

Exam Ref 70-486:
Developing ASP.NET
MVC 4 Web Applications

William Penberthy

Copyright © 2013 by William Penberthy

All rights reserved. No part of the contents of this book may be reproduced
or transmitted in any form or by any means without the written permission of
the publisher.

ISBN: 978-0-7356-7722-7

3 4 5 6 7 8 9 10 11 QG 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors
worldwide. If you need support related to this book, email Microsoft Press
Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/
en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respec-
tive owners.

The example companies, organizations, products, domain names, email ad-
dresses, logos, people, places, and events depicted herein are fictitious. No
association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information con-
tained in this book is provided without any express, statutory, or implied
warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or
alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Jeff Riley
Developmental Editor: Kim Lindros
Production Editor: Rachel Steely
Editorial Production: Box Twelve Communications
Technical Reviewer: Andre Tournier and Damien Foggon
Copyeditor: Nancy Sixsmith
Indexer: Angie Martin
Cover Design: Twist Creative • Seattle
Cover Composition: Ellie Volckhausen
Illustrator: Rebecca Demarest

[2013-12-13]

msinput%40microsoft.com
http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents at a glance

Introduction xiii

Preparing for the exam xvi

ChAPTER 1 Design the application architecture 1

ChAPTER 2 Design the user experience 85

ChAPTER 3 Develop the user experience 145

ChAPTER 4 Troubleshoot and debug web applications 215

ChAPTER 5 Design and implement security 271

Index 347

v

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction xiii
Microsoft certifications xiii

Acknowledgments xiv

Errata & book support xiv

We want to hear from you xv

Stay in touch xv

Preparing for the exam xvi

Chapter 1 Design the application architecture 1
Objective 1.1: Plan the application layers . 1

Planning data access 2

Planning for separation of concern (SoC) 6

Using models, views, and controllers appropriately 7

Choosing between client-side and server-side processing 15

Designing for scalability 16

Objective summary 18

Objective review 19

Objective 1.2: Design a distributed application . 21

Integrating web services 21

Designing a hybrid application 24

Planning for session management in a distributed environment 26

Planning web farms 27

Objective summary 29

Objective review 30

vi Contents

Objective 1.3: Design and implement the Windows Azure
role life cycle . 31

Understanding Windows Azure and roles 31

Identifying startup tasks 32

Identifying and implementing Start, Run, and Stop events 35

Objective summary 38

Objective review 39

Objective 1.4: Configure state management . 40

Choosing a state management mechanism 41

Planning for scalability 44

Using cookies or local storage to maintain state 45

Applying configuration settings in the Web.config file 47

Implementing sessionless state 48

Objective summary 50

Objective review 50

Objective 1.5: Design a caching strategy . 51

Implementing page output caching 52

Implementing data caching 54

Implementing application caching 56

Implementing HTTP caching 57

Objective summary 58

Objective review 59

Objective 1.6: Design and implement a WebSocket strategy 60

Reading and writing string and binary data 60

Choosing a connection loss strategy 64

Deciding when to use WebSockets 64

Objective summary 66

Objective review 67

Objective 1.7: Design HTTP modules and handlers 67

Implementing synchronous and asynchronous modules
and handlers 68

Choosing between modules and handlers in IIS 71

Objective summary 72

Objective review 73

viiContents

Chapter summary . 74

Answers . 76

Chapter 2 Design the user experience 85
Objective 2.1: Apply the user interface design for a web application 85

Creating and applying styles using CSS 86

Using HTML to structure and lay out the user interface 90

Implementing dynamic page content based on design 92

Objective summary 96

Objective review 96

Objective 2.2: Design and implement UI behavior . 97

Implementing client validation 98

Using remote validation 102

Using JavaScript and the DOM to control application behavior 103

Extending objects by using prototypal inheritance 103

Using AJAX to make partial page updates 105

Implementing the UI using jQuery 108

Objective summary 111

Objective review 112

Objective 2.3: Compose the UI layout of an application 114

Implementing partials for reuse in different areas of the
application 114

Designing and implementing pages by using Razor templates 117

Designing layouts to provide visual structure 117

Implementing master/application pages 120

Objective summary 122

Objective review 122

Objective 2.4: Enhance application behavior and style based
on browser feature detection . 124

Detecting browser features and capabilities 124

Creating a web application that runs across multiple
browsers and mobile devices 126

Enhancing application behavior and style by using
vendor-specific extensions 128

viii Contents

Objective summary 131

Objective review 131

Objective 2.5: Plan an adaptive UI layout . 132

Planning for applications that run in browsers on
multiple devices 132

Planning for mobile web applications 134

Objective summary 136

Objective review 137

Chapter summary . 138

Answers . 139

Chapter 3 Develop the user experience 145
Objective 3.1: Plan for search engine optimization and accessibility . . . 145

Using analytical tools to parse HTML 146

Viewing and evaluating conceptual structure by using
plugs-in for browsers 149

Writing semantic markup for accessibility 151

Objective summary 154

Objective review 155

Objective 3.2: Plan and implement globalization and localization 156

Planning a localization strategy 156

Creating and applying resources to the UI 158

Setting cultures 160

Creating satellite resource assemblies 161

Objective summary 162

Objective review 163

Objective 3.3: Design and implement MVC controllers and actions 163

Applying authorization attributes and global filters 164

Implementing action behaviors 167

Implementing action results 168

Implementing model binding 170

Objective summary 173

Objective review 174

ixContents

Objective 3.4: Design and implement routes . 175

Defining a route to handle a URL pattern 176

Applying route constraints 178

Ignoring URL patterns 179

Adding custom route parameters 180

Defining areas 181

Objective summary 183

Objective review 184

Objective 3.5: Control application behavior by using MVC
extensibility points . 186

Implementing MVC filters and controller factories 186

Controlling application behavior by using action results 188

Controlling application behavior by using view engines 189

Controlling application behavior by using model binders 191

Controlling application behavior by using route handlers 193

Objective summary 195

Objective review 196

Objective 3.6: Reduce network bandwidth . 197

Bundling and minifying scripts 198

Compressing and decompressing data 200

Planning a content delivery network (CDN) strategy 202

Objective summary 203

Objective review 204

Chapter summary . 205

Answers . 206

Chapter 4 Troubleshoot and debug web applications 215
Objective 4.1: Prevent and troubleshoot runtime issues 215

Troubleshooting performance, security, and errors 216

Troubleshooting security issues 222

Implementing tracing, logging, and debugging 223

Enforcing conditions by using code contracts 227

Enabling and configuring health monitoring 230

x Contents

Objective summary 232

Objective review 233

Objective 4.2: Design an exception handling strategy 234

Handling exceptions across multiple layers 235

Displaying custom error pages, creating your own
HTTPHandler, and setting Web.config attributes 236

Handling first chance exceptions 238

Objective summary 241

Objective review 242

Objective 4.3: Test a web application . 243

Creating and running unit tests 244

Creating and running web tests 250

Objective summary 253

Objective review 254

Objective 4.4: Debug a Windows Azure application 255

Collecting diagnostic information 256

Choosing log types 258

Debugging a Windows Azure application 259

Objective summary 262

Objective review 263

Chapter summary . 264

Answers . 265

Chapter 5 Design and implement security 271
Objective 5.1: Configure authentication . 271

Authenticating users 272

Enforcing authentication settings 280

Choosing between Windows, Forms,
and custom authentication 282

Managing user session by using cookies 283

Configuring membership providers 285

Creating custom membership providers 287

Objective summary 292

Objective review 293

xiContents

Objective 5.2: Configure and apply authorization 294

Creating roles 294

Authorizing roles by using configuration 295

Authorizing roles programmatically 296

Creating custom role providers 298

Implementing WCF service authorization 300

Objective summary 302

Objective review 302

Objective 5.3: Design and implement claims-based
authentication across federated identity stores 303

Implementing federated authentication by using
Windows Azure Access Control Service 303

Creating a custom security token by using Windows
Identity Foundation 307

Handling token formats for SAML and SWT tokens 310

Objective summary 313

Objective review 314

Objective 5.4: Manage data integrity . 314

Understanding encryption terminology 315

Applying encryption to application data 316

Applying encryption to the configuration sections of an
application 319

Signing application data to prevent tampering 321

Objective summary 323

Objective review 323

Objective 5.5: Implement a secure site with ASP.NET 324

Securing communication by applying SSL certificates 325

Salting and hashing passwords for storage 328

Using HTML encoding to prevent cross-site scripting
attacks (AntiXSS Library) 331

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xii Contents

Implementing deferred validation and handle
unvalidated requests 332

Preventing SQL injection attacks by parameterizing queries 333

Preventing cross-site request forgeries (XSRFs) 335

Objective summary 337

Objective review 338

Chapter summary . 339

Answers .340

Index 347

xiii

Introduction

The Microsoft 70-486 certification exam tests your knowledge of designing, developing, and
troubleshooting ASP.NET MVC 4 web applications using Microsoft Visual Studio 2012. Readers
are assumed to be experienced Microsoft ASP.NET web application developers with two or
more years developing MVC-based solutions.

Most books take a very low-level approach, teaching you how to use individual classes and
accomplish fine-grained tasks. Like the Microsoft 70-486 certification exam, this book takes
a high-level approach, building on your knowledge of lower-level web application develop-
ment and extending it into application design. Both the exam and the book are so high-level
that there is very little coding involved. In fact, most of the code samples this book provides
simply illustrate higher-level concepts.

Success on the 70-486 exam will prove your knowledge and experience in designing and
developing web applications using Microsoft technologies. This exam preparation guide
reviews the concepts described in the exam objectives, such as the following:

■■ Designing the application architecture

■■ Designing the user interface

■■ Developing the user interface

■■ Troubleshooting and debugging web applications

■■ Designing and implementing security

This book covers every exam objective, but it does not cover every exam question. Only
the Microsoft exam team has access to the exam questions themselves and Microsoft regu-
larly adds new questions to the exam, making it impossible to cover specific questions. You
should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely com-
fortable with, use the links you’ll find in text to find more information and take the time to
research and study the topic. Great information is available on MSDN, TechNet, and in blogs
and forums.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premise and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

xiv Introduction

MORE INFO ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to http://www.microsoft.com/learning/en/us/certification/cert-default.aspx.

Acknowledgments

This book would not have been possible without the patient and loving support of my wife
Jeanine, who had to take over much of the responsibility of running a family so I could mutter
to myself in the corner and click away on a keyboard. Many thanks also go out to my editor,
Kim Lindros, who patiently walked this first-time author through the process of building a
book.

Appreciation also goes out to Andre Tournier and Damien Foggon for keeping me on the
straight and narrow, and to Jeff Riley from Box Twelve Communications for giving me this
opportunity. Finally, I need to acknowledge you, the reader, for your desire to continue your
own growth as a developer. Your efforts to improve your skills make us all work to improve
ourselves to keep up. Kudos to you, and keep raising the bar!

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site:

http://aka.ms/ER70-486/errata

If you find an error that is not already listed, you can report it to us through the same
page.

If you need additional support, email Microsoft Press Book Support at
mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through the ad-
dresses above.

http://www.microsoft.com/learning/en/us/certification/cert-default.aspx
http://aka.ms/ER70-486/errata
http://msdn.microsoft.com/en-us/data/ef.aspx

xvIntroduction

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in ad-
vance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

xvi Preparing for the exam

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use the training kit and another study guide
for your "at home" preparation, and take a Microsoft Official Curriculum course for the class-
room experience. Choose the combination that you think works best for you.

Note that this training kit is based on publically available information about the exam and
the author's experience. To safeguard the integrity of the exam, authors do not have access to
the live exam.

 1

C h A P T E R 1

Design the application
architecture
Every application must have an architecture, but plenty of applications have been created
with architectures that were not well considered. As a developer, you should design your
solution’s architecture to fulfill application requirements and create a robust and high-per-
forming application.

Start by determining the most appropriate way to build your application and then
decide how and where it will be deployed. After you have narrowed down the deployment
plan, whether on- or off-premise or across multiple physical machines, you can decide how
best to fulfill your other application needs. Perhaps data must be stored in a database or
the client needs to check in regularly with the server. Some applications might need to be
distributed on a server farm, have 99.999 percent availability, serve thousands of pages an
hour, or support hundreds of concurrent users. You must consider all of this information as
you choose and design your application’s architecture.

Objectives in this chapter:
■■ Objective 1.1: Plan the application layers

■■ Objective 1.2: Design a distributed application

■■ Objective 1.3: Design and implement the Windows Azure role life cycle

■■ Objective 1.4: Configure state management

■■ Objective 1.5: Design a caching strategy

■■ Objective 1.6: Design and implement a WebSocket strategy

■■ Objective 1.7: Design HTTP modules and handlers

Objective 1.1: Plan the application layers

An application is simply a set of functionality: a screen or set of screens that displays infor-
mation, a way to persist data across uses, and a way to make business decisions. A layer is a
logical grouping of code that works together as a common concern. Layers work together
to produce the completed application.

 2 ChAPTER 1 Design the application architecture

In this section, you’ll learn about the major aspects of an application’s architecture that
contribute to the layers of an application, such as data access methods and separation of
concern (SoC). One of the essential parts of an ASP.NET MVC application is the architectural
design of the Model-View-Controller (MVC) pattern. It is based on providing separation
between the appearance of the application and the business logic within the application.
The model is designed to manage the business logic, the view is what the user sees, and the
controller manages the interaction between the two. Adhering to separation of concern, the
model doesn’t know anything about the view, and the view doesn’t know anything about
the controller.

This objective covers how to:
■■ Plan data access

■■ Plan for separation of concern

■■ Appropriate use of models, views, and controllers

■■ Choose between client-side and server-side processing

■■ Design for scalability

Planning data access
A key reason for using ASP.NET MVC to meet your web-based business needs is how it con-
nects users to data. As you plan an application, you should evaluate your data requirements
early in the process. Will your application access a set of data you already have, or will your
data design be managed along with your application design? For example, suppose you want
to add a just-in-time (JIT) supplier view to your inventory process so your suppliers can better
understand how much of their product you have in stock. Perhaps you already have data and
your application will provide access to other data, or maybe you have to design and imple-
ment an entirely new database schema.

Data access options
After you determine your data requirements—existing data, new data, or a combination—
consider how you need to access the data. The two primary options are:

■■ Using an object relational mapper (O/RM) An O/RM is an application or system
that aids in the conversion of data within a relational database management system
(RDBMS) and the object model that is necessary for use within object-oriented pro-
gramming. The O/RM hydrates the object with the data from the database, or creates
the SQL statements that will save the object data into the database. Examples of
O/RM products that can be used to support ASP.NET MVC 4 are NHibernate, the
Entity Framework, and Linq-to-SQL.

 Objective 1.1: Plan the application layers ChAPTER 1 3

■■ Writing your own component to manage interactions with the
database Writing your own component implies you will need to manage any
conversions to and from your object model. This approach might be preferred when
you are working with a data model that does not closely model your object model, or
you are using a database format that is not purely relational, such as NoSQL.

Design approaches
After you have worked through your data considerations and the type of access model
you want to work with, you can start to consider the design approach for bringing the two
together. The type of access model you will use drives the rest of your conceptual thinking. If
you will create your own data access layer by using ADO.NET for access into your database,
for example, you will be minimally affected whether the data schema exists or not. If, how-
ever, you are using an O/RM, your flexibility will be limited by the tool you use. Linq-to-SQL,
for example, works only with pre-existing databases; it offers no support for building the
object model and using it to create a database. Entity Framework and NHibernate enable you
to write the model as part of your business design process and then create the database from
that model.

NOTE SESSIONS

You must also consider how you will manage state. If you want to use sessions across
multiple servers, you likely need to use Microsoft SQL Server because Microsoft Internet
Information Services (IIS) supports it by default. If you plan to maintain state on your own,
it needs to become part of your data management design.

Entity Framework supports the Model First, Code First, and Database First design ap-
proaches. Model First and Code First each offer a different way to link objects and a database.
An architect uses the Model First approach when designing the database and the object
model at the same time with Entity Designer in Microsoft Visual Studio. This was one of the
most-requested features after the initial release of Entity Framework because new projects
tend to need new database schemas. Using a visual modeling tool (see Figure 1-1) helps de-
velopers design the appropriate object and data model.

 4 ChAPTER 1 Design the application architecture

FIGURE 1-1 Model First approach to creating both an object and data model in Entity Designer

Entity Framework also supports the design of a new data schema through Code First,
a process in which the development team writes the plain old CLR object (POCO) classes,
and the Code First generator builds the database from those classes. Doing this enables the
development team to design the object structure, in code, that bests suits their application
and generate the database from that design. It is done outside of Entity Designer. You can at-
tribute the model properties to control the database configuration, which enables you to con-
trol such items as the name of the table or column in the database, maximum length, default
values, keys, database-generated IDs, and other characteristics.

As you plan your application design, you must evaluate the current state of your data. If
you are working on an upgrade or conversion, we recommend the Database First approach,
which enables you to continue using the existing structure with no impact on the database.
However, if you are creating a new database schema, you can choose whichever approach
best serves your development team. Some teams prefer to use Entity Designer; others prefer
to conceptualize the object model using a third-party tool or a white board. Other teams
work best when designing the database first. Your considerations at this point will likely be
less about the technology and more about your current database design and the preferences
and strengths of the team.

There are several things to keep in mind as you consider the life cycle of your implemen-
tation. Model First and Code First are both strongest in the creation of the initial database
schema. Maintaining the schema is more problematic. Although both tools have improved
their capability to manage database upgrades, most teams tend to use the Model First or
Code First approach for the initial connection and then take a more Database First approach

 Objective 1.1: Plan the application layers ChAPTER 1 5

for upgrades in which you script the database changes and then refresh your .edmx file from
the database to capture the updates.

MORE INFO ENTITY FRAMEWORK

The MSDN Data Developer Center provides detailed information on Entity Framework at
http://msdn.microsoft.com/en-us/data/ef.aspx. Because Entity Framework uses an open
development model, you can look at the code behind it and even contribute functionality
to the project.

Data access from within code
After you select the means by which you will manage your initial database design, you need
to consider the approach to access data from within your code. In some respects, the stateless
nature of ASP.NET MVC complicates this because Entity Framework relies on the DBContext
class, which is an abstraction over the database that manages data querying as well as a unit-
of-work approach that groups changes and persists them back to the datastore in a single
transaction. However, DBContext relies on several managed features and flags that keep
track of changes in items that have been queried from the datastore. It relies on the flags
to determine the best way to persist the information. The stateless nature of ASP.NET MVC
prevents the default functionality of Entity Framework from working, however. You have to
choose a different method to control data flow into DBContext and thus into your database.
Because some additional work must be done outside of Entity Framework, you should evalu-
ate whether you want to do this work in your controller(s) or provide a level of abstraction
between your controllers and Entity Framework.

MORE INFO MODELS, VIEWS, AND CONTROLLERS

You’ll learn details about models, views, and controllers in the “Using models, views, and
controllers appropriately” section later in this chapter.

The primary data access pattern in C# is the Repository pattern, which is intended to
create an abstraction layer between the data access layer and the business logic layer. This
abstraction helps you handle any changes in either the business logic or the data access layer
by breaking the dependencies between the two. It also enables the business logic layer to
access the repository without knowing the specific type of data it is accessing, such as a Mi-
crosoft SharePoint list or a database. What the repository does internally is separate from the
business logic layer.

The Repository pattern is also highly useful in unit testing because it enables you to sub-
stitute the actual data connection with a mocked repository that provides well-known data.
Another term that can describe the repository is persistence layer. The persistence layer deals
with persisting (storing and retrieving) data from a datastore, just like the repository. When
using the Repository pattern, you create the repository interface and class. When you need

http://msdn.microsoft.com/en-us/data/ef.aspx

 6 ChAPTER 1 Design the application architecture

to use the repository, you instantiate the interface rather than the class. This enables you to
use the data connection when doing work on the mock repository during testing. Adding the
Unit Of Work pattern enables you to coordinate the work of multiple repositories by creating
a single shared class for them all. You have many different ways to implement a repository:
You can create a global repository for all the data, a repository for each entity, or some com-
bination. Figure 1-2 shows how the controller, repository, and Entity Framework interact.

FIGURE 1-2 Repository pattern implementation

MORE INFO DATA ACCESS

CodePlex provides references that illustrate how to implement the Repository, Unit of
Work, Specification, State, and other patterns using ADO.NET Entity Framework 4.0, as well
as the ASP.NET MVC framework, Unity, Prism, and the Windows Communication Frame-
work (WCF) REST Starter Kit. Visit http://dataguidance.codeplex.com/.

Planning for separation of concern (SoC)
Separation of concern (SoC) is a software development concept that separates a computer
program into different sections, or concerns, in which each concern has a different purpose.
By separating these sections, each can encapsulate information that can be developed and
updated independently. N-tier development is an example of SoC in which the user interface
(UI) is separated from both the business layer and the data access layer.

ASP.NET MVC adds a level of concern due to the client-based nature of web browsing.
Supporting JavaScript in the browser means there are two parts of the UI the developer needs
to consider: the part of the UI created and rendered on the server and the part affected solely
by code on the client side. Although the addition of SoC adds some complexity to the appli-
cation’s design, the benefits outweigh the extra complexity.

A term closely associated with SoC is loose coupling. Loose coupling is an architectural ap-
proach in which the designer seeks to limit the amount of interdependencies between various
parts of a system. By reducing interdependencies, changes to one area of an application are

http://dataguidance.codeplex.com/

 Objective 1.1: Plan the application layers ChAPTER 1 7

less likely to affect another area. Also, by eliminating interdependencies, you ensure that your
application is more maintainable, testable, and flexible, which tends to result in a more stable
system.

Using models, views, and controllers appropriately
The appropriate use of models, views, and controllers in an ASP.NET MVC application is criti-
cal to having a well-designed application. It is important to remember that ASP.NET MVC is
highly convention-driven, in that it uses built-in assumptions about the folders various files
might be in, what they are named, and the types and names of the methods within those files.
These conventions will be emphasized as the components of the MVC pattern are discussed.
Each component has a particular function in the framework; the controller answers the HTTP
call and, if necessary, gives the model to the view for display. Figure 1-3 shows the interaction
between the model, view, and controller.

FIGURE 1-3 Default MVC design

Model
The model is the part of the application that handles business logic. A model object man-
ages data access and performs the business logic on the data. Unlike other roles in an MVC
application, the model does not implement any particular interface or derive from a certain
base class. Instead, it is a model because of the role the class plays and where it is located in
the folder structure of the application. This is an example of the convention-based aspects of
the framework because model classes are traditionally placed in the Models folder. It is also
common, however, to store the models in a separate assembly. Storing the models in a sepa-
rate assembly makes model sharing easier because multiple applications can use the same set
of models. It also provides other incremental improvements, such as enabling you to separate
model unit tests from controller unit tests as well as reducing project complexity. Control-
lers typically instantiate the model in its actions and then provide the model to the view for
display.

 8 ChAPTER 1 Design the application architecture

In general, you can build your model, domain, view, or input modeling in different ways.
You use a domain model when the object you are using describes the data you work with in
the middle tier of that application. If you are using Entity Framework, for example, and pres-
ent these objects to a view for display, you are using a domain model approach for creating
your model.

A view model approach describes the data being worked on in the presentation layer. Any
data you present in the view is found within the properties of the view model class, which
represents all the data the controller transmits to the view after processing the request. A
view model is generally the result of aggregating multiple classes into a single object.

The input model faithfully represents the data being uploaded to the server from the client
with each individual HTTP request. The input model approach uses model binding to capture
user input. When you consider a typical complex data entry form, you might have one entry
form that captures information that would typically span across multiple objects in a domain,
such as name, address, employers, phone numbers, and other values. Those objects would
get mapped to different domain objects. The use of an input model, however, enables all the
work to create and manage these domain objects to stay within a single controller and model.

Model binders are a simple way to map posted form data to a type and pass that type to
an action method as a parameter. Once again, this requires approaching the construction
with an ASP.NET MVC convention in mind. The DefaultModelBinder automatically maps input
values to model properties if the names match precisely. The model binder implements the
IModelBinder interface and contains a GetValue method that retrieves the value of a specified
parameter or type. You can use existing value providers to evaluate request values or you can
create custom value providers for special evaluation.

Model binding is recursive and transverses complex object graphs. ASP.NET MVC enables
you to create custom model binders, which is useful because the default model binder does
not support abstract classes or interfaces. There are times when that ability is necessary, espe-
cially if you want to use dependency injection and inversion of control.

Controllers
Controllers are the part of ASP.NET MVC 4 that handles incoming requests, handles user
input and interaction, and executes application logic. A controller calls the model to get the
required business objects, if any, and then calls the view, either with or without a model, to
create and render the output Hypertext Markup Language (HTML). A controller is based on
the ControllerBase class and is responsible for locating the appropriate action method to call,
validating that the action method can be called, getting values in the model to use as pa-
rameters, managing all errors, and calling the view engine to write the page. It is the primary
handler of the interaction from the user.

ASP.NET pages raise and handle events between the browser and webpage, whereas
ASP.NET MVC applications are organized around controllers and action methods. Action
methods are typically one-to-one mappings to user interactions. Each user interaction creates
and calls a uniform resource locator (URL). The routing engine parses the URL using routing

 Objective 1.1: Plan the application layers ChAPTER 1 9

rules to determine the controller and action method that needs to be called, for example,
with http://myurl/Default/Index. The default convention interprets this by determining the
subpath/Default/Index and uses it to call the Index method on the DefaultController class.

Because action methods map to user interactions, an action method is called every time a
user does something that interacts with the server. This is important to remember when you
are approaching the design of your application. Historically, traditional web design has taken
a paged approach, in which a set of features occurs on an individual page. ASP.NET Web
Forms, for example, uses that methodology, in which the implementation logic for a page is
handled on that page. Although this design makes some aspects of communicating between
pages complicated, it acts as a built-in mechanism for managing the design. If you need to
create a page for users to manage a widget, you can do that. Whenever a user needs to cre-
ate a widget, you would redirect them to that page. With ASP.NET MVC, you need to take a
different approach to design because there are no pages, just action methods.

One way to look at a controller is as a way to separate functionality. You could create a
large, complex application with dozens of screens using a single controller. You can see a
small example of this when you create a new ASP.NET MVC Internet project in Visual Studio
(the default integrated development environment for ASP.NET MVC 4). The HomeController
that is built as part of this project handles the views for the About, Contact, and Home pages
by using an action for each page. A better approach when laying out the controller struc-
ture is to have a controller for each type of object with which the user will be interacting on
the screen. This enables you to compartmentalize the functionality around the object into a
single place, making code management simpler and providing more easily understandable
URLs.

The best time to conceptualize your controller structure is when you are building your
data model for the application. Although there is generally not a one-to-one match between
a controller and the application’s data or object model, there is a correlation. You should not
follow a specifically data-based approach, however, because the work the user will be doing
is an important consideration. If the screens the user will be interacting with do not map to
your application’s data model, your controllers likely should not, either. Instead, you should
consider the use of a separate business layer that more closely matches the business process
the user will follow, or a view model approach that enables you to create a specialized object
or set of objects as an intermediary between the object model and the user. In either case,
you should align your controllers with those objects to provide a sensible separation.

ACTIONS AND ACTION RESULTS
After you map your controllers, you need to work on the actions that will be methods in
the controller. Because there is a one-to-one mapping between user interactions and the
actions in the application, the initial set of actions you have to create should be clear if you
have an understanding of the application flow. You should be able to predict most actions
based on the application’s requirements, but you might have to add or modify actions later.
You will discover other actions that might not necessarily be linked to a user interaction, but
instead a system interaction taken by the application on behalf of the user. Examples include

 10 ChAPTER 1 Design the application architecture

a JavaScript timer on the client that calls an action to get an update on the current weather
or populating drop-down lists based on a previous selection as the user goes through a data
entry form.

