
Celebrating 30 years!

About This Book
• For .NET developers who use Visual

Studio, have done some JavaScript
 coding, and want to build highly
efficientwebsitesandwebapplications
with Node.js

• Not for beginner programmers

About the Author
David Gaynes has nearly 20 years of
experience as a developer, architect,
and consultant working across the full
software development life cycle. He has
spent more than a dozen years working
with Microsoft and .NET technologies
for clients of all sizes. His clients have
ranged from the Chicago Public Schools
and Seattle Children’s Hospital to diverse
organizations in healthcare, insurance,
finance,andgambling.

Pr
of

es
sio

na
l

spine = 0.2129”

N
ode.js for .N

ET D
evelopers

Buildscalable,high-trafficwebsitesandweb
applications with Node.js
For many .NET programmers, Node.js represents a new way
tobuildhigh-trafficwebsitesandapplications.Nowthere’sa
practical,conciseintroductiontoNode.jsspecificallyforMicrosoft
developers. David Gaynes guides you through the entire Node.js
development process. Using Microsoft Visual Studio examples, he
addresses everything from setting up servers and authorization
through delivering rich CSS pages packed with graphics and data-
driven content. Gaynes clearly explains Node.js’s async model,
coding approach, request/response paradigm, site structure, data
management, security, and more. This quick guide will help you
apply your hard-won .NET skills to Node.js.

Expert guidance showing you how to:
• Choose,organize,andconfigurethetoolsyouneedtobuild

Node.js solutions in Visual Studio
• Apply JavaScript coding practices that help you avoid problems

in Node.js
• Work with callback functions and the Node.js asynchronous

programming model
• Set up a Node.js project and use what you know about MVVM

and MVC patterns
• Control the entire Node.js request/response life cycle
• Establish site structure, routes, and access to static resources
• Managedatathroughcaching,forms,IOtechniques,andfile

 uploads
• Integrate data from Microsoft SQL Server and other databases
• UsePassporttointegratesimple,flexibleauthentication

Node.js for .NET Developers

microsoft.com/mspress

Programming/JavaScript

ISBN 978-0-7356-6298-8

9 7 8 0 7 3 5 6 6 2 9 8 8

5 1 9 9 9
U.S.A. $19.99
Canada $22.99

[Recommended]

G
aynes

David Gaynes

Node.js
for .NET
Developers

Get code samples at:
aka.ms/nodejs/files

9780735662988_nodejs_cover.indd 1 2/19/2015 1:40:51 PM

Node.js for
.NET Developers

David Gaynes

662988.indb i662988.indb i 3/3/2015 1:07:09 PM3/3/2015 1:07:09 PM

PUBLISHED BY
Microsoft Press
A division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2015 by David Gaynes. All rights reserved.

No part of the contents of this book may be reproduced or transmitted in any form or by any means without
the written permission of the publisher.

Library of Congress Control Number: 2015930568
ISBN: 978-0-7356-6298-8

Printed and bound in the United States of America.

First Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://aka.ms/tellpress.

This book is provided “as-is” and expresses the author’s views and opinions. The views, opinions and information
expressed in this book, including URL and other Internet website references, may change without notice.

Some examples depicted herein are provided for illustration only and are fi ctitious. No real association or
connection is intended or should be inferred.

Microsoft and the trademarks listed at http://www.microsoft.com on the “Trademarks” webpage are trademarks
of the Microsoft group of companies. All other marks are property of their respective owners.

Acquisitions and Developmental Editor: Devon Musgrave
Project Editor: Devon Musgrave
Editorial Production: Waypoint Press (www.waypointpress.com)
Technical Reviewer: Marc Young
Copyeditor: Roger LeBlanc
Indexer: Cristina Yeager
Cover: Twist Creative • Seattle

