
http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780136819387
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780136819387
https://plusone.google.com/share?url=http://www.informit.com/title/9780136819387
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780136819387
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780136819387/Free-Sample-Chapter

Developing Microservices
Architecture on Microsoft
Azure with Open Source
Technologies

Ovais Mehboob Ahmed Khan
Arvind Chandaka

A01_Khan_FM_pi-pxviii.indd 1 13/05/21 10:19 PM

Developing Microservices Architecture on Microsoft
Azure with Open Source Technologies
Published with the authorization of Microsoft Corporation by:
Pearson Education, Inc.

Copyright © 2021 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omis-
sions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-13-681938-7
ISBN-10: 0-13-681938-9

Library of Congress Control Number: 2021937949

ScoutAutomatedPrintCode

TRADEMARKS
Microsoft and the trademarks listed at http://www.microsoft.com on the
“Trademarks” webpage are trademarks of the Microsoft group of companies.
All other marks are property of their respective owners.

WARNING AND DISCLAIMER
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author, the publisher, and Microsoft Corporation shall have
neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from
the use of the programs accompanying it.

SPECIAL SALES
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus,
or branding interests), please contact our corporate sales department
at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

CREDITS

EDITOR-IN-CHIEF
Brett Bartow

EXECUTIVE EDITOR
Loretta Yates

DEVELOPMENT EDITOR
Rick Kughen

SPONSORING EDITOR
Charvi Arora

MANAGING EDITOR
Sandra Schroeder

SENIOR PROJECT EDITOR
Tracey Croom

COPY EDITOR
Rick Kughen

INDEXER
Cheryl Ann Lenser

PROOFREADER
Abigail Manheim

TECHNICAL EDITORS
Doug Holland
Thomas Palathra

EDITORIAL ASSISTANT
Cindy Teeters

COVER DESIGNER
Twist Creative, Seattle

COMPOSITOR
codeMantra

A01_Khan_FM_pi-pxviii.indd 2 13/05/21 10:19 PM

http://www.pearson.com/permissions
http://www.microsoft.com
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

I would like to thank my family for supporting and encouraging me in
every goal of my life.

—Ovais Mehboob Ahmed Khan

I dedicate this book to my family and friends for their everlasting
encouragement and support.

—Arvind Chandaka

A01_Khan_FM_pi-pxviii.indd 3 13/05/21 10:19 PM

A01_Khan_FM_pi-pxviii.indd 18 13/05/21 10:19 PM

This page intentionally left blank

v

Contents

Acknowledgments xi
About the authors xii
Foreword xiii
Introduction xv

Chapter 1 Introduction to microservices 1
Our journey with microservices .1

Evolution of software architecture . 2
Monolithic architecture 2
Service-oriented architecture (SOA) 3

Comparing monolith with microservices . 4
SOA versus microservices 5
Monolith example 6
Microservices example 7
Databases in a monolithic architecture 8
Databases in microservices architecture 9
Micro front-ends 9

Core fundamentals of microservices .11
Benefits 11
Challenges 13

Moving forward with the microservices architecture,
open source, and Azure. 16
This book’s goals 17

Summary . 17

Chapter 2 Modeling microservices—real-life case study 19
Application requirements . 20

Application features . 20
Identity management and authentication scenarios 20
Auction management 20
Bid management 21

A01_Khan_FM_pi-pxviii.indd 5 13/05/21 10:19 PM

vi Contents

Payment management 22

Application flow . 23

Decomposition principles . 24

Decomposition strategies . 24
Decomposition by business capability 25
Decompose by subdomain 25

Domain-driven design . 27
Ubiquitous language 27
Bounded context 28
Domain categories 30

Online auction system decomposition based on DDD 31

Anti-patterns . 33
Using monolith or a shared database with microservices 33
Unnecessary fine-graining of services to deeper subdomains 33
Establishing tight dependencies between code artifacts 34

Summary . 34

Chapter 3 Build microservices architecture 35
Cloud-native applications . 36

Main principles of cloud-native applications 36
Characteristics of cloud-native applications 37

Twelve-factor app methodology . 40

The online auctioning system (OAS) architecture . 41
Representation of Azure Kubernetes cluster nodes,
pods, and services 42

Technologies used . 43
Front-end technology 43
Technologies used for building microservices 44
Cloud technologies 45
Azure WebJobs 46
Azure Event Hubs 47
Azure API Management 47
Azure AD B2C 48

A01_Khan_FM_pi-pxviii.indd 6 13/05/21 10:19 PM

viiContents

Azure Kubernetes Services 48
Azure Container Registry 49
Azure DevOps 49
Azure Application Insights 49
Azure Monitor 50

Distributed database architecture . 50
Transactional data model 50
Transient data model 50
Polyglot persistent architecture 51
Patterns in distributed databases 52
Direct HTTP call 52
Aggregator pattern 53
Command query responsibility segregation 54

Summary . 57

Chapter 4 Develop microservices and front-end applications 59
Developing microservices . 60

Developing the auction service 60
Developing the bid service 68
Provision Cosmos DB in Azure 70
Create a bid service in the JavaSpring Boot framework 72
Developing a payment service 77

Developing an application front-end . 88
Prerequisites 89
Creating a front-end application 89
Understanding the Angular project structure 90
Angular concepts 93
Developing a security module 95
Configuring environment files 101
Develop the create auction form 102
Developing an active auctions page 105
Developing a submit bid form 107

Summary .111

A01_Khan_FM_pi-pxviii.indd 7 13/05/21 10:19 PM

viii Contents

Chapter 5 Microservices on containers 113
Containers Overview . 113

Docker as a container technology . 114
Install Docker 114
Docker components 116
Docker commands 116
Linux versus Windows containers 117

Build Docker images . 118
Containerize the auction service 118
Containerize the bid service 120
Containerize the payment service 123

Deploy images to Azure Kubernetes Services . 125
Kubernetes architecture 125
Provision Azure Kubernetes Services 127
Provision the Azure Container Registry 129
Push services to ACR 129
Deploy services to AKS 130
Create a deployment object for OAS microservices 131
Create a service object for OAS microservices 135

Deploy a front-end application in the Azure App Service 137

Deploy the Kafka Listener Service as an Azure WebJob 142

Summary . 143

Chapter 6 Communication patterns 145
Approaches to communication . 145

Synchronous versus asynchronous communication 146
Request/response communication 147
Pub/sub communication 148
The best communication approach for microservices 149

Pub/sub communication technologies . 153
Apache Kafka 153
Azure Event Hubs 155
RabbitMQ 156

A01_Khan_FM_pi-pxviii.indd 8 13/05/21 10:19 PM

ixContents

Set up Kafka to establish pub/sub communication 157
Infrastructure setup 157
Setting up the producer: Adding Kafka support
in the Java application 159
Setting up the Consumer: Develop Kafka Listener
service with .NET Core Hosted Service 161

Summary . 173

Chapter 7 Security in microservices 175
An overview of security and architectures . 175

IaaS and PaaS architecture security 176
PaaS security 177
Zero-trust architecture 179
Authentication and authorization flows 182
Azure Active Directory B2C 187

End-to-end OAS security implementation . 189
User perspective 191
Microsoft Authentication Library (MSAL) 192
Creating a tenant 192
Register your application 193
Configuration 193
User Flows 196

Summary .200

Chapter 8 Set up Azure API Gateway 201
Why do you need an API gateway? . 201

Azure API Management .202
Key benefits of using Azure API Management 203
Set up Azure API Management 203
Configure APIs in Azure APIM 204
Working with policies and expressions 210
Strategies when using Azure API Management
with Azure Kubernetes Services 214
Strategies to configure APIM with Azure Kubernetes Services 218

Summary .220

A01_Khan_FM_pi-pxviii.indd 9 13/05/21 10:19 PM

x Contents

Chapter 9 Build and deploy microservices 223
Continuous integration and continuous deployment223

Automating infrastructure through Infrastructure as Code225
OAS Infrastructure as Code with Terraform 225
Build a pipeline or continuous integration 229
Deployment pipeline or continuous deployment 234

Building CI/CD pipelines for the OAS microservices 237
CI/CD pattern and best practices 237
Deployment patterns 238
The auction service build pipeline 239
Auction service deployment pipeline 241

A complete look at DevOps .246

Summary .247

Chapter 10 Monitoring microservices 249
Monitoring concepts and patterns .249

Log information 250
Azure Monitor 253
Azure Application Insights 254

Monitoring framework and best practices .257
Azure Application Insights configuration 258
Container Insights 265
Dashboards 266

Summary .268

Index 269

A01_Khan_FM_pi-pxviii.indd 10 13/05/21 10:19 PM

xi

Acknowledgments

This book involved great effort on our part. With the recent growth in microser-
vices architecture, we saw the importance of developing a sample case study on
microservices to empower our customers to build better applications. We created
a use case to illustrate microservices, created a functional application, and evange-
lized it to our customers—all before even putting pen to paper to write this book.
Our friends and family were the spectators during these laborious endeavors, and
they showed nothing but encouragement and understanding during long nights
and tiring weekends. We couldn’t have done it without them!