Because there are different expectations from an action, there are different types of action
results. An action result is any kind of outcome from an action. Although an action tradition-
ally returns a view or partial view, it can also return JavaScript Object Notation (JSON) results
or binary data, or redirect to another action, among other things. Keep action results in mind
as you plan for communication between the client and server; as the action results dictate the
client experience.

MORE INFO ACTION RESULTS

For more information on action results, see Chapter 3, “Develop the user experience.”

Action names are also important. Because the name is part of the URL request, it should
be short and descriptive. Do not be so descriptive that you provide too much of the business
process in the name, which can result in security issues. Also consider consistency of action
names across controllers. Actions that do the same thing to different objects should have the
same name. Convention would also have you not reuse the name of the controller in the ac-
tion name: http://urlhere/product/edit versus http://urlhere/product/productedit.

ROUTES AND ROUTING
It is difficult to talk about controllers without including routes. The routing table is stored in
the Global.asax file. The routing system enables you to define URL mapping routes and then
handle the mapping to the right controller and actions. It also helps construct outgoing URLs
used to call back to the controller/actions.

ASP.NET provides some default routing. The default routing format is {controller}/{action}/
{id}. That means an HTTP request to http://myurl/Product/Detail/1 will look for the Detail
action on the ProductController that accepts an integer as a parameter. The routing engine
doesn’t know anything about ASP.NET MVC; its only job is to analyze URLs and pass control
to the route handler. The route handler is there to find an HTTP handler, or an object imple-
menting the IHttpHandler interface, for a request. MvcHandler, the default handler that comes
with ASP.NET MVC, extracts the controller information by comparing the request with the
template values in the routing table. The handler extracts the string and sends it to a control-
ler factory that returns the appropriate controller. The controller factory is easily extendable
by creating a custom controller factory that implements IControllerFactory.

http://myurl/Product/Detail/1

 Objective 1.1: Plan the application layers ChAPTER 1 11

MORE INFO ROUTING

Designing and implementing routing is covered in Chapter 3, “Develop the user
experience.”

Controller actions have attributes that provide additional information to the framework.
The most-used select attributes are ActionName, AcceptVerbs, and NonAction, which help the
framework determine which action to run. Filter attributes enable you to add caching, valida-
tion, and error handling through the use of OutputCache, ValidateInput, and HandleError. Be-
cause the attributes are part of ASP.NET MVC, they are customizable as well. You can cre-
ate custom action filters that surround an action with custom logic by overriding the base
ActionFilter class.

ASYNCHRONOUS CONTROLLERS
One of the major changes in ASP.NET MVC 4 involves asynchronous controllers. ASP.NET MVC
3 uses an AsyncController class that needs to be implemented to have asynchronous control-
lers. ASP.NET MVC 4 brings the concept of asynchronous controllers into the default control-
ler class. Asynchronous action methods are useful for long-running, non-CPU-bound requests
because they avoid blocking the web server from performing work while the method request
is still pending. When designing your action methods, you need to determine whether to
use synchronous or asynchronous processing. You should strongly consider asynchronous
methods when the operation is network-bound or I/O-bound rather than CPU-bound. Also,
asynchronous methods make sense when you want to enable the user to cancel a long-
running method.

Modern computers have processors that have multiple cores, which makes multithreading
even more important because it is gaining more support with every computer generation.
Being able to do work on multiple threads allows parallel processing, which should result in
an increase in performance, especially when multiple long-running processes occur during
the same HTTP request. When designing your ASP.NET MVC 4 application, you should look at
every process that reaches outside of your domain and consider making them asynchronous.
You should do the same for those calls that might be long-running, such as pages that return
lists from multiple data sources or that perform intensive business operations, because they
could be ideal candidates for the using of asynchronous behavior.

Using asynchronous actions is easy with ASP.NET MVC 4. The key to using the new asyn-
chronous framework is the Task framework in the System.Threading.Tasks namespace. The
purpose of Task is to provide a pluggable architecture to increase flexibility and to make mul-
titasking applications easier to write. To create an asynchronous action on a controller, mark
the controller as async and change the return from an ActionResult into a Task<ActionResult>.
In the C# code in Listing 1-1, the application is making a call to an external data feed.

 12 ChAPTER 1 Design the application architecture

LISTING 1-1 Calling an external data feed

public async Task<ActionResult> List()
{
 ViewBag.SyncOrAsync = "Asynchronous";
 string results = string.Empty;
 using (HttpClient httpClient = new HttpClient()
 {
 var response = await httpClient.GetAsync(new Uri("http://externalfeedsite"));
 Byte[] downloadedBytes = await response.Content.ReadAsByteArrayAsync();
 Encoding encoding = new ASCIIEncoding();
 results = encoding.GetString(downloadedBytes);
 }
 return PartialView("partialViewName", results);

Asynchronous programming gives you different ways to solve performance issues where
multithreading might help. You can create an action that returns synchronously but uses
asynchronous work within the method to get work done faster. (The main thread has to wait
only for the longest-running work unit to respond rather than waiting for all the work to
occur, one after the other.) This kind of approach makes sense if you are merging the results
from multiple service calls into a single model to be passed to the view. Another approach is
to use an asynchronous partial view, such as in Listing 1-1. This helps the overall performance
of your application by running the work in that partial view in a different thread, enabling
the primary thread to continue to process other items. It also helps you avoid thread locking
because your MVC4 application parses the action. A third approach is to break content out on
the page and load it asynchronously from the client. A typical use case is to create your page
normally, but rather than directly calling the action result @Html.Partial(“LeadArticleControl”,
Model.LeadArticle) in your .cshtml file, you instead use JavaScript code that calls the server to
ask for the partial view result after the page has been rendered on the client side, a traditional
AJAX approach.

Views
The view is the part of the application responsible for displaying information to users. It’s the
only part of the application that users see. Users’ initial impressions, and their entire interac-
tion with your application, are through a view. The controller gives the view a reference to the
model or the information that needs to be displayed. Technically, a set of messages is sent to
the view via a ViewDataDictionary, which is wrapped by a ViewBag. This means you can set
and read values as if the collection were a standard dictionary: ViewData[“UserName”] = User.
UserName. You can also access the data in the ViewBag as a wrapper: ViewBag.UserName =
User.UserName.

The following are additional considerations when working with a view:

■■ Strongly-typed views Eliminates the need for casting in the view by setting the
attached model property. The view engine can work with the information through
mapped class values rather than through a string-based lookup.

 Objective 1.1: Plan the application layers ChAPTER 1 13

■■ View-specific model An intermediate class for when the display does not map
directly to a domain object. The view-specific model gathers all the values that are
needed for the view from one or more model objects into a single class specifically
designed for that view.

■■ Partial view ASP.NET MVCs version of a user control that can be displayed within a
page. The Razor view engine displays it the same as a full view, but without including
the <html> and <head> tags.

■■ Master or layout page A way to share a design across multiple pages. This page is a
building block for the application because it contains much of the wrapper HTML code
that turns your output into a format understood by web browsers.

■■ Scaffold template A template that creates standard pages as part of the process
when creating a project. This ability gives you a quick start on development. Because
the default scaffold types are Visual Studio T4 templates, you can alter the existing
scaffold types or create a new one.

Figure 1-4 shows how the design of a rendered page might have been built when a layout
page is used by a view that also contains a partial view.

FIGURE 1-4 Rendered page with view relationships

THE RAZOR VIEW AND WEB FORMS VIEW ENGINES
The Razor view engine was introduced in ASP.NET MVC 3 and became the default view
engine in ASP.NET MVC 4. The Razor view provides a streamlined, compact, expressive, and
fluid format that minimizes the amount of coding required within a view. Razor also supports
the concept of layouts, which help maintain a consistent look and feel across multiple views
within an application.

The Web Forms view engine was the initial view engine. It is similar to ASP.NET and pro-
vides a familiar experience to an ASP.NET developer. The Razor view engine uses the @ code
delimiter; Web Forms uses the <% notation.

 14 ChAPTER 1 Design the application architecture

Neither view engine can understand the syntax of the other. Table 1-1 compares Razor and
Web Forms syntax.

TABLE 1-1 Comparisons between Razor and Web Forms syntax

Code expression Razor Web Forms

Implicit @article.Title <%: article.Title %>

Explicit Title@(article.Title) Title<%: article.Title %>

Unlike code expressions, which are designed to output content to the user interface,
blocks of code are pieces of code executed within the view. You need to avoid doing work
that should properly be done in the controller or model. Listing 1-2 shows examples of code
blocks that create a variable that can be used throughout the rest of the page.

LISTING 1-2 Code blocks that create a variable
Razor view engine

@{
 string title = article.Title.ToUpper();
}

Web Forms view engine

<%
 string title = article.Title.ToUpper();
%>

Sometimes you need to mix plain text with decisions that are made in code. The code
samples in Listing 1-3 show how to mix code and plain text.

LISTING 1-3 Incorporating plain text into code blocks
Razor view engine

@if (article.HasContent)
{
 <text>some message here</text>
}

Web Forms view engine

<% if (article.HasContent) { %>
 some message here
<% } %>

Finally, sometimes you want to display the output from a generic method. You should
carefully consider these cases because this approach makes it easy to do work in the view that
should be handled in the controller. The code in Listing 1-4 calls a generic method.

 Objective 1.1: Plan the application layers ChAPTER 1 15

LISTING 1-4 Calling a generic method
Razor view engine

@(Html.GenericMethodHere<TheType>())

Web Forms view engine

<%: Html.GenericMethodHere<TheType>() %>

EXTENDING THE VIEW ENGINES
Both the Web Forms and the Razor view engines are derived from the BuildManagerViewEn-
gine class, which is derived from the VirtualPathProviderViewEngine class. A common reason
for overriding or replacing the default view engine classes is to deviate from the convention-
based design the standard view engines must follow. You can also write an HTML helper to
help you generate HTML inside views. An HTML helper is a class that helps you create HTML
controls programmatically. A helper generates HTML and returns the result as a string for
inclusion in the response stream. You can create HTML and AJAX-HTML for inclusion in your
view, or URL helpers, which help determine the appropriate route or URL that can be accessed
from both the view and controller. You can also write a Razor helper using Razor syntax. Razor
helpers are one of Razor’s unique features. They encapsulate blocks of HTML and server-side
logic into reusable page-level methods.

EXAM TIP

SoC is one of the primary reasons why ASP.NET MVC exists because its very nature sepa-
rates the presentation and business layers. However, the framework’s flexibility enables
you to easily violate these rules. You should be familiar with the differences between the
logic that should take place in a view, in a controller, and within the model. The use of
inline code in the view should be strictly limited to those items that affect only the display
of information, not the processing of information.

Choosing between client-side and server-side processing
Choosing between client- and server-side processing seems straightforward when you look at
SoC concerns. Client-side processing makes the most sense when the work being done stays
completely within the client, such as when selecting a value in a drop-down list changes a
background color. Unfortunately, you won’t encounter many requirements where the interac-
tion is completely client side.

Factors to take into account when considering client-side versus server-side are application
performance, user experience, and business requirements. Application performance is impor-
tant because there will always be some latency when connecting over the Internet. Validation
on the client side, for example, enhances performance by eliminating calls across the network
for transactions that would fail validation. Heavily used sites can increase performance by

 16 ChAPTER 1 Design the application architecture

lowering the server’s load. However, be careful not to sacrifice security for speed. You shouldn’t
completely replace server-side checking with client-side validation. With only client-side valida-
tion, there is still a chance of bad data getting to the server and entering the business process.
A best practice is to put validation on both sides—on the client side to provide a responsive UI
and lower the network cost, and on the server side to act as a gateway to ensure that the input
data is valid.

As you consider client- and server-side processing, remember that it is not one or the
other; you can do both on a single user request. Also, some decisions you make on the client
side might need to be replicated on the server side as well.

Designing for scalability
Scalability is the capability of a system to handle a growing amount of work. Although usage
is minimal during site development, usage can increase greatly after implementation to a
production environment. To ensure a positive user experience, you need to consider scal-
ability early in the application planning phase because your scalability decisions affect your
architectural design considerations. There are two primary ways that you can scale: horizon-
tally or vertically.

With horizontal scaling, you scale by adding additional nodes to the system. This is a web
farm scenario, in which a number of commodity-level systems can be added or removed as
demand fluctuates. They are served using a load balancer or other piece of network equip-
ment that determines which server should be called.

MORE INFO WEB FARMS

You will learn about web farms in the “Planning web farms” section later in this chapter.

If your application will scale horizontally, you must make various decisions. Depending on
the network hardware that will be deployed and how it handles sessions, your session state
information will be affected. You also need to determine how multiple servers will affect
server caching of information, such as whether to cache rendered HTML that was sent to the
client or cache data from a database. Also, if your application will provide file management,
consider where those files will be stored to ensure access across multiple servers. Scaling
horizontally adds some architectural considerations, but it is a low-cost and effective way to
scale, especially because the cost for commodity servers continues to drop. Keep in mind that
commodity servers are not necessarily physical servers, but can be virtual machines. It is far
less expensive to roll in unused capacity using virtualization from another system than it is to
add capacity to a system.

 Objective 1.1: Plan the application layers ChAPTER 1 17

With vertical scaling, you scale by adding resources to a single system. This typically in-
volves adding central processing units (CPUs) or memory. It can also refer to accessing more
of the existing resources on the system. Vertical scaling has its own architectural consider-
ations as well. An application that scales on a single system might pay more attention to
threading, input/output (I/O), garbage collection, and other design decisions that would help
the application take better advantage of the additional memory or CPUs. By definition, how-
ever, a vertical scaling solution is limited. Theoretically, you can keep adding systems when
scaling horizontally; however, you might run out of physical capability in a vertical solution
if usage continues to grow. Also, reliability is negatively affected in a vertical scaling solution
because there remains a single point of failure. If the system’s motherboard goes down, so
does your application.

Although application scalability is a major concern for a software developer, you also need
to consider database scalability when determining your data access methods. As a developer,
you are not expected to be a database architect. However, you should be familiar with pos-
sible database decisions and how they can affect your application. Although many scalability
solutions for SQL Server do not affect your connection application, some might. A database
design consideration that can affect architecture is when separate servers store different data
by object types. For example, the Customer database resides on SQLSRV012, the Product
database is on SQLSRV089, and each has a different connection requirement.

Regarding scalability and architectures, consider modern cloud-based hosting systems
such as Windows Azure to support your scaling requirements. Windows Azure provides im-
mediate scalability and it offers an Autoscaling feature that increases the resources available
to your application as usage grows. Windows Azure also provides highly scalable data storage
solutions, both relational and NoSql. If you plan to deploy to a cloud solution, you need to
ensure that your architectural design takes this into account by abstracting as many of the
items that might change as possible.

When you plan an ASP.NET MVC 4 application with scalability in mind, you should con-
sider all scalability options and how they will affect your architecture decisions. Everything
from session management to data access will be affected by the decisions you make about
how you will support your application’s need to handle users. A web farm might affect how
you plan to manage session. A database cluster can affect how you manage data access. The
earlier you analyze your need for scalability and understand how you will manage it, the less
it will affect your application.

 18 ChAPTER 1 Design the application architecture

Thought experiment
Implementing a government website

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You are a consultant helping a municipal government bring some of its services
onto the Internet. The first application you will work on enables pet licensing
over the web. The initial work was done by a volunteer from the local pet shelter.
Although it is an attractive website that was very well received by the public, it pro-
vides only downloadable forms that must be filled out and returned manually.

Answer the following questions about your approach to enhancing this website:

1. The client received positive feedback on its current website design and wants to
keep it. How would you plan to maintain the look and feel across the new ap-
plication? What components need to be included in your architecture?

2. The department currently files submitted forms in alphabetical order by pet
owner. What could you do with the information so the employees would have
real-time access to it?

3. You realize you would be best served by creating a separate business layer. How
would you manage this layer?

Objective summary
■■ The ASP.NET MVC framework provides a certain level of SoC by breaking the applica-

tion responsibilities down into models, views, and controllers. Many aspects of each
can be customized if necessary by overriding the base classes and creating your own.

■■ A view represents the area of the application that will be seen by the user. When cod-
ing your views, do not do anything to directly change the model. There are two view
engines included with ASP.NET MVC 4: the Razor view engine and the Web Forms view
engine. Each provides different ways to write and manage data within the view. The
Razor view engine cannot parse ASPX-style coding, and the ASPX view engine cannot
parse Razor syntax.

■■ A controller handles the incoming HTTP requests and sends commands to the model
to update the model’s state, and sends commands to its associated view to change the
view’s presentation of the model. A model is the part of the application that handles
the data and business logic. It also manages the persistence layer and data access.

■■ Client-side processing is ideal for work that is specific to the client. It is also impor-
tant when it can help remove processing from the server. Server-side processing is

 Objective 1.1: Plan the application layers ChAPTER 1 19

recommended when you might be needing to perform the same processing in mul-
tiple views or when you need large amounts of data to do the processing and you do
not want to have to transfer this information.

■■ As you design your application, you should also design for scalability. This might have
multiple levels of impact upon other decisions that you might be making around cach-
ing, server-side versus client-side processing and data access.

■■ There are three primary ways to manage the creation of a database when using the En-
tity Framework. The Database First approach enables you to leverage an existing data-
base schema to create entities. Code First and Model First approaches are intended to
be used in scenarios in which you are creating a new database schema as part of your
project. Code First enables developers to create the object structure first and then use
it to create the database schema, whereas the Model First approach enables design-
ers to work in a tool that enables them to build the object model visually and will use
that output to create the database schema. The approach you choose should depend
on the current status of your database as well as the preferences and skills of the team
implementing the initial version.

■■ The stateless nature of ASP.NET MVC disables some of the built in features of Entity
Framework. This will cause you to have to write additional code to make the best use
of the DBContext class and its approach to data access. With that in mind, it is best to
abstract the data access layer. The Repository pattern is one of the most used patterns
for managing data abstraction.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You are designing an application in which a section of the main page will be populated
by content from a third-party provider. You do not have control over the responsive-
ness of the client or how much information will be returned with each request. The call
is to a RESTful service and will return the information formatted in Extensible Markup
Language (XML). What is the best way to implement this application?

A. Design a model that handles the data call to populate the model. Create a partial
view containing only this display area and put an asynchronous service call that
returns this model in the partial view controller.

B. Put a synchronous service call into the main page controller.

C. Create a partial view containing only this display area and put a synchronous ser-
vice call in the partial view controller.

D. Create a partial view containing only this display area and put an asynchronous
service call in the partial view controller.

 20 ChAPTER 1 Design the application architecture

2. You have been given requirements for a dashboard page that will contain summary
information from your order processing system in a single display table. However, this
summarization needs to be done by combining data requests from the order system,
the shipping system, and the accounting system. The dashboard page will be the only
place you use this combined data. What is the best way to implement this require-
ment?

A. Make the various data requests and compile the information in the controller for
display.

B. Create an individual model for each of the data requests, and then create a view-
specific model that calls those models and merges the data.

C. Create a model for the summary data and handle the various data requests within
that model as well as the merging of the data.

D. Create an individual model for each of the data requests and then merge the data
on the client side for display.

3. A significant change has been requested in an application maintained within your
company. The application is a classic ASP application that uses custom Open Database
Connectivity (ODBC) drivers to connect to a relational data repository on a mainframe
computer. The CIO decided that the company needs to replace this 30-year-old sys-
tem. The team that worked on the original project is made up of developers who have
never worked with an object-oriented approach before. Which approaches would be
the best to use when designing your initial schema in Entity Framework? (Choose all
that apply.)

A. Create your own custom design because it’s too much work to manage an inexpe-
rienced staff.

B. Use Code First.

C. Use Model First.

D. Use Database First.

4. You are designing an application that allows employees to change their human
resources (HR) information, such as next of kin and direct deposit information. The re-
quirements state that the application should talk directly to the HR systems’ database.
However, at a recent company meeting, the CFO announced that the company will be
converting to a new HR system over the next two years. They will take an additional
year to move employees to the new system, one department at a time. How will this
affect your design?

A. It won’t; the requirements state that the application should talk directly to the HR
systems’ database.

B. You should ensure your naming convention for the database as clearly as possible
so you can rework your data calls with minimal changes.

 Objective 1.2: Design a distributed application ChAPTER 1 21

C. You should implement the Repository pattern with the current HR system being
the first repository that is built. When the second system comes online, you imple-
ment that data access using the same pattern.

D. You should map the model directly to the database calls, anticipating that you will
have to change the model as the new system rolls out.

Objective 1.2: Design a distributed application

A distributed application is defined as software that runs on two or more computers. The
capability to run on multiple computers is critical for systems that are concerned with perfor-
mance, availability, scalability, and reliability. A typical non-web system following a distributed
application architecture would have the client on one machine, the business layer on another,
and the data access layer on a third machine. Designing a distributed application in ASP.
NET MVC is similar in that you have the client (or view) in the browser, the business layer (the
model), and the data access layer behind the model. However, you can abstract this out more
and provide the opportunity for more distribution in your architecture. Add in external cloud
services such as Windows Azure and get even more distribution across more nodes.

This objective covers how to:
■■ Integrate web services

■■ Design a hybrid application (on premise vs. off premise, including Windows
Azure)

■■ Plan for session management in a distributed environment

■■ Plan web farms

Integrating web services
A common part of a distributed application is the inclusion of web services. Using web servic-
es as your data mechanism enables the ASP.NET MVC 4 application to be a consumer of a set
of web services that can serve information to other clients, applications, or processes. Adding
those web services to the architectural design can furnish a layer of abstraction to the ap-
plication between the business layer, model, and data layer. It also enables you to incorporate
some shared logic in a level below your web application. The historical Microsoft standard
for putting services into the application space has been Microsoft Windows Communication
Foundation (WCF). With ASP.NET MVC 4, however, the concept of the Web API was intro-
duced, which enables you to bind data using model binding directly to the output. This gives
you additional flexibility as you design your application. Different information on your screen
can be called from different services or directly onto the page based on user interactions or
on jQuery calls. The potential layering is highly flexible.

 22 ChAPTER 1 Design the application architecture

You can also use ASP.NET MVC 4 to create Representational State Transfer (REST) ser-
vices. The ASP.NET Web API comes with its own controller called ApiController. Choosing the
right controller for the right job is important. For creating REST services, you should use the
ApiController because it returns serialized data. This controller does not use views, but instead
reviews the HTML header to find the Accepts property being sent with the header to deter-
mine how to send the data back. It chooses to return XML or JSON-formatted data based on
the Accepts property. A regular controller can be configured to produce XML or JSON, but
you have to do the serialization and deserialization, whereas the ApiController handles this for
you.

 ASP.NET Web Services (ASMX) is an older Microsoft technology that enables a developer
to quickly roll out a Simple Object Access Protocol (SOAP)–based web service. It also
eliminates many configuration issues you encounter with other solutions because it simply
enables a consumer to make a call to a function. However, you cannot customize certain
critical components, such as transfer protocols, security, and encoders. Although ASMX has
been superseded by WCF and Web API, many sites still use ASMX to provide their primary
web services.

Consuming a web service in ASP.NET MVC 4 in Visual Studio is as simple as using the Add
a Service Reference command. By adding a web service, you can use the proxies created and
the exposed object set as your model. To do so, you would use a construct such as the follow-
ing in your controller to instantiate the model:

using (ServiceProxy proxy = new ServiceProxy())
{
 model = proxy.GetData(input);
}

This approach expects the presence of a Web Services Description Language (WSDL) at the
service you are calling. WSDL is a XML format that describes network services that operate on
messages that can contain either data or procedure-oriented information. WSDL describes
these messages abstractly and then binds them to a concrete communications stack. This
communication stack includes network protocol, message type, and message format; and it
is defined as an endpoint. Together, a group of related concrete endpoints makes up abstract
endpoints. These abstract endpoints can be extended to allow multiple message formats and/
or network protocols. Consuming a REST service requires a different technique, but ASP.NET
MVC 4 makes it easy to work with.

Listing 1-5 shows how to use the HttpService class to get the output from a REST URL.

 Objective 1.2: Design a distributed application ChAPTER 1 23

LISTING 1-5 Using the HttpService class to get output from a REST URL

private HttpService _httpService;

 public ArticleRepository()
 {
 _httpService = new HttpService();
 }

 public IQueryable<Article> GetArticle s()
 {
 Uri host = new Uri("http://www.yourdomain.com");
 string path = "your/rest/path";
 Dictionary<string, string> parameters = new Dictionary<string, string>();
 NetworkCredential credential = new NetworkCredential("username",
 "password");
 XDocument xml = _httpService.Get(host, path, parameters, credential);
 return ConvertArticleXmlToList(xml).AsQueryable();
 }

 private List<Article> ConvertArticleXmlToList(XDocument xml)
 {
 List<Article> article = new List<Article>();
 var query = xml.Descendants("Article")
 .Select(node =>
 node.ToString(SaveOptions.DisableFormatting));
 foreach (var articleXml in query)
 {

 article.Add(ObjectSerializer.DeserializeObject<Article>(articleXml));
 }
 return article;
 }

MORE INFO WEB SERVICES IN ASP.NET MVC 4

You can find additional details on ASP.NET Web API’s HTTP services for building RESTful
applications on the .NET Framework at http://www.asp.net/web-api.

As you look at distributed applications, some of the principal needs are communica-
tions and a plan for how the various parts of the application will exchange information. Each
method of communication mentioned previously, such as SOAP or RESTful services, have a
different impact on how you need to design your application. When planning to distribute
your application, whether in-premise, off-premise, or some combination, the method you use
to communicate between the pieces is critical. Before using a distributed environment, pieces
that “just talked to each other” never need development support. As the application spreads
out over multiple areas or servers, the communications between the pieces become more
complicated.

http://www.asp.net/web-api

 24 ChAPTER 1 Design the application architecture

The closer the different pieces of your application are to each other from a network
design, the simpler the communications flow. The farther the pieces of your application are
from each other, the more variables that have to be accounted for. Latency, firewalls, and
protocol limitations all have to be considered as you plan application distribution. Distribution
gives you many advantages but they come at a cost. By recognizing the costs up front, you
can better plan how to minimize the impact.

Designing a hybrid application
A hybrid application is an application hosted in multiple places. The term has become popular
with the growth of Windows Azure to represent an application in which one part is hosted
within the company’s network and another part is hosted in Windows Azure. This kind of
solution makes sense if the application will access private or sensitive data, runs well but
might need additional periodical capacity, or is not designed in a stateless fashion. A hybrid
approach to application development and deployment is also a way to implement a good
migration or expansion strategy.

NOTE DEFINITION OF HYBRID APPLICATION

Before the growth of Windows Azure, the term “hybrid application” was sometimes used
to describe a web application that supported both the ASPX and Razor view engines to
render content. Microsoft has since emphasized using the term as an application hosted in
multiple places.

There are two primary hybrid patterns. The first is a client-centric pattern in which the cli-
ent application determines where the application needs to make its service calls. This pattern
is generally the easiest to code, but it is also most likely to fail. Applications built with this
approach are the most fragile because any change to either server or client might require a
change to the other part. The second primary pattern is a system-centric approach, in which
you take a more service-oriented architecture (SOA) approach. It ideally includes a service
bus, such as Windows AppFabric, which will distribute service requests as appropriate whether
it is to a service in the cloud, on-premise, or at another source completely such as a partner or
provider site. (You will learn about AppFabric in the “Distribution caching” section later in the
chapter.) Figure 1-5 shows how this service bus distributes requests.

