
 F-1

A P P E N D I X F

Setting up Visual Studio 2017 for
IoT development

While I was writing this book, Visual Studio 2017 was released. It has a different installer than Visual
Studio 2015, so here I show you how you can set up Visual Studio 2017 and use it to implement

the sample apps described throughout this book. Additionally, I describe how to set up and deploy C#
apps to the IoT device and how to configure the Portable Class Library using Visual Studio 2017.

Installation

Figure F-1 shows the new installer of Visual Studio 2017.

FIGURE F-1 Visual Studio 2017 installer.

F-2 APPENDIX F Setting up Visual Studio 2017 for IoT development

For IoT development in this book, you will need the Universal Windows Platform development tools
(see Figure F-2) and the C++ UWP support shown in Figure F-3.

FIGURE F-2 Universal Windows Platform development workload.

FIGURE F-3 Installing the C++ UWP support package.

Optionally, you can install Windows 10 SDK version 10586. By default, Visual Studio 2017 comes with
Windows 10 Anniversary Edition SDK (14393).

To install Windows IoT Core project templates for Visual Studio 2017, open the Tools/Extensions
and Updates menu in Visual Studio 2017, click the Online tab, and type IoT in the search box. After a
moment, a Windows IoT Core Project Templates for Visual Studio 2017 option is displayed. (See Figure
F-4.) Click the Download button and wait for the installer to do its job. You will need to close Visual
Studio 2017 during the installation.

 APPENDIX F Setting up Visual Studio 2017 for IoT development F-3

FIGURE F-4 Windows IoT Core Project Templates for Visual Studio 2017.

Visual C# project template

When all the tools are ready, you can write the UWP app by using the Visual C# project template and
then deploy it to your IoT device.

Creating a project
You create the project similarly to how you did in Visual Studio 2015, using the New Project dialog box
(open the File menu and choose New Project). Type Blank App in the search box, select the Blank App
(Universal Windows) Visual C# template, and set the project and solution names. (see Figure F-5.)

Note Unlike Visual Studio 2015, the New Project dialog box contains the Open Visual
Studio Installer hyperlink. You can use it to open the installer window, where you can add
features and templates you cannot find in the New Project dialog box.

FIGURE F-5 New Project dialog box of Visual Studio 2017.

F-4 APPENDIX F Setting up Visual Studio 2017 for IoT development

Click the OK button. You’ll be given a chance to choose target and minimum platform versions. As
shown in Figure F-6, this dialog box looks exactly the same as in Visual Studio 2015 Update 3. Keep the
default values: Windows 10 Anniversary Edition (10.0; Build 14393) for the Target Version setting
and Windows 10 (10.0; Build 10586) for the Minimum Version setting.

FIGURE F-6 Selecting target and minimum platform versions.

IoT extensions
To access the IoT-specific API of the UWP, reference Windows IoT Extensions for the UWP. This proceeds
similarly as in Visual Studio 2015. To open the Reference Manager dialog box, right-click the Refer-
ences node in the Solution Explorer and choose Add Reference. Next, click the Universal Windows/
Extensions tab and select Windows IoT Extensions for the UWP (10.0.14393.0). (See Figure F-7.)

FIGURE F-7 Reference Manager in Visual Studio 2017.

Implementation
I implement the HelloWorldIoTCS-2017 app by first creating the LedBlinking class (see the companion
code in Appendix F/HelloWorldIoTCS-2017/GpioControl/LedBlinking.cs). It is used to start and stop the
background operation, which inverts the selected GPIO pin at specified time intervals. I use this func-
tionality to control the onboard green LED of the RPi2. To control the external LED when using RPi3,
you need to use an appropriate GPIO pin number.

LedBlinking internally uses methods described in Chapter 2, “Universal Windows Platform on
devices,” and Chapter 3, “Windows IoT programming essentials.” The main element of the LedBlinking
class is the InitializeBlinkingTask method from Listing F-1. It periodically inverts the GPIO pin
state to control an LED. To start and stop this blinking, I implement the Start and Stop methods of the
LedBlinking class. (See Listing F-2.)

