

Build Windows 8 Apps
with Microsoft Visual
C++ Step by Step

Luca Regnicoli
Paolo Pialorsi
Roberto Brunetti

Copyright © 2013 by Luca Regnicoli, Paolo Pialorsi, Roberto Brunetti.
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6723-5

1 2 3 4 5 6 7 8 9 LSI 8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Christopher Hearse

Editorial Production: Zyg Group, LLC

Technical Reviewer: John Mueller

Copyeditor: Zyg Group, LLC

Indexer: Zyg Group, LLC

Cover Design: Twist Creative • Seattle

Cover Composition: Zyg Group, LLC

Illustrator: Rebecca Demarest

This book is dedicated to Barbara.
—ROBERTO BRUNETTI

This book is dedicated to my parents. Thanks!
—PAOLO PIALORSI

This book is dedicated to my mother, Vanna, the strongest
woman I have ever known.

—LUCA REGNICOLI

Contents at a Glance

Introduction xi

ChAPteR 1 Introduction to Windows Store apps 1

ChAPteR 2 Windows 8 user interface style 29

ChAPteR 3 My first Windows 8 app 65

ChAPteR 4 Application life-cycle management 103

Chapter 5 Introduction to the Windows Runtime 139

Chapter 6 Windows runtime apIs 161

ChAPteR 7 enhance the user experience 193

ChAPteR 8 asynchronous patterns 235

ChAPteR 9 rethinking the UI for Windows 8 apps 265

ChAPteR 10 Architecting a Windows 8 app 307

Index 343

 vii

Contents

Introduction . xi

Chapter 1 Introduction to Windows Store apps 1
The Windows 8 experience . 1

Charms bar and app bars . 8

Windows Runtime .13

Badges, live tiles, toasts, and lock screen .15

Background tasks .19

Contracts and extensions .22

Visual Studio 2012 and Windows 8 Simulator .24

Summary. .27

Quick reference .28

Chapter 2 Windows 8 user interface style 29
Influences .29

Bauhaus style in the Windows 8 UI .36

Enhance the functionality and the content, not the container36

Industrialize the software and user interface, and create
projects, not products .37

Use clear typography .37

Take advantage of the grid system .37

Prefer photos over drawings .38

Select few and contrasting colors .38

Strive for international language and employ essential
iconography .39

Characteristics of a Windows 8 app .39

Silhouette .39

Full screen .46

Edges .48

Comfort and touch .50

viii Contents

Semantic Zoom .55

Animations .58

Different form factors .58

Snapped and fill views .60

Summary. .63

Quick reference .63

Chapter 3 My first Windows 8 app 65
Software installation .65

Windows Store project templates .66

UI elements .75

Search functionality .87

Summary. .101

Quick reference .102

Chapter 4 Application life-cycle management 103
Application manifest .104

Application package .107

Windows Store .110

Launching .114

Activating .122

Suspending .125

Resuming .130

Summary. .137

Quick reference .137

Chapter 5 Introduction to the Windows Runtime 139
What is WinRT? .139

WinRT under the hood. .144

WinRT design requirements .148

Creating a WinMD library .149

 Contents ix

WinRT app registration .157

Summary .159

Quick reference .160

Chapter 6 Windows Runtime APIs 161
Using pickers .161

Webcam .169

Sharing contracts .176

Summary. .191

Quick reference .191

Chapter 7 Enhance the user experience 193
Draw an application using Visual Studio 2012 .193

Create the layout of a Windows 8 application .197

Customize the appearance of controls .220

Summary. .234

Quick reference .234

Chapter 8 Asynchronous patterns 235
Asynchronous calls with the Parallel Patterns Library in C++235

Writing asynchronous methods .241

Waiting for an event in an asynchronous way .248

Cancelling asynchronous operations .251

Tracking operation progress .253

Synchronization with multiple asynchronous calls260

Synchronizing execution context .262

Summary. .264

Quick reference .264

x Contents

Chapter 9 Rethinking the UI for Windows 8 apps 265
Using Windows 8 UI-specific controls .265

Designing flexible layouts .286

Using tiles and toasts .294

Summary. .305

Quick reference .305

Chapter 10 Architecting a Windows 8 app 307
Applications architecture in general .308

Architectures for Windows 8 apps .310

Implementing the data layer. .311

Implementing the communication layer using a SOAP service314

Implementing the communication layer using an OData service318

Consuming data from a Windows 8 app .323

Implementing an app storage/cache .330

SOAP security infrastructure .333

OData security infrastructure .338

Summary. .342

Quick reference .342

Index 343

 xi

Introduction

Windows 8 is Microsoft’s newest operating system, intended to let developers
fluent in various programming languages—such as C++, C#, or JavaScript—

leverage its powerful infrastructure to build applications using a brand-new library
called the Windows Runtime API.

This book provides an organized walk-through of the features, APIs, and user experi-
ence in Windows 8. The content is introductory—it discusses each component from a
theoretical viewpoint interspersed with basic but effective code samples, which you can
follow to get a jump-start in developing for the Windows 8 platform.

The book provides coverage of almost all the main Windows 8 aspects and fea-
tures, and it offers essential guidance in learning them using the classic Step by Step
approach.

In addition to its coverage of core Windows 8 features using C++, the book dis-
cusses some related aspects, such as Windows Communication Foundation (WCF) Data
Services, Open Data Protocol (OData), ADO.NET Entity Framework, and applications
architecture. Beyond the explanatory content, each chapter includes a rich set of step-
by-step examples, as well as downloadable sample projects that you can explore for
yourself.

Who should read this book

This goal of this book is to provide experienced C++ developers with the information
they need to begin working with the main components of the Windows 8 operating
system and the Windows Runtime. Starting with the Windows Runtime APIs, the book
moves readers through a comprehensive discussion of the new user experience, includ-
ing how to design interfaces that work for the keyboard, the mouse, and touch screens.
This book does not teach C++; readers need a solid knowledge of the C++ language
to fully understand the code presented in the book and to follow along by performing
the exercises using Microsoft Visual Studio 2012. This book is also useful for software
architects conversant with C++ who need an overview of the components they would
plan to include in the overall architecture of a real-world Windows 8 solution.

xii Introduction

Who should not read this book

If you have worked with Windows 8 already, this book is probably not for you. It is an
introductory guide to developing applications that leverage the platform using C++.

Assumptions
To get the most out of this book, you should have at least a minimal understanding
of C++ development and object-oriented programming concepts. Although you can
also develop for Windows 8 using any .NET language or JavaScript, this book includes
examples in C++ only.

In addition to the C++ language, the examples in Chapter 10, “Architecting a
Windows 8 app,” assume you have a basic understanding of ASP.NET and WCF,
although the code presented for those examples doesn’t use any advanced features
of either technology.

Organization of this book

This book is divided into 10 chapters, each of which focuses on a different aspect or
technology within the Windows 8 operating system and Windows Runtime APIs.

Finding your best starting point in this book
We suggest that you start reading the book from the beginning. By following this path,
you will discover all of the aspects of the new look and feel, the new user experience,
and the new user interface for touch-based devices required for building successful
Windows 8 applications. Chapter 2, “Windows 8 user interface style,“ is particularly
important, because you need to understand the design concepts underlying the
Windows 8 UI style. Chapter 3, “My first Windows 8 app,“ is the fundamental starting
point for building your first Windows 8 application. Use the following table to deter-
mine how best to proceed through the book.

