

Exam Ref 70-482:
Advanced Windows Store
App Development Using
HTML5 and JavaScript

Roberto Brunetti
Vanni Boncinelli

Copyright © 2013 by Roberto Brunetti and Vanni Boncinelli

All rights reserved. No part of the contents of this book may be reproduced
or transmitted in any form or by any means without the written permission of
the publisher.

ISBN: 978-0-7356-7680-0

1 2 3 4 5 6 7 8 9 QG 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors
worldwide. If you need support related to this book, email Microsoft Press
Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/
en/us/IntellectualProperty/Trademarks/EN-US.aspx are trademarks of the
Microsoft group of companies. All other marks are property of their respec-
tive owners.

The example companies, organizations, products, domain names, email ad-
dresses, logos, people, places, and events depicted herein are fictitious. No
association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information con-
tained in this book is provided without any express, statutory, or implied
warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or
alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Jeff Riley
Developmental Editor: Kim Lindros
Production Editor: Melanie Yarbrough
Editorial Production: Box Twelve Communications
Technical Reviewer: Luca Regnicoli
Copyeditor: Susan Hobbs
Indexer: Angie Martin
Cover Design: Twist Creative • Seattle
Cover Composition: Ellie Volckhausen
Illustrator: Rebecca Demarest

This book is dedicated to my parents.
— RobeRto bRunetti

This book is dedicated to my family.
— Vanni boncinelli

Contents at a glance

Introduction xv

Preparing for the exam xvii

ChAPTER 1 Develop Windows Store apps 1

ChAPTER 2 Discover and interact with devices 57

ChAPTER 3 Program user interaction 125

ChAPTER 4 Enhance the user interface 181

ChAPTER 5 Manage data and security 247

ChAPTER 6 Prepare for a solution deployment 307

Index 389

vii

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

Contents

Introduction xv
Microsoft certifications xv

Acknowledgments xv

Errata & book support xvi

We want to hear from you xvi

Stay in touch xvi

Preparing for the exam xvii

Chapter 1 Develop Windows Store apps 1
Objective 1.1: Create background tasks . 1

Creating a background task 2

Declaring background task usage 5

Enumerating registered tasks 7

Using deferrals with tasks 8

Objective summary 9

Objective review 9

Objective 1.2: Consume background tasks . 10

Understanding task triggers and conditions 10

Progressing through and completing background tasks 12

Understanding task constraints 15

Cancelling a task 16

Updating a background task 19

Debugging tasks 20

Understanding task usage 22

Transferring data in the background 22

viii Contents

Keeping communication channels open 27

Objective summary 37

Objective review 37

Objective 1.3: Integrate WinMD components into a solution 38

Understanding the Windows Runtime and WinMD 38

Consuming a native WinMD library 40

Creating a WinMD library 47

Objective summary 50

Objective review 51

Chapter summary . 51

Answers . 52

Objective 1.1: Thought experiment 52

Objective 1.1: Review 52

Objective 1.2: Thought experiment 53

Objective 1.2: Review 53

Objective 1.3: Thought experiment 54

Objective 1.3: Review 54

Chapter 2 Discover and interact with devices 57
Objective 2.1: Capture media with the camera and microphone. 57

Using CameraCaptureUI to capture pictures or video 58

Using MediaCapture to capture pictures, video, or audio 67

Objective summary 78

Objective review 78

Objective 2.2: Get data from sensors . 79

Understanding sensors and location data in the
Windows Runtime 79

Accessing sensors from a Windows Store app 80

Determining the user’s location 96

Objective summary 104

Objective review 105

Objective 2.3: Enumerate and discover device capabilities 105

Enumerating devices 106

Using the DeviceWatcher class to be notified of changes
to the device collection 112

ixContents

Enumerating Plug and Play (PnP) devices 116

Objective summary 118

Objective review 119

Chapter summary . 119

Answers . 121

Objective 2.1: Thought experiment 121

Objective 2.1: Review 121

Objective 2.2: Thought experiment 122

Objective 2.2: Review 122

Objective 2.3: Thought experiment 123

Objective 2.3: Review 124

Chapter 3 Program user interaction 125
Objective 3.1: Implement printing by using contracts and charms 125

Registering a Windows Store app for the Print contract 126

Handling PrintTask events 131

Creating the user interface 132

Creating a custom print template 133

Understanding the print task options 136

Choosing options to display in the preview window 139

Reacting to print option changes 140

Implementing in-app printing 142

Objective summary 143

Objective review 143

Objective 3.2: Implement Play To by using contracts and charms 144

Introducing the Play To contract 144

Testing sample code using Windows Media Player on a
different machine 147

Implementing a Play To source application 149

Registering your app as a Play To receiver 155

Objective summary 161

Objective review 162

Objective 3.3: Notify users by using Windows Push
Notification Service (WNS) . 163

Requesting and creating a notification channel 163

x Contents

Sending a notification to the client 165

Objective summary 173

Objective review 173

Chapter summary . 174

Answers . 175

Objective 3.1: Thought experiment 175

Objective 3.1: Review 175

Objective 3.2: Thought experiment 176

Objective 3.2: Review 177

Objective 3.3: Thought experiment 178

Objective 3.3: Review 178

Chapter 4 Enhance the user interface 181
Objective 4.1: Design for and implement UI responsiveness 181

Choosing an asynchronous strategy 182

Implementing promises and handling errors 183

Cancelling promises 187

Creating your own promises 188

Using web workers 190

Objective summary 194

Objective review 195

Objective 4.2: Implement animations and transitions 195

Using CSS3 transitions 196

Creating and customizing animations 203

Using the animation library 206

Animating with the HTML5 canvas element 211

Objective summary 212

Objective review 213

Objective 4.3: Create custom controls. 213

Understanding how existing controls work 214

Creating a custom control 218

Extending controls 222

Objective summary 226

Objective review 227

xiContents

Objective 4.4: Design apps for globalization and localization 228

Planning for globalization 228

Localizing your app 231

Localizing your manifest 236

Using the Multilingual App Toolkit 238

Objective summary 239

Objective review 239

Chapter summary . 240

Answers . 241

Objective 4.1: Thought experiment 241

Objective 4.1: Review 241

Objective 4.2: Thought experiment 242

Objective 4.2: Review 243

 Objective 4.3: Thought experiment 244

Objective 4.3: Review 244

Objective 4.4: Thought experiment 245

Objective 4.4: Review 245

Chapter 5 Manage data and security 247
Objective 5.1: Design and implement data caching 247

Understanding application and user data 247

Caching application data 248

Understanding Microsoft rules for using roaming
profiles with Windows Store apps 259

Caching user data 260

Objective summary 262

Objective review 263

Objective 5.2: Save and retrieve files from the file system 263

Using file pickers to save and retrieve files 264

Accessing files and data programmatically 270

Working with files, folders, and streams 272

Setting file extensions and associations 274

Compressing files to save space 276

Objective summary 277

Objective review 278

xii Contents

Objective 5.3: Secure application data . 278

Introducing the Windows.Security.Cryptography namespaces 279

Using hash algorithms 279

Generating random numbers and data 283

Encrypting messages with MAC algorithms 284

Using digital signatures 288

Enrolling and requesting certificates 290

Protecting your data with the DataProtectionProvider class 296

Objective summary 300

Objective review 300

Chapter summary . 301

Answers . 302

Objective 5.1: Thought experiment 302

Objective 5.1: Review 302

Objective 5.2: Thought experiment 303

Objective 5.2: Review 303

Objective 5.3: Thought experiment 304

Objective 5.3: Review 304

Chapter 6 Prepare for a solution deployment 307
Objective 6.1: Design and implement trial functionality in an app 307

Choosing the right business model for your app 308

Exploring the licensing state of your app 310

Using custom license information 316

Purchasing an app 318

Handling errors 320

Setting up in-app purchases 322

Retrieving and validating the receipts for your purchases 327

Objective summary 329

Objective review 329

Objective 6.2: Design for error handling . 330

Designing the app so that errors and exceptions never
reach the user 331

Handling promise errors 335

Handling device capability errors 339

xiiiContents

Objective summary 343

Objective review 344

Objective 6.3: Design and implement a test strategy.344

Understanding functional testing vs. unit testing 345

Implementing a test project for a Windows Store app 348

Objective summary 355

Objective review 356

Objective 6.4: Design a diagnostics and monitoring strategy 357

Profiling a Windows Store app and collecting
performance counters 357

Using JavaScript analysis tools 365

Logging events in a Windows Store app written in JavaScript 371

Using the Windows Store reports to improve the quality
of your app 377

Objective summary 380

Objective review 381

Chapter summary . 382

Answers . 383

Objective 6.1: Thought experiment 383

Objective 6.1: Review 383

Objective 6.2: Thought experiment 384

Objective 6.2: Review 384

Objective 6.3: Thought experiment 385

Objective 6.3: Review 385

Objective 6.4: Thought experiment 386

Objective 6.4: Review 387

Index 389

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

xv

Introduction

The Microsoft 70-482 certification exam tests your knowledge of Windows Store application
development using HTML5 and JavaScript. Readers are assumed to be Windows Store app
developers with deep knowledge of the Windows Runtime architecture, the application life
cycle managed by the system (including suspend, termination, resume, and launch), the Visual
Studio 2012 project structure, the application manifest, app deployment, and Windows Store
requirements. The reader must have also a strong background in HTML5 and JavaScript.

This book covers every exam objective, but it does not cover every exam question. Only
the Microsoft exam team has access to the exam questions themselves and Microsoft regu-
larly adds new questions to the exam, making it impossible to cover specific questions. You
should consider this book a supplement to your relevant real-world experience and other
study materials. If you encounter a topic in this book that you do not feel completely com-
fortable with, use the links you’ll find in text to find more information and take the time to
research and study the topic. Great information is available on MSDN, TechNet, and in blogs
and forums.

Microsoft certifications

Microsoft certifications distinguish you by proving your command of a broad set of skills and
experience with current Microsoft products and technologies. The exams and corresponding
certifications are developed to validate your mastery of critical competencies as you design
and develop, or implement and support, solutions with Microsoft products and technologies
both on-premise and in the cloud. Certification brings a variety of benefits to the individual
and to employers and organizations.

MORE INFO ALL MICROSOFT CERTIFICATIONS

For information about Microsoft certifications, including a full list of available certifica-
tions, go to http://www.microsoft.com/learning/en/us/certification/cert-default.aspx.

Acknowledgments

I’d like to thank Vanni for his side-by-side work. He has shared with me all the intricacies of
writing a book with this level of detail.

— Roberto

xvi Introduction

I’d like to thank Roberto, for teaching me everything I know today about software devel-
opment, and Marika, for her support and infinite patience during the writing of this book.

— Vanni

Roberto and Vanni want to thank all the people who made this book possible. In particu-
lar, we thank Kim Lindros, for her exceptional support throughout the editing process of this
book; Jeff Riley, for giving us this opportunity; and Russell Jones, for introducing our team to
Jeff.

Special thanks to Wouter de Kort for providing the Chapter 4 content.

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion content.
Any errors that have been reported since this book was published are listed on our Microsoft
Press site:

http://aka.ms/ER70-482/errata

If you find an error that is not already listed, you can report it to us through the same
page.

If you need additional support, email Microsoft Press Book Support at mspinput@microsoft.
com.

Please note that product support for Microsoft software is not offered through the ad-
dresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable
asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in ad-
vance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://twitter.com/MicrosoftPress

xviiPreparing for the exam

Preparing for the exam

Microsoft certification exams are a great way to build your resume and let the world know
about your level of expertise. Certification exams validate your on-the-job experience and
product knowledge. While there is no substitution for on-the-job experience, preparation
through study and hands-on practice can help you prepare for the exam. We recommend
that you round out your exam preparation plan by using a combination of available study
materials and courses. For example, you might use this Exam Ref and another study guide for
your "at home" preparation, and take a Microsoft Official Curriculum course for the classroom
experience. Choose the combination that you think works best for you.

Note that this Exam Ref is based on publically available information about the exam and
the author's experience. To safeguard the integrity of the exam, authors do not have access to
the live exam.

 1

C h A P T E R 1

Develop Windows Store apps
In this chapter, you learn how to create background tasks, implement the appropriate
interfaces, and consume tasks using timing and system triggers. You also find out how to
request lock screen access and create download and upload operations using background
transferring for Windows Store applications written in Hypertext Markup Language (HTML)/
JavaScript (formerly called Windows Store apps using JavaScript). The last part of the chap-
ter is dedicated to creating and consuming Windows Metadata (WinMD) components.

IMPORTANT METHODS CAPITALIZATION

Throughout the code samples in this book, the syntax of the Windows Runtime (WinRT)
library methods and events follow the traditional JavaScript syntax, while in the text, the
same methods and events are initial capped. This is because the method definitions in
the library are initial capped (SetTrigger, for example), but thanks to the WinRT language
projection feature, developers can use the syntax of their chosen language to invoke them
(setTrigger, for example). Language projection is discussed in Objective 1.3, "Integrate
WinMD components into a solution," later in this chapter. Classes and namespaces are
always initial capped.

Objectives in this chapter:
■■ Objective 1.1: Create background tasks

■■ Objective 1.2: Consume background tasks

■■ Objective 1.3: Integrate WinMD components into a solution

Objective 1.1: Create background tasks

Microsoft Windows 8 changes the way applications run. Windows Store application life-
cycle management of the Windows Runtime is different from previous versions of Windows:
only one application (or two in snapped view) can run in the foreground at a time. The sys-
tem can suspend or terminate other applications from the Windows Runtime. This behavior
forces the developer to use different techniques to implement some form of background
work—for example, to download a file or perform tile updates.

This section covers how to implement a background task using the provided classes and
interfaces, and how to code a simple task.

 2 ChAPTER 1 Develop Windows Store apps

This objective covers how to:
■■ Implement the Windows.applicationmodel.background classes

■■ Implement WebUIBackgroundTaskInstance

■■ Create a background task to manage and preserve resources

■■ Create a background task to get notifications for an app

■■ Register the background task by using the BackgroundTaskBuilder class

Creating a background task
In Windows Store apps, when users work on an app in the foreground, background apps can-
not interact directly with them. In fact, due to the architecture of Windows 8 and because of
the application life-cycle management of Windows Store apps, only the foreground app has
the focus and is in the Running state; the user can choose two applications in the foreground
using the snapped view.

All the other background apps can be suspended, and even terminated, by the Windows
Runtime. A suspended app cannot execute code, consume CPU cycles or network resources,
or perform any disk activity such as reading or writing files.

You can define a task that runs in the background, however, even in a separate process
from the owner app, and you can define background actions. When these actions need to
alert users about their outcomes, they can use a toast.

A background task can execute code even when the corresponding app is suspended, but
it runs in an environment that is restricted and resource-managed. Moreover, background
tasks receive only a limited amount of system resources.

You should use a background task to execute small pieces of code that require no user
interaction. You can also use a background task to communicate with other apps via instant
messaging, email, or Voice over Internet Protocol (VoIP). Avoid using a background task to
execute complex business logic or calculations because the amount of system resources avail-
able to background apps is limited. Complex background workloads consume battery power
as well, reducing the overall efficiency and responsiveness of the system.

To create a background task, you have to create a new JavaScript file with a function that
runs in the background when the task is triggered. The name of the file is used to launch the
background task.

The function uses the current property of the WebUIBackgroundTaskInstance object to get
a reference to the background task, and it contains the doWork function that represents the
code to be run when the task is triggered. See Listing 1-1.

 Objective 1.1: Create background tasks ChAPTER 1 3

LISTING 1-1 JavaScript function skeleton for a background task

(function () {
 "use strict";

 //
 // Get a reference to the task instance.
 //
 var bgTaskInstance = Windows.UI.WebUI.WebUIBackgroundTaskInstance.current;

 //
 // Real work.
 //
 function doWork() {
 // Call the close function when you have done.
 close();
 }

 doWork();
})();

Remember to call the close function at the end of the worker function. If the background
task does not call this method, the task continues to run and consume battery, CPU, and
memory, even if the code has reached its end.

Then you have to assign the event that will fire the task. When the event occurs, the oper-
ating system calls the defined doWork function. You can associate the event, called a trigger,
via the SystemTrigger or the MaintenanceTrigger class.

The code is straightforward. Using an instance of the BackgroundTaskBuilder object, as-
sociate the name of the task and its entry point by using the path to the JavaScript file. The
entry point represents the relative path to the JavaScript file, as shown in the following code
excerpt:

Sample of JavaScript code

var builder = new Windows.ApplicationModel.Background.BackgroundTaskBuilder();
builder.name = "BikeGPS";
builder.taskEntryPoint = "js\\BikeBackgroundTask.js";

Then you must create the trigger to let the system know when to start the background
task:

var trigger = new Windows.ApplicationModel.Background.SystemTrigger(
 Windows.ApplicationModel.Background.SystemTriggerType.timeZoneChange, false);
builder.setTrigger(trigger);

EXAM TIP

The SystemTrigger object accepts two parameters in its constructor. The first parameter of
the trigger is the type of system event associated with the background task; the second,
called oneShot, tells the Windows Runtime to start the task only once or every time the
event occurs.

 4 ChAPTER 1 Develop Windows Store apps

The complete enumeration, which is defined by the SystemTriggerType enum, is shown in
Listing 1-2.

LISTING 1-2 Types of system triggers

// Summary:
// Specifies the system events that can be used to trigger a background task.
[Version(100794368)]
public enum SystemTriggerType
{
 // Summary:
 // Not a valid trigger type.
 Invalid = 0,
 //
 // Summary:
 // The background task is triggered when a new SMS message is received by an
 // installed mobile broadband device.
 SmsReceived = 1,
 //
 // Summary:
 // The background task is triggered when the user becomes present. An app must
 // be placed on the lock screen before it can successfully register background
 // tasks using this trigger type.
 UserPresent = 2,
 //
 // Summary:
 // The background task is triggered when the user becomes absent. An app must
 // be placed on the lock screen before it can successfully register background
 // tasks using this trigger type.
 UserAway = 3,
 //
 // Summary:
 // The background task is triggered when a network change occurs, such as a
 // change in cost or connectivity.
 NetworkStateChange = 4,
 //
 // Summary:
 // The background task is triggered when a control channel is reset. An app must
 // be placed on the lock screen before it can successfully register background
 // tasks using this trigger type.
 ControlChannelReset = 5,
 //
 // Summary:
 // The background task is triggered when the Internet becomes available.
 InternetAvailable = 6,
 //
 // Summary:
 // The background task is triggered when the session is connected. An app must
 // be placed on the lock screen before it can successfully register background
 // tasks using this trigger type.
 SessionConnected = 7,
 //

 Objective 1.1: Create background tasks ChAPTER 1 5

 // Summary:
 // The background task is triggered when the system has finished updating an
 // app.
 ServicingComplete = 8,
 //
 // Summary:
 // The background task is triggered when a tile is added to the lock screen.
 LockScreenApplicationAdded = 9,
 //
 // Summary:
 // The background task is triggered when a tile is removed from the lock screen.
 LockScreenApplicationRemoved = 10,
 //
 // Summary:
 // The background task is triggered when the time zone changes on the device
 // (for example, when the system adjusts the clock for daylight saving time).
 TimeZoneChange = 11,
 //
 // Summary:
 // The background task is triggered when the Microsoft account connected to
 // the account changes.
 OnlineIdConnectedStateChange = 12,
}

You can also add conditions that are verified by the system before starting the background
task. The BackgroundTaskBuilder object exposes the AddCondition function to add a single
condition, as shown in the following code sample. You can call it multiple times to add differ-
ent conditions.

builder.addCondition(new Windows.ApplicationModel.Background.SystemCondition(
 Windows.ApplicationModel.Background.SystemConditionType.internetAvailable))

The last line of code needed is the registration of the defined task:

var task = builder.register();

Declaring background task usage
An application that registers a background task needs to declare the feature in the applica-
tion manifest as an extension, as well as the events that will trigger the task. If you forget
these steps, the registration will fail. There is no <Extensions> section in the application mani-
fest of the standard template by default, so you need to insert it as a child of the Application
tag.

Listing 1-3 shows the application manifest for the sample task implemented by Listing 1-2.
The <Extensions> section is shown in bold.

