
SU
PPLEM

EN
T Inside the M

icrosoft Build Engine, Second Edition

Three new chapters to extend your knowledge
and productivity
Designed as a companion to Inside the Microsoft Build Engine: Using
MSBuild and Team Foundation Build, Second Edition, this supplement
provides all-new content on MSBuild 4.5 and Team Foundation Build
2012, including new exercises and code. Drill even further into the
build process—and maximize your control over software develop-
ment and deployment.

Chapter 1: MSBuild 4.5
Delve into new or updated functionality, compatibility with previous
versions, out-of-process tasks, NuGet, and related technologies

Chapter 2: Team Build 2012
Examine new functionality, including Team Foundation Online, a
customizable task-focused UI; gated check-in improvements; and
improved debugging and administration

Chapter 3: Web publishing
Put the automated publishing process to work, including updates
to the publish profiles, database publishing support, web.config
transform updates, and other key changes

Download code samples at:
http://aka.ms/MSBuild2ESupp/files

About This Supplement
Focusing on Microsoft Visual Studio
2012, the three chapters in this supple-
ment were designed to extend and
enhance the material in Inside the
Microsoft Build Engine, Second Edition,
published in 2011.

About You
This content will be most useful to Visual
Studio developers who are familiar with
MSBuild 4.0 and Team Foundation Build
2010. If you are not familiar with the
build process, make sure to start with
the Inside the Microsoft Build Engine,
Second Edition book first.

About the Authors
Sayed Ibrahim Hashimi is a Microsoft
program manager focused on creat-
ing better web development tools. He
is a former MVP for Visual C#, senior
software developer, and independent
consultant with expertise on MSBuild.

William Bartholomew is a lead software
development engineer in the Microsoft
Developer Division Engineering Systems
group, which includes the build lab
responsible for building and shipping
Visual Studio software.

microsoft.com/mspress

Programming/Microsoft Visual Studio

ISBN: 978-0-7356-7816-3

U.S.A. $12.99
Canada $13.99

[Recommended]

Supplement to

Pa
rt

 N
o.

 X
17

-2
99

98

Hashimi
Bartholomew

Programming/
Microsoft Visual Studio9 780735 645240

ISBN: 978-0-7356-4524-0

0 0 0 0 0

About the Authors
Sayed Ibrahim Hashimi is a Microsoft program
manager focusing on Web development tools.
A former software development consultant and
Microsoft MVP for Microsoft Visual C#®, Hashimi
has written three books about MSBuild, along
with numerous articles for publications such as
MSDN® Magazine.

William Bartholomew is a software development
engineer in the Microsoft division that manages
the build lab for Microsoft Visual Studio. His
background includes specialization in developer
productivity education, processes, and tools,
with an emphasis on Visual Studio and Team
Foundation Server.

The essential MSBuild drilldown for developers and
build masters
Drill into MSBuild—and maximize your control over the software
build and deployment process. This essential reference has been
fully updated for MSBuild 4, Microsoft .NET Framework 4, and
Visual Studio® 2010, including support for Visual C++®. Gain the
critical insights and examples you need to customize and extend
build processes with MSBuild. And learn how to scale them to the
team, product, or enterprise level with Team Foundation Build.

Discover how to:
• Master core techniques for creating MSBuild project files
• Work with built-in tasks and loggers—or write your own
• Accelerate build time with incremental builds and batching
• Invoke external tools in scripts and create reusable files
• Exploit the full set of extensibility features for Visual C++ 2010
• Create customizations such as code generation, code analysis,
 and unit testing
• Install, configure, and extend Team Build
• Use Windows® Workflow Foundation with Team Build for
 complex branching and custom logic
• Deploy Web applications with MSDeploy and the Web
 Publishing Pipeline
• Study and reuse the cookbook examples

Inside the Microsoft® Build
Engine: Using MSBuild and
Team Foundation Build

Get code samples on the Web
For system requirements, see the Introduction.

Inside the M
icrosoft

® Build Engine:
U

sing M
SBuild and

Team
 Foundation Build

microsoft.com/mspress

Sayed Ibrahim Hashimi
William Bartholomew

Using MSBuild
and Team Foundation
Build

Inside the Microsoft®
Build Engine 2

S E C O N D
E D I T I O N

2S
E

C
O

N
D

E
D

IT
IO

N

See inside cover

RESOURCE ROADMAP

Developer Step by Step
 • Hands-on tutorial covering
 fundamental techniques and features
 • Practice files on CD
 • Prepares and informs new-to-topic
 programmers

Focused Topics
 • Deep coverage of advanced
 techniques and capabilities
 • Extensive, adaptable coding examples
 • Promotes full mastery of a
 Microsoft technology

Developer Reference
 • Expert coverage of core topics
 • Extensive, pragmatic coding examples
 • Builds professional-level proficiency
 with a Microsoft technology

U.S.A. $59.99
Canada $68.99

[Recommended]

Foreword by Brian Harry
Technical Fellow, Team Foundation Server, Microsoft Corp.

S E C O N D E D I T I O N

spine = 1.43”

Cyan Magenta Yellow Black

Foreword by Scott Hanselman,
Principal Community Architect, MicrosoftSupplement

spine =.25”

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2013 Sayed Hashimi and William Bartholomew

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Control Number (PCN): 2013935725
ISBN: 978-0-7356-7816-3

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related to this
book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of this book at
http://www.microsoft.com/learning/booksurvey.

“Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.”

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book.

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Valerie Woolley
Editorial Production: Christian Holdener, S4Carlisle Publishing Services
Technical Reviewer: Marc Young w/ CM; Technical Review services provided by Content Master, a member of CM Group, Ltd.
Copyeditor: Susan McClung
Indexer: Jean Skipp
Cover: Twist Creative • Seattle and Joel Panchot

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

I would like to dedicate this book to my parents Sayed A. Hashimi
and Sohayla Hashimi. Without them I wouldn’t be here to write this
book.

—Sayed

I dedicate this book to my parents Rosanna O’Sullivan and Roy
Bartholomew for their unending support and to Lauren Taylor
and Jillian Bartholomew for the joy they bring each day.

—William

Contents at a glance

Foreword xi
Introduction xiii

CHAPTER 1 What’s new in MSBuild 4.5 1

CHAPTER 2 What’s new in Team Foundation Build 2012 29

CHAPTER 3 What’s new in web publishing 65

Index 91

 vii

Contents

Foreword . xi

Introduction . xiii

Who should read this book . xiv

Who should not read this book . xv

Organization of this book . xv

Conventions and features in this book . xv

System requirements . xvi

Code samples . xvii

Acknowledgments . xviii

Errata & book support .xix

We want to hear from you . xx

Stay in touch . xx

Chapter 1 What’s new in MSBuild 4.5 1
Visual Studio project compatibility between 2010 and 2012 1

VisualStudioVersion property . 2

Out-of-process tasks . 3

UsingTask updates . 4

Phantom task parameters . 7

NuGet . 9

Managing NuGet packages . 9

Package Restore .12

XML updates with SlowCheetah .14

SlowCheetah build server support . 17

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

Cookbook .19

How to extend the solution build .19

How to execute a target only if the project is actually built 22

How to extend the build process without modifying the
 project you are building (target injection)25

Chapter 2 What’s new in Team Foundation Build 2012 29
Installation .29

System requirements .29

Unattended installation .30

Team Foundation Service .30

User interface (UI) enhancements .32

Team Explorer .32

My Builds .33

Queue details .34

Web Access .35

Visual Studio Test Runner .36

Pausing build definitions .38

Batching .39

Logging . 41

Diagnostic logging . 41

Operational and Analytic logs .43

Windows Workflow Foundation 4.5 .44

Workflow Designer .45

Workflow Runtime .48

Team Foundation Build 2012 cookbook .48

Unattended installation and configuration .48

Connect on-premise build machines to the
 Team Foundation Service . 51

Extending Team Explorer .55

 Contents ix

Chapter 3 What’s new in web publishing 65
Overview of the new Publish Web dialog box65

Building web packages .70

Publish profiles .72

Database publishing support .75

Profile-specific Web.config transforms .80

Cookbook .84

How to publish a package to multiple destinations84

Customizing the folder structure inside the package85

How to publish a folder with Web Deploy .88

Index 91

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xi

Foreword

Ah, the thankless life of the Build Master. If they do their job well, you’ll never know
they exist! If they don’t, well, everyone knows it’s the Build Master’s fault, right?

I’ve been a builder in one form or another since my first foray into managing the
build. Nearly 15 years ago now, I worked on an extremely large system with a team of
hundreds. When it came time to build, we used Fred’s machine. Yes, I learned that day
that we built and shipped large systems on Fred’s laptop.

This is also how I came to find that learning a new build system is similar to boiling a
frog. If you throw a frog into hot water, it jumps out. But if you turn the water up slowly,
the frog doesn’t realize it’s getting hot, so it stays in the pot and gets boiled. The team
didn’t realize how big the system had become and how complex the build was getting.