If you are Follow these steps

New to Windows 8 development Start with Chapter 1.

New to Windows 8 UI style Start with Chapter 2.

Not new to Windows 8 develop-
ment using the provided templates

Start with Chapter 4.

 Introduction xiii

A XAML developer Start with Chapter 3 and then skip to Chapter 9 to gain a solid
understanding of the controls specific to Windows 8 apps and
how to design flexible layouts.

Most of the book’s chapters include hands-on procedures and examples that let you
try out the concepts discussed in each chapter. No matter which sections you choose
to focus on, be sure to download the companion code from the publisher’s site (see the
“Code samples” section of this introduction), and install them on your system.

Conventions and features in this book

This book presents information using conventions designed to make the information
readable and easy to follow.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2,
and so on) listing each action you must take to complete the exercise.

■■ Boxed elements with labels such as “Note” provide additional information or
alternative methods for completing a step successfully.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at
the same time. For example, “Press Alt+Tab” means that you hold down the Alt
key while you press the Tab key.

■■ A vertical bar between two or more menu items (for example, File | Close),
means that you should select the first menu or menu item, then the next, and
so on.

System Requirements

You will need the following hardware and software to complete the practice exercises in
this book:

■■ Windows 8 installed

■■ Visual Studio 2012, any edition tailored for Windows 8 (the Express edition for
Windows 8 is free)

■■ Computer with a 1.6 GHz or faster processor

xiv Introduction

■■ 1 GB of RAM (1.5 GB if running on a virtual machine)

■■ 10 GB (NTFS) of available hard disk space

■■ 5400 RPM (or faster) hard disk drive

■■ DirectX 9-capable video card running at 1024 × 768 or higher display resolution

Depending on your Windows configuration, you might require Local Administrator
rights to install or configure Visual Studio 2012.

Code samples

Most of the chapters in this book include exercises that let you interactively try out new
material learned in the main text. All sample projects are available for download from
the book’s page:

http://aka.ms/BuildW8AppsVCSbS/files

Note In addition to the code samples, your system must have Microsoft
Visual Studio 2012 installed.

Installing the code samples
Follow these steps to install the code samples on your computer so that you can use
them with the exercises in this book.

1. Unzip the file that you downloaded from the book’s
website (name a specific directory along with directions to create it, if
necessary).

2. If prompted, review the displayed end user license agreement. If you accept the
terms, select the accept option, and then click Next.

Note If the license agreement doesn’t appear, you can access
it from the same webpage from which you downloaded the
Windows8cplusplusStepByStep.zip file.

http://aka.ms/BuildW8AppsVCSbS/files

 Introduction xv

Acknowledgments

We’d like to thank all the people who supported us in writing this book.

Marco Russo has been involved with all of us in the most important phases of writing
this book and its twin, Build Windows 8 Apps with Microsoft Visual C# and Visual Basic
Step by Step (Microsoft Press, 2013).

Vanni Boncinelli tested all the code we wrote.

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our
Microsoft Press site:

http://aka.ms/BuildW8AppsVCSbS/errata

If you find an error that is not already listed, you can report it to us through the same
page. If you need additional support, email Microsoft Press Book Support at mspin-
put@microsoft.com.

Please note that product support for Microsoft software is not offered through the
addresses above.

xvi Introduction

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress

http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 1

C H A P T E R 1

Introduction to
Windows Store apps

After completing this chapter, you will be able to

■■ Understand the main features of a Windows Store App.

■■ Evaluate the key benefits of creating a Windows Store app for Windows 8.

■■ Recognize the main capabilities and features of the new Windows 8 operating system.

This chapter provides an overall introduction to Microsoft Windows 8 and to the new world of
Microsoft Windows Store apps, from a developer’s perspective.

The Windows 8 experience

Windows 8 is one of the most innovative and revolutionary investments made by Microsoft in the last
decade in the operating systems area. Prior to Windows 8, the operating systems market consisted of
three main families: server operating systems, client/desktop operating systems, and mobile/tablet-
oriented operating systems.

Windows 8, together with its sibling Microsoft Windows Server 2012, introduces a new paradigm
wherein the client/desktop and mobile/tablet-oriented operating systems can be combined, sharing
features, capabilities, user interfaces (UIs), and behaviors. In the last few years, the market for tablet
devices has exploded, with an increasing number of people working at home and in their offices
on a small tablet device. Nevertheless, until the release of Windows 8, it wasn’t a simple matter to
reconcile the needs of end users using tablet devices with the infrastructural constraints of corporate
networks. For example, many tablet end users would like to install software from a trusted and secure
online marketplace, regardless the corporate policies of the individual end user’s company. Moreover,
a common end-user need is to check corporate email accounts as well as any private email accounts
using a unique device and unique email client software. Furthermore, the increase in social-media use
leads to the sharing of private contacts, agendas, tasks, pictures, and instant messages with business
contacts, meetings, and corporate network instant communication and videoconferencing.

2 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

However, technology without governance could become a nightmare both for end users and IT
professionals. With Windows 8, end users can leverage a corporate-provided tablet device and install
software from a safe and secure marketplace (either public or corporate constrained), check multiple
email accounts while complying with company security policies, and socialize with friends, colleagues,
and business contacts, all within a safe and sandboxed environment.

Moreover, for the sake of backward compatibility, all the software created targeting Windows 7
desktops will still continue to work on Windows 8, using the old-style desktop-oriented approach.

So, let’s see the new Windows 8 user interface and the key features of this new operating system.
Figure 1-1 shows the new Start screen, one of the revolutionary features introduced with Windows 8.

FIGURE 1-1 The Windows 8 Start screen.

The new Start screen is made up of a set of squares and rectangles called tiles, each of which
represents a link to a software application. Each tile can also provide an animated feedback to the
end user. Tiles can be small (square) or wide (rectangle). Many apps provide both sizes, letting end
users choose between them in the main screen according to personal preference. For example, in the
top-left corner of Figure 1-1, just under the Main title, you can see a wide tile for the Mail app, which
indicates that there are 15 email messages to read in the inbox. The tile also provides a short preview
of the messages.

 CHAPTER 1 Introduction to Windows Store apps 3

To reduce the size of the tile, you can right-click it or swipe your finger downward on the tile,
which both selects it and activates a command bar, called the app bar, which will be discussed later.
Figure 1-2 shows the Mail app tile selected.

FIGURE 1-2 The app bar of the Start screen.

The app bar may contain many active commands, which vary according to context. For example,
with a tile selected, you can select the Smaller command to change the tile from wide to square, if
the tile you selected is wide. You can also turn off dynamic updating of the tile by selecting Turn Live
Tile Off. Or you can select Uninstall to remove the app from your device completely. If you select the
Smaller command, the tile will become square and the preview of the unread email will disappear.
You can see the result in Figure 1-3.

FIGURE 1-3 The small tile of the Mail app.

4 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

A user with a tablet device can tap (i.e., touch using a single finger) one of these tiles to start an
application instance or to resume an already running instance. Similarly, a user with a desktop PC
and a mouse can click the tile and get the same result. The Start screen is based on the idea of the
“panoramic view” that has been available in Windows Phone since version 7. In a panoramic view,
you can scroll horizontally, using either touch gestures on a tablet/touch screen or the mouse wheel,
touchpad, or keyboard if you are using a laptop or desktop. You can also use the traditional scrollbar
that appears at the bottom of the screen.

