

Microsoft® SharePoint® 2013
App Development

Scot Hillier
Ted Pattison

Copyright © 2013 by Scot Hillier Technical Solutions, LLC and Ted Pattison Group, Inc.
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-7498-1

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Development Editor: Kenyon Brown

Production Editor: Rachel Steely

Editorial Production: Dianne Russell, Octal Publishing, Inc.

Technical Reviewer: Wayne Ewington

Copyeditor: Bob Russell, Octal Publishing, Inc.

Indexer: Bob Pfahler

Cover Design: Twist Creative

Cover Composition: Zyg Group, LLC

Illustrator: Rebecca Demarest

http://www.microsoft.com/learning/booksurvey
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx
http://www.microsoft.com/about/legal/en/us/IntellectualProperty/Trademarks/EN-US.aspx

Contents at a glance

Introduction ix

CHAPTer 1 Introducing SharePoint apps 1

CHAPTer 2 Client-side programming 45

CHAPTer 3 SharePoint app security 95

CHAPTer 4 Developing SharePoint apps 137

Index 173

 v

Contents

Introduction . ix

Chapter 1 Introducing SharePoint apps 1
Understanding the new SharePoint app model . 1

Understanding SharePoint solution challenges 2

Understanding SharePoint app model design goals 4

Understanding SharePoint app model architecture . 5

Working with app service applications . 5

Understanding app installation scopes . 7

Understanding app code isolation . 8

Understanding app hosting models .10

Reviewing the app manifest .14

Setting the start page URL . 17

Understanding the app web .18

Working with app user-interface entry points21

Packaging and distributing apps .28

Packaging apps .29

Publishing apps .34

Installing apps .37

Upgrading apps .39

Trapping app lifecycle events . 41

Conclusion .44

Chapter 2 Client-side programming 45
Introducing JavaScript for SharePoint developers .46

Understanding JavaScript namespaces .46

Understanding JavaScript variables .46

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

vi Contents

Understanding JavaScript functions .48

Understanding JavaScript closures .49

Understanding JavaScript prototypes .50

Creating custom libraries . 51

Introducing jQuery for SharePoint developers .54

Referencing jQuery .55

Understanding the global function .55

Understanding selector syntax .56

Understanding jQuery methods .56

Understanding jQuery event handling .57

Working with the CSOM .58

Understanding client object model fundamentals 58

Working with the managed client object model61

Working with the JavaScript client object model69

Working with the REST API .77

Understanding REST fundamentals .77

Working with the REST API in JavaScript .81

Working with the REST API in C# .87

Conclusion .93

Chapter 3 SharePoint app security 95
Reviewing the concepts of authentication and authorization95

Understanding SharePoint 2013 authentication .96

Understanding user authentication in SharePoint 201396

Understanding how SharePoint 2013 authenticates apps98

Understanding app authentication flow in SharePoint 2013103

Managing app permissions .104

Understanding app permission policies .105

Reviewing how SharePoint manages user permissions106

Requesting and granting app permissions .107

Requesting app-only permissions .110

Establishing app identity by using OAuth .111

Understanding app principals .113

Developing with OAuth .118

 vii

Establishing app identity by using S2S trusts .128

Architecture of an S2S trust .129

Configuring an S2S trust .131

Developing provider-hosted apps by using S2S trusts134

Conclusion .136

Chapter 4 Developing SharePoint apps 137
Understanding app patterns .137

Building MVVM apps. .137

Building MVC apps .146

Using the chrome control .153

Calling across domains .156

Using the cross-domain library .156

Using the web proxy .159

Going beyond the basics .160

Using remote event receivers .161

Using the search REST API .164

Using app-level External Content Types .166

Using the social feed .168

Conclusion .171

Index 173

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 ix

Introduction

With the release of SharePoint 2013, Microsoft has dramatically changed the rules for SharePoint
developers. The introduction of the new app development model is intended to essentially

eliminate the development of full-trust and sandboxed solutions for SharePoint. Although both of
these solution types are still available in SharePoint 2013, the message from Microsoft is clear: all new
SharePoint development should be done by using the app model.

We cover the reasons for this seismic shift in detail in Chapter 1, so we won’t repeat them here. How-
ever, the SharePoint community will probably be left with many questions about the future even after
understanding Microsoft’s logic. Certainly, the most important questions revolve around whether
organizations will actually accept the primacy of the app model. Most SharePoint installations are
on-premises farms with significant investment in custom full-trust solutions. These solutions take the
form of Web Parts, workflows, application pages, event handlers, and so on that perform significant
custom processing. Clearly, organizations cannot abandon these investments overnight. On the other
hand, no one can deny the momentum pressuring organizations to move more functionality into the
cloud where the full-trust model simply does not work effectively.

For developers, the situation is both intriguing and concerning. Many SharePoint developers—the
authors of this book included—have spent a decade mastering the intricacies of the full-trust model.
Now, we find ourselves faced with the reality that a portion of this knowledge might be in jeopardy.
Even though all the expertise surrounding SharePoint infrastructure, architecture, and declarative pro-
cessing is still useful, the app model forbids the use of the server-side object model, which has been
the “bread and butter” of SharePoint developers for more than ten years.

On the positive side, the app model opens up new and exciting possibilities for development. Cloud-
based apps allow for scenarios that were difficult or impossible to create in previous versions of
SharePoint. Developers now have client-side access to every major workload in SharePoint through
the client-side object model and REST, which means that SharePoint 2013 fits perfectly into cloud-
based and cross-platform development models. Additionally, SharePoint developers now have access
to a marketplace to sell their applications to Microsoft Office 365 users.

Although this book can’t answer all of the adoption questions the community will face, it can certainly
help you to get started in app development. There are many new skills for you to learn including ad-
vanced JavaScript patterns, OAuth security, and cloud-based development models. If you are like the
hundreds of Microsoft employees and partners we have already taught, you’ll find yourself reacting
with a mix of excitement, joy, denial, and frustration. We look forward to working through it with you
and the rest of the SharePoint community.

x Introduction

Who this book is for

This book is written for experienced SharePoint developers who are proficient with Microsoft Visual
Studio 2012, the Microsoft .NET 4.0 framework, and who understand the fundamentals of the Share-
Point object model. The code samples in this book are written in JavaScript and C# and are intended
to represent the spectrum of possible app solutions. The primary audience for the book is SharePoint
architects and developers who are looking to master the new app model in SharePoint 2013.

Organization of this book

This book is organized into four chapters:

Chapter 1, “Introducing SharePoint apps,” covers the new app model in detail. This chapter pres-
ents the historical context that justifies the app model and the fundamental development process.

Chapter 2, “Client-side programming,” first provides a JavaScript and jQuery primer for SharePoint
developers with an emphasis on professional patterns. The second half of the chapter presents the
fundamentals of the client-side object model and REST APIs for SharePoint 2013.

Chapter 3, “App security,” presents the security concepts necessary to successfully develop apps.
This chapter explains the concept of the app principal and presents the details behind the OAuth
security model.

Chapter 4, “Developing SharePoint apps,” presents professional patterns for app development such
as Model-View-ViewModel (MVVM) and Model-View-Controller (MVC). Within these patterns, the
chapter shows the basics of creating apps with various workloads, such as search, Business Connectiv-
ity Services (BCS), and the social capabilities.

Prerelease software

To help you become familiar with SharePoint 2013 as early as possible, this book was written by using
examples that work with SharePoint 2013 Preview. Consequently, the final version might include new
features, and features discussed in this book might change or disappear altogether. You can refer to
the “Capabilities and features in SharePoint 2013” topic on TechNet at technet.microsoft.com/en-us/
sharepoint/fp142374.aspx for the most up-to-date list of changes to the product. Be aware, however,
that you might also notice some differences between the “Release to Manufacture” (RTM) version of
the product and the descriptions and screen shots that are provided in this book.

More Info You can find information about the Exchange Server 2013 Preview at technet.
microsoft.com/en-us/library/bb124558(v=exchg.150).aspx. You can find more information
about the Lync 2013 Preview at lync.microsoft.com/en-us/Pages/Lync-2013-Preview.aspx.

http://technet.microsoft.com/en-us/library/bb124558(v=exchg.150).aspx
http://technet.microsoft.com/en-us/library/bb124558(v=exchg.150).aspx
http://lync.microsoft.com/en-us/Pages/unified-communications.aspx

 Introduction xi

Code samples

You can download the companion code samples from the book 's catalog page at:

http://www.microsoftpressstore.com/title/9780735674981

Copy and unzip the files in the root of the C: drive. If you copy and unzip the files in another
folder, you might get an error message because the total file paths are too long.

Support & feedback

The following sections provide information on errata, book support, feedback, and contact information.

Errata

We’ve made every effort to ensure the accuracy of this book and its companion content. Any errors
that have been reported since this book was published are listed on our Microsoft Press site:

http://www.microsoftpressstore.com/title/9780735674981

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, send an email to Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses
above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset.
Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance for
your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress
http://www.microsoftpressstore.com/title/9780735674981
http://www.microsoftpressstore.com/title/9780735674981

 1

C H A P T E R 1

Introducing SharePoint apps

Let’s begin with a bit of history so that you can understand why and how the Microsoft SharePoint
app model came about. It was back with SharePoint 2007 that Microsoft first invested to transform

SharePoint technologies into a true development platform by introducing features and farm solu-
tions. With the release of SharePoint 2010, Microsoft extended the options available to developers
by introducing sandboxed-solution deployment as an alternative to farm-solution deployment. With
SharePoint 2013, Microsoft has now added a third option for SharePoint developer with the introduc-
tion of SharePoint apps.

When developing for SharePoint 2013, you must learn how to decide between using a farm
solution, a sandboxed solution, or a SharePoint app. To make this decision in an informed manner,
you must learn what’s different about developing SharePoint apps. As you will see in this chapter,
SharePoint app development has several important strengths and a few noteworthy constraints when
compared to the “old school” approach of developing SharePoint solutions for SharePoint 2010.

As you begin to get your head around what the new SharePoint app model is all about, it’s helpful
to understand one of Microsoft’s key motivations behind it. SharePoint 2007 and SharePoint 2010
have gained large-scale adoption worldwide and have generated billions of dollars in revenue primar-
ily due to companies and organizations that have installed SharePoint on their own hardware in an
on-premises farm. And, whereas previous versions of SharePoint have been very successful products
with respect to all these on-premises farms, Microsoft’s success and adoption rate in hosted environ-
ments such as Microsoft Office 365 have been far more modest.

The release of SharePoint 2013 represents a significant shift in Microsoft’s strategy for evolving the
product. Microsoft’s focus is now concerned with improving how SharePoint works in the cloud, espe-
cially with Office 365. Microsoft’s primary investment in SharePoint 2013 has been to add features
and functionality that work equally well in the cloud as they do in on-premises farms.

Understanding the new SharePoint app model

The move from SharePoint solutions development to SharePoint app development represents a
significant change in development technique and perspective. However, Microsoft is not making this
change just for the sake of making a change; there are very valid technical reasons that warrant such a
drastic shift in the future of the SharePoint development platform.

2 Microsoft SharePoint 2013 App Development

To fully understand Microsoft’s motivation for beginning to transition away from SharePoint solu-
tions to the new SharePoint app model, you must first understand the problems and pain points of
SharePoint solutions development. Therefore, this section will begin by describing the limitations
and constraints imposed by SharePoint solution development. After that, the discussion turns to the
design goals and architecture of the new SharePoint app model and addresses how this architecture
improves upon the limitations and constraints imposed by SharePoint solution development.

Understanding SharePoint solution challenges
The first problem with SharePoint solutions development is that most of the custom code written
by developers runs within the SharePoint host environment. For example, managed code deployed
in a farm solution runs within the main SharePoint worker process (w3wp.exe). Managed code
deployed by using a sandboxed solution runs within the SharePoint sandboxed worker process
(SPUCWorkerProcess.exe).

There are two primary reasons why Microsoft wants to get rid of custom code that runs within the
SharePoint environment. The first reason has to do with increasing the stability of SharePoint farms.
This one should be pretty obvious. Eliminating any type of custom code that runs within the Share-
Point environment results in lower risk, fewer problems, and greater stability for the hosting farm.

The second reason has to do with the ability to upgrade an on-premises farm to newer versions of
SharePoint. SharePoint solutions are often developed with full trust and perform complex operations.
These solutions are often tightly bound to a particular feature set, which means that they might not
move gracefully to the next version of SharePoint. Fearing a complete rewrite of dozens of solutions,
many customers delay upgrading their SharePoint farms.

Microsoft has witnessed many of their biggest SharePoint customers postponing the upgrade
of their production on-premises farms for months and sometimes years until they have had time to
update their SharePoint solution code and test it against the new version of Microsoft.SharePoint.dll.
Because this is a problem that negatively affects SharePoint sales revenue, you can bet it was pretty
high on the priority list of problems to fix when Microsoft began to design SharePoint 2013.

Another significant problem with SharePoint solution development has to do with security and
permissions. The root problem is that code always runs under the identity and with the permissions
of a specific user. As an example, think about the common scenario in which a site administrator acti-
vates a feature from a SharePoint solution that has a feature receiver. There is a security issue in that
a SharePoint solution with a feature receiver is able to execute code that can do anything that the site
administrator can do. There really isn’t a practical way to constrain the SharePoint solution code so
that it runs with a lesser set of permissions than the user that has activated the feature.

Most SharePoint professionals are under the impression that code inside a sandboxed solution
is constrained from being able to perform attacks. This is only partially true. The sandbox protects
the farm and other site collections within the farm, but it does not really protect the content of
the site collections in which a sandboxed solution is activated. For example, there isn’t any type of

 CHAPTER 1 Introducing SharePoint apps 3

enforcement to prohibit the feature activation code in a sandboxed solution from deleting every item
and every document in the current site collection.

Another issue with sandboxed solutions is that there’s no ability to perform impersonation. There-
fore, custom code in a sandboxed solution always runs as the current user. This can be very limiting
when the current user is a low-privileged user such as a contributor or a visitor. There is no way to
elevate privileges so that your code can do more than the current user.

Farm solutions, on the other hand, allow for impersonation. This means a developer can elevate
privileges so that farm solution code can perform actions even when the current user does not pos-
sess the required permissions. However, this simply replaces one problem with another.

A farm solution developer can call SPSecurity.RunWithElevatedPrivileges, which allows custom code
to impersonate the all-powerful SHAREPOINT\SYSTEM account. When code runs under this identity,
it executes with no security constraints whatsoever. The code can then essentially do whatever it
wants on a farm-wide basis. This type of impersonation represents the Pandora’s Box of the Share-
Point development platform because a farm solution could perform an attack on any part of a farm
in which it’s deployed, and it must be trusted not to do so. As you can imagine, this can cause anxiety
with SharePoint farm administrators who are much fonder of security enforcement than they are of
trust.

In a nutshell, the security problems with SharePoint solutions stem from the fact that you cannot
effectively configure permissions for a specific SharePoint solution. This limitation cannot be over-
come, because the SharePoint solution development model provides no way to establish the identity
of SharePoint solution code independent of user identity. Because there is no ability to establish the
identity of code from a SharePoint solution, there is no way to configure permissions for it.

The last important pain point of SharePoint solution development centers around installation and
upgrade. The installation of farm solutions is problematic because it requires a farm administrator,
and it often requires restarting Internet Information Services (IIS) on all the front-end web servers,
causing an interruption in service. Although the deployment of a SharePoint solution doesn’t involve
these problems, it raises other concerns. Business users often have trouble with the process of finding
and uploading sandboxed solutions in order to activate them. Furthermore, a business user has very
little to indicate whether or not to trust a sandboxed solution before activating it and giving its code
access to all the content within the current site collection.