 Objective 1.2: Design a distributed application ChAPTER 1 25

FIGURE 1-5 A hybrid approach using a service bus

When you consider a federated approach, whether to Windows Azure, SQL Azure, or other
distributed architectures, there are some factors you need to consider in the planning phase.
Connection resiliency becomes a point of concern when building a distributed application.
A solution that’s all on-premise generally has low latency and good connection properties.
You are not guaranteed either when working with a hybrid application. Whether a central-
ized client or a distributed one, the code needs to be able to handle the riskier nature of the
communications and understand the concept of a retry. Authorization and access are also
complicated by going to a hybrid solution because you need to manage access into multiple
domains. Windows Azure comes with the capability to help you manage authorization and
access, but this is something you need to plan for when you design the architecture. Finally,
you must plan for consistency and concurrency. In a service-based architecture, you need to
plan for sequential message handling and life cycles. Once again, Windows Azure provides
tools to manage sequential message handling and life cycles, and this type of management
must be a part of your plan.

MORE INFO HYBRID APPLICATIONS IN WINDOWS AZURE USING THE SERVICE BUS

The Windows Azure team provides many useful documents and samples on using the
service bus in a hybrid application at http://www.windowsazure.com/en-us/develop/net/
tutorials/hybrid-solution/.

http://www.windowsazure.com/en-us/develop/net/tutorials/hybrid-solution/
http://www.windowsazure.com/en-us/develop/net/tutorials/hybrid-solution/

 26 ChAPTER 1 Design the application architecture

You will deploy your ASP.NET MVC code as a single application. Where that application
and its external connections reside will determine how hybrid the application will be. You
can take several approaches to building your application as a hybrid application. Consider a
few scenarios for using ASP.NET MVC in a hybrid environment. In one, you host your applica-
tion in your network and access ancillary services in Windows Azure. Or you might host your
ASP.NET MVC application in Windows Azure and keep confidential information in your own
network. The decision lies with where you think your potential issues might be: whether you
are looking at Windows Azure to provide robust and scaling systems on which to deploy your
application, whether you are looking at one of Azure’s storage options to manage your data,
or whether Azure might be hosting an ancillary service on which your ASP.NET MVC applica-
tion might have dependencies.

One of the primary concerns in cloud-hosted systems is security. Windows Azure has
strong standards about how it maintains security, including prevention of data leakage and
data exposure. However, if you access data from another location, you might open security
holes in your system. To counteract this vulnerability, a traditional on-premise solution can
put the database in a protected location from which it does not allow connections from the
Internet. However, using a hybrid solution, where the database is hosted elsewhere, makes
that impossible. If you are going to accept data from a different network, you will have an
increased security footprint.

Scalability, latency, cost, robustness, and security are considerations as you evaluate a hy-
brid solution. There is no one answer on how best to manage all aspects of your application.
You need to analyze each piece of your application and determine where it makes the most
sense to be hosted.

Planning for session management in a distributed
environment
A session is stored on the server and is unique for a user’s set of transactions. The browser
needs to pass back a unique identifier, called SessionId, which can be sent as part of a small
cookie or added onto the query string where it can be accessed by the default handler.

You can approach sessions in ASP.NET MVC 4 in two different ways. The first is to use ses-
sion to store small pieces of data. The other is to be completely stateless and not use session
at all. Because ASP.NET MVC lies on top of ASP.NET, you can access session information and
use it throughout the application. The session is available for use in your controllers as need-
ed; however, ASP.NET MVC 4 is designed to run in a stateless manner. It is designed to be able
to transfer all the information the application needs each time it makes a call. By being able
to call an action on a controller and pass in an object, ASP.NET MVC 4 can control everything
it needs every time it makes a call to the server.

Session management in a distributed environment is more complicated than a traditional
session management scenario because a single page might get information from multiple
domains and servers. Session management through a service bus can also be unreliable. The
surest way to manage state in a distributed application is to implement a sessionless design

 Objective 1.2: Design a distributed application ChAPTER 1 27

in which you use a query string or hidden input form value to transmit information to the
end handler. Regarding a sessionless state solution, the key determination is where the state
information will be stored. Because it will not be stored in the session, you need to determine
whether it should be maintained on the client side or on the server side.

In a distributed environment, it is important to remember that that requests can be
distributed among different servers when using a session. There are three modes of session
management available in Microsoft Internet Information Services (IIS): InProc, StateServer,
and SQLServer. They each have advantages and disadvantages.

You can configure IIS to manage the SessionId either way. InProc mode is the default set-
ting and means that the web sessions are stored in the web server’s local memory. This option
provides the best performance but is not clusterable. In StateServer mode, session informa-
tion is stored in memory on a separate server. When configuring the state server in IIS, you
need to enter the connection string to the server. All servers that use the same state server
have access to the state information. SQLServer mode has the same advantage as StateServer
in that the session information is shared across multiple servers. It has a performance impact,
however, because there needs to be a call to a SQLServer and it will add latency to the session
access.

Planning web farms
Web farms are groups of servers that share the load of handling web requests. In a simple
system design, a single server typically supports all application requests. However, as the
number of requests to your server increases, the less capable your server becomes in process-
ing all requests. The most common way to solve this problem is to use multiple servers that
host the application together. Doing this enables you to balance the traffic between the avail-
able servers rather than relying on a single server to fulfill them all. Figure 1-6 shows a simple
web farm.

FIGURE 1-6 A web farm

Using web farms with an ASP.NET MVC 4 application gives you some flexibility for deploy-
ing the various parts of your application. Because SoC is inherent in the MVC architecture,

 28 ChAPTER 1 Design the application architecture

you can locate components of the application on different servers. You can place views on
one server and the model on another, as long as you manage communications between the
two. ASP.NET MVC is designed to be flexible, enabling you to run an application with separate
parts as well as together as a single application.

There are many advantages of using a web farm, one of which is high availability. If a
server in the farm goes down, the load balancer redirects all incoming requests to other serv-
ers. A web farm also improves performance by reducing the load each server handles, thus
decreasing contention problems. The ability to add in servers to the farm also provides better
scalability.

The impact of going to a web farm can be managed in several ways. The biggest change
is that the architect cannot just assume that the default session will be available. Although
some load balancers can match a particular server to a session, referred to as a “sticky ses-
sion,” it is better to assume that the load balancers cannot ensure that—and plan accordingly.
As mentioned previously, the default setting for session mode in IIS is InProc, which stores
session data in the memory of the local machine. This makes the information in that session
unavailable to the other servers in the farm. In web farm mode, you need to be able to share
the session among all the servers in the farm. This can be done by selecting the session mode
of SessionMode OutProc (StateServer or SQLServer mode). If you are using sessions in a web
farm, an OutProc setting enables the load balancer to send connections to a new server and
still have the session information available.

Thought experiment
Building a geographically distributed application

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You are the new technical architect at a large custom home building firm with of-
fices in North America, South America, and Europe. Your firm is expanding, both by
opening new offices and by buying smaller custom home builders. Although each
main geographic region stores its own data in its own systems, your CIO wants you
to build an application that displays information from each region in different wid-
gets on a dashboard. She does not want SQL queries run from the corporate office
where the dashboard will be hosted.

1. You will have to deploy some software in the various regions. What will the
software do?

2. What are some primary concerns of building an ASP.NET MVC application that
gathers information from such disparate sources?

3. What is the benefit of adding Windows Azure AppFabric?

 Objective 1.2: Design a distributed application ChAPTER 1 29

Objective summary
■■ Web services are a traditional way to transfer information from one system to another

on the Internet. They have been managed in several different ways over the years.
ASMX services use WSDL to communicate with consumers about endpoints, protocols,
and message formats. WCF is a SOAP-based protocol and is still the primary com-
munications mechanism, but ASP.NET MVC 4 Web API has made advances in RESTful
services. Web API also uses the ASP.NET MVC pattern for managing HTTP requests.

■■ Designing for a distributed environment can be one of the most complex tasks a
developer take on. Each part of the application that will be deployed separately needs
to be able to manage message sending and receiving. This issue occurs whenever you
separate items, such as the database from your ASP.NET MVC application, or when you
locate the view on one server and the model on another. Communications between all
parts of the application are critical and need to be accounted for while the application
is being built.

■■ Different types of web services can be used in distributed environments. WCF and
Web API are two out-of-the-box frameworks that help you design and implement web
services.

■■ A hybrid application is an application that is partially deployed on-premise and partly
off-premise. When working in this kind of environment, you need to be aware of the
riskier nature of communications and manage the concept of a retry. You can split the
application and host the parts in different locations. The web server portion can be
on-premise while the data management area is off-premise, or vice versa.

■■ When you design for a distributed environment, you will find state management to be
a point of concern, especially when using sessions. Some design consideration should
go into how you will implement sessions or whether you should design the application
to be sessionless.

■■ A distributed environment can improve availability, reliability, and scalability. One of
the ways you can do that at the web server level is to use a web farm, in which you
have multiple servers working in parallel to manage the various user requests.

 30 ChAPTER 1 Design the application architecture

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You are developing an application. One requirement is that part of your data access
layer needs to be available to a third party, that wants to get this information from a
REST URL in XML. Your company does not have experience with web services, but you
have several websites running ASP.NET MVC 4. How could you design and provide
these new services? (Choose all that apply.)

A. Task an individual on staff to learn WCF, and have this individual develop and de-
ploy these new services using WCF.

B. Use the Web API to create REST services using ApiController in which the serializa-
tion type is defined by the Accepts property of the browser.

C. Build a basic ASP.NET MVC 4 project in which the view simply passes through the
information provided by the controller, and the controller manages the code for
serializing the response.

D. Create an ASP.NET ASMX services file to get, serialize, and return the data.

2. How could you traditionally consume an ASMX web service from your application?
(Choose all that apply.)

A. Generate a proxy by selecting Add Reference In Visual Studio.

B. Create an HttpService and connect using Get(URL).

C. Generate a proxy by selecting Add A Service Reference in Visual Studio.

D. Create a WCF proxy class.

3. What are examples of hybrid applications using Windows Azure? (Choose all that
apply.)

A. An application where the local network hosts the IIS server while the database is
being run from the corporate IT office

B. An application where Windows Azure is used to host the IIS process, and Windows
Azure SQL is used to store the data

C. An application where the IIS process is run on a local web server, whereas the data
is stored in Windows Azure SQL

D. An application where the web part of the application is run on Windows Azure,
whereas the confidential data is stored in the company’s network

 Objective 1.3: Design and implement the Windows Azure role life cycle ChAPTER 1 31

Objective 1.3: Design and implement the Windows
Azure role life cycle

Windows Azure is a Microsoft cloud computing platform used to build, deploy, and manage
applications through a global network of Microsoft-managed data centers. Windows Azure
allows for applications to be built using many different programming languages, tools, and
frameworks; and makes it possible for developers to integrate their public cloud applications
in their existing IT environment.

This objective covers how to:
■■ Identify startup tasks (IIS configuration [app pool], registry configuration, third-

party tools)

■■ Identify and implement Start, Run, and Stop events

Understanding Windows Azure and roles
Windows Azure provides both platform as a service (PaaS) and infrastructure as a service
(IaaS) services, and is classified as the “public cloud” in Microsoft’s cloud computing strategy.

NOTE PAAS AND IAAS

With PaaS, cloud providers deliver a computing platform, typically including an operating
system, a programming language execution environment, a database, and a web server.
IaaS offers virtual machines.

One way to conceptualize Windows Azure is as a large data center running offsite. It is
managed by Microsoft, so you do not have to worry about typical system administration
chores such as upgrades and patching. What it does give you is a highly flexible and scalable
computing environment running a familiar operating system. This is especially relevant when
you consider the testing and production phases of your ASP.NET MVC application develop-
ment life cycle.

There are three different types of solutions available in Windows Azure: Virtual Machines,
Web Sites, and Cloud Services. Virtual Machines provide the most general solution. Virtual
Machines in Windows Azure function like a virtual machine that you might be running in
your local environment. Virtual Machines give you the most control over the environment, so
they are generally a good choice for development and testing, and for running off-the-shelf
applications in the cloud. Because you control the environment, you can set up Virtual
Machines that look like your on-premise virtual machines. This enables an Azure Virtual
Machine to be used for disaster recovery.

 32 ChAPTER 1 Design the application architecture

Web Sites is a good choice for simple web hosting, and is a good solution for hosting and
running your ASP.NET MVC 4 applications without the overhead of maintaining a full virtual
machine. Web Sites enables a scalable experience, with fast deployment and an almost imme-
diate startup, and you can upgrade or downgrade this solution quickly and easily as needed.

Cloud Services, which is a strictly PaaS approach, was the initial deployment model for
Windows Azure.

All three Windows Azure execution models have pros and cons. Making the best choice
requires understanding the models, knowing what you’re trying to accomplish, then choosing
the one that’s the best fit.

Identifying startup tasks
Windows Azure startup tasks are used to perform actions before a role starts. There are three
types of roles in Windows Azure: Web, Worker, and VM. If you plan to run IIS in Windows
Azure, you should use a Web role. If you are going to run middle-tier applications without IIS,
a Worker role will fulfill your need. If what you want to do in Azure is beyond the scope of the
Web or Worker roles, Microsoft gives you complete access to the VM instances themselves—
the VM role.

With startup tasks, you can register COM components, install a component, or set registry
keys, for example. Startup actions are also commonly used for starting long-running pro-
cesses. Startup tasks are available only for Web and Worker roles; VM roles cannot manage
startup tasks.

Startup tasks are defined in the Task element, which is a node in the Startup element of the
ServiceDefinition.csdef file. A typical startup task is a console application or a batch file that
can start one or more Windows PowerShell scripts. You can use one or more environment
variables if you need to pass information into the task. When you need to get data from the
task, you can store a file containing the information to a well-known location on the file sys-
tem. Startup tasks run each time a role recycles in addition to when a server reboots. Startup
tasks have to end with an error level of zero (0) for the startup process to complete. When
startup tasks end with a non-zero error level, the role does not start.

When you consider a Windows Azure deployment, consider the differences between run-
ning an application on a remote system in which you do not have full privileges versus run-
ning it on a server in which you have full control. Although you are ceding the responsibility
for server uptime to Windows Azure, you are also ceding some control over what is happen-
ing on the server. Some secondary applications you might be running to support your ap-
plication or that offer additional functionality might not work the same way. If you need to
ensure that secondary applications are running while your application is running, you need
to start the applications through a startup task or other process.

The procedure followed by Windows Azure when a role starts is the following:

 Objective 1.3: Design and implement the Windows Azure role life cycle ChAPTER 1 33

1. The instance is marked as Starting. It will no longer receive traffic.

2. Startup tasks are executed according to their taskType attribute:

A. Simple tasks are executed synchronously.

B. Background and foreground tasks are started asynchronously. This is in parallel
with the startup task.

3. The role host process is started and the site is created in IIS.

4. The task calls the Microsoft.WindowsAzure.ServiceRuntime.RoleEntryPoint.OnStart
method.

5. The instance is marked as Ready and traffic is routed to the instance.

6. The task calls the Microsoft.WindowsAzure.ServiceRuntime.RoleEntryPoint.Run method.

The AppCmd.exe command-line tool is used in Windows Azure to manage IIS settings at
startup. The tool enables you to add, modify, or remove settings from both web applications
and websites. You need to add the appropriate AppCmd.exe commands to the appropriate
task if you plan to run the task at startup.

Remember that a startup task can be run more than once, and misconfiguring Ap-
pCmd.exe commands can result in runtime errors. For example, a common error is to add a
Web.config section in the startup task. When the task is run again, it throws an error because
the section already exists after the initial run. Managing this kind of situation requires that
your application monitor both its internal and external statuses. Regarding the Web.config is-
sue, for example, the errorlevel is 183. Your application should monitor for that errorlevel and
ensure that, if received, it is handled appropriately, and the startup can continue. There will be
times when you need the errorlevel to be elevated to the client when an error has occurred
that should be reported. However, there will also be times when you will want to handle the
error internally.

MORE INFO WEB.CONFIG FILE

See the “Apply configuration settings in the Web.config file” section later in this chapter
for information on configuring the Web.config file.

Another consideration is marking a task as Background. Doing so prevents Windows Azure
from waiting until the task completes before it puts the role into a Ready state and creates
the website. You can set a task as background as shown in the following example:

<Startup>
 <Task commandLine="Startup\ExecWithRetries.exe
 "/c:Startup\AzureEnableWarmup.cmd"
 /d:5000 /r:20 /rd:5000 >> c:\enablewarmup.cmd.log
 2>>&1"
 executionContext="elevated" taskType="background" />
</Startup>

 34 ChAPTER 1 Design the application architecture

As you plan your scripts, remember that the names of websites and application pools are
not generally known in advance. The application pool is usually named with a globally unique
identifier (GUID), and your website is typically named rolename_roleinstance number, ensur-
ing that each website name is different for each version of the role. You can use the search
functionality in AppCmd.exe to search for the web role name and then use it as a prefix for
the name of the site. You can pipe this output to AppCmd.exe to manage the configuration,
as follows:

> %windir%\system32\inetsrv\appcmd list sites "/name:$=MyWebRoleName*" /xml |
 %windir%\system32\inetsrv\appcmd set site /in /serverAutoStart:true

The following example for the application pool lists the site, the apps within that site, and
the application pools for those apps; and then sets a property on those application pools:

> %windir%\system32\inetsrv\appcmd list sites "/name:$=MyWebRoleName*"
/xml |
 %windir%\system32\inetsrv\appcmd list apps /in /xml |
 %windir%\system32\inetsrv\appcmd list apppools /in /xml |
 %windir%\system32\inetsrv\appcmd set apppool /in /enable32BitAppOnWin64:true

The types of objects available through AppCmd.exe are listed in Table 1-2.

TABLE 1-2 Objects available for use in AppCmd.exe

Object Description

Site Virtual site administration

App Application administration

VDir Virtual directories administration

Apppool Application pools administration

Config General configuration sections administration

Backup Management of server configuration backups

WP Worker process administration

Request Active HTTP request display

Module Server module administration

Trace Server trace log management

AppCmd.exe enables you to manage different aspects of your IIS configuration. However,
other common tasks take place within startup tasks, such as managing the registry. Some
single-use web servers have various configuration information stored within the Windows
registry rather than in configuration files. This keeps the information secure in case someone
gets file-level authority to your server, and it offers a faster response time than file-based
configuration settings. Because the configuration information in the registry needs to be

 Objective 1.3: Design and implement the Windows Azure role life cycle ChAPTER 1 35

changed upon a software release, the easiest way to maintain this information is through a
script.

Managing the registry is straightforward. You can either create a small executable applica-
tion that you run from the startup task or create a script that will do the same thing. Running
it in a startup task is the same process you use to run AppCmd.exe. Although the registry keys
do not exist in the role by default, you should check before attempting to change them.

Windows Azure virtual machines are stateless, which means the local drives are not used
when actions are taken on what would normally be persisted information. Thus, saving
registry information will not be persisted the next time the role restarts. For the same reason,
other applications that you might need to have installed will not be available, either. Perhaps
you use a third-party log analysis tool or other application that needs to be installed rather
than simply copied over as part of an application deployment. These installations have to be
managed the same way as registry or IIS changes.

MORE INFO WINDOWS AZURE LIFE CYCLE

Channel 9, which has development-related videos and is part of MSDN, has a two-part
series on the Windows Azure life cycle at http://channel9.msdn.com/posts/Windows-Azure-
Jump-Start-03-Windows-Azure-Lifecycle-Part-1 and http://channel9.msdn.com/posts/
Windows-Azure-Jump-Start-04-Windows-Azure-Lifecycle-Part-2.

Identifying and implementing Start, Run, and Stop events
There are many conceptual similarities between the OnStart method and a startup task:

■■ They both have the same time-out. If you are not out of either function, the execution
of role startup continues.

■■ They both are executed again if the role is recycled.

■■ You can configure both to process ahead of the role.

Significant differences between the OnStart method and a startup task are these:

■■ A startup task runs in a different process, which enables it to be at a different level of
privilege than the primary point of entry. This is useful when you need to install soft-
ware or perform another task that requires a different privilege level.

■■ State can be shared between the OnStart method and the Run method because they
both are in the same application domain (AppDomain).

■■ A startup task can be configured as either a background or foreground task that runs
parallel with the role.

After all the configured startup tasks are completed, the Windows Azure role begins the
process of running. There are three major events you can override: OnStart, Run, and OnEnd.
Figure 1-7 shows the life cycle of the role.

http://channel9.msdn.com/posts/Windows-Azure-Jump-Start-03-Windows-Azure-Lifecycle-Part-1
http://channel9.msdn.com/posts/Windows-Azure-Jump-Start-03-Windows-Azure-Lifecycle-Part-1
http://channel9.msdn.com/posts/Windows-Azure-Jump-Start-04-Windows-Azure-Lifecycle-Part-2
http://channel9.msdn.com/posts/Windows-Azure-Jump-Start-04-Windows-Azure-Lifecycle-Part-2

 36 ChAPTER 1 Design the application architecture

FIGURE 1-7 Flow of Windows Azure processing

If you need to add functionality into the OnStart method, you should consider overriding
it, which enables you to run code that manages initialization needed to support your role. The
following code example shows how you can override the OnStart method in a worker role:

public class WorkerRole : RoleEntryPoint
{
 public override bool OnStart()
 {
 try
 {
 // Add initialization code here
 }
 catch (Exception e)
 {
 Trace.WriteLine("Exception during OnStart: " + e.ToString());
 // Take other action as needed.
 }
 return base.OnStart();
 }
}

When the OnStart method is called, Windows Azure sets the role status to Busy. When the
role is Busy, it is ignored by any external processes, such as the load balancer. The Boolean
value returned from the OnStart method determines whether Windows Azure continues the
startup process and calls the Run method. If OnStart returns true, Windows Azure assumes
the OnStart method was successful and allows the role to run. When OnStart returns false,
Windows Azure assumes a problem occurred and immediately stops the role instance.

In Windows Azure, the Run method is equivalent to the Main method in that it starts the
actual application. You do not typically need to override the Run method. If you do, make

 Objective 1.3: Design and implement the Windows Azure role life cycle ChAPTER 1 37

sure your code will indefinitely block because a return from the Run method means the ap-
plication has stopped running and that the process should continue through to shutdown.

After a value is returned from Run, Windows Azure raises the Stopping event and calls the
OnStop method. This ensures any necessary shutdown and cleanup processes are completed
before the role is stopped and made unavailable. Override the Run method to run code for
the life of the role instance. Because the Run method is void, your override of the Run method
can run in parallel with the default Run method if desired. You might want to do this if you
want to have background tasks running throughout the life of your application, such as auto-
mated file transfers or other processing. The following code example shows how to override
the Run method:

public override void Run()
{
 try
 {
 Trace.WriteLine("WorkerRole entrypoint called", "Information");
 while (true)
 {
 Thread.Sleep(10000);
 Trace.WriteLine("Working", "Information");
 }
 // Add code here that runs in the role instance
 }
 catch (Exception e)
 {
 Trace.WriteLine("Exception during Run: " + e.ToString());
 // Take other action as needed.
 }
}

A Web role can include initialization code in the ASP.NET Application_Start method instead
of the OnStart method. The Application_Start method is called after the OnStart method.

Override the OnStop method to run code when the role instance is stopped. The following
code example shows how to override the OnStop method:

public override void OnStop()
{
 try
 {
 // Add code here that runs when the role instance is to be stopped
 }
 catch (Exception e)
 {
 Trace.WriteLine("Exception during OnStop: " + e.ToString());
 // Take other action as needed.
 }
}

When you override the OnStop method, remember the hard limit of five minutes that
Windows Azure puts on all non-user-initiated shutdowns. This helps ensure that applications
that are forced to shut down do so cleanly, without affecting the capability of the role to

 38 ChAPTER 1 Design the application architecture

successfully end. The process is terminated after that period, so if your code has not com-
pleted within that time frame, it is terminated. Because of the hard stop, you need to make
sure that either your code can finish within that period or that it will not be affected if it does
not run to completion. The role will be stopped when the OnStop method finishes executing,
whether the code completes on its own or it reaches the five-minute limit.

MORE INFO WINDOWS AZURE WEB ROLE

You can read an overview of creating a hosted service for Windows Azure and get links to
other services in Windows Azure at http://msdn.microsoft.com/en-US/library/gg432976.
aspx.

Thought experiment
Investigating Windows Azure

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how the following architecture approach would perform. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your company wants to refactor its mission critical line-of-business (LOB) ap-
plication to make it more robust and scalable as well as to increase performance.
The CIO wants to investigate hosting the item in Windows Azure. Currently, the
application has a lot of maintenance processes running in the background, such as
processes to ensure that there is no orphaned data by running queries against the
database, processes that check website availability with an email sent if a website
is non-responsive; and a process that counts how many users logged in during the
previous hour and sends an email to the IT support staff.

1. Where in the Windows Azure process would it make the most sense to put the
orphaned data check?

2. Would it make more sense to put these processes in a Worker role or within the
Web role?

3. Assuming that these processes were all C# console programs, do you think it
would be difficult to migrate them for use in the cloud? Why or why not?

Objective summary
■■ Windows Azure is a cloud-based offering from Microsoft that enables companies and

developers to have access to a fully configurable, flexible hosting and services environ-
ment. It enables ASP.NET MVC developers to work in a Windows-based system, yet
offers the flexibility and scalability of a cloud-based service.

%20http://msdn.microsoft.com/en-US/library/gg432976.aspx

 Objective 1.3: Design and implement the Windows Azure role life cycle ChAPTER 1 39

■■ Azure is a stateless system, so any changes to the system whenever a role is run is not
persisted to the next run. Although many applications might not be affected by this
consideration, some will be, and consideration has to be given as how to manage this.
A traditional server in your data center has any additional needs configured and is
available every time that server is restarted. That is not the case for Windows Azure.

■■ A developer can give a role a set of startup tasks to be run, in a preconfigured order
as the system starts up. AppCmd.exe is a flexible Windows Azure-provided tool that
enables you to manage your startup tasks. These startup tasks can be batch files, con-
sole files, or batch files that run Windows PowerShell scripts. You can use the startup
tasks to install any additional software or third-party tool that you might need, make
changes to the registry, or handle any other specific needs to support your ASP.NET
MVC application.

■■ After the startup tasks are completed, the OnStart method is called. You can override
the OnStart method to implement other functionality. You need to make sure that you
return true from the method, or else the startup will stop with an error.

■■ After the OnStart method has returned, the process calls Run. Because Run is a void
method, you can use the override to have applications start that can run in parallel to
the main application.

■■ Upon shutdown, the process calls the OnStop method. This is a void method as well,
and would typically be used to close and clean up any ancillary processes you might
have started in the OnStart or Run methods.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. What occurs if an unhandled error is fired on a startup task?

A. The startup role consumes the error during its load; if there is no event handler
configured, it is set to Handled as the task completes.

B. The startup is cancelled and the role does not start.

C. The OnStop method automatically runs.

D. The startup task goes to the lowest security setting and continues to run, if
possible.

2. AppCmd.exe is an application that helps you work with which objects? (Choose all that
apply.)

A. Site

B. Users

C. Config

D. App

 40 ChAPTER 1 Design the application architecture

3. Which of the following are valid reasons for overriding the Run method? (Choose all
that apply.)

A. Creating and starting a messaging service that will work in parallel with the Web
role to manage queued messages

B. Creating an always-running service that periodically makes HTTP calls to other
websites to determine their availability

C. Managing error handling for the application

D. Starting and supporting a logging application for use by the Worker role

Objective 1.4: Configure state management

A software application needs to store information. For example, even remembering the infor-
mation typed into a text box requires some state to be maintained. In an ASP.NET MVC 4 ap-
plication, the browser takes care of that part of the application state. You need to determine
how you will maintain information from one screen to the next. The primary way of com-
munication over the Internet is HTTP, which is intended to be a stateless protocol. It doesn’t
know anything about the last request, by design, so any state you need to manage has to be
done in code. ASP.NET MVC 4 is designed to comply with the stateless nature of HTTP.

