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Foreword

L ike many others, I am a firm believer in using tools to expand our  understanding 
of how systems really work. In fact, I began my career as a performance tools 

 developer. My boss at that time had many simple sayings; among them was one of my 
favorites, “Our team is only as good as our people and our people are only as good as 
our tools.” As a manager, I’ve made it a priority to ensure we dedicate many of our top 
engineers to tools development and I have always encouraged using tools to teach and 
grow engineers.

Teaching books such as Tarik’s are meant to help improve the productivity, 
 understanding, and confidence of others. Being an individual who has had both a 
lifelong passion for tools and learning, as well as someone who has spent more than a 
decade and a half working in Windows, it is an honor and a pleasure for me to write the 
foreword to Tarik’s insightful book.

For decades, the Windows team has worked tirelessly to improve the core 
 capabilities of the platform and to make it more suitable for increasingly diverse 
 hardware configurations and software stacks. This hard work has paid off; Windows 
today is the preeminent platform for developers, consumers, and businesses across 
the globe. With more than 1 billion PCs and customers, Windows is both the market- 
leading server and client computing platform. Variants of Windows run on small 
form-factor mobile devices, within embedded intelligent systems, on uniform and 
 non-uniform (NUMA) memory architectures, on the XBOX gaming console, and on 
single CPU systems as well as those with hundreds of processors. Windows runs in 
clustered configurations with failover capabilities and sits atop hypervisors and Virtual 
Machines. And of course, Windows is in the cloud.

Enormous platform success and diversity can be accompanied by an equally 
 enormous and diverse set of technical challenges. Thousands of engineers at  Microsoft, 
and tens to hundreds of thousands outside of Microsoft, are involved in building, 
debugging, and troubleshooting a multitude of diverse configurations and solutions. 
To understand issues in a vastly diverse problem space, foundational tools, techniques, 
and concepts are essential.
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To that end, Tarik has done an excellent job in detailing how a set of key 
 foundational Windows tools work. In detailing these tools, Tarik succeeds in expanding 
the reader’s awareness of key operating system concepts, architectures, strengths, and 
limitations. With the concepts understood and the tools mastered, readers can expect 
to be able to tackle all types of performance and debugging challenges. I believe Tarik’s 
book will become a staple for a broad set of individuals, from novices to experts.

Michael Fortin, Ph.D. 
Distinguished Engineer, Windows Fundamentals 

Microsoft Corporation



  xvii

Introduction

One exciting aspect of software programming is that there are usually many ways 
to accomplish the same goal. Unfortunately, this also presents software engineers 

with unique challenges when trying to make the best design or implementation choice 
for each situation. Experience plays a major role, and the learning process is often 
progressive as one learns to avoid past mistakes. Sadly, though, experience is often 
a variable concept. I have met several software engineers who, after spending a very 
long time working on an area, still lacked a basic understanding of how it really worked 
beyond the repetitive day-to-day tasks they grew accustomed to. I have also met others 
who have perfected their craft in a field after only a few years of working experience.

This book introduces a few techniques for methodically approaching software 
development problems primarily using the two “Swiss Army knives” of expert Microsoft 
Windows developers—namely, the Windows debuggers (WinDbg) and the Windows 
Performance Toolkit (Xperf). By focusing on why features and components work the 
way they do in the system rather than simply on how they work or what they do, this 
book tries to accelerate the process of learning by experience and to minimize the 
number of mistakes made when approaching new problems. An important part of the 
process is learning to compare and contrast with known solutions to existing ones. 

Software engineering is still inherently a practical science. (Some might even argue 
it’s an art rather than a science.) While there is certainly no substitute for real experi-
ence, the topic can definitely be approached with the same methodical persistence that 
works so well for other scientific disciplines. In fact, this approach works even better in 
software engineering because all behaviors can be explained rationally. After all, it is 
all just code—whether it’s your own code or code written by others that you end up 
consuming in your software—and code can always be traced and understood.

Although this book deals with several architectural pillars of the Windows  operating 
system as part of its debugging and tracing experiments, my main goal in writing it 
is less about covering those details and more about encouraging and developing this 
critical mindset. I hope to demonstrate how this approach can be used for solving a few 
interesting problems as part of this book, and that you continue to systematically apply 
debugging and tracing as you expand your learning beyond the topics directly covered 
here.

This book is not really about teaching native or managed code programming, either, 
although you’ll find several good coding examples in the companion source code. 
Because it takes an inside-out look at how to explore the system using debugging 
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and tracing tools, this book will probably appeal more to software engineers with the 
desire to understand system internals rather than those with a need to quickly learn 
how to make use of a specific technology. However, I believe the approach and mindset 
it aspires to inculcate are applicable regardless of the technology or level of expertise. 
In fact, contrary to what many think, the higher the level of technology involved, the 
harder it becomes to grasp what goes on behind the scenes and the more expertise 
is needed in order to investigate failures when things inevitably go awry and require 
debugging skills to save the day. In pure C, for example, a call to malloc is just that: a 
function call. In C++, a call to the new keyword is emitted by the compiler as a call to 
the new operator function to allocate memory for the object, followed by code to con-
struct the object (again, emitted by the compiler to possibly initialize a virtual pointer 
and invoke the constructors of the base classes, construct member data objects, and 
finally invoke the user-provided constructor code for the target leaf class). In C# (.NET), 
things get even more involved, because a one-line call to the new keyword might 
involve compiling new code at runtime, performing security checks by the .NET execu-
tion engine, loading the modules where the target type is defined, tracking the object 
reference for later garbage collection, and so on.

who should Read This Book

This book is aimed at software engineers who desire to take their game to the next 
level, so to speak, and perfect their mastery of Windows as a development platform 
through the use of debugging and tracing tools.

assumptions
Readers should have basic familiarity with the C/C++ and C# programming languages. 
A basic knowledge of the Win32 and .NET platforms is helpful, but not strictly required, 
because this book makes every effort to introduce basic concepts before expanding 
into more advanced topics.

organization of This Book

This book is divided into three parts:

■■ Part 1, “A Bit of Background,” provides a brief overview of Windows develop-
ment frameworks and the layers in the operating system that support them. This 
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basic knowledge is important to have when trying to make sense of the data 
surfaced by debugging and tracing tools. 

■■ Part 2, “Debugging for Fun and Profit,” covers the architectural foundations of 
debuggers in the Windows operating system. It also presents a number of ex-
tensible strategies that will help you make the most of the Windows debuggers. 
In addition, this part also shows how to use the WinDbg debugger to better 
understand system internals by analyzing the important interactions between 
your code and the operating system. 

■■ Part 3, “Observing and Analyzing Software Behavior,” continues this theme. It 
presents the Event Tracing for Windows (ETW) technology and illustrates how to 
leverage it in debugging and profiling investigations. 

■■ Finally, you’ll find two short appendices at the end of the book that recap the 
most common debugging tasks and how to accomplish them using WinDbg.

The table of contents will help you locate chapters and sections quickly. In addition, 
each chapter starts with a list of the main points covered in the chapter, and concludes 
with a summary section. You can also download the source code for all the experiments 
and examples shown throughout the book.

Conventions in This Book

This book presents information using conventions (listed in the following table) 
 designed to make the information readable and easy to follow:

Convention Meaning

Sidebars Boxed sidebars feature additional bits of information that might be helpful 
for a given subject.

Notes Notes provide useful observations related to the content discussed in the 
main text.

Inline Code Inline code—that is, code that appears within a paragraph—is shown in italic 
font.

Code Blocks Code blocks are shown in a different font to help you distinguish code from 
text easily. Important statements appear in bold font to help you focus on 
those aspects of the code.

Debugger Listings Debugger listings are shown in a different font, and important commands are 
bolded to highlight them. The listings are also often prefixed with the out-
put from the standard vertarget debugger command, which displays the OS 
 version and CPU architecture where the experiment was conducted.

Function Names Function names are sometimes referenced using their WinDbg symbolic 
names. For example, kernel32!CreateFileW refers to the CreateFileW Win32 
API (“W” for the Unicode flavor) exported by the kernel32.dll module.
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system Requirements

You will need the following hardware and software to follow the experiments and code 
samples in this book:

■■ operating system Windows Vista or later. Windows 7 (or Windows Server 
2008 R2) is highly recommended.

■■ hardware Any computer that supports the Windows 7 operating system (OS) 
requirements. Except for the live kernel debugging experiments, a second com-
puter to serve as a host kernel-mode debugger machine is typically required for 
kernel debugging.

note The target and host don’t really need to be separate physical machines. 
A common kernel debugging configuration—detailed in Chapter 2, “Getting 
Started”—is to run the target machine where you conduct the experiments as 
a Windows 7 virtual OS on a Windows Server 2008 R2 physical host computer, 
and run the kernel debugger in the host OS.

■■ hard disk 1 GB of free hard-disk space to download and save the Windows 
Software Development Kit (SDK) and Driver Development Kit (DDK) ISO images. 
40 MB of free hard-disk space to download and compile the companion source 
code. An additional 3 GB is required for installing Microsoft Visual Studio 2010.

■■ software The following tools are used in the debugging and tracing examples 
shown throughout this book:

• Version 7.1 of the Windows 7 SDK, which can be downloaded from the 
 Microsoft Download Center at http://www.microsoft.com/download/en 
/details.aspx?id=8442. Both the Windows Debuggers (WinDbg) and Windows 
Performance Toolkit (Xperf) are part of this SDK.

• The Application Verifier tool, which can also be downloaded from the 
 Microsoft Download Center at http://www.microsoft.com/download/en 
/details.aspx?id=20028. 

• The System Internals suite of developer tools, which can be downloaded 
from http://technet.microsoft.com/en-us/sysinternals/bb842062.

• Visual Studio 2010, any edition (excluding the free, stripped-down Express 
edition). The Visual Studio Ultimate edition is preferred because some 
 advanced features, such as static code analysis and performance profil-
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ing, are not supported in other editions. The 90-day, free trial version of 
 Visual Studio offered by Microsoft, which can be downloaded at  
http://www.microsoft.com/download/en/details.aspx?id=12187, should suffice.

• The Windows 7 Driver Development Kit (DDK) is used to compile the 
 companion source code and can also be downloaded from the  Microsoft 
Download Center at http://www.microsoft.com/download/en/ 
details.aspx?id=11800.

Code samples

Most of the chapters in this book include experiments and examples that let you 
 interactively try out new material introduced in the main text. The programs used in 
these experiments can be downloaded from the following page:

http://www.microsoftpressstore.com/title/9780735662780

Follow the instructions to download the Inside_Windows_Debugging_Samples.zip 
file.

Installing the Code Samples 
Follow these steps to install the code samples on your computer so that you can use 
them with the experiments and examples provided in this book:

1. Unzip the Inside_Windows_Debugging_Samples.zip file that you downloaded 
from the book’s  website into a folder named \Book\Code. 

Warning Do not use directory names with spaces in the path hierarchy that you 
choose to download the samples to. The DDK build environment, which will be 
 described shortly in the “Compiling the Code Samples” section, will fail to compile the 
source code if you do. It is recommended that you use \Book\Code as the root of the 
source code because this is the assumed location used when referencing the programs 
in the main text. The samples in the companion source code are organized by chapter, 
so there should be a folder for every chapter under this root path location.

2. If prompted, review the displayed end user license agreement. If you accept the 
terms, select the accept option, and then click Next.

http://www.microsoftpressstore.com/title/9780735662780
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note If the license agreement doesn’t appear, you can access it from the 
same webpage from which you downloaded the Inside_Windows_Debugging_
Samples.zip file.

running the Code Samples
The code samples are organized by chapter and are referenced in the book main text by 
their respective directory path locations to help you find them easily.

Local Administrator rights are required by some sample programs. In Windows 
Vista and later, a command prompt must be launched as elevated in order to have full 
 administrative privileges even when the user account is a member of the local built-in 
 Administrators security group. To do so in Windows 7, for example, you need to right-
click the Command Prompt menu item in the Windows Start menu, and select Run As 
Administrator, as shown in the following screen shot:

Compiling the Code Samples 
The supporting programs used in the experiments presented in the book main text fall 
into three categories:

■■ C++ samples The binaries for these programs are deliberately omitted from 
the downloadable ZIP file. When you compile these code samples  locally, 
 WinDbg  locates their symbols and source code files automatically. So the 
 experiments presented in the early chapters of this book will “just work” in this 
configuration, without needing to specify the source and symbol locations 
 explicitly in WinDbg. The steps to compile all the native C++ code samples at 
once are included later in this section.
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■■ C# ( .nET) samples For convenience, the compiled .NET programs are 
 included in the downloadable ZIP file. You can use them as-is and you won’t lose 
much, given WinDbg doesn’t support source-level .NET debugging, but you can 
also follow the instructions included in the following section to recompile them 
if you prefer.

■■ Javascript and visual Basic samples These scripts are interpreted by the 
corresponding scripting engines and do not require compilation.

Compiling the .neT Code Samples
Compiling the .NET code samples from the companion source code requires version 4.0 
of the Microsoft .NET Framework or later. Though this version isn’t installed by default 
on Windows 7, .NET Framework 4.0 gets installed by many other dependent programs, 
such as Visual Studio 2010. You can also download and install a standalone version from 
the Microsoft download center at http://www.microsoft.com/download/en 
/details.aspx?id=17851.

Each C# code sample from the companion source code will have a helper 
 compilation script under the same directory. This script uses the .NET 4.0 C# compiler 
directly and is easy to invoke, as illustrated in the following command:

C:\book\code\chapter_04\LoadException>compile.bat

If this script fails to find the C# compiler, you should verify that you’ve installed .NET 
4.0 in the default directory location where this script expects it to exist. If .NET 4.0 exists 
but was installed to a different location on your system, you need to modify the script 
and provide that path instead.

Compiling the C/C++ Code Samples
You can compile the C/C++ code samples from the companion source code using the 
Windows 7 Driver Development Kit (DDK) build tools. The following steps detail this 
process. I strongly recommend that you complete these steps before you start read-
ing, because you’ll need the code samples to follow the experiments shown later in this 
book.

1. Download the Windows 7 DDK ISO image from the Microsoft Download Center 
at http://www.microsoft.com/download/en/details.aspx?id=11800, and save it to 
your local hard drive. Set plenty of time aside for this download if you have a 
slow Internet connection; the DDK ISO file is over 600 MB in size.
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2. After the download is complete, mount the saved ISO file into a drive letter. There 
are several free tools for mounting ISO images on Windows. Virtual Clone Drive, 
which you can find on the Internet, is good freeware that works well both on 
Windows Vista and Windows 7. With that freeware installed, you should be able to 
right-click the ISO file and mount it, as shown in the following screen shot:
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3. Double-click the newly mounted drive to kick off the DDK setup program, as 
shown here:

4. Select the Full Development Environment components from the DDK. 

5. Then Install the components to the C:\DDK\7600.16385.1 directory, as shown in 
the following screen shot. This step will take several minutes to complete.
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6. You can now unmount the DDK drive by right-clicking the mounted drive letter 
and selecting the Unmount menu action. This concludes this one-time installa-
tion of the Windows DDK build tools.

7.  To build x86 binaries, first start a command prompt window and type the 
 following command:

C:\DDK\7600.16385.1>bin\setenv.bat c:\DDK\7600.16385.1

8. You can then build all the native code samples at once. Simply navigate to the 
root directory that you extracted the companion source code to and issue the 
following command. It should take only a minute or so to build all the C/C++ 
code from the companion source code:

C:\book\code>bcz
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Introduction

One exciting aspect of software programming is that there are usually many ways 
to accomplish the same goal. Unfortunately, this also presents software engineers 

with unique challenges when trying to make the best design or implementation choice 
for each situation. Experience plays a major role, and the learning process is often 
progressive as one learns to avoid past mistakes. Sadly, though, experience is often 
a variable concept. I have met several software engineers who, after spending a very 
long time working on an area, still lacked a basic understanding of how it really worked 
beyond the repetitive day-to-day tasks they grew accustomed to. I have also met others 
who have perfected their craft in a field after only a few years of working experience.

This book introduces a few techniques for methodically approaching software 
development problems primarily using the two “Swiss Army knives” of expert Microsoft 
Windows developers—namely, the Windows debuggers (WinDbg) and the Windows 
Performance Toolkit (Xperf). By focusing on why features and components work the 
way they do in the system rather than simply on how they work or what they do, this 
book tries to accelerate the process of learning by experience and to minimize the 
number of mistakes made when approaching new problems. An important part of the 
process is learning to compare and contrast with known solutions to existing ones. 

Software engineering is still inherently a practical science. (Some might even argue 
it’s an art rather than a science.) While there is certainly no substitute for real experi-
ence, the topic can definitely be approached with the same methodical persistence that 
works so well for other scientific disciplines. In fact, this approach works even better in 
software engineering because all behaviors can be explained rationally. After all, it is 
all just code—whether it’s your own code or code written by others that you end up 
consuming in your software—and code can always be traced and understood.

Although this book deals with several architectural pillars of the Windows  operating 
system as part of its debugging and tracing experiments, my main goal in writing it 
is less about covering those details and more about encouraging and developing this 
critical mindset. I hope to demonstrate how this approach can be used for solving a few 
interesting problems as part of this book, and that you continue to systematically apply 
debugging and tracing as you expand your learning beyond the topics directly covered 
here.

This book is not really about teaching native or managed code programming, either, 
although you’ll find several good coding examples in the companion source code. 
Because it takes an inside-out look at how to explore the system using debugging 
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and tracing tools, this book will probably appeal more to software engineers with the 
desire to understand system internals rather than those with a need to quickly learn 
how to make use of a specific technology. However, I believe the approach and mindset 
it aspires to inculcate are applicable regardless of the technology or level of expertise. 
In fact, contrary to what many think, the higher the level of technology involved, the 
harder it becomes to grasp what goes on behind the scenes and the more expertise 
is needed in order to investigate failures when things inevitably go awry and require 
debugging skills to save the day. In pure C, for example, a call to malloc is just that: a 
function call. In C++, a call to the new keyword is emitted by the compiler as a call to 
the new operator function to allocate memory for the object, followed by code to con-
struct the object (again, emitted by the compiler to possibly initialize a virtual pointer 
and invoke the constructors of the base classes, construct member data objects, and 
finally invoke the user-provided constructor code for the target leaf class). In C# (.NET), 
things get even more involved, because a one-line call to the new keyword might 
involve compiling new code at runtime, performing security checks by the .NET execu-
tion engine, loading the modules where the target type is defined, tracking the object 
reference for later garbage collection, and so on.

who should Read This Book

This book is aimed at software engineers who desire to take their game to the next 
level, so to speak, and perfect their mastery of Windows as a development platform 
through the use of debugging and tracing tools.

assumptions
Readers should have basic familiarity with the C/C++ and C# programming languages. 
A basic knowledge of the Win32 and .NET platforms is helpful, but not strictly required, 
because this book makes every effort to introduce basic concepts before expanding 
into more advanced topics.

organization of This Book

This book is divided into three parts:

■■ Part 1, “A Bit of Background,” provides a brief overview of Windows develop-
ment frameworks and the layers in the operating system that support them. This 
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basic knowledge is important to have when trying to make sense of the data 
surfaced by debugging and tracing tools. 

■■ Part 2, “Debugging for Fun and Profit,” covers the architectural foundations of 
debuggers in the Windows operating system. It also presents a number of ex-
tensible strategies that will help you make the most of the Windows debuggers. 
In addition, this part also shows how to use the WinDbg debugger to better 
understand system internals by analyzing the important interactions between 
your code and the operating system. 

■■ Part 3, “Observing and Analyzing Software Behavior,” continues this theme. It 
presents the Event Tracing for Windows (ETW) technology and illustrates how to 
leverage it in debugging and profiling investigations. 

■■ Finally, you’ll find two short appendices at the end of the book that recap the 
most common debugging tasks and how to accomplish them using WinDbg.

The table of contents will help you locate chapters and sections quickly. In addition, 
each chapter starts with a list of the main points covered in the chapter, and concludes 
with a summary section. You can also download the source code for all the experiments 
and examples shown throughout the book.

Conventions in This Book

This book presents information using conventions (listed in the following table) 
 designed to make the information readable and easy to follow:

Convention Meaning

Sidebars Boxed sidebars feature additional bits of information that might be helpful 
for a given subject.

Notes Notes provide useful observations related to the content discussed in the 
main text.

Inline Code Inline code—that is, code that appears within a paragraph—is shown in italic 
font.

Code Blocks Code blocks are shown in a different font to help you distinguish code from 
text easily. Important statements appear in bold font to help you focus on 
those aspects of the code.

Debugger Listings Debugger listings are shown in a different font, and important commands are 
bolded to highlight them. The listings are also often prefixed with the out-
put from the standard vertarget debugger command, which displays the OS 
 version and CPU architecture where the experiment was conducted.

Function Names Function names are sometimes referenced using their WinDbg symbolic 
names. For example, kernel32!CreateFileW refers to the CreateFileW Win32 
API (“W” for the Unicode flavor) exported by the kernel32.dll module.
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system Requirements

You will need the following hardware and software to follow the experiments and code 
samples in this book:

■■ operating system Windows Vista or later. Windows 7 (or Windows Server 
2008 R2) is highly recommended.

■■ hardware Any computer that supports the Windows 7 operating system (OS) 
requirements. Except for the live kernel debugging experiments, a second com-
puter to serve as a host kernel-mode debugger machine is typically required for 
kernel debugging.

note The target and host don’t really need to be separate physical machines. 
A common kernel debugging configuration—detailed in Chapter 2, “Getting 
Started”—is to run the target machine where you conduct the experiments as 
a Windows 7 virtual OS on a Windows Server 2008 R2 physical host computer, 
and run the kernel debugger in the host OS.

■■ hard disk 1 GB of free hard-disk space to download and save the Windows 
Software Development Kit (SDK) and Driver Development Kit (DDK) ISO images. 
40 MB of free hard-disk space to download and compile the companion source 
code. An additional 3 GB is required for installing Microsoft Visual Studio 2010.

■■ software The following tools are used in the debugging and tracing examples 
shown throughout this book:

• Version 7.1 of the Windows 7 SDK, which can be downloaded from the 
 Microsoft Download Center at http://www.microsoft.com/download/en 
/details.aspx?id=8442. Both the Windows Debuggers (WinDbg) and Windows 
Performance Toolkit (Xperf) are part of this SDK.

• The Application Verifier tool, which can also be downloaded from the 
 Microsoft Download Center at http://www.microsoft.com/download/en 
/details.aspx?id=20028. 

• The System Internals suite of developer tools, which can be downloaded 
from http://technet.microsoft.com/en-us/sysinternals/bb842062.

• Visual Studio 2010, any edition (excluding the free, stripped-down Express 
edition). The Visual Studio Ultimate edition is preferred because some 
 advanced features, such as static code analysis and performance profil-
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ing, are not supported in other editions. The 90-day, free trial version of 
 Visual Studio offered by Microsoft, which can be downloaded at  
http://www.microsoft.com/download/en/details.aspx?id=12187, should suffice.

• The Windows 7 Driver Development Kit (DDK) is used to compile the 
 companion source code and can also be downloaded from the  Microsoft 
Download Center at http://www.microsoft.com/download/en/ 
details.aspx?id=11800.

Code samples

Most of the chapters in this book include experiments and examples that let you 
 interactively try out new material introduced in the main text. The programs used in 
these experiments can be downloaded from the following page:

http://www.microsoftpressstore.com/title/9780735662780

Follow the instructions to download the Inside_Windows_Debugging_Samples.zip 
file.

Installing the Code Samples 
Follow these steps to install the code samples on your computer so that you can use 
them with the experiments and examples provided in this book:

1. Unzip the Inside_Windows_Debugging_Samples.zip file that you downloaded 
from the book’s  website into a folder named \Book\Code. 

Warning Do not use directory names with spaces in the path hierarchy that you 
choose to download the samples to. The DDK build environment, which will be 
 described shortly in the “Compiling the Code Samples” section, will fail to compile the 
source code if you do. It is recommended that you use \Book\Code as the root of the 
source code because this is the assumed location used when referencing the programs 
in the main text. The samples in the companion source code are organized by chapter, 
so there should be a folder for every chapter under this root path location.

2. If prompted, review the displayed end user license agreement. If you accept the 
terms, select the accept option, and then click Next.

http://www.microsoftpressstore.com/title/9780735662780
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note If the license agreement doesn’t appear, you can access it from the 
same webpage from which you downloaded the Inside_Windows_Debugging_
Samples.zip file.

running the Code Samples
The code samples are organized by chapter and are referenced in the book main text by 
their respective directory path locations to help you find them easily.

Local Administrator rights are required by some sample programs. In Windows 
Vista and later, a command prompt must be launched as elevated in order to have full 
 administrative privileges even when the user account is a member of the local built-in 
 Administrators security group. To do so in Windows 7, for example, you need to right-
click the Command Prompt menu item in the Windows Start menu, and select Run As 
Administrator, as shown in the following screen shot:

Compiling the Code Samples 
The supporting programs used in the experiments presented in the book main text fall 
into three categories:

■■ C++ samples The binaries for these programs are deliberately omitted from 
the downloadable ZIP file. When you compile these code samples  locally, 
 WinDbg  locates their symbols and source code files automatically. So the 
 experiments presented in the early chapters of this book will “just work” in this 
configuration, without needing to specify the source and symbol locations 
 explicitly in WinDbg. The steps to compile all the native C++ code samples at 
once are included later in this section.
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■■ C# ( .nET) samples For convenience, the compiled .NET programs are 
 included in the downloadable ZIP file. You can use them as-is and you won’t lose 
much, given WinDbg doesn’t support source-level .NET debugging, but you can 
also follow the instructions included in the following section to recompile them 
if you prefer.

■■ Javascript and visual Basic samples These scripts are interpreted by the 
corresponding scripting engines and do not require compilation.

Compiling the .neT Code Samples
Compiling the .NET code samples from the companion source code requires version 4.0 
of the Microsoft .NET Framework or later. Though this version isn’t installed by default 
on Windows 7, .NET Framework 4.0 gets installed by many other dependent programs, 
such as Visual Studio 2010. You can also download and install a standalone version from 
the Microsoft download center at http://www.microsoft.com/download/en 
/details.aspx?id=17851.

Each C# code sample from the companion source code will have a helper 
 compilation script under the same directory. This script uses the .NET 4.0 C# compiler 
directly and is easy to invoke, as illustrated in the following command:

C:\book\code\chapter_04\LoadException>compile.bat

If this script fails to find the C# compiler, you should verify that you’ve installed .NET 
4.0 in the default directory location where this script expects it to exist. If .NET 4.0 exists 
but was installed to a different location on your system, you need to modify the script 
and provide that path instead.

Compiling the C/C++ Code Samples
You can compile the C/C++ code samples from the companion source code using the 
Windows 7 Driver Development Kit (DDK) build tools. The following steps detail this 
process. I strongly recommend that you complete these steps before you start read-
ing, because you’ll need the code samples to follow the experiments shown later in this 
book.

1. Download the Windows 7 DDK ISO image from the Microsoft Download Center 
at http://www.microsoft.com/download/en/details.aspx?id=11800, and save it to 
your local hard drive. Set plenty of time aside for this download if you have a 
slow Internet connection; the DDK ISO file is over 600 MB in size.
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2. After the download is complete, mount the saved ISO file into a drive letter. There 
are several free tools for mounting ISO images on Windows. Virtual Clone Drive, 
which you can find on the Internet, is good freeware that works well both on 
Windows Vista and Windows 7. With that freeware installed, you should be able to 
right-click the ISO file and mount it, as shown in the following screen shot:
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3. Double-click the newly mounted drive to kick off the DDK setup program, as 
shown here:

4. Select the Full Development Environment components from the DDK. 

5. Then Install the components to the C:\DDK\7600.16835.1 directory, as shown in 
the following screen shot. This step will take several minutes to complete.
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6. You can now unmount the DDK drive by right-clicking the mounted drive letter 
and selecting the Unmount menu action. This concludes this one-time installa-
tion of the Windows DDK build tools.

7.  To build x86 binaries, first start a command prompt window and type the 
 following command:

C:\DDK\7600.16385.1>bin\setenv.bat c:\DDK\7600.16385.1

8. You can then build all the native code samples at once. Simply navigate to the 
root directory that you extracted the companion source code to and issue the 
following command. It should take only a minute or so to build all the C/C++ 
code from the companion source code:

C:\book\code>bcz
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Part 1

A Bit of Background

ChAPTER 1 Software Development in Windows. . . . . . . . . . . . . . 3

One of my esteemed mentors at Microsoft once told me the 
following story. He came back home one night to be greeted by 
a dismayed look on his wife’s face. Her cherished wedding ring 
had just vanished down the bathroom sink drain and she was 
completely stumped. For all she knew, the wedding ring might 
very well have been in the ocean by the time they were having 
that conversation. To her, anything beyond the drain plug was 
a black box. My mentor, using the slight advantage of plumb-
ing knowledge he had over his wife, knew about those nifty 
structures called “sink traps,” which are usually J-shaped pipes 
located just beneath the sink. These are intended to “trap” a 
little bit of water and prevent sewer gas from flowing out of the 
drain pipes into the living space. But in addition, the traps also 
conveniently capture objects and keep them from going down 
the drain immediately. As it turned out, the ring was indeed in 
the sink trap, and he was able to retrieve it relatively easily. 

The reason my mentor told me this story was to illustrate a 
close parallel in the world of software engineering: If you treat 
the APIs and frameworks you use in your code as pure black 
boxes, you might be able to get by for a little while, but you are 
certainly bound to experience some pretty anxious moments 
when you need to investigate failures that fall just outside of 
your own code, even if the solution—just like in the lost ring 
analogy—is right under your nose.



The first part of this book explores how your programs 
 interact with the Microsoft Windows operating system (in a 
loose sense) and demonstrates why it’s useful to have at least 
a cursory understanding of both those interactions and of 
the role of each subsystem. It also examines some important 
development frameworks shipped by Microsoft, and analyzes 
their positions relative to each other and to the operating 
system (OS) developer interfaces. It then concludes by introduc-
ing the Windows Software Development Kit (SDK) tools and, 
more specifically, the Swiss Army knives of expert Windows 
developers—namely, the Windows debugger (WinDbg) and 
the Windows Performance Toolkit (Xperf). This knowledge will 
serve as a perfect segue to the rest of the book, where you’ll use 
debugging and tracing to write better software for the Windows 
operating system.
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C h A P T E R  1

Software Development  
in Windows 

In this chapter

Windows evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Windows architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Windows Developer Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Microsoft Developer Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

windows Evolution

Though this book focuses primarily on the post-Vista era of Windows, it’s useful to look back at 
the history of Windows releases, because the roots of several building blocks of the  underlying 
 architecture can be traced all the way back to the Windows NT (an abbreviation for “New 
 Technology”) operating system. Windows NT was first designed and developed by Microsoft in 
the late '80s, and continued to evolve until its kernel finally became the core of all client and server 
 versions of the Windows operating system.

Windows release history
Windows XP marked a major milestone in the history of Windows releases by providing a  unified 
code base for both the business (server) and consumer (client) releases of Windows. Though 
 Windows XP was a client release (its server variant was Windows Server 2003), it technically suc-
ceeded both Windows 95/98/ME (a lineage of consumer operating systems that find their roots in 
the  MS-DOS and Windows 3.1 operating systems) and Windows NT 4/Windows 2000, combining for 
the first time the power of the Windows NT operating system kernel and its robust architecture with 
many of the features that had made Windows 95 and Windows 98 instant hits with consumers and 
developers alike (friendly user design, aesthetic graphical interface, plug and play model, rich Win32 
and DirectX API sets, and so on).
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Though both the server and client releases of Windows now share the same kernel, they still differ 
in many of their features and components. (For example, only the server releases of Windows sup-
port multiple concurrent remote desktop user sessions.) Since the release of Windows XP in 2001, 
Windows Server has followed a release cycle that can be loosely mapped to corresponding Windows 
client releases. Windows Server 2003, for instance, shares many of the new kernel and API features 
that were added in Windows XP. Similarly, Windows Server 2008 R2 represents the server variant of 
Windows 7, which was released in late 2009. (Don’t confuse this with Windows Server 2008, which is 
the server variant of Windows Vista.)