Of all the issues surrounding SharePoint solution development, nothing is more prone to error and
less understood than the support for upgrading code from one version of a SharePoint solution to
another. Even though Microsoft added support for feature upgrade and assembly version redirection
in SharePoint 2010, almost no one is using it. The required steps and the underlying semantics of the
feature upgrade process have proved to be too tricky for most developers to deal with. Furthermore,
the vast majority of professional SharePoint developers have made the decision never to change
the assembly version number of the assembly dynamic-link library (DLL) deployed with a SharePoint
solution. That’s because creating and managing the required assembly redirection entries across a
growing set of web.config files is just too painful and error prone.

4 Microsoft SharePoint 2013 App Development

You have just read about the most significant pain points with respect to SharePoint solution
development. Here is a summary of these points.

■■ Custom code running inside the SharePoint host environment poses risks and compromises
scalability.

■■ Custom code with dependencies on in-process DLLs causes problems when migrating from
one version of SharePoint to the next.

■■ A permissions model for custom code based entirely on the identity of the current user is
inflexible.

■■ User impersonation solves the too-little-permissions problem but replaces it with the
too-many-permissions problem, which is even worse.

■■ SharePoint solutions lack effective support and easily understood semantics for distribution,
installation, and upgrade.

Understanding SharePoint app model design goals
The SharePoint app model was designed from the ground up to remedy the problems with Share-
Point solutions that were discussed in the previous section. This means that the architecture of the
SharePoint app model is very different from that of SharePoint solutions, which represent SharePoint’s
original development platform. This new architecture was built based on the following design goals.

■■ Apps must be supported in Office 365 and in on-premises farms.

■■ App code never runs within the SharePoint host environment.

■■ App code programs against SharePoint sites by using web service entry points to minimize
version-specific dependencies.

■■ App code is authenticated and runs under a distinct identity.

■■ App permissions can be configured independently of user permissions.

■■ Apps are deployed by using a publishing scheme based on app catalogs.

■■ Apps that are published in a catalog are easier to discover, install, and upgrade.

You have now seen the design goals for the new SharePoint app model, and you understand the
motivating factors behind them. This should provide you with greater insight and a better apprecia-
tion as to why Microsoft designed the SharePoint app model the way it did. Now, it’s time to dive into
the details of the SharePoint app model and its underlying architecture.

 CHAPTER 1 Introducing SharePoint apps 5

Understanding SharePoint app model architecture

Microsoft designed the SharePoint app model to work in the Office 365 environment as well as within
on-premises farms. However, developing for Office 365 introduces a few important new concepts
that will be unfamiliar to many experienced SharePoint developers. One of the new concepts that is
essential to the development of SharePoint apps is a SharePoint tenancy.

A SharePoint tenancy is a set of site collections that are configured and administrated as a unit.
When a new customer establishes an Office 365 account to host its SharePoint sites, the Office 365
environment creates a new tenancy. The customer’s business users that access the tenancy are known
(not surprisingly) as tenants.

When the Office 365 environment creates a new tenancy for a customer, it creates an administra-
tive site collection which is accessible to users who have been configured to play the role of a tenant
administrator. A tenant administrator can create additional site collections and configure the set of
services that are available to all the sites running within the tenancy.

The concept of tenancies was first introduced in SharePoint 2010 to support hosting environments
such as Office 365. Although the creation and use of tenancies is essential to the Office 365 environ-
ment, their use has not been widely adopted in on-premises farms. This is primarily due to the fact
that SharePoint farm administrators can create site collections and configure the services available to
users within the scope of a web application.

The architecture of the SharePoint app model requires that apps are always installed and run
within the context of a specific tenancy. This can be a bit confusing for scenarios in which you want to
install SharePoint apps in an on-premises farm that doesn’t involve the explicit creation of tenancies.
However, SharePoint 2013 is able to support installing and running SharePoint apps in on-premises
farms by transparently creating a farm-wide tenancy behind the scenes that is known as the default
tenancy.

Working with app service applications
SharePoint 2013 relies on two service applications to manage the environment that supports Share-
Point apps. The first service application is the App Management Service, which is new to SharePoint
2013. The second service application is the Site Subscriptions Settings Service, which was introduced
in SharePoint 2010. A high-level view of a SharePoint 2013 farm running these two service applica-
tions is shown in Figure 1-1.

6 Microsoft SharePoint 2013 App Development

FIGURE 1-1 A SharePoint Farm that supports apps requires an instance of the App Management Service and the
Site Subscription service to be running.

The App Management Service has its own database that is used to store the configuration details
for apps as they are installed and configured. The App Management Service is also responsible for
tracking other types of app-specific configuration data that deals with app security principals, app
permissions, and app licensing.

The Site Subscription Settings Service takes on the responsibility of managing tenancies. Each time
a new tenancy is created, this service adds configuration data for it in its own database. The Site Sub-
scription Settings Service is particularly important to the SharePoint app model due to the require-
ment that SharePoint apps must always be installed and run within the context of a specific tenancy.

When you are working within the Office 365 environment, you never have to worry about creat-
ing or configuring these two service applications, because they are entirely managed behind the
scenes. However, things are different when you want to configure support for SharePoint apps in an
on-premises farm. In particular, you must explicitly create an instance of both the App Management
Service and the Site Subscription Settings Service.

Creating an instance of App Management Service is easier because it can be done by hand via the
Central Administration or by using the Farm Creation Wizard. Creating an instance of Site Subscrip-
tion Settings Service is a bit trickier because it must be done by using Windows PowerShell. However,
when you create an instance of the Site Subscription Settings Service by using Windows PowerShell,
it automatically creates the default tenancy which then makes it possible to install SharePoint apps in
sites throughout the farm.

 CHAPTER 1 Introducing SharePoint apps 7

Building an environment for SharePoint app development
If you plan on developing SharePoint apps that will be used within private networks such as a
corporate LAN, it makes sense to build out a development environment with a local SharePoint
2013 farm. Critical Path Training provides a free download in PDF format called the SharePoint
Server 2013 Virtual Machine Setup Guide, which provides you with step-by-step instructions to
install all the software you need to create a development environment with a local SharePoint
2013 farm. You can download the guide from http://criticalpathtraining.com/Members.

Understanding app installation scopes
A SharePoint app must be installed before it can be made available to users. When you install
a SharePoint app, you must install it within the context of a target web. Once the app has been
installed, users can then launch the app and begin to use it. The site from which an app has been
launched is known as the host web.

There are two different scopes in which you can install and configure a SharePoint app. The sce-
nario that is easier to understand is when an app is installed at site scope. In this scenario, the app is
installed and launched within the scope of the same SharePoint site. In this scenario, the host web will
always be the same site where the app has been installed.

SharePoint apps can also be installed and configured at tenancy scope. In this scenario, an app
is installed in a special type of SharePoint site known as an app catalog site. Once the app has been
installed in an app catalog site, the app can then be configured so that users can launch it from other
sites. In this scenario, the host web will not be the same site where the app has been installed.

The ability to install and configure apps at tenancy scope is especially valuable for scenarios in
which a single app is going to be used by many different users across multiple sites within an Office
365 tenancy or an on-premises farm. A single administrative user can configure app permissions and
manage licensing in one place, which prevents the need to install and configure the app on a site-by-
site basis. The topic of installing apps will be revisited in greater detail at the end of this chapter.

This book discusses many different scenarios in which SharePoint apps behave the same way,
regardless of whether they have been installed in an Office 365 tenancy or in an on-premises farm.
Therefore, the book frequently uses the generic term SharePoint host environment when talking
about scenarios that work the same across either environment.

8 Microsoft SharePoint 2013 App Development

Understanding app code isolation
When you develop a SharePoint app, you obviously need to write custom code to implement your
business logic, and that code must run some place other than on the web servers in the hosting
SharePoint farm. The SharePoint app model provides you with two places to run your custom code.
First, a SharePoint app can contain client-side code that runs inside the browser on the user’s com-
puter. Second, a SharePoint app can contain server-side code that runs in an external website that is
implemented and deployed as part of the app itself.

There are many different ways in which you can design and implement a SharePoint app. For
example, you could create a SharePoint app that contains only client-side resources such as web
pages and client-side JavaScript code that are served up by the SharePoint host environment. This
type of app is known as a SharePoint-hosted app because it is contained entirely within the app web.
You could write a SharePoint-hosted app that uses Microsoft Silverlight, Microsoft VBScript, Flash, or
whatever client-side technology you prefer.

Now, imagine that you want to create a second SharePoint app in which you want to write server-
side code in a language such as C#. This type of SharePoint app will require its own external website
so that your server-side code has a place to execute outside of the SharePoint host environment. In
SharePoint 2013 terminology, a SharePoint app with its own external website is known as a cloud-
hosted app, and the external website is known as the remote web. The diagram in Figure 1-2 shows
the key architectural difference between a SharePoint-hosted app and a cloud-hosted app.

From the diagram in Figure 1-2, you can see that both SharePoint-hosted apps and cloud-hosted
apps have a start page that represents the app’s primary entry point. With a SharePoint-hosted app,
the app’s start page is served up by the SharePoint host; however, with a cloud-hosted app, the start
page is served up from the remote web. Therefore, the SharePoint host environment must track the
remote web URL for each cloud-hosted app that has been installed so that it can redirect users to the
app’s start page.

There is infrastructure in the SharePoint host environment that creates a client-side JavaScript
component known as an app launcher that is used to redirect the user from a page served up by the
SharePoint host environment over to the remote web.

When you decide to develop a cloud-hosted SharePoint app, you must often take on the respon-
sibility of hosting the app’s remote web. However, this responsibility of creating and deploying a
remote web along with a SharePoint app also comes with a degree of flexibility. You can implement
the remote web associated with a SharePoint app by using any existing web-based development
platform.

For example, the remote web for a cloud-hosted SharePoint app could be implemented by using
a non-Microsoft platform such as Java, LAMP, or PHP. However, the easiest and the most common
approach for SharePoint developers is to design and implement the remote web for cloud-hosted
apps by using ASP.NET web forms or MVC4. Chapter 4, “Developing SharePoint Apps,” discusses sev-
eral patterns that use these technologies.

 CHAPTER 1 Introducing SharePoint apps 9

FIGURE 1-2 A cloud-hosted app differs from a SharePoint-hosted app in that it has an associated remote web,
which must be deployed on a separate infrastructure from the SharePoint farm.

10 Microsoft SharePoint 2013 App Development

Understanding app hosting models
Thus far, this chapter has discussed how a SharePoint app can be categorized as either a SharePoint-
hosted app or a cloud-hosted app. However, the SharePoint app model actually defines three app
hosting models, not just two. Any time you create a new SharePoint app project in Microsoft Visual
Studio 2012 you must pick from one of the following three app hosting models.

■■ SharePoint-hosted

■■ Provider-hosted

■■ Autohosted

This chapter has already explained SharePoint-hosted apps. As you recall, a SharePoint-hosted app
is simply an app that adds its start page and all its other resources into the SharePoint host environ-
ment during installation. Now, it’s time to explain the differences between the other two app hosting
models.

A provider-hosted app and an autohosted app are just two variations of the hosting model for a
cloud-hosted app. Both types of apps have an associated remote web that is capable of hosting the
app’s start page and any other resources the app requires. Furthermore, both provider-hosted apps
and autohosted apps can and often will host their own custom databases to store app-specific data.
The difference between these two different app hosting models involves how the remote web and its
associated database are created when an app is deployed and installed.

It makes sense to begin by first examining the hosting model for a provider-hosted app. Imagine
a scenario in which a developer has just finished testing and debugging a provider-hosted app that
has a remote web with its own custom database. Before the app can be installed in a SharePoint host
environment, the developer or some other party must first deploy the website for the remote web to
make it accessible across the Internet or on a private network.

The custom database used by the remote web must also be created on a database server and
made accessible to the remote web as part of the deployment process. Once the remote web and its
custom database are up and running, the provider-hosted app can then be installed in a SharePoint
tenancy and made available to the customer’s users, as demonstrated in Figure 1-3.

 CHAPTER 1 Introducing SharePoint apps 11

FIGURE 1-3 Provider-hosted apps are deployed in their own infrastructure including any required databases.

Once a provider-hosted app has been deployed, the company that developed the app usually
assumes the responsibility for its ongoing maintenance. For example, if a company develops a pro-
vider-hosted app and deploys its remote web on one or more of its local web servers, it must ensure
that those web servers remain healthy and accessible. If it deploys the remote app for its provider-
hosted in a hosting environment such as Windows Azure, it must pay a monthly fee for the hosting
services. Furthermore, it will be responsible for backing up the app’s database and then restoring it if
data becomes lost or corrupt.

Keep in mind that a provider-hosted app can be installed in more than one SharePoint site. Fur-
thermore, a provider-hosted app can be installed in many different SharePoint sites that span across
multiple customers and multiple SharePoint host environments. This is a common scenario which is
known as multi-tenancy. What is critical to acknowledge is that multi-tenancy introduces several note-
worthy design issues and deployment concerns. Let’s look at an example.

Think about a scenario involving multi-tenancy in which a provider-hosted app has been installed
by many different customers and the number of users is continually growing larger. All these users
will be accessing the same remote web through a single entry point, which is the app’s start page, as
shown in Figure 1-4.

12 Microsoft SharePoint 2013 App Development

FIGURE 1-4 A provider-hosted app in a multi-tenant environment must be designed to scale and to isolate data
on a customer-by-customer basis.

As you can imagine, a provider-hosted app in this type of multitenant scenario must have a way to
scale up as the number of users increases. Furthermore, this type of app should generally be designed
to isolate the data for each customer to keep it separate from the data belonging to other custom-
ers—you would never want one customer accessing another customer’s data. Depending on the
customers’ industry, there could even be government regulations or privacy concerns that prevent the
app from storing data for different customers within the same set of tables or even within the same
database.

 CHAPTER 1 Introducing SharePoint apps 13

The important takeaway is that multi-tenancy introduces complexity. The development of a
provider-hosted app that will be used in a multi-tenant scenario typically requires a design that iso-
lates data on a customer-by-customer basis. As you can imagine, this increases both the time and the
cost associated with developing a provider-hosted app.

Now that you have seen some of the inherit design issues that arise due to multi-tenancy, you will
be able to more fully appreciate the benefits of the hosting model for autohosted apps. Autohosted
apps offer value because they prevent the developer from having to worry about many of the issues
involved with app deployment, scalability, and data isolation.

The first thing to understand about autohosted apps is that they are only supported in the Office
365 environment. Although this constraint might change in future releases, with SharePoint 2013
you cannot install an autohosted app in an on-premises farm. The reason for this is that the hosting
model for autohosted apps is based on a private infrastructure that integrates the Office 365 environ-
ment with Windows Azure and its ability to provision websites and databases on demand.

The central idea behind the hosting model for autohosted apps is that the Office 365 environment
can deploy the remote web on demand when an app is installed. You can also configure an auto-
hosted app so that it creates its own private database during app installation. Once again, the Office
365 environment and its integration with Windows Azure is able to create a SQL Azure database on
demand and then make it accessible to the remote web.

Autohosted apps offer value over provider-hosted apps because the Office 365 environment trans-
parently handles the deployment of the remote web and potentially the creation of a custom data-
base, as well. Autohosted apps also transfer the ongoing cost of ownership of the remote web and its
database from the developer over to the customer who owns the Office 365 tenancy where the app
has been installed. Therefore, the app developer doesn’t have to worry about babysitting web serv-
ers, backing up databases, or coming up with a strategy scaling up the remote web as the number of
users increases.

The benefits of an autohosted app over a provider-hosted app also extend into app design, which
can serve to lower development costs. That’s because each customer receives its own private data-
base whenever installing an autohosted app, as illustrated in Figure 1-5. The benefit is that the devel-
oper isn’t required to add complexity to the app’s design and implementation to provide isolation
because each customer’s data is isolated automatically.