A big thanks goes to our managers for their everlasting support. Barbaros
Gunay, Andrew McCreary, Mekonnen Kassa—thank you! Without your support,
this book could not have been done.

When we both started working at Microsoft, we were quickly taken under
the OSS Enablement Team’s wing. Rick Hines and Bahram Rushenas are the team
leads who encouraged us to pursue the project that ultimately became this book.
Whether it was discussing a design or architecture of an application, brainstorming
ideas, or presenting at events, their help and support were tremendous. We want
to thank you for everything you’ve done.

We also want to thank Sally Brennan for preparing our session outline for Micro-
soft Ready, our premier go-to-market conference, which led us to further refine the
content we used within our book.

We also want to thank our team at Pearson. Thank you so much, Loretta Yates,
Charvi Arora, Rick Kughen, Doug Holland, Thomas Palathra, Abigail Manheim, and
Tracey Croom for supporting us during our journey. We would like to thank Rob
Vettor for lending his time to review our book and providing a foreword. Rob is
an extremely experienced individual in microservices at Microsoft and we greatly
appreciate his support.

A01_Khan_FM_pi-pxviii.indd 11 13/05/21 10:19 PM

xii

About the authors
Ovais Mehboob Ahmed Khan is a seasoned programmer and solutions architect
with nearly 20 years of experience in software development, consultancy, and
solution architecture. He has worked with various clients across the United States,
Europe, Middle East, and Africa, and he currently works as a Senior Customer
Engineer at Microsoft, based in Dubai. He specializes mainly in application devel-
opment using .NET and other OSS technologies, Microsoft Azure, and DevOps.

He is a prolific writer and has published several books on enterprise application
architecture, .NET Core, VS Code, and JavaScript, and he has written numerous
technical articles on various sites. He likes to talk about technology and has deliv-
ered various technical sessions around the world.

Arvind Chandaka is a product manager at Microsoft and has led products across
Azure and Cloud + AI Engineering. He has worked with strategy executive teams
to grow Microsoft Azure as well as built IP at the company resulting in several
services and products. He is a recognized SME in enterprise technology and has
advised many Fortune 100 companies and international clients around the world.
He specializes across infrastructure, identity, cyber security, open source, and more.
A strong believer in empowerment, he works closely with startups, is a founder
himself, invests in the entrepreneurial ecosystem, and serves on the board of
non-profits in New York City.

Arvind earned his Bachelor of Science at Cornell University where he studied
several disciplines ranging from computer science to business. In his spare time,
you will likely find him at a tennis court or traveling the world for the next great
foodie destination.

A01_Khan_FM_pi-pxviii.indd 12 13/05/21 11:00 PM

xiii

Foreword
For many years, the guidance for building business applications was clear-cut:

 ■ Create a large, monolithic core that contains business logic

 ■ Persist data to a shared relational database

 ■ Expose functionality through front-end UIs and API endpoints

 ■ Build, package, and deploy the application, and you’re in business.

While often challenging, such monolithic applications were straightforward
to build, test, deploy, and troubleshoot. With code executing in a single process,
performance could be good. When the need arose, you could scale the application
up (vertically) by adding more server resources.

This model, however, had limitations. When an application proved popular,
the monolithic architecture would eventually break down. As the app grew larger,
more complex, and more “coupled,” it became less agile:

 ■ Feature updates and fixes would cause unintended and costly side effects,
such as breaking existing functionality.

 ■ One unstable component could crash the entire system.

 ■ Scaling any component required scaling the entire application.

 ■ New technologies and frameworks were not an option.

 ■ Each change required a full deployment of the application.

Perhaps the biggest challenge was agility. Monolithic applications prevented the
business from moving fast.

Fast-forward into the world of modern apps and microservices. They are all
about speed and agility. By decomposing the business domain into independent
services, microservices enable business systems to strategically align with business
capabilities. They embrace feature releases with high confidence. They allow for
updating small areas of a live application without downtime. They empower the
business to adapt rapidly to evolving market and competitive forces.

While microservice adoption is rapidly increasing, not everybody is adopting it
correctly. Implementing a microservices architecture requires substantial invest-
ment. For it to be successful, developers and architects must understand the prin-
ciples, patterns, and best practices of distributed microservices architecture.

This book spoon-feeds microservices to you. From design to development and
from deployment to operation, it provides a comprehensive education into the
world of microservices. Moreover, the book wraps microservice construction into

A01_Khan_FM_pi-pxviii.indd 13 13/05/21 10:19 PM

xiv Foreword

the context of cloud native design and open-source technologies, all hosted in the
Azure cloud. Kudos to authors Ovais Mehboob Ahmed Khan and Arvind Chandaka
for making this reference available. Kudos to you, the reader, for investing the time
to study and master the architecture.

—Robert Vettor
Principal Cloud Solution Architect

Microsoft

A01_Khan_FM_pi-pxviii.indd 14 13/05/21 10:19 PM

xv

Introduction
Welcome to Developing Microservices Architecture on Microsoft Azure with Open
Source Technologies. Today, organizations are modernizing application development
by integrating open-source technologies into a holistic architecture for delivering
high-quality workloads to the cloud. This book is a complete, step-by-step guide to
building an application based on microservices architecture by leveraging services
provided by the Microsoft Azure cloud platform and a litany of open-source tech-
nologies such as Java, Node.js, .NET Core, and Angular.

This will be a reference guide to learn key building blocks of microservices
architecture by representing a real-life case study of building a trading system to
auction items. This book will lead readers through a step-by-step journey to learn
modern application development scenarios and leverage cloud-native capabilities
in Microsoft Azure to provide distinct value to customers.

This topic is in very high demand based on statistics and our own experiences
from the field. There have been books made on microservices, but they almost
always cover business value proposition alone rather than technical implemen-
tation on how to establish end to end infrastructure, application development,
deployment automation and to realize actual value through constructing it using
Azure and open source.

We start with an introduction and modeling of microservices and then move on
to build a cloud-native microservices architecture by developing services, contain-
erizing services, and deploying them on AKS. We also cover various topics related
to communication patterns, security, and API gateways, and we touch on topics
related to automating builds and deployments using CI/CD and monitoring.

Who is this book for?

This book is for architects and developers. It especially targets those who have
some development background to build applications or have worked in the capac-
ity of designing and architecting applications. It will also be useful for those with
some skills with Azure.

A01_Khan_FM_pi-pxviii.indd 15 13/05/21 10:19 PM

xvi Introduction

How is this book organized?

This book is organized into three parts:

 ■ Part I: Introduction and modeling of microservices

 ■ Part II: Designing and building microservices architecture

 ■ Part III: Implementing patterns, security, DevOps, and monitoring

The first part of this book consists of two chapters that focus on a thorough
introduction to microservices and how you can decompose or model microservices
using domain-driven design (DDD).

The second part of this book consists of three chapters that focus on designing
an architecture and building an application that follows this architecture with vari-
ous open-source technologies such as Java, .NET Core, Node.js, and Angular. The
architecture is cloud-native and leverages multiple managed services within Azure.

The third part of this book consists of five chapters that focuses on topics related
to communication patterns, security within microservices, API gateways, automat-
ing builds and deployments, and monitoring.

System requirements

The requirements for running through the examples in this book should be:

 ■ Any Linux distros or Windows operating systems

 ■ 4 GB of RAM

 ■ 1 GB of available disk space

 ■ Docker with Linux Containers

 ■ Microsoft Azure subscription

 ■ Azure DevOps account

 ■ Visual Studio Code or other editors of your choice

About the companion content

The companion content for this book can be downloaded from the following page:
MicrosoftPressStore.com/DevMicroservices/downloads

A01_Khan_FM_pi-pxviii.indd 16 13/05/21 10:19 PM

http://MicrosoftPressStore.com/DevMicroservices/downloads

xviiIntroduction

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion
content. You can access updates to this book—in the form of a list of submitted
errata and their related corrections—at:
MicrosoftPressStore.com/DevMicroservices/errata

If you discover an error that is not already listed, please submit it to us at the
same page.

For additional book support and information, please visit
MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is not
offered through the previous addresses. For help with Microsoft software or hard-
ware, go to http://support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We’re on Twitter:
http://twitter.com/MicrosoftPress.

A01_Khan_FM_pi-pxviii.indd 17 13/05/21 10:19 PM

http://MicrosoftPressStore.com/DevMicroservices/errata
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress

A01_Khan_FM_pi-pxviii.indd 18 13/05/21 10:19 PM

This page intentionally left blank

1

C h a p t e r 1

Introduction to
microservices

In this chapter, you will:
 ■ Learn about the history and evolution of software architecture

 ■ Understand the differences between monolithic and microservices architectures

 ■ Learn about the core benefits and challenges of using a microservices architecture

Microservices is a buzzword that is thrown around frequently in the technology com-
munity. Many infer it as being a further dissection of modular componentization,

and although that addresses part of it, it doesn’t encompass the full picture. Microservices
are a group of back-end services that provide business operations to form an application.
When combined with other pieces such as a front-end and various communication plat-
forms, it creates what is known as a microservices architecture. Although that is a simplistic
way to approach this architecture, it is a vital design orientation and metaphor to learn
for implementing modern application development scenarios geared to achieving better
results.