As soon as you tap an app tile, the foreground application becomes the app you selected. When
you are starting that app for the first time in a given Windows 8 session, Windows creates the
instance and loads it into memory. Otherwise, if the app is already running, Windows promotes it to
the foreground application. In both cases, whatever application was previously in the foreground is
sent into the background, where it may be suspended by the operating system. Suspension means
freezing: the app gets no CPU threads and no I/O capability, leaving all the computer resources free
to support the main (foreground) application. If the user later returns to a suspended application, the
operating system resumes it in its previous state. Later in Chapter 4, “Application life-cycle manage-
ment,” you will learn more about the application life cycle for Windows Store apps. Figure 1-4 shows
the Windows Store app Bing Weather running in the foreground.

FIGURE 1-4 The Bing Weather app running in the foreground.

 CHAPTER 1 Introduction to Windows Store apps 5

In Figure 1-4, the app takes up the entire screen, which satisfies one of the main ideas of the user
experience design for Windows Store apps: “content, not chrome.” Chapter 2, “Windows 8 user inter-
face style,” will help you more fully understand the meaning of that phrase.

There are some exceptions; not all applications are Windows Store apps. For example, if you launch
an old-style desktop application, Windows switches to the classic Windows Desktop, just as if you
were in a previous version of Windows. Figure 1-5 shows an older desktop-style application, Microsoft
SQL Server Management Studio. Note the absence of the classic Start button.

FIGURE 1-5 A standard desktop application in Windows 8.

You aren’t limited to one application at a time open. If you have a device with a wide (16:9 or
16:10) screen aspect ratio, you can snap two applications onto the screen at the same time. For
example, Figure 1-6 shows the Bing Weather app snapped on the left, with the new Internet Explorer
10 for Windows 8 on the right.

6 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

FIGURE 1-6 A couple of apps running in the new Windows 8 snapped view mode.

Of course, you can also switch the sizes of the two snapped apps, as shown in Figure 1-7.

FIGURE 1-7 Another configuration of the new snapped view mode of Windows 8.

 CHAPTER 1 Introduction to Windows Store apps 7

From a developer’s perspective, the most important thing to understand at this point is that every
Windows Store app must support snapping to be certified by the Windows Store. Bing Weather, as
you saw in previous figures, supports the snapped view by adapting the layout of the page to present
the information in a smaller horizontal portion of the screen. If you create an app that cannot present
information in this manner, you must fill the snapped view with a clear message for the user—you
would never use the full-screen view for a snapped view because the user would not be able to inter-
act properly with the application.

In fact, whenever you want to publish a Windows Store app, you have to submit it to the
Windows Store (or eventually to a corporate Enterprise Store) for approval. From the pub-
lic, official Windows Store point of view, an app must adhere to a clear set of requirements
before it will be certified. Any application that does not adhere to these requirements will
be rejected. You can find complete details about the requirements on the official page
available on the Windows 8 developer section of Microsoft Developer Network (MSDN):
http://msdn.microsoft.com/library/windows/apps/hh694083.aspx. For example, one rule states that
if your app connects to the Internet for any purpose, you must provide a privacy information page.
Thus, if your app invokes a remote web service, which is a common situation, you must provide a
privacy page that explains how you manage users’ data. Chapter 4 discusses the process of submit-
ting an app to the Windows Store in more detail.

Going back to the Start screen, another useful bit of information is that you can arrange tiles in
groups, which helps organize them on the Start screen. To move a tile from one group to another,
you simply need to drag and drop it, using either touch gestures or the mouse. To create a new
group, you move a tile into the middle region between two existing groups. When you do that, a
gray bar appears, representing the frame of the new group. Dropping the tile onto this gray bar
creates a new group.

http://msdn.microsoft.com/library/windows/apps/hh694083.aspx

8 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

If you zoom out the Start screen, by using a “pinch” gesture (explained in Chapter 2) or by scroll-
ing the mouse wheel backward while pressing Ctrl, the Start screen changes. You can assign a name
to a group by clicking it or swiping your finger down on the group to select it and then clicking the
Name Group button in the bottom app bar. Figure 1-8 shows the Start screen while zoomed out, with
a group of tiles selected and the bottom app bar showing the available commands.

FIGURE 1-8 The Windows 8 Start screen when it is zoomed out.

Charms bar and app bars

Other new and key features of Windows 8 are the app bars and the charms bar. Chapter 2 discusses
these in more detail as well as the philosophy behind them. For now, simply consider that these
changes arose from the need to support new devices such as tablets and smartphones, where users

 CHAPTER 1 Introduction to Windows Store apps 9

interact primarily with their hands, through touch. This new touch-oriented perspective necessarily
introduced new tools and solutions. Using the bottom app bar, you can manage tasks and actions
related to the current context or item. You can see an example in Figure 1-9, where Internet Explorer
10 for Windows 8 displays the bottom app bar so the user can edit the current URL, refresh the page,
pin the page on the new Start screen, or change the browser settings.

FIGURE 1-9 The new Internet Explorer 10 UI.

The top app bar provides navigation assistance to end users. For example, you might use it to
show a top-level menu or a list of main sections available in the current app. Figure 1-10 shows the
top app bar of the Windows Store app, which is the app you can use to search, download, buy, and
install other apps.

10 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

FIGURE 1-10 The top app bar of the Windows Store App.

To show the top and bottom app bars, swipe your finger from the top or bottom border of
the screen toward the center of the screen. Alternatively, you can press Windows+Z or right-click
the mouse.

Finally, the charms bar allows you to access useful features and actions provided by the operating
system, regardless of where you are. For example, you can use the charms bar to access system set-
tings, the local search engine, Sharing features, and so on. Figure 1-11 shows the charms bar in action.

 CHAPTER 1 Introduction to Windows Store apps 11

FIGURE 1-11 The Windows 8 charms bar.

To show the charms bar, swipe your finger from the right border of the screen toward the center of
the screen. Alternatively, you can press Windows+C on the keyboard. You can also move the mouse
pointer to the lower- or upper-right corner of the screen. Finally, you can activate specific charms bar
commands directly using keyboard shortcuts. For example, pressing Windows+Q activates a search
for installed applications (Q = query), while pressing Windows+F (F = find files) activates a search for
files. To activate the sharing feature, press Windows+H.

12 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

Through the charms bar, you can activate specific panels such as the Settings panel, which you can
also activate by pressing Windows+I. Figure 1-12 shows the Settings panel in action.

FIGURE 1-12 A flyout configuration panel for managing the settings from the charms bar.

One key feature of the charms bar is that you can also host custom commands and custom panels
in it. For example, if you are developing a Windows Store app and you want to provide some custom
settings for end users, you can add a command to the charms bar. By pressing the custom command
while your app is in foreground, you can activate a flyout panel, which is a custom control that ren-
ders within the charms bar (see Figure 1-13).

 CHAPTER 1 Introduction to Windows Store apps 13

FIGURE 1-13 Another example of a flyout panel for configuring settings of an app.

The charms bar illustrated in Figure 1-13 provides Support Request and Privacy Policy commands,
which are custom commands specific to the app currently in foreground. The Privacy Policy command
navigates to the privacy page required for any app that consumes a remote service over the Internet,
as you learned earlier in this chapter.