 APPENDIX F Setting up Visual Studio 2017 for IoT development F-5

LISTING F-1 Initializing blinking background operation

public int MsShineDuration { get; private set; }

private Task blinkingTask;
private CancellationTokenSource blinkingCancellationTokenSource;

private GpioPin gpioPin;

private void InitializeBlinkingTask()
{
 blinkingCancellationTokenSource = new CancellationTokenSource();

 blinkingTask = new Task(() =>
 {
 while (!blinkingCancellationTokenSource.IsCancellationRequested)
 {
 if (IsActive)
 {
 SwitchGpioPin(gpioPin);

 Task.Delay(MsShineDuration).Wait();
 }
 }
 }, blinkingCancellationTokenSource.Token);
}

LISTING F-2 Starting and stopping blinking background operation

public bool IsActive { get; private set; } = false;

public void Start()
{
 if (!IsActive)
 {
 InitializeBlinkingTask();

 blinkingTask.Start();

 IsActive = true;
 }
}

public void Stop()
{
 if (IsActive)
 {
 blinkingCancellationTokenSource.Cancel();

 IsActive = false;
 }
}

F-6 APPENDIX F Setting up Visual Studio 2017 for IoT development

Given the LedBlinking class, I start to work on the UI. Here, I define a simple UI consisting of three
buttons: Initialize, Start Blinking, and Stop Blinking. (See Figure F-8.)

FIGURE F-8 User interface of the HelloWorldIoTCS-2017 app.

The first button, Initialize, is used to instantiate the LedBlinking class (see Listing F-3). Note that
this event handler uses the GpioPinNumber and MsShineDuration properties of BlinkingViewModel.
You can use them to change the GPIO pin number and frequency of LED blinking (GPIO pin switching
time intervals). Default values of these properties appear in Listing F-4.

LISTING F-3 Instantiating the LedBlinking class

private BlinkingViewModel blinkingViewModel = new BlinkingViewModel();
private LedBlinking ledBlinking;

private void ButtonInitializeGpio_Click(object sender, RoutedEventArgs e)
{
 try
 {
 ledBlinking = new LedBlinking(blinkingViewModel.GpioPinNumber,
 blinkingViewModel.MsShineDuration);
 blinkingViewModel.IsGpioPinAvailable = true;
 }
 catch (Exception ex)
 {
 Debug.WriteLine(ex.Message);
 }
}

LISTING F-4 The GPIO pin number and LED blinking frequency are configured through appropriate properties
of BlinkingViewModel

public int GpioPinNumber { get; set; } = 47;
public int MsShineDuration { get; set; } = 100;

After successful initialization, I disable the button through a IsGpioPinAvailable property of the
BlinkingViewModel class (see the companion code in Appendix F/HelloWorldIoTCS-2017/ViewModels/
BlinkingViewModel.cs) and LogicalNegationConverter (see the companion code in Appendix F/
HelloWorldIoTCS-2017/Converters/LogicalNegationConverter.cs). I use this converter because the

 APPENDIX F Setting up Visual Studio 2017 for IoT development F-7

Initialize button should be enabled only when IsGpioPinAvailable is false. Hence, Logical-
NegationConverter negates Boolean values. To use this converter in the entire app, I modify the
App.xaml file as indicated in Listing F-5.

LISTING F-5 Application-scoped resources contain LogicalNegationConverter

<Application
 x:Class="HelloWorldIoTCS_2017.App"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:converters="using:HelloWorldIoTCS_2017.Converters"
 RequestedTheme="Light">

 <Application.Resources>
 <converters:LogicalNegationConverter x:Key="LogicalNegationConverter" />
 </Application.Resources>
</Application>

The IsGpioPinAvailable property of BlinkingViewModel indicates whether the GPIO pin used
to control an LED is available. If so, background operation of LED blinking can be started and then
stopped by clicking the Start Blinking and Stop Blinking button, respectively. Whenever these buttons
are clicked, event handlers invoke corresponding methods of the LedBlinking class (see Listing F-6).

