
 

  

 
 

 
 

 

 

  
 

  
   
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
 

 

 

 

 

 
 
 

 

 
 

Training
Guide

Designed to help enterprise administrators develop real-world, 
job-role-specific skills—this Training Guide focuses on deploying 
and managing core infrastructure services in Windows Server 2012. 
Build hands-on expertise through a series of lessons, exercises, 
and suggested practices—and help maximize your performance 
on the job.

This Microsoft Training Guide:
• Provides in-depth, hands-on training you take at your own pace
• Focuses on job-role-specific expertise for deploying and 

managing Windows Server 2012 core services
• Creates a foundation of skills which, along with on-the-job 

experience, can be measured by Microsoft Certification exams 
such as 70-410

Sharpen your skills. Increase your expertise.
• Plan a migration to Windows Server 2012
• Deploy servers and domain controllers
• Administer Active Directory® and enable advanced features
• Ensure DHCP availability and implement DNSSEC
• Perform network administration 
• Deploy and manage Hyper-V® hosts and virtual machines
• Deploy and manage Storage Spaces and iSCSI storage
• Deploy and manage print servers
• Plan, configure, and manage Group Policy
• Automate administrative tasks with Windows PowerShell™

Programming in HTML5 with
JavaScript and CSS3 Program

m
ing in H

TM
L5 w

ith
JavaScript and CSS3

About You
This Training Guide will be most useful 
to IT professionals who have at least 
three years of experience administering 
previous versions of Windows Server in 
midsize to large environments. 

About the Author
Mitch Tulloch is a widely recognized 
expert on Windows administration and 
has been awarded Microsoft® MVP 
status for his contributions supporting 
those who deploy and use Microsoft 
platforms, products, and solutions. He 
is the author of Introducing Windows 
Server 2012 and the upcoming 
Windows Server 2012 Virtualization 
Inside Out.

About the Practices
For most practices, we recommend 
using a Hyper-V virtualized 
environment. Some practices will 
require physical servers. 

For system requirements, see the 
Introduction.

Preparing for 
Microsoft Certification?
Get the official exam-prep guide 
for Exam 70-410.

Exam Ref 70-410: Installing and 
Configuring Windows Server 2012
ISBN 9780735673168

Glenn Johnson
microsoft.com/mspress

Certification/
Windows Server0 000000 000000

ISBN: 978-0-7356-xxxx-x

9 0 0 0 0 U.S.A. $39.99
Canada $41.99

[Recommended ]

spine = 1.28”

  

Programming
in HTML5 with 
JavaScript and
CSS3 

Glenn Johnson 



PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2013 by Glenn Johnson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any 
means without the written permission of the publisher.

Library of Congress Control Number: 2013933428
ISBN: 978-0-7356-7438-7

Printed and bound in the United States of America.

Second Printing

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related 
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of 
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty 
/Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of 
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and 
events depicted herein are fictitious. No association with any real company, organization, product, domain name, 
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without 
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or 
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by 
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave 
Project Editor: Carol Dillingham 
Editorial Production: nSight, Inc. 
Technical Reviewer: Pierce Bizzaca; Technical Review services provided by Content Master, a member of 
CM Group, Ltd. 
Copyeditor: Kerin Forsyth 
Indexer: Lucie Haskins 
Cover: Twist Creative • Seattle

[2013-08-09]



Contents at a glance

Introduction xxi

CHAPTER 1 Getting started with Visual Studio 2012 and Blend  
 for Visual Studio 2012 1

CHAPTER 2 Getting started with HTML5 29

CHAPTER 3 Getting started with JavaScript 65

CHAPTER 4 Getting started with CSS3 137

CHAPTER 5 More HTML5 205

CHAPTER 6 Essential JavaScript and jQuery 261

CHAPTER 7 Working with forms 311

CHAPTER 8 Websites and services 341

CHAPTER 9 Asynchronous operations 393

CHAPTER 10 WebSocket communications 415

CHAPTER 11 HTML5 supports multimedia 437

CHAPTER 12 Drawing with HTML5 459

CHAPTER 13 Drag and drop 507

CHAPTER 14 Making your HTML location-aware 539

CHAPTER 15 Local data with web storage 555

CHAPTER 16 Offline web applications 581

Index 621





v

Contents 

 Introduction xix
Backward compatibility and cross-browser compatibility xx

System requirements xx

Practice exercises xxi

Acknowledgments xxi

Errata and book support xxi

We want to hear from you xxii

Stay in touch xxii

Chapter 1 Getting started with Visual Studio 2012 and Blend  
for Visual Studio 2012 4

Lesson 1: Visual Studio 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Visual Studio 2012 editions 5

Visual Studio 2012 support for HTML5 6

CSS3 support 7

JavaScript support 7

Exploring Visual Studio Express 2012 for Windows 8 8

Exploring Visual Studio Express 2012 for Web 12

Lesson summary 14

Lesson review 15

Lesson 2: Blend for Visual Studio 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Exploring Blend 16

Lesson summary 22

Lesson review 23

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/



vi Contents

Exercise 1: Hello World with Visual Studio Express 2012  
for Windows 8 24

Exercise 2: Hello World with Visual Studio Express 2012  
for Web 25

Exercise 3: Hello World with Blend 27

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 2 Getting started with HTML5 32
Lesson 1: Introducing HTML5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Understanding HTML, XHTML, and HTML5 33

Introducing semantic markup 34

Working with elements 35

Creating an HTML document 43

Lesson summary 45

Lesson review 46

Lesson 2: Embedding content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Embedding HTML by using inline frames 47

Working with hyperlinks 49

Adding images to your HTML document 50

Embedding plug-in content 53

Lesson summary 55

Lesson review 56

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Exercise 1: Create a simple website by using Visual Studio  
Express for Web 56

Exercise 2: Create additional pages 59

Exercise 3: Embedding Content 61

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Chapter 3 Getting started with JavaScript 65
Lesson 1: Introducing JavaScript  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Understanding JavaScript 66



viiContents

Understanding the role of data 67

Using statements 71

Working with functions 73

Scoping variables 77

Nesting functions and nested local variable scoping 78

Converting to a different type 78

Conditional programming 80

Implementing code loops 84

Handling errors 87

Lesson summary 88

Lesson review 88

Lesson 2: Writing, testing, and debugging JavaScript . . . . . . . . . . . . . . . . . 89

Hello World from JavaScript 90

Using the script tag 100

Handling browsers that don’t support JavaScript 101

Inline JavaScript vs. external JavaScript files 102

Placing your script elements 102

Using the Visual Studio .NET JavaScript debugger 103

Lesson summary 107

Lesson review 107

Lesson 3: Working with objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Working with arrays 108

Accessing DOM objects 112

Lesson summary 120

Lesson review  121

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Exercise 1: Create a calculator webpage 121

Exercise 2: Add the QUnit testing framework 123

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Chapter 4 Getting started with CSS3 137
Lesson 1: Introducing CSS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Defining and applying a style 139



viii Contents

Adding comments within a style sheet 139

Creating an inline style 140

Creating an embedded style 140

Creating an external style sheet 141

Lesson summary 144

Lesson review 145

Lesson 2: Understanding selectors, specificity, and cascading . . . . . . . . . 145

Defining selectors 146

Understanding the browser’s built-in styles 159

Extending browser styles with user styles 159

Working with important styles 159

How do styles cascade? 160

Using specificity 161

Understanding inheritance 162

Lesson summary 163

Lesson review 164

Lesson 3: Working with CSS properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Working with CSS colors 166

Working with text 173

Working with the CSS box model 175

Setting the border, padding, and margin properties 176

Positioning <div> elements 178

Using the float property 186

Using the clear property 189

Using the box-sizing property 190

Centering content in the browser window 193

Lesson summary 193

Lesson review 194

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Exercise 1: Add a style sheet to the calculator project 195

Exercise 2: Clean up the web calculator 197

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202



ixContents

Chapter 5 More HTML5 205
Lesson 1: Thinking HTML5 semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Why semantic markup? 206

Browser support for HTML5 206

Creating semantic HTML5 documents 207

Creating an HTML5 layout container 207

Controlling format by using the <div> element  213

Adding thematic breaks 213

Annotating content 213

Working with lists 221

Lesson summary 228

Lesson review 229

Lesson 2: Working with tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Table misuse 230

Creating a basic table 230

Adding header cells 231

Styling the table headers 232

Declaring the header, footer, and table body 233

Creating irregular tables 238

Adding a caption to a table 241

Styling columns 241

Lesson summary 242

Lesson review 243

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Exercise 1: Add a page layout to the calculator project 244

Exercise 2: Add styles to the calculator layout 246

Exercise 3: Cleaning up the web calculator 252

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Chapter 6 Essential JavaScript and jQuery 261
Lesson 1: Creating JavaScript objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Using object-oriented terminology 262



x Contents

Understanding the JavaScript object-oriented caveat 263

Using the JavaScript object literal pattern 263

Creating dynamic objects by using the factory pattern 265

Creating a class 266

Using the prototype property 271

Debating the prototype/private compromise 274

Implementing namespaces 276

Implementing inheritance 278

Lesson summary 283

Lesson review 284

Lesson 2: Working with jQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

Introducing jQuery 285

Getting started with jQuery 286

Using jQuery 287

Enabling JavaScript and jQuery IntelliSense 291

Creating a jQuery wrapper for a DOM element reference 294

Adding event listeners 295

Triggering event handlers 295

Initializing code when the browser is ready 295

Lesson summary 296

Lesson review 296

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Exercise 1: Create a calculator object 297

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

Chapter 7 Working with forms 311
Lesson 1: Understanding forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Understanding web communications 312

Submitting form data to the web server 316

Sending data when submitting a form 316

Using the <label> element 318

Specifying the parent forms 319

Triggering the form submission 319



xiContents

Serializing the form 321

Using the autofocus attribute 321

Using data submission constraints 322

Using POST or GET 322

Lesson summary 323

Lesson review 324

Lesson 2: Form validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

Required validation 325

Validating URL input 327

Validating numbers and ranges 329

Styling the validations 330

Lesson summary 330

Lesson review 330

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Exercise 1: Create a Contact Us form 331

Exercise 2: Add validation to the Contact Us form 335

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338

Chapter 8 Websites and services 341
Lesson 1: Getting started with Node.js . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Installing Node.js 342

Creating Hello World from Node.js 342

Creating a Node.js module 344

Creating a Node.js package 345

Fast forward to express 354

Starting with express 354

Lesson summary 363

Lesson review 363

Lesson 2: Working with web services  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Introducing web services 364

Creating a RESTful web service by using Node.js 366

Using AJAX to call a web service 368

Cross-origin resource sharing 380



xii Contents

Lesson summary 381

Lesson review 382

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

Exercise 1: Create a website to receive data 382

Exercise 2: Create a web service to receive data 386

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

Chapter 9 Asynchronous operations 393
Lesson 1: Asynchronous operations using jQuery and WinJS  . . . . . . . . . 393

Using a promise object 394

Creating jQuery promise objects by using $.Deferred() 395

Handling failure 397

Handling completion cleanup 397

Subscribing to a completed promise object 398

Chaining promises by using the pipe method 398

Parallel execution using $.when().then() 400

Updating progress 400

Conditional asynchronous calls 401

Lesson summary 402

Lesson review 403

Lesson 2: Working with web workers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .404

Web worker details 404

Lesson summary 405

Lesson review 406

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .406

Exercise 1: Implement asynchronous code execution 406

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Chapter 10 WebSocket communications 415
Lesson 1: Communicating by using WebSocket . . . . . . . . . . . . . . . . . . . . . 415

Understanding the WebSocket protocol 416

Defining the WebSocket API 416



xiiiContents

Implementing the WebSocket object 417

Dealing with timeouts 420

Handling connection disconnects 422

Dealing with web farms 422

Using WebSocket libraries 423

Lesson summary 424

Lesson review 424

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425

Exercise 1: Create a chat server 425

Exercise 2: Create the chat client 429

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436

Chapter 11 HTML5 supports multimedia 437
Lesson 1: Playing video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Video formats 438

Implementing the <video> element 438

Setting the source 439

Configuring the <video> element 441

Accessing tracks 441

Lesson summary 442

Lesson review 443

Lesson 2: Playing audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Audio formats 444

The <audio> element 444

Setting the source 445

Configuring the <audio> element 445

Lesson summary 446

Lesson review 446

Lesson 3: Using the HTMLMediaElement object . . . . . . . . . . . . . . . . . . . . . 447

Understanding the HTMLMediaElement methods 447

Using HTMLMediaElement properties 447

Subscribing to HTMLMediaElement events 449

Using media control 450



xiv Contents

Lesson summary 451

Lesson review 451

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

Exercise 1: Create a webpage that displays video 452

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

Chapter 12 Drawing with HTML5 459
Lesson 1: Drawing by using the <canvas> element . . . . . . . . . . . . . . . . . . 460

The <canvas> element reference 460

CanvasRenderingContext2D context object reference 460

Implementing the canvas 462

Drawing rectangles 463

Configuring the drawing state 465

Saving and restoring the drawing state 474

Drawing by using paths 475

Drawing text 488

Drawing with images 490

Lesson summary 494

Lesson review 495

Lesson 2: Using scalable vector graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . 495

Using the <svg> element 496

Displaying SVG files by using the <img> element 499

Lesson summary 501

Lesson review 502

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502

Exercise 1: Create a webpage by using a canvas 502

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506

Chapter 13 Drag and drop 507
Lesson 1: Dragging and dropping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Dragging 509

Understanding drag events 510



xvContents

Dropping 511

Using the DataTransfer object 513

Lesson summary 516

Lesson review 516

Lesson 2: Dragging and dropping files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

Using the FileList and File objects 517

Lesson summary 521

Lesson review 521

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Exercise 1: Create a number scramble game 522

Exercise 2: Add drag and drop to the game 526

Exercise 3: Add scramble and winner check 530

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

Chapter 14 Making your HTML location-aware 539
Lesson 1: Basic positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .540

Geolocation object reference 540

Retrieving the current position 541

Handling errors 543

Addressing privacy 544

Specifying options 544

Lesson summary 545

Lesson review 546

Lesson 2: Monitored positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .546

Where are you now? How about now? 546

Calculating distance between samples 548

Lesson summary 549

Lesson review 549

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 550

Exercise 1: Map your current positions 550

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 554



xvi Contents

Chapter 15 Local data with web storage 555
Lesson 1: Introducing web storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555

Understanding cookies 556

Using the jQuery cookie plug-in 556

Working with cookie limitations 557

Alternatives to cookies prior to HTML5 557

Understanding HTML5 storage 558

Exploring localStorage 560

Using short-term persistence with sessionStorage 562

Anticipating potential performance pitfalls 563

Lesson summary 564

Lesson review 564

Lesson 2: Handling storage events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

Sending notifications only to other windows 566

Using the StorageEvent object reference 566

Subscribing to events 567

Using events with sessionStorage 568

Lesson summary 568

Lesson review 568

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Exercise 1: Create a contact book by using localStorage 569

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

Lesson 1 579

Lesson 2 580

Chapter 16  Offline web applications 581
Lesson 1: Working with Web SQL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582

Considering the questionable longevity of Web SQL 582

Creating and opening the database 582

Performing schema updates 583

Using transactions 584



xviiContents

Lesson summary 588

Lesson review 589

Lesson 2: Working with IndexedDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

Using browser-specific code 590

Creating and opening the database 590

Using object stores 591

Using transactions 593

Inserting a new record 594

Updating an existing record 594

Deleting a record 595

Retrieving a record 595

Understanding cursors 596

Dropping a database 599

Lesson summary 599

Lesson review 600

Lesson 3: Working with the FileSystem API . . . . . . . . . . . . . . . . . . . . . . . . .600

Assessing browser support 601

Opening the file system 601

Creating and opening a file 602

Writing to a file 602

Reading a file 603

Deleting a file 604

Creating and opening a directory 604

Writing a file to a directory 605

Deleting a directory 605

Lesson summary 606

Lesson review 606

Lesson 4: Working with the offline application HTTP cache . . . . . . . . . . . 607

Browser support 608

The cache manifest file 608

Updating the cache 609

Understanding events 610



xviii Contents

Lesson summary 610

Lesson review 611

Practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

Exercise 1: Modify a contact book to use IndexedDB 611

Suggested practice exercises  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

Index 621

What do you think of this book? We want to hear from you! 
Microsoft is interested in hearing your feedback so we can continually improve our  
books and learning resources for you. To participate in a brief online survey, please visit: 

www.microsoft.com/learning/booksurvey/



xix

Introduction

This training guide is designed for information technology (IT) professionals who develop 
or plan to develop HTML documents such as webpages or Windows Store applications. It 

is assumed that, before you begin using this guide, you are familiar with web development 
and common Internet technologies.

This book covers some of the topics and skills that are the subject of the Microsoft cer-
tification exam 70-480. If you are using this book to complement your study materials, you 
might find this information useful. Note that this book is designed to help you in the job role; 
it might not cover all exam topics. If you are preparing for the exam, you should use addi-
tional study materials to help bolster your real-world experience. For your reference, a map-
ping of the topics in this book to the exam objectives is included in the back of the book.

By using this training guide, you will learn how to do the following.

■■ Create a project using Visual Studio Express 2012 for Web.

■■ Create a project using Blend for Visual Studio 2012.

■■ Create a project using Visual Studio Express 2012 for Windows 8.

■■ Create an HTML document using semantic markup.

■■ Implement JavaScript functionality with your HTML documents.

■■ Use test-driven development techniques for writing JavaScript code.

■■ Create Cascading Style Sheets (CSS) that visually format your HTML document.

■■ Create HTML tables.

■■ Create JavaScript objects.

■■ Use jQuery to simplify JavaScript programming.

■■ Create HTML forms with validation.

■■ Create a Node.js website and web service.

■■ Call web services from JavaScript.

■■ Perform asynchronous JavaScript operations.

■■ Perform WebSocket communications.

■■ Play audio and video on a webpage.

■■ Draw with an HTML5 canvas.

■■ Use SVG image files.

■■ Perform drag and drop operations.

■■ Make your HTML location aware.

■■ Persist data on the browser client.



xx Introduction

Backward compatibility and cross-browser compatibility
This book does not attempt to cover every difference between every version of every 
browser. Such a comprehensive discussion could easily yield a library of books.

Most of the code in this book is written using Internet Explorer 10, which is installed with 
Windows 8. In addition, many but not all the code examples were tested using the following 
browsers.

■■ Firefox 17.0.1

■■ Google Chrome 23.0.1271.97 m

■■ Opera 12.11

■■ Apple Safari 5.1.7

In most cases, if the other browsers were not compatible, there is a note stating so. This is 
especially true in the last chapters because web storage is still relatively new, and the require-
ments are still fluid.

The best way to see which features are available among browsers is to visit a website that 
is updated when new browser versions are released and HTML5 features are updated. The 
website http://caniuse.com is particularly good.

System requirements
The following are the minimum system requirements your computer needs to meet to com-
plete the practice exercises in this book.

■■ Windows 8 or newer. If you want to develop Windows Store applications, you need 
Windows 8 on your development computer.

Hardware requirements
This section presents the hardware requirements for using Visual Studio 2012.

■■ 1.6 GHz or faster processor

■■ 1 GB of RAM (more is always recommended)

■■ 10 GB (NTFS) of available hard disk space

■■ 5400 RPM hard drive

■■ DirectX 9–capable video card running at 1024 × 768 or higher display resolution.

■■ Internet connectivity



xxiIntroduction

Software requirements
The following software is required to complete the practice exercises.

■■ Visual Studio 2012 Professional, Visual Studio 2012 Premium, or Visual Studio 2012 
Ultimate. You must pay for these versions, but in lieu of one of these versions, you can 
install the following free express versions.

■■ Visual Studio Express 2012 for Web. Available from http://www.microsoft.com 
/visualstudio/eng/downloads#d-express-web.

■■ Visual Studio Express 2012 for Windows 8. This installation also installs Blend for 
Visual Studio 2012. Available from http://www.microsoft.com/visualstudio/eng 
/downloads#d-express-web.

Practice exercises
This book features practices exercises to reinforce the topics you’ve learned. These  
exercises are organized by chapter, and you can download them from http://aka.ms 
/TGProgHTML5/files.

Acknowledgments
Thanks go to the following people for making this book a reality. 

■■ To Carol Dillingham for your constructive feedback throughout the entire process of 
writing this book. Thanks for also having patience while the winter holiday months 
were passing, and my desire and ability to write was constantly interrupted. 

■■ To Devon Musgrave for providing me the opportunity to write this book. 

■■ To Kerin Forsyth for your hard work in making this book consistent with other 
Microsoft Press books and helping me with the delivery of this book.

■■ To Pierce Bizzaca for your technical reviewing skills. 

To all the other editors and artists who played a role in getting my book to the public, 
thank you for your hard work and thanks for making this book venture a positive experience 
for me.

Errata and book support
We’ve made every effort to ensure the accuracy of this book and its companion content. 
Any errors that have been reported since this book was published are listed on our Microsoft 
Press site at Oreilly.com: 

http://aka.ms/TGProgHTML5/errata

http://aka.ms/TGProgHTML5/files
http://aka.ms/TGProgHTML5/files


xxii Introduction

If you find an error that is not already listed, you can report it to us through the 
same page.

If you need additional support, send an email to Microsoft Press Book Support at  
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the 
 preceding addresses.

We want to hear from you
At Microsoft Press, your satisfaction is our top priority and your feedback our most valuable 
asset. Please tell us what you think of this book at: 

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in 
advance for your input!

Stay in touch
Let’s keep the conversation going! We’re on Twitter at http://twitter.com/MicrosoftPress.



   205

C H A P T E R  5

More HTML5

The previous chapters covered a lot of material you need to know. Much, but not all, of 
the content in the previous chapters existed before the HTML5 technologies came to be. 

This chapter provides a transition, moving you from old to new topics. Lesson 1, “Thinking 
HTML5 semantics,” discusses many aspects of HTML5 semantics that are primarily new top-
ics. Lesson 2, “Working with tables,” explains tables, which is an older but relevant topic, and 
describes added features in HTML5.

Lessons in this chapter: 
■■ Lesson 1: Thinking HTML5 semantics 205

■■ Lesson 2: Working with tables 229

Before you begin

To complete this chapter, you must have some understanding of web development. This 
chapter requires the hardware and software listed in the “System requirements” section in 
the book’s Introduction.

Lesson 1: Thinking HTML5 semantics

The previous chapter covered CSS positioning; all the examples used the <div> element. 
The <div> element has been the preferred element to use for positioning content when 
creating a page layout. 

Many developers have also used the <table> element, but that element is much more 
difficult to use, especially to maintain a website. Lesson 2 explains the <table> element but 
doesn’t use a <table> element for page layout.

This lesson provides a different approach to creating a page layout; it covers semantic 
elements and explains why you should use them.



 206 CHAPTER 5 More HTML5

After this lesson, you will be able to:
■■ Create a semantic layout.

■■ Create an HTML5 document.

■■ Annotate content.

■■ Display various forms of semantic content.

Estimated lesson time: 30 minutes

Why semantic markup?
One of the problems with using <div> and <span> elements is that they have little meaning 
other than “I need to do something with this content.” For <div> elements, you typically need 
to position the content on the page. For <span> elements, you need to apply special format-
ting to the content.

You might be wondering what kind of meaning the <div> and <span> elements can 
provide. For <div> elements, it might be better to have an element that represents the page 
header and can be positioned. You might want a different element that represents the page 
footer and can be positioned.

Are your users reading your HTML source? If the <div> element is the all-purpose tool to 
position elements, why use these new semantic elements?

These are good questions and thoughts. In fact, if you search the web for semantic 
markup, you’ll see plenty of discussions, some quite heated, about this topic.

Developers have been using <div> elements for page layout, and the developer usually 
provides the meaning of each <div> element based on its id or CSS class. The W3C analyzed 
thousands of webpages and found the most common id and class names. Rather than start 
over, the W3C made these names into new elements. Obvious examples are the <header> 
and <footer> elements.

Browser support for HTML5
Your users typically don’t read your HTML source when they browse to your website, but 
many machines are reading your HTML source with the goal of interpreting your webpage. 
Web crawlers are constantly surfing the Internet, reading webpages and building indexed 
searchable content that can be used to find your website. Many people have Nonvisual 
Desktop Access (NVDA) devices, which provide an alternate means of viewing, reading, and 
processing webpages. Some NVDA devices implement voice synthesis to read webpages to 
visually impaired people; others provide a Braille-like interface so the user can read your web-
pages by touch, as shown in Figure 5-1.



 Lesson 1: Thinking HTML5 semantics CHAPTER 5 207

NVDA devices need your help to interpret your webpage content properly. They need you 
to use meaningful HTML tags that define the purpose of each element’s contents. Doing so 
helps crawlers produce better matches to search queries, and NVDA devices that read your 
webpages to users can provide a more meaningful experience. For more information, visit 
http://www.nvdaproject.org/.

FIGURE 5-1 The refreshable Braille display

Creating semantic HTML5 documents
Now that you understand the importance of using semantic markup, you might decide that 
you’ll never use a <div> or <span> element again. However, you will come across content 
that needs to be styled but doesn’t clearly fit the meaning of any semantic elements. You can 
and should use <div> and <span> elements in these scenarios.

Throughout this book, you will find many HTML5 tags. As you create your HTML pages, 
you will be faced with the sometimes daunting task of providing meaning to your content by 
supplying semantic tags. Use semantics carefully so you use an element only for its intended 
purpose. If you need a custom element, use the <div> or <span> tag and add a class name or 
id that conveys the semantics you desire. Be pragmatic and not too much of a purist.

Creating an HTML5 layout container
The previous chapter showed many examples that demonstrate the use of <div> elements 
to provide positioning of content on a webpage. If you were creating a webpage to display 
blog posts, you might create a layout container for your page that looks like the example in 
Figure 5-2. 



 208 CHAPTER 5 More HTML5

FIGURE 5-2 A blog site layout container using <div> elements

A layout container lays out its children in a way that is flexible and reusable. For the devel-
oper, the purpose of the <div> elements is easy to understand based on the id and CSS class 
names. How can the browser understand the elements? If you want the browser to give the 
user the ability to focus automatically on the first element in the main content when the page 
opens, how would you do this? If you want the browser to give the user special quick-launch 
buttons for the menu items, how could you accomplish this?

By using HTML5 semantic elements, you can create a layout container that uses elements 
that are meaningful to both the developer and the browser. The following are common ele-
ments by which to create an HTML5 layout container.

■■ <header> Defines a section that provides a header. You can use the <header> 
element at the top of your HTML document as a page header. You can also use the 
<header> element in the <article> element.

■■ <footer> Defines a section that provides a footer. You can use the <footer> element 
at the bottom of your HTML document as a page footer. You can also use the <footer> 
element in the <article> element.

■■ <nav> Defines a section that houses a block of major navigational links.

■■ <aside> Defines a section of content that is separate from the content the <aside> 
element is in. This is typically used for sidebars.

■■ <section> Part of the whole that is typically named with an <h1> to <h6> element 
internal element.

Key 
Terms



 Lesson 1: Thinking HTML5 semantics CHAPTER 5 209

■■ <article> A unit of content that can stand on its own and can be copied to other 
locations. A blog post is a good example of an article.

Figure 5-3 shows how these elements might be applied to create a layout container. 

FIGURE 5-3 Layout container example, using the new HTML5 elements

In Figure 5-3, all <div> elements have been replaced with the new HTML5 elements. 

Using the <header> element
The <header> elements in Figure 5-3 replace the <div id=”header”> elements in Figure 5-2, 
which cleans up the page a bit and provides a section meaning to browsers and other 
devices. Don’t confuse the HTML5 <header> element that is within a <body> element, which 
is visible, with the HTML <head> element for the HTML document, which is invisible. 

The <header> element should contain <h1> to <h6>, referred to as an <hn> moving 
forward element, containing your visible heading. You can also have other content with 
your <header> element, such as company logos and navigational links, as in the following 
example.

<header> 
   <h1>Contoso Ltd.</h1> 
   <img src="logo.jpg" alt="Company Logo" /> 
   <p>Other supplementary information</p> 
</header>

You can have multiple <header> elements in an HTML document. There are multiple 
<header> elements within this layout container because each <article> element has a 
<header>.



 210 CHAPTER 5 More HTML5

The <header> element can also contain the <hgroup> element, which provides the ability 
to group one or more <hn> elements within a <header> element, as shown in the following 
code example.

<header> 
   <hgroup> 
      <h1>Primary Header</h1> 
      <h2>seconday header</h2> 
   </hgroup> 
   <img src='logo.jpg' alt='Company Logo' /> 
</header>

The <hgroup> is a wrapper for one or more related header elements. The <hgroup> 
element can be in a <header> element but doesn’t need to be in a <header> element. The 
<hgroup> is most commonly used for subtitles and alternative titles.

The biggest reason for using the <hgroup> element has to do with using HTML5 outliner 
tools. If you have an <h1> header element and an <h2> subheader element, and you don’t 
use the <hgroup> to connect a header and subheader, the outline treats the <h2> as a sec-
ond level, but you really want the subheading to be ignored. The <hgroup> will expose only 
the first element and hide the other <hn> elements in the <hgroup>. 

If your header is just an <hn> and contains no other content, you don’t need a <header> 
element. As soon as you have more than a single <hn>, such as <img> elements and <p> 
elements, wrap your content in a <header> element. When you have multiple <hn> ele-
ments, such as a header and subheader, wrap the <hn> elements in the <hgroup> element. A 
<header> element should not be nested inside a <header> element.

By looking at the difference between Figure 5-2 and Figure 5-3, you can see that the 
<header> element replaced the <div id=”header”> element. Be careful, because by default 
the <header> element on some browsers does not render as a rectangular block as the 
<div> element does. You can fix this by adding the following style rule to provide matching 
behavior.

header { display:block;}

Using the <footer> element
The <footer> elements in Figure 5-3 replace the <div id=”footer”> elements in Figure 5-2, 
which cleans up the page a bit and provides a section meaning to browsers and other 
devices. 

The <footer> element typically contains information about the section it’s in, such as who 
wrote it, copyright information, and links to related documents. The <footer> element is 
much like the <header> element except that it typically belongs at the bottom of a section 
instead of at the top. Like the <header> element, it can be used many times within an HTML 
document to provide ending content for the HTML document and ending content for articles 
and sections within the HTML document. The <footer> element should not be nested inside a 
<footer> element. The following is an example of a <footer> element.