662988.indb ii662988.indb ii 3/3/2015 1:07:17 PM3/3/2015 1:07:17 PM

Contents at a Glance

CHAPTER 1 Setup 1

CHAPTER 2 JavaScript and asynchronous code 11

CHAPTER 3 Coding Node.js 21

CHAPTER 4 Rendering with Node.js 31

CHAPTER 5 Working with site data in Node.js 39

CHAPTER 6 Working with external data in Node.js 47

CHAPTER 7 Working with fi le data in Node.js 57

CHAPTER 8 External authentication in Node.js 63

CHAPTER 9 Putting it all together in Node.js 71

662988.indb iii662988.indb iii 3/3/2015 1:07:17 PM3/3/2015 1:07:17 PM

662988.indb iv662988.indb iv 3/3/2015 1:07:17 PM3/3/2015 1:07:17 PM

 v

Table of Contents

Introduction . vii

Chapter 1 Setup 1

Chapter 2 JavaScript and asynchronous code 11
Working with JavaScript. .12

Object-Oriented JavaScript . 17

Chapter 3 Coding Node.js 21
Using the MVVM pattern .21

Writing the code .23

Chapter 4 Rendering with Node.js 31
Before you start . 31

Using real data. .35

Adding images and styling .37

Chapter 5 Working with site data in Node.js 39
Data from URLs .39

Data from users .42

Chapter 6 Working with external data in Node.js 47

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

662988.indb v662988.indb v 3/3/2015 1:07:17 PM3/3/2015 1:07:17 PM

vi Contents

Chapter 7 Working with fi le data in Node.js 57

Chapter 8 External authentication in Node.js 63

Chapter 9 Putting it all together in Node.js 71
Sockets . 76

Conclusion .77

Index 79

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

662988.indb vi662988.indb vi 3/3/2015 1:07:17 PM3/3/2015 1:07:17 PM

 vii

Introduction

Node.js is a JavaScript-based, highly scalable, open-source collection of tools used
for sophisticated web development. Using your own chosen set of npm modules

woven together under the Node.js paradigm, you can build websites of every imagin-
able type, from e-commerce to interactive games with multiple simultaneous users. In
certain types of web applications, Node.js provides solutions to otherwise challenging
technical issues.

Node.js is at its best in real-time web applications that require high-volume, low
data-intensive processing of requests or in applications that want to employ push
 technology using web sockets connections. Today, the vast majority of web applica-
tions rely on the stateless request-response paradigm. In this paradigm only the client
can initiate communication or data transfer. But with Node.js skills you can quickly
build web applications with real-time two-way connections in which both the client and
server can initiate communication.

Node.js websites are constructed using the standard open web stack composed of
HTML, CSS and JavaScript. It allows for commonly used styling libraries to be added to
your chosen collection of npm processing modules. Find out why Node.js is becoming a
go-to platform for certain uniquely demanding types of web development.

Who should read this book

This book exists to help current .NET web developers learn the essentials of Node.js
web development.

Assumptions
This book expects that you have at least a minimal understanding of .NET development
and object-oriented programming concepts. With a heavy focus on web development,
this book also assumes that you have a basic understanding of ASP.NET, including the
core concepts of web development contained in ASP.NET, such as clients and servers,
HTML, CSS, JavaScript, and HTTP post/get. The book also assumes that you have an IDE
in which to work, specifi cally a fairly recent version of Visual Studio.

662988.indb vii662988.indb vii 3/3/2015 1:07:17 PM3/3/2015 1:07:17 PM

viii Introduction

This book might not be for you if…

This book might not be for you if you have no web programming experience or if your
interests within web programming are primarily to desig elegant user interfaces.

Organization of this book

This book is divided into nine chapters, which are designed to walk you through every
required aspect of doing node.js development. The fi rst few chapters cover the setup
and basics of coding in node.js. The middle section of the book focuses on specifi c
techniques within JavaScript that make life much easier when working with node.js. The
last few chapters bring it all together to build a working application from end to end
including a few special features, such as token-based authentication.

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

 ■ The book includes command line and JavaScript sample code, clearly separated
from standard text

 ■ The book includes references to named open-source modules available on the
web. The fi rst reference to each is in bold text

System requirements

You will need the following hardware and software to complete the practice exercises in
this book:

 ■ One of Windows XP with Service Pack 3 (except Starter Edition), Windows Vista
with Service Pack 2 (except Starter Edition), Windows 7/8/10, Windows Server
2003 with Service Pack 2, Windows Server 2003 R2, Windows Server 2008 with
Service Pack 2, or Windows Server 2008 R2.

662988.indb viii662988.indb viii 3/3/2015 1:07:17 PM3/3/2015 1:07:17 PM

 Introduction ix

 ■ Visual Studio 2010 or later, any edition (web developer for Express Edition products).

 ■ SQL Server 2008 Express Edition or higher (2008 or R2 release), with SQL Server
Management. Studio 2008 Express or higher (included with Visual Studio,
 Express Editions require separate download).

 ■ A computer that has a 1.6GHz or faster processor (2GHz recommended).

 ■ 1 GB (32 Bit) or 2 GB (64 Bit) RAM (Add 512 MB if running in a virtual machine
or SQL Server Express Editions, more for advanced SQL Server editions).

 ■ 3.5GB of available hard disk space.

 ■ 5400 RPM hard disk drive.

 ■ DirectX 9 capable video card running at 1024 x 768 or higher-resolution display.

 ■ DVD-ROM drive (if installing Visual Studio from DVD).

 ■ Internet connection to download software or chapter examples.

Depending on your Windows confi guration, you might require Local Administrator
rights to install or confi gure Visual Studio 2010 and SQL Server 2008 products.

Downloads: Code samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text on your way to building a fully functional web applica-
tion. Fully working examples of the pages used in the application can be found here:

http://aka.ms/node.js/fi les

Follow the instructions to download the Nodejs_662988_CompanionContent.zip fi le.