Windows Runtime

A Windows Store app is a software solution that adheres to the UI and technical specifications of
the Windows Store. You can create a Windows Store app using any language that supports the new
Windows Runtime (WinRT). WinRT is a rich set of application programming interfaces (APIs) built
upon the Windows 8 operating system that provides direct and easy access to all the main primitives,
devices, and capabilities from any language with which you can develop Windows 8 apps. WinRT is
available only to Windows 8 apps. Its main purpose is to unify the development experience of build-
ing a Windows 8 app, regardless of the programming language you use to program that app.

For now, saying that you can use “any language supporting the Windows Runtime” means that you
can choose to use C++, .NET (C# or VB), or JavaScript. Nevertheless, there are no technical limita-
tions restricting use of WinRT from any other language, as long as it adheres to WinRT specifications.
Chapter 5, “Introduction to the Windows Runtime,” explains more about this topic as well as the
architecture of WinRT.

14 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

At this point, you can think of WinRT as an infrastructural framework of libraries that simplify
developing Windows Store apps by hiding the inner details of the operating system from the com-
mon and everyday developer perspective. For example, you can ask WinRT to open the webcam
standard user interface to capture photos or videos without having to know anything about the
underlying driver or Win32 API.

Here’s a more complete example. The following code excerpt shows how easy and simple it is to
capture a picture from your PC’s camera using the C++ language.

void CaptureWin8::MainPage::TakePhoto_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e) {

 CameraCaptureUI^ dialog = ref new CameraCaptureUI();
 concurrency::task<StorageFile^> (
 dialog->CaptureFileAsync(CameraCaptureUIMode::Photo)).then([this] (
 StorageFile^ file) {
 if (nullptr != file) {
 concurrency::task<Streams::IRandomAccessStream^> (
 file->OpenAsync(FileAccessMode::Read)).then([this] (
 Streams::IRandomAccessStream^ stream) {
 BitmapImage^ bitmapImage = ref new BitmapImage();
 bitmapImage->SetSource(stream);
 image->Source = bitmapImage;
 });
 }
 });
}

You could define the same action using JavaScript, as shown in the following code excerpt:

var dialog = new Windows.Media.Capture.CameraCaptureUI();
dialog.captureFileAsync(Windows.Media.Capture.CameraCaptureUIMode.photo).done(
 function (file) {
 if (file) {
 var photoBlobUrl = URL.createObjectURL(file, { oneTimeOnly: true });
 document.getElementById("capturedPhoto").src = photoBlobUrl;
 }
};

Moreover, even using C# you can achieve the same result, as you can see in the following code
excerpt:

private async void TakePhoto_Click(object sender, RoutedEventArgs e) {

 var camera = new CameraCaptureUI();
 var img = await camera.CaptureFileAsync(CameraCaptureUIMode.Photo);
 if (img != null) {
 var stream = await img.OpenAsync(FileAccessMode.Read);
 var bitmap = new BitmapImage();
 bitmap.SetSource(stream);
 image.Source = bitmap;
 }
}

 CHAPTER 1 Introduction to Windows Store apps 15

Badges, live tiles, toasts, and lock screen

Another group of new features in Windows Store apps are badges, live tiles, toasts, and the lock
screen. Badges and live tiles support showing dynamic information to end users, even when those
users may not be directly using your app but are browsing through the Start screen. You can use a
badge and/or a live tile to provide information about news, new items to check, new tasks to execute,
or whatever else is meaningful and appropriate so users get a better experience with your app from
the Start screen without opening the application. For example, the out-of-the-box Mail app uses the
badge to show the number of unread mails in the inbox and a live tile to show a rotating list contain-
ing excerpts from all the unread emails. Moreover, the Windows Store app uses a badge to notify
users about the number of available updates for their installed apps. Figure 1-14 shows some badges
and live tiles in action.

FIGURE 1-14 The Start screen with tiles showing badges and live tiles.

Notice the number 4 in the bottom-right corner of the Windows Store app—this is a badge
indicating that there are four pending updates. You can also see the badge with number 15 in the
bottom-right corner of the Mail app, notifying the user that there are 15 new emails in the inbox.
Furthermore, the Mail app uses a live tile to show an excerpt of the most recent unread mails.

16 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

A live tile has even more functionality. For example, a live tile can completely change its content to
remain dynamic and fresh, and pique the curiosity of the end user. Figure 1-15 shows four different
states that can be assumed by the tile of a single app (the Bing Travel app, in this case).

FIGURE 1-15 Some sample layouts for a live tile.

Official guidelines for Windows Store apps (see http://msdn.microsoft.com/library/windows/apps/
hh465403.aspx) suggest using a wide tile only when you have live tiles to display. For apps that do
not require a live tile, you should use the smaller square tiles. If you need to display only relatively
static content for your tiles, you can simply use a badge to provide small and lightweight notifications.
Chapter 9, “Rethinking the UI for Windows 8 apps,” covers how to create a live tile.

Toasts are another technique for providing asynchronous alerts to an end user. For example, an
alert/alarm application can ask the operating system to send to the user a toast at a predefined wake-
up time. WinRT will send the toast even if the application that requested the toast is not active at
that time.

Toasts are also important for notification purposes because when the user is working with an
app in the foreground, background apps cannot interact with the user except through toasts. In
fact, as you will learn in Chapter 4, due to the Windows 8 architecture and the application life-cycle
management of Windows Store apps, only the foreground app has the focus and is running; all the
other background apps can be suspended (or even terminated) by WinRT. A suspended app cannot
execute or consume any CPU cycles. However, you can define a background task that will work in the
background (more on this topic later in this chapter)—even in a separate process from the owner
app—and you can define background actions. When these actions need to alert the user about their
outcomes, they can use a toast.

http://msdn.microsoft.com/en-us/library/windows/apps/hh465403.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/hh465403.aspx

 CHAPTER 1 Introduction to Windows Store apps 17

A toast can be a simple text, or an image, or many combinations of the two. Figure 1-16 shows a
toast in the upper-right corner of the screen provided by the Windows Store app, informing the user
that an app installation task has completed in the background. Chapter 9 shows you how to create a
toast for your own Windows 8 apps.

FIGURE 1-16 A toast rendered within a user session in Windows 8.

One last opportunity you have, while developing a Windows Store App, is to provide lightweight
information to the end user through the lock screen. The lock screen is the screen that displays when
a Windows 8 user session is locked out, which can occur after a period of inactivity or is displayed
when the end user presses Windows+L to lock the session.

18 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

For example, in Figure 1-17, the lock screen provides some information about the current date
and time, the next appointment in the user’s agenda, and a set of small icons in the lower part of the
screen. Those icons provide information about network connection status, battery status (for a device
running on battery power), unread email in the inbox, and some other lightweight information.

FIGURE 1-17 The Windows 8 lock screen.

An end user can choose what to see on the lock screen by using the proper panel in the sys-
tem configuration. However, users may not display more than seven lock screen items at once that
provide such detailed information. All seven apps will be able to show badges and toasts on the Start
screen, but only one of those apps will be allowed to show the text of its latest tile notification on the
lock screen.