 6 ChAPTER 1 Develop Windows Store apps

LISTING 1-3 Application manifest

<?xml version="1.0" encoding="utf-8"?>
<Package xmlns="http://schemas.microsoft.com/appx/2010/manifest">
 <Identity Name="e00b2bde-0697-4e6b-876b-1d611365485f"
 Publisher="CN=Roberto"
 Version="1.0.0.0" />
 <Properties>
 <DisplayName>BikeApp</DisplayName>
 <PublisherDisplayName>Roberto</PublisherDisplayName>
 <Logo>Assets\StoreLogo.png</Logo>
 </Properties>
 <Prerequisites>
 <OSMinVersion>6.2.1</OSMinVersion>
 <OSMaxVersionTested>6.2.1</OSMaxVersionTested>
 </Prerequisites>
 <Resources>
 <Resource Language="x-generate"/>
 </Resources>
 <Applications>
 <Application Id="App"
 Executable="$targetnametoken$.exe"
 EntryPoint="BikeApp.App">
 <VisualElements
 DisplayName="BikeApp"
 Logo="Assets\Logo.png"
 SmallLogo="Assets\SmallLogo.png"
 Description="BikeApp"
 ForegroundText="light"
 BackgroundColor="#464646">
 <DefaultTile ShowName="allLogos" />
 <SplashScreen Image="Assets\SplashScreen.png" />
 </VisualElements>
 <Extensions>
 <Extension Category="windows.backgroundTasks"
 EntryPoint="js\BikeBackgroundTask.js">
 <BackgroundTasks>
 <Task Type="systemEvent" />
 </BackgroundTasks>
 </Extension>
 </Extensions>
 </Application>
 </Applications>
 <Capabilities>
 <Capability Name="internetClient" />
 </Capabilities>
</Package>

You have to add as many task elements as needed by the application. For example, if the
application uses a system event and a push notification event, you have to add the following
XML node to the BackgroundTasks element:

<BackgroundTasks>
 <Task Type="systemEvent" />
 <Task Type="pushNotification" />
</BackgroundTasks>

 Objective 1.1: Create background tasks ChAPTER 1 7

You can also use the Microsoft Visual Studio App Manifest Designer to add (or remove) a
background task declaration. Figure 1-1 shows the same declaration in the designer.

FIGURE 1-1 Background task declaration in Visual Studio App Manifest Designer

Enumerating registered tasks
Be sure to register the task just once in your application. If you forget to check the presence
of the task, you risk registering and executing the same task many times.

To check whether a task is registered, you can iterate all the registered tasks using the
BackgroundTaskRegistration object and checking for the Value property that represents the
task that, in turns, exposes the Name property, as follows:

Sample of JavaScript code

var taskName = "bikePositionUpdate";
var taskRegistered = false;

var background = Windows.ApplicationModel.Background;
var iter = background.BackgroundTaskRegistration.allTasks.first();

while (iter.hasCurrent) {
 var task = iter.current.value;

 if (task.name === taskName) {
 taskRegistered = true;
 break;
 }
 iter.moveNext();
}

 8 ChAPTER 1 Develop Windows Store apps

Using deferrals with tasks
If the code for the doWork function is asynchronous, the background task needs to use a de-
ferral (the same techniques as the suspend method). In this case, use the GetDeferral method,
as follows:

(function () {
 "use strict";
 //
 // Get a reference to the task instance.
 //
 var bgTaskInstance = Windows.UI.WebUI.WebUIBackgroundTaskInstance.current;

 //
 // Real work.
 //
 function doWork() {

 var backgroundTaskDeferral = bgTaskInstance.getDeferral();

 // Do work

 backgroundTaskDeferral.complete();

 // Call the close function when you have done.
 close();
 }

 doWork();
});

After requesting the deferral using the GetDeferral method, use the async pattern to
perform the asynchronous work and, at the end, call the Complete method on the deferral. Be
sure to perform all the work after requesting the deferral and before calling the Complete and
the Close method. Otherwise, the system thinks that your job is already done and can shut
down the main thread.

MORE INFO THREADS

Chapter 4, “Enhance the user interface,” discusses threads and CPUs.

 Objective 1.1: Create background tasks ChAPTER 1 9

Thought experiment
Implementing background tasks

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your application needs to perform some lengthy cleaning operations on temporary
data. To avoid wasting system resources during application use, you want to per-
form these operations in the background. You implement the code in a background
thread but notice that your application sometimes does not clean all the data when
the user switches to another application.

1. Why does the application not clean the data all the time?

2. How can you solve this problem?

Objective summary
■■ A background task can execute lightweight action invoked by the associated event.

■■ A task needs to be registered using WinRT classes and defined in the application
manifest.

■■ There are many system events you can use to trigger a background task.

■■ You have to register a task just once.

■■ You can enumerate tasks that are already registered.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. How can an application fire a background task to respond to a network state
modification?

A. By using a time trigger, polling the network state every minute, and checking for
changes to this value

B. By using a SystemTrigger for the InternetAvailable event and checking whether the
network is present or not

C. By using a SystemTrigger for the NetworkStateChange event and using false as the
second constructor parameter (called oneShot)

D. By using a SystemTrigger for the NetworkStateChange event and using true as the
second constructor parameter

 10 ChAPTER 1 Develop Windows Store apps

2. Which steps do you need to perform to enable a background task? (Choose all that
apply.)

A. Register the task in the Package.appxmanifest file.

B. Use the BackgroundTaskBuilder to create the task.

C. Set the trigger that will fire the task code.

D. Use a toast to show information to the user.

3. Is it possible to schedule a background task just once?

A. Yes, using a specific task.

B. No, only system tasks can run once.

C. Yes, using a parameter at trigger level.

D. No, only a time-triggered task can run once at a certain time.

Objective 1.2: Consume background tasks

The Windows Runtime exposes many ways to interact with the system in a background task
and many ways to activate a task. System triggers, time triggers, and conditions can modify
the way a task is started and consumed. Moreover, a task can keep a communication chan-
nel open to send data to or receive data from remote endpoints. An application may need to
download or upload a large resource, even if the user is not using it. The application can also
request lock screen permission from the user to enhance other background capabilities.

This objective covers how to:
■■ Use timing triggers and system triggers

■■ Keep communication channels open

■■ Request lock screen access

■■ Use the BackgroundTransfer class to finish downloads

Understanding task triggers and conditions
Many types of background tasks are available, and they respond to different kind of triggers
for any kind of application, which can be:

■■ MaintenanceTrigger Raised when it is time to execute system maintenance tasks

■■ SystemEventTrigger Raised when a specific system event occurs

A maintenance trigger is represented by the MaintenanceTrigger class. To create a new
instance of a trigger you can use the following code:

var trigger = new Windows.ApplicationModel.Background.MaintenanceTrigger(60, false);

 Objective 1.2: Consume background tasks ChAPTER 1 11

The first parameter is the freshnessTime expressed in minutes, and the second parameter,
called oneShot, is a Boolean indicating whether the trigger should be fired only one time or
every freshnessTime occurrence.

Whenever a system event occurs, you can check a set of conditions to determine whether
your background task should execute. When a trigger is fired, the background task will not
run until all of its conditions are met, which means the code for the doWork method is not
executed if a condition is not met.

All the conditions are enumerated in the SystemConditionType enum:

■■ UserNotPresent The user must be away.

■■ UserPresent The user must be present.

■■ InternetAvailable An Internet connection must be available.

■■ InternetNotAvailable An Internet connection must be unavailable.

■■ SessionConnected The session must be connected.

■■ SessionDisconnected The session must be disconnected.

The maintenance trigger can schedule a background task as frequently as every 15 min-
utes if the device is plugged in to an AC power source. It is not fired if the device is running
on batteries.

System and maintenance triggers run for every application that registers them (and
declares them in the application manifest). In addition, an application that leverages the lock
screen–capable feature of the Windows Runtime can also register background tasks for other
events.

An application can be placed on the lock screen to show important information to the
user: the user can choose the application he or she wants on the lock screen (up to seven in
the first release of Windows 8).

You can use the following triggers to run code for an application on the lock screen:

■■ PushNotificationTrigger Raised when a notification arrives on the Windows Push
Notifications Service (WNS) channel.

■■ TimeTrigger Raised at the scheduled interval. The app can schedule a task to run as
frequently as every 15 minutes.

■■ ControlChannelTrigger Raised when there are incoming messages on the control
channel for apps that keep connections alive.

The user must place the application on the lock screen before the application can
use triggers. The application can ask the user to access the lock screen by calling the
RequestAccessAsync method. The system presents a dialog to the user asking for her or his
permission to use the lock screen.

The following triggers are usable only by lock screen–capable applications:

■■ ControlChannelReset The control channel is reset.

■■ SessionConnected The session is connected.

 12 ChAPTER 1 Develop Windows Store apps

■■ UserAway The user must be away.

■■ UserPresent The user must be present.

In addition, when a lock screen–capable application is placed on the lock screen or re-
moved from it, the following system events are triggered:

■■ LockScreenApplicationAdded The application is added to the lock screen.

■■ LockScreenApplicationRemoved The application is removed from the lock.

A time-triggered task can be scheduled to run either once or periodically. Usually, this kind
of task is useful for updating the application tile or badge with some kind of information. For
example, a weather app updates the temperature to show the most recent one in the applica-
tion tile, whereas a finance application refreshes the quote for the preferred stock.

The code to define a time trigger is similar to the code for a maintenance trigger:

var taskTrigger = new Windows.ApplicationModel.Background.TimeTrigger(60, true);

The first parameter (freshnessTime) is expressed in minutes, and the second parameter
(called oneShot) is a Boolean that indicates whether the trigger will fire only once or at every
freshnessTime occurrence.

The Windows Runtime has an internal timer that runs tasks every 15 minutes. If the
freshnessTime is set to 15 minutes and oneShot is set to false, the task will run every 15
minutes starting between the time the task is registered and the 15 minutes ahead. If the
freshnessTime is set to 15 minutes and oneShot is set to true, the task will run in 15 minutes
from the registration time.

EXAM TIP

You cannot set the freshnessTime to a value less than 15 minutes. An exception will occur if
you try to do this.

Time trigger supports all the conditions in the SystemConditionType enum presented ear-
lier in this section.

Progressing through and completing background tasks
If an application needs to know the result of the task execution, the code can provide a call-
back for the onCompleted event.

This is the code to create a task and register an event handler for the completion event:

var builder = new Windows.ApplicationModel.Background.BackgroundTaskBuilder();
builder.name = taskName;
builder.taskEntryPoint = "js\\BikeBackgroundTask.js";

var trigger = new Windows.ApplicationModel.Background.SystemTrigger(
 Windows.ApplicationModel.Background.SystemTriggerType.timeZoneChange, false);

 Objective 1.2: Consume background tasks ChAPTER 1 13

builder.addCondition(new Windows.ApplicationModel.Background.SystemCondition(
 Windows.ApplicationModel.Background.SystemConditionType.internetAvailable))

var task = builder.register();
backgroundTaskRegistration.addEventListener("completed", onCompleted);

A simple event handler, receiving the BackgroundCompletedEventArgs, can show some-
thing to the user, as in the following code, or it can update the application tile with some
information.

function onCompleted(args)
{
 backgroundTaskName = this.name;

 // Update the user interface
}

EXAM TIP

A background task can be executed when the application is suspended or even terminated.
The onCompleted event callback will be fired when the application is resumed from the
operating system or the user launches it again. If the application is in the foreground, the
event callback is fired immediately.

A well-written application needs to check errors in the task execution. Because the task is
already completed when the app receives the callback, you need to check whether the result
is available or if something went wrong. To do that, the code can call the CheckResult method
of the received BackgroundTaskCompletedEventArgs. This method throws the exception oc-
curred during the task execution, if any; otherwise it simply returns a void.

Listing 1-4 shows the correct way to handle an exception inside a single task.

LISTING 1-4 Completed event with exception handling

function onCompleted(args)
{
 backgroundTaskName = this.name;

 try
 {
 args.checkResult();
 // Update the user interface with OK
 }
 catch (ex)
 {
 // Update the user interface with some errors
 }
}

Use a try/catch block to intercept the exception fired by the CheckResult method, if any. In
Listing 1-4, we simply updated the user interface (UI) to show the correct completion or the
exception thrown by the background task execution.

 14 ChAPTER 1 Develop Windows Store apps

Another useful event a background task exposes is the onProgress event that, as the name
implies, can track the progress of an activity. The event handler can update the UI that is
displayed when the application is resumed, or update the tile or the badge with the progress
(such as the percent completed) of the job.

The following code is an example of a progress event handler that updates the application
titles manually:

function onProgress(task, args)
{
 var notifications = Windows.UI.Notifications;
 var template = notifications.TileTemplateType.tileSquareText01;
 var tileXml = notifications.ToastNotificationManager.getTemplateContent(template);
 var tileTextElements = tileXml.getElementsByTagName("text");
 tileTextElements[0].appendChild(tileXml.createTextNode(args.Progress + "%"));
 var tileNotification = new notifications.TileNotification(tileXml);
 notifications.TileUpdateManager.createTileUpdaterForApplication()
 .update(tileNotification);
}

The code builds the XML document using the provided template and creates a
tileNotification with a single value representing the process percentage. Then the code uses
the CreateTileUpdaterForApplication method of the TileUpdateManager class to update the
live tile.

The progress value can be assigned in the doWork function of the task using the Progress
property of the instance that represents the task.

Listing 1-5 shows a simple example of progress assignment.

LISTING 1-5 Progress assignment

(function () {
 "use strict";

 //
 // Get a reference to the task instance.
 //
 var bgTaskInstance = Windows.UI.WebUI.WebUIBackgroundTaskInstance.current;

 //
 // Real work.
 //
 function doWork() {

 var backgroundTaskDeferral = bgTaskInstance.getDeferral();

 // Do some work

 bgTaskInstance.progress = 10;

 // Do some work

 bgTaskInstance.progress = 20;

 Objective 1.2: Consume background tasks ChAPTER 1 15

 backgroundTaskDeferral.complete();

 // Call the close function when you have done.
 close();
 }

 doWork();
});

Understanding task constraints
Background tasks have to be lightweight so they can provide the best user experience with
foreground apps and battery life. The runtime enforces this behavior by applying resource
constraints to tasks:

■■ CPU for application not on the lock screen The CPU is limited to 1 second. A task
can run every 2 hours at a minimum. For an application on the lock screen, the system
will execute a task for 2 seconds with a 15-minute maximum interval.

■■ Network access When running on batteries, tasks have network usage limits cal-
culated based on the amount of energy used by the network card. This number can
be very different from device to device based on their hardware. For example, with a
throughput of 10 megabits per second (Mbps), an app on the lock screen can consume
about 450 megabytes (MB) per day, whereas an app that is not on the lock screen can
consume about 75 MB per day.

MORE INFO TASK CONSTRAINTS

Refer to the MSDN documentation at http://msdn.microsoft.com/en-us/library/windows/
apps/xaml/hh977056.aspx for updated information on background task resource con-
straints.

To prevent resource quotas from interfering with real-time communication apps, tasks us-
ing the ControlChannelTrigger and the PushNotificationTrigger receive a guaranteed resource
quota (CPU/network) for every running task. The resource quotas and network data usage
constraints remain constant for these background tasks rather than varying according to the
power usage of the network interface.

Because the system handles constraints automatically, your app does not have to request
resource quotas for the ControlChannelTrigger and the PushNotificationTrigger background
tasks. The Windows Runtime treats these tasks as “critical” background tasks.

If a task exceeds these quotas, it is suspended by the runtime. You can check for suspen-
sion by inspecting the suspendedCount property of the task instance in the doWork function,
choosing to stop or abort the task if the counter is too high. Listing 1-6 shows how to check
for suspension.

http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh977056.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh977056.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.networking.sockets.controlchanneltrigger.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.applicationmodel.background.pushnotificationtrigger.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.networking.sockets.controlchanneltrigger.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/xaml/windows.applicationmodel.background.pushnotificationtrigger.aspx

 16 ChAPTER 1 Develop Windows Store apps

LISTING 1-6 Checking for suspension

 (function () {
 "use strict";

 //
 // Get a reference to the task instance.
 //
 var bgTaskInstance = Windows.UI.WebUI.WebUIBackgroundTaskInstance.current;

 //
 // Real work.
 //
 function doWork() {

 var backgroundTaskDeferral = bgTaskInstance.getDeferral();

 // Do some work

 bgTaskInstance.progress = 10;

 if (bgTaskInstance.suspendedCount > 5) {
 return;
 }

 backgroundTaskDeferral.complete();

 // Call the close function when you have done.
 close();
 }

 doWork();
})();

Cancelling a task
When a task is executing, it cannot be stopped unless the task recognizes a cancellation re-
quest. A task can also report cancellation to the application using persistent storage.

The doWork method has to check for cancellation requests. The easiest way is to declare a
Boolean variable in the class and set it to true if the system has cancelled the task. This vari-
able will be set to true in the onCanceled event handler and checked during the execution of
the doWork method to exit it.

The code in Listing 1-7 shows the simplest complete class to check for cancellation.

 Objective 1.2: Consume background tasks ChAPTER 1 17

LISTING 1-7 Task cancellation check

(function () {
 "use strict";

 //
 // Get a reference to the task instance.
 //
 var bgTaskInstance = Windows.UI.WebUI.WebUIBackgroundTaskInstance.current;

 var _cancelRequested = false;

 function onCanceled(cancelSender, cancelReason)
 {
 cancel = true;
 }

 //
 // Real work.
 //
 function doWork() {

 // Add Listener before doing any work
 bgTaskInstance.addEventListener("canceled", onCanceled);

 var backgroundTaskDeferral = bgTaskInstance.getDeferral();

 // Do some work

 bgTaskInstance.progress = 10;

 if (!_cancelRequested) {
 // Do some work
 }
 else
 {
 // Cancel
 bgTaskInstance.succeeded = false;
 }

 backgroundTaskDeferral.complete();

 // Call the close function when you have done.
 close();
 }

 doWork();
});

In the doWork method, the first line of code sets the event handler for the canceled event
to the onCanceled method. Then it does its job setting the progress and testing the value of
the variable to stop working (return or break in case of a loop). The onCanceled method sets
the _cancelRequested variable to true.

 18 ChAPTER 1 Develop Windows Store apps

To recap, the system will call the Canceled event handler (onCanceled) during a cancella-
tion. The code sets the variable tested in the doWork method to stop working on the task.

If the task wants to communicate some data to the application, it can use the local per-
sistent storage as a place to store some data the application can interpret. For example, the
doWork method can save the status in a localSettings key to let the application know whether
the task has been successfully completed or cancelled. The application can then check this
information in the Completed event for the task.

Listing 1-8 shows the revised doWork method.

LISTING 1-8 Task cancellation using local settings to communicate information to the app

var localSettings = applicationData.localSettings;
function doWork() {

 // Add Listener before doing any work
 bgTaskInstance.addEventListener("canceled", onCanceled);

 var backgroundTaskDeferral = bgTaskInstance.getDeferral();

 // Do some work

 bgTaskInstance.progress = 10;

 if (!_cancelRequested) {
 // Do some work
 }
 else {
 // Cancel
 backgroundTaskInstance.succeeded = false;
 settings["status"] = "canceled";
 }

 backgroundTaskDeferral.complete();

 settings["status"] = "success";

 // Call the close function when you have done.
 close();
}

Before “stopping” the code in the doWork method, the code sets the status value in the
localSettings (that is, the persistent storage dedicated to the application) to canceled. If the
task completes its work, the value will be completed.

The code in Listing 1-9 inspects the localSettings value to determine the task outcome. This
is a revised version of the onCompleted event handler used in a previous sample.

 Objective 1.2: Consume background tasks ChAPTER 1 19

LISTING 1-9 Task completed event handler with task outcome check

function OnCompleted(args)
{
 backgroundTaskName = this.name;
 try
 {
 args.checkResult();
 var status = settings["status"];
 if (status == "completed") {
 // Update the user interface with OK
 }
 else {
 }
 }
 catch (Exception ex)
 {
 // Update the user interface with some errors
 }
}

The registered background task persists in the local system and is independent from the
application version.

Updating a background task
Tasks “survive” application updates because they are external processes triggered by the
Windows Runtime. If a newer version of the application needs to update a task or modify its
behavior, it can register the background task with the ServicingComplete trigger: This way, the
app is notified when the application is updated, and unregisters tasks that are no longer valid.

Listing 1-10 shows a system task that unregisters the previous version and registers the
new one.

LISTING 1-10 System task that registers a newer version of a task

(function () {
 "use strict";

 function doWork() {
 var unregisterTask = "TaskToBeUnregistered";
 var taskRegistered = false;

 var background = Windows.ApplicationModel.Background;
 var iter = background.BackgroundTaskRegistration.allTasks.first();

 var current = iter.hasCurrent;

 while (current) {
 var current = iter.current.value;

 if (current.name === taskName) {
 return current;
 }

 20 ChAPTER 1 Develop Windows Store apps

 current = iter.moveNext();
 }
 if (current != null) {
 current.unregister(true);
 }

 var builder = new Windows.ApplicationModel.Background.BackgroundTaskBuilder();
 builder.name = " BikeGPS"
 builder.taskEntryPoint = "js\\NewBikeBackgroundTask.js";

 var trigger = new Windows.ApplicationModel.Background.SystemTrigger(
 Windows.ApplicationModel.Background.SystemTriggerType.timeZoneChange, false);

 builder.setTrigger(trigger);

 builder.addCondition(new Windows.ApplicationModel.Background.SystemCondition(
 Windows.ApplicationModel.Background.SystemConditionType.internetAvailable))

 var task = builder.register();

 //
 // A JavaScript background task must call close when it is done.
 //
 close();
 }

The parameter of the unregister method set to true forces task cancellation, if implement-
ed, for the background task.