 Lesson 1: Thinking HTML5 semantics CHAPTER 5 211

<footer> 
   <ul> 
      <li>Copyright (C) 2012, Contoso Ltd., All rights reserved</li> 
      <li><a href="default.html">Home</a></li> 
   </ul> 
</footer>

Using the <nav> element
The <nav> element in Figure 5-3 replaces the <div id=”menu”> element in Figure 5-2, which 
provides a section meaning to browsers and devices. The <nav> element wraps a group of 
major links that are on your page. Menus are the most common candidates for the <nav> 
element.

Like menus, footers commonly have groups of links, but you don’t need to use the <nav> 
element if you are using the <footer> element, and the <nav> element is not required for 
links within your content. You can have many <nav> elements in an HTML document. For 
example, in addition to the menu that is normally on the left side or across the top of the 
page, you might have a group of links above the footer that link to the next page of blog 
posts or to other major areas of your site.

Think of a screen reader when implementing the <nav> element. It will be looking for the 
primary navigation area on the webpage so it can present these links to the user as menu 
items that have links to other areas within the current website. Links to off-site locations 
should not be part of the <nav> element. Footer links to secondary areas of your website also 
don’t require a <nav> element.

Using the <aside> element
The <aside> element in Figure 5-3 replaces the <div id=”advertise”> element in Figure 5-2, 
which provides a section meaning to browsers and devices. 

The <aside> element wraps secondary content when used for sidebars. In many cases, this 
is where the advertising and other site-related content goes. In addition, when the <aside> 
element is in an article, it should contain content tangentially related to the content within 
the article. The use of the <aside> element differs based on the context, as shown in the fol-
lowing example.

<body> 
  <header> 
    <h1>Blogging for fun</h1> 
  </header> 
  <article> 
    <h1>Blog of the day</h1> 
    <p>This is today's blog post. La, la, la, la, la,  
    la, la, la, la, la, la</p> 
    <aside> 
      <!-- Inside the article, so it's related to the article --> 
      <h1>What's this all about?</h1> 
      <p>This article talks about la, la...</p> 
    </aside> 



 212 CHAPTER 5 More HTML5

  </article> 
  <aside> 
    <!-- Outside the article, so it's related to the sites --> 
    <h2>Blog Advertising</h2> 
    <p>You too can have your own blog...</p> 
  </aside> 
</body>

The two meanings make sense when you consider that an article should be a complete 
unit that can be shared.

Using roles
In Figure 5-3, the <aside> element and the <div> element implement the role attribute, 
specified by the Web Accessible Initiative (WAI), which specifies the Accessible Rich Internet 
Applications (ARIA) suite, called WAI-ARIA. 

WAI-ARIA defines the role class hierarchy and how roles are used to provide specific 
meaning to screen readers for accessibility purposes. There are many parent role classes, and 
there are child role classes that inherit from role classes. One such parent role class is called 
the landmark role class, which represents regions of the page intended as navigational land-
marks. The following are child classes of the landmark role class.

■■ application An area declared as a web application as opposed to a web document.

■■ banner An area on a webpage that has site-specific content, such as site name and 
logo, instead of page-specific content; maximum one per webpage, usually header 
content.

■■ complementary An area on a webpage that complements the page but still has 
meaning if separated from the page.

■■ contentinfo An area that contains information about the parent document such as 
copyright notices and links; maximum one per webpage, usually footer content.

■■ form An area on a webpage that contains a collection of input controls for gathering 
data to be sent to the web server; search forms should use the search role.

■■ main An area that contains the main content of the document; maximum one per 
webpage.

■■ navigation An area that contains navigational links.

■■ search An area on a webpage that contains a collection of input controls for entering 
and displaying search information.

You can use these roles to provide meaning to an area of the webpage, but the new 
HTML5 elements already provide meaning. However, the HTML5 elements don’t provide a 
new element to identify the main content of the webpage. Instead, all known content is not 
the main content, and what’s left over must be the main content. Furthermore, the <aside> 
element is used as a sidebar, and you might want to provide more meaning. Why not use the 
WAI-ARIA role to provide meaning to other developers and to assistive devices? That is what 
is illustrated in Figure 5-3.

Key 
Terms



 Lesson 1: Thinking HTML5 semantics CHAPTER 5 213

Controlling format by using the <div> element 
Don’t forget that the <div> element can be placed around content, enabling you to control 
its format. The <div> element is invisible and has no meaning, so when using HTML5, it’s gen-
erally better to use a semantic element such as article or section to provide context that has 
meaning. If all you need is formatting, the use of the <div> element is perfect.

Adding thematic breaks
Use the <hr /> element to add a thematic break. It is a void element, so it cannot have any 
content. You can use the <hr /> element to provide a thematic break when there is a scene 
change in a story or to denote a transition to another topic within a section of a reference 
book.

Annotating content
When annotating content by using HTML5 elements, be aware that the <b> and <i> ele-
ments that have been around since the beginning are still available but now have new mean-
ing. This section describes the use of the <b> and <i> elements and many other elements 
that can be used to annotate content.

Using the <b> element
The <b> element was used to produce bold text, but now elements should have meaning, 
not style. To keep the <b> element but also have semantic elements, the meaning needed to 
change. 

According to the W3C, the <b> element represents a span of text to which attention is 
being drawn for utilitarian purposes without conveying any extra importance and with no 
implication of an alternate voice or mood, such as keywords in a document abstract; product 
names in a review; actionable words in interactive, text-driven software; or an article lede. 
Therefore, you can apply any style you want to the <b> element, although keeping the bold 
style makes the most sense. 

The <b> element is the element of last resort because headings should be denoted with 
the <hn> element, emphasized text should be denoted with the <em> element, important 
text should be denoted with the <strong> element, and marked or highlighted text should 
use the <mark> element. Refrain from using the <b> element except to denote product 
names in a review, keywords in a document extract, or an article lede, as shown in the follow-
ing example.

<article> 
   <h1>PolyWannaWidget Review</h1> 
   The <b>PolyWannaWidget</b> is the best product 
   to use for creating crackers from nothing  
   other than a hammer. 
</article>



 214 CHAPTER 5 More HTML5

Using the <strong> element
Closely related to the <b> element is the <strong> element, which represents strong impor-
tance for its contents. You can show relative importance by nesting <strong> elements within 
<strong> elements. Note that changing the importance of part of the text in a sentence does 
not change the meaning of the sentence. The following is an example that is in response to 
the question, “Should I take a left turn?”

<p> 
   You need to turn <strong>right</strong>. 
</p>

Note that the default styles for <strong> and <b> elements look the same.

Using the <i> element 
The <i> element was used to produce italic text, but like the <b> element, the element 
should provide meaning, not style.

According to the W3C, the <i> element represents a span of text that is in an alternate 
voice or mood or is otherwise offset from the normal prose in a manner indicating a different 
quality of text, such as a taxonomic designation, a technical term, an idiomatic phrase from 
another language, a thought, or a ship name in Western texts.

This means that that you can apply any style to the <i> element, although, like the <b> 
element, you probably should keep the default style. 

The <em> element
Use the <em> element for emphatic stress. Use it to designate text you’d pronounce some-
what differently, with emphasis. The following is an example that is in response to the ques-
tion, “Can you find a developer?”

<p> 
   I <em>am</em> a developer. 
</p>

Note that the default styles for <em> and <i> elements look the same.

Using the <abbr> element for abbreviations and acronyms
In earlier versions of HTML, you could indicate an acronym by using the <acronym> element, 
but in HTML5, the <acronym> element is obsolete. Use the <abbr> element to indicate an 
abbreviation or acronym and use the title attribute to provide the full text. 

The <abbr> element is an inline element and can be used with <strong> or other inline 
elements as necessary. The following is an example of denoting an abbreviation and acronym 
by using the <abbr> element. 

<p> 
   The <abbr title='radio detection and ranging'>radar</abbr>  
   must be repaired <abbr title='as soon as possible'>ASAP</abbr> 



 Lesson 1: Thinking HTML5 semantics CHAPTER 5 215

   by Contoso, <abbr title='Incorporated'>Inc.</abbr> 
</p>

Note that the title is not required, especially when you know that everyone will know the 
meanings of the abbreviations and acronyms.

The <address> element 
Use the <address> element to define contact information for the author/owner of a docu-
ment. You may include email address, postal address, or any contact address that references 
the author/owner of the document.

Be careful to use the <address> element only when referencing the author/owner of the 
document. Do not use it for arbitrary address information on your webpage. For example, if 
you are displaying your customer’s address on a webpage, it should not be wrapped in an 
<address> element.

The following is an example of the use of the <address> element in the footer of a 
webpage.

<footer> 
   Copyright (C) 2012  
   <address> 
      Contoso, Inc.  
      <a href="email:WebMaster@Contoso.com"> 
         WebMaster@Contoso.com 
      </a> 
   </address> 
</footer>

Quotations and citations
When it’s time to start quoting, you can use the <blockquote> element to create a long, run-
ning quotation and the <q> element for an inline quotation. Both these elements have a cite 
attribute that names the source work of the quote.

The <blockquote> element is a block-level element; it can contain almost anything, includ-
ing headers, footers, tables, and paragraphs. The <blockquote> element is a sectioning root, 
which means that any <hn> elements within the <blockquote> element will not be included 
in an outline of the HTML document. In addition, a single paragraph does not need to be 
included in a <p> element.

The <blockquote> and <q> elements have a cite attribute that names the source work, 
but as an attribute, this is hidden data. A better approach is to use the <cite> element, which 
you can place in the <footer> element of your <blockquote> and <q> elements. The cita-
tion should always contain the name of the work, not the author name. The following is an 
example of the <blockquote> element.

<blockquote> 
   O Romeo, Romeo, wherefore art thou Romeo?<br /> 
   Deny thy father and refuse thy name;<br /> 

Key 
Terms



 216 CHAPTER 5 More HTML5

   Or if thou wilt not, be but sworn my love<br /> 
   And I'll no longer be a Capulet.<br /> 
   <footer> 
     <p> 
         by William Shakespeare,  
        <cite>Romeo and Juliet</cite> Act 2, scene 2 
     </p> 
   </footer> 
</blockquote>

The <cite> element contains only the name of the work, not the author or the location 
within the work.

When you want to add an inline quotation, use the <q> element instead of using 
 quotation marks. The browser will insert the quotation marks for you. You can add the cite 
attribute to the <q> element, which should contain only the name of the work. Furthermore, 
the <q> element can be nested within another <q> element. The following is an example of 
the <q> element.

<p> 
    John said to the audience <q>Sally was crying when she  
    shouted <q>Leave me alone</q> and then she ran away.</q> 
</p>

This example renders the first quotation by using double quotes and the second quotation 
by using single quotes.

Documenting code by using the <code> and <samp> elements
When you’re documenting code and code examples in your HTML document, the <code> 
and <samp> elements provide a means for adding semantic meaning to your code and code 
output.

When you want to display source code of any type in the HTML document, use the <code> 
element, as shown in the following example.

<code class="keepWhiteSpace"> 
sayHello('Mom'); 
function sayHello(name)  
{ 
    alert('Hello ' + name + '!'); 
} 
</code>

After you run the sample code, you can document the output of the code by using the 
<samp> element, as shown in the following example.

<samp class="keepWhiteSpace"> 
   Hello Mom! 
</samp>

Remember that the <code> and <samp> elements provide semantic meaning to the 
HTML, but they don’t preserve the white space. For example, the preceding sample code will 



 Lesson 1: Thinking HTML5 semantics CHAPTER 5 217

display on one line, but the keepWhiteSpace class preserves the white space by using the fol-
lowing style rule.

.keepWhiteSpace { 
    white-space: pre; 
}

This style rule is not compatible with all browsers, so you might want to use the <pre> ele-
ment to prevent white space normalization, as described next.

Displaying preformatted content by using the <pre> element
The browser typically normalizes the HTML content by removing extra white space, line feeds, 
and paragraphs from the rendered page. You will often need to provide blocks of text where 
you want to maintain the existing format when it’s rendered. Use the <pre> element to pre-
vent the normalization of the HTML document, as shown in the following example.

<pre> 
<code> 
sayHello('Mom'); 
function sayHello(name)  
{ 
    alert('Hello ' + name + '!'); 
} 
</code> 
</pre>

In this example, the <code> element provides semantic meaning to the content, and the 
<pre> element prevents white-space normalization. 

Using the <var> element
The <var> element denotes a variable in a mathematical equation, as shown in the following 
example.

<p> 
The resistance <var>r</var> of a piece of wire is equal to the voltage <var>v</var> 
divided by the current <var>i</var>. 
</p>

Using the <br /> and <wbr /> elements
The <br /> and <wbr /> elements are void elements, meaning that they cannot have any con-
tent and provide only a line break in your HTML document. 

The <br /> element provides an immediate line break, which continues the document flow 
on the next line of the browser.

The <wbr /> element, which is a word break, provides an indication to the browser that it 
may insert a line break at this location. The browser decides whether to insert the break.



 218 CHAPTER 5 More HTML5

Using the <dfn> element to define a term
The <dfn> element denotes the definition of a term, also known as the defining instance of 
the term. The <dfn> element can contain a title attribute, which, if it exists, must contain the 
term being defined. 

If the <dfn> element contains exactly one element child node and no child text nodes, and 
that child element is an <abbr> element with a title attribute, that attribute is the term being 
defined.

Consider the following example that uses the <dfn> element with the <abbr> element to 
provide a definition.

<p> 
    A motor vehicle has a <dfn id="vin"> 
    <abbr title="Vehicle Identification Number">VIN</abbr></dfn> 
    that is unique. Over the years, the  
    <abbr title="Vehicle Identification Number">VIN</abbr> 
    has had different formats,  
    based on the vehicle manufacturer.  
</p> 
<p> 
    In the United States, the <a href="#vin"> 
    <abbr title="Vehicle Identification Number">VIN</abbr></a> 
    was standardized to a 17 character format where  
    the 10th character of the 
    <abbr title="Vehicle Identification Number">VIN</abbr> 
    represents the year of the vehicle. 
</p>

In this example, the <dfn> element is used once where the first instance of VIN is being 
presented. Inside the <dfn> element is an <abbr> element, which provides the meaning 
of VIN in its title attribute. The default style of the <dfn> element is italic text, as shown in 
Figure 5-4. The use of the <a> element provides a hyperlink to the definition.

FIGURE 5-4 The <dfn> element italicizing its text by default



 Lesson 1: Thinking HTML5 semantics CHAPTER 5 219

Working with figures
A figure is a unit of content that might have a caption and is referenced from the main docu-
ment. Use the <figure> element to denote a figure that can be one or more photos, one or 
more drawings, one or more illustrations, or other content that is referred to as a unit. Use the 
<figcaption> element to denote an optional caption. 

When using the <figure> element, remember that the figure is related to the main content 
of the page, and the figure’s location is not important. This is different from the <aside> ele-
ment, which is more related to the site than to the page’s document. If placement is impor-
tant, don’t use the <figure> element; use the <div> element.

The following example shows the use of the <figure> and <figcaption> elements (bolded) 
to display an image that is referred to in the main document of the webpage.

<div role="main"> 
    <p> 
        The peanut butter and jelly  
        <abbr title="peanut butter and jelly">PB&J</abbr> 
        sandwich has been a staple food of many families 
        due to its health benefits, its cost, and its 
        wonderful flavor. 
    </p> 
    <p> 
        When assembling a peanut butter and jelly sandwich, 
        you need to gather all the required materials as 
        shown in <a href="#figure1">Figure 1</a>. 
    </p> 
    <figure id="figure1"> 
        <img src="/pbj.jpg" alt="peanut butter and jelly requirements" /> 
        <figcaption>Figure 1 The PB&J sandwich requirements.</figcaption> 
    </figure> 
</div>

Working with the <summary> and <details> elements
Use the <details> element with the <summary> element to create collapsible details content 
under the summary. The <details> and <summary> elements currently work with the Google 
Chrome browser only, but more support is expected.

In the <details> element, nest a <summary> element that contains the content that will 
always be displayed. The details content is placed inside the <details> element following the 
<summary> element. When the page is rendered, only the content of the <summary> ele-
ment is displayed. Clicking the summary content causes the details content to be displayed. 
Clicking again causes the details content to be hidden.

<div role="main"> 
    <details> 
        <summary>Make a peanut butter and jelly sandwich</summary> 
        <p> 
            The peanut butter and jelly  
            <abbr title="peanut butter and jelly">PB&J</abbr> 

Key 
Terms



 220 CHAPTER 5 More HTML5

            sandwich has been a staple food of many American families 
            due to its health benefits, its cost, and its 
            wonderful flavor. 
        </p> 
        <p> 
            When assembling a peanut butter and jelly sandwich, 
            you need to gather all the required materials as 
            shown in <a href="#figure1">Figure 1</a>. 
        </p> 
        <figure id="figure1"> 
            <img src="/pbj.jpg" alt="peanut butter and jelly requirements" /> 
            <figcaption>The PB&J sandwich requirements.</figcaption> 
        </figure> 
    </details> 
</div>

In this example, the previous example content is placed in the <details> element, and the 
<summary> element contains a general description of the content. Clicking the summary 
content toggles the display of the details.

Understanding other annotations
In addition to the annotation elements already discussed, the following is a list of annotations 
you might use in your HTML document.

■■ <s> Denotes strike-out text, text that is no longer valid.

■■ <u> Offsets a span of text without implying a difference of importance. The default 
behavior is to underline the text, but this could be accommodated better by using a 
span tag with the appropriate style.

■■ <mark> Marks, or highlights, a span of text.

■■ <ins> Indicates inserted text.

■■ <del> Indicates deleted text.

■■ <small> Indicates fine print.

■■ <sub> Indicates subscript.

■■ <sup> Indicates superscript.

■■ <time> Denotes a time of day or a date in the text.

■■ <kbd> Indicates user input.

Using language elements
You might need to provide content that uses characters of Chinese origin, which are called 
kanji. These characters are used in Chinese, Japanese, and Korean (CJK) languages. To indicate 
the pronunciation of kanji, you can use small phonetic characters, which are commonly called 
ruby or furigana. The term “ruby” has English roots from when printers used this term to refer 
to small type used for this purpose.

Key 
Terms



 Lesson 1: Thinking HTML5 semantics CHAPTER 5 221

Use the <ruby> element to place a notation above or to the right of characters. Use the 
<rt> and <rp> elements with the <ruby> element to place the notation or to place parenthe-
ses around the ruby. Use the <bdo> element to define the text direction and use the <bdi> 
element to isolate a block of text to set the text direction. 

Working with lists
HTML5 defines various semantic elements that can be used to create ordered, unordered, and 
descriptive lists. All lists have list items, which are implemented by using the <li> element. All 
lists support nesting of lists. This section describes each of these lists.

Ordered lists
An ordered list is a numbered list. Use the <ol> element when you want auto-numbering of 
the list items. The following example shows three favorite fruits.

<h3>Favorite Fruit</h3> 
<ol> 
    <li>Apples</li> 
    <li>Oranges</li> 
    <li>Grapes</li> 
</ol>

This list is automatically rendered with numbers beside each fruit list item, as shown in 
Figure 5-5. 

FIGURE 5-5 The ordered list numbering its items automatically

The <ol> element supports the following attributes.

■■ reversed Reverses the number order to be descending instead of ascending

■■ start Sets the starting number

■■ type Sets the list type; can be “1”, “A”, “a”, or “I”

The reversed attribute currently does not work in most browsers, but you might find 
JavaScript libraries, such as modernizr.js, that emulate that functionality until the feature is 
implemented by the browser manufacturer. Even if you set the type to a value such as “A”, 

Key 
Terms



 222 CHAPTER 5 More HTML5

you still set the start as a number. The following is an example of the type and start attributes, 
using the favorite fruit list.

<h3>Favorite Fruit</h3> 
<ol type="A" start="6" > 
    <li>Apples</li> 
    <li>Oranges</li> 
    <li>Grapes</li> 
</ol>

Figure 5-6 shows the rendered list. The start value of “6” translates to the letter “F” when 
rendered.

FIGURE 5-6 The ordered list with its type and start attributes set

Unordered lists
An unordered list is not auto-numbered. Use the <ul> element to create an unordered list of 
items. When the unordered list is rendered, it produces bullet points before each list item, as 
shown in the following example that describes the items required to repair a flat tire.

<h3>Items required to change a flat tire</h3> 
<ul> 
    <li>A jack</li> 
    <li>A lug wrench with a socket on one end and a pry bar on the other</li> 
    <li>A spare tire</li> 
</ul>

Each item is rendered with a bullet, and where the text wraps to the next line, the text 
aligns itself properly with the text of the previous line, as shown in Figure 5-7.

Key 
Terms



 Lesson 1: Thinking HTML5 semantics CHAPTER 5 223

FIGURE 5-7 The unordered list rendering each list item as a bullet

Description lists
Use the <dl> element to create a description list, which consists of zero or more term-
description groupings, also known as name-value or key-value pairs. Each grouping associ-
ates one or more terms or names, which are the contents of <dt> elements, with one or more 
descriptions or values, which are the contents of <dd> elements, as shown in the following 
example.

<h3>Common Vehicles</h3> 
<dl> 
    <dt>Boat</dt> 
    <dd>A small vehicle propelled on water by oars, sails, or an engine</dd> 
    <dt>Car</dt> 
    <dd>An automobile</dd> 
    <dd>A passenger vehicle designed for operation on ordinary roads  
           and typically having four wheels and an engine</dd> 
    <dt>Bicycle</dt> 
    <dt>Bike</dt> 
    <dd>A vehicle with two wheels in tandem, typically propelled by pedals  
           connected to the rear wheel by a chain, and having handlebars  
           for steering and a saddlelike seat</dd> 
</dl>

In this example, the boat is associated with a single definition. The car is associated with 
two definitions. The bicycle and bike are both associated with the same definition. The ren-
dered output is shown in Figure 5-8.



 224 CHAPTER 5 More HTML5

FIGURE 5-8 The definition list with its terms and definitions

Custom lists
You can create custom lists by using the CSS3 styles, and you can use the CSS3 counter and 
the :before and :after selectors. Consider the following list, which contains nested lists.

<ul class="level1"> 
    <li>Automobiles 
    <ul class="level2"> 
        <li>BMW 
            <ul class="level3"> 
                <li>X1</li> 
                <li>X3</li> 
                <li>Z4</li> 
            </ul> 
        </li> 
        <li>Chevrolet 
            <ul class="level3"> 
                <li>Cobalt</li> 
                <li>Impala</li> 
                <li>Volt</li> 
            </ul> 
        </li> 
        <li>Ford 
            <ul class="level3"> 
                <li>Edge</li> 
                <li>Focus</li> 
                <li>Mustang</li> 
            </ul> 
        </li> 



 Lesson 1: Thinking HTML5 semantics CHAPTER 5 225

    </ul> 
    </li> 
    <li>Boats 
        <ul class="level2"> 
            <li>Sea Ray</li> 
            <li>Cobalt</li> 
        </ul> 
    </li> 
</ul>

Figure 5-9 shows the rendered list with the default styles. The bullet shapes change with 
each level of nesting, and each level of nesting is automatically indented.

FIGURE 5-9 The rendered output with default styles

In addition to font-related styles and color-related styles, there are also list-related styles 
that you can alter to change the presentation of your list. In the rendered example, the 
first-level list-style-type CSS property is set to disc, which displays as a filled-in circle. The 
second-level list-style-type is set to circle, and the third-level list-style-type is set to square. In 
addition, each of the levels’ list-style-position CSS property is set to outside, which means that 
when the text wraps, the first character of the next line will align with the first character of the 
previous line. If you set the list-style-position to inside, the first character of the next line will 
align with the bullet symbol of the first line.

In Visual Studio Express 2012 for Web, you can open the CSS file and enter the selector as 
follows.

li { 
 
}



 226 CHAPTER 5 More HTML5

After the selector is added, you can right-click the style rule and choose Build Style to dis-
play a menu of styles to apply. Clicking List in the Category menu displays the styles that can 
be applied to a list. Figure 5-10 shows the Modify Style window.

FIGURE 5-10 The Modify Style window showing menu-based style settings

By using the Modify Style window, you can easily override the default setting of the 
 list-style-type and list-style-position. In addition, you can provide a list-style-image when the 
bullet symbols are not what you want. In this example, set the list-item-style to none and click 
OK. The style sheet now contains the modified style rule as follows.

li { 
 list-style-type: none; 
}

Try rendering the webpage and note that no bullets are displayed. Try many of the other 
settings to see how they render.

Instead of using the Modify Style window, you can type the style rules. When you’re typing 
the rules, IntelliSense helps reduce the number of keystrokes. When the IntelliSense menu 
appears, you can select an item and press the tab key. In the CSS file, insert the following style 
rules.

body { 
    counter-reset: section; 
} 
 



 Lesson 1: Thinking HTML5 semantics CHAPTER 5 227

ul.level1 > li:before { 
    counter-increment: section; 
    content: "Section " counter(section) ". "; 
    counter-reset: subsection; 
} 
 
ul.level2 > li:before { 
    counter-increment: subsection; 
    content: counter(section) "(" counter(subsection, lower-alpha) ") - "; 
} 
 
ul.level1 > li, ul.level2 > li { 
    list-style-type: none; 
} 
 
ul.level3 > li { 
    list-style-type: disc; 
}

The following is a description of each of the style rules in this example.

■■ The first style rule resets a user-defined section counter to one when the <body> ele-
ment is styled. The section counter will be set to one only after the page is loaded, but 
it will be incremented in a different style rule. 

■■ The second style rule is executed when a <li> element that is a child of a <ul> element 
with a CSS class of level1 is rendered. It increments the section counter by one. It then 
inserts the content property before the <li> element, which outputs the “Section” 
string, followed by the value of the section counter and then followed by the ”. “ 
string. Finally, the rule resets a user-defined subsection counter to one. This style rule 
executes twice, before Automobiles and before Boats.

■■ The third style rule is executed when a <li> element that is a child of a <ul> element 
with a CSS class of level2 is rendered. It increments the subsection counter by one. It 
then inserts the content property before the <li> element, which outputs the value of 
the section counter, followed by the “(“ string and then followed by the value of the 
subsection counter, but this value is converted to lowercase alpha representation. After 
the subsection is rendered, the “) – “ string is rendered. This style rule executes five 
times.

■■ The fourth style rule sets the list-style-type to none for level1 and level2 list items.

■■ The fifth style rule sets the list-style-rule to disc for level3 list items.

The rendered output is shown in Figure 5-11. This should give you a good idea of the 
capabilities of HTML5 when working with lists.



 228 CHAPTER 5 More HTML5

FIGURE 5-11 The rendered custom list

Lesson summary
■■ Semantic markup provides meaning to HTML elements to aid devices that consume 

HTML content.

■■ Nonvisual Desktop Access (NVDA) devices read and process webpages.

■■ Content that needs to be styled but doesn’t clearly fit the meaning of any semantic 
elements can be styled by wrapping it with a <div> or <span> element.

■■ The <header> element defines a section that provides a header. The <footer> element 
defines a section that provides a footer. The <nav> element defines a section that 
houses a block of major navigational links. The <aside> element defines a section of 
content that is separate from the content the <aside> element is in. The <section> ele-
ment defines part of the whole and is typically named with an <h1> to <h6> internal 
element.

■■ The <article> element is a unit of content that can stand on its own and be copied to 
other locations. A blog post is a good example of an article.

■■ The Web Accessible Initiative (WAI) specifies the Accessible Rich Internet Applications 
(ARIA) suite, which is called WAI-ARIA. Use the WAI-ARIA role attribute to provide 
meaning to elements that are not semantically defined.

■■ In lieu of the <b> element, use the <strong> element. In lieu of the <i> element, use 
the <em> element.



 Lesson 2: Working with tables CHAPTER 5 229

Lesson review
Answer the following questions to test your knowledge of the information in this lesson. You 
can find the answers to these questions and explanations of why each answer choice is correct 
or incorrect in the “Answers” section at the end of this chapter.

1. You are creating a webpage that will display short stories, and you want the stories to 
be shareable on other sites. Which element should each story be wrapped with?

A. <section>

B. <pre>

C. <aside>

D. <article>

2. You want to indicate an important item in your content text. Which element do you use?

A. <b>

B. <em>

C. <strong>

D. <i>

3. You want to identify the author of webpages on your website by providing the author 
name and email address in the footer of each page. What is the proper way to do this?

A. <address><a href=”email:author@Contoso.com”>Author Name</a></address>

B. <contact><a href=”email:author@Contoso.com”>Author Name</a></contact>

C. <author><a href=”email:author@Contoso.com”>Author Name</a></author>

D. <name><a href=”email:author@Contoso.com”>Author Name</a></name>

Lesson 2: Working with tables

Tables are the way to lay out data in your HTML document in rows and columns. A table 
displays a two-dimensional grid of data. Use the <table> element with the <tr> element to 
create table rows and the <td> element to create table details, which are better known as 
table cells. This lesson discusses tables in detail.

After this lesson, you will be able to:
■■ Create a basic table.

■■ Add a header and footer to a table.

■■ Create an irregular table.

■■ Access column data.

■■ Apply style rules to table elements.

Estimated lesson time: 30 minutes



 230 CHAPTER 5 More HTML5

Table misuse
HTML tables are powerful and, due to their flexibility, they are often misused. It’s important 
to understand both proper table implementation and where it’s inappropriate to implement 
a table. 

Over the years, many developers have used the <table> element to create a page layout. 
Here are some reasons you should not use the <table> element to create a page layout.

■■ The table will not render until the </table> tag has been read. Webpages should be 
written with semantic markup, and the main <div role=”main”> element should be 
as close to the top of the HTML document as possible. The <div> element will render 
its content as the browser receives it. This enables the user to read the content as it’s 
being loaded into the browser.

■■ Using a table forces you into a deeply nested HTML structure that is difficult to 
maintain.

■■ Using a table confuses accessibility devices.

Remember that using a <table> element for anything other than tabular layout of data will 
be much more difficult to maintain than using <div> elements with positioning.

Creating a basic table
You can create a basic table by using the <table> element to denote the table. Inside the 
<table> element, you can add a <tr> element for each row that you require. Inside each <tr> 
element, add <td> elements for each cell that you need. The following is a simple table of 
vehicle information.

<table> 
    <tr> 
        <td>1957</td> 
        <td>Ford</td> 
        <td>Thunderbird</td> 
    </tr> 
    <tr> 
        <td>1958</td> 
        <td>Chevrolet</td> 
        <td>Impala</td> 
    </tr> 
    <tr> 
        <td>2012</td> 
        <td>BMW</td> 
        <td>Z4</td> 
    </tr> 
    <tr> 
        <td>2003</td> 
        <td>Mazda</td> 
        <td>Miata</td> 
    </tr> 
</table>



 Lesson 2: Working with tables CHAPTER 5 231

Figure 5-12 shows the rendered output as four rows with three columns in each row. It’s 
not obvious that there are columns in each row, however, and there is no header or footer. 
You might also want to see a border around all cells to make the table more obvious. This 
table needs improvement. Would alternating column colors improve it? 

