
	 C-1

A P P E N D I X C

Bits, bytes, and data types

Here, I show you basic representations of bytes and briefly characterize how they comprise data
types. Additionally, I show a few novel features of C# 7.0, which can be useful for IoT development.

Binary encoding: integral types

A byte can be interpreted as an array of bits—that is, an array of logical values. Formally, each entry of
this array encodes the byte value V as the weighted sum:

𝑉𝑉 = 𝑏𝑏2
&'(

$)*

where bi denotes the bit value (0 or 1), i stands for the bit index, and N is the number of bits. The
base (radix) of 2 comes from the fact that a single bit can possess two values. The summation weights
increase with a bit index. For this reason, a bit of index 0 is called the least significant bit (LSB), contrary
to the most significant bit (MSB) occupying the largest index. Table C-1 shows several examples of bit
representations of the following bytes (N = 8): 39, 127, 168, and 255.

TABLE C-1  Binary representation of the selected integers: 39, 127, 168, and 255

MSB LSB V

Index 7 6 5 4 3 2 1 0 -

Logical value 0 0 1 0 0 1 1 1 -

Numerical value 0 0 32 0 0 4 2 1 39

Logical value 0 1 1 1 1 1 1 1 -

Numerical value 0 64 32 16 8 4 2 1 127

Logical value 1 0 1 0 1 0 0 0 -

Numerical value 128 0 32 0 8 0 0 0 168

Logical value 1 1 1 1 1 1 1 1 -

Numerical value 128 64 32 16 8 4 2 1 255

C-2		 APPENDIX C  Bits, bytes, and data types

You see from Table C-1 that V cannot be larger than 28 – 1 = 255 or smaller than 0. Thus, the byte can
encode only positive (unsigned) values. How to cope with negative values? The most popular ways are
as follows:

■■ Signed magnitude representation  One bit (typically the MSB) stores the sign information.
However, this approach includes two ways of representing a zero value.

■■ One’s complement  Inverting bits (changing 1 to 0 and vice versa) of the positive number
produces negative values. This solution requires the carry flag.

■■ Two’s complement  The preceding problems are overcome in the two’s complement system,
where inverting bits and adding a 1 to the resulting number produces negative vales. In other
words, the value encoded by the most significant bit is multiplied by –1 and added to the sum of
values encoded using other bits:

𝑉𝑉" = 𝑏𝑏%2% − 𝑏𝑏()*2()*
()*

%+,
	

Thus, a single byte can encode integers ranging from –27 = –128 to 27 – 1 = 127. Table C-2 shows a
few examples of signed bytes encoded using two’s complement.

TABLE C-2  Binary representation of the selected signed integers: –128, –74, –39, and 127

MSB LSB Vs

Index 7 6 5 4 3 2 1 0 -

Logical value 1 0 0 0 0 0 0 0 -

Numerical value 1 0 0 0 0 0 0 0 –128

Logical value 1 0 1 1 0 1 1 0 -

Numerical value –128 0 32 16 0 4 2 0 –74

Logical value 1 1 0 1 1 0 0 1 -

Numerical value –128 64 0 16 8 0 0 1 –39

Logical value 0 1 1 1 1 1 1 1 -

Numerical value 0 64 32 16 8 4 2 1 127

To encode larger integer values, the bit array is extended to N = 16 (short and ushort datatype),
N = 32 (uint and int), and N = 64 (long and ulong). Such data types can store values of ranges speci-
fied in Table C-3.

TABLE C-3  Integer ranges for two’s complement encoding system (the minimum value of unsigned integers
is 0)

N 16 32 64

Minimum value (signed) –32678 –2147483648 –9223372036854775808

Maximum value (signed) 32767 2147483647 9223372036854775807

Maximum value (unsigned) 65535 4294967295 18446744073709551615

	 APPENDIX C  Bits, bytes, and data types	 C-3

Naturally, you do not need to remember exact limits of integer data types. The specific ranges can be
obtained from MinValue and MaxValue constants of the integral data types. To illustrate this, I wrote a
simple UWP app; see the companion code at Appendix C/DataRanges. I implement it as follows:

■■ I create a custom control, DataTypeRangesControl (DataRanges/DataTypeRangesControl),
which consists of three TextBlock controls that display the data type label along with the
minimum and maximum values that the particular type can handle.

■■ I write the RangesViewModel class; see Listing C-1. This class serves as the ViewModel for the
main view of the DataRanges app. Particular fields of the RangesViewModel are bound to the UI,
so I do not need to manually rewrite properties.

LISTING C-1  Retrieving the smallest and largest possible values of integer data types

public class RangesViewModel
{
 // N=8
 public byte UInt8MinValue { get; set; } = byte.MinValue;
 public byte UInt8MaxValue { get; set; } = byte.MaxValue;
 public sbyte Int8MinValue { get; set; } = sbyte.MinValue;
 public sbyte Int8MaxValue { get; set; } = sbyte.MaxValue;

 // N=16
 public ushort UInt16MinValue { get; set; } = ushort.MinValue;
 public ushort UInt16MaxValue { get; set; } = ushort.MaxValue;
 public short Int16MinValue { get; set; } = short.MinValue;
 public short Int16MaxValue { get; set; } = short.MaxValue;

 // N=32
 public uint UInt32MinValue { get; set; } = uint.MinValue;
 public uint UInt32MaxValue { get; set; } = uint.MaxValue;
 public int Int32MinValue { get; set; } = int.MinValue;
 public int Int32MaxValue { get; set; } = int.MaxValue;

 // N=64
 public ulong UInt64MinValue { get; set; } = ulong.MinValue;
 public ulong UInt64MaxValue { get; set; } = ulong.MaxValue;
 public long Int64MinValue { get; set; } = long.MinValue;
 public long Int64MaxValue { get; set; } = long.MaxValue;
}

After you compile and run the DataTypeRanges app on the IoT device or local computer, the data
type ranges will be depicted as shown in Figure C-1.