The last thing to do is use a ServicingComplete task in the application code to register this
system task as other tasks using the ServicingComplete system trigger type:

var background = Windows.ApplicationModel.Background;
var servicingCompleteTrigger = new background.SystemTrigger(
 background.SystemTriggerType.servicingComplete, false);

Debugging tasks
Debugging a background task can be a challenging job if you try to use a manual tracing
method. In addition, because a timer or a maintenance-triggered task can be executed in the
next 15 minutes based on the internal interval, debugging manually is not so effective. To
ease this job, Visual Studio background task integrated debugger simplifies the activation of
the task.

Place a breakpoint in the doWork method or use the Debug class to write some values in
the output window. Start the project at least one time to register the task in the system, and
then use the Debug Location toolbar in Visual Studio to activate the background task. The
toolbar can show only registered tasks waiting for the trigger. You can activate the toolbar
using the View | Toolbars menu.

Figure 1-2 shows the background registration code and the Debug Location toolbar.

 Objective 1.2: Consume background tasks ChAPTER 1 21

FIGURE 1-2 Visual Studio “hidden” Debug Location toolbar to start tasks

Figure 1-3 shows the debugger inside the doWork method.

FIGURE 1-3 Debugging tasks activated directly from Visual Studio

 22 ChAPTER 1 Develop Windows Store apps

Understanding task usage
Every application has to pass the verification process during application submission to the
Windows Store. Be sure to double-check the code for background tasks using the following
points as guidance:

■■ Do not exceed the CPU and network quotas in your background tasks. Tasks have to
be lightweight to save battery power and to provide a better user experience for the
application in the foreground.

■■ The application should get the list of registered background tasks, register for progress
and completion handlers, and handle these events in the correct manner. The classes
should also report progress, cancellation, and completion.

■■ If the doWork method uses asynchronous code, make sure the code uses deferrals to
avoid premature termination of the method before completion. Without a deferral, the
Windows Runtime thinks your code has finished its work and can terminate the thread.
Request a deferral, use the async pattern to complete the asynchronous call, and close
the deferral after the operation completes.

■■ Declare each background task in the application manifest and every trigger associated
with it. Otherwise, the app cannot register the task at runtime.

■■ Use the ServicingComplete trigger to prepare your application to be updated.

■■ If you use the lock screen–capable feature, remember that only seven apps can be
placed on the lock screen, and the user can choose the application she wants at any
time. Furthermore, only one app can have a wide tile. The application can provide a
good user experience by requesting lock screen access using the RequestAccessAsync
method. Be sure the application can work without the permission to use the lock
screen because the user can deny access to it or remove the permission later.

■■ Use tiles and badges to provide visual clues to the user, and use the notification
mechanism in the task to notify third parties. Do not use any other UI elements in the
Run method.

■■ Use persistent storage as ApplicationData to share data between the background task
and the application. Never rely on user interaction in the task.

■■ Write background tasks that are short-lived.

Transferring data in the background
Some applications need to download or upload a resource from the web. Because of the ap-
plication life-cycle management of the Windows Runtime, if you begin to download a file and
then the user switches to another application, the first app can be suspended. The file cannot
be downloaded during suspension because the system gives no thread and no input/out-
put (I/O) slot to a suspended app. If the user switches back to the application, the download
operation can continue, but the download operation will take more time to complete in this

 Objective 1.2: Consume background tasks ChAPTER 1 23

case. Moreover, if the system needs resources, it can terminate the application. The download
is then terminated together with the app.

The BackgroundTransfer application programming interfaces (APIs) provide classes to avoid
these problems. They can be used to enhance the application with file upload and download
features that run in the background during suspension. The APIs support HTTP and HTTPS for
download and upload operations, and File Transfer Protocol (FTP) for download-only opera-
tions. These classes are aimed at large file uploads and downloads.

The process started by one of these classes runs separate from the Windows Store app
and can be used to work with resources like files, music, large images, and videos. During the
operation, if the runtime chooses to put the application in the Suspended state, the capability
provided by the Background Transfer APIs continues to work in the background.

NOTE BACKGROUND TRANSFER APIs

The Background Transfer APIs work for small resources (a few kilobytes), but Microsoft
suggests to use the traditional HttpClient class for these kinds of files.

The process to create a file download operation involves the BackgroundDownloader class:
the settings and initialization parameters provide different ways to customize and start the
download operation. The same applies for upload operations using the BackgroundUploader
class. You can call multiple download/upload operations using these classes from the same
application because the Windows Runtime handles each operation individually.

During the operation, the application can receive events to update the user interface (if
the application is still in the foreground), and you can provide a way to stop, pause, resume,
or cancel the operation. You can also read the data during the transfer operation.

These operations support credentials, cookies, and the use of HTTP headers so you can
use them to download files from a secured location or provide a custom header to a custom
server side HTTP handler.

The operations are managed by the Windows Runtime, promoting smart usage of power
and bandwidth. They are also independent from sudden network status changes because
they intelligently leverage connectivity and carry data-plan status information provided by
the Connectivity namespace.

The application can provide a cost-based policy for each operations using the
BackgroundTranferCostPolicy. For example, you can provide a cost policy to pause the task
automatically when the machine is using a metered network and resume it if the user comes
back to an “open” connection. The application does nothing to manage these situations; it is
sufficient to provide the policy to the background operation.

The first thing to do to enable a transfer operation in the background is enable the net-
work in the Package.appxmanifest file using one of the provided options in the App Manifest
Designer. You must use one of the following capabilities:

 24 ChAPTER 1 Develop Windows Store apps

■■ Internet (Client) The app can provide outbound access to the Internet and networks
in public areas, such as coffee shops, airports, and parks.

■■ Internet (Client & Server) The app can receive inbound requests and make out-
bound requests in public areas.

■■ Private Networks (Client & Server) The app can receive inbound requests and
make outbound requests in trusted places, such as home and work.

Figure 1-4 shows the designer with the application capabilities needed for background
data transferring.

FIGURE 1-4 Capabilities for background transferring

Then you can start writing code to download a file in the local storage folder. The code
excerpt in Listing 1-11 starts downloading a file in the Pictures library folder.

LISTING 1-11 Code to activate a background transfer

var promise = null;
function downloadInTheBackground (uriToDownload, fileName) {
 try {
 Windows.Storage.KnownFolders.picturesLibrary.createFileAsync(fileName,
 Windows.Storage.CreationCollisionOption.generateUniqueName)
 .done(function (newFile) {
 var uri = Windows.Foundation.Uri(uriToDownload);
 var downloader = new Windows.Networking.BackgroundTransfer
 .BackgroundDownloader();

 Objective 1.2: Consume background tasks ChAPTER 1 25

 // Create the operation.
 downloadOp = downloader.createDownload(uri, newFile);

 // Start the download and persist the promise to be able to cancel
 // the download.
 promise = downloadOp.startAsync().then(complete, error);
 }, error);
 } catch (ex) {
 LogException(ex);
 }
 };

The first line of code sets a local variable representing the file name to download
and uses it to create the uniform resource identifier (URI) for the source file. Then the
createFileAsync method creates a file in the user’s Pictures library represented by the
KnownFolders.picturesLibrary storage folder using the async pattern.

The BackgroundDownloader class exposes a createDownload method to begin the down-
load operation. It returns a DownloadOperation class representing the current operation. This
BackgroundDownloader class exposes the startAsync method to start the operation.

The main properties of this class are:

■■ The guid property, which represents the autogenerated unique id for the download
operation you can use in the code to create a log for every download operation

■■ The read-only requestedUri property, which represents the URI from which to down-
load the file

■■ The resultFile property, which returns the IStorageFile object provided by the caller
when creating the download operation

The BackgroundDownloader class also exposes the Pause and the Resume methods, as well
as the CostPolicy property to use during the background operation.

To track the progress of the download operation, you can use the provided startAsync
function with a promise that contains the callback function for the progress.

Listing 1-12 shows the revised sample.

LISTING 1-12 Code to activate a background transfer and log progress information

var download = null;
var promise = null;

function downloadInTheBackground (uriToDownload, fileName) {
 try {
 Windows.Storage.KnownFolders.picturesLibrary.createFileAsync(fileName,
 Windows.Storage.CreationCollisionOption.generateUniqueName)
 .done(function (newFile) {
 var uri = Windows.Foundation.Uri(uriToDownload);
 var downloader = new Windows.Networking.BackgroundTransfer
 .BackgroundDownloader();

 // Create the operation.
 downloadOp = downloader.createDownload(uri, newFile);

 26 ChAPTER 1 Develop Windows Store apps

 // Start the download and persist the promise to
 // be able to cancel the download.
 promise = downloadOp.startAsync().then(complete, error, progress);
 }, error);
 } catch (ex) {
 LogException(ex);
 }
 };
 function progress() {
 // Output all attributes of the progress parameter.
 LogOperation(download.guid + " - progress: ");
 }

In Listing 1-12, right after the creation of the download operation, the StartAsync method
returns the IAsyncOperationWithProgress<DownloadOperation, DownloadOperation> inter-
face that is transformed in a Task using the classic promise then.

This way, the callback can use the DownloadOperation properties to track the progress or to
log (or display if the application is in the foreground) them as appropriate for the application.

The BackgroundDownloader tracks and manages all the current download operations; you
can enumerate them using the getCurrentDownloadAsync method.

Because the system can terminate the application, it is important to reattach the progress
and completion event handler during the next launch operation performed by the user. Use
the following code as a reference in the application launch:

Windows.Networking.BackgroundTransfer.BackgroundDownloader.getCurrentDownloadsAsync()
 .done(function (downloads) {
 // If downloads from previous application state exist, reassign callback
 promise = downloads[0].attachAsync().then(complete, error, progress);
 }

This method gets all the current download operations and reattaches the progress callback
to the first one using the attachAsync method as a sample. The method returns an asynchro-
nous operation that can be used to monitor progress and completion of the attached down-
load. Calling this method allows an app to reattach download operations that were started in
a previous app instance.

If the application can start multiple operations, you have to define an array of downloads
and reattach all of the callbacks.

One last thing to address are the timeiouts enforced by the system. When establishing a
new connection for a transfer, the connection request is aborted if it is not established within
five minutes. Then, after establishing a connection, an HTTP request message that has not
received a response within two minutes is aborted.

The same concepts apply to resource upload. The BackgroundUploader class works in a
similar way as the BackgroundDownloader class. It is designed for long-term operations on
resources like files, images, music, and videos. As mentioned for download operations, small
resources can be uploaded using the traditional HttpClient class.

 Objective 1.2: Consume background tasks ChAPTER 1 27

You can use the CreateUploadAsync to create an asynchronous operation that, on comple-
tion, returns an UploadOperation. There are three overloads for this method. The MSDN
official documentation provides these descriptions:

■■ createUploadAsync(Uri, IIterable(BackgroundTransferContentPart)) Returns
an asynchronous operation that, on completion, returns an UploadOperation with the
specified URI and one or more BackgroundTransferContentPart objects

■■ createUploadAsync(Uri, IIterable(BackgroundTransferContentPart), String)
Returns an asynchronous operation that, on completion, returns an UploadOperation
with the specified URI, one or more BackgroundTransferContentPart objects, and the
multipart subtype

■■ createUploadAsync(Uri, IIterable(BackgroundTransferContentPart),
String, String) Returns an asynchronous operation that, on completion, re-
turns an UploadOperation with the specified URI, multipart subtype, one or more
BackgroundTransferContentPart objects, and the delimiter boundary value used to
separate each part

Alternatively, you can use the more specific CreateUploadFromStreamAsync that returns an
asynchronous operation that, on completion, returns the UploadOperation with the specified
URI and the source stream.

This is the method definition:

backgroundUploader.createUploadFromStreamAsync(uri, sourceStream)
 .done(
 /* Code for success and error handlers */);

As for the downloader classes, this class exposes the proxyCredential property to provide
authentication to the proxy and serverCredential to authenticate the operation with the target
server. You can use the setRequestHeader method to specify HTTP header key/value pair.

Keeping communication channels open
For applications that need to work in the background, such as Voice over Internet Protocol
(VoIP), instant messaging (IM), and email, the new Windows Store application model provides
an always-connected experience for the end user. In practice, an application that depends on
a long-running network connection to a remote server can still work, even when the Win-
dows Runtime suspends the application. As you learned, a background task allows an applica-
tion to perform some kind of work in the background when the application is suspended.

Keeping a communication channel open is required for applications that send data to or
receive data from a remote endpoint. Communication channels are also required for long-
running server processes to receive and process any incoming requests from the outside.

Typically, this kind of application sits behind a proxy, a firewall, or a Network Address
Translation (NAT) device. This hardware component preserves the connection if the endpoints
continue to exchange data. If there is no traffic for some time (which can be a few seconds or
minutes), these devices close the connection.

 28 ChAPTER 1 Develop Windows Store apps

To ensure that the connection is not lost and remains open between server and client
endpoints, you can configure the application to use some kind of keep-alive connection. A
keep-alive connection is a message is sent on the network at periodic intervals so that the
connection lifetime is prolonged.

These messages can be easily sent in previous versions of Windows because the applica-
tion stays in the Running state until the user decides to close (or terminate) it. In this scenario,
keep-alive messages can be sent without any problems. The new Windows 8 application
life-cycle management, on the contrary, does not guarantee that packets are delivered to a
suspended app. Moreover, incoming network connections can be dropped and no new traffic
is sent to a suspended app. These behaviors have an impact on the network devices that close
the connection between apps because they become “idle” from a network perspective.

To be always connected, a Windows Store app needs to be a lock screen–capable applica-
tion. Only applications that use one or more background tasks can be lock screen apps.

An app on the lock screen can:

■■ Run code when a time trigger occurs.

■■ Run code when a new user session is started.

■■ Receive a raw push notification from WNS and run code when a notification is
received.

■■ Maintain a persistent transport connection in the background to remote services or
endpoints, and run code when a new packet is received or a keep-alive packet needs
to be sent using a network trigger.

Remember, a user can have a maximum of seven lock screen apps at any given time. A user
can also add or remove an app from the lock screen at any time.

WNS is a cloud service hosted by Microsoft for Windows 8. Windows Store apps can use
WNS to receive notifications that can run code, update a live tile, or raise an on-screen noti-
fication. To use WNS, the local computer must be connected to the Internet so that the WNS
service can communicate with it. A Windows Store app in the foreground can use WNS to
update live tiles, raise notifications to the user, or update badges. Apps do not need to be on
the lock screen to use WNS. You should consider using WNS in your app if it must run code in
response to a push notification.

MORE INFO WINDOWS PUSH NOTIFICATION SERVICE (WNS)

For a complete discussion of WNS, refer to Chapter 3, “Program user interaction.”

 Objective 1.2: Consume background tasks ChAPTER 1 29

The ControlChannelTrigger class in the System.Net.Sockets namespace implements the trig-
ger for applications that must maintain a persistent connection to a remote endpoint. Use this
feature if the application cannot use WNS. For example, an email application that uses some
POP3 servers cannot be modified to use a push notification because the server does not
implement WNS and does not send messages to POP3 clients.

EXAM TIP

The MSDN documentation states “The ControlChannelTrigger class and related classes are
not supported in a Windows Store app using JavaScript. A foreground app using JavaScript
with an in-process C# or C++ binary is also not supported.” Therefore, for a JavaScript ap-
plication, you must implement a WinMD library in C#, Visual Basic (VB), or C++ to define
the background task and register it in the main application. We will analyze the C# imple-
mentation of the background task because this is an important aspect for the exam.

The ControlChannelTrigger can be used by instances of one of the following classes:
MessageWebSocket, StreamWebSocket, StreamSocket, HttpClient, HttpClientHander, or
related classes in the System.Net.Http namespace in .NET Framework 4.5. The IXML-
HttpRequest2, an extension of the classic XMLHttpRequest, can also be used to activate a
ControlChannelTrigger.

The main benefits of using a network trigger are compatibility with existing client/server
protocols and the guarantee of message delivery. The drawbacks are a little more complex
in respect to WNS and the maximum number of triggers an app can use (which is five in the
current version of the Windows Runtime).

EXAM TIP

An application written in JavaScript cannot use a ControlChannelTrigger if it uses other
background tasks.

An application that uses a network trigger needs to request the lock screen permission.
This feature supports two different resources for a trigger:

■■ hardware slot The application can use background notification even when the de-
vice is in low-power mode or standby (connected to plug).

■■ Software slot The application cannot use network notification when not in low-
power mode or standby (connected to plug).

This resource capability provides a way for your app to be triggered by an incoming noti-
fication, even if the device is in low-power mode. By default, a software slot is selected if the
developer does not specify an option. A software slot allows your app to be triggered when
the system is not in connected standby. This is the default on most computers.

 30 ChAPTER 1 Develop Windows Store apps

There are two trigger types:

■■ Push notification network trigger This trigger lets a Windows Store app process
incoming network packets on an already established Transmission Control Protocol
(TCP) socket, even if the application is suspended. This socket represents the control
channel that exists between the application and a remote endpoint, and it is created
by the application to trigger a background task when a network packet is received by
the application itself. In practice, the control channel is a persistent Transmission Con-
trol Protocol/Internet Protocol (TCP/IP) connection maintained alive by the Windows
Runtime, even if the application is sent in the background and suspended.

■■ Keep-alive network trigger This trigger provides the capability for a suspended
application to send keep-alive packets to a remote service or endpoint. The keep-alive
packets tell the network device that a connection is still in use, to avoid closing a con-
nection.

Before using a network trigger, the application has to be a lock screen app. You need to
declare application capability and then call the appropriate method to ask the user the per-
mission to place the application on the lock screen.

NOTE LOCK SCREEN REMOVAL

You have also to handle the situation where the user removes the application from the lock
screen.

To register an application for the lock screen, ensure that the application has a WideLogo
definition in the application manifest on the DefaultTile element:

<DefaultTile ShowName="allLogos" WideLogo="Assets\wideLogo.png" />

Add a LockScreen element that represents the application icon on the lock screen inside
the VisualElements node in the application manifest:

<LockScreen Notification="badge" BadgeLogo="Assets\badgeLogo.png" />

You can use the App Manifest Designer, as shown in Figure 1-5, to set these properties.
The Wide logo and the Badge logo options reference the relative images, and the Lock screen
notifications option is set to Badge.

 Objective 1.2: Consume background tasks ChAPTER 1 31

FIGURE 1-5 Badge and wide logo definition

Declare the extensions to use a background task, and define the executable file that con-
tains the task and the name of the class implementing the entry point for the task. The task
has to be a controlChannel background task type. For this kind of task, the executable file is
the application itself. Apps using the ControlChannelTrigger rely on in-process activation for
the background task.

 32 ChAPTER 1 Develop Windows Store apps

The dynamic-link library (DLL) or the executable file that implements the task for keep-
alive or push notifications must be linked as Windows Runtime Component (WinMD library).
The following XML fragment declares a background task:

Sample of XML code

<Extensions>
 <Extension Category="windows.backgroundTasks"
 Executable="$targetnametoken$.exe"
 EntryPoint="ControlChannelTriggerTask.ReceiveTask">
 <BackgroundTasks>
 <Task Type="controlChannel" />
 </BackgroundTasks>
 </Extension>
</Extensions>

You can also use the App Manifest Designer to set these extensions in an easier way, as
shown in Figure 1-6.

FIGURE 1-6 Background task app settings

The next step is to ask the user for the permission to become a lock screen application
using the RequestAccessAsync method of the BackgroundExecutionManager class of the
Windows.ApplicationModel.Background namespace. The call to this method presents a dialog
to the user to approve the request. See Listing 1-13.

LISTING 1-13 Code to request use of the lock screen

 Objective 1.2: Consume background tasks ChAPTER 1 33

var lockScreenEnabled = false;

function ClientInit() {

 if (lockScreenEnabled == false) {
 BackgroundExecutionManager.requestAccessAsync().done(function (result) {
 switch (result) {
 case BackgroundAccessStatus.AllowedWithAlwaysOnRealTimeConnectivity:
 //
 // App is allowed to use RealTimeConnection broker
 // functionality even in low-power mode.
 //
 lockScreenEnabled = true;
 break;
 case BackgroundAccessStatus.AllowedMayUseActiveRealTimeConnectivity:
 //
 // App is allowed to use RealTimeConnection broker
 // functionality but not in low-power mode.
 //
 lockScreenEnabled = true;
 break;
 case BackgroundAccessStatus.Denied:
 //
 // App should switch to polling
 //
 WinJS.log && WinJS.log("Lock screen access is not permitted",
 "devleap", "status");
 break;
 }
 }, function (e) {
 WinJS.log && WinJS.log("Error requesting lock screen permission.",
 "devleap", "error");
 });
}

EXAM TIP

The lock screen consent dialog prompts the user just one time. If the user denies permis-
sion for the lock screen, you will not be able to prompt the user again. The user can decide
later to bring the application on the lock screen from the system permission dialog, but the
application has no possibility to ask for the permission again.

The BackgroundAccessStatus enumeration lets you know the user’s choice. See the com-
ments in Listing 1-13 that explain the various states.

After your app is added to the lock screen, it should be visible in the Personalize section of
the PC settings. Remember to handle the removal of the application’s lock screen permission
by the user. The user can deny the permission to use the lock screen at any time, so you must
ensure the app is always functional.