I realized immediately, somewhat intuitively, that we needed build box. Fast-forward
some years, and now every group I work with uses Continuous Integration. Groups I
work with have build farms, one with a “Siren of Shame,” a flashing light to effectively
shame the build-breaker. We have build artifacts as complex and elegant as actual
 preconfigured virtual machines that pop out the end of our build.

All this was made possible by the power of automation and the surprising flexibility
of MSBuild. Sayed and William have written what amounts to the “missing manual” for
MSBuild. MSBuild, and its enterprise support counterpart Team Foundation Build, are
almost unapologetically powerful. However, they need to be.

Today’s software systems are multilayered, multitiered, and iterate at a speed
 previously unheard of. All our software development practices and team building
comes together at one pinch point: the build.

This essential reference to MSBuild gives us the knowledge not only into how to
create an adaptable and vigorous build system, but also valuable insights into the “why”
of the product. William is a senior development lead on engineering systems within
the Developer division at Microsoft, while Sayed is a program manager overseeing
build and pushing for the Microsoft Azure Cloud and Web Tools. I could think of no
 better people to help me understand a large build system than the folks building large
systems themselves.

xii Foreword

Sure, we’ve all started with “Build.bat” and called it our build system. Perhaps
we’ve put together a little schedule and called it an automated build. But these
simple constructs don’t scale across a large team or a large product. This book is what
the documentation should have been—a guide that takes us through the humble
 beginnings of MSBuild as a supporting and unseen player in the .NET ecosystems to
complete and sophisticated team build solutions.

More importantly, Sayed and Bill dig into the corners and edge cases that we all find
ourselves bumping up against. They elaborate on the deceptively deep extensibility
model that underlies MSBuild and give us the tools to bring both stock and custom
components together into a complete team workflow.

MSBuild continues to evolve from version 2, to 3.5, and now to version 4 and beyond.
This updated supplemental edition builds (ahem) on the good work of the previous editions
and includes new sections on the updates to the MSBuild core, changes in Team Build, and
even updates to Web Publishing in Microsoft Visual Studio 2012.

I’m glad that this book exists and that people who care about the build like Sayed
and William exist to light the way. Now, if I can just find out what I did just now that
broke my build . . .

— Scott Hanselman
Teacher, coder, blogger, podcaster

hanselman.com

 xiii

Introduction

Build has historically been kind of like a black art, in the sense that there are just a
few people who know and understand it and are passionate about it. But in today’s

evolving environment, that is changing. Now more and more people are becoming
interested in build and making it a part of their routine development activities. Today’s
applications are different from those that we were building 5 to 10 years ago. Along
with that, the process that we use to write software is different as well. Nowadays, it is
not uncommon for a project to have sophisticated build processes that include such
things as code generation, code analysis, unit testing, automated deployment, and
so on. To deal with these changes, developers are no longer shielded from the build
process. Developers have to understand the build process so that they can employ it to
meet their needs.

Back in 2005, Microsoft released MSBuild, which is the build engine used to build
most Microsoft Visual Studio projects. That release was MSBuild 2.0. Since that release,
Microsoft has released three major versions of MSBuild—MSBuild 3.5, MSBuild 4.0,
and now MSBuild 4.5. Along with the updates included in MSBuild 4.5, there are many
build-related updates in related technologies. For example, with Visual Studio 2012, you
now have the ability to share projects with Visual Studio 2010. Another great example
is the usage of NuGet. In many ways, NuGet has changed how we develop and build
applications. In this book, we will look at the updates included in MSBuild 4.5, as well as
other related technologies.

Team Foundation Build (or Team Build as it is more commonly known) is now in its
fourth version. Team Build 2005 and Team Build 2008 were entirely based on MSBuild,
using it for both build orchestration and the build process itself. Team Build 2010
moved build orchestration to Microsoft Windows Workflow Foundation and continues
to use MSBuild for the low-level build processes. Team Build 2012 continues this
 architecture but now supports building in the cloud using the Team Foundation Service,
an updated task-focused user interface, gated check-in improvements to improve
throughput, and better support for unattended installation.

When developing automated build processes, the next step in many cases is to
 automate the publish process. In Visual Studio 2010, the initial support for the Web
Deploy tool was added. In Visual Studio 2012, there have been a lot of updates to how
web projects are published, including first-class support for publish profiles from the
command line, sharing of publish profiles with team members, database publishing,

xiv Introduction

and many more. In this update, we will describe these updates and show you some
real-world examples as well. You’ll see how the process used in Visual Studio 2012 is
much more straightforward than what was provided in Visual Studio 2010.

Who should read this book

This book is an enhancement to our Inside the Microsoft Build Engine, Using MSBuild
and Team Foundation Build, Second Edition (Microsoft Press, 2011), a book whose
 content is still relevant and accurate. Rather than add these three chapters to that
book and release it as a third edition, we decided to offer this shorter (and cheaper)
supplement. Think of the three chapters in this supplement as an addition to Inside the
Microsoft Build Engine.

The second edition and this supplement to it were written for anyone who uses or
is interested in using MSBuild or Team Build. If you’re using Visual Studio to build your
applications, you’re already using MSBuild. Inside the Microsoft Build Engine and its
supplement are for all developers and build masters using Microsoft technologies. If
you’re interested in learning more about how your applications are being built and how
you can customize this process, you need these books. If you are using Team Build or
thinking of using it tomorrow, these books are must-reads. They will save you countless
hours.

The second edition and this supplement will help the needs of enterprise teams as
well as individuals. To get the most out of these materials, you should be familiar with
creating applications using Visual Studio. You are not required to be familiar with the
build process, but if you are not, make sure to begin with the second edition because
it starts with the basics and goes on from there. Because one of the most effective
 methods for learning is through examples, both the second edition and this supplement
contain many examples.

Assumptions
To get the most from this supplement, you should meet the following profile:

■■ You’re familiar with MSBuild 4.0 and Team Foundation Build 2010.

■■ You should be familiar with Visual Studio.

■■ You should have experience with the technologies you are interested in building.

■■ You should have a solid grasp of XML.

 Introduction xv

Who should not read this book

This supplement to Inside the Microsoft Build Engine covers the new and changed
 functionality in MSBuild 4.5 and Team Foundation Build 2012, so it’s not aimed at
people new to MSBuild and Team Foundation Build. If you’re new to MSBuild and Team
Foundation Build, we highly recommend reading Inside the Microsoft Build Engine first.

Organization of this book

This book is divided into three chapters, each of which focuses on a different build
technology. Chapter 1, “What’s new in MSBuild 4.5,” covers the new and changed
 functionality in MSBuild 4.5, including compatibility with previous versions, out-of-
process tasks, and NuGet. Chapter 2, “What’s new in Team Foundation Build 2012,”
covers the new and changed Team Foundation Build functionality, including the
 introduction of Team Foundation Online, a new customizable task-focused user
 interface, improved debugging and administration, and a number of gated check-in
improvements. Chapter 3,” What’s new in web publishing”, includes details on the
updated web publish experience in Visual Studio 2012. This includes updates to publish
profiles, database publishing support, web.config transform updates and more.

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ Each exercise consists of a series of tasks, presented as numbered steps
(1, 2, and so on) that list each action you must take to complete the exercise.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold. In code blocks
code in bold indicates code added since the previous example.

xvi Introduction

System requirements

You will need the following hardware and software to complete the practice exercises in
this book:

■■ One of Windows 7 (x86 or x64), Windows 8 (x86 or x64), Windows Server 2008
R2 (x64), or Windows Server 2012 (x64).

■■ Visual Studio 2012, any edition (multiple downloads may be required if using
 Express edition products)

■■ Computer that has a 1.6 GHz or faster processor

■■ 1 GB (32-bit) RAM (add 512 MB if running in a virtual machine)

■■ 10 GB of available NTFS hard disk space

■■ 5,400 RPM hard disk drive

■■ DirectX 9 capable video card running at 1,024 x 768 or higher-resolution display

■■ DVD-ROM drive (if installing Visual Studio from DVD)

■■ Internet connection to download software or chapter examples

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2012.

You will need the following minimum level of hardware and software to use the
virtual machine used for the practical exercises in Chapter 2 of this book:

■■ Either Windows Server 2008 R2 with the Hyper-V role enabled, Windows Server
2012 with the Hyper-V role enabled, or Windows 8 with Hyper-V enabled

■■ Intel VT or AMD-V capable processor (SLAT-compatible processor required if
using Windows 8)

■■ 6 GB of free physical RAM (8 GB or more is recommended)

■■ 3 GB of RAM assigned to the virtual machine (4 GB or more is recommended)

■■ 50 GB of available NTFS hard disk space (more is recommended if using
 snapshots)

 Introduction xvii

Code samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects, in both their pre-exercise and
post-exercise formats, can be downloaded from the following page:

http://aka.ms/MSBuild2ESupp/files

Follow the instructions to download the MSBuild2ESupp_678163_Companion
Content.zip file.

Note In addition to the code samples, your system should meet the System
Requirements listed previously.

Installing the code samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. Unzip the MSBuild2ESupp_678163_CompanionContent.zip file that you
 downloaded from the book’s website to C:\InsideMSBuild\.