Not only do you need to decide what information you need but you also have to figure
out how you want to store this information. Because of the separation between the client and
server, you have some choices about where to store user-specific information. Other items
that matter are how many servers the application can be deployed on and whether informa-
tion will need to be shared across them. Performance can also be affected by your choice
because adding complexity to state management tends to make the state maintenance pro-
cess less responsive because you will be going from direct memory calls to calls into another
system, whether it is a database or another server.

This objective covers how to:
■■ Choose a state management mechanism (in-process and out of process state

management, ViewState)

■■ Plan for scalability

■■ Use cookies or local storage to maintain state

■■ Apply configuration settings in the Web.config file

■■ Implement sessionless state (for example, QueryString)

 Objective 1.4: Configure state management ChAPTER 1 41

Choosing a state management mechanism
Your first decision regarding state in ASP.NET MVC is not how you will manage it but whether
you will use state at all. HTTP is stateless for a reason, as is ASP.NET MVC 4. By not having to
keep an open connection to a requestor or not having to remember anything about a user’s
last connection, a web server can handle many more concurrent users. Imagine a Fortune 500
company’s intranet site with thousands of users using it concurrently. It would take dozens of
servers to manage the intranet if each user opened a connection and kept it open throughout
the day. The stateless nature of HTTP enables a server to support a connection only until it
handles a request and sends a response.

Web Forms supports multiple built-in ways to manage state and does its best to enable
state by default throughout the application. The main way that it does this is through the
concept of a view state. The ViewState is a construct that gathers pertinent information about
the controls on a page and stores them on the page in a hidden form field. This ensures that
every post request to the server includes the view state; in other words, a Web Forms applica-
tion has the capability to carry its state around the web application with it, storing informa-
tion as needed. This was done as a way to circumvent the concept of stateless as defined in
HTTP.

ASP.NET MVC, on the other hand, embraces the nature of a stateless application. All it
expects when a request comes in is enough information to give it context. This could be a
user and the object being manipulated, an identifier to what product should be displayed, or
an identifier to a stored shopping cart. Traditionally, a lot of this information is stored in the
session so that the application can pull it out as needed. However, much of the information in
a session might not be used on every request.

In an ASP.NET MVC 4 application, state information can be stored in the following
locations:

■■ Cache, which is a memory pool stored on the server and shared across users

■■ Session, which is stored on the server and unique for each user

■■ Cookies, which are stored on the client and passed with each HTTP request to the
server

■■ QueryString, which is passed as part of the complete URL string

■■ Context.Items, which is part of the HttpContext and lasts only the lifetime of that
request

■■ Profile, which is stored in a database and maintains information across multiple
sessions

The Cache object provides a broader scope than the other state management objects as
the data is available to all classes within the ASP.NET application. The Cache object enables
you to store key-value pairs that become accessible by any user or page in that application
domain. It is in-process in that although it goes across all users and pages, it is confined to
that particular application domain on an individual server. If you consider using Cache in a
web farm setting, you need to ensure that your server has its own copy of the cache. You

 42 ChAPTER 1 Design the application architecture

cannot assume that a value is cached simply because the value was used as part of the last
request; the request might be connecting to a different server that never called the value in
the first place.

The session was described in Section 1.2. When you are implementing session state, you
can use the default stores that come with ASP.NET or you can create your own session-store
provider. Inheriting the SessionStateStoreProviderBase class enables you to create your own
session provider to support situations in which the default session store is inadequate. If your
ASP.NET MVC application runs on an Oracle database, for example, there is no built-in sup-
port for managing state that is shared by multiple servers. If you want to store the session
information in a table in your Oracle database, you need to write a custom provider. Follow
these steps to configure the choice in IIS Manager:

1. Open IIS Manager and navigate to the level you want to manage.

2. In Features View, double-click Session State.

3. On the Session State page, in the Session State Mode Settings area, click Custom.

4. Click Apply in the Actions pane.

Cookies are small snippets of information stored on the client side and can persist across
sessions. They are individualized to a particular domain or subdomain, so with careful plan-
ning you can use cookies across a web farm. Cookie information is sent to the server and
returned from the server with every request. The sizing can have an impact and it is always
part of the HTTP request. A cookie is available in HttpContext.Request.Cookies when reading
and HttpContext.Response.Cookies when storing the value. A cookie can also be set with an
expiration date so that the data stored in the cookies can have a limited time span.

A query string is information that can be used by only one user. Its lifetime is by request
unless architected to be managed differently. The query string is appended to the URL, and
the interaction between the query string and the routing table is straightforward: The query
string is not part of the route data and thus is ignored by the routing engine. You can access
the data in the HttpContext.Request.QueryString[“attributeName”] on the server and from the
client side by parsing window.location.href. This information is also visible to the end user, so
care should be taken about what kind of information is sent. Putting unencrypted personal
or secure information in the query string means that, theoretically, anyone can see it because
it is not encrypted over HTTPS. However, ASP.NET MVC supports several encryption schemas
that enable you to encrypt data as necessary for inclusion into the query string that will make
the use of the query string more secure.

Context.Items contains information that is available only during a single request. Typically,
it is used to add information to the request through the use of an HTTP module in which you
can add some information to the request that will be available to the other modules and to
the handler. An example of this is authentication, which is handled by a module. It authenti-
cates the user of the request, and the results of the authentication request are made available
for use through the rest of the request-response process.

 Objective 1.4: Configure state management ChAPTER 1 43

Profile information is stored in a database by user name and can be accessed through
HttpContext.Profile[“miscellaneousData”]. The profile is part of the Membership and Roles
provider, and you need to configure a provider in the Web.config file. The use of a profile
means you have to be using the ASP.NET membership provider because it is based on infor-
mation stored in the membership.

As you approach your ASP.NET MVC application design and consider state management,
you have to evaluate the amount of data you want to keep and where you will keep it. If your
application requires most of its state to be accessed on the client side, ASP.NET MVC does not
offer any special advantages. But because state is almost always needed on the server to sup-
port business needs, the flexibility of ASP.NET MVC enables you to take advantage of most of
the state management processes described in this section.

If the state information is for display purposes only, you can maintain the information on
both the client and server. Caching state information on the client eliminates the need to send
it back as part of the rendered HTML with every call and increases performance. Keeping it
on the client side can also enable manipulation to occur without a server call until the process
finishes, such as the use of a wizard in which the application has a three- to four-step process
to gather data from a tabbed data entry form. Keeping this kind of state on the client side un-
til final submission will enhance the user experience by enhancing responsiveness. Keeping it
on the server side enables you to use ASP.NET MVC to work with the data; however, you have
to make the state part of the HTTP response, and you have to perform initial server requests
on all the state changes.

Although keeping state information on the client side has its advantages, there are also
some drawbacks. Consider when multiple individuals might be editing a particular item. As
more work and management is done on the client without communication back to the server,
the more likely collisions will occur when saving the data. You have to manage this risk in
the software, such as by locking an item after someone requests it for editing. You can also
ignore the risk, knowing that the last save always overwrites previous saves.

After you determine where the state will be used, you then need to determine how to
store it. If you will use the information mainly on the client, you should look at local stor-
age. (Local storage is covered in the “HTML5 Web Storage” section of this chapter.) If you will
maintain state on the server, you need to evaluate the scope that the state covers and the
size of the dataset you will maintain. If the scope of the state is limited to an individual user,
your solution will be different from where the scope is for the application. The status of the
application, from a system wellness point of view, would be a good candidate for having state
maintained in a location that is across the application, such as the Cache.

The size of the information to be maintained is another consideration because some of the
potential maintenance locations have size limitations. If you need to maintain a large amount
of information, cookies and query strings might not work for you. If, however, you need to
store a few snippets of information, perhaps 30 to 40 fields in a data entry form, cookies can
work well because the user doesn’t see the information. If visibility isn’t a concern, or is even
a bonus, the query string is a good choice. The session is the most commonly used method

 44 ChAPTER 1 Design the application architecture

for storing information between requests and has many built-in facilities for managing it from
both a server administrative perspective and when developing the application. Although it
can’t handle an unlimited amount of data by default, it can be configured to store informa-
tion in an SQL database, which allows more flexibility for the amount of data you might
need to keep track of while maintaining state. It also has a relatively small footprint when the
information is going through the request-response process because it does not transfer the
information, just a reference ID so the server can find the data as needed.

Planning for scalability
ASP.NET MVC has several characteristics that make it a valid choice when concerned with the
scalability of your application. Its very nature enables the creation of clean and simple HTML
without additional and unused information. This is especially noticeable when comparing the
typical ASP.NET MVC output to ASP.NET Web Forms pages output. This gives additional op-
portunity for load-balancer caching and other downstream scalability support. It also means
there will be less time processing the page and less bandwidth used to transfer the page to
the client, all of which will help with scalability concerns.

When planning for scalability, you need to understand what kind of state information you
will need to maintain. An e-commerce application might need to maintain only a few pieces
of information. Other solutions, however, might need to maintain hundreds of pieces of infor-
mation in a complicated set of object graphs. Each of these needs indicates a different solu-
tion. At a minimum, you should assume you will need minimal scaling and plan accordingly.

NOTE ACHIEVING SCALABILITY

In the web world, scalability is usually achieved by adding additional servers across the
breadth of the web application layer so that each server handles less of the overall de-
mand. Although this enables your application to support more users, it can also cause a lot
of trouble if you haven’t correctly architected for the ability. The default settings for state
management assume a one-to-one relationship between the client and the server and will
lead to an inability to manage scalability and reliability as required.

You can use an OutProc, a StateServer, or a SQLServer session or a sessionless solution.

As long as all servers in a web farm are configured to use the same state server or SQL
Server, using an OutProc session to access state information stored in a session should get
consistent responses, regardless of the server calling the information and serving the page.

You can manage a sessionless state solution in several ways. The key determination is
where the state information will be stored, whether on the client side or on the server side.
Storing it on the client and sending the information to the server as needed is one solution.
Additional coding is required on the client side, but going sessionless while still needing state
implies extra coding somewhere. You also have to check browser versions. A client-side state
storage system requires the use of local storage or cookies, and some browser versions do
not support all the client-side storage mechanisms.

 Objective 1.4: Configure state management ChAPTER 1 45

An example of using sessionless connectivity while maintaining state on the server is
through the use of a profile. It implies the user has logged in to the system and is recognized
as authenticated. This enables you to piggyback off the HTTP Authorization header to get the
information you need for state management. If you use a different approach, you still have to
pass some kind of identifier back and forth between requests for the server to properly iden-
tify the requestor. The identifier can be set as part of the query string, as part of the URL, as a
hidden input value on the form, or as a cookie value; and you must code both the client and
server correctly. When replacing the session framework, you also have to ensure that your
identifier is guaranteed to be unique across all the servers in the web farm.

ASP.NET MVC 4 offers many features that support scalability. ASP.NET MVC 4 is also inde-
pendent of any of the mechanisms you might select to maintain session. It offers sessionless
support by default through the use of routing and model capture, and you can split the vari-
ous layers into their separate components and put the models on separate servers from the
controllers. Section 1.2 offers additional information on considerations on how ASP.NET MVC
supports scalability.

Using cookies or local storage to maintain state
Cookies and HTML5 Web Storage are related. Cookies are the predecessor to the Web Stor-
age API. As mentioned previously, cookies are sent back and forth with every request scoped
to that cookie. If the information will be used only on the client side, extra bandwidth is
consumed by passing cookies. Cookies are also limited in size to 4 kilobytes (KB). For those
instances where the data can be kept only on the client during page load, HTML5 introduced
the Web Storage API. The purpose of the API is to keep easily retrievable JavaScript objects in
the browser memory for use on client-side operations.

Cookies
When you are considering the structure of your ASP.NET MVC application, you might deter-
mine that some information needs to be used by multiple requests. Ideally, this information
would fit into the model you are using on your strongly-typed view. However, if multiple
requests are necessary, it is likely the information is independent of the model being trans-
ferred. This gives you two options, neither of which is ideal.

Create a base class for all your models that contain this information so it is available as
part of every model you are using in a view, or find some other way to store and transfer this
information. This is where cookies come into play. Because of the stateless nature of ASP.NET
MVC, you either have to store this information on the server or transfer it with every request,
which is what cookies were designed to do. You don’t have to provide additional code to use
cookies—they are a standard part of server/client communication. An additional reason to
use a cookie in this case is if you want the value to be available on the client side or if you
want it to persist between site visits. Any site information you might need persisted on the cli-
ent side, such as login credentials when the user selects Remember Me, will have to be saved
as a cookie.

 46 ChAPTER 1 Design the application architecture

HTML5 Web Storage
HTML5 Web Storage can choose to use either the sessionStorage or localStorage object. Each
option provides a different feature set. The sessionStorage scope enables you to use set and
get calls on different pages as long as the pages are from the same origin URL. Objects in ses-
sionStorage persist as long as the browser window (or tab) is not closed. localStorage provides
another option that increases scope because localStorage’s values persist beyond window and
browser lifetimes, and values are shared across every window or tab communicating with the
same origin URL.

The HTML5 Web Storage API also allows for events. If a user has two windows or tabs
open—for example, a product listing page and a product detail page—each page can be
notified when information is added or changed in localStorage if the pages have attached an
event listener. Although none of this information will be sent to the server automatically, you
can place some values into a page variable and send them to the server. Every other state
management mechanism is concerned about maintaining state between the client and the
server. HTML5 Web Storage API is concerned only with maintaining state information on the
client. If you want state information to be used server-side, you have to write the code to
send it back as needed.

Browser compatibility is an issue, however. Not all browsers can handle the HTML func-
tionality involved with the use of localStorage and sessionStorage. Make sure you have
browser check code in place. You can put this browser check code on the server as well
as on the client. If you perform the check on the server, such as by using System.Web.
HttpBrowserCapabilities browser = Request.Browser, you can send back a different view based
on the browser version. You could have one view based on HTML5 and the other not using
HTML5, and send the appropriate one back to the client. An example of how you can check
for localStorage in JavaScript is:

if(window.localStorage){window.localStorage.SetItem('keyName','valueToUse');}

You can also use this code:

window.localStorage.keyName = 'valueToUse';

This code sets an event listener:

window.AddEventListener('storage', displayStorageEvent, true);

The event listener code pertains to any storage event, either localStorage or sessionStorage,
and that it should call the function displayStorageEvent. The eventListener fires when there is
any change in storage, either localStorage or sessionStorage.

ASP.NET MVC 4 does not offer specific methods for handling local storage. However, the
jQuery library that ships with Visual Studio is an excellent tool for handling the client-side
scripting required to manage localStorage access. Although ASP.NET MVC 4 does offer good
cookie support, there are a few limitations in that the maximum cookie size is 4 KB, and that
this information is transmitted to and from the server with each request-response.

 Objective 1.4: Configure state management ChAPTER 1 47

Applying configuration settings in the Web.config file
Many choices related to state management can be maintained through the primary Web.
config file in the root directory of the project. Sessions can be enabled in the Web.config
file through the use of a <sessionState> node. The following is an example of an InProc
configuration:

<system.web>
 <sessionState mode="InProc" cookieless="false" timeout="20"
 sqlConnectionString="data
 source=127.0.0.1;Trusted_Connection=yes"
 stateConnectionString="tcpip=127.0.0.1:42424"
 />
</system.web>

A StateServer configuration for configuring sessionState is as follows:

<system.web>
 <sessionState mode="StateServer"
 stateConnectionString="192.168.1.103:42424" />
</system.web>

You can also configure the provider if you are going to use the ASP.NET Membership
provider:

<profile defaultprovider="DefaultProfileProvider"
 inherit="MyApplication.Models.CustomProfile"/>

All other session mechanisms are either always on or available only on the client side.
These configuration items can also be added at a lower part of the configuration stack includ-
ing the Machine.config file, which is the lowest configuration file in the stack and applies to all
websites on that server.

There might be other necessary information to support your state management process
that could be stored in the Web.config file. If you have written a custom state management
mechanism, you might need to store supporting items in the configuration file, such as con-
nection strings, service endpoints, or special identifiers. You might also need to configure
HTTP modules or HTTP handlers in the configuration file if that is how your custom state is
handled. There is more information on the configuration and usage of HTTP modules and
handlers in Section 1.7 later in this chapter.

MORE INFO ASP.NET CONFIGURATION

Microsoft Support has an informative set of articles on the details of configuration within
the ASP.NET system at http://support.microsoft.com/kb/307626.

http://support.microsoft.com/kb/307626

 48 ChAPTER 1 Design the application architecture

Implementing sessionless state
Sessionless state is a way to maintain state without supporting any session modes. There are
several considerations that have to be taken into account when planning to implement ses-
sionless state. The first is that when state-type information is necessary in your application,
you have to pass some kind of unique identifier from one server call to the next so that the
application can recognize the connection. Performance is another consideration if you will be
managing state-type information in custom functionality because the current session man-
agement technology has been greatly optimized.

Determining when to use sessionless state in your ASP.NET MVC application requires a
deeper look into the mechanics of how sessions interact with the controller. The design of
session state, as implemented in ASP.NET, implies that only one request from a particular
user’s session occurs at a time. This means that if you have a page that includes multiple,
independent AJAX callbacks happening at once, these calls will be processed in serial fashion
on the server. If your application is sessionless, it can also handle AJAX callbacks in parallel
rather than requiring that the work be performed in serial, which enables you to perform
multiple, simultaneous AJAX calls from the client. If your application will be best-suited by
the use of extensive AJAX calls on the client to continuously work with sections of your page
content, and you need state, you would likely be best served to not use session. Requests that
use session where there is an overlap in the server calls will be queued up and responded to
one at a time. This can affect user perception of performance, especially during the initial set
of calls when a page is first rendered, and all the AJAX calls start at the same time. In these
situations, you should either go sessionless or ensure that the initial response to the client
does not cause simultaneous AJAX calls upon the load of the page.

If you determine that your application will be best served by sessionless state, you need to
determine how you will pass the unique identifier from request to request. There are a lot of
mechanisms available in ASP.NET MVC 4 to help you do this:

■■ Create the identifier on the server the first time the user visits the site and continue to
pass this information from request to request.

■■ Use a hidden form field to store and pass the information from one request to the
next. There is some risk in this because a careless developer could forget to add the
value, and you will lose your ability to maintain state.

■■ Because the Razor view engine supports the concept of a layout or master page, you
can script the unique identifier storage in that area so that it will render on every page.

■■ Add JavaScript functionality to store the unique identifier on the client side in a ses-
sionStorage or localStorage and make sure that it is sent back to the server when
needed. That way, you don’t have to worry about losing the information; you just need
to make sure that you include it when necessary.

 Objective 1.4: Configure state management ChAPTER 1 49

■■ Add the unique identifier to the query string so that it is always available whenever a
Request object available.

■■ Add the unique identifier to the URL and ensure that your routing table has the value
mapped accordingly.

Finally, consider whether you need your application to maintain any special state informa-
tion. Do you really need to store all of the information that’s automatically put into state,
whether using session or going sessionless? User information, for example, is already available
on the HTTP request, so there isn’t necessarily any need for that to be in session. Many deci-
sions you make about what to put in session or the state model is based on whether you’ll
use the information in the next request. Does that need to be stored in state or will the use of
caching (covered in Section 1.5) eliminate the need for the session altogether?

EXAM TIP

ASP.NET MVC was designed to support the stateless nature of HTTP. The use of sessionless
state is a natural addendum to that approach because it minimizes the overhead added by
the server when managing state. You should be comfortable with the concept of maintain-
ing state information within your application and understand the potential ramifications of
each solution, including the risks of passing the state identifier between the client and the
server, such as when using cookies and query strings.

Thought experiment
Designing an architecture for a process management system

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You are an architect for a Fortune 1000 company that wants to create an internal
task and process management system. The concept of the system is to give visibility
to daily tasks that are performed throughout the company. Every employee is ex-
pected to use the system and be diligent about inputting tasks and to manage the
statuses of the tasks as they move through the process. Your team was instructed
to design an architecture that would support hundreds of simultaneous users. You
have been given five physical servers and an old load balancer to run the system.
You also have several licenses for SQL Server.

1. How would you provision these servers for maximum reliability, safety, and
performance?

2. How would you manage the state in this situation?

3. If two servers shut down at the same time because of hardware issues, and the
problem took several days to resolve, how would your application be affected?

 50 ChAPTER 1 Design the application architecture

Objective summary
■■ State management can be an important part of a software application. It is compli-

cated in web applications because, by definition, HTTP is a stateless transfer protocol.
ASP.NET MVC 4 offers multiple ways to maintain state. Decisions about maintaining
state need to take into account considerations such as whether state information will
be just used on the server or in the client as well, latency, and amount of data that is
being stored.

■■ The most common way to maintain state is through a session. The session can be con-
figured to be stored in a SQL Server or separate state server and can also be config-
ured to put the session ID in either a cookie or as part of the query string.

■■ The query string is also a place where you can put a limited amount of information to
pass back and forth to the server. The information is not secure, however, and is not
unlimited because there are size limits on requested URLs. The query string is easy to
access from ASP.NET MVC 4.

■■ There is also the capability to completely store state information on the client side
if that best serves the application requirements using HTML5 Web Storage API. You
need to ensure that the browser adequately handles HTML5, but. ASP.NET MVC 4 does
not have any default handlers to work with the client-side information other than the
jQuery library.

■■ Scalability is a major concern when determining how best to manage state. Creating
a scaleable architecture will immediately rule out some of the available choices, as
having an indeterminate server process the request is problematic because that server
might not have access to the state information if it is stored on a single server. ASP.NET
MVC 4 supports stateless protocols for scalability as well.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You are designing an ASP.NET MVC 4 application that uses an Oracle database for
persistence. What session configuration choices enable you to deploy your application
on a web farm? (Choose all that apply.)

A. InProc

B. SQLServer

C. StateServer

D. Custom session provider

 Objective 1.5: Design a caching strategy ChAPTER 1 51

2. You are creating an ASP.NET MVC 4 web application that will be accessed by a large
number of traditional consumers. If you need to be able to access state information on
the client side in JavaScript/jQuery, where can you store it? (Choose all that apply.)

A. localStorage

B. QueryString

C. ViewState

D. Cookies

3. As you design a sessionless state management system, what do you need to ensure
that your application manages? (Choose all that apply.)

A. Access to the state management system, whether it is a database, a web service, or
other type of system

B. The HTTP headers

C. The session setting within the Web.config file

D. An identifier used by the server to identify the request

Objective 1.5: Design a caching strategy

Caching is a basic application development strategy to help improve performance. You have
likely found that a significant amount of time is spent accessing data. Although it might only
be milliseconds at a time, it adds up and can have a dramatic impact on overall performance.
Caching is a mechanism for storing frequently used information and within high-speed
memory. This seemingly small change will reduce access time and increase response time.

As in managing state, there are several places in which you can implement data caching,
and each has different ramifications regarding ease of implementation, flexibility, and perfor-
mance. For example, relatively static data can be marked so that multiple requests will return
the same rendered page and forego the expense incurred by re-creating the page content.
Data caching provides much of the same advantage by caching information at the data ac-
cess layer and removing the need for some of the calls into the persistence system.

This objective covers how to:
■■ Implement page output caching (performance oriented)

■■ Implement data caching

■■ Implement application caching

■■ Implement HTTP caching

 52 ChAPTER 1 Design the application architecture

Implementing page output caching
Caching is an important part of developing highly scalable web applications. The web
browser can cache any HTTP GET request for a predefined period, which means the next time
that user requests the same URL during that predefined period, the browser does not call the
server but instead loads the page from the local browser cache. ASP.NET MVC enables you to
set the predefined period by using an action filter:

[OutputCache(Duration=120, VaryByParam="Name", Location="ServerAndClient")]
Public ActionResult Index()
{
 Return View("Index",myData);
}

This code sets the response headers so the browser will know to go to its local cache for
the next 120 seconds. The Duration setting represents the time, in seconds, that the page
output should be cached. Due to the Location setting in the attribute, any other browser call
going to this URL will also get this same server-cached output. Imagine how much work this
could remove from a heavily used server if it had to create page content only once every two
minutes rather than several thousand times per minute.

There might be times when you want to disable caching, which you can do by using
Duration=0. Other most commonly used options available in the OutputCacheAttribute are
VaryByParam, Location, and NoStore. VaryByParam stores a different version of the output
based on a different parameter collection that was sent in for the action call. The Location
qualifier gives direction to where caching takes place; NoStore is used when caching should
be switched off. The default value is Any, but Client, Downstream, Server, and ServerAndClient
are other options available when setting the cache location.

Donut caching
The OutputCache attribute works well for caching an entire page. You might need a more
flexible approach and to cache parts of the page content while continuing to generate other
parts of the page. For example, part of the starting page for an online store includes user
information. You want to cache the top and bottom toolbars, but you do not want to cache
any personalization areas. OutputCache does not work in this case with the default setup, but
donut caching is a good solution. Donut caching is a server-side technology that caches an
entire page other than the pieces of dynamic content—the donut holes.

Although ASP.NET Web Forms supports donut caching through the Substitution control,
the Razor Engine does not offer support for donut caching. However, because ASP.NET MVC
4 is built on top of ASP.NET, you can still use the Substitution APIs through the HttpResponse.
WriteSubstitution method by creating an MVC helper. This enables you to cache an entire
page on the server except for a particular reference.

 Objective 1.5: Design a caching strategy ChAPTER 1 53

Donut hole caching
Where donut caching caches the entire page other than a few sections, donut hole caching
takes the other approach and caches only select portions of the page while keeping the rest
of the page dynamic. Donut hole caching is also different from donut caching because it is
well supported in ASP.NET MVC by using child actions. To perform donut hole caching, create
the partial view that will be cached. You also need to add to add the child action that will
display the view:

[ChildActionOnly]
[OutputCache(Duration=60)]
public ActionResult ProductsChildAction()
{
 // Fetch products from the database and
 // pass it to the child view via its ViewBag
 ViewBag.Products = Model.GetProducts();

 return View();
}

Finally, you need to put the reference into the parent view using the Razor command
@Html.Action(“ProductsChildAction”). Using this approach will enable the server to generate
this part of your page content no more than once per minute due to the Duration=60 setting
in the attribute.

You can also assign the caching attribute to a controller. Setting OutputCache at a control-
ler level automatically configures all actions that accept a GET request to use the same cach-
ing settings as if the attribute were put on the individual actions. The caching at a controller
level does not affect any actions that accept POST, PUT, or DELETE request types.

Distribution caching
In general, the output caching strategies just discussed work when there is a connection
between the client and one server. If you think about a web farm, or where availability re-
quirements demand flexible session switchover, you will find that you lose many of the gains
as each server would have to rerun the page to add it to their local cache. To get past this
issue, you need the ability to create data on one application server and share it with the other
servers. This is called distribution caching and is the most complex of all caching techniques.
A solution for this is Windows Server AppFabric. By providing a set of extensions to Windows
Server, AppFabric enables developers to create faster, more scalable, and more manageable
applications. Windows Server AppFabric includes AppFabric Caching Services, which increases
responsiveness to frequently used information, including session data.

The main component of AppFabric Caching Services is a cache client that communicates
with a cluster of cache servers. Your ASP.NET MVC 4 application is an example of a cache
client. Each cache server your application communicates with runs an instance of AppFabric
Caching Services, and each maintains a portion of the cached data. AppFabric Caching Ser-
vices also provides software that can enable each client to keep its own local cache.