14 Microsoft SharePoint 2013 App Development

FIGURE 1-5 An autohosted app creates the required remote web and any databases automatically during
deployment.

reviewing the app manifest
Every SharePoint app requires an XML file called AppManifest.xml, which is known as the app
manifest. The app manifest contains essential metadata for the app that is read and tracked by the
SharePoint host environment when an app is installed. Listing 1-1 presents a simple example of what
the app manifest looks like for a SharePoint-hosted app.

LISTING 1-1 An app manifest

<App xmlns=http://schemas.microsoft.com/sharepoint/2012/app/manifest
 Name=”MySharePointApp”
 ProductID=”{b93e8f64-4d14-4c72-be47-3b89f7f5fdf6}”
 Version=”1.0.0.0”
 SharePointMinVersion=”15.0.0.0” >

 <Properties>
 <Title>My SharePoint App</Title>
 <StartPage>~appWebUrl/Pages/Default.aspx?{StandardTokens}</StartPage>
 </Properties>

 CHAPTER 1 Introducing SharePoint apps 15

 <AppPrincipal>
 <Internal />
 </AppPrincipal>

</App>

The app manifest contains a top-level <App> element which requires a set of attributes such as
Name, ProductID, and Version. Within the <App> element there is an inner <Properties> element
that contains important child elements such as <Title> and <StartPage>. The <Title> element con-
tains human-readable text that is displayed to the user in the app launcher. The <StartPage> element
contains the URL that the SharePoint host environment uses in the app launcher to redirect the user
to the app’s start page.

Listing 1-1 shows the minimal amount of metadata required in an app manifest; however, the app
manifest for most real-world apps will contain a good deal more. The app manifest often contains
addition metadata to configure other essential aspects of an app, such as app-level events, authen-
tication, permissions, and the SharePoint services that an app requires from the SharePoint host
environment. Table 1-1 lists the most common elements you might be required to add to an app
manifest.

TABLE 1-1 The elements used in the App Manifest file

Element Purpose

Name Creates the URL to the app web.

ProductID Identifies the app.

Version Indicates the specific version of the app.

SharePointMinVersion Indicates the version of SharePoint.

Properties\Title Provides text for the app launcher.

Properties\StartPage Redirects the user to the app’s start page.

Properties\SupportedLanguages Indicates which languages are supported.

Properties\WebTemplate Supplies a custom site template for the app web.

Properties\InstalledEventEndpoint Executes custom code during installation.

Properties\UpgradedEventEndpoint Executes custom code during upgrade.

Properties\UninstallingEventEndpoint Executes custom code during uninstallation.

AppPrincipal\Internal Indicates there is no need for external authentication. This is what
is always used for SharePoint-hosted apps.

AppPrincipal\RemoteWebApplication Indicates that the app is provider-hosted and requires external
authentication.

16 Microsoft SharePoint 2013 App Development

Element Purpose

AppPrincipal\AutoDeployedWebApplication Indicates that the app is autohosted and requires external
authentication.

AppPermissionRequests\AppPermissionRequest Add permission requests that must be granted during app
installation

AppPrerequisites\AppPrerequisite Indicates what SharePoint services must be enabled in the
SharePoint host environment for the app to work properly.

RemoteEndpoints\RemoteEndpoint Configures allowable domains for cross-domain calls using the
web proxy.

Using the app manifest designer in Visual Studio 2012
When you are working with the app manifest in a SharePoint app project, Visual Studio 2012 provides
the visual designer shown in Figure 1-6. This visual designer eliminates the need to edit the XML in
the AppManifest.xml file by hand. The designer provides drop-down lists that makes editing more
convenient and adds a valuable degree of validation as you are selecting the app start page or con-
figuring permission requests, feature prerequisites, and capability perquisites.

Although you should take advantage of the visual designer whenever you can to edit the app
manifest, it is important to understand that it cannot make certain types of modifications that you
might require. Therefore, you should also become accustomed to opening the AppManifest.xml file
in code view and making changes to the XML within by hand. Fortunately, in times when you need to
manually edit the AppManifest.xml file, Visual Studio 2012 is able to provide IntelliSense, based on the
XML schema behind the app manifest.

FIGURE 1-6 Visual Studio 2012 provides a visual editor to edit the app manifest.

 CHAPTER 1 Introducing SharePoint apps 17

Setting the start page UrL
Every app has a start page whose URL must be configured by using the <StartPage> element within
the app manifest. The SharePoint host environment uses this URL when creating app launchers that
redirect the user to the app’s start page. For a SharePoint-hosted app, the start page must be located
in a child site known as the app web that will be discussed in more detail later in this chapter. For a
cloud-hosted app, the start page will usually be located in the remote web.

When you are configuring the URL within the <StartPage> element for a SharePoint-hosted app
you must use a dynamic token named ~appWebUrl, as demonstrated in the following:

~appWebUrl/Pages/Default.aspx

This use of the ~appWebUrl token is required because the actual URL to the app’s start page will
not be known until the app has been installed. The SharePoint host environment is able to recognize
the ~appWebUrl token during app installation and it replaces it with the absolute URL to the app web.

In the case of a provider-hosted app whose start page exists within the remote web, the
<StartPage> element can be configured with the actual URL that is used to access the start page
where the remote web has been deployed, such as in the following:

https://RemoteWebServer.wingtip.com/MyAppsRemoteWeb/Pages/Default.aspx

When you are debugging provider-hosted apps and autohosted apps, you can use a convenient
dynamic token named ~remoteAppUrl that eliminates the need to hardcode the path to the remote
web during the development phase. For example, you can configure the <StartPage> element with
the following value:

~remoteAppUrl/Pages/Default.aspx

The reason this works during debugging is due to some extra support in Visual Studio 2012.
When you create a new SharePoint app project and select the option for a provider-hosted app or an
autohosted app, Visual Studio 2012 automatically creates a second project for the remote web that is
configured as the Web Project. Whenever you debug the Visual Studio solution containing these two
projects, Visual Studio 2012 performs a substitution to replace ~remoteAppUrl with the current URL of
the Web Project. After the substitution, the app manifest contains a start page URL that looks like this:

https://localhost:44300/Pages/Default.aspx

The key point is that Visual Studio 2012 replaces the ~remoteAppUrl token during a debugging
session before the app manifest is installed into the SharePoint host environment. This provides you
with a convenience in the debugging phase of a SharePoint app project.

Now, think about what happens after you have finished testing and debugging an app and its
remote web. Visual Studio 2012 provides a Publish command with which you can build a final version
of the AppManifest.xml file that will be distributed along with your app. In this case, what will Visual
Studio 2012 do with the ~remoteAppUrl token? The answer is different depending on whether the
app is an autohosted app or a provider-hosted app.

18 Microsoft SharePoint 2013 App Development

When you use the Publish command with an autohosted app, Visual Studio 2012 builds a final ver-
sion of the AppManifest.xml in which the ~remoteAppUrl token remains within the <StartPage> ele-
ment. This is done because the actual URL to the remote web of an autohosted app will not be known
until the app installation process has started and the Office 365 environment has created the remote
web. You can see that the ~remoteAppUrl token is replaced by Visual Studio 2012 in some scenarios
and by the Office 365 environment in other scenarios.

When you use the Publish command with a provider-hosted app, the final version of the
AppManifest.xml cannot contain the ~remoteAppUrl token. You must know the URL to the remote web
ahead of time. Therefore, when it is used with a provider-hosted app, the Publish command prompts
you for several pieces of information including the actual URL where the remote web will be deployed.

When creating the URL for the <StartPage> element, it is a standard practice to include a query
string that contains another dynamic token named {StandardTokens}, as demonstrated in the follow-
ing example:

~remoteAppUrl/Pages/Default.aspx?{StandardTokens}

The {StandardTokens} token is never replaced by Visual Studio 2012. Instead, this dynamic token
remains inside the final version of the app manifest that is installed in the SharePoint host environ-
ment. The SharePoint host environment performs a substitution on {StandardTokens} token whenever
it creates the URL for an app launcher. This substitution involves replacing the {StandardTokens} token
with a standard set of query string parameters that are frequently used in SharePoint app develop-
ment such as the SPHostUrl parameter and the SPLangauge parameter, as shown in the following:

default.aspx?SPHostUrl=http%3A%2F%2Fwingtipserver&SPLanguage=en%2DUS

When you implement the code behind the start page of a SharePoint app, you can generally expect
that the page will be passed the two query string parameters named SPLanguage and SPHostUrl, which
are used to determine the language in use and the URL that points back to the host web. In some sce-
narios, the SharePoint host environment will add additional query string parameters.

Understanding the app web
Each time you install a SharePoint app, you must install it on a specific target site. A SharePoint app
has the ability to add its own files to the SharePoint host environment during installation. For exam-
ple, a SharePoint-hosted app must add a start page and will typically add other resources, as well,
such as a CSS file and a JavaScript file to implement the app’s user experience. The SharePoint host
environment stores these files in the standard fashion by adding them to the content database associ-
ated with the site in which the app is being installed.

Beyond adding basic files such as a start page and a JavaScript file, a SharePoint app also has the
ability to create other SharePoint-specific site elements in the SharePoint host during installation such
as lists and document libraries. Let’s look at an example.

 CHAPTER 1 Introducing SharePoint apps 19

Imagine that you want to create a simple SharePoint app to manage customers. During installa-
tion, the app can be designed to create a customer list using the standard Contacts list type along
with a set of pages designed to provide a snazzy user experience for adding and finding customers.
Your app could additionally be designed to create a document library upon installation so that the
app can store customer contracts as Microsoft Word documents, whereby each Word document
would reference a specific customer item in the customers list.

So, where does the SharePoint host environment store the content added by an app during instal-
lation? The answer is inside a special child site that the SharePoint host environment creates under the
site where the app has been installed. This child site is known as the app web.

The app web is an essential part of the SharePoint app model because it represents the isolated
storage that is owned by an installed instance of a SharePoint app. The app web provides a scope for
the app’s private implementation details. Note that an app by default has full permissions to read and
write content within its own app web. However, SharePoint app has no other default permissions to
access content from any other location in the SharePoint host environment. The app web is the only
place where an app can access content without requesting permissions that then must be granted by
a user.

There is a valuable aspect of the SharePoint app model that deals with uninstalling an app and
ensuring that all the app-specific storage is deleted automatically. In particular, the SharePoint host
environment will automatically delete the app web for an app whenever the app is uninstalled. This
provides a set of cleanup semantics for SharePoint apps that is entirely missing from the development
model for SharePoint solutions; when an app is uninstalled, it doesn’t leave a bunch of junk behind.

Understanding the app web-hosting domain
Now, it’s time to focus on the start page for a SharePoint-hosted app. As you have seen, the start
page for a SharePoint-hosted app is added to the app web during installation. Consider a scenario
in which you have installed a SharePoint app with the name of MyFirstApp in a SharePoint team site,
which is accessible through the following URL:

https://intranet.wingtip.com.

During app installation, the SharePoint host environment creates the app web as a child site under
the site where the app is being installed. The SharePoint host environment creates a relative URL for
the app web based on the app’s Name property. Therefore, in this example, the app web is created
with a relative path of MyFirstApp. If the app’s start page named default.aspx is located in the app
web within the Pages folder, the relative path to the start page is MyFirstApp/Pages/default.aspx.
Your intuition might tell you that the app’s start page will be accessible through a URL that combines
the URL of the host web together with the relative path to the app’s start page, as in the following:

https://intranet.wingtip.com/MyFirstApp/Pages/default.aspx

20 Microsoft SharePoint 2013 App Development

However, this is not the case. The SharePoint host environment does not make the app web or
any of its pages accessible through the same domain as the host web that is used to launch the app.
Instead, the SharePoint host environment creates a new unique domain on the fly each time it creates
a new app web as part of the app installation process. By doing so, the SharePoint host environment
can isolate all the pages from an app web in its own private domain. The start page for a SharePoint-
hosted app is made accessible through a URL that looks like this:

https://wingtiptenant-ee060af276f95a.apps.wingtip.com/MyFirstApp/Pages/Default.aspx

At this point, it should be clear why you are required to configure the <StartPage> element for a
SharePoint-hosted app by using the ~appWebUrl token. The URL to the app web is not known until
the SharePoint host environment creates the new domain for the app web during installation. After
creating the domain for an app web, the SharePoint host environment can replace the ~appWebUrl
token with an actual URL.

Let’s examine the URL that is used to access the app web in greater detail. Consider the following
URL, which is used to access an app web in an on-premises farm:

wingtiptenant-ee060af276f95a.apps.wingtip.com/MyFirstApp

The first part of the app web URL (wingtiptenant) is based on the name of the tenancy where the
app has been installed. This value is configurable in an on-premises farm. In the Office 365 environ-
ment, the tenancy name is established when the customer creates a new account, and it cannot be
changed afterward.

The second part of the app web URL (ee060af276f95a) is known as an APPUID. This is a unique
14-character identifier created by the SharePoint host environment when the app is installed.
Remember that the APPUID is really an identifier for an installed instance of an app, as opposed to
an identifier for the app itself.

The third part of the app web URL (apps.wingtip.com) is the app web hosting domain. You have the
ability to configure this in an on-premises farm to whatever value you would like. Just ensure that
you have also configured the proper DNS setting for this domain so that it resolves to an IP address
pointing to the web server(s) of your on-premises farms. In Office 365 the app web-hosting domain is
always sharepoint.com.

Now, ask yourself this fundamental question: why doesn’t the SharePoint host environment serve
up pages from the app web by using the same domain as the host web from which the app has been
launched? The reasons why the SharePoint host environment serves up pages from the app web in
their own isolated domain might not be obvious. There are two primary reasons why the SharePoint
app model does this. Both of these reasons are related to security and the enforcement of permis-
sions granted to an app.

The first reason for isolating an app web in its own private domain has to do with preventing direct
JavaScript calls from pages in the app web back to the host web. This security protection of the Share-
Point app model builds on the browser’s built-in support for prohibiting cross-site scripting (XSS).
Because JavaScript code running on pages from an app web originates from a different domain, this

 CHAPTER 1 Introducing SharePoint apps 21

code cannot directly call back to the host web. More specifically, calls from JavaScript running on app
web pages do not run with the same established user identity as JavaScript code-behind pages in the
host web. Therefore, the JavaScript code running on app web pages doesn’t automatically receive the
same set of permissions as JavaScript code running on pages from the host web.

The second reason for creating an isolated domain for each app web has to do with processing
of JavaScript callbacks that occur on the web server of the SharePoint host environment. Because
the SharePoint host environment creates a new unique domain for each app web, it can determine
exactly which app is calling when it sees a JavaScript callback originating from a page in an app web.

The key point is that the SharePoint host environment is able to use an internal mechanism to
authenticate an app that uses JavaScript callbacks originating from its app web. As a result, the
SharePoint host environment can enforce a security policy based on the permissions that have been
granted to the app.

Remember that a SharePoint app has a default set of permissions by which it can access its app
web but has no other permissions by default to access any other site. The ability of the SharePoint
host environment to authenticate an app by inspecting the URL of incoming calls originating from
the app web hosting domain is essential to enforcing this default permissions scheme.

Working with app user-interface entry points
Every SharePoint app requires a start page. As you know, the URL to the start pages is used within
an app launcher to redirect the user from the host web to the start page. This type of entry into the
user interface of the app is known as a full immersion experience because the app takes over the user
interface of the browser with a full-page view.

The user interface guidelines of SharePoint app development require the app start page to provide
a link back to the host web. This requirement exists so that a user can always return to the host web
from which the app has been launched. When you are developing a SharePoint-hosted app, there is a
standard master page used in app webs named app.master that automatically adds the required link
back to the host web for you.

