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Introduction

With the release of SharePoint 2013, Microsoft has dramatically changed the rules for SharePoint 
developers. The introduction of the new app development model is intended to essentially 

eliminate the development of full-trust and sandboxed solutions for SharePoint. Although both of 
these solution types are still available in SharePoint 2013, the message from Microsoft is clear: all new 
SharePoint development should be done by using the app model.

We cover the reasons for this seismic shift in detail in Chapter 1, so we won’t repeat them here. How-
ever, the SharePoint community will probably be left with many questions about the future even after 
understanding Microsoft’s logic. Certainly, the most important questions revolve around whether 
organizations will actually accept the primacy of the app model. Most SharePoint installations are 
on-premises farms with significant investment in custom full-trust solutions. These solutions take the 
form of Web Parts, workflows, application pages, event handlers, and so on that perform significant 
custom processing. Clearly, organizations cannot abandon these investments overnight. On the other 
hand, no one can deny the momentum pressuring organizations to move more functionality into the 
cloud where the full-trust model simply does not work effectively.

For developers, the situation is both intriguing and concerning. Many SharePoint developers—the 
authors of this book included—have spent a decade mastering the intricacies of the full-trust model. 
Now, we find ourselves faced with the reality that a portion of this knowledge might be in jeopardy. 
Even though all the expertise surrounding SharePoint infrastructure, architecture, and declarative pro-
cessing is still useful, the app model forbids the use of the server-side object model, which has been 
the “bread and butter” of SharePoint developers for more than ten years.

On the positive side, the app model opens up new and exciting possibilities for development. Cloud-
based apps allow for scenarios that were difficult or impossible to create in previous versions of 
SharePoint. Developers now have client-side access to every major workload in SharePoint through 
the client-side object model and REST, which means that SharePoint 2013 fits perfectly into cloud-
based and cross-platform development models. Additionally, SharePoint developers now have access 
to a marketplace to sell their applications to Microsoft Office 365 users.

Although this book can’t answer all of the adoption questions the community will face, it can certainly 
help you to get started in app development. There are many new skills for you to learn including ad-
vanced JavaScript patterns, OAuth security, and cloud-based development models. If you are like the 
hundreds of Microsoft employees and partners we have already taught, you’ll find yourself reacting 
with a mix of excitement, joy, denial, and frustration. We look forward to working through it with you 
and the rest of the SharePoint community.
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Who this book is for

This book is written for experienced SharePoint developers who are proficient with Microsoft Visual 
Studio 2012, the Microsoft .NET 4.0 framework, and who understand the fundamentals of the Share-
Point object model. The code samples in this book are written in JavaScript and C# and are intended 
to represent the spectrum of possible app solutions. The primary audience for the book is SharePoint 
architects and developers who are looking to master the new app model in SharePoint 2013.

Organization of this book

This book is organized into four chapters:

Chapter 1, “Introducing SharePoint apps,” covers the new app model in detail. This chapter pres-
ents the historical context that justifies the app model and the fundamental development process.

Chapter 2, “Client-side programming,” first provides a JavaScript and jQuery primer for SharePoint 
developers with an emphasis on professional patterns. The second half of the chapter presents the 
fundamentals of the client-side object model and REST APIs for SharePoint 2013.

Chapter 3, “App security,” presents the security concepts necessary to successfully develop apps. 
This chapter explains the concept of the app principal and presents the details behind the OAuth 
security model.

Chapter 4, “Developing SharePoint apps,” presents professional patterns for app development such 
as Model-View-ViewModel (MVVM) and Model-View-Controller (MVC). Within these patterns, the 
chapter shows the basics of creating apps with various workloads, such as search, Business Connectiv-
ity Services (BCS), and the social capabilities.

Prerelease software

To help you become familiar with SharePoint 2013 as early as possible, this book was written by using 
examples that work with SharePoint 2013 Preview. Consequently, the final version might include new 
features, and features discussed in this book might change or disappear altogether. You can refer to 
the “Capabilities and features in SharePoint 2013” topic on TechNet at technet.microsoft.com/en-us/
sharepoint/fp142374.aspx for the most up-to-date list of changes to the product. Be aware, however, 
that you might also notice some differences between the “Release to Manufacture” (RTM) version of 
the product and the descriptions and screen shots that are provided in this book.

More Info You can find information about the Exchange Server 2013 Preview at technet.
microsoft.com/en-us/library/bb124558(v=exchg.150).aspx. You can find more information 
about the Lync 2013 Preview at lync.microsoft.com/en-us/Pages/Lync-2013-Preview.aspx.

http://technet.microsoft.com/en-us/library/bb124558(v=exchg.150).aspx
http://technet.microsoft.com/en-us/library/bb124558(v=exchg.150).aspx
http://lync.microsoft.com/en-us/Pages/unified-communications.aspx
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Code samples

You can download the companion code samples from the book 's catalog page at: 

http://www.microsoftpressstore.com/title/9780735674981

Copy and unzip the files in the root of the C: drive.  If you copy and unzip the files in another 
folder, you might get an error message because the total file paths are too long.

Support & feedback

The following sections provide information on errata, book support, feedback, and contact information.

Errata

We’ve made every effort to ensure the accuracy of this book and its companion content. Any errors 
that have been reported since this book was published are listed on our Microsoft Press site:

http://www.microsoftpressstore.com/title/9780735674981

If you find an error that is not already listed, you can report it to us through the same page.

If you need additional support, send an email to Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the addresses 
above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most valuable asset. 
Please tell us what you think of this book at: 

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in advance for 
your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress
http://www.microsoftpressstore.com/title/9780735674981
http://www.microsoftpressstore.com/title/9780735674981
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Introducing SharePoint apps

Let’s begin with a bit of history so that you can understand why and how the Microsoft SharePoint 
app model came about. It was back with SharePoint 2007 that Microsoft first invested to transform 

SharePoint technologies into a true development platform by introducing features and farm solu-
tions. With the release of SharePoint 2010, Microsoft extended the options available to developers 
by introducing sandboxed-solution deployment as an alternative to farm-solution deployment. With 
SharePoint 2013, Microsoft has now added a third option for SharePoint developer with the introduc-
tion of SharePoint apps.

When developing for SharePoint 2013, you must learn how to decide between using a farm 
solution, a sandboxed solution, or a SharePoint app. To make this decision in an informed manner, 
you must learn what’s different about developing SharePoint apps. As you will see in this chapter, 
SharePoint app development has several important strengths and a few noteworthy constraints when 
compared to the “old school” approach of developing SharePoint solutions for SharePoint 2010.

As you begin to get your head around what the new SharePoint app model is all about, it’s helpful 
to understand one of Microsoft’s key motivations behind it. SharePoint 2007 and SharePoint 2010 
have gained large-scale adoption worldwide and have generated billions of dollars in revenue primar-
ily due to companies and organizations that have installed SharePoint on their own hardware in an 
on-premises farm. And, whereas previous versions of SharePoint have been very successful products 
with respect to all these on-premises farms, Microsoft’s success and adoption rate in hosted environ-
ments such as Microsoft Office 365 have been far more modest.

The release of SharePoint 2013 represents a significant shift in Microsoft’s strategy for evolving the 
product. Microsoft’s focus is now concerned with improving how SharePoint works in the cloud, espe-
cially with Office 365. Microsoft’s primary investment in SharePoint 2013 has been to add features 
and functionality that work equally well in the cloud as they do in on-premises farms.

Understanding the new SharePoint app model

The move from SharePoint solutions development to SharePoint app development represents a 
significant change in development technique and perspective. However, Microsoft is not making this 
change just for the sake of making a change; there are very valid technical reasons that warrant such a 
drastic shift in the future of the SharePoint development platform.
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To fully understand Microsoft’s motivation for beginning to transition away from SharePoint solu-
tions to the new SharePoint app model, you must first understand the problems and pain points of 
SharePoint solutions development. Therefore, this section will begin by describing the limitations 
and constraints imposed by SharePoint solution development. After that, the discussion turns to the 
design goals and architecture of the new SharePoint app model and addresses how this architecture 
improves upon the limitations and constraints imposed by SharePoint solution development.

Understanding SharePoint solution challenges
The first problem with SharePoint solutions development is that most of the custom code written 
by developers runs within the SharePoint host environment. For example, managed code deployed 
in a farm solution runs within the main SharePoint worker process (w3wp.exe). Managed code 
deployed by using a sandboxed solution runs within the SharePoint sandboxed worker process 
(SPUCWorkerProcess.exe).

There are two primary reasons why Microsoft wants to get rid of custom code that runs within the 
SharePoint environment. The first reason has to do with increasing the stability of SharePoint farms. 
This one should be pretty obvious. Eliminating any type of custom code that runs within the Share-
Point environment results in lower risk, fewer problems, and greater stability for the hosting farm.

The second reason has to do with the ability to upgrade an on-premises farm to newer versions of 
SharePoint. SharePoint solutions are often developed with full trust and perform complex operations. 
These solutions are often tightly bound to a particular feature set, which means that they might not 
move gracefully to the next version of SharePoint. Fearing a complete rewrite of dozens of solutions, 
many customers delay upgrading their SharePoint farms.

Microsoft has witnessed many of their biggest SharePoint customers postponing the upgrade 
of their production on-premises farms for months and sometimes years until they have had time to 
update their SharePoint solution code and test it against the new version of Microsoft.SharePoint.dll. 
Because this is a problem that negatively affects SharePoint sales revenue, you can bet it was pretty 
high on the priority list of problems to fix when Microsoft began to design SharePoint 2013.

Another significant problem with SharePoint solution development has to do with security and 
permissions. The root problem is that code always runs under the identity and with the permissions 
of a specific user. As an example, think about the common scenario in which a site administrator acti-
vates a feature from a SharePoint solution that has a feature receiver. There is a security issue in that 
a SharePoint solution with a feature receiver is able to execute code that can do anything that the site 
administrator can do. There really isn’t a practical way to constrain the SharePoint solution code so 
that it runs with a lesser set of permissions than the user that has activated the feature.

Most SharePoint professionals are under the impression that code inside a sandboxed solution 
is constrained from being able to perform attacks. This is only partially true. The sandbox protects 
the farm and other site collections within the farm, but it does not really protect the content of 
the site collections in which a sandboxed solution is activated. For example, there isn’t any type of 
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enforcement to prohibit the feature activation code in a sandboxed solution from deleting every item 
and every document in the current site collection.

Another issue with sandboxed solutions is that there’s no ability to perform impersonation. There-
fore, custom code in a sandboxed solution always runs as the current user. This can be very limiting 
when the current user is a low-privileged user such as a contributor or a visitor. There is no way to 
elevate privileges so that your code can do more than the current user.

Farm solutions, on the other hand, allow for impersonation. This means a developer can elevate 
privileges so that farm solution code can perform actions even when the current user does not pos-
sess the required permissions. However, this simply replaces one problem with another.

A farm solution developer can call SPSecurity.RunWithElevatedPrivileges, which allows custom code 
to impersonate the all-powerful SHAREPOINT\SYSTEM account. When code runs under this identity, 
it executes with no security constraints whatsoever. The code can then essentially do whatever it 
wants on a farm-wide basis. This type of impersonation represents the Pandora’s Box of the Share-
Point development platform because a farm solution could perform an attack on any part of a farm 
in which it’s deployed, and it must be trusted not to do so. As you can imagine, this can cause anxiety 
with SharePoint farm administrators who are much fonder of security enforcement than they are of 
trust.