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the Accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access
it from the same webpage from which you downloaded the
MSBuild2ESupp_678163_CompanionContent.zip file.

Using the code samples
After extracting the samples you will see a folder for each chapter. Within each
 subfolder you will find all the samples for that chapter.

xviii Introduction

Acknowledgments

The authors are happy to share the following acknowledgments.

Sayed Ibrahim Hashimi
Wow. This will be my fourth book and my third with Microsoft Press. I’m not sure how I
ended up here, but it certainly was not on my own. Throughout each book there were
key contributors who helped us create the final product. Even though this book is much
smaller than my previous ones, it’s still no easy task. We still have to go through the
entire process and involve basically the same number of people to help us. Being an
author, I receive a majority of the credit for the result, but there are plenty of others
who deserve credit as well.

I’d like to start by thanking my co-author, William Bartholomew. William also works
at Microsoft. William is a known Team Build expert, and it shows in his writing. I’ve had
so many people approach me and tell me how good the Team Build chapters are. Most
times, I smile and quietly accept the praise—that’s part of being a co-author—thanks,
William! William has helped me since the first edition of this book. I love working with
him and hope that I can do so again in the future.

In the second edition, we had a wonderful technical editor, Marc Young. Thankfully,
we were able to convince him to come on board for this supplement as well. I’m really
glad that we were able to do so. He did a brilliant job on the second edition and a great
job for this supplement, too. Marc is not shy when it comes to letting authors know that
they are wrong! He goes to great lengths to verify, or disprove, author statements and
code samples. I appreciate all of his efforts, and readers should as well. His feedback is
also critical in shaping the content of the book.

Devon Musgrave, the man behind the scenes at Microsoft Press, deserves a lot of
credit here. I remember having dinner with Devon in Bellevue one night in the summer
of 2012. We discussed the idea of an update to the book. We both knew that a full
rewrite wasn’t the best idea. The vast majority of the second edition is still relevant, so
it would have been better if we could just publish what’s new. We decided to try out a
new format for Microsoft Press books: the supplement. This will be the first supplement
Microsoft Press delivers. I’m really happy that we were able to make this work, and if it
weren’t for Devon, this wouldn’t have happened.

Valerie Woolley, our Project Editor at Microsoft Press, was critical to the delivery of
this book. She has helped us stay on track with our deliverables and ensure that things
keep moving. Thanks for keeping us on track, Valerie, and I apologize for not turning in
all my content on the dates you requested.

 Introduction xix

In addition to the people that I have listed here there are several others who
 contributed to this book. With any significant project there are names that go unknown.
I truly appreciate all the efforts of everyone involved in this book. I wish that I could
name them all here. Thank you.

Last but certainly not least, I’d like to thank all the readers. You guys have stuck by us
for two editions. I appreciate all the support and kind words that have been expressed
about the books. Because of your support, we were able to publish the second edition,
as well as this supplement. Please continue to let us know how we are doing. Hopefully,
you will enjoy this supplement as much as the second edition.

William Bartholomew
First, I’d like to thank my third-time co-author, Sayed, because without him, this book
would not be as broad as it is. From Microsoft Press, I’d like to thank Devon Musgrave,
Valerie Woolley, and the art team for their efforts (and tolerance) in converting our
ideas into a publishable book. Thanks must go to Marc Young for his technical review
efforts in ensuring that the procedures are easily followed, the samples work, and the
book makes sense. Finally, I’d like to thank the Team Build Team, in particular Justin
 Pinnix and Patrick Carnahan, for their tireless support.

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion
 content. Any errors that have been reported since this book was published are listed on
our Microsoft Press site at oreilly.com:

http://aka.ms/MSBuild2ESupp/errata

If you find an error that is not already listed, you can report it to us through the
same page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

http://aka.ms/MSBuild2ESupp/errata
mailto:mspinput@microsoft.com

xx Introduction

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at

http://aka.ms/tellpress

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://aka.ms/tellpress
http://twitter.com/MicrosoftPress

 65

C H A P T E R 3

What’s new in web publishing

In Microsoft Visual Studio 2010, the MSBuild-based web publishing experience was introduced for
Web Application Projects (including both ASP.NET MVC and Web Forms). Along with that release

came the foundation for the wave of updates that are included with Visual Studio 2012. The Visual
Studio web team is also releasing regular updates to the web publishing experience, along with
ASP.NET updates and changes to the Azure software development kit (SDK). The updated web
publishing experience has been made available for Visual Studio 2010 SP1 as well. You can install the
latest web publishing support, including both Visual Studio 2012 and 2010 SP1, from the Azure SDK,
which you can find at http://www.windowsazure.com.

Since Visual Studio 2012 was initially released, there have already been a few updates to the web
publishing experience. At this time, the latest Azure SDK is version 1.8. The content in this chapter has
been written on the assumption that the Azure SDK 1.8 has been installed. We will highlight any new
content that is not built into Visual Studio 2012. For the remainder of the chapter, we will discuss the
updates in terms of Visual Studio 2012, but all the material also applies to Visual Studio 2010 with the
Azure SDK.

Overview of the new Publish Web dialog box
In Visual Studio 2010, the Publish Web dialog box was pretty basic. It had some profile management
options at the top and minimal publishing settings. You can see the Publish Web dialog box from
Visual Studio 2010 in Figure 3-1.

66 Supplement to Inside the Microsoft Build Engine

FIGURE 3-1 The Visual Studio 2010 Publish Web dialog box.

In Visual Studio 2012, the Publish Web dialog box has been extensively updated. The dialog box
now consists of several different tabs. Even though the dialog box has more functionality, the overall
experience is simpler. This is especially the case when the Import functionality is used to populate the
settings. In Figure 3-2, you can see the new Publish Web dialog box.

The Publish Web dialog box consists of four tabs. On the Profile tab, you can manage your profiles.
To create a new profile, you can either click Import and select an existing .publishSettings file, or
you can create a new profile manually by selecting the New option from the Select Or Import A
 Publish Profile drop-down list. A .publishSettings file is a simple XML file that contains the publishing
 information. This file is produced by many web hosting providers and can be used with Visual Studio
or Web Matrix. If your hosting provider does not make these files available, you should demand that
they do. These .publishSettings files are different from the .pubxml files created with Visual Studio.
The .pubxml files contain the remote endpoint information, as well as values that are specific to
the publishing requirements of your project. In contrast, the .publishSettings file just contains the
 publishing endpoint information. The other difference is that a .publishSettings file can contain more
than one set of publish settings. For example, Windows Azure Web Sites includes both a Web Deploy
profile and the File Transfer Protocol (FTP) settings.

 CHAPTER 3 What’s new in web publishing 67

FIGURE 3-2 The Visual Studio 2012 Publish Web dialog box.

Here is a basic publishing scenario: You have an existing ASP.NET project that you need to publish
to a remote web host. Your host provides a .publishSettings file, which you can import into Visual
Studio. In my case, I’m publishing to Windows Azure Web Sites, but this flow works for any hosting
provider that supports .publishSettings files. To open the Publish Web dialog box, right-click the web
project in Solution Explorer and select Publish, which will open the dialog box shown in Figure 3-2.
You can use the Import button to import the .publishSettings file. After importing the file, you will be
brought to the Connection tab automatically. You can see this tab in Figure 3-3.

68 Supplement to Inside the Microsoft Build Engine

FIGURE 3-3 The Connection tab of the Publish Web dialog box.

The values from the .publishSettings file are used to populate all the settings on the Connection
tab. Depending on your hosting provider, you may need to specify the User Name and Password
information here. You can also click Validate Connection to double-check that all the settings are
correct. We will discuss the Connection tab in more detail when we demonstrate creating a package
in the “Building web packages” section later in this chapter. The next tab in this dialog box is the
 Settings tab, shown in Figure 3-4.

 CHAPTER 3 What’s new in web publishing 69

FIGURE 3-4 The Settings tab of the Publish Web dialog box.

On this tab, you can specify the build configuration that should be used during publishing by
choosing an item from the Configuration drop-down list. When you configure this value, keep in mind
that these values are drawn from the project build configurations, not solution build configurations.
If you expect to see an additional value in the drop-down list but do not, odds are that you created
a solution build configuration, but not a corresponding project build configuration. You can fix this
by using the Configuration Manager in Visual Studio. One thing to be aware of with respect to this
value: it’s used only for the Visual Studio publishing process. For command-line scenarios, you need to
specify the value for Configuration, as you would for any other build. Sayed has a good blog post with
more details at http://sedodream.com/2012/10/27/MSBuildHowToSetTheConfigurationProperty.aspx.
After you click Next, you will be taken to the Preview tab.

On the Preview tab, you can see the operations that will be performed when you publish your
application. There are two areas: Files and Databases. In Figure 3-5, you can see the Preview tab
populated with data from the SampleWeb project.

70 Supplement to Inside the Microsoft Build Engine

FIGURE 3-5 The Preview tab of the Publish Web dialog box.

Note You can double-click a file to see the difference between the local file and the
 remote file.