This particular chapter will focus on the core fundamentals of microservices, includ-
ing the transition from historical architecture to present, benefits and challenges, and a
comparison of a monolithic application architecture with microservices architecture.

Our journey with microservices

In recent years, microservices architecture have become very popular with firms. Many orga-
nizations and enterprises have expressed a desire and need to move their applications to a
microservices architecture.

We have worked with customers that were very concerned with increasing develop-
ment velocity to ship code faster and at more frequent intervals. Other customers are
focused on modularizing their codebase further to iterate on particular services for
better application performance and additional support. Some are jaded by financial and
time constraints that constantly plague their organization due to large scale migrations
or refactoring and want to put an end to it. We have seen these pains, frustrations, com-
plex scenarios, and wishes from a myriad of customers time and time again.

9780136819387_print.indb 1 11/05/21 3:05 pm

2 Chapter 1 Introduction to microservices

We have worked at Microsoft and in the IT space with many enterprise customers. We met
with various internal open-source groups to find solutions to these problems of customers.
Microservices architecture was the key behind this, and ultimately, we wanted to have a stream-
lined way to demonstrate the theoretical value of microservices and how to build one, too.

As a result, we created an application called the Online Auction System (OAS) to serve as a
real-life case study to teach and empower customers to build this architecture for their enter-
prise scenarios. We accomplished this by using a variety of open-source technologies, and we
used Microsoft Azure as the bedrock for the application. Throughout this book, we will use the
approach to provide this background knowledge in conjunction with the parallels to this case
study, which helps map theoretical and experiential learning together.

Evolution of software architecture

Before we can understand the details behind microservices architecture, let’s take a brief look
at how software architectures have evolved.

Monolithic architecture
About a decade ago, the monolithic application was very popular, and consequently its
N-tiered architecture backbone was a norm. This consisted of an application decomposed into
several layers. These layers vary depending on the complexity of the application, but tradition-
ally, there were three main components. See Figure 1-1.

Monolithic architecture

Presentation

Business

Data access

FIGURE 1-1 The monolithic architecture model

 ■ Presentation layer The presentation layer traditionally represents the front-end. Some
of the artifacts include view models, view pages, user interfaces, and other artifacts that
are oriented toward front-end development.

9780136819387_print.indb 2 11/05/21 3:05 pm

 Evolution of software architecture Chapter 1 3

 ■ Business layer The middle layer is a business layer that holds all the logical flows of
the application. This includes most of what we consider as the back-end code necessary
for the primary function of the overall application. This area is where languages such as
.NET or even Java are used to build back-end services that contain business managers
and business objects consisting of the application logic.

 ■ Data access layer Finally, the data access layer is responsible for all database opera-
tions. This consists of a database and interface to perform read/write operations on data
collected and used within the application as part of its overall functionality.

This layered architecture provides a basic separation of concerns and decomposition
of applications into functional components. However, this architecture results in tightly
coupled services that result in many dependencies.

Thinking of some of the scenarios from earlier, we can see why tightly coupled services and
dependencies cause problems. Dependencies present drawbacks where it is difficult to make
any changes to the application easily. This includes complexity in the form of large migrations
and refactoring projects where many teams are involved and many times agility is replaced
with a potential for bureaucracy. This introduces longer timelines because simple quick deploy-
ments cannot be made and ultimately all these problems cascade into a single point where
management is then required to make massive expenditures.

Service-oriented architecture (SOA)
The transition away from monolithic architecture was driven by these reasons. The heavyweight
nature of this architecture was slowly decomposed and eventually led to the formation of a new
architecture known as service-oriented architecture (SOA), which is illustrated in Figure 1-2.

Service-oriented architecture

Enterprise bus

FIGURE 1-2 SOA architecture

9780136819387_print.indb 3 11/05/21 3:05 pm

4 Chapter 1 Introduction to microservices

This model was geared toward decomposing an application into even more granular
modules to account for the drawbacks in monolithic architectures. Essentially, SOA was a way
to connect different monoliths across a consistent messaging channel. Thus, as you can see in
Figure 1-2, with SOA, you can have a set of services that are serving various functions connect
and communicate with each other over a service bus. This service bus essentially is the com-
munication tool that assists with message routing, transformations, security improvement,
logging, and much more.

Because the services are broken down by function, it is slightly easier to deploy changes
that don’t affect the whole application. So, if you were building an application with a mono-
lithic architecture, you could refactor it by using SOA architecture and addressing the litany of
cascading problems we had with the monolithic architecture. Although SOA addresses some
of these problems, we haven’t solved a primary pain point in either architecture model—
assuaging application scalability concerns.

Application scalability is an important design consideration when thinking about the
growth of the application over time. With a larger user base, you will likely have more complex
requirements, and thus considerations must be in place for handling additional requests and
traffic. The clunky nature of the monolithic architecture doesn’t address this and neither does
SOA. Ultimately, with more scale, SOA breaks down internally because the single enterprise bus
is overwhelmed, which slows (or throttles) during periods of increased requests and traffic.

That being said, the SOA concept ultimately introduced an important integration solution
that helped applications talk to each other, and the additional consideration of scalability gave
way to the expansion of the microservices architecture.

Comparing monolith with microservices

A microservices architecture is a series of services that communicate with one another to
achieve complete application functionality. Each microservice has a similar pattern to a mono-
lithic architecture but only covers one function within the entire application functionality.

This means that each service can have a data access layer that is customized to use several
kinds of database technologies and a business layer that is customized to use wide varieties of
technology to perform the functional aspects of the microservice. To elaborate on the business
layer using our case study detailed in future chapters, this means that instead of having all the
OAS back-end code in a single layer, we have individual services for setting up an auction or
placing a bid.

The microservices architecture iterates on previous models with more communication and
an all-encompassing front-end functionality. All the back-end services now communicate with
each other to represent actions that users can experience through a single point of entry within
the front-end, as illustrated in Figure 1-3.

9780136819387_print.indb 4 11/05/21 3:05 pm

 Comparing monolith with microservices Chapter 1 5

Front-end

Microservices architecture

FIGURE 1-3 Microservices architecture

SOA versus microservices
You might also wonder how SOA differs from microservices. Microservices are fine-grained
services where each service is modeled for a business domain or capability. SOA services are
usually coarse-grained services that are not completely decomposed based on the business
domain. Microservices are more abstracted and segmented by the individual business func-
tionality. We will cover this in detail in future chapters, but the use of domain-driven design is
a major design factor in microservices that is distinct from other architectures. Domain-driven
design specifically aligns services to individual business functions in an application.

Also, microservices have more complex patterns when it comes to communication and
messaging. Where we once had an enterprise bus as one of the innovative features of an SOA,
we now have a broader set of technologies and mechanisms, such as request-response and
publish-subscribe communications. These patterns will help distribute communication chan-
nels for better performance in an application, rather than making the service bus the bottle-
neck of the system.

Another advantage of microservices is rooted in using lightweight protocols, such as HTTP,
whereas with SOA, we use other protocols such as TCP or MSMQ. There are many examples
in which microservices are the presumptive choice for your application architectures. To help
illustrate this better, we will dive deeper into some of the issues with legacy architectures.

9780136819387_print.indb 5 11/05/21 3:05 pm

6 Chapter 1 Introduction to microservices

Monolith example
Now that we have talked about the high-level differences, let’s run through an exercise to
understand the minute differentiations between monolithic and microservices architectures.
To help illustrate this, see Figure 1-4, which illustrates how the monolithic architecture requires
a full application deployed in each host, making it difficult to scale.

VMs

Need to deploy
the full

application

Coarse-grained
density of

apps/services

FIGURE 1-4 The monolithic architecture is difficult to scale

Figure 1-4 helps clarify the nuances of a monolithic application. Here, we have a collection
of services that are ultimately deployed on two virtual machines (VMs)—all containing the
same services within each host. As you can see, the scaling solution in place essentially deploys
the full application on multiple VMs.

NOTE We know the monolithic architecture is scalable, however, it is expensive. We
need to have the prerequisite specifications for these VMs with the same memory,
compute power, and so on. Even though the deployment of the monolithic architecture
might be simple because it is consistent, this can be expensive, whether you are utilizing
your on-premises datacenter for the infrastructure or you are using a cloud provider
with a pay-as-you-go subscription.

9780136819387_print.indb 6 11/05/21 3:05 pm

 Comparing monolith with microservices Chapter 1 7

Microservices example
Now let’s compare the monolithic architecture with a microservices approach. Figure 1-5 illus-
trates how the microservices architecture can be deployed independently in several different
hosts and is more capable of scaling.