Using the code samples
The folder created by the setup.exe program contains two kinds of fi les:

 ■ JavaScript fi les These fi les contain the Node. js code that runs your
 application including navigation, page data content, etc.

662988.indb ix662988.indb ix 3/3/2015 1:07:17 PM3/3/2015 1:07:17 PM

x Introduction

 ■ EJS fi les These fi les are used in place of standard HTML fi les for rendering
pages. Although they do contain all necessary HTML, they also contain spe-
cial binding syntax that allows the fi le to interact with its associated node.js
 JavaScript fi le.

Acknowledgments

I’d like to thank the following people: Devon Musgrave and Marc Young for helping me
polish this project and get it to print, Devon again for special efforts connected to the
project, and of course my wife Samantha for her endless support.

Errata, updates,& book support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. You can access updates to this book—in the form of a list of submitted errata
and their related corrections—at:

http://aka.ms/nodejs/errata

If you discover an error that is not already listed, pleasesubmitit to us at the same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software and hardware is not offered
through the previous addresses.For help with Microsoft software or hardware, go to
http://support.microsoft.com.

662988.indb x662988.indb x 3/3/2015 1:07:17 PM3/3/2015 1:07:17 PM

 Introduction xi

Free ebooks from Microsoft Press

From technical overviews to in-depth information on special topics, the free ebooks
from Microsoft Press cover a wide range of topics. These ebooks are available in PDF,
EPUB, and Mobi for Kindle formats, ready for you to download at:

http://aka.ms/mspressfree

Check back often to see what is new!

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://aka.ms/tellpress

We know you’re busy, so we’ve kept it short with just a few questions. Your answers
go directly to the editors at Microsoft Press. (No personal information will be requested.)
Thanks in advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

662988.indb xi662988.indb xi 3/3/2015 1:07:17 PM3/3/2015 1:07:17 PM

662988.indb xii662988.indb xii 3/3/2015 1:07:17 PM3/3/2015 1:07:17 PM

 39

C H A P T E R 5

Working with site data in Node.js

Data comes in many shapes and sizes. It can come from within your application as it works, from
users, or from outside data stores. As with the rest of Node.js, there is an npm package to deal

individually with each of the myriad ways data might be provided to your application.

In general, this data can be broken into three major categories, with each having a couple of
 primary ways that data would likely come to you:

 ■ Data from URLs

• Route/Path pattern

• QueryString

 ■ Data from users

• Form posts

• Field input

 ■ Data from external sources

• Databases (covered in Chapter 6, “Working with external data in Node.js”)

• File systems (covered in Chapter 7, “Working with fi le data in Node.js”)

We’ll walk through these and incorporate them into your Node.js application.

Data from URLs

The fi rst way you’ll have to deal with data in the application relates to data that comes in the URL.
Even our simple example code for rendering an array that isn’t connected to anything contains within
it the idea that we will drill down into some detail about some item on the list. And that item is
 specifi ed within the URL.

In this case, as shown, we opted to build a path that looks like this:

href= 'details/<%= players[i].id%>'>

662988.indb 39662988.indb 39 3/3/2015 1:07:19 PM3/3/2015 1:07:19 PM

40 Node.js for .NET Developers

This path yields the following result or similar as the URL path:

'details/5'

You could keep going and add as many path arguments as you like after the original. Each
 argument is given a name when you declare the path, like this:

router.get('/details/:id')

Or by adding to it, like this:

router.get('/details/:id/:name')

Then, in code, these arguments are accessed through the param collection provided by Express:

req.param("id")

Your get will look like this:

router.get('/details/:id', function (req, res) {
 res.render('details', {
 playerId: req.param("id")
 });
});

When you create your player and then set up the details.js/.ejs view, you’ll have a playerId
 argument to get your hands on and display right away to make sure you have the correct data.

Always remember, as I mentioned earlier, that you must order your code to go from most specifi c
in the path to least specifi c because the engine will render the fi rst matching pattern that it fi nds. The
warning here is this URL coming in as a web request:

http://127.0.0.1:1234/details/1/Payton

This will match the following route:

router.get('/details')

And it will match this route as well:

router.get('/details/:id')

And this route:

router.get('/details/:id/:name')

The second and third routes will never be reached if these are in the wrong order in your code fi le.
To be properly done, these route entries need to be exactly reversed from what is shown here.

Pulling arguments from structured route paths is one way to pass and pull data from the URL. As
an alternative, you could have placed the data into a QueryString. In the real world, this is equally as
likely to be the pattern you choose to follow for building URLs internally to pass data.

662988.indb 40662988.indb 40 3/3/2015 1:07:19 PM3/3/2015 1:07:19 PM

 CHAPTER 5 Working with site data in Node.js 41

You use the QueryString collection to access the URL’s name/value pairs either by index or by
name. In general, it will be just as easy to code a solution that parses its data as with the param
 collection. That being said, it is your choice, and each option works at least equally well.

To implement access to the QueryString, simply reference its collection instead of the param
 collection:

req.query.ID

In this case, as you see, you can actually use dot notation to access the individually named
 members of the collection you specifi ed. The processing engine recognizes the question mark (?) as
the beginning of the collection and the ampersand (&) as the argument separator. Thus, the route
itself is still the same as the base route and the previously mentioned issues with route order in the
fi le are not relevant.

So to process this URL:

http://127.0.0.1:1234/details?ID=1&Name=Payton

the route get function to render this data in all cases would simply be

router.get('/details', function (req, res) {
 res.render('details', {
playerId: req.query.ID,
name: req.query.Name
 });
});

As you can see, you simply take apart the arguments by name one at a time to get to the values
contained in them. Passing an entire object this way would be done by manually taking apart the
object properties to provide the necessary arguments in your assembled link to the details page:

href= 'details?ID=<%= players[i].id%>&Name=<%= players[i].lastName%>'>

Continue on like this in as much depth as required. In real-world practice, this approach is rarely
needed for sending information to your own .ejs fi les. This is because, as you have seen, you can pass
entire objects or even collections of objects in this way:

res.render('survey', {
 players: arrPlayers
 });

For connecting to external resources and assembling a QueryString or a route, or for taking
in connections to your resources from others and thus parsing an inbound QueryString or route,
 working with data directly inside the URL is often your only option for moving that data from place
to place.

662988.indb 41662988.indb 41 3/3/2015 1:07:19 PM3/3/2015 1:07:19 PM

42 Node.js for .NET Developers

Data from users

Another technique that should be familiar to you if your background is classic ASP or MVC is form
posting. With this approach, it is assumed that there is a screen into which a user is entering one or
more fi elds and that the entire collection of those values needs to be quickly and easily transported to
a URL. To implement form posting, instead of using a get function inside of your .js fi le, you need to
use a post:

router.post('/survey', function (req, res) { });

As you can see, post is almost identical in signature to get. Before we get more deeply into it, just
touching on the subject of post as an alternative to get leads us back into taking a brief look at the
four basic actions universally available over an HTTP web connection:

 ■ Get A typical web request

 ■ Post Usually used for sending a collection of data to be processed

 ■ Put Usually used for updating a single record

 ■ Delete As you might have expected, usually used for deleting a single record

A fi le that contains routing information will typically contain at least one of each of the four
 methods just defi ned, like this:

router.get('/survey', function (req, res) { });

router.post('/survey', function (req, res) { });

router.put('/survey', function (req, res) { });

router.delete('/survey', function (req, res) { });

As you have seen, often more than one get function exists within this collection. Within the post
will be the code to get the name/value pairs from the inbound form collection. Once again, the key
to this is having the proper npm package installed. In this case, it is body-parser. So, in your app.js fi le,
make sure you have this line:

var bodyParser = require('body-parser');

You need the variable because you also need to place this line in the same fi le after the bodyParser
declaration just shown to properly format the inbound input:

server.use(bodyParser.urlencoded({ extended: true }));

With those pieces in place, from inside your post function, you’ll be able to access the body
 property of an inbound request by doing this to get your hands on the value you seek:

var sInput = req.body.txtInbound;

662988.indb 42662988.indb 42 3/3/2015 1:07:19 PM3/3/2015 1:07:19 PM

 CHAPTER 5 Working with site data in Node.js 43

In this case, you are looking for a control called txtInbound.

To see this is action, you need to add a few things to your HTML/EJS fi le to activate a form post.
Let’s start with a button and a textbox. Just to do this demonstration, go ahead and drop a couple of
input controls in a separate row below the list control you have in the page:

<table class="table">
<tr>
<td valign="top" align="center">
. . .
</td>
</tr>
<tr>
 <td>
<form action="/survey" method="post">
<input id="txtInbound" name="txtInbound" type="text" />
<input type="submit" />
</form>
 </td>
</tr>
</table>

Notice how you have wrapped your input controls in a form and then specifi ed two important
 attributes—method=’post’ and action=’/survey’—to tell the form how you want it to behave. When
you submit it, you want the form to post its information to the path indicated in the action—in this
case, to your survey page.

With all of this wiring in place, let’s turn our attention back to the actual post function inside your
survey.js fi le to have it respond to your successful form post. Again, we’ll do something more useful
with this later. Just to see it work, let’s have it write any input value to the console:

router.post('/survey', function (req, res) {
 var sInput = req.body.txtInbound;
console.log(sInput);
res.send('posted');
});

At this point, you can pop the page open in a browser. You should see your button control and
your text box. Enter any value, and click Submit. You should see the value you typed appear in the
console window. Don’t forget to respond with something; otherwise, your application will stop
 responding even if the code works as expected.

Typically, this is where you have your CRUD (Create, Update, Delete) interactions with an external
source such as a database. When you return to this code in the next chapter, you’ll be taking that
value and inserting it into a Microsoft SQL Server database.