Because this project, SampleWeb, does not contain any databases, you only see file-related operations.
When dealing with files, there are three possible Action types: Add, Update, and Delete. Because I’ve never
published this project before, all the Action values are set to Add. At this point, we are ready to go, so click
Publish to start the process. You can monitor the progress in the output window. After publishing your
project, if a value was provided for the Destination URL on the Connection tab, that URL will be opened in
a browser after a successful publish. Now that you have been introduced to the Publish Web dialog box,
let’s discuss how to create a web package in Visual Studio 2012.

Building web packages
In Visual Studio 2012, you may have noticed that a menu option, Build Deployment Package, has
disappeared. Don’t worry—it’s still easy to create a package. To create a web package in Visual Studio
2012, you can use the Publish Web dialog box. When you open the Publish Web dialog box, you
can create a new profile on the Profile tab. To do that, use the New option in the Select Or Import A
Publish Profile drop-down list. On the Connection tab, select Web Deploy Package from the Publish

 CHAPTER 3 What’s new in web publishing 71

Method drop-down list. There are many benefits to using a publish profile for packaging, some of
which include the following:

1. Packages can include database artifacts.

2. You can customize the package process by using the .pubxml file.

3. You can package from the command line in the same way that you publish.

When you create the package profile in the Publish Web dialog box, the Connection tab will look
like Figure 3-6.

FIGURE 3-6 The Connection tab for the package profile.

In Figure 3-6, you can see two input fields: Package Location and Site/Application. Package Location
should contain the path to the .zip file that you want to produce. This is a required field. The value for Site/
Application is optional, but if you know the website or application that you are publishing to, you can
provide the site name or application path here. When the package is published, this value will be used for
the Web Deploy parameter IIS Web Application Name. Now let’s create a package and take a look at the
.pubxml file that was created.

Included in the samples is the PackageSample project. If you open that project, you will see that a
package profile is defined. This profile, like other profiles, is stored in the PublishProfiles folder under
Properties (My Project for Microsoft Visual Basic). Here are the contents of the ToPkg.pubxml file:

<Project ToolsVersion="4.0"
 xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

72 Supplement to Inside the Microsoft Build Engine

 <PropertyGroup>
 <WebPublishMethod>Package</WebPublishMethod>
 <SiteUrlToLaunchAfterPublish />
 <DesktopBuildPackageLocation>
 C:\InsideMSBuild\PublishOutput\PkgSample-default\PackageSample.zip
 </DesktopBuildPackageLocation>
 <PackageAsSingleFile>true</PackageAsSingleFile>
 <DeployIisAppPath />
 <PublishDatabaseSettings>
 <Objects xmlns="" />
 </PublishDatabaseSettings>
 </PropertyGroup>
</Project>

In this profile, you can see that WebPublishMethod is set to Package, which indicates that this is a
profile that can be used to create a package. The path for the package is stored as the MSBuild property
DesktopBuildPackageLocation. The other notable item here is the PublishDatabaseSettings property.
 Because my application did not contain any databases, this property is essentially empty. Even though
it is empty, you should not remove it from the .pubxml file. You can easily automate the process of
 creating a package by following the same technique you use to automate the publishing process.
Specifically, you’ll create a publish profile and then use it to automate the process. Let’s now take a
closer look at publish profiles, including how to use them to automate packaging and publishing.

Publish profiles
When using the Publish Web dialog box after publishing or packaging, a publish profile is created.
The publish profile contains all the settings entered into the Publish Web dialog box, as well as
 options that have not yet been seen in the dialog box. We can use these profiles from either Visual
Studio or the command line. After your first publish profile is created, when you reopen the Publish
Web dialog box, you are taken to the Preview tab with the most recently used profile automatically
selected. On the Preview tab, you can switch profiles quickly using the drop-down list at the top of
the dialog box. If you need to publish to a new destination, just go back to the Profile tab and create
a new profile. You can have as many profiles defined as you like.

Publish profiles are saved in a folder named PublishProfiles under Properties (My Project for Visual
Basic projects). Each profile will be saved into its own file with the extension of .pubxml. These files will
be added to the project, and to source control, by default. Your publishing password will be saved in
a .user file, which can only be decrypted by you, and not checked into version control, so you don’t
have to worry about any unauthorized publishing actions. If you want to keep a profile out of the
sight of others, you can simply exclude the .pubxml file from the project and source control. When the
Publish Web dialog box is opened, it will inspect the folder for the list of all profiles, not just profiles
that are a part of the project. Now let’s take a closer look at a sample .pubxml file.

In the following code block, you will see the contents of a Visual Studio publish profile that was
created when I imported a .publishSettings file (these files are provided by hosting companies):

<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <WebPublishMethod>MSDeploy</WebPublishMethod>

 CHAPTER 3 What’s new in web publishing 73

 <LastUsedBuildConfiguration>Release</LastUsedBuildConfiguration>
 <LastUsedPlatform>Any CPU</LastUsedPlatform>
 <SiteUrlToLaunchAfterPublish>http://sayedha.azurewebsites.net</SiteUrlToLaunchAfterPublish>
 <ExcludeApp_Data>False</ExcludeApp_Data>
 <MSDeployServiceURL>
 waws-prod-blu-001.publish.azurewebsites.windows.net:443</MSDeployServiceURL>
 <DeployIisAppPath>sayedha</DeployIisAppPath>
 <SkipExtraFilesOnServer>True</SkipExtraFilesOnServer>
 <MSDeployPublishMethod>WMSVC</MSDeployPublishMethod>
 <EnableMSDeployBackup>True</EnableMSDeployBackup>
 <UserName>$sayedha</UserName>
 <_SavePWD>True</_SavePWD>
 </PropertyGroup>
</Project>

From this code block, you can see that the .pubxml file is an MSBuild file. The properties declared
are specific to the publishing method that is being used. Each .pubxml file has a single profile and
contains all the values that are used by the Publish Web dialog box for this particular profile. This
file is used by the Visual Studio user interface, but you can also employ this from the command line.
Command-line publishing is supported only for the following publishing methods: Web Deploy, Web
Deploy Package, and File System.

Web publish profiles are designed to allow you to extend the build and publishing process for a
given publishing operation. When a publish profile is used to publish your application, the publish
profile will be imported into the project itself. Because the .pubxml file is imported into the project
file, you have full access to all MSBuild properties and items defined in the project. Because of this,
from the .pubxml file, you can customize the build process and the publishing process. From the
 second edition, you may remember that you could customize the publishing process by editing the
.wpp.targets file. Let’s look at how to use this profile to publish the project from the command line.

Automating web publishing using a publish profile
Publishing from the command line is much easier than it used to be. If you remember from Chapter 19,
“Web deployment tool practical applications,” when publishing from the command prompt, you were
required to pass in about 10 properties. Let’s take a look at how simple the new command can be. This
command can be used to publish SampleWeb using the profile named to-prod:

msbuild SampleWeb.sln /p:DeployOnBuild=true /p:PublishProfile=to-prod /p:Password=<insert-
password>

Note Depending on the web host that you are publishing to, you may need to also
add /p:AllowUntrustedCertificate=true.

Tip If you are building a Visual Studio project file instead of the solution file, you should
also specify the value for /p:VisualStudioVersion=11.0. Without this, the default value
of 10.0 will be used.

74 Supplement to Inside the Microsoft Build Engine

With this command, the solution file will be built and published. When the DeployOnBuild
 property is set to True, the build process will be extended to publish the project as well. The name
of the publish profile is passed in as the PublishProfile property. When specifying the value for
 PublishProfile, you have two options. You can pass in the name of the profile, in which case the build
will use the named profile from the default location, or you can pass in the file path to the .pubxml
file. Now let’s look at how to use this same approach to create packages.

Automating web packaging using a publish profile
You can use this same technique when creating a package from the command line. The PackageSample
project has a profile named ToPkg, which will create the web deploy package at C:\InsideMSBuild\
PublishOutput\PkgSample-default\PackageSample.zip. In order to create this from the command line,
we can execute the following command when building the project:

msbuild PackageSample.csproj /p:DeployOnBuild=true /p:PublishProfile=ToPkg
/p:VisualStudioVersion=11.0

With this command, you can override specific properties as well. For example, we showed
 previously that the package location is stored in the .pubxml file as an MSBuild property,
 DesktopBuildPackageLocation. If you would like to override the location where the package is created,
pass the property as a command-line argument. For example, if I wanted to publish the package to
C:\Temp\AltDest\Mypackage.zip, you can use the following command (which shows the value for
DesktopBuildPackageLocation in bold).

msbuild PackageSample.csproj /p:DeployOnBuild=true /p:PublishProfile=ToPkg
/p:VisualStudioVersion=11.0 /p:DesktopBuildPackageLocation=c:\temp\altDest\mypackage.zip

Because the DesktopBuildPackageLocation property is specified as a command-line parameter, it
overrides the value in the .pubxml file. Following the execution of this command, the package is written
to the location provided. Now that we’ve shown how you can publish and package from the command
line using a publish profile, we will discuss how the .pubxml file relates to the .wpp.targets file.