In a nutshell, the security problems with SharePoint solutions stem from the fact that you cannot 
effectively configure permissions for a specific SharePoint solution. This limitation cannot be over-
come, because the SharePoint solution development model provides no way to establish the identity 
of SharePoint solution code independent of user identity. Because there is no ability to establish the 
identity of code from a SharePoint solution, there is no way to configure permissions for it.

The last important pain point of SharePoint solution development centers around installation and 
upgrade. The installation of farm solutions is problematic because it requires a farm administrator, 
and it often requires restarting Internet Information Services (IIS) on all the front-end web servers, 
causing an interruption in service. Although the deployment of a SharePoint solution doesn’t involve 
these problems, it raises other concerns. Business users often have trouble with the process of finding 
and uploading sandboxed solutions in order to activate them. Furthermore, a business user has very 
little to indicate whether or not to trust a sandboxed solution before activating it and giving its code 
access to all the content within the current site collection.

Of all the issues surrounding SharePoint solution development, nothing is more prone to error and 
less understood than the support for upgrading code from one version of a SharePoint solution to 
another. Even though Microsoft added support for feature upgrade and assembly version redirection 
in SharePoint 2010, almost no one is using it. The required steps and the underlying semantics of the 
feature upgrade process have proved to be too tricky for most developers to deal with. Furthermore, 
the vast majority of professional SharePoint developers have made the decision never to change 
the assembly version number of the assembly dynamic-link library (DLL) deployed with a SharePoint 
solution. That’s because creating and managing the required assembly redirection entries across a 
growing set of web.config files is just too painful and error prone.
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You have just read about the most significant pain points with respect to SharePoint solution 
development. Here is a summary of these points.

■■ Custom code running inside the SharePoint host environment poses risks and compromises 
scalability.

■■ Custom code with dependencies on in-process DLLs causes problems when migrating from 
one version of SharePoint to the next.

■■ A permissions model for custom code based entirely on the identity of the current user is 
inflexible.

■■ User impersonation solves the too-little-permissions problem but replaces it with the 
too-many-permissions problem, which is even worse.

■■ SharePoint solutions lack effective support and easily understood semantics for distribution, 
installation, and upgrade.

Understanding SharePoint app model design goals
The SharePoint app model was designed from the ground up to remedy the problems with Share-
Point solutions that were discussed in the previous section. This means that the architecture of the 
SharePoint app model is very different from that of SharePoint solutions, which represent SharePoint’s 
original development platform. This new architecture was built based on the following design goals.

■■ Apps must be supported in Office 365 and in on-premises farms.

■■ App code never runs within the SharePoint host environment.

■■ App code programs against SharePoint sites by using web service entry points to minimize 
version-specific dependencies.

■■ App code is authenticated and runs under a distinct identity.

■■ App permissions can be configured independently of user permissions.

■■ Apps are deployed by using a publishing scheme based on app catalogs.

■■ Apps that are published in a catalog are easier to discover, install, and upgrade.

You have now seen the design goals for the new SharePoint app model, and you understand the 
motivating factors behind them. This should provide you with greater insight and a better apprecia-
tion as to why Microsoft designed the SharePoint app model the way it did. Now, it’s time to dive into 
the details of the SharePoint app model and its underlying architecture.
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Understanding SharePoint app model architecture

Microsoft designed the SharePoint app model to work in the Office 365 environment as well as within 
on-premises farms. However, developing for Office 365 introduces a few important new concepts 
that will be unfamiliar to many experienced SharePoint developers. One of the new concepts that is 
essential to the development of SharePoint apps is a SharePoint tenancy.

A SharePoint tenancy is a set of site collections that are configured and administrated as a unit. 
When a new customer establishes an Office 365 account to host its SharePoint sites, the Office 365 
environment creates a new tenancy. The customer’s business users that access the tenancy are known 
(not surprisingly) as tenants.

When the Office 365 environment creates a new tenancy for a customer, it creates an administra-
tive site collection which is accessible to users who have been configured to play the role of a tenant 
administrator. A tenant administrator can create additional site collections and configure the set of 
services that are available to all the sites running within the tenancy.

The concept of tenancies was first introduced in SharePoint 2010 to support hosting environments 
such as Office 365. Although the creation and use of tenancies is essential to the Office 365 environ-
ment, their use has not been widely adopted in on-premises farms. This is primarily due to the fact 
that SharePoint farm administrators can create site collections and configure the services available to 
users within the scope of a web application.

The architecture of the SharePoint app model requires that apps are always installed and run 
within the context of a specific tenancy. This can be a bit confusing for scenarios in which you want to 
install SharePoint apps in an on-premises farm that doesn’t involve the explicit creation of tenancies. 
However, SharePoint 2013 is able to support installing and running SharePoint apps in on-premises 
farms by transparently creating a farm-wide tenancy behind the scenes that is known as the default 
tenancy.

Working with app service applications
SharePoint 2013 relies on two service applications to manage the environment that supports Share-
Point apps. The first service application is the App Management Service, which is new to SharePoint 
2013. The second service application is the Site Subscriptions Settings Service, which was introduced 
in SharePoint 2010. A high-level view of a SharePoint 2013 farm running these two service applica-
tions is shown in Figure 1-1.
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FIGURE 1-1 A SharePoint Farm that supports apps requires an instance of the App Management Service and the 
Site Subscription service to be running.

The App Management Service has its own database that is used to store the configuration details 
for apps as they are installed and configured. The App Management Service is also responsible for 
tracking other types of app-specific configuration data that deals with app security principals, app 
permissions, and app licensing.

The Site Subscription Settings Service takes on the responsibility of managing tenancies. Each time 
a new tenancy is created, this service adds configuration data for it in its own database. The Site Sub-
scription Settings Service is particularly important to the SharePoint app model due to the require-
ment that SharePoint apps must always be installed and run within the context of a specific tenancy.

When you are working within the Office 365 environment, you never have to worry about creat-
ing or configuring these two service applications, because they are entirely managed behind the 
scenes. However, things are different when you want to configure support for SharePoint apps in an 
on-premises farm. In particular, you must explicitly create an instance of both the App Management 
Service and the Site Subscription Settings Service.

Creating an instance of App Management Service is easier because it can be done by hand via the 
Central Administration or by using the Farm Creation Wizard. Creating an instance of Site Subscrip-
tion Settings Service is a bit trickier because it must be done by using Windows PowerShell. However, 
when you create an instance of the Site Subscription Settings Service by using Windows PowerShell, 
it automatically creates the default tenancy which then makes it possible to install SharePoint apps in 
sites throughout the farm.
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Building an environment for SharePoint app development
If you plan on developing SharePoint apps that will be used within private networks such as a 
corporate LAN, it makes sense to build out a development environment with a local SharePoint 
2013 farm. Critical Path Training provides a free download in PDF format called the SharePoint 
Server 2013 Virtual Machine Setup Guide, which provides you with step-by-step instructions to 
install all the software you need to create a development environment with a local SharePoint 
2013 farm. You can download the guide from http://criticalpathtraining.com/Members.

 

Understanding app installation scopes
A SharePoint app must be installed before it can be made available to users. When you install 
a SharePoint app, you must install it within the context of a target web. Once the app has been 
installed, users can then launch the app and begin to use it. The site from which an app has been 
launched is known as the host web.

There are two different scopes in which you can install and configure a SharePoint app. The sce-
nario that is easier to understand is when an app is installed at site scope. In this scenario, the app is 
installed and launched within the scope of the same SharePoint site. In this scenario, the host web will 
always be the same site where the app has been installed.

SharePoint apps can also be installed and configured at tenancy scope. In this scenario, an app 
is installed in a special type of SharePoint site known as an app catalog site. Once the app has been 
installed in an app catalog site, the app can then be configured so that users can launch it from other 
sites. In this scenario, the host web will not be the same site where the app has been installed.

The ability to install and configure apps at tenancy scope is especially valuable for scenarios in 
which a single app is going to be used by many different users across multiple sites within an Office 
365 tenancy or an on-premises farm. A single administrative user can configure app permissions and 
manage licensing in one place, which prevents the need to install and configure the app on a site-by-
site basis. The topic of installing apps will be revisited in greater detail at the end of this chapter.

This book discusses many different scenarios in which SharePoint apps behave the same way, 
regardless of whether they have been installed in an Office 365 tenancy or in an on-premises farm. 
Therefore, the book frequently uses the generic term SharePoint host environment when talking 
about scenarios that work the same across either environment.
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Understanding app code isolation
When you develop a SharePoint app, you obviously need to write custom code to implement your 
business logic, and that code must run some place other than on the web servers in the hosting 
SharePoint farm. The SharePoint app model provides you with two places to run your custom code. 
First, a SharePoint app can contain client-side code that runs inside the browser on the user’s com-
puter. Second, a SharePoint app can contain server-side code that runs in an external website that is 
implemented and deployed as part of the app itself.

There are many different ways in which you can design and implement a SharePoint app. For 
example, you could create a SharePoint app that contains only client-side resources such as web 
pages and client-side JavaScript code that are served up by the SharePoint host environment. This 
type of app is known as a SharePoint-hosted app because it is contained entirely within the app web. 
You could write a SharePoint-hosted app that uses Microsoft Silverlight, Microsoft VBScript, Flash, or 
whatever client-side technology you prefer.

Now, imagine that you want to create a second SharePoint app in which you want to write server-
side code in a language such as C#. This type of SharePoint app will require its own external website 
so that your server-side code has a place to execute outside of the SharePoint host environment. In 
SharePoint 2013 terminology, a SharePoint app with its own external website is known as a cloud-
hosted app, and the external website is known as the remote web. The diagram in Figure 1-2 shows 
the key architectural difference between a SharePoint-hosted app and a cloud-hosted app.

From the diagram in Figure 1-2, you can see that both SharePoint-hosted apps and cloud-hosted 
apps have a start page that represents the app’s primary entry point. With a SharePoint-hosted app, 
the app’s start page is served up by the SharePoint host; however, with a cloud-hosted app, the start 
page is served up from the remote web. Therefore, the SharePoint host environment must track the 
remote web URL for each cloud-hosted app that has been installed so that it can redirect users to the 
app’s start page.

There is infrastructure in the SharePoint host environment that creates a client-side JavaScript 
component known as an app launcher that is used to redirect the user from a page served up by the 
SharePoint host environment over to the remote web.

When you decide to develop a cloud-hosted SharePoint app, you must often take on the respon-
sibility of hosting the app’s remote web. However, this responsibility of creating and deploying a 
remote web along with a SharePoint app also comes with a degree of flexibility. You can implement 
the remote web associated with a SharePoint app by using any existing web-based development 
platform.

For example, the remote web for a cloud-hosted SharePoint app could be implemented by using 
a non-Microsoft platform such as Java, LAMP, or PHP. However, the easiest and the most common 
approach for SharePoint developers is to design and implement the remote web for cloud-hosted 
apps by using ASP.NET web forms or MVC4. Chapter 4, “Developing SharePoint Apps,” discusses sev-
eral patterns that use these technologies.
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FIGURE 1-2 A cloud-hosted app differs from a SharePoint-hosted app in that it has an associated remote web, 
which must be deployed on a separate infrastructure from the SharePoint farm.
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Understanding app hosting models
Thus far, this chapter has discussed how a SharePoint app can be categorized as either a SharePoint-
hosted app or a cloud-hosted app. However, the SharePoint app model actually defines three app 
hosting models, not just two. Any time you create a new SharePoint app project in Microsoft Visual 
Studio 2012 you must pick from one of the following three app hosting models.