Now you’ve seen the Node.js versions of standard get and post operations.

However, aside from these basic, good old-fashioned web techniques for moving bits of data from
here to there, inside your Node.js application you do have other options. One of the best of these is
the cache.

662988.indb 43662988.indb 43 3/3/2015 1:07:19 PM3/3/2015 1:07:19 PM

44 Node.js for .NET Developers

To use a cache in Node.js, all you need is the proper npm package. You already installed
 memory-cache when you set up our application so now you just have to do the usual to enable its
use:

var cache = require('memory-cache');

This component works just as you would hope that it would, similar to the .NET cache but without
some of the features. To put a value into the cache, you simply do this:

cache.put('players', arrPlayers);

And to retrieve that value, this is all it takes:

cache.get('players');

This caching component also has an expiration argument, expressed in milliseconds:

cache.put('players', arrPlayers, 5000);

After the time elapses, in this case fi ve seconds, the item will be removed from the cache if it is not
renewed.

One of the most important things to notice here is that my example for storing something in the
cache uses not just an object but an array of objects. The cache will hold anything you can concoct in
JavaScript, and this idea opens the door to the true power of Object-Oriented JavaScript (OOJS) and
sophisticated state management that’s required in commercial applications. It’s a pattern used in .NET
to take advantage of the full power of the programming model.

The Node.js cache does for JavaScript objects what the .NET cache does for business-layer
 objects—it makes them universally accessible. There are two kinds of objects typically stored in the
cache: lookup objects and user objects.

A lookup object is typically a collection of values that rarely, if ever, changes—something like US
state names or US president names. A list of states stored in the database has to be fetched only one
time, and then it can be held in memory after that to allow for quicker access from the application.
This works quickly and easily because there is no concern that data will get out of sync—in other
words, there are no worries that new data will be entered into the database and the cached version
of the data will be out of date. With data that never changes, such as US states, that problem is not a
problem. A routine that re-created that data once every four or eight years is also not a big issue.

Of course, this design also works for lookup data that changes more regularly. You simply have
to account for those changes in memory as well as in the database—for example, by updating the
collection in memory on the same button click that allows for a database update. This is one way to
greatly improve the performance of your application.

662988.indb 44662988.indb 44 3/3/2015 1:07:19 PM3/3/2015 1:07:19 PM

 CHAPTER 5 Working with site data in Node.js 45

In general, interaction with the database should be avoided except in cases where it simply can’t
be, such as for CRUD operations. Most other functions that people typically perform in the database,
such as fi ltering and joining, can be done much more quickly by using server memory.

Picture a software application as the city of San Francisco, and imagine the only four bridges over
the bay represent the database. No matter how many creative ways you navigate to one of those
bridges, you’ll be slammed with all the rest of the city traffi c doing the same. Those are the only
routes. So everyone has to use them. If you keep your database interactive operations to the bare
minimum required, traffi c will fl ow better all over your “city.” That’s the whole idea behind using as
much cached data as you possibly can.

A user object holds all the information specifi c to a site user. That can be data from the system
itself, such as profi le information containing permissions, and it can be state data that is tracking cur-
rent user behavior. Both kinds of information will typically be required all throughout the application,
and the cache is the perfect tool to use for allowing it.

Only one difference is required in the way you manage the cache. For a lookup object, this will
work:

cache.put('leagues', arrLeagues);

However, for a user-specifi c object, you need an identifi er that ties that specifi c object to that and
only that specifi c user. The standard technique for doing so is to create a globally unique identifi er
(GUID) that you associate with that user, most often on login. Then you simply prepend the GUID to
your cache entry like this:

cache.put(GUID + 'User', myUserObj);

You should have that GUID for that user included in the QueryString on every request, like this:

http://127.0.0.1:1234/details?GUID=1QW3456tr4RTYUXXYiujjii45UY89898TRFReded

That way, you can then pull it out to get access to your user object in the cache, like this:

var sGUID = req.query.GUID;
var myObj = cache.get(sGUID + 'User');

You have a rock-solid, state management strategy in place that works for every page of your
 application, with code consistency, in exactly the same way.

As I mentioned, this caching technique is the only truly viable solution for all web scenarios, even
in the world of .NET. If you don’t believe it, try to pass a Session variable across a protocol change—
that is, take one of your Session values and pass it from HTTP to HTTPS. Good luck! There’s no way
that coding technique will ever work. Sessions do not cross protocol boundaries. You can, and want
to, create Session equivalents using the login GUIDs, caching, and OOP, but that’s not nearly the same
thing as using the Session object.

662988.indb 45662988.indb 45 3/3/2015 1:07:19 PM3/3/2015 1:07:19 PM

46 Node.js for .NET Developers

You can even take the idea one step further for web-farm scenarios by serializing the data in your
objects to external data stores. Serialization turns the state of an object into text. So you serialize to
store the data and deserialize to retrieve it. When a request comes in, you check the cache in that
specifi c server for the GUID-related user object. If it isn’t there, you pull the user state from the ex-
ternal store according to the GUID in the QueryString and reassemble it into objects right there. And
then you are back to normal code operations. One technique, all scenarios, infi nitely scalable.

