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Foreword
For many years, the guidance for building business applications was clear-cut: 

 ■ Create a large, monolithic core that contains business logic

 ■ Persist data to a shared relational database

 ■ Expose functionality through front-end UIs and API endpoints

 ■ Build, package, and deploy the application, and you’re in business.

While often challenging, such monolithic applications were straightforward 
to build, test, deploy, and troubleshoot. With code executing in a single process, 
performance could be good. When the need arose, you could scale the application 
up (vertically) by adding more server resources.

This model, however, had limitations. When an application proved popular, 
the monolithic architecture would eventually break down. As the app grew larger, 
more complex, and more “coupled,” it became less agile:

 ■ Feature updates and fixes would cause unintended and costly side effects, 
such as breaking existing functionality.

 ■ One unstable component could crash the entire system.

 ■ Scaling any component required scaling the entire application.

 ■ New technologies and frameworks were not an option.

 ■ Each change required a full deployment of the application.

Perhaps the biggest challenge was agility. Monolithic applications prevented the 
business from moving fast.

Fast-forward into the world of modern apps and microservices. They are all 
about speed and agility. By decomposing the business domain into independent 
services, microservices enable business systems to strategically align with business 
capabilities. They embrace feature releases with high confidence. They allow for 
updating small areas of a live application without downtime. They empower the 
business to adapt rapidly to evolving market and competitive forces.

While microservice adoption is rapidly increasing, not everybody is adopting it 
correctly. Implementing a microservices architecture requires substantial invest-
ment. For it to be successful, developers and architects must understand the prin-
ciples, patterns, and best practices of distributed microservices architecture. 

This book spoon-feeds microservices to you. From design to development and 
from deployment to operation, it provides a comprehensive education into the 
world of microservices. Moreover, the book wraps microservice construction into 
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Introduction
Welcome to Developing Microservices Architecture on Microsoft Azure with Open 
Source Technologies. Today, organizations are modernizing application development 
by integrating open-source technologies into a holistic architecture for delivering 
high-quality workloads to the cloud. This book is a complete, step-by-step guide to 
building an application based on microservices architecture by leveraging services 
provided by the Microsoft Azure cloud platform and a litany of open-source tech-
nologies such as Java, Node.js, .NET Core, and Angular.

This will be a reference guide to learn key building blocks of microservices 
architecture by representing a real-life case study of building a trading system to 
auction items. This book will lead readers through a step-by-step journey to learn 
modern application development scenarios and leverage cloud-native capabilities 
in Microsoft Azure to provide distinct value to customers. 

This topic is in very high demand based on statistics and our own experiences 
from the field. There have been books made on microservices, but they almost 
always cover business value proposition alone rather than technical implemen-
tation on how to establish end to end infrastructure, application development, 
deployment automation and to realize actual value through constructing it using 
Azure and open source.

We start with an introduction and modeling of microservices and then move on 
to build a cloud-native microservices architecture by developing services, contain-
erizing services, and deploying them on AKS. We also cover various topics related 
to communication patterns, security, and API gateways, and we touch on topics 
related to automating builds and deployments using CI/CD and monitoring.

Who is this book for? 

This book is for architects and developers. It especially targets those who have 
some development background to build applications or have worked in the capac-
ity of designing and architecting applications. It will also be useful for those with 
some skills with Azure.
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xvi Introduction

How is this book organized?

This book is organized into three parts:

 ■ Part I: Introduction and modeling of microservices

 ■ Part II: Designing and building microservices architecture 

 ■ Part III: Implementing patterns, security, DevOps, and monitoring

The first part of this book consists of two chapters that focus on a thorough 
introduction to microservices and how you can decompose or model microservices 
using domain-driven design (DDD). 

The second part of this book consists of three chapters that focus on designing 
an architecture and building an application that follows this architecture with vari-
ous open-source technologies such as Java, .NET Core, Node.js, and Angular. The 
architecture is cloud-native and leverages multiple managed services within Azure. 

The third part of this book consists of five chapters that focuses on topics related 
to communication patterns, security within microservices, API gateways, automat-
ing builds and deployments, and monitoring.  