■■ SharePoint-hosted

■■ Provider-hosted

■■ Autohosted

This chapter has already explained SharePoint-hosted apps. As you recall, a SharePoint-hosted app 
is simply an app that adds its start page and all its other resources into the SharePoint host environ-
ment during installation. Now, it’s time to explain the differences between the other two app hosting 
models.

A provider-hosted app and an autohosted app are just two variations of the hosting model for a 
cloud-hosted app. Both types of apps have an associated remote web that is capable of hosting the 
app’s start page and any other resources the app requires. Furthermore, both provider-hosted apps 
and autohosted apps can and often will host their own custom databases to store app-specific data. 
The difference between these two different app hosting models involves how the remote web and its 
associated database are created when an app is deployed and installed.

It makes sense to begin by first examining the hosting model for a provider-hosted app. Imagine 
a scenario in which a developer has just finished testing and debugging a provider-hosted app that 
has a remote web with its own custom database. Before the app can be installed in a SharePoint host 
environment, the developer or some other party must first deploy the website for the remote web to 
make it accessible across the Internet or on a private network.

The custom database used by the remote web must also be created on a database server and 
made accessible to the remote web as part of the deployment process. Once the remote web and its 
custom database are up and running, the provider-hosted app can then be installed in a SharePoint 
tenancy and made available to the customer’s users, as demonstrated in Figure 1-3.
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FIGURE 1-3 Provider-hosted apps are deployed in their own infrastructure including any required databases.

Once a provider-hosted app has been deployed, the company that developed the app usually 
assumes the responsibility for its ongoing maintenance. For example, if a company develops a pro-
vider-hosted app and deploys its remote web on one or more of its local web servers, it must ensure 
that those web servers remain healthy and accessible. If it deploys the remote app for its provider-
hosted in a hosting environment such as Windows Azure, it must pay a monthly fee for the hosting 
services. Furthermore, it will be responsible for backing up the app’s database and then restoring it if 
data becomes lost or corrupt.

Keep in mind that a provider-hosted app can be installed in more than one SharePoint site. Fur-
thermore, a provider-hosted app can be installed in many different SharePoint sites that span across 
multiple customers and multiple SharePoint host environments. This is a common scenario which is 
known as multi-tenancy. What is critical to acknowledge is that multi-tenancy introduces several note-
worthy design issues and deployment concerns. Let’s look at an example.

Think about a scenario involving multi-tenancy in which a provider-hosted app has been installed 
by many different customers and the number of users is continually growing larger. All these users 
will be accessing the same remote web through a single entry point, which is the app’s start page, as 
shown in Figure 1-4.
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FIGURE 1-4 A provider-hosted app in a multi-tenant environment must be designed to scale and to isolate data 
on a customer-by-customer basis.

As you can imagine, a provider-hosted app in this type of multitenant scenario must have a way to 
scale up as the number of users increases. Furthermore, this type of app should generally be designed 
to isolate the data for each customer to keep it separate from the data belonging to other custom-
ers—you would never want one customer accessing another customer’s data. Depending on the 
customers’ industry, there could even be government regulations or privacy concerns that prevent the 
app from storing data for different customers within the same set of tables or even within the same 
database.



 CHAPTER 1 Introducing SharePoint apps  13

The important takeaway is that multi-tenancy introduces complexity. The development of a 
provider-hosted app that will be used in a multi-tenant scenario typically requires a design that iso-
lates data on a customer-by-customer basis. As you can imagine, this increases both the time and the 
cost associated with developing a provider-hosted app.

Now that you have seen some of the inherit design issues that arise due to multi-tenancy, you will 
be able to more fully appreciate the benefits of the hosting model for autohosted apps. Autohosted 
apps offer value because they prevent the developer from having to worry about many of the issues 
involved with app deployment, scalability, and data isolation.

The first thing to understand about autohosted apps is that they are only supported in the Office 
365 environment. Although this constraint might change in future releases, with SharePoint 2013 
you cannot install an autohosted app in an on-premises farm. The reason for this is that the hosting 
model for autohosted apps is based on a private infrastructure that integrates the Office 365 environ-
ment with Windows Azure and its ability to provision websites and databases on demand.

The central idea behind the hosting model for autohosted apps is that the Office 365 environment 
can deploy the remote web on demand when an app is installed. You can also configure an auto-
hosted app so that it creates its own private database during app installation. Once again, the Office 
365 environment and its integration with Windows Azure is able to create a SQL Azure database on 
demand and then make it accessible to the remote web.

Autohosted apps offer value over provider-hosted apps because the Office 365 environment trans-
parently handles the deployment of the remote web and potentially the creation of a custom data-
base, as well. Autohosted apps also transfer the ongoing cost of ownership of the remote web and its 
database from the developer over to the customer who owns the Office 365 tenancy where the app 
has been installed. Therefore, the app developer doesn’t have to worry about babysitting web serv-
ers, backing up databases, or coming up with a strategy scaling up the remote web as the number of 
users increases.

The benefits of an autohosted app over a provider-hosted app also extend into app design, which 
can serve to lower development costs. That’s because each customer receives its own private data-
base whenever installing an autohosted app, as illustrated in Figure 1-5. The benefit is that the devel-
oper isn’t required to add complexity to the app’s design and implementation to provide isolation 
because each customer’s data is isolated automatically.
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FIGURE 1-5 An autohosted app creates the required remote web and any databases automatically during 
deployment.

reviewing the app manifest
Every SharePoint app requires an XML file called AppManifest.xml, which is known as the app 
manifest. The app manifest contains essential metadata for the app that is read and tracked by the 
SharePoint host environment when an app is installed. Listing 1-1 presents a simple example of what 
the app manifest looks like for a SharePoint-hosted app.

LISTING 1-1 An app manifest

<App xmlns=http://schemas.microsoft.com/sharepoint/2012/app/manifest 
     Name=”MySharePointApp” 
     ProductID=”{b93e8f64-4d14-4c72-be47-3b89f7f5fdf6}” 
     Version=”1.0.0.0” 
     SharePointMinVersion=”15.0.0.0” > 
 
  <Properties> 
    <Title>My SharePoint App</Title> 
    <StartPage>~appWebUrl/Pages/Default.aspx?{StandardTokens}</StartPage> 
  </Properties> 
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  <AppPrincipal> 
    <Internal /> 
  </AppPrincipal> 
 
</App>

The app manifest contains a top-level <App> element which requires a set of attributes such as 
Name, ProductID, and Version. Within the <App> element there is an inner <Properties> element 
that contains important child elements such as <Title> and <StartPage>. The <Title> element con-
tains human-readable text that is displayed to the user in the app launcher. The <StartPage> element 
contains the URL that the SharePoint host environment uses in the app launcher to redirect the user 
to the app’s start page.

Listing 1-1 shows the minimal amount of metadata required in an app manifest; however, the app 
manifest for most real-world apps will contain a good deal more. The app manifest often contains 
addition metadata to configure other essential aspects of an app, such as app-level events, authen-
tication, permissions, and the SharePoint services that an app requires from the SharePoint host 
environment. Table 1-1 lists the most common elements you might be required to add to an app 
manifest.

TABLE 1-1 The elements used in the App Manifest file

Element Purpose

Name Creates the URL to the app web.

ProductID Identifies the app.

Version Indicates the specific version of the app.

SharePointMinVersion Indicates the version of SharePoint.

Properties\Title Provides text for the app launcher.

Properties\StartPage Redirects the user to the app’s start page.

Properties\SupportedLanguages Indicates which languages are supported.

Properties\WebTemplate Supplies a custom site template for the app web.

Properties\InstalledEventEndpoint Executes custom code during installation.

Properties\UpgradedEventEndpoint Executes custom code during upgrade.

Properties\UninstallingEventEndpoint Executes custom code during uninstallation.

AppPrincipal\Internal Indicates there is no need for external authentication. This is what 
is always used for SharePoint-hosted apps.

AppPrincipal\RemoteWebApplication Indicates that the app is provider-hosted and requires external 
authentication.
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Element Purpose

AppPrincipal\AutoDeployedWebApplication Indicates that the app is autohosted and requires external 
authentication.

AppPermissionRequests\AppPermissionRequest Add permission requests that must be granted during app 
installation

AppPrerequisites\AppPrerequisite Indicates what SharePoint services must be enabled in the 
SharePoint host environment for the app to work properly.

RemoteEndpoints\RemoteEndpoint Configures allowable domains for cross-domain calls using the 
web proxy.

Using the app manifest designer in Visual Studio 2012
When you are working with the app manifest in a SharePoint app project, Visual Studio 2012 provides 
the visual designer shown in Figure 1-6. This visual designer eliminates the need to edit the XML in 
the AppManifest.xml file by hand. The designer provides drop-down lists that makes editing more 
convenient and adds a valuable degree of validation as you are selecting the app start page or con-
figuring permission requests, feature prerequisites, and capability perquisites.

Although you should take advantage of the visual designer whenever you can to edit the app 
manifest, it is important to understand that it cannot make certain types of modifications that you 
might require. Therefore, you should also become accustomed to opening the AppManifest.xml file 
in code view and making changes to the XML within by hand. Fortunately, in times when you need to 
manually edit the AppManifest.xml file, Visual Studio 2012 is able to provide IntelliSense, based on the 
XML schema behind the app manifest.

FIGURE 1-6 Visual Studio 2012 provides a visual editor to edit the app manifest.
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Setting the start page UrL
Every app has a start page whose URL must be configured by using the <StartPage> element within 
the app manifest. The SharePoint host environment uses this URL when creating app launchers that 
redirect the user to the app’s start page. For a SharePoint-hosted app, the start page must be located 
in a child site known as the app web that will be discussed in more detail later in this chapter. For a 
cloud-hosted app, the start page will usually be located in the remote web.

When you are configuring the URL within the <StartPage> element for a SharePoint-hosted app 
you must use a dynamic token named ~appWebUrl, as demonstrated in the following:

~appWebUrl/Pages/Default.aspx

This use of the ~appWebUrl token is required because the actual URL to the app’s start page will 
not be known until the app has been installed. The SharePoint host environment is able to recognize 
the ~appWebUrl token during app installation and it replaces it with the absolute URL to the app web.

In the case of a provider-hosted app whose start page exists within the remote web, the 
<StartPage> element can be configured with the actual URL that is used to access the start page 
where the remote web has been deployed, such as in the following:

https://RemoteWebServer.wingtip.com/MyAppsRemoteWeb/Pages/Default.aspx

When you are debugging provider-hosted apps and autohosted apps, you can use a convenient 
dynamic token named ~remoteAppUrl that eliminates the need to hardcode the path to the remote 
web during the development phase. For example, you can configure the <StartPage> element with 
the following value:

~remoteAppUrl/Pages/Default.aspx

The reason this works during debugging is due to some extra support in Visual Studio 2012. 
When you create a new SharePoint app project and select the option for a provider-hosted app or an 
autohosted app, Visual Studio 2012 automatically creates a second project for the remote web that is 
configured as the Web Project. Whenever you debug the Visual Studio solution containing these two 
projects, Visual Studio 2012 performs a substitution to replace ~remoteAppUrl with the current URL of 
the Web Project. After the substitution, the app manifest contains a start page URL that looks like this:

https://localhost:44300/Pages/Default.aspx

The key point is that Visual Studio 2012 replaces the ~remoteAppUrl token during a debugging 
session before the app manifest is installed into the SharePoint host environment. This provides you 
with a convenience in the debugging phase of a SharePoint app project.