Now you use a tech interview question to separate the wheat from the chaff—no .NET developer
worth his salt will ever go near Session. Like form posting, it’s technology from the 1990s, and .NET
gave you much better ways to do the same things starting in this century, and it still does. By being
well-versed in those best practices, you’re fully prepared to implement the same architecture in
Node.js.

At this point, you’re effectively moving your data from page to page. Next let’s connect to some
external data and see what you can do with that.

662988.indb 46662988.indb 46 3/3/2015 1:07:19 PM3/3/2015 1:07:19 PM

662988.indb 80662988.indb 80 3/3/2015 1:07:20 PM3/3/2015 1:07:20 PM

Index

 81

? (question mark), 41
& (ampersand), 13, 41

A
ampersand (&), 13, 41
app.js fi les, 23

body-parser, attaching, 42
cache references, 54
class functions, 54
class references, 73
enabling Embedded JavaScript package, 31
fi le locations, 25
loading objects into cache memory, 72–73
login page, referencing, 64
Passport package, referencing, 64
socket servers, enabling, 77
static references to, 52
upload routes, 58–59

Application object, 29
applications

code layers, 22
components of, 22
login, 63–69

arrays
creating, 35
declaring, 36–37
displaying, 73–74
fi ltering, 74–75
manipulating, 74–75

arr.pop function, 74
arr.shift function, 74
arr.unshift function, 74

ASP.NET, 32–33
asynchronous model of code, 15, 73
authentication, 63

confi guring, 64–65
Facebook authentication, 67–68
Google authentication, 66–67
OAuth 2.0, 68–69

B
back-end databases, 47
body-parser package, 6, 42
Bootstrap (and Bower) package, 7–9

linking to pages, 37
location, 37
table class reference, 38

bower_components folder, 21
busboy package, 58–59
buttons, creating, 58

C
cache, 43–44

application-wide data, 48
expiration argument, 44
GUIDs, 45
loading objects into, 72–73
lookup objects, 44
management, 45
referencing, 54
universal access to objects, 44
user objects, 44–45
values, inputting and retrieving, 44

662988.indb 81662988.indb 81 3/3/2015 1:07:20 PM3/3/2015 1:07:20 PM

82

callback functions, 14–16
Cannot Get errors, 52
cascading style sheets (CSS), 22
chat.htm pages, 77
child classes, adding functions and
properties, 19
child/prototype setup, 18–19
class functions, 54
class references, 73
code

asynchronous model, 15, 73
documentation, 16
layers, 22
MVVM pattern, 21–22
order of, 40
using a template, 33–34

code encapsulation, 27
code structure, 22
collections

looping through, 49
populating for display, 54
receiving, 49, 51
updating, 44

concatenation, 12–13
core errors, 63
createReadStream method, 60
createServer function, 16
createWriteStream method, 59–60
credentials, checking, 65. See also login
CRUD (Create, Update, Delete) interactions,
43, 45

D
data

from external sources, 39. See also
databases
fetching, 49
fi le data, 57–61
serializing, 46
site data, 39–46
from URLs, 39–41
from users, 39, 42–46

databases, 39, 47–55
back-end, 47

row-by-row access, 55
tables, creating, 49
updating, 44–45

data transfers, pausing, monitoring,
resuming, 59
data version, 60
declarations, 13
delete function, 42
__dirname value, 25
displaying fi le data, 58
done function, 65

E
EJS engine, associating fi les with, 31
.ejs fi les, 31

connecting to .js fi les, 35
form posting, activating, 43
input fi elds, adding, 51
and .js fi les of same name, 31–32
rendering list data, 35

EJS package, 7
Embedded JavaScript package, 31
encapsulation, 27
end function, 16, 28, 60
error handling, 48
errors

Cannot Get errors, 52
core errors, 63
name mismatches, 32
server malfunctions, 32

exports property, 27
Express Node.js projects, 3
Express package, 6

as backbone, 16
fs object, 57, 59–61

external authentication, 63–69
external data, 47–55
external data stores. See also databases

getting data from, 39
serializing data to, 46

callback functions

662988.indb 82662988.indb 82 3/3/2015 1:07:20 PM3/3/2015 1:07:20 PM

 83

F
Facebook authentication, 67–68
Facebook Developers, 67
fetching

data, 49, 73
rows, 53

fi eld input, 39
fi le copy operations, 60
fi le data, 57–61

displaying, 58
metadata, 60–61
reading, 58
strings, cleaning, 61
total size, 60–61
transferring, 58
writing to fi le, 57

fi le systems, 39
fi le transfers, managing, 59–60
fi le uploads, 57
fi ltering arrays, 74–75
fi ndByUsername function, 65
forEach function, 75
form posting, 39, 76

activating, 43
implementing, 42

fs object
createReadStream method, 60
createWriteStream method, 59
readFile method, 57
statSync function, 61
writeFile method, 57

function declarations, 13
functions, 14, 17

adding, 19
callbacks, 14–16
overriding, 18

Functions, 17

G
/g argument, 61
get function, 26, 42

creating, 52
fetching data, 49

with path arguments, 40–41
rendering code, 35
render method, 32

GIT, 9
globally unique identifi ers (GUIDs), 45
Google

authentication, 66–67
Passport package, 66

H
HTML, creating buttons, 58
HTML fi les

form posting, activating, 43
Views, 22

HTML tags in templates, 34
http.createServer(); function call, 14
HTTP web connection actions, 42
Hungarian notation, 13

I
images

adding to page, 37
path, setting, 25–26
styling, 38

indexOf function, 74
inheritance, 19
input controls, wrapping in forms, 43
insert operations, 49–51

J
JavaScript, 12–17. See also Object-Oriented
JavaScript

arrays, manipulating, 74–75
bitwise operators, 13
classes (objects), 17
concatenation, 12–13
declarations, 13
function declarations, 13
functions, 14
Functions and functions, 17
module references, 14

 Local login strategy

662988.indb 83662988.indb 83 3/3/2015 1:07:20 PM3/3/2015 1:07:20 PM

84

JavaScript (continued)
non-strong-typing, 13–14
object-oriented, 17–20
object referencing, 17
optimized, 17
rendering, 34. See also rendering
require function call, 14
this keyword, 18
types, 13

.js fi les
code running from, 58
connecting to .ejs fi les, 35
and .ejs fi les of same name, 31–32
passport-local, referencing, 64
post function, 43
routes and function objects in, 27

JSON code, converting to OOJS format,
36–37

L
lastIndexOf function, 74
length method, 60
listen function, 16
local fi le system, mapping, 25
Local login strategy, 64–65
login

credentials checking, 65. See also
authentication
done function, 65
Local strategy, 64–65
security, 63
view and view model, 63–64

lookup objects, 44

M
match function, 61
memory-cache package, 6, 29

enabling, 44
Microsoft SQL Server, 47. See also SQL Server
middleware, 63
Models, 21–22
Model-View-Controller (MVC) pattern, 21–22

Model-View-ViewModel (MVVM) pattern,
21–22
module objects, 26
MySQL, 47

connection confi guration, 49
data inserts and results, 55
installing, 48

MySQL package, 47–48

N
name mismatches, 32
name/value pairs

accessing through QueryString collection,
41
Application object, 29
custom, 29

.NET built-in libraries, 5
node.exe, 23
Node.js

coding, 21–29
command prompt, 3
confi guration, 25
connecting to Visual Studio 2010, 3–5
core, 16
downloading, 1
fi le I/O, 25
installing, 2
MVVM pattern, 22
setup, 1–9

NodeJS.org
download page, 1
home page, 11

node_modules folder, 21
non-strong-typing, 13–14
npm command, 7–8
npm package-management application, 3
npm packages

authentication, 6
basic/core, 6
database access, 6
download location, 5, 7
installing, 7–8
IO/fi le upload, 6

JavaScript

662988.indb 84662988.indb 84 3/3/2015 1:07:20 PM3/3/2015 1:07:20 PM

 85

rendering, 6
statement/management, 6
support packages, 5

O
OAuth, 63
OAuth 2.0, 68–69
Object-Oriented JavaScript (OOJS), 17–20.
See also JavaScript

best practices, 20
converting JSON code to, 36–37
Node.js cache, 44
SQL functions, connecting, 53

objects, 71
function declarations, 14, 17
outside data for, 19
properties, 13
properties, setting to forEach loop values,
54

OpenID, 63, 66
optimized JavaScript, 17
overrides, 18

P
pages

arguments, supplying, 34
data, supplying, 34
images, adding, 37
routing to, 26
separating functionality, 59
styling, 37–38

param collection, 40
passport.authenticate function, 65, 67
passport-http-bearer package, 68
passport-local package, 64