VMs Fine-grained
density of
services

Deploy each
service

independently

FIGURE 1-5 Microservices architecture

Figure 1-5 shows how microservices architecture differs from the monolithic approach.
Virtual machines can be deployed in the microservices architecture, but instead of deploying
all components of the application in a single VM, we see that each service is deployed indepen-
dently on several VMs. Furthermore, with a monolithic application, any deployment that might
have issues or bugs would have to be rolled back and analyzed carefully for mistakes. Not only
is this tedious, but it provides a bad user experience for your app’s consumers because of bugs
and unexpected downtime. This allows us to scale based on functional need, doesn’t result in
overexpenditure of your resources, and enables a more fine-grained control of your services. If
you experience deployment issues, you can easily find errors and redeploy with flexibility and
velocity.

9780136819387_print.indb 7 11/05/21 3:05 pm

8 Chapter 1 Introduction to microservices

To understand how microservices promote scalability, suppose we are running an order
management system in which users can place orders. On weekends, the system load is
increased by a high number of user orders, which causes response timeouts and improper
handling of resources. With the appropriate monitoring framework in place, we can identify
when the order service is not handling a larger amount of requests. Based on this, we can just
scale out the order service, rather than scaling out the whole system. This allows us to save our
resources inexpensively.

Databases in a monolithic architecture
Let’s focus more on the data tier of the architecture. Figure 1-6 shows that a monolithic data-
base might not be a good design choice when it is shared across many services.

Monolithic
Database shared
across services

Data Tier

App Services

Web front-end

FIGURE 1-6 Monolithic database when shared across many APIs

As you can see, the data access layer in Figure 1-6 utilizes a single monolithic database that
is shared across multiple services. This database also tends to be a relational database to store
information, and all the app services that are operating in the middle tier perform actions
directly on this single data tier.

NOTE Although we are demonstrating some of these basic concepts with microser-
vices spread across VMs, a more regimented enterprise approach will use infrastructure
such as Kubernetes, containers, and continuous integration and continuous develop-
ment (CI/CD) as components to bolster some of the microservices benefits.

9780136819387_print.indb 8 11/05/21 3:05 pm

 Comparing monolith with microservices Chapter 1 9

If your application continues to grow, you might start noting issues with the scaling of your
database and with maintaining this data. All the different services are recording particular
information relevant to their service’s operations, and it becomes very difficult to segregate
this within your database.

Databases in microservices architecture
The microservices perspective is shown in Figure 1-7.

Web front-end

Microservices

Each microservice owns its
own data

FIGURE 1-7 The microservices architecture

In microservices, you design with the domain or business functionality in mind. This means
that you can segregate the services by business functionality, so each service can have its own
particular database. Furthermore, you can specifically pick the technology behind the database
of your choosing based on the need of the service. This provides even more customization,
and it is a great benefit to leverage. Granted, when we abstract these services even more, we
face difficulties with database consistency. Thankfully, as we mentioned earlier, there are many
patterns in place to address that concern, which shows how microservices can truly make a
difference in your application architecture.

Micro front-ends
When discussing the architectural features of microservices, we should also be aware of
new movements and trends that continue to positively affect this paradigm, such as micro
front-ends.

9780136819387_print.indb 9 11/05/21 3:05 pm

10 Chapter 1 Introduction to microservices

A micro front-end is similar to having various back-end microservices because the front-end
is segmented along the same verticals. In the future, we will see more micro front-ends as we
continue to evolve software architecture (see Figure 1-8).

Current microservices
architecture

Future micro front-end
architecture

Front-end

Container app

Service 1
front-end

Service 2
front-end

Service 3
front-end

API gateway API gateway

Service 1

DB1 DB2 DB3 DB1 DB2 DB3

Service 2 Service 3 Service 1 Service 2 Service 3

FIGURE 1-8 Microservices architecture versus micro front-end architecture

Figure 1-8 shows the current evolution of microservices architecture. When it comes to micro
front-ends, we see that the front-end is further abstracted and connected to the back-end
microservices over the same API gateway. This means that the UI/UX components of each of
the services are segmented to those applications only. Then, all these separate components are
placed together in a container app that serves as a placeholder for these HTML components
with embedded data. When deployed, the components are rendered into a single front-end
that is seen when the user accesses the overall application, say, through a web browser (assum-
ing it was a web app). In traditional microservices, data components are received as JSON pay-
loads, but in micro front-ends, data components are received as HTML components.

This componentization has similar benefits to those discussed in the next section, but this
example helps illustrate its usefulness.

Let’s take three teams—named Service 1, Service 2, and Service 3—operating in distinct
service verticals. This means the Service 1 team can build and deploy the Service 1 full stack
microservice, meaning they can build and deploy its respective data layer, business layer, and
front-end. Likewise, the Service 2 and Service 3 teams can do the same, without any depen-
dency on the other verticals.

Many of the benefits and challenges of micro front-end are strongly correlated to their
respective back-end microservices. We will cover this in more detail in the next section. In this
book, we use the OAS as a way to illustrate many of these concepts in practice, though we did

9780136819387_print.indb 10 11/05/21 3:05 pm

 Core fundamentals of microservices Chapter 1 11

not use this particular feature in our case study. We still want you to be aware of micro front-
ends because you will likely see their underlying patterns time and time again. Different layers
and components of application architecture will always be further abstracted in order to create
simplified, yet richer, scenarios for developers, engineers, and more. This is something that
will always grow in popularity, and is a trend to observe and track as we continue evolving our
application design strategies.

Core fundamentals of microservices

A fundamental understanding of microservices is vital to understanding the examples used
throughout this book, as well as the real-life case study.

First, it’s important to know that microservices are autonomous, independent, and loosely
coupled services that cover business scenarios and collaborate with each other to form an
application. As we know, each service will have the back-end code needed to perform a par-
ticular operation. In addition, each service will most likely have an endpoint to communicate
with other services for entire application functionality. Finally, these services will also have a
data access layer for maintaining service-specific data in individual databases.

Benefits
We have seen some of the scenarios and understood some of the pains that enterprise archi-
tects, developers, and consultants face when it comes to application architecture. Based on our
experiences, we divided these benefits into three different categories:

 ■ Agility

 ■ Scalability

 ■ Technology diversity

Agility
As shown in Figure 1-9, microservices are representative of individual functions within an
overall application, and as such, business functionality being encapsulated into small targeted
services is one of the major points of agility. In a traditionally monolithic application, there
are three layers: presentation layer, business layer, and the data access layer. In this form of
architecture, all the business logic is packed together in a single layer. With microservices,
this is abstracted so that each microservice is representative of one component of the overall
business logic, and a single team can be responsible for building that out. In fact, this attribute
alone is considered one of the major hallmarks of microservices.

This is a method to ensure logical separation of concerns. When individual teams are
aligned to microservices, this tends to lend itself to more agile development methodologies
and ultimately, sections of the app can be changed without regard to issues stemming from
tightly coupled functions.

9780136819387_print.indb 11 11/05/21 3:05 pm

12 Chapter 1 Introduction to microservices

The second benefit in agility is that each service can evolve independently and can be
deployed frequently. This is of course with the assumption that the service endpoints are well
defined and agreed upon by the teams building and consuming the services. In the team
dynamic setting mentioned earlier in this chapter, we noted that each service can be built out
by different teams because the overall business logic of the application is further abstracted.
Additionally, there isn’t dependency on the deployment side either, and separate continuous
integration and deployment pipelines can be set up to make changes to each team’s respective
service. Ultimately, one team’s work on a particular service will not affect another team’s work. This
independence ultimately reduces the mean time to delivery from a time-to-market perspective.

This results in development teams being more agile and being able to produce at a high
velocity. Ultimately, they can focus better on their individual services. Development teams are
now abstracted from the internal intricacies present when working with other teams from both
a technological and process standpoint, which means they can be more productive overall.

Scalability
Microservices are very scalable in relation to an application. They can scale on respective
demands without affecting overall performance. This occurs because of the abstraction of
business functions combined with components of the overall architecture that build out the
ability to handle more traffic and requests, and it has high availability. In fact, scalability was
the feature that drove the transition from SOA to microservices.

We touched on some of these components earlier. Granular services mean that requests
are oriented to particular areas within the architecture. However, when we have services
communicating with others for an end-to-end scenario, communication patterns and
messaging channels between individual services help streamline logic to complete scenarios.
For microservices architecture, we have individual communications and patterns such as
publish-subscribe which makes communication easier and doesn’t throttle the performance
of the application.

Also, microservices tend to be containerized in enterprise scenarios and thus can be
deployed efficiently and frequently with the use of infrastructure to containerize the services
(like Docker), deploy with scale with Kubernetes, and be able to deploy quickly with pipelining
and continuous integration and deployment.

Technology Diversity
Often, balance and flexibility are overlooked in developer environments, which gives way to
some rigid architecture that has specific problems and thus requires specific answers.