System requirements

The requirements for running through the examples in this book should be: 

 ■ Any Linux distros or Windows operating systems

 ■ 4 GB of RAM

 ■ 1 GB of available disk space

 ■ Docker with Linux Containers

 ■ Microsoft Azure subscription

 ■ Azure DevOps account

 ■ Visual Studio Code or other editors of your choice

About the companion content

The companion content for this book can be downloaded from the following page: 
MicrosoftPressStore.com/DevMicroservices/downloads 
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xviiIntroduction

Errata, updates, & book support

We’ve made every effort to ensure the accuracy of this book and its companion 
content. You can access updates to this book—in the form of a list of submitted 
errata and their related corrections—at:   
MicrosoftPressStore.com/DevMicroservices/errata 

If you discover an error that is not already listed, please submit it to us at the 
same page.

For additional book support and information, please visit  
MicrosoftPressStore.com/Support.

Please note that product support for Microsoft software and hardware is not 
offered through the previous addresses. For help with Microsoft software or hard-
ware, go to http://support.microsoft.com.

Stay in touch

Let’s keep the conversation going! We’re on Twitter:  
http://twitter.com/MicrosoftPress.

A01_Khan_FM_pi-pxviii.indd   17 13/05/21   10:19 PM

http://MicrosoftPressStore.com/DevMicroservices/errata
http://MicrosoftPressStore.com/Support
http://support.microsoft.com
http://twitter.com/MicrosoftPress


A01_Khan_FM_pi-pxviii.indd   18 13/05/21   10:19 PM

This page intentionally left blank 



1

C h a p t e r  1

Introduction to 
microservices

In this chapter, you will:
 ■ Learn about the history and evolution of software architecture

 ■ Understand the differences between monolithic and microservices architectures

 ■ Learn about the core benefits and challenges of using a microservices architecture

Microservices is a buzzword that is thrown around frequently in the technology com-
munity. Many infer it as being a further dissection of modular componentization, 

and although that addresses part of it, it doesn’t encompass the full picture. Microservices 
are a group of back-end services that provide business operations to form an application. 
When combined with other pieces such as a front-end and various communication plat-
forms, it creates what is known as a microservices architecture. Although that is a simplistic 
way to approach this architecture, it is a vital design orientation and metaphor to learn 
for implementing modern application development scenarios geared to achieving better 
results.

This particular chapter will focus on the core fundamentals of microservices, includ-
ing the transition from historical architecture to present, benefits and challenges, and a 
comparison of a monolithic application architecture with microservices architecture.

Our journey with microservices

In recent years, microservices architecture have become very popular with firms. Many orga-
nizations and enterprises have expressed a desire and need to move their applications to a 
microservices architecture.

We have worked with customers that were very concerned with increasing develop-
ment velocity to ship code faster and at more frequent intervals. Other customers are 
focused on modularizing their codebase further to iterate on particular services for 
better application performance and additional support. Some are jaded by financial and 
time constraints that constantly plague their organization due to large scale migrations 
or refactoring and want to put an end to it. We have seen these pains, frustrations, com-
plex scenarios, and wishes from a myriad of customers time and time again. 
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2  Chapter 1 Introduction to microservices

We have worked at Microsoft and in the IT space with many enterprise customers. We met 
with various internal open-source groups to find solutions to these problems of customers. 
Microservices architecture was the key behind this, and ultimately, we wanted to have a stream-
lined way to demonstrate the theoretical value of microservices and how to build one, too. 

As a result, we created an application called the Online Auction System (OAS) to serve as a 
real-life case study to teach and empower customers to build this architecture for their enter-
prise scenarios. We accomplished this by using a variety of open-source technologies, and we 
used Microsoft Azure as the bedrock for the application. Throughout this book, we will use the 
approach to provide this background knowledge in conjunction with the parallels to this case 
study, which helps map theoretical and experiential learning together. 

Evolution of software architecture

Before we can understand the details behind microservices architecture, let’s take a brief look 
at how software architectures have evolved.

Monolithic architecture
About a decade ago, the monolithic application was very popular, and consequently its 
N-tiered architecture backbone was a norm. This consisted of an application decomposed into 
several layers. These layers vary depending on the complexity of the application, but tradition-
ally, there were three main components. See Figure 1-1.