LISTING F-6 Starting and stopping LED blinking

private void ButtonStartBlinking_Click(object sender, RoutedEventArgs e)
{
 ledBlinking.Start();
 blinkingViewModel.IsBlinkingActive = ledBlinking.IsActive;
}

private void ButtonStopBlinking_Click(object sender, RoutedEventArgs e)
{
 ledBlinking.Stop();
 blinkingViewModel.IsBlinkingActive = ledBlinking.IsActive;
}

The status of LED blinking (enabled or disabled) is indicated by the IsBlinkingActive property of
BlinkingViewModel. Therefore, IsBlinkingActive should change to true after invoking LedBlinking.
Start, and to false after invoking LedBlinking.Stop. To set the IsBlinkingActive property of the
BlinkingViewModel class instance, I use LedBlinking.IsActive flag.

Inherently, I could use the LedBlinking.IsActive property for data binding. However, within the
setting of BlinkingViewModel.IsBlinkingActive, I perform additional logic. Namely, as shown in
Listing F-7, I raise the PropertyChanged event to inform the UI about the property change, and then
toggle BlinkingViewModel properties (IsStartBlinkingButtonEnabled and IsStopBlinkingButton-
Enabled), which control the status of the Start Blinking and Stop Blinking buttons (see Listing F-8).

F-8 APPENDIX F Setting up Visual Studio 2017 for IoT development

LISTING F-7 Definition of the IsBlinkingActive property from BlinkingViewModel

private bool isBlinkingActive;

public bool IsBlinkingActive
{
 get { return isBlinkingActive; }
 set
 {
 isBlinkingActive = value;
 OnPropertyChanged();

 ToggleStartStopButtons(!value);
 }
}

LISTING F-8 The Enabled property of the Start Blinking and Stop Blinking buttons is controlled through data
binding

public bool IsStartBlinkingButtonEnabled { get; private set; }
public bool IsStopBlinkingButtonEnabled { get; private set; }

private void ToggleStartStopButtons(bool isStartEnabled)
{
 IsStartBlinkingButtonEnabled = isStartEnabled;
 OnPropertyChanged("IsStartBlinkingButtonEnabled");

 IsStopBlinkingButtonEnabled = !isStartEnabled;
 OnPropertyChanged("IsStopBlinkingButtonEnabled");
}

Configuring and deploying solutions
To deploy the app to the Raspberry Pi 2 or Pi 3, proceed as shown in Chapter 2. Namely, change the
Solution Platform setting to ARM and set Target to Remote Machine. (See Figure F-9.) If you do it for
the first time, the Remote Connections dialog box from Figure F-10 appears. You can later open this
dialog box using project properties, where you navigate to the Debug tab and then click the Find
button in the Start Options group.

FIGURE F-9 Compilation, solution platform, and target configuration.

After selecting a remote device, run the app by opening the Debug menu and choosing either
Start Debugging or Start Without Debugging, or by clicking the Remote Machine button (refer
to Figure F-9). If you run the app without debugging, then you can stop it from the Processes tab of the
Device Portal.

 APPENDIX F Setting up Visual Studio 2017 for IoT development F-9

FIGURE F-10 The Remote Connections dialog box can be used to quickly find Windows remote machines in the local
network.

I showed how to write the headed app only because headless projects templates are the same as in
Visual Studio 2015 Update 2 and 3.

Portable Class Library

To create the Portable Class Library project, you use the Class Library (Portable) project template. You
can find it by typing Portable in the search box of the New Project dialog box. Use the Add Portable
Class Library dialog box to define your targets, as in Visual Studio 2015. (See Figure F-11.)

FIGURE F-11 The Add Portable Class Library dialog box of Visual Studio 2017.