When the application is ready for the lock screen, you have to implement the WinMD
library to perform the network operations. Remember you cannot implement a WinMD

 34 ChAPTER 1 Develop Windows Store apps

library in a Windows Store app using JavaScript. You have to create a C#, VB, or C++ WinMD
component and call it from the main application.

The component code has to:

■■ Create a control channel.

■■ Open a connection.

■■ Associate the connection with the control channel.

■■ Connect the socket to the endpoint server.

■■ Establish a transport connection to your remote endpoint server.

You have to create the channel to be associated with the connection so that the connec-
tion will be kept open until you close the control channel.

After a successful connection to the server, synchronize the transport created by your app
with the lower layers of the operating system by using a specific API, as shown in the C# code
in Listing 1-14.

LISTING 1-14 Control channel creation and connection opening

private Windows.Networking.Sockets.ControlChannelTrigger channel;
private void CreateControlChannel_Click(object sender, RoutedEventArgs e)
{
 ControlChannelTriggerStatus status;

 //
 // 1: Create the instance.
 //

 this.channel = new Windows.Networking.Sockets.ControlChannelTrigger(
 "ch01", // Channel ID to identify a control channel.
 20, // Server-side keep-alive in minutes.
 ControlChannelTriggerResourceType.RequestHardwareSlot); // Request hardware slot.

 //
 // Create the trigger.
 //
 BackgroundTaskBuilder controlChannelBuilder = new BackgroundTaskBuilder();
 controlChannelBuilder.Name = "ReceivePacketTaskChannelOne";
 controlChannelBuilder.TaskEntryPoint =
 "ControlChannellTriggerTask.ReceiveTask";
 controlChannelBuilder.SetTrigger(channel.PushNotificationTrigger);
 controlChannelBuilder.Register();

 //
 // Step 2: Open a socket connection (omitted for brevity).
 //

 //
 // Step 3: Tie the transport object to the notification channel object.
 //
 channel.UsingTransport(sock);

 Objective 1.2: Consume background tasks ChAPTER 1 35

 //
 // Step 4: Connect the socket (omitted for brevity).
 // Connect or Open

 //
 // Step 5: Synchronize with the lower layer
 //
 status = channel.WaitForPushEnabled();
}

Despite its name, the WaitForPushEnabled method is not related in any way to the WNS.
This API allows the hardware or software slot to be registered with all the underlying layers of
the stack that will handle an incoming data packet, including the network device driver.

There are several types of keep-alive intervals that may relate to network apps:

■■ TCP keep-alive Defined by the TCP protocol

■■ Server keep-alive Used by ControlChannelTrigger

■■ Network keep-alive Used by ControlChannelTrigger

The keep-alive option for TCP lets an application send packets from the client to the server
endpoint automatically to keep the connection open, even when the connection is not used
by the application itself. This way, the connection is not cut from the underlying systems.

The application can use the KeepAlive property of the StreamSocketControl class to enable
or disable this feature on a StreamSocket. The default is disabled.

Other socket-related classes that do not expose the KeepAlive property, such as
MessageWebSocket, StreamSocketListener, and StreamWebSocket, have the keep-alive options
disabled by default. In addition, the HttpClient class and the IXMLHttpRequest2 interface do
not have an option to enable TCP keep-alive.

When using the ControlChannelTrigger class, take into consideration these two types of
keep-alive intervals:

■■ Server keep-alive interval Represents how often the application is woken
up by the system during suspension. The interval is expressed in minutes in the
ServerKeepAliveIntervalInMinutes property of the ControlChannelTrigger class. You
can provide the value as a class constructor parameter. It is called server keep-alive
because the application sets its value based on the server time-out for cutting an idle
connection. For example, if you know the server has a keep-alive of 20 minutes, you
can set this property to 18 minutes to avoid the server cutting the connection.

■■ Network keep-alive interval Represents the value, in minutes, that the lower-level
TCP stack uses to maintain a connection open. In practice, this value is used by the
network intermediaries (proxy, gateway, NAT, and so on) to maintain an idle connec-
tion open. The application cannot set this value because it is determined automatically
by lower-level network components of the TCP stack.

 36 ChAPTER 1 Develop Windows Store apps

The last thing to do is to implement the background task and perform some operations,
such as updating a tile or sending a toast, when something arrives from the network. The fol-
lowing code implements the Run method imposed by the interface:

public sealed class ReceiveTask : IBackgroundTask
{
 public void Run(Windows.AppModel.Background.IBackgroundTaskInstance taskInstance)
 {
 var channelEventArgs =
 (IControlChannelTriggerEventDetails)taskInstance.TriggerDetails;
 var channel = channelEventArgs.ControlChannelTrigger;
 string channelId = channel.ControlChannelTriggerId;

 // Send Toast – Update Tile…

 channel.FlushTransport();
 }
}

The TriggerDetails property provides the information needed to access the raw notification
and exposes the ControlChannelTriggerId of the ControlChannelTrigger class the app can use
to identify the various instances of the channel.

The FlushTransport method is required if the application sends data.

Remember that an application can receive background task triggers when the application
is also in the foreground. You can provide some visual clues to the user in the current page if
the application is up and running.

Thought experiment
Transferring data

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

Your application needs to upload photos to a remote storage location in the cloud.
Because photos can be greater than 10 MB, you implement a background task that
performs this operation. The process works fine, but you discover a slowdown in
the process in respect to the same code executed in an application thread (up to 10
times).

1. What is the cause of the slowdown?

2. How can you solve the problem?

 Objective 1.2: Consume background tasks ChAPTER 1 37

Objective summary
■■ An application can use system and maintenance triggers to start a background task

without the need to register the application in the lock screen.

■■ Lock screen applications can use many other triggers, such as TimeTrigger and
ControlChannelTrigger.

■■ Background tasks can provide progress indicators to the calling application using
events and can support cancellation requests.

■■ If an app needs to upload or download resources, you can use the BackgroundTransfer
classes to start the operation and let the system manage its completion.

■■ Background tasks have resource constraints imposed by the system. Use them for short
and lightweight operations. Remember also that scheduled triggers are fired by the
internal clock at regular intervals.

■■ Applications that need to receive information from the network or send information
to a remote endpoint can leverage network triggers to avoid connection closing by
intermediate devices.

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. Which is the lowest frequency at which an app can schedule a maintenance trigger?

A. 2 hours.

B. 15 minutes every hour.

C. 7 minutes if the app is in the lock screen.

D. None; there is no frequency for maintenance triggers.

2. How many conditions need to be met for a background task to start?

A. All the set conditions.

B. Only one.

C. At least 50 percent of the total conditions.

D. All the set conditions if the app is running on DC power.

3. How can a task be cancelled or aborted?

A. Abort the corresponding thread.

B. Implement the OnCanceled event.

C. Catch an exception.

D. A background task cannot be aborted.

 38 ChAPTER 1 Develop Windows Store apps

4. An application that needs to download a file can use which of the following? (Choose
all that apply.)

A. The BackgroundTask class

B. The HttpClient class if the file is very small

C. The BackgroundTransfer class

D. The BackgroundDownloader class

E. The BackgroundUploader class

Objective 1.3: Integrate WinMD components into a
solution

The Windows Runtime exposes a simple way to create components that can be used by all the
supported languages without any complex data marshalling. A WinMD library, called Win-
dows Runtime Component, is a component written in one of the WinRT languages (C#, VB, or
C++, but not JavaScript) that can be used by any supported languages.

This objective covers how to:
■■ Consume a WinMD component in JavaScript

■■ Handle WinMD reference types

■■ Reference a WinMD component

NOTE REFERENCE

The content in this section is excerpted from Build Windows 8 Apps with Microsoft Visual
C# and Visual Basic Step by Step, written by Paolo Pialorsi, Roberto Brunetti, and Luca Reg-
nicoli (Microsoft Press, 2013).

Understanding the Windows Runtime and WinMD
Windows, since its earliest version, has provided developers with libraries and APIs to interact
with the operating system. However, before the release of Windows 8, those APIs and librar-
ies were often complex and challenging to use. Moreover, while working in .NET Framework
using C# or VB.NET, you often had to rely on Component Object Model (COM) Interop,
and Win32 interoperability via P/Invoke (Platform Invoke) to directly leverage the operating
system. For example, the following code sample imports a native Win32 DLL and declares the
function capCreateCaptureWindows to be able to call it from .NET code:

 Objective 1.3: Integrate WinMD components into a solution ChAPTER 1 39

Sample of C# code

[DllImport("avicap32.dll", EntryPoint="capCreateCaptureWindow")]
static extern int capCreateCaptureWindow(
 string lpszWindowName, int dwStyle,
 int X, int Y, int nWidth, int nHeight,
 int hwndParent, int nID);

[DllImport("avicap32.dll")]
static extern bool capGetDriverDescription(
 int wDriverIndex,
 [MarshalAs(UnmanagedType.LPTStr)] ref string lpszName,
 int cbName,
 [MarshalAs(UnmanagedType.LPTStr)] ref string lpszVer,
 int cbVer);

Microsoft acknowledged the complexity of the previously existing scenario and invested
in Windows 8 and the Windows Runtime to simplify the interaction with the native operat-
ing system. In fact, the Windows Runtime is a set of completely new APIs that were reimag-
ined from the developer perspective to make it easier to call to the underlying APIs without
the complexity of P/Invoke and Interop. Moreover, the Windows Runtime is built so that it
supports the Windows 8 application development with many of the available programming
languages/environments, such as HTML5/Windows Library for JavaScript (WinJS), common
runtime language (CLR), and C++.

The following code illustrates how the syntax is clearer and easier to write, which makes
it easier to read and maintain in the future, when leveraging the Windows Runtime. In this
example, Photo is an Extensible Application Markup Language (XAML) image control.

Sample of C# code

using Windows.Media.Capture;

var camera = new CameraCaptureUI();
camera.PhotoSettings.CroppedAspectRatio = new Size(4, 3);

var file = await camera.CaptureFileAsync(CameraCaptureUIMode.Photo);

if (file != null)
{
 var bitmap = new BitmapImage() ;
 bitmap.SetSource(await file.OpenAsync(FileAccessMode.Read));
 Photo.Source = bitmap;
}

The code for WinJS and HTML5 is similar to the C# version, as follows:

Sample of JavaScript code

var camera = new capture.CameraCaptureUI();

camera.captureFileAsync(capture.CameraCaptureUIMode.photo)
 .then(function (file) {
 if (file != null) {
 media.shareFile = file;
 }
 });

 40 ChAPTER 1 Develop Windows Store apps

Basically, the Windows Runtime is a set of APIs built upon the Windows 8 operating system
(see Figure 1-7) that provides direct access to all the main primitives, devices, and capabilities
for any language available for developing Windows 8 apps. The Windows Runtime is available
only for building Windows 8 apps. Its main goal is to unify the development experience of
building a Windows 8 app, regardless of which programming language you choose.

FIGURE 1-7 The Windows Runtime architecture

The Windows Runtime sits on top of the WinRT core engine, which is a set of C++ libraries
that bridge the Windows Runtime with the underlying operating system. On top of the WinRT
core is a set of specific libraries and types that interact with the various tools and devices
available in any Windows 8 app. For example, there is a library that works with the network,
and another that reads and writes from storage (local or remote). There is a set of pickers
to pick up items (such as files and pictures), and there are several classes to leverage media
services, and so on. All these types and libraries are defined in a structured set of namespaces
and are described by a set of metadata called Windows Metadata (WinMD). All metadata
information is based on a new file format, which is built upon the common language interface
(CLI) metadata definition language (ECMA-335).

Consuming a native WinMD library
The WinRT core engine is written in C++ and internally leverages a proprietary set of data
types. For example, the HSTRING data type represents a text value in the Windows Runtime.
In addition, there are numeric types like INT32 and UINT64, enumerable collections repre-
sented by IVector<T> interface, enums, structures, runtime classes, and many more.

To be able to consume all these sets of data types from any supported programming
language, the Windows Runtime provides a projection layer that shuttles types and data
between the Windows Runtime and the target language. For example, the WinRT HSTRING
type will be translated into a System.String of .NET for a CLR app, or to a Platform::String for a
C++ app.

Next to this layered architecture is a Runtime Broker, which acts as a bridge between the
operating system and the hosts executing Windows 8 apps, whether those are CLR, HTML5/
WinJS, or C++ apps.

 Objective 1.3: Integrate WinMD components into a solution ChAPTER 1 41

Using the Windows Runtime from a CLR Windows 8 app
To better understand the architecture and philosophy behind the Windows Runtime, the
example in this section consumes the Windows Runtime from a CLR Windows 8 app.

You can test the use of the native WinMD library by creating a new project in Visual Studio
2012 and using the XAML code in Listing 1-15 for the main page.

LISTING 1-15 Main page with a button control

<Page x:Class="WinRTFromCS.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:WinRTFromCS"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">
 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel>
 <Button Click="UseCamera_Click" Content="Use Camera" />
 </StackPanel>
 </Grid>
 </Page>

In the event handler for the UserCamera_Click event, use the following code:

private async void UseCamera_Click(object sender, RoutedEventArgs e)
{
 var camera = new Windows.Media.Capture.CameraCaptureUI();
 var photo = await camera.CaptureFileAsync(
 Windows.Media.Capture.CameraCaptureUIMode.Photo);
}

Notice the async keyword and the two lines of code inside the event handler that instanti-
ate an object of type CameraCaptureUI and invoke its CaptureFileAsync method.

You can debug this simple code by inserting a breakpoint at the first line of code (the one
starting with var camera =). Figure 1-8 shows that when the breakpoint is reached, the call
stack window reveals that the app is called by external code, which is native code.

FIGURE 1-8 Call stack showing external code

If you try to step into the code of the CameraCaptureUI type constructor, you will see that
it is not possible in managed code, because the type is defined in the Windows Runtime,
which is unmanaged.

 42 ChAPTER 1 Develop Windows Store apps

Using the Windows Runtime from a C++ Windows 8 app
The example in this section uses the WinRT Camera APIs to capture an image from a C++
Windows 8 app. First, you need to create a fresh app, using C++ this time.

Assuming you are using the same XAML code as in Listing 1-15, the event handler for the
UseCamera_Click event instantiates the same classes and calls the same methods you saw in
C# using a C++ syntax (and the C++ compiler). See Listing 1-16.

LISTING 1-16 Using the CameraCaptureUI class from C++

void WinRTFromCPP::MainPage::UseCamera_Click(
 Platform::Object^ sender, Windows::UI::Xaml::RoutedEventArgs^ e) {
 auto camera = ref new Windows::Media::Capture::CameraCaptureUI();
 camera->CaptureFileAsync(Windows::Media::Capture::CameraCaptureUIMode::Photo);
}

If you debug this code as in the previous section, the outcome will be very different
because you will be able to step into the native code of the CameraCaptureUI constructor, as
well as into the code of the CaptureFileAsync method.

The names of the types, as well as the names of the methods and enums, are almost the
same in C# and in C++. Nevertheless, each individual language has its own syntax, code cas-
ing, and style. However, through this procedure, you can gain hands-on experience with the
real nature of the Windows Runtime: a multilanguage API that adapts its syntax and style to
the host language and maintains a common set of behavior capabilities under the covers.
What you have just seen is the result of the language projection layer defined in the architec-
ture of the Windows Runtime.

To take this sample one step further, you can create the same example you did in C# and
C++ using HTML5/WinJS. If you do that, you will see that the code casing will adapt to the
JavaScript syntax.

The following HTML5 represents the user interface for the Windows Store app using
JavaScript version:

<!DOCTYPE html>
<html>
<head>
 <title>DevLeap WebCAm</title>
 <!-- WinJS references -->
 <link rel="stylesheet" href="/winjs/css/ui-dark.css" />
 <script src="/winjs/js/base.js"></script>
 <script src="/winjs/js/wwaapp.js"></script>
 <!-- DevLeapWebcam references -->
 <link rel="stylesheet" href="/css/default.css" />

<script type="text/javascript">
 function takePicture() {
 var captureUI = new Windows.Media.Capture.CameraCaptureUI();
 captureUI.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo)
 .then(function (photo) {
 if (photo) {
 document.getElementById("msg ").innerHTML = "Photo taken."

 Objective 1.3: Integrate WinMD components into a solution ChAPTER 1 43

 }
 else {
 document.getElementById("msg ").innerHTML = "No photo captured."
 }
 });
 }
 </script>
</head>
<body>
 <input type="button" onclick="takePicture()" value="Click to shoot" />

</body>
</html>

The language projection of the Windows Runtime is based on a set of new metadata files,
called WinMD. By default, those files are stored under the path <OS Root Path>\System32\
WinMetadata, where <OS Root Path> should be replaced with the Windows 8 root installa-
tion folder (normally C:\Windows). Here’s a list of the default contents of the WinMD folder:

■■ Windows.ApplicationModel.winmd

■■ Windows.Data.winmd

■■ Windows.Devices.winmd

■■ Windows.Foundation.winmd

■■ Windows.Globalization.winmd

■■ Windows.Graphics.winmd

■■ Windows.Management.winmd

■■ Windows.Media.winmd

■■ Windows.Networking.winmd

■■ Windows.Security.winmd

■■ Windows.Storage.winmd

■■ Windows.System.winmd

■■ Windows.UI.winmd

■■ Windows.UI.Xaml.winmd

■■ Windows.Web.winmd

Note that the folder includes a Windows.Media.winmd file, which contains the definition of
the CameraCaptureUI type used in Listing 1-16.

You can inspect any WinMD file using the Intermediate Language Disassembler (ILDASM)
tool available in the Microsoft .NET Software Development Kit (SDK), which ships with
Microsoft Visual Studio 2012 and that you can also download as part of the Microsoft .NET
Framework SDK. For example, Figure 1-9 shows the ILDASM tool displaying the content out-
line of the Windows.Media.winmd file, which contains the definition of the CameraCaptureUI
type from Listing 1-16.

 44 ChAPTER 1 Develop Windows Store apps

FIGURE 1-9 ILDASM displaying the outline of the Windows.Media.winmd file

The MANIFEST file listed at the top of the window defines the name, version, signature,
and dependencies of the current WinMD file. Moreover, there is a hierarchy of namespaces
grouping various types. Each single type defines a class from the WinRT perspective. In Figure
1-9, you can clearly identify the CaptureFileAsync method you used in the previous example.
By double-clicking on the method in the outline, you can see its definition, which is not the
source code of the method but rather the metadata mapping it to the native library that will
be leveraged under the cover. In the following code excerpt, you can see the metadata defini-
tion of the CaptureFileAsync method defined for the CameraCaptureUI type:

method public hidebysig newslot virtual final
 instance class [Windows.Foundation]Windows.Foundation.IAsyncOperation`1
 <class[Windows.Storage]Windows.Storage.StorageFile>
 CaptureFileAsync([in] valuetype Windows.Media.Capture.CameraCaptureUIMode mode)

runtime managed {
 .override Windows.Media.Capture.ICameraCaptureUI::CaptureFileAsync
}
// end of method CameraCaptureUI::CaptureFileAsync

The language projection infrastructure will translate this neutral definition into the proper
format for the target language.

Whenever a language needs to access a WinRT type, it will inspect its definition through
the corresponding WinMD file and will use the IInspectable interface, which is implemented
by any single WinRT type. The IInspectable interface is an evolution of the already well-known
IUnknown interface declared many years ago in the COM world.

 Objective 1.3: Integrate WinMD components into a solution ChAPTER 1 45

First, there is a type declaration inside the registry of the operating system. All the
WinRT types are registered under the path HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
WindowsRuntime\ActivatableClassId.

For example, the CameraCaptureUI type is defined under the following path:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsRuntime\ActivatableClassId\
 Windows.Media.Capture.CameraCaptureUI

The registry key contains some pertinent information, including the activation type (in
process or out of process), as well as the full path of the native DLL file containing the imple-
mentation of the target type.

The type implements the IInspectable interface, which provides the following three
methods:

■■ GetIids Gets the interfaces that are implemented by the current WinRT class

■■ GetRuntimeClassName Gets the fully qualified name of the current WinRT object

■■ GetTrustLevel Gets the trust level of the current WinRT object

By querying the IInspectable interface, the language projection infrastructure of the
Windows Runtime will translate the type from its original declaration into the target language
that is going to consume the type.

As illustrated in Figure 1-10, the projection occurs at compile time for a C++ app consum-
ing the Windows Runtime, and it will produce native code that will not need any more access
to the metadata. In the case of a CLR app (C#/VB), it happens during compilation into IL
code, as well as at runtime through a runtime-callable wrapper. However, the cost of com-
munication between CLR and the WinRT metadata is not so different from the cost of talking
with the CLR metadata in general. Lastly, in the case of an HTML5/WinJS app, it will occur at
runtime through the Chakra engine.

FIGURE 1-10 Projection schema

 46 ChAPTER 1 Develop Windows Store apps

The overall architecture of the Windows Runtime is also versioning compliant. In fact,
every WinRT type will be capable of supporting a future version of the operating system and/
or of the Windows Runtime engine by simply extending the available interfaces implemented
and providing the information about the new extensions through the IInspectable interface.