Developers who work on applications that utilize microservices architectures can mix and
match different programming platforms and storage technologies. This offers great flexibility
for developers, architects, and consultants to design with almost limitless permutations for a
final business solution. This flexibility to leverage numerous technologies is an added benefit
that we see time and time again in enterprise environments.

9780136819387_print.indb 12 11/05/21 3:05 pm

 Core fundamentals of microservices Chapter 1 13

Consequently, applications can be refactored, modernized, or experimented on with new
languages and practices, one service at a time. However, the introduction of new technology
into longstanding enterprise environments tends to create new problems and headaches for
incumbent IT professionals. This signals the start of large-scale refactoring and modernization
projects, which equate to massive expenditures in time and money. Despite this, microservices
change the way we think about these initiatives and instead of generating more problems,
provides solutions for IT managers.

To understand this better, suppose we started with a monolithic application a decade ago
to develop a product. In the last 10 years, we find that the application code base has become
huge, and the database has become monolithic, too. Today, we realized that the technology
we used earlier is getting outdated and making modifications to the existing application is dif-
ficult as one change will potentially break other pieces of the monolithic application. We want
to provide a modern user experience to the consumer with new technologies and applications.
This is where microservices solves these problems. With microservices, because the application
is segregated into set of different services, the front-end could be a micro front-end or even
a basic terminal that contains some HTML pages and consumes those services to represent
application features. The segregation allows teams to independently make improvements to
their service with minimal impact to the rest of the application. Adding new functionality is not
only easy, but the adoption of cutting-edge technologies are faster and complementary.

Challenges
We’ve seen some of the fantastic benefits of using microservices architecture, many of which
have themes related to componentization and flexibility. On the other hand, many of these
same benefits pose new challenges for your IT professionals as well.

These challenges include:

 ■ Learning curve

 ■ Deployment

 ■ Interaction

 ■ Monitoring

Learning curve
In the modern enterprise environment, we have seen the shift from a traditional team setting to a
DevOps-oriented team. A traditional company might have individualized teams of developers, QA
engineers, an infrastructure team, an information security team, an operations team, and data-
base admins—all in individual silos that have to work together in a waterfall-oriented project.

Today, agile projects are the norm and teams in a DevOps setting are almost mandatory,
which means that teams are composed of a smattering of people from different traditional
teams to make a completely iterative team that is capable of building out and maintaining
some function.

9780136819387_print.indb 13 11/05/21 3:05 pm

14 Chapter 1 Introduction to microservices

However, this means that everyone on that agile team that is assigned to building out a par-
ticular microservice must ramp up based on the different kinds of technology that are selected
for the final design.

The number of technologies here poses a problem, where more options cause decision
fatigue and might exacerbate the learning curve. From the developer perspective, a design
choice could be made to use Java for the business logic in a particular microservice. If this isn’t
the primary language that developers are used to building on, then ramping up to learn the
language from a syntax, semantic, and even a knowledge perspective (considering libraries
available) could be a significant barrier, which can pose both time and fiscal challenges when
training time and resources are taken into consideration.

This isn’t a situation that is unique to developers; it can happen to any role within your
agile team. Let’s take an infrastructure team who is responsible for deploying the underly-
ing components needed to build out the application. The decision on what tool to use for
infrastructure-as-code (IaC)—such as Terraform, ARM Templates, and so on—and for pipelines
(build and deployments, i.e. Jenkin, Azure DevOps etc.) could cause delays and expenditures
out of budget for training.

Building expertise on many different kinds of technology is difficult for teams in general,
and it is even more dynamic when working with the microservices architecture. That being
said, good planning and an understanding of your team’s strengths and weaknesses can
enable you to make the right decisions to balance the time and money to make the team
productive when using microservices, despite these challenges.

Deployment
Agility is one of the big benefits of microservices, particularly because builds and deploy-
ments are faster and more frequent because teams own smaller parts of an overall application.
However, this bonus comes with difficulty, where one needs a strong focus and expertise in
automation for faster and frequent deployments.

A manual process to address builds and deployments would be cumbersome and painstak-
ing. Thus, automation is required to reduce this overhead. The problem is deeper here because
automation of pipelines in continuous integration and continuous deployment requires
specialized technologies and skills, and automated pipelines are complex to set up based
on how customized your environment is. Again, this could hinder the potential pros of using
microservices.

Let’s understand this better by walking through a scenario. With the assumption that the
code base for your service is already complete, we need to ascertain where we will be storing
the code. Traditionally, tools such as GitHub provide repos and source code version control,
which is useful for developers to push code, generate builds, or make improvements to the
service. Primarily, we want to focus on the integration of these pushes to the repo in kicking
off the workflow for a build. There are many ways to do this with your tools, but then there is
a need to create the build using the artifacts created from the code and running through tests

9780136819387_print.indb 14 11/05/21 3:05 pm

 Core fundamentals of microservices Chapter 1 15

to ensure the build is working before moving it over for automatic deployment to your various
environments. Each layer and step of this is complex and requires a deep understanding of
multiple roles to work. This is why we see there is a high demand for DevOps and automation
engineers. Furthermore, the tools that you could use for this end-to-end workflow can all vary
in capability and have their own associated learning curve.

That being said, many enterprise IT professionals are observing and reacting to this need by
seeking out people to help accomplish this in their environments based on incumbent talent,
hired talent, and consultants they might be bringing in for these particular tasks. Microservices
aside, to be successful in an agile IT world, we see this as being a scenario you cannot ignore.

Interaction
Adding on to some of the knowledge base needed to work in microservices are patterns and
messaging channels. In a microservices architecture, although services are disparate and
independent, the overall application functionality requires services to talk and communicate
with one another for triggering of actions and functions to conceive an end-to-end cohesive
workflow. Therefore, knowing messaging patterns and related technology is vital.In a tradi-
tional monolithic application, all the layers are stacked on top of each other, allowing inter-
facing between all parts of the application. In microservices, each function is a miniaturized
monolithic application, but now it needs to communicate with several others to complete an
end-to-end scenario and provide a rich user scenario/experience. Ultimately, seamless com-
munication and independent scaling can only be achieved if services can asynchronously com-
municate with one another. This gave rise to technologies such as service buses and queues to
help delineate communication between services.

Let’s walk through an example that will reappear in detail in Chapter 6, which is how we
implemented interaction with our OAS case study. The goal of this application is to provide
a one-stop shop for people to auction off items, bid for items, pay once a bid is won, and
subsequently receive the items they’ve purchased. This is a simplification of the scenario, but as
you can see, with the moving parts of an application in place, several systems must talk to each
other. We can see that the auction and bid services must communicate with each other, the
front-end would have to communicate to all the back-end services, and the payment service
must communicate with the bid services.

A service-oriented architecture has a single enterprise bus and doesn’t account for all of
these scenarios. Thus, a more loosely coupled architecture will require you to learn more pat-
terns (such as request/response and pub/sub) and messaging technologies (such as Apache
Kafka and RabbitMQ) to be productive. Again, this is a burden on the developer and infrastruc-
ture teams.

However, there are standard ways of learning this information, so although there is a learn-
ing curve, the information you gather will be useful in understanding how to design further
architecture to handle various interactions.

9780136819387_print.indb 15 11/05/21 3:05 pm

16 Chapter 1 Introduction to microservices

Monitoring
Monitoring is a core component of many developers’ day-to-day jobs. Monitoring is vital for
understanding the performance of your particular application and helping identity bottle-
necks, and it is used for overall troubleshooting. This is something already ingrained in the
mindset of most developers. However, monitoring gets more difficult and is a strict require-
ment when it comes to microservices.

There are several choices when it comes to monitoring, but we have found certain tech-
nologies and frameworks that work particularly well for microservices. One of the most useful
things to do would be to understand the native features available from the cloud provider you
are using. Today, it is common for many businesses to build modern, cloud-native applications.
Because of this, there are likely cloud architects on teams that are experts on the monitoring
capabilities native to your cloud platform. It is extremely valuable to leverage their insights and
skills to building this piece of the puzzle.

In the OAS, we leveraged Azure and so our application metrics and performance are
recorded by tools such as Azure Monitor, Log Analytics, Application Insights, and much more.
Whatever your platform might be, the key to addressing a potential challenge here is being
informed and intelligent about the different options available to you, whether it be cloud-
native, third-party tools, or open-source tools, to make good decisions for your monitoring
frameworks.

Moving forward with the microservices architecture,
open source, and Azure

We hope that this provides a level set for readers to understand microservices architecture
as we go deeper into our case study and the decisions we’ve had to make with Open Source
Software (OSS) tooling and using Microsoft Azure.

Moving forward, we will go into greater depth in this book, describing different concepts in
detail that we’ve touched on in this chapter. Our case study—the OAS shown in Figure 1-9—
will be the context for understanding and using these concepts as we go through this journey
together.