Now, think about what happens after you have finished testing and debugging an app and its 
remote web. Visual Studio 2012 provides a Publish command with which you can build a final version 
of the AppManifest.xml file that will be distributed along with your app. In this case, what will Visual 
Studio 2012 do with the ~remoteAppUrl token? The answer is different depending on whether the 
app is an autohosted app or a provider-hosted app.
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When you use the Publish command with an autohosted app, Visual Studio 2012 builds a final ver-
sion of the AppManifest.xml in which the ~remoteAppUrl token remains within the <StartPage> ele-
ment. This is done because the actual URL to the remote web of an autohosted app will not be known 
until the app installation process has started and the Office 365 environment has created the remote 
web. You can see that the ~remoteAppUrl token is replaced by Visual Studio 2012 in some scenarios 
and by the Office 365 environment in other scenarios.

When you use the Publish command with a provider-hosted app, the final version of the 
AppManifest.xml cannot contain the ~remoteAppUrl token. You must know the URL to the remote web 
ahead of time. Therefore, when it is used with a provider-hosted app, the Publish command prompts 
you for several pieces of information including the actual URL where the remote web will be deployed.

When creating the URL for the <StartPage> element, it is a standard practice to include a query 
string that contains another dynamic token named {StandardTokens}, as demonstrated in the follow-
ing example:

~remoteAppUrl/Pages/Default.aspx?{StandardTokens}

The {StandardTokens} token is never replaced by Visual Studio 2012. Instead, this dynamic token 
remains inside the final version of the app manifest that is installed in the SharePoint host environ-
ment. The SharePoint host environment performs a substitution on {StandardTokens} token whenever 
it creates the URL for an app launcher. This substitution involves replacing the {StandardTokens} token 
with a standard set of query string parameters that are frequently used in SharePoint app develop-
ment such as the SPHostUrl parameter and the SPLangauge parameter, as shown in the following:

default.aspx?SPHostUrl=http%3A%2F%2Fwingtipserver&SPLanguage=en%2DUS

When you implement the code behind the start page of a SharePoint app, you can generally expect 
that the page will be passed the two query string parameters named SPLanguage and SPHostUrl, which 
are used to determine the language in use and the URL that points back to the host web. In some sce-
narios, the SharePoint host environment will add additional query string parameters.

Understanding the app web
Each time you install a SharePoint app, you must install it on a specific target site. A SharePoint app 
has the ability to add its own files to the SharePoint host environment during installation. For exam-
ple, a SharePoint-hosted app must add a start page and will typically add other resources, as well, 
such as a CSS file and a JavaScript file to implement the app’s user experience. The SharePoint host 
environment stores these files in the standard fashion by adding them to the content database associ-
ated with the site in which the app is being installed.

Beyond adding basic files such as a start page and a JavaScript file, a SharePoint app also has the 
ability to create other SharePoint-specific site elements in the SharePoint host during installation such 
as lists and document libraries. Let’s look at an example.
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Imagine that you want to create a simple SharePoint app to manage customers. During installa-
tion, the app can be designed to create a customer list using the standard Contacts list type along 
with a set of pages designed to provide a snazzy user experience for adding and finding customers. 
Your app could additionally be designed to create a document library upon installation so that the 
app can store customer contracts as Microsoft Word documents, whereby each Word document 
would reference a specific customer item in the customers list.

So, where does the SharePoint host environment store the content added by an app during instal-
lation? The answer is inside a special child site that the SharePoint host environment creates under the 
site where the app has been installed. This child site is known as the app web.

The app web is an essential part of the SharePoint app model because it represents the isolated 
storage that is owned by an installed instance of a SharePoint app. The app web provides a scope for 
the app’s private implementation details. Note that an app by default has full permissions to read and 
write content within its own app web. However, SharePoint app has no other default permissions to 
access content from any other location in the SharePoint host environment. The app web is the only 
place where an app can access content without requesting permissions that then must be granted by 
a user.

There is a valuable aspect of the SharePoint app model that deals with uninstalling an app and 
ensuring that all the app-specific storage is deleted automatically. In particular, the SharePoint host 
environment will automatically delete the app web for an app whenever the app is uninstalled. This 
provides a set of cleanup semantics for SharePoint apps that is entirely missing from the development 
model for SharePoint solutions; when an app is uninstalled, it doesn’t leave a bunch of junk behind.

Understanding the app web-hosting domain
Now, it’s time to focus on the start page for a SharePoint-hosted app. As you have seen, the start 
page for a SharePoint-hosted app is added to the app web during installation. Consider a scenario 
in which you have installed a SharePoint app with the name of MyFirstApp in a SharePoint team site, 
which is accessible through the following URL:

https://intranet.wingtip.com.

During app installation, the SharePoint host environment creates the app web as a child site under 
the site where the app is being installed. The SharePoint host environment creates a relative URL for 
the app web based on the app’s Name property. Therefore, in this example, the app web is created 
with a relative path of MyFirstApp. If the app’s start page named default.aspx is located in the app 
web within the Pages folder, the relative path to the start page is MyFirstApp/Pages/default.aspx. 
Your intuition might tell you that the app’s start page will be accessible through a URL that combines 
the URL of the host web together with the relative path to the app’s start page, as in the following:

https://intranet.wingtip.com/MyFirstApp/Pages/default.aspx
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However, this is not the case. The SharePoint host environment does not make the app web or 
any of its pages accessible through the same domain as the host web that is used to launch the app. 
Instead, the SharePoint host environment creates a new unique domain on the fly each time it creates 
a new app web as part of the app installation process. By doing so, the SharePoint host environment 
can isolate all the pages from an app web in its own private domain. The start page for a SharePoint-
hosted app is made accessible through a URL that looks like this:

https://wingtiptenant-ee060af276f95a.apps.wingtip.com/MyFirstApp/Pages/Default.aspx

At this point, it should be clear why you are required to configure the <StartPage> element for a 
SharePoint-hosted app by using the ~appWebUrl token. The URL to the app web is not known until 
the SharePoint host environment creates the new domain for the app web during installation. After 
creating the domain for an app web, the SharePoint host environment can replace the ~appWebUrl 
token with an actual URL.

Let’s examine the URL that is used to access the app web in greater detail. Consider the following 
URL, which is used to access an app web in an on-premises farm:

wingtiptenant-ee060af276f95a.apps.wingtip.com/MyFirstApp

The first part of the app web URL (wingtiptenant) is based on the name of the tenancy where the 
app has been installed. This value is configurable in an on-premises farm. In the Office 365 environ-
ment, the tenancy name is established when the customer creates a new account, and it cannot be 
changed afterward.

The second part of the app web URL (ee060af276f95a) is known as an APPUID. This is a unique 
14-character identifier created by the SharePoint host environment when the app is installed. 
Remember that the APPUID is really an identifier for an installed instance of an app, as opposed to 
an identifier for the app itself.

The third part of the app web URL (apps.wingtip.com) is the app web hosting domain. You have the 
ability to configure this in an on-premises farm to whatever value you would like. Just ensure that 
you have also configured the proper DNS setting for this domain so that it resolves to an IP address 
pointing to the web server(s) of your on-premises farms. In Office 365 the app web-hosting domain is 
always sharepoint.com.

Now, ask yourself this fundamental question: why doesn’t the SharePoint host environment serve 
up pages from the app web by using the same domain as the host web from which the app has been 
launched? The reasons why the SharePoint host environment serves up pages from the app web in 
their own isolated domain might not be obvious. There are two primary reasons why the SharePoint 
app model does this. Both of these reasons are related to security and the enforcement of permis-
sions granted to an app.

The first reason for isolating an app web in its own private domain has to do with preventing direct 
JavaScript calls from pages in the app web back to the host web. This security protection of the Share-
Point app model builds on the browser’s built-in support for prohibiting cross-site scripting (XSS). 
Because JavaScript code running on pages from an app web originates from a different domain, this 
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code cannot directly call back to the host web. More specifically, calls from JavaScript running on app 
web pages do not run with the same established user identity as JavaScript code-behind pages in the 
host web. Therefore, the JavaScript code running on app web pages doesn’t automatically receive the 
same set of permissions as JavaScript code running on pages from the host web.

The second reason for creating an isolated domain for each app web has to do with processing 
of JavaScript callbacks that occur on the web server of the SharePoint host environment. Because 
the SharePoint host environment creates a new unique domain for each app web, it can determine 
exactly which app is calling when it sees a JavaScript callback originating from a page in an app web.

The key point is that the SharePoint host environment is able to use an internal mechanism to 
authenticate an app that uses JavaScript callbacks originating from its app web. As a result, the 
SharePoint host environment can enforce a security policy based on the permissions that have been 
granted to the app.

Remember that a SharePoint app has a default set of permissions by which it can access its app 
web but has no other permissions by default to access any other site. The ability of the SharePoint 
host environment to authenticate an app by inspecting the URL of incoming calls originating from 
the app web hosting domain is essential to enforcing this default permissions scheme.

Working with app user-interface entry points
Every SharePoint app requires a start page. As you know, the URL to the start pages is used within 
an app launcher to redirect the user from the host web to the start page. This type of entry into the 
user interface of the app is known as a full immersion experience because the app takes over the user 
interface of the browser with a full-page view.

The user interface guidelines of SharePoint app development require the app start page to provide 
a link back to the host web. This requirement exists so that a user can always return to the host web 
from which the app has been launched. When you are developing a SharePoint-hosted app, there is a 
standard master page used in app webs named app.master that automatically adds the required link 
back to the host web for you.

When developing a cloud-based app with the start page in the remote web, you cannot rely on a 
SharePoint master page to automatically provide the link on the start page which redirects the user 
back to the host web. Instead, you must use a technique that involves reading the SPHostUrl parame-
ter which is passed to the start page in the query string. This is one of the key reasons why you always 
want to follow the practice of adding the {StandardTokens} token to the start page URL of a cloud-
hosted app.

There are several different techniques that you can use in the code behind a start page in the 
remote web to read the SPHostUrl parameter value from the query string and use it to configure 
the required link back to the host web. For example, you can accomplish this task with server-side 
C# code or with client-side JavaScript code. In Chapter 4, you can see how to accomplish this task by 
using a client-side JavaScript component known as the chrome control.
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In addition to the required start page, a SharePoint app can optionally provide two other types of 
entry points known as app parts and UI custom actions. Unlike the start page, you use app parts and 
UI custom actions to extend the user interface of the host web.

Building app parts
An app part is a user interface element that is surfaced on pages in the host web by using an IFrame. 
Once an app with an app part has been installed, a user can then add an app part to pages in the 
host web by using the same user interface experience that is used to add standard web parts.