When developing a cloud-based app with the start page in the remote web, you cannot rely on a
SharePoint master page to automatically provide the link on the start page which redirects the user
back to the host web. Instead, you must use a technique that involves reading the SPHostUrl parame-
ter which is passed to the start page in the query string. This is one of the key reasons why you always
want to follow the practice of adding the {StandardTokens} token to the start page URL of a cloud-
hosted app.

There are several different techniques that you can use in the code behind a start page in the
remote web to read the SPHostUrl parameter value from the query string and use it to configure
the required link back to the host web. For example, you can accomplish this task with server-side
C# code or with client-side JavaScript code. In Chapter 4, you can see how to accomplish this task by
using a client-side JavaScript component known as the chrome control.

22 Microsoft SharePoint 2013 App Development

In addition to the required start page, a SharePoint app can optionally provide two other types of
entry points known as app parts and UI custom actions. Unlike the start page, you use app parts and
UI custom actions to extend the user interface of the host web.

Building app parts
An app part is a user interface element that is surfaced on pages in the host web by using an IFrame.
Once an app with an app part has been installed, a user can then add an app part to pages in the
host web by using the same user interface experience that is used to add standard web parts.

You implement an app part in Visual Studio 2012 by using a client web part. This makes most
developers ask, “What’s the different between an app part and a client web part?” The best way to
think about this is that the term “app part” is meant for SharePoint users, whereas the term “client
web part” is used by developers to describe the implementation of an app part.

Despite having similar names, client web parts are very different from the standard web parts that
are familiar to most SharePoint developers. In particular, a client web part cannot have any server-side
code that runs within the SharePoint host environment. The implementation of a client web part must
follow the rules of SharePoint app development.

Client web parts are supported under each of the three app hosting models. You implement a
client web part in a SharePoint-hosted app by using HTML, CSS, and JavaScript. In a cloud-hosted
app, you also have the option of implementing the behavior for a client web part by using server-side
code in the remote web.

At first, many developers assume that a client web part is nothing more than an IFrame wrapper
around an external web page. However, the client web part provides significant value beyond that.
When you configure the URL within a client web part, you can use the same tokens as with the start
page, such as ~appWebUrl, ~remoteAppUrl, and {StandardTokens}. Client web parts also support
adding custom properties, as well. Furthermore, the page behind a client web part is often passed
contextual security information that allows it to call back into the SharePoint host environment with
an established app identity. You can think of the client web part as an IFrame on steroids.

When you want to add a new client web part to a SharePoint app project, you use the Add New
Item command. The Add New Item dialog box in Visual Studio 2012 provides a Client Web Part item
template, as shown in Figure 1-7.

When you add a new project item for a client web part, Visual Studio 2012 adds an elements.
xml file to the SharePoint app project that contains a ClientWebPart element. The following code is a
simple example of the XML definition for a client web part in a SharePoint-hosted app project that is
implemented by using a page inside the app web:

 CHAPTER 1 Introducing SharePoint apps 23

FIGURE 1-7 The Add New Item dialog provides templates for adding client web parts and UI custom actions to
app projects.

<ClientWebPart Name=”MyAppPart” Title=”My App Part” Description=”My description”
 DefaultWidth=”300” DefaultHeight=”200” >

 <Content Type=”html” Src=”~appWebUrl/Pages/AppPart1.aspx” />

</ClientWebPart>

As you can see from this example, the content displayed in a client web part is configured by
assigning a URL to the Src attribute of the <Content> element. The web page that is referenced by
this URL is usually added to either the app web or to the remote web. However, you can even refer-
ence a web page on the Internet that is neither in an app web nor in a remote web. The only impor-
tant restriction is that the web page cannot be returned with the X-Frame-Options header in the
HTTP response. This is a header used by some websites to prevent its pages from being used inside an
IFrame with a type of attack known as clickjacking.

Here is something that can catch you off guard when creating a client web part in a SharePoint-
hosted app: the default behavior of SharePoint 2013 is to add the X-Frame-Options header with a
value of SAMEORIGIN in the HTTP response when it serves up pages from a SharePoint site. The result
of this is that a page served up from the app web will not work when you attempt to use it as the
page behind a client web part. The way to deal with this problem is to add the following directive to

24 Microsoft SharePoint 2013 App Development

the top of any page in the app web referenced by a client web part to suppress the default behavior
of adding the X-Frame-Options header:

<WebPartPages:AllowFraming ID=”AllowFraming” runat=”server” />

When you develop client web parts, you can add custom properties. The real value of cus-
tom properties is that they can be tailored by the user in the browser in the same fashion as a
user customizes the properties of standard web parts. You define a custom property by adding a
<Properties> element into the <ClientWebPart> element and then adding a <Property> element
within that, as illustrated in Listing 1-2.

LISTING 1-2 Client Web Part properties

<Properties>
 <Property
 Name=”MyProperty”
 Type=”string”
 WebBrowsable=”true”
 WebDisplayName=”My Custom Property”
 WebDescription=”Insightful property description”
 WebCategory=”Custom Properties”
 DefaultValue=”Some default value”
 RequiresDesignerPermission=”true” />
</Properties>

Once you have added a custom property, you must then modify the query string at the end of
the URL that is assigned to the Src attribute in the <Content> element. You do this by adding a query
string parameter and assigning a value based on a pattern by which the property name is given an
underscore before it and after it. Thus, for a property named MyProperty, you should create a query
string parameter and assign it a value of _MyProperty_. This would result in XML within the <Content>
element that looks like the following:

<Content
 Type=”html”
 Src=”~appWebUrl/Pages/AppPart1.aspx?MyPropertyParameter=_MyProperty_”
/>

Note that you can use any name you want for the query string parameter itself. It’s when you
assign a value to the parameter that you have to use actual property name and follow the pattern of
adding the underscores both before and after.

Building UI custom actions
A UI custom action is a developer extension in the SharePoint app model with which you can add cus-
tom commands to the host site. The command for a UI custom action is surfaced in the user interface
of the host site by using either a button on the ribbon or a menu command in the menu associated

 CHAPTER 1 Introducing SharePoint apps 25

with items in a list or documents in a document library that is known as the Edit Control Block (ECB)
menu. It is the act of installing an app with UI custom actions that automatically extends the user
interface of the host site with ribbon buttons and ECB menu commands.

As in the case of the client web part, UI custom actions are supported in each of the three app
hosting models. However, a UI custom action is different than the client web part because its purpose
is not to display content in the host web. Instead, it provides an executable command for business
users with which they can display a page supplied by the app. The page that is referenced by a UI
custom action can be in either the app web or the remote web.

As a developer, you have control over what is passed in the query string for a UI custom action.
This makes it possible to pass contextual information about the item or the document on which the
command was executed. This in turn makes it possible for code inside the app to discover informa-
tion such as the URL that can be used to access the item or document by using either the Client-Side
Object Model (CSOM) or the new Representational State Transfer (REST) API, which is discussed in
Chapter 2, “Client-Side Programming.”

Keep in mind that an app will require additional permissions beyond the default permission set in
order to access content in the host web. This topic is discussed in Chapter 3, “SharePoint App Secu-
rity.” This current chapter will only discuss how to create a UI custom action that passes contextual
information to a page supplied by the app. Chapter 3 also covers what’s required to actually use this
information to call back into the SharePoint host environment.

In the dialog box shown earlier in Figure 1-6, you can see that Visual Studio 2012 provides a
project item template named UI Custom Action. When you use this item template to create a new UI
custom action, Visual Studio 2012 adds a new elements.xml file to your SharePoint app project. When
you look inside the elements.xml file you find a <CustomAction> element that you can modify to
define either an ECB menu item or a button on the ribbon.

Many SharePoint developers already have experience working with custom actions in SharePoint
2007 and SharePoint 2010. The good news is that the manner in which you edit the XML within the
<CustomAction> element for a SharePoint app project works the same way as it does for a SharePoint
solution project. The bad news is that many of the custom actions available when developing farm
solutions are not available when developing a SharePoint app.

In particular, a SharePoint app only allows for UI custom actions that create ECB menu commands
and ribbon buttons. The SharePoint app model imposes this restriction to provide a balance between
functionality and security concerns. Furthermore, you are prohibited from adding any custom Java-
Script code when you configure the URL for a UI custom action in a SharePoint app. If this restriction
were not enforced, JavaScript code from the app could call into the host site without being granted
the proper permissions.

Suppose that you want to create a UI custom action to add a custom ECB menu item to all the
items in every Contacts list within the host site. You can structure the <CustomAction> element to
look like that presented in Listing 1-3.

26 Microsoft SharePoint 2013 App Development

LISTING 1-3 A Custom Action definition

<CustomAction
 Id=”CustomAction1”
 RegistrationType=”List”
 RegistrationId=”105”
 Location=”EditControlBlock”
 Sequence=”100”
 Title=”Send Contact To App”>

 <UrlAction Url=”~appWebUrl/Pages/Action1.aspx” />

</CustomAction>

Once you install an app with this UI custom action, it registers an ECB menu command for every
item in lists that have a list type ID of 105. This is the ID for the Contacts list type. Once the app is
installed, the host web will provide a custom menu item on the ECB menu for each item in any Con-
tacts list. An example of what the ECM menu command looks like is shown in Figure 1-8.

FIGURE 1-8 A custom UI action is used to add an item to the edit-control block or ribbon.

The default action of a UI custom action is to redirect the user to the page referenced by the URL
configured within the <UrlAction> element. This makes sense for a scenario in which you want to
move the user from the host web into the full immersion experience of the app in order to do some
work. However, this default behavior will provide a distracting user interface experience for a scenario
in which a user wishes to return to the host web immediately after seeing the page displayed by the
app. For these scenarios, you can modify the UI custom action to display the page from the app as a
dialog box in the context of the host web. The user interface experience is much better because the
user can see a page from the app without ever leaving the host web.

 CHAPTER 1 Introducing SharePoint apps 27

Listing 1-4 demonstrates the technique to display the page referenced by a UI custom action as
a dialog box, which involves adding three attributes to the <CustomAction> element. First, you add
the HostWebDialog attribute and assign it a value of true. Next, you add the HostWebDialogWidth
attribute and the HostWebDialogHeight attribute and assign them values to set the width and height
of the dialog box.

LISTING 1-4 Displaying a referenced page

<CustomAction
 Id=”CustomAction1”
 RegistrationType=”List”
 RegistrationId=”105”
 Location=”EditControlBlock”
 Sequence=”100”
 Title=”Display more information about this contact”
 HostWebDialog=”TRUE”
 HostWebDialogWidth=”480”
 HostWebDialogHeight=”240” >

 <UrlAction Url=”~appWebUrl/Pages/Action1.aspx” />

 </CustomAction>
</Elements>

Now, let’s go into more detail about configuring the Url attribute of the <UrlAction> element.
When you configure the URL you can use the same familiar tokens that you use with the start page
and with client web parts such as ~appWebUrl, ~remoteAppUrl, and {StandardTokens}, as shown in the
following code:

<UrlAction Url=”~appWebUrl/Pages/Action1.aspx” />

However, UI custom actions support several additional tokens beyond what is available for start
pages and client web parts. These are the tokens that make it possible to pass contextual information
about the item or document on which the command was executed. For example, you can pass the
site-relative URL to the item or document by using the {ItemURL} token.

<UrlAction Url=”~appWebUrl/Pages/Action1.aspx?ItemUrl={ItemURL}” />

In most scenarios, you will also need the absolute URL to the root of the host web, which can be
passed by using the {HostUrl} token. Note that the Url is configured by using an XML attribute, so you
cannot use the “&” character when combining two or more parameters together. Instead, you must
use the XML encoded value, which is &, as shown in the following example:

28 Microsoft SharePoint 2013 App Development

<UrlAction Url=”~appWebUrl/Pages/Action1.aspx?HostUrl={HostUrl}&ItemURL={ItemUrl}” />

Note that the SharePoint host environment substitutes values into these tokens by using standard
URL encoding. This means that you must write code in the app to use a URL decoding technique
before you can use these values to construct a URL that can be used to access the item or document.

Table 1-2 lists the tokens that can be used in UI custom actions, beyond those that are also sup-
ported in start pages and client web parts. Note that some of the tokens work equally well regardless
of whether the UI custom action is used to create an ECB menu item or a button in the ribbon. How-
ever, the {ListID} token and the {ItemID} token work with ECB menu items but not with buttons on
the ribbon. Conversely, the {SelectedListId} token and the {SelectedItemId} token work with buttons
on the ribbon but not with ECB menu items.

TABLE 1-2 The extra tokens available when configuring the URL for a UI custom action

Token Purpose

{HostUrl} Provides an absolute URL to the root of the host site

{SiteUrl} Provides an absolute URL to the root of the current site collection

{Source} Provides a relative URL to the page that hosts the custom action

{ListURLDir} Provides a site-relative URL to the root folder of the current list

{ListID} Provides a GUID-based ID of the current list (ECB only)

{ItemURL} Provides a site-relative URL to the item or document

{ItemID} Provides an integer-based ID of the item or document (ECB only)

{SelectedListId} Provides a GUID-based ID of the selected list (ribbon only)

{SelectedItemId} Provides an integer-based ID of the selected item or document (ribbon only)

Packaging and distributing apps

The final section of this chapter examines how SharePoint apps are distributed and deployed into
production as well as how apps are managed over time. First, you will learn about the details of how
apps are packaged into redistributable files. After that, you will see how these files are published
and installed to make SharePoint apps available to users. As you will see, the SharePoint app model
provides valuable support for managing apps in a production environment and upgrading to newer
versions.

 CHAPTER 1 Introducing SharePoint apps 29

Packaging apps
A SharePoint app is packaged up for deployment by using a distributable file known as an app
package. An app package is a file built by using the zip archive file format and it requires an extension
of .app. For example, if you create a new SharePoint-hosted app project named MySharePointApp,
the project will generate an app package named MySharePointApp.app as its output.

Note that the zip file format for creating an app package is based on the Open Package Conven-
tion (OPC). This is the same file format that Microsoft Office began using with the release of Office
2007 for creating Word documents (.docx) and Microsoft Excel workbooks (.xslx).

The primary requirement for an app package is that it contains the app manifest as a top-level file
named AppManifest.xml. As discussed earlier in this chapter, the SharePoint host environment relies
on metadata contained in the app manifest so that it can properly configure an app during the instal-
lation process.

An app package will usually contain an app icon file named AppIcon.png. The AppIcon.png file, like
many of the other files in an app package, is paired with an XML file named AppIcon.png.config.xml.
The purpose of this XML file is to assign the AppIcon.png file an identifying GUID.

Understanding the app web solution package
In addition to the AppManifest.xml file, the app package often contains additional files that are used
as part of the app’s implementation. For example, the app package for a SharePoint-hosted app
contains a file for the app’s start page along with other resources used by the start page such as a
CSS file and a JavaScript file. These are examples of files that are added to the app web as part of the
app installation process.

The distribution mechanism used by a SharePoint app to add pages and lists to the app web dur-
ing installation is a standard solution package, which is a CAB file with a .wsp extension. If this sounds
familiar, that’s because the solution package file embedded within an app package has the exact
same file format as the solution package files that developers have been using to deploy SharePoint
solutions in SharePoint 2007 and SharePoint 2010. The one key difference is that the solution package
used by the SharePoint app model to add files to an app web is not a stand-alone file. Instead, it is
embedded as a .wsp file within the app package, as shown in Figure 1-9.

30 Microsoft SharePoint 2013 App Development

FIGURE 1-9 App packages that contain artifacts for deployment contain a separate solution package within the
app package.