C-4		 APPENDIX C  Bits, bytes, and data types

FIGURE C-1  Data type ranges retrieved from the constants fields of byte, sbyte, short, ushort, int, uint, long,
and ulong data types.

Binary encoding: floating numbers

Typically, floating numbers are represented in a scientific format as follows:

𝑉𝑉" = 𝑠𝑠×𝑚𝑚×2(

where s is the sign, m stands for the mantissa (or significand), and e denotes the exponent. Similarly,
as in the integral data types, a single bit is used to encode the sign, while the specific amount of bits is
used to encode the significand and the exponent. The exponent is stored as an unsigned 8-bit integer
with a fixed bias added to it. According to the IEEE 754 standard, this is in a 32-bit precision floating
number: 0 < 𝑚𝑚 < 2%&	 and −126 ≤ 𝑒𝑒 ≤ 127	. This means that 23 bits are used to encode the mantissa,
while 8 bits encode the exponent with a bias of 127 (a byte with all zeros is reserved).

In a 64-bit precision floating number, 52 bits encode the mantissa (0 < 𝑚𝑚 < 2%&) and the remaining
11 bits encode the exponent, which can take values in the range −1022 < 𝑒𝑒 < 1023	 with a bias of 1023.

If you are new to these concepts, I encourage you to extend the DataTypeRanges app to present
minimum and maximum values of the float and double data types.

Hexadecimal numeral system

Very often in IoT programming, values such as register addresses are represented using a hexadecimal
numeral system (HEX). This system uses a base of 16, composed of 10 digits (0,1,2,…) and 6 letters (A=10,
B=11, C=12, D=13, E=14 and F=15). Accordingly, the decimal (DEC) integer can be represented in the HEX
system as:

𝑉𝑉" = ℎ%16%
()*

%+,
	

where hi is one of the available HEX symbols at a position i. Table C-4 contains decimal and HEX repre-
sentations of the following unsigned integers: 127, 255, 1024, and 56506. LS and MS represent least and
most significant elements, respectively.

	 APPENDIX C  Bits, bytes, and data types	 C-5

Hexadecimal values are preceded by the 0x symbol, e.g. 0xFF.

TABLE C-4  Hexadecimal and decimal representations of selected integers: 127, 255, 1024, and 56506

MS LS VD

Index 3 2 1 0 -

HEX value 0 0 7 F -

DEC value 0 0 112 15 127

HEX value 0 0 F F -

DEC value 0 0 240 15 255

HEX value 0 4 0 0 -

DEC value 0 1024 0 0 1024

HEX value D C B A -

DEC value 53428 3072 176 10 56506

Numeral values formatting

Fortunately, you can quickly write an app to perform the conversion between various numeral systems.
To this end you use the static System.Convert.ToString method with the appropriate number defin-
ing the numeral system radix. You can use one of the following values: 2 (binary), 8 (octet), 10 (decimal),
or 16 (hexadecimal). The code snippet from Listing C-2 shows how to display an integer in binary, deci-
mal, and hexadecimal format.

LISTING C-2  Presenting the integer value in different numeral systems

private static void ValueFormatting()
{
 var myInteger = 12345;

 Debug.Write("BIN: ");
 Debug.WriteLine(Convert.ToString(myInteger, 2));

 Debug.Write("DEC: ");
 Debug.WriteLine(Convert.ToString(myInteger, 10));

 Debug.Write("HEX: ");
 Debug.WriteLine(Convert.ToString(myInteger, 16));
}

The above code will produce in the Debug Output the following values:

BIN: 11000000111001
DEC: 12345
HEX: 3039

C-6		 APPENDIX C  Bits, bytes, and data types

Binary literals and digit separator

C# 7.0 includes two more features that are helpful for low-level programming. These are binary literals
and the digit separator. Binary literals let you define binary constants, while the digit separator (_) helps
you format literals. A sample code snippet utilizing these features appears in Listing C-3, while the cor-
responding output appears in Listing C-4.

 LISTING C-3  Binary literals

private static void BinaryLiterals()
{
 var a = 0b0001_1110;
 var b = 0b1000_0110;

 DebugValue(a);
 DebugValue(b);

 DebugValue(b & a);
 DebugValue(a | b);
 DebugValue(a ^ b);
}

private static void DebugValue(int value)
{
 Debug.Write(value.ToString().PadLeft(5));
 Debug.Write(", BIN: " + Convert.ToString(value, 2).PadLeft(8));
 Debug.WriteLine(", HEX: " + Convert.ToString(value, 16).PadLeft(2));
}

 LISTING C-4  Sample output of the BinaryLiterals method from Listing C-3

 30, BIN: 11110, HEX: 1e

 134, BIN: 10000110, HEX: 86

 6, BIN: 110, HEX: 6

 158, BIN: 10011110, HEX: 9e

 152, BIN: 10011000, HEX: 98

Note that you will need Visual Studio 2017 to test the above examples. Appendix F, “Setting up
Visual Studio 2017 for IoT development,” describes how to set up this development environment for
C# and IoT programming.