FIGURE 5-12 The rendered table with rows and columns

Adding header cells
Use the <th> element instead of the <td> element to display a header. The header can be 
horizontal or vertical. For example, you might want a header across the top to label each 
column and a header down the left side (in the first column) to label each row. The following 
is the modified table.

<table> 
     <tr> 
        <th>Vehicle #</th> 
        <th>Year</th> 
        <th>Make</th> 
        <th>Model</th> 
    </tr> 
    <tr> 
        <th>1</th> 
        <td>1957</td> 
        <td>Ford</td> 
        <td>Thunderbird</td> 
    </tr> 
    <tr> 
        <th>2</th> 
        <td>1958</td> 
        <td>Chevrolet</td> 
        <td>Impala</td> 
    </tr> 
    <tr> 
        <th>3</th> 
        <td>2012</td> 
        <td>BMW</td> 
        <td>Z4</td> 
    </tr> 
    <tr> 
        <th>4</th> 
        <td>2003</td> 



 232 CHAPTER 5 More HTML5

        <td> Mazda</td> 
        <td>Miata</td> 
    </tr> 
</table>

The rendered table is shown in Figure 5-13. This revised table now has horizontal and 
vertical headers. Notice that the default style of the <th> element is bold.

FIGURE 5-13 The revised table with horizontal and vertical headers

Styling the table headers
Now that you have <th> elements for the headers, add a style to the <th> elements as 
follows.

th { 
    background-color: #BDEAFF; 
    width: 100px; 
}

This adds a pale blue background to all the <th> elements and sets the width of all col-
umns to 100 pixels. What changes can you make to give the horizontal header and vertical 
header different styles? The following example can accomplish this task.

th { 
    background-color: #BDEAFF; 
    width: 100px; 
} 
 
th:only-of-type { 
    background-color: #FFFF99; 
}

The first style rule sets the color of all <th> elements to a pale blue and sets the width to 
100 pixels. The second style rule has a higher priority, so it overrides the first style rule and 
applies a pale yellow color to the vertical header.



 Lesson 2: Working with tables CHAPTER 5 233

Declaring the header, footer, and table body
Most browsers automatically wrap all <tr> elements with a <tbody> element to indicate the 
body of the table. What would happen if you had a CSS style selector of table > tr? You 
wouldn’t get a match because the browser adds the <tbody> element. The selector can be 
rewritten as table > tbody > tr instead, or maybe tbody > tr is all you need. It’s good prac-
tice to define the <tbody> element explicitly in every table.

You might also have multiple rows that are to be used as horizontal headers or footers. 
You can use the <thead> element to identify rows that are header rows and use the <tfoot> 
element to identify rows that are footer rows. The following is an example of the addition of 
the <thead>, <tfoot>, and <tbody> elements.

<table> 
    <thead> 
        <tr> 
            <th>Vehicle #</th> 
            <th>Year</th> 
            <th>Make</th> 
            <th>Model</th> 
            <th>Price</th> 
        </tr> 
    </thead> 
    <tbody> 
        <tr> 
            <th>1</th> 
            <td>1957</td> 
            <td>Ford</td> 
            <td>Thunderbird</td> 
            <td>14,000</td> 
        </tr> 
        <tr> 
            <th>2</th> 
            <td>1958</td> 
            <td>Chevrolet</td> 
            <td>Impala</td> 
            <td>3,000</td> 
        </tr> 
        <tr> 
            <th>3</th> 
            <td>2012</td> 
            <td>BMW</td> 
            <td>Z4</td> 
            <td>40,000</td> 
        </tr> 
        <tr> 
            <th>4</th> 
            <td>2003</td> 
            <td>Mazda</td> 
            <td>Miata</td> 
            <td>5,000</td> 
        </tr> 
    </tbody> 
    <tfoot> 



 234 CHAPTER 5 More HTML5

        <tr> 
            <th>Total:</th> 
            <th></th> 
            <th></th> 
            <th></th> 
            <th>62,000</th> 
        </tr> 
    </tfoot> 
</table>

In addition to adding structure to the table, you can use the <thead>, <tbody>, and 
<tfoot> elements to control the styling of the <th> elements better. Without these elements, 
how would you provide a different style to the header and footer? The following style rules 
provide an example of such styling.

thead th { 
    background-color: #BDEAFF; 
    width: 100px; 
} 
 
tbody th { 
    background-color: #FFFF99; 
} 
 
tfoot th { 
    background-color: #C2FE9A; 
} 
 
    tfoot th:last-of-type { 
        text-align: right; 
    } 
 
td { 
    text-align: center; 
} 
 
    td:last-of-type { 
        text-align: right; 
    }

The rendered table is shown in Figure 5-14. The following is a description of the style rules 
applied.

■■ The first style rule applies a blue background color to the header and sets the width of 
all columns to 100 pixels.

■■ The second style rule applies a yellow background color to the vertical header.

■■ The third style rule applies a green background color to the footer.

■■ The fourth style rule applies right alignment to the price in the footer.

■■ The fifth style rule centers the text of all table cells.

■■ The last style rule applies right alignment to the price cells.



 Lesson 2: Working with tables CHAPTER 5 235

FIGURE 5-14 The styled table

Although you can have a maximum of one <thead> element and one <tfoot> element, 
you can have many <tbody> elements within a <table> element. The benefit of having 
multiple <tbody> elements is that you can group rows to apply styles. You can even display 
or hide groups of rows by setting the style display property to none (to hide) or by clearing 
the display property (to show). The following example extends the previous example by using 
multiple <tbody> elements, adding one for Antique Cars and one for Non-Antique Cars.

<!DOCTYPE html> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <title>Vehicles</title> 
    <link href="Content/vehicles.css" rel="stylesheet" /> 
    <script src="Scripts/vehicles.js"></script> 
</head> 
<body> 
    <div role="main"> 
        <button id="showAntique">Antique Cars</button> 
        <button id="showNonAntique">Non-Antique Cars</button> 
        <table> 
            <thead> 
                <tr> 
                    <th>Vehicle #</th> 
                    <th>Year</th> 
                    <th>Make</th> 
                    <th>Model</th> 
                    <th>Price</th> 
                </tr> 
            </thead> 
            <tbody id="antiqueCars"> 
                <tr> 
                    <th>1</th> 
                    <td>1957</td> 
                    <td>Ford</td> 
                    <td>Thunderbird</td> 
                    <td>14,000</td> 
                </tr> 
                <tr> 
                    <th>2</th> 
                    <td>1958</td> 



 236 CHAPTER 5 More HTML5

                    <td>Chevrolet</td> 
                    <td>Impala</td> 
                    <td>3,000</td> 
                </tr> 
            </tbody> 
            <tbody id="nonAntiqueCars"> 
                <tr> 
                    <th>3</th> 
                    <td>2012</td> 
                    <td>BMW</td> 
                    <td>Z4</td> 
                    <td>40,000</td> 
                </tr> 
                <tr> 
                    <th>4</th> 
                    <td>2003</td> 
                    <td>Madza</td> 
                    <td>Miata</td> 
                    <td>5,000</td> 
                </tr> 
            </tbody> 
            <tfoot> 
                <tr> 
                    <th>Total:</th> 
                    <th></th> 
                    <th></th> 
                    <th></th> 
                    <th>62,000</th> 
                </tr> 
            </tfoot> 
        </table> 
    </div> 
</body> 
</html> 
 
<script> 
    init(); 
</script>

This example shows the complete HTML document, so you can see the inclusion of the CSS 
file and JavaScript file. The HTML has been extended to include two buttons at the top so you 
can filter by Antique Cars or Non-Antique Cars. There are two <tbody> elements, each having 
an explicit id of antiqueCars and nonAntiqueCars, respectively, and a <script> element at the 
bottom that initializes the JavaScript, which will attach event handlers to the click event of the 
buttons. The CSS file is slightly modified from the previous example as follows.

thead th { 
    background-color: #BDEAFF; 
    width: 100px; 
} 
 
tbody th { 
    background-color: #FFFF99; 



 Lesson 2: Working with tables CHAPTER 5 237

} 
 
tfoot th { 
    background-color: #C2FE9A; 
} 
 
    tfoot th:last-of-type { 
        text-align: right; 
    } 
 
td { 
    text-align: center; 
} 
 
    td:last-of-type { 
        text-align: right; 
    } 
 
.hidden { 
    display: none; 
} 
 
.visible { 
    display: normal; 
}

The CSS file now has the .hidden and .visible selectors. These are used to show or hide the 
<tbody> elements, including their contents. The JavaScript file contains the following code.

function init() { 
    document.getElementById('showAntique').addEventListener('click', showAntiqueCars); 
    document.getElementById('showNonAntique').addEventListener('click', 
showNonAntiqueCars); 
} 
 
function showAntiqueCars() { 
    document.getElementById('antiqueCars').className = "visible"; 
    document.getElementById('nonAntiqueCars').className = "hidden"; 
} 
 
function showNonAntiqueCars() { 
    document.getElementById('antiqueCars').className = "hidden"; 
    document.getElementById('nonAntiqueCars').className = "visible"; 
}

The JavaScript code contains an init function that is called when the HTML document is 
loaded. The init function attaches event handlers to the click event of the two buttons. The 
additional functions set the CSS class to display or hide the <tbody> elements.

When the webpage is displayed, all vehicles are displayed. Clicking the Antique Cars but-
ton displays the antique cars and hides the non-antique cars. Clicking the Non-Antique Cars 
button displays the non-antique cars and hides the antique cars.



 238 CHAPTER 5 More HTML5

Creating irregular tables
Tables need to be rectangular to work properly, but you’ll often need to present tables that 
don’t contain the same number of cells in each row. In the case of the previous examples, 
the footer contained the same number of cells as the other rows, but you only need to have 
two cells, one for “Total:” and one for the total price. You might also want to add a column 
that indicates Antique Cars versus Non-Antique Cars, but you don’t want a cell on every row 
that says “Antique Car” or “Non-Antique Car”. You want to add a single cell that says “Antique 
Cars” and is the combined height of all Antique Car rows. You want to add a single cell that 
says “Non-Antique Cars” and is the combined height of all Non-Antique Car rows. Use the 
rowspan or colspan attributes on the <td> or <th> element to solve this problem.

The colspan attribute tells the browser that a <td> or <th> element should be the size of 
multiple horizontal cells. In the previous example, where you want the “Total:” text to span the 
footer row, use <th colspan=”4”> as follows.

<tfoot> 
    <tr> 
        <th colspan="4">Total:</th> 
        <th>62,000</th> 
    </tr> 
</tfoot>

The default style for the <th> element is bold and centered. When “Total:” is displayed, it’s 
centered within the four cells it spans. The CSS style rule is changed to right-align “Total:” as 
follows.

tfoot th {

    background-color: #C2FE9A;

}

    tfoot th:first-of-type {

        text-align: right;

    }

    tfoot th:last-of-type {

        text-align: right;

    }

You could just right-align all <th> elements in the footer by eliminating the last two style 
rules in this example and adding the text-align style to the first style rule. The rendered out-
put is shown in Figure 5-15.



 Lesson 2: Working with tables CHAPTER 5 239

FIGURE 5-15 The rendered page with the footer containing only two cells

The rowspan attribute tells the browser that a <td> or <th> element should be the size 
of multiple vertical cells. In the previous example, when you want to add a column with only 
two cells, use <td rowspan=”n”> where n equals the number of rows to span, in this case, 2. 
Remember that adding a column also requires you to add the column to the header and to 
modify the colspan attribute in the footer. The following is the modified table.

<table> 
    <thead> 
        <tr> 
            <th>Vehicle #</th> 
            <th>Category</th> 
            <th>Year</th> 
            <th>Make</th> 
            <th>Model</th> 
            <th>Price</th> 
        </tr> 
    </thead> 
    <tbody id="antiqueCars"> 
        <tr> 
            <th>1</th> 
            <td rowspan="2">Antique</td> 
            <td>1957</td> 
            <td>Ford</td> 
            <td>Thunderbird</td> 
            <td>14,000</td> 
        </tr> 
        <tr> 
            <th>2</th> 
            <td>1958</td> 
            <td>Chevrolet</td> 
            <td>Impala</td> 
            <td>3,000</td> 
        </tr> 
    </tbody> 
    <tbody id="nonAntiqueCars"> 
        <tr> 
            <th>3</th> 
            <td rowspan="2">Non-Antique</td> 



 240 CHAPTER 5 More HTML5

            <td>2012</td> 
            <td>BMW</td> 
            <td>Z4</td> 
            <td>40,000</td> 
        </tr> 
        <tr> 
            <th>4</th> 
            <td>2003</td> 
            <td>Mazda</td> 
            <td>Miata</td> 
            <td>5,000</td> 
        </tr> 
    </tbody> 
    <tfoot> 
        <tr> 
            <th colspan="5">Total:</th> 
            <th>62,000</th> 
        </tr> 
    </tfoot> 
</table>

To help illustrate the rowspan and colspan attributes, a black border is added to the table 
cells. The following is the complete CSS file.

table { 
    border: medium solid #000000; 
} 
 
thead th { 
    background-color: #BDEAFF; 
    width: 100px; 
} 
 
tbody th { 
    background-color: #FFFF99; 
} 
 
tfoot th { 
    background-color: #C2FE9A; 
} 
 
    tfoot th:first-of-type { 
        text-align: right; 
    } 
 
    tfoot th:last-of-type { 
        text-align: right; 
    } 
 
td { 
    text-align: center; 
    border: thin solid #000000; 
} 
 
    td:last-of-type { 



 Lesson 2: Working with tables CHAPTER 5 241

        text-align: right; 
    } 
 
th { 
    border: thin solid #000000; 
} 
 
.hidden { 
    display: none; 
} 
 
.visible { 
    display: normal; 
}

The results are displayed in Figure 5-16. 

FIGURE 5-16 The rendered page with borders set, clearly showing the rowspan and colspan attributes

Adding a caption to a table
You can use the <caption> element to define and associate a caption with a table. The default 
style of the caption is centered and located above the table. You can use the CSS text-align 
and caption-side properties to override the default style. If you use the <caption> element, it 
must be the first element within the <table> element.

Styling columns
Styling columns is a common difficulty because tables are row-centric, not column-centric. 
It’s relatively easy to apply a style to a row because you can apply a <tr> element to the style, 
but there isn’t a <tc> element for a column. Remember that the <td> element represents a 
cell, not a column. Columns are actually created implicitly by creating the cells. Use the <col-
group> and <col> elements to style columns. 

The <colgroup> element is placed inside the <table> element to define columns that can 
be styled. Remember that styling includes hiding and displaying the columns. Inside the 



 242 CHAPTER 5 More HTML5

<colgroup> element, <col> elements are added for each column to be styled. The <col> ele-
ment has a span attribute that identifies multiple columns that will have the same style.

In the previous examples, the <colgroup> and <col> elements can provide a style for the 
vertical headers, but this time, you want to apply a style to the first two columns. You can 
define the columns as follows.

<colgroup> 
    <col span="2" class="verticalHeader" /> 
</colgroup>

This example defines the first two columns to have a style of verticalHeader. The vertical-
Header class is set to apply a gray background color as follows.

.verticalHeader { 
    background-color: #C0C0C0; 
}

In addition, the existing style for the first column has been removed. Figure 5-17 shows the 
rendered webpage.

FIGURE 5-17 Using the <colgroup> and <col> elements to apply a style to multiple columns

Lesson summary
■■ Refrain from using the <table> element for page layout.

■■ A <tr> element creates a table row. A <td> element creates a table cell in a table row.

■■ To identify a header cell, use the <th> element instead of using the <td> element.

■■ Use the <thead> element to specify table rows that comprise the table header. Use the 
<tfoot> element to specify table rows that comprise the table footer. Use the <tbody> 
element to specify data rows. You can group data rows by specifying many <tbody> 
elements.

■■ Use the rowspan and colspan attributes on the <th> and <td> elements to create 
irregular tables.



 Practice exercises CHAPTER 5 243

■■ Use the <caption> element directly after the <table> element to specify a caption for 
your table.

■■ Use the <colgroup> and <col> elements to apply styles to a column.

Lesson review
Answer the following questions to test your knowledge of the information in this lesson. You 
can find the answers to these questions and explanations of why each answer choice is correct 
or incorrect in the “Answers” section at the end of this chapter.

1. You are creating a webpage that will be used to display a list of salespeople with their 
sales statistics for the years of 2010, 2011, and 2012 in two categories: sales of products 
and sales of services. You want to each of the years to be in the horizontal header, and 
under each year, you will have a “Products” column and a “Services” column. How will 
you define the element for year 2011?

A. <th>2011</th>

B. <th colspan=”2”>2011</th>

C. <th span=”2”>2011</th>

D. <th style=”2”>2011</th>

2. You want to provide the ability to display or show columns, but you don’t want to add 
a style or other marking to each <td> element. How can you accomplish this?

A. Add a <colgroup> element to the <table> element and define each column by 
using a <col> element inside the <colgroup> element.

B. Add an id to each <td> element and provide a unique id for each; use the ids in 
your style sheet rules to obtain the desired style.

C. Add a <col> element to the <table> element and define each column by using a 
<id> element inside the <col> element.

D. Add a <hidden> element to the <table> element and define each column by using 
a <col> element inside the <hidden> element.

3. Which element can you add to the <table> element to provide a table caption?

A. <thead>

B. <colgroup>

C. <caption>

D. <th>

Practice exercises

If you encounter a problem completing any of these exercises, the completed projects can be 
installed from the Practice Exercises folder that is provided with the companion content.



 244 CHAPTER 5 More HTML5

Exercise 1: Add a page layout to the calculator project
In this exercise, you apply your knowledge of semantic markup by adding a page layout to 
the WebCalculator project that you worked on in Chapter 4, “Getting started with CSS3,” and 
then you add style rules to improve the look of the webpage.

This exercise continues with the goal of adding style rules with a minimum of modifica-
tions to the default.html file.

1. Start Visual Studio Express 2012 for Web. Click File, choose Open Project, and then 
select the solution you created in Chapter 4. 

2. Select the WebCalculator.sln file and click Open. You can also click File, choose Recent 
Projects And Solutions, and then select the solution. 

If you didn’t complete the exercises in Chapter 4, you can use the solution in the 
Chapter 5 Exercise 1 Start folder.

3. In the Solution Explorer window, right-click the default.html file and choose Set As 
Start Page. Press F5 to verify that your home page is displayed.

4. Open the default.html page and wrap the <div> element whose id is calculator with a 
<div> element, and then set the id to container. 

This <div> element will contain the complete page layout.

5. In the container <div> element, insert a <header> element containing an <hgroup> 
element with an id of headerText. In the <hgroup> element, insert an <h1> element 
containing the text, “Contoso, Ltd.” After the <h1> element, insert an <h2> element 
containing the text, “Your success equals our success.” 

The header should look like the following.

<header> 
    <hgroup id="headerText"> 
        <h1>Contoso Ltd.</h1> 
        <h2>Your success equals our success</h2> 
    </hgroup> 
</header>

6. After the <header> element, insert a <nav> element. 

The <nav> element typically contains the primary links on the page, but there are no 
other pages in this site. 

7. Insert a dummy link to the home page, which is the current page. 

This will display on the page to give you an idea of what the <nav> element is used 
for. The <nav> element should look like the following.

<nav> 
    <a href="default.html">Home</a> 
</nav>

8. After the <nav> element, wrap the calculator <div> element with a <div> element 
whose role is set to main. 



 Practice exercises CHAPTER 5 245

The main <div> element with the calculator <div> element should look like the 
following.

<div role="main"> 
    <div id="calculator"> 
        <input id="txtResult" type="text" readonly="readonly" /><br /> 
        <input id="txtInput" type="text" /><br /> 
        <button id="btn7">7</button> 
        <button id="btn8">8</button> 
        <button id="btn9">9</button><br /> 
        <button id="btn4">4</button> 
        <button id="btn5">5</button> 
        <button id="btn6">6</button><br /> 
        <button id="btn1">1</button> 
        <button id="btn2">2</button> 
        <button id="btn3">3</button><br /> 
        <button id="btnClear">C</button> 
        <button id="btn0">0</button> 
        <button id="btnClearEntry">CE</button><br /> 
        <button id="btnPlus">+</button> 
        <button id="btnMinus">-</button> 
    </div> 
</div>

9. After the main <div> element, insert an <aside> element, which will contain the adver-
tisements. Because there are no advertisements, insert a <p> element with the word 
Advertisements so you can see where the <aside> element renders. 

The completed <aside> element should look like the following.

<aside> 
    <p>Advertisements</p> 
</aside>

10. After the <aside> element, insert a <footer> element. In the <footer> element, add 
a <p> element with the following content: Copyright &copy; 2012, Contoso Ltd., All 
rights reserved. 

The completed <footer> element should look like the following.

<footer> 
    <p> 
        Copyright &copy; 2012, Contoso Ltd., All rights reserved 
    </p> 
</footer>

The following is the complete default.html webpage.

<!DOCTYPE html> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <title>Web Calculator</title> 
    <link href="Content/default.css" rel="stylesheet" /> 
    <script type="text/javascript" src="Scripts/CalculatorLibrary.js"></script> 
</head> 
<body> 
    <div id="container"> 



 246 CHAPTER 5 More HTML5

        <header> 
            <hgroup id="headerText"> 
                <h1>Contoso Ltd.</h1> 
                <h2>Your success equals our success</h2> 
            </hgroup> 
        </header> 
        <nav> 
            <a href="default.html">Home</a> 
        </nav> 
        <div role="main"> 
            <div id="calculator"> 
                <input id="txtResult" type="text" readonly="readonly" /><br /> 
                <input id="txtInput" type="text" /><br /> 
                <button id="btn7">7</button> 
                <button id="btn8">8</button> 
                <button id="btn9">9</button><br /> 
                <button id="btn4">4</button> 
                <button id="btn5">5</button> 
                <button id="btn6">6</button><br /> 
                <button id="btn1">1</button> 
                <button id="btn2">2</button> 
                <button id="btn3">3</button><br /> 
                <button id="btnClear">C</button> 
                <button id="btn0">0</button> 
                <button id="btnClearEntry">CE</button><br /> 
                <button id="btnPlus">+</button> 
                <button id="btnMinus">-</button> 
            </div> 
        </div> 
        <aside> 
            <p>Advertisements</p> 
        </aside> 
        <footer> 
            <p> 
                Copyright &copy; 2012, Contoso Ltd., All rights reserved 
            </p> 
        </footer> 
    </div> 
    <script type="text/javascript"> 
        window.addEventListener('load', initialize, false); 
    </script> 
</body> 
</html>

Exercise 2: Add styles to the calculator layout
Now that you have completed the layout container, add and modify styles in the 
 default. css file.

1. Open the default.css file and, at the top of the file, add a style rule to set the margin 
and padding of all elements to 0 pixels. 

Your style rule should look like the following.

* { margin : 0; padding : 0; }



 Practice exercises CHAPTER 5 247

2. After that style rule, insert another style rule that sets the <aside>, <footer>, <header>, 
<hgroup>, and <nav> elements to display as a block to ensure that all browsers render 
these elements as blocks. 

Your style rule should look like the following.

aside, footer, header, hgroup, nav { 
     display: block;  
}

The current page background color is a dark blue. This background color needs to be 
lightened, and the font-family needs to be set to Cambria with a backup font of Times 
New Roman and final fallback of serif font. The font color needs to be set to match 
the Contoso standard blue. Your body style rule should be modified to match the 
following.

body { 
    background-color: hsl(255, 95%, 95%); 
    font-family: Cambria, 'Times New Roman' , serif; 
    color: #0068AC; 
}

3. To add a new folder called Images to the project, right-click the project in the Solution 
Explorer window. Click Add, choose New Folder, and name the folder Images.

4. To add the image from the Resource folder, in the Solution Explorer window, right-click 
the Images folder that you just added. 

5. Click Add, choose Existing Item, and select the ContosoLogo.png file that is located in 
the Chapter05 Resources folder.

6. After the body style rule, insert a header style rule that sets the height to 100 pixels 
and set the background image to the ContosoLogo.png file. 

7. Set the background-repeat to no-repeat and set the top margin to 10 pixels by adding 
the header selector with the curly braces, right-clicking in the style rule, and clicking 
Build Style. When the Modify Style window is displayed, set the properties.

The completed style rule should look like the following.

header { 
    height: 100px; 
    background-image: url('../Images/ContosoLogo.png'); 
    background-repeat: no-repeat; 
    margin-top: 10px; 
}

8. Add a style rule based on the element id equal to headerText. Set the position to abso-
lute, set the top to 0 pixels, and set the left to 80 pixels, which will locate the header 
text to the right of the Contoso logo. 

9. Set the width to 100 percent and set the margin top to 10 pixels as follows.

#headerText { 
    position: absolute; 



 248 CHAPTER 5 More HTML5

    top: 0px; 
    left: 80px; 
    width: 100%; 
    margin-top: 10px; 
}

10. After the headerText style rule, insert a text rule for the <h1> element. Add styles to 
set the font size to 64 pixels and set the line height to 55 pixels as follows.

h1 { 
    font-size: 64px; 
    line-height: 55px; 
}

11. After the h1 style rule, insert a text rule for the <h2> element. Add styles to set the 
font size to 18 pixels, set the line height to 20 pixels, and set the font style to italic as 
follows.

h2 { 
    font-size: 18px; 
    line-height: 20px; 
    font-style: italic; 
}

12. After the h2 style rule, create a style rule for the <nav> element. Set the styles to float 
the <nav> element to the left, set the width to 20 percent, and set the minimum width 
to 125 pixels as follows.

nav { 
    float: left; 
    width: 20%; 
    min-width:125px; 
}

13. After the nav style rule, add a style rule for the main <div> element. Set the styles to 
float to the left, beside the <nav> element, and set the width to 60 percent as follows.

div[role="main"] { 
    float:  left; 
    width: 60%; 
}

14. After the main div style rule, add a style rule for the <aside> element. Set the styles to 
float to the left, beside the main <div> element, set the width to 20 percent, and set 
the minimum width to 125 pixels as follows.

aside { 
    float: left; 
    width: 20%; 
    min-width:125px; 
}



 Practice exercises CHAPTER 5 249

15. After the aside style rule, add a style rule for the <footer> element. Set the styles to 
position the footer clear after the <aside> element, set the width to 100 percent, set 
the height to 70 pixels, and set the font size to small as follows.

footer { 
   clear: both; 
    width: 100%; 
    height: 70px; 
    font-size: small; 
}

16. After the footer style rule, add a style rule for the <div> element whose id is container. 

The purpose of this style is to ensure that the float: left styles you’ve added don’t wrap 
when the browser window is resized to a small size. 

17. Set the minimum width to 800 pixels as follows.

#container { 
    min-width: 800px; 
}

18. In the existing style rule for the calculator <div> element, change the height and width 
to 400 pixels as follows.

#calculator { 
    border: solid; 
    background-color: hsl(255, 100%, 60%); 
    width: 400px; 
    height: 400px; 
    margin-left: auto; 
    margin-right: auto; 
    text-align: center; 
    padding: 10px; 
}

19. In the existing style rule for the input button, change the font size to 20 point as 
follows.

input, button { 
    font-family: Arial; 
    font-size: 20pt; 
    border-width: thick; 
    border-color: hsl(255, 100%, 100%); 
    margin: 5px; 
}

The following is the completed style sheet for your reference.

* { margin : 0; padding : 0; } 
 
aside, footer, header, hgroup, nav { 
     display: block;  
} 
 



 250 CHAPTER 5 More HTML5

body { 
    background-color: hsl(255, 95%, 95%); 
    font-family: Cambria,'Times New Roman' , serif; 
    color: #0068AC; 
} 
 
header { 
    height: 100px; 
    background-image: url('../Images/ContosoLogo.png'); 
    background-repeat: no-repeat; 
    margin-top: 10px; 
} 
 
#headerText { 
    position: absolute; 
    top: 0px; 
    left: 80px; 
    width: 100%; 
    margin-top: 10px; 
} 
 
h1 { 
    font-size: 64px; 
    line-height: 55px; 
} 
 
h2 { 
    font-size: 18px; 
    line-height: 20px; 
    font-style: italic; 
} 
 
nav { 
    float: left; 
    width: 20%; 
    min-width:125px; 
} 
 
div[role="main"] { 
    float:  left; 
    width: 60%; 
} 
 
aside { 
    float: left; 
    width: 20%; 
    min-width:125px; 
} 
 
footer { 
   clear: both; 
    width: 100%; 
    height: 70px; 
    font-size: small; 



 Practice exercises CHAPTER 5 251

} 
 
#container { 
    min-width: 800px; 
} 
 
#calculator { 
    border: solid; 
    background-color: hsl(255, 100%, 60%); 
    width: 400px; 
    height: 400px; 
    margin-left: auto; 
    margin-right: auto; 
    text-align: center; 
    padding: 10px; 
} 
 
input { 
    width: 85%; 
    height: 7%; 
    text-align: right; 
    padding: 10px; 
    border: inset; 
} 
 
button { 
    background-color: hsl(255, 50%, 80%); 
    width: 25%; 
    height: 10%; 
    border: outset; 
} 
 
    button:hover { 
        background-color: hsl(255, 50%, 90%); 
    } 
 
    button:active { 
        border: inset; 
        border-width: thick; 
        border-color: hsl(255, 100%, 100%); 
        background-color: hsl(255, 50%, 50%); 
    } 
 
input, button { 
    font-family: Arial; 
    font-size: 20pt; 
    border-width: thick; 
    border-color: hsl(255, 100%, 100%); 
    margin: 5px; 
} 
 
[readonly] { 
    background-color: hsl(255, 50%, 80%); 
}



 252 CHAPTER 5 More HTML5

20. To see your results, press F5 to start debugging the application. 

You should see a nicer-looking calculator interface with a page layout as shown in 
Figure 5-18.

FIGURE 5-18 The web calculator with its page layout

Exercise 3: Cleaning up the web calculator
The calculator’s buttons are positioned by keeping them the same size and using <br /> 
elements for each line of buttons. Although the calculator doesn’t look too bad, the buttons 
aren’t in their traditional locations. For example, the clear and clear entry buttons are nor-
mally at the top, whereas the plus and minus buttons are typically on the right. The goal of 
this lesson is to reposition the buttons.