Passport package, 7, 63
Google fl avor, 66
req.authInfo property, 69
strategies, 63, 65

path arguments, 39–40
path-recognition tree, 27

paths, responses for, 28
performance

asynchronous processing and, 15
optimized JavaScript and, 17

pipe function, 59
postbacks, 33
post function, 42–43

body properties, accessing, 42
connection confi guration, 48
hard-coded credentials, 48
of logins, 64
receiving, 51

post handlers, 51
projects

Express versions, 3
npm package references, adding, 23
server, building, 23
setup, 31
use strict declaration, 23

properties
adding, 19
declaring, 18
as methods, 18
of objects, 13

property/variable values, 34
protocol boundaries, crossing, 45
prototype

base class, 18–19
child/prototype setup, 18–19

push function, adding to arrays, 74
put function, 42

Q
QueryString collection, 39

arguments from, 40–41
GUIDs in, 45

question mark (?), 41

R
readFile method, 57
reading data, 58–60
redirect method, 28

 redirect method

662988.indb 85662988.indb 85 3/3/2015 1:07:20 PM3/3/2015 1:07:20 PM

86

redirects, 28, 55
Regular Expression pattern, 61
relational database systems, 47
relative web fi le paths, 26
rendering, 31–38

arguments, 34
data, 34
with Object-Oriented JavaScript, 36–37
pages, 75–76
titles, 34
views, 26–27, 64

render method, 27–28
req.authInfo property, 69
req objects, 26
Request function

redirects, 55
rendering results in, 51

request objects, 16
require function call, 14
require references, 26
res objects, 26
response objects, 16, 27–28
resultsets, separating into columns, 54
route entries order, 40
Route/Path pattern, 39
Router method, 26
routing, 16

action methods available, 42
globalizing router and routes, 52
to login, 65
post handler, 51
references, adding, 51
return objects, 28
upload routes, 58–59

rows, selecting and iterating, 53

S
searching with match function, 61
sending data, 59
send method, 27–28
serialization and deserialization, 46

server.get method, 29
server.listen method, 23, 25, 29
server malfunctions, 32
server memory, updating data in, 44–45
servers, building (chained and unchained),
23–24
server.set method, 25, 29
server.use method, 26, 29
single sign-on, 63, 66–67
site data, 39–46
site login, 63. See also login
site navigation, 25–27
site users, 45
Socket.io npm package, 76
socket.on function, 77
sockets, 76–77
split function, 61
SQL Express, 47
SQL Server, 47

interacting with, 48
parameters, 49
rows, selecting and iterating, 53

Start menu, Node.js command prompt, 3
state management, 45
statSync function, 61
stored procedures, 47
strategies, 63

Facebook authentication, 67–68
Local Authentication, 64–65
OAuth 2.0, 69
validation functions, 65

streaming fi les, 59–60
stream.pipe function, 59
strings, cleaning, 61
structured route paths, arguments from,
40–41
styling

images, 38
pages, 37

substring function, 61
synchronizing data transfers, 59

redirects

Z02I662988.indd 86Z02I662988.indd 86 3/3/2015 2:14:14 PM3/3/2015 2:14:14 PM

 87

T
tables, creating, 49
tedious package, 7

enabling, 47–48
referencing, 73
requiring, 50

templates, 33–34
for rendering list data, 35
syntax, 34

this keyword, 18
toLowerCase function, 61
toUpperCase function, 61, 75
transferring fi le data, 58
trim function, 61
types, 13

U
upload buttons, creating, 58
upload routes, 58–59
URLs, data from, 39–41
user data, 39, 42–46
user input, recording, 76
user interface, adding fi elds, 51
user objects, 44–45
user profi les, 66
use strict statement, 13, 23
using a template, 33–34

V
var declaration, 12
“View_Model” fi le, 31
Views, 21–22

path, setting, 25–26
rendering, 26–27, 64
require reference, 26

Visual Studio
CSS folder, 22
Express version plugin, 3
Images folder, 22
.js fi les, creating, 25
project setup, 21
View, creating, 25
View folder, 22
Visual Studio 2010, 3–5
Visual Studio 2012, 3

W
weak typing, 19
web applications working directory, 5
Web Forms, 32–33
web requests, asynchronous processing, 15
writeFile method, 57
writeHead function, 16
writing to fi les, 57

 writing to fi les

Z02I662988.indd 87Z02I662988.indd 87 3/3/2015 2:14:29 PM3/3/2015 2:14:29 PM

662988.indb 88662988.indb 88 3/3/2015 1:07:20 PM3/3/2015 1:07:20 PM

About the author

David Gaynes has nearly 20 years of experience as a developer, architect, and
 consultant working across the full software development life cycle. He has spent more
than a dozen years working with Microsoft and .NET technologies for clients of all sizes.
His clients have ranged from the Chicago Public Schools and the Children's Hospital in
Seattle to diverse organizations in healthcare, insurance, fi nance, and gambling.

Z03B662988.indd 89Z03B662988.indd 89 3/3/2015 1:55:47 PM3/3/2015 1:55:47 PM

	Table of Contents
	Introduction
	Chapter 5: Working with site data in Node.js
	Index
	About the author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 244
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 244
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck true
 /PDFX3Check false
 /PDFXCompliantPDFOnly true
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (Creates PDF/X-1a:2001 compliant files using Quebecor World's suggested Acrobat Distiller Settings modified for MS Learning. Created PDF documents can be opened with Acrobat 4.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks true
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions false
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Print Quality - QW)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 12.240000
 /MarksWeight 0.125000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed true
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