 54 ChAPTER 1 Design the application architecture

When an application needs some information, it initially calls its own local store. If the in-
formation is not there, the client asks the cache cluster. If the cache cluster does not have the
information, the application must go to the original data source and request the information.
All the information in the various caches, local and cluster, is stored under a unique name. The
client does not care which physical server holds the information, only whether it can be found
in the cache. The process of looking for the value is transparent to the client. It just knows to
ask for an item, and AppFabric Caching Services handles the rest of the process.

The item being cached in AppFabric Caching Services can be any serialized .NET object. It
is also controlled by the client application. The cached version of the object can be deleted or
updated as the application requires. This gives you a chance to fulfill any custom data valida-
tion requirements for your application; for example, if object A expires or changes, all versions
of object B have to expire as well.

Cached items are also maintained by the cache, which can expire items based on a
configurable timeout or to delete items to make room for more commonly accessed items.
Timeouts affect both local and cluster caches, and can be coordinated so that timeouts can
synchronize between the local caches and the server. Timeout synchronization is especially
important when multiple servers (a web farm) handle web requests because each application
server can have its own local cache. Synchronization can add a lot of network traffic and can
raise some security concerns as well because this data is being exchanged in the background
between the caches. To mitigate the security risk, all data sent between the clients and servers
can be digitally signed and encrypted. Access to the cache can also be limited by the user. It is
important that each of the cache clients trust each other and the cache cluster because they
can all access the same data.

One particular benefit of using AppFabric is that the service enables session maintenance.
Setting a configuration item enables the Session object to be stored in the cache without
any additional programmatic support required. The use of AppFabric in this manner enables
another OutProc session storage type and replaces the need to set up a shared state server or
SQL Server provider to manage shared sessions throughout a web farm.

The throughput and responsiveness of a web application are major concerns because they
directly affect an application’s usability. Adding distributed caching to your ASP.NET MVC
application, especially if you are already deploying your application in a distributed environ-
ment, could create measureable performance gains. Windows Azure AppFabric can add a
shared caching service that will be available throughout your deployed system. The caching
will not add any performance gain on the first server’s initial call for a piece of data, but it will
enhance the responsiveness of each additional request for that same piece of data from all
servers connected to that cache cluster.

Implementing data caching
Another form of caching that can occur at the server side is by using the new .NET 4 Caching
Framework. The default implementation uses the ObjectCache and MemoryCache objects that
are within the System.Runtime.Caching assembly. When you create your cache, you can set

 Objective 1.5: Design a caching strategy ChAPTER 1 55

an expiration period just as in output caching. Don’t forget that this cache is used by all users
on the server. Generally, you create a CacheProvider class that implements the ICacheProvider
interface, used as an intermediate layer between the business layer and the data access layer.
Figure 1-8 illustrates all the layers for caching.

FIGURE 1-8 Fully cached request route

Data caching is an important form of caching that can decrease the load on your database
and increase application responsiveness. As you plan your ASP.NET MVC application, you
should consider the demand you will be putting on your database and the amount of static
database queries your application might require. Static queries, in which the data is unlikely
to change often, are excellent candidates for implementing data caching. Best practices in
ASP.NET MVC 4 would put the calls to the caching service in the model because the model
contains the primary business logic. Designing and implementing a caching subsystem will
add additional work during your applications development cycle, but if designed correctly
can significantly improve usability. Introducing a caching layer on top of the persistence layer,
for example, can improve performance if your application requeries the same data.

MORE INFO .NET CACHING FRAMEWORK

There is an informative set of articles on MSDN about caching in .NET Framework applica-
tions that includes data caching, services caching, output caching, and how you can extend
caching at http://msdn.microsoft.com/en-us/library/dd997357(v=VS.110).aspx.

http://msdn.microsoft.com/en-us/library/dd997357%28v%3DVS.110%29.aspx

 56 ChAPTER 1 Design the application architecture

Implementing application caching
The HTML5 specification defines an Application Cache API (AppCache) to give developers
access to the local browser cache. To enable the application cache in an application, you must
create the application cache manifest, reference the manifest, and transfer the manifest to the
client.

Create the application cache manifest
A simple version of the application cache manifest is provided in the following example. The
key sections are CACHE, NETWORK, and FALLBACK. The CACHE represents the resources that
should be cached on the client, NETWORK defines those items that are never cached, and
FALLBACK defines the resources that should be returned if the corresponding resources are
not found.

CACHE MANIFEST

 # Cached entries.
 CACHE:
 /favicon.ico
 default.aspx
 site.css
 images/logo.jpg
 scripts/application.js

 # Resources that are "always" fetched from the server.
 NETWORK:
 login.asmx

 FALLBACK:
 button.png offline-button.png

Reference the manifest
You reference the manifest by defining the manifest attribute on the <html> tag from within
the Layout.cshtml or Master.Page file:

<html manifest="site.manifest">

 Objective 1.5: Design a caching strategy ChAPTER 1 57

Transfer the manifest
The main thing to remember about transferring the manifest is to set the correct MIME-
type, which is “text/cache-manifest”. If you are doing this through code, use Response.
ContentType=”text/cache-manifest”. Without this MIME-type specified, the browser won’t
recognize or be able to use the file. When the application cache is enabled for the applica-
tion, the browser will fetch resource information in only three cases:

■■ When the user clears the cache

■■ When there is any change in the manifest file

■■ When the cache is updated programmatically via JavaScript

Implementing HTTP caching
HTTP is generally used in distributed systems, especially the Internet. The HTTP protocol in-
cludes a set of elements that are designed to help caching. Cache correctness is one of those
elements. An HTTP server must respond to a request with the most up-to-date response held
by the cache that is equivalent to the source server; meets the freshness case; or is an appro-
priate 304 (Not Modified), 305 (Proxy Redirect), or error (4xx or 5xx) response message.

Another element is the expiration model that provides a server-specified or heuristic expi-
ration, and the HTTP protocol has multiple rules around calculating expiration. The protocol
also has a validation model in which the client sends information to the server so the server
can detect whether any changes need to be returned. Actually, the server sends a special
status code, usually a 304 (Not Modified) response without an entity-body, when there has
been no change in the output; otherwise, the server transmits the full response including the
entire body. This gives the server the chance to respond with a minimal message if the valida-
tor matches; a chance to stop a full round trip requery by sending the correct information.
With HTTP caching, everything happens automatically as part of the request stack and there
is little programmatic impact.

 58 ChAPTER 1 Design the application architecture

Thought experiment
Improving the performance of an inventory management system

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would refactor an existing application. You can find answers
to these questions in the “Answers” section at the end of this chapter.

You are working at a company that has a custom inventory management system
that has been used for years. Company personnel recently completed an overhaul
of the web-based application that provides access into the system. Although they
are comfortable with the look, feel, and usability of the application, they are un-
happy with the performance, even after updating all their users to the most recent
hardware equipment and software. They find that every interaction with the server
is taking seconds. At times, this renders the application almost unusable. When you
look into the application, you see that all the models in the MVC structure do calls
into the database whenever they need data, even down to the level of the user’s
name, shift, and building, which are calls into different tables and displayed on
every page the user visits.

1. As you look into the system more carefully, you see 15 calls into the database for
every time a page is rendered that is strictly to provide basically static informa-
tion to the page. How could you use caching to improve this?

2. After you have eliminated the redundant calls, you see that the application
makes calls into the database for every request to get supporting information
such as colors, product sizes, and box sizes. The application gets the complete
list from the database every time and then gets the necessary size, color, and so
on from that longer listing. How could caching be used to help this process?

Objective summary
■■ Page output caching is a shared strategy on clients and servers. Types of page output

caching include full page caching and partial page caching. Donut caching and donut
hole caching are types of partial page caching. Donut caching caches the majority of
the page, enabling some dynamic content. Donut hole caching enables a majority of
the page to be dynamic and caches some content.

■■ Data caching is a server-side technique that enables you to put an intermediate step
between your business logic and the database. Data caching provides a way to reuse
data and enhance performance by making database calls only when the cache is invali-
dated or expired.

■■ Windows AppFabric is an example of a third-party tool that enables you to create cach-
ing content on one server and share it across multiple servers in a web farm. Windows

 Objective 1.5: Design a caching strategy ChAPTER 1 59

AppFabric is a set of services built upon Windows Server that manages distributed cach-
ing. It can also be configured to manage the session in an ASP.NET MVC 4 application.

■■ Application caching is an HTML5 feature that enables you to create a caching manifest
that describes the settings across a website or for a page.

■■ HTTP caching is a caching mechanism built into the HTTP protocol that handles its
own version of expiration calculation and uses it to determine the response to send to
the client.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. You are designing a work order management application for a mid-size repair com-
pany. The application will be used by repair personnel in the field on their laptops with
wireless phone connections. The connections are slow, and the laptops are several
years out of date. There will never be more than 15 users at any one time, and rarely
more than 2 concurrent users. What kind of caching will give the repair personnel a
better user experience? (Choose all that apply.)

A. Page output caching

B. Application caching

C. Data caching

D. HTTP caching

2. You are creating a solution in which the majority of the application is dynamic, but
some areas can be cached for a long time. What kind of approach would you take?
(Choose all that apply.)

A. Data caching

B. Donut hole caching

C. Donut caching

D. Windows AppFabric caching

3. You are adding a reporting vertical to an enterprise application. Many of the reports
will be run every morning by a set of users. Some of the reports will be identical as
every member of a team will get the same report sometime in the morning. What kind
of caching will provide an improvement in performance? (Choose all that apply.)

A. Data caching

B. Page output caching with a duration of two minutes

C. Page output caching with a duration of four hours

D. Windows AppFabric caching

 60 ChAPTER 1 Design the application architecture

Objective 1.6: Design and implement a WebSocket
strategy

HTML5 WebSockets provide a new way to communicate with the server. Traditional commu-
nications by a webpage is request-response: the browser sends a request for information to
the server, which then sends back a response. Each request and response uses a new con-
nection, and that connection is closed after the response is returned to the client. As you can
imagine, this is a poorly performing method because of the time spent creating and closing
each connection. Also, such communication cannot be two way because both client and
server cannot talk simultaneously, and the server does not easily maintain a connection to the
client.

WebSockets uses a different approach in that it provides duplex, or two-way, communi-
cation between the server and client. Both parties can communicate at the same time, as in
chatting or instant messaging clients. It also limits connection creation and disposal so that it
occurs only once rather than with every message. It is essentially a TCP-based protocol that
enables two-way communication to occur over a single connection.

This objective covers how to:
■■ Read and write string and binary data asynchronously (long-running data

transfers)

■■ Choose a connection loss strategy

■■ Decide a strategy for when to use WebSockets

Reading and writing string and binary data
There are several different ways to communicate between the client and server when there
are multiple potentially unnecessary calls to the server. HTTP polling is an ongoing conversa-
tion between a client and server in which the client appears to have a constant connection
with the server based on a series of standard AJAX requests. As part of this technique, you
use a JavaScript timer to send AJAX requests at regularly scheduled times. The browser cre-
ates a new request immediately after the previous response is received. This is a fault-tolerant
solution, but it is very bandwidth- and server-usage intensive, especially considering most
requests will return little or no data.

HTTP long polling is a server-side technique in which the client makes an AJAX request
to the server to retrieve data. The server keeps the request open until it has data to return.
Long polling is done to make a request in anticipation of a possible future server event.
Instead of immediately returning a response, the server blocks the incoming request until
the data comes up or the connection times out. This isn’t a naturally occurring process in
HTTP because the request-response model was not designed for it, and thus it is not a totally

 Objective 1.6: Design and implement a WebSocket strategy ChAPTER 1 61

reliable solution. Broken connections are common, so handling them is a normal part of
the implementation.

WebSockets technology is a new approach to supporting duplex communication. Web-
Sockets acts as a replacement for HTTP in that it takes over the communications protocol be-
tween the client and the server for a particular connection. This means you should not use it
as the primary means of communication between a client and server. Instead, use WebSock-
ets to support some discrete functionality that needs two-way, long-running communication
without having to support the request-response process. You will find that WebSockets work
best when supporting a part of your page you designed as a partial page or are when using
some kind of donut or donut hole caching.

In addition, remember that many users still use a browser that is not fully HTML5-
compliant, so you have to plan in advance to manage it. System.Web.HttpBrowserCapabilities
enables you to query a browser’s version to determine whether it supports HTML5. Because
the initial connection request has to come from the client, it might make more sense to put
the browser check there: If the browser does not handle HTML5, the browser will have to do
the work to replace the WebSocket functionality. In that case, you could include regularly
timed AJAX calls, such as every 60 seconds, to substitute for the WebSocket functionality.
Unless all your users are running a current browser that supports WebSockets, you need to
support multiple connection paths or not offer WebSockets to users.

There are two parts to working with WebSockets: the client side and the server side. A
WebSocket-based communication generally involves three steps:

1. Establishing the connection between both sides with a hand shake

2. Requesting that WebSocket server start to listen for communication

3. Transferring data

When a WebSocket is requested, the browser first opens an HTTP connection to the server.
The browser then sends an upgrade request to convert to a WebSocket, as shown in Listing
1-6. If the upgrade is accepted and processed, and the handshake is completed, all commu-
nication occurs over a single TCP socket. Each message is also smaller because there are no
extra headers after the handshake.

LISTING 1-6 Example of a WebSocket handshake upgrade request and upgrade response
WebSocket handshake upgrade request

GET /mychat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: hy6T&Ui8trDRGY5REWe4r5==
Sec-WebSocket-Protocol: chat
Sec-WebSocket-Version: 13
Origin: http://example.com

 62 ChAPTER 1 Design the application architecture

WebSocket handshake upgrade response

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: Ju6Tr4Ewed0p9Uyt6jNbgFD5t6=
Sec-WebSocket-Protocol: chat

Listing 1-7 includes jQuery code for creating a client-side WebSocket connection.

LISTING 1-7 jQuery code for a client-side WebSocket connection

var socket;
$(document).ready(function () {
 socket = new WebSocket("ws://localhost:1046/socket/handle");
 socket.addEventListener("open", function (evnt) {
 $("#display").append('connection');}, false);
 socket.addEventListener("message", function (evnt) {
 $("#display ").append(evnt.data);}, false);
 socket.addEventListener("error", function (evnt) {
 $("#display ").append('unexpected error.');}, false);
 ...

});
Or using straight method calls:

function connect(){
 try{
 var socket;
 var host = "ws://localhost:8000/socket/server/start";
 var socket = new WebSocket(host);
 message('<p class="event">Socket Status: '+socket.readyState);
 socket.onopen = function(){
 message('<p class="event">Socket Status: '+socket.readyState+' (open)');
 }
 socket.onmessage = function(msg){
 message('<p class="message">Received: '+msg.data);
 }
 socket.onclose = function(){
 message('<p class="event">Socket Status: '+socket.readyState+' (Closed)');
 }
 } catch(exception){
 message('<p>Error'+exception);
 }
}

Support for the WebSockets protocol was established with the release of ASP.NET 4.5 and
IIS 8. The inclusion in ASP.NET 4.5 makes WebSockets available for use in your ASP.NET MVC 4
applications. ASP.NET 4.5 enables developers to manage asynchronous reading and writing of
data, both binary and string, through a managed API by using a WebSockets object. This new
namespace, System.Web.WebSockets, contains the necessary functionality to work with the
WebSocket protocol.

When you are designing an application to work with WebSockets, you must determine
how you will manage the connection. Typically, it should be done in either an HTTP handler

 Objective 1.6: Design and implement a WebSocket strategy ChAPTER 1 63

or an HTTP module. You must implement the process of accepting the upgrade request on an
HTTP GET and upgrading it to a WebSockets connection. This is done through implementing
a method such as the following:

HttpContext.Current.AcceptWebSocketRequest(Func<AspNetWebSocketContext,
 Task>)

You need to use a delegate when implementing this acceptance because ASP.NET backs
up the request that is part of the current context before it calls the delegate. You can think of
this approach as being similar to managing delegates in threading. After a successful hand-
shake between your ASP.NET MVC application and the client browser, the delegate you cre-
ated will be called, and your ASP.NET MVC 4 application with WebSockets support will start.
The code for managing a WebSockets connection is shown in Listing 1-8.

LISTING 1-8 C# code for managing a WebSockets connection

public async Task MyWebSocket(AspNetWebSocketContext context)
 {
 while (true)
 {
 ArraySegment<byte> arraySegment = new ArraySegment<byte>(new byte[1024]);

 // open the result. This is waiting asynchronously
 WebSocketReceiveResult socketResult =
 await context.WebSocket.ReceiveAsync(arraySegment,
 CancellationToken.None);

 // return the message to the client if the socket is still open
 if (context.WebSocket.State == WebSocketState.Open)
 {
 string message = Encoding.UTF8.GetString(arraySegment.Array, 0,
 socketResult.Count);
 userMessage = "Your message: " + message + " at " +
 DateTime.Now.ToString();
 arraySegment = new
 ArraySegment<byte>(Encoding.UTF8.GetBytes(message));

 // Asynchronously send a message to the client
 await context.WebSocket.SendAsync(arraySegment,
 WebSocketMessageType.Text,
 true, CancellationToken.None);
 }
 else { break; }
 }
}

MORE INFO WEBSOCKET API

The W3C’s WebSocket API specification at http://dev.w3.org/html5/websockets/ gives you
an in-depth understanding of how the WebSocket protocol works inside a browser.

http://dev.w3.org/html5/websockets/

 64 ChAPTER 1 Design the application architecture

Choosing a connection loss strategy
When using WebSockets, you need to determine how you are going to handle those times
when you lose a connection. This functionality has to be on the client side because the server
side cannot reach out to the client when there is no connection. When the connection is
broken, the client might notice it when either an onclose or an onerror event is thrown, or
the delegated methods are called, depending on how the connection was set up. However,
it is also possible that the connection might be broken and the connection does not throw
an onerror or onclose. To manage that, you need to ensure that your application can man-
age a connection that is no longer available. Ideally, the library will throw an onerror when it
attempts to send a message to the server, but you need to build your application so that it is
able to retain state; and if there is a disconnect in the process, it can restart, re-create a con-
nection, and resend the message.

WebSockets can run into several types of connection issues. The entire premise is that
there is a long-open socket connection for communications between the two ends. Any kind
of issue that might come up in that connection, whether it is a client/server issue or any issue
between the two, can cause connections to be lost. Therefore, as you design your applica-
tion’s use of WebSockets, you need to keep data protection and communications reset in
mind.

A developer typically uses a “fire and forget” methodology, in which you send a message
and assume that it is received by the listener, but that methodology might not be sufficient
for WebSockets. You should architect a system that sends a message; waits for a response;
and from the response, or lack thereof, determines whether the system has successfully sent
the message. You also have to monitor the connection from the time you send a message
until you receive a response to ensure there was no break in the connection during the trans-
mission. If a break occurs, you should reopen the connection and resend the data. Keep in
mind that the connection might have been broken after the data was received but before the
sender was given the receipt; your code needs to allow for multiple receipts of information.

Regarding communications reset, any interference between the client and server can break
the connection, so you might end up listening to a dead connection. You need to make sure
that the onclose and onerror events are managed and that you build in a recovery mechanism.

Deciding when to use WebSockets
WebSockets are an ideal solution when you need two-way communication with the server
with minimal overhead. A common use of WebSockets is for an in-browser instant messaging
client. A traditional dashboard solution is also a candidate for the flexibility offered by Web-
Sockets because near-real-time updates is a value-add.

 Objective 1.6: Design and implement a WebSocket strategy ChAPTER 1 65

You might want to use WebSockets for any kind of communications between a server and
client; however, the more traditional approach of a client timer might be a better solution
in some situations. Users do not care if you are using WebSockets; they simply want reliable
functionality. As you evaluate the use of WebSockets in an application, keep in mind that the
WebSocket protocol requires a web browser that supports HTML5. Because the HTML5 stan-
dard is still evolving, some browsers do not completely support HTML5. Although you can
check for WebSocket support on the client before initiating the request for an upgrade, you
don’t want to leave any users without functionality because their browser doesn’t support
the technology in your application. Carefully weigh the needs of your application versus the
available technology.

Another strategy is to enable the controller on the server to decide whether to support
WebSockets. Rather than disabling or hiding functionality on the client side, make that deci-
sion on the server side. If the server determines that a client supports WebSockets, the server
can make decisions such as rendering a partial view that has the client-side functionality for
the usage of WebSockets. If the server determines that WebSockets are not supported by the
browser, it can instead render a partial view that uses a fallback JavaScript-based implementa-
tion using long polling or a timer. Making that decision on the server simplifies the code you
need on the client side.

Another issue to consider is a reaction to one of its strengths. WebSockets do not have
HTTP headers, yet they travel as if they are HTTP requests. This is a potential problem be-
cause many networks direct traffic by looking at the HTTP headers and determine how to
handle messages based on values within the headers, such as CONTENT-TYPE. In those kinds
of scenarios, WebSockets traffic is likely deemed malicious and the network send is cancelled.
The presence of antivirus and firewall software on the client machine could have the same
problem because they analyze incoming packets to determine their source and potential
risk. Therefore, not only is there a client-side requirement that the browser can support the
protocol but there also has to be requirements in place that your network, the user’s network,
and the user’s machine do not stop the packet’s transfer. Unfortunately, you can test whether
WebSockets are supported by the browser on the client side, but the only way you can test
whether the full route is allowed is to actually try to make a connection and send data. This
data should be beyond the simple handshake and should mimic one of the data packets
that you will use for communication. If it is received in both directions, you can assume that
WebSockets are fully supported.

 66 ChAPTER 1 Design the application architecture

Thought experiment
Using WebSockets for a communications application

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You are a consultant hired by an insurance and financial services firm, to create an
online system for employees to get breaking financial news as well as to communi-
cate with each other. The company already has a news tracking system that stores
relevant news articles and sends an email with the content of the articles to some
of the fund managers. The company wants to include this information as well as an
instant messenger application and create a simple site for communications for all
employees.

1. Although HTML5 WebSockets appears to be a natural fit to fulfill these require-
ments, what kind of issues could you run into?

2. There appear to be two different communications processes going on. Would
you use a different socket connection for each one or share the same connec-
tion? Explain your answer.

3. What kind of server-side services do you have to create?

Objective summary
■■ HTTP polling is a JavaScript methodology of continuously polling the server to see

whether there is any information that the client needs to know. Although not the most
efficient method, it has the luxury of working in any browser that supports JavaScript
and does not require HTML5 support.

■■ HTTP long polling is a way to use HTTP to mock up a way for the server to pass data
back to the client, as determined by the server, by opening a long-standing connec-
tion to the server that will either time out or return data when the server determines
it is necessary. Upon timeout or data return, the client can immediately open a new
connection.

■■ WebSockets are a way to provide duplex, or two-way, communication between the
client and server. Both sides can communicate at the same time to the other side. The
client connects via HTTP and then sends an upgrade request to the server, which gives
a WebSockets connection. You need to create both client- and server-side code to
interact with the socket. After that is done, every command is basically an event that is
fired when a message is received.

■■ WebSockets can be used in situations in which long-term, two-way communication is
useful. It is not necessarily always the best solution, especially when there is a chance that
the application will be viewed in older browsers that do not support HTML5 features.

 Objective 1.7: Design HTTP modules and handlers ChAPTER 1 67

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. What is the technique in which the client sends a request to the server, and the server
holds the response until it either times out or has information to send to the client is?

A. HTTP polling

B. HTTP long polling

C. WebSockets

D. HTTP request-response

2. You are building an application in which you want to display updated information to a
website every 15 minutes. What are efficient ways to manage the update? (Choose all
that apply.)

A. WebSockets

B. HTTP polling with 1-minute intervals

C. HTTP long polling

D. HTTP polling with 15-minute intervals

3. What is the first request sent to start HTTP polling?

A. HTTP DELETE

B. HTTP GET

C. HTTP CONNECT

D. Upgrade request

Objective 1.7: Design hTTP modules and handlers

HTTP modules and handlers enable an ASP.NET MVC 4 developer to interact directly with
HTTP requests as they are both active participants in the request pipeline. When a request
starts into the pipeline, it gets processed by multiple HTTP modules, such as the session and
authentication modules, and then processed by a single HTTP handler before flowing back
through the request stack to again be processed by the modules.

This objective covers how to:
■■ Implement synchronous and asynchronous modules and handlers

■■ Choose between modules and handlers in IIS

 68 ChAPTER 1 Design the application architecture

Implementing synchronous and asynchronous modules
and handlers
Modules are called before and after the handler executes. They are intended to enable a de-
veloper to intercept, participate, or modify each request. Creating an HTTP module requires
you to implement System.Web.IHttpModule, which has two methods: void Init(HttpApplication)
and the void method Dispose. The System.Web.HttpApplication has 22 available events that
can be subscribed to in the Init method that enables the module to work on the request in
various stages of the process (see Table 1-3). The <httpModule> configuration section in the
Web.config file is responsible for configuring the HTTP module within an application. Several
tasks are performed by the HttpApplication class while the request is being processed. The
events are useful for page developers who want to run code when key request pipeline events
are raised. They are also useful if you are developing a custom module and you want the
module to be invoked for all requests to the pipeline.

TABLE 1-3 ASP.NET life cycle events

Event name Description

BeginRequest The first event raised; always raised when processing a request

AuthenticateRequest Raised when a security module has identified the user

PostAuthenticateRequest Raised after the AuthenticateRequest event is raised

AuthorizeRequest Raised after a security module has authorized the user

PostAuthorizeRequest Raised after the AuthorizeRequest event is raised

ResolveRequestCache Raised to let caching modules serve the requests

PostResolveRequestCache Raised when a caching module served the request

MapRequestHandler Raised when the appropriate HttpHandler is selected

PostMapRequestHandler Raised after the MapRequestHandler event is raised

AcquireRequestState Raised when the current state, such as session state, is acquired

PostAcquireRequestState Raised after the AcquireRequestState event is raised

PreRequestHandlerExecute Raised just prior to executing an event handler

PostRequestHandlerExecute Raised when the HttpHandler has completed execution

ReleaseRequestState Raised when all request event handlers are completed

PostReleaseRequestState Raised after the PostReleaseRequestState event is raised

UpdateRequestCache Raised after caching modules store the response for future use

PostUpdateRequestCache Raised after the UpdateRequestCache is raised

LogRequest Raised just prior to logging the request

 Objective 1.7: Design HTTP modules and handlers ChAPTER 1 69

Event name Description

PostLogRequest Raised when all LogRequest event handlers are completed

EndRequest The last event raised in the HTTP pipeline

PreSendRequestHeaders Raised just before the HTTP headers are sent to the client

PreSendRequestContent Raised just before the content is sent to the client

The general application flow is validation, URL mapping, a set of events, the handler, and a
set of events. Validation occurs when the system examines the information sent by the brows-
er to evaluate whether it contains markup that could be malicious. The process then performs
URL mapping if any URLs have been configured in the <UrlMappingsSection> section of the
Web.config file. After it has completed the URL mapping process, the HttpApplication runs
through security and caching processes until it gets to the assigned handler. After the handler
completes processing the request, it goes through the recaching and logging events and
sends the response back to the client. Table 1-3 lists the ASP.NET life cycle events, all of which
play a strategic part in processing HTTP requests.

It is possible to do much of this work in the Global.asax file because one of the key features
of this file is that it can handle application events. Implementing this functionality in a mod-
ule, however, has advantages over using the Global.asax file. The Global.asax implementation
is application-specific, whereas the module is much easier to use between applications. It also
provides additional SoCs by enabling your ASP.NET MVC application to manage the request
after it hits the handler rather than manipulating it prior to being handled by MvcHandler. By
adding them to the global assembly cache and registering them in the Machine.config file,
you can reuse them across applications running on the same machine.