In this exercise, you continue with the project from Exercise 2 and modify the default.html 
file. The elements of the calculator will be positioned by placing them in a table. There will be 
seven rows and four columns.

1. Open the project from Exercise 2. 

If you didn’t perform Exercise 2, you can use the project located in the Exercise 2 Start 
folder.

2. Open the default.html file. 



 Practice exercises CHAPTER 5 253

3. Surround the inputs and buttons with a <table> element.

4. Remove all <br /> elements from the default.html file.

5. Surround the txtResult text box with a table cell that spans four columns. Surround the 
table cell with a table row. 

The table row should look like the following.

<tr> 
    <td colspan="4"> 
        <input id="txtResult" type="text" readonly="readonly" /> 
    </td> 
</tr>

6. With the txtInput text box, repeat the previous step as follows.

<tr> 
    <td colspan="4"> 
        <input id="txtInput" type="text" /> 
    </td> 
</tr>

The next table row will have two empty columns, for future buttons, and then a col-
umn for the clear entry button and another column for the clear button as follows.

<tr> 
    <td></td> 
    <td></td> 
    <td><button id="btnClearEntry">CE</button></td> 
    <td><button id="btnClear">C</button></td> 
</tr> 

The next table row will have buttons 7, 8, 9, and the plus button as follows.

<tr> 
    <td> 
        <button id="btn7">7</button></td> 
    <td> 
        <button id="btn8">8</button></td> 
    <td> 
        <button id="btn9">9</button></td> 
    <td> 
        <button id="btnPlus">+</button> 
    </td> 
</tr>

The next table row will have buttons 4, 5, 6, and the minus button as follows.

<tr> 
    <td> 
        <button id="btn4">4</button> 
    </td> 
    <td> 
        <button id="btn5">5</button> 
    </td> 
    <td> 



 254 CHAPTER 5 More HTML5

        <button id="btn6">6</button> 
    </td> 
    <td> 
        <button id="btnMinus">-</button> 
    </td> 
</tr>

The next table row will have buttons 1, 2, and 3 and an empty column as follows.

<tr> 
    <td> 
        <button id="btn1">1</button> 
    </td> 
    <td> 
        <button id="btn2">2</button> 
    </td> 
    <td> 
        <button id="btn3">3</button> 
    </td> 
    <td> 
    </td> 
</tr>

The last table row will have an empty column, the 0 button, and two more empty 
columns as follows.

<tr> 
    <td></td> 
    <td> 
       <button id="btn0">0</button> 
    </td> 
    <td></td> 
    <td></td> 
</tr>

The following is the completed main <div> element.

<div role="main"> 
    <div id="calculator"> 
        <table> 
            <tr> 
                <td colspan="4"> 
                    <input id="txtResult" type="text" readonly="readonly" /> 
                </td> 
            </tr> 
            <tr> 
                <td colspan="4"> 
                    <input id="txtInput" type="text" /> 
                </td> 
            </tr> 
            <tr> 
                <td></td> 
                <td></td> 
                <td> 
                    <button id="btnClearEntry">CE</button> 
                </td> 



 Practice exercises CHAPTER 5 255

                <td> 
                    <button id="btnClear">C</button> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <button id="btn7">7</button></td> 
                <td> 
                    <button id="btn8">8</button></td> 
                <td> 
                    <button id="btn9">9</button></td> 
                <td> 
                    <button id="btnPlus">+</button> 
                </td> 
            </tr> 
            <tr> 
                <td> 
                    <button id="btn4">4</button> 
                </td> 
                <td> 
                    <button id="btn5">5</button> 
                </td> 
                <td> 
                    <button id="btn6">6</button> 
                </td> 
                <td> 
                    <button id="btnMinus">-</button> 
                </td> 
            </tr> 
 
            <tr> 
                <td> 
                    <button id="btn1">1</button> 
                </td> 
                <td> 
                    <button id="btn2">2</button> 
                </td> 
                <td> 
                    <button id="btn3">3</button> 
                </td> 
                <td></td> 
            </tr> 
 
            <tr> 
                <td></td> 
                <td> 
                    <button id="btn0">0</button> 
                </td> 
                <td></td> 
                <td></td> 
            </tr> 
        </table> 
    </div> 
</div>



 256 CHAPTER 5 More HTML5

7. Now that the default.html file is completed, modify the style sheet by opening the 
default.css file and, at the bottom, adding the table selector and setting the width to 
100 percent as follows.

table { 
    width: 100%; 
}

8. Add a td selector and set the width to 25 percent as follows.

td { 
    width: 25%; 
}

9. Locate the existing button selector. Change the width to 90 percent as follows.

button { 
    background-color: hsl(255, 50%, 80%); 
    width: 90%; 
    height: 10%; 
    border: outset; 
}

10. Locate the existing input selector. Change the padding to 5 pixels as follows.

input { 
    width: 85%; 
    height: 7%; 
    text-align: right; 
    padding: 5px; 
    border: inset; 
}

11. Press F5 to run the application. 

Figure 5-19 shows the completed calculator.



 Suggested practice exercises CHAPTER 5 257

FIGURE 5-19 The completed calculator

Suggested practice exercises

The following additional exercises are designed to give you more opportunities to practice 
what you’ve learned and to help you successfully master the lessons presented in this chapter.

■■ Exercise 1 Learn more about semantic markup by adding additional sections to your 
webpage.

■■ Exercise 2 Learn more about tables by adding more rows and cells to the table to 
hold future buttons. 



 258 CHAPTER 5 More HTML5

Answers

This section contains the answers to the lesson review questions in this chapter.

Lesson 1
1. Correct answer: D

A. Incorrect: The <section> element denotes a part of something. 

B. Incorrect: The <pre> element displays preformatted content.

C. Incorrect: The <aside> element displays content that is related to the site.

D. Correct: An article wraps stand-alone items that can be shared. 

2. Correct answer: C

A. Incorrect: You should refrain from using the <b> element.

B. Incorrect: The <em> element indicates emphatic stress but not necessarily 
importance.

C. Correct: The <strong> element indicates importance.

D. Incorrect: You should refrain from using the <i> element.

3. Correct answer: A

A. Correct: The <address> element provides contact information for the author of 
the webpage.

B. Incorrect: The <contact> element is not valid.

C. Incorrect: The <author>element is not valid.

D. Incorrect: The <name> element is not valid.

Lesson 2
1. Correct answer: B

A. Incorrect: The column needs to span two columns.

B. Correct: The column needs the colspan=”2” attribute to span the Products and 
Services columns.

C. Incorrect: The span attribute is used with the <col> element but not with the <th> 
element.

D. Incorrect: The style attribute cannot be used to cause spanning across two 
columns.

2. Correct answer: A

A. Correct: You can assign styles to the <col> element, which will apply the style to 
the corresponding table column.

B. Incorrect: Adding an id to each <td> element does not satisfy the criteria.



 Answers CHAPTER 5 259

C. Incorrect: The <col> element must be inside a <colgroup> element.

D. Incorrect: The <hidden> element is not valid.

3. Correct answer: C

A. Incorrect: The <thead> element specifies heading rows.

B. Incorrect: The <colgroup> element specifies columns.

C. Correct: The <caption> element adds a caption to the top of a table.

D. Incorrect: The <th> element specifies header cells.





   261

C H A P T E R  6

Essential JavaScript and 
jQuery

The flexibility of JavaScript is amazing. In the previous chapters, you learned how to add 
JavaScript code to your webpage to provide dynamic changes to the page when an 

event is triggered.

One of the biggest difficulties with webpage development is the differences among 
different browsers, but this book is primarily focused on HTML5, CSS3, and JavaScript 
(ECMAScript5.1). A completely separate book could be written that deals just with the dif-
ferences among browsers and browser versions.

In this chapter, you learn how to create objects, which are an important aspect of 
JavaScript. You use objects to create entities, which are passed to and from the server, and 
to encapsulate functionality that you want to modularize. You also need to extend objects 
that others have created.

This chapter also introduces jQuery, the answer to writing browser-compatible code. 
Although jQuery doesn’t solve all browser-compatibility issues, it does solve most of the 
day-to-day issues that you encounter among browsers. In addition, jQuery is fun and easy 
to use.

Lessons in this chapter:
■■ Lesson 1: Creating JavaScript objects 262

■■ Lesson 2: Working with jQuery 285

Before you begin

To complete this book, you must have some understanding of web development. This 
chapter requires the hardware and software listed in the “System requirements” section in 
the book’s Introduction. 



 262 CHAPTER 6 Essential JavaScript and jQuery

Lesson 1: Creating JavaScript objects

In JavaScript, everything is an object. Strings, numbers, and functions are all objects. You have 
learned how to create functions, so you already have exposure to creating objects, as you see 
in this lesson.

After this lesson, you will be able to:
■■ Understand basic object-oriented terminology.

■■ Create JavaScript objects.

Estimated lesson time: 20 minutes

Using object-oriented terminology
In many object-oriented languages, when you want to create objects, you start by creating 
a class, which is a blueprint for an object. Like a blueprint for a house, the blueprint isn’t the 
house; it’s the instructions that define the type of object that you will be constructing, which 
is the house. By using a house blueprint, you can create, or construct, many houses that are 
based on the blueprint. Each house is an object of type house, also known as an instance of 
the house type.

The developer writes the class, which is then used to construct objects. In a baseball appli-
cation, you might create a Player (classes are normally capitalized) class that has properties 
for first and last name, batting average, error count, and so on. When you create your team, 
you might use the Player class to create nine Player objects, each having its own properties. 
Each time you construct a Player object, memory is allocated to hold the data for the player, 
and each piece of data is a property, which has a name and a value.

The three pillars of object-oriented programming are encapsulation, inheritance, and 
polymorphism. Encapsulation means that you hide all details except those that are required 
to communicate with your object in order to simplify the object for anyone using the object. 
Inheritance means that you can create an “is a” relationship between two classes, in which the 
child class automatically inherits everything that is in the parent class. Polymorphism means 
that you can execute a function on the parent class, but the behavior changes (morphs) 
because your child class has a function that overrides the function in the parent class.

The parent class is also known as the base class, the super class, or the generalized class. 
The child class is also known as the derived class, the subclass, or the specialized class. Because 
it’s easy to think of actual children inheriting from parents, the terms parent and child are 
usually used, but you should remember the other terms for these classes to communicate 
effectively with others about object-oriented programming.

In object-oriented programming, objects can have data implemented as properties and 
behaviors implemented as methods. A property is essentially a variable that is defined on 

Key 
Terms

Key 
Terms

Key 
Terms

Key 
Terms



 Lesson 1: Creating JavaScript objects CHAPTER 6 263

an object and owned by the object. A method is a function that is defined on an object and 
owned by the object.

Understanding the JavaScript object-oriented caveat
JavaScript is a very flexible language. You can create objects, but the relationship between the 
JavaScript language and class-based, object-oriented programming is not direct. The most 
glaring example is that there is no class keyword in JavaScript. If you’re familiar with class-
based, object-oriented programming, you’ll be struggling to find the “class.”

JavaScript is a prototype-based, object-oriented programming language. In JavaScript, 
everything is an object, and you either create a new object from nothing, or you create an 
object from a clone of an existing object, known as a prototype.

Conceptually, you can simulate class creation by using a function. Class-based, object-
oriented purists dislike the idea of a function being used to simulate a class. Keep an open 
mind as patterns are presented. This lesson should give you what you need to accomplish 
your tasks.

The problem you typically encounter is finding one correct solution for all scenarios. As 
you read on, you’ll find that achieving proper encapsulation of private data requires you to 
create copies of the functions that can access the private data for each object instance, which 
consumes memory. If you don’t want to create copies of the method for each object instance, 
the data needs to be publicly exposed, thus losing the benefits of encapsulation, by which 
you hide object details that users shouldn’t need to see.

The general consensus of this issue of encapsulation versus wasteful memory consump-
tion is that most people would rather expose the data to minimize memory consumption. Try 
to understand the benefits and drawbacks of each pattern when deciding which option to 
implement in your scenario.

Using the JavaScript object literal pattern
Probably the simplest way to create an object in JavaScript is to use the object literal syntax. 
This starts with a set of curly braces to indicate an object. Inside the curly braces is a comma-
separated list of name/value pairs to define each property. Object literals create an object 
from nothing, so these objects contain precisely what you assign to them and nothing more. 
No prototype object is associated with the created object. The following example demon-
strates the creation of two objects that represent vehicles.

var car1 = { 
    year: 2000, 
    make: 'Ford', 
    model: 'Fusion', 
    getInfo: function () { 
        return 'Vehicle: ' + this.year + ' ' + this.make + ' ' + this.model; 
    } 
}; 
 

Key 
Terms



 264 CHAPTER 6 Essential JavaScript and jQuery

var car2 = { 
    year: 2010, 
    make: 'BMW', 
    model: 'Z4', 
    getInfo: function () { 
        return 'Vehicle: ' + this.year + ' ' + this.make + ' ' + this.model; 
    } 
};

In this example, public properties are created for year, make, model, and getInfo. The get-
Info property doesn’t contain data; it references an anonymous function instead, so getInfo 
is a method. The method uses the this keyword to access the data. Remember that the this 
keyword references the object that owns the code where the this keyword is. In this case, the 
object is being created. If the this keyword were omitted, the code would look in the global 
namespace for year, make, and model.

To test this code, the following QUnit test checks to see whether each object contains the 
data that is expected.

test("Object Literal Test", function () { 
    expect(2); 
    var expected = 'Vehicle: 2000 Ford Fusion'; 
    var actual = car1.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var expected = 'Vehicle: 2010 BMW Z4'; 
    var actual = car2.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
});

This test performs an assertion by using the car1 variable and then performs another 
assertion by using the car2 variable. The successful test is shown in Figure 6-1.

If you want to define an array of items and assign it to a property, you can use square 
brackets as shown in the following example.

var car1 = { 
    year: 2000, 
    make: 'Ford', 
    model: 'Fusion', 
    repairs: ['repair1', 'repair2', 'repair3'], 
    getInfo: function () { 
        return 'Vehicle: ' + this.year + ' ' + this.make + ' ' + this.model; 
    } 
};

Because this is one of the easiest ways to create an object, you’ll probably use it to gather 
data to send to other code. In this example, two instances of a type Object are created, and 
properties are dynamically added to each instance. This does not create a Vehicle type.



 Lesson 1: Creating JavaScript objects CHAPTER 6 265

FIGURE 6-1 The JavaScript object literal test

Creating dynamic objects by using the factory pattern
In addition to using the JavaScript literal object syntax, JavaScript has an Object type, and you 
can use it to create an object programmatically. Object has a prototype object that is cloned 
when you use the new keyword to create a new Object instance. The prototype object has the 
following inherited methods.

■■ constructor The function that is called to initialize a new object

■■ hasOwnProperty Returns a Boolean indicator of whether the current object has the 
specified property

■■ isPrototypeOf Returns a Boolean indicator of whether the current object is in the 
specified object’s prototype object chain

■■ propertyIsEnumerable Returns true if the object can be enumerated in a for...in 
loop

■■ toLocalString Converts a date to a string value based on the current local

■■ toString Returns the string representation of the current object

■■ valueOf Returns the value of the current object converted to its most meaningful 
primitive value



 266 CHAPTER 6 Essential JavaScript and jQuery

After the object is created, you can dynamically add properties to it that hold the data and 
reference functions. You can wrap this code in a function that returns the object as shown in 
the following code example.

function getVehicle(theYear, theMake, theModel) { 
    var vehicle = new Object(); 
    vehicle.year = theYear; 
    vehicle.make = theMake; 
    vehicle.model = theModel; 
    vehicle.getInfo = function () { 
        return 'Vehicle: ' + this.year + ' ' + this.make + ' ' + this.model; 
    }; 
    return vehicle; 
}

This code takes advantage of JavaScript’s dynamic nature to add year, make, model, and 
getInfo to the object and then returns the object. Placing this code in a function makes it easy 
to call the getVehicle function to get a new object. The encapsulation of the code to create an 
object is commonly referred to as using the factory pattern. Can you create multiple instances 
of vehicle? You can create multiple instances of Object and add properties dynamically to 
each instance, but the actual type is Object, not vehicle. The following QUnit test demon-
strates the creation of multiple instances.

test("Create Instances Test Using Factory Pattern", function () { 
    expect(2); 
    var car1 = getVehicle(2000, 'Ford', 'Fusion'); 
    var car2 = getVehicle(2010, 'BMW', 'Z4'); 
    var expected = 'Vehicle: 2000 Ford Fusion'; 
    var actual = car1.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var expected = 'Vehicle: 2010 BMW Z4'; 
    var actual = car2.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
});

This might be all you need when you are gathering some data to put into an object struc-
ture and pass to some other code or service. Although the getVehicle function encapsulates 
the object creation, the properties are all public. This can be desirable in some scenarios, but 
if you want the data to be private, this approach won’t work. Like when using the literal object 
syntax, you might encounter the problem that every vehicle’s type is Object, and you might 
want to create a Vehicle class to have a named Vehicle type.

Creating a class
There is no class keyword in JavaScript, but you can simulate a class by starting with a func-
tion, which is actually the constructor function of the object. Consider the following function.

function Vehicle(theYear, theMake, theModel) { 
    year = theYear; 

Key 
Terms



 Lesson 1: Creating JavaScript objects CHAPTER 6 267

    make = theMake; 
    model = theModel; 
    getInfo = function () { 
        return 'Vehicle: ' + year + ' ' + make + ' ' + model; 
    }; 
}

There are several problems with this code. All the variables are defined without the var 
keyword, so year, make, model, and getInfo are automatically defined in the global scope and 
are accessible from anywhere. The following is a passing QUnit test that initializes Vehicle and 
calls the getInfo method to retrieve the data.

test("Function Test", function () { 
    expect(2); 
    Vehicle(2000, 'Ford', 'Fusion'); 
    var expected = 'Vehicle: 2000 Ford Fusion'; 
    var actual = getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected +  
          '  Actual value: ' + actual); 
    expected = 2000; 
    actual = year; 
    equal(actual, expected, 'Expected value: ' + expected +  
          '  Actual value: ' + actual);    
});

The Vehicle function accepts three parameters and doesn’t return anything. Instead, it is 
setting global variables, and there is no provision for multiple instances. To prove that global 
variables are being set, the second assertion is checking to see whether there is a global vari-
able named year that equals 2,000. This assertion succeeds, which proves that the data is not 
encapsulated, and there is only one copy of the data. For example, the following QUnit test 
fails.

test("Failing Function Test", function () { 
    expect(1); 
    Vehicle(2000, 'Ford', 'Fusion'); 
    Vehicle(2010, 'BMW', 'Z4'); 
    var expected = 'Vehicle: 2000 Ford Fusion'; 
    var actual = getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected +  
          '  Actual value: ' + actual); 
    expected = 2000; 
    actual = year; 
    equal(actual, expected, 'Expected value: ' + expected +  
          '  Actual value: ' + actual);    
});

Figure 6-2 shows the failures. The problem is that year, make, and model of the second 
vehicle replaced year, make, and model of the first vehicle. The variable getInfo was also 
replaced, but instead of holding data, it holds a reference to the function code. The getInfo 
variable’s value was replaced with new function code; it just happened to be the same code. 
Once again, there is no encapsulation.



 268 CHAPTER 6 Essential JavaScript and jQuery

FIGURE 6-2 The failing test assertions after a second vehicle is used

To solve the problem, you want to implement encapsulation. Then you need to create 
objects, each with its own data. To implement encapsulation, use the var keyword for the 
year, make, and model. This will make these variables private to the function. Notice that the 
var keyword is not used with getInfo because the getInfo variable needs to be public to be 
called from outside the object, but you don’t want the getInfo variable to be global. Assign 
getInfo to the current object by using the this keyword. The result is a class that encapsulates 
the data and exposes getInfo to retrieve the data in a controlled way as follows.

function Vehicle(theYear, theMake, theModel) { 
    var year = theYear; 
    var make = theMake; 
    var model = theModel; 
    this.getInfo = function () { 
        return 'Vehicle: ' + year + ' ' + make + ' ' + model; 
    }; 
}

IMPORTANT PRIVATE DATA ISN’T SECURE

In object-oriented programming, private data is not intended to be secure. Private data 
provides encapsulation so the details can be hidden; the user sees only what is necessary 
and isn’t bogged down in the details.



 Lesson 1: Creating JavaScript objects CHAPTER 6 269

Remember that the this keyword references the object that owns the current code. The 
way the test is currently written, the this keyword references the global object, and getInfo 
will still be a global variable. To solve the problem, the new keyword must be used to create 
an object from this class, as shown in the modified test code.

test("Encapsulation Test", function () { 
    expect(2); 
    var car1 = new Vehicle(2000, 'Ford', 'Fusion'); 
    var car2 = new Vehicle(2010, 'BMW', 'Z4'); 
    var expected = 'Vehicle: 2000 Ford Fusion'; 
    var actual = car1.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
         '  Actual value: ' + actual); 
    expected = 2000; 
    actual = year; 
    equal(actual, expected, 'Expected value: ' + expected + 
         '  Actual value: ' + actual); 
});

Notice that a new variable is defined, car1, and it is assigned the object that is created by 
using the new keyword. After that, another new variable is defined, car2, and it is assigned the 
second Vehicle object created by using the new keyword. Two instances of the Vehicle class 
are being created, which means that two Vehicle objects are being constructed. Each instance 
has its own data and its own copy of the getInfo method. The getInfo method is public but 
has access to the private data. A method that is public but has access to private data is called 
a privileged method.

Figure 6-3 shows the test results. Notice that the first assertion passed, which proves that 
there are separate object instances, each having its own data. The second assertion failed. The 
failure message states that the year is undefined, which proves that the year is not directly 
accessible from the test, which is in the global namespace. Instead, year, in addition to make 
and model, is encapsulated in the object.

You have now created a class and constructed objects from the class, but there’s more 
to cover in the Vehicle function that is being used as a class. The Vehicle function is known 
as a constructor function. The new keyword created an object and executed the constructor 
function to initialize the object by creating the year, make, and model private variables and 
the public getInfo variable. Each instance has these four variables, and memory is allocated 
for them. That’s what you want for the data, but is that what you want for the getInfo variable 
that references a function? The answer is that it depends on what you are trying to accom-
plish with your code.

Key 
Terms

Key 
Terms



 270 CHAPTER 6 Essential JavaScript and jQuery

FIGURE 6-3 Successful first assertion and failed second assertion

Consider the following test code that creates two Vehicle objects, but then replaces the 
code in getInfo of the first Vehicle object with different code. Does this replace the code in 
the second Vehicle object?

test("Function Replacement Test", function () { 
    expect(2); 
    var car1 = new Vehicle(2000, 'Ford', 'Fusion'); 
    var car2 = new Vehicle(2010, 'BMW', 'Z4'); 
    car1.getInfo = function () { 
        return 'This is a Car'; 
    }; 
    var expected = 'This is a Car'; 
    var actual = car1.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
           '  Actual value: ' + actual); 
    var expected = 'This is a Car'; 
    var actual = car2.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected +  
           '  Actual value: ' + actual); 
});

The test result is shown in Figure 6-4. The first assertion succeeded, which proves that the 
function was successfully replaced on the first Vehicle object. The second assertion failed, 
which proves that the second Vehicle object’s getInfo function was not replaced. Is that what 



 Lesson 1: Creating JavaScript objects CHAPTER 6 271

you expected? Is that what you wanted? You can see that in some scenarios, this behavior is 
desirable, but in other scenarios, you might have wanted to replace the function across all 
objects. To do this, you use the prototype pattern.

NOTE ACCESS TO PRIVATE DATA

In the example, the replacement function cannot access the private data because the 
 replacement is executed externally to the Vehicle.

FIGURE 6-4 Successful first assertion, proving that the function was replaced; failed second assertion, 
proving that the second Vehicle’s function was not replaced

Using the prototype property
In JavaScript, everything, including the function, is an Object type, which has a prototype 
property. The prototype itself is an object containing properties and methods that should be 
available to all instances of the type you’re working with. However, this prototype is typi-
cally specified externally to the constructor function, so the prototype doesn’t have access to 
private variables. Therefore, you must expose the data for the prototype to work. The follow-
ing is an example of using the prototype property to create a single getInfo method that is 
shared across all instances.

function Vehicle(theYear, theMake, theModel) { 
    this.year = theYear; 



 272 CHAPTER 6 Essential JavaScript and jQuery

    this.make = theMake; 
    this.model = theModel; 
} 
Vehicle.prototype.getInfo = function () { 
    return 'Vehicle: ' + this.year + ' ' + this.make + ' ' + this.model; 
}

By using this class and the prototype, you can write the following test to ensure that each 
instance has its own data and that the getInfo function works properly.

test("Instance Test Using Prototype", function () { 
    expect(2); 
    var car1 = new Vehicle(2000, 'Ford', 'Fusion'); 
    var car2 = new Vehicle(2010, 'BMW', 'Z4'); 
    var expected = 'Vehicle: 2000 Ford Fusion'; 
    var actual = car1.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected +  
               '  Actual value: ' + actual); 
    var expected = 'Vehicle: 2010 BMW Z4'; 
    var actual = car2.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected +  
               '  Actual value: ' + actual); 
});

In this test, two instances of the Vehicle class are created, each having different data. The 
first assertion calls getInfo on car1 and verifies that the proper result is returned. The second 
assertion calls getInfo on car2 and verifies that the proper result is returned. The result is 
shown in Figure 6-5.

FIGURE 6-5 The modified class using the prototype property to create the getInfo function



 Lesson 1: Creating JavaScript objects CHAPTER 6 273

Now that you have a functioning class, change the prototype to see whether it can be 
changed across all instances.

test("Instance Test Using Prototype Replace Function", function () { 
    expect(2); 
    var car1 = new Vehicle(2000, 'Ford', 'Fusion'); 
    var car2 = new Vehicle(2010, 'BMW', 'Z4'); 
    Vehicle.prototype.getInfo = function () { 
        return 'Car: ' + this.year + ' ' + this.make + ' ' + this.model; 
    } 
    var expected = 'Car: 2000 Ford Fusion'; 
    var actual = car1.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var expected = 'Car: 2010 BMW Z4'; 
    var actual = car2.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
});

This test creates two Vehicle instances and then changes getInfo. Next, the two assertions 
are modified to check both instances to see whether they are using the updated getInfo. The 
result is shown in Figure 6-6.

FIGURE 6-6 The modification of the getInfo prototype affected all instances

You might use the prototype property when creating functions that will be shared across 
all instances, but remember that the prototype is defined externally to the constructor 
function, so all properties must be public when using the this keyword. If you don’t need to 



 274 CHAPTER 6 Essential JavaScript and jQuery

replace individual instance functions and you don’t mind making your data public, the proto-
type is efficient.

Quick check
■■ You want to add a method to all instances of Vehicle. How do you do this?

Quick check answer
■■ Add the method by using the Vehicle object’s prototype method.

Debating the prototype/private compromise
You’ve learned the primary patterns for creating a JavaScript object, but there can be a com-
promise in which you can have private data that is readable by creating a method for retriev-
ing the data, also known as a getter, which has no setter, a method for setting the value. This 
would require you to write a function that is copied for each object, but you should keep the 
function as small as possible, as shown in the following code example.

function Vehicle(theYear, theMake, theModel) { 
    var year = theYear; 
    var make = theMake; 
    var model = theModel; 
    this.getYear = function () { return year; }; 
    this.getMake = function () { return make; }; 
    this.getModel = function () { return model; }; 
} 
Vehicle.prototype.getInfo = function () { 
    return 'Vehicle: ' + this.getYear() + 
        ' ' + this.getMake() + 
        ' ' + this.getModel(); 
}

The QUnit test for this code creates two instances of Vehicle and, for each assertion, 
executes the getInfo method of each object and checks for the proper value. The test is as 
follows.

test("Instance Test Using Prototype and getters", function () { 
    expect(2); 
    var car1 = new Vehicle(2000, 'Ford', 'Fusion'); 
    var car2 = new Vehicle(2010, 'BMW', 'Z4'); 
    var expected = 'Vehicle: 2000 Ford Fusion'; 
    var actual = car1.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var expected = 'Vehicle: 2010 BMW Z4'; 
    var actual = car2.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
});



 Lesson 1: Creating JavaScript objects CHAPTER 6 275

This test is successful, so replace the getInfo method and add more tests. The following 
test code does this.

test("Instance Test Using Prototype and getters", function () { 
    expect(4); 
    var car1 = new Vehicle(2000, 'Ford', 'Fusion'); 
    var car2 = new Vehicle(2010, 'BMW', 'Z4'); 
    var expected = 'Vehicle: 2000 Ford Fusion'; 
    var actual = car1.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var expected = 'Vehicle: 2010 BMW Z4'; 
    var actual = car2.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    Vehicle.prototype.getInfo = function () { 
        return 'Car Year: ' + this.getYear() 
            + ' Make: ' + this.getMake() 
            + ' Model: ' + this.getModel(); 
    }; 
    var expected = 'Car Year: 2000 Make: Ford Model: Fusion'; 
    var actual = car1.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var expected = 'Car Year: 2010 Make: BMW Model: Z4'; 
    var actual = car2.getInfo(); 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
});

The test result is shown in Figure 6-7. You can replace the getInfo method and, because 
the data is exposed as read-only, it’s available to be used in the new method. In addition, the 
privileged getters are small, which minimizes the amount of memory consumed when each 
instance has a copy of the method. Remember to create only getter methods as needed and 
to keep them small and concise.

Quick check
■■ How can you expose private data as read-only?

Quick check answer
■■ Add a getter method that retrieves the data but cannot change the data.



 276 CHAPTER 6 Essential JavaScript and jQuery

FIGURE 6-7 The use of getters to expose read-only data as a good compromise

Implementing namespaces
One problem to watch for is the pollution of the global namespace. As your program gets 
larger and libraries are added, more entries are added to the global object. How can you 
minimize this global namespace pollution?

JavaScript doesn’t have a namespace keyword, but you can implement the equivalent of a 
namespace by using techniques that are similar to those used to create objects. Consider the 
following code sample.

var vehicleCount = 5; 
 
var vehicles = new Array(); 
 
function Car() { } 
function Truck() { } 
 
var repair = { 
    description: 'changed spark plugs', 
    cost: 100 
};

This code sample places five entries in the global namespace, and as the application grows, 
this global namespace pollution also grows. You can implement the namespace pattern to 
solve the problem. The following example shows the creation of an object that contains the 
five items from the previous example.