When a user installs a SharePoint app, the SharePoint host environment examines the app package
to see if it contains an inner solution package. It is the presence of an inner solution package within
the app package file that specifies to the SharePoint host environment whether it needs to create
an app web during installation. If the app package does not contain an inner solution package, the
SharePoint host environment installs the app without creating an app web.

The app web solution package contains a single web-scoped feature. The SharePoint host environ-
ment activates this feature automatically on the app web immediately after the app web is created.
This feature is what makes it possible to add declarative elements such as pages and lists to the app
web as the app is installed.

An app web solution package cannot contain a .NET assembly DLL with server-side code. There-
fore, you can say that the app web solution package embedded inside an app package is constrained
because it must be a fully declarative solution package. This is different from the solution packages
for farm solutions and sandboxed solutions, which can contain assembly DLLs with custom .NET code
written in either C# or VB.NET.

 CHAPTER 1 Introducing SharePoint apps 31

Keep in mind that the installation of a SharePoint app doesn’t always result in the creation of an
app web. Some apps are designed to create an app web during installation and some are not. A
SharePoint-hosted app is the type of app that will always create an app web during installation. This is
a requirement because a SharePoint-hosted app requires a start page that must be added to the app
web.

However, things are different with a cloud-hosted app. Because a cloud-hosted app usually has a
start page that is served up from a remote web, it does not require the creation of an app web during
installation. Therefore, the use of an app web in the design of a provider-hosted app or an auto-
hosted app is really just an available option as opposed to a requirement as it is with a SharePoint-
hosted app.

When you design a provider-hosted app or an autohosted app, you have a choice of whether you
want to create an app web during installation to store private app implementation details inside the
SharePoint host. Some cloud-hosted apps will store all the content they need within their own exter-
nal database and will not need to create an app web during installation. Other cloud-hosted apps can
be designed to create an app web during installation for scenarios in which it makes sense to store
content within the SharePoint host environment for each installed instance of the app.

Packaging host web features
This chapter has already discussed client web parts and UI custom actions. As you recall, these two
types of features are used to extend the user interface of the host web, as opposed to many of the
other types of elements in an app that are added to the app web. For this reason, the XML files con-
taining the definitions of client web parts and UI custom actions are not deployed within a solution
package embedded within the app package. Instead, the XML files that define client web parts and UI
custom actions are added to the app package as top-level files.

Consider an example SharePoint app named MyAppParts that contains two client web parts. The
contents of the app package for this app will contain a top-level elements.xml file for each of the
client web parts and a top-level feature.xml file for the feature that hosts them. When Visual Studio
2012 creates these XML files and builds them into the output app package file, it adds a unique GUID
to each file name to avoid naming conflicts, as illustrated in Figure 1-10.

The feature that hosts client web parts and UI custom actions is a web-scoped feature known as a
host web feature. The SharePoint host environment is able to detect a host web feature inside an app
package during app installation and activate it in the host web. When an app with a web host feature
is installed at tenancy scope, that feature will be activated in more than one site.

32 Microsoft SharePoint 2013 App Development

FIGURE 1-10 The XML files that define client web parts and UI custom actions are packaged as top-level files
within the app package.

Packaging for autohosted apps
When it comes to packaging a SharePoint app for distribution, autohosted apps are more compli-
cated and deserve a little extra attention. The extra complexity is required because the app pack-
age for an autohosted app must contain the resources required to create an ASP.NET application on
demand to deploy the remote web. An autohosted app can also be designed to create a SQL Azure
database, as well, during the app installation process.

When you create a new autohosted app, Visual Studio 2012 creates two projects. There is one
project for the app itself and a second web project for an ASP.NET application to implement the
remote web. For example, if you create a new autohosted app using the name MyAutoHostedApp,
Visual Studio 2012 creates an app project named MyAutoHostedApp and an ASP.NET project named
MyAutoHostedAppWeb, and adds them to a single Visual Studio solution.

What is important to understand is that the app package built for the MyAutoHostedApp project
must contain all the necessary files to deploy the ASP.NET project named MyAutoHostedAppWeb.
This is a requirement because the installation of this app package must provide the Office 365 envi-
ronment with the means to provision the remote web as a Windows Azure application. This is what
makes it possible for an autohosted app to create its own remote web during the installation process.

Visual Studio 2012 relies on a packaging format that Microsoft created especially for the Windows
Azure environment by which all the files and metadata required to deploy an ASP.NET application are
built in to a single zip file for distribution. This zip file is known as a web deploy package. When used
within the SharePoint app model, the web deploy package is embedded within the app package of an
autohosted app for distribution.

 CHAPTER 1 Introducing SharePoint apps 33

When Visual Studio 2012 builds the web deploy package for an autohosted app, it creates the file
by combining the app package name together with a web.zip extension. For example, an app pack-
aged named MyAutohostedApp.app will have an embedded web deploy package named MyAuto
hostedApp.web.zip.

Now, consider the scenario in which an autohosted app has an associated SQL Azure database. The
Office 365 environment must create this database on demand during app installation. Therefore, the
app package must contain the resources required to create a SQL Azure database containing stan-
dard database objects, such as tables, indexes, stored procedures, and triggers.

The SharePoint app packaging model takes advantage of a second packaging format that Micro-
soft created for Windows Azure known as a Data Tier Application package. In this packaging format,
the metadata required to automate the creation of a SQL Azure database is defined in XML files
that are built in to a zip file with an extension of .dacpac. The name of the Data Tier Application
package is typically based on the name of the database. For example, a SQL Azure database named
MySqlDatabase will have an associated Data Tier Application package named MySqlDatabase.
dacpac. If you look inside a Data Tier Application package, you can locate a file named model.xml,
which defines the database objects that need to be created.

Figure 1-11 shows the layout of an app package for an autohosted app that will trigger the Office
365 environment to create a remote and a SQL Azure database as part of the app installation process.
Remember that the web deploy package is required in an autohosted app package, whereas the data
tier application package is optional.

FIGURE 1-11 An autohosted app package contains a web deployment package to create the remote web and a
data application package to create a SQL Azure database.

34 Microsoft SharePoint 2013 App Development

When you create an autohosted app, Visual Studio 2012 automatically creates the web project
and takes care of setting up all that’s required to build the web deploy package into the app pack-
age. However, you have to take a few extra steps to create a SQL database project and configure it to
properly build the Data Tier Application package in to the app package.

The first step is to create a new SQL database project in Visual Studio 2012 and add it to the same
solution that contains the autohosted project. Next, on the Properties page of the SQL Database proj-
ect, go to the Project Settings tab and change the target platform setting to SQL Azure. This is the
step that changes the project output to a Data Tier Application package. After this, you must build
the SQL database project at least once to build the Data Tier Application package.

The final step is to configure the app project to reference the Data Tier Application package. You
can accomplish this by using the property sheet for the autohosted app project. You will find that
there is a project property named SQL Package. Once you configure the SQL Package property to
point to the Data Tier Application package (.dacpac) file, you have made the necessary changes so
that Visual Studio 2012 will begin building the Data Tier Application package into app package file.

Publishing apps
The app package is a distributable file that’s used to publish SharePoint apps. Once the app pack-
age has been published, it is available for users to install. In the case of SharePoint-hosted apps and
autohosted apps, the app package contains all the resources required to deploy the app during the
installation process. However, provider-hosted apps require the developer to deploy the remote web
independently of the publication process and the installation process.

You publish a SharePoint app by uploading its app package file to one of two different places.
First, you can publish an app by uploading its app package to the public Office Store. This is the right
choice to make your app available to the general public, including users with SharePoint tenancies in
Office 365.

The second way to publish a SharePoint app is by uploading the app package to a special type of
site known as an app catalog site. This is the option to use when you want to make the app available
only to users within a specific Office 365 tenancy or within a specific on-premises farm.

Publishing SharePoint apps to the Office Store
To publish an app to the public Office Store, the developer must first create a dashboard seller
account. You can create this type of account by navigating to https://sellerdashboard.microsoft.com in
the browser and logging on with a valid Windows Account. Once you have logged on, you can create
a new dashboard seller account that is either an individual account or a company account.

A very appealing aspect of publishing apps to the Office Store with a dashboard seller account is
that it provides assistance with the management of licensing as well as collecting money from cus-
tomers through credit card transactions. When you create a dashboard seller account, you are able to
create a second payout account from which you supply Microsoft with the necessary details so when
it collects money from customers purchasing your apps, it can transfer the funds you have earned to
either a bank account or a PayPal account.

 CHAPTER 1 Introducing SharePoint apps 35

Once you have gone through the process of creating a dashboard seller account, it takes a day or
two for this new account to be approved. Once your account has been approved, you can then begin
to publish your apps in the Office Store. The Office Store supports publishing three types of apps: you
can publish SharePoint apps, Apps for Office, and Windows Azure Catalog Apps.

You publish a SharePoint app by uploading its app package file and filling in the details associated
with the app. For example, the publishing process for the Office Store requires you to provide a title,
version number, description, category, logo, and at least one screenshot that shows potential custom-
ers what your app looks like.

When you publish a SharePoint app, you can also indicate via the seller dashboard whether your
app is free or must be purchased. If you publish an app for purchase, you can specify the licensing fee
for each user or for a given number of users. There is even an option to configure a free trial period
for an app that has an associated licensing fee.

Once you have uploaded an app and provided the required information, the app must then go
through an approval process. The approval process involves checking the app package to ensure that
it only contains valid resources. There are also checks to validate that the app meets the minimum
requirements of the user experience guidelines. For example, there is a check to ensure that the start
page for the app contains the required link back to the host web.

Once the app has been approved, it is then ready for use and added to the public Office Store
where it can be discovered and installed by SharePoint users.

Publishing apps to an app catalog
What should you do if you want to publish an app but you don’t want to publish it to the Office
Store? For example, imagine a scenario in which you don’t want to make an app available to the
general public. Instead, you want to publish the app to make it available to a smaller audience such
as a handful of companies that are willing to pay you for your development effort. The answer is to
publish the app to an app catalog site.

An app catalog site contains a special type of document library that is used to upload and store
app package files. Along with storing the app package file, this document library also tracks vari-
ous types of metadata for each app. Some of this metadata is required, whereas other metadata is
optional.

In the Office 365 environment, the app catalog site is automatically added when a tenancy is
created for a new customer. However, this is not the case in an on-premises farm. Instead, you must
explicitly create the app catalog site by using the Central Administration site or by using Windows
PowerShell. Furthermore, the app catalog is created at web application scope, so you must create a
separate app catalog site for each web application.

You must have farm administrator permissions within an on-premises farm to create an app cata-
log site. You begin by navigating to the home page of Central Administration. On the home page,
there is a top-level link for Apps. When you click the Apps link, you will be redirected to a page with a
group of links under the heading of App Management. Within this group of links, locate and click the
link titled Manage App Catalog.

36 Microsoft SharePoint 2013 App Development

The first time you click the Manage App Catalog link, you are redirected to the Create App Catalog
page, which you can use to create a new app catalog site, as shown in Figure 1-12. Note that the app
catalog site must be created as a top-level site within a new site collection. On the Create App Cata-
log page, you can select the target web app that will host the new app catalog site.

FIGURE 1-12 The app catalog can be created through Central Administration within a specific web app of your
choice.

Note that you can also use the Create App Catalog page (shown a little later in Figure 1-14) to
configure user access permissions to the app catalog site. Remember that providing users with access
to the app catalog site is what makes it possible for them to discover and install apps of their own.
You must provide read access to users if you want them to have the ability to discover apps and install
them at site scope. However, you might decide against configuring user access to the app catalog site
if you plan on installing apps at tenancy scope.

Once you have created the app catalog site within an on-premises farm, you should navigate
to it and inspect what’s inside. You will find that there is a document library with a title of Apps
for SharePoint which is used to publish SharePoint apps. There is a second document library with
a title of Apps for Office that is used to publish apps created for Office applications such as Word
and Excel.

 CHAPTER 1 Introducing SharePoint apps 37

You publish a SharePoint app by uploading its app package to the Apps for SharePoint document
library. The SharePoint host environment is able to automatically fill in some of the required app
metadata such as the Title, Version, and Product ID by reading the app manifest as the app package
is uploaded. However, there is additional metadata that must be filled in by hand or by some other
means. A view of apps that have been published in the Apps for SharePoint document library is pre-
sented in Figure 1-13.

FIGURE 1-13 The Apps for SharePoint document library contains app package files and associated metadata for
published apps.

You will also notice that the app catalog site supports the management of app requests from
users. The idea being that a user within a site can request an app from the Office Store. The app
catalog administrator can see this request and decide whether to purchase the app or not. If the app
request seems appropriate, the app catalog administrator can purchase the app and make it available
for site-scope installation. Alternatively, the app catalog administrator can make the app available to
the requester by using a tenancy-scoped installation.

Installing apps
Once an app has been published, it can be discovered and installed by a user who has administra-
tor permissions in the current site. If you navigate to the Site Content page within a site and click the
tile with the caption add an app, you will be redirected to the main page for installing apps named
addanapp.aspx. This page displays apps that have been published to the app catalog site. Remember
that an Office 365 tenancy has a single app catalog site, but on-premises farms have an app catalog
site per web application. Therefore, you will not see apps that have been published to an app catalog
site in a different web application.

A user requires administrator permissions within a site to install an app. If you are logged on with a
user account that does not have administrator permissions within the current site, you will not be able
to see apps that have been published in the app catalog site. This is true even when your user account
has been granted permissions on the app catalog site itself.

Once you locate an app that you want to install, you can simply click its tile to install it. The app
installation process typically prompts you to verify whether you trust the app. A page appears that
displays a list of the permissions that the app is requesting along with a button to grant or deny the

38 Microsoft SharePoint 2013 App Development

apps permission request. You must grant all permissions that the app has requested to continue with
the installation process. There is no ability to grant one requested permission to an app while denying
another; granting permissions to an app during installation is always an all-or-nothing proposition.

After the app has been installed, you will see a tile for it on the Site Content page. This tile repre-
sents the app launcher that a user can click to be redirected to the app’s start page. The app title also
displays an ellipse to access a fly-out menu for app management, as illustrated in Figure 1-14.

FIGURE 1-14 Once an app has been installed, it can be launched using an associated tile, which is displayed on
the site content page.

Recall from earlier in the chapter what happens during app installation. Some apps require an app
web. When this is the case, the app web is created as a child site under the current site where the app
has been installed. If the app contains host feature elements such as client web parts and UI custom
actions, these user interface extensions will be made available in the host site, as well.

Installing apps at tenancy scope
You have seen that the app catalog site provides a place where you can upload apps in order to
publish them. Once an app has been published in the app catalog site, a user within the same Office
365 tenancy or within the same on-premises web application can discover the app and install it at site
scope. However, the functionality of an app catalog site goes one step further: it plays a central role in
installing apps at tenancy level.

You install an app at tenancy scope by installing it in an app catalog site. Just as with a site-scoped
installation, you must first publish the app by uploading it to the Apps for SharePoint document
library in the app catalog site. After publishing the app, you should be able to locate it on the Add
An App page of the app catalog site and install it just as you would install an app in any other type of
site. However, things are a bit different after the app has been installed in an app catalog site. More
specifically, the app provides different options in the fly-out menu that is available on the Site Con-
tent page, as shown in Figure 1-15.

As you can see in Figure 1-15, an app that has been installed in an app catalog site has a Deploy-
ment menu command that is not available in any other type of site. When you click the Deployment
menu command, you are redirected to a page on which you can configure the app so that you can
make it available to users in other sites.

 CHAPTER 1 Introducing SharePoint apps 39

FIGURE 1-15 Once an app has been installed, the associated deployment menu can be used to make the app
available to other sites.