An HTTP handler is used to process individual endpoint requests. Handler enables ASP.NET
to process HTTP URLs within an application. Unlike modules, only one handler is used to pro-
cess a request. A handler must implement the IHttpHandler interface. A handler is much like
an Internet Server Application Programming Interface (ISAPI) extension. The <httpHandler>
configuration section is responsible for configuring the handler by configuring the verb, path,
and type that directs what requests should go to the handler. The IHttpHandler interface has
an IsReusable property and a ProcessRequest(HttpContext) method that gives the handler full
access to the request’s context.

ASP.NET 4.5 enables you to write both modules and handlers so that they can handle
asynchronous calls. Just as in a regular asynchronous method on the controller, the use of
an asynchronous module or handler enables you to run a method so that it will not stop or
affect the processing of the request. Plugging a module into the request stream is based on
handling events as the process gets to a particular point. To write an asynchronous module,
you need to use the await, async, and Task objects, as shown in the following example:

 70 ChAPTER 1 Design the application architecture

private async Task ScrapePage(object caller, EventArgs e)
{
 WebClient webClient = new WebClient();
 var downloadresult = await webClient.DownloadStringTaskAsync("http://www.msn.com");
}

public void Init(HttpApplication context)
{
 EventHandlerTaskAsyncHelper helper =
 new EventHandlerTaskAsyncHelper(ScrapePage);
 context.AddOnPostAuthorizeRequestAsync(
 helper.BeginEventHandler, helper.EndEventHandler);
}

When using synchronous modules, the same thread serves the entire request, includ-
ing handler and modules. That thread also cannot be used by any other request until it has
completed its current request. If there is any issue in one of the modules, such as a failure
to connect to a database, or an I/O problem, this thread could be paused for an extended
period. If this happens, your server’s (and hence your application’s) throughput will be nega-
tively affected. To avoid this potential impact, making an HttpModule asynchronous offers
protection to your server and application as the primary thread passes the module control to
another thread. Thus, if there is an issue with your module or any of its supporting systems,
the primary thread is not affected. There are some potential issues with using an asynchro-
nous module. If your application has a dependency upon work done in the module, there is a
potential for a race condition between your application startup and the module completion.

Implementing an asynchronous handler is a much simpler process. By inheriting the
HttpTaskAsyncHandler, you have a ProcessRequestAsync method that gives you default access
to async and await for use in asynchronous method calls:

public class NewAsyncHandler : HttpTaskAsyncHandler
{
 public override async Task ProcessRequestAsync(HttpContext context)
 {
 WebClient webClient = new WebClient();
 var downloadresult = await
 webClient.DownloadStringTaskAsync("http://www.msn.com");
 }
}

Figure 1-9 shows how an HTTP module is part of the process to and from a handler.

 Objective 1.7: Design HTTP modules and handlers ChAPTER 1 71

FIGURE 1-9 Process flow for an HTTP request and response

MORE INFO WEB MODULES AND WEB HANDLERS

For information on the ASP.NET MVC 4 default classes that implement the IHttpModule
interface, visit http://msdn.microsoft.com/en-us/library/system.web.ihttpmodule(v=vs.71).
aspx.

Choosing between modules and handlers in IIS
Http handlers help you inject preprocessing logic based on the extension of the file name
requested. When a page is requested, HttpHandler executes on the base of extension file
names and on the base of verbs. HTTP modules are event-based and inject preprocessing
logic before a resource is requested. When a client sends a request for a resource, the request
pipeline emits lots of events, as listed in Table 1-3. When planning to develop an IIS feature,
the first question you should ask is whether this feature is responsible for serving requests
to a specific URL/extension or applies to all requests based on a set of arbitrary rules. If the
key consideration is the URL, you should use an HTTP handler. If you want to work on every
request regardless of URL, and you are prepared to work with an event-driven framework,
you should create an HTTP module.

As you design a large application, you will find that it is an iterative process—you need to
revisit previous decisions as you handle change requests or start designing new areas of the
application. Perhaps you need to offer different authentication schemas for different network
subnets. IIS and ASP.NET MVC handle a single authentication scheme very well, and offer
other support through federation. However, that might not fit your need. Perhaps you just
need to add something as simple as a network subnet to Active Directory server mapping.
This affects all users, and this determination should be made before the logon process occurs.
By registering an event handler for the AuthenticateRequest event, you can add override code
that will handle your custom mapping requirements.

Each major activity we typically expect to be available for use in ASP.NET MVC code gener-
ally has its own event for adding functionality or overwriting existing procedures. You need
to analyze the kinds of special needs your application has and where it makes the most sense
in the process to fulfill those needs. If you need the information available to you prior to it
calling your ASP.NET MVC code, it should be a module. If you want special files to be handled
differently, it should be a handler.

There are some choices that are not necessarily as clear as others. For example, let’s say
your application has the requirement that every image to be served has to have a watermark.
There are several ways to manage this. One is by creating a custom handler for all the image
extensions that need to be watermarked. This would enable you to call the image, write the
watermark on it, and then send it to the response. You could also do this as a module by in-

http://msdn.microsoft.com/en-us/library/system.web.ihttpmodule%28v%3Dvs.71%29.aspx
http://msdn.microsoft.com/en-us/library/system.web.ihttpmodule%28v%3Dvs.71%29.aspx

 72 ChAPTER 1 Design the application architecture

tercepting the response after the default handler has processed it, reading in the byte stream,
and making the changes at that point.

When choosing between creating a custom handler and a custom module, your major
considerations are where in the process you need the custom work to occur, and what type of
requests and responses it needs to support. If it needs to support every request, regardless of
the item requested, you should use a module. If it needs to support requests for only a special
type or URL, consider using a handler.

EXAM TIP

HTTP modules and handlers give you flexible access into the HttpRequest and
HttpResponse objects. You should be familiar with the events that are raised during the
process because they provide integration points for HTTP modules. You should also con-
sider the impact of creating custom HTTP handlers and the effect a custom handler might
have on your typical ASP.NET MVC site. Becoming familiar with the default modules and
handlers that support ASP.NET MVC will also be useful.

Thought experiment
Using HTTP handlers and HTTP modules as services

In the following thought experiment, apply what you’ve learned about this objec-
tive to predict how you would design a new application. You can find answers to
these questions in the “Answers” section at the end of this chapter.

You have been asked to create a set of web services. They will not be standard web
services; they will be based entirely on HTTP modules and HTTP handlers. These
services will be REST-based and need to support authentication.

1. What would be the most standard way to use HTTP modules and HTTP handlers
to fill this need?

2. If you needed to add custom authentication, where would be the best place to
put that functionality?

3. Do you think that creating web services in handlers and modules would result in
a responsive application, or do you think performance would suffer? Why?

Objective summary
■■ HTTP modules and handlers insert into the request processing path in IIS.

■■ Modules fit into the process on the way down to the handler, and on the way back out
from the handler. A synchronous module has an Init method that enables you to set a
handler for one of the events attached to the request process.

 Objective 1.7: Design HTTP modules and handlers ChAPTER 1 73

■■ An asynchronous module is more complicated to work with, but with async, await, and
Task you can create an HTTP module that can handle long-running tasks without stop-
ping the process.

■■ Handlers are the destination of the request process and serve requests for a particular
URL/extension. A handler can be synchronous or asynchronous, depending on the
base class they extend.

■■ Choosing which one to create is a matter of determining where in the request process
you need to add your functionality. If your requirements expect you to be able to
handle a specific URL or extension differently from others, a handler is probably what
you need to create. If you instead want to act when something happens during the
process, you should use a module.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. In an HTTP module, can you redirect the request to a different handler than is in the
routing table? If so, what event would you handle?

A. Yes, and you handle the PostAuthorizeRequest event.

B. No, after the request starts into the process, it either continues through to the
mapped handler or throws an error.

C. Yes, and you handle the MapRequestHandler event.

D. Yes, and you handle the ReleaseRequestState event.

2. When you are creating a custom handler, what is the parameter being passed into the
ProcessRequest method?

A. object, EventArgs

B. HttpApplication

C. HttpContext

D. Object

3. What is the best way to intercept every request for an image on your site and ensure
that a watermark is added to the image?

A. An HTTP module handling the AuthorizeRequest event

B. A custom HTTP handler set to handle .htm and .html pages

C. A custom HTTP handler configured to serve .png and .jpg files

D. An HTTP module handling the PostRequestHandlerExecute event

 74 ChAPTER 1 Design the application architecture

Chapter summary

■■ A properly architected ASP.NET MVC 4 application likely has many layers, or logical
groupings of code. The client layer contains the JavaScript/jQuery code that is run in
the browser. As you move in deeper, the application layer is connected to the client
layer through HTTP requests, and contains the models, views, and controllers. The
models can call into another potential layer below that where business logic is man-
aged. This business layer can then call into a cache layer that manages an in-memory
snapshot of recent data to enhance performance. This layer can call into the data ac-
cess layer to select and save the data.

■■ Session management is a state management mechanism built into Microsoft Internet
Information Services (IIS). Session management is highly configurable; you can set
session management at the IIS level across all applications or just a single website. You
can also manage this configuration in all levels of the .config file structure up to and
including the Web.config file. You can set sessions to be managed InProc, which is the
best-performing method as the server calls into its internal memory; or OutProc, which
is where the server uses an external source to manage session. This external source can
be a state server or a SQL server, or you can even create a custom session manager.
Sessions are identified on the server by a unique ID value. IIS enables you to set this to
be a value in a cookie or to put the value in a query string. This value must be included
somehow if you want the server to be able to find any state information.

■■ Scalability and reliability should be taken into account whenever you are planning an
application because it might affect design considerations. A typical deployment strat-
egy for a website would be at least two web application servers so that there would
be some redundancy in case one of the machines fails. You need to plan for this if you
want the user transition to be smooth. Websites can also use a web farm, or group of
web application servers, to run a site. These are smaller commodity physical or virtual
servers in which traffic is distributed to each by a load balancer.

 Chapter summary ChAPTER 1 75

■■ Web services are an increasingly common way for applications to access information.
In a service-oriented architecture (SOA), web services stand as the gateway to infor-
mation. An ASP.NET MVC 4 developer or designer needs to be able to both create
and consume web services. The Web API enables developers to use an ASP.NET MVC
approach to providing REST services. You can also create REST services by simply using
a controller that returns JSON- or XML-formatted data. Consuming web services is
equally important because many companies now wrap their data access layer in a web
service, which means the models communicate with web services rather than directly
to a database.

■■ Windows Azure provides off-premise capabilities for running websites, data storage,
and other application features such as a service bus. These services are highly custom-
izable and support many different hosting and management needs. You have access
into the startup, run, and shutdown processes of a web role, and can deploy only parts
of your application to the cloud in a hybrid solution.

■■ HTTP is a request-response communications method in which the client sends a
request to the server and the server responds with the information. These requests
can be of various types, including PUT, GET, and DELETE. WebSockets changes that
paradigm by enabling the developer to add client-side code that will set up a two-way,
long-running connection between the client and the server. It allows information to
path from the server to the client with anything from the client side other than the ini-
tial setup of the connection. The messages passed are smaller because there is minimal
header information, and both client and server can send information simultaneously.

■■ Because ASP.NET MVC 4 is a layer upon ASP.NET, the stack provides an entire frame-
work for managing HTTP requests and responses. Developers can intercept requests
and responses, as well as provide a customized handler that creates the response HTTP
modules that enable you to intercept requests as they pass through the various stages
on their way to the handler. These modules also enable you to intercept the response
on its way back out from the handler. It is a highly customizable way to create unique
workflows for different needs.

 76 ChAPTER 1 Design the application architecture

Answers

This section contains the solutions to the thought experiments and answers to the lesson
review questions in this chapter.

Objective 1.1: Thought experiment
1. By default, most of the HTML design that went into the original site would be put into

the views. Common areas such as navigation or boilerplate text could be put into a
layout page if there is a lot of reuse. Also, any areas that might need independent
functionality could be put into a partial view.

2. There are several ways that this could be done. The first is to simply put the form
online and email the form results to the department. This gives them minimal advan-
tage over their current process and is not in real time. The next is to use a data storage
mechanism such as SQL Server to store the information in a database. This enables
them to have reports built as needed as well as giving them real-time access into the
data.

3. A typical breakdown of models for this situation could be a model for the user, a
model for the pet, and a model for the license year. The user might have multiple
pets and each pet might have multiple licenses, one for each year. The models would
handle the access into and out of the database. This application is a candidate for us-
ing the Repository pattern because the system used to manage the backend might be
replaced as more departments go online and the municipality might standardize in a
different direction.

Objective 1.1: Review
1. Correct answer: A

A. Correct: Because you do not have control over the responsiveness of the third-
party provider and you do not know how much data might be returned from each
call, you should wrap the call in the asynchronous framework. Providing the data in
a strongly-typed model gives it more flexibility than working with the raw XML on
the client side.

B. Incorrect: You do not know how long the call to the third party will take, and put-
ting a synchronous call into the main page will not give any response until the call
is completed.

C. Incorrect: You do not want to use a synchronous call in this case due to the un-
known response time.

D. Incorrect: Although you can take this approach, it infers that you will manipulate
the third-party response data in either the controller or the view. SoC recommends
that this manipulation occur in a model.

 Answers ChAPTER 1 77

2. Correct answer: B

A. Incorrect: You should not perform any data manipulation in the controller.

B. Correct: You will have a better chance of code reuse if you break down the
separate calls into their own models and then create another model to pull them
together and compile them.

C. Incorrect: Although this would be a plausible way to implement the solution, it is
not the best. If any other work came up that uses any of the calls within this model,
you will either have to refactor the code to extract it at that point or have duplicate
code.

D. Incorrect: The fact that this data can be merged into a single table display shows
there is some intrinsic business worth to the information in this format. Merging on
the client side goes against SoC considerations.

3. Correct answers: C, D

A. Incorrect: You should incorporate your team into the project as soon as possible.

B. Incorrect: Because the team has no experience with object-oriented program-
ming, the Code First approach is unlikely to be the most efficient way to create the
new schema.

C. Correct: The use of the Entity Designer as an integral component in the Model
First approach will help unfamiliar users to walk through the process.

D. Correct: There is already a working relational database for the application,
although it is in a system that will be replaced. A port of the design should be
considered.

4. Correct answer: C

A. Incorrect: It is the designer’s job to ensure that any known enhancements or fu-
ture changes are accounted for. Although this approach follows the requirements,
it is not the best long-term solution.

B. Incorrect: This solution does not provide the proper level of abstraction; it re-
quires either a “one or the other” approach to supporting the HR system, or an
approach in which you have to manage which database you are calling from within
each data call.

C. Correct: Using the Repository pattern will give you a level of abstraction into the
data layer. When you create the second data access component for the new HR
system, you can then differentiate on a user or departmental level which imple-
mentation to use.

D. Incorrect: This solution does not provide the proper level of abstraction; it re-
quires either a “one or the other approach” to supporting the HR system, or an
approach in which you have to manage which database you are calling from within
each data call.

 78 CHAPTER 1 Design the application architecture

Objective 1.2: Thought experiment
1. Yes, because you cannot query the databases directly, you need to deploy some kind

of solution that gives you access to the data. This could be a web services wrapper to
enable you to call the data remotely or an application that will manage aggregating
the data.

2. The primary concerns would be the inability to guarantee responsiveness and the need
to manage connection issues.

3. AppFabric acts as a service bus, so it provides a single point of contact/service connec-
tor that would manage the calls out to the remote systems by routing the requests to
the appropriate server.

Objective 1.2: Review
1. Correct answers: B, C

A. Incorrect: Although you would eventually be able to get a WCF REST services, it
would not be efficient.

B. Correct: Using the Web API is a straightforward way to present REST services.

C. Correct: Using ASP.NET MVC is another way to create a controller that will return
XML.

D. Incorrect: An ASMX web service is SOAP-based, not REST-based.

2. Correct answers: B

A. Incorrect: Selecting Add Reference does not enable you to create a proxy.

B. Correct: HttpService.Get gets the output of a REST service.

C. Incorrect: Visual Studio creates a proxy for you from the WSDL at the site you select.

D. Incorrect: A WCF proxy class needs endpoints and bindings. REST services do not
use, nor understand, WCF endpoints and bindings.

3. Correct answers: C, D

A. Incorrect: Both the web application and the database storage are being run from
within the company network. Although this is a distributed design, it is not a hy-
brid application.

B. Incorrect: Both the web instance and the data repository are using Windows
Azure technology. This is not a hybrid app; it is a fully deployed Windows Azure
application.

C. Correct: Part of the application is being run in the Windows Azure environment;
the other part is being run in the corporate network environment.

D. Correct: Part of the application is being run in the Windows Azure environment;
the other part is being run in the corporate network environment.

 Answers ChAPTER 1 79

Objective 1.3: Thought experiment
1. When you need something to run the lifetime of the application, putting it into the

override of the Run method is the best solution. It enables you to create a timer that
fires an event every x minutes that you want to run the check.

2. They both would work. The advantage to putting them in a worker process is that they
can continue to function if the Web role has stopped for some reason. This is particu-
larly useful if there are other non-web ways of getting information into the database,
and you are still at risk for orphaned data.

3. Provided that the processes are console applications, it should be relatively straightfor-
ward to move them into methods that can be called from within startup process.

Objective 1.3: Review
1. Correct answer: B

A. Incorrect: If the startup task fires an unhandled error, the role startup stops in a
failure. The task will not complete successfully.

B. Correct: The task will stop processing and return a non-zero value.

C. Incorrect: The task will stop in error. The OnStop process will not run because the
role will not get that far.

D. Incorrect: The task will stop processing. It will not try to continue to run on a
lower security setting.

2. Correct answers: A, C, D

A. Correct: AppCmd.exe enables the configuration of virtual sites.

B. Incorrect: There is no capability to manage users in AppCmd.exe.

C. Correct: AppCmd.exe supports the administration of general configuration
sections.

D. Correct: AppCmd.exe manages the support of applications.

3. Correct answers: A, B, D

A. Correct: Creating and running an application in parallel is what the Run method
was designed to allow.

B. Correct: The polling service is a good example of an activity in which the Run
method enables a process to work independently of the main role.

C. Incorrect: The error handling will be managed in the OnError event and will not
involve the overridden Run method.

D. Correct: Creating and running an application in parallel is what the Run method
was designed to allow.

 80 ChAPTER 1 Design the application architecture

Objective 1.4: Thought experiment
1. There are many different ways that you could provision the servers. A typical approach

would be to use two servers for SQL Server, with the data replicated between the
servers. One of the servers would be the primary SQL server while the other would be
the secondary, redundant fallback SQL server. Two other machines could be set up as
a web farm to handle the web requests. A fifth server could be added to the web farm,
or kept in reserve in case of a failure in either of the server blocks.

2. There does not appear to be any real special cases for state management, so an Out-
Proc solution in which IIS is configured to use SQL Server to manage sessions should
be acceptable. This would enable the application to send requests to any server in the
farm without a loss of state data. Typically, it is best to use the IIS built-in state man-
agement systems where available because it frees your team from having to write code
that might be redundant.

3. It depends on the two servers that were lost. Using at least two servers for the data tier
and the web tier should give you some contingency for hardware failures because it is
rare that more than one server goes out at a time. However, if two servers are lost at
the same time, the only real risk would be some downtime as you roll the fifth server
in to replace one of the ones that was lost. The only real data loss might be if both
servers in the database tier were lost, in which case it is likely that there will be some
data loss. If you lose one in each tier, or even both web servers in the farm, you can
provision the fifth server as a web server without any loss of data other than in those
requests that the server was processing as it went down.

Objective 1.4: Review
1. Correct answers: C, D

A. Incorrect: InProc does not support web farms as session items are stored only in
the individual server’s memory.

B. Incorrect: SQLServer is not available in the application stack. This means that us-
ing the default SQLServer state is not possible.

C. Correct: Using a shared state server across the web farm is an available option.
Using a state server designates one server to maintain state for all the servers that
connect to it.

D. Correct: A custom session provider enables you to maintain state as necessary by
doing the work in your custom code. It is generally used when you try to use a dif-
ferent RDBMS system or when you do not want to use the default session database
design.

 Answers ChAPTER 1 81

2. Correct answers: B, D

A. Incorrect: localStorage is HTML5 and is not available in all browsers.

B. Correct: Query string information is available across all browsers and is usable on
both the client and server.

C. Incorrect: Although ViewState is available in a form field on the page, it is en-
crypted and cannot be used on the client side. It is also not used by many ASP.NET
MVC 4 constructs.

D. Correct: Cookies can be stored for a period of time on the client and be read from
either client- or server-side operations.

3. Correct answers: A, D

A. Correct: Your application needs to manage whatever information might be re-
quired to access the state management system.

B. Incorrect: The HTTP headers are usually not used as part of state management.

C. Incorrect: Because your application is sessionless, there is no need to manage ses-
sion in the Web.config file.

D. Correct: Your application needs to manage the passing of the identifier between
requests.

Objective 1.5: Thought experiment
1. There are several ways that caching could help this process. The first is to get the infor-

mation from the database and store it in localStorage. That way you never need to call
the server again unless the client realizes it does not have the information any more.
You could also use donut caching or donut hole caching, whichever is more appropri-
ate, to cache that area of the page where the information doesn’t change. If you assign
a duration of 30 minutes, you decrease a lot of redundant database calls.

2. Because the list of colors, sizes, and so on is the same for all users, you could store this
information in a data cache layer in which the system will make only one call into the
database every x minutes and will make that same set of returned information avail-
able to all users of the system. This gives you an immediate performance gain across all
users.

Objective 1.5: Review
1. Correct answers: A, D

A. Correct: Page output caching will cache content at the client side to eliminate
some of the required downloads. It is useful in a limited bandwidth environment. It
can also be used in donut hole and donut caching scenarios for partial client-side
caching.

 82 ChAPTER 1 Design the application architecture

B. Incorrect: Application caching is an HTML5 feature, and it is unlikely that the older
laptops will be able to support the feature.

C. Incorrect: Data caching might decrease some server time, but with the limited
number of users, it is unlikely that the data access would be an issue.

D. Correct: HTTP caching will help response time even though there is not much a
developer needs to do to implement the caching.

2. Correct answers: B, C

A. Incorrect: Although data caching can add some support in a highly dynamic situ-
ation, it does not support the capability to have long-term caching.

B. Correct: Donut hole caching provides the ability to cache parts of each page.

C. Correct: Donut caching is another approach that gives the ability to cache parts of
the application.

D. Incorrect: AppFabric caching would provide some support in a highly dynamic
situation, but it does not suit the need to store some of the page output.

3. Correct answers: A, C, D

A. Correct: Data caching with the appropriate timeout will enable the data needed
for the reports to be stored so that the call to the database is not necessary.

B. Incorrect: Although a page output caching would be useful, the short time
frame of two minutes means that the cache will likely expire before the next user
requests the page.

C. Correct: A page output caching of four hours caches the output of the report
for the whole morning and should eliminate the need for the report to be run a
second time.

D. Correct: AppFabric caching acts much like data caching to eliminate the need for
additional calls to the database to generate the reports.

Objective 1.6: Thought experiment
1. The most common set of issues you would encounter when creating a solution that

includes WebSockets is the nonuniversal support for HTML5. It is possible aspects of
the company’s business still run on non-HTML5-compliant browsers. Other issues you
could encounter include proxy servers, firewall filters, and other security systems that
might look at nontraditional HTML communications as a threat.

2. When following a traditional SoC route, the design should manage each different type
of communication separately, even though it might be on the same page. This would
give them the opportunity to change independently of each other, perhaps by moving
to a different server or even starting to take the news feed from a third-party service
directly.

 Answers ChAPTER 1 83

3. You need to create the server-side application that will be notified of news articles
and send the information to the users. You also need to create a server-side applica-
tion that will manage the instant messaging part of the application. Theoretically they
could be the same application, but it would be prudent to design them in such a way
that they could scale separately and independently.

Objective 1.6: Review
1. Correct answer: B

A. Incorrect: In HTTP polling, the client sends a request to the server, and as soon as
the response is returned, it sends a new request.

B. Correct: In HTTP long polling, the client sends a request to the server, and the
server holds it open until it either has something to return to the client or the con-
nection times out.

C. Incorrect: WebSockets are a way for two-way communication between the client
and the server. The server does not hold onto the response.

D. Incorrect: The request-response path is a traditional HTTP connection.

2. Correct answers: A, D

A. Correct: WebSockets can be used to pass information between the client and
server.

B. Incorrect: HTTP polling can provide the need, but the 1-minute refresh interval
would not be efficient.

C. Incorrect: HTTP long polling is not a valid strategy. The typical timeout on a
single request is less than 15 minutes, and chaining multiple requests to get the
15-minute timespan is resource intensive.

D. Correct: HTTP polling with 15-minute intervals is a valid way to get the informa-
tion within the required time frame.

3. Correct answer: B

A. Incorrect: HTTP DELETE is not used to start the WebSocket connection; it is in-
stead used to perform a delete on a discrete item.

B. Correct: The first request to open a WebSocket connection is a standard HTTP
GET. After the request is received, the browser sends a separate upgrade request.

C. Incorrect: HTTP CONNECT converts the request connection to a transparent TCP/
IP tunnel.

D. Incorrect: The upgrade request is sent after the server has responded to an HTTP
GET request.

 84 ChAPTER 1 Design the application architecture

Objective 1.7: Thought experiment
1. Creating an HTTP handler is a relatively simple way to create a customized process

to return XML or JSON return objects. Using it in a RESTful scenario is more compli-
cated because there is no extension to also map the handler. You have to manage all
requests without an extension and then filter the URL request to see what the appro-
priate response would be.

2. The AuthenticateRequest and AuthorizeRequest events are the traditional access points
for authorization and authentication. You add the event handlers in the Init method
and you have access to the entire HTTP Request in the module as it moves through the
application stack.

3. It would be a relatively responsive application, especially when comparing it to tradi-
tional ASP.NET MVC applications. Because it would use its own custom handler, a lot of
the overhead of MVC would be left out of the process.

Objective 1.7: Review
1. Correct answer: C

A. Incorrect: The PostAuthorizeRequest event is thrown before the handler is
mapped.

B. Incorrect: You can handle the mapping of the request in the MapRequestHandler.

C. Correct: You handle the mapping of the request in the MapRequestHandler.

D. Incorrect: The ReleaseRequestState is thrown after the handler has completed.

2. Correct answer: C

A. Incorrect: object, EventArgs are the parameters used for the event handlers
thrown during the startup process. The event handlers are assigned in the Init
method.

B. Incorrect: HttpApplication is the parameter used in the Init method.

C. Correct: The ProcessRequest method takes the HttpContext parameter.

D. Incorrect: There are no default methods that just accept an object parameter.

3. Correct answer: C

A. Incorrect: A module is not the best way to handle the request because it would
have to deal with every HTTP request rather than just the image calls.

B. Incorrect: Serving .htm and .html pages will not create watermarks on image files.

C. Correct: Intercepting every request for .jpg and .png files is the easiest way to
consistently add watermarks to the images.

D. Incorrect: A module is not the best way to handle the request because it would
have to deal with every HTTP request rather than just the image calls.