 Lesson 1: Creating JavaScript objects CHAPTER 6 277

var myApp = {}; 
 
myApp.vehicleCount = 5; 
 
myApp.vehicles = new Array(); 
 
myApp.Car = function () { } 
myApp.Truck = function () { } 
 
myApp.repair = { 
    description: 'changed spark plugs', 
    cost: 100 
};

In this sample, myApp is the only entry in the global namespace. It represents the name of 
the application and its root namespace. Notice that object literal syntax is used to create an 
empty object and assign it to myApp. Everything else is added to the object. Sub-namespaces 
can also be created and assigned to myApp.

You can see that a namespace was created by creating an object. Although only one entry 
is made in the global namespace, all the members of myApp are globally accessible. In addi-
tion, if you create a namespace for your application, and your application has many JavaScript 
files, you might want to have logic to create the namespace object only if it hasn’t been 
created. In the following example, the code for myApp is modified to create the namespace 
object if it doesn’t already exist. This code uses the OR operator to create a new object if 
myApp does not have a value.

var myApp = myApp || {};

You can use the object techniques already defined in this lesson to make some members 
of the namespace private and some public. The difference is that the namespace is a single-
ton object, so you create a single instance for the namespace. You don’t need to worry about 
functions defined in the constructor function consuming additional memory for each instance 
because there is only one instance. Here is an example of the use of an immediately invoked 
function expression (IIFE) to create the myApp namespace in which Car and Truck are public, 
but vehicleCount, vehicles, and repair are private.

(function () { 
    this.myApp = this.myApp || {}; 
    var ns = this.myApp; 
 
    var vehicleCount = 5; 
    var vehicles = new Array(); 
 
    ns.Car = function () { } 
    ns.Truck = function () { } 
 
    var repair = { 
        description: 'changed spark plugs', 
        cost: 100 
    }; 
}());



 278 CHAPTER 6 Essential JavaScript and jQuery

An IIFE (pronounced iffy) is an anonymous function expression that has a set of parenthe-
ses at the end of it, which indicates that you want to execute the function. The anonymous 
function expression is wrapped in parentheses to tell the JavaScript interpreter that the func-
tion isn’t only being defined; it’s also being executed when the file is loaded.

In this IIFE, the first line creates the myApp namespace if it doesn’t already exist, which 
represents the singleton object that is used as the namespace. Next, an ns variable (for 
namespace) is created as an alias to the namespace to save typing within the IIFE, so ns can 
be used in place of this.myApp. After that, the private members of the namespace are defined 
by using the var keyword. Car and Truck are public, so they are prefixed with ns.

If you’re wondering how you would create a sub-namespace under myApp, the following 
example shows how you can add a billing namespace under the myApp namespace.

(function () { 
    this.myApp = this.myApp || {}; 
    var rootNs = this.myApp; 
    rootNs.billing = rootNs.billing || {}; 
    var ns = rootNs.billing; 
 
    var taxRate = .05; 
    ns.Invoice = function () { }; 
}());

This example also implements an IIFE to create the namespace. First, the myApp 
namespace is created if it doesn’t already exist and is assigned to a local rootNs variable to 
save typing inside the namespace. Next, the billing namespace is created and assigned to the 
local ns variable to save typing inside the namespace. Finally, the private taxRate property is 
defined while the public Invoice is defined.

Implementing inheritance
JavaScript provides the ability to implement inheritance, which is useful when you can define 
the relationship between two objects as an “is a” relationship. For example, an apple is a 
fruit, an employee is a person, and a piano is an instrument. You look for “is a” relationships 
because they provide an opportunity to implement code reuse. If you have several types of 
vehicles, you can create Vehicle with the common vehicle traits defined in it. After Vehicle is 
created, you can create each vehicle type and inherit from Vehicle so you don’t need dupli-
cate code in each vehicle type.

As an example of inheritance, start by defining the base class. Using the Vehicle example, 
the following is an example of a Vehicle base class.

var Vehicle = (function () { 
    function Vehicle(year, make, model) { 
        this.year = year; 
        this.make = make; 
        this.model = model; 
    } 

Key 
Terms



 Lesson 1: Creating JavaScript objects CHAPTER 6 279

    Vehicle.prototype.getInfo = function () { 
        return this.year + ' ' + this.make + ' ' + this.model; 
    }; 
    Vehicle.prototype.startEngine = function () { 
        return 'Vroom'; 
    }; 
    return Vehicle; 
})();

This class is wrapped in an IIFE. The wrapper encapsulates the function and the Vehicle 
prototype. There is no attempt to make the data private. The code works as follows.

■■ When the code is loaded into the browser, the IIFE is immediately invoked.

■■ A nested function called Vehicle is defined in the IIFE.

■■ The Vehicle function’s prototype defines getInfo and startEngine functions that are on 
every instance of Vehicle.

■■ A reference to the Vehicle function is returned, which is assigned to the Vehicle 
variable.

This is a great way to create a class, and all future class examples use this pattern. To create 
Vehicle objects, you use the new keyword with the Vehicle variable. The following test creates 
an instance of Vehicle and tests the getInfo and startEngine methods.

test('Vehicle Inheritance Test', function () { 
    expect(2); 
    var v = new Vehicle(2012, 'Toyota', 'Rav4'); 
    var actual = v.getInfo(); 
    var expected = '2012 Toyota Rav4'; 
        equal(actual, expected, 'Expected value: ' + expected + 
            '  Actual value: ' + actual); 
    var actual = v.startEngine(); 
    var expected = 'Vroom'; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
});

Now that you have a Vehicle parent class with three properties and two methods, you can 
create child classes for Car and Boat that inherit from Vehicle. Start by writing an IIFE but, this 
time, pass Vehicle into the IIFE as follows.

var Car = (function (parent) { 
 
})(Vehicle);

Because Vehicle in this example is the Vehicle variable, not the Vehicle function, Car needs 
to be defined after Vehicle. Vehicle is passed into the IIFE and is available inside the IIFE as 
parent. Next, the function for Car can be added inside the IIFE. Inside the function, add any 
additional properties, such as wheelQuantity, and initialize to four. In the function, call the 
parent class’s constructor for Car to allocate memory slots for the year, make, and model. 
To call the parent constructor function, use a call method that exists on the Function object, 



 280 CHAPTER 6 Essential JavaScript and jQuery

which accepts a parameter for the this object, and parameters for the parameters on the 
function being called, as follows.

 var Car = (function (parent) { 
    function Car(year, make, model) { 
        parent.call(this, year, make, model); 
        this.wheelQuantity = 4; 
    } 
    return Car; 
})(Vehicle);

Notice how this example used the call method to modify the this object; the this object is 
the Car object, so the call to the parent constructor function creates year, make, and model 
on the Car object. The Function object has another method, apply, that does the same thing, 
but the extra parameters are passed as an array instead of as a comma-delimited list.

Next, the inheritance must be set up. You might think that you’ve already set up inheri-
tance because the previous example calls the parent class’s constructor, and the year, make, 
and model are created on Car, but getInfo and startEngine were not inherited. The inheri-
tance is accomplished by changing the Car prototype object to be a new Vehicle object. 
Remember that the prototype is the object that is cloned to create the new object. By default, 
the prototype is of type Object. After the new Vehicle is assigned to the prototype, the con-
structor of that Vehicle is changed to be the Car constructor as follows.

var Car = (function (parent) { 
    Car.prototype = new Vehicle(); 
    Car.prototype.constructor = Car; 
    function Car(year, make, model) { 
        parent.call(this, year, make, model); 
        this.wheelQuantity = 4; 
    } 
    return Car; 
})(Vehicle);

Finally, you can add more methods into Car. In this example, the getInfo method is added, 
which replaces the Vehicle getInfo method. The new getInfo gets some code reuse by calling 
the existing getInfo method on the parent Vehicle object’s prototype. However, you must use 
the call method and pass the this object as follows.

var Car = (function (parent) { 
    Car.prototype = new Vehicle(); 
    Car.prototype.constructor = Car; 
    function Car(year, make, model) { 
        parent.call(this, year, make, model); 
        this.wheelQuantity = 4; 
    } 
    Car.prototype.getInfo = function () { 
        return 'Vehicle Type: Car ' + parent.prototype.getInfo.call(this); 
    }; 
    return Car; 
})(Vehicle);



 Lesson 1: Creating JavaScript objects CHAPTER 6 281

This completes Car, and Boat is similar except that Boat has a propellerBladeQuantity, 
which is initialized to three, instead of the wheelQuantity property. In addition, getInfo 
returns the vehicle type of Boat and calls the Vehicle getInfo method as follows.

var Boat = (function (parent) { 
    Boat.prototype = new Vehicle(); 
    Boat.prototype.constructor = Boat; 
    function Boat(year, make, model) { 
        parent.call(this, year, make, model); 
        this.propellerBladeQuantity = 3; 
    } 
    Boat.prototype.getInfo = function () { 
        return 'Vehicle Type: Boat ' + parent.prototype.getInfo.call(this); 
    }; 
    return Boat; 
})(Vehicle);

In addition to the Vehicle tests already presented, you need to verify the following for the 
child classes.

■■ Car and Boat have the inherited year, make, and model properties.

■■ Car has its wheelQuantity property and it's set.

■■ Boat has its propellerBladeQuantity and it's set.

■■ Car and Boat return the proper value from the replaced getInfo method.

■■ Car and Boat return the proper value from the inherited startEngine method.

The following are the Car and Boat tests.

test('Car Inheritance Test', function () { 
    expect(6); 
    var c = new Car(2012, 'Toyota', 'Rav4'); 
    var actual = c.year; 
    var expected = 2012; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var actual = c.make; 
    var expected = 'Toyota'; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var actual = c.model; 
    var expected = 'Rav4'; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var actual = c.wheelQuantity; 
    var expected = 4; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var actual = c.getInfo(); 
    var expected = 'Vehicle Type: Car 2012 Toyota Rav4'; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 



 282 CHAPTER 6 Essential JavaScript and jQuery

    var actual = c.startEngine(); 
    var expected = 'Vroom'; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
}); 
 
test('Boat Inheritance Test', function () { 
    expect(6); 
    var b = new Boat(1994, 'Sea Ray', 'Signature 200'); 
    var actual = b.year; 
    var expected = 1994; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var actual = b.make; 
    var expected = 'Sea Ray'; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var actual = b.model; 
    var expected = 'Signature 200'; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var actual = b.propellerBladeQuantity; 
    var expected = 3; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var actual = b.getInfo(); 
    var expected = 'Vehicle Type: Boat 1994 Sea Ray Signature 200'; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
    var actual = b.startEngine(); 
    var expected = 'Vroom'; 
    equal(actual, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + actual); 
});

Figure 6-8 shows the test output. All tests have passed.



 Lesson 1: Creating JavaScript objects CHAPTER 6 283

FIGURE 6-8 The passing inheritance tests

Lesson summary
■■ A class is a blueprint for an object in which an object is an instance of a class.

■■ The three pillars of object-oriented programming are encapsulation, inheritance, and 
polymorphism.

■■ The class from which you inherit is called the parent, base, super, or generalized class. 
The class that is derived from the parent is called the child, derived, sub, or specialized 
class. You can implement inheritance by replacing the Child class prototype with a new 
instance of the parent and replacing its constructor with the Child class constructor 
function.



 284 CHAPTER 6 Essential JavaScript and jQuery

■■ JavaScript is a prototype-based, object-oriented programming language. A prototype 
is the object used to create a new instance.

■■ The literal pattern can be used to create an object by using curly braces to create the 
object. The factory pattern can be used to create a dynamic object.

■■ JavaScript does not have a class keyword, but you can simulate a class by defining a 
function.

■■ Creating private members is possible but usually involves creating privileged getter 
methods that can be memory consuming.

■■ The new keyword constructs an object instance.

■■ The function is an object. The function that simulates a class is called the constructor 
function.

■■ Namespaces can be created by using an immediately invoked function 
expression (IIFE).

Lesson review
Answer the following questions to test your knowledge of the information in this lesson. You 
can find the answers to these questions and explanations of why each answer choice is correct 
or incorrect in the “Answers” section at the end of this chapter.

1. What is the blueprint for an object called?

A. property

B. method

C. class

D. event

2. What does JavaScript use as a starting object when constructing a new object?

A. prototype

B. property

C. class

D. event

3. How is inheritance supported in JavaScript?

A. You replace the prototype of the child object with a new instance of the parent 
object and then replace the prototype constructor with the child constructor.

B. You call the createChild method on the parent object.

C. You call the setParent method on the child object.

D. JavaScript does not support inheritance.



 Lesson 2: Working with jQuery CHAPTER 6 285

Lesson 2: Working with jQuery

This lesson introduces jQuery, which is very well documented at http://jquery.com. Subsequent 
chapters take advantage of jQuery whenever possible to minimize typing and benefit from 
jQuery’s cross browser–compatible helper functions.

After this lesson, you will be able to:
■■ Explain the benefits of using jQuery.

■■ Use jQuery to select DOM elements.

■■ Use jQuery to modify the DOM.

■■ Use jQuery to set styles.

Estimated lesson time: 30 minutes

Introducing jQuery
jQuery is a library of helper functions that are cross browser–compatible. If you feel comfort-
able working with JavaScript, you might think that you don’t need jQuery, but you do. You 
can minimize the amount of browser-specific code you must write by using jQuery, an open-
source add-in that provides an easy, browser-agnostic means for writing JavaScript.

jQuery is written in JavaScript, so it is JavaScript. You can read the jQuery source code to 
understand how jQuery works. Probably millions of developers use jQuery. It’s easy to use, it’s 
stable, it’s fully documented, and it works well with other frameworks. The following is a list of 
the categories of functionality jQuery provides.

■■ Ajax Methods that provide synchronous and asynchronous calls to the server

■■ Attributes Methods that get and set attributes of document object model (DOM) 
elements

■■ Callbacks object An object that provides many methods for managing callbacks

■■ Core Methods that provide core jQuery functionality

■■ CSS Methods that get and set CSS-related properties

■■ Data Methods that assist with associating arbitrary data with DOM elements

■■ Deferred object A chainable object that can register multiple callbacks into call-
back queues and relay the success or failure state of any synchronous or asynchronous 
functions

■■ Dimensions Helper methods for retrieving and setting DOM element dimensions

■■ Effects Animation techniques that can be added to your webpage

■■ Events Methods that provide the ability to register code to execute when the user 
interacts with the browser



 286 CHAPTER 6 Essential JavaScript and jQuery

■■ Forms Methods that provide functionality when working with form controls

■■ Offset Methods for positioning DOM elements

■■ Selectors Methods that provide the ability to access DOM elements by using CSS 
selectors

■■ Traversing Methods that provide the ability to traverse the DOM

■■ Utilities Utility methods

This lesson only scratches the surface of jQuery’s capabilities, but subsequent lessons use 
jQuery whenever possible.

Getting started with jQuery
To get started with jQuery, add the jQuery library to your project. In this example, the QUnit 
testing framework has already been added to an empty web project, and it will demonstrate 
jQuery capabilities. You can add jQuery by either downloading the library from http://jQuery 
.com or adding the library from NuGet. To add it from NuGet, open your project and, in the 
Project menu, click Manage NuGet Packages. In the Search Online text box, type jQuery and 
press Enter. You should see a screen that is similar to that shown in Figure 6-9.

FIGURE 6-9 The NuGet package manager



 Lesson 2: Working with jQuery CHAPTER 6 287

After locating jQuery, click the Install button. The installation will start and, in a moment, 
you’ll see a green check box on jQuery, indicating that the installation has completed suc-
cessfully. Click the Close button and look at the Solution Explorer window, as shown in 
Figure 6-10. If your project didn’t have a Scripts folder, a Scripts folder was added. Inside the 
Scripts folder, you’ll find the latest release of jQuery. There is a file for IntelliSense and a com-
plete jQuery library file. Finally, there is a minimized version of jQuery, which is the file you 
use at production time to minimize bandwidth usage.

FIGURE 6-10 The completed installation of jQuery

Using jQuery
You’re probably still trying to understand what jQuery is and how you benefit from using it, 
so the first feature to learn is how to use jQuery to locate an element or a group of elements. 
First, the jQuery library must be referenced on the page on which you will be using it. In this 
first example, the basic QUnit Test.html file is used, and the jQuery library is added so that the 
file contains the following HTML.

<!DOCTYPE html> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <title></title> 
    <link rel="stylesheet" type="text/css" href="Content/qunit.css" /> 
    <script type="text/javascript" src="Scripts/qunit.js"></script> 
    <script src="Scripts/jquery-1.8.2.js"></script> 
    <script type="text/javascript" src="Scripts/default.js"></script> 
    <script type="text/javascript" src="Scripts/tests.js"></script> 
</head> 
<body> 



 288 CHAPTER 6 Essential JavaScript and jQuery

    <h1 id="qunit-header">QUnit example</h1> 
    <h2 id="qunit-banner"></h2> 
    <div id="qunit-testrunner-toolbar"></div> 
    <h2 id="qunit-userAgent"></h2> 
    <ol id="qunit-tests"></ol> 
    <div id="qunit-fixture"> 
        test markup, will be hidden 
        <input id="txtInput" type="text"  /><br /> 
        <input id="txtResult" type="text"  /><br /> 
   </div> 
</body> 
</html>

In the Solution Explorer window, the Test.html file has been set as the startup page by 
right-clicking the file and choosing Set As Start Page.

In the default.js file, the following code sets a reference to the txtInput and txtResult text 
boxes and then calls the clear function to initialize the two text boxes to ‘0’.

var txtInput; 
var txtResult; 
 
function initialize() { 
    txtInput = document.getElementById('txtInput'); 
    txtResult = document.getElementById('txtResult'); 
    clear(); 
} 
 
function clear() { 
    txtInput.value = '0'; 
    txtResult.value = '0'; 
}

The tests.js file contains a simple test of the initialize method. When the test is run, the two 
assertions pass. The following is the tests.js file contents.

module('QUnit Test Suite', { setup: function () { initialize(); } }); 
 
test("Initialize Test", function () { 
    expect(2); 
    var expected = '0'; 
    equal(txtInput.value, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + txtInput.value); 
    equal(txtResult.value, expected, 'Expected value: ' + expected + 
        '  Actual value: ' + txtResult.value); 
});

Now that the test is passing, change some code to use jQuery. The jQuery library code is in 
the jQuery namespace, but this namespace also has an alias of $ (dollar sign) and can be used 
as follows.

jQuery.someFeature 
$.someFeature



 Lesson 2: Working with jQuery CHAPTER 6 289

You can use either of these names to access the library features, so in the interest of mini-
mizing keystrokes, use the dollar sign. First, change the code inside the initialize function of 
the default.js file. The code to locate elements can be rewritten to use jQuery and CSS selec-
tors as follows.

function initialize() { 
    txtInput = $('#txtInput'); 
    txtResult = $('#txtResult'); 
    clear(); 
}

This code uses the CSS selector to retrieve the elements that match. In this example, there 
is only one match for each of the jQuery selectors. The hash (#) symbol indicates that you 
want to search for the id of the element. When the statement is executed, the txtInput vari-
able will contain a jQuery object, which is a wrapper object that contains the results. This is 
different from the original code, in which the txtInput variable contained a direct reference to 
the DOM element. The wrapper object has an array of elements that match the search criteria 
or has no elements if there is no match. Even if the query doesn’t match any elements, txtIn-
put still contains the wrapper object, but no elements would be in the results.

When a breakpoint is added to the code after the two statements are executed, you can 
debug the code and explore the jQuery wrapper, as shown in Figure 6-11.

FIGURE 6-11 The jQuery wrapper object for txtInput with one element



 290 CHAPTER 6 Essential JavaScript and jQuery

In Figure 6-11, notice there is an array element (shown as [0]), and the length property is 
set to 1. This is how you can verify the result of the query. Element 0 is a direct reference to 
the txtInput DOM element.

When you run the test, it will pass but not for the correct reason; txtInput and txtResult 
reference the jQuery wrapper, not the actual DOM element. When the value property is set 
to ‘0’, a new property is dynamically created on the jQuery object and set to ‘0’. However, the 
intent of this query is to set the text box value to ‘0’. To correct this problem, you can use the 
val method on the jQuery object. The val method gets or sets the value property of a form 
control that has a value property. The following is the modified test code.

module('QUnit Test Suite', { setup: function () { initialize(); } }); 
 
test("Initialize Test", function () { 
    expect(2); 
    var expected = '0'; 
    equal(txtInput.val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + txtInput.val()); 
    equal(txtResult.val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + txtResult.val()); 
});

After the four changes are made to the test, running the test shows that test assertions fail 
because value properties on the DOM elements are not being set. To fix the problem, modify 
the code in the clear function to set the value by using jQuery’s val method. The following is 
the completed code.

var txtInput; 
var txtResult; 
 
function initialize() { 
    txtInput = $('#txtInput'); 
    txtResult = $('#txtResult'); 
    clear(); 
} 
 
function clear() { 
    txtInput.val('0'); 
    txtResult.val('0'); 
}

IMPORTANT REFRESH YOUR SCREEN

HTML documents and JavaScript files are normally cached by the browser, so you might 
not see changes you made by just running the webpage. To refresh, press Ctrl+F5 after the 
screen is displayed.

This code is complete, the tests pass, and the text boxes are populated with ‘0’. It’s impor-
tant for you to use the jQuery object whenever possible so you can benefit from the cross 



 Lesson 2: Working with jQuery CHAPTER 6 291

browser–compatible features that jQuery has. If you need to reference the DOM object from 
the jQuery wrapper, you can do it as follows.

var domElement = $('#txtInput')[0];

Don’t forget that you can put this code inside a conditional statement that checks the 
length property to see whether an element exists before attempting to access element 0 of 
the result.

var domElement; 
if($('#txtInput').length > 0){ 
   domElement = $('#txtInput')[0]; 
}

Enabling JavaScript and jQuery IntelliSense
When learning a new language or library, it’s always good to have some help to keep you 
from getting stuck on every statement you write. When you installed jQuery, an IntelliSense 
file was added, but it is not yet being used. For example, in the default.js file, if you type a 
jQuery expression that includes a selector and then press the Period key, you would like to 
see a valid list of available methods and properties. Before setting up IntelliSense, Figure 6-12 
shows an example of what you see in the IntelliSense window when you type in a jQuery 
expression with a selector and press Period.

FIGURE 6-12 The IntelliSense window when not properly set up for jQuery



 292 CHAPTER 6 Essential JavaScript and jQuery

All the IntelliSense suggestions have a yellow warning triangle, and a message is displayed 
that states, “IntelliSense was unable to determine an accurate completion list for this expres-
sion. The provided list contains all identifiers in the file.”

To activate IntelliSense, you must set a reference to the jQuery file (not the IntelliSense file) 
in every JavaScript file that requires IntelliSense. The following is an example of the default.js 
file with the reference set.

/// <reference path="jquery-1.8.2.js" /> 
var txtInput; 
var txtResult; 
 
function initialize() { 
    txtInput = $('#txtInput'); 
    txtResult = $('#txtResult'); 
    clear(); 
} 
 
function clear() { 
    txtInput.val('0'); 
    txtResult.val('0'); 
}

This reference was added by just dragging and dropping the jquery-1.8.2.js file to the top 
of the file. You can imagine that this can become a problem because you add many librar-
ies and have hundreds of JavaScript files in a project. You might also want to benefit from 
IntelliSense in HTML files. To solve the problem, Microsoft has provided the ability to create 
a reference list and then just add the reference list to the top of the JavaScript files. You do 
so by adding a _references.js JavaScript file to your Scripts folder and then referencing that 
file in your JavaScript files. Even though you need to add the reference to the _references.js 
file to all your JavaScript files, when you add another library, you need to add it only to the 
_references.js file.

Why do you need the special name and why does it need to be in the Scripts folder when 
you need to reference the file explicitly? If you use a file called _references.js that is located 
in the Scripts folder, you automatically have a reference to this file in your HTML pages, 
although you still need to add the reference to your JavaScript files. The following is the con-
tents of the _references.js file.

/// <reference path="jquery-1.8.2.js" /> 
/// <reference path="qunit.js" />

Visual Studio automatically locates the associated IntelliSense file, if one exists with the 
same name as the library, in the libraryName.intellisense.js format. In addition to using 
IntelliSense files if they exist, Visual Studio looks at all referenced libraries and provides 
default IntelliSense. 

var txtResult; 
 
function initialize() { 
    txtInput = $('#txtInput'); 



 Lesson 2: Working with jQuery CHAPTER 6 293

    txtResult = $('#txtResult'); 
    clear(); 
} 
 
function clear() { 
    txtInput.val('0'); 
    txtResult.val('0'); 
}

After adding the reference, if you type a jQuery expression, you activate IntelliSense as 
soon as you enter the dollar sign and the opening parenthesis, as shown in Figure 6-13.

FIGURE 6-13 The jQuery IntelliSense providing help as you type

Notice in Figure 6-13 that after you finish typing the selector and you press Period, you are 
provided with a valid list of properties and methods for the jQuery wrapper object.

What happens if you are in the clear function and type txtInput and press period? Did 
IntelliSense make sense? You get an IntelliSense response that is similar to that in Figure 6-12. 
Simply put, don’t activate IntelliSense; txtInput and txtResult are global variables that can be 
set to anything anywhere in your application, so Visual Studio can’t possibly provide accurate 
IntelliSense. However, if you try typing txtInput and press Period at the bottom of the initial-
ize function, you get proper IntelliSense that’s similar to that in Figure 6-13. The difference is 
that Visual Studio is examining your code and knows that you just assigned a jQuery object to 



 294 CHAPTER 6 Essential JavaScript and jQuery

txtInput, so proper IntelliSense can be provided. To take advantage of IntelliSense, the global 
variables are eliminated, as shown in the following, modified default.js file.

function initialize() { 
    clear(); 
} 
 
function clear() { 
    $('#txtInput').val('0'); 
    $('#txtResult').val('0'); 
}

This code is much smaller without the global variables, but the test is now failing because 
the test still references the global variables. To fix the test, replace the global variable refer-
ences as follows.

module('QUnit Test Suite', { setup: function () { initialize(); } }); 
 
test("Initialize Test", function () { 
    expect(2); 
    var expected = '0'; 
    equal($('#txtInput').val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + $('#txtInput').val()); 
    equal($('#txtResult').val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + $('#txtResult').val()); 
});

When the test is run, it passes.

Quick check
■■ You want to save time when writing JavaScript code. Which library can you use 

to accomplish this goal?

Quick check answer
■■ Use the jQuery library.

Creating a jQuery wrapper for a DOM element reference
You’ve seen how the use of CSS selectors create a jQuery result, which is a wrapper around 
zero to many DOM elements that match the selector. You can also create a jQuery wrapper 
from a DOM element reference, as shown in the following examples.

var doc = $(document); 
var innerText = $(this).text();

The first expression wraps the document object and assigns the result to a doc variable so 
you can use jQuery’s methods with the document object. The second expression wraps the 
this object, which is a DOM element being passed to an event listener. After wrapping the 



 Lesson 2: Working with jQuery CHAPTER 6 295

this object, the jQuery text method retrieves the inner text of the element and assigns it to an 
innerText variable.

Adding event listeners
In HTML5, you can use the addEventListener function to subscribe to an event. If you want a 
browser-independent way to add an event listener, you can use the jQuery .on method. There 
is also a corresponding .off method to remove an event listener. The .on method can be used 
as follows.

$('#btnSubmit').on('click', myFunction);

In this example, a button whose id is btnSubmit is located, using jQuery and the .on 
method to add a call to the user-defined myFunction function to the click event of the but-
ton. To remove the event listener, use the same code but replace the .on with .off as follows.

$('#btnSubmit').off('click', myFunction);

Triggering event handlers
When you need to trigger the event handlers by using code, you’ll find that jQuery can 
help. Probably the most common reason to trigger event handlers by using code is to test 
your code. Using jQuery’s trigger or the triggerHandler method causes the handler code to 
execute.

The trigger method causes the default behavior of the control to execute, whereas the 
triggerHandler method does not. For example, executing the trigger method on a submit 
button causes the submit action to take place in addition to executing your event handler 
code. Another difference is that the trigger method executes for all elements matched in the 
jQuery selector, whereas the triggerHandler method executes for only the first element. The 
following is an example of triggering the event handler code for the click event on a submit 
button.

$('#btnSubmit').triggerHandler('click');

Initializing code when the browser is ready
You will often need to execute initialization code after the HTML document is loaded and 
ready, and jQuery executes with a browser-independent way to execute code when the docu-
ment is loaded as follows.

<script> 
    $(document).ready(function () { 
        initialize(); 
    }); 
</script>



 296 CHAPTER 6 Essential JavaScript and jQuery

It’s best to place this at the bottom of your HTML document and call an initialize function 
that contains all initialization code.

Lesson summary
■■ Download jQuery from http://jQuery.com or install it from the NuGet package 

manager.

■■ The jQuery library is in a jQuery namespace and is aliased as a dollar sign ($).

■■ Use the $(selector) syntax to locate document object model (DOM) elements. The 
result of $(selector) is a jQuery wrapper object containing zero to many DOM elements 
that match the selector. You can use the length property to find out whether there are 
any matches to the selector.

■■ Use jQuery’s val method to get or set the value of a DOM element that has a value 
property.

■■ To enable IntelliSense, create a _references.js file in the Scripts folder and add library 
references to this file. In your JavaScript files, add a reference to the _references.js file.

■■ Use jQuery’s .on and .off methods to add and remove event listeners.

■■ Use the $(document).ready(function(){ initialize( );  }); expression to add initialization 
code.

Lesson review
Answer the following questions to test your knowledge of the information in this lesson. You 
can find the answers to these questions and explanations of why each answer choice is correct 
or incorrect in the “Answers” section at the end of this chapter.

1. You want to locate all the elements on your webpage that are assigned the CSS class 
name Hidden. Which jQuery statement can you use?

A. var hidden = $ (‘#Hidden’);

B. var hidden = $ (‘.Hidden’);

C. var hidden = $ (‘Hidden’);

D. var hidden = $(‘class=Hidden’);

2. You are interested in writing event-driven JavaScript code that will work on most 
browsers without writing browser-specific code. How can you accomplish this?

A. Use the jQuery library to help.

B. Use only JavaScript statements that are the same across all browsers.

C. Do not use any JavaScript.

D. It’s impossible to write event-driven JavaScript code that is not browser-specific.



 Practice exercises CHAPTER 6 297

3. You are interested in locating all <p> elements on your webpage, so your statement is  
var paragraphs = $(‘p’). Which line of code would confirm whether at least one ele-
ment is found?