You implement an app part in Visual Studio 2012 by using a client web part. This makes most 
developers ask, “What’s the different between an app part and a client web part?” The best way to 
think about this is that the term “app part” is meant for SharePoint users, whereas the term “client 
web part” is used by developers to describe the implementation of an app part.

Despite having similar names, client web parts are very different from the standard web parts that 
are familiar to most SharePoint developers. In particular, a client web part cannot have any server-side 
code that runs within the SharePoint host environment. The implementation of a client web part must 
follow the rules of SharePoint app development.

Client web parts are supported under each of the three app hosting models. You implement a 
client web part in a SharePoint-hosted app by using HTML, CSS, and JavaScript. In a cloud-hosted 
app, you also have the option of implementing the behavior for a client web part by using server-side 
code in the remote web.

At first, many developers assume that a client web part is nothing more than an IFrame wrapper 
around an external web page. However, the client web part provides significant value beyond that. 
When you configure the URL within a client web part, you can use the same tokens as with the start 
page, such as ~appWebUrl, ~remoteAppUrl, and {StandardTokens}. Client web parts also support 
adding custom properties, as well. Furthermore, the page behind a client web part is often passed 
contextual security information that allows it to call back into the SharePoint host environment with 
an established app identity. You can think of the client web part as an IFrame on steroids.

When you want to add a new client web part to a SharePoint app project, you use the Add New 
Item command. The Add New Item dialog box in Visual Studio 2012 provides a Client Web Part item 
template, as shown in Figure 1-7.

When you add a new project item for a client web part, Visual Studio 2012 adds an elements.
xml file to the SharePoint app project that contains a ClientWebPart element. The following code is a 
simple example of the XML definition for a client web part in a SharePoint-hosted app project that is 
implemented by using a page inside the app web:
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FIGURE 1-7 The Add New Item dialog provides templates for adding client web parts and UI custom actions to 
app projects.

<ClientWebPart Name=”MyAppPart” Title=”My App Part” Description=”My description”  
               DefaultWidth=”300” DefaultHeight=”200” > 
 
  <Content Type=”html” Src=”~appWebUrl/Pages/AppPart1.aspx” /> 
 
</ClientWebPart>

As you can see from this example, the content displayed in a client web part is configured by 
assigning a URL to the Src attribute of the <Content> element. The web page that is referenced by 
this URL is usually added to either the app web or to the remote web. However, you can even refer-
ence a web page on the Internet that is neither in an app web nor in a remote web. The only impor-
tant restriction is that the web page cannot be returned with the X-Frame-Options header in the 
HTTP response. This is a header used by some websites to prevent its pages from being used inside an 
IFrame with a type of attack known as clickjacking.

Here is something that can catch you off guard when creating a client web part in a SharePoint-
hosted app: the default behavior of SharePoint 2013 is to add the X-Frame-Options header with a 
value of SAMEORIGIN in the HTTP response when it serves up pages from a SharePoint site. The result 
of this is that a page served up from the app web will not work when you attempt to use it as the 
page behind a client web part. The way to deal with this problem is to add the following directive to 
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the top of any page in the app web referenced by a client web part to suppress the default behavior 
of adding the X-Frame-Options header:

<WebPartPages:AllowFraming ID=”AllowFraming” runat=”server” />

When you develop client web parts, you can add custom properties. The real value of cus-
tom properties is that they can be tailored by the user in the browser in the same fashion as a 
user customizes the properties of standard web parts. You define a custom property by adding a 
<Properties> element into the <ClientWebPart> element and then adding a <Property> element 
within that, as illustrated in Listing 1-2.

LISTING 1-2 Client Web Part properties

<Properties> 
  <Property  
    Name=”MyProperty”  
    Type=”string”  
    WebBrowsable=”true”  
    WebDisplayName=”My Custom Property”  
    WebDescription=”Insightful property description”  
    WebCategory=”Custom Properties”  
    DefaultValue=”Some default value”  
    RequiresDesignerPermission=”true” /> 
</Properties>

Once you have added a custom property, you must then modify the query string at the end of 
the URL that is assigned to the Src attribute in the <Content> element. You do this by adding a query 
string parameter and assigning a value based on a pattern by which the property name is given an 
underscore before it and after it. Thus, for a property named MyProperty, you should create a query 
string parameter and assign it a value of _MyProperty_. This would result in XML within the <Content> 
element that looks like the following:

<Content  
  Type=”html”  
  Src=”~appWebUrl/Pages/AppPart1.aspx?MyPropertyParameter=_MyProperty_”  
/>

Note that you can use any name you want for the query string parameter itself. It’s when you 
assign a value to the parameter that you have to use actual property name and follow the pattern of 
adding the underscores both before and after.

Building UI custom actions
A UI custom action is a developer extension in the SharePoint app model with which you can add cus-
tom commands to the host site. The command for a UI custom action is surfaced in the user interface 
of the host site by using either a button on the ribbon or a menu command in the menu associated 
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with items in a list or documents in a document library that is known as the Edit Control Block (ECB) 
menu. It is the act of installing an app with UI custom actions that automatically extends the user 
interface of the host site with ribbon buttons and ECB menu commands.

As in the case of the client web part, UI custom actions are supported in each of the three app 
hosting models. However, a UI custom action is different than the client web part because its purpose 
is not to display content in the host web. Instead, it provides an executable command for business 
users with which they can display a page supplied by the app. The page that is referenced by a UI 
custom action can be in either the app web or the remote web.

As a developer, you have control over what is passed in the query string for a UI custom action. 
This makes it possible to pass contextual information about the item or the document on which the 
command was executed. This in turn makes it possible for code inside the app to discover informa-
tion such as the URL that can be used to access the item or document by using either the Client-Side 
Object Model (CSOM) or the new Representational State Transfer (REST) API, which is discussed in 
Chapter 2, “Client-Side Programming.”

Keep in mind that an app will require additional permissions beyond the default permission set in 
order to access content in the host web. This topic is discussed in Chapter 3, “SharePoint App Secu-
rity.” This current chapter will only discuss how to create a UI custom action that passes contextual 
information to a page supplied by the app. Chapter 3 also covers what’s required to actually use this 
information to call back into the SharePoint host environment.

In the dialog box shown earlier in Figure 1-6, you can see that Visual Studio 2012 provides a 
project item template named UI Custom Action. When you use this item template to create a new UI 
custom action, Visual Studio 2012 adds a new elements.xml file to your SharePoint app project. When 
you look inside the elements.xml file you find a <CustomAction> element that you can modify to 
define either an ECB menu item or a button on the ribbon.

Many SharePoint developers already have experience working with custom actions in SharePoint 
2007 and SharePoint 2010. The good news is that the manner in which you edit the XML within the 
<CustomAction> element for a SharePoint app project works the same way as it does for a SharePoint 
solution project. The bad news is that many of the custom actions available when developing farm 
solutions are not available when developing a SharePoint app.

In particular, a SharePoint app only allows for UI custom actions that create ECB menu commands 
and ribbon buttons. The SharePoint app model imposes this restriction to provide a balance between 
functionality and security concerns. Furthermore, you are prohibited from adding any custom Java-
Script code when you configure the URL for a UI custom action in a SharePoint app. If this restriction 
were not enforced, JavaScript code from the app could call into the host site without being granted 
the proper permissions.

Suppose that you want to create a UI custom action to add a custom ECB menu item to all the 
items in every Contacts list within the host site. You can structure the <CustomAction> element to 
look like that presented in Listing 1-3.
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LISTING 1-3 A Custom Action definition

<CustomAction  
  Id=”CustomAction1” 
  RegistrationType=”List” 
  RegistrationId=”105” 
  Location=”EditControlBlock” 
  Sequence=”100” 
  Title=”Send Contact To App”> 
 
    <UrlAction Url=”~appWebUrl/Pages/Action1.aspx” /> 
 
</CustomAction>

Once you install an app with this UI custom action, it registers an ECB menu command for every 
item in lists that have a list type ID of 105. This is the ID for the Contacts list type. Once the app is 
installed, the host web will provide a custom menu item on the ECB menu for each item in any Con-
tacts list. An example of what the ECM menu command looks like is shown in Figure 1-8.

FIGURE 1-8 A custom UI action is used to add an item to the edit-control block or ribbon.

The default action of a UI custom action is to redirect the user to the page referenced by the URL 
configured within the <UrlAction> element. This makes sense for a scenario in which you want to 
move the user from the host web into the full immersion experience of the app in order to do some 
work. However, this default behavior will provide a distracting user interface experience for a scenario 
in which a user wishes to return to the host web immediately after seeing the page displayed by the 
app. For these scenarios, you can modify the UI custom action to display the page from the app as a 
dialog box in the context of the host web. The user interface experience is much better because the 
user can see a page from the app without ever leaving the host web.
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Listing 1-4 demonstrates the technique to display the page referenced by a UI custom action as 
a dialog box, which involves adding three attributes to the <CustomAction> element. First, you add 
the HostWebDialog attribute and assign it a value of true. Next, you add the HostWebDialogWidth 
attribute and the HostWebDialogHeight attribute and assign them values to set the width and height 
of the dialog box.

LISTING 1-4 Displaying a referenced page

<CustomAction  
  Id=”CustomAction1” 
  RegistrationType=”List” 
  RegistrationId=”105” 
  Location=”EditControlBlock” 
  Sequence=”100” 
  Title=”Display more information about this contact” 
  HostWebDialog=”TRUE” 
  HostWebDialogWidth=”480”  
  HostWebDialogHeight=”240” > 
 
    <UrlAction Url=”~appWebUrl/Pages/Action1.aspx” /> 
 
  </CustomAction> 
</Elements>

Now, let’s go into more detail about configuring the Url attribute of the <UrlAction> element. 
When you configure the URL you can use the same familiar tokens that you use with the start page 
and with client web parts such as ~appWebUrl, ~remoteAppUrl, and {StandardTokens}, as shown in the 
following code:

<UrlAction Url=”~appWebUrl/Pages/Action1.aspx” />

However, UI custom actions support several additional tokens beyond what is available for start 
pages and client web parts. These are the tokens that make it possible to pass contextual information 
about the item or document on which the command was executed. For example, you can pass the 
site-relative URL to the item or document by using the {ItemURL} token.

<UrlAction Url=”~appWebUrl/Pages/Action1.aspx?ItemUrl={ItemURL}” />

In most scenarios, you will also need the absolute URL to the root of the host web, which can be 
passed by using the {HostUrl} token. Note that the Url is configured by using an XML attribute, so you 
cannot use the “&” character when combining two or more parameters together. Instead, you must 
use the XML encoded value, which is &amp, as shown in the following example:
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<UrlAction Url=”~appWebUrl/Pages/Action1.aspx?HostUrl={HostUrl}&amp;ItemURL={ItemUrl}” />

Note that the SharePoint host environment substitutes values into these tokens by using standard 
URL encoding. This means that you must write code in the app to use a URL decoding technique 
before you can use these values to construct a URL that can be used to access the item or document.

Table 1-2 lists the tokens that can be used in UI custom actions, beyond those that are also sup-
ported in start pages and client web parts. Note that some of the tokens work equally well regardless 
of whether the UI custom action is used to create an ECB menu item or a button in the ribbon. How-
ever, the {ListID} token and the {ItemID} token work with ECB menu items but not with buttons on 
the ribbon. Conversely, the {SelectedListId} token and the {SelectedItemId} token work with buttons 
on the ribbon but not with ECB menu items.