Monolithic architecture

Presentation

Business

Data access

FIGURE 1-1 The monolithic architecture model 

 ■ Presentation layer The presentation layer traditionally represents the front-end. Some 
of the artifacts include view models, view pages, user interfaces, and other artifacts that 
are oriented toward front-end development.
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 ■ Business layer The middle layer is a business layer that holds all the logical flows of 
the application. This includes most of what we consider as the back-end code necessary 
for the primary function of the overall application. This area is where languages such as 
.NET or even Java are used to build back-end services that contain business managers 
and business objects consisting of the application logic.

 ■ Data access layer Finally, the data access layer is responsible for all database opera-
tions. This consists of a database and interface to perform read/write operations on data 
collected and used within the application as part of its overall functionality. 

This layered architecture provides a basic separation of concerns and decomposition 
of applications into functional components. However, this architecture results in tightly 
coupled services that result in many dependencies. 

Thinking of some of the scenarios from earlier, we can see why tightly coupled services and 
dependencies cause problems. Dependencies present drawbacks where it is difficult to make 
any changes to the application easily. This includes complexity in the form of large migrations 
and refactoring projects where many teams are involved and many times agility is replaced 
with a potential for bureaucracy. This introduces longer timelines because simple quick deploy-
ments cannot be made and ultimately all these problems cascade into a single point where 
management is then required to make massive expenditures.

Service-oriented architecture (SOA)
The transition away from monolithic architecture was driven by these reasons. The heavyweight 
nature of this architecture was slowly decomposed and eventually led to the formation of a new 
architecture known as service-oriented architecture (SOA), which is illustrated in Figure 1-2.

Service-oriented architecture

Enterprise bus

FIGURE 1-2 SOA architecture
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This model was geared toward decomposing an application into even more granular 
modules to account for the drawbacks in monolithic architectures. Essentially, SOA was a way 
to connect different monoliths across a consistent messaging channel. Thus, as you can see in 
Figure 1-2, with SOA, you can have a set of services that are serving various functions connect 
and communicate with each other over a service bus. This service bus essentially is the com-
munication tool that assists with message routing, transformations, security improvement, 
logging, and much more.

Because the services are broken down by function, it is slightly easier to deploy changes 
that don’t affect the whole application. So, if you were building an application with a mono-
lithic architecture, you could refactor it by using SOA architecture and addressing the litany of 
cascading problems we had with the monolithic architecture. Although SOA addresses some 
of these problems, we haven’t solved a primary pain point in either architecture model—
assuaging application scalability concerns.

Application scalability is an important design consideration when thinking about the 
growth of the application over time. With a larger user base, you will likely have more complex 
requirements, and thus considerations must be in place for handling additional requests and 
traffic. The clunky nature of the monolithic architecture doesn’t address this and neither does 
SOA. Ultimately, with more scale, SOA breaks down internally because the single enterprise bus 
is overwhelmed, which slows (or throttles) during periods of increased requests and traffic.

That being said, the SOA concept ultimately introduced an important integration solution 
that helped applications talk to each other, and the additional consideration of scalability gave 
way to the expansion of the microservices architecture.

Comparing monolith with microservices

A microservices architecture is a series of services that communicate with one another to 
achieve complete application functionality. Each microservice has a similar pattern to a mono-
lithic architecture but only covers one function within the entire application functionality.

This means that each service can have a data access layer that is customized to use several 
kinds of database technologies and a business layer that is customized to use wide varieties of 
technology to perform the functional aspects of the microservice. To elaborate on the business 
layer using our case study detailed in future chapters, this means that instead of having all the 
OAS back-end code in a single layer, we have individual services for setting up an auction or 
placing a bid. 

The microservices architecture iterates on previous models with more communication and 
an all-encompassing front-end functionality. All the back-end services now communicate with 
each other to represent actions that users can experience through a single point of entry within 
the front-end, as illustrated in Figure 1-3.
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Front-end

Microservices architecture

FIGURE 1-3  Microservices architecture 

SOA versus microservices
You might also wonder how SOA differs from microservices. Microservices are fine-grained 
services where each service is modeled for a business domain or capability. SOA services are 
usually coarse-grained services that are not completely decomposed based on the business 
domain. Microservices are more abstracted and segmented by the individual business func-
tionality. We will cover this in detail in future chapters, but the use of domain-driven design is 
a major design factor in microservices that is distinct from other architectures. Domain-driven 
design specifically aligns services to individual business functions in an application.