To support the architecture of the WinRT and the language projection infrastructure, every
Windows 8 app—regardless of the programming language used to write it—runs in a stan-
dard code execution profile that is based on a limited set of capabilities. To accomplish this
goal, the Windows Runtime product team defined the minimum set of APIs needed to imple-
ment a Windows 8 app. For example, the Windows 8 app profile has been deprived of the
entire set of console APIs, which are not needed in a Windows 8 app. The same happened to
ASP.NET, for example—the list of .NET types removed is quite long. Moreover, the Windows
Runtime product team decided to remove all the old-style, complex, and/or dangerous APIs
and instead provide developers with a safer and easier working environment. As an example,
to access XML nodes from a classic .NET application, you have a rich set of APIs to choose
from, such as XML Document Object Model (DOM), Simple API for XML, LINQ to XML in .NET,
and so on. The set also depends on which programming language you are using. In contrast,
in a Windows 8 app written in CLR (C#/VB) you have only the LINQ to XML support, while the
XML DOM has been removed.

Furthermore, considering a Windows 8 app is an application that can execute on multiple
devices (desktop PCs, tablets, ARM-based devices, and Windows Phone 8 mobile phones), all
the APIs specific to a particular operating system or hardware platform have been removed.

The final result is a set of APIs that are clear, simple, well-designed, and portable across
multiple devices. From a .NET developer perspective, the Windows 8 app profile is a .NET
4.5 profile with a limited set of types and capabilities, which are the minimum set useful for
implementing a real Windows 8 app.

Consider this: The standard .NET 4.5 profile includes more than 120 assemblies, contain-
ing more than 400 namespaces that group more than 14,000 types. In contrast, the Windows
8 app profile includes about 15 assemblies and 70 namespaces that group only about 1,000
types.

The main goals in this profile design were to do the following:

■■ Avoid duplication of types and/or functionalities.

■■ Remove APIs not applicable to Windows 8 apps.

■■ Remove badly designed or legacy APIs.

■■ Make it easy to port existing .NET applications to Windows 8 apps.

■■ Keep .NET developers comfortable with the Windows 8 app profile.

For example, the Windows Communication Foundation (WCF) APIs exist, but you can use
WCF only to consume services, therefore leveraging a reduced set of communication bind-
ings. You cannot use WCF in a Windows 8 app to host a service—for security reasons and for
portability reasons.

 Objective 1.3: Integrate WinMD components into a solution ChAPTER 1 47

Creating a WinMD library
The previous sections contained some information about the WinRT architecture and the
WinMD infrastructure, which enables the language projection of the Windows Runtime to
make a set of APIs available to multiple programming languages. In this section, you will learn
how to create a library of APIs of your own, making that library available to all other Windows
8 apps through the same projection environment used by the Windows Runtime.

Internally, the WinRT types in your component can use any .NET Framework functionality
that’s allowed in a Windows 8 app. Externally, however, your types must adhere to a simple
and strict set of requirements:

■■ The fields, parameters, and return values of all the public types and members in your
component must be WinRT types.

■■ Public structures may not have any members other than public fields, and those fields
must be value types or strings.

■■ Public classes must be sealed (NotInheritable in Visual Basic). If your programming
model requires polymorphism, you can create a public interface and implement that
interface on the classes that must be polymorphic. The only exceptions are XAML
controls.

■■ All public types must have a root namespace that matches the assembly name, and the
assembly name must not begin with “Windows.”

To verify this behavior, you need to create a new WinMD file.

To create a WinMD library, create a new project choosing the Windows Runtime Com-
ponent-provided template. The project will output not only a DLL, but also a WinMD file for
sharing the library with any Windows 8 app written with any language.

You must also rename the Class1.cs file in SampleUtility.cs and rename the contained class.
Then, add this method to the class and the corresponding using statement for the System.
Text.RegularExpressions namespace.

Sample of C# code

public Boolean IsMailAddress(String email)
{
 Regex regexMail = new Regex(@"\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b");
 return(regexMail.IsMatch(email));
}

Build the project and check the output directory. You will find the classic bin/debug (or
Release) subfolder containing a .winmd file for the project you create. You can open it with
ILDASM to verify its content.

Add a new project to the same solution using the Blank App (XAML) template from the
Visual C++ group to create a new C++ Windows Store Application.

Add a reference to the WinMD library in the Project section of the Add Reference dialog
box, and then add the following XAML code in the Grid control:

 48 ChAPTER 1 Develop Windows Store apps

Sample of XAML code

<StackPanel>
 <Button Click="ConsumeWinMD_Click" Content="Consume WinMD Library" />
</StackPanel>

Create the event handler for the click event in the code-behind file using the following
code:

Sample of C++ code

void WinMDCPPConsumer::MainPage::ConsumeWinMD_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e) {
 auto utility = ref new WinMDCSLibrary::SampleUtility();
 bool result = utility->IsMailAddress("paolo@devleap.com");
}

Build the solution and place a breakpoint in the IsMailAddress method of the WinMD
library, and then start the C++ project in debug mode. You might need to select Mixed (Man-
aged and Native) in the debugging properties of the consumer project, as shown in Figure
1-11.

FIGURE 1-11 Debugger settings to debug mixed code

As you can verify, the debugger can step into the WinMD library from a C++ Windows
Store application.

You can also verify compatibility with HTML/WinJS project creating a new project based
on the Windows Store templates for JavaScript (Blank App).

 Objective 1.3: Integrate WinMD components into a solution ChAPTER 1 49

Reference the WinMD library as you did in the C++ section and add an HTML button that
will call the code using JavaScript:

Sample of HTML code

<body>
 <p><button id="consumeWinMDLibrary">Consume WinMD Library</button></p>
</body>

Open the default.js file, which is in the js folder of the project, and place the following
event handler inside the file, just before the app.start() method invocation.

function consumeWinMD(eventInfo) {
 var utility = new WinMDCSLibrary.SampleUtility();
 var result = utility.isMailAddress("paolo@devleap.com");
}

Notice that the case of the IsMailAddress method, defined in C#, has been translated into
isMailAddress in JavaScript thanks to the language projection infrastructure provided by the
Windows Runtime.

You can insert the following lines of code into the function associated with the
app.onactivated event, just before the end of the if statement.

// Retrieve the button and register the event handler.
var consumeWinMDLibrary = document.getElementById("consumeWinMDLibrary");
consumeWinMDLibrary.addEventListener("click", consumeWinMD, false);

Listing 1-17 shows the complete code of the default.js file after you have made the edits.

LISTING 1-17 Complete code for the default.js file

// For an introduction to the Blank template, see the following documentation:
// http://go.microsoft.com/fwlink/?LinkId=232509
(function () {
 "use strict";

 WinJS.Binding.optimizeBindingReferences = true;

 var app = WinJS.Application;
 var activation = Windows.ApplicationModel.Activation;

 app.onactivated = function (args) {
 if (args.detail.kind === activation.ActivationKind.launch) {
 if (args.detail.previousExecutionState !==
 activation.ApplicationExecutionState.terminated) {
 // TODO: This application has been newly launched. Initialize
 // your application here.
 } else {
 // TODO: This application has been reactivated from suspension.
 // Restore application state here.
 }
 args.setPromise(WinJS.UI.processAll());

 // Retrieve the button and register our event handler.
 var consumeWinMDLibrary = document.getElementById("consumeWinMDLibrary");

 50 ChAPTER 1 Develop Windows Store apps

 consumeWinMDLibrary.addEventListener("click", consumeWinMD, false);
 }
 };

 app.oncheckpoint = function (args) {
 // TODO: This application is about to be suspended. Save any state
 // that needs to persist across suspensions here. You might use the
 // WinJS.Application.sessionState object, which is automatically
 // saved and restored across suspension. If you need to complete an
 // asynchronous operation before your application is suspended, call
 // args.setPromise().
 };

 function consumeWinMD(eventInfo) {
 var utility = new WinMDCSLibrary.SampleUtility();
 var result = utility.isMailAddress("paolo@devleap.com");
 }

 app.start();
})();

Place a breakpoint in the IsMailAddress method or method call and start debugging,
configuring Mixed (Managed and Native) for the consumer project and verifying you can step
into the WinMD library.

Thought experiment
Using libraries

In this thought experiment, apply what you’ve learned about this objective. You can
find answers to these questions in the “Answers” section at the end of this chapter.

In one of your applications, you create classes that leverage some WinRT features
such as a webcam, pickers, and other device-related features. You decide to create a
library to let other applications use this reusable functionality.

1. Should you create a JavaScript library or a WinMD library, and why?

2. What are at least three requirements for creating a WinMD library?

Objective summary
■■ Visual Studio provides a template for building a WinMD library for all supported

languages.

■■ Language projection enables you to use the syntax of the application language to use
a WinMD library.

■■ The field, parameters, and return type of all the public types of a WinMD library must
be WinRT types.

 Chapter summary ChAPTER 1 51

Objective review
Answer the following questions to test your knowledge of the information in this objective.
You can find the answers to these questions and explanations of why each answer choice is
correct or incorrect in the “Answers” section at the end of this chapter.

1. What do public classes of a WinMD library have to be?

A. Sealed

B. Marked as abstract

C. Implementing the correct interface

D. None of the above

2. Portable classes in a WinMD library can use which of the following?

A. All the .NET 4.5 Framework classes

B. Only a subset of the C++ classes

C. Only WinRT classes

D. Only classes written in C++

3. What are possible call paths? (Choose all that apply.)

A. A WinJS application can instantiate a C++ WinMD class.

B. A C++ application can instantiate a C# WinMD class.

C. A C# application can instantiate a WinJS WinMD.

D. All of the above

Chapter summary

■■ Background tasks can run when the application is not in the foreground.

■■ Background tasks can be triggered by system, maintenance, time, network, and user
events.

■■ A task can be executed based on multiple conditions.

■■ Lengthy download and upload operations can be done using transfer classes.

■■ The Windows Runtime lets applications written in different languages share
functionality.

 52 ChAPTER 1 Develop Windows Store apps

Answers

This section contains the solutions to the thought experiments and the answers to lesson
review questions in this chapter.

Objective 1.1: Thought experiment
1. Your application, when not used by the user, is put in a suspended state by the Win-

dows Runtime and, if the system needs resources, can be terminated. This is the most
common problem that might explain why the app sometimes does not clean all data.
The application cannot rely on background threads to perform operations because the
application can be terminated if not in the foreground.

2. To solve the problem, you need to implement a background task using the provided
classes and register the task during application launch. Because the operations are
lengthy, it is important to use a deferral. Do not forget to define the declaration in the
application manifest.

Objective 1.1: Review
1. Correct answer: C

A. Incorrect: You cannot schedule a time trigger every minute. The minimum fre-
quency is 15 minutes. Moreover, polling is not a good technique when an event-
based technique is available.

B. Incorrect: The InternetAvailable event fires when an Internet connection becomes
available. It does not tell the application about changes in the network state.

C. Correct: NetworkStateChange is the correct event. The false value for the one-
Shot parameter enables the application to be informed every time the state of the
network changes.

D. Incorrect: NetworkStateChange is the correct event, but the value of true for the
oneShot parameter fires the event just one time.

2. Correct answers: A, B, C

A. Correct: The task has to be declared in the application manifest.

B. Correct: The task can be created by the BackgroundTaskBuilder class.

C. Correct: A trigger must be set to inform the system on the events that will fire the
task.

D. Incorrect: There is no need to use a toast to enable a background task. You can
use it, but this is optional.

 Answers ChAPTER 1 53

3. Correct answer: C

A. Incorrect: There is no specific task in the Windows Runtime library to fire a task
just once.

B. Incorrect: Every task can be scheduled to run just once.

C. Correct: Many triggers offer a second parameter in the constructor to enable this
feature.

D. Incorrect: You can create different tasks to be run once. For example, a task based
on network changes can run just once.

Objective 1.2: Thought experiment
1. A background task has network and CPU quotas. Tasks have to be lightweight and

short-lived, and they cannot be scheduled to run continuously. You have to rely on the
specific class of the BackgroundTransfer namespace to upload and download files in
the background.

2. To solve the problem, you need to use the BackgroundUploader class and declare the
use of the network in the application manifest.

Objective 1.2: Review
1. Correct answer: B

A. Incorrect: You can schedule a task to run every 15 minutes.

B. Correct: Fifteen minutes is the internal clock frequency. You cannot schedule a
task to run at a lower interval.

C. Incorrect: You can schedule a task to run every 15 minutes.

D. Incorrect: You can schedule a task to run every 15 minutes.

2. Correct answer: A

A. Correct: All assigned conditions need to be met to start a task.

B. Incorrect: All assigned conditions must return true.

C. Incorrect: All assigned conditions need to be met to start a task.

D. Incorrect: There is no difference on condition evaluation whether the device is on
AC or DC power.

3. Correct answer: B

A. Incorrect: The application has no reference to background task threads.

B. Correct: You need to implement the OnCanceled event that represents the cancel-
lation request from the system.

C. Incorrect: There is no request to abort the thread during cancellation request.

D. Incorrect: The system can make a cancellation request.

 54 ChAPTER 1 Develop Windows Store apps

4. Correct answers: B, D

A. Incorrect: This class has no methods to download files.

B. Correct: To download small resources, the HttpClient is the preferred class.

C. Incorrect: The BackgroundTransfer is a namespace.

D. Correct: The BackgroundDownloader is the class to request a lengthy download
operation.

E. Incorrect: The BackgroundUploader class cannot download files.

Objective 1.3: Thought experiment
You can choose a traditional C# or Visual Basic library that is perfectly suited to the need to
be reused by other applications. But a traditional library cannot be reused by applications
written in other languages.

If you opt for a WinMD library, you can reuse the exposed features in applications written
in other languages. Moreover, you can give the library functionalities that work in the back-
ground using background tasks.

Creating a WinMD library has no drawbacks. You just have to follow some simple set of
requirements:

■■ The fields, parameters, and return values of all the public types and members in your
component must be WinRT types.

■■ Public structures may not have any members other than public fields, and those fields
must be value types or strings.

■■ Public classes must be sealed. If your programming model requires polymorphism, you
can create a public interface and implement that interface on the classes that must be
polymorphic. The only exceptions are XAML controls.

■■ All public types must have a root namespace that matches the assembly name, and the
assembly name must not begin with “Windows.”

Objective 1.3: Review
1. Correct answer: A

A. Correct: A class must be sealed.

B. Incorrect: There is no need to mark the class as abstract.

C. Incorrect: There is no interface required.

D. Incorrect: Answer choice A is correct.

 Answers ChAPTER 1 55

2. Correct answer: C

A. Incorrect: You do not have access to all the .NET 4.5 classes since they simply are
not available for a Windows Store app.

B. Incorrect: You cannot access C++ classes directly.

C. Correct: You can access WinRT classes.

D. Incorrect: WinMD library can be written in C# and Visual Basic, not only in C++.

3. Correct answers: A, B, D

A. Correct: A WinJS app can access C++ classes because they are wrapped in a
WinMD library.

B. Correct: A C++ app can access C# classes because they are wrapped in a WinMD
library.

C. Incorrect: A WinMD library cannot be written in JavaScript.

D. Correct: Answer choice C is incorrect.

389

Advanced Query Syntax (AQS) string, 109
algorithms

hash, 279–282
MAC, 284–287
symmetric key, 285

All value (DeviceClass enum), 108
alternate option (animation-direction property), 205
alternate-reverse option (animation-direction

property), 205
always-connected experience, 27
ambient lighting, 95
analysis tools, JavaScript, 365–371
analytical data, 377
angular velocity, gyrometer sensor, 85–86
animation-delay property, 206
animation-direction property, 205
animation-duration property, 205
animation-fill-mode property, 206
animation-iteration-count property, 205
animation library, 206–211
animation-name property, 205
animation-play-state property, 206
animations, 195–212

CSS3 transitions, 196–203
activating transitions with JavaScript, 200–202
adding/configuring transitions, 197–201

UI enhancements
animation library, 206–211
creating/customizing animations, 203–206
HTML5 canvas element, 211–212

animation-timing-function property, 204
anonymous method, 189
APIs, caching app data, 249–256
APIs (application programming interfaces)

licensing, 310–316
media capture, 57–79

CameraCaptureUI API, 58–68
MediaCaptureUI API, 67–77

Index

Numbers
400 Bad Request HTTP status code, 170

A
AAC (Advanced Audio Codec) audio profile, 74
Abandoned value (Completion property), 131
Aborted value (DeviceWatcherStatus enum), 116
AccelerationReading class, 83
Accelerometer class, 80
accelerometer sensor, 80–84
accessing

sensors, 80–96
accelerometer, 80–84
compass, 87–88
gyrometer, 85–86
inclinometer, 92–94
light, 95–96
orientation, 89–92

AccessToken property, 167
activating

file pickers, 266
transitions, JavaScript, 200–202

Active Directory User Object store (Microsoft certificate
store), 295

AddCondition function, 5
add/delete from list animations, 208–210
Added event (DeviceWatcher class), 112
addEventListener event, 217
adding

animations, 204–206
transitions, 197–201

Add Reference dialog box, 47
Adoption reports, 378
Advanced Audio Codec (AAC) audio profile, 74

390

app data

development
background tasks, 1–8
consuming background tasks, 10–36
integrating WinMD components, 38–50

enhancements
animations and transitions, 195–212
custom controls, 213–225
globalization and localization, 228–239
responsiveness, 181–194

implementing printing, 125–142
choosing options to display in preview

window, 139–140
creating user interface, 132–133
custom print templates, 133–136
in-app printing, 142
PrintTask events, 131–132
PrintTaskOptions class, 136–138
reacting to print option changes, 140–142
registering apps for Print contract, 126–130

PlayTo feature, 144–161
PlayTo contract, 144–147
PlayTo source applications, 149–155
registering apps as PlayTo receiver, 155–161
testing sample code, 147–149

security, 278–299
certificate enrollment and requests, 290–296
DataProtectionProvider class, 296–299
digital signatures, 288–290
hash algorithms, 279–282
MAC algorithms, 284–287
random number generation, 283–284
Windows.Security.Cryptography namespac-

es, 279
solution deployment

diagnostics and monitoring strategies, 357–380
error handling, 330–342
testing strategies, 344–355
trial functionality, 307–329

WNS (Windows Push Notification Service), 163–172
requesting/creating notification channels,

163–165
sending notifications to clients, 165–171

AQS (Advanced Query Syntax) string, 109
architecture, Windows Runtime, 40–41
AreEqual method, 351
aria property, 214
AssemblyCleanup attribute, 354
AssemblyInitialize attribute, 354

app data
caching, 248–255

ESE (Extensible Storage Engine), 257–258
IndexewdDB technology, 257
local storage, 249–252

defined, 247–248
security, 278–299

certificate enrollment and requests, 290–296
DataProtectionProvider class, 296–299
digital signatures, 288–290
hash algorithms, 279–282
MAC algorithms, 284–287
random number generation, 283–284
Windows.Security.Cryptography

namespaces, 279
understanding, 247–248

Append method, 139, 282
AppId attribute, 328
AppId property, 314
application data APIs, caching app data, 249–256
ApplicationData class, 249
ApplicationDataCompositeValue instance, 253
ApplicationDataCreateDisposition enumeration, 250
application language list, 237
application manifest, declaring background task

usage, 5–6
ApplicationModel.Background namespace, 32
application programming interfaces. See APIs
Application UI tab (App Manifest Designer), 237
apply method, 225
App Manifest Designer (Visual Studio), 7–8

Application UI tab, 237
background taskApp settings, 32
Badge and wide logo definition, 30–31
enabling transfer operations in background, 23–24
Location capability enabled, 97
webcam capability, 61–62

app.onloaded event handler, 283
AppReceipt element, 328
apps (applications)

accessing sensors, 80–96
accelerometer, 80–84
compass, 87–88
gyrometer, 85–86
inclinometer, 92–94
light, 95–96
orientation, 89–92

391

Buy button

B
BackgroundAccessStatus enumeration, 33
background color, CSS3 transitions, 196–197
BackgroundCompletedEventArgs object, 13
BackgroundDownloader class, 23
BackgroundExecutionManager class, 32
BackgroundTaskBuilder object, 3
BackgroundTaskCompletedEventArgs object, 13
BackgroundTaskRegistration object, 7
background tasks

consuming, 10–36
cancelling tasks, 16–19
debugging tasks, 20–21
keeping communication channels open, 27–36
progressing through and completing tasks,

12–15
task constraints, 15–16
task usage, 22
transferring data in the background, 22–27
triggers and conditions, 10–12
updating tasks, 19–20

creating, 1–8
declaring background task usage, 5–7
enumeration of registered tasks, 7–8
using deferrals with tasks, 8

BackgroundTranferCostPolicy, 23
BackgroundTransfer APIs, 23
BackgroundUploader class, 23
Badge Logo reference, 30
badge updates, 166
Binding option (PrintTastOptions class), 136
binding to custom controls, 220–221
Bing Maps Geocode service, 100
Blank App (XAML) template, 47
bottom-up approach (functional testing), 346
business model selection, trial functionality, 308–310
buttons