Figure 1-1 illustrates the evolution of the Windows family of operating systems, with their 
 approximate release dates relative to each other.
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fIguRE 1-1 Timeline of major client and server releases of the Windows operating system since the early 90s.

Supported CpU architectures
Windows was ported to many CPU architectures in the past. For example, Windows NT supported 
Alpha and MIPS processors until Windows NT 4. Windows NT 3.51 also had support for Power PC 
(another RISC family of processors that is used in many embedded devices, including, for example, 
Microsoft Xbox 360). However, Windows later narrowed its support to three CPU architectures: x86 
(a 32-bit family of processors, whose instruction set was designed by Intel), x64 (also known as   
AMD-64, in reference to the fact this architecture was first introduced by AMD, though Intel also 
now releases processors implementing this instruction set), and ia64 (another 64-bit instruction set 
designed by Intel in collaboration with Hewlett-Packard).
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Microsoft shipped the first ia64 version of Windows XP in late 2001 and followed it with an x64 
 version in 2005. Microsoft later dropped support for ia64 on client editions, including Windows XP. 
The x86, x64, and ia64 architectures supported in Windows Server 2003 and Windows XP are exactly 
those that were also supported when Windows Server 2008 R2 and Windows 7 shipped at the end of 
2009, though x86 and x64 are clearly the more widely used Windows architectures nowadays. Note, 
however, that Windows Server no longer supports x86; it now supports only 64-bit architectures. Also, 
Microsoft  announced early in 2011 that its upcoming release of the Windows operating system will 
be capable of running on ARM (in addition to the x86 and x64 platforms), a RISC instruction set that’s 
widely used in embedded utilities, smartphones, and tablet (slate) devices thanks in large part to its 
efficient use of battery power.

Understanding the underlying CPU architecture of the Windows installation you are working on 
is very important during debugging and tracing because you often need to use native tools that 
correspond to your CPU architecture. In addition, sometimes you will also need to understand the 
disassembly of the code you are analyzing in the debugger, which is different for each CPU. This is 
one reason many debugger listings in this book also show the underlying CPU architecture that they 
were captured on so that you can easily conduct any further disassembly inspection you decide to 
do on the right target platform. In the following listing, for example, the vertarget command shows 
a Windows 7 AMD64 (x64) operating system. You’ll see more about this command and others in the 
next chapter, so don’t worry about how to issue it for now.

lkd> $ Multi-processor (2 processors or cores) Windows 7 x64 system 
lkd> vertarget 
Windows 7 Kernel Version 7600 MP (2 procs) Free x64 
Built by: 7600.16385.amd64fre.win7_rtm.090713-1255 

Given the widespread use of x86 and x64, and because you can also execute x86 programs on x64 
machines, the majority of experiments in this book are conducted using the x86 architecture so that 
you can follow them the way they’re described in this book regardless of your target architecture. 
Though x86 has been the constant platform of choice for Windows since its early days in the '80s, 
 64-bit processors continue to gain in popularity even among home computers and laptops, which 
now often carry x64 versions of Windows 7.

Windows Build Flavors
The vertarget debugger command output shown in the previous section referred to the Windows 
version on the target machine as a “free” (also known as retail) build. This flavor is the only one ever 
shipped to end users by Microsoft for any of the supported processor architectures. There is, however, 
another flavor called a “checked” (also known as debug) build, which MSDN subscribers can obtain 
from Microsoft if they want to test the software they build with this flavor of the Windows operating 
system. It’s important to realize that checked flavors are mostly meant to help driver developers; they 
don’t derive their name at all from being “tested”—or otherwise “checked”—more thoroughly than 
the free flavors.
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If you recall, the Introduction of this book recommended using the Driver Development Kit (DDK) 
build environment if you wanted to recompile the companion C++ sample code. As was explained 
then, you can also specify the build flavor you want to target (the default being x86 free in the 
Windows 7 DDK) when starting a DDK build environment. This is, in fact, also how the checked flavor 
of Windows is built internally at Microsoft because the same build environment made available in 
the DDK is also used by Windows developers to compile the Windows source code. For example, 
the following command starts a DDK build environment where your source code is compiled into 
x64  binaries using the checked (chk) build flavor. This essentially turns off a few compiler optimiza-
tions and defines debug build macros (such as the DBG preprocessor variable) that turn on “debug” 
 sections of the code, including assertions (such as the NT_ASSERT macro).

C:\DDK\7600.16385.1>bin\setenv.bat c:\DDK\7600.16385.1 chk x64

Naturally, you don’t really need a checked build of Windows to run your checked binaries, and 
the main difference between your “free” and “checked” binaries is that the assertions you put in your 
code will occur only in the “checked” flavor. The benefit of the checked flavor of Windows itself is 
that it also contains many additional assertions in the system code that can point out implementa-
tion problems in your code, which is usually useful if you are developing a driver. The drawback to 
that Windows flavor, of course, is that it runs much slower than the free flavor and also that you must 
run it with a kernel debugger attached at all times so that you can ignore assertions when they’re hit; 
otherwise, those assertions might go unhandled and cause the machine to crash and reboot if they 
are raised in code that runs in kernel mode.

Windows Servicing Terminology
Each major Windows release is usually preceded by a few public milestones that provide customers 
with a preview of the features included in that release. Those prerelease milestones are usually called 
Alpha, Beta1, Beta2, and RC or release candidate, in this chronological order, though several Windows 
releases have either skipped some of these milestones or named them differently. These prerelease 
milestones also present an opportunity for Microsoft to engage with customers and collect their 
feedback before Windows is officially “released to manufacturing,” a milestone referred to as RTM.

You will again recognize the major version of Windows in the build information displayed by the 
vertarget command that accompanies many of the debugger listings presented in this book. For 
example, the following listing shows that the target machine is running Windows 7 RTM and that 
July 13, 2009 (identified by the “090713” substring in the following output) is the date this particular 
Windows build was produced at Microsoft.

lkd> vertarget 
Windows 7 Kernel Version 7600 MP (2 procs) Free x64 
Built by: 7600.16385.amd64fre.win7_rtm.090713-1255
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In addition to the major client and server releases for each Windows operating system, Microsoft 
also ships several servicing updates in between those releases that get automatically delivered via the 
Windows Update pipeline and usually come in one of the following forms:

■■ Service packs These releases usually occur a few years apart after RTM and compile the 
smaller updates made in between (and, on occasion, new features requested by customers) 
into a single package that can be applied at once by both consumers and businesses. They 
are often referred to using the “SP” abbreviation, followed by the service pack number. For 
example, SP1 is the first service pack after RTM, SP2 is the second, and so on.

Service packs are considered major releases and are subjected to the same rigorous release 
process that accompanies RTM releases. In fact, many Windows service packs also have one 
or more release candidate (RC) milestones before they’re officially released to the public. 
The number of service packs for a major Windows release is often determined by customer 
demand and also the amount of changes accumulated since the last service pack. Windows 
NT4, for example, had six service packs, while Windows Vista had two.

■■ GDr updates GDR (General Distribution Release) updates are issued to address bugs with 
broad impact or security implications. The frequency varies by need, but these updates are 
usually released every few weeks. These fixes are also rolled up into the following service pack 
release.

For example, the following output indicates that the target debugging machine is running a 
version of Windows 7 SP1. Notice also that the version of kernel32.dll that’s installed on this 
machine comes from a GDR update subsequent to the initial Windows 7 SP1 release.

0:000> vertarget 
Windows 7 Version 7601 (Service Pack 1) MP (2 procs) Free x86 compatible 
kernel32.dll version: 6.1.7601.17651 (win7sp1_gdr.110715-1504)

Windows architecture

The fundamental design of the Windows operating system, with an executive that runs in  kernel 
mode and a complementary set of user-mode system support processes (smss.exe, csrss.exe, 
 winlogon.exe, and so on) to help manage additional system facilities, has for the most part  remained 
unchanged since the inception of the Windows NT operating system back in the late '80s. Each 
new version of Windows naturally brings about a number of new components and APIs, but 
 understanding how they fit in the architectural stack often starts with knowing how they interact 
with these core components of the operating system.
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Kernel Mode vs. User Mode
Kernel mode is an execution mode in the processor that grants access to all system memory ( including 
user-mode memory) and unrestricted use of all CPU instructions. This CPU mode is what enables 
the Windows operating system to prevent user-mode applications from causing system instability by 
 accessing protected memory or I/O ports.

Application software usually runs in user mode and is allowed to execute code in kernel mode only 
via a controlled mechanism called a system call. When the application wants to call a system service 
exposed by code in the OS that runs in kernel mode, it issues a special CPU instruction to switch the 
calling thread to kernel mode. When the service call completes its execution in kernel mode, the 
operating system switches the thread context back to user mode, and the calling application is able to 
continue its execution in user mode.

Third-party vendors can get their code to run directly in kernel mode by implementing and 
 installing signed drivers. Note that Windows is a monolithic system in the sense that the OS kernel 
and drivers share the same address space, so any code executing in kernel mode gets the same unre-
stricted access to memory and hardware that the core of the Windows operating system would have. 
In fact, several parts of the operating system (the NT file system, the TCP/IP networking stack, and so 
on) are also implemented as drivers rather than being provided by the kernel binary itself.

The Windows operating system uses the following layering structure for its kernel-mode 
 operations:

■■ kernel Implements core low-level OS services such as thread scheduling, multiprocessor 
 synchronization, and interrupt/exception dispatching. The kernel also contains a set of routines 
that are used by the executive to expose higher-level semantics to user-mode applications.

■■ Executive Also hosted by the same “kernel” module in Windows (NTOSKRNL), and performs 
base services such as process/thread management and I/O dispatching. The executive exposes 
documented functions that can be called from kernel-mode components (such as drivers). It 
also exposes functions that are callable from user mode, known as system services. The typical 
entry point to these executive system services in user mode is the ntdll.dll module. (This is the 
module that has the system call CPU instruction!) During these system service calls, the execu-
tive allows user-mode processes to reference the objects (process, thread, event, and so on) it 
implements via indirect abstractions called object handles, which the executive keeps track of 
using a per-process handle table.

■■ hardware Abstraction layer The HAL (hal.dll) is a loadable kernel-mode module that 
isolates the kernel, executive, and drivers from hardware-specific differences. This layer sits at 
the very bottom of kernel layers and handles key hardware differences so that higher-level 
components (such as third-party device drivers) can be written in a platform-agnostic way.

■■ windows and graphics subsystem The Win32 UI and graphics services are implemented by 
an extension to the kernel (win32k.sys module) and expose system services for UI applications. 
The typical entry point to these services in user mode is the user32.dll module.

Figure 1-2 illustrates this high-level architecture.
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fIguRE 1-2 Kernel-mode layers and services in the Windows operating system.

User-Mode System processes
Several core facilities (logon, logoff, user authentication, and so on) of the Windows operating system 
are primarily implemented in user mode rather than in kernel mode. A fixed set of user-mode system 
processes exists to complement the OS functionality exposed from kernel mode. Here are a few 
 important processes that fall in this category:

■■ Smss.exe User sessions in Windows represent resource and security boundaries and offer 
a virtualized view of the keyboard, mouse, and physical display to support concurrent user 
logons on the same OS. The state that backs these sessions is tracked in a kernel-mode virtual 
memory space usually referred to as the session space. In user mode, the session manager 
subsystem process (smss.exe) is used to start and manage these user sessions.

A “leader” smss.exe instance that’s not associated with any sessions gets created as part of 
the Windows boot process. This leader smss.exe creates a transient copy of itself for each 
new session, which then starts the winlogon.exe and csrss.exe instances corresponding to that 
user session. Although having the leader session manager use copies of itself to initialize new 
sessions doesn’t provide any practical advantages on client systems, having multiple smss.exe 
copies running concurrently can provide faster logon of multiple users on Windows Server 
systems acting as Terminal Servers.

■■ Winlogon.exe The Windows logon process is responsible for managing user logon and 
logoff. In particular, this process starts the logon UI process that displays the logon screen 
when the user presses the Ctrl+Alt+Del keyboard combination and also creates the processes 
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responsible for displaying the familiar Windows desktop after the user is authenticated. Each 
session has its own instance of the winlogon.exe process.

■■ Csrss.exe The client/server runtime subsystem process is responsible for the user-mode 
 portion of the Win32 subsystem (win32k.sys being the kernel-mode portion) and also was 
used to host the UI message loop of console applications prior to Windows 7. Each user 
 session has its own instance of this process.

■■ Lsass.exe The local security authority subsystem process is used by winlogon.exe to 
 authenticate user accounts during the logon sequence. After successful authentication, LSASS 
generates a security access token object representing the user’s security rights, which are then 
used to create the new explorer process for the user session. New child processes created from 
that shell then inherit their access tokens from the initial explorer process security token. There 
is only one single instance of this process, which runs in the noninteractive session (known as 
session 0).

■■ Services.exe This system process is called the NT service control manager (SCM for short) 
and runs in session 0 (noninteractive session). It’s responsible for starting a special category of 
user-mode processes called Windows services. These processes are generally used by the OS 
or third-party applications to carry out background tasks that do not require user interaction. 
Examples of Windows services include the spooler print service (spooler); the task  scheduler 
service (schedule); the COM activation services, also known as the COM SCM (RpcSs and 
DComLaunch); and the Windows time service (w32time).

These processes can choose to run with the highest level of user-mode privileges in Windows 
(LocalSystem account), so they are often used to perform privileged tasks on behalf of user-
mode applications. Also, because these special processes are always started and stopped by 
the SCM process, they can be started on demand and are guaranteed to have at most one 
active instance running at any time.

All of the aforementioned system-support processes run under the LocalSystem account, which is 
the highest privileged account in Windows. Processes that run with this special account identity are 
said to be a part of the trusted computing base (TCB) because once user code is able to run with that 
level of privilege, it is also able to bypass any checks by the security subsystem in the OS.

User-Mode application processes
Every user-mode process (except for the leader smss.exe process mentioned earlier) is associated 
with a user session. These user-mode processes are boundaries for a memory address space. As far 
as scheduling in Windows is concerned, however, the most fundamental scheduling units remain 
the threads of execution and processes are merely containers for those threads. It’s also important 
to realize that user-mode processes (more specifically, the threads they host) also often run plenty 
of code in kernel mode. Although your application code might indeed run in user mode, it’s often 
the case that it also calls into system services (through API layers that call down to NTDLL or USER32 
for the system call transitions) that end up transitioning to kernel mode on your behalf. This is why it 
makes sense to always think of your software (whether it’s user-mode software or kernel drivers) as 
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an extension of the Windows operating system and also that you understand how it interacts with the 
“services” provided by the OS.

Processes, in turn, can be placed in containers called job objects. These executive objects can be 
very useful to manage a group of processes as a single unit. Unlike threads and processes, job objects 
are often overlooked when studying the Windows architecture despite their unique advantages and 
the useful semantics they provide. Figure 1-3 illustrates the relationship between these fundamental 
objects.
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Process_m

Thread_1  Thread_2  ... 

fIguRE 1-3 Threads, processes, and jobs in Windows.

Job objects can be used to provide common execution settings for a set of processes and, among 
other things, to control the resources used by member processes (such as the amount of memory 
consumed by the job and the processors used for its execution) or their UI capabilities.

One particularly useful feature of job objects is that they can be configured to terminate their 
 processes when their user-mode job handle is closed (either using an explicit kernel32!CloseHandle 
API call, or implicitly when the kernel runs down the handles in the process handle table when the 
process kernel object is destroyed). To provide a practical illustration, the following C++ program 
shows how to take advantage of the job-object construct exposed by the Windows executive in a 
C++ user-mode application to start a child (“worker”) process and synchronize its lifetime with that of 
its parent process. This is often useful in the case of worker processes whose sole purpose is to serve 
requests in the context of their parent process, in which case it becomes critical not to “leak” those 
worker instances should the parent process die unexpectedly. (The reverse is more straightforward 
because the parent process can easily monitor when the child dies by simply waiting on the worker 
process handle to become signaled using the kernel32!WaitForSingleObject Win32 API.)
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To follow this experiment, remember to refer back to the Introduction of this book, which contains 
step-by-step instructions for how to build the companion source code.

// 
// C:\book\code\chapter_01\WorkerProcess>main.cpp 
// 
class CMainApp 
{ 
public: 
    static 
    HRESULT 
    MainHR() 
    { 
        HANDLE hProcess, hPrimaryThread; 
        CHandle shProcess, shPrimaryThread; 
        CHandle shWorkerJob; 
        DWORD dwExitCode; 
        JOBOBJECT_EXTENDED_LIMIT_INFORMATION exLimitInfo = {0}; 
        CStringW shCommandLine = L"notepad.exe"; 
 
        ChkProlog(); 
 
        // 
        // Create the job object, set its processes to terminate on 
        // handle close (similar to an explicit call to TerminateJobObject), 
        // and then add the current process to the job. 
        // 
        shWorkerJob.Attach(CreateJobObject(NULL, NULL)); 
        ChkWin32(shWorkerJob); 
 
        exLimitInfo.BasicLimitInformation.LimitFlags = 
            JOB_OBJECT_LIMIT_KILL_ON_JOB_CLOSE; 
        ChkWin32(SetInformationJobObject( 
            shWorkerJob, 
            JobObjectExtendedLimitInformation, 
            &exLimitInfo, 
            sizeof(exLimitInfo))); 
 
        ChkWin32(AssignProcessToJobObject( 
            shWorkerJob, 
            ::GetCurrentProcess())); 
 
        // 
        // Now launch the new child process (job membership is inherited by default) 
        // 
        wprintf(L"Launching child process (notepad.exe) ...\n"); 
        ChkHr(LaunchProcess( 
            shCommandLine.GetBuffer(), 
            0, 
            &hProcess, 
            &hPrimaryThread)); 
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        shProcess.Attach(hProcess); 
        shPrimaryThread.Attach(hPrimaryThread); 
 
        // 
        // Wait for the worker process to exit 
        // 
        switch (WaitForSingleObject(shProcess, INFINITE)) 
        { 
            case WAIT_OBJECT_0: 
                ChkWin32(::GetExitCodeProcess(shProcess, &dwExitCode)); 
                wprintf(L”Child process exited with exit code %d.\n”, dwExitCode); 
                break; 
            default: 
                ChkReturn(E_FAIL); 
        } 
 
        ChkNoCleanup(); 
    } 
};

One key observation here is that the parent process is assigned to the new job object before 
the new child process is created, which allows the worker process to automatically inherit this job 
membership. This means in particular that there is no time window in which the new process would 
exist without being a part of the job object. If you kill the parent process (using the Ctrl+C signal, for 
example), you will notice that the worker process (notepad.exe in this case) is also terminated at the 
same time, which was precisely the desired behavior.

C:\book\code\chapter_01\WorkerProcess>objfre_win7_x86\i386\workerprocess.exe 
Launching child process (notepad.exe) ... 
^C

Low-Level Windows Communication Mechanisms
With code executing in kernel and user modes, and also inside the boundaries of per-process  address 
spaces in user mode, the Windows operating system supports several mechanisms for allowing 
 components to communicate with each other.

Calling Kernel-Mode Code from User Mode
The most basic way to call kernel-mode code from user-mode components is the system call 
 mechanism mentioned earlier in this chapter. This mechanism relies on native support in the CPU to 
implement the transition in a controlled and secure manner.

One inherent drawback to the system call mechanism is that it relies on a hard-coded table of 
well-known executive service routines to dispatch the request from the client code in user mode 
to its intended target service routine in kernel mode. This doesn’t extend well to kernel extensions 
implemented in the form of drivers, however. For those cases, another mechanism—called I/O  control 
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commands (IOCTL)—is supported by Windows to enable user-mode code to communicate with 
kernel-mode drivers. This is done through the generic kernel32!DeviceIoControl API, which takes 
the user-defined IOCTL identifier as one of its parameters and also a handle to the device object to 
which to dispatch the request. The transition to kernel mode is still performed in the NTDLL layer 
(ntdll!NtDeviceIoControlFile) and internally also uses the system call mechanism. So, you can think 
of the IOCTL method as a higher-level user/kernel communication protocol built on top of the raw 
system call services provided by the OS and CPU.

Internally, I/O control commands are processed by the I/O manager component of the Windows 
executive, which builds what is called an I/O request packet (IRP for short) that it then routes to the 
device object requested by the caller from user mode. IRP processing in the Windows executive uses 
a layered model where devices have an associated driver stack that handles their requests. When an 
IRP is sent to a top-level device object, it travels through its device stack starting at the top, pass-
ing through each driver in the corresponding device stack and giving it a chance to either process or 
ignore the command. In fact, IRPs are also used in kernel mode to send commands to other drivers so 
that the same IRP model is used for interdriver communication in the kernel. Figure 1-4 depicts this 
architecture. 
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fIguRE 1-4 User-mode to kernel-mode communication mechanisms.
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Calling User-Mode Code from Kernel Mode
Code that runs in kernel mode has unrestricted access to the entire virtual address space (both the 
user and kernel portions), so kernel mode in theory could invoke any code running in user mode. 
However, doing so requires first picking a thread to run the code in, transitioning the CPU mode back 
to user mode, and setting up the user-mode context of the thread to reflect the call parameters. 
Fortunately, however, only the system code written by Microsoft really needs to communicate with 
random threads in user mode. The drivers you write, on the other hand, need to call back to user 
mode only in the context of a device IOCTL initiated by a user-mode thread, so they do not need a 
more generic kernel-mode to user-mode communication mechanism.

A standard way for the system to execute code in the context of a given user-mode thread is to 
send an asynchronous procedure call (APC) to that thread. For example, this is exactly how thread 
suspension works in Windows: the kernel simply sends an APC to the target thread and asks it to 
execute a function to wait on its internal thread semaphore object, causing it to become suspended. 
APCs are also used by the system in many other scenarios, such as in I/O completion and thread pool 
callback routines, just to cite a couple.

Interprocess Communication 
Another way for communicating between user-mode processes and code in kernel mode, as well 
as between user-mode processes themselves, is to use the advanced local procedure call (ALPC) 
mechanism. ALPC was introduced in the Windows Vista timeframe and is a big revision of the 
LPC mechanism, a feature that provided in many ways the bloodline of low-level intercomponent 
 communication in Windows since its early releases.

ALPC is based on a simple idea: a server process first opens a kernel port object to receive 
 messages. Clients can then connect to the port if allowed by the server owning the port and start 
sending messages to the server. They are also able to wait until the server has fetched and processed 
the message from the internal queue that’s associated with the ALPC port object.

In the case of user/user ALPC, this provides a basic low-level interprocess communication channel. 
In the case of kernel/user ALPC channels, this essentially provides another (indirect) way for user-
mode applications to call code in kernel mode (whether it’s in a driver or in the kernel module itself) 
and vice versa. An example of this communication is the channel that’s established between the   
lsass.exe user-mode system process and the security reference monitor (SRM) executive component 
in kernel mode, which is used, for example, to send audit messages from the executive to lsass.exe. 
Figure 1-5 illustrates this architecture.
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ALPC-style communication is used extensively in the operating system itself, most notably as it 
pertains to this book to implement the low-level communication protocol that native user-mode 
debuggers employ to receive various debug events from the process they debug. ALPC is also used as 
a building block in higher-level communication protocols such as local RPC, which in turn is used as 
the transport protocol in the COM model to implement interprocess method invocations with proper 
parameter marshaling.

windows Developer Interface

Developers can extend the services that ship with the Windows operating system by building 
 extensions in the way of kernel drivers or standalone user-mode Windows applications. This section 
examines some of the key layers and APIs that make building these extensions possible.

Developer Documentation resources
Microsoft documents several APIs that developers can use when building their applications. The 
difference between these published interfaces and the internal (private) implementation details of 
the platform is that Microsoft has committed over the past two decades to building an ecosystem in 
which the public interfaces are carried forward with new releases of Windows, affording application 
developers the confidence that the applications they build today will continue to work on future OS 
versions. It’s fair to say that this engineering discipline is one of the reasons Windows has been so 
s uccessful with developers and end users alike.

Microsoft documents all of the interfaces and APIs it publishes on the Microsoft Developer 
 Network (MSDN) website at http://www.microsoft.com/msdn. When writing your software, you should 
use only officially supported public APIs so that your software doesn’t break when new versions of 
the operating system are released by Microsoft. Undocumented APIs can often disappear or get 
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renamed, even in service pack releases of the same OS version, so you should never target them in 
your software unless you are prepared to deal with the wrath of your customers when your software 
ominously stops working after a new Windows update is installed. That’s not to say you shouldn’t be 
interested in internal implementation details, of course. In fact, this book proves that knowing some 
of those details is often important when debugging your programs and can help you analyze their 
behaviors more proficiently, which in turns also helps you write better and more reliable software in 
the long run.

In addition to documenting the public APIs written by Microsoft for developers, the MSDN website 
also contains a wealth of articles describing features or areas at a higher level. In particular, it hosts a 
special category of articles, called Knowledge Base articles (KB articles for short) that are published by 
Microsoft’s customer support team to document workarounds for known issues. Generally speaking, 
the MSDN website should be your first stop when looking up the documented behavior of the APIs 
you use in your code or when trying to learn how to use a new feature in the OS.

WDM, KMDF, and UMDF
Developers can run their code with kernel-mode privileges and extend the functionality of the OS by 
implementing a kernel-mode driver. Though the vast majority of developers will never need to write 
a kernel driver, it’s still useful to understand the layered plug-in models used by Windows to support 
these kernel extensions because this knowledge sometimes can help you make sense of kernel call 
stacks during kernel-mode debugging investigations.

Driver extensions are often needed to handle communication with hardware devices that aren’t 
already supported because—as mentioned earlier—user-mode code isn’t allowed to access I/O 
ports directly. In addition, drivers are sometimes used to implement or extend system features. For 
 example, many tools in the SysInternals suite—including the process monitor tool, which installs a 
filter driver to monitor access to system resources—internally install drivers when they’re executed to 
implement their functionality.

There are many ways to write drivers, but the main model used to implement them in Windows 
is the Windows Driver Model (WDM). Because this model asks a lot from driver developers in terms 
of handling all the interactions with the I/O manager and the rest of the operating system and often 
results in a lot of duplicated boilerplate code that has to be implemented by all driver developers, the 
kernel-mode driver framework (KMDF) was introduced to simplify the task of writing kernel-mode 
drivers. Keep in mind, however, that KMDF doesn’t replace WDM; rather, it’s a framework that helps 
you more easily write drivers that comply with WDM’s requirements. Generally speaking, you should 
write your drivers using KMDF unless you find a good reason not to do so, such as when you need to 
write non-WDM drivers. This is the case, for instance, for network, SCSI, or video drivers, which have 
their own world, so to speak, and require you to write what is called a “miniport” driver to plug into 
their respective port drivers.

A subset of hardware drivers also can be executed completely in user mode (though without direct 
access to kernel memory space or I/O ports). These drivers can be developed using another frame-
work shipped by Microsoft called the user-mode driver framework, or UMDF. For more details on 
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the different driver models and their architectures, you can find a wealth of resources on the MSDN 
 website at http://msdn.microsoft.com. The OSR website at http://www.osronline.com is also worth a 
visit if you ever need to write or debug drivers in Windows.

The nTDLL and USer32 Layers
As mentioned earlier in this chapter, the NTDLL and USER32 layers contain the entry points to the 
executive service routines and kernel-mode portion of the Win32 subsystem (win32k.sys), respectively.

There are hundreds of executive service stubs in the NTDLL module (ntdll!NtSetEvent, 
ntdll!NtReadFile, and many others). The majority of these service stubs are undocumented in the 
MSDN, but a few stub entry points were deemed generally useful to third-party system software and 
are documented. The NTDLL.DLL system module also hosts several low-level OS features, such as the 
module loader (ntdll!Ldr* routines), the Win32 subsystem process communication functions  (ntdll!Csr* 
routines), and several run-time library functions (ntdll!Rtl* routines) that expose features such as the 
 Windows heap manager and Win32 critical section implementations.

The NTDLL module is used by many other DLLs in the Win32 API to transition into kernel mode 
and call executive service routines. Similarly, the USER32 DLL is also used by the Windows graphics 
architectural stack (DirectX, GDI32, and so on) as the gateway to transition into kernel mode so that it 
can communicate with the graphics processing unit (GPU) hardware.

The Win32 apI Layer
The Win32 API layer is probably the most important layer to learn for developers who are new to 
Windows because it’s the official public interface to the services exposed by the operating system. All 
of the Win32 API functions are documented in the MSDN, along with their expected parameters and 
potential return codes. Even if you are writing your software using a higher-level development frame-
work or API set, as most of us do these days, being aware of the capabilities exposed at this layer 
will help you get a much better feel for a framework’s advantages and limitations relative to other 
choices, as well as the raw capabilities exposed by the Win32 API and Windows executive.

The Win32 API layer covers a large set of functionality, going from basic services like  creating 
threads/processes or drawing shapes on the screen to higher-level areas such as cryptography. 
The most basic services at the bottom of the Win32 API’s architectural stack are exposed in the 
 kernel32.dll module. Other widely used Win32 DLL modules are advapi32.dll (general utility  functions), 
user32.dll (Windows and user object functions), and gdi32.dll (graphics functions). In Windows 7, 
the Win32 DLL modules are now layered so that lower-level base functions aren’t allowed to call up 
to higher-level modules in the hierarchical stack. This layering engineering discipline helps prevent 
circular dependencies between modules and also minimizes the performance impact of bringing a 
new DLL dependency from the Win32 API set into your process address space. This is why you will 
see that many of the public APIs exported in the kernel32.dll module now simply forward their calls 
to the implementation defined in the lower-level kernelbase.dll DLL module, which is useful to know 
when trying to set system breakpoints in the debugger. This layered hierarchy is demonstrated in 
Figure 1-6.
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fIguRE 1-6 Low-level Win32 DLL modules.

The COM Layer
The Component Object Model (COM) was introduced by Microsoft in the mid-90s as a user-mode 
framework to enable developers to write reusable object-oriented components in different pro-
gramming languages. If you are new to COM, the best resource to use to get started and gain an 
understanding of its model is the “Component Object Model Specification” document, which you can 
still find online. Though this is an old (circa 1995) and relatively long document, it provides a great 
overview of the COM binary specification, and much of what it describes still holds true to this day.

Over time, the use of the term “COM” grew to cover a number of different but related 
 technologies, including the following:

■■ The object model itself, which the label “COM” was technically designed to describe at first. 
Key parts of this object model are the standard IUnknown and IClassFactory interfaces, the 
idea of separation of class interfaces (the public contract) from the internal COM class imple-
mentation, and the ability to query a server object for an implementation of the contracts that 
it supports (IUnknown::QueryInterface). This model, in its pure form, is one of the most elegant 
contributions by Microsoft to the developer ecosystem, and it has had a deep impact that still 
reverberates to this day in the form of various derivative technologies based on that model.

■■ The interprocess communication protocol and registration that allows components to 
 communicate with each other without the client application having to know where the 
server component lives. This enables COM clients to transparently use servers implemented 
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locally in-process (DLLs) or out-of-process (EXEs), as well as servers that are hosted on a 
 remote  computer. The distinction between COM and Distributed COM (DCOM, or COM 
across  machines) is often only theoretical, and most of the internal building blocks are shared 
 between the two technologies.

■■ The protocol specifications built on top of the COM object model to enable hosts to 
 communicate with objects written in multiple languages. This includes the OLE Automation 
and ActiveX technologies, in particular.

COM in the Windows Operating System
COM is omnipresent in the Windows operating system. Although the Microsoft .NET Framework has 
largely superseded COM as the technology of choice for Windows application-level development, 
COM has had a lasting impact on the Windows development landscape, and it’s far from a dead tech-
nology as it continues to be the foundation for many components (for example, the Windows shell 
UI uses COM extensively) and even some of the newest technologies in the Windows development 
landscape. Even on a Windows installation with no other additional applications, you will still find 
thousands of COM class identifiers (CLSID for short) describing existing COM classes (servers) in the 
COM registry catalog, as shown in Figure 1-7.

fIguRE 1-7 COM CLSID hive in the Windows registry.

More recently, the new model unveiled by Microsoft for developing touch-capable, Windows 
runtime (WinRT) applications in its upcoming version of Windows also uses COM for its core binary 
compatibility layer. In many ways, COM remains required knowledge if you really want to master 
the intricacies of Windows as a development platform. In addition, its design patterns and program-
ming model have an educational value of their own. Even if you are never going to write a COM 
object (server), the programs and scripts you write often use existing COM objects, either explicitly or 
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indirectly via API calls. So,  knowing how COM works is particularly useful in debugging situations that 
involve such calls.

COM developers usually interact primarily with language-level features and tools when writing 
or consuming COM servers. However, debugging COM failures also requires knowledge of how the 
system implements the COM specification. In that sense, there are a few different aspects to the COM 
landscape that can all come into play during COM debugging investigations:

■■ The CoM “library” This is essentially Microsoft’s system implementation of the COM binary 
specification. The COM library consists primarily of the COM run-time code and Win32 APIs 
(CoInitialize, CoCreateInstance, and others) that ship as part of the ole32.dll system module. 
This run-time code also uses support provided by two Windows services collectively referred 
to as the COM service control manager (COM SCM). These services are the RpcSs service, 
which runs with NetworkService privileges, and the DComLaunch service, which runs with 
 LocalSystem privileges.

■■ CoM language tools These are the source-level compilers and tools to support COM’s  binary 
specification. This includes the interface definition language (IDL) compiler (MIDL), which al-
lows COM classes and interfaces to be consumed inside C/C++ programs, and the binary type 
library importer and exporter tools, which enable cross-language interoperability in COM. 
Note that these tools do not ship with the OS, but come as part of developer tools such as the 
Windows SDK.

■■ CoM frameworks These are frameworks that make it easier for developers to write COM 
components that conform to the COM binary specification. An example is the Microsoft C++ 
Active Template Library (ATL).

Writing COM Servers
The COM specification places several requirements on developers writing COM objects and their 
hosting modules. Writing a COM object in C++ entails, at the very least, declaring its published 
interfaces in an IDL file and implementing the standard IUnknown COM interface that allows ref-
erence counting of the object and enables clients to negotiate contracts with the server. A class 
factory  object—a COM-style support object that implements the IClassFactory COM interface but 
doesn’t need to be published to the registry—must also be written for each CLSID to create its object 
 instances.

On top of all of this, the developer is also required to implement the hosting module (DLL or EXE) 
so that it also conforms to all the other requirements of the COM specification. For example, in the 
case of a DLL module, a C-style function (DllGetClassObject) that returns a pointer to the class factory 
of CLSIDs hosted by the module must be exported for use by the COM library. For an executable 
module, the COM library can’t simply call an exported function, so ole32!CoRegisterClassObjects must 
be called by the server executable itself when it starts up in order to publish its hosted COM class 
 factories and make COM aware of them. Yet another requirement for DLL COM modules is to imple-
ment reference counting of their active objects and export a C-style function (DllCanUnloadNow) so 
that the COM library knows when it’s safe to unload the module in question.
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Microsoft realized that this is a lot to ask of C++ COM developers and introduced the Active 
Template Library (ATL) to help simplify writing COM server modules and objects in the C++  language. 
Although the majority of C++ COM developers in Windows use ATL to implement their COM serv-
ers, keep in mind that you can also write COM objects and their hosting modules without it (if you 
feel  inclined to do so). In fact, ATL ships with the source code of its template classes, so you can study 
those implementation headers and see how ATL implements its functionality on top of the COM 
 services provided by the COM library in the operating system. As you’ll see after looking at that 
source code, ATL takes care of much of the heavy lifting and boilerplate code for writing COM servers 
so that you don’t have to. This allows you to focus on writing the code that implements your business 
logic without much of the burden imposed by the necessary COM model plumbing.

Managing Module Lifetimes in COM Servers
To give you a practical scenario so that you get a better feel for the type of features ATL 
 provides, consider the problem of managing the lifetime of COM servers. As mentioned earlier, 
COM servers implement reference counting to determine when their hosting server module 
(DLL or EXE) can be unloaded safely. In the COM ATL library, for example, every time a new 
COM object is created within a COM module (CAtlDllModule), a global (per-module) integer 
variable counting the number of live objects implemented by that module is incremented by 
one. This special reference count is often referred to as the COM module’s lock count. When 
the last reference to the object is released, the lock count is decremented by one. In addition, a 
client is also allowed to put a lock on the server (that is, increment its global lock count by one) 
by calling the LockServer method of the IClassFactory standard COM interface (implemented 
by the CComClassFactory class in ATL).

In the case of DLL COM servers, this essentially provides a simple implementation to 
 ref-count the COM module so that when its DllCanUnloadNow function is called, the module is 
able to see the number of outstanding client references it has (the lock count) and, when that 
number drops to zero, report to the COM library that it’s free to unload the DLL if it wants to. A 
host process is able to force this cleanup at any time by calling the ole32!CoFreeUnusedLibraries 
COM runtime function, which internally invokes the exported DllCanUnloadNow functions 
from all in-process DLL COM server modules loaded in the client process and unloads the 
modules that return TRUE.

The lock count is also used by COM EXE servers. In the case of ATL, for example, COM EXE 
modules (CAtlExeModule) use an extra thread that periodically checks their lock count and 
shuts the process down after a certain period of inactivity after its lock count drops to zero. 
You can see this logic in the ATL implementation headers, as in the MonitorShutdown callback 
shown in the following listing.

// 
// c:\ddk\7600.16385.1\inc\atl71>atlbase.h 
// 
void MonitorShutdown() throw() 
{ 
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    while (1) 
    { 
        ::WaitForSingleObject(m_hEventShutdown, INFINITE); 
        DWORD dwWait = 0; 
        do        { 
            m_bActivity = false; 
            dwWait = ::WaitForSingleObject(m_hEventShutdown, m_dwTimeOut); 
        } while (dwWait == WAIT_OBJECT_0); 
 
        if (!m_bActivity && m_nLockCnt == 0) 
        { 
            ::CoSuspendClassObjects(); 
            if (m_nLockCnt == 0) 
                break; 
        } 
    } 
    ::CloseHandle(m_hEventShutdown); 
    ::PostThreadMessage(m_dwMainThreadID, WM_QUIT, 0, 0); 
}

Note that COM as an OS component and platform leaves implementing this module refer-
ence counting scheme up to the developer writing the COM server. Fortunately, however, the 
good folks at Microsoft who wrote the ATL framework took care of this on behalf of all the 
Windows developers writing COM servers using that framework.

Consuming COM Objects
Communication between COM clients and servers is a two-step process:

■■ CoM activation This is the first step in the communication, where the COM library lo-
cates the class factory of the requested CLSID. This is done by first consulting the COM 
registry  catalog to find the module that hosts the implementation of the COM server. 
The COM client code initiates this step with a call to either the ole32!CoCreateInstance or 
ole32!CoGetClassObject Win32 API call. Note that ole32!CoCreateInstance is simply a con-
venient wrapper that first calls ole32!CoGetClassObject to obtain the class factory, and then 
invokes the IClassFactory::CreateInstance method implemented by that class factory object to 
finally create a new instance of the target COM server.

■■ Method invocations After the COM activation step retrieves a proxy or direct pointer to the 
COM class object, the client can then query the interfaces exposed by the object and directly 
invoke the exposed methods.

A key point to understand when consuming COM objects in your code is the potential  involvement 
of the COM SCM behind the scenes to instantiate the hosting module for the COM object and its 
 corresponding class factory during the COM activation step. This is done because COM clients some-
times need to activate out-of-process servers in different contexts, such as when the COM server 
object needs to run in processes with higher privileges or in different user sessions, which requires the 
participation of a broker process that runs with higher privileges (the DComLaunch service). Another 



24  parT 1 a Bit of Background

reason is that the RpcSs Windows service also handles cross-machine COM activation requests (the 
DCOM case) and implements the communication channel in a way that’s completely transparent to 
both COM clients and servers. It’s especially important to understand this involvement during debug-
ging investigations of COM activation failures. Once the COM activation sequence retrieves the re-
quested class factory, however, the COM client is then able to directly invoke COM methods published 
by the server class without any involvement on the part of the COM SCM. Figure 1-8  summarizes 
these steps and the key components involved during the COM activation sequence.
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fIguRE 1-8 COM activation components.

The nice thing about the COM model, as mentioned earlier in this section, is that the client doesn’t 
need to know where the COM server implementation lives, or even the language (C++, Microsoft 
 Visual Basic, Delphi, or other) in which it was written (provided it has access to a type library or a 
direct virtual table layout that describes the COM types it wants to consume). The only thing that 
the client needs to know is the CLSID of the COM object (a GUID), after which it can query for the 
supported interfaces and invoke the desired methods. COM in the OS provides all the necessary 
“glue” for the client/server communication, provided the COM server was written to conform to the 
COM model. In particular, COM supports accessing the following COM server types using the same 
 consistent programmatic model:

■■ In-process CoM servers The hosting DLL module is loaded into the client process address 
space, and the object is invoked through a pointer returned by the COM activation sequence. 
This pointer can be either a direct virtual pointer or sometimes a proxy, depending on whether 
the COM runtime needs to be invoked to provide additional safeguards (such as thread safety) 
before invoking the methods of the COM server.

■■ local/remote out-of-process CoM servers For local out-of-process COM servers, local RPC 
is used as the underlying interprocess communication protocol, with ALPC as the actual low-
level foundation. For remote COM servers (DCOM), the RPC communication protocol is used 
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for the intermachine communication. In both cases, the proxy memory pointer that is returned 
to the client application from the COM activation sequence takes care of everything that’s re-
quired to accomplish COM’s promise of transparent remoting. Figure 1-9 illustrates this aspect.
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fIguRE 1-9 Out-of-process COM method invocations.

The CLr (.neT) Layer
Like COM, the .NET Framework is also a user-mode, object-oriented platform that enables  developers 
to write their programs in their language of choice (C#, Microsoft Visual Basic .NET, C++/CLI, or 
other). However, .NET takes another leap and has those programs run under the control of an execu-
tion  engine environment that provides additional useful features, such as type safety and automatic 
memory management using garbage collection. This execution engine environment is called the 
Common Language Runtime (CLR) and is in many ways the core of the .NET platform. Understanding 
this layer is often helpful when debugging applications built on top of the various .NET class libraries 
and  technologies (ASP.NET, WCF, WinForms, WPF, Silverlight, and so on).

The CLR runtime is implemented as a set of native DLLs that get loaded into the address space of 
every .NET executable, though the core execution engine DLL decides when to load the other DLL 
dependencies. Because of their reliance on this execution environment, .NET modules (also called 
 assemblies) are said to be managed, as opposed to the unmanaged native modules that execute 
in the regular user-mode environment. The same user-mode process can host both managed and 
 unmanaged modules interoperating with each other, as will be explained shortly in this section.

Programs in .NET are not compiled directly into native assembly code, but rather into a 
 platform-agnostic language called the Microsoft .NET Intermediate Language (usually referred to 
as MSIL, or simply IL). This IL is then lazily (methods are compiled on first use) turned into assembly 
instructions by a component of the execution engine called the Just-in-Time .NET compiler, or JIT.
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.neT Side-by-Side Versioning
One of the issues that plagued software development in Windows prior to the introduction of the 
.NET Framework was the fact that new DLL versions sometimes introduced new behaviors, breaking 
existing software often through no fault of the application developer. There was no standard way to 
strongly bind applications to the version of the DLLs that they were tested against before they got 
released. This is known as the “DLL hell” issue. COM made the situation better by at least ensuring 
binary compatibility: instead of C-style exported DLL functions simply disappearing or altering their 
signatures from underneath their consumers (resulting in crashes!), COM servers were able to clearly 
version their interfaces, allowing COM clients to query the interfaces that they were tested against 
and providing the safety of this extra level of indirection.

The .NET Framework takes the idea of strong binding and versioning one step further by  ensuring 
that .NET programs are always run against the version of the CLR that they were compiled to target 
or, alternatively, the version specified in the application’s configuration file. So, new versions of the 
.NET Framework are installed side by side with older ones instead of replacing them. The  exception 
to this is a small shim DLL called mscoree.dll that’s installed to the system32 directory (on 64-bit 
 Windows; a 32-bit version is also installed to the SysWow64 directory) and that always matches 
the newest .NET Framework version present on the machine. This works because newer versions of 
mscoree.dll are backward compatible with previous versions of the CLR. For example, if both .NET 
 versions 4.0 and 2.0 are installed on the machine, the mscoree.dll module in the system32 directory 
will be the one that was installed with the CLR 4.0 release.

.neT executable programs Load Sequence
The IL assemblies produced by the various .NET compilers also follow the standard Windows PE 
(Portable Executable) format and are just special-case native images from the perspective of the OS 
loader, except they have a marker in their PE header to indicate they are managed code binaries that 
should be handled by the .NET CLR. When the Windows module loader code in ntdll.dll detects the 
existence of a CLR header in the executable PE image it is about to launch, control is immediately 
transferred to the native CLR entry point (mscoree!_CorExeMain), which then takes care of finding and 
invoking the managed IL entry point in the image.

note To support earlier OS versions (more specifically, Windows 98/ME and  earlier ser-
vice packs of Windows 2000 and Windows XP), which were not aware of the CLR header 
 because the .NET Framework hadn’t shipped at the time those operating systems were 
released, managed PE images also had to have a regular native entry point consisting of 
a very thin stub ( jmp instruction) that simply invokes the CLR’s main entry point method 
( mscoree!_CorExeMain). Fortunately, the Windows releases supported by .NET are now 
natively capable of loading managed code modules, and this stub is no longer strictly 
 required.
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Note that the OS module loader doesn’t really know which version of the CLR should be loaded for 
the managed image. This is the role of the mscoree.dll native shim DLL, which determines the  correct 
version of the CLR to load. For CLR v2 programs, for example, the execution engine DLL loaded by 
mscoree.dll is mscorwks.dll, while for CLR v4 the execution engine implementation resides inside the 
clr.dll module. Once the CLR execution engine DLL for the target version is loaded, it pretty much 
takes control and becomes responsible for the runtime execution environment, ensuring type safety 
and automatic memory management (garbage collection), invoking the JIT compiler to convert IL 
into native assembly code on-demand, performing security checks, hosting the native implementa-
tion for several key threading and run-time services, and so on. The CLR is also responsible for loading 
the managed assemblies hosting the object types referenced by the application’s IL, including the 
core library that implements some of the most basic managed types (mscorlib.dll .NET assembly). 
 Figure 1-10 illustrates these steps.

Kernel32.dll OS Loader CLR SHIM CLR OS Executive

ntdll!NtCreateUserProcess

mscoree!_CorExeMain

nt!NtCreateUserProcess

clr!ExecuteExe

fIguRE 1-10 Loading steps for .NET executable programs.

Interoperability Between Managed and native Code
When the first version of the .NET Framework was introduced back in early 2002, it had to be able to 
consume existing native code (both C-style Win32 APIs and COM objects) to ensure that the transi-
tion to managed code programming was seamless for Windows developers. Interoperability between 
managed and unmanaged code is possible fortunately, thanks in large part to two CLR mechanisms: 
P/Invoke and COM Interop. P/Invoke (the DllImport .NET method attribute) is used to invoke C-style 
unmanaged APIs such as those from the Win32 API set, and COM Interop (the ComImport .NET class 
attribute) can be used to invoke any existing classic COM object implemented in unmanaged code.

Managed/native code interoperability presents a few technical challenges, however. The biggest 
challenge is that the garbage collection scheme that the CLR uses for automatic memory manage-
ment requires it to manage objects in the managed heap so that it is able to periodically clear 



28  parT 1 a Bit of Background

defunct (nonrooted) objects, and also so that it can reduce heap fragmentation when dead objects 
are  collected. However, when transitioning to run native code as part of the same process address 
space, it’s often necessary to share managed memory with the native call (in the form of function 
 parameters, for instance). Because the CLR garbage collector is free to move these managed objects 
around when it decides to perform a garbage collection, and because the garbage collector is com-
pletely unaware of the operations that the native code might attempt, it could end up moving the 
shared managed objects around, causing the native code to access invalid memory. The CLR execu-
tion engine takes care of these technical intricacies by marshaling function parameters and pinning 
managed objects in memory during the managed to unmanaged transitions.

Conversely, you can also consume code that you develop using .NET from your native  applications 
using the COM Interop facilities provided by the CLR. The C/C++ native code is able to consume the 
types published by a .NET assembly (by means of the ComVisible .NET attribute) using their type 
library, in the same fashion that native COM languages are able to consume types from different lan-
guages. The .NET Framework ships with a tool called regasm.exe, which can be used to easily generate 
type libraries for the COM types in a .NET assembly. The .NET Framework and Windows SDKs also 
include a development tool, called tlbexp.exe, that’s able to do the same thing.

The CLR shim DLL (mscoree.dll) again plays a key role in this reverse COM Interop scenario because 
it’s the first native entry point to the CLR during the COM activation. This shim then loads the right 
CLR execution engine version, which then loads the managed COM types as they get invoked by the 
native code. This extends the functionality provided by the COM library in the OS without it hav-
ing to know about the intricacies of managed code. During the COM activation sequence that the 
 native application initiates, the COM library ends up invoking the standard DllGetClassObject method 
exported from mscoree.dll. If you used regasm.exe to generate the type library for the C# COM types, 
mscoree.dll also would’ve been added to the registry as the InProcServer32 for all the managed COM 
classes hosted by the .NET DLL assembly. The CLR shim DLL then forwards the call to the CLR execu-
tion engine, which takes care of implementing the class factory and standard native COM interfaces 
on behalf of the managed COM types.

Microsoft Developer Tools

Microsoft typically releases supporting tools (compilers, libraries, and the like) for developers to write 
code that targets its technologies. These releases are referred to as development kits. For example, 
there is a software development kit (SDK) for developers of Windows Phone applications, a .NET 
SDK that contains tools to write and sign code for the .NET Framework, an Xbox development kit 
(XDK) for game developers, and so on. Many of these development kits, including the .NET and 
 Windows Phone SDKs, are available as free downloads from the Microsoft Download Center at  
http://www.microsoft.com/downloads.

The Windows team at Microsoft also ships two important software development kits that include 
many of the tools presented in this book: more specifically, the Windows Driver Development Kit 
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(DDK), which contains the build environment used to compile all the native C++ code samples in the 
book's companion source code, and the Windows Software Development Kit, which contains the 
Windows debuggers and Windows Performance Toolkit. Both of these development kits are free and 
available for download from the Microsoft Download Center.

The Windows DDK (WDK)
Each release of Windows is accompanied by a driver development kit targeted for use by Windows 
driver developers, which contains the headers, libraries, and tools needed for building drivers, as well 
as several code samples for writing WDM, KMDF, and UMDF drivers.

One of the most useful features included with this kit is a full-blown build and development 
environment that can be used not only for driver development but for any kind of C/C++ develop-
ment. It includes C/C++ compilers and many other native development frameworks, including the STL 
(Standard C++ Template Library) and ATL (Active Template Library for building COM servers) template 
libraries and their respective implementation headers.

The native C++ code samples from the companion source code use a small portion of ATL that 
provides support for smart pointers and basic string and collection operations (arrays, hash tables, 
and so on). Although ATL also comes with the Microsoft Visual Studio suite, the build environment of 
the DDK was chosen for this book’s companion source code so that readers without Visual Studio can 
follow the case studies and experiments presented in this book.

The Windows SDK
Another important development kit shipped to support new Windows releases is the Windows SDK. 
Microsoft sometimes ships more than one SDK version per major Windows release: for  example, 
 versions 7.0 and 7.1 of the SDK target Windows 7 developers, with version 7.1 bringing many 
 improvements to some of the key tools covered in this book.

The Windows SDK contains useful documentation and samples for building applications on 
Windows, as well as the public (official) header files and import libraries that are required for compil-
ing your native Windows applications. In addition, the Windows SDK also contains two of the main 
debugging and tracing tools covered in this book—namely, the Windows debuggers package and 
Windows Performance Toolkit.

Step-by-step instructions for how to acquire and install those SDK tools will be provided when 
they’re introduced in the following parts of this book so that they’re closer to where you will end up 
needing them.
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summary

This chapter introduced some common terminology and also served as a very short and,  admittedly, 
fast-paced introduction to important layers (Kernel, Executive, NTDLL, Win32, COM/.NET) in the 
 Windows architecture and software development landscape. The following points are also worth 
remembering as you read the rest of this book:

■■ Server and client Windows releases share a common kernel and follow a relatively similar 
release schedule, so it’s important to know the client variant of each server release and vice 
versa. When this book states that a certain kernel feature is added in Windows 7, for example, 
it’s also implied that the Windows Server 2008 R2 kernel has the same capability.

■■ The CPU architecture of your OS (x86 or x64) is always important to know when performing 
debugging and tracing experiments.

■■ When studying a new API set or platform feature, you should try to piece together an 
 architectural diagram in your mind and understand where that new feature fits relative to the 
existing OS layers and development frameworks. This comes in handy when you later need to 
debug or trace the code in your software that uses the feature in question.

■■ When analyzing development frameworks and whether to use them in building your  software, 
you should also try to understand how they are implemented on top of the built-in OS  services 
and what additional functionality they provide. This should help you make an informed choice 
as to what frameworks fit your scenario best and whether taking the dependency is worth the 
productivity benefits you would gain.

Many of the concepts discussed in this chapter will be revisited in practical debugging and tracing 
situations. If you are like me, you will find that these topics start hitting a lot closer to home, so to 
speak, once you get into the habit of using debugging and tracing to confirm your understanding 
of the theoretical background. So, don’t hesitate to come back and consult this chapter again as you 
run the debugging and tracing explorations proposed in this book. You might want to double-check 
some of the theory that has been covered here.
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how Windows Debuggers Work
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This chapter explains how different types of debuggers work in Microsoft Windows. If you know these 
architectural foundations, many debugger concepts and behaviors suddenly start making sense. For 
example, this chapter explains why certain debugger commands and features work only in user-mode 
or kernel-mode debugging. You’ll also dive into the architecture of managed-code debugging and 
discover why .NET source-level debugging isn’t currently supported by the Windows debuggers.

Following that discussion, you’ll learn how the architecture of script debugging relates to that of 
.NET debugging. With HTML5 and JavaScript becoming more prevalent development technologies 
for rich client user interfaces, script debugging is likely to garner even more attention from Windows 
developers in the future. This chapter concludes with a section that explains remote debugging and 
the key concepts that drive its architecture.

user-Mode Debugging

A user-mode debugger gives you the ability to inspect the memory of the target program you’re 
trying to debug, as well as the ability to control its execution. In particular, you want to be able to 
set breakpoints and step through the target code, one instruction or one source line at a time. These 
basic requirements drive the design of the native user-mode debugging architecture in Windows.
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architecture Overview
To support controlling the target in user-mode debugging, the Windows operating system (OS) has 
an architecture based on the following principles:

■■ When important debug events, such as new module loads and exceptions, occur in the 
 context of a process that’s being debugged by a user-mode debugger, the OS generates 
message notifications on behalf of the target and sends them to the debugger process, giving 
the debugger program a chance to either handle or ignore those notifications. During each 
notification, the target process blocks and waits until the debugger is done responding to it 
before it resumes its execution.

■■ For this architecture to work, the native debugger process must also implement its end of the 
handshake, so to speak, and have a dedicated thread to receive and respond to the debug 
events generated by the target process.

■■ The interprocess communication between the two user-mode programs is based on a debug 
port kernel object (owned by the target process), where the target queues up its debug event 
notifications and waits on the debugger to process them.

This generic interprocess communication model is sufficient to handle all the requirements for 
controlling the target in a user-mode debugging session, providing the debugger with the capability 
to respond to code breakpoints or single-step events, as illustrated in Figure 3-1.

Target
Process

Debugger
Process

Send debug
event and wait

Server Thread
Dedicated to
Processing 
Incoming

Debug
Notifications

Debug Port
Object

fIguRE 3-1 Native user-mode debugging architecture in Windows.

The other high-level requirement of user-mode debugging is for the debugger to be able to 
 inspect and modify the virtual address space of the target process. This is necessary, for example, 
to be able to insert code breakpoints or walk the stacks and list the call frames in the threads of 
 execution contained within the target process. 

Windows provides facilities exposed at the Win32 API layer to satisfy these requirements,  allowing 
any user-mode process to read and write to the memory of another process—as long as it has 
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 sufficient privileges to do so. This system-brokered access is why you can debug only your own pro-
cesses unless you’re an administrator running in an elevated User Acount Control (UAC) context with 
full administrative privileges (which include, in particular, the special SeDebugPrivilege). If you do have 
those privileges, you can debug processes from any other user on the system—including LocalSystem 
processes.

Win32 Debugging apIs
Debugger programs can implement their functionality and follow the conceptual model described in 
the previous section by using published APIs in the operating system. Table 3-1 summarizes the main 
Win32 functions used in Windows user-mode debuggers to achieve their requirements.

TABlE 3-1 Win32 API Support for User-Mode Windows Debuggers

Requirement win32 API function winDbg Command(s)

Start a target process directly 
under the control of a user-
mode debugger.

CreateProcess, with dwCreationFlags:
■■ DEBUG_PROCESS
■■ DEBUG_ONLY_THIS_ PROCESS

Ctrl+E UI shortcut or 
windbg.exe target.exe

Dynamically attach a user-
mode debugger to an existing 
process.

OpenProcess, with at least the following 
dwDesiredAccess flags:

■■ PROCESS_VM_READ
■■ PROCESS_VM_WRITE
■■ PROCESS_VM_OPERATION

DebugActiveProcess, with the handle ob-
tained in the previous step

F6 UI shortcut or 
windbg.exe –pn target.exe or 
windbg.exe –p [PID]

Stop debugging the target 
process, but without terminat-
ing it.

DebugActiveProcessStop qd (“quit and detach”)

Break into the debugger to 
inspect the target.

DebugBreakProcess Ctrl+Break UI shortcut or 
Debug\Break menu action

Wait for new debug events. WaitForDebugEvent N/A

Continue the target’s execution 
after a received debug event is 
processed.

ContinueDebugEvent N/A

Inspect and edit the virtual 
address space of the target 
process.

ReadProcessMemory 
WriteProcessMemory

Dump memory (dd, db, and 
so on) 
Edit memory (ed, eb, and so on) 
Insert code breakpoints (bp) 
Dump a thread’s stack trace (k, 
kP, kn, and so on)

With these Win32 APIs, a user-mode debugger can write the code in the thread that it uses to 
process the debug events it receives from the target using a loop like the one shown in the following 
listing (pseudo-code).

// 
// Main User-Mode Debugger Loop 
// 
CreateProcess("target.exe",..., DEBUG_PROCESS, ...); 
while (1) 
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{ 
    WaitForDebugEvent(&event, ...); 
    switch (event) 
    { 
        case ModuleLoad: 
            Handle/Ignore; 
            break; 
        case TerminateProcess: 
            Handle/Ignore; 
            break; 
        case Exception (code breakpoint, single step, etc...): 
            Handle/Ignore; 
            break;     
    } 
    ContinueDebugEvent(...); 
}

When the debugger loop calls the WaitForDebugEvent Win32 API to check whether a new debug 
event arrived, the call internally transitions to kernel mode to fetch the event from the queue of the 
debug port object of the target process (the DebugPort field of the nt!_EPROCESS executive object). 
If the queue is found to be empty, the call blocks and waits for a new debug event to be posted to 
the port object. After the event is processed by the debugger, the ContinueDebugEvent Win32 API is 
called to let the target process continue its execution.

Debug events and exceptions
The OS generates several types of debug events when a process is being debugged. For instance, an 
event is generated for every module load, allowing the user-mode debugger to know when a new 
DLL is mapped into the address space of the target process. Similarly, an event is also raised when a 
new child process is created by the target process, enabling the user-mode debugging session to also 
handle the debug events from child processes if it wants to do so.

Debug events are similarly generated when any exceptions are raised in the context of the target 
process. As you’ll shortly see, code breakpoints and single-stepping are both internally implemented 
by forcing an exception to be raised in the context of the target application, which means that those 
events can also be handled by the user-mode debugger just like any other debug events. To better 
understand this type of debug event, a quick overview of exception handling in Windows is in order.

.neT, C++, and Seh exceptions
Two categories of exceptions exist in Windows: language-level or framework-level exceptions, such 
as the C++ or .NET exceptions, and OS-level exceptions, also known as Structured Exception Handling 
(SEH) exceptions. Both Microsoft Visual C++ and the .NET Common Language Runtime (CLR) use SEH 
exceptions internally to implement support for their specific application-level, exception-handling 
mechanisms.
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SEH exceptions, in turn, can be separated into two categories: hardware exceptions are raised in 
response to a processor interrupt (invalid memory access, integer divide-by-zero, and so on), and 
software exceptions are triggered by an explicit call to the RaiseException Win32 API.  Hardware 
 exceptions are particularly important to the functionality of user-mode debuggers in Windows 
 because they’re also used to implement breakpoints and in single-stepping the target, two 
 fundamental features of any debugger.

At the Visual C/C++ language level, the throw keyword used to throw C++ exceptions is  translated 
by the compiler into a call implemented in the C runtime library, which ultimately invokes the 
 RaiseException API. In addition, three keywords (__try, __except, and __finally) are also defined to  allow 
you to take advantage of SEH exceptions and structure (hence the SEH name) your code so that you 
can  establish code blocks to handle or ignore the SEH exceptions that get raised from within that 
code block. Despite this Visual C++ language support, it’s important to realize that SEH is a Windows 
operating system concept and that you can use it with any language, as long as the compiler has 
 support for it.

Unlike C++ exceptions, which can be raised with any type, SEH exceptions deal with only one type: 
unsigned int. Each SEH exception, whether triggered in hardware or software, is identified in Windows 
using an integer identifier—the exception code—that indicates the type of fault that triggered the 
exception (divide-by-zero, access violation, and so on). You can find many of the exception codes 
defined by the OS in the winnt .h Software Development Kit (SDK) header file. In addition, applications 
are also free to define their own custom exception codes, which is precisely what the C++ and .NET 
runtimes do for their exceptions.

Table 3-2 lists a few common exception codes that you’ll see frequently during your debugging 
investigations.

TABlE 3-2 Common Windows SEH Exceptions and Their Status Codes

Exception Code Description

STATUS_ACCESS_VIOLATION (0xC0000005) Invalid memory access

STATUS_INTEGER_DIVIDE_BY_ZERO (0xC0000094) Arithmetic divide-by-zero operation

STATUS_INTEGER_OVERFLOW (0xC0000095) Arithmetic integer overflow

STATUS_STACK_OVERFLOW (0xC00000FD) Stack overflow (running out of stack space)

STATUS_BREAKPOINT (0x80000003) Raised in response to the debug break CPU interrupt 
(interrupt #3 on x86 and x64)

STATUS_SINGLE_STEP (0x80000004) Raised in response to the single-step CPU interrupt 
(interrupt #1 on x86 and x64)

Seh exception handling in the User-Mode Debugger
When an exception occurs in a process that’s being debugged, the user-mode debugger gets notified 
by the OS exception dispatching code in ntdll.dll before any user exception handlers defined in the 
target process are given a chance to respond to the exception. If the debugger chooses not to handle 
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this first-chance exception notification, the exception dispatching sequence proceeds further and the 
target thread is then given a chance to handle the exception if it wants to do so. If the SEH exception 
is not handled by the thread in the target process, the debugger is then sent another debug event, 
called a second-chance notification, to inform it that an unhandled exception occurred in the target 
process.

Figure 3-2 summarizes this OS exception dispatching sequence, specifically when a user-mode 
debugger is connected to the target process.

Debugger Process

Exception raised in thread #n
1st-chance notification

Debuggee Process

App Exception Handlers (Filters)?

Continue debugging

2nd-chance notification

Exception
Dispatching

Flow
2

3

1

fIguRE 3-2 SEH exceptions and debug event notifications.

First-chance notifications are a good place for the user-mode debugger to handle exceptions that 
should be invisible to the code in the target process, including code breakpoints, single-step debug 
events, and the break-in signal. The sections that follow describe these important mechanisms in 
more detail.

Unlike first-chance notifications, which for user exceptions are simply logged to the debugger 
command window by default, the user-mode debugger always stops the target in response to a 
second-chance exception notification. Unhandled exceptions are always reason for concern because 
they lead to the demise of the target process when no debuggers are attached, which is why the 
user-mode debugger breaks in when they occur so that you can investigate them. You can see this 
sequence in action using the following program from the companion source code, which simply 
throws a C++ exception with a string type. For more details on how to compile the companion source 
code, refer to the procedure described in the Introduction of this book.

// 
// C:\book\code\chapter_03\BasicException>main.cpp 
// 
int 
__cdecl 
wmain() 
{ 
    throw "This program raised an error"; 
    return 0; 
}
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When you run this program under the WinDbg user-mode debugger, you see the debugger 
receive two notifications from the target: the first-chance notification is logged to the debugger 
 command window, while the second-chance notification causes the debugger to break in, as illus-
trated in the following debugger listing. Notice also how the throw keyword used to raise C++ excep-
tions ends up getting translated into a call to the C runtime library (the msvcrt!_CxxThrowException 
function call in the following listing), which ultimately invokes the RaiseException Win32 API to raise 
an SEH  exception with the custom C++ exception code.

0:000> vercommand 
command line: '"c:\Program Files\Debugging Tools for Windows (x86)\windbg.exe"   
c:\book\code\chapter_03\BasicException\objfre_win7_x86\i386\BasicException.exe' 
0:000> .symfix 
0:000> .reload 
0:000> g 
(aa8.1fc0): C++ EH exception - code e06d7363 (first chance) 
(aa8.1fc0): C++ EH exception - code e06d7363 (!!! second chance !!!) 
... 
KERNELBASE!RaiseException+0x58: 
75dad36f c9              leave 
0:000> k 
ChildEBP RetAddr   
000ffb60 75fd359c KERNELBASE!RaiseException+0x58 
000ffb98 00cb1204 msvcrt!_CxxThrowException+0x48 
000ffbac 00cb136d BasicException!wmain+0x1b 
[c:\book\code\chapter_03\basicexception\main.cpp @ 7] 
000ffbf0 76f9ed6c BasicException!__wmainCRTStartup+0x102  
000ffbfc 779c377b kernel32!BaseThreadInitThunk+0xe 
000ffc3c 779c374e ntdll!__RtlUserThreadStart+0x70 
000ffc54 00000000 ntdll!_RtlUserThreadStart+0x1b 
0:000> $ Quit the debugging session 
0:000> q

The Break-in Sequence
User-mode debuggers can intervene at any point in time and freeze the execution of their target 
process so that it can be inspected by the user—an operation referred to as breaking into the debug-
ger. This is achieved by using the DebugBreakProcess API, which internally injects a remote thread into 
the address space of the target process. This “break-in” thread executes a debug break CPU interrupt 
instruction (int 3). In response to this interrupt, an SEH exception is raised by the OS in the context of 
the break-in thread. As shown in the previous section, this sends the user-mode debugger process a 
first-chance notification, allowing it to handle this special debug break exception (code 0x80000003, 
or STATUS_BREAKPOINT) and finally break in by suspending all the threads in the target process.

This is why the current thread context in the user-mode debugger after a break-in operation will 
be in this special thread, which isn’t a thread you’ll recognize as “yours” if you’re debugging your own 
target process. To see this break-in thread in action, start a new instance of notepad.exe under the 
WinDbg user-mode debugger, as shown in the following listing. If you’re running this experiment 
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on 64-bit Windows, you can execute it again exactly as shown here by using the 32-bit version of 
 notepad.exe located under the %windir%\SysWow64 directory on x64 Windows. 

0:000> vercommand 
command line: '"c:\Program Files\Debugging Tools for Windows (x86)\windbg.exe"  notepad.exe' 
0:000> .symfix 
0:000> .reload 
Reloading current modules.......................... 
0:000> ~ 
   0  Id: 1d90.1678 Suspend: 1 Teb: 7ffde000 Unfrozen 
0:000> g

Using the Debug\Break menu action, break back into the debugger. You’ll see that the current 
thread context is no longer thread #0 (the main UI thread in notepad.exe) but rather a new thread. As 
you can infer from the function name (ntdll!DbgUiRemoteBreakin) on the call stack that you obtain 
by using the k command, this is the remote thread that was injected by the debugger into the target 
address space in response to the break-in request.

(1938.1fb0): Break instruction exception - code 80000003 (first chance) 
... 
ntdll!DbgBreakPoint: 
7799410c cc              int     3 
0:001> ~ 
   0  Id: 1d90.1678 Suspend: 1 Teb: 7ffde000 Unfrozen 
.  1  Id: 1d90.17f0 Suspend: 1 Teb: 7ffdd000 Unfrozen 
0:001> k 
ChildEBP RetAddr   
00a4fecc 779ef161 ntdll!DbgBreakPoint 
00a4fefc 75e9ed6c ntdll!DbgUiRemoteBreakin+0x3c 
00a4ff08 779b37f5 kernel32!BaseThreadInitThunk+0xe 
00a4ff48 779b37c8 ntdll!__RtlUserThreadStart+0x70 
00a4ff60 00000000 ntdll!_RtlUserThreadStart+0x1b

In addition, using the uf debugger command to disassemble the current function shows that this 
thread was executing an int 3 CPU interrupt instruction just before the debugger got sent the first-
chance notification for the debug break exception.

0:001> uf . 
ntdll!DbgBreakPoint: 
7799410c cc              int     3 
7799410d c3              ret

To see the actual threads in the target process, you can use the ~*k command to list the call stacks 
for every thread in the target. You can also use the s command to change (“switch”) the current 
thread context in the debugger to one of those threads, as illustrated in the following listing.

0:001> $ Switch over to thread #0 in the target 
0:001> ~0s 



 ChAPTER 3 How Windows Debuggers Work  93

0:000> k 
ChildEBP RetAddr   
0019f8e8 760fcde0 ntdll!KiFastSystemCallRet 
0019f8ec 760fce13 USER32!NtUserGetMessage+0xc 
0019f908 0085148a USER32!GetMessageW+0x33 
0019f948 008516ec notepad!WinMain+0xe6 
0019f9d8 76f9ed6c notepad!_initterm_e+0x1a1 
0019f9e4 779c377b kernel32!BaseThreadInitThunk+0xe 
0019fa24 779c374e ntdll!__RtlUserThreadStart+0x70 
0019fa3c 00000000 ntdll!_RtlUserThreadStart+0x1b 
0:001> $ Terminate this debugging session... 
0:001> q

Setting Code Breakpoints
Code breakpoints are also implemented using the int 3 instruction. Unlike the break-in case, 
where the debug break instruction is executed in the context of the remote break-in thread, 
code  breakpoints are implemented by directly overwriting the target memory location where 
the code breakpoint was requested by the user.

The debugger program keeps track of the initial instructions for each code breakpoint so that it 
can substitute them in place of the debug break instruction when the breakpoints are hit, and before 
the user is able to inspect the target inside the debugger. This way, the fact that int 3 instructions are 
inserted into the target process to implement code breakpoints is completely hidden from the user 
debugging the program, as it should be.

This scheme sounds straightforward, but there is a catch: how is the debugger able to insert the 
int 3 instruction before the execution of the target process is resumed (using the g command) after 
a breakpoint hit? Surely, the debugger can’t simply insert the debug break instruction before the 
 target’s execution is resumed because the next instruction to execute is supposed to be the original 
one from the target and not the int 3 instruction. The way the debugger solves this dilemma is the 
same way it is able to support single-stepping, which is by using the TF (“trap flag”) bit of the EFLAGS 
register on x86 and x64 processors to force the target thread to execute one instruction at a time. 
This single-step flag causes the CPU to issue an interrupt (int 1) after every instruction it executes. This 
allows the thread of the breakpoint to execute the original target instruction before the debugger is 
immediately given a chance to handle the new single-step SEH exception—which it does by restor-
ing the debug break instruction again, as well as by resetting the TF flag so that the CPU single-step 
mode is disabled again.

Observing Code Breakpoint Insertion in WinDbg
To conclude this section, you’ll try a fun experiment in which you’ll debug the user-mode WinDbg 
debugger! Armed with the background information from this section and the familiarity with using 
WinDbg commands that you’ve gained so far, you have all the tools to confirm what WinDbg does 
when a new code breakpoint is added by the user without having to take my word for it.
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To start this experiment, run notepad.exe under windbg .exe. This experiment once again uses the 
x86 flavor of notepad.exe and windbg .exe, but the concepts are identical on x64 Windows.

0:000> vercommand 
command line: '"c:\Program Files\Debugging Tools for Windows (x86)\windbg.exe"  notepad.exe' 
0:000> .symfix 
0:000> .reload

Set a breakpoint at USER32!GetMessageW, which is a function that you know is going to be hit in 
response to any user interaction with the notepad.exe user interface. Figure 3-3 represents this first 
debugging session.

0:000> bp user32!GetMessageW

fIguRE 3-3 First WinDbg debugger instance.

Before you use the g command to let the target notepad.exe continue its execution, start a new 
windbg .exe debugger instance with the same security context as the first one. From this new instance, 
attach to the first windbg .exe process using the F6 shortcut, as illustrated in Figure 3-4. This allows 
you to follow what happens after you unblock the execution of the notepad.exe process from the first 
debugger instance.
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First
Debugger

Instance

fIguRE 3-4 Debugging the debugger: the second WinDbg debugger instance.

In this new WinDbg instance, set a breakpoint at the kernel32!WriteProcessMemory API. As 
 mentioned earlier in this chapter, this is the Win32 API used by user-mode debuggers to edit the 
virtual memory of their target processes.

0:002> $ Second WinDbg Session 
0:002> .symfix 
0:002> .reload 
0:002> x kernel32!*writeprocessmemory* 
75e51928 kernel32!_imp__WriteProcessMemory = <no type information> 
75e520e3 kernel32!WriteProcessMemory = <no type information> 
75eb959f kernel32!WriteProcessMemoryStub = <no type information> 
0:002> bp kernel32!WriteProcessMemory 
0:002> g

Now that you have this breakpoint in place, go back to the first windbg .exe instance and run the g 
command to let notepad.exe continue its execution.

0:000> $ First WinDbg Session  
0:000> g

Notice that you immediately get a breakpoint hit inside the second windbg .exe instance, 
which is consistent with what you already learned in this chapter, because the first debugger tries 
to insert an int 3 instruction into the notepad.exe process address space (corresponding to the 
USER32!GetMessageW breakpoint you added earlier).
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Breakpoint 0 hit 
kernel32!WriteProcessMemory: 
... 
0:001> $ Second WinDbg Session 
0:001> k 
ChildEBP RetAddr   
0092edf4 58b84448 kernel32!WriteProcessMemory 
0092ee2c 58adb384 dbgeng!BaseX86MachineInfo::InsertBreakpointInstruction+0x128 
0092ee7c 58ad38ee dbgeng!LiveUserTargetInfo::InsertCodeBreakpoint+0x64 
0092eeb8 58ad62f7 dbgeng!CodeBreakpoint::Insert+0xae 
0092f764 58b67719 dbgeng!InsertBreakpoints+0x8c7 
0092f7e8 58b66678 dbgeng!PrepareForExecution+0x5d9 
0092f7fc 58afa539 dbgeng!PrepareForWait+0x28 
0092f840 58afaa60 dbgeng!RawWaitForEvent+0x19 
0092f858 00ebb6cf dbgeng!DebugClient::WaitForEvent+0xb0 
0092f874 75e9ed6c windbg!EngineLoop+0x13f 
0092f880 779b37f5 kernel32!BaseThreadInitThunk+0xe 
0092f8c0 779b37c8 ntdll!__RtlUserThreadStart+0x70 
0092f8d8 00000000 ntdll!_RtlUserThreadStart+0x1b

You can also check the arguments to the WriteProcessMemory API in the previous call stack by 
applying the technique described in Chapter 2, “Getting Started,” where the stack pointer and saved 
frame pointer values were used to get the arguments to each call from the stack of the current thread. 
Remember that in the __stdcall calling convention, the stack pointer register value points to the return 
address at the time of the breakpoint, followed by the arguments to the function call. This means that 
the second DWORD value in the following listing represents the first parameter to the Win32 API call. 
The values you’ll see will be different, but you can apply the same steps described here to derive the 
function arguments to this API call:

0:001> $ Second WinDbg Session  
0:001> dd esp 
0092edd4  58ce14a2 00000120 7630cde8 58d1b5d8 
0092ede4  00000001 0092edf0 00000000 0092ee2c 
...

In the documentation for the WriteProcessMemory Win32 API on the MSDN website at http://
msdn.microsoft.com/, you’ll see that it takes five parameters.

BOOL 
WINAPI 
WriteProcessMemory( 
    __in HANDLE hProcess, 
    __in LPVOID lpBaseAddress, 
    __in_bcount(nSize) LPCVOID lpBuffer, 
    __in SIZE_T nSize, 
    __out_opt SIZE_T * lpNumberOfBytesWritten 
    );

The first of these parameters is the user-mode handle for the target process object (hProcess) that 
the debugger is trying to write to. You can use the value you obtained from the dd command with 
the !handle debugger extension command to confirm that it was indeed the notepad.exe process. 
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The !handle command also gives you the process ID (PID) referenced by the handle, which you can 
confirm is the PID of notepad.exe in the Windows task manager UI or, alternatively, by using the 
 convenient .tlist debugger command, as demonstrated in the following listing.

0:001> $ Second WinDbg Session  
0:001> !handle 120 f 
Handle 120 
  Type              Process 
  GrantedAccess     0x12167b: 
         ReadControl,Synch 
         Terminate,CreateThread,VMOp,VMRead,VMWrite,DupHandle,SetInfo,QueryInfo 
  Object Specific Information 
    Process Id  5964 
    Parent Process  3736 
0:001> .tlist notepad* 
 0n5964 notepad.exe

Next is the address that the debugger is trying to overwrite (lpBaseAddress). Using the u debugger 
command to disassemble the code located at that address, you can see that this second argument 
does indeed point to the USER32!GetMessageW API, which was the target location of the requested 
code breakpoint.

0:001> $ Second WinDbg Session  
0:001> u 0x7630cde8  
USER32!GetMessageW: 
7630cde8 8bff            mov     edi,edi 
7630cdea 55              push    ebp 
7630cdeb 8bec            mov     ebp,esp 
7630cded 8b5510          mov     edx,dword ptr [ebp+10h] 
...

Finally, the third parameter (lpBuffer) is a pointer to the buffer that the debugger is trying to 
insert into this memory location. This is a single-byte buffer (as indicated by the value of the fourth 
argument, nSize, from the previous listing), representing the int 3 instruction. On both x86 and 
x64, this  instruction is encoded using the single 0xCC byte, as you can see by using either the u 
( “un- assemble”) or db (“dump memory as a sequence of bytes”) commands:

0:001> $ Second WinDbg Session  
0:001> u 58d1b5d8 
dbgeng!g_X86Int3: 
58d1b5d8 cc              int     3 
0:001> db 58d1b5d8 
58d1b5d8  cc 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................ 
...

If you continue this experiment with the same breakpoints and type g again inside the second 
windbg .exe instance, you can similarly analyze the next hit of the WriteProcessMemory breakpoint 
and confirm that the initial byte from the USER32!GetMessageW function (0x8b in this case) is 
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 surreptitiously restored as the USER32!GetMessageW breakpoint gets hit, right before the user is able 
to issue commands in the first debugger UI, as shown in the following listing.

0:001> $ Second WinDbg Session  
0:001> g 
Breakpoint 0 hit 
0:001> k 
ChildEBP RetAddr   
0092f128 58b84542 kernel32!WriteProcessMemory 
0092f160 58adb6a9 dbgeng!BaseX86MachineInfo::RemoveBreakpointInstruction+0xa2 
0092f1a4 58ad3bcd dbgeng!LiveUserTargetInfo::RemoveCodeBreakpoint+0x59 
0092f1ec 58ad6c0a dbgeng!CodeBreakpoint::Remove+0x11d 
... 
0:001> dd esp 
0092f108  58ce14a2 00000120 7630cde8 00680cc4 
0092f118  00000001 0092f124 00479ed8 0000000b 
... 
0:001> db 00680cc4 
00680cc4  8b 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................ 
... 
0:001> $ Terminate both debugging sessions now 
0:001> q

kernel-Mode Debugging 

The high-level requirements for kernel-mode debugging are similar to those of user-mode 
 debugging, including the ability to control the target (break in, single-step, set breakpoints, and 
so on) and also manipulate its memory address space. The difference in the case of kernel-mode 
 debugging is that the target is the entire system being debugged.

architecture Overview
Just like in the case of user-mode debugging, the Windows operating system also designed an 
 architecture that answers the system-level needs of kernel debuggers. In the case of user-mode 
debugging, that support framework is built right into the OS kernel, where the debug port execu-
tive object provides the key to the interprocess communication channel between the debugger and 
target processes. In the case of kernel debugging, the kernel itself is being debugged, so support 
for the communication channel is built lower in the architectural stack. This is done using Hardware 
 Abstraction Layer (HAL) extensions that implement the low-level transport layer of the communica-
tion channel between the host and target machines during kernel debugging.

There are different transport mediums you can use to perform kernel-mode debugging, and each 
one of them is implemented in its own transport DLL extension. In Windows 7, for example, kdcom.dll is 
used for serial cables, kd1394.dll is used for FireWire cables, and kdusb.dll is used for USB 2.0 debug 
cables. These module extensions are loaded by the HAL very early during the boot process, when 
the target is enabled to support kernel-mode debugging. Because these modules sit very low in the 
 architecture stack, they can’t depend on higher-level OS kernel components that might not yet be 
fully loaded or otherwise turn out to be themselves in the process of being debugged. For that  
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reason, the KD transport extensions are fairly lightweight and interact directly with the hardware at 
the lowest possible level without taking any extra device driver dependencies, as demonstrated in 
Figure 3-5.
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fIguRE 3-5 KD transport layer in the target OS.

If you disregard for a second how the debugger commands are transmitted from the kernel 
debugger to the target, the conceptual model for how the kernel on the target processes the 
 commands sent by the kernel-mode debugger is quite similar to how debug events are processed by 
the user-mode debugger loop:

■■ The OS kernel periodically asks the transport layer (as part of the clock interrupt service 
routine) to check for break-in packets from the host debugger. When a new one is found, the 
kernel enters a break-in loop where it waits for additional commands to be received from the 
host kernel debugger.

■■ While the system on the target machine is halted, the break-in loop checks for any new 
 commands sent by the host kernel debugger. This enables the kernel debugger to read 
 register values, inspect or change memory on the target, and perform many other  inspection 
and control commands while the target is still frozen. These send/receive handshakes are 
repeated until the host kernel debugger decides to leave the break-in state and the target is 
instructed to exit the debugger break-in mode and continue its normal execution again.

■■ In addition to explicit break-in requests, the kernel can also enter the break-in loop in 
 response to exceptions that get raised by the target machine, which allows the debugger to 
intervene and respond to them. This generic handling of exceptions is again used to imple-
ment single-stepping and setting code breakpoints inside the target OS during kernel-mode 
debugging.
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Setting Code Breakpoints
Knowing how code breakpoints are implemented during kernel-mode debugging is important so 
that you can understand situations when you fail to hit breakpoints you insert using the host kernel 
debugger. There are many similarities between how code breakpoints are internally implemented in 
user-mode and kernel-mode debugging, but there are also several important differences.

Like in the user-mode debugging case, code breakpoints are also inserted by overwriting the 
target virtual memory address with the debug break CPU instruction (int 3). When the target machine 
hits the inserted breakpoint, a CPU interrupt is raised and its OS interrupt handler is invoked. Where 
things diverge between user-mode and kernel-mode debugging is in how the handler dispatches the 
exception event to the host debugger. In the kernel-mode debugging case, the target OS is halted 
and enters the break-in send/receive loop, allowing the host debugger to handle the breakpoint by 
putting the initial byte back in the breakpoint’s code location before entering the break-in state.

Another way that kernel debugging code breakpoints are different from their user-mode 
 debugging counterparts is that they might refer to memory that has been paged out to disk on 
the target machine. In that case, the target simply handles the breakpoint command from the host 
debugger by registering the code breakpoint as being “owed.” When the code page is later loaded 
into memory, the page fault handler (nt!MmAccessFault) in the kernel memory manager intervenes 
and inserts the breakpoint instruction to the global code page at that time, just as it would have done 
if the breakpoint had been in a memory location that wasn’t paged out at the time of the debugger 
break-in.

Finally, because the same user-mode virtual memory address can point to different private code 
depending on the user-mode process context, code breakpoints inserted during kernel debugging 
are always interpreted relative to the current process context. This is a point that sometimes escapes 
developers who are new to kernel debugging because it isn’t a concern in user-mode debugging. 
However, this is precisely the reason why you should always invasively switch the process context in 
the host kernel debugger to the target process before setting breakpoints in user-mode code relative 
to that process.

Single-Stepping the Target
Single-stepping the target in the host debugger is implemented using the same single-step CPU 
 support and interrupt (int 1) that enables you to single-step the target process in a user-mode 
debugging environment. However, the fact that kernel-mode debuggers have global scope again 
introduces some interesting side effects you should be aware of so that you are better prepared to 
deal with them during your kernel-debugging experiments.

The most practical difference you’ll see when you try single-stepping the target in a host kernel 
debugger is that execution sometimes seems to jump to other random code on the system and away 
from your current thread context. This happens when the thread quantum expires while stepping 
over a function call and the OS decides to schedule another thread on the processor. When that 
happens, it seems as if the code you’re debugging just jumped to a random location. In reality, what 
happened is that the old thread got switched out and a new one is now running on the processor. 
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This  usually happens whenever you step over a long function or a Win32 API call that causes the 
thread to enter a wait state (such as a Sleep call). Fortunately, when single-stepping in a host kernel 
debugger, the  target OS not only enables the CPU trace flag but cleverly also finds the next call and 
inserts an additional debug break instruction at that memory location every time you single-step. This 
means that by letting the target machine “go” again (using the g command) after it seemed you had 
jumped to an unrelated code location, you break right back at the next call from the original thread 
(once its wait is satisfied and the thread gets scheduled to run again), which allows you to continue 
 single-stepping the thread you were examining prior to the context switch.

Switching the Current process Context
There are two ways to resolve symbols for the user-mode stacks of a process on the target machine 
of a kernel-debugging session. The first way, which you already used in Chapter 2, is to simply switch 
the current process view in the host debugger and reload the user-mode symbols for that process. 
This method’s main advantage is that it also works in live kernel-mode debugging, where it proves 
useful when you need to observe multiple user-mode processes during a debugger break-in. In the 
following live kernel-debugging session, the .process command is used with the /r (“reload user-mode 
symbols”) and /p (“target process”) options to illustrate this important approach. Make sure you start 
a new notepad.exe instance and that you use the values in bold text when you execute these com-
mands because your values are likely to be different from the ones shown in this listing.

lkd> !process 0 0 notepad.exe 
PROCESS 874fa030  SessionId: 1  Cid: 14ac    Peb: 7ffdf000  ParentCid: 1348 
    Image: notepad.exe 
lkd> .process /r /p 874fa030   
Implicit process is now 874fa030 
Loading User Symbols........................ 
lkd> !process 874fa030 7 
PROCESS 874fa030  SessionId: 1  Cid: 14ac    Peb: 7ffdf000  ParentCid: 1348 
    Image: notepad.exe 
        THREAD 86f6fd48  Cid 14ac.2020  Teb: 7ffde000 Win32Thread: ffb91dd8 WAIT ... 
            85685be8  SynchronizationEvent 
        ChildEBP RetAddr  Args to Child               
        9a99fb10 8287e65d 86f6fd48 807c9308 807c6120 nt!KiSwapContext+0x26 
        9a99fb48 8287d4b7 86f6fe08 86f6fd48 85685be8 nt!KiSwapThread+0x266 
        9a99fb70 828770cf 86f6fd48 86f6fe08 00000000 nt!KiCommitThreadWait+0x1df 
        9a99fbe8 9534959a 85685be8 0000000d 00000001 nt!KeWaitForSingleObject+0x393 
        9a99fc44 953493a7 000025ff 00000000 00000001 win32k!xxxRealSleepThread+0x1d7 
        9a99fc60 95346414 000025ff 00000000 00000001 win32k!xxxSleepThread+0x2d 
        9a99fcb8 95349966 9a99fce8 000025ff 00000000 win32k!xxxRealInternalGetMessage+0x4b2 
        9a99fd1c 8283e1fa 000afb80 00000000 00000000 win32k!NtUserGetMessage+0x3f 
        9a99fd1c 76f270b4 000afb80 00000000 00000000 nt!KiFastCallEntry+0x12a 
        000afb3c 7705cde0 7705ce13 000afb80 00000000 ntdll!KiFastSystemCallRet 
        000afb40 7705ce13 000afb80 00000000 00000000 USER32!NtUserGetMessage+0xc 
        000afb5c 0055148a 000afb80 00000000 00000000 USER32!GetMessageW+0x33 
        000afb9c 005516ec 00550000 00000000 0012237f notepad!WinMain+0xe6 
...

The second way to switch process views in the host debugger is to perform an invasive process 
context switch on the target machine by using the /i option of the .process command. This method 
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is particularly useful when you need to set breakpoints in user-mode code locations, given they’re 
always interpreted relative to the current process context on the target machine, as you also learned 
back in Chapter 2. This method requires the target machine to exit the debugger break-in mode and 
run to complete the request.

After the target is let go by the host debugger, the kernel on that side thaws the frozen processors 
and exits the break-in loop. Before it does so, however, it also schedules a high-priority work item to 
transition over to the new process context that was requested by the host debugger.

1: kd> !process 0 0 notepad.exe 
PROCESS 874fa030  SessionId: 1  Cid: 14ac    Peb: 7ffdf000  ParentCid: 1348 
    Image: notepad.exe 
1: kd> .process /i 874fa030 
You need to continue execution (press 'g' <enter>) for the context 
to be switched. When the debugger breaks in again, you will be in 
the new process context. 
1: kd> g 
Break instruction exception - code 80000003 (first chance)

The work item that induced the previous debug break runs on a leased system thread that runs 
in the context of the requested process. The host debugger breaks right back in again before any 
of its threads have a chance to continue executing past where they were at the time of the original 
break-in. You can also confirm that the current thread context is a kernel thread, and not a thread 
from the user-mode process itself. Notice that thread is indeed owned by the system (kernel) process, 
which always has a PID value of 4, as reported by the Cid (client thread ID) you get from the !thread 
 command.

0: kd> !thread 
THREAD 856e94c0  Cid 0004.0038  Teb: 00000000 Win32Thread: 00000000 RUNNING on processor 0 
ChildEBP RetAddr  Args to Child               
8a524c0c 82b30124 00000007 8293b2f0 856e94c0 nt!RtlpBreakWithStatusInstruction 
8a524d00 8287da6b 00000000 00000000 856e94c0 nt!ExpDebuggerWorker+0x1fa 
8a524d50 82a08fda 00000001 a158a474 00000000 nt!ExpWorkerThread+0x10d 
8a524d90 828b11d9 8287d95e 00000001 00000000 nt!PspSystemThreadStartup+0x9e 
00000000 00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x19

Nevertheless, this system thread is attached to the target process you requested, which you can 
confirm using the !process kernel debugger extension command and –1 to indicate you would like the 
current process context displayed.

0: kd> !process -1 0 
PROCESS 874fa030  SessionId: 1  Cid: 14ac    Peb: 7ffdf000  ParentCid: 1348 
    Image: notepad.exe

User-mode code breakpoints you enter in this host debugger break-in state will be resolved rela-
tive to this process context, exactly as desired.
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Managed-Code Debugging 

As previously mentioned in Chapter 2, one of the unfortunate limitations of the Windows debuggers 
is that they don’t support source-level debugging of .NET applications. This doesn’t mean that you 
can’t use WinDbg to debug managed code; it simply means that you won’t have the convenience of 
source-level debugging, such as single-stepping and source line breakpoints, when doing so. It’s as if 
you were debugging system code without the source code; only it’s worse because many important 
commands that work for native system debugging, such as displaying call stacks using the k com-
mand, don’t even work for managed code. Fortunately, there is at least a workaround in the form of a 
WinDbg extension called SOS, which Microsoft ships with the .NET Framework. This useful extension 
is covered in more detail later in this section.

Because of this limitation, the Microsoft Visual Studio environment remains the debugger of choice 
for .NET debugging. To better understand why the Windows debuggers are lacking in this regard, it’s 
useful to first discuss the architecture used by Visual Studio and the .NET Common Language Runtime 
(CLR) environment to implement their support for managed-code debugging and understand the 
way they collaborate to present a seamless native/managed debugging experience. Just like other 
.NET-related discussions in this book, the coverage centers on the architecture in version 4.0 of the 
.NET Framework.

architecture Overview
The first challenge when designing an architecture that enables debugging of Microsoft Intermedi-
ate Language (MSIL) .NET code is that such code gets translated into machine instructions on the 
fly by the CLR’s Just-in-Time (JIT) compiler. For performance reasons, this run-time code generation 
is done lazily only after a method is actually invoked. In particular, this means that to insert a code 
breakpoint, the debugger needs to wait until the code in question is loaded into memory so that it 
can edit the code in memory and insert the debug break instruction at the appropriate location. The 
native debug events generated by the OS aren’t sufficient by themselves to support this type of MSIL 
debugging because only the CLR knows when the .NET methods are compiled or how the managed 
class objects are represented in memory.

For those reasons, the CLR designed an infrastructure for debuggers to inspect and control 
 managed targets with the help of a dedicated thread that runs as part of every .NET process and has 
intimate knowledge of its internal CLR data structures. This thread is known as the debugger runtime 
controller thread, and it runs in a continuous loop waiting for messages from the debugger process. 
Even in the break-in state, the managed target process isn’t entirely frozen because this thread must 
still run to service the debugger commands. Any .NET application will have this extra debugger 
thread even when it isn’t being actively debugged with a managed-code debugger. To confirm this 
fact, you can use the following “Hello World!” C# sample from the companion source code.

C:\book\code\chapter_03\HelloWorld>test.exe 
Hello World! 
Press any key to continue...
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You can now use the steps described in Chapter 2 to start a live kernel-debugging session and 
noninvasively observe the threads that the managed process contains when it’s active. Notice the 
presence of the debugger runtime controller thread (the clr!DebuggerRCThread::ThreadProc thread 
routine in the following listing) even though the .NET process isn’t being debugged with a user-mode 
debugger.

lkd> .symfix 
lkd> .reload 
lkd> !process 0 0 test.exe 
PROCESS 85520c88  SessionId: 1  Cid: 07b8    Peb: 7ffdf000  ParentCid: 0e5c 
    Image: test.exe 
lkd> .process /r /p 85520c88   
lkd> !process 85520c88 7 
PROCESS 85520c88  SessionId: 1  Cid: 07b8    Peb: 7ffdf000  ParentCid: 0e5c 
    Image: test.exe 
... 
    THREAD 9532ed20  Cid 07b8.1e5c  ... 
        828d74b0  SynchronizationEvent 
        885f5cb8  SynchronizationEvent 
        86a0e808  SynchronizationEvent 
... 
    0116f7fc 5d6bb4d8 00000003 0116f824 00000000 KERNEL32!WaitForMultipleObjects+0x18 
    0116f860 5d6bb416 d6ab8654 00000000 00000000 clr!DebuggerRCThread::MainLoop+0xd9 
    0116f890 5d6bb351 d6ab8678 00000000 00000000 clr!DebuggerRCThread::ThreadProc+0xca 
    0116f8bc 76f9ed6c 00000000 0116f908 779c377b clr!DebuggerRCThread::ThreadProcStatic+0x83 
    0116f8c8 779c377b 00000000 6cb23a74 00000000 KERNEL32!BaseThreadInitThunk+0xe 
    0116f908 779c374e 5d6bb30c 00000000 00000000 ntdll!__RtlUserThreadStart+0x70 
    0116f920 00000000 5d6bb30c 00000000 00000000 ntdll!_RtlUserThreadStart+0x1b 
lkd> q

Because of its reliance on this helper thread, the managed-code debugging paradigm is often 
referred to as in-process debugging, in contrast to the out-of-process debugging architecture used 
by native code user-mode debuggers, which requires no active collaboration from the target process. 
The contract defined by the CLR for managed-code debuggers to interact with the runtime control-
ler thread is represented by a set of COM interfaces implemented in the mscordbi.dll .NET Framework 
DLL. Because this contract is published as a set of COM interfaces, you can write a managed-code 
debugger in C/C++, and also in any other .NET language, where the COM Interop facilities can be 
used to consume the CLR debugging objects implemented in this DLL.

The Visual Studio debugger is based on this same CLR debugging infrastructure, which it also uses 
to implement its support for managed-code debugging. The components used to service the user 
actions in the debugger are represented, at a high level, in Figure 3-6. The debugger front-end UI 
processes any commands entered by the user and forwards them to the debugger’s back-end engine, 
which in turn internally uses the CLR debugging COM objects from mscordbi.dll to communicate with 
the runtime controller thread in the managed target process. These COM objects take care of all the 
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internal details related to the private interprocess communication channel between the debugger and 
target processes.

CLR Debugging COM Objects
(”mscordbi.dll”)

Private IPC 
Protocol

Visual Studio Debugger
(”devenv.exe”)

Debugger Back-End (Engine)
(”cpde.dll”)2

3

1 Debugger Front-End Engine (GUI)
(”vsdebug.dll”)

Debugger Runtime 
Controller Thread

Managed Target Process

CLR Execution Engine

4

fIguRE 3-6 In-process managed debugging architecture in Visual Studio and the CLR.

This architecture has one big advantage, which is that it insulates the debuggers from the intricate 
details of the internal CLR execution engine data structures by having a higher-level contract and 
communication channel between the managed-code debuggers and the CLR debugger controller 
thread. This means the layouts of those data structures can change without breaking the functionality 
of those debuggers.

Unfortunately, this architecture also has several drawbacks. First, this model doesn’t work for 
 debugging of crash dumps because the target isn’t running in that case, so the debuggers can’t rely 
on an active debugger helper thread to perform their actions when debugging a memory crash 
dump file.

Second, the operating system is unaware that the application is being debugged using this private 
interprocess communication channel. Up until .NET version 4.0, Visual Studio debugging of man-
aged applications didn’t work at all on machines that also had a host kernel debugger attached to 
them. Because the OS didn’t know that the managed process was being debugged, exceptions raised 
for the purpose of managed debugging were being incorrectly caught by the kernel debugger. The 
 official workaround to this problem was documented in the Knowledge Base (KB) article at  
http://support.microsoft.com/kb/303067, but it’s hardly satisfactory because it recommends disabling 
the kernel debugger entirely. Fortunately, this problem is now fixed in Visual Studio 2010—at least for  
managed applications compiled for .NET 4.0—because the debugger now also attaches to the target 
process debug port as a regular native user-mode debugger. However, the in-process managed-
debugging architecture is still otherwise being used in that release as the main live, managed-code 
debugging channel.
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Table 3-3 contains a comparative analysis of the in-process and out-of-process debugging 
 architectures.

TABlE 3-3 In-Process and Out-of-Process Managed Debugging Paradigms

Advantages Drawbacks

In-process debugging ■■ Easy access to CLR data 
 structures

■■ Faster single-stepping

■■ Poor integration with  kernel-mode 
debugging

■■ Doesn’t work for crash dump 
d ebugging

Out-of-process 
 debugging

■■ Supports crash dump debugging
■■ Natural integration with native 

debugging
■■ No side effects preventing 

kernel-mode debugging

■■ More difficult for the  debugger to 
stay in-sync with the CLR execution 
engine’s data structures

Given the benefits of out-of-process debugging, the CLR and Visual Studio probably will continue 
to move toward that architecture for managed-code debugging in the future. That trend has already 
begun in .NET 4.0 and Visual Studio 2010, where the out-of-process architecture is now used to 
 support crash dump debugging of managed processes.

The SOS Windows Debuggers extension
Many WinDbg commands don’t work natively when debugging a .NET target program. For instance, 
the k command cannot display the names of managed functions in a call stack and the dv  command 
cannot display the values of local variables from those functions, either. To understand why, remem-
ber that MSIL images are compiled on the fly, so the dynamically generated code addresses are 
completely unknown to the symbols that the Windows debugger relies on to map the addresses to 
their friendly symbolic names. Even when an MSIL image is precompiled into a native one—a process 
known as NGEN’ing the assembly—the generated native image is actually machine-specific and won’t 
have a corresponding symbol file, either. The .NET Framework DLL assemblies fall into this  second 
category because they are usually NGEN’ed on the machines where they’re installed to  improve the 
performance of all the applications that use them.

how SOS Works
To work around the lack of native support for managed-code debugging in the Windows debuggers, 
the .NET Framework ships the sos.dll debugger extension module. This extension was doubly useful in 
earlier releases of the .NET Framework because it was also the only supported way to perform crash 
dump debugging of .NET code, given that Visual Studio started supporting out-of-process debugging 
of managed code only in its 2010 release.

This debugger extension is built as part of the CLR code base, so it has intimate knowledge of the 
internal layouts of the CLR data structures, allowing it to read the virtual address space of the target 
process directly and parse the CLR execution engine structures that it needs. These capabilities  
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enable it to support out-of-process managed-code debugging. When using SOS, you’ll at least be 
able to display managed call stacks, set breakpoints in managed code, find the values of local vari-
ables, dump the arguments to method calls, and perform most of the inspection and control debug-
ging actions that you can use in native-code debugging—only without the convenience of source-
level debugging.

Symbols for .NET modules are used by managed-code debuggers only to enable source-level 
debugging (source lines, names of local function variables, and so on). Even without symbol files for 
managed assemblies, you still can do a lot of things you aren’t able to do in native-code debugging, 
where the symbols are absolutely crucial. This is because MSIL images also carry metadata describ-
ing the type information for the classes they host, allowing any component with internal knowledge 
of how to parse that information to use it for displaying function names in a call stack, dump the 
values of local variables (though without their names), or find the parameters to function calls. This is 
precisely how the SOS Windows debugger extension enables out-of-process managed-code debug-
ging—even without symbol files or any additional help from the CLR debugger runtime controller 
thread.

Debugging Your First .NET Program Using SOS
To provide a practical illustration for how to use SOS to debug .NET programs in WinDbg, you’ll now 
use it to debug the following C# program from the companion source code, which you should com-
pile to target CLR version 4.0, as described in the procedure provided in the Introduction of this book.

// 
// C:\book\code\chapter_03\HelloWorld>main.cs 
// 
public class Test 
{ 
    public static void Main() 
    { 
        Console.WriteLine("Hello World!"); 
        Console.WriteLine("Press any key to continue..."); 
        Console.ReadLine(); 
        Console.WriteLine("Exiting..."); 
    } 
}

Every version of the CLR has its own copy of the SOS extension DLL that understands its internal 
data structures and is able to decode them. For this reason, you must always load the version of the 
extension that comes with the CLR version that’s used by the target process you’re trying to debug. 
In addition, the SOS commands work only after the CLR execution engine DLL has been loaded, so 
you need to wait for its module load event to occur. This happens early during the startup of the .NET 
target as the CLR shim DLL (mscoree.dll) hands the reins over to the CLR execution engine DLL, which 
is clr.dll in the case of CLR version 4 (.NET 4.x), and mscorwks.dll in the case of CLR version 2  
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(.NET 2.x and .NET 3.x). You can get notified of this module load event in the debugger by using the 
sxe ld command, as shown in the following listing.

0:000> vercommand 
command line: '"c:\Program Files\Debugging Tools for Windows (x86)\windbg.exe"   
c:\book\code\chapter_03\HelloWorld\test.exe' 
0:000> .symfix 
0:000> .reload 
0:000> sxe ld clr.dll 
0:000> g 
ModLoad: 5fad0000 6013e000   C:\Windows\Microsoft.NET\Framework\v4.0.30319\clr.dll 
ntdll!KiFastSystemCallRet: 
779970b4 c3              ret 
0:000> .lastevent 
Last event: 1e30.c20: Load module C:\Windows\Microsoft.NET\Framework\v4.0.30319\clr.dll at 
5fad0000

After the execution engine DLL is loaded, you can load the SOS extension module before any 
 managed code has a chance to run inside the target process. A command you’ll find useful when 
loading the SOS extension DLL is the .loadby debugger command. This command works just like the 
more basic .load command, but it looks up the extension module under the same path where its sec-
ond module parameter was loaded from. By specifying the CLR execution engine DLL module name, 
you will be sure to load the sos.dll extension from the same location so that it matches the precise CLR 
version of the target. One of the useful SOS commands is the !eeversion command, which displays the 
current version of the CLR in the target process.

0:000> .loadby sos clr 
0:000> !eeversion 
4.0.30319.239 retail 
0:000> g

The program now waits for user input in the ReadLine method. If you break into the debugger at 
this point by using the Debug\Break menu action, you’ll see that the k command isn’t able to properly 
display the function names in the managed code frames from the main thread in the .NET process. 
(Notice the very large offsets in the frames from the mscorlib_ni native image of the mscorlib.dll .NET 
Framework assembly, which is indicative of missing or unresolved symbols.) The unmanaged frames 
are still decoded correctly.

0:004> ~0s 
0:000> k 
ChildEBP RetAddr   
0017e998 77996464 ntdll!KiFastSystemCallRet 
0017e99c 75ea4b6e ntdll!ZwRequestWaitReplyPort+0xc 
0017e9bc 75eb2833 KERNEL32!ConsoleClientCallServer+0x88 
0017eab8 75efc978 KERNEL32!ReadConsoleInternal+0x1ac 
0017eb40 75ebb974 KERNEL32!ReadConsoleA+0x40 
0017eb88 5efc1c8b KERNEL32!ReadFileImplementation+0x75 
0017ec08 5f637cc8 mscorlib_ni+0x2c1c8b 
0017ec30 5f637f60 mscorlib_ni+0x937cc8 
0017ec58 5ef78bfb mscorlib_ni+0x937f60 
0017ec74 5ef5560a mscorlib_ni+0x278bfb 
0017ec94 5f63e6f5 mscorlib_ni+0x25560a 
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0017eca4 5f52a7aa mscorlib_ni+0x93e6f5 
0017ecb4 5fad21bb mscorlib_ni+0x82a7aa 
0017ecc4 5faf4be2 clr!CallDescrWorker+0x33 
0017ed40 5faf4d84 clr!CallDescrWorkerWithHandler+0x8e 
0017ee7c 5faf4db9 clr!MethodDesc::CallDescr+0x194 
0017ee98 5faf4dd9 clr!MethodDesc::CallTargetWorker+0x21 
0017eeb0 5fc273c2 clr!MethodDescCallSite::Call_RetArgSlot+0x1c 
0017f014 5fc274d0 clr!ClassLoader::RunMain+0x24c 
0017f27c 5fc272e4 clr!Assembly::ExecuteMainMethod+0xc1 
0017f760 5fc276d9 clr!SystemDomain::ExecuteMainMethod+0x4ec 
0017f7b4 5fc275da clr!ExecuteEXE+0x58 
...

Fortunately, the !clrstack command from the SOS debugger extension allows you to see the 
 managed frames in the thread’s call stack.

0:000> !clrstack 
OS Thread Id: 0xe48 (0) 
Child SP IP       Call Site 
0017eba8 779970b4 [InlinedCallFrame: 0017eba8]  
0017eba4 5efc1c8b DomainNeutralILStubClass.IL_STUB_PInvoke(Microsoft.Win32.SafeHandles.
SafeFileHandle, Byte*, Int32, Int32 ByRef, IntPtr) 
0017eba8 5f637cc8 [InlinedCallFrame: 0017eba8] System.IO.__ConsoleStream.ReadFile(Microsoft.
Win32.SafeHandles.SafeFileHandle, Byte*, Int32, Int32 ByRef, IntPtr) 
0017ec1c 5f637cc8 System.IO.__ConsoleStream.ReadFileNative(Microsoft.Win32.SafeHandles.
SafeFileHandle, Byte[], Int32, Int32, Int32, Int32 ByRef) 
0017ec48 5f637f60 System.IO.__ConsoleStream.Read(Byte[], Int32, Int32) 
0017ec68 5ef78bfb System.IO.StreamReader.ReadBuffer() 
0017ec7c 5ef5560a System.IO.StreamReader.ReadLine() 
0017ec9c 5f63e6f5 System.IO.TextReader+SyncTextReader.ReadLine() 
0017ecac 5f52a7aa System.Console.ReadLine() 
0017ecb4 0043009f Test.Main() [c:\book\code\chapter_03\HelloWorld\main.cs @ 9] 
0017eee4 5fad21bb [GCFrame: 0017eee4]

The mscorlib_ni.dll module shown in the stack trace output of the k command is the NGEN image 
(“ni”) corresponding to the mscorlib.dll MSIL image. You can treat these modules just like their MSIL 
sources for the purpose of SOS debugging. In particular, you can set breakpoints at managed code 
functions from both MSIL or NGEN images by using the !bpmd SOS extension command.

For example, you can set a breakpoint at the WriteLine method that would be executed by the 
next line of source code. This .NET method is defined in the System.Console class of the mscorlib.dll 
.NET assembly (or in this case, its mscorlib_ni.dll NGEN version). The !bpmd command takes the target 
module name as its first argument (without the extension!) and the fully qualified name of the .NET 
method as its second argument, as shown in the following listing.

0:004> !bpmd mscorlib_ni System.Console.WriteLine 
Found 19 methods in module 5ed01000... 
MethodDesc = 5ed885a4 
Setting breakpoint: bp 5EFAD4FC [System.Console.WriteLine()] 
MethodDesc = 5ed885b0 
Setting breakpoint: bp 5F52A770 [System.Console.WriteLine(Boolean)] 
MethodDesc = 5ed885bc 
... 
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Adding pending breakpoints... 
0:004> g

This command adds breakpoints to all overloads of the WriteLine method (19 of them in the previ-
ous case). If you now press Enter in the active command prompt window from the target process, 
you’ll notice that the debugger hits your breakpoint next.

Breakpoint 13 hit 
mscorlib_ni+0x2570ac: 
5ef570ac 55              push    ebp

You can again use the !clrstack command to see the current stack trace at the time of this 
 breakpoint. The –a option of this command also allows you to view the arguments to the managed 
frames on the stack.

0:000> !clrstack –a 
OS Thread Id: 0x18e0 (0) 
Child SP IP       Call Site 
0018f260 5ef570ac System.Console.WriteLine(System.String) 
    PARAMETERS: 
        value (<CLR reg>) = 0x01fdb24c 
0018f264 004600ab Test.Main() 
*** WARNING: Unable to verify checksum for test.exe 
 [c:\book\code\chapter_03\HelloWorld\main.cs @ 10] 
0018f490 5fad21bb [GCFrame: 0018f490]

Notice how this command also displays the address of the .NET string object that was passed to 
the WriteLine method, which you can dump using the !do (“dump object”) SOS debugger extension 
command.

0:000> !do 0x01fdb24c 
Name:        System.String 
MethodTable: 5f01f92c 
EEClass:     5ed58ba0 
Size:        34(0x22) bytes 
String:      Exiting... 
Fields: 
      MT    Field   Offset                 Type VT     Attr    Value Name 
5f0228f8  4000103        4         System.Int32  1 instance       10 m_stringLength 
5f021d48  4000104        8          System.Char  1 instance       45 m_firstChar 
5f01f92c  4000105        8        System.String  0   shared   static Empty 
    >> Domain:Value  002a1270:01fd1228 <<

Notice that the !clrstack command doesn’t display the unmanaged functions on the call stack, 
though it’s usually easy to see where the managed calls fit in the overall stack trace by combining 
the !clrstack and the regular k back-trace command, which should give you everything you need to 
know about what code the current thread is currently executing. Note that SOS also has a !dumpstack 
 command that attempts to do this merge, but its output can be rather noisy.

The SOS extension also has several other useful commands that you can use to inspect .NET 
 programs, including a variant of the u (“un-assemble”) command that’s also able to decode the 
 addresses of managed function calls in addition to unmanaged addresses. For example, you could use 
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this command to obtain the disassembly of the current function at the time of the breakpoint in the 
previous case (the WriteLine method).

0:000> !u . 
preJIT generated code 
System.Console.WriteLine(System.String) 
Begin 5ef570ac, size 1a 
>>> 5ef570ac 55              push    ebp 
5ef570ad 8bec            mov     ebp,esp 
5ef570af 56              push    esi 
5ef570b0 8bf1            mov     esi,ecx 
5ef570b2 e819000000      call    mscorlib_ni+0x2570d0 (5ef570d0) (System.Console.get_Out(), 
mdToken: 060008fd) 
...

Notice how the regular u command, by contrast, doesn’t display the friendly name of the function 
itself or of the call to get_Out (a managed method too) that’s made inside the same function.

0:000> u . 
mscorlib_ni+0x2570ac: 
5ef570ac 55              push    ebp 
5ef570ad 8bec            mov     ebp,esp 
5ef570af 56              push    esi 
5ef570b0 8bf1            mov     esi,ecx 
5ef570b2 e819000000      call    mscorlib_ni+0x2570d0 (5ef570d0)

If you would like to experiment with more SOS debugger commands, you can find a listing of 
those commands and a brief summary of what they do by using the !help command in the WinDbg 
debugger. 

0:000> !help 
------------------------------------------------------------------------------- 
SOS is a debugger extension DLL designed to aid in the debugging of managed 
programs. Functions are listed by category, then roughly in order of 
importance. Shortcut names for popular functions are listed in parenthesis. 
Type "!help <functionname>" for detailed info on that function. 
... 
0:000> $ Terminate this debugging session now... 
0:000> q

Table 3-4 recaps the basic SOS commands introduced during this experiment.

TABlE 3-4 Basic SOS Extension Commands

Command Purpose

!eeversion Display the target CLR (execution engine) version.

!bpmd Set a breakpoint using a managed .NET method.

!do (or !dumpobj) Dump the fields of a managed object.

!clrstack
!clrstack –a

Display the managed frames in the current thread’s call stack. The optional –a option is 
used to also display the arguments to the functions on the call stack. These values are the 
 extension’s best guess, however; so, they’re not always accurate.

!u Display the disassembly of a managed function.
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Despite the fact you can achieve a lot of critical debugging tasks using the SOS extension, the 
managed-code debugging experience in the Windows debuggers still leaves a lot to be desired. The 
Windows debuggers clearly are not your first choice when debugging the managed code you write 
yourself, but SOS can still be a good option, especially if you can’t get Visual Studio installed on the 
target machine or if you are debugging without source code—in which case, you don’t lose much by 
using WinDbg anyway.

script Debugging

Visual Studio also supports source-level debugging of script languages such as VBScript or JScript. 
This is internally implemented using the same in-process paradigm that managed-code debugging 
relies on. One of the reasons that the CLR used the in-process debugging model when it was first 
released to the public in 2002 was that script debugging had been successfully using it for years 
(since the mid-90s). In both cases, the debugger needs the script host’s or the CLR execution engine’s 
 collaboration to support source-level debugging of the target process.

architecture Overview
To understand how script debugging works, it’s useful to first explain a few basic concepts about how 
script languages are executed in Windows. The key to that architecture is the Active Scripting specifi-
cation. This specification was introduced by Microsoft in the 90s and defines a set of COM interfaces 
to allow script languages that implement them to be hosted in any conforming host application. In 
Windows, both VBScript and JScript (Microsoft’s implementation of JavaScript) are Active Scripting 
languages whose implementation fully conforms with that specification.

The Active Scripting specification defines a language-processing engine, with the Active Scripting 
host using that engine when the script needs to be interpreted. Examples of Active Scripting engines 
are vbscript.dll and jscript.dll, which both ship with Windows under the system32 directory. Examples 
of Active Scripting hosts include the Internet Information Services (IIS) web server (server-side scripts 
embedded in ASP or ASP.NET pages), Internet Explorer (client-side script hosting in web pages), and 
the Windows scripting hosts (cscript.exe or wscript.exe) that ship with Windows and can be used to 
host scripts executed from a command prompt. There are also third-party Active Scripting engines to 
support other script languages, including Perl and Python.

In addition, the Active Scripting specification also defines a contract (a set of COM interfaces, 
again) for debuggers to take advantage of the host in their operations. An Active Scripting host that 
supports debugging (that is, implements the required COM interfaces) is called a smart host. All 
recent versions of Internet Explorer, IIS, and the Windows scripting hosts are smart hosts that imple-
ment those interfaces, which is at the heart of the magic that enables Visual Studio to debug scripts 
hosted by any of those processes. A Process Debug Manager (PDM) component (pdm.dll) is shipped 
with the Visual Studio debugger to insulate script engines from having to understand the intrica-
cies of script debugging. In many ways, the PDM component serves the same purpose that the CLR 
runtime debugger controller thread and mscordbi.dll serve during managed debugging, as illustrated 
in Figure 3-7.



 ChAPTER 3 How Windows Debuggers Work  113

Script Debugger
(”devenv.exe”)

Process Debug Manager (PDM)
Dedicated Debugger Thread

Script Host Process
(”cscript.exe”)

Back-End Debugger Engine/
Front-End Debugger UI

Script Engine

fIguRE 3-7 In-process script debugging architecture.

One way that Active Scripting debugging differs from managed-code debugging is that smart 
hosts usually do not expose their debugging services by default, whereas in the case of the CLR 
there is always a debugger thread running in the managed-code process. In Internet Explorer, for 
instance, you need to first enable script debugging in the host process by clearing the Disable Script 
 Debugging option on the Tools\Internet Options\Advanced tab, as shown in Figure 3-8.

fIguRE 3-8 Enabling Internet Explorer script debugging.
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In the same way, you need to explicitly enable debugging of scripts in the Windows scripting hosts 
(cscript.exe/wscript.exe) using the //X option if you want to also debug the executed scripts. The IIS 
web server manager also has a UI option for enabling server-side script debugging.

Debugging Scripts in Visual Studio
The following sample script from the companion source code, which simply displays its start time and 
arguments list to the console before exiting, will serve as a good example for how to use the  
//X option to enable script-debugging support in the cscript.exe host process and step through 
 console scripts in Visual Studio.

// 
// C:\book\code\chapter_03\script>test.js 
// 
var g_argv = new Array(); 
 
// 
// store command-line parameters and call the main function 
// 
for (var i=0; i < WScript.Arguments.length; i++) 
{ 
    g_argv.push(WScript.Arguments(i)); 
} 
 
WScript.Quit(main(g_argv)); 
 
function main(argv) 
{ 
    WScript.Echo("Script started at " + new Date()); 
    if (g_argv.length > 0) 
    { 
        WScript.Echo("Arguments: " + g_argv); 
    } 
}

Notice in particular the double slash in the //X option in the following command, which cscript.exe 
and wscript.exe use to distinguish their own options from the executed script’s options.

C:\Windows\system32\cscript.exe //X C:\book\code\chapter_03\script\test.js 1 2 
Microsoft (R) Windows Script Host Version 5.8 
Copyright (C) Microsoft Corporation. All rights reserved. 
...

When you run the preceding command on a machine with Visual Studio 2010 installed, you’ll 
be presented with a Visual Studio “attach” dialog box similar to the one shown in Figure 3-9. You 
might get another dialog box to consent to UAC elevation if you invoked the script from an elevated 
 administrative command prompt, given that the Visual Studio debugger also needs to run elevated in 
that case.
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fIguRE 3-9 Attaching to a script using the Visual Studio debugger.

You are then able to use the Visual Studio debugger to step through (using the F10 and F11 
 shortcuts) the script and debug it (with source-level information!), just as you would with any 
 native-code or managed-code application, as shown in Figure 3-10.

fIguRE 3-10 Source-level script debugging using Visual Studio 2010.
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Remote Debugging

Remote debugging is a convenient feature that allows you to control a target remotely using a 
 debugger instance that’s running on a different machine on the network. This section provides an 
inside look at how this feature is implemented by debugger programs in Windows, as well as how you 
can use it in the case of the WinDbg and Visual Studio debuggers.

architecture Overview
At a high level, two conceptual models are used to support remote debugging: remote sessions and 
remote stubs. In both cases, a process needs to be running on the same machine as the target so 
that it can carry out the commands that are typed in the remote debugger. In the case of a remote 
 session, the debugger session is entirely on the target machine and the remote debugger instance 
simply acts as a “dumb” client to send commands to the local debugger instance. In the case of a 
 remote stub, the debugger session is running remotely, with a “stub” broker process running locally 
on the target machine and acting as a gateway to get information in and out of the target.

Remote sessions are used when collaboration among multiple engineers is needed to investigate 
a certain failure. In that case, a local debugger instance runs on the repro machine, and developers 
are then able to start typing commands remotely from their respective machines, take a look at the 
failure, and even leave comments and see each other’s debugging attempts and commands as they 
get typed in. WinDbg supports this very useful form of remote debugging, which is illustrated in 
Figure 3-11.
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.
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fIguRE 3-11 Remote debugging using remote sessions.
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Remote stubs are used when it’s important to set up the debugging environment on a remote 
computer, either because the full debugging environment can’t be installed or because the symbols 
and sources cannot be accessed directly on the target computer. Both the Windows and Visual Studio 
debuggers support this form of remote debugging, though this architecture is more useful in the case 
of the Visual Studio debugger. (In fact, remote stubs are the only type of remote debugging that’s 
supported by Visual Studio.) This is because a full Visual Studio debugging environment installation 
on the target machine is heavy handed, both in terms of the disk space it requires and the time it 
takes to complete, often making it an inadequate option for production environments. By compari-
son, the Visual Studio remote-debugging component, which also includes the remote stub pro-
cess, is more lightweight and can be installed much faster when you need it on the target machine. 
 Figure 3-12 illustrates this second form of remote debugging.

Remote DebuggerTarget Process_1

Stub Process

Command_A
Command_B

.

.

.

Target Process_2

Target Process_n

Local (Target) Machine Remote Machine

fIguRE 3-12 Remote debugging using remote stubs.

remote Debugging in WinDbg
As mentioned earlier, WinDbg supports both remote sessions and remote stubs. This section will 
walk you through the steps for making use of either setup in your remote WinDbg debugging 
 experiments.

remote Sessions
Starting a WinDbg remote debugging session is straightforward. You use the .server debugger 
 command, as illustrated by the following procedure.
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Using remote Sessions in WinDbg

1. From the local WinDbg instance controlling the target process, start a TCP/IP remote session 
by using the .server command, as illustrated in the following listing. This example uses port 
4445, but any TCP port that’s not currently in use would also work. Using the .server command 
with no arguments reminds you of its syntax.

0:000> vercommand 
command line: '"c:\Program Files\Debugging Tools for Windows (x86)\windbg.exe"   
notepad.exe' 
0:000> $ .server without any arguments displays the usage... 
0:000> .server 
Usage: .server tcp:port=<Socket>  OR  .server npipe:pipe=<PipeName> 
0:000> $ Open a remote debugging server session using port 4445 
0:000> .server tcp:port=4445 
Server started.  Client can connect with any of these command lines 
0: <debugger> -remote tcp:Port=4445,Server=TARIKS-LP03

2. On the remote machine where you plan to control the target, start a new WinDbg instance 
(the remote debugger) and connect to the previous TCP port remotely by using the –remote 
command-line option. You can also use the connection string provided in the output from the 
.server command in the preceding listing to remind you of the syntax. Note that the remote 
and target machines can be the same, so you can also execute this step on the same machine 
as step 1.

windbg.exe -remote tcp:Port=4445,Server=TARIKS-LP03

Notice how any commands you type in the new WinDbg instance’s command window (the 
“remote” debugger) also appear in the first WinDbg instance on the target machine (the 
“ local” debugger). The remote debugger is essentially acting only as a terminal for typing 
commands that get transferred and, ultimately, processed by the local debugger instance on 
the target machine.

3. You can terminate the entire debugging session (both the remote and local debugger 
 instances) from the remote machine using the qq command. By contrast, the q command 
terminates only the remote instance and leaves the local debugger instance intact.

0:000> $ Remote debugger command prompt 
0:000> qq

In addition to their obvious benefits in remote debugging scenarios, WinDbg remote sessions 
can be useful even when debugging on the same machine. An example is when you start debugging 
 using one of the command-line Windows debuggers (cdb .exe or ntsd.exe) and later decide to switch 
to using WinDbg as a front-end UI to that same session.
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remote Stubs
Commands typed in the remote debugger command window in a remote debugging session are 
executed as if they were typed on the target machine. In particular, this means that debugger exten-
sions are also loaded into the debugger process on the target machine and that symbols need to be 
accessible from that machine too. Although remote sessions are by far the more common scenario 
in WinDbg remote debugging, remote stubs can be used if you don’t want to copy the symbols or 
otherwise make them available over the network so that they’re accessible from the target machine.

You can use remote stubs in both user-mode and kernel-mode remote debugging with the 
 Windows debuggers. The dbgsrv.exe process, which comes as part of the Windows debuggers 
 package, is used as a stub process in remote user-mode debugging. The kdsrv.exe process, also 
 included in the Windows debuggers package, is used in remote kernel-mode debugging.

Just as in the remote session case, you can follow the procedure described here by also running 
the remote debugger on the target machine, in case you don’t have two separate machines.

Using remote Stubs in WinDbg

1. Open a TCP/IP communication port on the target machine using the dbgsrv.exe stub process. 
This command displays a dialog box when it fails, but it won’t show any messages on success.

C:\Program Files\Debugging Tools for Windows (x86)\dbgsrv.exe -t tcp:port=4445

The dbgsrv.exe stub process is running in the background at this point. Using the  
netstat.exe tool that comes with Windows under the system32 directory, you can display 
the open  network ports on the machine and confirm that this stub process is listening for 
 connections from a remote debugger on TCP port 4445:

C:\windows\system32\netstat.exe –a 
Active Connections 
  Proto  Local Address          Foreign Address        State 
... 
  TCP    0.0.0.0:4445           TARIKS-LP03:0          LISTENING 
...

2. On the remote machine, start a new windbg .exe instance and connect to the stub  process 
on the target machine using the File\Connect to a Remote Stub menu action. Leave the 
 Connection String combo box empty, and enter the target machine name in the new Browse 
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dialog box. WinDbg then automatically enumerates all the open stub sessions on the target 
machine for you, as demonstrated in the following screen shot:

Enter your
target 

machine
name here

3. After you connect to the remote stub, you can attach to processes running on the target 
machine by using the familiar File\Attach To A Process menu command (the F6 shortcut). 
However, this option now shows processes from the target machine, which is exactly what 
you want in this case. Once attached to a process, you can debug it as if it were running lo-
cally, with symbols and debugger extensions located relative to the same remote debugger 
 machine (and not the target machine, as was the case in remote sessions).

4. When you no longer need the remote debugging channel, make sure you terminate the stub 
process on the target machine so that you release the TCP port it opened earlier for other 
uses on the machine. You can do that in the Windows task manager UI or by using the kill.exe 
command-line utility from the Windows debuggers package.

C:\Program Files\Debugging Tools for Windows (x86)>kill.exe dbgsrv 
process dbgsrv.exe (4188) - '' killed

This same approach can be used for remote kernel-mode debugging, except you should use the 
kdsrv.exe stub instead of the dbgsrv.exe stub. Note that in that case, there are actually three machines 
involved: the regular target and host kernel debugger machines, and the remote machine you are 
using to run the debugger instance. The kdsrv.exe process is started as a remote stub on the kernel 
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host debugger machine, not the target machine that is being debugged with the kernel debugger. 
Symbols and extensions are again resolved relative to the remote debugger machine.

remote Debugging in Visual Studio
Unfortunately, Visual Studio does not support the concept of remote debugging sessions or remote 
connection strings, which makes it difficult to use it for sharing a debugging session with another 
developer at the exact point of a particular failure in the way that WinDbg’s .server command works. 
Instead, Visual Studio remote debugging uses the remote stub idea, with the msvsmon.exe process 
acting as the remote stub process to which the Visual Studio debugger process (devenv .exe) then 
 connects from the remote machine. MSVSMON is also sometimes called the Visual Studio debug 
monitor, highlighting the fact that it controls the execution of the target on the local machine on 
behalf of the Visual Studio debugger on the remote machine.

The default communication protocol between the remote and the target machines uses 
 Distributed COM (DCOM) with Windows authentication, so you need to configure the user running 
the debugger with correct security permissions on the target machine. If the account you’re using is 
a domain user, for example, it will need to be an administrator on the target machine or a member of 
the Debugger Users security group created by Visual Studio.

Using remote Debugging in Visual Studio

1. Start the following C# sample program from the companion source code (and leave it waiting 
for user input) on the target machine.

C:\book\code\chapter_03\HelloWorld>test.exe 
Hello World! 
Press any key to continue...

2. Install the Visual Studio 2010 remote-debugging components on the target machine from 
http://www.microsoft.com/download/en/details.aspx?id=475. This setup installation shouldn’t 
take too long (at least compared to the full Visual Studio installation!) because the download 
is only a few megabytes large. Cancel the configuration wizard that comes up at the end of 
the installation.

3. Start the msvsmon.exe stub process on the target machine. Use the Tools\Options menu 
 action of MSVSMON to change the server name for the connection, or simply leave the 
 default value unchanged, as shown in the following screen shot.

C:\Program Files\Microsoft Visual Studio 10.0\Common7\IDE\Remote Debugger\x86>msvsmon.exe
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4. On the remote machine, which has the full Visual Studio development environment, use 
the Tools\Attach To Process menu action to attach to the test.exe process remotely. In the 
 Qualifier text box, specify the server name you chose in step 3.

Server name

5. If your Windows firewall is enabled (the default behavior), a consent dialog box appears on 
the target machine. After authorizing the firewall exception, you’ll see a list of all the processes 
that are currently running on the target machine, and you can then attach to the managed 
test.exe process.
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You might also see the warning shown in Figure 3-13 as Visual Studio tries to locate the symbols 
for the managed process. This is because managed-code symbols are resolved relative to the target 
machine.

fIguRE 3-13 Managed-code symbols path resolution.

Unlike native code symbols, which are resolved in Visual Studio remote debugging relative to the 
remote machine (as was the case in the WinDbg stub-based remote debugging case), managed-code 
symbols are resolved relative to the target machine because of the in-process nature of managed-
code debugging. Keep this in mind when you use Visual Studio and you want to perform remote 
source-level debugging of .NET applications because you need to copy the symbols to the target 
machine for the debugger to locate them successfully.

summary

This chapter explained several debugging types and mechanisms in Windows and how they work at 
the system level. After reading this chapter, the following points should be familiar to you:

■■ Native user-mode debugging relies on a system-provided architecture that’s based on a set of 
debug events generated by the system on behalf of the target process. These events are sent 
to a shared debug port object that the OS executive associates with the target process, with a 
dedicated thread in the debugger process waiting for new events and processing them in that 
order. This generic framework provides the foundation that user-mode debuggers use to con-
trol the target’s execution, including setting code breakpoints and single-stepping the target.

■■ Kernel-mode debugging shares many concepts with user-mode debugging. Because of its 
global scope, however, a few debugging actions—such as setting code breakpoints and 
single-stepping the target—are implemented in a slightly different way to accommodate this 
reality.
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■■ Both script and managed-code debugging use the in-process debugging paradigm, which has 
a helper thread running in the target process to assist the debugger in its operations. Visual 
Studio uses this architecture to support both types of debugging.

■■ The SOS Windows debugger extension can also be used to debug managed code in a 
 completely out-of-process way, though without the convenience of source-level debugging.

■■ The Windows debuggers support collaborative remote user-mode and kernel-mode 
 debugging using remote sessions. Visual Studio also supports remote debugging, but it uses 
a different architecture that takes advantage of a remote stub process running on the target 
 machine. The type of remote debugging architecture also affects where symbols and debug-
ger  extensions get loaded from, so they each have their practical applications.

Now that you’ve seen how debuggers can actively debug local and remote targets in Windows, 
the next chapter will introduce you to another debugging approach when direct live debugging isn’t 
an option. This very important debugging concept is called postmortem debugging.
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ACEs (access control entries), 353
mandatory integrity labels, 359, 361–362

ACLs (access control lists), 353
a command, 263
Action\Snapshot menu action, 76
Active Scripting, 112–114
Active Template Library (ATL), 22, 29
ActiveX, 20
administrative privileges

for debugging, 87
default rights, 360

advanced local procedure calls (ALPCs). See ALPCs 
(advanced local procedure calls)

advapi32!CryptEncrypt API, 248
advapi32.dll, 18, 226
advapi32!EnumerateTraceGuidsEx API, 428
advapi32!EventRegister API, 428

Index

symbols and numbers
$$>< command, 177
$ (dollar) sign, 40, 178
0xeb byte, 265
32-bit Windows, incomplete call stacks, 439
64-bit processors, 5
64-bit Windows, 183

incomplete call stacks, 440–441
Kernel Patch Protection, 381
stack trace capabilities, 432

1394 (FireWire) cable, 69
1394 IEEE ports

kernel debugging over, 69–73
types, 69

@ (at) sign, 178
@! character sequence, 180–181
?? command, 268, 278
~ command, 46, 254, 346, 511, 519

s suffix, 46–47, 511
. (dot) alias, 263
… (ellipsis), 41
* (wildcard character)

in bm command, 510
in k command, 512
in x command, 509

A
A2W ASCII-to-Unicode ATL conversion macro, 298, 300
access-check failures

debugging, 352–362
troubleshooting, 443

access checks, 353
initiation of, 354
integrity levels and, 358–360
special user privileges and, 362
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advapi32!EventWrite API, 428
advapi32!LogonUserW API, handling leaks 

from, 300–302
AeDebug registry key

Auto value, 128
Debugger value, 139
populating, 127
Visual Studio settings, 132

allocations, 480. See also memory allocations
allocators, 271. See also memory allocations

NT heap functions, redirecting to, 272
ALPC flag, 426
ALPCs (advanced local procedure calls), 15–16

in console applications, 371–373
console UI processing, 368
message structure, dumping, 379

Alpha processors, 4
AMD-64, 4
AMD-V processors, 73
!analyze command, 143–144, 153, 269–270

–v option, 269
antivirus products, System Service Dispatch Table 

use, 381
APCs (asynchronous procedure calls), 15
API calls, 365

kernel-mode side, 385–386
transition to kernel mode, 383–384
user-mode side, 381–383

APIs. See also Win32 APIs
asynchronous processing, showing, 342
documentation of, 16–18
public vs. undocumented, 16–17
third-party, 365

AppInfo!AiIsEXESafeToAutoApprove function, 499
AppInfo!RAiLaunchAdminProcess function, 499
AppInfo service, 498
application processes, 10–13
applications. See also software

blocking from exiting on crash, 125
dispatcher objects, waiting on, 170–171
memory usage and, 473–474
program instructions, tracing, 153

Application Verifier, 188, 206–217
downloading, 206–207
hooks, 210–214
hooks, enabling, 311
memory corruption bugs, catching, 331–332
operating system support, 209–214
page-heap configuration settings, 279–281

page heap, enabling, 272, 275–276
resource leaks, detecting, 307–310
systemwide settings, 217
verifier checks, enabling, 207
verifier check settings, 213
WinDbg and, 206

arguments, saving in registers, 52
ARM processors, 5
artificial deadlocks, 239, 253
assemblies, managed, 25
assembling, 263
assembly-mode stepping, 52
_ASSERTE macro, 138
assertions

compile-time, 138
run-time, 138–139
system code, 6

_ASSERT macro, 138
assumptions, validating, 138
asynchronous procedure calls (APCs), 15
asynchronous processing, 342
asynchronous UI events, 374–381
AtlA2WHelper function, 300
ATL (Active Template Library), 22, 29
at (@) sign, 178

@! character sequence, 180–181
attach operations, wait loops for, 220–222
Attach To Process menu action, 160
authentication, user, 10
authorization rules, 354
AutoLogger registry key, 449
!avrf command, 214–217, 276

symbols search path settings, 214–215

B
background tasks, 10
ba command, 162, 510, 525

/p option, 167
bad format string bugs, 196–199
bad resource handles, 206
bang commands, 59. See also specific command 

names
bc command, 165, 509, 526
bd command, 80, 509–511, 526
BeingDebugged field, overwriting, 259–260, 517
bins, registry, 173
Blaster virus, 201
bl command, 509–510
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blocked time
analyzing, 458–473, 503
causality chains, reconstructing, 471–472
context switch events, 459–461
PerfView analysis, 482
wait analysis in PPA, 461–467
wait analysis in Xperf, 467–474

block header structure, 278
StackTrace field, 278

bm command, 510
boot tracing, 258, 449–454

kernel provider events, 450–452
Processes Summary Table, 451
Run and RunOnce applications, 451
user provider events, 452–454

bottlenecks, identifying, 402–405
bounds checking, 201
bp command, 40, 81–82, 224, 509–510, 525

/p option, 81
!bpmd command, 109, 111
breaking

on access, 162, 510
at custom action entry point, 243
on DLL load events, 222–227, 260–261
on first-chance exception notifications, 252–253
on nt!PspInsertProcess function calls, 255–257
on unhandled exceptions, 262
on user-mode process startup, 255–258

break-in requests, 221
break-in sequence

host debugger state, 102
kernel-mode, 77–78, 99
loader lock and, 352
user-mode, 91–93

break-in threads, 91
BreakOnDllLoad value, 225–228, 260–261

deleting, 261
breakpoint memory addresses, interpretation, 81
breakpoints

clearing, 526
code. See code breakpoints
conditional, 257–258
data. See data breakpoints
disabling, 526
at DllMain entry point code, 224
DLL mapping, setting at, 222
hardware, 163–164
in kernel-mode code, setting, 524
at nt!PspInsertProcess function, 255–257, 366

scope, restricting, 257–258, 382
source-level, 225
unresolved, 510
in user-mode code, setting, 525

bu command, 510
buffer overruns

catching, 199–201
exploitation of, 201
guard page position and, 280
heap-based, 275–277
immediate access violations, 281
stack-based, 291–293

buffers, inserting into memory locations, 97
buffer underruns, 280
build flavors, operating system, 5–6
built-in debugger commands, 59
busy-spin loops, 347
bytes, editing, 259

C
cabling protocols, 67–69

memory dump generation speeds, 156–157
caching file reads, 403
callbacks, canceling, 336
callers and functions, contracts between, 199–202
call frames

memory, displaying, 299
navigating between, 514–515
reconstructing, 295–297
symbolic names, 278

calling conventions for Win32 functions, 49–52
call stacks

allocating space, 300
collecting, 432–433
creation, 495
deep, 512
displaying, 511–512
dumping, 110
frame numbers, 48, 511
function parameters, displaying, 512
guard location, 291–292
handle-tracing, 305–307
incomplete, 439–441
kernel-mode side, 65–66
layout in __stdcall calling convention, 50
managed frames, 109
missing, 436–437
.NET call frames on, 440–441
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call stacks, continued
parameters and locals, finding, 49–52
parameters, displaying, 48
of readying threads, 470–471
relative addresses in, 305
standard calling convention, 291
of thread waits, 465–467, 469
unloaded code and, 341–342
unresolved, 437–439
walking, 50–51

CancelKeyPress event, 374–375
capture anywhere/process anywhere paradigm, 399, 

411
C_ASSERT macro, 138
causality chains, 457

reconstructing, 471–472
–c command-line option, 177, 230
C/C++ applications

manual thread creation, 330–331
OACR static-analysis system, 202–204
verifier checks for, 207

C/C++ development
debugging, 39–43
fields, displaying, 513–514
multiple overloads, 57–58
WDK environment for, 29

C/C++ linker, 45
PDB files, 53
symbol decoration, 57

__cdecl calling convention, 50
cell indexes, 173
cells, registry, 173

address, 174
.chain command, 59
checked builds, 5–6
CheckToBreakOnFailure function, 249
.childdbg command, 235, 238
child debugging, 234–244

advantages and disadvantages, 239
enabling, 234–235, 243
functionality, 237–238
MSI custom actions, 240–244
startup code path debugging, 238–239

child partitions, 74
child processes

starting, 11
terminating, 11–13

Chk* macros, 250–251
circular logging, 421–422
class factory objects, 21

class identifiers (CLSIDs), 20, 24
client operating systems, 4
client/server runtime subsystem process. See csrss.

exe
CLR (Common Language Runtime), 25–28

current version, displaying, 108
debugging objects, 104
ETW events, 422
ETW instrumentation, 482
execution engine DLL, loading, 107–108
headers, 26
heap, 282
heap corruption and, 271
JIT compiler, 25, 103, 125
loading, 27
managed-code debugger contract, 103–104
managed debugging assistants, 289–291
mark-and-sweep scheme, 282
safety guarantees, 281
SOS debugger extension, 106–107

!clrstack command, 109, 111, 284
–a option, 110

CLSIDs (class identifiers), 20, 24
cmd.exe

leaked instances, 139
security context, 360

code. See also C/C++ development; C++
development, debugging during, 39
instrumenting, 391, 411
instrumenting, fprintf statements, 416

code analysis
runtime, 206–217
static, 195–206

code base unification, 3
code breakpoints

addresses relative to current process, 166
deactivating, 509–510
decorated names, setting by, 57
deleting, 43, 509
vs. execution data breakpoints, 166–167
hardware exceptions and, 89
hexadecimal addresses, setting by, 57
inserting in kernel-mode debugging, 81–83, 100
inserting in user-mode debugging, 93
insertion, observing, 93–97
listing, 509–510
live kernel debugging and, 67
at nt!PspInsertProcess function call, 255–257
on paged-out memory, 100
at program entry point, 40–41
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relative to process context, 100
setting, 40, 80, 81–83, 509–510, 524, 525
symbolic name of command, matching, 510
target location, 97
unresolved, 510
virtual addresses, 45

code examples
dollar sign ($) in, 40
ellipsis (…) in, 41

COM (Component Object Model), 19–25
activation, 23–24
crosslanguage interoperability, 21
frameworks, 21
interprocess communication protocol, 19
language tools, 21
library, 21
module lock counts, 22
objects, consuming, 23–25
objects, writing, 21–23
out-of-process activation, 238–239
SCM, 21, 23

COM Interop, 27
command prompts, security context, 360–361
commands. See also specific command names

history, recapturing, 178
command window, docking, 41–42
Common Language Runtime (CLR). See CLR 

(Common Language Runtime)
communication mechanisms, 13–16

interprocess, 15–16
kernel-mode to user-mode, 15
user-mode to kernel-mode, 13–14

companion source code, 29. See also scripts
boot tracing script, 450, 452
compiling programs, 39
error-handling macros, 248–250
ETW tracing scripts, 398
kill.exe emulation, 491–492
trace file viewing script, 399
trace symbols caching script, 408
XML file creation tool, 481

compile-time assertions, 138
complete memory dumps, 155

generating, 156
COMPLUS_GCStress setting, 287
COMPLUS_HeapVerify variable, 285, 287
COMPLUS_Mda variable, 290
Component Object Model (COM). See COM 

(Component Object Model)

“Component Object Model Specification” 
document, 19

compressed data, 474
COM serial cables, 68
COM servers

in-process, 24
interface versioning, 26
lifetime, managing, 22–23

Concurrency Analyzer, 461. See also PPA (Parallel 
Performance Analyzer)

conditional breakpoints, 257–258
ignoring, 258

consent.exe, 496–497
console applications

asynchronous UI events, 374–381
Ctrl+C signal handling, 374–380
debugging, 370–373
drawing area management, 367, 373
functionality, 365
I/O functions, 368–373
open resources disposal, 377
printing text to screen, 366–373
termination handlers, 375–377
UI message-loop handling, 367
UI processing, 367

console, displaying strings to, 365–380
console host process (conhost.exe), 366–369

creator of, 367
I/O functions, 368
multiple instances, 370–371
UI events handling, 373–374
window drawing area management, 367, 373

console subsystem, 365–380
const modifier, 270
constructors, calling, 169
consumers, ETW, 417
context record structures, 144
context states, sharing with new threads, 330
context switches, 92, 101–102, 522–523

analyzing, 468–469
conditions for, 459
CPU, 186
invasive, 81, 100, 101–102, 523
logging, 424
to SEH exception context record, 145
single-stepping and, 100–101

control flow commands, 507–508
controllers, ETW, 417
cookie value, global, 292
copy-on-write OS mechanism, 166
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C++
compile-time assertion mechanism, 138
expressions, evaluating, 278
global and static objects constructors and 

destructors, calling, 169
global objects initialization, 351
global state destruction, 337
reference-counting class, 335
template names, resolving, 180–181

@@C++ prefix, 258
CPU

analyzing usage, 404–408
architectures, 4–5
compressed data in, 473–474
instructions, use of, 8
scheduling, 459–461, 468–469
tracing usage, 397–398
viewing threads, 464

CPU-bound operations, 397–405, 409, 502
CPU context, switching, 186, 519
CPU interrupts, 91
CPU registers, 164
CPU sample profiling, 404–406, 410, 458

bottlenecks, finding, 502
event logging, 424
PerfView for, 482
viewing, 464

CPU Sampling By Process graph, 405
CPU Sampling Summary Table, 406–407
CPU Scheduling graph, 468–469

columns and descriptions, 469
CPU trace flag, 101
.crash command, 155
crash dumps, 139. See also dump debugging; dump 

files
analyzing in Visual Studio debugger, 150–151
analyzing with WinDbg, 143–150
generation, automatic user-mode, 139–143
generation, manual, 151–153
generation settings, 154
kernel-mode, 154
loading, 57
LocalDumps registry key, 140
managed-code, 145–149
saving, 155–156
storage location, 140
types of, 140

crashes
access violations, 267–270. See also access 

violations

automatic capture, 125
breaking in at, 127–128
exceptions leading to, 143–145
reproducing, 198
user-mode, 126, 262

crashing processes
inspecting, 129–131
PIDs, 142

CreateProcess API, 270
arguments, finding, 49–52

CreateService.cmd script, 320
CreateThread API dwStackSize parameter, 297
creation call stacks, viewing, 495
critical path of performance delays, 461
critical sections

dumping, 345–347
leaks from, 206
usage bugs, 206
user-mode debugging support, 347

C runtime library (CRT)
C++ program generic entry point, 168–169
I/O functions, 369–373
printf function implementation, 366
process rundown, 336–337

!cs command, 345–347
cscript.exe, 112

//X command-line option, 114, 135
C# code

execution of, 385–386
unsafe, 281–283

csrss.exe, 10
conhost.exe instance creation, 367
event handlers, injection, 374–380
kernel debugging, 377
UI message-loop handling, 367

CSwitch events, 410, 459–461, 464, 491
filtering, 468
viewing, 498

CSWITCH flag, 424, 459
adding to Base group, 467
enabling, 495
stack-walking flags, 432

Ctrl+Alt+Break shortcut, 221
Ctrl+Alt+Del shortcut, 9
Ctrl+Alt+D shortcut, 76
Ctrl+Break shortcut, 72, 375
Ctrl+C shortcut

handling, 374–380
Ctrl+Enter shortcut, 196
current address, jumping to, 262–265
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current function, disassembling, 92
current process

breakpoint scope, restricting to, 382
context switches, 81, 101–102
displaying, 520

current process context alias, 179
current thread context

after break-in, 91–92
checking, 102
switching, 46–47

custom actions, debugging, 240–244
custom allocators, 271
cyclic dependencies, 351

D
dangling threads, 337–338
data breakpoints, 162–176

at global object destructor location, 169
clearing, 165–166
vs. code breakpoints, 166–167
debug registers, 164
disabling, 511
drawback of, 167
execution, 166–167
implementation, 163–165
in stack corruption investigations, 294–295
kernel-mode in action, 170–172
number of, 166
registry values, monitoring changes, 173–176
scope, restricting, 167
setting, 162–163, 510–511, 525–526
signal state of objects, watching, 171–172
survival of, 165
user-mode in action, 168–170

db command, 97
dbghelp!MiniDumpWriteDump API, 152
DbgManagedDebugger registry value, 135
dbgsrv.exe, 119
.dbg symbol files, 53
DCOM (Distributed COM), 20, 24
DComLaunch service, 21, 238–239
d* commands, 516–517
dd command, 51, 59
DDK (Windows Driver Development Kit), 28–29

build environment, 6, 203
//D (double-slash) command-line option, 221
deadlocks

analyzing, 156

artificial, 239, 253
!cs command, 345–347
debugging, 343–352
defined, 343
loader lock, 351–352
lock-ordering, 344–348
logical, 348–352
prevention, 347–348
threads, identifying, 345

Debug\Break All menu action, 221
Debug\Break menu action, 45, 72, 92
DebugBreakProcess API, 91
debug breaks

on HRESULT failures, 248
raising, 135–137
script-specific, 137
verify_heap method, 285

debug builds, 5
debug control register, 164
_DEBUG_EVENT data structure, 237–238
debug events, 88–91

filter states, resetting, 253
from multiple processes, 237–238
processing, 87–88
receiving and responding to, 86
types, 88
waiting for, 87, 88

/debugExe option, 230
debugger commands. See also specific command 

names
documentation of, 58–60, 83
kernel-mode, 63, 519
output, 41
scripting, 176–178
types, 59–60
user-mode, 519

debugger comments, 40–41
debugger extensions, 59
debugger hooks, 187–194

BreakOnDllLoad IFEO hook, 260–261
DLL load event hook, 225–227
HRESULT failures hook, 248–250
Image File Execution Options hooks, 193–194
ntdll!g_dwLastErrorToBreakOn hook, 245
NT global flag, 187–193
startup debugger hook, 227–234, 239

debugger loop
kernel-mode, 99
user-mode, 87–88

debugger runtime controller thread, 103–104
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debuggers. See also kernel-mode debuggers; user-
mode debuggers; Visual Studio debugger; 
Windows debuggers

attaching to programs, 44
attaching to target, 220–222, 505
automated stepping, 251
execution environment, changing, 491–493
local and remote instances, quitting, 234
preventative use, 195
source file resolution, 41
thread suspension, 254–255

debugger statement, 137
debugging

access-check failures, 352–362
access violations, 267–270
automating, 178–183
COM failures, 21, 24
common tasks, 219
CPU architecture and, 5
custom action code, 240–244
deadlocks, 343–352
DLL load events, 222–227
error-code failures, 245–252
handle leaks, 300–307
heap corruptions, 271–291
high-level errors, 248–250
kernel-mode, 60–83. See also kernel-mode 

debugging (KD)
kernel-mode memory leaks, 316–321
live kernel, 61–67
live production environments, 33, 39
low-level errors, 247–248
modes, 52
noninvasive, 159–161
process startup, 227–234
race conditions, 323–343
source-level, 52–53. See also source-level 

debugging
stack corruptions, 291–297
stack overflows, 297–300
storage of information, 53
system code, 44–47
third-party applications, 33
tracing and, 490–502
unloaded code, 341–342
user-mode, 39–60. See also user-mode 

debugging
user-mode memory leaks, 307–316
Win32 debugging APIs, 87–88
Windows components, 33

WOW64, 183–187
your own code, 39–43

debugging sessions
kernel-mode, ending, 526
kernel-mode, starting, 519
quitting, 225
terminating, 43
user-mode, ending, 518
user-mode, starting, 505

Debug\Options And Settings dialog box, 132
debug port executive object, 98
debug port kernel object, 86
debug port objects, 88

sharing, 237
debug registers, 164

resetting, 166
Debug\Source Mode WinDbg UI menu action, 53
debug status register, 164
defense in depth, 360, 495
delegates, .NET, 376
deleted memory, access attempts on, 268
dependencies, cyclic, 351
destructors, calling, 169–170
developer interface, 16–28

CLR, 25–28
COM, 19–25
KMDF, 17
NTDLL module, 18
UMDF, 17–18
USER32, 18
WDM (Windows Driver Model), 17
Win32 API layer, 18–19

developer tools, 28–29
development kits, 28–29
devenv.exe, 121. See also Visual Studio debugger
device driver stacks, 14
DeviceIOControl API, 319
DisableAuto.bat command, 128
DisablePagingExecutive registry value, 440–441, 

464
DisableThreadLibraryCalls API, 351
disassemblies

displaying, 51, 212, 515–516
inspecting, 5

disk access speed, 403
disk I/O

analyzing, 403
event logging, 397
performance issues, 402
speed of, 473
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DISK_IO_* flags, 425
stack-walking events, 432

Disk Utilization graph, 402–404
dispatcher events, logging, 424
DISPATCHER flag, 424, 460, 464

adding to Base group, 467
stack-walking events, 432

dispatcher objects, 170–172
header structure, 171

Distributed COM (DCOM), 20, 24
DllCanUnloadNow functions, 22
DLL debugger hooks, 193–194
DLL hell, 26
DLL hosting modules, 21
DLL load events

breaking on, 222–227, 260–261
handling of, 252

DllMain
entry point code, breaking at, 224
loader lock on, 351
synchronizing calls to, 351

DLL modules
debugging in Visual Studio debugger, 225–227
entry point wrapper, 336
initialization work, 351
leaks, 307–308
lifetime-management bugs, 340–343
loaded, listing, 508–509, 523–524
loading and inspecting, 57
loading dynamically, 224
pinning, 343
reference counting, 342–343
unloaded, access violations, 268, 324, 340–343

DLLs
binding and versioning, 26
custom-action, 240–244

!dlls command, 524
DLL_THREAD_ATTACH notifications, 351
.dmp extension, 150
Dock menu action, 41
!do command, 110, 111, 149, 286
dollar ($) sign, 40, 178
//D option, 137
dot debugger commands, 59. See also specific 

command names
double-free bugs, 272

catching, 208
dps command, 278–279

traversing stack with, 295–297
driver development kits, 29

driver extensions, 17
drivers

interdriver communication, 14
kernel-mode, 17
registering, 320
signed, 8
writing, 17

driver verifier tool (verifier.exe), 213
!dso command, 148, 149
dt command, 48, 54, 171, 238, 513–514

–r option, 80
du command, 52, 246
.dump command, 156, 160

/ma option, 152
dump debugging, 139–157

analysis stage, 143
analysis with Visual Studio debugger, 150–151
analysis with WinDbg, 143–150
cause of crash, determining, 149–150
.dmp extension, 150
full memory dumps, 151
in-process managed debugging architecture 

and, 105
kernel-mode, 153–157
manual crash-dump generation, 151–153
minidumps, 151–152
SOS extension for, 106
trace file analysis, 153
user-mode crash-dump generation, 139–143

dumper action, 444
dump files, 125, 139. See also crash dumps

bit masks, 152
comments, 152
full memory dumps, 151
manual generation, 151–153
minidumps, 151–152
name, date, type, and storage location, 140
overwriting, 152
saving, 152
snapshot information, 153

!dumpheap command, 489
–stat option, 488, 490

dumping
access tokens, 360–361
block structure of memory allocations, 274
critical sections, 345–347
GC heap statistics, 488
handle leaks, 356
memory as sequence of function pointer 

values, 278



dumping

536  Index

dumping, continued
objects, 110, 286
security contexts, 356
types, 238, 513–514
unicode strings, 246

!dumpobj command, 111
!dumpstack command, 110
DuplicateHandle API, 305
dv command, 48, 513
DWORD values, editing, 245
dwStackSize parameter, 297

E
eax register, 252, 383, 385

function call return codes, 251
nt!PspInsertProcess parameters, 256

eb command, 259, 265
ebp register, 51
e* commands, 517
.ecxr command, 144, 145
ed command, 245
edit_auto_logger.cmd script, 453
edx register, 383
!eeheap command, 488, 490
!eeversion command, 108, 111
.effmach command, 186
elevated administrative command prompt, service 

termination and, 492
ellipsis (…), 41
EnableProperty registry value, 453
entry point function, 336
entry points

breaking at, 40–41
CRT-provided, 168–169

EnumerateTraceGuidsEx API, 428
_EPROCESS structure ImageFileName field

ImageFileName field, 256
error-code debugging, 245–252

brute-force method, 251–252
ntdll!g_dwLastErrorToBreakOn hook, 245–247
Process Monitor for, 247–248

error-code tracing, 490–494
!error command, 210
error-handling macros, 248–250
esp register, 49, 384
ETW (Event Tracing for Windows), 391, 415–456

administrative privileges, 419
architecture, 416–422

boot tracing, 449–454
call stacks, incomplete, 439–441
call stacks, missing, 436–437
call stacks, unresolved, 437–439
components, 417–418
consumers, 417
controllers, 417
existing Windows instrumentation, 422–431
flags and groups, 423–425
front-end UI tool, 391–413
improvements to, 411
in-memory buffers, 420
kernel events, stack tracing, 432–434
LOADER flag, 423
logging, enabling, 441–449
memory leaks, investigating, 310
NT Kernel Logger session, 418–419
PROC_THREAD flag, 423
providers, 417
sample profiling instrumentation, 445
sessions, 417, 419–422
stack-walk events, 431–441
user events, stack tracing, 434–436
Win32 APIs, 445–449

ETW event logging, 410, 445–449
circular, 421–422
CPU overhead, 416
in-memory buffers, 417
starting, 418, 482
viewing sessions, 421

ETW events, 441–445
CSwitch events, 410, 459–461
custom, 415
event descriptor header, 441–443
kernel, 496–499
marks, 430–431
Profile events, 410
ReadyThread events, 459–461
stack-walk events, 431–441
Start and End events, 445–449
types of, 401
user, 499–502

ETW heap trace provider, 476–480
ETW traces. See also traces; tracing

analyzing, 399–410
Base group of events, 397–398
collecting, 397–398
collecting with PerfView, 482–483
file location, 398
filtering events, 398
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graphs and data views, 402–405
for investigation overview, 490
kernel rundown information, 418, 438
lost events, 420
mark events, 430
merging with kernel rundown information, 483
Profile stack-walk switch, 397–398
scope of, 411
stack-walk events, 397, 405–407
starting and stopping, 398
system configuration information, 401
time interval, 400
viewing, 399
WPR/WPA use, 395

EventEnabled API, 448
event handlers

in .NET, 376
user-defined, 377, 379

event objects
signaled state, viewing, 80
viewing, 65, 79–80

EventRegister API, 448
events. See also ETW events

providers, 417
rate of incoming events, 420
schema for, 416
signaling, 170

EventUnregister API, 448
EventWrite API, 448
exception codes, 89
exception dispatching sequence

kernel-mode, 100
user-mode, 90

exception filter states, resetting, 253
exception handling, 88–91, 99

disabling, 223
exception records, 144
exceptions, 88–91

automatic crash-dump generation on, 140–143
breaking on, 262
inner and outer, 147–148
leading to crashes, finding, 143–145
nested, 146–147
.NET, 145–149
printing, 146
SEH, 143–145
stop on module load, 223–225
throw keyword, 89, 91
unhandled, 90

exception stops

enabling, 252
resetting, 253

executables
CLR headers, 26
main entry points, stopping at, 231
startup debugging, 227–234

execution data breakpoints, 162, 166–167
setting, 162

execution delays, 396–410
blocked time, 458–473
high-level cause, 397
hot spots, 397
investigating, 502–503

execution environment, altering with 
debugger, 491–493

execution modes, 8–9
executive, 8

I/O manager component, 14
executive objects

address, finding, 64
creating, 255

executive service routines, entry points, 18
EXE hosting modules, 21
EXE-specific debugging hooks, 194

NT global flag, 187–193
existing debug port attach process, 161
extension (bang) commands, 59. See also specific 

command names
extension DLLs, loading, 59
!extension_name.help command, 59
extensions

building, 16–28
driver, 17

f
F1 shortcut, 58, 83
F5 shortcut, 40, 226, 508
F6 shortcut, 44, 94, 120, 139, 160
F8 shortcut, 62
F9 shortcut, 225
F10 shortcut, 40, 42, 508
F11 shortcut, 42, 51, 508
__fastcall calling convention, 52
Fast System Call facility, 384
faults

register context, 144
SEH exceptions, 144

~f command, 254
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f command, 517
File\Delete Workspaces menu action, 43
FILE_IO_* flags, 425

stack-walking events, 432
file object integrity levels, 361
file reads

caching, 403
viewing, 402

fill patterns of memory allocations, 273–274, 278
FireWire cable, 69
first-chance exception notifications, 90, 91

breaking on, 252–253
logging, 252

flags
ETW, 423–425
stack-walking, 432

.for command, 251
FPO (Frame Pointer Omission), 439, 440
fprintf statements, 416
.frame command, 48, 514
frame numbers, displaying, 48
Frame Pointer Omission (FPO), 439, 440
frame pointers, 50

displaying, 50–51
framework-level exceptions, 88
free builds, 5–6
FreeLibraryAndExitThread API, 342
free time, catching memory corruptions at, 273, 281
freezing threads, 327

in kernel mode, 262–265
in user mode, 253–255

fsutil.exe, 396
sparse files, 404

full memory dumps, 151
full page heap, 273

memory consumption, 280
function addresses, resolving, 509
function arguments, checking, 96
function calls

disassembly of, 382
history, saving, 153
listing, 47
parameters and locals, finding, 49–52
return codes, 251
stepping over and into, 42, 251–252

function disassemblies, viewing, 515–516
function parameters, displaying, 512–513
function pointers

memory, dumping as sequence of, 278
overwriting, 201

termination handlers, 375–377
functions

callers, contracts between, 199–202
no-inline, 249
referencing, 66
unassembling, 212, 382

FxCop, 204–206
installation, 204–205

g
g [address] command, 508
garbage collection (GC), 25, 282

GC-heap validation at, 285–287
managed to unmanaged transitions, 27–28
thread suspension during, 282
triggering, 288–290
viewing events, 485

gc command, 258
GC Events By Time table, 485
GC heap, 282

generations, partition by, 282
last “good” object, 286
live object roots, finding, 489
mark-and-sweep scheme, 282
memory usage, analyzing, 481–482
memory usage, analyzing with PerfView, 482–

488, 503
memory usage, analyzing with SOS 

extension, 488–490
objects, traversing, 284
statistics on, dumping, 488–489
validation at garbage collection, 285–287

g command, 40, 45, 72–73, 95, 508
!gcroot command, 489–490
GCStress CLR configuration, 287–288
gdi32.dll, 18
GDR (General Distribution Release) patches, 7
Generic Events graph, 426, 429–430, 436, 500

Start and End events, 448–449
Summary Table view, 430

!gflag command, 191–192
GFLAGS (gflags.exe), 188–191

native and WOW64 registry views, editing, 191
page heap, enabling, 275
startup debugger configuration, 227–229, 232
user-mode stack trace database, creating, 311–

312
verifier bits, enabling, 216
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verifier hooks, enabling, 210–211
g_hResultToBreakOn variable, 250
!gle command, 59
global cookie value, 292
global flag bits, 192
GlobalLogger registry key, 449

deleting, 452
editing, 450

global objects, initialization, 351
global stack trace database, 311, 314–316
global state destruction, 337
global variables

addresses, resolving, 509
modifiers on, 270
in worker threads, 336–339

gn command, 376
/GS compiler flag, 291–292
guard pages, 273
gu command, 508

h
HAL (Hardware Abstraction Layer), 8
!handle command, 59, 96–97
handle leaks

debugging, 300–307
dumping, 356
example, 300–302
!htrace command, 302–307
verifier hooks, 308

handles, 8
duplication of, 305
invalid, 209–211
properties, dumping, 304

handle tracing, 302–306
disabling, 306

hangs. See deadlocks
Hardware Abstraction Layer (HAL), 8
hardware-assisted virtualization technology, 74
hardware breakpoints, 163–164

clearing, 165–166
setting, 510–511, 525–526

hardware drivers, user-mode execution, 17–18
hardware exceptions, 89
HashAlgorithm.HashFinal method, 326
HashAlgorithm.HashUpdate method, 326
hash function chaining mechanism, 326
hash objects

assigning to threads, 328

sharing, 326
hash operations, locking, 328
heap-based underruns and overruns, 272
!heap command, 277–279
heap corruptions, 206

debugging, 191, 193, 271–291
debugging complications, 271
!heap command, 277–279
managed, 281–291
native, 271–281
.NET code and, 271, 281
page heap, 272–277

heap memory consumption, analyzing, 475–476
Heap Outstanding Allocation Size graph, 479–480
Heap Total Allocation Size graph, 478
Heap Trace Provider, 476–480
heap tracing, 475–480

allocation types, 480
analyzing with Xperf, 478–480
disabling, 478
enabling, 476–477
GC heap analysis, 481–482

HeapVerify CLR hook, 285, 288
.help command, 59
Help files, debugger commands in, 58–60, 83
hexadecimal addresses, setting breakpoints by, 57
.hh command, 58, 83
high-level errors, debugging, 248–250
historical debugging, 153
hives, registry, 173
host debugger machines, 61, 67

administrative privileges, starting with, 70
communication with targets, 98
connecting to target, 70

hosting modules, 21
hot spots, investigating, 397–410
HRESULT failure reporting, 248–250
!htrace command, 302–307

–diff option, 303, 305
–disable option, 303
–enable option, 302
functionality, 302–303
limitations, 307
–snapshot option, 303

Hyper-V, 73–74
hypervisor boot driver, 73
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I
ia64, 4–5
icacls.exe utility, 361
IClassFactory interface, 19
/i command-line option, 127
IFEO (Image File Execution Options) registry key, 189

BreakOnDllLoad value, 225–226
debugger hooks, 193–194
Debugger value, 228
TracingFlags value, 477
VerifierFlags value, 213

IL, 25
image load/unload events, logging, 424
impersonation, 353, 354
import table, updating, 212
infinite loops

attaching debugger during, 220–222
suspending threads with, 262–265
unblocking, 221

InitializeCriticalSectionAndSpinCount API, 347
inline assertion routines, 138
in-process COM servers, 24
in-process debugging, 104. See also managed-code 

debugging
advantages and drawbacks, 106
script debugging, 113

instruction pointer register (eip), 51
instrumentation manifest

custom event payload, 449
location of, 427

int 1 instruction, 93
single-stepping with, 100

int 2c instruction, 138
int 3 instruction, 91–92, 100, 138

breakpoints, setting, 93
integrity levels, 358–360

UAC and, 495
Intel, 4

Intel-VT processors, 73
Model-Specific Registers, 384
Xeon processors, 73

IntelliTrace, 153
interactive window station, integrity level, 359
interfaces, documentation of, 16–17
internal code invariants, confirming, 138
Internet Explorer

JPEG GDI+ buffer overrun, 201
script debugging, enabling, 113

interprocess communication, 19, 86, 98

interthread dependencies, 458, 461
invalid handle errors, 209–211
invalid heap pointers, 272
invalid memory access violations, 198, 267, 324
invariants, broken, 200, 253, 323
invasive context switches, 81, 100–102, 523
I/O bottlenecks, 458
I/O control commands (IOCTL), 13–14
I/O manager

caching file reads, 403
performance optimizations, 403

I/O processing, 380–386
in console applications, 369–373
viewing, 247–248

I/O Request Packets (IRPs), 385
I/O requests outstanding to disk, 402
@$ip pseudo-register, 180
IRPs (I/O Request Packets), 385
IUnknown interface, 19

J
JIT (Just-in-Time) compiler, 25, 103, 125
JIT (Just-in-Time) debugging, 125–139

attach operation, 125, 128–129
breaking in at crash site, 127–128
clearing debugger, 126
closing program without debugging, 129
CLR-specific JIT debugger, 135
functionality, 128–132
interacting with debugger, 139
invocation sequence, 131
managed-code, 133–135
run-time assertions and, 138–139
script debugging, 135–137
in session 0, 139
Visual Studio for, 132–137
WinDbg as default debugger, 127–128

job objects, 11–13
JPEG GDI+ buffer overrun, 201
JScript, 112
jscript.dll, 112
jumps, short, 265
jump to self instruction, 262–265
Just-in-Time (JIT) compiler, 25, 103, 125
Just-in-Time (JIT) debugging, 125–139
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k
KCB (Key Control Block), 173
~*k command, 92
k command, 46, 47, 50, 59, 128, 511–512

frame count with, 512
stack chain corruptions and, 295–296
unloaded code and, 341

k* commands, 160
kd1394.dll, 77, 98
kdcom.dll, 77, 98
KD (kernel-mode debugging), 60–83. See 

also kernel-mode debugging (KD)
kdsrv.exe, 119, 120
KD transport extensions, 98–99
kdusb.dll, 77, 98
kernel, 8

client and server versions, 4
ETW providers, 422–426
handle tracing, 302–303
memory, 316–317
security of, 381
Windows NT, 3

kernel32!CaptureStackBackTrace API, 314–315
kernel32!CloseHandle API, 11
kernel32!CreateProcessW API, 48

DEBUG_PROCESS flag, 238
kernel32!CtrlRoutine function, 376–380
kernel32!DeviceIoControl API, 14
kernel32.dll module, 18
kernel32!SetConsoleCtrlHandler API, 375–376
kernel32!SetLastError API, 247
kernel32!SetThreadContext API, 164
kernel32!WaitForSingleObject API, 11
kernel32!WriteConsoleA API, 299, 373
kernel32!WriteProcessMemory API, 95
kernel binaries

finding, 66
type information, 54

kernel bug checks
analyzing, 153
crash-dump generation, 154
inducing, 155
rebooting on, 154

kernel components, memory consumption of, 318
kernel configuration manager (CM), 173
Kernel Debugging dialog box, 70
kernel debugging port, 69–70
kernel_debugging_tutorial.doc, 83
kernel dispatcher objects, 170–172

kernel drivers, 16
kernel flags, 422–425

stack-walk events associated with, 432
kernel memory dumps, 154–155
kernel mode, 8–9

layering structure, 8–9
system calls, 383–384, 385–386
user-mode code calling into, 380–386
user-mode code, invoking, 15
user mode, transitioning from, 10

kernel-mode code
breakpoints, setting, 524
calling from user mode, 13–14

kernel-mode debuggers
code breakpoints, setting, 81–83
driver-signing verification, disabling, 320
global scope, 81
unhandled exceptions, stopping on, 262

kernel-mode debugging (KD), 60–83
architecture of, 98–99
break-in sequence, 77–78
cabling options, 67–69
capabilities, 60
code breakpoints, setting, 81–83, 100, 166
communication channel, 98
context switches of current process, 101–102
crash-dump analysis, 154–156
data breakpoints, 164, 165–166
debugger functionality, 98–102
debugger prefix, 73
ending sessions, 526
exception handling, 99
freezing threads, 262–265
high-level requirements, 98
host debugger machine, 61, 67
host/target communication issues, 76
live kernel debugging, 61–67
nt!PspInsertProcess breakpoint, 366
over 1394 ports, 69–71
over the network, 67–68
packet-based transport protocol, 78
physical machines, setting up, 67–73
postmortem, 153–157
pseudo-registers, 178–179
quick start guide, 519–526
registry access events, monitoring, 172–176
remote stubs, 119
second machine, 61
setup, 61
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kernel-mode debugging (KD), continued
simulating control by user-mode debugger,  

259–260
single-stepping the target, 100–101
starting sessions, 519
systemwide scope, 33
target, controlling, 78–80
target machine, 61–62, 67
tracing mode, 76
transport extensions, 98–99
tricks for, 255–265
use of, 33
user-mode process creation, 255–258
virtual machines, setting up, 73–76
Windows boot sequence, 258
WOW64 programs, 185–187

kernel-mode driver framework (KMDF), 17
kernel-mode drivers, 17
kernel-mode memory

code breakpoints, setting, 82–83
debugging leaks, 316–321
pool tagging, investigating leaks with, 318–321

kernel-mode stack, 297
kernel modules, renaming, 66
Kernel Patch Protection, 381
kernel provider events

logging during boot, 450–452
stack traces for, 432–434
viewing, 425–426

Key Control Block (KCB), 173
kf command, 299–300
kill.exe, 170

emulation of, 491–492
KMDF (kernel-mode driver framework), 17
kn command, 48, 514
Knowledge Base articles, 17
kP command, 48–49, 512–513

l
language-level exceptions, 88
large files, execution delays,, 396–410
Large Text File Viewer, 444–445
.lastevent command, 143, 223
latency, 457
latent bugs, 195
LaunchProcess function, 270
l command, 52–53
leader smss.exe, 9, 10

leaked cmd.exe instances, 139
leaked resources, 309–310
LeakRoutine routine, 319
leaks. See also memory leaks

critical section, 206
leased system threads, 102
least privileges, 360, 495
lifetime management, reference counting, 333–336
light page heap, 273
live kernel debugging, 61–67

administrative elevation, 63
command prompt, 63
debugger prefix, 73
limitations, 61, 67
managed process threads, observing, 104
memory dump generation, 151–153
startup code paths, 232–234

live production environments, debugging, 33, 39
lm command, 55, 66, 508
ln command, 342
.loadby command, 108
.load command, 59
loaded modules, listing, 508–509, 523–524
LOADER flag, 423, 424

enabling, 495
stack-walking events, 432

loader lock, 351–352
break-in sequence and, 352

load events, stopping on, 223–225
load exception handling, disabling, 223
LoadLibrary function, 342
local cache, symbols, 55–56
local debuggers, 118
LocalDumps registry key, 140

dump file type setting, 151
Local Security Authority Subsystem (LSASS) process. 

See also lsass.exe
user providers of, 428–429
user rights computation, 353

locals window, invoking
, 221

LocalSystem account, 10
local variables

displaying, 513
dumping, 48
listing values, 47–52

lock contention, 317
execution delays, 458

LockCount field, 347
lock counts, 22
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lock-ordering deadlocks, 344–348
avoiding, 347–348
!cs command, 345–347

locks, 343. See also deadlocks
loader lock, 351–352
lock-ordering scheme, 347–348
orphaned, 206

log channels, OwningPublisher GUID and, 427
loggers, 417
logging

circular, 421–422
context switches, 424
ETW events, 410, 445–449
with fprintf statements, 416
kernel provider events during boot, 450–452
lock-free, 417
standardized framework for, 416
user provider events during boot, 452–454
verbose, 56

logical deadlocks, 348–352
logical waits, 410
logman.exe, 428, 443–444
logon/logoff

management, 9–10
user authentication, 10

LogonUser API call stack, 306
.logopen and .logclose commands, 178
low-level errors, debugging, 247–248
lsass.exe, 10. See also Local Security Authority 

Subsystem (LSASS) process
access to, 358
user rights computation, 353

M
main entry points

breaking at, 260
stopping at, 231

main UI thread
stack trace of, 65
synchronous operations, scheduling on, 396–410
tracing performance, 490

malicious code, buffer overrun exploits, 201
managed code

JIT debugging, 133–135
loading, 26
native code, interoperability, 27–28
symbols path resolution, 123

managed-code debugging, 103–112

architecture for, 103–106
lack of native support, 106–107
sos.dll debugger extension module, 106–112

managed crash dumps, 150–151
managed debugging assistants (MDAs), 289–291
managed exceptions, printing, 328
managed-heap corruptions, 281–291

debugging assistants, 288–291
!VerifyHeap command, 282–288

managed objects
listing, 148–149
pinning in memory, 28
random access violations on, 282

managed-to-unmanaged code transitions, 288–290
mandatory integrity labels, 359, 361, 362
manifest-based user providers, 426–427
mark events, 430–431
marshaling, 183
~m command, 255
MDAs (managed debugging assistants), 289–291
memory

buffers, inserting, 97
of call frames, 299
committed, 268
dumping as bytes, 51, 97
dumping as function pointer values, 278
freeing, 282
kernel, 316–317
locality effect, 474
mark-and-sweep scheme, 282
overwriting, 200. See also buffer overruns
virtual allocations, 268

memory access
speed of, 403, 473
violations, debugging, 267–270

memory addresses, jumping to, 262–265
memory allocations

aligned and unaligned, 273, 280
block structure, dumping, 274
call stack, viewing, 277, 278
fill patterns, 273–274, 278
global stack trace database, 311, 314–316
guard pages, 273
light- and full-page-heap schemes, 274
observing, 310
placement on heap, 280
tracing, 311–312

memory corruptions
free time, catching at, 273, 281
reproducibility, 199
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sign of, 331
memory dumps, 139. See also dump debugging; 

dump files
complete, 155, 156
kernel, 154–155
registry values, extracting, 172
small, 155, 156
user-mode, 151

memory leaks, 307
allocation call sites, viewing, 479–480
Application Verifier, detecting with, 307–310
handle leaks, 300–307
kernel-mode, 316–321
outstanding allocations and, 479
stack-trace database, 314–316
tracking, 475–476
UMDH tool, investigating with, 310–314
user-mode, 307–316

memory locations
alias to, 515–516
monitoring actions on, 162

memory management, 25
overhead of, 457

memory pages
access violations, 268
guard, 273

memory pools
paged and nonpaged, 316–317
pool tagging, 318–321

memory usage
analyzing, 457, 473–490, 503
debugger analysis vs. tracing, 489
in GC heap, 481–482
memory leaks, 476
of .NET programs, 474
in NT heap, 475–476
private bytes, 474
in target process, 474–475

memory values
displaying, 516–518
editing, 517
filling range of, 517
overwriting, 517

message notifications, 86, 90–91
method invocations, 23–25
MFC (Microsoft Foundation C++ Class library), 
Microsoft Developer Network (MSDN), 16–17
Microsoft Intermediate Language (MSIL). See MSIL 

(Microsoft Intermediate Language) images
Microsoft .NET Framework. See .NET Framework

Microsoft private symbols, archiving, 54
Microsoft public symbol files, 54, 406
Microsoft public symbols server, 45, 54

adding to search path, 505–506
Microsoft Visual Studio. See Visual Studio
Microsoft-Windows-Services user provider

enabling, 452–453
graph of events, 454

Microsoft Xbox 360, 4
MIDL, 21
minidumps, 151–152
MIPS processors, 4
mixed-mode debugging, 38
Model-Specific Registers (MSR), 384
ModLoad messages, 223
module load events

handling of, 252
stopping on, 223–225

modules
listing, 508, 523–524
loaded, listing, 55
symbols, listing, 45

msconfig.exe
kernel-mode debugging, enabling, 61–62
safe mode, 62

mscordbi.dll CLR debugging objects, 104
mscoree!_CorExeMain method, 26
mscoree.dll, 27

reverse COM Interop, 28
versioning, 26

mscorlib.dll NGEN image, 109
MSDN (Microsoft Developer Network), 16–17
MS-DOS, 3
MsiBreak environment variable, 244
MSI custom actions, 240–244
MSIL (Microsoft Intermediate Language) images, 25

debugging, 103–112
metadata, 107
PDB symbol files, 53

MSR (Model-Specific Registers), 384
msvcrt!exit function, 336–337
msvsmon.exe, 121–123
MultiByteToWideChar API, 300
multiple overloads, 57–58
multithreading

freezing threads, 253–255
race conditions, 323
visualizing, 462

mutexes, 347
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n
named pipes, 73, 76
native code

debugging, 38
garbage collections and, 289
managed code, interoperability, 27–28
.NET type consumption, 28
runtime analysis, 206
shared-state lifetime management bugs, 330–

339
native heap corruptions, 271–281
native modules, 25
~n command, 255
nested exceptions, 146–147
.NET applications

debugger runtime controller thread, 103
debugging, 107–112
memory usage, 474
run-time code generation, 103

.NET call frames, 440–441

.NET call stacks, 458

.NET classes, thread safety, 326

.NET code
analyzing, 411
console termination handlers, 375–377
exception stops, enabling, 252
execution engine behavior, configuring, 289–291
FxCop static-analysis engine, 204–206
heap corruptions, 281
JIT debugging, 133–135
source-level debugging, 150–151
wait loops, attaching debugger during, 220

.NET debugging, 38, 103–112
Visual Studio debugger for, 103

.NET exceptions
finding, 145–149
retrieving, 148

.NET Framework, 20
executable load order, 26–27
execution engine environment, 25
managed and native code interoperability, 27–28
side-by-side versioning, 26
SOS extension, 103, 106–112

.NET objects
dumping, 148
layout, 286–287

.NET SDK, 28
network ports, displaying, 119
NGEN’ing applications, 106

_NO_DEBUG_HEAP environment variable, 193
NoDebugInherit bit, 238
no-inline functions, 249
noninteractive sessions, 10
noninvasive debugging, 159–161

detaching form target, 161
starting session, 160

nonpaged memory pools, 316–317
NoRefCountingBug.exe, 331
notifications, 86, 90–91
n!PspAllocateProcess function, 255
NT_ASSERT macro, 138, 139
ntdll!Csr* routines, 18
ntdll!DbgUiRemoteBreakin function, 92
ntdll.dll, 8, 18

NT executive services for transition to kernel, 380
thread pool implementation, 343

ntdll!g_dwLastErrorToBreakOn variable, 245, 491
ntdll!LdrpLoaderLock, 351
ntdll!Ldr* routines, 18
ntdll!NtDeviceIoControlFile, 14
ntdll!NtTerminateProcess function call, 212
ntdll!Rtl* routines, 18
ntdll!RtlSetLastWin32Error function, 246
nt!_EPROCESS, 255, 521
nt!FunctionName notation, 66
NT global flag, 187

bits in, 188, 191
editing, 188–191
nt!NtGlobalFlag variable, 189
per-process, 189–190
per-process, reading, 191
scopes, 187
stop on exception (soe) bit, 262
systemwide DWORD value, 189
systemwide vs. process-specific, 187–188
user-mode debuggers and, 193
verifier hooks, enabling, 211

NT heap, 282
allocation call sites, 478
memory consumption, analyzing, 475–480
memory leaks, investigating, 310–314

NT heap manager
allocators, 272
APIs in ntdll.dll, 271
buffer alignment, 273
memory allocation, 268

NT heap provider
ETW instrumentation, 475
logged events, visualizing, 478–480
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nt!KdCheckForDebugBreak frame, 77
NT Kernel Logger session, 418–419

buffer size, 420–421
enabling, 452
kernel rundown information, merging events 

with, 451, 453
starting and stopping, 419, 449

nt!MmAccessFault, 100
nt module, 66
nt!NtGlobalFlag variable, 187, 189

current value, displaying, 192
nt!poolhittag global variable, 321
nt!PspInsertProcess breakpoint, 255–259, 366

inserting, 260
nt!SeAccessCheck function, 354
nt!SeAuditProcessCreation function call, 256
NT security model, 353–358

concepts of, 353–354
integrity levels, 358–360
Windows Vista improvements, 358–361

NT service control manager, 10. See also SCM 
(service control manager)

_NT_SYMBOL_PATH environment variable, 313–314, 
408, 438

_NT_SYMCACHE_PATH environment variable, 408, 
438

NULL pointer address, dereferencing, 268

o
oacr.bat batch file

clean option, 204
set option, 204

OACR (Office Auto Code Review), 202–204
!object command, 65, 357
object handles, 8. See also handles

closing, 300
object pooling, 328–330
objects

dumping, 110, 286
lifetime management, 333–336
pinned, 289

–o command-line option, 235, 238
off-by-one bugs, 273
Office Auto Code Review (OACR), 202–204
ole32!CoFreeUnusedLibraries function, 22
OLE Automation, 20
orphaned locks, 206
orphaned service processes, 234

OS-level exceptions, 88
OSR website, 18
__out_ecount SAL annotation, 200
out-of-process COM servers, 24–25
out-of-process debugging, 104

advantages and drawbacks, 106
SOS extension support, 107
Visual Studio support, 106

overloads, multiple, 57–58
OwningPublisher GUID, 427

P
page access violations, 268
paged memory pools, 316–317
page fault handler, 100
page file, reserved storage in, 268
page heap, 272–277

block header structure, 278
customizing, 279–281
DLLs, restricting scope to, 280
enabling, 272, 275–277
full, 273–274
functionality, 273–274
light, 273–274
light- and full-page-heap allocations, alternating 

between, 280
memory consumption settings, 280
memory impact, minimizing, 273
scope, restricting, 273–274
target process, enabling for, 275–277

page heap bit, 191
parallel execution, race conditions, 323
Parallel Performance Analyzer (PPA). See PPA 

(Parallel Performance Analyzer)
parameters

listing in your own code, 48–49
listing values, 47–51

parent/child relationship
breaking, 234, 239
preserving, 240

parent processes, 130
PatchGuard, 381
pc command, 508
p command, 508
.pdb (program database) file extension, 53
PDB symbol files, 53–54
pdm.dll, 112
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PDM (Process Debug Manager), 112
debugging support, enabling, 135–136
enabling, 221

!peb command, 160–161, 236, 507
PEB (process environment block)

BeingDebugged byte, 259–260
dumping contents, 160–161
process command line, 507

@$peb pseudo-register, 179
$peb pseudo-register, 178, 510, 517
!pe command, 146–147, 149, 328
–pe command-line option, 161
peer code reviews, 202
performance

blocked-time analysis, 458–473
hot spot analysis, 405–407
investigating with Xperf, 502
issues, investigating, 397
memory usage and, 457, 473, 503
printf tracing and, 416
read-ahead optimization, 403
write-behind optimization, 403

performance monitor (perfmon.exe) memory-usage 
inspection, 474

PerfView, 481–482
allocations, viewing, 486–487
CPU sample profiling, 502
GC Events By Time table, 485
GC Heap Alloc Stacks view, 485, 488
GC heap memory usage, analyzing, 482–488, 

503
GCStats view, 484–485, 488
heap snapshots, 488
[Just my app] filter, 486
process summary table, 483–484
starting, 482
symbols resolution, 486

Perl, 112
PHRACK magazine, 201
P/Invoke, 27

incorrect declarations, 281
pool tagging, 318–321
!poolused command, 320
postmortem debugging, 125–158

dump debugging, 139–157
JIT debugging, 125–139
kernel-mode, 153–157

Power PC processors, 4
PPA (Parallel Performance Analyzer), 458

blocked-time analysis, 503

Cores view, 464
CPU Utilization view, 464
ETW trace views, 464–465
Microsoft public symbols, access to, 461–462
Threads view, 464–466
tracing sessions, starting, 461–464
user interface, 458
uses of, 458
wait analysis, 461–467

PRCB (processor control block), data breakpoints 
in, 164

prerelease milestones, 6
printf function, 366–373, 416

console host process (conhost.exe), 366–369
CRT I/O functions, 369–373
stepping through, 371–372

printing exceptions, 146
printing text to screen, 366–373
private code, breakpoints in, 166–167
private symbols, archiving, 54
privileges, 353
Process class, 493
!process command, 64, 102, 129–130, 520–521

arguments of, 520–526
.process command, 522–523

/i option, 81, 101–102, 167, 523–525
/p option, 101, 522
/r option, 65, 101, 522

process creation
breaking at, 366
call stacks, 495
user-mode, debugging, 255–258

Process Debug Manager (PDM), 112, 135
enabling, 221

process environment block (PEB), dumping 
contents, 160–161

processes, 10. See also target process
access tokens, 353
attaching to, 120
child processes, debugging, 234–244
code paths, tracing, 495
command line, 237
context switches, 522–523
debug port object sharing, 237
displaying information about, 520–521
execution, stepping through, 232–234
interprocess communication, 15–16
in job objects, 11
killing, 492–493
listing, 520
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process, continued
managing as groups, 11
parent/child relationship, 234, 239, 240
in session 0, debugging, 231–234
signaling, 170–172
start/exit events, logging, 424
terminating, 11–13
verifier checks, 217

process global flag, 193
process ID (PID)

checking, 97
of crashing processes, 130–131

Process Lifetimes graph, 399–400, 423, 451
Process Monitor, 172

access failures, observing, 247–248
processor context switches, 519
processor control block (PRCB), data breakpoints 

in, 164
process rundown sequence, 336–339

dangling threads, 338
process startup debugging, 227–234

in session 0, debugging, 231–234
user-mode processes, 259–260
during Windows boot sequence, 258

Process Summary Table, 400–401
@$proc pseudo-register, 179
$proc pseudo-register, 377–378
PROC_THREAD flag, 423, 424, 495

enabling, 495
stack-walking events, 432

production environments, debugging, 39
Profile events, 491

viewing, 498
PROFILE flag, 424, 464

enabling, 495
stack-walking events, 432

Profile stack-walk switch, 397–398
programs, attaching debuggers to, 44
protected page access violations, 268–271
providers

ETW, 417
installation, 427

pseudo-registers, 178–180
displaying value, 178
$peb, 510, 517
strongly typed, 258

@$ptrsize pseudo-register, 180
public symbols, 54
–pv command-line option, 160–161
Python, 112

Q
q command, 43, 518
qd command, 43, 161, 518
qq command, 118, 234
quality assurance, 217
quick start guides

kernel-mode debugging, 519–526
user-mode debugging, 505–518

quitting and detaching from target, 518
quitting and detaching without terminating 

target, 225
quitting and terminating target, 225

R
race conditions

deadlocks, 343
debugging, 323–343
defined, 323
DLL module lifetime-management bugs,  

340–343
freezing threads, 253–255
object pooling, 328–330
reproducing, 323, 326–328
shared-state consistency bugs, 324–330
shared-state lifetime-management bugs,  

330–339
simulating in debugger, 327–328
WaitForMultipleObjects API, 333

RaiseException API, 89, 91
@$ra pseudo-register, 179
$ra pseudo-register, 178
rax register, 251
r command, 59, 166, 516, 518
r? command, 258
rdmsr command, 384
read-ahead optimization, 403
read data breakpoints, 162–163
read-only memory, string literals in, 269
readying threads, 460

displaying information on, 470
ReadyThread events, 459–461
ReadyTime interval, 460
.reboot command, 258
recovery, 170
reentrancy issues, 416
reference-counted objects, tracking, 314–316
reference counting, 21–22, 333–336

for DLL module lifetime management, 342–343
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regasm.exe, 28
!reg command, 172–176

openkeys option, 173
valuelist option, 174

registers. See also pseudo-registers
arguments saved in, 52
Model-Specific Registers, 384

register values
displaying, 516–518
overwriting, 518

registry
changes, logging, 425
editing, 191
storage concepts, 173

REGISTRY flag, 425
stack-walking events, 432

registry values
changes, tracking, 172–176
editing, 188
Key Control Block, 173
listing, 173

regression bugs, 217
regular expression evaluation, 258
releases, operating system, 6
.reload command, 45, 55, 505–506

/unl switch, 341
/user switch, 524

–remote command-line option, 118, 232
remote debugging, 116–123

architecture for, 116–117
starting, 118
in Visual Studio, 121–123
with WinDbg, 117–121

Remote Desktop connection, kernel debugging 
with, 75

remote procedure calls (RPCs), 500
remote sessions, 116

starting, 118
terminating, 118
in WinDbg, 117–118

remote stubs, 116–117, 119–121
resource handles, bad

, 206
resource leaks, detecting, 307–310
Resource Monitor (resmon.exe), 397

memory-usage inspection, 474
.restart command, 59
ResumeThread function, 254, 262
retail builds, 5
@$retreg pseudo-register, 180

reverse hazard, 337
rights, user, 353
RPCs (Remote Procedure Calls), client side, 500–502
RpcSs service, 21, 24
rsp register, 49
_RTL_CRITICAL_SECTION structure, 346
RtlEnterCriticalSection function, 345–346
run-time assertions

inline assertion routines, 138
JIT debugging and, 138–139

runtime code analysis, 206–217
!avrf extension command, 214–217

run-time code generation, 103
run-time events, saving for analysis, 153

s
safe mode, 62
SAL (Standard Annotation Language), 195
SAL annotations, 199–202

buffer overruns, 199–201
syntax, 199
for Win32 APIs, 202

sample profiling, 404–406, 410
scheduling, 10
SCM (service control manager), 10

handshake timeout, 232–234
service entries list, 182

s command, 92
screen, printing text to, 366–373
script debugging, 112–115

architecture for, 112–114
PDM, enabling, 221
startup code path, 220–221
in Visual Studio, 114–115
//X option, 114

scripting, 176–183
command history, saving, 178
C++ template function names, resolving, 180–

181
pseudo-registers, 178–180
replaying debugger commands, 176–178
startup debugging and, 230–231
Windows service processes, listing, 181–183

scripting hosts, 112
enabling debugging, 114

script JIT debugging, 135–137
debug breaks, 135–136

script languages, 112
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scripts
attaching debugger, 114–115
blocked-time script, 458
boot tracing, 450, 452
ETW trace sessions, automating, 398
heap tracing configuration, 477
heap tracing session startup, 477–478
start_kernel_trace.cmd, 419, 423, 438
start_user_trace.cmd, 438
trace files, viewing, 399
trace symbols, caching, 408
view_trace.cmd, 438, 478
Xperf wrapper, 433

!sd command, 357–358
SDK ISO files, mounting and unmounting, 35, 37
second-chance exception notifications, 90, 127
security, 353–358

access tokens, displaying, 355–357
concepts of, 353–354
integrity levels, 358–360
UAC, 495
Windows Vista improvements, 358–361

security checks, 352. See also access checks
security context, 353

of command-prompt window, 360
dumping, 356
of user-mode debugger, 220

security descriptors, 353, 354
displaying, 357–358, 360
reading and modifying, 361

security identifiers (SIDs). See SIDs (security 
identifiers)

SeDebugPrivilege, 87, 362, 493
SEH (Structured Exception Handling) exceptions, 88–

91
from assertion macros, 138
breaking on, 262
dereferencing NULL pointer, 126
exception codes, 89
finding, 143–145
handling, 89–91
hardware exceptions, 89
JIT debugging sequence, invoking, 138
memory access violations, 268
software exceptions, 89
Visual C++ language support, 89

semaphores, signaling, 170
serial COM ports, emulating, 73
.server command, 117, 118
server command-line option, 232

server operating systems, 4
service control manager (SCM). See SCM (service 

control manager)
service packs, 7
service routines, sharing between user and kernel 

sides, 381–382
services

startup debugging, 231–234
status, reporting, 233

services.exe, 10, 182
services!ImageDatabase global variable, 182
ServicesPipeTimeout registry value, 233
service stubs, 18
servicing updates, 7
session 0

JIT debugging in, 139
startup debugging in, 231–234

session manager subsystem process, 9
sessions. See also debugging sessions

ETW, 417, 419–422
global and auto-logging sessions, 449

session space, 9
SetThreadPoolCallbackLibrary API, 343
setup.bat file, 141–142, 232
SHA-1 hash function, 326
shared state

consistency bugs, 324–330
lifetime management bugs, 330–339
synchronization, 324, 326

shell32!AicLaunchAdminProcess function, 501
shell32!ShellExecuteW function, 501
shellcode, 201
Shift+F11 shortcut, 508
short jumps, 265
SIDs (security identifiers), 353

displaying, 355–356
friendly names, 357–358
integrity level, 358–359
owner, 362

SignalState field, 171
signal state of objects, 170–172
signed drivers, 8
single-stepping, 100–101

hardware exceptions and, 89
TF flag, 93

small memory dumps, 155
generating, 156

smart hosts, 112–113
smss.exe, 9



 startup debugging

 Index  551

snapshots, 76
noninvasive debugging, 159

soft-hang investigations, 156–157, 396–410
software. See also applications

scalability and performance, 365
tracing and debugging, 365

software breakpoints, 166. See also code 
breakpoints

setting, 509–510
software crashes, 125. See also crashes
software development, 3–30

debugging during, 195
quality assurance, 217

software exceptions, 89
SOS extension, 103, 106–112

CLR architecture, matching to process, 146
debugger commands, list of, 111
GC heap memory usage, analyzing, 488–490
loading, 108
managed-code crash dump analysis, 146–149
!VerifyHeap command, 284–287
version, matching to CLR version, 146

source code, navigating, 515
source files

finding, 506–507
resolution of, 41

source-level breakpoints, 225
source-level debugging, 38, 52–53, 103

script debugging, 112–115
in scripts, 115
source path, 506–507
symbol files for managed assemblies, 107

source-level .NET debugging, 150–151
source-mode stepping, 52
sources search path, 506–507
sparse files, 404
$spat operator, 258
.srcpath command, 41
.srcpath+ command, 41
SRM (security reference monitor), access check 

initiation, 354
SSDT (System Service Dispatch Table), 381
STACK_COMMAND, 144
stack corruptions

buffer overruns, 291–293
call frames, reconstructing, 295–297
data breakpoints, investigating with, 294–295
debugging, 291–297
k command and, 295–296

Stack Counts By Type graph, 433, 494, 498

Stack Counts Summary Table, 454
stack-guard value

consistency check, 291–293
corruptions, investigating, 294–295

stack objects, dumping, 148
stack overflows

causes, 297–298
debugging, 297–300
kf command, 299–300

stack pointer
restoring, 49–50, 383–384
saving, 383–384

stack-trace database, 311, 314–316
snapshots of, 312–313

StackTrace field, 278
stack traces, 407, 409, 411

of access failures, 247
collecting, 443
current thread, 511
dumping, 65
of faulting instructions, 144
kernel-mode frames, 156
kernel provider events, 432–434
listing, 46
user provider events, 434–436

stack-walk events, 405–407, 431–441
capturing, 397
enabling, 433
kernel provider, 432–434
payloads, 432
provider flags, 433

stack-walking flags, 432
Standard Annotation Language (SAL), 195
start_kernel_trace.cmd script, 419, 423
Startup And Recovery dialog box, 154
startup debugger

advantages and disadvantages, 239
child/parent relationship, breaking, 234
configuring, 227–229, 232
functionality, 230–231
MSI custom actions and, 242
registry value, 194
resetting, 229
in session 0, 232–234
Visual Studio as, 230

startup debugging, 227–234
child debugging and, 238–239
DLL startup code paths, 224–225
scripting debuggers and, 230–231
in session 0, 231–234
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startup debugging, continued
with startup debugger, 227–229
timeout issues, 232–234
user-mode processes, 255–260
Windows services, 231–234

static_assert keyword, 138
static code analysis, 195–206

running automatically, 196
SAL annotations, 199–202
standalone tools for, 202–206
Visual C++ for, 196–199
wcscpy function, 275

__stdcall calling convention, 49–52, 96
stepping. See also single-stepping

assembly-mode, 52
through custom-action DLL code, 244
debugger commands, 508
into function calls, 251–252
over and stepping into, 42
through process execution, 232–234
through startup code path, 239

STL (Standard Template Library), 29
source code, 506

stop on exception (soe) bit, 192, 262
stop on module load exceptions, 223–225
stress testing, 326
strings, displaying to console, 365–380
Structured Exception Handling (SEH) exceptions. 

See SEH (Structured Exception Handling) 
exceptions

suspend count, 254–255
suspending threads, 254–255

infinite loops for, 262–265
SuspendThread function, 254, 262
svchost.exe instances, 181–183
sx command, 252
sxd command, 253
sxd ld command, 223
sxe command, 252
sxe ld command, 108, 223–225, 243, 258

wildcard characters in arguments, 223
sxr command, 253
symbol decoration, 57–58
symbol files, 53–54

caching, 408
loading, 55
for managed assemblies, 107
for MSIL binaries, 53
pointing to, 45
for traces, viewing, 399

symbols
cache paths, 55
caching locally, 55–56
@! character sequence, 180–181
downloading, 406, 408
forcing reload of, 55
listing, 260, 261
looking up, 54, 505–506
managed-code path resolution, 123
mismatches, 56
missing or unresolved, 108
for OS binaries, 49
pre-downloading, 56
reloading, 65, 101, 505–506, 523–524
resolution issues, 56
resolving in PerfView, 486
UMDH tool, resolving in, 313–314
unloaded, reloading, 341
Xperf, loading in, 405–406

symbols search path
fixing, 143, 505–506
fixing, script for, 176–177
setting, 45
verifier flags and, 214–215

symbols server, 45, 53–54
symcache action, 444
symchk.exe utility, 56
.symfix command, 45, 55, 313–314, 505–506
!sym noisy command, 56
.symopt command, 57
.sympath command, 55, 314
.sympath+ command, 506
!sym quiet command, 56
sync blocks, 286
synchronization of shared memory, 324, 326
synchronous operations, scheduling, 396–410
syscall and sysret instructions, 380
SYSCALL events, 491

tracing, 493–494
SyscallExit events, 433–434
SYSCALL flags, 425–426

stack-walking events, 432
sysenter and sysexit instructions, 380, 383–384
SYSENTER_CS_MSR (0x174) register, 384
SYSENTER_EIP_MSR (0x176) register, 384
SYSENTER_ESP_MSR (0x175) register, 384
SysInternals tools, 17, 155, 247
system APIs, catching misuses, 206
system breakpoints, setting, 18, 44
system calls, 380–386
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drawback of, 13
failures, tracing, 493–494
functionality of, 8
kernel-mode side, 385–386
locals and arguments, listing, 49–52
logging, 425
marshaling, 183
transition to kernel mode, 383–384
user-mode side, 381–383
user-mode to kernel-mode transitions, 13–14

system code
assertions, 6
debugging, 44–47
parameters and locals, listing, 49–52

system components, observing interactions, 60
System.Console class, 375–376
system DLLs, breaking on loading, 225–227
system internals

providers, progressive enablement of, 495
tracing, 494–502

system-level tracing, 503
system loader lock, 351–352
system memory, access to, 8
system process

Cid, 520
PID, 102

system processes, 9–10
user-mode debuggers, attaching, 239

system service calls, 8
System Service Dispatch Table (SSDT), 381
system services, 8
system threads, leased, 102

T
target machines, 61, 67

communication with host, 98
connecting to host debugger, 70
kernel bug check, inducing, 155
kernel-mode debugging, enabling, 61–62
reboot after cabling setup, 70, 76, 77
remote debugging, 116–123
unblocking, 72
virtual machines, 73–76

target process
attaching debugger to, 87
blocking execution, 139
breakpoints, setting in kernel debugger, 81
child process creation, breaking on, 234–244

child processes, 88
continuing execution, 87, 88
control flow commands, 507–508
controlling, 86, 160
debugger, attaching to, 505
debug port object, 88
exceptions, 88–91
execution environment, 491–493
existing debug port attach, 161
freezing execution, 91
heap allocations, 478
heap tracing, enabling, 477
inspecting, 87
live memory dumps, 151–153
memory usage, analyzing, 474–475
page heap, enabling, 275–277
shutdown, 170
single-stepping, 100–101
starting, 87
starting under user-mode debugger, 230
startup command line, finding, 507
stop debugging, 87
terminating upon quitting, 225
threads, viewing, 92
user-mode debugger, attaching, 220–222
user-mode handle, 96
virtual address space, inspecting and editing, 86, 

87, 95
task manager handle-count and kernel-memory-

usage columns, 301–302
TCB (trusted computing base), 10
t command, 51, 251, 508
TCP/IP communication ports

opening, 118–119
releasing, 120

@$teb pseudo-register, 179
$teb pseudo-register, 178
TEB (thread environment block)

uninitialized fields, 352
Win32 error codes, 247

template functions, breakpoints in, 180–181
TerminateProcess API, 170, 212
termination

debugging sessions, 43
orderly or abrupt, 170, 172

termination handlers, console, 375–377
test-driven development, 39
testing

rare code paths and, 199
stress testing, 326
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on virtual machines, 75–76
TF (trap flag) flag, 93
third-party applications, debugging, 33
thrashing, 273
!thread command, 65, 102, 521–522
.thread command, 522

/r option, 186
/w option, 185–186

thread context. See also context switches
64-bit, switching to, 186
access token of, 355
debug registers in, 164
switching, 46–47, 522–523

thread pools, 343
@$thread pseudo-register, 179
threads, 10

active, listing, 46
blocked time, 458–473
blocking, 348
busy-spin loops, 347
call stacks, listing, 92
Cid, 522
CPU cores, bouncing between, 464
critical path of performance delays, 461
cyclic dependencies, 351
dangling, 337–338
freezing and unfreezing, 327
freezing and unfreezing in kernel mode, 262–265
freezing and unfreezing in user mode, 253–255
hash objects, assigning to, 328
impersonation, 353
information about, displaying, 521–522
kernel-mode and user-mode stacks, 383
leased, 102
listing, 149, 346
scheduling, 459–460
security contexts, 353
start/exit events, logging, 424
suspend count, 254
suspension, 15, 254–255, 262–265
suspension during garbage collection, 282
switching between, 511
user-mode and kernel-mode stacks, 297
wait states and single-stepping, 100–101
waits, viewing, 464

!threads command, 149
throw keyword, 89, 91
thunking, 183
timeout issues, 232–234
time-travel debugging, 153

tlbexp.exe, 28
.tlist command, 59, 97
tlist.exe, 131
*.tmp extension, 243
!token command, 59, 130–131, 152, 304, 355–357

–n option, 355
touch-capable applications, 20–21
trace events. See also ETW events

logging, 391
traces. See also ETW traces

collecting and analyzing, 153
merging event collections in, 418
save location, 398

tracing. See also ETW (Event Tracing for Windows)
boot tracing, 449–454
circular ETW logging and, 421–422
CPU architecture and, 5
debugging with, 490–502
dynamically enabling, 312, 447
error code failures, 490–494
filtering, 443
handles, 302–303
in kernel-mode debugging, 76
lost events, 420
memory allocations, 311–312
with printf statements, 416
running processes, 399–400
starting with PerfView, 482
stopping with PerfView, 483
system call failures, 493–494
system internals, 494–502
time interval, 400
UAC elevation sequence, 495–502

TracingFlags registry value, 477
transport mediums for KD, 98
trusted computing base (TCB), 10
types

dumping, 48, 54, 80, 171, 238, 513–514
in public symbols files, 54

type safety, 25

u
UAC (User Account Control), 360–362, 495

consent.exe, 496–497
elevation requests, 461
elevation sequence, tracing, 495–502
improvements in Windows 7, 499
integrity levels and, 495
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ub command, 516
!u command, 111
~u command, 254
u command, 51, 97, 515

SOS version, 110–111
uf command, 92, 212, 382, 515–516
UI

message-loop handling, 367
unresponsive, 396–410

UI events
asynchronous, 374–381
CancelKeyPress event, 374–375
console host process handling, 366–369, 

373–374
main UI thread, 373

UMDF (user-mode driver framework), 17–18
UMDH tool

functionality, 311–312
memory leaks, investigating, 310–314
symbol resolution, 313–314
target process, running against instance of, 312

unassembling, 51, 382
unblocking, 467
uncommitted page access violations, 271
unfreezing threads, 253–255, 327
unhandled exceptions, breaking on, 262
unhandled verifier break assertions, 208
Unicode strings, dumping values as, 52
unloaded code

debugging, 341–342
ln command, 342

unloaded DLL module access violations, 324, 
340–343

unloaded symbols, reloading, 341
unmanaged-to-managed code transitions, 288–290
unresolved breakpoints, 510
unsafe C# code, 281–283
unsigned int type, 89
USB cables for kernel debugging, 68
usbview.exe, 68
USER32, 18
user32.dll, 8, 18
user access token, 353
user authentication, 10
user mode, 8–9

application processes, 10–13
crash-dump generation, 139–143
kernel-mode code, calling, 13–14, 15–16
kernel mode, invoking from, 15
kernel mode, transitioning to, 10

privileged tasks, performing, 10
system calls, 381–383
system processes, 9–10

user-mode code
breakpoints, setting, 525
calling into kernel mode, 380–386

user-mode crashes
blocking application from exiting, 125
debugging, 262

user-mode debuggers
ALPC communication, 16
attaching to target, 220–222
debug port objects, attaching to, 237
!htrace command options, 302–303
security context, 220
security privileges, enabling, 493
simulating control by, 259–261
user context, 230

user-mode debugging, 39–60
architecture of, 86–87
break-in sequence, 91–93
capabilities, 60
critical sections support, 347
data breakpoints, 164–165
debug events, 88–91
debugger functionality, 85–98
debugger prefix, 73
ending sessions, 518
exceptions handling, 88–91
quick start guide, 505–518
remote stubs, 119
starting sessions, 505
target process memory, inspecting, 86–87
Win32 debugging APIs, 87–88
with WinDbg, 39–47

user-mode driver framework (UMDF), 17–18
user-mode memory

code breakpoints, setting, 81–82
debugging leaks, 307–316

user-mode processes
creation, debugging, 255–258
starting under debugger, 505
startup command line, 507
startup debugging, 255–258, 259–260

user-mode stack, 297
user-mode stack-trace database, 311

snapshots of, 312–313
user-mode system components, kernel 

debugging, 60
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user provider events
logging during boot, 452–454
stack traces for, 434–436
viewing, 429–431

user providers, 426–431
building and installing, 449
discovering, 427–429
enabling, 428, 443
friendly names and GUIDs, 427, 428
keyword bit masks, 443
manifest-based, 426–427
registering, 428

user rights, 353
user sessions, 9

user-mode processes, 10

v
VBScript, 112
vbscript.dll, 112
verbose logging, 56
verifier assertions, catching, 206
verifier bits, OS-enabled, 216
verifier break messages, 208
verifier breaks

details, displaying, 276
information on, 215–216
resource-leak, 308–310

verifier checks, 212
default set, 213
enabling, 207

verifier.dll, 211–212
verifier.exe, 213
verifier flags, 214–217
VerifierFlags value, 213

OS-enabled bits, 216
!VerifyHeap command, 282
vertarget command

CPU architecture information, 5
Windows version information, 6

vfbasics.dll, 214
View\Call Stack window, 514
View\Locals menu action, 43, 513
View\Memory window, 516
View\Registers window, 43, 516
view_trace.cmd script, 408, 438, 478
View\Watch UI window, 513
virtual address space

inspecting and modifying, 159

values, viewing, 268
VirtualAlloc API, 268
Virtual Clone Drive freeware, 35
virtualization, 73–76

snapshots, 76
virtual machines

kernel-mode debugging on, 73–76
restoring to snapshot, 76
testing, 75–76

virtual memory
address space, 317
allocations, 268
leaks, 307

Visual C++ (VC++)
catching bugs, 196–199
/GS compiler flag, 291–292
SAL annotations, 199–202
SEH exception support, 89

Visual Studio, 29
Debug\Options And Settings dialog box, 132
downloading, 34
installing trial edition, 38
JIT debugging setup options, 132
out-of-process debugging support, 106
remote debugging in, 121–123
script debugging in, 114–115
script JIT debugging, 135–137

Visual Studio 2010
automatic code analysis for, 196–197
code analysis warnings, 197–198
IntelliTrace, 153
Parallel Performance Analyzer, 458. See also PPA 

(Parallel Performance Analyzer)
profiling tools, 411
static code analysis, 195–206
Ultimate trial version, 38
wait analysis, 461–467

Visual Studio debugger
analyzing crash dumps in, 150–151
attaching to target, 221
capabilities, 38–39
child debugging and, 238
DLL load events, breaking on, 225–227
entry point, 40
first-chance notifications, breaking on, 253
freezing and unfreezing threads, 254
installing, 37
JIT debugging, 132–137
managed-code debugging support, 104–105
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managed-code JIT debugging, 133–135
native JIT debugging, 133
.NET debugging, 103
Process Debug Manager (PDM), 112
remote debugging, 117
scripts, attaching, 114–115
as startup debugger, 230
symbol decoration, 57–58
vs. WinDbg, 38–39
WinDbg, using with, 159

Visual Studio Express edition, 38
Visual Studio process instance (devenv.exe), 

attaching WinDbg to, 235
!vm command, 317
VMMap, memory-usage inspection, 474–475, 503
VsJitDebugger.exe proxy process, 132

w
wait analysis

call stacks, displaying, 465–466
in Visual Studio 2010, 461–467
in Xperf, 467–473

WaitForMultipleObjects API, 333
WaitForMultipleObjects(Ex) API, 170
WaitForSingleObject API, 350
WaitForSingleObject(Ex) API, 170
waiting, 170–171

causality chains, 457
critical path of performance delays, 461
multiple conditions of, 460–461
unblocking, 467

wait loops
attaching debugger during, 220–222
unblocking, 221

wcscpy function, 275, 294
wcscpy_s function, 275
WDM (Windows Driver Model), 17
WerFault.exe, 130
WER (Windows Error Reporting)

automatic crash-dump generation, 139–143
JIT debugger invocation, 131
in Windows XP, 132

wevtutil.exe tool, 427
whoami.exe utility, 360
wildcard character (*), 45

in bm command, 510
in k command, 512
in x command, 509

Win32 API layer, 18–19
Win32 APIs

calling conventions, 49–52
for debugging, 87–88
ETW logging, 445–449
failures, debugging, 245–247
SAL annotations, 202
system call transition, 380

win32k.sys, 8, 80
WinDbg (windbg.exe). See also Windows debuggers

Application Verifier and, 206
attaching to programs, 44
–c command-line option, 177
child debugging, 234–245, 238
command prompt, 63
commands, capturing for scripts, 178
command window, 40
console applications, debugging, 370–373
crash dump analysis, 143–150
debugger command types, 59–60
debugging instance of, 93–97
DLL load events, breaking on, 223–225
elevated administrative command prompt, 63
ending debugging sessions, 43, 518, 526
entry point, advancing to, 40–41
function calls, listing, 47
as JIT debugger, 127–128
kernel-mode debugging quick start guide,  

519–526
live kernel debugging, 61–67
minidump generation, 152
multiple instances, 75
native flavor, 63
.NET applications, debugging, 107–112
noninvasive debugging, 159–161
–pe command-line option, 161
–pv command-line option, 160–161
remote debugging, 117–121
remote instance, 232
scripts, invoking, 177
SOS extension, 103, 106–112
source code window, 41
starting debugging sessions, 505, 519
symbols search path, setting, 45
user-mode debugging quick start guide,  

505–518
View\Call Stack window, 514
View\Memory window, 516
View\Registers window, 516
View\Watch UI window, 513
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Visual Studio debugger, using with, 159
window arrangement, 41–43
windows, docking, 41–42
–z command-line option, 142, 143

Windows 3.1, 3
Windows 7

UAC improvements, 499
Win32 DLL modules, 18

Windows 7 Software Development Kit (SDK)
FxCop installation, 204
versions 7.0 and 7.1, 392
Windows debuggers, 34
Xperf, 391

Windows 8 consumer preview, 395, 411
Windows 32-bit on Windows 64-bit. See WOW64 

debugging
Windows 95/98/ME, 3
Windows console subsystem, 365–380

Ctrl+C signal, handling, 374–380
printf function, 366–373
UI events, handling, 373–374

Windows debuggers. See also WinDbg (windbg.exe)
capabilities, 38–39
commands, documentation, 58–60, 83
docking windows, 43
first-chance notifications, 91
Help files, 58–60, 83
installing, 34–37
int 3 instruction, inserting, 93
kernel-mode functionality, 98–102
local variables and parameters, listing values,  

47–51
race conditions, simulating, 327–328
remote debugging, 117
scripting, 176–183
source-level debugging, lack of support, 52–53, 

103, 106
symbol decoration, 57–58
symbols local cache, 55–56
system code, debugging, 44–47
use of, 33
user-mode debugging, 39–47
user-mode functionality, 85–98
vs. Visual Studio debugger, 38–39
x64 version, 36
x86 version, 36–37, 40
your own code, debugging, 39–43

Windows Developer Preview Conference, 67
windows, docking, 41–43
Windows Driver Development Kit (DDK), 28–29

Windows Driver Model (WDM), 17
Windows Error Reporting (WER). See WER (Windows 

Error Reporting)
Windows GUI process main UI thread, 373–374
Windows Installer XML (WIX) declarative 

language, 240
Windows logon process, 9–10
Windows NT, 3

CPU architectures, 4
kernel, evolution of, 3–7

Windows operating system
architecture, 7–16
boot sequence, tracing, 258
build flavors, 5–6
COM in, 20–21
communication mechanisms, 13–16
components, debugging, 33
CPU architectures, 4–5
developer interface, 16–28
developer tools, 28–29
ETW instrumentation, 422–431
evolution of, 3–7
exception dispatching sequence, 90
exception handling, 88–91
execution modes, 8–9
extending, 16–28
integrity levels, 359
managed-code debugging and, 105
message notifications, 86
prerelease milestones, 6
release history, 3–4
security model, 353–361
servicing updates, 7
verifier support, 209–214

Windows PE (Portable Executable) format, 26
Windows Performance Analyzer (WPA), 395, 411, 

417
Windows Performance Recorder (WPR), 395, 411, 

417
Windows Performance Toolkit (WPT). See WPT 

(Windows Performance Toolkit)
Windows Phone SDK, 28
Windows scripting hosts, 112
Windows Server 2003, 3–4
Windows Server 2008 R2 Hyper-V, 73
Windows Server operating systems, 4

CPU architecture support, 5
Windows service processes

killing, 492
listing, 181–183
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Windows services
handle leaks, 300
memory leaks, tracking, 310
starting, 10
startup debugging, 231–234

Windows subsystem, 8
Windows Vista, NT security model 

improvements, 358–361
Windows XP, 4

client/server code base, 3
CPU architectures, 5

winlogon.exe, 9–10
winnt.h Software Development Kit (SDK), 89
winsrv!CreateCtrlThread function, 378
__wmainCRTStartup function, 169, 336
wmain function, 336
workarounds, documentation of, 17
worker processes

parent processes, 130
synchronizing with parent processes, 11

worker threads
global variables in, 336–339
reference counting, 333–336
unloaded memory access violations, 340–343
waiting for, 333, 336

wow64cpu.dll DLL, 183
WOW64 debugging, 183–187

kernel-mode, 185–187
WOW64 environment, 183–184

wow64.dll DLL, 183
wow64exts.dll, 185
wow64win.dll DLL, 183
Wow6432Node registry key, 191
WPA (Windows Performance Analyzer), 395, 411, 

417
wprintf function calls, SEH exceptions in, 198–199
WPR (Windows Performance Recorder), 395, 411, 

417
WPT (Windows Performance Toolkit), 172

Help file, 395
installing, 392–395
native version, 393
Windows 8 version, 395

write-behind optimization, 403
.write_cmd_hist command, 178
write-data breakpoints, 294
WriteFile API, SAL annotations, 202
WriteProcessMemory API

arguments, checking, 96
parameters, 96–97

wscript.exe, 112
//X option, 114

X
x64 debuggers, 184
x64 processes

debugging, 78
virtual address space, 317

x64 processors, 4–5, 183
Windows debugger version, 36

x64 Windows
syscall and sysret instructions, 380
x64 WPT, 393

x86 applications. See also WOW64 debugging
x64 support for, 183

x86 debuggers, 184
x86 processes

debugging, 78
virtual memory address space, 317

x86 processors, 4–5
Windows debugger version, 36–37

x86 registers, 183
x86 Windows

frame pointer omission optimization, 440
script for, 257
sysenter and sysexit instructions, 380
x86 WPT, 393

Xbox development kit (XDK), 28
x command, 45, 57, 181, 222, 260, 261, 509
//X command-line option, 135
XmlTextReader class, 487
Xperf (xperf.exe), 391–413, 499

–a command-line option, 444
acquiring, 391–395
allocation types, 480
–BootTrace option, 450
–BufferSize, –MinBuffers, and –MaxBuffers 

command-line options, 420
Column Chooser flyout, 406–407
command-line options and features, 395
CPU sample profiling, 502
CPU Sampling By Process graph, 405
CPU sampling profile graph, 404–405
CPU Sampling Summary Table window, 406–407
CPU Scheduling graph, 468–469
–d command-line option, 399, 411, 418, 438
Disk Utilization graph, 402–404
dumper action, 444
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ETW heap traces, capturing, 476–480
ETW logging, starting, 418
ETW sessions, configuring, 419–422
ETW traces, analyzing, 399–410, 444–445
ETW traces, collecting, 397–398
–FileMode option, 421
frame list flyout, 402
Generic Events graph, 426, 429–430, 436, 500
gold bar, 407, 409
graphs and data views, selecting, 402–405
graphs, overlaying, 431
heap memory leak investigations, 503
–heap option, 476
Heap Outstanding Allocation Size graph, 479
Heap Total Allocation Size graph, 478
incomplete stack-trace events, 439–441
investigating with, 396–410
investigation strategy, 397
kernel flag combinations, 422
kernel provider events, viewing, 425–426
in live production environments, 411
location, 394–395
loggers, 417
–loggers command-line option, 421
lost events warning, 420
main UI window, 399
mark events, 430–431
missing stack-trace events, 436–437
–m option, 430
_NT_SYMCACHE_PATH environment 

variable, 408
–on command-line option, 418
performance delays, investigating, 502
Process Lifetimes graph, 399–400, 423, 451
Process Summary Table, 400–401
–providers option, 427
scope of analysis, 397
search path, 395
session configuration options, 419, 422
Stack Counts By Type graph, 433, 494
Stack Counts By Type summary table, 498
Stack Counts Summary Table, 454
:::’stack’ string, 434, 443
–stackwalk option, 432, 434
–start command-line option, 418
Start/End event pair, viewing, 448
–stop command-line option, 418
strengths and limitations, 411
Summary Table view, 435

symbols, loading, 405–406, 433–435, 438
symcache action, 444
system configuration information, 401
system-level tracing, 503
time interval of trace, 400
trace files, viewing, 399
transition to WPR/WPA, 395
unresolved stack-trace events, 437–439
user provider events, viewing, 429–431
user providers, 426–431
wait analysis, 467–473

y
your own code

debugging, 39–43
parameters and locals, listing, 48–49

z
–z command-line option, 57, 142, 143
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