Relationship between publish profiles and .wpp.targets
In the second edition of this book, we showed how to customize the publishing process by creating
a file named {ProjectName}.wpp.targets in the root of your project folder. The support for importing
the .wpp.targets file has been in place since Visual Studio 2010. When a web project is built, it will look
for a file in the same folder as the project file, with the naming pattern {ProjectName}.wpp.targets. If
the file exists, it will be imported using the MSBuild Import element. This is very similar to how publish
profiles work. There is one significant difference though. The .wpp.targets file will be imported for
every build, not just for publishing. Because of this, you have to be a bit more careful, as it may affect
other scenarios besides publishing.

For publishing customizations, it’s recommended that you place those customizations inside the
publish profile instead of a .wpp.targets file. This is because the modifications will only affect that
particular publish profile, and it is much easier for others to diagnose any issues with publishing. Not
many users would think to check for a .wpp.targets file if there are publishing issues.

 CHAPTER 3 What’s new in web publishing 75

You should use a .wpp.targets file if one of the following conditions exists:

■■ You want to extend the build process.

■■ You want to extend the publishing process for all publish profiles.

If you have existing projects with a .wpp.targets file, you do not need to modify them. They will
continue to work. For new projects, you should place publish customizations in the publish profile.
Let’s move on to discuss the database support that exists in the web publish support.

Database publishing support
With the release of Visual Studio 2012, you now have the ability to publish database artifacts
 incrementally. Visual Studio has support for publishing databases in two ways: using Entity Framework
(EF) Code First migrations and using a data-tier application package (DACPAC). We will first discuss
EF Code First support and then discuss DACPAC support.

EF Code First migrations
If you have a web application that uses EF Code First, the recommended method to publish its
database artifacts is to use EF Code First migrations. As you change your web application’s database
model, those changes are captured in code called migrations. When executed, migrations make the
necessary changes to the database, thus keeping your database model and database in sync. You can
easily move from one version of your database model to another by executing those migrations. Let’s
take a quick look at how EF Code First migrations work and then we will describe the support offered
by the Publish Web dialog box.

When using EF Code First, you will create a context class, which you will use to access your
 database. After creating your context class, you will create one or more migration classes using the
Package Manager Console. There are two ways to execute these migrations against a database: by
using the Package Manager Console and by executing them at run time. The Publish Web dialog
box involves the latter mechanism. You can configure your application to execute migrations at run
time in two ways: by adding some code to your project to invoke the migrations, or by adding some
elements to the Web.config file. The Publish Web dialog box uses the second approach to enable the
migrations. Let’s take a closer look at that.

If you have a web project with EF Code First contexts (classes extending DbContext), when you
open the Publish Web dialog box, you will see those contexts on the Settings tab. Figure 3-7 shows
what the dialog box looks like when you have an EF Code First context in your project but there are
no migrations associated with it.

76 Supplement to Inside the Microsoft Build Engine

FIGURE 3-7 No mitigations are associated with your project.

In Figure 3-7, you can see the ContactsContext class on the Settings tab of the Publish Web dialog
box. In this case, there is a message indicating that you will need to create EF Code First migrations to
publish the database associated with the context. Once you add migrations for the context, then the
Execute Code First Migrations check box will be enabled. After adding a migration, when you re-enter
the Publish Web dialog box, you can enter a destination connection string and enable the migrations
to be executed. The connection string provided will be used for executing both the migrations and
the run-time connection string.

Tip If you have a project with an EF Code First context and do not see it in the Publish
Web dialog box, close the dialog box, rebuild the project, and then reopen the dialog box.

When you publish or package your web project, the final Web.config file will have the elements
required to invoke the migrations. The migrations will be executed the first time that the EF Code First
context is accessed. If your Web.config file does not have a connection string entry for the EF Code
First context, then one will be added automatically to the published Web.config file. Now that we
have discussed EF Code First contexts, let’s move on to discuss the DACPAC support that is built in.

 CHAPTER 3 What’s new in web publishing 77

Incremental database publishing with DACPACs
If you need to publish the schema for a database incrementally, you can use a DAC package, also
known as a DACPAC. A DACPAC is defined as follows in the MSDN library:

A DAC is a self-contained unit of SQL Server database deployment that enables
data-tier developers and database administrators to package SQL Server objects into
a portable artifact called a DAC package, also known as a DACPAC.

In other words, a DACPAC contains all the schema artifacts that the database consists of. The
 significance of the words portable artifact should be highlighted here. The aspect that makes a
DACPAC portable is the incremental publish support that is built on top of it. When using a DACPAC
during publish time, the schema captured in the DACPAC is compared to that of the target database.
The publish process will compute the difference between the DACPAC and the target database and
then execute the difference against the target database. If the two are equal, then a no-op will be
performed. Let’s see how this works during the Publish Web workflow.

When you open the Publish Web dialog box, if you have any connection strings in the Web.config
file that are not associated with an EF Code First context, then you will see those on the Settings tab.
For example, in Figure 3-8, you can see the Settings tab for the ContactsSample project.

FIGURE 3-8 The Publish Web dialog box with a database selected for publishing.

78 Supplement to Inside the Microsoft Build Engine

When you check the Update Database check box on the Settings tab when your web project is
published or packaged, a DACPAC is created from the source connection string. This DACPAC is then
transferred to the remote server to publish the database-related artifacts. This is facilitated by the
new dbDacFx Web Deploy provider. This process is depicted in Figure 3-9.

Source database

Website content

Web Deploy package

DACPAC

Database server

Web server

Web Deploy server

FIGURE 3-9 A Web and DACPAC publishing diagram.

In Figure 3-9, you can see that a DACPAC is created from the source database and placed in a Web
Deploy package (or a folder for the direct publish case), and the web content is also placed there. The
database schema will be published first, followed by any web updates. Both of these processes will be
incremental; that is, only the changes will be applied, not a full publish. In Figure 3-9, the dotted line
represents a firewall that may be in place. When publishing, if you do not have direct access to the
remote database (which is common for many cloud hosting providers by default), that is OK so long
as the Web Deploy server has access to it. When creating a Web Deploy package, the DACPAC will
be placed inside the package and Web Deploy parameters will be created so that you can update the
connection string during publishing. We will now discuss how to create a Web Deploy package with a
DACPAC.

In the samples, you will find the ContactsSample project, which is a basic web application that
stores contacts in a Microsoft SQL Server database. When creating a package for this on the Settings
tab, I’ve chosen to package the database and provide a default connection string as well. This was
shown previously in Figure 3-8. The resulting package will have the DACPAC for the source database
in the root of the package. Let’s see what happens when you import this package using the Microsoft
IIS Manager user interface. Using IIS Manager, you can right-click a site and then select Import
 Application under the Deploy menu to import a Web Deploy package (see Figure 3-10).

 CHAPTER 3 What’s new in web publishing 79

FIGURE 3-10 The Import Application option is the IIS Manager.

Tip If you do not see the Import Application option, you need to install Web Deploy with
the IIS Manager Extensions option checked.

After selecting the package to be imported, you will be prompted to fill in the values for the Web
Deploy parameters (as shown in Figure 3-11).

FIGURE 3-11 Parameter prompts in IIS Manager for the ContactsSample package.

80 Supplement to Inside the Microsoft Build Engine

In Figure 3-11, you can see three parameters. The first parameter will define the IIS App path where
your application will be installed. The next two parameters are connection strings for the DACPAC. The
first is for the connection string used to publish the database related artifacts, and the final one is for
the run-time connection string that goes in the Web.config file. If you want to use a lower-privileged
connection string at run time, you can do so. After clicking Next, the database publish operations will
be performed, followed by an update of the site itself. Now that we’ve discussed database publishing
with DACPACs, let discuss the updates that are available for Web.config transforms.

Profile-specific Web.config transforms
In Visual Studio 2010, Web.config transforms were introduced, which you can use to update the
Web.config file during the publish/package operation. If you are rusty on the basics of transforms,
take a look back at Chapter 18, “Web deployment tool, part 2,” in the second edition. In Visual Studio
2010, these transforms were tied to the build configuration. If you published using the Release build
 configuration, then the Web.config file would be transformed using Web.release.config. In Visual
Studio 2012, you can now also have profile-specific transforms. A convention is used to associate a
profile with a specific transform. To have a Web.config transform for a given profile, create a file with
the pattern web.{ProfileName}.config next to Web.config. When the file is detected, it will be applied
after the build configuration transform. You can see the Web.config transforms in Figure 3-12.

Source
Web.config

Web.{Buildconfig}.config Web.{Profile}.config Final
Web.config

FIGURE 3-12 A Web.config transformation illustration.

When the Web.config file is being transformed, if either the build configuration transform or the
profile-specific transform does not exist, that particular transform will simply be skipped. Let’s take a
look at how this works.

When Visual Studio 2012 was initially released, the underlying support to invoke these transforms
existed in the web MSBuild targets, but there was no way to create these transforms easily. You had to
create the transforms manually. In the ASP.NET 2012.2 update for Visual Studio 2012, a new context
menu was added to help you create these transforms. With this update, you can create a profile-specific
transform easily by right-clicking the .pubxml file and selecting Add Config Transform. You can see this
new menu option in Figure 3-13.