Buy, 309
Capture Photo, 60
Take Heap Snapshot, 366
Try, 309

Buy button, 309

Assert.AreEqual method, 352
Assert class, 348
Assert.IsTrue method, 352
associations (files), 274–276
asymmetric encryption, 288
AsymmetricKeyProvider class, 289
asynchronous operations, 182–183
attachAsync method, 26
Attach to Running App option (JavaScript analysis

tools), 366
attributes, 353

AppId, 328
AssemblyCleanup, 354
AssemblyInitialize, 354
CertificateId, 328
ClassCleanup, 353
ClassInitialize, 353
CSS, HTML, 133–136
DataRow, 354
DataTestMethod, 354
EventAttribute, 375
ExpectedExceptionAttribute, 348
Id, 328
LicenseType, 328
MethodNam, 322
ProductId, 328
ProductType, 328
PurchaseDate, 328
ReceiptDate, 328
ReceiptDeviceId, 328
Signature, 329
SimulationMode, 321
TestClass, 351
TestCleanup, 353
TestMethod, 353
UITestMethodAttribute, 348

audio
CameraCaptureUI API, 58–68
capturing from the microphone, 76

AudioCapture value (DeviceClass enum), 108
AudioDeviceId property, 73
AudioRender value (DeviceClass enum), 108
audit trails, 371
authentication, 279

392

CA (certification authority)

CapturePhotoToStorageFileAsync method, 71
capturing media

camera, 57–79
CameraCaptureUI API, 58–68
MediaCaptureUI API, 67–77

errors, 340–342
CertificateEnrollmentManager class, 294
Certificate Enrollment Requests store (Microsoft

certificate store), 295
CertificateId attribute, 328
CertificateRequestProperties objects, 292
certificates, app security, 290–296
certification authority (CA), 291
change event, 217
changes

print tasks, 140–142
CharacterGroupings class, 233
characterGroupings.lookup method, 233
charms

Devices, 125, 142
lay To–certified devices, 145

Settings
modifying Privacy settings, 339

CheckResult method, 13
CivicAddress property, 100
ClassCleanup attribute, 353
classes

AccelerationReading, 83
Accelerometer, 80
ApplicationData, 249
Assert, 348
AsymmetricKeyProvider, 289
BackgroundDownloader, 23
BackgroundExecutionManager, 32
BackgroundUploader, 23
CachedFileManager, 270
Calendar, 235
CameraCaptureUI, 42

leveraging camera settings, 64
CameraOptionsUI, 74
CertificateEnrollmentManager, 294, 296
CharacterGroupings, 233
Compass, 88
CompassReading, 88
Compressor, 276
ControlChannelTrigger, 29–30

keep-alive intervals, 35
CryptographicBuffer, 281, 282

C
CA (certification authority), 291
CachedFileManager class, 270
caching, data, 247–262

app data, 248–258
app data APIs, 249–256
ESE (Extensible Storage Engine), 257–258
IndexedDB technology, 257

roaming profiles, 259–261
understanding app and user data, 247–248
user data, 260–262

Calendar class, 235
calendars, localizing apps, 235–236
callbacks

asynchronous programming, 182
Called functions bar, 364
call method, 225
call stack, External Code, 41
Call Tree view, 363
CameraCaptureUI API, capturing pictures and

video, 58–68
CameraCaptureUI class, 42

leveraging camera settings, 64
CameraCaptureUIMaxPhotoResolution

enumeration, 65
CameraCaptureUIMode parameter, 59
CameraCaptureUIPhotoFormat enumeration, 65
CameraCaptureUIVideoFormat property, 66
camera, media capture, 57–79

CameraCaptureUI API, 58–68
MediaCaptureUI API, 67–77

CameraOptionsUI class, 74
Canceled value (Completion property), 131
cancel event, 217
cancellation requests, tasks, 16–19
cancelling

promises, 187–190
cancelling tasks, 16–19
cancel method, 187
_cancelRequested variable, 17
capabilities, devices, 105–118

DeviceWatcher class, 112–116
enumerating devices, 106–112
PnP (Plug and Play), 116–118

capCreateCaptureWindows function, 38
CaptureFileAsync method, 41, 44, 59, 341
Capture Photo button, 60

393

conditions

sessionStorage, 258
SimpleOrientationSensor, 89
StandardPrintTaskOptions, 139
StorageFile, 260
StorageStreamTransaction, 273
StreamSocketControl, 35
SystemEventTrigger, 10
SystemTrigger, 3
TileUpdateManager, 14
TileUpdater, 165
VideoEffects, 71
VideosLibrary, 151
XMLHttpRequest, 185
ZipArchive, 276

ClassInitialize attribute, 353
ClearEffectsAsync method, 71
Clear method, 165
Clock, Language, and Region applet, 229–230
close method, 192
cloud storage, data caching, 261–262
CLR Windows 8 apps, consuming Windows

Runtime, 41–42
code

activating a background transfer, 24–25
registering for Print contract, 127–128

coded UI testing, 346
Collation option (PrintTastOptions class), 136
ColorMode option (PrintTastOptions class), 136
combination approach (functional testing), 346
communication channels, keeping open, 27–36
Compare method, 282
Compass class, 88
CompassReading class, 88
compass sensor, 87–88
Completed event (PrintTask class), 131
Complete method, 8, 130
complete parameter, 189
Completion property, 131
components, WinMD, 38–50

consuming a native WinMD library, 40–46
creating a WinMD library, 47–50

composite settings, 249
compressing files, 276–277
Compressor class, 276
concurrency profiling, 358
conditions

consuming background tasks, 10–12
SystemConditionType enum, 11

CryptographicEngine, 286
CryptographicHash, 282
CurrentApp, 310
CurrentAppSimulator, 311
DataProtectionProvider, 296–299
DataWriter, 273
DateTimeFormatter, 234
Debug, 20
Decompressor, 276
DeflateStream, 276
DeviceInformation, 108, 113
DeviceWatcher, 112–116
DOMEventMixin, 217
DownloadOperation, 25
EventListener, 376
EventSource, 374–377
FileIO, 251
FileOpenPicker, 264
Geolocator, 98
Gyrometer, 85
GZipStream, 276
HashAlgorithmNames, 281
HashAlgorithmProvider, 280
LicenseInformation, 310
LightSensorReading, 95
ListingInformation, 314
localStorage, 258
MacAlgorithmNames, 286
MacAlgorithmProvider, 285, 286
MaintenanceTrigger, 3, 10
MediaCaptureInitalizationSettings, 73
MediaEncodingProfile, 74
MessageDialog, 185
OAuthToken, 167
OrientationSensor, 89, 91
PasswordVault, 299
PlayToConnection, 153
PlayToManager, 147
PlayToReceiver, 156

events, 158
initializing, 156
Notify* methods, 160

PnpObject, 117
PrintManager, 127, 142
PrintTaskOptionDetails, 141
PrintTaskOptions, 136–138
ProximityDevice, 110
ResourceLoader, 233

394

confidentiality

CPU utilization graph, 370
crashes (failure rates), 379
CreateContainer method, 250
_createControl method, 223
CreateDocumentFragment method, 136
createDownload method, 25
Created value (DeviceWatcherStatus enum), 115
createEventProperties method, 217
createFileAsync method, 25
CreateFileAsync method, 251
CreateFolderQuery method, 271
CreateHash method, 282
CreateKey method, 286
CreateMp4 method, 74
CreatePrintTask method, 128
CreatePushNotificationChannelForApplicationAsync

method, 163–164
CreateTileUpdaterForApplication method, 14
CreateUploadAsync method, 27
createUploadAsync(Uri, IIterable(BackgroundTransfer

ContentPart)) overload, 27
createUploadAsync(Uri, IIterable(BackgroundTransfer

ContentPart), String) overload, 27
createUploadAsync(Uri, IIterable(BackgroundTransfer

ContentPart), String, String) overload, 27
CreateUploadFromStreamAsync method, 27
CreateWatcher static method, 113
creating

animations, 203–206
background tasks, 1–8

declaring background task usage, 5–7
enumeration of registered tasks, 7–8
using deferrals with tasks, 8

custom controls, 218–222
binding to custom controls, 220–221
documentation, 221

custom print templates, 133–136
notification channels (WNS), 163–165
promises, 188–190
WinMD library, 47–50

CroppedAspectRatio property, 66
CroppedSizeInPixels property, 66
CryptographicBuffer class, 281–282
CryptographicEngine class, 286
CryptographicEngine.Sign method, 290
CryptographicHash class, 282
cryptography. See security
CSS3 transitions, 196–203

confidentiality, 279
configuring

animations, 204–206
transitions, 197–201

console.takeHeapSnapshot method, 369
constraints (tasks), 15–16
consuming

background tasks, 10–36
cancelling tasks, 16–19
debugging tasks, 20–21
keeping communication channels open, 27–36
progressing through and completing tasks,

12–15
task constraints, 15–16
task usage, 22
transferring data in the background, 22–27
triggers and conditions, 10–12
updating tasks, 19–20

WinMD library, 40–46
Containers enum, 250
contextchanged event, 232
continuation method, 190
contracts, PlayTo, 144–147
contracts, file pickers, 267
contrast mode, localizing images, 234
ControlChannelReset trigger, 11
ControlChannelTrigger, 11, 15
ControlChannelTrigger class, 29–30

keep-alive intervals, 35
controls

custom, 213–225
creating, 218–222
extending controls, 222–225
understanding how existing controls work,

214–218
initializing, 184
rating

constructor, 215
CSS for, 214–215
deriving from, 224–225
extending, 223
generated HTML, 214–215

ConversionError errors, 332
ConvertStringToBinary method, 281
cookies, 262
Coordinate property, 100
CostPolicy property, 25
CPU limits, task constraints, 15

395

design

WinJS.Application.local storage, 258
WinJS.Application.roaming storage, 258
WinJS.Application.sessionState storage, 258

data caching, 247–262
caching app data, 248–258

app data APIs, 249–256
ESE (Extensible Storage Engine), 257–258
IndexedDB technology, 257

roaming profiles, 259–261
understanding app and user data, 247–248
user data, 260–262

DataChanged event, 255
DataProtectionProvider class, 296–299
DataRow attribute, 354
DataTestMethod attribute, 354
data types, 40
data-win-bind property, 221
data-win-res property, 232
DataWriter class, 273
dates, localizing apps, 234–235
DateTimeFormatter class, 234
Deadline property, 152
Debug class, 20
debugging tasks, 20–21
Debug Location toolbar (Visual Studio), 20–21
Debug menu, Start Performance Analysis, 361
DecimalFormatter, 235
declarations, manifest, 151
declaring, background task usage, 5–7
Decompressor class, 276
default constructor (DataProtectionProvider class), 297
default contents, WinMD folders, 43
Default.js file, 49
DefaultTile element, 30
Default value (PrintTaskOptions class options), 137
default values, print options, 138
deferrals, 130
deferrals, using with tasks, 8
define method, 216
DeflateStream class, 276
DeleteContainer method, 251
#demoDiv:hover selector, 197
derive method, 224–225
deriving from existing controls (extending

controls), 224–225
design

data caching, 247–262
caching app data, 248–258
roaming profiles, 259–261

activating transitions with JavaScript, 200–202
adding/configuring transitions, 197–201

CSS attrbiutes, HTML, 133–136
cubic Bézier curves, 200
cubic-bezier() (transition timing function), 199
currencies, localizing apps, 235
CurrencyFormatter, 235
CurrentApp class, 310
CurrentAppSimulator class, 311
CurrentState property, 153
CurrentTimeChangeRequested event (PlayToReceiver

class), 158
custom controls, 213–225

creating, 218–222
binding to custom controls, 220–221
documentation, 221

extending controls, 222–225
understanding how existing controls work, 214–218

customizing
animations, 203–206

custom license information (apps), 316–317
custom print templates, creating, 133–136
C++ Windows 8 app

consuming Windows Runtime, 42–47

D
data

analytical, 377
HTML5 Application Cache API storage, 261
HTML5 File API storage, 261
HTML5 Web Storage, 258
integrity, 279
ISAM files, 258
libraries, 260
local storage, 249–252
management

data caching, 247–262
saving/retrieving files, 263–277
securing app data, 278–299

retrieval
sensors, 79–103

roaming storage, 252–255
SkyDrive storage, 261–262
telemetry, 377
temporary storage, 255–257
transferring, background tasks, 22–27

396

DesiredAccuracy property

dialog boxes
Add Reference, 47
Set Location, 97
Windows Store, 318–319

digital signatures, app security, 288–290
Direct2D printing, 141
Disabled value (LocationStatus property), 103
disabling, default behavior of PlayTo feature, 146
dispatchEvent event, 217
dispatchEvent method, 217
DisplayedOptions property, 139
Dispose method, 375
DividedByZeroException exception, 352
_doBinding method, 221
documentation

custom controls, 221
documents (user data), 248
DOMEventMixin class, 217
done method, 185, 335

error function, 337
doSomething method, 222
DoSomeWork method, 332
DownloadOperation class, 25
Downloads reports, 378
doWork function, 2–3
dump files, 380
Duplex option (PrintTastOptions class), 137

E
ease-in-out (transition timing function), 199
ease-in (transition timing function), 199
ease-out (transition timing function), 199
ease (transition timing function), 199
E_Fail error code, 322
Enable Multilingual App Toolkit option (Tools

menu), 238
encryption

MAC algorithms, 284–287
enhancements, UI (user interface)

animations and transitions, 195–212
animation library, 206–211
creating/customizing animations, 203–206
CSS3 transitions, 196–203
HTML5 canvas element, 211–212

custom controls, 213–225
creating, 218–222

understanding app and user data, 247–248
user data, 260–262

diagnostics and monitoring strategies, 357–380
JavaScript analysis tools, 365–371
logging events, 371–377
profiling Windows Store apps, 357–365
reports, 377–380

error handling, 330–342
app design, 331–335
promise errors, 335–342

testing strategies, 344–355
functional versus unit testing, 345–347
test project, 348–355

DesiredAccuracy property, 100
development, Windows Store apps

background tasks, 1–8
consuming background tasks, 10–36
integrating WinMD components, 38–50

DeviceClass enum, 108
device containers, 116
DeviceContainer value (PnpObjectType enum), 117
DeviceInformation class, 108, 113
device interface classes, 116
DeviceInterfaceClass value (PnpObjectType enum), 117
device interfaces, 116
DeviceInterface value (PnpObjectType enum), 117
devices

capabilities, 105–118
DeviceWatcher class, 112–116
enumerating devices, 106–112
PnP (Plug and Play), 116–118

enumerating, 106–112
media capture, camera and microphone, 57–79

CameraCaptureUI API, 58–68
MediaCaptureUI API, 67–77

sensors, 79–103
accessing, 80–96
location data, 79
user location, 96–102

Devices charm, 125, 142
Play To-certified devices, 145

devices, PC Settings, 144–145
DeviceWatcher class, 112–116
DeviceWatcherStatus enum, 115
diagnostics strategies, 357–380

JavaScript analysis tools, 365–371
logging events, 371–377
profiling Windows Store apps, 357–365
reports, 377–380

397

events

errors
ConversionError, 332
RangeError, 332
ReferenceError, 332
TypeError, 332
URIError, 332

ESE (Extensible Storage Engine), 257–258
ETW (Event Tracing for Windows) mechanism, 371
EventAttribute attribute, 375
event-driven reading pattern, ReadChanging event, 82
event handlers

app.onloaded, 283
onCanceled, 16
PrintTaskRequested, 128
progress, 14
receiving push notifications, 171
SourceRequested, 151
unregistering, 130

EventListener class, 376
events

Added, 114
addEventListener, 217
cancel, 217
change, 217
contextchanged, 232
DataChanged, 255
dispatchEvent, 217
EnumerationCompleted, 114
Error, 152
LicenseChanged, 317
LockScreenApplicationAdded, 12
LockScreenApplicationRemoved, 12
logging, 371–377
onCompleted, 12–13
onProgress, 14
OptionChanged, 141
PlayToReceiver class, 158
PositionChanged, 101
preview_change, 217
PrintTaskRequested, 127
ReadingChanged, 80, 82
RecordLimitationExceeded, 69
removeEventListener, 217
setOptions, 217
Shaken, 84
SourceRequested, 147, 151
SourceSelected, 151
StateChanged, 152

extending controls, 222–225
understanding how existing controls work,

214–218
globalization and localization, 228–239
responsiveness, 181–194

asynchronous strategy, 182–183
cancelling promises, 187–190
handling errors, 185–186
promises, 183–186
web workers, 190–194

enrollment, certificates, 290–296
enterprise authentication capability, 297
Enterprise Trust store (Microsoft certificate store), 295
entities (user data), 248
enumerating

registered tasks, 7–8
enumerating devices, 106–112
EnumerationCompleted event (DeviceWatcher

class), 112
EnumerationCompleted value (DeviceWatcherStatus

enum), 116
enumerations. See enums
enums (enumerations)

ApplicationDataCreateDisposition, 250
BackgroundAccessStatus, 33
CameraCaptureUIMaxPhotoResolution, 65
CameraCaptureUIPhotoFormat, 65
Containers, 250
DeviceClass, 108
DeviceWatcherStatus, 115
KeyProtectionLevel, 292
PnpObjectType, 117
SimpleOrientation, 89
SystemConditionType

conditions, 11
SystemTriggerType, 4–5
Windows.Foundation.AsyncStatus, 336
WinRT PushNotificationType, 172

Error event, 152
error function, done method, 337
error handling, 330–342

app design, 331–335
promise errors, 335–342
trial functionality, 320–321
UI responsiveness, 185–186
web workers, 193

error parameter, 189

398

_events function

temporary files, 256
resource, 231–232
saving/retrieving, 263–277

accessing programmatically, 270–271
compressing files, 276–277
file extensions and associations, 274–276
file pickers, 264–270
files, folders, and streams, 272

Windows.Media.winmd, 43–44
WindowsStoreProxy.xml, 313
XLF, 238

FileSavePicker instance, 269
FileTypeFilter collection, 266
finally blocks, 331
FindAllAsync static method, 106
flow, file pickers, 267
fluid interface, 206
FlushTransport method, 36
FolderPicker, 268
folders, saving/retrieving files, 272
formats, video, 151
format templates, dates and times, 234
formatters, numbers and currencies, 235
fractionDigits property, 235
freshnessTime parameter, 11
FriendlyName property, 154
fulfilled state, promises, 183
functionality, trials, 307–329

business model selection, 308–310
custom license information, 316–317
handling errors, 320–321
in-app purchases, 322–327
licensing state, 310–315
purchasing apps, 318–320
retrieving/validating receipts, 327–329

functional testing, 345–347
coded UI testing, 346
integration testing, 346–347

Function Code View pane, 364
Function Details view, 363–364
functions

AddCondition, 5
capCreateCaptureWindows, 38
doWork, 2–3
_events, 217
takePicture_click, 59
window.print (JavaScript), 126

StatusChanged, 102
Transferred, 153
transitionEnd, 200–202
UseCamera_Click, 42
UserCamera_Click, 41
window.onerror JavaScript, 335
WinJS.Promise.error, 338

_events function, 217
EventSource class, 374–377
Event Tracing for Windows (ETW) mechanism, 371
exceptions, DividedByZeroException, 352
ExpectedExceptionAttribute attribute, 348
ExpirationDate property, 311
Exportable property, 293
Export method, 290
ExportPublicKey method, 290
export restrictions, cryptography, 279
extending controls, 222–225
Extensible Storage Engine (ESE), 257–258
External Code, call stack, 41
external scripts, web workers, 193–194
external services, data storage, 261–262

F
Facedown value (SimpleOrientation enum), 89
Faceup value (SimpleOrientation enum), 89
failed state, promises, 183
Failed value (Completion property), 131
feature-based trials, 308, 320
feature lifetime, 309
file extensions, 274–276
file formats, SkyDrive, 261
FileIO class, 251
filename field (error event), 193
FileOpenPicker class, 264
file pickers, saving/retrieving files, 264–270
files

Default.js, 49
dump, 380
ISAM (Indexed Sequential Access Method), 258
Package.appxmanifest, 236

Location capability, 97
Private Networks capability enabled, 155

Package.appxmanifest XML, 61–62
reading values from

local profiles, 252
roaming profiles, 255

399

implementation

UI responsiveness, 185–186
web workers, 193

hardware slot, 29
HashAlgorithmNames static class, 281
HashAlgorithmProvider class, 280
hash algorithms, app security, 279–282
hash-based message authentication code (HMAC), 284
HashData method, 281
hash values, 279
HasKey method, 250
HeadingMagneticNorth property, 88
HeadingTrueNorth property, 88
HMAC (hash-based message authentication code), 284
HolePunch option (PrintTastOptions class), 137
HomeGroup content, 270
Hot Paths, 363
HSTRING data type, 40
HTML5 Application Cache API storage, 261
HTML5 canvas element, animating, 211–212
HTML5 File API storage, 261
HTML5 Web Storage, 258
HTML (Hypertext Markup Language), CSS attri-

butes, 133–136
Hypertext Markup Language (HTML), CSS attri-

butes, 133–136

I
IAsyncOperationWithProgress<DownloadOperation,

DownloadOperation> interface, 26
Id attribute, 328
_<identifier>.comment key, 232
IInspectable interface, 45
ILDASM (Intermediate Language Disassembler) tool, 43
IlluminanceLux property, 95
Image decoding event category (UI Responsiveness