NOTE It is vital to log each and every detail relevant to these services, and you must
be able to visualize these results. This involves the use of potential log ingestion/
collection engines, visualization tools, alerting systems, and much more. Again, this
overhead needs to be considered when shifting to this paradigm.

9780136819387_print.indb 16 11/05/21 3:05 pm

 Summary Chapter 1 17

FIGURE 1-9 The Online Auction System is our real-life case study to help you understand how to use
microservices architecture to build out your own modern, cloud-native applications

This book’s goals
Ultimately, we hope this book will arm you—whether you are a developer, architect, consul-
tant, or simply someone who wants to dive deeper into this topic—with the information you
need to better understand the microservices architecture.

After reading this book, we hope you are sufficiently prepared to take on the challenge of
building this out in a cloud-native setting such as Azure to solve your business need—whether
it be through modernizing your application, migrating your application workloads, changing
management, and so on. We hope that the world of microservices and open source can be the
catalyst for making this a reality for you. Let’s dive in!

Summary

In this chapter we covered:

 ■ The history and evolution of software architecture from monolith all the way to
microservices

 ■ We compared different architecture models to help you understand the differences and
basic inner workings of each

 ■ We reviewed the benefits and challenges of microservices to understand the trade-offs
when it comes to using this architecture

In the next chapter, we will elaborate on our real-life online auction system (OAS) case
study. We will start by describing the base scenario and business requirements of the OAS and
will then transition to the feature breakdown. We will discuss some decomposition principles
and strategies with an emphasis on domain-driven design to demonstrate how we model our
microservices.

9780136819387_print.indb 17 11/05/21 3:05 pm

A01_Khan_FM_pi-pxviii.indd 18 13/05/21 10:19 PM

This page intentionally left blank

269

A
ACID (atomicity, consistency,

integrity, durability), 50
ACR (Azure Container Registry)

provisioning, 129
pushing services to, 129–130

ADO (Azure DevOps), 49
aggregator pattern, 53–54
agile, 13
AKS (Azure Kubernetes Services),

1, 48–49
clusters, 42–43
configuring with APIM (Azure

API Management), 218–220
creating a deployment object

for OAS microservices,
131–135

creating a service object for
OAS microservices, 135–137

creating a YAML file, 131–133
deploying images to, 125
deploying services to, 130–131
ingress controller-accessible

services, 220
Internet-accessible services,

218–219
intranet-accessible services,

219
provisioning, 127–128
using with APIM, 214–215

ClusterIP configuration,
216–217

External Name
configuration, 217–218

Index

building the HTTP client,
171–172

establishing pub/sub
communication, 157

Event Hubs, 155–156
infrastructure setup, 157–159
KafkaHosttedService,

264–265
listener service with .NET

Core hosted service,
161–164, 165–166
resiliency, 165–171

APIs, 47–48, 82, 138
auction service, 66–68
configuring with APIM

(Azure API Management),
204–210

creating a bid service
using JavaSpring Boot
framework, 72–74

gateways, need for, 201–202
methods used in bid service,

74
application development, DDD

(domain-driven design), 27
bounded context, 28, 29–30
core domains, 30
and decomposition, 31–32
supporting domains, 30–31
ubiquitous language, 27

Application Insights, 254–257
auction service configuration,

259–260
bid service configuration,

260–261

LoadBalancer
configuration, 216

NodePort configuration,
215

AMPQ (Advanced Messaging
Queuing Protocol), 146

Angular, 43, 89
components, 94
creating front-end

applications, 89–90
environment files,

configuring, 101–102
modules, 94
onlineauctionwebapp,

262–264
project structure, 90–92
routing, 95
services, 95
templates, 95

anti-patterns, 29, 33. See also
patterns
Direct HTTP call, 52–53
establishing tight

dependencies between
code artifacts, 34

unnecessary fine graining
of services to deeper
subdomains, 33–337

using monolith or a
shared database with
microservices, 33

Apache Kafka, 153–154
adding Kafka support in the

Java application, 159–161
BidHostedService class,

164–165

9780136819387_print.indb 269 11/05/21 3:06 pm

270

 Application Insights

configuring, 258–259
KafkaHosttedService

instance, 264–265
onlineauctionwebapp

instance, 262–264
payment service

configuration, 261–262
applications. See also back-

end services; cloud-native
applications; containers;
front-end applications
backend, 59
cloud-native, 36
front-end, 59
monitoring, 249–250
scalability, 4, 6
twelve-factor methodology,

40–41
architecture

Kubernetes, 125–127
polyglot persistence, 51–52
and security, 175–176
zero-trust, 179–180

ARM (Azure Resource Manager),
177

asynchronous communication,
146–147. See also Apache
Kafka
pub/sub, 148

Apache Kafka, 153–154,
157–164

Azure Event Hubs, 155
RabbitMQ, 156

auction form, developing,
102–105

auction service, 60–61
auction table schema, 64–65
configuring Application

Insights, 259–260
containerizing, 118–120
creating a database, 64–66
creating in Node.JS, 66
Dockerfile, 118–119
pipelines

build, 239–241

deployment, 241–246
provisioning MySQL

database in Azure, 61–64
writing API methods, 66–68

authentication. See also
authorization flows; security
Azure Active Directory,

180–181
identity management, 180
MSAL (Microsoft

Authentication Library), 192
multifactor, 182
OAS (Online Auction Service),

20
OAuth 2.0 authorization

framework, 182–183
security module, developing,

95–101
authorization flows

client credentials grant,
185–186

code grant, 183–184
device code, 186–187
implicit grant, 184–185
OIDC hybrid, 185

automating infrastructure
through IaC (Infrastructure as
Code), 225

availability, cloud-native
applications, 38

az login command, 129
Azure, 2, 16, 41. See also ADO

(Azure DevOps); AKS (Azure
Kubernetes Services) clusters
Active Directory, 180–181

B2B user flow, 188
B2E user flow, 188

AD B2C, 48
developing a security

module, 95–101
user flow, 189

APIM (API Management),
47–48, 202–203
benefits of using, 203

configuring APIs, 204–210
configuring with AKS,

218–220
policies, 210–214
setting up, 203–204
using with AKS, 214–215

App Service, 45–46, 179
deploying front-end

applications, 137–142
Application Insights, 49
Container Registry, 49
deploying services to AKS.

See also microservices
DevOps, 224–225

building a pipeline,
229–234

CI/CD pipeline, 246–247
projects, 224

Event Hubs, 47, 155. See also
Apache Kafka

Key Vault, 178
Log Analytics, 250–252

KQL (Kusto Query
Language), 252–253

Monitor, 50, 253–254. See
also Application Insights
Application Insights,

254–257
provisioning a MySQL

database, 61–64
provisioning ACR, 129
provisioning Cosmos DB,

70–72
pushing services to ACR,

129–130
Security Center, 176
SQL, creating a payment

service database, 79–81
Storage Accounts, 178
WebJobs, 46–47

deploying Kafka Listener
Service as, 142

listener service, 171

9780136819387_print.indb 270 11/05/21 3:06 pm

271

cloud-native applications

B
back-end services, 40. See also

auction service; back-end
services; OAS (Online Auction
Service); payment service
auction service, 60–61

auction table schema,
64–65

creating a database,
64–66

creating in Node.JS, 66
provisioning MySQL

database in Azure,
61–64

writing API methods,
66–68

bid service, 68–70
API methods, 74
creating a bid controller,

75
creating a bid model,

74–75
creating in JavaSpring

Boot framework, 72–74
creating the bid method,

76–77
database schema, 72
get bids using the

auctionID method,
75–76

provisioning Cosmos DB
in Azure, 70–72

OAS (Online Auction Service),
60

payment service, 77–79
create a code-first model

using EF Core, 83–84
creating a database, 79–81
creating a payment

service context, 85–87
creating an auction

payment controller,
87–88

creating in ASP.NET Core,
81–82

auction service
deployment, 241–246

creating, 229–234
deploying, 234–237

circuit breaker pattern, 166–167
client credentials grant flow,

185–186
cloud technologies

ADO (Azure DevOps), 49
AKS (Azure Kubernetes

Services), 48–49
Azure AD B2C, 48
Azure API management,

47–48
Azure App Service, 45–46
Azure Application Insights,

49
Azure Container Registry, 49
Azure Event Hubs, 47
Azure Monitors, 50
Azure WebJobs, 46–47

cloud-native applications, 36,
113. See also OAS (Online
Auction Service)
characteristics, 37

availability and scalability,
38

cost-effective solutions,
38

easy provisioning and
maintenance, 38

resiliency and reliability,
38

IaaS (Infrastructure as a
Service), 38
security, 176

PaaS (Platform as a Service),
38, 137
app service security, 179
Azure Storage Accounts

and key management,
178

database security, 179
security, 177–178

principles, 36–37

bid service, 68–70
API methods, 74
configuring Application

Insights, 260–261
containerizing, 120–123
creating a bid controller, 75
creating a bid model, 74–75
creating in JavaSpring Boot

framework, 72–74
creating the bid method,

76–77
database schema, 72
Dockerfile, 120–121
get bids using the auctionID

method, 75–76
provisioning Cosmos DB in

Azure, 70–72
bids, OAS (Online Auction

Service), 21–22
binding, 95
bounded context, 28

boundaries, 29
communication between

contexts, 29
reusing code between

contexts, 29–30
business layer, 10

C
characteristics, cloud-native

applications, 37
availability and scalability, 38
cost-effective solutions, 38
easy provisioning and

maintenance, 38
resiliency and reliability, 38

CI/CD (continuous integration/
continuous deployment), 224
best practices, 237
pipelines, 224–225, 246–247

auction service build,
239–241

9780136819387_print.indb 271 11/05/21 3:06 pm

http://ASP.NET

272

CNCF (Cloud Native Computing Foundation)

CNCF (Cloud Native Computing
Foundation), 36

code grant flow, 183–184
collecting log information, 250
commands

az login, 129
Docker, 116–117
docker build, 119–120
docker run, 120
kubectl, 125, 130–131, 135
kubectl apply, 125
mvnw, 122

communication, 5, 145.
See also asynchronous
communication; synchronous
communication
approaches to, 145
best approach for

microservices, 149–153
listener services, 165
in monolithic architecture,

145
pub/sub, 148

Azure Event Hubs, 155
RabbitMQ, 156

request/response, 147, 149
synchronous vs.

asynchronous, 146–147
components

Angular, 94
Docker, 116

configuration
APIs, 204–210
Application Insights, 258–259

auction service, 259–260
bid service, 260–261
payment service, 261–262

containerizing
auction service, 118–120
bid service, 120–123
payment service, 123–124

containers, 37, 49, 114
Docker, 114

commands, 116–117
components, 116

Hyper-V, 118
images, 113

deploying to AKS, 125
Linux vs. Windows, 117–118
monitoring, 265–266
and VMs, 114

Continuous Delivery, 36
Conway’s rule, 25
core domains, 30
Cosmos DB, provisioning in

Azure, 70–72
CQRS (Command Query

Responsibility Segregation),
64, 152

CQRS (Command Query
Responsibility Segregation)
pattern, 54–55

create auction form, 102–105
CRON expressions, 46

D
dashboards, 266–268
data access layer, 4, 10, 11
databases

Cosmos DB, provisioning in
Azure, 70–72

creating for auction service,
64–66

creating for payment service,
79–81

distributed architecture, 50
in microservices architecture,

9
in monolithic architecture,

8–9
MySQL

creating an auction table,
65–66

provisioning, 61–64
polyglot persistence, 51–52
security, 179
transactional data model, 50
transient data model, 50–51

DDD (domain-driven design), 5,
26, 27
bounded context, 28

boundaries, 29
communication between

contexts, 29
reusing code between

contexts, 29–30
core domains, 30
and decomposition, 31–32
supporting domains, 30–31
ubiquitous language, 27

decomposition
based on DDD, 31–32
by business capability, 25
Conway’s rule, 25
Inverse Conway Maneuver

Law, 25–26
principles, 24
by subdomain, 25–26

dependencies, 40
deployment

challenges in microservices
architecture, 14–15

patterns, 238–239
device code flow, 186–187
DevOps, 13, 14, 36, 224
Direct HTTP call, 52–53
disposability, 40
distributed database

architecture, 50
patterns

aggregator, 53–54
CQRS (Command

Query Responsibility
Segregation), 54–55

Direct HTTP call, 52–53
saga, 56

Docker, 114
auction service,

containerizing, 118–120
bid service, containerizing,

120–123
commands, 116–117
components, 116

9780136819387_print.indb 272 11/05/21 3:06 pm

273

microservices

installing, 114–116
payment service,

containerizing, 123–124
docker build command, 119–120
docker run command, 120
Dockerfile

auction service, 118–119
bid service, 120–121
payment service, 123–124

E
environment files, configuration,

101–102
event binding, 95
Express.JS, 66. See also Node.JS

F
forms

create auction, 102–105
submit bid, 107–110

frameworks, 249–250
monitoring, 253, 257–258

front-end applications, 43,
88–89. See also OAS (Online
Auction Service)
Angular

modules, 94
project structure, 90–92

auction form, developing,
102–105

configuring environment
files, 101–102

creating, 89–90
deploying in the Azure App

Service, 137–142
developing an active auctions

page, 105–107
onlineauctionwebapp, 262–264
prerequisites for building, 89
security module, developing,

95–101
submit bid form, 107–110

G
generic domains, 30–31
GitHub, 14
granular services, 12

H-I
Hyper-V, 118
IaaS (Infrastructure as a Service),

38
security, 176
Terraforms, 61

IaC (Infrastructure as Code)
automating infrastructure,

225
OAS (Online Auction Service),

225–229
security principles, 177

IaS (infrastructure-as-code), 14
identity management, 180, 181

Azure Active Directory,
180–181

OAS (Online Auction Service),
20

principle of least privilege,
181

RBAC (role-based access
control), 181

images, deploying to AKS, 125
implicit grant flow, 184–185
installing, Docker, 114–116
Inverse Conway Maneuver Law,

25–26

J-K
JavaSpring Boot framework,

creating a bid service, 72–74
Kafka protocol, 47

adding Kafka support in the
Java application, 159–161

building the HTTP client,
171–172

deploying Listener Service as
an Azure WebJob, 142

establishing pub/sub
communication, 157

infrastructure setup, 157–159
key management, 178
KQL (Kusto Query Language),

252–253
kubectl apply command, 125
kubectl commands, 125, 130–131,

135
Kubernetes. See also AKS (Azure

Kubernetes Services) clusters;
VMs (virtual machines)
architecture, 125–127
creating a deployment object

for OAS microservices,
131–135

L
lightweight protocols, 5, 36
Linux, containers, 117–118
listener services, 165, 171. See

also communication
resiliency, 165–166

logs, 16, 40, 250
Azure Log Analytics, 250–252
collecting, 250
querying, 252–253
retention, 252

M
MFA (multifactor

authentication), 182
micro frontends, 9–10
microservices, 1, 4, 36, 37, 59,

145. See also auction service;
bid service; containers;
payment service
communication, 5

best approach, 149–153
data access layer, 4

9780136819387_print.indb 273 11/05/21 3:06 pm

274

microservices

distributed database
architecture, 50

lightweight protocols, 5
monitoring, 249

microservices architecture,
113–114. See also
communication; DDD
(domain-driven design);
security
anti-patterns

establishing tight
dependencies between
code artifacts, 34

unnecessary fine graining
of services to deeper
subdomains, 33–337

using monolith or a
shared database with
microservices, 33

benefits
agility, 11–12
scalability, 12
technology diversity, 12–13

challenges
deployment, 14–15
interaction, 15
learning curve, 13–14
monitoring, 16

communication
pub/sub, 148
request/response, 147, 149
synchronous vs.

asynchronous, 146–147
comparison with monolithic

architecture, 4–5, 6, 7–8
comparison with SOA, 5
data access layer, 11
databases, 9
decomposition, principles, 24
developing, 60
IaC security principles, 177
micro frontends, 9–10
patterns

aggregator, 53–54
chassis, 44–45
circuit breaker, 166–167

CQRS (Command
Query Responsibility
Segregation), 54–55

deployment, 238–239
Direct HTTP call, 52–53
retry, 166, 167
saga, 56

scalability, 7
VMs (virtual machines), 7

Microsoft Azure. See Azure
modules, Angular, 94
monitoring

Application Insights, 254–257
configuring, 258–259

Azure Log Analytics, 250–252
Azure Monitor, 253–254
best practices, 257–258
containers, 265–266
frameworks, 253, 257–258
logs, 16, 40, 250

collecting, 250
querying, 252–253
retention, 252

microservices, 16
microservices architecture, 249
OAS (Online Auction Service),

42
telemetry

KafkaHosttedService,
264–265

onlineauctionwebapp,
262–264

visualization tools, 250
dashboards, 266–268

monolithic architecture, 2–3
application scalability, 6
business layer, 3
communication, 145
comparison with

microservices architecture,
4–5, 6, 7–8

data access layer, 3
databases, 8–9
presentation layer, 2
VMs (virtual machines), 6

MSAL (Microsoft Authentication
Library), 192

mvnw command, 122
MySQL databases

creating an auction table,
65–66

provisioning, 61–64

N
.NET Core

BidHostedService class,
164–165

creating a payment service,
81–82
create a code-first model

using EF Core, 83–84
Kafka listener service, 161–164
Polly framework, 167

Node.JS, creating an auction
service, 66

O
OAS (Online Auction Service), 2,

10, 15, 16, 17, 19, 36, 48, 59, 113.
See also DDD (domain-driven
design)
active auctions page,

developing, 105–107
AKS clusters, 42–43
application flow, 23–24
application requirements, 20
architecture, 41–42
auction service, 60–61

auction table schema,
64–65

build pipeline, 239–241
configuring Application

Insights, 259–260
containerizing, 118–120
creating a database,

64–66

9780136819387_print.indb 274 11/05/21 3:06 pm

275

payment service

creating in Node.JS, 66
deployment pipeline,

241–246
Dockerfile, 118–119
provisioning MySQL

database in Azure,
61–64

writing API methods,
66–68

back-end services, 60
bid service, 68–70, 161

API methods, 74
configuring Application

Insights, 260–261
containerizing, 120–123
creating a bid model,

74–75
creating in JavaSpring

Boot framework, 72–74
creating the bid method,

76–77
database schema, 72
Dockerfile, 120–121
get bids using the

auctionID method,
75–76

provisioning Cosmos DB
in Azure, 70–72

creating a deployment
object, 131–135

creating service objects,
135–137

creating the auction form,
102–105

dashboards, 266–268
decomposition

based on DDD, 31–32
by business capability, 25
Conway’s rule, 25
Inverse Conway Maneuver

Law, 25–26
principles, 24
by subdomain, 25–26

deployment patterns,
238–239

end-to-end security, 189–191
environment files,

configuring, 101–102
features

auction management,
20–21

authentication, 20
bid management, 21–22
identity management, 20
payment management,

22–23
front-end, prerequisites, 89
KafkaHosttedService,

264–265
Listener service, 42
monitoring, 42
onlineauctionwebapp,

262–264
payment service, 77–79

configuring Application
Insights, 261–262

containerizing, 123–124
creating a database, 79–81
creating a payment

service context, 85–87
creating an auction

payment controller,
87–88

creating in ASP.NET Core,
81–82

Dockerfile, 123–124
UI, 152

pub/sub communication, 148
request/response

communication, 147
security

authentication, 193–196
creating a tenant, 192
user flows, 196–200

security module, developing,
95–101

services, 41–42
submit bid form, 107–110

Terraform script for
infrastructure components,
225–229

Winning Bids table, 151–152
workflows

Active Auctions, 150–151
Create Auction, 149
Make a Bid, 151

OAuth 2.0 authorization
framework, 182–183

OIDC (OpenID Connect), 182
hybrid flow, 185

OSS (Open Source Software), 16

P
PaaS (Platform as a Service), 38,

137
security, 177–178

app services, 179
Azure Storage Accounts

and key management,
178

databases, 179
patterns

aggregator, 53–54
circuit breaker, 166–167
CQRS (Command

Query Responsibility
Segregation), 54–55

deployment, 238–239
Direct HTTP call, 52–53
retry, 166, 167
saga, 56

payment service, 77–79
configuring Application

Insights, 261–262
containerizing, 123–124
creating a database, 79–81
creating a payment service

context, 85–87
creating an auction payment

controller, 87–88

9780136819387_print.indb 275 11/05/21 3:06 pm

http://ASP.NET

276

payment service

creating in ASP.NET Core,
81–82
code-first model, 83–84

Dockerfile, 123–124
pipelines, 224–225

auction service
build, 239–241
deployment, 241–246

creating, 229–234
deploying, 234–237

polyglot persistence, 51–52
port binding, 40
principles

of cloud-native applications,
36–37

IaC security, 177
least privilege, 181

property binding, 95
provisioning

ACR (Azure Container
Registry), 129

AKS (Azure Kubernetes
Services) clusters, 127–128

pub/sub communication, 148
Apache Kafka, 153–154

adding Kafka support in
the Java application,
159–161

BidHostedService class,
164–165

building the HTTP client,
171–172

infrastructure setup,
157–159

listener service with .NET
Core hosted service,
161–164, 166–171

Azure Event Hubs, 155
RabbitMQ, 156

pushing services to ACR, 129–130

Q-R
querying logs, 252–253
RabbitMQ, 156

RBAC (role-based access
control), 181

request/response
communication, 147, 149

resiliency, 165–171
circuit breaker pattern,

166–167
cloud-native applications, 38
retry pattern, 166, 167

retry pattern, 166, 167
Route Guard, 100–101
routing, Angular, 95

S
SaaS (Software as a Service), 176
saga pattern, 56
scalability

application, 4, 6
cloud-native applications, 38
elastic, 71
microservices architecture,

7, 12
security, 175, 176, 178

and architectures, 175–176
authentication, 182–183

and authorization flows,
182–183

Azure Active Directory,
180–181

identity management, 180
multifactor, 182
OAS (Online Auction

Service), 20
security module,

developing, 95–101
authorization flows

client credentials grant,
185–186

code grant, 183–184
device code, 186–187
implicit grant, 184–185
OIDC hybrid, 185

Azure Active Directory,
180–181

Azure Storage Accounts, 178
IaaS (Infrastructure as a

Service), 176
IaC (Infrastructure as Code), 177
identity management, 181

Azure Active Directory,
180–181

MFA (multifactor
authentication), 182

OAS (Online Auction
Service), 20

principle of least privilege,
181

RBAC (role-based access
control), 181

key management, 178
OAS (Online Auction Service)

authentication, 193–196
creating a tenant, 192
user flows, 196–200

PaaS (Platform as a Service),
177–178
app services, 179
Azure Storage Accounts

and key management,
178

databases, 179
“perimeter”, 180
zero-trust architecture,

179–180
identity management, 180

security module, developing,
95–101

service bus, 4, 5
Service object, creating for OAS

microservices, 135–137
services. See also microservices

Angular, 95
app, security, 179
deploying to AKS, 130–131

SOA (service-oriented
architecture), 3–4
comparison with

microservices architecture,
5

service bus, 4

9780136819387_print.indb 276 11/05/21 3:06 pm

http://ASP.NET

277

zero-trust architecture

software architecture. See also
microservices architecture;
monolithic architecture; SOA
(service-oriented architecture)
application scalability, 4
dependencies, 3, 34, 40
domain-driven design, 5
microservices

agility, 11–12
comparison with

monolithic architecture,
4–5, 6, 7–8

comparison with SOA, 5
data access layer, 4, 11
databases, 9
decomposition by

business capability, 25
decomposition principles,

24
deployment challenges,

14–15
and interaction, 15
learning curve, 13–14
lightweight protocols, 5
micro frontends, 9–10
and monitoring, 16
scalability, 12
technology diversity, 12–13
VMs (virtual machines), 7

monolithic, 2–3
application scalability, 6
business layer, 3
comparison with

microservices
architecture, 4–5, 6, 7–8

data access layer, 3
databases, 8–9
presentation layer, 2

monolithic architecture, VMs
(virtual machines), 6

SOA (service-oriented
architecture), 3–4
comparison with

microservices, 5

software development
anti-patterns, 33

establishing tight
dependencies between
code artifacts, 34

unnecessary fine graining
of services to deeper
subdomains, 33–337

using monolith or a
shared database with
microservices, 33

SPA (Single Page Application), 59
submit bid form, 107–110
supporting domains, 30
synchronous communication,

146–147
request/response, 147, 149

T
technologies

cloud, Azure App Service,
45–46

front-end, 43
microservices chassis pattern,

44–45
templates, 231

Angular, 95
ARM (Azure Resource

Manager), 177
deployment object, 131–135
pod object, 133–135
Terraforms, 62–63

Terraform(s), 61, 63–64, 71, 80
configuring Azure App

Service, 138–142
installing on Windows, 62–63
nodes, 125
provisioning ACR, 129
provisioning AKS, 127–128
script for OAS infrastructure

components, 225–229
templates, 62–63

transactional data model, 50
transient data model, 50–51
twelve-factor app methodology,

40–41

U-V
ubiquitous language, 27
visualization tools, 250

dashboards, 266–268
VMs (virtual machines), 6, 37, 125

Apache Kafka, 153–154
and containers, 114
in microservices architecture,

7
in monolithic architecture, 6
security, 176

W
web apps, 59

progressive, C01.1032
WebJobs

deploying Kafka Listener
Service as, 142

listener service, 171
Windows, containers, 117–118
workspaces, Azure Log

Analytics, 252, 265

X-Y-Z
YAML, 131–133, 224–225, 230
zero-trust architecture

Azure Active Directory,
180–181

identity management, 180
“pesrimeter”, 180

9780136819387_print.indb 277 11/05/21 3:06 pm

	Cover
	Title Page
	Copyright Page
	Dedication
	Contents
	Acknowledgments
	About the authors
	Foreword
	Introduction
	Chapter 1 Introduction to microservices
	Our journey with microservices
	Evolution of software architecture
	Monolithic architecture
	Service-oriented architecture (SOA)

	Comparing monolith with microservices
	SOA versus microservices
	Monolith example
	Microservices example
	Databases in a monolithic architecture
	Databases in microservices architecture
	Micro front-ends

	Core fundamentals of microservices
	Benefits
	Challenges

	Moving forward with the microservices architecture, open source, and Azure
	This book’s goals

	Summary

	Index
	A
	B-C
	D
	E-F-G-H-I-J-K-L-M
	N-O
	P
	Q-R-S
	T-U-V-W-X-Y-Z