Also, microservices have more complex patterns when it comes to communication and 
messaging. Where we once had an enterprise bus as one of the innovative features of an SOA, 
we now have a broader set of technologies and mechanisms, such as request-response and 
publish-subscribe communications. These patterns will help distribute communication chan-
nels for better performance in an application, rather than making the service bus the bottle-
neck of the system.

Another advantage of microservices is rooted in using lightweight protocols, such as HTTP, 
whereas with SOA, we use other protocols such as TCP or MSMQ. There are many examples 
in which microservices are the presumptive choice for your application architectures. To help 
illustrate this better, we will dive deeper into some of the issues with legacy architectures.
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Monolith example 
Now that we have talked about the high-level differences, let’s run through an exercise to 
understand the minute differentiations between monolithic and microservices architectures. 
To help illustrate this, see Figure 1-4, which illustrates how the monolithic architecture requires 
a full application deployed in each host, making it difficult to scale. 

VMs

Need to deploy
the full

application

Coarse-grained
density of

apps/services

FIGURE 1-4 The monolithic architecture is difficult to scale

Figure 1-4 helps clarify the nuances of a monolithic application. Here, we have a collection 
of services that are ultimately deployed on two virtual machines (VMs)—all containing the 
same services within each host. As you can see, the scaling solution in place essentially deploys 
the full application on multiple VMs.

NOTE We know the monolithic architecture is scalable, however, it is expensive. We 
need to have the prerequisite specifications for these VMs with the same memory, 
compute power, and so on. Even though the deployment of the monolithic architecture 
might be simple because it is consistent, this can be expensive, whether you are utilizing 
your on-premises datacenter for the infrastructure or you are using a cloud provider 
with a pay-as-you-go subscription.
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Microservices example
Now let’s compare the monolithic architecture with a microservices approach. Figure 1-5 illus-
trates how the microservices architecture can be deployed independently in several different 
hosts and is more capable of scaling.

VMs Fine-grained
density of
services

Deploy each
service

independently

FIGURE 1-5 Microservices architecture 

Figure 1-5 shows how microservices architecture differs from the monolithic approach. 
Virtual machines can be deployed in the microservices architecture, but instead of deploying 
all components of the application in a single VM, we see that each service is deployed indepen-
dently on several VMs. Furthermore, with a monolithic application, any deployment that might 
have issues or bugs would have to be rolled back and analyzed carefully for mistakes. Not only 
is this tedious, but it provides a bad user experience for your app’s consumers because of bugs 
and unexpected downtime. This allows us to scale based on functional need, doesn’t result in 
overexpenditure of your resources, and enables a more fine-grained control of your services. If 
you experience deployment issues, you can easily find errors and redeploy with flexibility and 
velocity.
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8  Chapter 1 Introduction to microservices

To understand how microservices promote scalability, suppose we are running an order 
management system in which users can place orders. On weekends, the system load is 
increased by a high number of user orders, which causes response timeouts and improper 
handling of resources. With the appropriate monitoring framework in place, we can identify 
when the order service is not handling a larger amount of requests. Based on this, we can just 
scale out the order service, rather than scaling out the whole system. This allows us to save our 
resources inexpensively.

Databases in a monolithic architecture
Let’s focus more on the data tier of the architecture. Figure 1-6 shows that a monolithic data-
base might not be a good design choice when it is shared across many services.

Monolithic
Database shared
across services

Data Tier

App Services

Web front-end

FIGURE 1-6 Monolithic database when shared across many APIs

As you can see, the data access layer in Figure 1-6 utilizes a single monolithic database that 
is shared across multiple services. This database also tends to be a relational database to store 
information, and all the app services that are operating in the middle tier perform actions 
directly on this single data tier.

NOTE Although we are demonstrating some of these basic concepts with microser-
vices spread across VMs, a more regimented enterprise approach will use infrastructure 
such as Kubernetes, containers, and continuous integration and continuous develop-
ment (CI/CD) as components to bolster some of the microservices benefits.
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If your application continues to grow, you might start noting issues with the scaling of your 
database and with maintaining this data. All the different services are recording particular 
information relevant to their service’s operations, and it becomes very difficult to segregate 
this within your database.