Figure 1-18 shows the configuration panel for the lock screen. To reach it, you need to show the
charms bar by, for example, pressing Windows+C and then selecting the Settings command. Finally,
click the Change PC Settings command. Under the Personalize section on the Lock Screen tab, you
will find the lock screen configuration settings.

 CHAPTER 1 Introduction to Windows Store apps 19

FIGURE 1-18 The PC settings for a Windows 8 system.

As you can see, the lock screen settings page enables users to choose the background image to
display on the lock screen and to select which seven apps will execute in the background to provide
information through the lock screen icons. Last but not least, users can select which app can display
detailed text status. The last app, by default, is configured to be the Calendar app. To be available to
function as a lock screen app, your software must declare that capability within an app manifest file,
which will be explained later starting in Chapter 3, “My first Windows 8 app.”

The information shown by a lock screen–enabled app is the same as the information that app
shows on the Start screen. In fact, the text shown beside the small icon on the lock screen comes from
the app’s badge, while the detailed text status is taken from the app’s tile text.

Background tasks

As stated earlier in this chapter—and as you will explore further in Chapter 4—a Windows Store app
executes code only when it is in the foreground. However, there are situations where you want to
be able to execute some code, even if your app is not the one currently in foreground, which nec-
essarily means your app is in the background. To do that, you need to create a background task. A
background task can execute code even when the corresponding app is suspended, but it runs in

20 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

an environment that is both restricted and resource managed. Moreover, background tasks receive
only a limited amount of system resources. Therefore, you should use background tasks only to
execute small pieces of code that don’t require any user interaction. For example, you should not use
a background task to execute complex business logic or calculations, because the amount of system
resources available to the background task is very tight and limited. In addition, complex background
workloads consume battery power and CPU cycles, reducing the efficiency and responsiveness of
the system.

To create a background task, you must define a class and register it with the operating system.
A background task is just a class that implements a specific interface (IBackgroundTask in C#, for
example) defined by WinRT. You register the task using a BackgroundTaskBuilder class instance. Many
types of background tasks are available that respond to different kinds of triggers:

■■ ControlChannelTrigger Raised when there are incoming messages on the control channel

■■ MaintenanceTrigger Happens when it is time to execute system maintenance tasks

■■ PushNotificationTrigger Raised when a notification arrives on the Windows Notifications
Service channel

■■ SystemEventTrigger Happens when a specific system event occurs

■■ TimeTrigger Triggered when a time event occurs

In particular, a SystemTrigger can occur in response to any of the following system events:

■■ InternetAvailable The Internet becomes available.

■■ LockScreenApplicationAdded An app tile is added to the lock screen.

■■ LockScreenApplicationRemoved An app tile is removed from the lock screen.

■■ ControlChannelReset A network channel is reset.

■■ NetworkStateChange A network change such as a change in cost or connectivity occurs.

■■ OnlineIdConnectedStateChange The online ID associated with the account changes.

■■ ServicingComplete The system has finished updating an application.

■■ SessionConnected The session is connected.

■■ SessionDisconnected The session is disconnected.

■■ SmsReceived A new SMS message is received by an installed mobile broadband device.

■■ TimeZoneChange The time zone changes on the device (for example, when the system
adjusts the clock for daylight saving time).

■■ UserAway The user becomes absent.

■■ UserPresent The user becomes present.

 CHAPTER 1 Introduction to Windows Store apps 21

Whenever such an event occurs, you can check a set of conditions to determine whether or not
your background task should execute. The conditions you can check are as follows:

■■ InternetAvailable The Internet must be available.

■■ InternetNotAvailable The Internet must be unavailable.

■■ SessionConnected The session must be connected.

■■ SessionDisconnected The session must be disconnected.

■■ UserNotPresent The user must be away.

■■ UserPresent The user must be present.

To optimize resource consumption, some triggers fire only to apps in the lock screen. For
example, a TimeTrigger can be leveraged only by an app in the lock screen. The same require-
ment is valid for PushNotificationTrigger and ControlChannelTrigger. Even some of the SystemTrigger
events are reserved for apps in the lock screen, such as SessionConnected, UserPresent, UserAway,
and ControlChannelReset. Because your app should register for these events and triggers
only when it’s in the lock screen, the SystemTrigger events LockScreenApplicationAdded and
LockScreenApplicationRemoved are provided, which let an app register and unregister such
triggers appropriately.

Generally speaking, common language runtime (CLR) and C++ apps can execute a background
task in the app itself or in a system-provided host (BackgroundTaskHost.exe). Moreover, tasks for trig-
gers of type PushNotificationTrigger or ControlChannelTrigger can also execute in the app process.

To properly introduce the background tasks, one last topic to cover is resources management.
Every background task must execute its code using a constrained amount of CPU and network band-
width. For example, each app on the lock screen receives 2 seconds of CPU time every 15 minutes,
plus 2 more seconds for executing background tasks, just after the previous 2 seconds. In comparison,
an app that is not on the lock screen receives 1 second of CPU time every 2 hours.

From a network bandwidth perspective, these constraints are a function of the amount of energy
consumed by the network interface. For example, with a throughput of 10 megabits, an app on the
lock screen can consume about 450 MB per day, while an app that is not on the lock screen can con-
sume about 75 MB per day.

So the purpose of these constraints is to reduce battery and resource consumption. These rules
do not apply for apps that rely on critical background tasks such as ControlChannelTrigger and
PushNotificationTrigger—those kinds of tasks receive guaranteed resources. Finally, there is a global
pool of resources (CPU and network) that is shared across apps, and that can be used to provide
extra resources to those apps that need them. Of course, an app should not rely on the availability
of such resources, because they are shared between all background tasks of any app, so another
app could already have consumed them all. The global pool is refilled every 15 minutes, using a refill
quota related to whether the device is running on an AC adapter or on battery power.

22 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

Contracts and extensions

A powerful set of features available for developing Windows Store apps are called WinRT contracts.
WinRT and Windows Store apps can share data, information, features, and behaviors through shared
communication contracts. A contract is an agreement between an app and the Windows 8 operat-
ing system by which an app that follows specific rules can communicate and exchange data with any
other app—without directly knowing about the other app—using the operating system and WinRT
as a proxy.

For example, start the Bing Travel app from the Start screen and navigate to a target location for
a journey, such as Rome in Italy. Then show the charms bar (press Windows+C) and select the Share
command. You will be prompted by a panel within the charms bar asking you to decide whether you
want to share that location by email, with friends using the People app, or via any other Windows
Store app configured as a sharing target for the type of content you want to share. You can see the
result in Figure 1-19.

FIGURE 1-19 The share content flyout panel within the Bing Travel app.

As soon as you have made a choice, for example by selecting Mail, Windows launches the sharing
target app behind the scenes, so it can handle the shared content. In Windows Mail for example, you
can send the information about Rome to someone else via email (see Figure 1-20).

 CHAPTER 1 Introduction to Windows Store apps 23

FIGURE 1-20 The UI exposed by the Mail app while sharing some content with it.

In reality, neither app (Bing Travel nor Windows Mail) is aware of the other. WinRT, sitting in the
middle, joins them through a contract called a Share contract.

These features are shared by all apps, not just custom apps. For example, when you are using the
Windows Store app, and you activate the search feature (Windows+Q), the operating system uses a
Search contract to query the Windows Store app for apps that satisfy the search criteria provided.