Profiler tool), 370
image (img) tags, 60
images

globalization, 228
localization, 233–234

img (image) tags, 60
implementation

data caching, 247–262
caching app data, 248–258
roaming profiles, 259–261
understanding app and user data, 247–248
user data, 260–262

G
garbage collector, 367
GC event category (UI Responsiveness Profiler

tool), 370
GenerateRandom method, 283
GenerateRandomNumber method, 283
generatin random numbers, app security, 283–284
geographic data, determining user location, 98–101
Geolocator class, 98
get accessor, 217
GetAppReceiptAsync method, 327
getCurrentDownloadAsync method, 26
GetCurrentReading method, 81
GetDefault method, 80
GetDeferral method, 8, 130, 152
GetDeviceSelector method, 110
GetFileAsync method, 271
GetFilesAsync method, 151
GetFoldersAsync method, 271
GetForCurrentView method, 127, 151
GetFromPrintTaskOptions static method, 142
GetGeopositionAsync method, 100–101
GetGlyphThumbnailAsync method, 106
GetIids method, 45
GetOAuthToken method, 168
GetProductReceiptAsync method, 327
GetRuntimeClassName method, 45
getString method, 232
GetThumbnailAsync method, 106
GetTrustLevel method, 45
GetValueAndReset method, 282
globalization, 228–231
globally unique identifiers (GUIDs), 110
GPS sensor, 96
guid property, BackgroundDownloader class, 25
GUIDs (globally unique identifiers), 110
Gyrometer class, 85
gyrometer sensor, 85–86
GZipStream class, 276

h
handling errors, 330–342

app design, 331–335
promise errors, 335–342
trial functionality, 320–321

400

importScripts method

IPropertySet interface, 70
IRandomAccessStream interface, 60
IsActive property, 311, 319–320
ISAM (Indexed Sequential Access Method) files, 258
isGrouped property, 235
IsMailAddress method, 48
isolation, unit testing, 347–348
IsTrial property, 311, 319–320

J
JavaScript

activating transitions, 200–202
analysis tools, 365–371

Memory Analysis, 366–369
UI Responsiveness Profiler, 369–371

single-threaded language, 182
join method, cancelling promises, 187–188

K
keep-alive connections, 28–29
keep-alive intervals, network apps, 35
keep-alive network triggers, 30
KeepAlive property, 35
KeyAlgorithmName property, 294
keyed hashing algorithms, 284–287
key frames, animations, 204
keypoints, 204
KeyProtectionLevel enum, 292
KeySize property, 293
key storage providers (KSPs), 293
KeyUsages property, 293
KSPs (key storage providers), 293

L
language settings, globalization, 229–231
Language window, 229–230
Launch Installed App Package option (JavaScript

analysis tools), 366
Launch Startup Project option (JavaScript analysis

tools), 366
layoutdir-RTL qualifier, 234

PlayTo feature, 144–161
PlayTo contract, 144–147
PlayTo source applications, 149–155
registering apps as PlayTo receiver, 155–161
testing sample code, 147–149

printing, 125–142
choosing options to display in preview

 window, 139–140
creating user interface, 132–133
custom print templates, 133–136
in-app printing, 142
PrintTask events, 131–132
PrintTaskOptions class, 136–138
reacting to print option changes, 140–142
registering apps for Print contract, 126–130

testing strategies, 344–355
functional versus unit testing, 345–347
test project, 348–355

importScripts method, 193
in-app printing, 142
in-app purchases, 309, 322–327
inclinometer sensor, 92–94
IndexedDB technology, caching app data, 257–258
Indexed Sequential Access Method (ISAM) files, 258
InitializeAsync method, 72
InitializeSensor method, 84
initializing

controls, 184
PlayToReceiver class, 156

Initializing value (LocationStatus property), 102
innertText property, 220
InstallCertificateAsync method, 294–295
instanceOf statements, 332
instrumentation profiling, 358
INT32 numeric type, 40
integrating WinMD components, 38–50
integration testing, 346–347
interfaces

IAsyncOperationWithProgress<DownloadOperation,
DownloadOperation>, 26

IInspectable, 45
IPropertySet, 70
IRandomAccessStream, 60

Intermediate Certification Authorities store (Microsoft
certificate store), 295

Intermediate Language Disassembler (ILDASM) tool, 43
InternetAvailable condition, 11
InternetNotAvailable condition, 11

401

methods

long-running server processes, 27
longTaskAsyncPromise, 187
LookUp method, 250
lumen, 95
lux (ambient lighting), 95

M
MacAlgorithmNames static class, 286
MacAlgorithmProvider class, 285–286
MAC (Message Authentication Code) algorithms, app

security, 284–287
MaintenanceTrigger class, 3, 10
maintenance triggers, 10–12
management, data and security

data caching, 247–262
saving/retrieving files, 263–277
securing app data, 278–299

manifest
declarations, 151
localization, 236–238

maps, globalization, 229
MaxCopies option (PrintTastOptions class), 137
MaxResolution property, 66
measuring angular velocity, gyrometer sensor, 85–86
media capture, 57–79

camera, 57–79
CameraCaptureUI API, 58–68
MediaCaptureUI API, 67–77

errors, 340–342
MediaCaptureInitializationSettings objects, 72
MediaCaptureUI API, capturing media, 67–77
MediaEncodingProfile class, 74
media files (user data), 248
MediaSize option (PrintTastOptions class), 137
MediaType option (PrintTastOptions class), 137
Memory Analysis tool, 365, 366–369
Message Authentication Code (MAC) algorithms,

284–287
MessageDialog class, 185
message field (error event), 193
MethodNam attribute, 322
methods

AddEffectAsync, 70
anonymous, 189
Append, 139, 282
apply, 225

leveraging camera settings, CameraCaptureUI class, 64
libraries, caching user data, 260
LicenseChanged events, 317
LicenseInformation class, 310
LicenseInformation property, 310
LicenseType attribute, 328
licensing state (apps), 310–315
light sensor, 95–96
LightSensorReading class, 95
linear (transition timing function), 199
lineno field (error event), 193
Link property, 314
ListingInformation class, 314
Live Connect, REST (Representational State Transfer)

APIs, 261
LoadCustomSimulator method, 324, 338
Loading event category (UI Responsiveness Profiler

tool), 370
loading external scripts, web workers, 193–194
LoadListingInformationAsync_GetResult method, 322
LoadListingInformationAsync method, 314, 323
load testing, 345
local data storage, 249–252
localeCompare method, 233
LocalFolder property, 249
localization, 231–239

calendars, 235–236
dates and times, 234–235
images, 233–234
manifest, 236–238
numbers and currencies, 235
string data, 231–233

LocalSettings property, 249
localStorage class, 258
Location capability, App Manifest Designer, 97
location data, 79
LocationStatus property, 102
lock screen

applications, 28
permission, 29
registering an application, 30–33
requesting use of, 32–33
triggers, 11

LockScreenApplicationAdded event, 12
LockScreenApplicationRemoved event, 12
logging events, 371–377
logging to files

local user storage, 251
roaming user storage, 254

402

methods

FindAllAsync, 106
FlushTransport, 36
GenerateRandom, 283
GenerateRandomNumber, 283
GetAppReceiptAsync, 327
getCurrentDownloadAsync, 26
GetCurrentReading, 81
GetDefault, 80
GetDeferral, 8, 130, 152
GetDeviceSelector, 110
GetFileAsync, 271
GetFilesAsync, 151
GetFoldersAsync, 271
GetForCurrentView, 127, 151
GetFromPrintTaskOptions, 142
GetGeopositionAsync, 100–101
GetGlyphThumbnailAsync, 106
GetIids, 45
GetOAuthToken, 168
GetProductReceiptAsync, 327
GetRuntimeClassName, 45
getString, 232
GetThumbnailAsync, 106
GetTrustLevel, 45
GetValueAndReset, 282
HashData, 281
HasKey, 250
ImportPfxDataAsync, 296
importScripts, 193
InitializeAsync, 72
InitializeSensor, 84
InstallCertificateAsync, 294–295
IsMailAddress, 48
join, 187
LoadCustomSimulator, 324, 338
LoadListingInformationAsync, 314, 323
LoadListingInformationAsync_GetResult, 322
localeCompare, 233
LookUp, 250
mix, 217
MSApp.GetHtmlPrintDocumentSource, 130, 136
Notify*, 160
Object.Equals, 351
OnEventWritten, 376
OnFileActivated, 276
OpenAlgorithm, 281, 286
OpenTransactedWriteAsync, 273
Pause, 25

AreEqual, 351
Assert.AreEqual, 352
Assert.IsTrue, 352
attachAsync, 26
call, 225
cancel, 187
CaptureFileAsync, 41, 44, 59, 341
CapturePhotoToStorageFileAsync, 71
characterGroupings.lookup, 233
CheckResult, 13
Clear, 165
ClearEffectsAsync, 71
close, 192
Compare, 282
Complete, 8, 130
console.takeHeapSnapshot, 369
continuation, 190
ConvertStringToBinary, 281
CreateContainer, 250
_createControl, 223
CreateDocumentFragment, 136
createDownload, 25
createEventProperties, 217
createFileAsync, 25
CreateFileAsync, 251
CreateFolderQuery, 271
CreateHash, 282
CreateKey, 286
CreateMp4, 74
CreatePrintTask, 128
CreatePushNotificationChannelForApplication-

Async, 163–164
CreateTileUpdaterForApplication, 14
CreateUploadAsync, 27
CreateUploadFromStreamAsync, 27
CryptographicEngine.Sign, 290
define, 216
DeleteContainer, 251
derive, 224–225
dispatchEvent, 217
Dispose, 375
_doBinding, 221
done, 185, 335

error function, 337
doSomething, 222
DoSomeWork, 332
Export, 290
ExportPublicKey, 290

403

network access, task cosntraints

WaitForPushEnabled, 35
WriteEvent, 377
WriteTextAsync, 251, 272
xhr, 185

microphone, capturing audio, 76
Microsoft.VisualStudio.TestPlatform.UnitTestFramework

namespace, 348
MinCopies option (PrintTastOptions class), 137
MinimumReportInterval property, 82
mix method, 217
Modules view, 365
monitoring strategies, 357–380

JavaScript analysis tools, 365–371
logging events, 371–377
profiling Windows Store apps, 357–365
reports, 377–380

MovementThreshold property, 102
MSApp.GetHtmlPrintDocumentSource method, 130,

136
Multilingual App Toolkit, 238
MuteChangeRequested event (PlayToReceiver

class), 158

N
namespaces

ApplicationModel.Background, 32
Microsoft.VisualStudio.TestPlatform.UnitTestFrame-

work, 348
System.IO.Compression.FileSystem, 276
System.Net.Sockets, 29
System.Text.RegularExpressions, 47
Windows.Devices.Enumeration, 105
Windows.Devices.Enumeration.PnP, 116
Windows.Devices.Geolocation, 79, 98
Windows.Devices.Sensors, 79
Windows.Globalization.Collation, 233
Windows.Graphics.Printing, 127
Windows.Networking.PushNotification, 163
Windows.Security.Cryptography, 279

Certificates, 292
DataProtection, 296

naming conventions, 351
near-field communications (NFC), 110
nested promises, 338
.NET memory profiling, 358
network access, task cosntraints, 15

PickSingleFileAsync, 267
Play, 69
PlayToManager.GetForCurrentView, 147
postMessage, 190
processAll, 184, 232
ProtectAsync, 297
ProtectStreamAsync, 299
ReadBufferAsync, 273
reateWatcher, 113
ReloadSimulatorAsync, 316
Remove, 251
RequestAccessAsync, 11, 32
RequestAppPurchaseAsync, 318
RequestAppPurchaseAsync_GetResult, 322
RequestProductPurchaseAsync, 325, 327
RequestProductPurchaseAsync_GetResult, 322
Resume, 25
setOptions(this, options), 216
setRequestHeader, 27
SetSource, 130, 147
Show, 74
ShowPlayToUI, 155
ShowPrintUIAsync, 142
_showTentativeRating, 223
Sign, 286
SimulateRemoteServiceCall, 363
Start, 116
startAsync, 25
StartAsync, 69, 159
startDevice_click, 69
StartReceivingButton_Click, 156
StartRecordToCustomSinkAsync, 74
StartRecordToStorageFileAsync, 74
StartRecordToStreamAsync, 74
Stop, 116
StopAsync, 159
StopRecordAsync, 75
StopRecordingAsync, 69
SubmitCertificateRequestAndGetResponse-

Async, 294
terminate, 192
then, 184, 335
ThrowsException<TException>, 348
timeout, 188
UnprotectAsync, 298
UnprotectStreamAsync, 299
_updateControl, 223
VerifySignature, 286

404

NETWORK_ERROR

Orientation option (PrintTastOptions class), 137
orientation sensor, 89–92
OrientationSensor class, 89
Other event category (UI Responsiveness Profiler

tool), 370
Other People store (Microsoft certificate store), 295
overloaded constructor (DataProtectionProvider

class), 297

P
Package.appxmanifest file, 236

Private Networks capability enabled, 155
Package.appxmanifest files

Location capability, 97
Package.appxmanifest XML file, 61–62
PageSize setting, 249
parameters

authenticating a cloud service to Windows Live
service, 170

CameraCaptureUIMode, 59
freshnessTime, 11
oneShot, 3, 11
promise constructor, 189

PasswordVault class, 299
Pause method, 25
PauseRequested event (PlayToReceiver class), 158
PC Settings, panel listing of available devices, 144–145
PercentFormatter, 235
PermilleFormatter, 235
permissions, lock screen, 29
Personal store (Microsoft certificate store), 295
PFX (Personal Information Exchange) messages, 296
PhotoCaptureSource property, 72
photoMessage div tag, 59
PickSingleFileAsync method, 267
pictures, CameraCaptureUI API, 58–68
PitchDegrees property, 93
pitch rotation, 92
PKI (public key infrastructure), 291
PlatformKeyStorageProvider KSP, 293
PlaybackRateChangeRequested event (PlayToReceiver

class), 158
Play method, 69
PlayRequested event (PlayToReceiver class), 158
PlayToConnection class, 153
PlayTo contract, 144–147

NETWORK_ERROR, 193
Network keep-alive interval, 35
network triggers, 29
NFC (near-field communications), 110
NoData value (LocationStatus property), 102
nonfunctional testing, 345
non-repudiation, 279
normal option (animation-direction property), 205
NotAvailable value (LocationStatus property), 103
NotAvailable value (PrintTaskOptions class options), 137
notification channels (WNS), requesting/creating, 163–

165
notifications, progress, 186
notifications (WNS), sending to clients, 165–171
NotificationType property, 172
Notify* methods, 160
NotInitialized value (LocationStatus property), 103
NotRotated value (SimpleOrientation enum), 89
NumberOfCopies option (PrintTastOptions class), 137
numbers, localizing apps, 235

O
OAuthToken class, 167
Object.Equals method, 351
objects

BackgroundCompletedEventArgs, 13
BackgroundTaskBuilder, 3
BackgroundTaskCompletedEventArgs, 13
BackgroundTaskRegistration, 7
CertificateRequestProperties, 292
MediaCaptureInitializationSettings, 72
PnpDeviceWatcher, 117
PrintManager, 126
PrintTask, 126
PrintTaskRequestedEventArgs, 128
WebUIBackgroundTaskInstance, 2–3

onCanceled event handler, 16
onCompleted event, 12–13
oneShot parameter, 3, 11
OnEventWritten abstract method, 376
OnFileActivated method, 276
onProgress event, 14
OpenAlgorithm method, 281, 286
OpenTransactedWriteAsync method, 273
OptionChanged event, 141
OptionId property, 142

405

properties

Privacy settings (Permissions flyout), 339
Private Networks capability (Package.appxmanifest

file), 155–156
processAll method, 184, 232
ProductId attribute, 328
ProductLicenses property, 311
ProductReceipt element, 328
ProductType attribute, 328
profile analysis report, 362
profiling Windows Store apps, 357–365
programmatically accessing files, 270–271
program user interaction

implementing printing, 125–142
choosing options to display in preview

window, 139–140
creating user interface, 132–133
custom print templates, 133–136
in-app printing, 142
PrintTask events, 131–132
PrintTaskOptions class, 136–138
reacting to print option changes, 140–142
registering apps for Print contract, 126–130

PlayTo feature, 144–161
PlayTo contract, 144–147
PlayTo source applications, 149–155
registering apps as PlayTo receiver, 155–161
testing sample code, 147–149

WNS (Windows Push Notification Service), 163–172
requesting/creating notification channels,

163–165
sending notifications to clients, 165–171

progress assignment, 14–15
progress event handlers, 14
Progressing event (PrintTask class), 131
progress notifications, 186
progress parameter, 189
promise constructor, parameters, 189
promise errors, 335–342
promises, 183–186

cancelling, 187–190
creating, 188–190

properties
AccessToken, 167
animation-delay, 206
animation-direction, 205
animation-duration, 205
animation-fill-mode, 206
animation-iteration-count, 205

PlayTo feature, 144–161
PlayTo contract, 144–147
PlayTo source applications, 149–155
registering apps as PlayTo receiver, 155–161
testing sample code, 147–149

PlayToManager class, 147
PlayToReceiver class, 156

events, 158
initializing, 156
Notify* methods, 160

PlayTo source applications, 149–155
Plug and Play (PnP) devices, 116–118
PnpDeviceWatcher objects, 117
PnpObject class, 117
PnpObjectType enum, 117
PnP (Plug and Play) devices, 116–118
polling sensor devices, 83
PortableStorageDevice value (DeviceClass enum), 108
PositionChanged event, 101
postMessage method, 190
preferences, globalization, 230
preview_change event, 217
Previewing event (PrintTask class), 131
PreviousState property, 153
PrinterCustom value (PrintTaskOptions class

options), 137
printing implementation, 125–142

choosing options to display in preview
window, 139–140

creating user interface, 132–133
custom print templates, 133–136
in-app printing, 142
PrintTask events, 131–132
PrintTaskOptions class, 136–138
reacting to print option changes, 140–142
registering apps for Print contract, 126–130

PrintManager class, 127, 142
PrintManager objects, 126
PrintQuality option (PrintTastOptions class), 137
PrintSettings composite setting, 249
PrintTask events, 131–132
PrintTask objects, 126
PrintTaskOptionDetails class, 141
PrintTaskOptions class, 136–138
PrintTaskRequested event, 127
PrintTaskRequestedEventArgs objects, 128
PrintTaskRequested event handler, 128
print templates, creating, 133–136

406

ProtectAsync method

ProductLicenses, 311
Quaternion, 92
Reading, 83
read-only requestedUri, BackgroundDownloader

class, 25
ReportInterval, 81, 88, 92
Request, 128
resultFile, BackgroundDownloader class, 25
role, 214
RollDegrees, 93
RotationMatrix, 92
SourceRequest, 151
StreamingCaptureMode, 72
SuggestedStartLocation, 270
TemporaryFolder, 256
TriggerDetails, 36
userRating, 216
VideoDeviceId, 73
VideoSettings, 66
VideoStabilization, 71
YawDegrees, 93

ProtectAsync method, 297
ProtectStreamAsync method, 299
prototype functionality, controls, 222–223
prototypical inheritance, 224
ProximityDevice class, 110
public key infrastructure (PKI), 291
public/private key pairs, asymmetric encryption, 289
PurchaseDate attribute, 328
purchasing apps, 318–320
push notification, 28
push notification network triggers, 30
PushNotificationTrigger, 11, 15
PushNotificationTrigger trigger, 172

Q
quality panel, 379
Quality reports, 378
Quaternion property, 92

R
random number generation, app security, 283–284
RangeError errors, 332

animation-name, 205
animation-play-state, 206
animation-timing-function, 204
AppId, 314
aria, 214
AudioDeviceId, 73
CameraCaptureUIVideoFormat, 66
CivicAddress, 100
Completion, 131
Coordinate, 100
CostPolicy, 25
CroppedAspectRatio, 66
CroppedSizeInPixels, 66
CurrentState, 153
data-win-bind, 221
data-win-res, 232
Deadline, 152
DesiredAccuracy, 100
DisplayedOptions, 139
ExpirationDate, 311
Exportable, 293
fractionDigits, 235
FriendlyName, 154
guid, BackgroundDownloader class, 25
HeadingMagneticNorth, 88
HeadingTrueNorth, 88
IlluminanceLux, 95
innertText, 220
IsActive, 311, 319–320
isGrouped, 235
IsTrial, 311, 319–320
KeepAlive, 35
KeyAlgorithmName, 294
KeySize, 293
KeyUsages, 293
LicenseInformation, 310
Link, 314
LocalFolder, 249
LocalSettings 4, 249
LocationStatus, 102
MaxResolution, 66
MinimumReportInterval, 82
MovementThreshold, 102
NotificationType, 172
OptionId, 142
PhotoCaptureSource, 72
PitchDegrees, 93
PreviousState, 153

407

runtime state (app data)

RequestProductPurchaseAsync_GetResult method, 322
RequestProductPurchaseAsync method, 325, 327
Request property, 128
resource files, 231–232
ResourceLoader class, 233
response parameters, authentication to a Windows Live

service, 170
responsiveness, UI (user interface), 181–194

asynchronous strategy, 182–183
cancelling promises, 187–190
handling errors, 185–186
promises, 183–186
web workers, 190–194