You have several options when you configure an app in an app catalog site to make it available in
other sites. One option is to make the app available to all sites within the scope of the app catalog
site. Or, you can be more selective and just make the app available in sites that were created by using
a specific site template or sites created under a specific managed path. There is even an option to add
the URLs of site collections one-by-one if you need fine-grained control.

After you configure the criteria for a tenancy-scoped app installation to indicate the sites in which
it can be used, you will find that the app does not appear in those sites instantly. That’s because
the SharePoint host environment relies on a timer job to push the required app metadata from the
app catalog site to all the other sites. By default, this timer job is configured to run once every five
minutes. During your testing you can speed things up by navigating to the Central Administration
site and locating the timer job definition named App Installation Service. The page for this timer job
definition provides a Run Now button that you can click to run it on demand.

Upgrading apps
The upgrade process designed by the SharePoint app model provides a much better experience com-
pared to the upgrade process used with SharePoint solutions. When apps are published, the Office
Store and app catalog sites always track their version number. When an app is installed, the Share-
Point host environment sees this version number and records it for the installed app instance.

Take a simple example. Imagine you have uploaded version 1.0.0.0 of an app. After that, the app is
installed in several sites via site-scoped installation. The SharePoint host environment remembers that
each of these sites has installed version 1.0.0.0 of the app.

Now, imagine that you want to further develop your app. Maybe you need to fix a bug, improve
its performance, or extend the app's functionality. After you have finished your testing, you decide to
update the version number to 2.0.0.0 and publish the new version in the same app catalog site where
you installed the original version.

40 Microsoft SharePoint 2013 App Development

One important aspect of the upgrade process of the SharePoint app model is that an updated
version of an app is never forced upon the user that installed the app. Instead, the user is notified that
a new version of the app is available. This user can then decide to do nothing or to update the app to
the new version. Figure 1-16 shows the notification that the SharePoint host environment adds to the
app tile on the Site Contents page.

FIGURE 1-16 The tile for an app displays a notification when an updated version is available from the SharePoint
Store or app catalog.

The notification depicted in Figure 1-16 contains an update link that a user can click to be redi-
rected to a page with a button that activates the upgrade process. What actually occurs during the
upgrade process is different, depending on whether the app is a SharePoint-hosted app or a cloud-
hosted app.

When you are working on an updated version of a SharePoint-hosted app, you have the ability to
change some of the metadata in the app manifest and to add new elements into the app web. For
example, you could add a new page to the app web named startv2.aspx and then modify the app
manifest to use this start page instead of the start page that was used in the original version of the
app. You could also add other, new app web elements such as JavaScript files, lists, and document
libraries. Many of the techniques used to upgrade elements in the app web are based on the same
techniques developers have been using with feature upgrade in SharePoint solutions.

When it comes to updating a cloud-hosted app, things are different. That’s because most of the
important changes to the app’s implementation are made to the remote web and not to anything
inside the SharePoint host environment. If you are working with a provider-hosted app, you must roll
out these changes to the remote web before you publish the new version of the app to the Office
Store or any app catalog site.

It’s equally important that the updated version of the remote web must continue to support
customers that will continue to use the original version of the app. Remember; there is nothing that
forces the user to accept an update. You should expect that some customers will be happy with the
original version and will be opposed to upgrading to a new version of an app.

Once you have pushed out more than one or more updates to a provider-hosted app, you must
begin to track what version each customer is using. One technique to accomplish this task is to
provide a different start page for each version of the app. Many provider-hosted apps will go a step
further and store the current version of app in a customer profile that is tracked in a custom database
behind the remote web.

 CHAPTER 1 Introducing SharePoint apps 41

Trapping app lifecycle events
One favorable aspect of the SharePoint app model for developers is the ability to design a cloud-
hosted app with custom server-side code that is automatically executed when an app is installed,
upgraded, or uninstalled. By taking advantage of the ability to add code behind these three app life-
cycle events, you can program against the host web and the app web with logic to initialize, update,
and cleanup site elements in the SharePoint environment. These app lifecycle events also provide the
necessary triggers for updating the custom database used by provider-hosted apps and autohosted
apps.

The architecture of app events is based on registering app event handlers in the app manifest
that cause the SharePoint host environment to call out to a web service entry point in the remote
web. Due to the architecture’s reliance on a server-side entry point, app events are not supported
in SharePoint-hosted apps. Therefore, you can only use the app events in autohosted apps and
provider-hosted apps.

It’s relatively simple to add support for app events to the project for an autohosted app or a
provider-hosted app. The property sheet for the app project contains three properties named Handle
App Installed, Handle App Uninstalling, and Handle App Upgrade, as shown in Figure 1-17.

FIGURE 1-17 The property sheet for an app project provides Boolean properties for enabling lifecycle events.

The default value for each of these app event properties is false. The first time you change one of
these properties to a value of true, Visual Studio 2012 adds a web service entry point into the web
project with a name of AppEventReceiver.svc. Visual Studio 2012 also adds the required configuration
information into the app manifest file, as well. If you enable all three events, the <Properties> ele-
ment within <App> element of the app manifest will be updated with the following three elements:

42 Microsoft SharePoint 2013 App Development

<InstalledEventEndpoint>~remoteAppUrl/AppEventReceiver.svc</InstalledEventEndpoint>
<UninstallingEventEndpoint>~remoteAppUrl/AppEventReceiver.svc</UninstallingEventEndpoint>
<UpgradedEventEndpoint>~remoteAppUrl/AppEventReceiver.svc</UpgradedEventEndpoint>

After you have enabled one or more of the app events, you can then begin to write the code that
will execute when the events occur. You write this code in the code-behind file named AppEvent
Receiver.svc.cs. If you examine this file, you will see that Visual Studio 2012 has created a class shown
in the following code that implements a special interface that the SharePoint team created for remote
event handling named IRemoteEventService:

public class AppEventReceiver : IRemoteEventService {
 public SPRemoteEventResult ProcessEvent(RemoteEventProperties properties) {}
 public void ProcessOneWayEvent(RemoteEventProperties properties) { }
}

The IRemoteEventService interface is used with app events and also with other types of remote
event handlers, as well. There are two methods named ProcessEvent and ProcessOneWayEvent. The
SharePoint host environment makes a web service call which executes the ProcessEvent method when
it needs to inspect the response returned from the remote web. The ProcessOneWayEvent method is
called for cases in which the SharePoint host environment needs to trigger the execution of code in
the remote web but doesn’t need to inspect the response. App events always trigger to the Process
Event method, so you can leave the ProcessOneWayEvent method empty in the AppEventReceiver.svc.
cs file.

If you have registered for the AppInstalled event, the ProcessEvent method will execute whenever
a user is installing the app. It is critical to supply robust error handling because an unhandled excep-
tion will be returned to the SharePoint host environment and cause an error in the app installation
process.

When you implement the ProcessEvent method, you must return an object created from the
SPRemoteEventResult class, as demonstrated in the following:

public SPRemoteEventResult ProcessEvent(RemoteEventProperties properties) {
 // return an SPRemoteEventResult object
 SPRemoteEventResult result = new SPRemoteEventResult();
 return result;
}

The SPRemoteEventResult class was designed to make it possible for code in the remote web to
relay contextual information back to the SharePoint host environment. For example, imagine that you
have detected that the installer’s IP address is located in a country that you do not want to support.
You can tell the SharePoint host environment to cancel the installation process and pass an appropri-
ate error message, such as shown here:

SPRemoteEventResult result = new SPRemoteEventResult();
result.Status = SPRemoteEventServiceStatus.CancelWithError;
result.ErrorMessage = “App cannot be installed due to invalid IP address”;
return result;

 CHAPTER 1 Introducing SharePoint apps 43

The ProcessEvent method passes a parameter named properties, which is based on a type named
RemoteEventProperties. You can use this parameter to access important contextual information such
as the URL of host web and security access token required to call back into the SharePoint host
environment. Listing 1-5 shows that the properties parameter also provides an EventType property
with which you can determine which of the three app events has caused the ProcessEvent method to
execute.

LISTING 1-5 Handling events

public SPRemoteEventResult ProcessEvent(RemoteEventProperties properties) {

 // obtain context information from RemoteEventProperties property
 string HostWeb = properties.AppEventProperties.HostWebFullUrl.AbsolutePath;
 string AccessToken = properties.AccessToken;

 // handle event type
 switch (properties.EventType) {
 case RemoteEventType.AppInstalled:
 // add code here to handle app installation
 break;
 case RemoteEventType.AppUpgraded:
 // add code here to handle app upgrade
 break;
 case RemoteEventType.AppUninstalling:
 // add code here to handle app uninstallation
 break;
 default:
 break;
 }

 // return an SPRemoteEventResult object
 SPRemoteEventResult result = new SPRemoteEventResult();
 return result;

}

Note that debugging app event handlers can be especially tricky to set up and in many situations
it doesn’t work at all. That’s because the SharePoint host environment must be able to call back into
the remote web. For cases in which you have installed the app into an Office 365 tenancy for testing,
it is a web server in the Office 365 environment that will be issuing the call to the remote web. This
web server hosted in the Office 365 environment must be able to locate and access the web server
that is hosting the remote web. Therefore, attempting to debug an app event handler for which the
remote web is configured to use a host name such as localhost or to use a host domain name that
only resolves to the proper IP address inside your testing environment will not work.

44 Microsoft SharePoint 2013 App Development

Conclusion

This chapter provided you with an introduction to SharePoint apps. You learned about the pain points
of SharePoint solution development and the design goals that influenced how the architecture of the
SharePoint app model was created. You also learned many details about app hosting models, user
interface design, publishing, installation, and upgrade. Now, it’s time to move ahead and begin learn-
ing about how to write code in an app that accesses the SharePoint host environment by using the
CSOM and the new REST API.

 173

app distribution, for adding pages and lists to app web
during installation, 29

app event handlers, 161–162
debugging, 43
declaring, 161

app events, architecture of, 41–43
app host domain, 114
app hosting models. See also autohosted apps;

See also provider-hosted apps; See
also SharePoint-hosted apps

creating app web in, 30
Publish command with, 10–14
understanding, 10–14
using app events in, 41
using client web part in implementing app part,

22–23
app installation scopes, understanding, 7
App Installation Service, locating timer job definition

named, 39
AppInstalled event, 42
app launcher, 38
app launcher, about, 8
app-level external content types, 166–168
app lifecycle events, trapping, 41–44
App Management Service

creating instance of, 6
in SharePoint farm supporting apps, 5–6

app manifest
about, 14–17
changing metadata in, 40
configuring to support internal app

authentication, 100
editing in Visual Studio 2012, 16–17
permissions requests inside, 108
Permissions tab of designer, 110
requirements when developing apps for use in

Office 365 as, 118–119

Index

Symbols
$Deferred method, 144
$expand operator, in RESTful operations, 80
$ symbol, jQuery selector syntax using, 55
$top, in RESTful operations, 81
&, combining parameters together using, 27
(hash) sign, jQuery selector syntax using, 55

A
access tokens, 116, 122–125, 135
access tokens, Windows Azure ACS creating, 112
ACS, Windows Azure

about, 112
creating access tokens, 122
creating context tokens, 116–118
keeping configuration data for app principals in

sync, 113
OAuth authentication and, 102, 121, 122

Active Directory accounts, 96
Active Server Pages (ASPX), 146–148
Add() function, 48
Add New Item command, 22
administrator permissions, installing apps requiring, 37
ajax method, jQuery, 82–83, 139
&, combining parameters together using, 27
anonymous functions, 48–49
<App> element, 41–42
app catalog site

publishing apps to, 35
using Create App Catalog page to configure user

access permissions to, 36
app code isolation, understanding, 8–9
app designs, table of, 45

app model

174 Index

app model
about, 1–2
vs. full-trust model, ix

app-only
access tokens, 125–126
permissions, 110–111

app package file, 29
app parts

about, 22
as entry point of app user interface, 21
building, 22–24
vs. client web parts, 22

<AppPermissionRequest> elements, 108, 111
app principals

registering, 115
registering for S2S Trust with Register-

AppPrincipal, 133
registering using SPAppPrincipalManager

class, 133–134
understanding, 113–114

AppPrincipal setting, 150
app secret (client secret), 114
app service applications, working with, 5–6
appSettings variables, 119, 135
Apps for Office, publishing, 35
Apps for SharePoint document library, 37–38, 38
apps, packaging, 29–34
app start page, linking back to host web, 21
app user interface, entry points of, 21–28
app web

about, 18
app user interface entry points, 21–28
choosing authentication type for, 99
creating with installation of SharePoint app, 30
hosting domain, 19–20

AppWebProxy.aspx page, 156
AppWebProxy page, 101
app web solution package, understanding, 29–30
~appWebUrl token, 17, 20
app web URL, parts of, 20–21
architecture

app-level ECT, 166
of app events, 41–43
of cross-domain call, 156
of cross-domain library, 101
of CSOM, 59
of REST API, 78
of S2S trusts, 129–130

architecture of SharePoint app model
about, 5
app code isolation, 8–9
app hosting models, 8–9
app installation scopes in, 7
app manifest, 14–17
app web, 18–20
design goals of, 4
setting start page URL, 17–19
working with app service applications, 7

arguments array, 48
ASP.NET

creating remote web in, 146–147, 148
creating web project for, 32

ASP.NET FBA
security principal and, 95
support for, 96

ASP.NET MVC 4 Project Wizard, 148–149
ASP.NET Table control, 90–91
ASPX (Active Server Pages), 146–148
assembly redirection entries, managing, 3
asymmetric encryption, 129
asynchronous calls, 146

making multiple, 143–144
Atom Publishing Protocol (AtomPub) format, 77, 88
authentication

about authorization and, 95–97
configuring in web applications user, 97
determining types of, 99
of apps, 98–100
understanding flow in app, 103–104
understanding flow in Office 365 of app, 116–

118
using internal authentication, 100–101

authentication server, 113
authorization and authentication, 95–97
authorization code (security token), 116–118,

126–128
Authorization header, 123, 124, 125, 130
<AutoDeployedWebApplication> element, 118–119
autohosted apps. See also app hosting models

about, 10
app manifest in developing, 118–119
benefits of, 13–14
creating app web in, 30
packaging for, 32–34
Publish command with, 18
using app events in, 41
using chrome control, 153

 context tokens

 Index 175

B
backward compatibility, support for creating classic-

mode web application using, 97
BDC Metadata Model file, defining ECTs, 167
binding events, 57
bindings, declarative, 139–140
building MVVM apps, 137–146
Business Connectivity Services (BCS), 166
button on ribbon, defining, 25

C
CAB files, for adding pages and lists to app web

during installation, 29
CAML (Collaborative Application Markup Language)

queries, 66–67, 75
Cascading Style Sheets (CSS), selector syntax and, 56
CDN (Content Delivery Network), 55
Central Administration

creating app catalog site in, 35
creating instance of App Management Service

using, 6
locating timer job definition at, 39

.cer file, creating, 131–132
chrome control, 153–156
classic-mode web applications, support for

creating, 97
class structure, for encapsulating CRUD operations

against REST API, 88–89
client app, 113
ClientContext class, 60, 162
ClientContextRuntime class, 60–61
client ID, 102, 114
ClientId attribute, 118–119
ClientId entries, 148, 150
ClientRequestException error, 62
client secret (app secret), 114
ClientSecret entries, 148, 150
client-side code, running on browser, 8–9
Client-Side Object Model (CSOM)

about, 45, 58–59
app authentication using, 98, 99–100, 103–104
architecture, 59
challenges of web forms pattern, 146–148
contexts, 59–60
developing apps using MVC4 framework,

148–152

JavaScript
about, 69–71
CRUD operations using, 73–77
returning collections, 70–71, 71–73

managed
about, 61
creating lists using, 65–66
handling errors, 62–65
returning collections of items, 61–62
returning list items, 66–67
update operations, 67
working with document, 67–68