 CHAPTER 3 What’s new in web publishing 81

FIGURE 3-13 The Add Config Transform menu option for publish profiles.

When you invoke the Add Config Transform command, it will create the Web.config transform in
the root of the project with the correct name and open it automatically. In the samples, you will find
a project, TransformSample, that contains the ToPackage.pubxml publish profile. This publish profile
is used when creating a web deploy package for this project. In this project, we have created the
 following transforms:

■■ Web.debug.config

■■ Web.release.config

■■ Web.ToPackage.config

Along with the Web.config file, the contents of these transforms are shown next. We will leave off
the Web.debug.config file because it is not used in this demo.

Web.config file

<configuration>

 <appSettings>
 <add key="default" value="default"/>
 </appSettings>

 <system.web>
 <compilation debug="true" targetFramework="4.0" />
 </system.web>

</configuration>

Web.release.config

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">
 <appSettings>
 <add key="release" value="from-release" xdt:Transform="Insert"/>
 </appSettings>

 <system.web>
 <compilation xdt:Transform="RemoveAttributes(debug)" />
 </system.web>
</configuration>

82 Supplement to Inside the Microsoft Build Engine

Web.ToPackage.config

<configuration xmlns:xdt="http://schemas.microsoft.com/XML-Document-Transform">

 <appSettings>
 <add key="to-package" value="from-ToPackage-transform" xdt:Transform="Insert"/>
 </appSettings>

</configuration>

The Web.release.config transform adds a new appSettings entry named release and removes the
debug attribute from the compilation element. The Web.ToPackage.config transform adds a new
 appSettings entry named to-package. Packaging the application using the ToPackage profile produces
the following Web.config file:

Final web.config after transforms

<configuration>

 <appSettings>
 <add key="default" value="default"/>
 <add key="release" value="from-release"/>
 <add key="to-package" value="from-ToPackage-transform"/>
 </appSettings>

 <system.web>
 <compilation targetFramework="4.0" />
 </system.web>

</configuration>

In this file, you can see that the release transform inserted the release app setting and removed
the debug attribute from the compilation element. You can also see that the Web.ToPackage.config
transform was invoked. Another subtle thing to notice here is the order in which the app settings were
inserted. The release setting was inserted before the to-package element. This indicates that the
Web.release.config transform was invoked before Web.ToPackage.config.

Another feature released with Visual Studio 2012 is the ability to preview these transforms. In
Visual Studio 2010, if you wanted to see the resulting Web.config transform, you would have to either
publish or package your project, which made developing these transforms much more difficult than it
should have been. In Visual Studio 2012, however, you can now preview Web.config transforms easily.
The preview functionality works for build configuration transforms as well as profile-specific ones. You
can right-click and select Preview Transform on any of the transforms. This new option is shown in
Figure 3-14.

 CHAPTER 3 What’s new in web publishing 83

FIGURE 3-14 The Preview Transform menu option.

Once you invoke this preview, you will be able to see the final Web.config transform. When you
preview a profile-specific transform, it will invoke the correct build configuration transform before
applying the profile-specific one. It mimics the behavior that it will show when publishing. When you
are viewing the preview results, you can see which transforms have been applied in the upper-right
corner (see Figure 3-15).

FIGURE 3-15 A Web.config transform preview.

With these updates for Web.config transforms, it’s much easier to create and use Web.config
transforms. This concludes the Web.config transform content, as well as the section covering the new
features. We will now move on to look at some real-world examples.

84 Supplement to Inside the Microsoft Build Engine

Cookbook

How to publish a package to multiple destinations
One of the most common questions that I’m asked is, “How can I create a Web Deploy package
that can be used to publish to multiple servers?” Any Web Deploy package can be published to
any destination, but you may need to tweak the content for the destination. This is particularly true
for Web.config. One of the challenges when creating a package from Visual Studio that can target
 multiple destinations is the handling of Web.config. When you create a package in Visual Studio or
from the command line, the Web.config that is placed in the resulting package is already transformed.
This makes these packages difficult to publish to multiple different locations by default. There is an
extension created by Sayed that can help here, called PackageWeb.

PackageWeb can be used to help create portable packages that can be published easily to multiple
destinations. PackageWeb is a NuGet package that can be installed into web projects. Let’s see how
PackageWeb works. To use PackageWeb, you will need to add the package to your web project.
You can do this either from the Manage NuGet Packages dialog box or from the Package Manager
 Console. From the Package Manager Console, you can execute the following command:

Install-Package PackageWeb

Once the package has been installed in your project, it will extend the package process. When you
create a package after installing PackageWeb, you will see a new file, Publish-Interactive.ps1, in the
output location. This is a Windows PowerShell script that can be used to publish this package. From a
PowerShell prompt, you can invoke this script to start the publish process. Once you invoke this script,
you will be prompted for the following set of values:

■■ Web.config transform to execute

■■ Web Deploy publish settings

■■ Web Deploy parameter values

After providing these values, the Web.config file will be transformed with the given transform and
the publish operation will be invoked. Let’s see this in action. In the samples, the project PkgWebDemo
already has PackageWeb installed. After creating the package, you can invoke Publish-Interactive.ps1
to start the publish process. Figure 3-16 shows PackageWeb prompts for the Web Deploy publish
settings. Because there are no Web Deploy parameters created for the sample, you are not prompted
for those.

 CHAPTER 3 What’s new in web publishing 85

FIGURE 3-16 PackageWeb prompts for the Web Deploy settings.

After completing the prompts, Msdeploy.exe is called to start the publish process. In Figure 3-16,
you can see the call to Msdeploy.exe that is invoked. The password value in this image is blurred for
security reasons. Once you fill in the prompts and publish your package, a new file, PublishConfiguration
.ps1.readme, will be created in the same folder. This file contains all the values for the prompts that were
entered. The only value not persisted is the password; you will need to update this value manually. In
order for PakageWeb to pick up this file automatically, just remove the .readme extension.

When PackageWeb is invoked, it will look for a file named PublishConfiguration.ps1 in the
same folder as the Publish-Interactive.ps1 file. If that file exists, it will be imported, and you will
not be prompted for values. (This is a very brief discussion of PackageWeb; for more details visit
http://msbuildbook.com/packageweb.) Let’s move on to discuss a neat trick that you can use during
the package process.

Customizing the folder structure inside the package
When you create a package in Visual Studio by default, the full source structure is replicated inside
the package. For example, when packaging the PackageSample project using the ToPkg profile, you
can see how the contents are structured in the resulting .zip file in Figure 3-17.

FIGURE 3-17 The default folder structure for the PackageSample project.

86 Supplement to Inside the Microsoft Build Engine

In Figure 3-17, you can see that the source folder structure is replicated inside the generated
 PackageSample.zip file. This behavior is annoying, but it can go beyond that and cause real difficulties
if you need to expand this package. When publishing with Web Deploy, the depth of these folders
does not matter, but if you expand them on disk and manipulate the files, you may exceed the
 maximum path length. To avoid this, it would be better to create a Web Deploy package that did not
have these unnecessary folders. Let’s see what it would take to simplify the folder structure here.

When creating a package using web projects, the following basic steps are followed:

1. Build a project.

2. Gather all files in a Temp directory.

3. Create the package by calling Web Deploy.

Step 3 is executed by creating an XML file that describes how to create the package. This is referred
to as a Source Manifest file. You can find this file in the same folder in which the package is created. If
you inspect the file generated when packaging the PackageSample project, you will find the contents
to be as shown in the following code block:

<?xml version="1.0" encoding="utf-8"?>
<sitemanifest>
 <IisApp path="C:\InsideMSBuild\ch03\PackageSample\obj\Release\Package\PackageTmp"
 managedRuntimeVersion="v4.0" />

 <setAcl path="C:\InsideMSBuild\ch03\PackageSample\obj\Release\Package\PackageTmp"

 setAclResourceType="Directory" />

 <setAcl path="C:\InsideMSBuild\ch03\PackageSample\obj\Release\Package\PackageTmp"

 setAclUser="anonymousAuthenticationUser" setAclResourceType="Directory" />

</sitemanifest>

In this manifest, you can see that three Web Deploy providers will be called when the package is
created. Each of these providers references the full path to the temporary package folder. These are
the values shown in bold in this code, and this is what we want to update during the package creation
process. You can see the goal in Figure 3-18.

Web project Temp directory

Replace path

Web Deploy package

FIGURE 3-18 The process to update file paths for the generated package.

As you can see, we will replace the path during the package operation. We will do this with a Web
Deploy replace rule. Let’s see how to do that with some customizations to the .pubxml file.

 CHAPTER 3 What’s new in web publishing 87

When creating a package using Web Projects, you have the ability to replace values as the
.zip file is being created. This is facilitated by using a replace rule. The replace rule that we want to
create should match the package path and replace it with a much simpler value. To add a Web Deploy
replace rule, you need to populate the MSDeployReplaceRules item list in the .pubxml file before the
package is created. The next code fragment needs to be added to the .pubxml file to simplify these
paths. The entire profile can be found in the PackagePath.pubxml file in the PackageSample project.

