Service
	Overview
	App Service plans
	Azure App Service Environments

	Planning deployment and operations
	Select an appropriate deployment source
	Build pipelines
	Deployment mechanism
	Best practices

	Networking considerations
	Service endpoints and private endpoints
	VNet integration
	Traffic Manager and Azure Front Door
	Hybrid Connections
	Network security groups
	Route tables
	Azure DNS private zones

	Backup and restore
	Disaster recovery
	Cost considerations
	Security recommendations

	Index
	A
	B
	C
	D
	E-F
	G
	H
	I
	J-K-L
	M
	N
	O
	P
	Q-R
	S
	T-U
	V
	W
	X-Y-Z