TABLE 1-2 The extra tokens available when configuring the URL for a UI custom action

Token Purpose

{HostUrl} Provides an absolute URL to the root of the host site

{SiteUrl} Provides an absolute URL to the root of the current site collection

{Source} Provides a relative URL to the page that hosts the custom action

{ListURLDir} Provides a site-relative URL to the root folder of the current list

{ListID} Provides a GUID-based ID of the current list (ECB only)

{ItemURL} Provides a site-relative URL to the item or document

{ItemID} Provides an integer-based ID of the item or document (ECB only)

{SelectedListId} Provides a GUID-based ID of the selected list (ribbon only)

{SelectedItemId} Provides an integer-based ID of the selected item or document (ribbon only)

Packaging and distributing apps

The final section of this chapter examines how SharePoint apps are distributed and deployed into 
production as well as how apps are managed over time. First, you will learn about the details of how 
apps are packaged into redistributable files. After that, you will see how these files are published 
and installed to make SharePoint apps available to users. As you will see, the SharePoint app model 
provides valuable support for managing apps in a production environment and upgrading to newer 
versions.
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Packaging apps
A SharePoint app is packaged up for deployment by using a distributable file known as an app 
package. An app package is a file built by using the zip archive file format and it requires an extension 
of .app. For example, if you create a new SharePoint-hosted app project named MySharePointApp, 
the project will generate an app package named MySharePointApp.app as its output.

Note that the zip file format for creating an app package is based on the Open Package Conven-
tion (OPC). This is the same file format that Microsoft Office began using with the release of Office 
2007 for creating Word documents (.docx) and Microsoft Excel workbooks (.xslx).

The primary requirement for an app package is that it contains the app manifest as a top-level file 
named AppManifest.xml. As discussed earlier in this chapter, the SharePoint host environment relies 
on metadata contained in the app manifest so that it can properly configure an app during the instal-
lation process.

An app package will usually contain an app icon file named AppIcon.png. The AppIcon.png file, like 
many of the other files in an app package, is paired with an XML file named AppIcon.png.config.xml. 
The purpose of this XML file is to assign the AppIcon.png file an identifying GUID.

Understanding the app web solution package
In addition to the AppManifest.xml file, the app package often contains additional files that are used 
as part of the app’s implementation. For example, the app package for a SharePoint-hosted app 
contains a file for the app’s start page along with other resources used by the start page such as a 
CSS file and a JavaScript file. These are examples of files that are added to the app web as part of the 
app installation process.

The distribution mechanism used by a SharePoint app to add pages and lists to the app web dur-
ing installation is a standard solution package, which is a CAB file with a .wsp extension. If this sounds 
familiar, that’s because the solution package file embedded within an app package has the exact 
same file format as the solution package files that developers have been using to deploy SharePoint 
solutions in SharePoint 2007 and SharePoint 2010. The one key difference is that the solution package 
used by the SharePoint app model to add files to an app web is not a stand-alone file. Instead, it is 
embedded as a .wsp file within the app package, as shown in Figure 1-9.
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FIGURE 1-9 App packages that contain artifacts for deployment contain a separate solution package within the 
app package.

When a user installs a SharePoint app, the SharePoint host environment examines the app package 
to see if it contains an inner solution package. It is the presence of an inner solution package within 
the app package file that specifies to the SharePoint host environment whether it needs to create 
an app web during installation. If the app package does not contain an inner solution package, the 
SharePoint host environment installs the app without creating an app web.

The app web solution package contains a single web-scoped feature. The SharePoint host environ-
ment activates this feature automatically on the app web immediately after the app web is created. 
This feature is what makes it possible to add declarative elements such as pages and lists to the app 
web as the app is installed.

An app web solution package cannot contain a .NET assembly DLL with server-side code. There-
fore, you can say that the app web solution package embedded inside an app package is constrained 
because it must be a fully declarative solution package. This is different from the solution packages 
for farm solutions and sandboxed solutions, which can contain assembly DLLs with custom .NET code 
written in either C# or VB.NET.
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Keep in mind that the installation of a SharePoint app doesn’t always result in the creation of an 
app web. Some apps are designed to create an app web during installation and some are not. A 
SharePoint-hosted app is the type of app that will always create an app web during installation. This is 
a requirement because a SharePoint-hosted app requires a start page that must be added to the app 
web.

However, things are different with a cloud-hosted app. Because a cloud-hosted app usually has a 
start page that is served up from a remote web, it does not require the creation of an app web during 
installation. Therefore, the use of an app web in the design of a provider-hosted app or an auto-
hosted app is really just an available option as opposed to a requirement as it is with a SharePoint-
hosted app.

When you design a provider-hosted app or an autohosted app, you have a choice of whether you 
want to create an app web during installation to store private app implementation details inside the 
SharePoint host. Some cloud-hosted apps will store all the content they need within their own exter-
nal database and will not need to create an app web during installation. Other cloud-hosted apps can 
be designed to create an app web during installation for scenarios in which it makes sense to store 
content within the SharePoint host environment for each installed instance of the app.

Packaging host web features
This chapter has already discussed client web parts and UI custom actions. As you recall, these two 
types of features are used to extend the user interface of the host web, as opposed to many of the 
other types of elements in an app that are added to the app web. For this reason, the XML files con-
taining the definitions of client web parts and UI custom actions are not deployed within a solution 
package embedded within the app package. Instead, the XML files that define client web parts and UI 
custom actions are added to the app package as top-level files.

Consider an example SharePoint app named MyAppParts that contains two client web parts. The 
contents of the app package for this app will contain a top-level elements.xml file for each of the 
client web parts and a top-level feature.xml file for the feature that hosts them. When Visual Studio 
2012 creates these XML files and builds them into the output app package file, it adds a unique GUID 
to each file name to avoid naming conflicts, as illustrated in Figure 1-10.

The feature that hosts client web parts and UI custom actions is a web-scoped feature known as a 
host web feature. The SharePoint host environment is able to detect a host web feature inside an app 
package during app installation and activate it in the host web. When an app with a web host feature 
is installed at tenancy scope, that feature will be activated in more than one site.
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FIGURE 1-10 The XML files that define client web parts and UI custom actions are packaged as top-level files 
within the app package.

Packaging for autohosted apps
When it comes to packaging a SharePoint app for distribution, autohosted apps are more compli-
cated and deserve a little extra attention. The extra complexity is required because the app pack-
age for an autohosted app must contain the resources required to create an ASP.NET application on 
demand to deploy the remote web. An autohosted app can also be designed to create a SQL Azure 
database, as well, during the app installation process.

When you create a new autohosted app, Visual Studio 2012 creates two projects. There is one 
project for the app itself and a second web project for an ASP.NET application to implement the 
remote web. For example, if you create a new autohosted app using the name MyAutoHostedApp, 
Visual Studio 2012 creates an app project named MyAutoHostedApp and an ASP.NET project named 
MyAutoHostedAppWeb, and adds them to a single Visual Studio solution.

What is important to understand is that the app package built for the MyAutoHostedApp project 
must contain all the necessary files to deploy the ASP.NET project named MyAutoHostedAppWeb. 
This is a requirement because the installation of this app package must provide the Office 365 envi-
ronment with the means to provision the remote web as a Windows Azure application. This is what 
makes it possible for an autohosted app to create its own remote web during the installation process.

Visual Studio 2012 relies on a packaging format that Microsoft created especially for the Windows 
Azure environment by which all the files and metadata required to deploy an ASP.NET application are 
built in to a single zip file for distribution. This zip file is known as a web deploy package. When used 
within the SharePoint app model, the web deploy package is embedded within the app package of an 
autohosted app for distribution.
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When Visual Studio 2012 builds the web deploy package for an autohosted app, it creates the file 
by combining the app package name together with a web.zip extension. For example, an app pack-
aged named MyAutohostedApp.app will have an embedded web deploy package named MyAuto 
hostedApp.web.zip.

Now, consider the scenario in which an autohosted app has an associated SQL Azure database. The 
Office 365 environment must create this database on demand during app installation. Therefore, the 
app package must contain the resources required to create a SQL Azure database containing stan-
dard database objects, such as tables, indexes, stored procedures, and triggers.

The SharePoint app packaging model takes advantage of a second packaging format that Micro-
soft created for Windows Azure known as a Data Tier Application package. In this packaging format, 
the metadata required to automate the creation of a SQL Azure database is defined in XML files 
that are built in to a zip file with an extension of .dacpac. The name of the Data Tier Application 
package is typically based on the name of the database. For example, a SQL Azure database named 
MySqlDatabase will have an associated Data Tier Application package named MySqlDatabase.
dacpac. If you look inside a Data Tier Application package, you can locate a file named model.xml, 
which defines the database objects that need to be created.

Figure 1-11 shows the layout of an app package for an autohosted app that will trigger the Office 
365 environment to create a remote and a SQL Azure database as part of the app installation process. 
Remember that the web deploy package is required in an autohosted app package, whereas the data 
tier application package is optional.

FIGURE 1-11 An autohosted app package contains a web deployment package to create the remote web and a 
data application package to create a SQL Azure database.
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When you create an autohosted app, Visual Studio 2012 automatically creates the web project 
and takes care of setting up all that’s required to build the web deploy package into the app pack-
age. However, you have to take a few extra steps to create a SQL database project and configure it to 
properly build the Data Tier Application package in to the app package.

The first step is to create a new SQL database project in Visual Studio 2012 and add it to the same 
solution that contains the autohosted project. Next, on the Properties page of the SQL Database proj-
ect, go to the Project Settings tab and change the target platform setting to SQL Azure. This is the 
step that changes the project output to a Data Tier Application package. After this, you must build 
the SQL database project at least once to build the Data Tier Application package.

The final step is to configure the app project to reference the Data Tier Application package. You 
can accomplish this by using the property sheet for the autohosted app project. You will find that 
there is a project property named SQL Package. Once you configure the SQL Package property to 
point to the Data Tier Application package (.dacpac) file, you have made the necessary changes so 
that Visual Studio 2012 will begin building the Data Tier Application package into app package file.

Publishing apps
The app package is a distributable file that’s used to publish SharePoint apps. Once the app pack-
age has been published, it is available for users to install. In the case of SharePoint-hosted apps and 
autohosted apps, the app package contains all the resources required to deploy the app during the 
installation process. However, provider-hosted apps require the developer to deploy the remote web 
independently of the publication process and the installation process.

You publish a SharePoint app by uploading its app package file to one of two different places. 
First, you can publish an app by uploading its app package to the public Office Store. This is the right 
choice to make your app available to the general public, including users with SharePoint tenancies in 
Office 365.

The second way to publish a SharePoint app is by uploading the app package to a special type of 
site known as an app catalog site. This is the option to use when you want to make the app available 
only to users within a specific Office 365 tenancy or within a specific on-premises farm.

Publishing SharePoint apps to the Office Store
To publish an app to the public Office Store, the developer must first create a dashboard seller 
account. You can create this type of account by navigating to https://sellerdashboard.microsoft.com in 
the browser and logging on with a valid Windows Account. Once you have logged on, you can create 
a new dashboard seller account that is either an individual account or a company account.