WinRT includes a rich set of contracts, as shown in the following list:

■■ Cached File Updater You can leverage this contract to keep track of files changes and cache
them. For example, the SkyDrive app uses this contract to monitor file changes.

■■ File Picker This contract enables you to register your app as a target for the file picker UI.

■■ Play To This contract allows your app to be listed in the list of apps available in the Play To
section of the Connect command in the charms bar.

■■ Search This contract provides search capabilities to your app.

■■ Settings This contract supports providing a panel where users can enter custom settings for
your app.

■■ Share This contract supports sharing content between apps.

24 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

In addition to contracts, there are also extensions, which allow an app to adhere to an agreement
with the operating system rather than a third-party app. You can use an extension to extend Windows
standard features. For the sake of simplicity, consider what happens when you connect a device or
insert a disc into the CD/DVD reader. An operating system message informs the end user that he or
she can execute/play the new device or media, providing a list of available actions and players. You
can register your app as supporting the AutoPlay extension, and your app will then appear in the list
of available AutoPlay targets.

The following is a list of available extensions:

■■ Account picture provider When an end user changes his or her own account picture, you
can register your app as an account picture provider.

■■ AutoPlay This extension enables your app to be included in the list of AutoPlay targets.

■■ Background tasks The app can run background tasks.

■■ Camera settings You can provide custom UI for camera settings.

■■ Contact picker You can register your app as contact picker provider.

■■ File activation This extension enables you to register an app to execute a specific file type
based on the file extension.

■■ Game Explorer You can register you app as a game, providing a Game Definition File (GDF),
and your app will be available as a game only if compliant with the target family safety rules.

■■ Print task settings You can declare that your app can have a custom printer UI and can
print by communicating directly with a printer device.

■■ Protocol activation This extension allows you to register a protocol moniker for your app.
For example, Windows Mail can be activated with a mailto: protocol moniker. Internet Explorer
10 can be activated with an http: protocol moniker. You can register your own moniker and
use it to activate your app.

■■ SSL/certificates This extension enables your app to install a digital certificate onto the
target device.

As you will learn in Chapter 3, it is simple to register or consume a contract through WinRT.

Visual Studio 2012 and Windows 8 Simulator

To develop a Windows Store app, you will first need to install a development environment such as
Microsoft Visual Studio 2012. To accomplish this task, you can buy and install a regular license for
Visual Studio 2012 either directly from Microsoft or from an authorized reseller. However, for evalu-
ation purposes, you can get started with a free edition of Visual Studio 2012, called Visual Studio
Express 2012. In particular, one edition of the Visual Studio Express family of products is called Visual
Studio Express 2012 for Windows 8. Using this development tool, you can create Windows Store

 CHAPTER 1 Introduction to Windows Store apps 25

apps either from scratch or by starting with a set of prebuilt application templates and mod-
els. You can download Visual Studio Express 2012 for Windows 8 from the Microsoft website at
http://www.microsoft.com/visualstudio/. Alternatively, you can acquire it through the Windows Store,
where it’s listed under the Tools category of apps. Figure 1-21 shows the page dedicated to Visual
Studio Express 2012 for Windows 8 in the Windows Store.

FIGURE 1-21 The Visual Studio Express 2012 desktop application within the Windows Store.

Perhaps even better, you can download a 90-day evaluation copy of Visual Studio 2012 from
http://www.microsoft.com/visualstudio/eng/downloads. This 90-day trial version should provide suffi-
cient time for you to complete this book and experience all the exercises and demos using a complete
version of the product.

After installing Visual Studio, you will be able to create custom apps and publish them in the
Windows Store. Chapter 3 and Chapter 4 discuss how to accomplish these tasks in more detail.

Another possible development track to consider is that you can download and install a retail ver-
sion of Visual Studio 2012 (Professional, Premium, or Ultimate), even on previous editions of Windows.
For example, perhaps you still don’t have a Windows 8 PC; instead, you’re using a Windows 7 desktop
machine. You can still install Visual Studio 2012 and develop software solutions. However, you will not
be able to develop Windows Store apps. Moreover, you cannot download and install Visual Studio
Express 2012 for Windows 8 on a computer without Windows 8, because that edition requires you to
have Windows 8 or later.

http://www.microsoft.com/visualstudio/
http://www.microsoft.com/visualstudio/eng/downloads

26 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

A final option for testing and executing your apps is to use the Windows 8 Simulator, which is part
of the Windows 8 SDK included with Visual Studio 2012. Figure 1-22 shows the Windows 8 Simulator
in action.

FIGURE 1-22 The Windows 8 Simulator in action.

As you can see from Figure 1-22, the Simulator looks like a small tablet PC with Windows 8 on
board. On the right side, the Simulator includes a set of commands through which you can simulate
all the various scenarios for Windows 8. These commands are as follows, from top to bottom:

■■ Always on top This command puts the Simulator always on top.

■■ Mouse mode When you move and click your mouse, the Simulator will react to mouse
interactions as well.

■■ Basic touch mode Your mouse pointer will become like a finger, and when you click the
Simulator, it will be handled as a finger touch.

■■ Pinch/zoom touch mode This command is similar to the previous option, but you use it to
simulate zoom-in and zoom-out via touch gestures.

■■ Rotation touch mode This command is similar to the previous option, but you use it to
simulate touch rotation gestures.

■■ Rotate clockwise (90 degrees) This command rotates the device clockwise 90 degrees.

■■ Rotate counterclockwise (90 degrees) This command rotates the device counterclock-
wise 90 degrees.

 CHAPTER 1 Introduction to Windows Store apps 27

■■ Change resolution This command changes the screen resolution of the simulator device.
The available resolutions are as follows:

10.6", 1024 × 768

10.6", 1366 × 768

10.6", 1920 × 1080

10.6", 2560 × 1440

12", 1280 × 800

23", 1920 × 1080

27", 2560 × 1440

■■ Set location This command allows you to simulate a GPS location, for testing location-
based apps.

■■ Copy screenshot Use this command to create a screenshot of the Simulator screen, which is
useful for creating promotional pictures of your apps and is required to publish a real app on
the Windows Store.

■■ Screenshot settings This command configures the copy screenshot behavior, such as the
destination directory of the image files.

■■ Help This command provides a link to the Simulator’s help.

Using the Simulator, you can fully test your apps, even without a physical tablet device or touch
screen, and without a Windows 8 environment.

One of the most important features of the Simulator is the ability to change the resolution, ori-
entation, and form factor of the screen so you can test your application’s behavior in many different
“devices” without the need to buy real ones.

Last but not least, remember that you cannot develop a Windows Store app using Microsoft Visual
Studio 2010 or any other earlier edition of the product. The only edition of Visual Studio suitable for
developing Windows Store apps is Visual Studio 2012 or later.

Summary

This chapter presented an overview of Microsoft Windows 8 and Windows Store apps. You learned
about the key new features of Windows 8 as well as the main goals behind the development of a
Windows Store app. You learned about apps, the Windows Store, badges, live tiles, toasts, back-
ground tasks, the new lock screen, the new Start screen, and more. The chapter also provided infor-
mation about which development environments you can use to develop Windows Store apps.

28 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

Quick reference

To Do this

Notify a user of an action that happened in the
background

Use a toast, a badge, or a live tile. You can also use the lock
screen, in case it is suitable for your context.

Execute some code while your app is suspended Use a background task.