347

actions
design and implementation, 163–173

action behaviors, 167–168
action results, 168–170
authorization attributes and global filters,

164–167
model binding, 170–173

ActiveDirectoryProvider authentication provider, 287
adaptive UI layout, planning, 132–135
Add a Service Reference command, 22
adding, partial views, 115
Add method, 245
Add New Project dialog box, 244–245
Add Roles Wizard, installing authentication

providers, 272–273
Add Service Reference command, 301
AddUsersToRoles method, 298
Add View feature, 115
Advanced Encryption Standard (AES), 316
AES (Advanced Encryption Standard), 316
AJAX (Asynchronous JavaScript and XML), partial page

updates, 105–108
algorithms

encryption, 316–317
RSA (Rivest, Shamir, and Adleman), 316

AllowAnonymousAttribute class, 280
AllowMultiple parameter, 166
analytical tools, parsing HTML, 146–149
animation library, jQuery, 110–111
Anonymous authentication, 275
AntiForgeryToken method, 335
Antiforgery tokens, 335
AntiXSS Library, 332–333
ApiController, 22
AppCache (Application Cache API), 56–57
AppCmd.exe command, 275, 276
AppCmd.exe command-line tool, 33–34

Index

Symbols
404 File Not Found error message, 176
404 Page Not Found errors, 236
@Html.ValidationMessageFor construct, 99
@media queries, 133
@media queries (CSS), 127
@RenderBody() tag, 120
@using (Html.BeginForm()) command, 106

A
Accept-Encoding header tag, 200
Accept-Language HTTP header, 157
Access Control Service (ACS), federated

authentication, 303–306
accessibility

SEO (search engine optimization), 145–153
ARIA, 151–153
browser plug-ins, 149–151
parsing HTML with analytical tools, 146–149

Accessible Rich Internet Applications. See ARIA
accessing, Performance Monitor, 221
ACS (Access Control Service), federated

 authentication, 303–306
Action filter, 186
ActionFilterAttribute class, 166
action filters, 166
Action HTML extension method, 166
action methods, 8

unit tests, 246
ActionResult class, 168
action results, 10, 168–170

controlling app behavior, 188–189

348

AppFabric

Bind, 171
ContractInvariantMethod, 229
customErrors element, 237
defaultRedirection, 237
HandleErrorAttribute, error logging, 225
mode, 237
OutputCache, 52
Remote, 102
RequireHttps, 327
ValidateAntiForgeryTokenAttribute, 335

AttributeUsage attribute, 166
<audio> tag, 91
authentication, 271–291

claims-based, 303–313
custom security tokens, 307–310
token formats, 310–313
Windows Azure ACS, 303–306

configuring membership providers, 285–287
custom membership providers, 287–291
enforcing authentication settings, 280–282
failure, 297
managing sessions with cookies, 283–285
selecting type of authentication, 282–283
troubleshooting errors, 222
user authentication, 272–280

Anonymous, 275
Basic, 276
Client Certificate-based, 278
custom, 279–280
Digest, 276
Forms, 277
Impersonation, 278
Windows, 277–278

authorization, 294–301
authorizing roles programmatically, 296–297
authorizing roles using configuration, 295–296
creating roles, 294–295
custom role providers, 298–300
troubleshooting errors, 223
WCF service authorization, 300–301

authorization attributes, 164–167
Authorization filters, 186–187
Authorize attribute, 296
AuthorizeAttribute class, 280, 296
AuthorizeAttribute filter, 164–165
Autoscaling feature, Windows Azure, 17

AppFabric, 24, 53–54
Application Cache API (AppCache), 56–57
application caching, 56–57
application data, applying encryption to, 316–318
Application_Error method, 226, 236
ApplicationName property, 289, 298
application pages, UI layout, 120–121
applications. See also web applications

architecture
caching strategy, 51–58
configuring state management, 40–49
distributed applications, 21–28
HTTP modules and handlers, 67–72
layers, 1–17
WebSocket strategy, 60–66
Windows Azure role life cycle, 31–38

Application_Start method, 236
registering view engine, 190

App_Start/RouteConfig.cs file, 176
architecture, applications

caching strategy, 51–58
configuring state management, 40–49
distributed applications, 21–28
HTTP modules and handlers, 67–72
layers, 1–17
WebSocket strategy, 60–66
Windows Azure role life cycle, 31–38

areas, routes, 181–182
ArgumentException, code contract violation, 228
ARIA (Accessible Rich Internet Applications)

SEO (search engine optimization), 151–153
ASP.NET MVC 4, HTML helpers, 93
aspnet_regiis.exe tool, 319
ASP.NET Web Services (ASMX) web service, 22
Assembly Linker, 161
Assert method, 246
AsymmetricAlgorithm class, 316
asymmetric encryption, 316
asymmetric signatures, SAML tokens, 310
asynchronous controllers, 11–12
Asynchronous JavaScript and XML (AJAX), partial page

updates, 105–108
asynchronous modules and handlers, 68–69
attacks, 328
attributes

AttributeUsage, 166
authorization, 164–167
Authorize, 296

349

classes

<canvas> tag, 91
capacity planning approach (testing applications), 252
Cascading Style Sheets (CSS)

properties, 89–90
UI (user interface) design, 86–90

CDNs (content delivery networks), reducing network
bandwidth, 202

certificate authority (CA), 325
Certificate Signing Request (CSR), 326
challenge-based authentication process, 272
challenge-response mechanism, Digest

authentication, 276
ChangePassword method, 286, 289
ChangePasswordQuestionAndAnswer method, 289
changeText function, 103
ChildActionOnlyAttribute filter, 164–165
claims-based authentication, 303–313

custom security tokens, 307–310
token formats, 310–313
Windows Azure ACS, 303–306

claims, federated security, 303
ClaimsPrincipal class, 308
classes

ActionFilterAttribute, 166
ActionResult, 168
AllowAnonymousAttribute, 280
AsymmetricAlgorithm, 316
AuthorizeAttribute, 280, 296
BuildManagerViewEngine, 15
CacheProvider, 55
ClaimsPrincipal, 308
ControllerBase, 8
ControllerFactory, 188
CryptoStream, 317
CultureInfo, 157
FilterAttribute, 164
FormIdentity, 284
FormsAuthentication, 288
GZipStream, 201
HandleErrorInfo, 225
HttpContext, 164
HttpService, retrieving output from a REST URL, 22–23
MyCustomToken, 309
principal, 308
ProviderBase, 298
RazorViewEngine, 189
ResourceManager, 157
RijndaelManaged, 317

B
Basic authentication, 276
behaviors

action, 167–168
controlling app behavior

acton results, 188–189
model binders, 191–193
MVC extensibility points, 186–194
route handlers, 193–194
view engines, 189–191

binary data, reading/writing, 60–64
Bind attribute, 171
bindEvents method, 104
BindModel method, 193
Bing Webmaster Tools, 148
<body> tag, 86

UI structure and layout, 90
browser feature detection, 124–130

detecting features and capabilities, 124–126
vendor-specific extensions, 128–130
web apps that run across multiple browsers,

126–128
browser plug-ins

Internet Explorer Developer Toolbar, 150–151
SEO (search engine optimization), 149–151

browsers, trust and, 326
brute-force attacks, 328
<bufferModes> section (Web.config file), health

monitoring, 231
BuildManagerViewEngine class, 15
BundleConfig.cs files, 199
bundling scripts, 198–200

C
CA (certificate authority), 325
CacheProvider class, 55
Cache, state information storage, 41
caching strategy, design, 51–58

application caching, 56–57
data caching, 54–55
HTTP caching, 57–58
page output caching, 52–54

distribution caching, 53–54
donut caching, 52
donut hole caching, 53–54

350

ClearAuthCookie method

authorization, 294–301
authorizing roles programmatically, 296–297
authorizing roles using configuration, 295–296
creating roles, 294–295
custom role providers, 298–300
WCF service authorization, 300–301

health monitoring, 230–232
membership providers, 285–287
state management, application architecture, 40–49

choosing mechanism, 41–44
configuration settings, 47–48
cookies, 45
HTML5 Web Storage, 46–47
scalability, 44–45
sessionless state, 48–49

TraceListeners, 224
connection loss strategy, WebSockets, 64
constant load tests, 251
constraints, routes, 178–179
content delivery networks (CDNs), reducing network

bandwidth, 202
content (rendered HTML pages), 150
ContentResult action result, 169–170
Context.Items, state information storage, 41
contextual grouping, HTML5 headers, 92
contract-based handling, 229
ContractInvariantMethod attribute, 229
ControllerBase class, 8
ControllerFactory class, 188
controllers (MVC pattern)

client validation, 101
design and implementation, 163–173

action behaviors, 167–168
action results, 168–170
authorization attributes and global filters,

164–167
model binding, 170–173

factories, 186–188
controllers (MVC pattern), application layers, 8–12
controlling app behavior, JavaScript and DOM, 103
controlling app behaviors

MVC extensibility points, 186–194
action results, 188–189
model binders, 191–193
MVC filters and controller factories, 186–188
route handlers, 193–194
view engines, 189–191

RoleProvider, 285
RoleProvider abstract, 298
RSACryptoServiceProvider, 318
Saml2SecurityTokenHandler, 311
SecurityToken, 309
SimpleMembership, 282
SymmetricAlgorithm, 316
UICulture, 157
VirtualPathProviderViewEngine, 15, 189
WebSecurity, 282, 286, 297

ClearAuthCookie method, 277
client-centric pattern, hybrid applications, 24
Client Certificate-based authentication, 278
clients (ACS-integrated application), 304
client-side processing, application layers, 15–16
client-side WebSocket connections, 62
client validation, UI behavior, 98–101
Cloud Services (Windows Azure), 31
code contracts, 227–230
Code Contracts Editor Extensions, downloading and

installing, 227
code directives, 259
Code First design approach, 3–4
CodePlex, 6
commands

Add a Service Reference, 22
Add Service Reference, 301
AppCmd.exe, 275, 276
provider encryption (–pe), 319
@using (Html.BeginForm()), 106

compatibility, HTML5 and browser, 91
composing layout, UI (user interface), 114–121

implementation of partials for reuse, 114–116
master/application pages, 120–121
Razor templates, 117
visual structure, 117–120

compressing data, reducing network bandwidth,
200–202

configuration sections (apps)
applying encryption to, 319–320

configuring
authentication, 271–291

configuring membership providers, 285–287
custom membership providers, 287–291
enforcing authentication settings, 280–282
managing sessions with cookies, 283–285
selecting type of authentication, 282–283
user authentication, 272–280

351

design

D
data access

application layers, 2–6
design approaches, 3–5
from within code, 5–6
options, 2–3

Database First design approach, 3
data caching, 54–55
data, compressing and decompressing, 200–202
Data Encryption Standard (DES), 316
data integrity, 314–322

applying encryption to app data, 316–318
applying encryption to configuration sections,

319–320
digital signatures, 321–322
encryption terminology, 315–316

data validation, client side, 98–101
date picker, 109
DateTime object, 192
Debug criticality, 224
DEBUG Exceptions dialog box, 238
debugging applications, 223–227, 255–261

collecting diagnostic information, 256–258
log types, 258–259

decompressing data, reducing network bandwidth,
200–202

default action results, 168–169
default authentication providers, 275
DefaultModelBinder, 171, 192
defaultRedirection attribute, 237
default value providers, 172
default views, DisplayModeProvider, 126
deferred validation, secure sites, 332
defining areas, routes, 181–182
DeleteRole method, 298
DeleteUser method, 289
DelimitedListTraceListeners, 224
Dependency Injection (DI), 188
Description property, 289, 298
DES (Data Encryption Standard), 316
design

application architecture
caching strategy, 51–58
configuring state management, 40–49
distributed applications, 21–28
HTTP modules and handlers, 67–72
layers, 1–17

cookies
configuring state management for applications, 45
managing user sessions, 283–285

Cookies, state information storage, 41
CPU sampling, Performance Wizard, 217
crash dumps, 257
CreateAccount method, 286
CreateController method, 188
Create.cshtml view, 99
CreateRole method, 298
CreateSignature method, 321
CreateUser method, 289
creating

authorization roles, 294–295
unit tests, 244–250

integration tests, 246–247
mocks, 247–250

web tests, 250–252
credentials, sending to WCF service, 301
criticality, saving logging information, 224
cross-browser compatibility, jQuery, 108
cross-site reference forgery (CSRF), 335
cross-site request forgeries (XSRFs), 335–336
cross-site scripting (XSS) attacks, preventing, 331–332
Cryptographically Secure Pseudo-Random Number

Generators (CSPRINGs), 329
CryptoStream class, 317
CSPRINGs (Cryptographically Secure Pseudo-Random

Number Generators), 329
CSR (Certificate Signing Request), 326
CSRF (cross-site reference forgery), 335–336
CSS (Cascading Style Sheets)

properties, 89–90
UI (user interface) design, 86–90

CultureInfo class, 157
cultures, globalization and localization, 160–161
custom authentication, 279–280
custom error logs, 257
custom error pages, exception handling, 236–238
customErrors element, attributes, 237
custom HTTP handlers, 72
custom membership providers, 287–291
custom parameters, routes, 180
custom role providers, 298–300
custom security tokens, WIF (Windows Identity

Foundation), 307–310

352

Developer Toolbar

dictionary attacks, 328
DI (Dependency Injection), 188
Digest authentication, 276
digital certificates. See SSL certificates
digital signatures, 321–322
disabling caching, 52
DisplayModeProvider, 126
displayStorageEvent function, 46
Display templates, 117
Dispose method, 68
distributed applications, design, 21–28

hybrid applications, 24–26
integrating web services, 21–24
session management, 26–27
web farms, 27–28

distribution caching, 53–54
<div> tag, 90
Document Object Model. See DOM
domain model approach, 8
DOM (Document Object Model)

controlling app behavior, 103
modifying elemental properties via CSS, 89–90

donut caching, 52
donut hole caching, 53–54
downloading, Code Contracts Editor Extensions, 227
DPAPIProtectedConfigurationProvider, 319
dynamic page content, UI (user interface) design, 92–95

E
EditorFor helper, 99
Editor templates, 117
elements, HTML. See tags
embedding TFF fonts, 89
EmptyResult action result, 168, 169
Enable IntelliTrace check box, 259–260
EnablePasswordReset property, 289
EnablePasswordRetrieval property, 289
enabling, health monitoring, 230–232
EncryptedSecurityTokenHandler, 311
encryption

algorithms, 316–317
data integrity, 314–322

applying encryption to app data, 316–318
applying encryption to configuration sections,

319–320

WebSocket strategy, 60–66
Windows Azure role life cycle, 31–38

exception handling strategies, 234–240
custom error pages, 236–238
first chance exceptions, 238–240
HTTPHandlers, 236–238
multiple layers, 235–236
Web.config attributes, 236–238

MVC controllers and actions, 163–173
action results, 168–170
authorization attributes and global filters,

164–167
model binding, 170–173

MVC controllers and global filters, action behaviors,
167–168

routes, 175–182
applying constraints, 178–179
custom route parameters, 180
defining areas, 181–182
handling URL patterns, 176–178
ignoring URL patterns, 179–180

security
authentication, 271–291
authorization, 294–301
data integrity, 314–322
federated security, 303–313
secure sites, 324–336

user experience
composing UI layout, 114–121
enhancing behavior with browser feature

detector, 124–130
planning an adaptive UI layout, 132–135
UI behavior, 97–111
UI design for web applications, 85–95

Developer Toolbar, 150–151
development

UX (user experience)
globalization and localization, 156–161
MVC controllers and actions, 163–173
MVC extensibility points, 186–194
reducing network bandwidth, 197–202
routes, 175–182
search engine optimization, 145–153

diagnostic information, debugging applications,
256–258

Diagnostics.wadcfg files, 257
dialog boxes

Add New Project, 244–245
DEBUG Exceptions, 238

353

Forms authentication

F
factories, controllers, 186–188
failure, authentication, 297
Fakes feature, creating mocks, 247–250
feature detection, 124–125
federated security, 303–313

custom security tokens, 307–310
token formats, 310–313
Windows Azure ACS, 303–306

FileResult action result, 169
files

App_Start/RouteConfig.cs, 176
BundleConfig.cs, 199
Diagnostics.wadcfg, 257
Global.asax

capturing first chance exceptions, 239
custom error pages, 236

Global.asax, modifications for browser compatibility,
134–135

mscorlib.Fakes, 248
resource, 157–158
ServiceConfiguration.cscfg, 257
ServiceDefinition.csdef, 256–257
System.fakes, 248
Views\Shared_Layout.cshtml, 86
Web.config

exception handling, attributes, 236–238
health monitoring, 230–231
managing role authorization, 295–296

.webtest, 250
filters

Action, 186
Authorization, 186
Exception, 186
global, 164–167
Result, 186
traditional, 164

FindPartialView method, 189
FindUsersByEmail method, 289
FindUsersByName method, 289
FindUsersInRole method, 299
FindView method, 189
first chance exceptions, 238–240
fonts, embedding TFF fonts, 89
<footer> tag, 91
FormIdentity class, 284
Forms authentication, 277

digital signatures, 321–322
encryption terminology, 315–316

defined, 315
Encrypt method, 284
endorsement, 325
enforcing authorization settings, 280–282
Ensures static method, 229
Entity Framework, support for design approaches, 3–4
Entity SQL, 335
enums (enumerations)

JsonRequestBehavior.AllowGet, 102
UrlParameter.Optional, 177

Error criticality, 224
error handling, 216–222

Performance Monitor, 221–222
Performance Wizard, 216–219
Visual Studio Profiler, 219–221

error mesages, 404 File Not Found, 176
event logs, debugging applications, 258–259
EventLogTraceListeners, 224
<eventMappings> section (Web.config file), health

monitoring, 231
events, life cycle, 68–69
Exception filter, 186
exception handling, 234–240

custom error pages, 236–238
first chance exceptions, 238–240
HTTPHandlers, 236–238
multiple layers, 235–236
Web.config attributes, 236–238

Exclude mapping helper, 172
ExecuteResult method, 188
ExtendedMembershipProvider object, 286
extending view engines, 15
extensibility

MVC extensibility points, 186–194
action results, 188–189
model binders, 191–193
MVC filters and controller factories, 186–188
route handlers, 193–194
view engines, 189–191

extensions
HTML, 93–94
vendor-specific, 128–130

external data feed, calling, 11

354

FormsAuthentication class

h
HandleErrorAttribute, error logging, 225
HandleErrorAttribute filter, 166
HandleErrorInfo class, 225
handlers (HTTP), application architecture, 67–72
handling errors, 216–222

Performance Monitor, 221–222
Performance Wizard, 216–219
Visual Studio Profiler, 219–221

handshake upgrade request, WebSockets, 61–62
Hash-based Message Authentication Code

(HMAC), 329
hashing

defined, 315
passwords, 328–331

<head> tag, 86
UI structure and layout, 90

<header> tag, 91
headers, Accept-Language HTTP, 157
health monitoring, 230–232
helpers, HTML, 93

EditorFor, 99
ValidationMessageFor, 99

HMAC (Hash-based Message Authentication
Code), 329

horizontal scaling, 16
Hot Path (Profiler), 220
<html> tag, 86

UI structure and layout, 90
HTML5

browser compatibility, 91
browser detection and capabilities, 124–125
input types, 93

HTML5 Web Storage
configuring state management for applications,

46–47
HtmlAttributeEncode method, 332
Html.EditorFor construct, 99
HTML encoding, preventing cross-site scripting attacks,

331–332
HTML helpers, 15
HTML (Hypertext Markup Language)

elements. See tags
extensions, 93–94
helpers, 93

EditorFor, 99
ValidationMessageFor, 99

FormsAuthentication class, 288
FormsAuthenticationModule, 288
FormsAuthenticationTicket objects, 283–284
FormsAuthorization helper, 282
FormsIdentity method, 275
FormsValueProvider, 172
functionality, design and implementation, 95
functionality (rendered HTML pages), 150
functions

changeText, 103
displayStorageEvent, 46
OnFailure, 108

Functions Doing Most Individual Work section
(Profiler), 220

G
GenericIdentity method, 275
GenericPrincipal method, 275
GetAllRoles method, 299
GetAllUsers method, 290
GetBytes method, 329
GetControllerSessionBehavior method, 188
GetHttpHandler method, 193
GetNumberOfUsersOnline method, 290
GetPassword method, 290
GetRolesForUser method, 297, 299
GetUser method, 290
GetUsersInRole method, 299
Global.asax files

capturing first chance exceptions, 239
custom error pages, 236

Global.asax files, modifications for browser compatibility,
134–135

global filters, 164–167
globalization, 156–161

applying resources to the UI, 158–160
satellite resource assemblies, 161
setting cultures, 160–161

globally unique identifier (GUID), 247
global namespace, 160
goal-based load tests, 251
GUID (globally unique identifier), 247
GZipStream class, 201

355

installation

implementation
globalization and localization, 156–161

applying resources to the UI, 158–160
localization strategy, 156–158
satellite resource assemblies, 161
setting cultures, 160–161

MVC controllers and actions, 163–173
action results, 168–170
authorization attributes and global filters,

164–167
model binding, 170–173

MVC controllers and global filters, action behaviors,
167–168

routes, 175–182
applying constraints, 178–179
custom route parameters, 180
defining areas, 181–182
handling URL patterns, 176–178
ignoring URL patterns, 179–180

security
authentication, 271–291
authorization, 294–301
data integrity, 314–322
federated security, 303–313
secure sites, 324–336

UI (user interface) behavior, 97–111
client validation, 98–101
controlling app behavior, 103
jQuery, 108–111
partial page updates, 105–108
prototypal inheritance, 103–105
remote validation, 102–103

Include mapping helper, 172
Index.iemobile.cshtml view, 127
Info criticality, 224
Infrastructure as a Service (IaaS) service, 31
InitializeDatabaseConnection call, 296
InitializeDatabaseConnection method, 286
Initialize method, 290, 298
InitializeSimpleMembershipAttribute filter, 166
initial user count (step load tests), 251
Init method, 68
injection attacks, JavaScript, 331
InProc, 27
input model approach, 8
input types, HTML5, 93
installation

authentication providers, 272–273
Code Contracts Editor Extensions, 227

parsing with analytical tools, 146–149
structuring and laying out UI, 90–92
typical form, 94
visual layout, 117–120

HTTP 500 errors, 237
HTTP caching, 57–58
HttpContext class, 164
HttpContext.Current.User.Identity.IsAuthenticated

call, 280
HttpFileCollectionValueProvider, 172
HTTP handlers, application architecture, 67–72
HTTPHandlers, exception handling, 236–238
HTTP long polling, 60–61
HTTP modules, application architecture, 67–72
HTTP polling, 60
HttpResponse object, 190
HttpService class, retrieving output from a REST

URL, 22–23
HTTPS site binding, 327
HttpTaskAsyncHandler, 70
hybrid applications, 24–26
Hypertext Markup Language. See HTML

I
I18N (internationalization), 156
IaaS (Infrastructure as a Service) service, 31
IActionFilter interface, 187
IAuthorizationFilter interface, 187
ICacheProvider interface, 55
identity certificates. See SSL certificates
identity providers

ACS-integrated applications, 304
creating custom role providers, 298–300

IExceptionFilter interface, 187
IgnoreRoute method, 179
IHttpHandler interface, 69
IIdentity interface, 274, 279
IIS Failed Request logs, 257
IIS (Internet Information Services)

authentication configuration, 272–274
compression settings, 200–201
SEO Toolkit, 146–149
session management modes, 27

IModelBinder interface, 193
Impersonation authentication, 273, 278

356

instrumentation profiling method, Performance Wizard

J
JavaScript, 97

controlling app behavior, 103
including files for globalization, 160–161
injection attacks, 331
jQuery. See jQuery

JavaScript Object Notation (JSON) results, 10
JavaScriptResult action result, 169–170
jQuery, 97

implementing UI, 108–111
Mobile framework, 127, 133–134

jQuery library, 46
JSON (JavaScript Object Notation) results, 10
JsonRequestBehavior.AllowGet enum, 102
JsonResult action result, 170
JSON Web Encryption (JWE), 310
JSON Web Signature (JWS), 310
JWE (JSON Web Encryption), 310
JWS (JSON Web Signature), 310

K
Kendo UI, 127
Kerberos authentication protocol, 277
KerberosSecurityTokenHandler, 311
keyboard focus, ARIA, 152
KnockoutJS, 97

L
Labels resource file, 158–159
landmark roles, ARIA, 153
language, localization, 156
layers

rules, 235
three-tier applications, 235

layers, applications, 1–17
client-side versus server-side processing, 15–16
data access, 2–6

design approaches, 3–5
from within code, 5–6
options, 2–3

instrumentation profiling method, Performance
Wizard, 217

integration tests, 246–247
integration, web services in distributed applications,

21–24
integrity of data, 314–322

applying encryption to app data, 316–318
applying encryption to configuration sections,

319–320
digital signatures, 321–322
encryption terminology, 315–316

IntelliTrace, 259–261
interfaces

IActionFilter, 187
IAuthorizationFilter, 187
IExceptionFilter, 187
IIdentity, 274, 279
IModelBinder, 193
IPrincipal, 274, 279
IResultFilter, 187
IRouteHandler, 194
IView, 190
IViewEngine, 189

internationalization (I18N), 156
Internet Engineering Task Force (ITEF), 310
Internet Explorer 10 Guide for Developers, 92
Internet Explorer Developer Toolbar, 150–151
Internet Information Services (IIS)

authentication configuration, 272–274
compression settings, 200–201
SEO Toolkit, 146–149
session management modes, 27

invariants, code contracts, 227, 229
Inversion of Control (IoC), 188
IoC (Inversion of Control), 188
IPrincipal interface, 274, 279
IResultFilter intereface, 187
IRouteHandler interface, 194
IsInRole method, 297
IsReusable property (IHttpHandler interface), 69
IsUserAvailable action method, 102
IsUserInRole method, 297, 299
IsValid property, 101
ITEF (Internet Engineering Task Force), 310
IViewEngine interface, 189
IView interface, 190

357

methods

digital signatures, 321–322
encryption terminology, 315–316

WebSocket connections, 63
managing dynamic changes, ARIA, 152
manifest, application cache, 57–58
mapped URLs. See routes
MapRoute extension method, 176
MapRoute method, 194
Markup Validation Service (W3C), 148–149
master pages, UI layout, 120–121
master pages, views, 13
maximum user count (step load tests), 251
MaxInvalidPasswordAttempts property, 290
members, custom membership providers, 289–290
membership providers

configuring, 285–287
custom, 287–291

MembershipUserNameSecurityTokenHandler, 311
MemoryCache object, 54
<meta> tag, 133
methods

Action HTML extension, 166
Action, unit tests, 246
Add, 245
AddUsersToRoles, 298
AntiForgeryToken, 335
Application_Error, 226, 236
Application_Start, 236

registering view engine, 190
Assert, 246
bindEvents, 104
BindModel, 193
ChangePassword, 286, 289
ChangePasswordQuestionAndAnswer, 289
ClearAuthCookie, 277
CreateAccount, 286
CreateController, 188
CreateRole, 298
CreateSignature, 321
CreateUser, 289
DeleteRole, 298
DeleteUser, 289
Dispose, 68
Encrypt, 284
Ensures, 229
ExecuteResult, 188
FindPartialView, 189
FindUsersByEmail, 289

MVC design, 7–15
controllers, 8–12
models, 7–8
views, 12–15

scalability, 16–17
SoC (separation of concern), 6–7

layout
UI (user interface), 114–121

implementation of partials for reuse, 114–116
master/application pages, 120–121
planning an adaptive UI layout, 132–135
Razor templates, 117
visual structure, 117–120

_Layout.cshtml files, 86
layout pages, views, 13
lazy request validation, 333
life cycle events, 68–69
lifetime events, 230
LinqBinaryModelBinder, 171
Linq-to-Entities, 335
Load Project, adding to solution, 250
load tests, 251–252
locale (localization language), 156
localization, 156–161

applying resources to the UI, 158–160
satellite resource assemblies, 161
setting cultures, 160–161
strategy, 156–158

localizing views, 158
localStorage objects, 46
log4net, 223
logging applications, 223–227
Login method, 286, 305
log-in redirection-based authentication, 272
logs, debugging applications, 258–259
loose coupling, 6–7
lost connections, WebSockets, 64