A very appealing aspect of publishing apps to the Office Store with a dashboard seller account is 
that it provides assistance with the management of licensing as well as collecting money from cus-
tomers through credit card transactions. When you create a dashboard seller account, you are able to 
create a second payout account from which you supply Microsoft with the necessary details so when 
it collects money from customers purchasing your apps, it can transfer the funds you have earned to 
either a bank account or a PayPal account.
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Once you have gone through the process of creating a dashboard seller account, it takes a day or 
two for this new account to be approved. Once your account has been approved, you can then begin 
to publish your apps in the Office Store. The Office Store supports publishing three types of apps: you 
can publish SharePoint apps, Apps for Office, and Windows Azure Catalog Apps.

You publish a SharePoint app by uploading its app package file and filling in the details associated 
with the app. For example, the publishing process for the Office Store requires you to provide a title, 
version number, description, category, logo, and at least one screenshot that shows potential custom-
ers what your app looks like.

When you publish a SharePoint app, you can also indicate via the seller dashboard whether your 
app is free or must be purchased. If you publish an app for purchase, you can specify the licensing fee 
for each user or for a given number of users. There is even an option to configure a free trial period 
for an app that has an associated licensing fee.

Once you have uploaded an app and provided the required information, the app must then go 
through an approval process. The approval process involves checking the app package to ensure that 
it only contains valid resources. There are also checks to validate that the app meets the minimum 
requirements of the user experience guidelines. For example, there is a check to ensure that the start 
page for the app contains the required link back to the host web.

Once the app has been approved, it is then ready for use and added to the public Office Store 
where it can be discovered and installed by SharePoint users.

Publishing apps to an app catalog
What should you do if you want to publish an app but you don’t want to publish it to the Office 
Store? For example, imagine a scenario in which you don’t want to make an app available to the 
general public. Instead, you want to publish the app to make it available to a smaller audience such 
as a handful of companies that are willing to pay you for your development effort. The answer is to 
publish the app to an app catalog site.

An app catalog site contains a special type of document library that is used to upload and store 
app package files. Along with storing the app package file, this document library also tracks vari-
ous types of metadata for each app. Some of this metadata is required, whereas other metadata is 
optional.

In the Office 365 environment, the app catalog site is automatically added when a tenancy is 
created for a new customer. However, this is not the case in an on-premises farm. Instead, you must 
explicitly create the app catalog site by using the Central Administration site or by using Windows 
PowerShell. Furthermore, the app catalog is created at web application scope, so you must create a 
separate app catalog site for each web application.

You must have farm administrator permissions within an on-premises farm to create an app cata-
log site. You begin by navigating to the home page of Central Administration. On the home page, 
there is a top-level link for Apps. When you click the Apps link, you will be redirected to a page with a 
group of links under the heading of App Management. Within this group of links, locate and click the 
link titled Manage App Catalog.
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The first time you click the Manage App Catalog link, you are redirected to the Create App Catalog 
page, which you can use to create a new app catalog site, as shown in Figure 1-12. Note that the app 
catalog site must be created as a top-level site within a new site collection. On the Create App Cata-
log page, you can select the target web app that will host the new app catalog site.

FIGURE 1-12 The app catalog can be created through Central Administration within a specific web app of your 
choice.

Note that you can also use the Create App Catalog page (shown a little later in Figure 1-14) to 
configure user access permissions to the app catalog site. Remember that providing users with access 
to the app catalog site is what makes it possible for them to discover and install apps of their own. 
You must provide read access to users if you want them to have the ability to discover apps and install 
them at site scope. However, you might decide against configuring user access to the app catalog site 
if you plan on installing apps at tenancy scope.

Once you have created the app catalog site within an on-premises farm, you should navigate 
to it and inspect what’s inside. You will find that there is a document library with a title of Apps 
for SharePoint which is used to publish SharePoint apps. There is a second document library with 
a title of Apps for Office that is used to publish apps created for Office applications such as Word 
and Excel.
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You publish a SharePoint app by uploading its app package to the Apps for SharePoint document 
library. The SharePoint host environment is able to automatically fill in some of the required app 
metadata such as the Title, Version, and Product ID by reading the app manifest as the app package 
is uploaded. However, there is additional metadata that must be filled in by hand or by some other 
means. A view of apps that have been published in the Apps for SharePoint document library is pre-
sented in Figure 1-13.

FIGURE 1-13 The Apps for SharePoint document library contains app package files and associated metadata for 
published apps.

You will also notice that the app catalog site supports the management of app requests from 
users. The idea being that a user within a site can request an app from the Office Store. The app 
catalog administrator can see this request and decide whether to purchase the app or not. If the app 
request seems appropriate, the app catalog administrator can purchase the app and make it available 
for site-scope installation. Alternatively, the app catalog administrator can make the app available to 
the requester by using a tenancy-scoped installation.

Installing apps
Once an app has been published, it can be discovered and installed by a user who has administra-
tor permissions in the current site. If you navigate to the Site Content page within a site and click the 
tile with the caption add an app, you will be redirected to the main page for installing apps named 
addanapp.aspx. This page displays apps that have been published to the app catalog site. Remember 
that an Office 365 tenancy has a single app catalog site, but on-premises farms have an app catalog 
site per web application. Therefore, you will not see apps that have been published to an app catalog 
site in a different web application.

A user requires administrator permissions within a site to install an app. If you are logged on with a 
user account that does not have administrator permissions within the current site, you will not be able 
to see apps that have been published in the app catalog site. This is true even when your user account 
has been granted permissions on the app catalog site itself.

Once you locate an app that you want to install, you can simply click its tile to install it. The app 
installation process typically prompts you to verify whether you trust the app. A page appears that 
displays a list of the permissions that the app is requesting along with a button to grant or deny the 
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apps permission request. You must grant all permissions that the app has requested to continue with 
the installation process. There is no ability to grant one requested permission to an app while denying 
another; granting permissions to an app during installation is always an all-or-nothing proposition.

After the app has been installed, you will see a tile for it on the Site Content page. This tile repre-
sents the app launcher that a user can click to be redirected to the app’s start page. The app title also 
displays an ellipse to access a fly-out menu for app management, as illustrated in Figure 1-14.

FIGURE 1-14 Once an app has been installed, it can be launched using an associated tile, which is displayed on 
the site content page.

Recall from earlier in the chapter what happens during app installation. Some apps require an app 
web. When this is the case, the app web is created as a child site under the current site where the app 
has been installed. If the app contains host feature elements such as client web parts and UI custom 
actions, these user interface extensions will be made available in the host site, as well.

Installing apps at tenancy scope
You have seen that the app catalog site provides a place where you can upload apps in order to 
publish them. Once an app has been published in the app catalog site, a user within the same Office 
365 tenancy or within the same on-premises web application can discover the app and install it at site 
scope. However, the functionality of an app catalog site goes one step further: it plays a central role in 
installing apps at tenancy level.

You install an app at tenancy scope by installing it in an app catalog site. Just as with a site-scoped 
installation, you must first publish the app by uploading it to the Apps for SharePoint document 
library in the app catalog site. After publishing the app, you should be able to locate it on the Add 
An App page of the app catalog site and install it just as you would install an app in any other type of 
site. However, things are a bit different after the app has been installed in an app catalog site. More 
specifically, the app provides different options in the fly-out menu that is available on the Site Con-
tent page, as shown in Figure 1-15.

As you can see in Figure 1-15, an app that has been installed in an app catalog site has a Deploy-
ment menu command that is not available in any other type of site. When you click the Deployment 
menu command, you are redirected to a page on which you can configure the app so that you can 
make it available to users in other sites.
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FIGURE 1-15 Once an app has been installed, the associated deployment menu can be used to make the app 
available to other sites.

You have several options when you configure an app in an app catalog site to make it available in 
other sites. One option is to make the app available to all sites within the scope of the app catalog 
site. Or, you can be more selective and just make the app available in sites that were created by using 
a specific site template or sites created under a specific managed path. There is even an option to add 
the URLs of site collections one-by-one if you need fine-grained control.

After you configure the criteria for a tenancy-scoped app installation to indicate the sites in which 
it can be used, you will find that the app does not appear in those sites instantly. That’s because 
the SharePoint host environment relies on a timer job to push the required app metadata from the 
app catalog site to all the other sites. By default, this timer job is configured to run once every five 
minutes. During your testing you can speed things up by navigating to the Central Administration 
site and locating the timer job definition named App Installation Service. The page for this timer job 
definition provides a Run Now button that you can click to run it on demand.

Upgrading apps
The upgrade process designed by the SharePoint app model provides a much better experience com-
pared to the upgrade process used with SharePoint solutions. When apps are published, the Office 
Store and app catalog sites always track their version number. When an app is installed, the Share-
Point host environment sees this version number and records it for the installed app instance.

Take a simple example. Imagine you have uploaded version 1.0.0.0 of an app. After that, the app is 
installed in several sites via site-scoped installation. The SharePoint host environment remembers that 
each of these sites has installed version 1.0.0.0 of the app.

Now, imagine that you want to further develop your app. Maybe you need to fix a bug, improve 
its performance, or extend the app's functionality. After you have finished your testing, you decide to 
update the version number to 2.0.0.0 and publish the new version in the same app catalog site where 
you installed the original version.
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One important aspect of the upgrade process of the SharePoint app model is that an updated 
version of an app is never forced upon the user that installed the app. Instead, the user is notified that 
a new version of the app is available. This user can then decide to do nothing or to update the app to 
the new version. Figure 1-16 shows the notification that the SharePoint host environment adds to the 
app tile on the Site Contents page. 

FIGURE 1-16 The tile for an app displays a notification when an updated version is available from the SharePoint 
Store or app catalog.

The notification depicted in Figure 1-16 contains an update link that a user can click to be redi-
rected to a page with a button that activates the upgrade process. What actually occurs during the 
upgrade process is different, depending on whether the app is a SharePoint-hosted app or a cloud-
hosted app.

When you are working on an updated version of a SharePoint-hosted app, you have the ability to 
change some of the metadata in the app manifest and to add new elements into the app web. For 
example, you could add a new page to the app web named startv2.aspx and then modify the app 
manifest to use this start page instead of the start page that was used in the original version of the 
app. You could also add other, new app web elements such as JavaScript files, lists, and document 
libraries. Many of the techniques used to upgrade elements in the app web are based on the same 
techniques developers have been using with feature upgrade in SharePoint solutions.

When it comes to updating a cloud-hosted app, things are different. That’s because most of the 
important changes to the app’s implementation are made to the remote web and not to anything 
inside the SharePoint host environment. If you are working with a provider-hosted app, you must roll 
out these changes to the remote web before you publish the new version of the app to the Office 
Store or any app catalog site.

It’s equally important that the updated version of the remote web must continue to support 
customers that will continue to use the original version of the app. Remember; there is nothing that 
forces the user to accept an update. You should expect that some customers will be happy with the 
original version and will be opposed to upgrading to a new version of an app.

Once you have pushed out more than one or more updates to a provider-hosted app, you must 
begin to track what version each customer is using. One technique to accomplish this task is to 
provide a different start page for each version of the app. Many provider-hosted apps will go a step 
further and store the current version of app in a customer profile that is tracked in a custom database 
behind the remote web.
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Trapping app lifecycle events
One favorable aspect of the SharePoint app model for developers is the ability to design a cloud-
hosted app with custom server-side code that is automatically executed when an app is installed, 
upgraded, or uninstalled. By taking advantage of the ability to add code behind these three app life-
cycle events, you can program against the host web and the app web with logic to initialize, update, 
and cleanup site elements in the SharePoint environment. These app lifecycle events also provide the 
necessary triggers for updating the custom database used by provider-hosted apps and autohosted 
apps.