Databases in microservices architecture
The microservices perspective is shown in Figure 1-7.

Web front-end

Microservices

Each microservice owns its
own data

FIGURE 1-7 The microservices architecture

In microservices, you design with the domain or business functionality in mind. This means 
that you can segregate the services by business functionality, so each service can have its own 
particular database. Furthermore, you can specifically pick the technology behind the database 
of your choosing based on the need of the service. This provides even more customization, 
and it is a great benefit to leverage. Granted, when we abstract these services even more, we 
face difficulties with database consistency. Thankfully, as we mentioned earlier, there are many 
patterns in place to address that concern, which shows how microservices can truly make a 
difference in your application architecture. 

Micro front-ends
When discussing the architectural features of microservices, we should also be aware of 
new movements and trends that continue to positively affect this paradigm, such as micro 
front-ends. 
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10  Chapter 1 Introduction to microservices

A micro front-end is similar to having various back-end microservices because the front-end 
is segmented along the same verticals. In the future, we will see more micro front-ends as we 
continue to evolve software architecture (see Figure 1-8).

Current microservices
architecture

Future micro front-end
architecture

Front-end

Container app

Service 1
front-end

Service 2
front-end

Service 3
front-end

API gateway API gateway

Service 1

DB1 DB2 DB3 DB1 DB2 DB3

Service 2 Service 3 Service 1 Service 2 Service 3

FIGURE 1-8 Microservices architecture versus micro front-end architecture 

Figure 1-8 shows the current evolution of microservices architecture. When it comes to micro 
front-ends, we see that the front-end is further abstracted and connected to the back-end 
microservices over the same API gateway. This means that the UI/UX components of each of 
the services are segmented to those applications only. Then, all these separate components are 
placed together in a container app that serves as a placeholder for these HTML components 
with embedded data. When deployed, the components are rendered into a single front-end 
that is seen when the user accesses the overall application, say, through a web browser (assum-
ing it was a web app). In traditional microservices, data components are received as JSON pay-
loads, but in micro front-ends, data components are received as HTML components. 

This componentization has similar benefits to those discussed in the next section, but this 
example helps illustrate its usefulness.

Let’s take three teams—named Service 1, Service 2, and Service 3—operating in distinct 
service verticals. This means the Service 1 team can build and deploy the Service 1 full stack 
microservice, meaning they can build and deploy its respective data layer, business layer, and 
front-end. Likewise, the Service 2 and Service 3 teams can do the same, without any depen-
dency on the other verticals.

Many of the benefits and challenges of micro front-end are strongly correlated to their 
respective back-end microservices. We will cover this in more detail in the next section. In this 
book, we use the OAS as a way to illustrate many of these concepts in practice, though we did 
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not use this particular feature in our case study. We still want you to be aware of micro front-
ends because you will likely see their underlying patterns time and time again. Different layers 
and components of application architecture will always be further abstracted in order to create 
simplified, yet richer, scenarios for developers, engineers, and more. This is something that 
will always grow in popularity, and is a trend to observe and track as we continue evolving our 
application design strategies. 

Core fundamentals of microservices

A fundamental understanding of microservices is vital to understanding the examples used 
throughout this book, as well as the real-life case study. 

First, it’s important to know that microservices are autonomous, independent, and loosely 
coupled services that cover business scenarios and collaborate with each other to form an 
application. As we know, each service will have the back-end code needed to perform a par-
ticular operation. In addition, each service will most likely have an endpoint to communicate 
with other services for entire application functionality. Finally, these services will also have a 
data access layer for maintaining service-specific data in individual databases.

Benefits
We have seen some of the scenarios and understood some of the pains that enterprise archi-
tects, developers, and consultants face when it comes to application architecture. Based on our 
experiences, we divided these benefits into three different categories: 

 ■ Agility

 ■ Scalability

 ■ Technology diversity

Agility
As shown in Figure 1-9, microservices are representative of individual functions within an 
overall application, and as such, business functionality being encapsulated into small targeted 
services is one of the major points of agility. In a traditionally monolithic application, there 
are three layers: presentation layer, business layer, and the data access layer. In this form of 
architecture, all the business logic is packed together in a single layer. With microservices, 
this is abstracted so that each microservice is representative of one component of the overall 
business logic, and a single team can be responsible for building that out. In fact, this attribute 
alone is considered one of the major hallmarks of microservices.