M
<machineKey> configuration element, 299
management

data integrity, 314–322
applying encryption to app data, 316–318
applying encryption to configuration sections,

319–320

358

Microsoft.WindowsAzure.Diagnostics namespace

SetAuthCookie, 277, 288
SignData, 322
SignHash, 322
SimpleMembership, 285
Styles.Render, 86
System.Web.Mvc.IControllerFactory, 188
ToValueProvider, 172
UnlockUser, 291
UpdateUser, 291
ValidateUser, 291
VerifyAuthentication, 305
VerifyData, 322
VerifyHash, 322
window.addEventListener, 125
WindowsIdentity, 275
WindowsPrincipal, 275
Write, 224
WriteIf, 224
WriteLineIf, 224

Microsoft.WindowsAzure.Diagnostics namespace, 256
minifying scripts, 198–200
mobile devices, Amedia queries, 132–133
mobile views, DisplayModeProvider, 126
mobile web applications, adaptive UI layout, 134–135
mocks (unit tests), 247–250
mode attribute, 237
ModelBinderAttribute, 171
ModelBinderDictionary, 171
model binders, 8

controlling app behavior, 191–193
model binding, 170–173
Model First design approach, 3
models (MVC pattern), application layers, 7–8
models (MVC pattern), client validation, 98–99
ModelState property, 101
Modernizr.js library, 120
modules (HTTP), application architecture, 67–72
monolithic controllers, 168
Mozilla Firefox browser, sample vendor-specific

extension, 130
mscorlib.Fakes files, 248
multiple layers, exception handling, 235–236
MVC extensibility points, 186–194

action results, 188–189
model binders, 191–193
MVC filters and controller factories, 186–188
route handlers, 193–194
view engines, 189–191

FindUsersByName, 289
FindUsersInRole, 299
FindView, 189
FormsIdentity, 275
GenericIdentity, 275
GenericPrincipal, 275
GetAllRoles, 299
GetAllUsers, 290
GetBytes, 329
GetControllerSessionBehavior, 188
GetHttpHandler, 193
GetNumberOfUsersOnline, 290
GetPassword, 290
GetRolesForUser, 297, 299
GetUser, 290
GetUserNameByEmail, 290
GetUsersInRole, 299
HtmlAttributeEncode, 332
IgnoreRoute, 179
Init, 68
Initialize, 290, 298
InitializeDatabaseConnection, 286
IsInRole, 297
IsUserAvailable, 102
IsUserInRole, 297, 299
Login, 286, 305
MapRoute, 194
MapRoute extension, 176
OnActionExecuted, 166, 187
OnActionExecuting, 166, 187
OnAuthorization, 187
OnException, 187, 225
OnResultExecuted, 166, 187
OnResultExecuting, 166, 187
OnStart, 33, 35–37
OnStop, 37–38
ProcessRequestAsync, 70
ProcessRequest(HttpContext), 69
RegisterGlobalFilters, 167, 187
RegisterRoutes, 176
ReleaseController, 188
ReleaseView, 189
RemoveUsersFromRoles, 299
Render, 190
RenderAction HTML extension, 166
RequireRoles, 297
ResetPassword, 286, 291
RoleExists, 299

359

PBKDF2 (Password-Based Key Derivation Function 2)

on-demand approach, transferring diagnostic info to
Windows Azure Storage Account, 258

OnException method, 187, 225
OnFailure function, 108
OnResultExecuted method, 166, 187
OnResultExecuting method, 166, 187
OnStart method, 33, 35–37
OnStop method, 37–38
Optimal Asymmetric Encryption Padding (OAEP), 318
optimization

SEO (search engine optimization), 145–153
ARIA, 151–153
browser plug-ins, 149–151
parsing HTML with analytical tools, 146–149

UX (user experience) development
globalization and localization, 156–161

ordering attributes, 168–169
O/RM (object relational mapper), 2
OutputCache attribute, 52
overriding DefaultModelBinder, 192
overriding, OnException method, 225

P
PaaS (Platform as a Service) service, 31
Page Inspector, 149
page output caching, 52–54

distribution caching, 53–54
donut caching, 52
donut hole caching, 53–54

parameter checking, code contracts, 228–229
parameters

AllowMultiple, 166
custom parameter routes, 180

partial page updates, AJAX, 105–108
PartialViewResult action result, 169
partial views, 13, 95, 114–116
PasswordAttemptWindow property, 290
Password-Based Key Derivation Function 2

(PBKDF2), 329
PasswordFormat property, 290
passwords, salting and hashing, 328–331
Patterns and Practices group, 300
PBKDF2 (Password-Based Key Derivation

Function 2), 329

MVC filters, 186–188
MVC (Model-View-Controller) pattern

application layers, 7–15
controllers, 8–12
models, 7–8
views, 12–15

MvcRouteHandler, 193
MyCustomToken class, 309

N
Name property, 290, 299
namespaces

global, 160
Microsoft.WindowsAzure.Diagnostics, 256
System.Web.Mvc, 164
System.Web.MVC.Ajax, 106
System.Web.Mvc.Html, 93
System.Web.Mvc.ViewMasterPage, 86

navigation, ARIA, 152
.NET memory allocation, Performance Wizard, 218
.NET 4 Caching Framework, 54
network bandwidth, reducing, 197–202

bundling and minifying scripts, 198–200
CDN strategy, 202
compressing and decompressing data, 200–202

NLog, 223
N-tier development, 6
NTLM authentication protocol, 277

O
OAEP (Optimal Asymmetric Encryption Padding), 318
ObjectCache object, 54
object-oriented inheritance, 104
object relational mapper (O/RM), 2
objects

localStorage, 46
MemoryCache, 54
ObjectCache, 54
sessionStorage, 46

OnActionExecuted method, 166, 187
OnActionExecuting method, 166, 187
OnAuthorization method, 187

360

performance

MVC extensibility points, 186–194
reducing network bandwidth, 197–202
routes, 175–182
search engine optimization, 145–153

Profiler (Visual Studio), 219–221
<profiles> section (Web.config file), health monitoring,

231
Profile, state information storage, 41
profiling methods, Performance Wizard, 216–218
programmatically authorizing roles, 296–297
progress bar, 109
proper site coding, search engine optimization,

145–146
properties

ApplicationName, 289, 298
CSS (Cascading Style Sheets), 89–90
custom membership providers, 289–290
Description, 289, 298
EnablePasswordReset, 289
EnablePasswordRetrieval, 289
IsValid, 101
MaxInvalidPasswordAttempts, 290
ModelState, 101
Name, 290, 299
PasswordAttemptWindow, 290
PasswordFormat, 290
RequiresQuestionAndAnswer, 290
RequiresUniqueEmail, 290
Thread.CurrentThread.CurrentUICulture, 157

prototypal inheritance, UI behavior, 103–105
ProviderBase class, 298
provider encryption (–pe) command, 319
provider pattern, 274
<providers> section (Web.config file), health

monitoring, 231
public key certificate. See SSL certificates
public key infrastructure (PKI), 325

Q
queries

parameterizing, 333
static, data caching, 55

QueryStringProvider, 172
QueryString, state information storage, 41

performance
troubleshooting, 216–223

Performance Monitor, 221–222
Performance Wizard, 216–219
Visual Studio Profiler, 219–221

Performance approach (testing applications), 252
performance counters, 257
Performance Monitor (Windows Server), 221–222
Performance Wizard, 216–219
permissions. See authorization
PKI (public key infrastructure), 325
plain old CLR object (POCO) classes, 4
planning

globalization and localization, 156–161
applying resources to the UI, 158–160
localization strategy, 156–158
satellite resource assemblies, 161
setting cultures, 160–161

SEO (search engine optimization), 145–153
ARIA, 151–153
browser plug-ins, 149–151
parsing HTML with analytical tools, 146–149

Platform as a Service (PaaS) service, 31
plug-ins, browsers

SEO (search engine optimization), 149–151
POCO (plain old CLR object) classes, 4
polling, HTTP, 60
postconditions, code contracts, 227, 229
preconditions, code contracts, 227
prefix mapping, 171
presentation, ARIA, 152
presentation (rendered HTML pages), 150
prevention

runtime issues, 215–232
code contracts, 227–230
health monitoring, 230–232
performance, security, and errors, 216–223
tracing, logging, and debugging, 223–227

principal classes, 308
ProcessRequestAsync method, 70
ProcessRequest(HttpContext) method, 69
productivity

UX (user experience) development
globalization and localization, 156–161
MVC controllers and actions, 163–173

361

running

resolutions, @media queries, 133
resource contention data, Performance Wizard, 218
resource files, 157–158

creating and applying to UI, 158–160
ResourceManager helper class, 157
REST (Representational State Transfer) services, 22
Result filters, 186–187
results, action, 168–170
RijndaelManaged class, 317
Rivest, Shamir, and Adleman (RSA) algorithm, 316
RoleExists method, 299
role life cycle (Windows Azure), 31–39

roles, 31–32
Start, Run, and Stop events, 35–38
startup tasks, 32–35

RoleProvider abstract class, 285, 298
role providers, 298–300
roles, authorization

authorizing programmatically, 296–297
authorizing using configuration, 295–296
creating, 294–295
creating custom role providers, 298–300

RouteCollection objects, 176
RouteDataValueProvider, 172
route handlers

controlling app behavior, 193–194
URL patterns, 176–177

routes, 10, 175–182
applying constraints, 178–179
custom route parameters, 180
defining areas, 181–182
handling URL patterns, 176–178
ignoring URL patterns, 179–180

routing system, 10
RSACryptoServiceProvider class, 318
RsaProtectedConfigurationProvider, 319
RSA (Rivest, Shamir, and Adleman) algorithm, 316
RsaSecurityTokenHandler, 311
<rules> section (Web.config file), health monitoring,

231
rules, encryption, 318
Run event, Windows Azure role life cycle, 35–38
running

unit tests, 244–250
integration tests, 246–247
mocks, 247–250

web tests, 250–252

R
rainbow tables, 328
Razor applications, 86
Razor helpers, 15
Razor templates, UI (user interface) layout, 117
Razor view engine, 13–14, 189
RazorViewEngine class, 189
RDBMS (relational database management system), 2
RDP (Remote Desktop), debugging Windows Azure

applications, 261
reading, string and binary data, 60–64
RedirectResult action result, 169–170
RedirectToRouteResult action result, 169–170
reducing network bandwidth, 197–202

bundling and minifying scripts, 198–200
CDN strategy, 202
compressing and decompressing data, 200–202

referencing the manifest, application caching, 56
RegisterGlobalFilters method, 167, 187
RegisterRoutes method, 176
Register User section (applications), 102
reinforcing functionality, 244
rejecting filters (order of attributes), 168–169
relational database management system (RDBMS), 2
relationships, ARIA, 152
ReleaseController method, 188
ReleaseView method, 189
relying party (RP) application (ACS-integrated

application), 304
Remote attribute, 102
Remote Desktop (RDP), debugging Windows Azure

applications, 261
remote validation, UI behavior, 102–103
RemoveUsersFromRoles method, 299
RenderAction HTML extension method, 166
rendered HTML pages, components, 150
Render method, 190
Report section (Profiler), 220
reports, Performance Wizard, 219–220
Repository pattern, 5–6
Representational State Transfer (REST) services, 22
RequireHttps attribute, 327
RequireHttpsAttribute filter, 164
RequireRoles method, 297
RequiresQuestionAndAnswer property, 290
RequiresUniqueEmail property, 290
ResetPassword method, 286, 291

362

runtime issues

authorization, 294–301
authorizing roles programmatically, 296–297
authorizing roles using configuration, 295–296
creating roles, 294–295
custom role providers, 298–300
WCF service authorization, 300–301

data integrity, 314–322
applying encryption to app data, 316–318
applying encryption to configuration sections,

319–320
digital signatures, 321–322
encryption terminology, 315–316

events, 230
federated security, 303–313

custom security tokens, 307–310
token formats, 310–313
Windows Azure ACS, 303–306

hybrid applications, 26
secure sites, 324–336

deferred validation/unvalidated requests, 332
preventing cross-site scripting attacks, 331–332
preventing SQL injection attacks, 333–334
salting and hashing passwords, 328–331
SSL certificates, 325–328
XSRFs (cross-site request forgery), 335–336

troubleshooting, 222
SecurityToken class, 309
SecurityTokenHandler, 309
security token service (STS), 308
self-signed certificates, 325
semantic markup, 153
Sencha Touch, 127
SEO (search engine optimization), 145–153

ARIA, 151–153
browser plug-ins, 149–151
parsing HTML with analytical tools, 146–149
Toolkit, 146–149

separation of concern (SoC), 6–7
server action, remote validation, 102
server-side processing, application layers, 15–16
service buses, hybrid applications, 25
ServiceConfiguration.cscfg files, 257
ServiceDefinition.csdef files, 256–257
service-oriented architecture (SOA) approach, 24
SessionId, 26
sessionless state, configuring state management for

applications, 48–49
session management, cookies, 283–285

runtime issues
preventing and troubleshooting, 215–232

code contracts, 227–230
health monitoring, 230–232
performance, security, and errors, 216–223
tracing, logging, and debugging, 223–227

S
salting

defined, 315
passwords, 328–331

Saml2SecurityTokenHandler, 311
Saml2SecurityTokenHandler class, 311
SamlSecurityTokenHandler, 311
SAML token formats, 310–313
Sample Profiling Report section (Profiler), 220
satellite resource assemblies, 161
Scaffold Template option, 116
scaffold templates, views, 13
scalability, application layers, 16–17

configuring state management, 44–45
scheduled transfers, transferring diagnostic info to

Windows Azure Storage Account, 258
screen readers, 150
screen resolution, @media queries, 133
scripts, bundling and minifying, 198–200
search boxes, 105–106
search engine crawlers, 150
search engine optimization. See SEO
secure sites, 324–336

deferred validation/unvalidated requests, 332
preventing cross-site scripting attacks, 331–332
preventing SQL injection attacks, 333–334
salting and hashing passwords, 328–331
SSL certificates, 325–328
XSRFs (cross-site request forgery), 335–336

Secure Sockets Layer (SSL), 316
security

authentication, 271–291
configuring membership providers, 285–287
custom membership providers, 287–291
enforcing authentication settings, 280–282
managing sessions with cookies, 283–285
selecting type of authentication, 282–283
user authentication, 272–280

363

tags

HTTPHandlers, 236–238
multiple layers, 235–236
Web.config attributes, 236–238

stress approach (testing applications), 252
string-based methods, route handlers, 177
string data, reading/writing, 60–64
strings, resource files, 159
strongly-typed model binding, 170
strongly-typed views, 12
STS (security token service), 308
stubs (Fakes feature), 247–250
Styles.Render method, 86
SWT tokens, 310–313
SymmetricAlgorithm class, 316
symmetric encryption, 316
synchronous modules and handlers, 68–69
system-centric pattern, hybrid applications, 24
System.fakes files, 248
System.IO.Compression.GZipStream class, 201
System.Web.MVC.Ajax namespace, 106
System.Web.Mvc.FilterAttribute class, 164
System.Web.Mvc.Html namespace, 93
System.Web.Mvc.IControllerFactory method, 188
System.Web.Mvc.MvcRouteHandler, 193
System.Web.Mvc namespace, 164
System.Web.Mvc.RemoteAttribute, 102
System.Web.Mvc.ViewMasterPage namespace, 86
System.Web.Mvc.VirtualPathProviderViewEngine

class, 189
System.Web.Mvc VirtualPathProviderViewEngine.

DisplayModeProvider, 126

T
tabbed UI layout, jQuery, 108
tags

Accept-Encoding header, 200
<audio>, 91
<body>, 86

UI structure and layout, 90
<canvas>, 91
commonly used HTML tags, 90
<div>, 90
<footer>, 91
<head>, 86

UI structure and layout, 90
<header>, 91

session management, distributed applications, 26–27
SessionSecurityTokenHandler, 311
Session, state information storage, 41
sessionStorage object, 46
SetAuthCookie method, 277, 288
setting cultures, globalization and localization, 160–161
shims (Fakes feature), 247–250
SignData method, 322
SignHash method, 322
SimpleMembership helper class, 282
SimpleMembership methods, 285
site analysis reporting tools, 147
site coding, search engine optimization, 145–146
Site.Master templates, 86
smoke approach (testing applications), 252
SOA (service-oriented architecture) approach, 24
SoC (separation of concern), 6–7
Solution Explorer, resource files, 158–159
 tag, 90
SQL injection attacks, preventing, 333–334
SqlMembershipProvider, 285
SQLServer, 27
SSL certificates, 325–328
SSL (Secure Sockets Layer), 316
StackOverflow exception, 240
Start event, Windows Azure role life cycle, 35–38
starting

Performance Wizard, 216
Visual Studio Profiler, 219

startup tasks, Windows Azure role life cycle, 32–36
state management

configuring for applications, 40–49
choosing mechanism, 41–44
configuration settings, 47–48
cookies, 45
HTML5 Web Storage, 46–47
scalability, 44–45
sessionless state, 48–49

StateServer, 27
static queries, data caching, 55
step duration (step load tests), 251
step load tests, 251–252
step user count (step load tests), 251
Stop event, Windows Azure role life cycle, 35–38
storage, state information, 41
strategies

exception handling, 234–240
custom error pages, 236–238
first chance exceptions, 238–240

364

Task framework

runtime issues, 215–232
code contracts, 227–230
health monitoring, 230–232
performance, security, and errors, 216–223
tracing, logging, and debugging, 223–227

testing code, 243–252
unit tests, 244–250
web tests, 250–252

trusted providers, federated security, 303
typical form, HTML, 94

U
UICulture class, 157
UI (user interface)

behavior, 97–111
client validation, 98–101
controlling app behavior, 103
jQuery, 108–111
partial page updates, 105–108
prototypal inheritance, 103–105
remote validation, 102–103

browser feature detection, 124–130
composing layout, 114–121

implementation of partials for reuse, 114–116
master/application pages, 120–121
Razor templates, 117
visual structure, 117–120

design for web applications, 85–95
applying styles using CSS, 86–90
dynamic page content, 92–95
using HTML to structure and lay out UI, 90–93

enhancing behavior with browser feature detection
detecting features and capabilities, 124–126
vendor-specific extensions, 128–130
web apps that run across multiple brows-

ers, 126–128
planning an adaptive UI layout, 132–135
resource files, 158–160

unit tests, 244–250
integration tests, 246–247
mocks, 247–250

UnlockUser method, 291
unvalidated requests, secure sites, 332
UpdateUser method, 291
UrlParameter.Optional enum, 177
URL patterns, routes, 176–180

<html>, 86
UI structure and layout, 90

HTML5 layout tags, 91
<meta>, 133
@RenderBody(), 120
, 90
<video>, 91, 125

Task framework, 11
TDD (test-driven development), 244
templates

Display, 117
Editor, 117
Razor, UI (user interface) layout, 117
Site.Master, 86

test-driven development (TDD), 244
testing web applications, 243–252

approaches, 252
unit tests, 244–250

integration tests, 246–247
mocks, 247–250

web tests, 250–252
TextWriter object, 190
TFF fonts, embedding, 89
Thread.CurrentPrincipal.Identity.IsAuthenticated

call, 280
Thread.CurrentThread.CurrentUICulture property, 157
three-tier applications, layer relationships, 235
Thrown box (DEBUG Exceptions dialog box), 238
timeout synchronization, 54
tokens (security)

custom security, WIF (Windows Identity Foundation),
307–310

formats, claims-based authentication, 310–313
handlers, 311–312

toolbars, Internet Explorer Developer Toolbar, 150–151
tools, AppCmd.exe, 33–34
ToValueProvider method, 172
trace information, 259
TraceListeners, configuring, 224
tracing applications, 223–227
traditional filters, 164
transferring the manifest, application caching, 57
troubleshooting applications

exception handling strategies, 234–240
custom error pages, 236–238
first chance exceptions, 238–240
HTTPHandlers, 236–238
multiple layers, 235–236
Web.config attributes, 236–238

365

web applications

VerifyHash method, 322
vertical scaling, 17
<video> tag, 91, 125
ViewBag, 12
view engines

extending, 15
Razor, 13–14
Web Forms, 13–14

view engines, controlling app behavior, 189–191
view model approach, 8
ViewResult action result, 169
ViewResultBase action result, 169, 188
views, localizing, 158
views (MVC pattern)

client validation, 99
Index.iemobile.cshtml, 127

views (MVC pattern), application layers, 12–15
view-specific model, 13
Views\Shared_Layout.cshtml files, 86
ViewState, 41
Virtual Machines (VMs), 31
VirtualPathProviderViewEngine class, 15
visual structure, UI layout, 117–120
Visual Studio

Page Inspector, 149
Performance Wizard, 216–219
Profiler, 219–221

VM role (Windows Azure), 32
VMs (Virtual Machines), 31

W
W3C Markup Validation Service, 148–149
WAI (Web Accessibility Initiative)

ARIA (Accessible Rich Internet Applications)
search engine optimization, 151–153

WCF (Windows Communication Framework)
service authorization, 300–301

weakly-typed model binding, 171
Web Accessibility Initiative (WAI)

ARIA (Accessible Rich Internet Applications)
search engine optimization, 151–153

Web API, 21
web applications. See also applications

debugging, 255–261
collecting diagnostic information, 256–258
log types, 258–259

userAgent header, browser detection, 124
user authentication, 272–280

Anonymous, 275
Basic, 276
Client Certificate-based, 278
custom, 279–280
Digest, 276
Forms, 277
Impersonation, 278
Windows, 277–278

user experience. See UX (user experience)
user interface. See UI
user interface (UI), resource files, 158–160
UserNameSecurityTokenHandler, 311
UX (user experience)

design
composing UI layout, 114–121
enhancing behavior with browser feature

detection, 124–131
planning an adaptive UI layout, 132–135
UI behavior, 97–111
UI design for web applications, 85–95

development
globalization and localization, 156–161
MVC controllers and actions, 163–173
MVC extensibility points, 186–194
reducing network bandwidth, 197–202
routes, 175–182
search engine optimization, 145–153

V
ValidateAntiForgeryTokenAttribute attribute, 335
ValidateAntiForgeryTokenAttribute filter, 164
ValidateInputAttribute filter, 164–165
ValidateUser method, 291
validation

client validation, 98–101
remote validation, 102–103

ValidationMessageFor helper, 99
ValueProvider object, 172
value providers, 172
vendor-specific extensions, enhancing app behavior,

128–130
VerifyAuthentication method, 305
VerifyData method, 322

366

Web.config file, managing role authorization

role life cycle, 31–38
conceptualization, 31
Start, Run, and Stop events, 35–38
startup tasks, 32–36

Windows Azure, ACS (Access Control Service)
federated authentication, 303–306

Windows Azure CDN, 202
Windows Communication Framework (WCF)

service authorization, 300–301
Windows event logs, 257
Windows Identity Foundation (WIF)

custom security tokens, 307–310
WindowsIdentity method, 275
WindowsPrincipal method, 275
Windows Server, Performance Monitor, 221–222
WindowsUserNameSecurityTokenHandler, 311
wizards

Add Roles, installing authentication providers,
272–273

Worker role (Windows Azure), 32
WriteIf method, 224
WriteLineIf method, 224
Write method, 224
writing, string and binary data, 60–64
WSDL (Web Services Description Language), 22
WS-Federation, 307
WS-Trust, 307

X
X509SecurityTokenHandler, 311
XmlWriterTraceListeners, 224
XSRFs (cross-site request forgeries), 335–336
XSS (cross-site scripting) attacks, prevention, 331–332

Z
zipping files (data compression), 200–202

testing, 243–252
unit tests, 244–250
web tests, 250–252

troubleshooting
exception handling strategies, 234–240
runtime issues, 215–232
tracing, logging, and debugging, 223–227

UI (user interface) design, 85–95
applying styles using CSS, 86–90
dynamic page content, 92–95
using HTML to structure and lay out UI, 90–93

Web.config file, managing role authorization, 295–296
Web.config files

exception handling, attributes, 236–238
health monitoring, 230–231

web farms, distributed applications, 27–28
Web Forms

state management, 41
view engine, 13–14

Web Forms view engine, 189
Webmaster Tools, 148
Web role (Windows Azure), 32
WebSecurity class, 286
WebSecurity helper class, 282, 297
Web Services Description Language (WSDL), 22
web services, integrating in distributed applications,

21–24
Web Sites (Windows Azure), 31
WebSockets, 60–66

connection loss strategy, 64
reading/writing string and binary data, 60–64
when not to use, 64

.webtest files, 250
Web Test, adding to solution, 250
web tests, 250–252
WIF (Windows Identity Foundation), custom security

tokens, 307–310
window.addEventListener method, 125
Windows authentication, 277–278
Windows Azure

Autoscaling feature, 17
debugging applications, 255–261

collecting diagnostic information, 256–258
log types, 258–259

hybrid applications and service buses, 25

About the Author

WILLIAM PENBERThY is a software developer and educator living in Denver, Colorado.
William has been working in various aspects of the software development life cycle for more
than 25 years, focusing on Microsoft technology-specific development since 2005. He has
been part of the development of more than 125 different applications, ranging from client
applications to web services to websites, and has taught software development classes and
in-services since 1998.

William is an application development consultant for RBA (http://www.rbaconsulting.com).
RBA was named a Microsoft 2013 Partner of the Year and specializes in offering custom appli-
cation development, infrastructure, portals, data management, and digital strategy solutions
for clients.

http://www.rbaconsulting.com

SurvPage_Corp_b&w.indd 1 4/24/13 12:45 PM

Now that
you’ve
read the
book...

Tell us what you think!
Was it useful?

Did it teach you what you wanted to learn?

Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,
and we read every one of your responses. Thanks in advance!

http://aka.ms/tellpress

	Table of Contents
	Introduction
	Microsoft certifications
	Acknowledgments
	Errata & book support
	We want to hear from you
	Stay in touch

	Preparing for the exam
	Chapter 1: Design the application architecture
	Objective 1.1: Plan the application layers
	Planning data access
	Planning for separation of concern (SoC)
	Using models, views, and controllers appropriately
	Choosing between client-side and server-side processing
	Designing for scalability
	Objective summary
	Objective review

	Objective 1.2: Design a distributed application
	Integrating web services
	Designing a hybrid application
	Planning for session management in a distributed environment
	Planning web farms
	Objective summary
	Objective review

	Objective 1.3: Design and implement the Windows Azure role life cycle
	Understanding Windows Azure and roles
	Identifying startup tasks
	Identifying and implementing Start, Run, and Stop events
	Objective summary
	Objective review

	Objective 1.4: Configure state management
	Choosing a state management mechanism
	Planning for scalability
	Using cookies or local storage to maintain state
	Applying configuration settings in the Web.config file
	Implementing sessionless state
	Objective summary
	Objective review

	Objective 1.5: Design a caching strategy
	Implementing page output caching
	Implementing data caching
	Implementing application caching
	Implementing HTTP caching
	Objective summary
	Objective review

	Objective 1.6: Design and implement a WebSocket strategy
	Reading and writing string and binary data
	Choosing a connection loss strategy
	Deciding when to use WebSockets
	Objective summary
	Objective review

	Objective 1.7: Design HTTP modules and handlers
	Implementing synchronous and asynchronous modules and handlers
	Choosing between modules and handlers in IIS
	Objective summary
	Objective review

	Chapter summary
	Answers

	Index