The architecture of app events is based on registering app event handlers in the app manifest 
that cause the SharePoint host environment to call out to a web service entry point in the remote 
web. Due to the architecture’s reliance on a server-side entry point, app events are not supported 
in SharePoint-hosted apps. Therefore, you can only use the app events in autohosted apps and 
provider-hosted apps.

It’s relatively simple to add support for app events to the project for an autohosted app or a 
provider-hosted app. The property sheet for the app project contains three properties named Handle 
App Installed, Handle App Uninstalling, and Handle App Upgrade, as shown in Figure 1-17. 

FIGURE 1-17 The property sheet for an app project provides Boolean properties for enabling lifecycle events.

The default value for each of these app event properties is false. The first time you change one of 
these properties to a value of true, Visual Studio 2012 adds a web service entry point into the web 
project with a name of AppEventReceiver.svc. Visual Studio 2012 also adds the required configuration 
information into the app manifest file, as well. If you enable all three events, the <Properties> ele-
ment within <App> element of the app manifest will be updated with the following three elements:
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<InstalledEventEndpoint>~remoteAppUrl/AppEventReceiver.svc</InstalledEventEndpoint> 
<UninstallingEventEndpoint>~remoteAppUrl/AppEventReceiver.svc</UninstallingEventEndpoint> 
<UpgradedEventEndpoint>~remoteAppUrl/AppEventReceiver.svc</UpgradedEventEndpoint>

After you have enabled one or more of the app events, you can then begin to write the code that 
will execute when the events occur. You write this code in the code-behind file named AppEvent 
Receiver.svc.cs. If you examine this file, you will see that Visual Studio 2012 has created a class shown 
in the following code that implements a special interface that the SharePoint team created for remote 
event handling named IRemoteEventService:

public class AppEventReceiver : IRemoteEventService { 
  public SPRemoteEventResult ProcessEvent(RemoteEventProperties properties) {} 
  public void ProcessOneWayEvent(RemoteEventProperties properties) { } 
} 

The IRemoteEventService interface is used with app events and also with other types of remote 
event handlers, as well. There are two methods named ProcessEvent and ProcessOneWayEvent. The 
SharePoint host environment makes a web service call which executes the ProcessEvent method when 
it needs to inspect the response returned from the remote web. The ProcessOneWayEvent method is 
called for cases in which the SharePoint host environment needs to trigger the execution of code in 
the remote web but doesn’t need to inspect the response. App events always trigger to the Process 
Event method, so you can leave the ProcessOneWayEvent method empty in the AppEventReceiver.svc.
cs file.

If you have registered for the AppInstalled event, the ProcessEvent method will execute whenever 
a user is installing the app. It is critical to supply robust error handling because an unhandled excep-
tion will be returned to the SharePoint host environment and cause an error in the app installation 
process.

When you implement the ProcessEvent method, you must return an object created from the 
SPRemoteEventResult class, as demonstrated in the following:

public SPRemoteEventResult ProcessEvent(RemoteEventProperties properties) { 
  // return an SPRemoteEventResult object  
  SPRemoteEventResult result = new SPRemoteEventResult(); 
  return result; 
}

The SPRemoteEventResult class was designed to make it possible for code in the remote web to 
relay contextual information back to the SharePoint host environment. For example, imagine that you 
have detected that the installer’s IP address is located in a country that you do not want to support. 
You can tell the SharePoint host environment to cancel the installation process and pass an appropri-
ate error message, such as shown here:

SPRemoteEventResult result = new SPRemoteEventResult(); 
result.Status = SPRemoteEventServiceStatus.CancelWithError; 
result.ErrorMessage = “App cannot be installed due to invalid IP address”; 
return result;
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The ProcessEvent method passes a parameter named properties, which is based on a type named 
RemoteEventProperties. You can use this parameter to access important contextual information such 
as the URL of host web and security access token required to call back into the SharePoint host 
environment. Listing 1-5 shows that the properties parameter also provides an EventType property 
with which you can determine which of the three app events has caused the ProcessEvent method to 
execute.

LISTING 1-5 Handling events

public SPRemoteEventResult ProcessEvent(RemoteEventProperties properties) { 
 
  // obtain context information from RemoteEventProperties property 
  string HostWeb = properties.AppEventProperties.HostWebFullUrl.AbsolutePath; 
  string AccessToken = properties.AccessToken; 
 
  // handle event type 
  switch (properties.EventType) { 
    case RemoteEventType.AppInstalled: 
      // add code here to handle app installation 
      break; 
    case RemoteEventType.AppUpgraded: 
      // add code here to handle app upgrade 
      break; 
    case RemoteEventType.AppUninstalling: 
      // add code here to handle app uninstallation 
      break; 
    default: 
      break; 
  } 
 
  // return an SPRemoteEventResult object  
  SPRemoteEventResult result = new SPRemoteEventResult(); 
  return result; 
 
}

Note that debugging app event handlers can be especially tricky to set up and in many situations 
it doesn’t work at all. That’s because the SharePoint host environment must be able to call back into 
the remote web. For cases in which you have installed the app into an Office 365 tenancy for testing, 
it is a web server in the Office 365 environment that will be issuing the call to the remote web. This 
web server hosted in the Office 365 environment must be able to locate and access the web server 
that is hosting the remote web. Therefore, attempting to debug an app event handler for which the 
remote web is configured to use a host name such as localhost or to use a host domain name that 
only resolves to the proper IP address inside your testing environment will not work.
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Conclusion

This chapter provided you with an introduction to SharePoint apps. You learned about the pain points 
of SharePoint solution development and the design goals that influenced how the architecture of the 
SharePoint app model was created. You also learned many details about app hosting models, user 
interface design, publishing, installation, and upgrade. Now, it’s time to move ahead and begin learn-
ing about how to write code in an app that accesses the SharePoint host environment by using the 
CSOM and the new REST API.
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HTTP DELETE operation, 87
HTTP GET operation, 78, 85, 88
HTTP POST

operation, 120
request, 117

HTTP verbs, support for standard, 77
HttpWebRequest object, 88

I
icon, defining, 155
IIS (Internet Information Services)

enabling SSL on IIS website, 131–132
IIS (Internet Information Services), restarting with 

SharePoint solutions, 3
impersonation, allowing for, 3
Inside Microsoft SharePoint 2013, for advanced 

topics, 160
installing apps, after being published, 37–39
IntelliSense, managed CSOM supported by, 61
internal app authentication, 98, 100–101
Internet Information Services (IIS), restarting with 

SharePoint solutions, 3
InvalidQueryExpressionException error, 63
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{ItemID} token, 28
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event handling, 57
methods

about, 56–57
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OAuth authentication
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Office 365
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PATCH method, 91–92
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SharePoint solution development, 1–2
SharePoint app model

about, 1–2
architecture

about, 5
app code isolation, 8–9
app hosting models, 8–9
app installation scopes in, 7
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vs. full-trust model, ix
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supporting apps in, 5–6
authenticating users by using external identity 

providers, 97, 130
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stabilizing, 2

SharePoint Foundation platform, defining of types of 
permissions in, 109
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app project template code, 69, 82, 87–88
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~appWebUrl token, 20
creating app web in, 30
creating client web parts in, 23–24
ready event in, 58
using internal authentication, 100–101
vs. cloud-hosted apps, 8–9

SharePoint host environment
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app authentication in, 98–99, 103–104, 130
needing to trigger execution of code in remote 
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serving up pages in from app web, 20
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SharePoint PowerShell script, registering trusted 
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from, 58
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SOAP (Simple Object Access Protocol), 77
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SPLangauge parameter, 18, 154
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SP.RequestExecutor object, 156, 158
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SP.WebRequestInfo object, 159
SQL Azure databases
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creating on demand, 13

SQL Package property, 34
SSL (Secure Sockets Layer), 114, 131–132
{StandardTokens} token, 18–19, 21, 154
standard web parts vs. app parts, 22
start page

app start page linking back to host web, 21
URL setting of, 17–19

<StartPage> element
configuring URL within, 17
creating URL for, 18
in MVC4 project, 150, 152

startrow parameter, 165
static class, structure of, 89
strict JavaScript, 47–48
symmetric encryption, 114
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concept of, 5
managing, 6

tenancy scope
installing apps at, 38–39
installing SharePoint app at, 7
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Title property, 61, 88
title string, 114
TokenHelper class, 119–122, 128, 130, 135, 162
$top, in RESTful operations, 81
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trusted security token issuer, 130
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about, 25
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building, 24–25
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Update method, 67
updating operations

in JavaScript CSOM, 76
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upgrading apps, 39–40
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RESTful
about using, 77
creating, 82–83
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creating items using, 84
entry point for REST using, 79
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SP.WebRequestInfo object with, 159
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updating items using, 86–87
viewing REST operations using, 78
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parts of app web, 20–21
redirect, 114
specifying OData source, 167
start page setting, 17–19
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user authentication
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app manifest designer in, 16–17
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creating autohosted app in, 32, 34
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and, 17
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WCF (Windows Communication Foundation), 58
web applications
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configuring user in, 97

web.config files
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Office 365 as, 118–119
updating, 135
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app, 32

web forms, challenges of, 146–148
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binding server side SharePoint data sources to 
app, 139–143

binding ViewModel to, 140
implementing apps with JavaScript and 

relationship to, 138–139
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web proxy, 159–160
web-scoped features, host web feature, 31
webServerRelativeUrl property, 82–83
web service entry point, adding, 41–42
websites, writing server-side code executing at 

external, 8
web tokens, JavaScript object notation, 124
Windows Azure

Office 365 environment integrating with, 13
packaging format for environment in, 32

Windows Azure ACS
about, 112
creating access tokens, 122
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sync, 113
OAuth authentication and, 102, 121, 122

Windows Azure Catalog Apps, publishing, 35
Windows Communication Foundation (WCF), 58
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x.509 certificates, 102, 131–132
X-Frame-Options header, 23–24
XML code
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hosted app project, 22
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XML files
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in packaging of, 32
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entertaining, and doesn‘t forget how it's done in the real world. 
Top notch. 

Tim, Michigan 

Maurice Prather is the best Microsoft trainer I have ever had at 
any conference, seminar, or paid training. 

Tim, Dallas 

Asif [Rehmani] is a wonderful instructor. He paced the class well 
and used lots of real world examples to apply the materials. I 
also appreciated him suggesting outside vendors for sharepoint 
products; it‘s nice to hear from the people who really know these 
vendors! 

Heidi, Florida 

Matt McDermott was as entertaining as he was educational. 
Phenomenal instructor. Timing of the course was perfect and was 
a good pace all week. Plenty of time for labs. I would recommend 
this course to all SharePoint IT Professionals. 

Daniel, Florida 

” 
Get training directly from the instructors who wrote this book. Critical Path Training
 

offers handson training, online training, private onsite classes and courseware licensing.
 

Ted Pattison Andrew Connell Scot Hillier Maurice Prather Asif Rehmani Matt McDermott David Mann John Holliday 

www.CriticalPathTraining.com @criticalpath 

http:www.CriticalPathTraining.com
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