Make the contents managed by your app search-
able by the end user

Support the Search contract.

Develop a Windows Store app Install Microsoft Visual Studio Express 2012 for Windows 8 or
Microsoft Visual Studio 2012 on a Windows 8 device.

Simulate the execution of a Windows 8 app in dif-
ferent resolutions, orientations, and form factors

Run the Windows 8 Simulator available within Visual Studio
2012.

 103

C H A P T E R 4

Application life-cycle management

After completing this chapter, you will be able to

■■ Understand the application manifest settings.

■■ Use the application manifest to modify application capability and appearance.

■■ Deploy and test an application.

■■ Understand the way Windows 8 manages the different running states of an application.

■■ Respond to launching, activating, suspending, and resuming events.

■■ Use the application data store to save data locally.

In preceding chapters, you saw how Windows 8 provides a new user interface, offers a completely
new user experience, and exposes a new set of APIs called Windows Runtime (WinRT) APIs through
which you can interact with the operating system. You also developed a simple application in
Chapter 3, “My first Windows 8 app.”

This chapter introduces the complete application life cycle in Microsoft Windows 8, from deploy-
ment, to launch, to uninstallation. You will start by analyzing the various settings in the application
manifest. The application manifest is a file that defines an application’s appearance on the Start screen
and informs Windows 8 about which WinRT features the application will use. You will also explore
how WinRT manages an application’s life cycle at run time, by launching, suspending, resuming, and
terminating the application as needed.

First, a Windows 8 application cannot include an app.config file. This means that—just as in a
Microsoft Windows Phone or Windows Presentation Foundation (WPF) Web Browser Application
(WBA)—you cannot use the classic .NET configuration mechanism to provide application and system
settings. There is no System.Configuration namespace or any equivalent classes in the WinRT APIs. The
Windows 8 runtime system executes Windows Store applications in a sandboxed process, similar to a
Silverlight or WPF WBA. Users cannot navigate to the file system where the application is installed and
change files, because Windows 8 apps are mainly downloaded and installed from the Windows Store.

104 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

Application manifest

As in a Windows Phone 7.x project, deployment information and many configuration settings are
stored in a manifest file that WinRT calls Package.appxmanifest, which is an XML-formatted file that
describes various aspects of the project, as you can see in the following listing, taken from a real
Windows Store application.

<?xml version="1.0" encoding="utf-8"?>

<Package xmlns="http://schemas.microsoft.com/appx/2010/manifest">

 <Identity Name="ea15f786-9bb0-4d64-98b0-d251fa375633" Publisher="CN=Devleap"
 Version="1.0.0.1" />

 <Properties>
 <DisplayName>Learn with the Animals</DisplayName>
 <PublisherDisplayName>ThinkAhead</PublisherDisplayName>
 <Logo>Assets\Store_Logo.png</Logo>
 </Properties>
 <Prerequisites>
 <OSMinVersion>6.2.1</OSMinVersion>
 <OSMaxVersionTested>6.2.1</OSMaxVersionTested>
 </Prerequisites>
 <Resources>
 <Resource Language="x-generate" />
 </Resources>
 <Applications>
 <Application Id="App" Executable="$targetnametoken$.exe"
 EntryPoint="ThinkAhead.Windows8KidsGames.App">
 <VisualElements DisplayName="Learn with the Animals" Logo="Assets\logo.png"
 SmallLogo="Assets\small_logo.png" Description="Learn animal noises, names,
 guess their noises and names, try to read and try to write their names"
 ForegroundText="dark"
 BackgroundColor="#464646">
 <DefaultTile ShowName="noLogos" WideLogo="Assets\wide_logo.png"
 ShortName="Learn with the Animals" />
 <SplashScreen Image="Assets\splash_screen.png" BackgroundColor="#b4dfba" />
 <InitialRotationPreference>
 <Rotation Preference="landscape" />
 <Rotation Preference="landscapeFlipped" />
 </InitialRotationPreference>
 </VisualElements>
 </Application>
 </Applications>
</Package>

The first section, called Properties, contains information for the Windows Store, such as the title for
the application, the name of the publisher, the official logo, and a brief description.

The last section, called Capabilities, contains a list of all the operating system features the applica-
tion needs to access on the user’s PC or tablet. When application code requests one of these features,
the user receives a direct request to give the application specific permission to use the feature. The

 CHAPTER 4 Application life-cycle management 105

user can revoke this permission at any time; your code has to fail gracefully if the user denies the
permission to use a capability.

This way of working is similar to a Windows Phone 7.x project, where WMAppManifest.xml tells the
operating system the capabilities the application requires to run. You can find more information on
application capabilities in Chapter 6, “Windows Runtime APIs.”

Figure 4-1 shows the Manifest Designer that Microsoft Visual Studio 2012 provides to simplify the
application definition. To open the designer, simply double-click the Package.appxmanifest file in
Solution Explorer. The figure shows the real manifest for one of the authors’ applications, called Learn
with the Animals. The Application UI tab lets you choose the display name of the application (the name
used for the Start screen), a description of the application, three logos for the application, and so on.

FIGURE 4-1 The Application UI tab.

The first tab of the Visual Studio Manifest Designer produces the following section in the applica-
tion manifest:

<VisualElements DisplayName="Save The Planet" Logo="Assets\Logo.png"
 SmallLogo="Assets\SmallLogo.png" Description="ThinkAhead.SaveThePlanet.Win8.UI"
 ForegroundText="light" BackgroundColor="#222222" ToastCapable="true">
 <LockScreen Notification="badgeAndTileText" BadgeLogo="Assets\BadgeLogo.png" />
 <DefaultTile ShowName="allLogos" />
 <SplashScreen Image="Assets\SplashScreen.png" BackgroundColor="#000000" />
</VisualElements>

106 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

VisualElements, as the name implies, defines the display name for the Windows 8 Start screen,
the various logos for the tile (Logo), the small tile (SmallLogo), and the wide tile (WideLogo), as well
as the supported rotation and the default one, the badge default logo, and the image for the splash
screen.

All the required images referenced by the application package manifest are provided as place-
holders by the Visual Studio templates for Windows Store applications and are placed in the Assets
folder of the project. The default template uses an image for the application logo that displays on the
default application tile (Logo.png), an image for the initial splash screen (SplashScreen.png), a small
logo image that is shown in the tile if the application switches its tile from code (SmallLogo.png) and,
last but not least, an image used by the Windows Store to represent the application (StoreLogo.png).
As you can see in Figure 4-1, you can also provide a wide logo that displays if the user chooses a wide
tile for the application from the Start screen.

Figure 4-2 shows the application tile in the Windows 8 Start screen. The tile presents the image
described in the application manifest as the WideLogo property and, as you will learn in Chapter 9,
“Rethinking the UI for Windows 8 apps,” the application can also modify the tile from code or create
a secondary tile.

FIGURE 4-2 The Learn with the Animals wide tile on the Start screen.

 CHAPTER 4 Application life-cycle management 107

Application package

The application manifest contains all the application information the system needs to deploy it on a
target machine. That could be the local machine or the Windows 8 Simulator, which you can use for
testing and debugging purposes. The manifest also contains all the information needed to package
the application for the Windows Store.

When you run an application using the F5 button, Visual Studio 2012 compiles the application,
builds the application package, and asks the operating system to install the package on the developer
machine or the Windows 8 Simulator.