RESTful endpoints in APIs through, 78
retrieving ClientContext, 162
using against social feed, 168–170

Client.svc endpoint, 69, 70, 78
Client.svc service, 59, 61
ClientWebPart elements, 22
client web part, implementing app part using, 22
client web parts

about, 22–23
adding to SharePoint app project new, 22
vs. app parts, 22
vs. standard web parts, 22–23

closures, 49
cloud-based model, ix
cloud-hosted apps

app principal for, 113
app start page linking back to host web in, 21
creating app web in, 30
programming TokenHelper class, 119–122
requirements when developing apps for use in

Office 365 as, 118–119
upgrading, 40
using internal authentication, 100–101
vs. SharePoint-hosted apps, 8–9
web forms and, 148

cloud-hosted service Windows Azure ACS as, 112
Collaborative Application Markup Language (CAML)

queries, 66–67, 75
collections of items, returning, 61–62
contact data library, 140
contacts ViewModel, 141–142
<Content> element, XML within, 22
Content Delivery Network (CDN), 55
content owners, 113
content server, 113
contexts, 59–60
context tokens, 116–118, 121–122

Controllers, in MVC4 project

176 Index

Controllers, in MVC4 project, 150–152
C# programming language

accessing portion of core SharePoint functionality
from, 58

challenges of web forms pattern, 146–148
developing apps using MVC4 framework,

148–152
using against social feed, 170
working with REST in, 87–93

Create App Catalog page, 36–37
createItem function, 75
Create, Read, Update, and Delete (CRUD) operations

in REST, 77, 83–87
using JavaScript CSOM, 73–77
with C# against REST API, 88–93

creating items
using C# against REST API, 89–90
using REST operation, 84

creating lists, through managed CSOM, 65–66
cross-domain calls, 156–160
cross-domain library, 100–101, 156–157
cross-platform development model, ix
Cross-site Scripting (XSS), 100, 156
CRUD (Create, Read, Update, and Delete) operations

in REST, 77, 83–87
using JavaScript CSOM, 73–77
with C# against REST API, 88–93

CSOM (Client-Side Object Model)
about, 45, 58–59
app authentication using, 98, 99–100, 103–104
calls executed by using cross-domain library, 101
challenges of web forms pattern, 146–148
developing apps using MVC4 framework,

148–152
JavaScript

about, 69–71
CRUD operations using, 73–77
returning collections, 70–71, 71–73

managed
about, 61, 61–62
creating lists using, 65–66
handling errors, 62–65
returning list items, 66–67
update operations, 67
working with document, 67–68

RESTful endpoints in APIs through, 78
retrieving ClientContext, 162
using against social feed, 168–170

CSS (Cascading Style Sheets), selector syntax and, 56
<CustomAction> element

editing XML within, 25
structuring, 25–27

custom code
inside sandboxed solution, 3
running, 8–9
running in hosting farm, 2
running in SharePoint environment, 2

customer-by-customer basis, isolating data
on, 12–13

custom libraries, creating, 51–54

D
.dacpac files, 34
dashboard seller account, creating, 34
data-bind attribute

binding method from ViewModel to HTML
elements, 140

of HTML retrieving collection of list items,
141–142

Data Tier Application package, 33
debugging

app event handlers, 43
of SharePoint app project and, 17

declarative bindings, 139–140
default tenancy

creating by Site Subscriptions Settings Service, 6
in on-premises farms, 5

$Deferred method, 144
deferred pattern, 144
DeleteObject method, 67, 76–77
DELETE operations, 92–93
deleting

items in JavaScript CSOM, 76–77
items in URIs, 87
items using C# against REST API, 92–93
objects with managed CSOM, 67

Deployment menu command, 38–39
dialog box, displaying page referenced by UI custom

action as, 27
distributing apps

installing apps after being published, 37–39
installing apps at tenancy scope, 38–39
through publishing apps, 34–38

<div> element, 155–156
DLLs, in app web solution package, 30
document libraries, working with, 67–68
Document Object Model (DOM)

jQuery and, 54–55

 GetContextTokenFromRequest, TokenHelper method

 Index 177

jQuery methods manipulating, 56–57
selector syntax referencing, 56

domains, calling across, 156–160

E
ECB menu item, creating, 25–26
ECT (External Content Types), using app-level,

166–168
encryption

asymmetric, 129
symmetric, 114

error scopes in JavaScript, setting up, 71–73
ETags, 86–87, 91–92
event handlers

adding, 161–162
debugging, 43
declaring, 161

event handling code, 162–163
event handling, jQuery, 57
event receivers, remote, 161–163
EventType property, 43–44
ExceptionHandlingScope object, 64–65
Exchange Server 2013, creating S2S trusts for, 130
Exchange Server 2013 Preview, information about, x
ExecuteQueryAsync method, 61, 70
ExecuteQuery method, 61, 65
$expand operator, in RESTful operations, 80
external app authentication

determining use of, 99
flow of, 117–118
OAuth

about developing with, 118–119
acquiring permissions on fly using

authorization code, 126–128
app principals in, 113–115
flow of, 117–118
programming TokenHelper class, 119–122
security tokens passed using, 116–118
terms and concepts in, 113
using, 98, 102, 111
working with access tokens, 122–124
working with app-only access tokens,

125–128
using S2S trusts

about, 98, 102
developing provider-hosted apps using,

134–135
to establish app identity, 128–135

External Content Types (ECT), using app-level,
166–168

External Lists, 166, 168

F
farm administrator, permissions for creating app

catalog site, 35
Farm Creation Wizard, creating instance of App

Management Service using, 6
farms

app service applications as requirement for
supporting apps in, 5–6

stabilizing, 2
farm solutions

allowing for impersonation, 3
custom actions available when developing, 25
DLLs with custom .NET code in, 30
installation of, 3

FBA (Forms-based Authentication)
security principal and ASP.NET, 95
tokens, 96–97

$filter operator, in RESTful operations, 81
Flash, writing SharePoint-hosted app using, 8
foreach construct, 140
Forms-based Authentication (FBA), 95
FullControl permissions, 109
full-trust configurations vs. high-trust

configurations, 129
full-trust model vs. app model, ix
full-trust model vs. SharePoint app model, ix
functions, JavaScript

about, 48
module pattern using, 51–53
self-invoking, 52–53

G
GetAccessToken method, 128
GetAccessToken, TokenHelper method, 123–124
GetAppOnlyAccessToken, TokenHelper

method, 125
GetAuthorizationUrl, TokenHelper method, 124
GetClientContext WithAuthorizationCode

method, 128
GetClientContextWithContextToken, calling, 121
get_contacts method, 140
GetContextTokenFromRequest, TokenHelper

method, 120–121

get_current method

178 Index

get_current method, 60
GetFormDigest method, 89
global functions

about, 55
DOM manipulations performed from, 56–57

global namespace
about, 46
in app project template code, 69

granting app permissions, 107–110

H
handling errors

in JavaScript CSOM, 71–73
in managed CSOM, 62–65

hash (#) sign, jQuery selector syntax using, 55
help link, defining, 155
high-trust configurations vs. full-trust

configurations, 129
HomeController, as default MVC4 project

template, 150
hosting domain, app web, 19–20
hosting farm, custom code running in, 2
hosting model, for autohosted apps, 13–14
{HostTitle} token, 154
{HostUrl} token, 28
host web

about, 7
app start page linking back to host web, 21
choosing authentication type for, 99
packaging features of, 31–32

host web authority, 124
HostWebDialog attribute, 27
host web feature, 31
HTML elements, binding ViewModel to, 139–140
HTML tables

displaying items in, 85
from calling jQuery ajax method, 139

HTTP DELETE operation, 87
HTTP GET operation, 78, 85, 88
HTTP POST

operation, 120
request, 117

HTTP verbs, support for standard, 77
HttpWebRequest object, 88

I
icon, defining, 155
IIS (Internet Information Services)

enabling SSL on IIS website, 131–132
IIS (Internet Information Services), restarting with

SharePoint solutions, 3
impersonation, allowing for, 3
Inside Microsoft SharePoint 2013, for advanced

topics, 160
installing apps, after being published, 37–39
IntelliSense, managed CSOM supported by, 61
internal app authentication, 98, 100–101
Internet Information Services (IIS), restarting with

SharePoint solutions, 3
InvalidQueryExpressionException error, 63
IRemoteEventService interface, 42, 161
ItemAdded event, 161
ItemAdding event, 161
ItemDeleting event, 161
{ItemID} token, 28
{ItemURL} token, 27, 28

J
JavaScript

about, 46
accessing portion of core SharePoint functionality

from, 58
building apps with MVVM pattern

about, 137–138
understanding challenges of, 138–139
using Knockout library, 139–143

closures, 49
component in SharePoint-hosted app, 8
creating custom libraries, 51–54
cross-domain library in, 100–101
CSOM

about, 69–71
CRUD operations using, 73–77
returning collections, 70–71, 71–73

functions
about, 48
module pattern using, 51–53
self-invoking, 52–53

making multiple nested asynchronous calls
in, 146

namespaces, 46

 Microsoft SharePoint app development, moving from SharePoint solution development

 Index 179

object notation web tokens, 124
prototypes, 50
strict, 47–48
variables, 46–47
working with REST API in, 81–87

jQuery
$.Deferred method, 144
about, 54–55
ajax method, 82–83, 139
event handling, 57
methods

about, 56–57
table of, 57

referencing, 55
selector syntax, 56

JSON, OData protocol returning results in, 77
JSON Web Tokens (JWTs), 124

K
KeywordQuery class, 164
Keyword Query Language (KQL), 164
Knockout library, 139–143
ko.observableArray type, 142

L
libraries

contact data, 140
creating custom, 51–54
cross-domain, 100–101, 156–157
CSOM structure for CRUD operations, 74
implementing apps with JavaScript and

relationship to, 138–139
Knockout, 139–143
REST structure for CRUD, 83–84
working with document, 67–68

LINQ (Language-Integrated Query), 60–61, 61–62,
88

ListCreationInformation object, 65–66
listdata.svc web service, 77–78
{ListID} token, 28
ListItemCreationInformation object, 65–66
{ListURLDir} token, 28
load method, 70–71
Load method, 60–61, 61–62
loadQuery method, 70–71
LoadQuery method, 60–61, 61–62

M
Manage App Catalog link, 36–37
“managed” client object model, 58
managed CSOM

about, 61
creating lists using, 65–66
handling errors, 62–65
returning collections of items, 61–62
returning list items, 66–67
update operations, 67
working with document, 67–68

Manage permissions, 109
manifest settings, 157
MERGE operations, 86
metadata

app manifest, 15–16
BDC Metadata Model file defining ECTs, 167
changing app manifest, 40
needed for Apps for SharePoint document

library, 37–38
type, 84–85

methods, jQuery
about, 56–57
table of, 57

Microsoft app model vs. full-trust model, ix
Microsoft CDN, for jQuery, 55
Microsoft Exchange Server 2013, creating S2S trusts

for, 130
Microsoft Exchange Server 2013 Preview,

information about, x
Microsoft Office 365

app catalog site in, 35
app principal for cloud-hosted apps in, 113
creating app service applications using, 6
installing and configuring apps within tenancy of, 7
market for, ix
SharePoint app model working within, 5
supporting autohosted apps, 13
supporting OAuth authentication in, 102
tenancy, 112, 114–115, 117, 120
understanding flow of app authentication

in, 116–118
Windows Azure ACS and, 112

Microsoft SharePoint app development,
moving from SharePoint solution
development, 1–2

Microsoft SharePoint app model

180 Index

Microsoft SharePoint app model
about, 1–2
architecture

about, 5
app code isolation, 8–9
app hosting models, 8–9
app installation scopes in, 7
app manifest, 14–17
app user interface entry points, 21–28
app web, 18–20
design goals of, 4
setting start page URL, 17–19
working with app service applications, 5–6

developing apps for using within private
networks, 7

trapping app lifecycle events, 41–44
upgrading apps using, 39–40

Microsoft SharePoint-hosted apps
about, 10
app project template code, 69, 82
configuring <StartPage> element using

~appWebUrl token, 20
creating app web in, 30
creating client web parts in, 23–24
vs. cloud-hosted apps, 8–9

Microsoft SharePoint solution development
challenges with, 2–4
moving to SharePoint app development, 1–2
solution package files for deployment, 29

Microsoft Silverlight
accessing portion of core SharePoint functionality

from, 58
writing SharePoint-hosted app using, 8

Microsoft VBScript, writing SharePoint-hosted app
using, 8

Microsoft Visual Studio 2012
adding web service entry point when changing

app events properties, 41–42
app manifest designer in, 16–17
app project template code, 69, 82
creating autohosted app in, 32, 34
debugging phase of SharePoint app project

and, 17
implementing app part in, 22

Microsoft Workflow Manager, creating S2S trusts
for, 130

module pattern, 51–53
multiple calls, making asynchronous, 143–144
multi-tenancy, 11

MVC (Model-View-Controller) pattern building apps
using, 146–148

MVC4
developing apps using, 148–152
using apps in social feed, 168–170

MVVM (Model-View-ViewModel) pattern, building
apps using, 137–146

N
named _Layout view, 152
name member, accessing, 52–53
namespaces

global
about, 46
in app project template code, 69

JavaScript, 46
URI, 80

navigation links, defining, 155
nested RESTful calls, 143–144
.NET code, in app web solution package, 30
New ASP.NET MVC 4 Project Wizard, 148–149

O
OAuth 2.0 protocol, 112, 116–118
OAuth authentication

about, 111
about developing with, 118–119
acquiring permissions on fly using authorization

code, 126–128
app principals in, 113–115
high-trust configurations vs. full-trust

configurations, 129
in making REST API call, 123
programming TokenHelper class, 119–122
security tokens passed using, 116–118
terms and concepts in, 113
using, 98, 102
vs. S2S trusts, 128
working with access tokens, 122–124
working with app-only access tokens, 125–128

observableArray type, ko, 142
OData (Open Data Protocol)

about using with REST, 77
defining ECT against, 166–168
query operators, 80–81

 querytext parameter

 Index 181

Office 365
app catalog site in, 35
app principal for cloud-hosted apps in, 113
app web hosting domain, 20
creating app service applications using, 6
installing and configuring apps within tenancy

of, 7, 38
market for, ix
SharePoint app model working within, 5
supporting autohosted apps, 13
supporting OAuth authentication in, 102
tenancy, 112, 114–115, 117, 120
understanding flow of app authentication

in, 116–118
Windows Azure ACS and, 112

Office Store, publishing apps to, 34–35
onGetUserNameFail function, 70
onGetUserNameSuccess function, 70
on-premises farms

autohosted apps and, 13
configuring OAuth support for, 112
creating app catalog site in, 36–37
creating app service applications for, 6
default tenancy in, 5
installing and configuring apps using tenancy

scope, 7
Office 365 working within, 5
supporting external authentication, 102
upgrading to newer versions of SharePoint, 2
using S2S authorization by establishing trust with

provider-hosted apps, 102
Open Data Protocol (OData), 77

defining ECT against, 166–168
query operators, 80–81

$order operator, in RESTful operations, 80

P
packaging apps, 29–34
Page_Load event, 87–88
paging items, in RESTful operations, 81
PATCH method, 91–92
PATCH operations, 86
PeopleManager class, 170–171
permission grants, 157
permission requests, 107
permissions

acquiring on fly using authorization code,
126–128

managing app, 104–111
permission types, 110
postMessage API, 156
POST operations, 89–90
PowerShell

creating app catalog site in, 35
creating instance of Site Subscriptions Settings

Service using, 6
PowerShell script

creating x.509 certificates with public/private key
pair, 131–132

registering trusted security-token issuer, 132
ProcessEvent method, 43–44, 162
ProcessOneWayEvent method, 42, 162
promise pattern, 143–146
<Properties> element, 41–42
PropertyOrFieldNotInitializedException error, 62
prototype pattern, 53–54
prototypes, 50
provider-hosted apps. See also app hosting models

about, 10
creating app web in, 30
debugging, 17
installed in SharePoint tenancy, 10–11
installing, 11
ongoing maintenance of, 11
Publish command with, 18
setting start page URL for, 17
using chrome control, 153
using S2S authorization by establishing trust with

on-premises farms, 102
using S2S trusts for developing, 134–135

provider-hosted apps, using app events in, 41
public/private key pair

creating x.509 certificates with, 131–132
S2S trusts based on, 129

Publish command, with autohosted apps, 18
publishing apps

about, 34
displaying, 37
to app catalog site, 35
to Office Store, 34–35

PUT operations, 86

Q
query parameters, for REST API, 164
querystring parameter, 170
querytext parameter, 164

rapid application development, web forms supporting

182 Index

R
rapid application development, web forms

supporting, 148
readAll function, 75–76
ReadAll method, 90–91
ReadAndValidateContextToken, TokenHelper

method, 121
reading and writing to social feed, 168–170
reading items

across domains, 158
in CRUD operations, 75–76
using C# against REST API, 90–91
using RESTful URI, 85

Read permissions, 109
ready event

handler, 74
of document, 58, 155

redirect URL, 114
refresh tokens, 116, 122
Register-AppPrincipal, registering app principal for

S2S Trust, 133
~remoteAppUrl token, 17
remote event receivers, 161–163
remote web

about, 8
chrome control and, 153
Office 365 environment deploying, 13
provider-hosted apps deployed on, 11
triggering execution of code in, 42
using C# against REST API from, 89
using techniques in code behind a start page

in, 21
<RemoteWebApplication> element, 118–119
removeItem function, 76–77
render method, 155
replying to post, in social feed, 171
requesting and granting app permissions, 107–110
RESTful (REST-based solutions)

endpoints in APIs through CSOM, 78
making multiple asynchronous calls, 143–144
operators, 80–81
performing CRUD in, 77
search REST endpoints, 164
URIs as entry point for, 79
viewing URIs, 78

RESTful URIs
about using, 77
creating, 82–83
creating app web in, 82–83

creating items using, 84
entry point for REST using, 79
instantiating and initializing SP.WebRequestInfo

object with, 159
reading items using, 85
updating items using, 86
viewing REST operations using, 78

REST (Representational State Transfer) API
about, 45, 77–81
app authentication using, 98, 103–104
architecture of, 78
calls executed by using cross-domain library, 101
class structure for encapsulating CRUD

operations against, 88–89
query parameters for, 164
social feed interfaces, 168–170
using OAuth authentication in making call, 123
using search, 164–166
utilizing promise pattern, 143–146
working in C# with, 87–93
working in JavaScript with, 81–87

returning collections
of items, 61–62
with JavaScript, 70–71

returning list items, using CAML for, 66–67
ribbon, defining button on, 25
Right attribute, 109
rowlimit parameter, 165
rowsperpage parameter, 165

S
S2S trusts

about, 98, 102
developing provider-hosted apps using, 134–135
to establish app identity, 128–135

SAML token
about, 96–97
in SharePoint host environment app

authentication, 103–104, 130
SharePoint host environment seeing, 98–99

sandboxed solutions
DLLs with custom .NET code in, 30
issues with, 2–3

Scope attribute, 108–109
script tags, 55
search REST API, using, 164–166
Secure Sockets Layer (SSL), 114

 SHAREPOINT\SYSTEM account, impersonating

 Index 183

Security Assertion Markup Language (SAML). See
also SAML token

about, 96–97
security principal

about, 95
configuring OAuth authentication to register, 102
FBA role as, 95

security problems, with SharePoint solutions, 3
security tokens, passed using OAuth, 116
{SelectedItemId} token, 28
{SelectedListId} token, 28
selecting items, in RESTful operations, 81
$select operator, in RESTful operations, 80
selector syntax, jQuery, using $ sign, 56
selectproperties parameter, 165
self-invoking function

about, 52–53
for CRUD operations, 74

seller dashboard, 35
ServerErrorCode properties, 65
ServerErrorValue properties, 65
ServerException error, 63–64
ServerRelativeUrl properties, requesting, 61
server-side code

constraints for app web solution package, 30
running on external website, 8–9
writing SharePoint-hosted app using, 8

server-side object model, SharePoint PowerShell
script using SPAppPrincipalManager class
in, 133–134

ServerStackTrace properties, 65
Server-to-server (S2S) authentication, 102
SHAREPOINT\APP account, 126
SharePoint app development, moving from

SharePoint solution development, 1–2
SharePoint app model

about, 1–2
architecture

about, 5
app code isolation, 8–9
app hosting models, 8–9
app installation scopes in, 7
app manifest, 14–17
app user interface entry points, 21–28
app web, 18–20
design goals of, 4
setting start page URL, 17–19
working with app service applications, 5–6

developing apps for using within private
networks, 7

trapping app lifecycle events, 41–44
upgrading apps using, 39–40
vs. full-trust model, ix

SharePoint app project
adding new client web part to, 22
debugging phase of, 17
property sheet for, 41

SharePoint farms
app service applications as requirement for

supporting apps in, 5–6
authenticating users by using external identity

providers, 97, 130
configuring S2S trusts within, 130
stabilizing, 2

SharePoint Foundation platform, defining of types of
permissions in, 109

SharePoint-hosted apps. See also app hosting
models

about, 10
app project template code, 69, 82, 87–88
configuring <StartPage> element using

~appWebUrl token, 20
creating app web in, 30
creating client web parts in, 23–24
ready event in, 58
using internal authentication, 100–101
vs. cloud-hosted apps, 8–9

SharePoint host environment
about use of term, 7
app authentication in, 98–99, 103–104, 130
needing to trigger execution of code in remote

web, 42
prompting user for premission requests, 107
serving up pages in from app web, 20
{StandardTokens} token in, 18–19
Windows Azure ACS and, 112

SharePoint PowerShell script, registering trusted
security-token issuer, 132

sharePointReady function, 82–83
SharePoint Server 2013 Virtual Machine Setup Guide

(Critical Path Training), free download
for building app environment for private
networks, 7

SharePoint solution development
challenges with, 2–4
moving to SharePoint app development, 1–2
solution package files for deployment, 29

SharePoint solution projects, custom actions in, 25
SHAREPOINT\SYSTEM account, impersonating, 3

SharePoint tenancy

184 Index

SharePoint tenancy
Office 365 creating new, 5
provider-hosted app installed in, 10–11

Silverlight
accessing portion of core SharePoint functionality

from, 58
writing SharePoint-hosted app using, 8

Simple Object Access Protocol (SOAP), 77
singleton pattern, 51
Site Content page, 38
site scope, installing SharePoint apps at, 7
Site Subscriptions Settings Service

creating instance of, 6
in SharePoint farm supporting apps, 5–6

{SiteUrl} token, 28
$skip operators, in RESTful operations, 81
SOAP (Simple Object Access Protocol), 77
social feed, 168–171
SocialFeedManager class, 170
SocialFeedType, 170–171
sorting items, in RESTful operations, 81
sortlist parameter, 165
{Source} token, 28
sourceid parameter, 165
SPAppPrincipalManager class, 133–134
SPAppWebUrl parameter, 60, 154
SP.ClientContext class, 60
SP.Data.ContactsListItem, 84–85
SPHostTitle parameter, 154
SPHostUrl parameter, 18, 21, 154
SPLangauge parameter, 18, 154
SP.ListItemCreationInformation object, 75
SPRemoteEventResult class, 42
SP.RequestExecutor object, 156, 158
SPSecurity.RunWithElevatedPrivileges, calling, 3
SP.WebRequestInfo object, 159
SQL Azure databases

autohosted app associated with, 33
creating on demand, 13

SQL Package property, 34
SSL (Secure Sockets Layer), 114, 131–132
{StandardTokens} token, 18–19, 21, 154
standard web parts vs. app parts, 22
start page

app start page linking back to host web, 21
URL setting of, 17–19

<StartPage> element
configuring URL within, 17
creating URL for, 18
in MVC4 project, 150, 152

startrow parameter, 165
static class, structure of, 89
strict JavaScript, 47–48
symmetric encryption, 114

T
tenancies

concept of, 5
managing, 6

tenancy scope
installing apps at, 38–39
installing SharePoint app at, 7

tenant administrator, 5
title, defining, 155
Title property, 61, 88
title string, 114
TokenHelper class, 119–122, 128, 130, 135, 162
$top, in RESTful operations, 81
TrustAllCertificates, calling, 136
trusted security token issuer, 130
type metadata, 84–85
typeof operator values, 47

U
UI custom actions

about, 25
as entry point of app user interface, 21
building, 24–25
feature hosting, 32
item templates for adding, 23
tokens that can be used in, 28

Uniform Resource Identifiers (URI), 77
updateItem function, 76
Update method, 67
updating operations

in JavaScript CSOM, 76
through managed CSOM, 67
using C# against REST API, 91–92
using RESTful URI, 86–87

upgrading apps, 39–40
upgrading code, to newer version of SharePoint

solution, 3
URIs (Uniform Resource Identifiers)

deleting operation using, 87
namespace, 80
object, 80

 Windows PowerShell

 Index 185

RESTful
about using, 77
creating, 82–83
creating app web in, 82–83
creating items using, 84
entry point for REST using, 79
instantiating and initializing

SP.WebRequestInfo object with, 159
reading items using, 85
updating items using, 86–87
viewing REST operations using, 78

using HttpWebRequest object for invoking, 88
value of Scope attribute, 108–109

URL
code required to generate permission request by

using authorization, 127
parts of app web, 20–21
redirect, 114
specifying OData source, 167
start page setting, 17–19

<UrlAction> element, configuring, 27
<Url> element, 161
user authentication

in web applications, 97, 99
managing permissions, 106–107

"use strict" statement, 47–48
using statement, 61

V
variables

about, 46–47
populating, 70

var keyword, 46–47
VBScript, writing SharePoint-hosted app using, 8
ViewBag object, 151
ViewModel component

JavaScript binding, 137–138
Knockout library allowing JavaScript to

create, 139–143
Views, adding for Controller, 152
Visual Studio 2012

adding new project item for client web part, 22
adding web service entry point when changing

app events properties, 41–42
app manifest designer in, 16–17
app project template code, 69, 82
creating autohosted app in, 32, 34

debugging phase of SharePoint app project
and, 17

implementing app part in, 22

W
WCF (Windows Communication Foundation), 58
web applications

avoid creating classic-mode, 97
configuring user in, 97

web.config files
requirements when developing apps for use in

Office 365 as, 118–119
updating, 135

web.config files, managing assembly redirection
entries across, 3

web deploy package, building for autohosted
app, 32

web forms, challenges of, 146–148
webpages

binding server side SharePoint data sources to
app, 139–143

binding ViewModel to, 140
implementing apps with JavaScript and

relationship to, 138–139
Web Project property, setting, 149
web proxy, 159–160
web-scoped features, host web feature, 31
webServerRelativeUrl property, 82–83
web service entry point, adding, 41–42
websites, writing server-side code executing at

external, 8
web tokens, JavaScript object notation, 124
Windows Azure

Office 365 environment integrating with, 13
packaging format for environment in, 32

Windows Azure ACS
about, 112
creating access tokens, 122
creating context tokens, 116–118
keeping configuration data for app principals in

sync, 113
OAuth authentication and, 102, 121, 122

Windows Azure Catalog Apps, publishing, 35
Windows Communication Foundation (WCF), 58
Windows PowerShell

creating app catalog site in, 35
creating instance of Site Subscriptions Settings

Service using, 6

Windows PowerShell script, creating x.509 certificates with public/private key pair

186 Index

Windows PowerShell script, creating x.509
certificates with public/private key
pair, 131–132

Workflow Manager, creating S2S trusts for, 130
Write permissions, 109
writing and reading to social feed, 168–170
.wsp files, 29

X
x.509 certificates, 102, 131–132
X-Frame-Options header, 23–24
XML code

definition for client web part in SharePoint-
hosted app project, 22

editing within <CustomAction> element, 25
within <Content> element, 22

XML files
app manifest, 14–15
defining client web parts and UI custom actions

in packaging of, 32
XSS (Cross-site Scripting), 100, 156

About the Authors

SCOT HILLIER is an independent consultant and Microsoft SharePoint Most
Valuable Professional, focused on creating solutions for Information Workers
with SharePoint, Microsoft Office, and related Microsoft .NET technologies.
He is the author/coauthor of 15 books and DVDs on Microsoft technologies,
including Inside Microsoft SharePoint 2010. Scot splits his time between con-
sulting on SharePoint projects, speaking at SharePoint events such as Tech Ed,

and delivering training for SharePoint Developers. Scot is a former United States Navy
submarine officer and graduate of the Virginia Military Institute. He can be reached at
scot@shillier.com.

TED PATTISON is an author, instructor and owner of Critical Path Training
(www.CriticalPathTraining.com), a company dedicated to education on
SharePoint technologies. Ted has worked with Microsoft’s Developer Platform
Evangelism group and the SharePoint Product team to research and author
SharePoint developer training material early in the alpha phase of the product
lifecycle for SharePoint 2007, SharePoint 2010, and SharePoint 2013. He is also

the coauthor of Inside Microsoft SharePoint 2010.

mailto:scot@shillier.com
http://www.CriticalPathTraining.com

SurvPage_Corp_02.indd 1 5/19/2011 4:18:12 PM

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

CriticalPathsAdFinal.10.12:Layout 1 10/16/12 11:34 AM Page 1

Critical Path Training is your fastest way

up the SharePoint 2010 learning curve.

Listen to what our customers have to say:

[The Great SharePoint Adventure] was the best course I‘ve ever
taken. Ted [Pattison] did an excellent job of presenting the “ information, and the demos were extremely useful.

John, British Columbia

Andrew [Connell] is a rock star. Easily the best instructor I‘ve had
for a technical training class. He knows SharePoint, keeps it
entertaining, and doesn‘t forget how it's done in the real world.
Top notch.

Tim, Michigan

Maurice Prather is the best Microsoft trainer I have ever had at
any conference, seminar, or paid training.

Tim, Dallas

Asif [Rehmani] is a wonderful instructor. He paced the class well
and used lots of real world examples to apply the materials. I
also appreciated him suggesting outside vendors for sharepoint
products; it‘s nice to hear from the people who really know these
vendors!

Heidi, Florida

Matt McDermott was as entertaining as he was educational.
Phenomenal instructor. Timing of the course was perfect and was
a good pace all week. Plenty of time for labs. I would recommend
this course to all SharePoint IT Professionals.

Daniel, Florida

”
Get training directly from the instructors who wrote this book. Critical Path Training

offers handson training, online training, private onsite classes and courseware licensing.

Ted Pattison Andrew Connell Scot Hillier Maurice Prather Asif Rehmani Matt McDermott David Mann John Holliday

www.CriticalPathTraining.com @criticalpath

http:www.CriticalPathTraining.com

	Table of Contents
	Introduction
	Chapter 1: Introducing SharePoint apps
	Understanding the new SharePoint app model
	Understanding SharePoint solution challenges
	Understanding SharePoint app model design goals

	Understanding SharePoint app model architecture
	Working with app service applications
	Understanding app installation scopes
	Understanding app code isolation
	Understanding app hosting models
	Reviewing the app manifest
	Setting the start page URL
	Understanding the app web
	Working with app user-interface entry points

	Packaging and distributing apps
	Packaging apps
	Publishing apps
	Installing apps
	Upgrading apps
	Trapping app lifecycle events

	Conclusion

	Index