A. if( paragraphs.exists)

B. if( paragraphs==null)

C. if( paragraphs.length)

D. if( paragraphs.count > 0)

Practice exercises

If you encounter a problem completing any of these exercises, the completed projects can be 
installed from the Practice Exercises folder that is provided with the companion content.

Exercise 1: Create a calculator object
In this exercise, you apply your JavaScript object-oriented programming knowledge by 
modifying the calculator you’ve been using to have a calculator object in the calculatorLibrary 
namespace and changing JavaScript code to use jQuery when necessary.

1. Start Visual Studio Express 2012 for Web. Click File and choose Open Project. 
Navigate to the solution you created in Chapter 5, “More HTML,” and select the 
 webCalculator.sln file. Click Open.

If you didn’t complete the exercises in Chapter 5, you can use the solution in the 
Chapter 6 Exercise 1 Start folder.

2. In the Solution Explorer window, right-click the CalculatorTests.html file and choose Set 
As Start Page. Press F5 to verify that your test runs and passes.

3. In the Solution Explorer window, add jQuery to the project by right-clicking the project 
node. Choose Manage NuGet Packages. Type jQuery in the search online text box and 
click the search button. Click the Install button on the jQuery result.

4. Add a file to the Scripts folder called _references.js and, in the file, add a reference to 
jQuery, QUnit, and the CalculatorLibrary.

Your file should look like the following.

/// <reference path="jquery-1.8.2.js" /> 
/// <reference path="qunit.js" /> 
/// <reference path="CalculatorLibrary.js" />

5. Open the CalculatorLibrary.js file and add a reference to the _references.js file.

6. Create the calculatorLibrary namespace by surrounding the existing code in the 
CalculatorLIbrary.js file with an immediately invoked function expression (IIFE). In the 
IIFE, create an alias to calculatorNamespace called ns, which will save you from typing 
the complete namespace while you’re in the IIFE.



 298 CHAPTER 6 Essential JavaScript and jQuery

Your code should look like the following.

/// <reference path="_references.js" /> 
 
(function () { 
    this.calculatorNamespace = this.calculatorNamespace || {}; 
    var ns = this.calculatorNamespace; 
 
    //existing code here.... 
 
})();

7. Remove the variables that reference txtInput and txtResult because jQuery will be used 
to access these DOM elements as needed.

The initialize function will remain in the namespace.

8. Surround the numberClick, plusClick, minusClick, clearEntry, and clear functions with 
an IIFE that is assigned to a Calculator property in calculatorNamespace.

Your code should look like the following.

ns.Calculator = (function () { 
 
    function numberClick() { 
        txtInput.value = txtInput.value == '0' ?  
            this.innerText : txtInput.value + this.innerText; 
    } 
 
    function plusClick() { 
        txtResult.value = Number(txtResult.value) + Number(txtInput.value); 
        clearEntry(); 
    } 
 
    function minusClick() { 
        txtResult.value = Number(txtResult.value) - Number(txtInput.value); 
        clearEntry(); 
    } 
 
    function clearEntry() { 
        txtInput.value = '0'; 
    } 
 
    function clear() { 
        txtInput.value = '0'; 
        txtResult.value = '0'; 
    } 
}());

9. Add a Calculator function inside the IIFE, which will be the constructor function. There 
is no code for the constructor at this time. At the bottom of the IIFE, add code to 
return this constructor function. Try this on your own, but if you have a problem, the 
sample code is shown in step 10.



 Practice exercises CHAPTER 6 299

10. Modify the numberClick, plusClick, minusClick, clearEntry, and clear functions to define 
these functions on the Calculator prototype.

The CalculatorLibrary.js should look like the following.

/// <reference path="_references.js" /> 
 
(function () { 
    this.calculatorNamespace = this.calculatorNamespace || {}; 
    var ns = this.calculatorNamespace; 
 
    function initialize() { 
        for (var i = 0; i < 10; i++) { 
            document.getElementById('btn' + i) 
               .addEventListener('click', numberClick, false); 
        } 
        txtInput = document.getElementById('txtInput'); 
        txtResult = document.getElementById('txtResult'); 
 
        document.getElementById('btnPlus') 
           .addEventListener('click', plusClick, false); 
        document.getElementById('btnMinus') 
           .addEventListener('click', minusClick, false); 
        document.getElementById('btnClearEntry') 
           .addEventListener('click', clearEntry, false); 
        document.getElementById('btnClear') 
           .addEventListener('click', clear, false); 
        clear(); 
    } 
 
    ns.Calculator = (function () { 
 
        function Calculator() { 
        } 
 
        Calculator.prototype.numberClick = function () { 
            txtInput.value = txtInput.value == '0' ?  
               this.innerText : txtInput.value + this.innerText; 
        }; 
 
        Calculator.prototype.plusClick = function () { 
            txtResult.value = Number(txtResult.value) + Number(txtInput.value); 
            clearEntry(); 
        }; 
 
        Calculator.prototype.minusClick = function () { 
            txtResult.value = Number(txtResult.value) - Number(txtInput.value); 
            clearEntry(); 
        }; 
 
        Calculator.prototype.clearEntry = function () { 
            txtInput.value = '0'; 
        }; 
 
        Calculator.prototype.clear = function () { 



 300 CHAPTER 6 Essential JavaScript and jQuery

            txtInput.value = '0'; 
            txtResult.value = '0'; 
        }; 
 
        return Calculator; 
    }()); 
 
})();

11. In the initialize function, create a calculator variable and assign a new Calculator object 
to it. Be sure to use the namespace when creating the new Calculator object.

The state should look like the following.

var calculator = new ns.Calculator();

12. Convert the loop that adds event listeners to each of the number buttons to a single 
jQuery statement based on finding all button elements that have an id that starts with 
btnNumber.

The statement should look like the following.

$('button[id^="btnNumber"]').on('click', calculator.numberClick);

To make the code work in this step, change the ids on the number buttons.

13. Open the default.html file and replace the number button ids with btnNumberX where 
X is the number on the button.

14. Open the CalculatorTests.html file and replace the number button ids with btnNum-
berX where X is the number on the button.

15. In the CalculatorLibrary.js file, locate the initialize function and delete the statements 
that set txtInput and txtResult.

16. Convert the code that adds event listeners to btnPlus, btnMinus, btnClearEntry, and 
btnClear to use jQuery.

The completed initialize function should look like the following.

function initialize() { 
    var calculator = new ns.Calculator(); 
    $('button[id^="btnNumber"]').on('click', calculator.numberClick); 
    $('#btnPlus').on('click', calculator.plusClick); 
    $('#btnMinus').on('click', calculator.minusClick); 
    $('#btnClearEntry').on('click', calculator.clearEntry); 
    $('#btnClear').on('click', calculator.clear); 
    clear(); 
}

17. Convert the numberClick method to use jQuery.

You can use the jQuery text method to retrieve the inner text. The completed method 
should look like the following.

Calculator.prototype.numberClick = function () { 
    $('#txtInput').val($('#txtInput').val() == '0' ? 



 Practice exercises CHAPTER 6 301

        $(this).text() : $('#txtInput').val() + $(this).text()); 
};

18. Convert the plusClick method to use jQuery.

You must call the clearEntry method, but you can’t use the this keyword to call 
clearEntry because the clicked button is referenced by this. Because there is only one 
copy of the clearEntry method, and it’s on the prototype, call the clearEntry method 
from the Calculator prototype. Your code should look like the following.

Calculator.prototype.plusClick = function () { 
    $('#txtResult').val(Number($('#txtResult').val()) + 
        Number($('#txtInput').val())); 
    Calculator.prototype.clearEntry(); 
};

19. Convert the minusClick method to use jQuery.

Your code should look like the following.

Calculator.prototype.minusClick = function () { 
    $('#txtResult').val(Number($('#txtResult').val()) - 
        Number($('#txtInput').val())); 
    Calculator.prototype.clearEntry(); 
};

20. Convert the clearEntry method and the clear method to use jQuery.

The completed CalculatorLibrary.js file should look like the following.

/// <reference path="_references.js" /> 
 
(function () { 
    this.calculatorNamespace = this.calculatorNamespace || {}; 
    var ns = this.calculatorNamespace; 
 
    ns.initialize = function () { 
        var calculator = new ns.Calculator(); 
        $('button[id^="btnNumber"]').on('click', calculator.numberClick); 
        $('#btnPlus').on('click', calculator.plusClick); 
        $('#btnMinus').on('click', calculator.minusClick); 
        $('#btnClearEntry').on('click', calculator.clearEntry); 
        $('#btnClear').on('click', calculator.clear); 
        calculator.clear(); 
    } 
 
    ns.Calculator = (function () { 
 
        function Calculator() { 
        } 
 
        Calculator.prototype.numberClick = function () { 
            $('#txtInput').val($('#txtInput').val() == '0' ? 
                $(this).text() : $('#txtInput').val() + $(this).text()); 
        }; 
 



 302 CHAPTER 6 Essential JavaScript and jQuery

        Calculator.prototype.plusClick = function () { 
            $('#txtResult').val(Number($('#txtResult').val()) + 
                Number($('#txtInput').val())); 
            Calculator.prototype.clearEntry(); 
        }; 
 
        Calculator.prototype.minusClick = function () { 
            $('#txtResult').val(Number($('#txtResult').val()) - 
                Number($('#txtInput').val())); 
            Calculator.prototype.clearEntry(); 
        }; 
 
        Calculator.prototype.clearEntry = function () { 
            $('#txtInput').val('0'); 
        }; 
 
        Calculator.prototype.clear = function () { 
            $('#txtInput').val('0'); 
            $('#txtResult').val('0'); 
        }; 
 
        return Calculator; 
    }()); 
 
})();

21. Open the default.html file and add a reference to the jQuery library.

Be sure to add the reference before the reference to the CalculatorLibrary.js file 
because that file uses jQuery. Don’t forget that you can drag and drop the file to create 
the reference. The <head> element should look like the following.

<head> 
   <title>web Calculator</title> 
   <link href="Content/default.css" rel="stylesheet" /> 
   <script src="Scripts/jquery-1.8.2.js"></script> 
   <script type="text/javascript" src="Scripts/CalculatorLibrary.js"></script> 
</head>

22. At the bottom of the default.html file, change the code so that the initialize function in 
calculatorNamespace is executed when the document is ready.

The completed default.html file should look like the following.

<!DOCTYPE html> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <title>web Calculator</title> 
    <link href="Content/default.css" rel="stylesheet" /> 
    <script src="Scripts/jquery-1.8.2.js"></script> 
    <script type="text/javascript" src="Scripts/CalculatorLibrary.js"></script> 
</head> 
<body> 
    <div id="container"> 
        <header> 
            <hgroup id="headerText"> 



 Practice exercises CHAPTER 6 303

                <h1>Contoso Ltd.</h1> 
                <h2>Your success equals our success</h2> 
            </hgroup> 
        </header> 
        <nav> 
            <a href="default.html">Home</a> 
        </nav> 
        <div role="main"> 
            <div id="calculator"> 
                <table> 
                    <tr> 
                        <td colspan="4"> 
                            <input id="txtResult" type="text"  
                                readonly="readonly" /> 
                        </td> 
                    </tr> 
                    <tr> 
                        <td colspan="4"> 
                            <input id="txtInput" type="text" /> 
                        </td> 
                    </tr> 
                    <tr> 
                        <td></td> 
                        <td></td> 
                        <td> 
                            <button id="btnClearEntry">CE</button> 
                        </td> 
                        <td> 
                            <button id="btnClear">C</button> 
                        </td> 
                    </tr> 
                    <tr> 
                        <td> 
                            <button id="btnNumber7">7</button></td> 
                        <td> 
                            <button id="btnNumber8">8</button></td> 
                        <td> 
                            <button id="btnNumber9">9</button></td> 
                        <td> 
                            <button id="btnPlus">+</button> 
                        </td> 
                    </tr> 
                    <tr> 
                        <td> 
                            <button id="btnNumber4">4</button> 
                        </td> 
                        <td> 
                            <button id="btnNumber5">5</button> 
                        </td> 
                        <td> 
                            <button id="btnNumber6">6</button> 
                        </td> 
                        <td> 
                            <button id="btnMinus">-</button> 
                        </td> 



 304 CHAPTER 6 Essential JavaScript and jQuery

                    </tr> 
                    <tr> 
                        <td> 
                            <button id="btnNumber1">1</button> 
                        </td> 
                        <td> 
                            <button id="btnNumber2">2</button> 
                        </td> 
                        <td> 
                            <button id="btnNumber3">3</button> 
                        </td> 
                        <td></td> 
                    </tr> 
                    <tr> 
                        <td></td> 
                        <td> 
                            <button id="btnNumber0">0</button> 
                        </td> 
                        <td></td> 
                        <td></td> 
                    </tr> 
                </table> 
            </div> 
        </div> 
        <aside> 
            <p>Advertisements</p> 
        </aside> 
        <footer> 
            <p> 
                Copyright &copy; 2012, Contoso Ltd., All rights reserved 
            </p> 
        </footer> 
    </div> 
    <script type="text/javascript"> 
        $(document).ready(function () { 
            calculatorNamespace.initialize(); 
        }); 
    </script> 
</body> 
</html>

You must modify the tests to use jQuery.

23. Open the CalculatorTests.html file and add a reference to the jQuery library.

The completed CalculatorTests.html file should look like the following.

<!DOCTYPE html> 
<html xmlns="http://www.w3.org/1999/xhtml"> 
<head> 
    <title></title> 
    <link rel="stylesheet" type="text/css" href="Content/qunit.css" /> 
    <script type="text/javascript" src="Scripts/qunit.js"></script> 
    <script src="Scripts/jquery-1.8.2.js"></script> 
    <script type="text/javascript" src="Scripts/CalculatorLibrary.js"></script> 
    <script type="text/javascript" src="Scripts/tests.js"></script> 



 Practice exercises CHAPTER 6 305

</head> 
<body> 
    <h1 id="qunit-header">QUnit example</h1> 
    <h2 id="qunit-banner"></h2> 
    <div id="qunit-testrunner-toolbar"></div> 
    <h2 id="qunit-userAgent"></h2> 
    <ol id="qunit-tests"></ol> 
    <div id="qunit-fixture"> 
        test markup, will be hidden 
        <input id="txtResult" type="text" readonly="readonly" /><br /> 
        <input id="txtInput" type="text" /><br /> 
        <button id="btnNumber7">7</button> 
        <button id="btnNumber8">8</button> 
        <button id="btnNumber9">9</button><br /> 
        <button id="btnNumber4">4</button> 
        <button id="btnNumber5">5</button> 
        <button id="btnNumber6">6</button><br /> 
        <button id="btnNumber1">1</button> 
        <button id="btnNumber2">2</button> 
        <button id="btnNumber3">3</button><br /> 
        <button id="btnClear">C</button> 
        <button id="btnNumber0">0</button> 
        <button id="btnClearEntry">CE</button><br /> 
        <button id="btnPlus">+</button> 
        <button id="btnMinus">-</button> 
   </div> 
</body> 
</html>

You must modify the tests.js file to use jQuery, calculatorNamespace, and the 
Calculator object.

24. Open the tests.js file.

25. In the tests.js file, add a reference to the _references.js file and modify the module 
function to call calculatorLibrary.initialize( ) as follows.

/// <reference path="_references.js" /> 
module('Calculator Test Suite', { 
    setup: function () { 
        calculatorNamespace.initialize(); 
    } 
});

26. Modify the Initialize Test.

You don’t need to set txtInput and txtResult because the initialize method calls the 
clear method to set these text boxes.

27. Modify the rest of the method to use jQuery and run the test to see it pass.

The completed Initialize Test should look like the following.

test("Initialize Test", function () { 
    expect(2); 
    var expected = '0'; 
    equal($('#txtInput').val(), expected, 'Expected value: ' + expected + 



 306 CHAPTER 6 Essential JavaScript and jQuery

        '  Actual value: ' + $('#txtInput').val()); 
    equal($('#txtResult').val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + $('#txtResult').val()); 
});

28. Modify the Button Click Test to use jQuery. Run the test to see it pass. Use jQuery’s 
triggerHandler method to test each button.

Your code should look like the following.

test("Button Click Test", function () { 
    var buttonQuantity = 10; 
    expect(buttonQuantity * 2); 
    for (var i = 0; i < buttonQuantity; i++) { 
        $('#btnNumber' + i).triggerHandler('click'); 
        var result = $('#txtInput').val()[$('#txtInput').val().length - 1]; 
        var expected = String(i); 
        equal(result, expected, 'Expected value: ' + expected + 
            '  Actual value: ' + result); 
        var expectedLength = i < 2 ? 1 : i; 
        equal($('#txtInput').val().length, expectedLength, 
            'Expected string length: ' + expectedLength + 
            '  Actual value: ' + $('#txtInput').val().length); 
    } 
});

29. Modify the Add Test to use jQuery. Run the test to see it pass.

Your code should look like the following.

test("Add Test", function () { 
    expect(2); 
    $('#txtInput').val('10'); 
    $('#txtResult').val('20'); 
    $('#btnPlus').triggerHandler('click'); 
    var expected = '30'; 
    equal($('#txtResult').val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + $('#txtResult').val()); 
    expected = '0'; 
    equal($('#txtInput').val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + $('#txtInput').val()); 
});

30. Modify the Subtract Test to use jQuery. Run the test to see it pass.

Your code should look like the following.

test("Subtract Test", function () { 
    expect(2); 
    $('#txtInput').val('10'); 
    $('#txtResult').val('20'); 
    $('#btnMinus').triggerHandler('click'); 
    var expected = '10'; 
    equal($('#txtResult').val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + $('#txtResult').val()); 
    expected = '0'; 



 Suggested practice exercises CHAPTER 6 307

    equal($('#txtInput').val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + $('#txtInput').val()); 
});

31. Modify the Clear Entry Test to use jQuery. Run the test to see it pass.

Your code should look like the following.

test("Clear Entry Test", function () { 
    expect(1); 
    $('#txtInput').val('10'); 
    $('#btnClearEntry').triggerHandler('click'); 
    var expected = '0'; 
    equal($('#txtInput').val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + $('#txtInput').val()); 
});

32. Modify the Clear Test to use jQuery. Run the test to see it pass.

Your code should look like the following.

test("Clear Test", function () { 
    expect(2); 
    $('#txtInput').val('10'); 
    $('#txtResult').val('20'); 
    $('#btnClear').triggerHandler('click'); 
    var expected = '0'; 
    equal($('#txtInput').val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + $('#txtInput').val()); 
    equal($('#txtResult').val(), expected, 'Expected value: ' + expected + 
        '  Actual value: ' + $('#txtResult').val()); 
});

At this point, you should be able to run all the tests, and they should all pass.

33. Right-click the default.html file and choose Set As Start Page. To see that your calcula-
tor still works, press F5 to start debugging the application.

34. Try entering data and clicking the plus and minus signs.

You might need to refresh your screen, but the calculator should be working.

Suggested practice exercises

The following additional exercises are designed to give you more opportunities to practice 
what you’ve learned and to help you successfully master the lessons presented in this chapter.

■■ Exercise 1 Learn more about JavaScript objects by adding more features to the cal-
culator that you created in the practice exercise.

■■ Exercise 2 Learn more about jQuery by exploring the jQuery site at  
http://jQuery.com.



 308 CHAPTER 6 Essential JavaScript and jQuery

Answers

This section contains the answers to the lesson review questions in this chapter.

Lesson 1
1. Correct answer: C

A. Incorrect: A property is a variable that’s defined on an object.

B. Incorrect: A method is a function that’s defined on an object.

C. Correct: A class is a blueprint for an object.

D. Incorrect: An event takes place from external input, usually from user input.

2. Correct answer: A

A. Correct: The prototype is the starting object that is cloned when creating a new 
object.

B. Incorrect: A property is a variable that’s defined on an object.

C. Incorrect: A class is a blueprint for an object.

D. Incorrect: An event takes place from external input, usually from user input.

3. Correct answer: A

A. Correct: You replace the prototype of the child object with a new instance of 
the parent object and then replace the prototype constructor with the child 
constructor.

B. Incorrect: The createChild method is not a valid method.

C. Incorrect: The setParent method is not a valid method.

D. Incorrect: JavaScript does support inheritance by replacing the prototype of the 
child object with a new instance of the parent object and then replacing the proto-
type constructor with the child constructor.

Lesson 2
1. Correct answer: B

A. Incorrect: The use of the hash (#) symbol in the CSS selector indicates that you 
want to locate an element based on its id.

B. Correct: The use of the period (.) in the CSS selector indicates that you want to 
locate the elements that match the CSS class name.

C. Incorrect: Supplying a name for a CSS selector indicates that you want to locate 
the elements that have that tag name.

D. Incorrect: The var hidden = $(‘class=Hidden’); syntax is invalid.



 Answers CHAPTER 6 309

2. Correct answer: A

A. Correct: Using jQuery will help you create event-driven, browser-independent 
code.

B. Incorrect: The code for creating and subscribing to events is browser-specific.

C. Incorrect: You need to use JavaScript to write event-driven code.

D. Incorrect: Use the jQuery library to write browser-independent code.

3. Correct answer: C

A. Incorrect: jQuery does not have an exists property.

B. Incorrect: Even if no elements are found, jQuery will return a wrapper object.

C. Correct: If no elements are found, the length property will be 0, which converts to 
a Boolean false.

D. Incorrect: jQuery does not have a count property.



621

Index

Symbols
&& (and) operator, 70–71, 84
+ (addition) operator, 67–68, 70
& (ampersand), 41, 322
* (asterisk) symbol, 147, 155
\\ (backslash) character, 69
^ (caret) symbol, 156
: (colon), 150, 327
© (copyright), 41
/ (division) operator, 67–68, 70
$ (dollar sign), 72–73, 157, 288
" (double quotes), 41, 69
/ (forward slash) character, 337
> (greater-than sign), 41, 148
# (hash) symbol

id selectors and, 146
internal hyperlinks and, 46
jQuery support, 289
in manifest file, 609
in RGB values, 166

< (less-than sign), 41
* (multiplication) operator, 67–68, 70
! (not) logical operator, 70–71
|| (or) logical operator, 70–71
!=== operator, 84
=== operator, 84
() (parentheses), 68–69
. (period) symbol, 146, 327
+ (plus sign), 67–69, 151, 327
? (question mark), 322, 327
® (registered trademark), 41

; (semicolon), 71, 139
' (single quotes), 69
- (subtraction) operator, 67–69
~ (tilde) character, 152
_ (underscore), 45, 72–73

A
<a> element

data-linktype attribute, 157–158
described, 32
<dfn> element and, 218
href attribute, 46, 153–157
target attribute, 46–47
working with hyperlinks, 46–47

<abbr> element, 32, 214–215, 218
abort event, 119
absolute position (<div> element), 182–186
.acc file extension, 444
Access-Control-Allow-Origin header, 380–381
Accessibility window (IE), 159
Accessible Rich Internet Applications (ARIA), 212
accesskey global attribute, 37
<acronym> element, 214
:active pseudo class, 149
addEventListener() function, 115, 295, 567
addition (+) operator, 67–68, 70
<address> element, 32, 215
adjacent selectors, 151–152
Adobe Flash Player, 557



622

arguments to functions, 73–76
ARIA (Accessible Rich Internet Applications), 212
arithmetic operators, 68
array items, 109
array methods, 110–112
Array object

as built-in object, 67
concat() method, 110
creating instance, 108–109
indexOf() method, 110
join() method, 110
lastIndexOf() method, 110
length property, 109–110
pop() method, 110
push() method, 110
reverse() method, 111
shift() method, 111
slice() method, 111
sort() method, 111
splice() method, 111
toString() method, 111–112
unshift() method, 112
valueOf() method, 112

array properties, 109–110
arrays

condensed, 109
creating, 108–109
described, 108
literal, 109
populating, 108–109

artboard (Blend), 15
<article> element, 32, 209
<aside> element

described, 32, 208
<figure> element and, 219
in layout containers, 208, 211–212
role attribute, 212

ASP.NET
Empty Web Application template, 10–11
QUnit tool and, 90–95

::after pseudo element, 150
:after selector, 224
afterprint event, 117
aggregate modules, 348
aggregating functions, 588
AJAX calls to web services

described, 368–369
handling errors, 372–373
handling progress, 371–372
jQuery promises, 377–380, 394–395
jQuery XMLHttpRequest wrappers, 373–377
XMLHttpRequest object, 369–371

alert() function, 76, 79, 101
alt attribute

<area> element, 49
<img> element, 47–48

ampersand (&), 41, 322
and (&&) operator, 70–71, 84
annotating content, 213
APIs (application programming interfaces), 31
App Fabric Caching Service (Microsoft), 422
application class, 212
application programming interfaces (APIs), 31
applicationCache object

swapCache() method, 610
update() method, 610

applications. See offline web applications; pack-
ages (Node.js)
arbitrary web services, 364, 366
arcs

drawing using arc() method, 485–487
drawing using arcTo() method, 481–485

<area> element
alt attribute, 49
coords attribute, 49
creating image maps, 49–50
described, 32
href attribute, 49
shape attribute, 49
as void element, 38

::after pseudo element



623

lesson summary and review, 446–447, 456–457
author-defined attributes, 39
autofocus Boolean attribute, 321
autoIncrement key generator, 592
autoplay attribute

<audio> element, 445
<video> element, 441

B
<b> element

annotating content, 213–214
described, 31, 33, 213

background-color property (CSS), 139
backslash (\) character, 69
backward compatibility

of browsers, 30
of CSS3, 138

banner class, 212
<base> element, 33, 38
base classes, 262
<bb> element, 33
<bdo> element, 33
::before pseudo element, 150
:before selector, 224
beforeonload event, 117
beforeprint event, 117
Berkeley Software Distribution (BSD) license, 438
big web services, 364, 366
binary operators, 70
Blank App template, 6–9, 14, 96
Blend for Visual Studio 2012

artboard, 15
Assets panel, 14–15, 17
CSS Properties tab, 15–16
described, 13–16
Device panel, 15, 17–18
HTML Attributes tab, 15–16
lesson summary and review, 19–20, 27

SignalR library support, 423
asterisk (*) symbol, 147, 155
async attribute (<script> element), 101
asynchronous operations

conditional calls, 401–402
described, 393
lesson summary and review, 402–403, 405–
406, 413–414
practice exercises, 406–412
promise objects and, 394–402
working with web workers, 404–405, 563

attr() function, 153
attribute contains value in list selector, 157–158
attribute contains value selector, 155–156
attribute selector, 153–154
attribute value ends with selector, 157
attribute value selector, 154–155
attributes

adding to elements, 35–36
author-defined, 39
Boolean, 35–36, 321, 325
custom, 39
described, 35
expando, 39
global, 37
inherit value, 163
retrieving values of, 153

<audio> element
autoplay attribute, 445
configuring, 445–446
controls attribute, 445
described, 32, 443–445
HTMLMediaElement object and, 444, 447
loop attribute, 445–446
preload attribute, 446
<source> element and, 445
src attribute, 446

audio and sounds. See also <audio> element
audio formats, 444
described, 443–444

Blend for Visual Studio 2012



624

browsers
audio formats supported, 444
backward compatibility, 30
built-in functions, 76–77
centering content in window, 193
comments and, 39–40
drag and drop operations, 507, 518
forward compatibility, 30
Geolocation API support, 540
HTML5 support, 206–207
JavaScript considerations, 101–102
nested context, 34
no-quirks mode, 40
special characters and, 41–42
storage mechanisms and, 559–561, 566–567, 
590, 601, 608
triggering form submission, 319
User Data API, 557
validation errors, 325
video formats supported, 438
web communications, 312–314
WebSocket support, 416
working with elements, 32
working with styles, 139, 159

BSD (Berkeley Software Distribution) license, 438
built-in browser styles, 159
built-in functions, 76–77
<button> element

described, 33, 317
disabling, 36
triggering form submission, 320
type attribute, 317

C
cache (HTTP). See HTTP cache
CACHE MANIFEST statement, 609
cached event, 610
calculating distances, 548–549

Live DOM panel, 14–15, 19
practice exercises, 24–25
Projects panel, 14–17
Style Rules panel, 14–15, 18–19
Tools panel, 14–15

<blockquote> element
annotating content, 215
cite attribute, 215
described, 33, 215

blur event, 117–118
<body> element

basic document structure, 40–41
described, 9, 33
<object> tag and, 51
working with events, 117

Boolean attributes
described, 35–36, 321, 325
minimized form, 36
quoted form, 36

Boolean object, 67
Boolean primitive type

described, 67, 70
logical operators, 70–71
short-circuit evaluation, 71

border properties (CSS), 176–178
box model (CSS)

border properties, 176–178
described, 175–176
margin properties, 176–178
padding properties, 176–178

box-sizing property (CSS), 190–192
<br> element

annotating content, 217
described, 33, 217
self-closing tags and, 37–38
as void element, 38, 217

breakpoints
setting in JavaScript, 103–104
setting in jQuery, 289

<blockquote> element



625

fillText() method, 461, 488–489
font property, 461, 488
getImageData() method, 461
globalAlpha property, 461
globalCompositeOperation property, 461
implementing, 462–463
isPointInPath() method, 461
lineCap property, 461
lineJoin property, 461, 471–472, 474–475
lineTo() method, 461, 475–477
lineWidth property, 461, 470–471, 474–475, 
479
measureText() method, 461
miterLimit property, 461
moveTo() method, 462, 475, 478
putImageData() method, 462
quadraticCurveTo() method, 462
rect() method, 462, 475, 478–479
restore() method, 462, 474–475
rotate() method, 462
save() method, 462, 474–475
scale() method, 462
setTransform() method, 462
shadowBlur property, 462
shadowColor property, 462
shadowOffsetX property, 462
shadowOffsetY property, 462
stroke() method, 462, 475, 478–481
strokeRect() method, 462–464, 478
strokeStyle property, 462, 472–475
strokeText() method, 462, 488–489
textAlign property, 462, 488–489
textBaseline property, 462, 488–489
transform() method, 462
translate() method, 462

<caption> element, 33, 241
captions, adding to tables, 241
caret (̂ ) symbol, 156
cascading if statements, 81

call methods, 279–280
calling functions, 74
canplay event, 119
canplaythrough event, 119
<canvas> element

described, 33, 460
drawing with images, 490
getContext() method, 460
height attribute, 460
implementing, 462–463
toDataUrl() method, 460
width attribute, 460