<PropertyGroup>
 <PackagePath Condition=" '$(PackagePath)'=='' ">website</PackagePath>
 <PackageDependsOn>
 $(PackageDependsOn);
 AddReplaceRuleForAppPath;
 </PackageDependsOn>
</PropertyGroup>

<Target Name="AddReplaceRuleForAppPath">
 <PropertyGroup>
 <_PkgPathFull Condition=" '$(WPPAllFilesInSingleFolder)'!='' ">
$([System.IO.Path]::GetFullPath($(WPPAllFilesInSingleFolder)))</_PkgPathFull>
 <!-- $(WPPAllFilesInSingleFolder) is not available on VS2010 so fall back to
$(_PackageTempDir) -->
 <_PkgPathFull Condition=" '$(_PkgPathFull)' == '' ">
$([System.IO.Path]::GetFullPath($(_PackageTempDir)))</_PkgPathFull>
 </PropertyGroup>

 <!-- escape the text into a regex -->
 <EscapeTextForRegularExpressions Text="$(_PkgPathFull)">
 <Output TaskParameter="Result" PropertyName="_PkgPathRegex" />
 </EscapeTextForRegularExpressions>

 <!-- add the replace rule to update the path -->
 <ItemGroup>
 <MsDeployReplaceRules Include="replaceFullPath">
 <Match>$(_PkgPathRegex)</Match>
 <Replace>$(PackagePath)</Replace>
 </MsDeployReplaceRules>
 </ItemGroup>
</Target>

In this fragment, you can see the AddReplaceRuleForAppPath target. This target is injected into the
package process by appending it to the PackageDependsOn property. When this target is invoked,
it will determine the full path to the temporary package folder. This path is converted to a regular-
expression format by using the EscapeTextForRegularExpressions task. Then the value is appended
to the MSDeployReplaceRules item list. As a result, when the package is created, the complex folder
structure will be replaced with a folder named Website, defined in the PackagePath property. When
you create the package after these changes, you can see the new structure of the created .zip file in
Figure 3-19.

88 Supplement to Inside the Microsoft Build Engine

FIGURE 3-19 A simplified view of the package structure.

In Figure 3-19, you can see that the complex folder structure has been replaced with the Website
folder, in which all the web content that will be published resides. Now that we’ve shown how to
 create better web packages, we will move on to the next sample.

How to publish a folder with Web Deploy
There are many scenarios in which it would be helpful to simply publish the contents of a local folder
to a remote IIS server. For example, your web project may serve some binary content created by
another group, and that content is not in source control. In this case, you can directly use Msdeploy.
exe to publish that content. We will show how to publish a folder to a remote site using Web Deploy.
The exact command that is required may vary based on how the IIS host is running Web Deploy. For
this sample, we will be demonstrating this while publishing to Windows Azure Web Sites. Windows
Azure Web Sites host MSDeploy using the Web Management Service (WMSvc), which is the common
method for most third-party IIS hosting companies. Let’s see how to accomplish this.

The Web Deploy provider that has the information on how to publish a folder is the contentPath
provider, and this is what we will be using. When invoking MSDeploy to sync a folder, the basic
 command structure is as follows:

msdeploy.exe
 -verb:sync
 -source:contentPath="<source-path>"
 -dest:contentPath="<dest-path>"

Because we are attempting to synchronize two folders, the sync verb is used and we use
 contentPath for both the source and destination. The source folder that we want to publish is
C:\InsideMSBuild\Ch03\FolderPublish\ToPublish, and we would like to publish it to the Media folder
under the FolderPub site. Let’s make a first attempt to figure out what the final command might
look like:

msdeploy.exe
 -verb:sync
 -source:contentPath="C:\InsideMSBuild\ch03\FolderPublish\ToPublish"
 -dest:contentPath="FolderPub/Media"

 CHAPTER 3 What’s new in web publishing 89

This command would work great if the site you want to publish to was running on the local box.
Because it is not, we will need to start adding some information to the destination to indicate the
server against which this command should execute. We will need to add the following parameters to
the command:

■■ ComputerName The URL, or computer name, that will handle the publish operation.

■■ Username The user name for the publish operation.

■■ Password The password for the publish operation.

■■ AuthType Describes what authentication mechanism is used. The options here are either
Basic or NTLM. Typically, you will use Basic when Web Deploy is running under WMSvc and
NTLM for when it is hosted using the Remote Agent Service.

In this case, the values that we will use for these are

■■ ComputerName https://waws-prod-bay-001.publish.azurewebsites.windows.net/msdeploy
.axd?site=FolderPub

■■ Username $FolderPub

■■ Password <Publishing password>, where Publishing password is whatever password you have
chosen

■■ AuthType Basic

For Windows Azure Web Sites, you can find these values in the publish profile, which you can
download from the Azure portal. Let’s add these values to the command:

msdeploy.exe
 -verb:sync -source:contentPath="C:\InsideMSBuild\ch03\FolderPublish\ToPublish"
 -dest:contentPath='FolderPub/Media'
 ,ComputerName="https://waws-prod-bay-001.publish.azurewebsites.windows.net/msdeploy.axd?
 site=FolderPub"
 ,UserName='$FolderPub'
 ,Password='%password%'
 ,AuthType='Basic'
 -enableRule:DoNotDeleteRule
 -whatif

In this command, we’ve added the destination values, as well as two additional options:
-enableRule:DoNotDeleteRule and -whatif. We pass the DoNotDeleteRule to ensure that any files in
the folder that are on the server but not the client remain on the server. For now, we are also passing
-whatif, which displays the command’s operations without actually performing them, but we will
 remove that when we are ready to publish the folder. You can find the result of this command in
Figure 3-20.

https://waws-prod-bay-001.publish.azurewebsites.windows.net/msdeploy.axd?site=FolderPub
https://waws-prod-bay-001.publish.azurewebsites.windows.net/msdeploy.axd?site=FolderPub

90 Supplement to Inside the Microsoft Build Engine

FIGURE 3-20 The result of invoking the Msdeploy.exe command.

At this point, we are ready to execute this command and publish the folder. You can find this
command in the samples for Chapter 3 in the file FolderPublish\publishFolder-standard.cmd. There is
another cmd file in that same folder, called PublishFolder-auto.cmd. This file shows how you can use
this same technique with the -dest:auto provider. We won’t cover that here, but it is in the samples for
you to reference.

In this chapter, we have covered a lot of new material, including the Publish Web dialog box,
 updates to website project publishing, packaging, publish profiles, and more. That’s a lot of material
to discuss in just a few pages, and we didn’t even cover all the new features. This chapter should serve
as a solid starting point for your journey in web publishing. From here, the best thing to do is practice.
If you get stuck, try StackOverflow.com (and you can typically find Sayed hanging around there as
well—if you see him, say hello).

Index

 91

Symbols and Numbers
$(MSBuildExtensionsPath) property, 21
.publishSettings file, 66, 68, 72
.pubxml file

comparison to .publishSettings file, 66
for building web packages, 71–73
profile specific transforms, 80–83
replace rules in, 87–88

.sln (solution file), 1–3, 20–22

.targets file, 13–14, 17

.wpp targets, 74–75

A
accessing

diagnostic logs, 42
operational logs, 43

account authentication, 52
activities. See workflow activities
Add Config Transform command, 80–81
Add Transform menu option, 14, 17
adding

build agents to build controllers, 48–50
classes to Visual Studio packages, 57–60
comments to workflow activities, 47
content to Visual Studio packages, 60
NuGet packages, 9
sections to build page, 55

AddReplaceRuleForAppPath target, 87
AfterCopyFiles target, 23–25
AfterTargets attribute, 21
All Build Definitions feature, 33–34
analytic logs, 44
AnalyzeCode targets, 21–22

annotations, 47
App.config transforms, 9, 14–16
App.Debug.config transform, 15–16
App.Release.config transform, 15–16
applications

debugging, 15–16
developing, 9–14
updating, 14–19

Architecture attribute, 4–6
authentication, account, 52
Auto-Surround With Sequence, 46–47
Azure SDK 1.8, 65

B
batching, 39–41
BeforeTargets attribute, 21
build agents, 48–50
build configurations

application, 14–16
project, 69

build controllers
adding build agent to existing, 48–50
diagnostic logs for, 41–43
on-premise, 51–54
operational and analytic logs for, 43–44
single, 31–32

build definitions
all build definitions feature, 33–34
drop locations for, 31
filtering, 33–34
hosted build definition selection for, 31
marking favorite, 34
pausing, 38
storing favorite, 34
web access to team, 35

92

Build Explorer

Build Explorer
filtering build definitions in, 33
Queue Build link in, 35–36
queued build requests in, 33–34

build machines, 51–54
build process

gated check-in, 39–41
requests, 39–41

build process templates
batching, 41
C# expressions in, 48
debugging, 41–43
finding files in, 45

build requests, queued, 33–34
Build servers, 17–19
Build target, 21
builds

adding sections to, 55
batching, 39–41
diagnostic logs for, 41–43
queuing, 35
retrying, 41
viewing recent, 33