This is a method to ensure logical separation of concerns. When individual teams are 
aligned to microservices, this tends to lend itself to more agile development methodologies 
and ultimately, sections of the app can be changed without regard to issues stemming from 
tightly coupled functions.
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The second benefit in agility is that each service can evolve independently and can be 
deployed frequently. This is of course with the assumption that the service endpoints are well 
defined and agreed upon by the teams building and consuming the services. In the team 
dynamic setting mentioned earlier in this chapter, we noted that each service can be built out 
by different teams because the overall business logic of the application is further abstracted. 
Additionally, there isn’t dependency on the deployment side either, and separate continuous 
integration and deployment pipelines can be set up to make changes to each team’s respective 
service. Ultimately, one team’s work on a particular service will not affect another team’s work. This 
independence ultimately reduces the mean time to delivery from a time-to-market perspective.

This results in development teams being more agile and being able to produce at a high 
velocity. Ultimately, they can focus better on their individual services. Development teams are 
now abstracted from the internal intricacies present when working with other teams from both 
a technological and process standpoint, which means they can be more productive overall. 

Scalability
Microservices are very scalable in relation to an application. They can scale on respective 
demands without affecting overall performance. This occurs because of the abstraction of 
business functions combined with components of the overall architecture that build out the 
ability to handle more traffic and requests, and it has high availability. In fact, scalability was 
the feature that drove the transition from SOA to microservices.

We touched on some of these components earlier. Granular services mean that requests 
are oriented to particular areas within the architecture. However, when we have services 
communicating with others for an end-to-end scenario, communication patterns and 
messaging channels between individual services help streamline logic to complete scenarios. 
For microservices architecture, we have individual communications and patterns such as 
publish-subscribe which makes communication easier and doesn’t throttle the performance 
of the application. 

Also, microservices tend to be containerized in enterprise scenarios and thus can be 
deployed efficiently and frequently with the use of infrastructure to containerize the services  
(like Docker), deploy with scale with Kubernetes, and be able to deploy quickly with pipelining 
and continuous integration and deployment.

Technology Diversity
Often, balance and flexibility are overlooked in developer environments, which gives way to 
some rigid architecture that has specific problems and thus requires specific answers.  

Developers who work on applications that utilize microservices architectures can mix and 
match different programming platforms and storage technologies. This offers great flexibility 
for developers, architects, and consultants to design with almost limitless permutations for a 
final business solution. This flexibility to leverage numerous technologies is an added benefit 
that we see time and time again in enterprise environments. 
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Consequently, applications can be refactored, modernized, or experimented on with new 
languages and practices, one service at a time. However, the introduction of new technology 
into longstanding enterprise environments tends to create new problems and headaches for 
incumbent IT professionals. This signals the start of large-scale refactoring and modernization 
projects, which equate to massive expenditures in time and money. Despite this, microservices 
change the way we think about these initiatives and instead of generating more problems, 
provides solutions for IT managers. 

To understand this better, suppose we started with a monolithic application a decade ago 
to develop a product. In the last 10 years, we find that the application code base has become 
huge, and the database has become monolithic, too. Today, we realized that the technology 
we used earlier is getting outdated and making modifications to the existing application is dif-
ficult as one change will potentially break other pieces of the monolithic application. We want 
to provide a modern user experience to the consumer with new technologies and applications. 
This is where microservices solves these problems. With microservices, because the application 
is segregated into set of different services, the front-end could be a micro front-end or even 
a basic terminal that contains some HTML pages and consumes those services to represent 
application features. The segregation allows teams to independently make improvements to 
their service with minimal impact to the rest of the application. Adding new functionality is not 
only easy, but the adoption of cutting-edge technologies are faster and complementary.

Challenges
We’ve seen some of the fantastic benefits of using microservices architecture, many of which 
have  themes related to componentization and flexibility. On the other hand, many of these 
same benefits pose new challenges for your IT professionals as well.

These challenges include:

 ■ Learning curve

 ■ Deployment

 ■ Interaction

 ■ Monitoring

Learning curve
In the modern enterprise environment, we have seen the shift from a traditional team setting to a 
DevOps-oriented team. A traditional company might have individualized teams of developers, QA 
engineers, an infrastructure team, an information security team, an operations team, and data-
base admins—all in individual silos that have to work together in a waterfall-oriented project. 

Today, agile projects are the norm and teams in a DevOps setting are almost mandatory, 
which means that teams are composed of a smattering of people from different traditional 
teams to make a completely iterative team that is capable of building out and maintaining 
some function.
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However, this means that everyone on that agile team that is assigned to building out a par-
ticular microservice must ramp up based on the different kinds of technology that are selected 
for the final design. 

The number of technologies here poses a problem, where more options cause decision 
fatigue and might exacerbate the learning curve. From the developer perspective, a design 
choice could be made to use Java for the business logic in a particular microservice. If this isn’t 
the primary language that developers are used to building on, then ramping up to learn the 
language from a syntax, semantic, and even a knowledge perspective (considering libraries 
available) could be a significant barrier, which can pose both time and fiscal challenges when 
training time and resources are taken into consideration.

This isn’t a situation that is unique to developers; it can happen to any role within your 
agile team. Let’s take an infrastructure team who is responsible for deploying the underly-
ing components needed to build out the application. The decision on what tool to use for 
infrastructure-as-code (IaC)—such as Terraform, ARM Templates, and so on—and for pipelines 
(build and deployments, i.e. Jenkin, Azure DevOps etc.) could cause delays and expenditures 
out of budget for training. 

Building expertise on many different kinds of technology is difficult for teams in general, 
and it is even more dynamic when working with the microservices architecture. That being 
said, good planning and an understanding of your team’s strengths and weaknesses can 
enable you to make the right decisions to balance the time and money to make the team  
productive when using microservices, despite these challenges. 

Deployment
Agility is one of the big benefits of microservices, particularly because builds and deploy-
ments are faster and more frequent because teams own smaller parts of an overall application. 
However, this bonus comes with difficulty, where one needs a strong focus and expertise in 
automation for faster and frequent deployments.

A manual process to address builds and deployments would be cumbersome and painstak-
ing. Thus, automation is required to reduce this overhead. The problem is deeper here because 
automation of pipelines in continuous integration and continuous deployment requires 
specialized technologies and skills, and automated pipelines are complex to set up based 
on how customized your environment is. Again, this could hinder the potential pros of using 
microservices.

Let’s understand this better by walking through a scenario. With the assumption that the 
code base for your service is already complete, we need to ascertain where we will be storing 
the code. Traditionally, tools such as GitHub provide repos and source code version control, 
which is useful for developers to push code, generate builds, or make improvements to the 
service. Primarily, we want to focus on the integration of these pushes to the repo in kicking 
off the workflow for a build. There are many ways to do this with your tools, but then there is 
a need to create the build using the artifacts created from the code and running through tests 
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to ensure the build is working before moving it over for automatic deployment to your various 
environments. Each layer and step of this is complex and requires a deep understanding of 
multiple roles to work. This is why we see there is a high demand for DevOps and automation 
engineers. Furthermore, the tools that you could use for this end-to-end workflow can all vary 
in capability and have their own associated learning curve. 

That being said, many enterprise IT professionals are observing and reacting to this need by 
seeking out people to help accomplish this in their environments based on incumbent talent, 
hired talent, and consultants they might be bringing in for these particular tasks. Microservices 
aside, to be successful in an agile IT world, we see this as being a scenario you cannot ignore. 

Interaction
Adding on to some of the knowledge base needed to work in microservices are patterns and 
messaging channels. In a microservices architecture, although services are disparate and 
independent, the overall application functionality requires services to talk and communicate 
with one another for triggering of actions and functions to conceive an end-to-end cohesive 
workflow. Therefore, knowing messaging patterns and related technology is vital.In a tradi-
tional monolithic application, all the layers are stacked on top of each other, allowing inter-
facing between all parts of the application. In microservices, each function is a miniaturized 
monolithic application, but now it needs to communicate with several others to complete an 
end-to-end scenario and provide a rich user scenario/experience. Ultimately, seamless com-
munication and independent scaling can only be achieved if services can asynchronously com-
municate with one another. This gave rise to technologies such as service buses and queues to 
help delineate communication between services. 

Let’s walk through an example that will reappear in detail in Chapter 6, which is how we 
implemented interaction with our OAS case study. The goal of this application is to provide 
a one-stop shop for people to auction off items, bid for items, pay once a bid is won, and 
subsequently receive the items they’ve purchased. This is a simplification of the scenario, but as 
you can see, with the moving parts of an application in place, several systems must talk to each 
other. We can see that the auction and bid services must communicate with each other, the 
front-end would have to communicate to all the back-end services, and the payment service 
must communicate with the bid services. 

A service-oriented architecture has a single enterprise bus and doesn’t account for all of 
these scenarios. Thus, a more loosely coupled architecture will require you to learn more pat-
terns (such as request/response and pub/sub) and messaging technologies (such as Apache 
Kafka and RabbitMQ) to be productive. Again, this is a burden on the developer and infrastruc-
ture teams.

However, there are standard ways of learning this information, so although there is a learn-
ing curve, the information you gather will be useful in understanding how to design further 
architecture to handle various interactions. 
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Monitoring
Monitoring is a core component of many developers’ day-to-day jobs. Monitoring is vital for 
understanding the performance of your particular application and helping identity bottle-
necks, and it is used for overall troubleshooting. This is something already ingrained in the 
mindset of most developers. However, monitoring gets more difficult and is a strict require-
ment when it comes to microservices.

There are several choices when it comes to monitoring, but we have found certain tech-
nologies and frameworks that work particularly well for microservices. One of the most useful 
things to do would be to understand the native features available from the cloud provider you 
are using. Today, it is common for many businesses to build modern, cloud-native applications. 
Because of this, there are likely cloud architects on teams that are experts on the monitoring 
capabilities native to your cloud platform. It is extremely valuable to leverage their insights and 
skills to building this piece of the puzzle.

In the OAS, we leveraged Azure and so our application metrics and performance are 
recorded by tools such as Azure Monitor, Log Analytics, Application Insights, and much more. 
Whatever your platform might be, the key to addressing a potential challenge here is being 
informed and intelligent about the different options available to you, whether it be cloud-
native, third-party tools, or open-source tools, to make good decisions for your monitoring 
frameworks.

Moving forward with the microservices architecture, 
open source, and Azure

We hope that this provides a level set for readers to understand microservices architecture 
as we go deeper into our case study and the decisions we’ve had to make with Open Source 
Software (OSS) tooling and using Microsoft Azure.

Moving forward, we will go into greater depth in this book, describing different concepts in 
detail that we’ve touched on in this chapter. Our case study—the OAS shown in Figure 1-9—
will be the context for understanding and using these concepts as we go through this journey 
together.

NOTE It is vital to log each and every detail relevant to these services, and you must 
be able to visualize these results. This involves the use of potential log ingestion/ 
collection engines, visualization tools, alerting systems, and much more. Again, this 
overhead needs to be considered when shifting to this paradigm.
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FIGURE 1-9 The Online Auction System is our real-life case study to help you understand how to use 
microservices architecture to build out your own modern, cloud-native applications

This book’s goals
Ultimately, we hope this book will arm you—whether you are a developer, architect, consul-
tant, or simply someone who wants to dive deeper into this topic—with the information you 
need to better understand the microservices architecture.

After reading this book, we hope you are sufficiently prepared to take on the challenge of 
building this out in a cloud-native setting such as Azure to solve your business need—whether 
it be through modernizing your application, migrating your application workloads, changing 
management, and so on. We hope that the world of microservices and open source can be the 
catalyst for making this a reality for you. Let’s dive in!

Summary

In this chapter we covered:

 ■ The history and evolution of software architecture from monolith all the way to 
microservices

 ■ We compared different architecture models to help you understand the differences and 
basic inner workings of each

 ■ We reviewed the benefits and challenges of microservices to understand the trade-offs 
when it comes to using this architecture

In the next chapter, we will elaborate on our real-life online auction system (OAS) case 
study. We will start by describing the base scenario and business requirements of the OAS and 
will then transition to the feature breakdown. We will discuss some decomposition principles 
and strategies with an emphasis on domain-driven design to demonstrate how we model our 
microservices.
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security, 179
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and decomposition, 31–32
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principles, 24
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automating infrastructure, 

225
OAS (Online Auction Service), 

225–229
security principles, 177

IaS (infrastructure-as-code), 14
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