REST (Representational State Transfer) APIs, 261
resultFile property, BackgroundDownloader class, 25
Resume method, 25
retrieving

compass sensor, 87–88
data

sensors, 79–103
files, 263–277

accessing programmatically, 270–271
compressing files, 276–277
file extensions and associations, 274–276
file pickers, 264–270
files, folders, and streams, 272

receipts, app purchases, 327–329
simulated license state, 311–312

reverse option (animation-direction property), 205
roaming data storage, 252–255
roaming profiles, 259–261
roaming settings, 252
role property, 214
RollDegrees property, 93
roll rotation, 92
Rotated90DegreesCounterclockwise value (Simple-

Orientation enum), 89
Rotated180DegreesCounterclockwise value (Simple-

Orientation enum), 89
Rotated270DegreesCounterclockwise value (Simple-

Orientation enum), 89
RotationMatrix proeprty, 92
Runtime Broker, 40
runtime state (app data), 248

rating control
constructor, 215
CSS for, 214–215
deriving from, 224–225
extending, 223
generated HTML, 214–215

ReadBufferAsync method, 273
ReadingChanged event, 80, 82
Reading property, 83
reading values from files

local profiles, 252
roaming profiles, 255
temporary files, 256

read-only requestedUri property, BackgroundDown-
loader class, 25

Ready value (LocationStatus property), 102
ReceiptDate attribute, 328
ReceiptDeviceId attribute, 328
Receipt element, 328
receipts, app purchases, 327–329
receivers (PlayTo feature), registering apps as, 155–161
recording video, 66
RecordLimitationExceeded event, 69
reference content (app data), 248
ReferenceError errors, 332
registered tasks

enumerating, 7–8
registering

apps as PlayTo receiveers, 155–161
ReloadSimulatorAsync static method, 316
remote debugging, 347
Removed event (DeviceWatcher class), 112
removeEventListener event, 217
Remove method, 251
Rendering event category (UI Responsiveness Profiler

tool), 370
ReportInterval property, 81, 88, 92
reports, 377–380

Adoption, 378
Downloads, 378
profile analysis, 362
Quality, 378

Representational State Transfer (REST) APIs, 261
RequestAccessAsync method, 11, 32
RequestAppPurchaseAsync_GetResult method, 322
RequestAppPurchaseAsync static method, 318
requesting

certificates, 290–296
notification channels (WNS), 163–165

408

saving, files

SessionConnected condition, 11
SessionConnected trigger, 11
SessionDisconnected condition, 11
sessionStorage class, 258
set accessor, 217
Set Location dialog box, 97
setOptions event, 217
setOptions(this, options) method, 216
setRequestHeader method, 27
SetSource method, 130, 147
settings

composite, 249
XML, 274–275

Settings charm, modifying Privacy settings, 339
Shaken event, 84
Sharing option, 144
Show method, 74
ShowPlayToUI static method, 155
ShowPrintUIAsync method, 142
_showTentativeRating method, 223
SID (security identifier), 167
Signature attribute, 329
Sign method, 286
SimpleOrientation enum, 89
SimpleOrientationSensor class, 89
simulated license state, retrieving, 311–312
SimulateRemoteServiceCall method, 363
SimulationMode attribute, 321
single-threaded language, JavaScript, 182
SkyDrive, data storage, 261–262
SmartcardKeyStorageProvider KSP, 293
Snapshot Detail view, 368
SoftwareKeyStorageProvider KSP, 293
software slot, 29
solution deployment

diagnostics and monitoring strategies, 357–380
JavaScript analysis tools, 365–371
logging events, 371–377
profiling Windows Store apps, 357–365
reports, 377–380

error handling, 330–342
app design, 331–335
promise errors, 335–342

testing strategies, 344–355
functional versus unit testing, 345–347
test project, 348–355

trial functionality, 307–329
business model selection, 308–310

S
saving, files, 263–277

accessing programmatically, 270–271
compressing files, 276–277
file extensions and associations, 274–276
file pickers, 264–270
files, folders, and streams, 272

scale factor, localizing images, 234
Script event category (UI Responsiveness Profiler

tool), 370
secret, 167
security

app data, 278–299
certificate enrollment and requests, 290–296
DataProtectionProvider class, 296–299
digital signatures, 288–290
hash algorithms, 279–282
MAC algorithms, 284–287
random number generation, 283–284
Windows.Security.Cryptography namespac-

es, 279
security identifier (SID), 167
security testing, 345
Selling details section (Windows Store Dashboard), 308
sending

notifications to clients (WNS), 165–171
sensitive devices, 340–341
Sensor platform, sensor change sensitivity, 86
sensors, 79–103

accessing, 80–96
accelerometer, 80–84
compass, 87–88
gyrometer, 85–86
inclinometer, 92–94
light, 95–96
orientation, 89–92

determining user location
geographic data, 98–101
tracking position, 101–103

location data, 79
user location, 96–102

server applications
data caching, 261–262

Server keep-alive interval, 35
ServicingComplete system trigger type, 20
ServicingComplete task, 20
ServicingComplete trigger, 19

409

SystemTriggerType enum

StopRecordingAsync method, 69
StopRequested event (PlayToReceiver class), 158
storage, data

Extensible Storage Engine (ESE), 257–258
HTML5 Application Cache API storage, 261
HTML5 File API storage, 261
HTML5 Web Storage, 258
ISAM files, 258
libraries, 260
local, 249–252
roaming, 252–255
SkyDrive storage, 261–262
temporary, 255–257
WinJS.Application.local, 258
WinJS.Application.roaming, 258
WinJS.Application.sessionState, 258

StorageFile class, 260
StorageStreamTransaction class, 273
StreamingCaptureMode property, 72
streaming video

PlayTo-certified devices, 149–155
streams

saving/retrieving files, 272
StreamSocketControl class, 35
stress testing, 345
string data, localizing apps, 231–233
strings directory, 231
Styling event category (UI Responsiveness Profiler

tool), 370
SubmitCertificateRequestAndGetResponseAsync

method, 294
Submitted value (Completion property), 131
Submitting event (PrintTask class), 131
subscribing to the Completed event, 131
SuggestedStartLocation property, 270
Summary view, 366
suspension

checking tasks for, 15–16
symmetric encryption, 284
symmetric key algorithms, 285
SystemConditionType enum

conditions, 11
SystemEventTrigger class, 10
System.IO.Compression.FileSystem namespace, 276
System.Net.Sockets namespace, 29
System.Text.RegularExpressions namespace, 47
SystemTrigger class, 3
system triggers, 4–6, 10–12
SystemTriggerType enum, 4–5

custom license information, 316–317
handling errors, 320–321
in-app purchases, 322–327
licensing state, 310–315
purchasing apps, 318–320
retrieving/validating receipts, 327–329

sorting text
globalization, 229

source applications
PlayTo, 149–155

SourceChangeRequested event (PlayToReceiver
class), 158

SourceRequested event, 147, 151
SourceRequested event handler, 151
SourceRequest property, 151
SourceSelected event, 151
standard .NET 4.5 profile, 46
StandardPrintTaskOptions class,, 139
Standard UI (user interface)

media capture, 57–79
CameraCaptureUI API, 58–68
MediaCaptureUI API, 67–77

Staple option (PrintTastOptions class), 137
startAsync method, 25
StartAsync method, 69, 159
startDevice_click method, 69
Started value (DeviceWatcherStatus enum), 115
Start method, 116
Start Performance Analysis (Debug menu), 361
StartReceivingButton_Click handler method, 156
StartRecordToCustomSinkAsync method, 74
StartRecordToStorageFileAsync method, 74
StartRecordToStreamAsync method, 74
StateChanged event, 152
state data, 259
states, promises, 183–184
StatusChanged event, 102
step-end (transition timing function), 199
stepping function, 200
step-start (transition timing function), 199
steps() (transition timing function), 199
StopAsync method, 159
Stop method, 116
Stopped event (DeviceWatcher class), 112
Stopped value (DeviceWatcherStatus enum), 116
stopping, web workers, 192–193
Stopping value (DeviceWatcherStatus enum), 116
StopRecordAsync method, 75

410

Take heap Snapshot button

timed trials, 308, 320
timeout method, 188
timeouts, cancelling asynchronous operations, 188
times, localizing apps, 234–235
TimeTrigger, 11
time triggered tasks, 12
TimeUpdateRequested event (PlayToReceiver class), 158
timing functions, transitions, 199
TIP (tier interaction profiling), 359
toasts, 166
tools

JavaScript analysis
Memory Analysis, 365–369
UI Responsiveness Profiler, 365, 369–371

WinDbg.exe, 380
top-down approach (functional testing), 346
tracking, user position, 101–103
Transferred event, 153
transferring data, background tasks, 22–27
transform:scaleX(-1) style, 234
transition-delay property, transitions, 200
transition-duration property, transitions, 198
transitionEnd event, 200–202
transition-property property, transitions, 198
transitions, 195–212

CSS3 transitions, 196–203
activating transitions with JavaScript, 200–202
adding/configuring transitions, 197–201

UI enhancements
animation library, 206–211
creating/customizing animations, 203–206
HTML5 canvas element, 211–212

transition-timing-function property, transitions, 198
trial functionality, 307–329

business model selection, 308–310
custom license information, 316–317
handling errors, 320–321
in-app purchases, 322–327
licensing state, 310–315
purchasing apps, 318–320
retrieving/validating receipts, 327–329

TriggerDetails property, 36
triggers, 4–6

consuming background tasks, 10–12
keep-alive network triggers, 30
lock screen, 11
push notification network triggers, 30
ServicingComplete, 19

T
Take Heap Snapshot button, 366
takePicture_click function, 59
tasks, background

checking for suspension, 15–16
consuming, 10–36

cancelling tasks, 16–19
debugging tasks, 20–21
keeping communication channels open, 27–36
progressing through and completing tasks,

12–15
task constraints, 15–16
task usage, 22
transferring data in the background, 22–27
triggers and conditions, 10–12
updating tasks, 19–20

creating, 1–8
declaring background task usage, 5–7
enumeration of registered tasks, 7–8
using deferrals with tasks, 8

usage, 22
TCP keep-alive interval, 35
telemetry (data), 377
templates

creating custom print templates, 133–136
format, dates and times, 234

temporary data storage, 255–257
TemporaryFolder property, 256
terminate method, 192
TestClass attribute, 351
TestCleanup attribute, 353
testing sample code, PlayTo feature, 147–149
testing strategies, 344–355

functional versus unit testing, 345–347
test project, 348–355

TestInitialize attribute, 353
TestMethod attribute, 353
text, globalization, 229
then method, 184, 335
third-party databases, data caching, 261–262
Third-Party Root Certification Authorities store

(Microsoft certificate store), 295
ThrowsException<TException> method, 348
tier interaction profiling (TIP), 359
TileUpdateManager class, 14
TileUpdater class, 165
tile updates, 166

411

verification process, task usage

user data
caching, 260–262
defined, 248
understanding, 247–248

user interaction
implementing printing, 125–142

choosing options to display in preview win-
dow, 139–140

creating user interface, 132–133
custom print templates, 133–136
in-app printing, 142
PrintTask events, 131–132
PrintTaskOptions class, 136–138
reacting to print option changes, 140–142
registering apps for Print contract, 126–130

PlayTo feature, 144–161
PlayTo contract, 144–147
PlayTo source applications, 149–155
registering apps as PlayTo receiver, 155–161
testing sample code, 147–149

WNS (Windows Push Notification Service), 163–172
requesting/creating notification channels, 163–

165
sending notifications to clients, 165–171

user interface (UI)
enhancements

animations and transitions, 195–212
custom controls, 213–225
globalization and localization, 228–239
responsiveness, 181–194

UserNotPresent condition, 11
user preferences (app data), 248
UserPresent condition, 11
UserPresent trigger, 12
userRating property, 216
users

determining location with sensors, 96–102
geographic data, 98–101
tracking position, 101–103

V
validating

receipts, app purchases, 327–329
variables

_cancelRequested, 17
verification process, task usage, 22

triggers (tasks)
PushNotificationTrigger, 172

Trusted People store (Microsoft certificate store), 295
Trusted Publishers store (Microsoft certificate

store), 295
Trusted Root Certification Authorities store (Microsoft

certificate store), 295
Try button, 309
try/catch blocks, 331
TypeError error, 332
types, requirements, 47

U
UINT64 numeric type, 40
UI Responsiveness Profiler tool, 365, 369–371
UITestMethodAttribute attribute, 348
UI thread

avoiding blocking of thread, 182
UI (user interface)

enhancements
animations and transitions, 195–212
custom controls, 213–225
globalization and localization, 228–239
responsiveness, 181–194

printing implementation, 132–133
unfulfilled state, promises, 183
unhandled JavaScript exceptions, 379
uniform resource identifiers (URIs), 163
unit testing versus functional testing, 345–347
Unit Test Library, 349–350
Unknown value (PnpObjectType enum), 117
UnprotectAsync method, 298
UnprotectStreamAsync method, 299
unregistering event handlers, 130
unresponsiveness rate (failures), 379
Untrusted Certificates store (Microsoft certificate

store), 295
_updateControl method, 223
Updated event (DeviceWatcher class), 112
updating tasks, 19–20
URIError errors, 332
URIs (uniform resource identifiers), 163
usability testing, 345
UseCamera_Click event, 42
UserAway trigger, 12
UserCamera_Click event, 41

412

VerifySignature method

Windows.Devices.Enumeration.PnP namespace, 116
Windows.Devices.Geolocation namespace, 79, 98
Windows.Devices.Sensors namespace, 79
Windows.Foundation.AsyncStatus enum, 336
Windows.Globalization.Collation namespace, 233
Windows.Graphics.Printing namespace, 127
Windows Library for JavaScript (WinJS)

catching exceptions, 333
Windows Live service, 166–167

parameters for authenticating cloud service to, 170
Windows Location Provider, 96
Windows Media Audio (WMA) profile, 74
Windows Media Player instance, 148
Windows Media Video (WMV) profile, 74
Windows.Media.winmd file, 43–44
Windows Metadata (WinMD)

components, 38–50
consuming a native WinMD library, 40–46
creating a WinMD library, 47–50

default folder contents, 43
Windows.Networking.PushNotification namespace, 163
Windows Notification Service (WNS), 28
Windows Performance Toolkit (WPT), 359
Windows Push Notification Service. See WNS
Windows Runtime

architecture, 40–41
consuming from a CLR Windows 8 app, 41–42
consuming from a C++ Windows 8 app, 42–47
WinMD components, 38–50

Windows Runtime Component-provided template, 47
Windows.Security.Cryptography.Certificates

namespace, 292
Windows.Security.Cryptography.DataProtection

namespace, 296
Windows.Security.Cryptography namespaces, 279
Windows Sensor and Location platform, 79
Windows Store apps

accessing sensors, 80–96
accelerometer, 80–84
compass, 87–88
gyrometer, 85–86
inclinometer, 92–94
light, 95–96
orientation, 89–92

development
background tasks, 1–8
consuming background tasks, 10–36
integrating WinMD components, 38–50

VerifySignature method, 286
versioning compliance, 46
video

CameraCaptureUI API, 58–68
formats, 151
recording, 66
streaming to a PlayTo-certified device, 149–155

VideoCapture value (DeviceClass enum), 108
VideoDeviceId property, 73
VideoEffects class, 71
VideoSettings property, 66
Videos library

recording video, 73
VideosLibrary class, 151
VideoStabilization property, 71
Visual Studio

App Manifest Designer, 7–8
Application UI tab, 237
background taskApp settings, 32
Badge and wide logo definition, 30–31
enabling transfer operations in background,

23–24
Location capability enabled, 97
webcam capability, 61–62

Debug Location toolbar, 20–21
VolumeChangeRequested event (PlayToReceiver

class), 158

W
WaitForPushEnabled method, 35
WCF (Windows Communication Foundation) APIs, 46
webcam capability, App Manifest Designer, 61–62
WebUIBackgroundTaskInstance object, 2–3
web workers, UI responsiveness, 190–194

available features, 190–192
handling errors, 193
loading external scripts, 193–194
stopping, 192–193

WideLogo definition, 30
window.onerror JavaScript event, 335
window.print function (JavaScript), 126
windows

Language, 229–230
Windows 8 Simulator, 97
Windows Communication Foundation (WCF) APIs, 46
Windows.Devices.Enumeration namespace, 105

413

ZipArchive class

WinJS.Promise.error event, 338
WinJS.UI.Animation API, 195
WinJS (Windows Library for JavaScript)

catching exceptions, 333
event logging, 372–373

WinMD components, event logging, 373–377
WinMD library

consuming, 40–46
creating, 47–50

WinMD (Windows Metadata)
components, 38–50

consuming a native WinMD library, 40–46
creating a WinMD library, 47–50

default folder contents, 43
WinRT

media capture, 57–79
CameraCaptureUI API, 58–68
MediaCaptureUI API, 67–77

WinRT PushNotificationType enum, 172
WMA (Windows Media Audio) profile, 74
WMV (Windows Media Video) profile, 74
WNS (Windows Notification Service), 28
WNS (Windows Push Notification Service), 163–172

requesting/creating notification channels, 163–165
sending notifications to clients, 165–171

WPT (Windows Performance Toolkit), 359
WriteEvent method, 377
WriteTextAsync method, 251, 272

X
X.509 public key infrastructure (PKI), 291
xhr method, 185
XLF files, 238
XMLHttpRequest class, 185
XML settings, 274–275

Y
YawDegrees property, 93
yaw rotation, 92

Z
ZipArchive class, 276

enhancements
animations and transitions, 195–212
custom controls, 213–225
globalization and localization, 228–239

implementing printing, 125–142
choosing options to display in preview

window, 139–140
creating user interface, 132–133
custom print templates, 133–136
in-app printing, 142
PrintTask events, 131–132
PrintTaskOptions class, 136–138
reacting to print option changes, 140–142
registering apps for Print contract, 126–130

PlayTo feature, 144–161
PlayTo contract, 144–147
PlayTo source applications, 149–155
registering apps as PlayTo receiver, 155–161
testing sample code, 147–149

security, 278–299
certificate enrollment and requests, 290–296
DataProtectionProvider class, 296–299
digital signatures, 288–290
hash algorithms, 279–282
MAC algorithms, 284–287
random number generation, 283–284
Windows.Security.Cryptography

namespaces, 279
solution deployment

diagnostics and monitoring strategies, 357–380
error handling, 330–342
testing strategies, 344–355
trial functionality, 307–329

UI enhancements
responsiveness, 181–194

WNS (Windows Push Notification Service), 163–172
requesting/creating notification channels,

163–165
sending notifications to clients, 165–171

Windows Store Dashboard, 308
Windows Store dialog box, 318–319
WindowsStoreProxy.xml files, 313
Windows.System.UserProfile.GlobalizationPreferences.

Listing, 230
WinJS.Application.local, data storage, 258
WinJS.Application.roaming, data storage, 258
WinJS.Application.sessionState, data storage, 258
WinJS controls, functionality, 214–218

About the Authors
ROBERTO BRUNETTI is a consultant, trainer, and author with experience in enterprise ap-
plications since 1997. Together with Paolo Pialorsi, Marco Russo, and Luca Regnicoli, Roberto
is a founder of DevLeap, a company focused on providing high-value content and consult-
ing services to professional developers. He is the author of a few books about ASP.NET and
Windows Azure, plus two books on Microsoft Windows 8, all for Microsoft Press. Since 1996,
Roberto has been a regular speaker at major conferences.

VANNI BONCINELLI is a consultant and author on .NET technologies. Since 2010, he has
been working with the DevLeap team, developing several enterprise applications based on
Microsoft technologies. Vanni has authored many articles for Italian editors on XNA and
game development, Windows Phone, and, since the first beta version in 2011, Windows 8. He
also worked on Build Windows 8 Apps with Microsoft Visual C# and Visual Basic Step by Step
(Microsoft Press, 2013).

	Introduction
	Microsoft certifications
	Acknowledgments
	Errata & book support
	We want to hear from you
	Stay in touch

	Preparing for the exam
	Chapter 1: Develop Windows Store apps
	Objective 1.1: Create background tasks
	Creating a background task
	Declaring background task usage
	Enumerating registered tasks
	Using deferrals with tasks
	Objective summary
	Objective review

	Objective 1.2: Consume background tasks
	Understanding task triggers and conditions
	Progressing through and completing background tasks
	Understanding task constraints
	Cancelling a task
	Updating a background task
	Debugging tasks
	Understanding task usage
	Transferring data in the background
	Keeping communication channels open
	Objective summary
	Objective review

	Objective 1.3: Integrate WinMD components into a solution
	Understanding the Windows Runtime and WinMD
	Consuming a native WinMD library
	Creating a WinMD library
	Objective summary
	Objective review

	Chapter summary
	Answers
	Objective 1.1: Thought experiment
	Objective 1.1: Review
	Objective 1.2: Thought experiment
	Objective 1.2: Review
	Objective 1.3: Thought experiment
	Objective 1.3: Review

	Index