Canvas Pattern object, 468–469
CanvasGradient object, 466–468
CanvasRenderingContext2D object

addColorStop() method, 461, 466–467
arc() method, 461, 481–485
arcTo() method, 461, 485–487
beginPath() method, 461, 475
bezierCurveTo() method, 461
clearRect() method, 461, 463–464
clip() method, 461
closePath() method, 461, 477–478
configuring drawing state, 465–474
createImageData() method, 461
createLinearGradient() method, 461, 466–467
createPattern() method, 461, 468–469
createRadialGradient() method, 461, 466–467
data property, 461
described, 460
drawImage() method, 461, 490–493
drawing arcs, 481–487
drawing rectangles, 463–475, 478–479
drawing text, 488–490
drawing using paths, 475–487
drawing with images, 490–494
endPath() method, 475
fill() method, 461, 475, 477–481
fillRect() method, 461, 463–464, 478
fillStyle property, 461, 465–470

cascading if statements



626

<code> element, 33, 216–217
code blocks, 74
code loops

breaking out of, 86–87
described, 84
do loop, 85
for loop, 85–86
while loop, 84–85

<col> element
described, 33
styling columns, 241–242
as void element, 38

<colgroup> element, 33, 241–242
colon (:), 150, 327
<color> value type, 138
color names table, 167–171
color selector, 4
colors. See CSS colors
cols attribute (<textarea> element), 316
colspan attribute

<td> element, 238–240
<th> element, 238–240

<command> element, 33, 38
comments

adding, 39
adding conditional, 40
adding within style sheets, 139
in manifest file, 609
TODO, 7

CommonJS, 394
communications

asynchronous, 393–414
web, 312–316
WebSocket, 415–436

complementary class, 212
complex objects, storing, 562
condensed arrays, 109
conditional comments, 40
conditional programming

if/else keywords, 80–81

Cascading Style Sheets. See CSS (Cascading Style 
Sheets)
cascading styles, 160–161
case sensitivity

for tags, 32
for variable names, 72

catch block, 87
chained if statements, 81
change event, 118
character encoding, style sheets and, 143
@charset rule, 41, 143
checked Boolean attribute, 36
:checked pseudo class, 149
checking event, 610
child classes, 262
child selectors, 148
Chinese characters, 220–221
<circle> element

cx attribute, 498
cy attribute, 498
described, 498
fill attribute, 498
id attribute, 498
r attribute, 498

circles, drawing, 485–487, 498–499
citations and quotations, 215–216
<cite> element, 33, 215–216
cite attribute

<blockquote> element, 215
<q> element, 215

CJK languages, 220–221
class global attribute, 37
class selectors, 146–147
classes

creating, 266–271
described, 262

<clear> element, 189–190
clear property (CSS), 189–190
click event, 119
cm measurement unit, 175

Cascading Style Sheets



627

coords attribute (<area> element), 49
copyright (©), 41
CORS (cross-origin resource sharing), 380–381
counter variables, 86
cross-origin resource sharing (CORS), 380–381
CRUD operations, 316, 365
CSS box model

border properties, 176–178
described, 175–176
margin properties, 176–178
padding properties, 176–178

CSS (Cascading Style Sheets)
adding comments within style sheets, 139
browser built-in styles, 159
cascading styles, 159–160
creating embedded styles, 140–141
creating external style sheets, 141–144
creating inline styles, 140
defining and applying styles, 139
defining selectors, 146–159
described, 31, 137–139
extending styles, 159
inheritance and, 162–163
lesson summary and review, 144–145, 163–165, 
193–194, 202–204
practice exercises, 194–201
specificity in selectors, 161–162
working with important styles, 159–160

CSS colors
described, 166
hsl() function, 172–173
rgb() function, 171
rgba() function, 172
setting fillStyle property, 465
setting value of, 166
table of color names and values, 167–171
transparency, 172

CSS properties
box-sizing property, 190–192
centering content in browser window, 193

implementing code loops, 84–87
switch keyword, 82–83

confirm() function, 76
CONNECT method (HTTP), 316
constructor functions, 266–271
constructs, 262
content annotation, 213
content embedding

adding images to HTML documents, 47–50
described, 44
embedding plug-in content, 50–52
using inline frames, 44–46
lesson summary and review, 52–53, 63
practice exercises, 58–61
sandboxing, 45
seamless, 45
working with hyperlinks, 46–47

contenteditable global attribute, 37
contentinfo class, 212
context object. See CanvasRenderingContext2D 
object
contextmenu event, 118
contextmenu global attribute, 37
controls attribute

<audio> element, 445
<video> element, 441, 450

cookie plug-in ( jQuery), 556–557
cookies

alternatives to, 557–558
described, 556–557
limitations of, 556–557

Coordinates object
accuracy property, 541
altitude property, 541
altitudeAccuracy property, 541
described, 540–541
heading property, 541
latitude property, 541
longitude property, 541
speed property, 541

CSS properties



628

cx attribute (<circle> element), 498
cy attribute (<circle> element), 498

D
d attribute (<path> element), 496
data

described, 67
expressions producing, 67
number types, 67–69
private, 268–271, 274–276

data attribute (<object> element), 51
data-linktype attribute (<a> element), 157–158
Database object

changeVersion() method, 583–584
described, 583
openDatabase() method, 583
readTransaction() method, 585, 587
transaction() method, 584–585, 587
version property, 583–584

<datagrid> element, 33
<datalist> element, 33
DataTransfer object

clearData() method, 514
described, 513–515, 521
dragging and dropping files, 519
dropeffect property, 514
effectAllowed property, 514–515
files property, 514
getData() method, 514
setData() method, 514
types property, 514

Date object, 67
dblclick event, 119
<dd> element, 33, 223
DEBUG method (HTTP), 316
debugging JavaScript code

about, 103
examining variables, 104–105

clear property, 189–190
declaration block and, 139
described, 165
float property, 186–189
positioning div elements, 178–186
transparency, 172
working with colors, 166–173
working with CSS box model, 175–178
working with text, 173–175

CSS3
adding comments within style sheets, 139
backward compatibility, 138
browser built-in styles, 159
cascading styles, 159–160
creating embedded styles, 140–141
creating external style sheets, 141–144
creating inline styles, 140
defining and applying styles, 139
defining selectors, 146–159
described, 137–139
extending styles, 159
inheritance and, 162–163
specificity in selectors, 161–162
Visual Studio 2012 support, 4
working with important styles, 159–160

CSS3 Color module, 138
CSS3 Media Queries module, 138
CSS3 Namespaces module, 138
CSS3 Selectors Level 3 module, 138
curly braces, 77, 81, 263–264
cursive font families, 173
cursors

applying key range limits, 597–599
described, 596–597
indexing, 597
opening, 596

curved lines, drawing, 481–487
custom attributes, 39
custom lists, 224–228

CSS3



629

disabled Boolean attribute, 36
distances, calculating, 548–549
<div> element

box-sizing property, 190–192
centering content in browser window, 190–192
clear property, 189–190
control format using, 213
described, 32–33, 178
draggable attribute, 509
<figure> element and, 219
float property, 186–189
historical usage, 206
in layout containers, 208
positioning, 178–186
role attribute, 212
<table> element and, 230

division (/) operator, 67–68, 70
<dl> element, 33, 37, 223–224
do loop, 85
<!DOCTYPE html> instruction, 8–9, 40
document object

about, 112
getElementById() method, 113
getElementsByClass() method, 113
getElementsByName() method, 113
getElementsByTagName() method, 113
querySelector() method, 113
querySelectorAll() method, 113–114

document object model (DOM)
creating jQuery wrappers, 294–295
described, 112
navigating, 112–114
preventing default operation, 116
<script> elements and, 103
this keyword, 117
working with events, 114–120

dollar sign ($), 72–73, 157, 288
DOM (document object model)

creating jQuery wrappers, 294–295
described, 112

setting breakpoints, 103–104
stepping through code, 105–107

declaration block, 139–140
declare attribute (<object> element), 322
default.css file, 15, 141
default.html file

Blend for Visual Studio 2012, 15
QUnit setup, 91
Visual Studio 2012, 8–9, 11

default.js file
Hello World example, 92
jQuery example, 288, 291
location of, 7
media control, 450–451

defer attribute (<script> element), 101
deferred object. See promise object ( jQuery)
<del> element, 33, 220
DELETE method (HTTP), 315–316, 365
deleting

directories, 605–606
files, 604
records in object stores, 595

derived classes, 262
descendant selectors, 147–148
description lists, 223–224
<details> element, 33, 219–220
<dfn> element, 33, 218
<dialog> element, 33
dir global attribute, 37
directories

creating, 604–605
deleting, 605–606
opening, 604–605
writing files to, 605

DirectoryEntry object
described, 602
getDirectory() method, 604–605
getFile() method, 602, 604
remove() method, 605
removeRecursively() method, 606

DOM (document object model)



630

drawing lines, 476–478
drawing rectangles, 478–479
ordering fill and stroke method calls, 479–481

drawing with HTML5
configuring drawing state, 465–474
described, 459
drawing arcs, 481–487
drawing rectangles, 463–464
drawing text, 488–490
drawing using paths, 475–487
drawing with images, 490–494
implementing the canvas, 462–463
lesson summary and review, 494–495, 501–
502, 506
practice exercises, 502–505
using <canvas> element, 460, 462–463
using CanvasRenderingContext2D object, 
460–494
using scalable vector graphics, 495–501

drawing with images, 490–494
drop event, 119, 511–515
dropItem() function, 512, 515, 519
<dt> element, 33, 223
durationchange event, 119

E
ECMA-262 specification, 66
ECMAScript, 66
element type selectors, 146
elements

adding attributes to, 35–36
adding comments, 39–40
described, 32–35
expando attributes, 39
floating, 186–189
HTML5 global attribute reference, 37
inherit value, 163
inheriting styles, 162–163

navigating, 112–114
preventing default operation, 116
<script> elements and, 103
this keyword, 117
working with events, 114–120

dot notation, 586
double quotes ("), 41, 69
downloading event, 610
drag and drop operation

DataTransfer object, 513–515
described, 507
dragging process, 509–510
File API, 517–521
lesson summary and review, 516–517, 521–522, 
536–537
practice exercises, 522–535
technique illustrated, 508–509

drag event, 119, 510
dragend event, 119, 510–511
dragenter event, 119, 511–513
draggable global attribute, 37, 509–510
draggingEnded() function, 511
dragleave event, 119, 511
dragover event, 119, 511–513
dragstart event, 119, 510–511, 513
drawing arcs

using arc() method, 485–487
using arcTo() method, 481–485

drawing circles, 485–487, 498–499
drawing curved lines, 481–487
drawing state

configuring, 465–474
saving and restoring, 474–475

drawing text, 488–490
drawing triangles, 478–481
drawing using paths

creating shapes, 475
described, 475
drawing arcs with arc method, 485–487
drawing arcs with arcTo method, 481–485

dot notation



631

escape sequences, 69
event bubbling, 114–115, 567
event capturing, 114–115
event handlers, 295
event listeners, 295
Event object

described, 114
preventDefault() method, 116
stopPropagation() function, 116

events
bubbling, 114–115, 567
canceling, 567
canceling propagation, 116
described, 114
sessionStorage and, 568
subscribing to, 115–116, 567
triggered by drag and drop operation, 
510–513
triggered by form actions, 118
triggered by keyboard, 118
triggered by media, 119–120
triggered by mouse actions, 118–119
triggered by Window object, 117
unsubscribing from, 116
W3C recommendations, 566

exception handling, 87–88
expando attributes, 39
express framework (Node.js)

adding webpage to applications, 357–360
creating Hello web application, 356–357
described, 354
getting started, 354–355
parsing posted form data, 360–362
Visual Studio 2012 Express for Web, 356

expressions
described, 67
function, 75

eXtensible Markup Language (XML), 30–31
external JavaScript files, 102

language, 220–221
nesting, 179, 210
reference list of, 32–35
self-closing tags, 37
tags and, 32
void, 38–39
working with styles, 138–140

else keyword, 80–81
<em> element, 33, 213–214
em measurement unit, 174
email messages, hyperlinks in, 47
<embed> element

described, 33
embedding plug-in content, 50
height attribute, 50
src attribute, 50
type attribute, 50
width attribute, 50

Embedded Open Type (.eot) files, 144
embedded styles, 140–141
embedding content. See content embedding
emptied event, 119
encapsulation

described, 262–263
implementing, 268–269

encrypting web communications, 366
ended event, 119
&entity_name;, 41
&#entity_number;, 41
Entry object, 604–605
environment, creating for variables, 73
.eot (Embedded Open Type) files, 144
error event, 117, 119, 610
error handling

AJAX calling web service example, 372–373
for Geolocation object, 543–544
for JavaScript code, 87–88
for promise objects, 397
QuotaExceededError exception, 562
validation errors, 325

external JavaScript files



632

readAsText() method, 603–604
files

creating, 602
deleting, 604
dragging and dropping, 517–521
opening, 602
reading, 603–604
writing to, 602–603
writing to directories, 605

Filesystem API
browser support, 559, 601
creating and opening directories, 604–605
creating and opening files, 602
deleting directories, 605–606
deleting files, 604
described, 600
lesson summary and review, 606–607, 618
opening file system, 601
reading files, 603–604
as storage mechanism, 558
writing files to directories, 605
writing to files, 602–603

FileWriter object
described, 603–604
write() method, 602

fill attribute
<circle> element, 498
<path> element, 496

finally block, 87
Firefogg website, 439–440
::first-letter pseudo element, 150
::first-line pseudo element, 150
:first-of-type pseudo class, 149
Fixed Layout App template, 7
fixed position (<div> element), 183–184
Flash Player (Adobe), 557
float property (CSS), 186–189
focus event, 117–118
:focus pseudo class, 149
@font-face rule, 144

external style sheets
described, 141
specifying character encoding of, 143
specifying target devices using media, 141–142
using @font-face rule to import fonts, 144

F
F5 function key, 104
F9 function key, 103
F10 function key, 105
F11 function key, 105
F12 function key, 314
factory pattern, 265–266
fantasy font families, 173
<fieldset> element, 33
<figcaption> element, 219
<figure> element

annotating content, 219
<aside> element and, 219
described, 33, 219
<div> element and, 219

File API, 517–521
File object

described, 517–521
name property, 517
size property, 517
type property, 517

FileEntry object
deleting files, 604
file() method, 603
reading files, 603
remove() method, 604
writing to files, 602

FileList object, 517–521
FileReader object

described, 603
readArrayBuffer() method, 604
readAsDataURL() method, 604

external style sheets



633

GET method, 322–323
lesson summary and review, 323–324, 330–
331, 338–339
parent, 319
POST method, 322–323
practice exercises, 331–337
sending data when submitting, 316–318
serializing, 321
submitting form data to web servers, 316
triggering submission, 319–321
using <label> element, 318–319
validating, 324–330
web communication and, 312–316

forward compatibility of browsers, 30
forward slash (/) character, 337
fs package, 348
function declarations, 74, 78
function expressions, 75
Function object, 67
functions. See also specific functions

aggregating, 588
arguments to, 73–76
built-in, 76–77
constructor, 266–271
declaring, 74, 78
described, 67, 73
nesting, 78
parameters in, 73–74
return values, 73

furigana phonetic characters, 220–221
future object. See promise object ( jQuery)

G
generalized classes, 262
Geolocation API

basic positioning, 540–545
described, 539
lesson summary and review, 545–546, 549, 554

font families, 173–174
font-family property (CSS), 174
font licensing, 144
font-size property (CSS), 174–175
font typeface, 173–174
<footer> element

<cite> element and, 215
described, 33, 208
in layout containers, 208, 210–211

for attribute (<label> element), 318
for loop, 85–86
<form> element

described, 33
required validation, 325–327
submitting data to web servers, 316
triggering form submission, 319
validating numbers and ranges, 329
validating URL input, 327–328

form attribute
form submission elements, 319
<object> element, 51

form class, 212
form submission elements

data submission constraints, 322
described, 316–318
form attribute, 319
placeholder attribute, 326
required attribute, 325

formatting text
controlling with <div> element, 213
CSS properties, 173–175

formchange event, 118
formidable package, 360
forminput event, 118
forms

autofocus attribute, 321
data submission constraints, 322
described, 311–312
events triggered by, 118

Geolocation API



634

H
<h1> element, 33
<h2> element, 33
<h3> element, 33
<h4> element, 33
<h5> element, 34
<h6> element, 34
H.264 (MPEG-4) format, 438
handling errors. See error handling
haschange event, 117
hash (#) symbol

id selectors and, 146
internal hyperlinks and, 46
jQuery support, 289
in manifest file, 609
in RGB values, 166

haversine formula to calculate distances, 548–549
<head> element

described, 9, 34, 40
<script> element and, 102–103
<style> element and, 140

HEAD method (HTTP), 315
<header> element, 34, 208
height attribute

<canvas> element, 460
<embed> element, 50
<object> element, 51
<video> element, 441

Hello World program
creating from JavaScript, 90–99
creating from Node.js, 342–344
creating with express, 356–357

hexadecimal values, color names table, 167–171
<hgroup> element, 210
hidden global attribute, 37
.hidden selector, 237
<hn> element, 209–210, 213
hole variables, 512
:hover pseudo class, 149, 154–155

monitored positioning, 546–549
practice exercises, 550–553

Geolocation object
addressing privacy, 544
basic positioning, 540–545
calculating distance between samples, 
548–549
clearWatch() method, 540, 546
getCurrentPosition() method, 540–545
handling errors, 543–544
lesson summary and review, 545–546, 549, 554
monitored positioning, 546–549
practice exercises, 550–553
retrieving current position, 541–542
specifying options, 544–545
watchPosition() method, 540, 546–547, 549

Geolocation Working Group, 539
GET method (HTTP)

CRUD operations and, 316, 365
described, 315, 322–323
REST support, 365–366, 368

Get Windows Azure SDK For .NET template, 10
getDistance() function, 548–549
getter methods, 274–275
GIF file type, 48–49
git source control manager, 350
global attributes, 37
global objects, 67
Global Positioning System (GPS), 539, 541
global scope, 77–78
global variables, 77–78
Go To Definition feature, 4
Google Gears, 557
GPS (Global Positioning System), 539, 541
gradient fill, 466–468
greater-than sign (>), 41, 148
Grid App template, 6
grouping selectors, 150–151

Geolocation object



635

practice exercises, 53–61, 243–257
semantic markup, 31–32, 206
Visual Studio 2012 support, 3–4
working with elements, 32–40
working with lists, 221–228

HTML5 documents
creating semantic, 207
documenting code in, 216–217
normalizing, 217

HTML5 layout containers. See layout containers
HTMLMediaElement object

addTextTrack() method, 447
audioTracks property, 447
autoplay property, 447
buffered property, 448
canPlayType() method, 447
controller property, 448
controls property, 448
crossOrigin property, 448
currentSrc property, 448
currentTime property, 448
defaultMuted property, 448
defaultPlaybackRate property, 448
described, 447
duration property, 448
ended property, 448
error property, 448
inheritance and, 444, 447
lesson summary and review, 451–452
load() method, 447
loop property, 448
media control, 450–451
mediaGroup property, 448
muted property, 448
networkState property, 448
onabort event, 449
oncanplay event, 449
oncanplaythrough event, 449
ondurationchange event, 449
onemptied event, 449

<hr> element
adding thematic breaks, 213
described, 34
as void element, 38

href attribute
<a> element, 46, 153–157
<area> element, 49
<link> element, 141

hsl() function, 172–173
HSL (hue-saturation-lightness), 172–173
HTML (Hypertext Markup Language)

browser support, 314
CSS support, 138
described, 30–32

<html> element
described, 9, 34, 40
manifest attribute, 608

HTML documents
adding images to, 47–50
basic document structure, 40–41
documenting code in, 216–217
embedded styles and, 140–141
embedding webpages in, 51
no-quirks mode, 40
normalizing, 217
special characters, 41–42

HTML entities, 41–42
HTML forms. See forms
HTML5

adding thematic breaks, 213
annotating content, 213–221
browser support, 206–207
controlling format with <div> element, 213
creating layout containers, 207–212
described, 30–31
drawing with, 459–506
embedding content, 44–52
lesson summary and review, 42–43, 52–53, 
62–63, 228–229, 242–243, 258–259
named attributes supported, 37

HTMLMediaElement object



636

HTTP() method, 315–316, 322–323
REST web services and, 365–366
return status codes, 315
web servers, 312
WebSocket protocol and, 416

HTTP methods, 315–316, 322–323
http module, 342
HTTP verbs, 315–316, 322–323
HTTPS protocol, 366
hue-saturation-lightness (HSL), 172–173
hyperlinks

creating image links, 49
described, 46
<iframe> element and, 44
sending email with, 47
specifying target, 46–47
styles working with, 138
working with events, 114–115
working with selectors, 153–158

Hypertext Markup Language (HTML)
browser support, 314
CSS support, 138
described, 30–32

Hypertext Transfer Protocol. See HTTP (Hypertext 
Transfer Protocol)

I
<i> element, 31–32, 34, 213–214
id attribute

<circle> element, 498
as global attribute, 37
<path> element, 496
<video> element, 450

id selectors, 146
IDBCursor object, 596
IDBDatabase object

createObjectStore() method, 591
deleteObjectStore() method, 593

onended event, 449
onerror event, 449
onloadeddata event, 449
onloadedmetadata event, 449
onloadstart event, 449
onpause event, 449
onplay event, 449
onplaying event, 449
onprogress event, 449
onratechange event, 449
onreadystatechange event, 449
onseeked event, 449
onseeking event, 449
onstalled event, 449
onsuspend event, 449
ontimeupdate event, 449
onvolumechange event, 449
onwaiting event, 449
pause() method, 447
paused property, 448
play() method, 447
playbackRate property, 448
played property, 448
preload property, 448
readyState property, 448
seekable property, 448
seeking property, 448
src property, 448
startDate property, 448
textTracks property, 449
videoTracks property, 449
volume property, 449

HTTP cache
browser support, 608
cache manifest file, 608–609
described, 607
updating, 609

HTTP cookies, 556–557
HTTP (Hypertext Transfer Protocol)

described, 314–315

HTTP cache



637

seamless attribute, 45–46
src attribute, 44
working with hyperlinks, 46–47

IIFE (immediately invoked function expression), 
277–279
IIS Express, 442
IIS (Internet Information Server), 323, 608
image maps, 49–50
images

adding to HTML documents, 47–50
drawing with, 490–494
styles working with, 138

<img> element
alt attribute, 47–48
creating image links, 49
creating pattern fill, 468–469
described, 30, 34
drawing with images, 490
embedding content, 47–48, 51
file types supported, 48
src attribute, 47–48
usemap attribute, 49
as void element, 38

immediately invoked function expression (IIFE), 
277–279
@import rules, 143–144
importing

fonts, 144
style sheets, 143–144

in layout containers, 208–210
in measurement unit, 175
index numbers (arrays), 108–109
IndexedDB tool

browser support, 559, 590
creating and opening database, 590–591
described, 589–590
lesson summary and review, 599–600, 617–618
object stores, 591–593
practice exercises, 611–616
as storage mechanism, 558

described, 590
mode property, 593
objectStoreNames property, 593
setVersion() method, 591
transaction() method, 593

IDBFactory object
deleteDatabase() method, 599
open() method, 590–591

IDBKeyRange object
bound() method, 597–598
described, 597
lower property, 597–598
lowerBound() method, 598–599
lowerOpen property, 598
only() method, 599
upper property, 597–598
upperBound() method, 598
upperOpen property, 598

IDBObjectStore object
add() method, 594
createIndex() method, 592
delete() method, 595
deleteIndex() method, 593
get() method, 595
keypath property, 592
name property, 592
openCursor() method, 596–597
optionalParameters property, 592
put() method, 594

IDBRequest object, 590
IDBTransaction object, 593
identifiers, 74
IETF (Internet Engineering Task Force), 415
if keyword, 80–81, 83
<iframe> element

creating nested browser context, 34
described, 34, 44–46
name attribute, 44–45
<object> tag and, 51
sandbox attribute, 45

IndexedDB tool



638

J
Japanese characters, 220–221
Java Applets, 557
JavaScript. See also jQuery

AJAX and, 368
browser considerations, 101–102
CommonJS support, 394
conditional programming, 80–84
converting to different types, 78–80
creating Hello World program, 90–99
creating objects, 262–283
debugging, 103–107
described, 66, 263
enabling IntelliSense, 291–294
handling errors, 87–88
implementing code loops, 84–87
inline versus external files, 102
lesson summary and review, 88–89, 107–108, 
120–121, 134–135
naming variables, 72
nested local variable scoping, 78
nesting functions, 78
practice exercises, 121–133
role of data, 66–71
scoping variables, 77–78
<script> element and, 100–103
Socket.IO library and, 424
testing code, 89–103
as untyped language, 66
using statements, 71–73
Visual Studio 2012 support, 4–5
working with functions, 73–77
writing code, 89–103

JavaScript Console, 67
JavaScript Object Notation (JSON), 349, 366, 374
JavaScript objects

built-in, 67
creating, 263–264
creating classes, 266–271

indexing cursors, 597
inherit value, 163
inheritance

described, 162–163
HTMLMediaElement object and, 444, 447
JavaScript objects and, 262, 278–283

inline frames. See <iframe> element
inline JavaScript code, 102
inline styles, 140
INNER JOIN statement, 588
<input> element

described, 34
form validation and, 326
max attribute, 329
min attribute, 329
pattern attribute, 327–328
step attribute, 329
title attribute, 328
type attribute, 317–318
as void element, 38

input event, 118
<ins> element, 34, 220
installing

Node.js packages, 351–353
Node.js platform, 342

instances, 262
integer numbers, 67
IntelliSense feature

custom lists and, 226
enabling for JavaScript and jQuery, 291–294
HTML5 support, 3
JavaScript support, 4
untyped languages and, 66

Internet Engineering Task Force (IETF), 415
Internet Information Server (IIS), 323, 608
invalid event, 118
:invalid pseudo class, 330
irregular tables, 238–241
isNaN() function, 80–81
ISO/IEC 16262 standard, 66

indexing cursors



639

ajaxSetup() method, 373
ajaxStart() method, 373
ajaxStop() method, 373
ajaxSuccess() method, 373
get() method, 373
getJSON() method, 373, 375
getScript() method, 373
load() method, 373
param() method, 373
post() method, 373, 375
serialize() method, 374
serializeArray() method, 374
text() method, 295
trigger() method, 295
triggerHandler() method, 295

JSON (JavaScript Object Notation), 349, 366, 374
JSON object, 67, 368
junction, 352

K
kanji characters, 220–221
<kbd> element, 34, 220
keepAlive() function, 422
keyboard actions, events triggered by, 118
keydown event, 118
<keygen> element, 38
keypress event, 118
keyup event, 118
Korean characters, 220–221

L
<label> element

for attribute, 318
described, 34, 318
forms and, 318–319

landmark role class, 212
lang global attribute, 37

described, 262–263
factory pattern, 265–266
implementing inheritance, 278–283
implementing namespaces, 276–278
lesson summary and review, 283–284, 308
object literal syntax, 263–265
practice exercises, 297–307
prototype pattern, 271
prototype property, 271–274

JetBrains Resharper tool, 67
JOIN commands (SQL), 588
joining lines, 471–472
JPEG file type, 48
jQuery

adding event listeners, 295
autofocus attribute, 321
binding to storage events, 567–568
categories of functionality, 285–286
cookie plug-in, 556–557
creating wrappers, 294–295
DataTransfer object and, 513, 515, 519
drag and drop operations, 507
enabling IntelliSense, 291–294
getting started with, 286–287
initializing code when browser is ready, 
295–296
lesson summary and review, 296–297, 308–309
promise objects, 377–380, 394–402
serialize() method, 321
submit() method, 319–320
triggering event handlers, 295
usage considerations, 287–291
verifying versions, 369
XMLHttpRequest wrappers, 373–377

jQuery object
ajax() method, 373–375
ajaxCompleted() method, 373
ajaxError() method, 373
ajaxPrefilter() method, 373
ajaxSend() method, 373

lang global attribute



640

described, 221
description, 223–224
ordered, 221–222
unordered, 222–223

literal arrays, 109
live NodeList, 112–113
load event, 117
loadeddata event, 120
loadedmetadata event, 120
loadstart event, 120
local functions, 77–78
local scope, 77–78
local variables, 77–78
Local window (debugger), 104–105
localStorage global variable, 560–564
location awareness. See Geolocation API
logical operators, 70–72
long polling concept, 415–416
loop attribute

<audio> element, 445–446
<video> element, 441

loops. See code loops

M
mailto protocol, 47
main class, 212
Manage NuGet Packages window, 90–91, 95–96
manifest attribute (<html> element), 608
manifest file

CACHE section, 609
described, 608–609
FALLBACK section, 609
NETWORK section, 609
Node.js package and, 346
updating cache, 609

<map> element
creating image maps, 49–50
described, 34
name attribute, 49

:lang(language) pseudo class, 149
language elements, 220–221
last-in, first-out (LIFO), 474
layout containers

<article> element in, 209
<aside> element in, 208, 211–212
creating, 207–209
described, 208
<div> element in, 208
<footer> element in, 208, 210–211
<header> element in, 208–210
<nav> element in, 208, 211
<section> element in, 208
using roles, 212

LEFT JOIN statement, 588
<legend> element, 34
less-than sign (<), 41
<li> element, 34
licensing fonts, 144
LIFO (last-in, first-out), 474
lightness (HSL), 172–173
lines

drawing, 476–478
drawing curved, 481–487
joining, 471–472
setting width for, 470–471

<link> element
described, 34
href attribute, 141
media attribute, 141–142
rel attribute, 141
type attribute, 141
as void element, 38

:link pseudo class, 149
list-item-style property (CSS), 226
list-style-image property (CSS), 226
list-style-position property (CSS), 226
list-style-type property (CSS), 225–226
lists

custom, 224–228

:lang(language) pseudo class



641

mousemove event, 119
mouseout event, 119
mouseover event, 119
mouseup event, 119
mousewheel event, 119
movies. See video and movies
.mp3 file extension, 444–445
MP3 format, 444
.mp4 file extension, 438–439, 444
MP4 format, 444
.mp4a file extension, 444
MPEG-4/H.264 format, 438
multimedia

events triggered by, 119–120
HTMLMediaElement object, 447–452
lesson summary and review, 442–443, 446–
447, 451–452, 456–457
playing audio, 443–447
playing video, 437–443
practice exercises, 452–455
specifying target devices using, 141–142

multiple attribute (<select> element), 316–317
multiplication (*) operator, 67–68, 70
music. See audio and sounds
muted attribute (<video> element), 441
MVC technologies, 341