C
C# expressions, 48
CallTarget, 25
Clean target, 21
command line

building from, 3
building solution files from, 19–22
publishing from, 73–74

comments, adding, 47
compatibility, 1–3
Configuration Manager, 69
configuring

on-premise build machines, 51–54
unattended installation, 48–50

connection strings, 15–16, 77–80
Connection tab (Publish Web), 67–68, 70
connectivity issues, 43–44
content, importing files before/after, 20
contentPath provider, 88
CopyFiles target, 23–24
CoreCompile target, 25
custom activity libraries, 48
CustomAfterCompile target, 25

CustomAfterMicrosoftCommonTargets, 25–28
CustomBeforeMicrosoftCommonTargets, 25
customizations

source folder structure, 85–88
web publishing, 74–75

D
DACPACs (DAC packages), 77–80
database artifacts, 71, 75, 77–80
databases, 69
data-tier application package. See DACPACs
Debug mode, 15–16
debugging

applications, 15–16
build process templates, 41–43
connectivity issues, 43–44
infrastructure, 43–44
Visual Studio package, 61–63

definitions. See build definitions
deployment, 77–90
diagnostic logs, 41–43
document outline view, 46
drop locations, 31, 42, 53

E
EF (Entity Framework) Code First, 75–76
-enableRule

DoNotDeleteRule option, 89–90
Environment Variables dialog, 20
EscapeTextForRegularExpressions task, 87
Event Viewer, 43–44
extensibility, 34, 55–60

F
file format version number, 1
file paths, 86
File system method, 73
files

building, 3
document outline view, 46
finding, 45
previewing, 69
viewing, 46

Find In files, 45

 93

 publish profiles

folders
customizing package, 85–88
publishing, 88–90
synching, 88

G
gated check-ins, 33, 38–39
GenerateCode targets, 21–22

H
Hosted Build Controller, 31–32, 51–54

I
IIS Manager, 78–80
Import statements, 20–21
incremental builds, 23
infrastructure, 43–44
installing

NuGet packages, 11–12
Team Foundation Build 2012, 30

ITeamExplorerSection, 58–60, 63
ITeamFoundationContextManager, 62–63
Items to Build list, 18–19

L
libraries, custom activity, 48
locations, changing package, 74
logs

diagnostic, 41–43
operational and analytic, 43–44

M
Managed Extensibility Framework, 56
metaproj files, 20
metaproj.tmp files, 20–21
Microsoft IIS Manager, 78–80
Microsoft.Common.targets, 25–28
migrations, 75–76
MSBuild 4.5

build process, 25–28
solution builds, 19–22
targets in rebuilt project, 22–25
updates for loading tasks, 3–9

MSbuild.exe, 3, 20
MSBuildArchitecture, 4–9
MSBuildRuntime, 4–9
Msdeploy.exe, 85, 88
MSDeployReplaceRules, 87
My Builds feature, 33
My Favorite Build Definitions, 34

N
NTLM, 89
NuGet, 9–14

O
operational logs, 43–44
outline view, document, 46

P
Package Location field, 71
package management, 9–14
Package Manager Console, 12
Package Restore, 12–14, 17–19
PackageDependsOn property, 87
PackagePath property, 87
packages

customizing source folder structures in, 85–88
publishing, 84–85

PackageWeb, 84–85
pausing, build definitions, 38
phantom task parameters, 7–9
portable artifacts, 77
Preview tab (Publish Web), 69, 72
Preview Transform option, 82–83
previewing

databases, 69
files, 69
Web.config transforms, 82–83

Profile tab (Publish Web), 66, 70, 72
profiles. See publish profiles
projects

build configurations, 69
creating in Visual Studio Package, 55–56
rebuilt, 22–25
replace rules in, 87–88

publish profiles
benefits of using, for packaging, 70–71
in Visual Studio 2010, 66
overview, 72–75

94

Publish target

Publish target, 21
Publish Web, 65–70
PublishConfiguration.psl.read.me file, 85
PublishFolder-auto.cmd, 90
publishing

automating, 73–74
database artifacts, 71, 75, 77–80
folders, with Web Deploy, 88–90
incremental database, 77–80
packages, 84–85
to multiple servers, 84–85
using DACPACs, 77–80
using EF (Entity Framework) Code First, 75–76

PublishInteractive.psl, 84–85

Q
Queue Build link, 35
queues, build request, 33–34
Quick Find, 45

R
Rebuild target, 21
refresh, 62–63
Release mode, 15–16
Remote Agent Service, 89
replace rules, 86–88
requests

batching multiple, 39–41
queued build, 33–34

RestorePackages target, 13–14
RunCustomTool target, 27
Runtime attribute, 4, 7

S
SectionContent property, 60–61
sections, 55
sequences, 46–47
servers

build, 17–19
publishing to multiple, 84–85

Settings tab, 75–78
Settings tab (Publish Web), 69
Site/Application field, 71
SlowCheetah, 14–19
solution file (.sln), 1–3, 20–22
source folder structure, 85–88

Source Manifest file, 86
Staging Location, 31

T
target injection, 25–28
targets

.wpp, 74–75
call, 25
compile, 25
copy file, 23–24
in solution files, 21–22
injection, 25–28
Microsoft.Common., 25–28
skipping of, 23–25

TargetsTriggeredByCompilation list, 25
task execution, 3–9
task invocation, 7
Team Explorer

adding sections to build page in, 55
build definitions, 33–34
My Builds feature, 33
user interface (UI) enhancements, 32

Team favorites tiles, 35–36
Team Foundation Build 2012

batching in, 39–41
building package restore file in, 18–19
configuration, 51
extending Team Explorer, 55
installation, 29–30
logging in, 41–44
on-premise build machine connections, 51–54
paused build definitions in, 38
system requirements for, 29
unattended installation, 48–50
unit testing frameworks in, 36–37
Windows Workflow Foundation 4.5 and, 44–48

Team Foundation Server 2012
build definitions, 37
Team Foundation Service and, 30–32
unattended installation, 48–51
web access, 35

Team Foundation Service, 30–32, 35, 51–53
Test Runner, 36–37
Tfsconfig command-line tool, 30, 48–50
timestamps, 23
transforms. See also specific types

naming convention for, 80
previewing, 82–83
profile specific, 80–83

 95

 XML Document Transforms (XDTs)

U
unit testing frameworks, 36–37
updating

applications, 14–19
NuGet packages, 11

user interface (UI), 32
UsingTask, 4–7

V
version number, file format, 1
views, refresh, 62–63
Visual Studio 2010

compatibility with Visual Studio 2012, 1–2
Publish Web dialog box, 65

Visual Studio 2012
Azure SDK 1.8, 65
build definitions in, 32–34
building web packages, 70–72
compatibility with Visual Studio 2010, 1–2
extensibility in, 34
finding files, 45
previewing transforms in, 82–83
Publish Web dialog box, 66–70
Team Explorer UI enhancements, 32
version property, 2–3
viewing workflow files, 46

Visual Studio Extension (VSIX), 56
Visual Studio Package

adding classes, 57–60
adding dynamic content, 61
adding static content, 60
creating projects in, 55–56

debugging, 61–63
modifying Visual Studio Extension manifest, 56–57

VisualStudioVersion property, 2–3

W
Web Access, 32, 34–35
Web Deploy method, 73, 88–90
Web Deploy Package method, 70, 73, 78, 81, 84–86
Web Management Service (WMSvc), 88–89
web packages

automating, 74
building, 70–72

Web Projects, 87–88
Web.config transforms

defined, 9
in packages, 84–85
previewing, 82–83
profile specific, 80–83
SlowCheetah and, 14

-whatif option, 89–90
Windows Azure, 88–89
Windows Workflow Foundation 4.5, 44
WMSvc (Web Management Service), 88–89
workflow activities

adding comments to, 47
sequencing, 46–47

Workflow Designer, 45
Workflow Runtime, 48

X
XML Document Transforms (XDTs), 14–16

	Cover������������
	Copyright����������������
	Dedication�����������������
	Contents at a glance���������������������������
	Contents���������������
	Foreword���������������
	Introduction�������������������
	Who should read this book��������������������������������
	Assumptions

	Who should not read this book������������������������������������
	Organization of this book��������������������������������
	Conventions and features in this book��
	System requirements��������������������������
	Code samples�������������������
	Installing the code samples
	Using the code samples

	Acknowledgments����������������������
	Sayed Ibrahim Hashimi
	William Bartholomew

	Errata & book support����������������������������
	We want to hear from you�������������������������������
	Stay in touch��������������������

	CHAPTER 3: What’s new in web publishing��
	Overview of the new Publish Web dialog box���
	Building web packages����������������������������
	Publish profiles�����������������������
	Database publishing support����������������������������������
	Profile-specific Web.config transforms���
	Cookbook���������������
	How to publish a package to multiple destinations��
	Customizing the folder structure inside the package��
	How to publish a folder with Web Deploy��

	Index������������

