

Microsoft® SQL Server ® 2012
High-Performance T-SQL
Using Window Functions

Itzik Ben-Gan

Copyright © 2012 by Itzik Ben-Gan
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-5836-3

1 2 3 4 5 6 7 8 9 LSI 7 6 5 4 3 2

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Ken Jones

Production Editor: Kristen Borg

Production Services: Curtis Philips

Technical Reviewer: Adam Machanic

Copyeditor: Roger LeBlanc

Indexer: Lucie Haskins

Cover Design: Twist Creative • Seattle

Cover Composition: Karen Montgomery

Illustrators: Robert Romano and Rebecca Demarest

http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

To the Quartet.
 —Q1

Contents at a Glance

Foreword xi

Introduction xiii

CHaPTer 1 SQL Windowing 1
CHaPTer 2 a Detailed Look at Window Functions 33
CHaPTer 3 Ordered Set Functions 81
CHaPTer 4 Optimization of Window Functions 101
CHaPTer 5 T-SQL Solutions Using Window Functions 133

Index 211

 vii

Contents

Foreword . xi

Introduction . xiii

Chapter 1 SQL Windowing 1
Background of Window Functions . 2

Window Functions Described . 2

Set-Based vs. Iterative/Cursor Programming . 6

Drawbacks of Alternatives to Window Functions11

A Glimpse of Solutions Using Window Functions .15

Elements of Window Functions .19

Partitioning .20

Ordering .21

Framing .22

Query Elements Supporting Window Functions .23

Logical Query Processing .23

Clauses Supporting Window Functions .25

Circumventing the Limitations .28

Potential for Additional Filters .30

Reuse of Window Definitions .31

Summary. .32

Chapter 2 A Detailed Look at Window Functions 33
Window Aggregate Functions .33

Window Aggregate Functions Described .33

Supported Windowing Elements .34

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Further Filtering Ideas .49

Distinct Aggregates . 51

Nested Aggregates .53

Ranking Functions .57

Supported Windowing Elements .58

ROW_NUMBER .58

NTILE .63

RANK and DENSE_RANK .66

Distribution Functions .68

Supported Windowing Elements .68

Rank Distribution Functions .68

Inverse Distribution Functions .71

Offset Functions . 74

Supported Windowing Elements . 74

LAG and LEAD. 74

FIRST_VALUE, LAST_VALUE, and NTH_VALUE 76

Summary. .79

Chapter 3 Ordered Set Functions 81
Hypothetical Set Functions .82

RANK .82

DENSE_RANK .84

PERCENT_RANK .85

CUME_DIST .86

General Solution .87

Inverse Distribution Functions .90

Offset Functions .94

String Concatenation .98

Summary. .100

 Contents ix

Chapter 4 Optimization of Window Functions 101
Sample Data .101

Indexing Guidelines .103

POC Index .104

Backward Scans .105

Columnstore Indexes .108

Ranking Functions .108

ROW_NUMBER .109

NTILE .110

RANK and DENSE_RANK .111

Improved Parallelism with APPLY .112

Aggregate and Offset Functions .116

Without Ordering and Framing .116

With Ordering and Framing .119

Distribution Functions .128

Rank Distribution Functions .128

Inverse Distribution Functions .129

Summary. .132

Chapter 5 T-SQL Solutions Using Window Functions 133
Virtual Auxiliary Table of Numbers .133

Sequences of Date and Time Values .137

Sequences of Keys .138

Update a Column with Unique Values .138

Applying a Range of Sequence Values .139

Paging .143

Removing Duplicates .145

Pivoting .148

TOP N per Group .151

Mode .154

x Contents

Running Totals .158

Set-Based Solution Using Window Functions 160

Set-Based Solutions Using Subqueries or Joins 161

Cursor-Based Solution .162

CLR-Based Solution .164

Nested Iterations .166

Multirow UPDATE with Variables .167

Performance Benchmark .169

Max Concurrent Intervals .171

Traditional Set-Based Solution .173

Cursor-Based Solution .175

Solutions Based on Window Functions .178

Performance Benchmark .180

Packing Intervals .181

Traditional Set-Based Solution .183

Solutions Based on Window Functions .184

Gaps and Islands .193

Gaps .194

Islands. .195

Median .202

Conditional Aggregate .204

Sorting Hierarchies .206

Summary. .210

Index 211

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xi

Foreword

SQL is a very interesting programming language. When meeting with customers, I am
constantly reminded of the language’s dual nature with regard to complexity. Many

people getting started with SQL see it as a simple programming language that supports
four basic verbs: SELECT, INSERT, UPDATE, and DELETE. Some people never get much
further than this. Maybe a few more figure out how to filter rows in a query using the
WHERE clause and perhaps do the occasional JOIN. However, those who spend more
time with SQL and learn about its declarative, relational, and set-based model will find a
rich programming language that keeps you coming back for more.

One of the most fundamental additions to the SQL language, back in Microsoft
SQL Server 2005, was the introduction of window functions with syntactic constructs
such as the OVER clause and a new set of functions known as ranking functions
(ROW_ NUMBER, RANK, and so on). This addition enabled solving common problems
in an easier, more intuitive, and often better-performing way than what was previously
possible. A few years later, the single most-requested language feature was for Micro-
soft to extend its support for window functions—with a set of new functions and, more
importantly, with the concept of frames. As a result of these requests from a wide range
of customers, Microsoft decided to continue investing in window functions extensions
in SQL Server 2012.

Today, when I talk to customers about new language functionality in SQL Server
2012, I always recommend they spend extra time with the new window functions and
really understand the new dimension that this brings to the SQL language. I am happy
that you are reading this book and thus taking what I am sure is precious time to learn
how to use this rich functionality. I am confident that the combination of using SQL
Server 2012 and reading this book will help you become an even more efficient SQL
Server user, and help you solve both simple as well as complex problems significantly
faster than before.

Enjoy!

Tobias Ternström
Lead Program Ma nager,

Microsoft SQL Server Engine team

 xiii

Introduction

Window functions, to me, are the most profound feature supported by both stan-
dard SQL and Microsoft SQL Server’s dialect—T-SQL. They allow you to perform

calculations against sets of rows in a flexible, clear, and efficient manner. The design of
window functions is ingenious, overcoming a number of shortcomings of the traditional
alternatives. The range of problems that window functions help solve is so wide that it
is well worth investing your time in learning those. SQL Server 2005 was the version in
which window functions were introduced initially. SQL Server 2012 then added more
complete support by enhancing some of the existing functions, as well as adding new
ones. This book covers both the SQL Server–specific support for window functions, as
well as standard SQL’s support, including elements that were not yet implemented in
SQL Server.

Who Should Read This Book

This book is intended for SQL Server developers and database administrators (DBAs);
those who need to write queries and develop code using T-SQL. The book assumes that
you already have at least half a year to a year of experience writing and tuning T-SQL
queries.

Organization of This Book

The book covers both the logical aspects of window functions as well as their optimi-
zation and practical usage aspects. The logical aspects are covered in the first three
chapters. The first chapter explains SQL windowing concepts, the second provides a
breakdown of window functions, and the third covers ordered set functions. The fourth
chapter covers optimization of window functions in SQL Server 2012. Finally, the fifth
and last chapter covers practical uses of window functions.

Chapter 1, “SQL Windowing,” covers standard SQL windowing concepts. It describes
the design of window functions, the types of window functions, and the elements
 involved in a window specification, such as partitioning, ordering, and framing.

Chapter 2, “A Detailed Look at Window Functions,” gets into the details and specif-
ics of the different window functions. It describes window aggregate functions, window
ranking functions, window offset functions, and window distribution functions.

xiv Introduction

Chapter 3, “Ordered Set Functions,” describes the support standard SQL has for or-
dered set functions, including hypothetical set functions, inverse distribution functions,
and others. The chapter also explains how to achieve similar calculations in SQL Server.

Chapter 4, “Optimization of Window Functions,” covers in detail the optimization of
window functions in SQL Server 2012. It provides indexing guidelines for optimal per-
formance, explains how parallelism is handled and how to improve it, discusses the new
Window Spool iterator, and more.

Chapter 5, “T-SQL Solutions Using Window Functions,” covers practical uses of win-
dow functions to address common business tasks.

System Requirements

Window functions are part of the core database engine of Microsoft SQL Server
2012; hence, all editions of the product support this feature. To run the code samples
in this book, you need access to an instance of the SQL Server 2012 database en-
gine (any edition), and you need to have the sample database installed. If you don’t
have access to an existing instance, Microsoft provides trial versions. You can find
details at: http://www.microsoft.com/sql. For hardware and software requirements,
please consult SQL Server Books Online at: http://msdn.microsoft.com/en-us/library/
ms143506(v=sql.110).aspx.

Code Samples

This book features a companion website that makes available to you all the code used
in the book, sample data, the errata, additional resources, and more, at the following
page:

http://www.insidetsql.com

In this website, go to the Books section and select the main page for the book in
question. The book’s page has a link to download a compressed file with the book’s
source code, including a file called TSQL2012.sql that creates and populates the book’s
sample database, TSQL2012.

http://www.microsoft.com/sql
http://msdn.microsoft.com/en-us/library/ms143506(v=sql.110).aspx
http://msdn.microsoft.com/en-us/library/ms143506(v=sql.110).aspx
http://www.insidetsql.com

 Introduction xv

Acknowledgments

A number of people contributed to making this book a reality, whether directly or indi-
rectly, and deserve thanks and recognition.

To Lilach, for giving reason to everything I do, for tolerating me, and for helping
review the text.

To my parents, Mila and Gabi, and to my siblings, Mickey and Ina, for the constant
support and for accepting the fact that I’m away.

To members of the Microsoft SQL Server development team: Tobias Ternström,
Lubor Kollar, Umachandar Jayachandran, Marc Friedman, Milan Stojic, and I’m sure
many others. I know it wasn’t a trivial effort to add support for window functions in SQL
Server. Thanks for the great effort, and thanks for all the time you spent meeting with
me and responding to my emails, addressing my questions, and answering my requests
for clarification.

To the editorial team at O’Reilly and MSPress. Ken Jones, you spent the most Itzik
hours of all, and it’s a real pleasure working with you. Also thanks to Ben Ryan, Kristen
Borg, Curtis Philips, and Roger LeBlanc.

To Adam Machanic. Thanks for agreeing to be the technical editor of the book.
There aren’t many people who understand SQL Server development as well as you do.
You were the natural choice for me to fill this role for this book.

To “Q2,” “Q3,” and “Q4.” It’s great to be able to share ideas with people who under-
stand SQL as well as you do, and are such good friends and take life lightly. I feel that
I can share everything with you without worrying about any boundaries or conse-
quences. Thanks for your early review of the text.

To SolidQ, my company for the last decade. It’s gratifying to be part of such a great
company that evolved to what it is today. The members of this company are much
more than colleagues to me; they are partners, friends, and family. Thanks to Fernando
G. Guerrero, Douglas McDowell, Herbert Albert, Dejan Sarka, Gianluca Hotz, Jeanne
Reeves, Glenn McCoin, Fritz Lechnitz, Eric Van Soldt, Joelle Budd, Jan Taylor, Marilyn
Templeton, Berry Walker, Alberto Martin, Lorena Jimenez, Ron Talmage, Andy Kelly,
Rushabh Mehta, Eladio Rincón, Erik Veerman, Johan Richard Waymire, Carl Rabeler,
Chris Randall, Åhlén, Raoul Illyés, Peter Larsson, Peter Myers, Paul Turley, and so many
others.

To members of the SQL Server Pro editorial team: Megan Keller, Lavon Peters,
 Michele Crockett, Mike Otey, and I’m sure many others. I’ve been writing for the

xvi Introduction

 magazine for over a decade and am grateful for the opportunity to share my knowl-
edge with the magazine’s readers.

To SQL Server MVPs—Alejandro Mesa, Erland Sommarskog, Aaron Bertrand, Paul
White, and many others—and to the MVP lead, Simon Tien. This is a great program that
I’m grateful and proud to be part of. The level of expertise of this group is amazing, and
I’m always excited when we all get to meet, both to share ideas and just to catch up at
a personal level over beer. I believe that, in great part, Microsoft’s decision to provide
more complete support for window functions in SQL Server 2012 is thanks to the ef-
forts of SQL Server MVPs and, more generally, the SQL Server community. It is great to
see this synergy yielding such meaningful and important results.

Finally, to my students: teaching SQL is what drives me. It’s my passion. Thanks for
allowing me to fulfill my calling, and for all the great questions that make me seek more
knowledge.

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://www.microsoftpressstore.com/title/ 9780735658363

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://www.microsoftpressstore.com/title/ 9780735658363

 Introduction xvii

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

If you have comments, questions, or ideas regarding the book, or questions that are
not answered by visiting the sites above, please send them to me via e-mail at:

itzik@SolidQ.com

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://twitter.com/MicrosoftPress

 1

C H A P T E R 1

SQL Windowing

Window functions are functions applied to sets of rows defined by a clause called OVER. They are
used mainly for analytical purposes allowing you to calculate running totals, calculate moving

averages, identify gaps and islands in your data, and perform many other computations. These func-
tions are based on an amazingly profound concept in standard SQL (which is both an ISO and ANSI
standard)—the concept of windowing. The idea behind this concept is to allow you to apply various
calculations to a set, or window, of rows and return a single value. Window functions can help to solve
a wide variety of querying tasks by helping you express set calculations more easily, intuitively, and
efficiently than ever before.

There are two major milestones in Microsoft SQL Server support for the standard window func-
tions: SQL Server 2005 introduced partial support for the standard functionality, and SQL Server 2012
added more. There’s still some standard functionality missing, but with the enhancements added in
SQL Server 2012, the support is quite extensive. In this book, I cover both the functionality SQL Server
implements as well as standard functionality that is still missing. Whenever I describe a feature for the
first time in the book, I also mention whether it is supported in SQL Server, and if it is, in which version
of the product it was added.

From the time SQL Server 2005 first introduced support for window functions, I found myself using
those functions more and more to improve my solutions. I keep replacing older solutions that rely on
more classic, traditional language constructs with the newer window functions. And the results I’m
getting are usually simpler and more efficient. This happens to such an extent that the majority of my
querying solutions nowadays make use of window functions. Also, standard SQL and relational data-
base management systems (RDBMSs) in general are moving toward analytical solutions, and window
functions are an important part of this trend. Therefore, I feel that window functions are the future in
terms of SQL querying solutions, and that the time you take to learn them is time well spent.

This book provides extensive coverage of window functions, their optimization, and querying solu-
tions implementing them. This chapter starts by explaining the concept. It provides the background
of window functions, a glimpse of solutions using them, coverage of the elements involved in window
specifications, an account of the query elements supporting window functions, and a description of
the standard’s solution for reusing window definitions.

2 CHAPTER 1 SQL Windowing

Background of Window Functions

Before you learn the specifics of window functions, it can be helpful to understand the context and
background of those functions. This section provides such background. It explains the difference
between set-based and cursor/iterative approaches to addressing querying tasks and how window
functions bridge the gap between the two. Finally, this section explains the drawbacks of alternatives
to window functions and why window functions are often a better choice than the alternatives. Note
that although window functions can solve many problems very efficiently, there are cases where there
are better alternatives. Chapter 4, “Optimization of Window Functions,” goes into details about opti-
mizing window functions, explaining when you get optimal treatment of the computations and when
treatment is nonoptimal.

Window Functions Described
A window function is a function applied to a set of rows. A window is the term standard SQL uses to
describe the context for the function to operate in. SQL uses a clause called OVER in which you pro-
vide the window specification. Consider the following query as an example:

See Also See the book’s Introduction for information about the sample database TSQL2012 and companion
content.

USE TSQL2012;

SELECT orderid, orderdate, val,
 RANK() OVER(ORDER BY val DESC) AS rnk
FROM Sales.OrderValues
ORDER BY rnk;

Here’s abbreviated output for this query:

orderid orderdate val rnk
-------- ----------------------- --------- ---
10865 2008-02-02 00:00:00.000 16387.50 1
10981 2008-03-27 00:00:00.000 15810.00 2
11030 2008-04-17 00:00:00.000 12615.05 3
10889 2008-02-16 00:00:00.000 11380.00 4
10417 2007-01-16 00:00:00.000 11188.40 5
10817 2008-01-06 00:00:00.000 10952.85 6
10897 2008-02-19 00:00:00.000 10835.24 7
10479 2007-03-19 00:00:00.000 10495.60 8
10540 2007-05-19 00:00:00.000 10191.70 9
10691 2007-10-03 00:00:00.000 10164.80 10
...

The OVER clause is where you provide the window specification that defines the exact set of rows
that the current row relates to, the ordering specification, if relevant, and other elements. Absent any
elements that restrict the set of rows in the window—as is the case in this example—the set of rows in
the window is the final result set of the query.

 Background of Window Functions 3

Note More precisely, the window is the set of rows, or relation, given as input to the logical
query processing phase where the window function appears. But this explanation probably
doesn’t make much sense yet. So to keep things simple, for now I’ll just refer to the final
result set of the query, and I’ll provide the more precise explanation later.

For ranking purposes, ordering is naturally required. In this example, it is based on the column val
ranked in descending order.

The function used in this example is RANK. This function calculates the rank of the current row
with respect to a specific set of rows and a sort order. When using descending order in the ordering
specification—as in this case—the rank of a given row is computed as one more than the number
of rows in the relevant set that have a greater ordering value than the current row. So pick a row in
the output of the sample query—say, the one that got rank 5. This rank was computed as 5 because
based on the indicated ordering (by val descending), there are 4 rows in the final result set of the
query that have a greater value in the val attribute than the current value (11188.40), and the rank is
that number plus 1.

What’s most important to note is that conceptually the OVER clause defines a window for the
function with respect to the current row. And this is true for all rows in the result set of the query. In
other words, with respect to each row, the OVER clause defines a window independent of the other
rows. This idea is really profound and takes some getting used to. Once you get this, you get closer
to a true understanding of the windowing concept, its magnitude, and its depth. If this doesn’t mean
much to you yet, don’t worry about it for now—I wanted to throw it out there to plant the seed.

The first time standard SQL introduced support for window functions was in an extension docu-
ment to SQL:1999 that covered, what they called “OLAP functions” back then. Since then, the revisions
to the standard continued to enhance support for window functions. So far the revisions have been
SQL:2003, SQL:2008, and SQL:2011. The latest SQL standard has very rich and extensive coverage of
window functions, showing the standard committee’s belief in the concept, and the trend seems to be
to keep enhancing the standard’s support with more window functions and more functionality.

Note You can purchase the standards documents from ISO or ANSI. For example, from
the following URL, you can purchase from ANSI the foundation document of the SQL:2011
standard, which covers the language constructs: http://webstore.ansi.org/RecordDetail.aspx?
sku=ISO%2fIEC+9075-2%3a2011.

Standard SQL supports several types of window functions: aggregate, ranking, distribution, and
offset. But remember that windowing is a concept; therefore, we might see new types emerging in
future revisions of the standard.

Aggregate window functions are the all-familiar aggregate functions you already know—like SUM,
COUNT, MIN, MAX, and others—though traditionally, you’re probably used to using them in the
context of grouped queries. An aggregate function needs to operate on a set, be it a set defined by

http://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2fIEC+9075-2%3a2011.
http://webstore.ansi.org/RecordDetail.aspx?sku=ISO%2fIEC+9075-2%3a2011.

4 CHAPTER 1 SQL Windowing

a grouped query or a window specification. SQL Server 2005 introduced partial support for window
aggregate functions, and SQL Server 2012 added more functionality.

Ranking functions are RANK, DENSE_RANK, ROW_NUMBER, and NTILE. The standard actually puts
the first two and the last two in different categories, and I’ll explain why later. I prefer to put all four
functions in the same category for simplicity, just like the official SQL Server documentation does. SQL
Server 2005 introduced these four ranking functions, with already complete functionality.

Distribution functions are PERCENT_RANK, CUME_DIST, PERCENTILE_CONT, and PERCENTILE_DISC.
SQL Server 2012 introduces support for these four functions.

Offset functions are LAG, LEAD, FIRST_VALUE, LAST_VALUE, and NTH_VALUE. SQL Server 2012
introduces support for the first four. There’s no support for the NTH_VALUE function yet in SQL Server
as of SQL Server 2012.

Chapter 2, “A Detailed Look at Window Functions,” provides the meaning, the purpose, and details
about the different functions.

With every new idea, device, and tool—even if the tool is better and simpler to use and imple-
ment than what you’re used to—typically, there’s a barrier. New stuff often seems hard. So if win-
dow functions are new to you and you’re looking for motivation to justify making the investment in
learning about them and making the leap to using them, here are a few things I can mention from my
experience:

■■ Window functions help address a wide variety of querying tasks. I can’t emphasize this
enough. As mentioned, nowadays I use window functions in most of my query solutions. After
you’ve had a chance to learn about the concept and the optimization of the functions, the last
chapter in the book (Chapter 5) shows some practical applications of window functions. But
just to give you a sense of how they are used, querying tasks that can be solved with window
functions include:

• Paging

• De-duplicating data

• Returning top n rows per group

• Computing running totals

• Performing operations on intervals such as packing intervals, and calculating the maximum
number of concurrent sessions

• Identifying gaps and islands

• Computing percentiles

• Computing the mode of the distribution

• Sorting hierarchies

• Pivoting

• Computing recency

 Background of Window Functions 5

■■ I’ve been writing SQL queries for close to two decades and have been using window functions
extensively for several years now. I can say that even though it took a bit of getting used to
the concept of windowing, today I find window functions both simpler and more intuitive in
many cases than alternative methods.

■■ Window functions lend themselves to good optimization. You’ll see exactly why this is so in
later chapters.

Declarative Language and Optimization
You might wonder why in a declarative language such as SQL, where you logically just declare
your request as opposed to describing how to achieve it, two different forms of the same
request—say, one with window functions and the other without—can get different perfor-
mance? Why is it that an implementation of SQL such as SQL Server, with its T-SQL dialect,
doesn’t always figure out that the two forms really represent the same thing, and hence pro-
duce the same query execution plan for both?

There are several reasons for this. For one, SQL Server’s optimizer is not perfect. I don’t want
to sound unappreciative—SQL Server’s optimizer is truly a marvel when you think of what this
software component can achieve. But it’s a fact that it doesn’t have all possible optimization
rules encoded within it. Two, the optimizer has to limit the amount of time spent on optimiza-
tion; otherwise, it could spend a much longer time optimizing a query than the amount of time
the optimization shaves off from the run time of the query. The situation could be as absurd
as producing a plan in a matter of several dozen milliseconds without going over all possible
plans and getting a run time of only seconds, but producing all possible plans in hopes of shav-
ing off a couple of seconds might take a year or even several. You can see that, for practical
reasons, the optimizer needs to limit the time spent on optimization. Based on factors like the
sizes of the tables involved in the query, SQL Server calculates two values: one is a cost consid-
ered good enough for the query, and the other is the maximum amount of time to spend on
optimization before stopping. If either threshold is reached, optimization stops, and SQL Server
uses the best plan found at that point.

The design of window functions, which we will get to later, often lends itself to better opti-
mization than alternative methods of achieving the same thing.

What’s important to understand from all this is that you need to make a conscious effort to make
the switch to using SQL windowing because it’s a new idea, and as such it takes some getting used to.
But once the switch is made, SQL windowing is simple and intuitive to use; think of any gadget you
can’t live without today and how it seemed like a difficult thing to learn at first.

6 CHAPTER 1 SQL Windowing

Set-Based vs. Iterative/Cursor Programming
People often characterize T-SQL solutions to querying tasks as either set-based or iterative/cursor-
based solutions. The general consensus among T-SQL developers is to try and stick to the former
approach, but still, there’s wide use of the latter. There are several interesting questions here. Why is
the set-based approach the recommended one? And if it is the recommended one, why do so many
developers use the iterative approach? What are the obstacles that prevent people from adopting the
recommended approach?

To get to the bottom of this, one first needs to understand the foundations of T-SQL, and what
the set-based approach truly is. When you do, you realize that the set-based approach is non intuitive
for most people, whereas the iterative approach is. It’s just the way our brains are programmed, and
I will try to clarify this shortly. The gap between iterative and set-based thinking is quite big. The
gap can be closed, though it certainly isn’t easy to do so. And this is where window functions can
play an important role; I find them to be a great tool that can help bridge the gap between the two
approaches and allow a more gradual transition to set-based thinking.

So first, I’ll explain what the set-based approach to addressing T-SQL querying tasks is. T-SQL is
a dialect of standard SQL (both ISO and ANSI standards). SQL is based (or attempts to be based) on
the relational model, which is a mathematical model for data management formulated and proposed
initially by E. F. Codd in the late 1960s. The relational model is based on two mathematical founda-
tions: set-theory and predicate logic. Many aspects of computing were developed based on intuition,
and they keep changing very rapidly—to a degree that sometimes makes you feel that you’re chasing
your tail. The relational model is an island in this world of computing because it is based on much
stronger foundations—mathematics. Some think of mathematics as the ultimate truth. Being based
on such strong mathematical foundations, the relational model is very sound and stable. It keeps
evolving, but not as fast as many other aspects of computing. For several decades now, the rela-
tional model has held strong, and it’s still the basis for the leading database platforms—what we call
 relational database management systems (RDBMSs).

SQL is an attempt to create a language based on the relational model. SQL is not perfect and actu-
ally deviates from the relational model in a number of ways, but at the same time it provides enough
tools that, if you understand the relational model, you can use SQL relationally. It is doubtless the
leading, de facto language used by today’s RDBMSs.

However, as mentioned, thinking in a relational way is not intuitive for many. Part of what makes it
hard for people to think in relational terms is the key differences between the iterative and set-based
approaches. It is especially difficult for people who have a procedural programming background,
where interaction with data in files is handled in an iterative way, as the following pseudocode
demonstrates:

open file
fetch first record
while not end of file
begin
 process record
 fetch next record
end

 Background of Window Functions 7

Data in files (or, more precisely, in indexed sequential access method, or ISAM, files) is stored in a
specific order. And you are guaranteed to fetch the records from the file in that order. Also, you fetch
the records one at a time. So your mind is programmed to think of data in such terms: ordered, and
manipulated one record at a time. This is similar to cursor manipulation in T-SQL; hence, for develop-
ers with a procedural programming background, using cursors or any other form of iterative process-
ing feels like an extension to what they already know.

A relational, set-based approach to data manipulation is quite different. To try and get a sense of
this, let’s start with the definition of a set by the creator of set theory—Georg Cantor:

By a “set” we mean any collection M into a whole of definite, distinct objects m
(which are called the “elements” of M) of our perception or of our thought.

—Joseph W. Dauben, Georg Cantor (Princeton University Press, 1990)

There’s so much in this definition of a set that I could spend pages and pages just trying to
interpret the meaning of this sentence. But for the purposes of our discussion, I’ll focus on two key
aspects—one that appears explicitly in this definition and one that is implied:

■■ Whole Observe the use of the term whole. A set should be perceived and manipulated as a
whole. Your attention should focus on the set as a whole, and not on the individual elements
of the set. With iterative processing, this idea is violated because records of a file or a cursor
are manipulated one at a time. A table in SQL represents (albeit not completely successfully)
a relation from the relational model, and a relation is a set of elements that are alike (that is,
have the same attributes). When you interact with tables using set-based queries, you interact
with tables as whole, as opposed to interacting with the individual rows (the tuples of the rela-
tions)—both in terms of how you phrase your declarative SQL requests and in terms of your
mindset and attention. This type of thinking is what’s very hard for many to truly adopt.

■■ Order Observe that nowhere in the definition of a set is there any mention of the order
of the elements. That’s for a good reason—there is no order to the elements of a set. That’s
another thing that many have a hard time getting used to. Files and cursors do have a specific
order to their records, and when you fetch the records one at a time, you can rely on this
order. A table has no order to its rows because a table is a set. People who don’t realize this
often confuse the logical layer of the data model and the language with the physical layer
of the implementation. They assume that if there’s a certain index on the table, you get an
implied guarantee that, when querying the table, the data will always be accessed in index
order. And sometimes even the correctness of the solution will rely on this assumption. Of
course, SQL Server doesn’t provide any such guarantees. For example, the only way to guar-
antee that the rows in a result will be presented in a certain order is to add a presentation
ORDER BY clause to the query. And if you do add one, you need to realize that what you get
back is not relational because the result has a guaranteed order.

If you need to write SQL queries and you want to understand the language you’re dealing with,
you need to think in set-based terms. And this is where window functions can help bridge the gap
between iterative thinking (one row at a time, in a certain order) and set-based thinking (seeing the

8 CHAPTER 1 SQL Windowing

set as a whole, with no order). What can help you transition from one type of thinking to the other is
the ingenious design of window functions.

For one, window functions support an ORDER BY clause when relevant, where you specify the
order. But note that just because the function has an order specified doesn’t mean it violates any rela-
tional concepts. The input to the query is relational with no ordering expectations, and the output of
the query is relational with no ordering guarantees. It’s just that there’s ordering as part of the speci-
fication of the calculation, producing a result attribute in the resulting relation. There’s no assurance
that the result rows will be returned in the same order used by the window function; in fact, different
window functions in the same query can specify different ordering. This kind of ordering has noth-
ing to do—at least conceptually—with the query’s presentation ordering. Figure 1-1 tries to illustrate
the idea that both the input to a query with a window function and the output are relational, even
though the window function has ordering as part of its specification. By using ovals in the illustration,
and having the positions of the rows look different in the input and the output, I’m trying to express
the fact that the order of the rows does not matter.

OrderValues (orderid, orderdate, val)

Result Set (orderid, orderdate, val, rnk)

(10889, 2008-02-16 00:00:00.000, 11380.00, 4)
(10417, 2007-01-16 00:00:00.000, 11188.40, 5)
(10981, 2008-03-27 00:00:00.000, 15810.00, 2)
(10865, 2008-02-02 00:00:00.000, 16387.50, 1)
(11030, 2008-04-17 00:00:00.000, 12615.05, 3)

(10417, 2007-01-16 00:00:00.000, 11188.40)
(11030, 2008-04-17 00:00:00.000, 12615.05)
(10981, 2008-03-27 00:00:00.000, 15810.00)
(10865, 2008-02-02 00:00:00.000, 16387.50)
(10889, 2008-02-16 00:00:00.000, 11380.00)

SELECT orderid, orderdate, val,
 RANK() OVER(ORDER BY val DESC) AS rnk
FROM Sales.OrderValues;

FIgURE 1-1 Input and output of a query with a window function.

There’s another aspect of window functions that helps you gradually transition from thinking
in iterative, ordered terms to thinking in set-based terms. When teaching a new topic, teachers

 Background of Window Functions 9

sometimes have to “lie” when explaining it. Suppose that you, as a teacher, know the student’s mind
is not ready to comprehend a certain idea if you explain it in full depth. You can sometimes get better
results if you initially explain the idea in simpler, albeit not completely correct, terms to allow the stu-
dent’s mind to start processing the idea. Later, when the student’s mind is ready for the “truth,” you
can provide the deeper, more correct meaning.

Such is the case with understanding how window functions are conceptually calculated. There’s a
basic way to explain the idea, although it’s not really conceptually correct, but it’s one that leads to
the correct result! The basic way uses a row-at-a-time, ordered approach. And then there’s the deep,
conceptually correct way to explain the idea, but one’s mind needs to be in a state of maturity to
comprehend it. The deep way uses a set-based approach.

To demonstrate what I mean, consider the following query:

SELECT orderid, orderdate, val,
 RANK() OVER(ORDER BY val DESC) AS rnk
FROM Sales.OrderValues;

Here’s an abbreviated output of this query (note there’s no guarantee of presentation ordering
here):

orderid orderdate val rnk
-------- ----------------------- --------- ---
10865 2008-02-02 00:00:00.000 16387.50 1
10981 2008-03-27 00:00:00.000 15810.00 2
11030 2008-04-17 00:00:00.000 12615.05 3
10889 2008-02-16 00:00:00.000 11380.00 4
10417 2007-01-16 00:00:00.000 11188.40 5
...

The basic way to think of how the rank values are calculated conceptually is the following example
(expressed as pseudocode):

arrange the rows sorted by val
iterate through the rows
for each row
 if the current row is the first row in the partition emit 1
 else if val is equal to previous val emit previous rank
 else emit count of rows so far

Figure 1-2 is a graphical depiction of this type of thinking.

orderid orderdate val rnk
----------- --------------------------- ---------- ----
10865 2008-02-02 00:00:00.000 16387.50 1
10981 2008-03-27 00:00:00.000 15810.00 2
11030 2008-04-17 00:00:00.000 12615.05 3
10889 2008-02-16 00:00:00.000 11380.00 4
10417 2007-01-16 00:00:00.000 11188.40 5
...

FIgURE 1-2 Basic understanding of the calculation of rank values.

10 CHAPTER 1 SQL Windowing

Again, although this type of thinking leads to the correct result, it’s not entirely correct. In fact,
making my point is even more difficult because the process just described is actually very similar to
how SQL Server physically handles the rank calculation. But my focus at this point is not the physical
implementation, but rather the conceptual layer—the language and the logical model. What I meant
by “incorrect type of thinking” is that conceptually, from a language perspective, the calculation is
thought of differently, in a set-based manner—not iterative. Remember that the language is not
concerned with the physical implementation in the database engine. The physical layer’s responsibility
is to figure out how to handle the logical request and both produce a correct result and produce it as
fast as possible.

So let me attempt to explain what I mean by the deeper, more correct understanding of how the
language thinks of window functions. The function logically defines—for each row in the result set
of the query—a separate, independent window. Absent any restrictions in the window specification,
each window consists of the set of all rows from the result set of the query as the starting point. But
you can add elements to the window specification (for example, partitioning, framing, and so on,
which I’ll say more about later) that will further restrict the set of rows in each window. Figure 1-3 is a
graphical depiction of this idea as it applies to our query with the RANK function.

orderid orderdate val rnk
----------- --------------------------- ---------- ----
10865 2008-02-02 00:00:00.000 16387.50 1
10981 2008-03-27 00:00:00.000 15810.00 2
11030 2008-04-17 00:00:00.000 12615.05 3
10889 2008-02-16 00:00:00.000 11380.00 4
10417 2007-01-16 00:00:00.000 11188.40 5
...

FIgURE 1-3 Deep understanding of the calculation of rank values.

With respect to each window function and row in the result set of the query, the OVER clause
conceptually creates a separate window. In our query, we have not restricted the window specification
in any way; we just defined the ordering specification for the calculation. So in our case, all windows
are made of all rows in the result set. And they all coexist at the same time. And in each, the rank is
calculated as one more than the number of rows that have a greater value in the val attribute than
the current value.

As you might realize, it’s more intuitive for many to think in the basic terms of the data being in an
order and a process iterating through the rows one at a time. And that’s okay when you’re starting
out with window functions because you get to write your queries—or at least the simple ones—
correctly. As time goes by, you can gradually transition to the deeper understanding of the window
functions’ conceptual design and start thinking in a set-based manner.

 Background of Window Functions 11

Drawbacks of alternatives to Window Functions
Window functions have several advantages compared to alternative, more traditional, ways to achieve
the same calculations—for example, grouped queries, subqueries, and others. Here I’ll provide a
couple of straightforward examples. There are several other important differences beyond the advan-
tages I’ll show here, but it’s premature to discuss those now.

I’ll start with traditional grouped queries. Those do give you insight into new information in the
form of aggregates, but you also lose something—the detail.

Once you group data, you’re forced to apply all calculations in the context of the group. But what
if you need to apply calculations that involve both detail and aggregates? For example, suppose that
you need to query the Sales.OrderValues view and calculate for each order the percentage of the
 current order value of the customer total, as well as the difference from the customer average. The
current order value is a detail element, and the customer total and average are aggregates. If you
group the data by customer, you don’t have access to the individual order values. One way to handle
this need with traditional grouped queries is to have a query that groups the data by customer, define
a table expression based on this query, and then join the table expression with the base table to
match the detail with the aggregates. Here’s a query that implements this approach:

WITH Aggregates AS
(
 SELECT custid, SUM(val) AS sumval, AVG(val) AS avgval
 FROM Sales.OrderValues
 GROUP BY custid
)
SELECT O.orderid, O.custid, O.val,
 CAST(100. * O.val / A.sumval AS NUMERIC(5, 2)) AS pctcust,
 O.val - A.avgval AS diffcust
FROM Sales.OrderValues AS O
 JOIN Aggregates AS A
 ON O.custid = A.custid;

Here’s the abbreviated output generated by this query:

orderid custid val pctcust diffcust
-------- ------- ------- -------- ------------
10835 1 845.80 19.79 133.633334
10643 1 814.50 19.06 102.333334
10952 1 471.20 11.03 -240.966666
10692 1 878.00 20.55 165.833334
11011 1 933.50 21.85 221.333334
10702 1 330.00 7.72 -382.166666
10625 2 479.75 34.20 129.012500
10759 2 320.00 22.81 -30.737500
10926 2 514.40 36.67 163.662500
10308 2 88.80 6.33 -261.937500
...

12 CHAPTER 1 SQL Windowing

Now imagine needing to also involve the percentage from the grand total and the difference from
the grand average. To do this, you need to add another table expression, like so:

WITH CustAggregates AS
(
 SELECT custid, SUM(val) AS sumval, AVG(val) AS avgval
 FROM Sales.OrderValues
 GROUP BY custid
),
GrandAggregates AS
(
 SELECT SUM(val) AS sumval, AVG(val) AS avgval
 FROM Sales.OrderValues
)
SELECT O.orderid, O.custid, O.val,
 CAST(100. * O.val / CA.sumval AS NUMERIC(5, 2)) AS pctcust,
 O.val - CA.avgval AS diffcust,
 CAST(100. * O.val / GA.sumval AS NUMERIC(5, 2)) AS pctall,
 O.val - GA.avgval AS diffall
FROM Sales.OrderValues AS O
 JOIN CustAggregates AS CA
 ON O.custid = CA.custid
 CROSS JOIN GrandAggregates AS GA;

Here’s the output of this query:

orderid custid val pctcust diffcust pctall diffall
-------- ------- ------- -------- ------------ ------- -------------
10835 1 845.80 19.79 133.633334 0.07 -679.252072
10643 1 814.50 19.06 102.333334 0.06 -710.552072
10952 1 471.20 11.03 -240.966666 0.04 -1053.852072
10692 1 878.00 20.55 165.833334 0.07 -647.052072
11011 1 933.50 21.85 221.333334 0.07 -591.552072
10702 1 330.00 7.72 -382.166666 0.03 -1195.052072
10625 2 479.75 34.20 129.012500 0.04 -1045.302072
10759 2 320.00 22.81 -30.737500 0.03 -1205.052072
10926 2 514.40 36.67 163.662500 0.04 -1010.652072
10308 2 88.80 6.33 -261.937500 0.01 -1436.252072
...

You can see how the query gets more and more complicated, involving more table expressions
and more joins.

Another way to perform similar calculations is to use a separate subquery for each calculation.
Here are the alternatives, using subqueries to the last two grouped queries:

-- subqueries with detail and customer aggregates
SELECT orderid, custid, val,
 CAST(100. * val /
 (SELECT SUM(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid) AS NUMERIC(5, 2)) AS pctcust,
 val - (SELECT AVG(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid) AS diffcust
FROM Sales.OrderValues AS O1;

 Background of Window Functions 13

-- subqueries with detail, customer and grand aggregates
SELECT orderid, custid, val,
 CAST(100. * val /
 (SELECT SUM(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid) AS NUMERIC(5, 2)) AS pctcust,
 val - (SELECT AVG(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid) AS diffcust,
 CAST(100. * val /
 (SELECT SUM(O2.val)
 FROM Sales.OrderValues AS O2) AS NUMERIC(5, 2)) AS pctall,
 val - (SELECT AVG(O2.val)
 FROM Sales.OrderValues AS O2) AS diffall
FROM Sales.OrderValues AS O1;

There are two main problems with the subquery approach. One, you end up with lengthy com-
plex code. Two, SQL Server’s optimizer is not coded at the moment to identify cases where multiple
subqueries need to access the exact same set of rows; hence, it will use separate visits to the data for
each subquery. This means that the more subqueries you have, the more visits to the data you get.
Unlike the previous problem, this one is not a problem with the language, but rather with the specific
optimization you get for subqueries in SQL Server.

Remember that the idea behind a window function is to define a window, or a set, of rows for the
function to operate on. Aggregate functions are supposed to be applied to a set of rows; therefore,
the concept of windowing can work well with those as an alternative to using grouping or subqueries.
And when calculating the aggregate window function, you don’t lose the detail. You use the OVER
clause to define the window for the function. For example, to calculate the sum of all values from the
result set of the query, simply use the following:

SUM(val) OVER()

If you do not restrict the window (empty parentheses), your starting point is the result set of the
query.

To calculate the sum of all values from the result set of the query where the customer ID is the
same as in the current row, use the partitioning capabilities of window functions (which I’ll say more
about later), and partition the window by custid, as follows:

SUM(val) OVER(PARTITION BY custid)

Note that the term partitioning suggests filtering rather than grouping.

Using window functions, here’s how you address the request involving the detail and customer
aggregates, returning the percentage of the current order value of the customer total as well as the
difference from the average (with window functions in bold):

SELECT orderid, custid, val,
 CAST(100. * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust,
 val - AVG(val) OVER(PARTITION BY custid) AS diffcust
FROM Sales.OrderValues;

14 CHAPTER 1 SQL Windowing

And here’s another query where you also add the percentage of the grand total and the difference
from the grand average:

SELECT orderid, custid, val,
 CAST(100. * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust,
 val - AVG(val) OVER(PARTITION BY custid) AS diffcust,
 CAST(100. * val / SUM(val) OVER() AS NUMERIC(5, 2)) AS pctall,
 val - AVG(val) OVER() AS diffall
FROM Sales.OrderValues;

Observe how much simpler and more concise the versions with the window functions are. Also, in
terms of optimization, note that SQL Server’s optimizer was coded with the logic to look for mul-
tiple functions with the same window specification. If any are found, SQL Server will use the same
visit (whichever kind of scan was chosen) to the data for those. For example, in the last query, SQL
Server will use one visit to the data to calculate the first two functions (the sum and average that are
partitioned by custid), and it will use one other visit to calculate the last two functions (the sum and
average that are nonpartitioned). I will demonstrate this concept of optimization in Chapter 4, “Opti-
mization of Window Functions.”

Another advantage window functions have over subqueries is that the initial window prior to
applying restrictions is the result set of the query. This means that it’s the result set after applying
table operators (for example, joins), filters, grouping, and so on. You get this result set because of the
phase of logical query processing in which window functions get evaluated. (I’ll say more about this
later in this chapter.) Conversely, a subquery starts from scratch—not from the result set of the outer
query. This means that if you want the subquery to operate on the same set as the result of the outer
query, it will need to repeat all query constructs used by the outer query. As an example, suppose that
you want our calculations of the percentage of the total and the difference from the average to apply
only to orders placed in the year 2007. With the solution using window functions, all you need to do is
add one filter to the query, like so:

SELECT orderid, custid, val,
 CAST(100. * val / SUM(val) OVER(PARTITION BY custid) AS NUMERIC(5, 2)) AS pctcust,
 val - AVG(val) OVER(PARTITION BY custid) AS diffcust,
 CAST(100. * val / SUM(val) OVER() AS NUMERIC(5, 2)) AS pctall,
 val - AVG(val) OVER() AS diffall
FROM Sales.OrderValues
WHERE orderdate >= '20070101'
 AND orderdate < '20080101';

The starting point for all window functions is the set after applying the filter. But with subqueries,
you start from scratch; therefore, you need to repeat the filter in all of your subqueries, like so:

SELECT orderid, custid, val,
 CAST(100. * val /
 (SELECT SUM(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid
 AND orderdate >= '20070101'
 AND orderdate < '20080101') AS NUMERIC(5, 2)) AS pctcust,

 A Glimpse of Solutions Using Window Functions 15

 val - (SELECT AVG(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE O2.custid = O1.custid
 AND orderdate >= '20070101'
 AND orderdate < '20080101') AS diffcust,
 CAST(100. * val /
 (SELECT SUM(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE orderdate >= '20070101'
 AND orderdate < '20080101') AS NUMERIC(5, 2)) AS pctall,
 val - (SELECT AVG(O2.val)
 FROM Sales.OrderValues AS O2
 WHERE orderdate >= '20070101'
 AND orderdate < '20080101') AS diffall
FROM Sales.OrderValues AS O1
WHERE orderdate >= '20070101'
 AND orderdate < '20080101';

Of course, you could use workarounds, such as first defining a common table expression (CTE)
based on a query that performs the filter, and then have both the outer query and the subqueries
refer to the CTE. However, my point is that with window functions, you don’t need any workarounds
because they operate on the result of the query. I will provide more details about this aspect in the
design of window functions later in the chapter, in the “Query Elements Supporting Window Func-
tions” section.

As mentioned earlier, window functions also lend themselves to good optimization, and often,
alternatives to window functions don’t get optimized as well, to say the least. Of course, there are
cases where the inverse is also true. I explain the optimization of window functions in Chapter 4 and
provide plenty of examples for using them efficiently in Chapter 5.

A glimpse of Solutions Using Window Functions

The first four chapters of the book describe window functions and their optimization. The material
is very technical, and even though I find it fascinating, I can see how some might find it a bit boring.
What’s usually much more interesting for people to read about is the use of the functions to solve
practical problems, which is what this book gets to in the final chapter. When you see how window
functions are used in problem solving, you truly realize their value. So how can I convince you it’s
worth your while to go through the more technical parts and not give up reading before you get to
the more interesting part later? What if I give you a glimpse of a solution using window functions
right now?

The querying task I will address here involves querying a table holding a sequence of values in
some column and identifying the consecutive ranges of existing values. This problem is also known as
the islands problem. The sequence can be a numeric one, a temporal one (which is more common), or
any data type that supports total ordering. The sequence can have unique values or allow duplicates.
The interval can be any fixed interval that complies with the column’s type (for example, the integer
1, the integer 7, the temporal interval 1 day, the temporal interval 2 weeks, and so on). In Chapter 5, I
will get to the different variations of the problem. Here, I’ll just use a simple case to give you a sense

16 CHAPTER 1 SQL Windowing

of how it works—using a numeric sequence with the integer 1 as the interval. Use the following code
to generate the sample data for this task:

SET NOCOUNT ON;
USE TSQL2012;

IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;
GO

CREATE TABLE dbo.T1
(
 col1 INT NOT NULL
 CONSTRAINT PK_T1 PRIMARY KEY
);

INSERT INTO dbo.T1(col1)
 VALUES(2),(3),(11),(12),(13),(27),(33),(34),(35),(42);
GO

As you can see, there are some gaps in the col1 sequence in T1. Your task is to identify the con-
secutive ranges of existing values (also known as islands) and return the start and end of each island.
Here’s what the desired result should look like:

start_range end_range
----------- -----------
2 3
11 13
27 27
33 35
42 42

If you’re curious as to the practicality of this problem, there are numerous production examples.
Examples include producing availability reports, identifying periods of activity (for example, sales),
identifying consecutive periods in which a certain criterion is met (for example, periods where a stock
value was above or below a certain threshold), identifying ranges of license plates in use, and so on.
The current example is very simplistic on purpose so that we can focus on the techniques used to
solve it. The technique you will use to solve a more complicated case requires minor adjustments to
the one you use to address the simple case. So consider it a challenge to come up with an efficient,
set-based solution to this task. Try to first come up with a solution that works. Then repopulate the
table with a decent number of rows—say, 10,000,000—and try your technique again. See how it per-
forms. Only then take a look at my solutions.

Before showing the solution using window functions, I’ll show one of the many possible solutions
that use more traditional language constructs. In particular, I’ll show one that uses subqueries. To
explain the strategy of the first solution, examine the values in the T1.col1 sequence, where I added a
conceptual attribute that doesn’t exist at the moment and that I think of as a group identifier:

col1 grp
----- ---
2 a
3 a
11 b

 A Glimpse of Solutions Using Window Functions 17

12 b
13 b
27 c
33 d
34 d
35 d
42 e

The grp attribute doesn’t exist yet. Conceptually, it is a value that uniquely identifies an island. This
means that it has to be the same for all members of the same island and different then the values
generated for other islands. If you manage to calculate such a group identifier, you can then group
the result by this grp attribute and return the minimum and maximum col1 values in each group
(island). One way to produce this group identifier using traditional language constructs is to calculate,
for each current col1 value, the minimum col1 value that is greater than or equal to the current one,
and that has no following value.

As an example, following this logic, try to identify with respect to the value 2 what the minimum
col1 value is that is greater than or equal to 2 and that appears before a missing value? It’s 3. Now try
to do the same with respect to 3. You also get 3. So 3 is the group identifier of the island that starts
with 2 and ends with 3. For the island that starts with 11 and ends with 13, the group identifier for all
members is 13. As you can see, the group identifier for all members of a given island is actually the
last member of that island.

Here’s the T-SQL code required to implement this concept:

SELECT col1,
 (SELECT MIN(B.col1)
 FROM dbo.T1 AS B
 WHERE B.col1 >= A.col1
 -- is this row the last in its group?
 AND NOT EXISTS
 (SELECT *
 FROM dbo.T1 AS C
 WHERE C.col1 = B.col1 + 1)) AS grp
FROM dbo.T1 AS A;

This query generates the following output:

col1 grp
----------- -----------
2 3
3 3
11 13
12 13
13 13
27 27
33 35
34 35
35 35
42 42

18 CHAPTER 1 SQL Windowing

The next part is pretty straightforward—define a table expression based on the last query, and in
the outer query, group by the group identifier and return the minimum and maximum col1 values for
each group, like so:

SELECT MIN(col1) AS start_range, MAX(col1) AS end_range
FROM (SELECT col1,
 (SELECT MIN(B.col1)
 FROM dbo.T1 AS B
 WHERE B.col1 >= A.col1
 AND NOT EXISTS
 (SELECT *
 FROM dbo.T1 AS C
 WHERE C.col1 = B.col1 + 1)) AS grp
 FROM dbo.T1 AS A) AS D
GROUP BY grp;

There are two main problems with this solution. One, it’s a bit complicated to follow the logic here.
Two, it’s horribly slow. I don’t want to start going over query execution plans yet—there will be plenty
of this later in the book—but I can tell you that for each row in the table, SQL Server will perform
almost two complete scans of the data. Now think of a sequence of 10,000,000 rows, and try to
translate it to the amount of work involved. The total number of rows that will need to be processed is
simply enormous.

The next solution is also one that calculates a group identifier, but using window functions. The
first step in the solution is to use the ROW_NUMBER function to calculate row numbers based on col1
ordering. I will provide the gory details about the ROW_NUMBER function later in the book; for now,
it suffices to say that it computes unique integers within the partition starting with 1 and increment-
ing by 1 based on the given ordering.

With this in mind, the following query returns the col1 values and row numbers based on col1
ordering:

SELECT col1, ROW_NUMBER() OVER(ORDER BY col1) AS rownum
FROM dbo.T1;

col1 rownum
----------- --------------------
2 1
3 2
11 3
12 4
13 5
27 6
33 7
34 8
35 9
42 10

Now focus your attention on the two sequences. One (col1) is a sequence with gaps, and the
other (rownum) is a sequence without gaps. With this in mind, try to figure out what’s unique to the
relationship between the two sequences in the context of an island. Within an island, both sequences
keep incrementing by a fixed interval. Therefore, the difference between the two is constant. For

 Elements of Window Functions 19

the next island, col1 increases by more than 1, whereas rownum increases just by 1, so the difference
keeps growing. In other words, the difference between the two is constant and unique for each island.
Run the following query to calculate this difference:

SELECT col1, col1 - ROW_NUMBER() OVER(ORDER BY col1) AS diff
FROM dbo.T1;

col1 diff
----------- --------------------
2 1
3 1
11 8
12 8
13 8
27 21
33 26
34 26
35 26
42 32

You can see that this difference satisfies the two requirements of our group identifier; therefore,
you can use it as such. The rest is the same as in the previous solution; namely, you group the rows by
the group identifier and return the minimum and maximum col1 values in each group, like so:

SELECT MIN(col1) AS start_range, MAX(col1) AS end_range
FROM (SELECT col1,
 -- the difference is constant and unique per island
 col1 - ROW_NUMBER() OVER(ORDER BY col1) AS grp
 FROM dbo.T1) AS D
GROUP BY grp;

Observe how concise and simple the solution is. Of course, it’s always a good idea to add com-
ments to help those who see the solution for the first time better understand it.

The solution is also highly efficient. The work involved in assigning the row numbers is negligible
compared to the previous solution. It’s just a single ordered scan of the index on col1 and an iterator
that keeps incrementing a counter. In a performance test I ran with a sequence with 10,000,000 rows,
this query finished in 10 seconds. Other solutions ran for a much longer time.

I hope that this glimpse to solutions using window functions was enough to intrigue you and help
you see that they contain immense power. Now we’ll get back to studying the technicalities of win-
dow functions. Later in the book, you will have a chance to see many more examples.

Elements of Window Functions

The specification of a window function’s behavior appears in the function’s OVER clause and involves
multiple elements. The three core elements are partitioning, ordering, and framing. Not all window
functions support all elements. As I describe each element, I’ll also indicate which functions support it.

20 CHAPTER 1 SQL Windowing

Partitioning
The partitioning element is implemented with a PARTITION BY clause and is supported by all window
functions. It restricts the window of the current calculation to only those rows from the result set of
the query that have the same values in the partitioning columns as in the current row. For example, if
your function uses PARTITION BY custid and the custid value in the current row is 1, the window with
respect to the current row is all rows from the result set of the query that have a custid value of 1. If
the custid value of the current row is 2, the window with respect to the current row is all rows with a
custid of 2.

If a PARTITION BY clause is not specified, the window is not restricted. Another way to look at it
is that inf case explicit partitioning wasn’t specified, the default partitioning is to consider the entire
result set of the query as one partition.

If it wasn’t obvious, let me point out that different functions in the same query can have different
partitioning specifications. Consider the query in Listing 1-1 as an example.

LISTIng 1-1 Query with Two RANK Calculations

SELECT custid, orderid, val,
 RANK() OVER(ORDER BY val DESC) AS rnk_all,
 RANK() OVER(PARTITION BY custid
 ORDER BY val DESC) AS rnk_cust
FROM Sales.OrderValues;

Observe that the first RANK function (which generates the attribute rnk_all) relies on the default
partitioning, and the second RANK function (which generates rnk_cust) uses explicit partitioning by
custid. Figure 1-4 illustrates the partitions defined for a sample of three results of calculations in the
query: one rnk_all value and two rnk_cust values.

custid orderid val rnk_all rnk_cust
------- -------- ------- -------- ---------

 1 11011 933.50 419 1
 1 10692 878.00 440 2
 1 10835 845.80 457 3
 1 10643 814.50 469 4
 1 10952 471.20 615 5
 1 10702 330.00 686 6

 2 10926 514.40 592 1
 2 10625 479.75 608 2
 2 10759 320.00 691 3
 2 10308 88.80 797 4
 ...

FIgURE 1-4 Window partitioning.

 Elements of Window Functions 21

The arrows point from the result values of the functions to the window partitions that were used to
compute them.

Ordering
The ordering element defines the ordering for the calculation, if relevant, within the partition. In
standard SQL, all functions support an ordering element. As for SQL Server, initially it didn’t support
the ordering element with aggregate functions; rather, it only supported partitioning. Support for
ordering for aggregates was added in SQL Server 2012.

Interestingly, the ordering element has a slightly different meaning for different function catego-
ries. With ranking functions, ordering is intuitive. For example, when using descending ordering, the
RANK function returns one more than the number of rows in your respective partition that have a
greater ordering value than yours. When using ascending ordering, the function returns one more
than the number of rows in the pattern with a lower ordering value than yours. Figure 1-5 illustrates
the rank calculations from Listing 1-1 shown earlier—this time including the interpretation of the
ordering element.

custid orderid val rnk_all rnk_cust
------- -------- ------- -------- ---------
1 11011 933.50 419 1
1 10692 878.00 440 2
1 10835 845.80 457 3
1 10643 814.50 469 4
1 10952 471.20 615 5
1 10702 330.00 686 6
2 10926 514.40 592 1
2 10625 479.75 608 2
2 10759 320.00 691 3
2 10308 88.80 797 4
...

custid orderid val
------- -------- ---------
63 10865 16387.50
34 10981 15810.00
71 11030 12615.05
65 10889 11380.00
73 10417 11188.40 418 rows with
... val > 933.50
50 10529 946.00
83 10994 940.50
35 10901 934.50
55 10338 934.50
1 11011 933.50
...

custid orderid val
------- -------- -------
1 11011 933.50
1 10692 878.00
1 10835 845.80 3 rows with
1 10643 814.50 val > 814.50
1 10952 471.20
1 10702 330.00

custid orderid val
------- -------- -------
2 10926 514.40
2 10625 479.75 2 rows with
2 10759 320.00 val > 320.00
2 10308 88.80

FIgURE 1-5 Window ordering.

22 CHAPTER 1 SQL Windowing

Figure 1-5 depicts the windows of only three of the rank calculations. Of course, there are many
more—1,660, to be precise. That’s because there are 830 rows involved, and for each row, two rank
calculations are made. What’s interesting to note here is that conceptually it’s as if all those windows
coexist simultaneously.

Aggregate window functions have a slightly different meaning for ordering compared to rank-
ing window functions. With aggregates, contrary to what some might think, ordering has nothing to
do with the order in which the aggregate is applied; rather, the ordering element gives meaning to
the framing options that I will describe next. In other words, the ordering element is an aid to define
which rows to restrict in the window.

Framing
Framing is essentially another filter that further restricts the rows in the partition. It is applicable to
aggregate window functions as well as to three of the offset functions: FIRST_VALUE, LAST_VALUE,
and NTH_VALUE. Think of this windowing element as defining two points in the current row’s parti-
tion based on the given ordering, framing the rows that the calculation will apply to.

The framing specification in the standard includes a ROWS or RANGE option that defines the start-
ing row and ending row of the frame, as well as a window frame-exclusion option. SQL Server 2012
introduced support for framing, with full implementation of the ROWS option, partial implementation
of the RANGE option, and no implementation of the window frame-exclusion option.

The ROWS option allows you to indicate the points in the frame as an offset in terms of the
number of rows with respect to the current row. The RANGE option is more dynamic, defining the
offsets in terms of a difference between the value of the frame point and the current row’s value.
The window frame-exclusion option specifies what to do with the current row and its peers in case of
ties. This explanation might seem far from clear or sufficient, but I don’t want to get into the details
just yet. There will be plenty of that later. For now, I just want to introduce the concept and provide a
simple example. Following is a query against the EmpOrders view, calculating the running total quan-
tity for each employee and order month:

SELECT empid, ordermonth, qty,
 SUM(qty) OVER(PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS runqty
FROM Sales.EmpOrders;

Observe that the window function applies the SUM aggregate to the qty attribute, partitions the
window by empid, orders the partition rows by ordermonth, and frames the partition rows based on
the given ordering between unbounded preceding (no low boundary point) and the current row. In
other words, the result will be the sum of all prior rows in the frame, inclusive of the current row. This
query generates the following output, shown here in abbreviated form:

 Query Elements Supporting Window Functions 23

empid ordermonth qty run_qty
------ ----------------------- ----------- -----------
1 2006-07-01 00:00:00.000 121 121
1 2006-08-01 00:00:00.000 247 368
1 2006-09-01 00:00:00.000 255 623
1 2006-10-01 00:00:00.000 143 766
1 2006-11-01 00:00:00.000 318 1084
...
2 2006-07-01 00:00:00.000 50 50
2 2006-08-01 00:00:00.000 94 144
2 2006-09-01 00:00:00.000 137 281
2 2006-10-01 00:00:00.000 248 529
2 2006-11-01 00:00:00.000 237 766
...

Observe how the window specification is as easy to read as plain English. I will provide much more
detail about the framing options in Chapter 2.

Query Elements Supporting Window Functions

Window functions aren’t supported in all query clauses; rather, they’re supported only in the SELECT
and ORDER BY clauses. To help you understand the reason for this restriction, I first need to explain a
concept called logical query processing. Then I’ll get to the clauses that support window functions, and
finally I’ll explain how to circumvent the restriction with the other clauses.

Logical Query Processing
Logical query processing describes the conceptual way in which a SELECT query is evaluated accord-
ing to the logical language design. It describes a process made of a series of steps, or phases, that
proceed from the query’s input tables to the query’s final result set. Note that by “logical query
processing,” I mean the conceptual way in which the query is evaluated—not necessarily the physi-
cal way SQL Server processes the query. As part of the optimization, SQL Server can make shortcuts,
re arrange the order of some steps, and pretty much do whatever it likes. But that’s as long as it guar-
antees that it will produce the same output as the one defined by logical query processing applied to
the declarative query request.

Each step in logical query processing operates on one or more tables (sets of rows) that serve as its
input and returns a table as its output. The output table of one step then becomes the input table for
the next step.

Figure 1-6 is a flow diagram illustrating the logical query processing flow in SQL Server 2012.

24 CHAPTER 1 SQL Windowing

1
Entering FROM

5
Entering SELECT

5-1
Evaluate Expressions

Set
Cursor

(if outermost query)

First
Table Operator

Exists?

WHERE
Exists?

GROUP BY
Exists?

HAVING
Exists?

DISTINCT
Exists?

ORDER BY
Exists?

TOP
Exists?

OFFSET/
FETCH or TOP

Exists?

1-J1
Cartesian Product

1-A1
Apply Table
Expression

1-P1
Group

1-U1
Generate Copies

1-J2
ON Filter

JOIN
Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes Yes

No

No

No

No

No

No

No

NoNo

CR
O

SS

O
U

TE
R

APPLY PIVOT UNPIVOT

1-A2
Add Outer Rows

1-P2
Spread

1-U2
Extract Element

1-J3
Add Outer Rows

2
Filter Rows

Group

4
Filter Groups

5-2
Remove Duplicates

Window
Functions

6
Order

7-b
Filter

7a
Filter

1-P3
Aggregate

1-U3
Remove NULLs

Start

Operator
Type?

Another
Table Operator

Exists?

End

CR
O

SS

IN
N

ER

O
U

TE
R

FIgURE 1-6 Logical query processing.

 Query Elements Supporting Window Functions 25

Note that when you write a query, the SELECT clause appears first in terms of the keyed-in order,
but observe that in terms of the logical query processing order, it appears almost last—just before the
ORDER BY clause is handled.

There’s much more to say about logical query processing, but the details are a topic for another
book. For the purposes of our discussion, what’s important to note is the order in which the various
clauses are evaluated. The following list shows the order (with the phases in which window functions
are allowed shown in bold):

1. FROM

2. WHERE

3. GROUP BY

4. HAVING

5. SELECT

5-1. Evaluate Expressions

5-2. Remove Duplicates

6. ORDER BY

7. OFFSET-FETCH/TOP

Understanding logical query processing and the logical query processing order enables you to
understand the motivation behind restricting window functions to only specific clauses.

Clauses Supporting Window Functions
As illustrated in Figure 1-6, only the query clauses SELECT and ORDER BY support window functions
directly. The reason for the limitation is to avoid ambiguity by operating on (almost) the final result
set of the query as the starting point for the window. If window functions are allowed in phases
previous to the SELECT phase, their initial window could be different than that in the SELECT phase,
and therefore, with some query forms, it could be very difficult to figure out the right result. I’ll try to
demonstrate the ambiguity problem through an example. First run the following code to create the
table T1 and populate it with sample data:

SET NOCOUNT ON;
USE TSQL2012;
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;
GO

CREATE TABLE dbo.T1
(
 col1 VARCHAR(10) NOT NULL
 CONSTRAINT PK_T1 PRIMARY KEY
);

INSERT INTO dbo.T1(col1)
 VALUES('A'),('B'),('C'),('D'),('E'),('F');

26 CHAPTER 1 SQL Windowing

Suppose that window functions were allowed in phases prior to the SELECT—for example, in the
WHERE phase. Consider then the following query, and try to figure out which col1 values should
appear in the result:

SELECT col1
FROM dbo.T1
WHERE col1 > 'B'
 AND ROW_NUMBER() OVER(ORDER BY col1) <= 3;

Before you assume that the answer should obviously be the values C, D, and E, consider the all-at-
once concept in SQL. The concept of all-at-once means that all expressions that appear in the same
logical phase are conceptually evaluated at the same point in time. This means that the order in which
the expressions are evaluated shouldn’t matter. With this in mind, the following query should be
semantically equivalent to the previous one:

SELECT col1
FROM dbo.T1
WHERE ROW_NUMBER() OVER(ORDER BY col1) <= 3
 AND col1 > 'B';

Now, can you figure out what the right answer is? Is it C, D, and E, or is it just C?

That’s an example of the ambiguity I was talking about. By restricting window functions to only the
SELECT and ORDER BY clauses of a query, this ambiguity is eliminated.

Looking at Figure 1-6, you might have noticed that within the SELECT phase, it’s step 5-1 (Evalu-
ate Expressions) that supports window functions, and this step is evaluated before step 5-2 (Remove
Duplicates). If you wonder why it is important to know such subtleties, I’ll demonstrate why.

Following is a query returning the empid and country attributes of all employees from the
Employees table:

SELECT empid, country
FROM HR.Employees;

empid country
----------- ---------------
1 USA
2 USA
3 USA
4 USA
5 UK
6 UK
7 UK
8 USA
9 UK

Next, examine the following query and see if you can guess what its output is before executing it:

SELECT DISTINCT country, ROW_NUMBER() OVER(ORDER BY country) AS rownum
FROM HR.Employees;

 Query Elements Supporting Window Functions 27

Some expect to get the following output:

country rownum
--------------- --------------------
UK 1
USA 2

But in reality you get this:

country rownum
--------------- --------------------
UK 1
UK 2
UK 3
UK 4
USA 5
USA 6
USA 7
USA 8
USA 9

Now consider that the ROW_NUMBER function in this query is evaluated in step 5-1 where
the SELECT list expressions are evaluated—prior to the removal of the duplicates in step 5-2. The
ROW_NUMBER function assigns nine unique row numbers to the nine employee rows, and then the
DISTINCT clause has no duplicates left to remove.

When you realize this and understand that it has to do with the logical query processing order
of the different elements, you can think of a solution. For example, you can have a table expression
defined based on a query that just returns distinct countries and have the outer query assign the row
numbers after duplicates are removed, like so:

WITH EmpCountries AS
(
 SELECT DISTINCT country FROM HR.Employees
)
SELECT country, ROW_NUMBER() OVER(ORDER BY country) AS rownum
FROM EmpCountries;

Can you think of other ways to solve the problem, perhaps even simpler ways than this one?

The fact that window functions are evaluated in the SELECT or ORDER BY phase means that the
window defined for the calculation—before applying further restrictions—is the intermediate form
of rows of the query after all previous phases—that is, after applying the FROM with all of its table
operators (for example, joins), and after the WHERE filtering, the grouping, and the filtering of the
groups. Consider the following query as an example:

SELECT O.empid,
 SUM(OD.qty) AS qty,
 RANK() OVER(ORDER BY SUM(OD.qty) DESC) AS rnk
FROM Sales.Orders AS O
 JOIN Sales.OrderDetails AS OD
 ON O.orderid = OD.orderid
WHERE O.orderdate >= '20070101'

28 CHAPTER 1 SQL Windowing

 AND O.orderdate < '20080101'
GROUP BY O.empid;

empid qty rnk
------ ----- ---
4 5273 1
3 4436 2
1 3877 3
8 2843 4
2 2604 5
7 2292 6
6 1738 7
5 1471 8
9 955 9

First the FROM clause is evaluated and the join is performed. Then only the rows where the order
year is 2007 are filtered. Then the remaining rows are grouped by employee ID. Only then are the
expressions in the SELECT list evaluated, including the RANK function, which is calculated based on
ordering by the total quantity descending. If there were other window functions in the SELECT list,
they would all use the same result set as their starting point. Recall from earlier discussions about
alternative options to window functions (for example, subqueries) that they start their view of the
data from scratch—meaning that you have to repeat all the logic you have in the outer query in each
of your subqueries, leading to much more verbose code.

Circumventing the Limitations
I explained the reasoning behind disallowing the use of window functions in logical query processing
phases that are evaluated prior to the SELECT clause. But what if you need to filter by or group by a
calculation based on window functions? The solution is to use a table expression such as a CTE or a
derived table. Have a query invoke the window function in its SELECT list, assigning the calculation an
alias. Define a table expression based on that query, and then have the outer query refer to that alias
where you need it.

Here’s an example showing how you can filter by the result of a window function using a CTE:

WITH C AS
(
 SELECT orderid, orderdate, val,
 RANK() OVER(ORDER BY val DESC) AS rnk
 FROM Sales.OrderValues
)
SELECT *
FROM C
WHERE rnk <= 5;

orderid orderdate val rnk
-------- ----------------------- --------- ----
10865 2008-02-02 00:00:00.000 16387.50 1
10981 2008-03-27 00:00:00.000 15810.00 2
11030 2008-04-17 00:00:00.000 12615.05 3
10889 2008-02-16 00:00:00.000 11380.00 4
10417 2007-01-16 00:00:00.000 11188.40 5

 Query Elements Supporting Window Functions 29

With modification statements, window functions are disallowed altogether because those don’t
support SELECT and ORDER BY clauses. But there are cases where involving window functions in mod-
ification statements is needed. Table expressions can be used to address this need as well because
T-SQL supports modifying data through table expressions. I’ll demonstrate this capability with an
UPDATE example. First run the following code to create a table called T1 with columns col1 and col2
and populate it with sample data:

SET NOCOUNT ON;
USE TSQL2012;
IF OBJECT_ID('dbo.T1', 'U') IS NOT NULL DROP TABLE dbo.T1;
GO

CREATE TABLE dbo.T1
(
 col1 INT NULL,
 col2 VARCHAR(10) NOT NULL
);

INSERT INTO dbo.T1(col2)
 VALUES('C'),('A'),('B'),('A'),('C'),('B');

Explicit values were provided in col2, and NULLs were used as defaults in col1.

Suppose this table represents a situation with data-quality problems. A key wasn’t enforced in this
table, and therefore it is not possible to uniquely identify rows. You want to assign unique col1 values
in all rows. You’re thinking of using the ROW_NUMBER function in an UPDATE statement, like so:

UPDATE dbo.T1
 SET col1 = ROW_NUMBER() OVER(ORDER BY col2);

But remember that this is not allowed. The workaround is to write a query against T1 returning
col1 and an expression based on the ROW_NUMBER function (call it rownum); define a table expres-
sion based on this query; finally, have an outer UPDATE statement against the CTE assign rownum to
col1, like so:

WITH C AS
(
 SELECT col1, col2,
 ROW_NUMBER() OVER(ORDER BY col2) AS rownum
 FROM dbo.T1
)
UPDATE C
 SET col1 = rownum;

30 CHAPTER 1 SQL Windowing

Query T1, and observe that all rows got unique col1 values:

SELECT col1, col2
FROM dbo.T1;

col1 col2
----------- ----------
5 C
1 A
3 B
2 A
6 C
4 B

Potential for Additional Filters

I provided a workaround in T-SQL that allows you to use window functions indirectly in query ele-
ments that don’t support those directly. The workaround is a table expression in the form of a CTE or
derived table. It’s nice to have a workaround, but a table expression adds an extra layer to the query
and complicates it a bit. The examples I showed are quite simple, but think about long and complex
queries to begin with. Can you have a simpler solution that doesn’t require this extra layer?

With window functions, SQL Server doesn’t have a solution at the moment. It’s interesting, though,
to see how others coped with this problem. Teradata for example created a filtering clause it calls
QUALIFY that is conceptually evaluated after the SELECT clause. This means that it can refer to win-
dow functions directly, as in the following example:

SELECT orderid, orderdate, val
FROM Sales.OrderValues
QUALIFY RANK() OVER(ORDER BY val DESC) <= 5;

Furthermore, you can refer to column aliases defined in the SELECT list, like so:

SELECT orderid, orderdate, val,
 RANK() OVER(ORDER BY val DESC) AS rnk
FROM Sales.OrderValues
QUALIFY rnk <= 5;

The QUALIFY clause isn’t defined in standard SQL; rather, it’s a Teradata-specific feature. However,
it seems like a very interesting solution, and it would be nice to see both the standard and SQL Server
providing a solution to this need.

 Reuse of Window Definitions 31

Reuse of Window Definitions

Suppose that you need to invoke multiple window functions in the same query and part of the win-
dow specification (or all of it) is common to multiple functions. If you indicate the complete window
specifications in all functions, the code can quickly get lengthy. Here’s an example illustrating the
problem:

SELECT empid, ordermonth, qty,
 SUM(qty) OVER (PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS run_sum_qty,
 AVG(qty) OVER (PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS run_avg_qty,
 MIN(qty) OVER (PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS run_min_qty,
 MAX(qty) OVER (PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW) AS run_max_qty
FROM Sales.EmpOrders;

Standard SQL has an answer to this problem in the form of a clause called WINDOW that allows
naming a window specification or part of it; then you can refer to that name in other window defini-
tions—ones used by window functions or even by a definition of another window name. This clause is
conceptually evaluated after the HAVING clause and before the SELECT clause.

SQL Server doesn’t yet support the WINDOW clause. But according to standard SQL, you can
abbreviate the preceding query using the WINDOW clause like so:

SELECT empid, ordermonth, qty,
 SUM(qty) OVER W1 AS run_sum_qty,
 AVG(qty) OVER W1 AS run_avg_qty,
 MIN(qty) OVER W1 AS run_min_qty,
 MAX(qty) OVER W1 AS run_max_qty
FROM Sales.EmpOrders
WINDOW W1 AS (PARTITION BY empid
 ORDER BY ordermonth
 ROWS BETWEEN UNBOUNDED PRECEDING
 AND CURRENT ROW);

That’s quite a difference, as you can see. In this case, the WINDOW clause assigns the name W1 to
a complete window specification with partitioning, ordering, and framing options. Then all four func-
tions refer to W1 as their window specification. The WINDOW clause is actually quite sophisticated. As
mentioned, it doesn’t have to name a complete window specification; rather, it can even name only
part of it. Then a window definition can include a mix of named parts plus explicit parts. As an aside,

32 CHAPTER 1 SQL Windowing

the coverage of standard SQL for the WINDOW clause is a striking length of 10 pages! And trying to
decipher the details is no picnic.

It would be great to see SQL Server add such support in the future, especially now that it has
extensive support for window functions and people are likely to end up with lengthy window
specifications.

Summary

This chapter introduced the concept of windowing in SQL. It provided the background to window
functions, explaining the motivation for their use. The chapter then provided a glimpse of solving
querying tasks using window functions by addressing the task of identifying ranges of existing values
in a sequence—a problem also known as identifying islands. The chapter then proceeded to explain
the design of window functions, covering the elements involved in window specifications: partition-
ing, ordering, and framing. Finally, this chapter explained how standard SQL addresses the need to
reuse a window specification or part of it. The next chapter provides a breakdown of window func-
tions, getting into more detail.

 211

B
backward scans, indexes and, 105–108

C
calculating running totals. See Running Totals solution

(T-SQL)
Cantor, Georg, 7
carry-along-sort technique, 153, 157
CASE expression

distinct aggregates and, 52
FILTER clause workaround, 50
hypothetical set functions and, 84
Running Totals T-SQL solution, 168
usage example, 78–79

CHECKSUM_AGG function, 122, 124
CLR (Common Language Runtime)

Running Totals T-SQL solution, 164–166, 171
SQL Server support, 34
user-defined aggregates, 81

COALESCE function, 99, 150
Codd, E. F., 6
columnstore indexes, 108
Common Language Runtime (CLR)

Running Totals T-SQL solution, 164–166, 171
SQL Server support, 34
user-defined aggregates, 81

common table expressions (CTEs)
distinct aggregates and, 52
filtering and, 15, 28–30
Gaps and Islands T-SQL solution, 199–201
grouped aggregates and, 55
Max Concurrent Intervals T-SQL solution, 178–180
Median T-SQL solution, 205
Mode T-SQL solution, 155–157
ordered set functions and, 97

Index

Symbols
+ (concatenation operator), 150

A
aggregate functions. See also COUNT function; MAX

function; MIN function; SUM function
described, 3–4, 13, 33–34
distinct, 51–53
DISTINCT clause and, 85
expanding all frame rows, 122
filtering, 49–51
framing and, 22, 36–49, 119–128
general form, 37
nested, 53–57
optimizing, 116–128
ordered set functions and, 81
ordering and, 22, 36–49, 119–128
partitioning and, 13–14, 34–36
SQL Server support, 4
SQL standard support, 3
without framing, 116–118
without ordering, 116–118

aggregation element (pivoting technique), 148
all-at-once concept, 26
Amdahl’s Law, 114
APPLY operator

Packing Intervals T-SQL solution, 192
parallel APPLY technique, 112–115, 121–122, 127
Top-N-per-Group T-SQL solution, 152

autogenerating numbers, 62
auxiliary table of numbers, virtual, 133–136
AVG function

computing cumulative values, 126
expanding all frame rows, 122
usage example, 41

common table expressions

212 Index

common table expressions, continued
Packing Intervals T-SQL solution, 184–188
Pivoting T-SQL solution, 148–149
Removing Duplicates T-SQL solution, 147
Running Totals T-SQL solution, 166
Sequences of Keys T-SQL solution, 139
Sorting Hierarchies T-SQL solution, 206–210
Top-N-Per-Group T-SQL solution, 154
usage example, 78–79
Virtual Auxiliary Table of Numbers T-SQL

solution, 134
Compute Scalar iterator

computing cumulative values, 127
distribution functions and, 129–131
expanding all frame rows, 123

concatenating strings
carry-along-sort technique and, 153
concatenation operator (+), 150
CONCAT function, 150
ordered set functions and, 81, 98–99

CONCAT function, 150
Conditional Aggregate solution (T-SQL), 204–206
constants

ordering based on, 109
OVER clause and, 62

CONVERT function, 153
COUNT function

about, 3
calculating percentile rank, 70
computing cumulative values, 126–127
expanding all frame rows, 122
grouped aggregates and, 56
Median T-SQL solution, 202
Mode T-SQL solution, 156
ROW_NUMBER function and, 59–60
usage example, 84, 86

COUNT_BIG function
computing cumulative values, 126
expanding all frame rows, 122

CROSS APPLY operator
about, 88
Packing Intervals T-SQL solution, 190

cross joining tables, 133–136
CTEs (common table expressions)

distinct aggregates and, 52
filtering and, 15, 28–30
Gaps and Islands T-SQL solution, 199–201
grouped aggregates and, 55

Max Concurrent Intervals T-SQL solution, 178–
180

Median T-SQL solution, 205
Mode T-SQL solution, 155–157
ordered set functions and, 97
Packing Intervals T-SQL solution, 184–188
Pivoting T-SQL solution, 148–149
Removing Duplicates T-SQL solution, 147
Running Totals T-SQL solution, 166
Sequences of Keys T-SQL solution, 139
Sorting Hierarchies T-SQL solution, 206–210
Top-N-Per-Group T-SQL solution, 154
usage example, 78–79
Virtual Auxiliary Table of Numbers T-SQL

solution, 134
CUME_DIST function

about, 4, 68–69
hypothetical-set-function form of, 82, 86–87, 89
optimizing, 129

cumulative values, computing, 126–128
CURRENT ROW option

RANGE clause, 43–47, 77
ROWS clause, 37–38

cursor/iterative programming
Max Concurrent Intervals T-SQL solution, 175–

177
Running Totals T-SQL solution, 158, 162–164
set-based versus, 6–10

D
data-quality issues solution, 138–139
data warehouses, populating time dimension in, 137
DATEADD function, 195, 197
date and time values

Gaps and Islands T-SQL solution, 193–201
Sequences of Date and Time Values T-SQL

solution, 137–138
DATEDIFF function

Gaps and Islands T-SQL solution, 195
Sequences of Date and Time Values T-SQL

solution, 137
Dauben, Joseph W., 7
DBCC OPTIMIZER_WHATIF command, 113
degree of parallelism (DOP), 113–114
DELETE clause, 147
DENSE_RANK function

about, 4, 57, 66–67
determinism and, 67

 grouping element (pivoting technique)

 Index 213

Gaps and Islands T-SQL solution, 196–197
hypothetical-set-function form of, 82, 84–85,

87–89
optimizing, 111–112

determinism
DENSE_RANK function and, 67
RANK function and, 67
ROW_NUMBER function and, 60–64

Discard Results After Execution query option, 136
DISTINCT option

aggregate functions and, 51, 85
usage example, 27, 91

distribution functions. See also CUME_DIST function;
PERCENTILE_CONT function; PERCENTILE_
DISC function; PERCENT_RANK function

about, 4, 68
inverse distribution, 68, 71–73, 90–94, 129–132
optimization of, 128–132
ordering and, 68
partitioning and, 68
rank distribution, 68–71, 82–90, 128–129
SQL Server support, 4, 68
SQL standard support, 3

DOP (degree of parallelism), 113–114
duplicate data, removing, 145–148

E
equality filters, 105
EXCLUDE CURRENT ROW option, 47
EXCLUDE GROUP option, 47
EXCLUDE NO OTHERS option, 47
EXCLUDE TIES option, 47
Extended Event, 126

F
fast-track case, 119–122
FILTER clause, 49–51
filtering

CTEs and, 15, 28–30
equality filters, 105
FILTER clause and, 49–51
Max Concurrent Intervals T-SQL solution, 174–

175
OFFSET/FETCH option, 134–136, 144–145,

151–153
Packing Intervals T-SQL solution, 187

Paging T-SQL solution, 143–145
QUALIFY clause and, 30
Running Totals T-SQL solution, 160–162
Top-N-per-Group T-SQL solution, 151–154
TOP option, 134–136, 148, 151–153
WHERE clause and, 117

Filter iterator, 117
FIRST_VALUE function

about, 4, 76–79
expanding all frame rows, 122, 124
framing element and, 22
ordered-set-function form of, 94–96

Flanaghan, Ben, 179
FLOOR function, 188
forward scans, indexes and, 105
FOR XML PATH('') option, 99
frame rows, expanding, 122–126
framing

about, 22–23
aggregate functions and, 22, 36–49, 119–128
offset functions and, 22, 119–128
ordering and, 36
RANGE option, 22, 37, 43–47
ROWS option, 22, 37–43

FROM clause
processing order, 54
usage example, 27–28

g
gaps

Gaps and Islands T-SQL solution, 193–201
Sequences of Keys T-SQL solution, 138–142

GetNums function
creating, 102–103
Gaps and Islands T-SQL solution, 198
Sequences of Date and Time Values T-SQL

solution, 137
Virtual Auxiliary Table of Numbers T-SQL

solution, 136
GROUP BY clause

nested aggregates, 53
processing order, 54

grouped queries
drawbacks of, 11–12
grouped aggregates and, 54
ordered set functions and, 81

grouping element (pivoting technique), 148

Hash partitioning

214 Index

H
Hash partitioning, 114
HAVING clause, 54
hypothetical set functions

CUME_DIST, 82, 86–87, 89
DENSE_RANK, 82, 84–85, 87–89
general solution for, 87–90
as ordered set functions, 82–90
PERCENT_RANK, 82, 85–87, 89
RANK, 82–84, 87–89

I
identifying islands problem, 15–19, 195–201
INCLUDE clause, 104
indexed sequential access method (ISAM), 7
indexes

backward scans, 105–108
columnstore indexes, 108
indexing guidelines, 103
Max Concurrent Intervals T-SQL solution, 171–

180
Mode T-SQL solution, 154–158
Packing Intervals T-SQL solution, 183–184,

188–189
Paging T-SQL solution, 143–145
POC indexes, 104–105, 151–152, 161
Running Totals T-SQL solution, 161, 168
Top-N-per-Group T-SQL solution, 151–152, 158

Index Scan iterator
backward scans, 107
Max Concurrent Intervals T-SQL solution, 174
ROW_NUMBER function optimization and, 110

Index Seek iterator, 174–175
inverse distribution functions (percentiles).

See also PERCENTILE_COUNT function;
PERCENTILE_DISC function

about, 68, 71–73
Median T-SQL solution, 202–204
optimization of, 129–132
as ordered set functions, 81, 90–94

ISAM (indexed sequential access method), 7
islands

Gaps and Islands T-SQL solution, 193–201
identifying islands problem, 15–19, 195–201

iterative/cursor programming
Max Concurrent Intervals T-SQL solution, 175–

177
Running Totals T-SQL solution, 158, 162–164
set-based versus, 6–10

J
joins

cross, 133–136
Max Concurrent Intervals T-SQL solution, 174
ON clause, 161
Running Totals T-SQL solution, 161–162, 170

K
keys

Sequences of Keys T-SQL solution, 138–142
surrogate, 141

Kyte, Tom, 51

L
LAG function

about, 4, 74–76
converting to LAST_VALUE function, 122
expanding all frame rows, 124
Gaps and Islands T-SQL solution, 194, 199
NULL return value, 75

LAST_VALUE function
about, 4, 76–79
expanding all frame rows, 122, 124
framing element and, 22
ordered-set-function form of, 94–96

LEAD function
about, 4, 74–76
converting to LAST_VALUE function, 122
expanding all frame rows, 124
Gaps and Islands T-SQL solution, 194–195, 199
NULL return value, 75

Linoff, Gordon, 205
logical query processing

about, 23–25
clause ordering and, 57

 ORDER BY clause

 Index 215

M
Machanic, Adam, 92, 112
Max Concurrent Intervals solution (T-SQL)

about, 171–173
cursor-based solution, 175–177
performance benchmark, 180
solutions based on window functions, 178–180
traditional set-based solution, 173–175

MAX function
about, 3
expanding all frame rows, 122, 124
usage example, 39, 96–97, 117

Median solution (T-SQL), 202–204
Merge Join iterator, 176, 178
Microsoft SQL Server

hypothetical set functions and, 84–86
logical query processing and, 23
optimization and, 5, 14
ordered set functions and, 81
ordering element support, 21
parallelism considerations, 112–113
StreamInsight feature, 51
TOP option, 134–136, 148, 151–153
WINDOW clause and, 31–32

Microsoft SQL Server 2005
aggregate functions support, 4
ranking functions support, 4, 57
window functions support, 1

Microsoft SQL Server 2012
aggregate functions support, 4
DISTINCT option and, 51
distribution functions support, 4, 68
FILTER clause and, 49
hypothetical set functions and, 84, 87
indexing support, 108
logical query processing and, 23–24
NEXT VALUE FOR function and, 62
OFFSET/FETCH option, 134–136, 144–145,

151–153
offset functions support, 4, 74, 76, 78, 94
RANGE option, 45
rank distribution functions and, 70
window frame-exclusion option, 22, 47
window functions support, 1

MIN function
about, 3
expanding all frame rows, 122, 124
usage example, 96–97

Mode solution (T-SQL), 154–158

n
nested aggregates, 53–57
nested iterations, 166–167
Nested Loops join, 174, 190
Nested Loops join iterator, 115, 118
NEXT VALUE FOR function, 62
NOT EXISTS predicate, 89
NTH_VALUE function

about, 4, 76–79
framing element and, 22
ordered-set-function form of, 94, 96

NTILE function
about, 4, 57, 63–66
optimizing, 110–111

O
OFFSET/FETCH option

Paging T-SQL solution, 144–145
Top-N-per-Group T-SQL solution, 151–153
Virtual Auxiliary Table of Numbers T-SQL

solution, 134–136
offset functions. See also FIRST_VALUE function;

LAG function; LAST_VALUE function; LEAD
function; NTH_VALUE function

about, 4, 74–79
carry-along-sort technique, 153, 157
framing and, 22, 119–128
optimizing, 116–128
ordered set functions and, 94–98
ordering and, 74, 119–128
partitioning and, 74
SQL Server support, 4, 74, 76, 78, 94
SQL standard support, 3

OLAP functions, 3
ON clause, 161
optimization of window functions

aggregate functions, 116–128
distribution functions, 128–132
indexing guidelines, 103–108
logical query processing and, 23
offset functions, 116–128
parallel APPLY technique and, 112–115
ranking functions, 108–112
sample data, 101–103
SQL and, 5, 14

ORDER BY clause
about, 7
backward scans and, 107–108

ORDER BY clause

216 Index

ORDER BY clause, continued
Max Concurrent Intervals T-SQL solution, 176
modification statements and, 29
Paging T-SQL solution, 144
presentation ordering and, 58
processing order, 54
ranking functions and, 61
Sequences of Keys T-SQL solution, 142
Virtual Auxiliary Table of Numbers T-SQL

solution, 135
window functions support, 8, 23, 25–28

ordered set functions
about, 71, 81
hypothetical set functions, 81–90
inverse distribution functions, 68, 71–73, 81,

90–94
offset functions, 94–98
SQL Server and, 81
string concatenation, 98–99

ordering (sort order)
about, 21–22
aggregate functions and, 22, 36–49, 119–128
based on constants, 109
distribution functions and, 68
elements of sets and, 7
framing and, 36
logical query processing and, 25
Max Concurrent Intervals T-SQL solution, 176
Median T-SQL solution, 203–204
offset functions and, 74, 119–128
POC concept and, 104–106
RANK function, 3
ranking functions and, 21, 58, 109
Running Totals T-SQL solution, 161
Sorting Hierarchies T-SQL solution, 206–210
total ordering, 15

OVER clause
about, 1–3, 10
constants and, 62
usage example, 2, 13, 36

P
Packing Intervals solution (T-SQL)

about, 181–183
solutions based on window functions, 184–193
traditional set-based solution, 183–184

paging
Paging T-SQL solution, 143–145
tiling versus, 64

parallelism
backward scans and, 105
Packing Intervals T-SQL solution, 189
parallel APPLY technique, 112–115, 121–122, 127,

152
Top-N-per-Group T-SQL solution, 152

Parallelism (Distribute Streams) exchange
iterator, 115

Parallelism (Gather Streams) exchange iterator, 114
Parallelism (Redistribute Streams) exchange

iterator, 114
PARTITION BY clause

about, 20
usage example, 36

partitioning
about, 13–14, 20–21
aggregate functions and, 13–14, 34–36
distribution functions and, 68
offset functions and, 74
Packing Intervals T-SQL solution, 181
parallel APPLY technique and, 113
POC concept and, 104–106
ranking functions and, 58
Running Totals T-SQL solution, 160–161

PERCENTILE_CONT function
about, 72–73
distribution-function form of, 68
Median T-SQL solution, 202
optimizing, 129–131
ordered-set-function form of, 90–94
SQL Server support, 4

PERCENTILE_DISC function
about, 71–72
distribution-function form of, 68
optimizing, 129–132
ordered-set-function form of, 90–92
SQL Server support, 4

percentiles (inverse distribution functions).
See also PERCENTILE_COUNT function;
PERCENTILE_DISC function

about, 68, 71–73
Median T-SQL solution, 202–204
optimization of, 129–132
as ordered set functions, 81, 90–94

PERCENT_RANK function
about, 4, 68–69
hypothetical-set-function form of, 82, 85–87, 89
optimizing, 128–129

 Running Totals solution (T-SQL)

 Index 217

performance benchmarks
Max Concurrent Intervals T-SQL solution, 180
Running Totals T-SQL solution, 169–171

Pivoting solution (T-SQL), 148–151
POC indexes

about, 104–105
Running Totals T-SQL solution, 161
Sort iterator and, 109
Top-N-per-Group T-SQL solution, 151–152

Q
QUALIFY clause, 30
Query Options dialog box, 136

R
RANGE clause

about, 22
aggregate functions and, 37
CURRENT ROW option, 43–47, 77
UNBOUNDED option, 43–46, 77
window frame extent part and, 43–47
window frame units part and, 120

rank distribution functions. See also CUME_DIST
function; PERCENT_RANK function

about, 68–71, 90
as hypothetical set functions, 82–90
optimization of, 128–129

RANK function
about, 4, 57, 66–67
calculating percentile rank, 70
determinism and, 67
hypothetical-set-function form of, 82–84, 87–89
Mode T-SQL solution, 156
optimizing, 111–112
ordering element and, 21
partitioning element and, 20
Removing Duplicates T-SQL solution, 147
usage example, 3, 9, 28

ranking functions. See also DENSE_RANK function;
NTILE function; RANK function; ROW_
NUMBER function

about, 4, 57
as hypothetical set functions, 82–90
optimization of, 108–112
ordering and, 21, 58, 109

partitioning and, 58
SQL Server support, 4, 57
SQL standard support, 3

RDBMSs (relational database management
systems), 6

relational database management systems
(RDBMSs), 6

relational model
about, 6–7
ordering and, 8

Removing Duplicates solution (T-SQL), 145–148
Rincón, Eladio, 113
ROW_NUMBER function

about, 4, 57, 58–63
COUNT function and, 59–60
determinism and, 60–64
distinct aggregates and, 52
Gaps and Islands T-SQL solution, 197
islands problem, 18–19
Max Concurrent Intervals T-SQL solution, 178–

180
Median T-SQL solution, 202
Mode T-SQL solution, 154–156
modification statements and, 29
optimizing, 109–110
Packing Intervals T-SQL solution, 184
Paging T-SQL solution, 143–145
Pivoting T-SQL solution, 149
Removing Duplicates T-SQL solution, 145–147
Running Totals T-SQL solution, 166
Sequences of Keys T-SQL solution, 139, 141–142
Sorting Hierarchies T-SQL solution, 206–210
Top-N-per-Group T-SQL solution, 152
usage example, 27, 92–93
Virtual Auxiliary Table of Numbers T-SQL

solution, 135
row pattern recognition, 51
ROWS clause

about, 22
converting RANGE option to, 120–121
CURRENT ROW option, 37–38
UNBOUNDED FOLLOWING option, 37–38, 77
UNBOUNDED PRECEDING option, 37–38
window frame extent part and, 37–43

Running Totals solution (T-SQL)
about, 158–160
CLR-based solution, 164–166
cursor-based solution, 162–164
multirow UPDATE with variables, 167–169

Running Totals solution (T-SQL)

218 Index

Running Totals solution (T-SQL), continued
nested iterations, 166–167
performance benchmark, 169–171
set-based solutions using subqueries or

joins, 161–162
set-based solution using window functions, 160–

161

S
scheduling applications, 137
Schulz, Brad, 107
Segment iterator

computing cumulative values, 127
computing ranking functions, 108
distribution functions and, 129–130
expanding all frame rows, 123
fast-track case, 120
parallel APPLY technique, 114

SELECT clause
CTE filtering example, 28–30
logical query processing and, 23–25
modification statements and, 29
processing order, 54
Removing Duplicates T-SQL solution, 146–147
Running Totals T-SQL solution, 169
window functions support, 23, 25–28

Sequence Project iterator
computing cumulative values, 127
computing ranking functions, 108, 111, 112
distribution functions and, 129–130
expanding all frame rows, 123
fast-track case, 120
parallel APPLY technique, 114

sequences
about, 62
Date and Time Values T-SQL solution, 137–138
Gaps and Islands T-SQL solution, 193–201
Sequences of Date and Time Values T-SQL

solution, 137–138
Sequences of Keys T-SQL solution, 138–142

set-based programming
iterative/cursor versus, 6–10
Max Concurrent Intervals T-SQL solution, 173–

175
Packing Intervals T-SQL solution, 183–184
Running Totals T-SQL solution, 158–162

sets. See also ordered set functions
about, 7
logical query processing and, 23
ordering elements of, 7, 81

Sorting Hierarchies solution (T-SQL), 206–210
Sort iterator

about, 104–105
parallel APPLY technique and, 114
POC index and, 109

sort order (ordering)
about, 21–22
aggregate functions and, 22, 36–49, 119–128
based on constants, 109
distribution functions and, 68
elements of sets and, 7
framing and, 36
logical query processing and, 25
Max Concurrent Intervals T-SQL solution, 176
Median T-SQL solution, 203–204
offset functions and, 74, 119–128
POC concept and, 104–106
RANK function, 3
ranking functions and, 21, 58, 109
Running Totals T-SQL solution, 161
Sorting Hierarchies T-SQL solution, 206–210
total ordering, 15

spreading element (pivoting technique), 148
SQL standard

about, 3
additional resources, 3
all-at-once concept, 26
optimization and, 5
relational model and, 6
row pattern recognition, 51

SQL:1999 standard, 3
SQL:2003 standard, 3
SQL:2008 standard

filtering and, 50
window functions support, 3

SQL:2011 standard, 3
SQLDataReader class, 164, 166
SQL Server (Microsoft)

hypothetical set functions and, 84–86
logical query processing and, 23
optimization and, 5, 14
ordered set functions and, 81
ordering element support, 21
parallelism considerations, 112–113
StreamInsight feature, 51

 Table Spool iterator

 Index 219

TOP option, 134–136, 148, 151–153
WINDOW clause and, 31–32

SQL Server 2005 (Microsoft)
aggregate functions support, 4
ranking functions support, 4, 57
window functions support, 1

SQL Server 2012 (Microsoft)
aggregate functions support, 4
DISTINCT option and, 51
distribution functions support, 4, 68
FILTER clause and, 49
hypothetical set functions and, 84, 87
indexing support, 108
logical query processing and, 23–24
NEXT VALUE FOR function and, 62
OFFSET/FETCH option, 134–136, 144–145,

151–153
offset functions support, 4, 74, 76, 78, 94
RANGE option, 45
rank distribution functions and, 70
window frame-exclusion option, 22, 47
window functions support, 1

SQL Server Management Studio (SSMS), 126
SQL windowing

about, 1
background of window functions, 2–15
elements of window functions, 19
QUALIFY clause and, 30
query elements supporting window

functions, 23–30
reusing window definitions, 31–32
solutions using window functions, 15–19

SSMS (SQL Server Management Studio), 126
STATISTICS IO option, 121, 125–126
STDEV function

computing cumulative values, 126
expanding all frame rows, 122

STDEVP function
computing cumulative values, 126
expanding all frame rows, 122

stored procedures
Running Totals T-SQL solution, 164–165
Sequences of Keys T-SQL solution, 140

Stream Aggregate iterator
about, 119
computing cumulative values, 127
distribution functions and, 129, 131–132
expanding all frame rows, 123
fast-track case, 120
MAX function and, 117

string concatenation
carry-along-sort technique and, 153
concatenation operator (+), 150
CONCAT function, 150
ordered set functions and, 81, 98–99

STUFF function, 99
subqueries

islands problem, 16–17
Running Totals T-SQL solution, 161–162, 170
as window function alternative, 12–14

SUM function
about, 3
computing cumulative values, 126–127
expanding all frame rows, 122–123
framing element and, 22
grouped aggregates and, 54–55
optimizing, 132
Packing Intervals T-SQL solution, 191–192
RANGE option, 22
ROWS option, 22
Running Totals T-SQL solution, 160

surrogate keys, 141

T
tables

applying operators, 14
cross joining, 133–136
Gaps and Islands T-SQL solution, 193–201
logical query processing and, 23
Max Concurrent Intervals T-SQL solution, 171–

180
Median T-SQL solution, 202–204
Mode T-SQL solution, 154–158
modification statements and, 29
Packing Intervals T-SQL solution, 181–193
Pivoting T-SQL solution, 148–151
Removing Duplicates T-SQL solution, 145–148
Running Totals T-SQL solution, 158–171
Sequences of Keys T-SQL solution, 138–142
sets and, 7
Sorting Hierarchies T-SQL solution, 206–210
Top-N-per-Group T-SQL solution, 151–154, 157
Virtual Auxiliary Table of Numbers T-SQL

solution, 133–136
Table Spool iterator

distribution functions and, 130
ranking functions and, 111

threads

220 Index

threads
DOP considerations, 114
moving data between, 114

tiling versus paging, 64
time and date values

Gaps and Islands T-SQL solution, 193–201
Sequences of Date and Time Values T-SQL

solution, 137–138
Top-N-per-Group solution (T-SQL), 151–154, 157
TOP option

Removing Duplicates T-SQL solution, 148
Top-N-per-Group T-SQL solution, 151–153
Virtual Auxiliary Table of Numbers T-SQL

solution, 134–136
total ordering, 15
totals, calculating. See Running Totals solution

(T-SQL)
T-SQL

approach to querying tasks, 6–10
Conditional Aggregate solution, 204–206
Gaps and Islands solution, 193–201
islands problem, 17–18
Max Concurrent Intervals solution, 171–180
Median solution, 202–204
Mode solution, 154–158
modification statements and, 29
Packing Intervals solution, 181–193
Paging solution, 143–145
Pivoting solution, 148–151
Removing Duplicates solution, 145–148
Running Totals solution, 158–171
Sequences of Date and Time Values

solution, 137–138
Sequences of Keys solution, 138–142
Sorting Hierarchies solution, 206–210
Top-N-per-Group solution, 151–154, 157
Virtual Auxiliary Table of Numbers solution, 133–

136

U
UDAs (user-defined aggregates), 81
UNBOUNDED option

RANGE clause, 43–46, 77
ROWS clause, 37–38, 77

UNBOUNDED FOLLOWING option, 37–38, 77
UNBOUNDED PRECEDING option

RANGE clause, 77
ROWS clause, 37–38

Running Totals T-SQL solution, 160
window frame extent part, 119–123

UPDATE clause
modification statements and, 29
Running Totals T-SQL solution, 167–169
Sequences of Keys T-SQL solution, 139

user-defined aggregates (UDAs), 81

V
VAR function

computing cumulative values, 126
expanding all frame rows, 122

VARP function
computing cumulative values, 126
expanding all frame rows, 122

VertiPaq technology, 108
Virtual Auxiliary Table of Numbers solution

(T-SQL), 133–136

W
WHERE clause

filtering and, 117
processing order, 54
Running Totals T-SQL solution, 161
usage example, 27

window
about, 2
defined by OVER clause, 3
frame-exclusion option, 22

WINDOW clause, 31–32
window-frame-exclusion option, 22, 37, 47–49
window frame extent part

about, 37
RANGE clause and, 43–47
ROWS clause and, 37–43
UNBOUNDED PRECEDING option, 119–122

window frame units part
about, 37
RANGE clause, 120

window functions. See also specific window functions
about, 1–2
background of, 2–5
drawbacks of alternatives to, 11–15
elements of, 19
Max Concurrent Intervals T-SQL solution, 178–

180

 WITHIn gROUP clause

 Index 221

optimization of, 5
Packing Intervals T-SQL solution, 184–193
QUALIFY clause and, 30
query elements supporting, 23–30
reusing window definitions, 31–32
Running Totals T-SQL solution, 160–161
solutions using, 15–19
T-SQL approach to, 6–10

windowing (SQL)
about, 1
background of window functions, 2–15
elements of window functions, 19

QUALIFY clause and, 30
query elements supporting window

functions, 23–30
reusing window definitions, 31–32
solutions using window functions, 15–19

Window Spool iterator
computing cumulative values, 127
distribution functions and, 129
expanding all frame rows, 122–124
fast-track case, 119–120

window_spool_ondisk_warning extended event, 126
WITHIN GROUP clause, 68, 71

about the author

ITzIK BEn-gAn is a mentor with and co-founder of SolidQ. A SQL Server
Microsoft MVP since 1999, Itzik has taught numerous training events around
the world focused on T-SQL querying, query tuning, and programming. Itzik
is the author of several books about T-SQL. He has written many articles for
SQL Server Pro as well as articles and white papers for MSDN and The SolidQ
Journal. Itzik’s speaking engagements include Tech-Ed, SQL PASS, SQL Server

Connections, presentations to various SQL Server user groups, and SolidQ events. Itzik
is a subject-matter expert within SolidQ for its T-SQL related activities. He authored
SolidQ’s Advanced T-SQL and T-SQL Fundamentals courses and delivers them regularly
worldwide.

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs —what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

	Foreword
	Introduction
	SQL Windowing
	Background of Window Functions
	Window Functions Described
	Set-Based vs. Iterative/Cursor Programming
	Drawbacks of Alternatives to Window Functions

	A Glimpse of Solutions Using Window Functions
	Elements of Window Functions
	Partitioning
	Ordering
	Framing

	Query Elements Supporting Window Functions
	Logical Query Processing
	Clauses Supporting Window Functions
	Circumventing the Limitations

	Potential for Additional Filters
	Reuse of Window Definitions
	Summary

	Index