N
\n escape sequence, 69
name attribute

<iframe> element, 44–45
<map> element, 49
<object> element, 51

named styles, 146–147
namespaces

CSS3 support, 138
JavaScript objects and, 276–278
jQuery, 288

margin properties (CSS), 176–178, 193
<mark> element, 34, 213, 220
Markdown files, 348
MarkdownPad editor, 348
mashups, 364
Math object, 67
mathematical operators, 68, 72
max attribute (<input> element), 329
maxlength attribute (<textarea> element), 316
measurement units, font-size, 174–175
media. See multimedia
media attribute (<link> element), 141–142
<menu> element, 34
message event, 117
<meta> element

@charset setting, 41, 143
described, 34
as void element, 38

<meter> element, 34
methods

array, 110–112
described, 67, 110, 263
getter, 274–275
privileged, 269
setter, 274

Microsoft App Fabric Caching Service, 422
Microsoft Visual Studio 2012. See Visual Studio 
2012
Microsoft Web Embedding Fonts Tool (WEFT), 
144
min attribute (<input> element), 329
Miro Video Converter, 439–440
mm measurement unit, 175
modernizr.js library, 221
Modify Style window, 226
modulo (%) operator, 69
monospace font families, 173
mouse action, events triggered by, 118
mousedown event, 119

namespaces



642

number primitive type
arithmetic operations, 68
described, 67
operator precedence, 68–69
special values supported, 68

number types, 67–69
numbers, validating in forms, 329
NVDA (Nonvisual Desktop Access) devices, 
206–207

O
<object> element

creating nested browser context, 52
data attribute, 51
declare attribute, 322
described, 34, 51
embedding plug-in content, 50–52
form attribute, 51
height attribute, 51
name attribute, 51
<param> tag and, 52
passing parameters to objects, 52
type attribute, 51
usemap attribute, 51
width attribute, 51

object literals, 263–265
Object object

constructor() method, 265
described, 67
hasOwnProperty() method, 265
isPrototypeOf() method, 265
propertyIsEnumerable() method, 265
prototype property, 271–274
toLocalString() method, 265
toString() method, 265
valueOf() method, 265

object-oriented programming
JavaScript caveat, 263

naming variables, 72–73
<nav> element, 34, 208, 211
navigating DOM, 112–114
Navigation App template, 7
navigation class, 212
navigator.geolocation global variable, 540
nesting

elements, 179, 210
functions, 78
operations, 398–399

new keyword, 108, 269
no-quirks mode, 40
no value coalescing operators, 83–84
node package manager (npm), 342
Node.js platform

creating Hello World program, 342–344
creating Node.js module, 344–345
creating Node.js package, 345–354
creating RESTful web service, 366–368
described, 341
express framework, 354–363
installing, 342
lesson summary and review, 363, 391
practice exercises, 382–386, 390
Socket.IO library and, 424

nonbreaking space, 41–42
Nonvisual Desktop Access (NVDA) devices, 
206–207
normalizing HTML documents, 217
<noscript> element, 34
not (!) logical operator, 70–71
:not pseudo class, 149
noupdate event, 610
npm (node package manager), 342
:nth-child(formula) pseudo class, 149
NuGet package-management system, 90, 95, 286
null primitive type, 67
Number() function, 78–79
Number object, 67

naming variables



643

oncanplaythrough event, 449
onclose event, 417, 419
ondurationchange event, 449
onemptied event, 449
onended event, 449
onerror event

FileEntry object and, 604
FileReader object and, 603
FileWriter object and, 603
HTMLMediaEvent object and, 449
IDBObjectStore object and, 594
IDBRequest object and, 591
WebSocket object and, 417, 419

online event, 117
onload event, 469
onloadeddata event, 449
onloadedmetadata event, 449
onloadend event, 603
onloadstart event, 449
:only-child pseudo class, 149
:only-of-type pseudo class, 149
onmessage event, 417, 419
onopen event, 417, 419
onpause event, 449
onplay event, 449
onplaying event, 449
onprogress event, 449
onratechange event, 449
onreadystatechange event, 371, 449
onseeked event, 449
onseeking event, 449
onstalled event, 449
onsuccess event, 591, 594
onsuspend event, 449
ontimeupdate event, 449
onupgradeneeded event, 591
onvolumechange event, 449
onwaiting event, 449
onwriteend event, 603
opacity property (CSS), 172

private data and, 268
terminology used, 262–263

object stores
adding indexes, 592–593
deleting records, 595
described, 591
inserting new records, 594
removing, 593
removing indexes, 593
retrieving records, 595–596
understanding cursors, 596–599
updating existing records, 594–595
using transactions, 593–594
versioning and, 591

objects. See also JavaScript objects
accessing DOM objects, 112–120
described, 262
lesson summary and review, 120–121, 135
passing parameters to, 52
types of, 262
working with arrays, 108–112

obsolete event, 610
offline event, 117
offline web applications

described, 581
FileSystem API and, 600–606
HTTP cache and, 607–610
IndexedDB tool and, 589–599
lesson summary and review, 588–589, 599–
600, 606–607, 610–611, 617–619
practice exercises, 611–616
Web SQL database and, 582–588

.oga file extension, 444–445

.ogg file extension, 444
Ogg/Theora format, 438
Ogg/Vorbis format, 444
.ogv file extension, 438–439
<ol> element, 34, 221–222
onabort event, 449
oncanplay event, 449

opacity property (CSS)



644

parameters
arguments versus, 74
described, 73–74
handling errors via, 543
passing to objects, 52

parent classes, 262
parent forms, 319
parentheses (), 68–69, 74
<path> element

commands supported in, 496–497
d attribute, 496
described, 496
fill attribute, 496
id attribute, 496

path package, 348
paths

commands supported in, 496–497
creating, 496–498
described, 475, 496
drawing using, 475–487

pattern attribute (<input> element), 327–328
pattern fill, 468–469
pause event, 120
pc measurement unit, 175
performance considerations

POST method, 323
storage mechanisms, 563–564
universal selector, 147

period (.) symbol, 146, 327
.pfx file extension, 9
Pin To Source option, 106
placeholder attribute

form submission elements, 326
<textarea> element, 316

play event, 120
playing event, 120
playStop() function, 451
plug-ins

cookie alternatives, 557
described, 31

operands
binary operators and, 70
described, 67–68

operator precedence, 68–69
<optgroup> element, 34
<option> element

described, 34, 317
selected attribute, 317
triggering form submission, 320
value attribute, 320

:optional pseudo class, 330
OPTIONS method (HTTP), 315
or (||) logical operator, 70–71, 83–84
ordered lists, 221–222
<output> element, 34

P
<p> element, 34
package.json file, 349–350
packages (Node.js)

creating aggregate modules, 348
creating package.json file, 349–350
creating README.md file, 348–349
described, 345–348
installing and using, 351–353
publishing, 350–351
uninstalling, 354

packages.config file, 96
padding properties (CSS), 176–178
Page Inspector feature, 3
pagehide event, 117
pageshow event, 117
Parallel Watch window (debugger), 106
<param> element

described, 34, 52
<object> element and, 52
as void element, 39

operands



645

described, 377–380, 394–395
done() method, 378, 398–399
fail() method, 378, 397, 399
handling completion cleanup, 397–398
handling failure, 397
parallel execution and, 400
pipe() method, 398–400
progress() method, 378, 400–401
subscribing to completed, 398
then() method, 400, 402
timeouts, 396–397
updating progress, 400–401
when() method, 400, 402

prompt() function, 76–77
properties. See also CSS properties

array, 109–110
described, 109, 262–263

Properties window, 7, 11
prototype pattern, 271, 274–276
prototype property, 271–274
prototypes, 263
pseudo-class selectors, 148–149
pseudo classes, 148–149, 330
pseudo-element selectors, 148–150
pseudo elements, 149–150
pt measurement unit, 175
publisher-subscriber design pattern, 114
publishing packages, 350–351
PUT method (HTTP), 315–316
px measurement unit, 174

Q
<q> element

annotating content, 215–216
cite attribute, 215
described, 34

QueryString
form submissions and, 320–323
Node.js and, 343, 359–360

embedding content from, 50–52
limitations of, 558

plus sign (+), 67–69, 151, 327
PNG file type, 48
polymorphism, 262
popstate event, 117
Position object

coords property, 540–541
timestamp property, 541

PositionOptions object
described, 544
enableHighAccuracy property, 544
maximumAge property, 545
timeout property, 544

POST method (HTTP), 315–316, 322–323, 365–366
poster attribute (<video> element), 441
<pre> element, 34, 217
precedence order

for element styles, 160–161
for operators, 68–69

preformatted content, displaying, 217
preload attribute

<audio> element, 446
<video> element, 441

preventDefault() function, 512
primitive values, 67
private data

JavaScript objects and, 268–271
prototype pattern and, 274–276

privileged methods, 269
<progress> element, 34
progress event, 120, 371, 610
Promise/A specification, 394
promise object ( jQuery)

always() method, 378, 397–399
asynchronous operations and, 394–395
chaining promises, 398–400
conditional calls, 401–402
creating, 395–397
Deferred() method, 395–397

QueryString



646

described, 364–366
request/response model

long polling concept, 415
Node.js and, 357
in stateless model, 312–313

require() function, 345
required Boolean attribute, 325
:required pseudo class, 330
Resharper tool, 67
resize event, 117
resource sharing, cross-origin, 380–381
REST (Representational State Transfer) web 
services

creating, 366–368
described, 364–366

retries variable, 85–86
return status codes (HTTP), 315
return values (functions), 73
RFC 6455, 415
RFID (radio frequency identification), 539
rgb() function, 171
RGB value, 166–171
rgba() function, 172
role attribute

<aside> element, 212
<div> element, 212

rowspan attribute
<td> element, 238–240
<th> element, 238–240

<rp> element, 34, 221
<rt> element, 34, 221
<ruby> element, 35, 221
ruby phonetic characters, 220–221

S
<s> element, 220
<samp> element, 35, 216–217
sans serif font families, 173–174

REST web services and, 365, 368
question mark (?), 322, 327
QUnit-Metro tool, 95–100
QUnit tool, 90–95, 286
qunitmetro.js file, 96
QuotaExceededError exception, 562
quotations and citations, 215–216

R
r attribute (<circle> element), 498
radio frequency identification (RFID), 539
ranges, validating in forms, 329
ratechange event, 120
Rauch, Guillermo, 423
reading files, 563, 603–604
README.md file, 348–349
readonly Boolean attribute, 36
readystatechange event, 120
rectangles

configuring drawing state, 465–474
drawing, 463–464, 478–479
saving and restoring drawing state, 474–475
setting fillStyle property, 465–470
setting lineJoin property, 471–472
setting lineWidth property, 470–471
setting strokeStyle property, 472–474

Redis (remote dictionary service), 422
redo event, 117
Reference Groups feature, 5
refreshing screens, 290
RegExp object, 67
registered trademark (®), 41
rel attribute (<link> element), 141
relative position (<div> element), 181–182
removeEventListener() function, 116
Representational State Transfer (REST) web 
services

creating, 366–368

question mark (?)



647

reading values from tables, 586–587
WHERE clause, 587

selected attribute (<option> element), 317
selected Boolean attribute, 36
selector chains, 147
selectors

adjacent, 151–152
attribute, 153–154
attribute contains value, 155–156
attribute contains value in list, 157–158
attribute value, 154–155
attribute value ends with, 157
child, 148
class, 146–147
CSS3 support, 138
custom lists and, 224–226
defining, 146
descendant, 147–148
described, 138–139
element type, 146
grouping, 150–151
id, 146
jQuery-supported, 289
pseudo-class, 148–149
pseudo-element, 148–150
sibling, 151–153
specificity in, 161–162
subsequent, 151–153
universal, 147

self-closing tags, 37
semantic markup, 31–32
semicolon (;), 71, 139
serializing forms, 321
serif font families, 173–174
sessionStorage global variable, 562–564, 568
setter methods, 274
SGML (Standard Generalized Markup Language), 
30, 137
shape attribute (<area> element), 49
short-circuit evaluation, 71

sandbox attribute (<iframe> element), 45
sandboxing, 45, 51
saturation (HSL), 172–173
saveData() function, 116
scalable vector graphics (SVG)

described, 459, 495–496
using <img> element, 499–501
using <svg> element, 496–499

schemas
tables and, 591
updating, 583

scoping variables, 77–78
screens, refreshing, 290
<script> element

async attribute, 101
defer attribute, 101
described, 35, 236
placing, 102–103
type attribute, 100
usage considerations, 38, 100–101

scroll event, 119
seamless attribute (<iframe> element), 45–46
search capabilities, 563–564
search class, 212
<section> element, 35, 208
sectioning root, 215
security

Geolocation object and, 544–545
HTTPS protocol and, 366
storage mechanisms and, 558–559

seeked event, 120
seeking event, 120
<select> element

described, 35, 316–317
multiple attribute, 316–317
size attribute, 317

select event, 118
SELECT statement (SQL)

aggregating functions and, 588
JOIN commands and, 588

short-circuit evaluation



648

start() function, 345
stateless model, 312–313
statements, 71
statements, variables and, 71–73
static NodeList, 112–113
static position (<div> element), 181
step attribute (<input> element), 329
stopPropagation() function, 116
storage event, 117
storage mechanisms

browser support, 561
capacity considerations, 561–562
cookie considerations, 556
described, 555
handling storage events, 565–568
HTML5-supported, 558–560
jQuery cookie plug-in, 556–557
lesson summary and review, 564–565, 568–
569, 579–580
localStorage global variable, 560–562
potential performance pitfalls, 563–564
practice exercises, 569–578
sessionStorage global variable, 562–563
storing complex objects, 562
web storage, 555–564

Storage object
clear() method, 560
described, 560, 563
getItem() method, 560
key() method, 561
length property, 560
removeItem() method, 560
setItem() method, 560

StorageEvent object
described, 566
key property, 566
newValue property, 566
oldValue property, 566
storageArea property, 566
url property, 566

sibling selectors, 151–153
SignalR library, 423
Simple Object Access Protocol (SOAP), 366
single quotes ('), 69
size attribute (<select> element), 317
.sln file extension, 356
<small> element, 35, 220
SOAP (Simple Object Access Protocol), 366
Socket.IO library, 423–424
sounds. See audio and sounds
<source> element

described, 35
setting audio source, 445
setting video source, 439–440
src attribute, 439, 445
type attribute, 439, 445
as void element, 39

<span> element
described, 35
expando attributes and, 39
historical usage, 206

special characters (HTML entities), 41–42
specialized classes, 262
specificity (selectors)

calculating, 161–162
in cascading styles, 160

spellcheck global attribute, 37
Split App template, 6
square brackets, 109, 264
src attribute

<audio> element, 446
<embed> element, 50
<iframe> element, 44
<img> element, 47–48
<source> element, 439, 445
<video> element, 441

SRT (SubRip Text), 441
stalled event, 120
Standard Generalized Markup Language (SGML), 
30, 137

sibling selectors



649

super classes, 262
suspend event, 120
<svg> element

creating a path, 496–498
described, 496
drawing circles, 498–499
viewBox attribute, 500–501

svg-edit editor, 499
SVG file type, 48, 499–501
SVG (scalable vector graphics)

described, 459, 495–496
using <img> element, 499–501
using <svg> element, 496–499

switch keyword, 82–83
synchronous read/writes, 563

T
\t escape sequence, 69
tabindex global attribute, 37
<table> element

creating tables, 230
described, 35, 205, 229
misuse of, 230
styling columns, 241–242

table headers
creating, 231–232
styling, 232

tables
adding captions, 241
creating, 230–231
creating header cells, 231–232
creating irregular, 238–241
declaring footers, 233–237
declaring headers, 233–237
declaring table body, 233–237
described, 229
lesson summary and review, 242–243, 258–259
misuse of, 230
schemas and, 591

String() function, 78, 80
String object, 67
string primitive type

described, 67, 69
unary operators, 70

<strong> element, 35, 213–214
<style> element, 35, 140
style global attribute, 37, 140
style sheets

adding comments within, 139
browser built-in styles, 159
described, 138
external, 141
imported, 143–144
user-defined, 159

styles
applying, 139
in browsers, 139, 159
cascading, 160–161
creating, 138
defining, 139
described, 138
embedded, 140–141
extending, 159
inheriting, 162–163
inline, 140
named, 146–147
validating input, 330
working with important, 159–160

<sub> element, 35, 220
sub-paths, 475
subclasses, 262
submit event, 118
SubRip Text (SRT), 441
subscribing to events, 115–116, 567
subsequent adjacent sibling selectors, 151–152
subsequent sibling selectors, 152–153
subtraction (-) operator, 67–68, 70
<summary> element, 219–220
<sup> element, 35, 220

tables



650

<th> element
colspan attribute, 238–240
creating header cells, 231–232
described, 35, 231
rowspan attribute, 238–240

<thead> element, 35, 233
thematic breaks, 213
this keyword, 117, 264, 268–269
threads, 393
tilde (~) character, 152
<time> element, 35, 220
Timed Text Markup Language (TTML), 441
timeouts

PositionOptions object, 544
promise object, 396–397
WebSocket object, 420–422

timeupdate event, 120
<title> element, 35, 41
title attribute

as global attribute, 37
<input> element, 328

TODO comments, 7
<tr> element

creating tables, 230
described, 35, 229
styling rows, 241
<tbody> element and, 233

TRACE method (HTTP), 315
<track> element, 441
trademarks, 41
transactions

IndexedDB and, 558
Web SQL databases and, 584–586
web storage and, 564

transparency (color), 172
triangles, drawing, 478–481
TrueType (.ttf) files, 144
try block, 87
.ttf (TrueType) files, 144
TTML (Timed Text Markup Language), 441

styling columns, 241–242
styling rows, 241
styling table headers, 232
in Web SQL databases, 584–588

tags
case sensitivity, 32
described, 30–31
elements and, 32–35
self-closing, 37
semantic markup, 31–32

target attribute (<a> element), 46–47
<tbody> element, 35, 233–237
TCP

arbitrary web services and, 366
WebSocket support, 415–417

<td> element
colspan attribute, 238–240
creating tables, 230
described, 35, 229, 241
rowspan attribute, 238–240

TDD (test-driven development), 90, 93, 98
templates. See also specific templates

described, 5–6
included with Visual Studio Express for Web, 
10–11
included with Visual Studio Express for 
Windows 8, 6–7

test-driven development (TDD), 90, 93, 98
testing JavaScript code, 89–103
test.js file, 92, 97, 288
text

drawing, 488–490
formatting, 173–175, 213

<textarea> element
cols attribute, 316
described, 35, 316
maxlength attribute, 316
placeholder attribute, 316
wrap attribute, 316

<tfoot> element, 35, 233

tags



651

required validation, 325–327
styling validations, 330
validating numbers and ranges, 329
validating URL input, 327–328

value attribute (<option> element), 320
value types, 67, 138
values

described, 67
determining for variables, 83
determining if same type and equal, 84
retrieving for attributes, 153
return, 73
setting for colors, 166–171

<var> element, 35, 217
variables

assigning function expressions to, 75
case sensitivity, 72
converting to different types, 78–80
counter, 86
creating environment for, 73
described, 71
determining values of, 83
examining in debugger, 104–105
global, 77–78
JavaScript support, 66
local, 77–78
naming, 72–73
retries, 85–86
scoping, 77–78
statements and, 71–73
working with functions, 73–77

Vehicle Identification Number (VIN), 365
versioning, IndexedDB, 591
versions

including information in manifest files, 609
verifying for jQuery, 369

<video> element
autoplay attribute, 441
configuring, 441
controls attribute, 441, 450

type attribute
<button> element, 317
<embed> element, 50
<input> element, 317–318
<link> element, 141
<object> element, 51
<script> element, 100
<source> element, 439, 445

U
<u> element, 220
\u escape sequence, 69
ui-dark.css file, 9
ui-light.css file, 9
<ul> element, 35, 222–223
unary operators, 70
undefined primitive type, 67
underscore (_), 45, 72–73
undo event, 117
uninstalling packages, 354
universal selectors, 147
unload event, 117
unordered lists, 222–223
unsubscribing from events, 116
updateReady event, 610
URL input, validating, 327–328
url module, 343
usemap attribute

<img> element, 49
<object> element, 51

User Data API, 557
user-defined style sheets, 159
utf-8 character set, 41

V
:valid pseudo class, 330
validating forms

described, 324–325

<video> element



652

Start Page screen, 5
templates included, 6–9

Visual Studio Premium 2012, 2
Visual Studio Professional 2012, 2
Visual Studio Team Foundation Server Express 
2012, 2–3
Visual Studio Test Professional 2012, 2
Visual Studio Ultimate 2012, 2
void elements, 38–39
volumechange event, 120

W
W3C (World Wide Web Consortium)

CSS recommendations, 137–138
event recommendations, 566
multimedia standards, 437–438, 443–444
open standards for web, 30–31
storage capacity, 561
Web SQL support, 582
WebSocket API, 415–417
WebVTT standard, 441–442

WAI-ARIA, 212
WAI (Web Accessible Initiative), 212
waiting event, 120
.wav file extension, 444–445
WAV format, 444
<wbr> element, 35, 39, 217
WCF (Windows Communication Foundation), 366
Web Accessible Initiative (WAI), 212
web browsers. See browsers
web communications

described, 312
encrypting, 366
HTTP() method, 315–316, 322–323
HTTP protocol basics, 314–315
web browsers, 314
web servers, 312–313

Web Embedding Fonts Tool (WEFT), 144

described, 35, 437
drawing with images, 490
height attribute, 441
HTMLMediaElement object and, 444, 447
id attribute, 450
implementing, 438–439
loop attribute, 441
muted attribute, 441
poster attribute, 441
preload attribute, 441
<source> element and, 439–440
src attribute, 441
width attribute, 441

video and movies. See also <video> element
accessing tracks, 441–442
described, 437
lesson summary and review, 442–443, 456
practice exercises, 452–455
setting <source> element, 439–440
video formats, 438

viewBox attribute (<svg> element), 500–501
VIN (Vehicle Identification Number), 365
.visible selector, 237
:visited pseudo class, 149
Visual Studio 2012

CSS3 support, 4
editions supported, 2–3
HTML5 support, 3–4
JavaScript support, 4–5
lesson summary and review, 11–12, 26
practice exercises, 20–25

Visual Studio 2012 Express for Web
described, 3, 9–11
New Project screen, 10
Node.js support, 356
Start Page screen, 9

Visual Studio 2012 Express for Windows 8
described, 3, 5–7
New Project link, 5
New Project screen, 6

video and movies



653

lesson summary and review, 424–425, 436
practice exercises, 425–435
WebSocket libraries, 423–424

WebSocket object
binaryType property, 417
bufferedAmount property, 417
close() method, 416
extensions property, 417
implementing, 417–420
onclose event property, 417
onerror event property, 417
onmessage event property, 417
onopen event property, 417
protocol property, 417
readyState property, 417, 419
send() method, 416–417, 419
url property, 417
WebSocket constructor, 416

WebSocket protocol
dealing with web farms, 422–423
described, 415–416
handling connection disconnects, 422
handling timeouts, 420–422
lesson summary and review, 424–425, 436
practice exercises, 425–435
WebSocket libraries, 423–424

WebVTT (Web Video Text Tracks) standard, 
441–442
WEFT (Web Embedding Fonts Tool), 144
WHERE clause (SQL), 587
while loop, 84–85
width attribute

<canvas> element, 460
<embed> element, 50
<object> element, 51
<video> element, 441

window object
events triggered by, 117
frameElement property, 44
parent property, 44

web farms, 422–423
web servers

described, 312–313
submitting form data to, 316
WebSocket protocol, 416

web services. See also Node.js platform
AJAX calling, 368–380
cross-origin resource sharing, 380–381
described, 364–366
lesson summary and review, 381–382, 391–392
practice exercises, 386–390
RESTful, 366–368

Web Services Description Language (WSDL), 366
Web SQL databases

adding tables, 584
aggregating functions, 588
browser support, 559
creating and opening, 582–583
deleting records, 586
executeSql() method, 585–586
filtering results, 587–588
inserting new records, 585–586
JOIN commands, 588
lesson summary and review, 588–589, 617
longevity considerations of, 582
performing schema updates, 583
reading values from, 586–587
as storage mechanism, 558
transactions in, 584–585
updating existing records, 586

web storage. See storage mechanisms
web workers, 404–405, 563
Web.config file, 10
.webm file extension, 438–439
WebM/VP8 format, 438
WebSocket API

dealing with web farms, 422–423
described, 415–417
handling connection disconnects, 422
handling timeouts, 420–422

window object



654

requestFileSystem() method, 601
top property, 44
webkitRequestFileSystem() method, 601

Windows 8 applications, QUnit-Metro tool and, 
95–100
Windows Communication Foundation (WCF), 366
WinJS, 394
worker object

close() method, 405
described, 405
postMessage() method, 563
terminate() method, 405

World Wide Web Consortium. See W3C (World 
Wide Web Consortium)
wrap attribute (<textarea> element), 316
writing

to directories, 605
to files, 563, 602–603
JavaScript code, 89–103

WSDL (Web Services Description Language), 366

X
XHTML, 30–32
XML (eXtensible Markup Language), 30–31
XML Schema Definition (XSD), 30
XMLHttpRequest object

described, 369–371
error handling, 372–373
jQuery wrappers, 373–377
open() method, 370
response property, 370
sample code, 394–395
send() method, 370

XSD (XML Schema Definition), 30
XSS attacks, 381

Windows 8 applications, QUnit-Metro tool and



About the author

GLENN JOHNSON is a professional trainer, consultant, and developer whose 
experience spans the past 25 years. As a consultant and developer, he has 
worked on many large projects, mostly in the insurance industry. Glenn’s 
strengths are with Microsoft products such as ASP.NET, Model-View- Controller 
(MVC), Silverlight, Windows Presentation Foundation (WPF), Windows 
 Communication Foundation (WCF), and Microsoft SQL Server using C#, Visual 
Basic, and T-SQL. This is yet another of many .NET books that Glenn has 
 authored. He also develops courseware for and teaches classes in many coun-
tries on HTML5, JavaScript, Microsoft MVC, Microsoft ASP.NET, Visual Basic 
.NET, C#, and the .NET Framework. 

Glenn holds the following Microsoft certifications: MCT, MCPD, MCTS, 
MCAD, MCSD, MCDBA, MCP + Site Building, MCSE + Internet, MCP + Internet, 
and MCSE. You can find Glenn’s website at http://GJTT.com.





Training Guide: Programming in HTML5 with 
 JavaScript and CSS3 and Exam 70-480

This book is designed to help build and advance your job-role expertise. In addition, it covers some 
of the topics and skills related to Microsoft Certification Exam 70-480 and might be useful as a 
complementary study resource. 

Note: This book is not designed to cover all exam topics; see the following chart. If you are 
preparing for the exam, use additional materials to help bolster your readiness, in conjunction with 
real-world experience.

EXAM OBJECTIVES/SKILLS SEE TOPIC-RELATED COVERAGE HERE

IMPLEMENT AND MANIPULATE DOCUMENT STRUCTURES AND OBJECTS

Create the document structure. Chapters 2 and 5

Write code that interacts with UI controls. Chapters 3, 7, 11, 12, and 13

Apply styling to HTML elements programmatically. Chapter 4

Implement HTML5 APIs. Chapters 10, 14, 15, and 16

Establish the scope of objects and variables. Chapters 3 and 6

Create and implement objects and methods. Chapter 6

IMPLEMENT PROGRAM FLOW 

Implement program flow. Chapter 3 and 6

Raise and handle an event. Chapter 3 and 6

Implement exception handling. Chapter 3

Implement a callback. Chapter 3, 6, 8, and 9

Create a web worker process. Chapter 9

ACCESS AND SECURE DATA

Validate user input by using HTML5 elements. Chapter 7

Validate user input by using JavaScript. Chapter 7

Consume data. Chapter 8

Serialize, deserialize, and transmit data. Chapter 7



USE CSS3 IN APPLICATIONS

Style HTML text properties. Chapter 4

Style HTML box properties. Chapter 4

Create a flexible content layout. Chapter 4

Create an animated and adaptive UI. Chapter 4

Find elements by using CSS selectors and jQuery. Chapter 4 and 6

Structure a CSS file by using CSS selectors. Chapter 4

For complete information about Exam 70-480, visit http://www.microsoft.com/learning/en/us 
/exam.aspx?ID=70-480. In addition, for more information about Microsoft certifications, visit  
http://www.microsoft.com/learning.



  
  

  
 

  

 

SurvPage_Corp_02.indd   1 5/19/2011   4:18:12 PM

What do 
you think of
this book? 
We want to hear from you! 
To participate in a brief online survey, please visit: 

microsoft.com/learning/booksurvey 

Tell us how well this book meets your needs—what works effectively, and what we can 
do better. Your feedback will help us continually improve our books and learning 
resources for you. 

Thank you in advance for your input! 


	Cover
	Copyright Page

	Contents at a glance
	Table of Contents
	Introduction
	Backward compatibility and cross-browser compatibility
	System requirements
	Hardware requirements
	Software requirements
	Practice exercises
	Acknowledgments
	Errata and book support
	We want to hear from you
	Stay in touch

	Chapter 5: More HTML5
	Before you begin
	Lesson 1: Thinking HTML5 semantics
	Why semantic markup?
	Browser support for HTML5
	Creating semantic HTML5 documents
	Creating an HTML5 layout container
	Controlling format by using the <div> element 
	Adding thematic breaks
	Annotating content
	Working with lists
	Lesson summary
	Lesson review

	Lesson 2: Working with tables
	Table misuse
	Creating a basic table
	Adding header cells
	Styling the table headers
	Declaring the header, footer, and table body
	Creating irregular tables
	Adding a caption to a table
	Styling columns
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Add a page layout to the calculator project
	Exercise 2: Add styles to the calculator layout
	Exercise 3: Cleaning up the web calculator

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2


	Chapter 6: Essential JavaScript and jQuery
	Before you begin
	Lesson 1: Creating JavaScript objects
	Using object-oriented terminology
	Understanding the JavaScript object-oriented caveat
	Using the JavaScript object literal pattern
	Creating dynamic objects by using the factory pattern
	Creating a class
	Using the prototype property
	Debating the prototype/private compromise
	Implementing namespaces
	Implementing inheritance
	Lesson summary
	Lesson review

	Lesson 2: Working with jQuery
	Introducing jQuery
	Getting started with jQuery
	Using jQuery
	Enabling JavaScript and jQuery IntelliSense
	Creating a jQuery wrapper for a DOM element reference
	Adding event listeners
	Triggering event handlers
	Initializing code when the browser is ready
	Lesson summary
	Lesson review

	Practice exercises
	Exercise 1: Create a calculator object

	Suggested practice exercises
	Answers
	Lesson 1
	Lesson 2


	Index