Visual Studio lets you package and deploy the application on the Windows Store by using the
Store | Create App Package feature. This menu item launches a Create App Packages wizard that
guides you through the process to package the application and upload it to the store, or to simply
build the package to use it on a developer machine, as you can see from the two options and associ-
ated descriptions in Figure 4-3.

FIGURE 4-3 The Create App Packages wizard.

108 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

If you choose the first option, you will be asked for the Windows Live ID associated with your
Windows Store account to publish the application. In both cases, the last step of the wizard lets you
choose the processor architecture for which to build the application, and then it creates the package
(see Figure 4-4).

FIGURE 4-4 The Create App Packages wizard lets you choose the output location, version, and configuration.

The package contains one binary file that represents the application and a folder with four differ-
ent files:

■■ <App Name_Version_Compilation>.appxupload This is the real “package,” and it contains
the compiled application to be installed. For example, the application Learn with the Animals,
version 1.0.0.6 for Any CPU is packaged in a file called LearnwiththeAnimals_1.0.0.6_AnyCPU.
appxupload. This is the file for the Windows Store.

■■ <App Name_Version_Compilation>.cer This is a certificate used to sign the application in
the local development environment. The private key is contained in the .pfx file of the Visual
Studio 2012 project. During the installation process, this certificate is added to the Trusted
Root Certification Authorities of the local machine.

 CHAPTER 4 Application life-cycle management 109

■■ <App Name_Version_Compilation>.appxsym This file contains the debugging symbols.

■■ Add-AppxDevPakage.bat This file contains the script to install the application, the signing
certificate in the Trusted Root Certification Authorities, and all the dependencies the applica-
tion needs to run.

Note The directory name is also dependent on and formed by the compilation type
(Debug, Release, Platform) and the current user name, and it contains all the deployed
application files.

When the application is installed on the system, Windows 8 creates a directory in
X:\Users\<username>\AppData\Local\Packages\ using the globally unique identifier (GUID) associated
with the application. This GUID is automatically generated when the Create App Packages wizard cre-
ates a new Windows Store application and is stored in the application manifest in the Identity tag, as
shown in the following excerpt:

<Identity Name="380ac04e-991e-4e5f-8758-5f56e68b0e94" Publisher="CN=DevLeap"
 Version="1.0.0.2" />

You can uninstall an application at any time by selecting its tile and choosing Uninstall from the
Windows 8 Start screen. As shown in Figure 4-5, you can also unpin the application by choosing the
Unpin from Start item in the app bar. Doing so simply removes the tile from the Start screen and does
not uninstall the application from the system. You can always reach the application again by pressing
Windows+Q and searching within the installed apps.

Note You can use the batch file to install the application on a developer machine manually.

110 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

FIGURE 4-5 The Windows 8 Start screen app bar.

Windows Store

The Windows Store enables users to search for, download, install, and review applications. As a devel-
oper, you can upload your applications to the Windows Store, making them available for download or
purchase on every tablet and PC running Windows 8 around the globe.

To upload an application, you first need to create a Windows Store account and bind it to a
Windows Live ID. This procedure is quite straightforward. It also lets you define the application’s pub-
lisher name, the name that appears in many Windows Store screens near the application name. Users
can search for apps in the Windows Store by name, by keyword, and by publisher.

After you have created an account, you can upload an application immediately. Alternatively, you
can reserve a name for an application you plan to develop within a year. If you plan to sell the appli-
cation, you must also fill out the fiscal profile for the person or company specified as the publisher.
You will also need to complete the IRS module related to your fiscal position. For example, if you
are the publisher and you live outside the United States, you will need to fill out the W-8BEN form.
Fortunately, a wizard will guide you during the process of choosing the right module and filling it
out online.

 CHAPTER 4 Application life-cycle management 111

You can upload and sell an application before you have filled in all the fiscal data, but you will
receive no money until you have completed the financial profile.

Aside from these administrative tasks, the process of publishing an application is straightforward.
First, you should verify that the application conforms to Windows Store requirements locally. This step
is not required, but it’s very useful to validate your application quickly before performing any upload.
You can validate your app with the application verifier (Windows App Certification Kit, or ACK) which,
as shown in Figure 4-6, validates an application for technical compliance with Windows Store rules.

FIGURE 4-6 The Windows App Certification Kit verifies that an application conforms to Windows Store rules.

The tool can also validate a desktop application and a desktop device application for Windows 8
Desktop App Certification. The Windows App Certification Kit is installed on your system together
with Visual Studio Express for Windows 8; you can launch it from the Start screen.

The next step lets you choose the application to validate (remember to deploy it to the local sys-
tem compiling the project in release mode). The validation begins by launching the application. It is
very important that you do not interact with the application (and the system) during the test, because
the test also verifies how the application is suspended and how it resumes, as well as whether it closes
and terminates correctly.

If your application does not pass all the tests performed by the Windows App Certification Kit,
there’s no point in trying to upload the application package to the Windows Store. The Windows
Store service performs exactly the same verification process, so there is no way an app that fails
local certification can pass the store certification. At the end of the process, you will receive detailed
information on any application problems, presented as errors or warnings. As stated earlier, the local
verification step is not required, but it is very useful and recommended.

112 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

When you have completed local certification, if you haven’t reserved a name for your app, you
must choose an application name before uploading the package.

For each application you upload to the Windows Store, you need to provide required information,
including the application name and sales details (price, country availability, trial version availability,
and so on). You can enrich this information by providing details such as an age rating (especially if
your app is a game), the cryptography mechanism your app uses (if any), and notes to testers, as
shown in Figure 4-7.

FIGURE 4-7 The Submit an App page allows you to fill in information about your application when submitting it
to the Windows Store.

After completing the information on the Submit an App page, you need to upload the package.
You can build the package directly from Visual Studio 2012 as you saw in the previous section of this
chapter, choosing the option to associate the package with the application in the store. From a practi-
cal viewpoint, after you create an application using the Windows Store dashboard, you can associ-
ate it with the Visual Studio project using the Store menu. This association modifies the application
manifest using the publisher name and publisher ID taken from the store services.

To do that, from the Store menu, select the Associate App with the Store menu item to bind the
project to an application and import the publisher name and certificate to the project. Alternatively,
you can perform the binding operation when you build the application package, as shown in
Figure 4-8.

 CHAPTER 4 Application life-cycle management 113

FIGURE 4-8 Associate an application Visual Studio project with the real Windows Store application.

After the upload operation completes, you need to fill in an important form linked to the
Description button that allows you to define all of the marketing information for your app:

■■ Description of the application (free text)

■■ Two lines describing major application features

■■ Seven keywords (may be more in future releases)

■■ Optional copyright information and license terms

■■ Eight optional screen shots, each one with a required description

■■ Promotional images that will be used by the system if your app is selected to appear on the
New Apps or Top Apps page of the store

■■ Application minimum hardware requirements

■■ An email address that users can write to if they have support requests

■■ A privacy policy

114 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

For example, Figure 4-9 shows the attributes used for the Learn with the Colors application, which
is a Windows 8 app the authors published to the Windows Store.

FIGURE 4-9 Attributes for the authors’ Learn with the Colors app.

For each application you distribute through the Windows Store, the store service provides sta-
tistics such as store trends, a financial summary, the number of downloads, and reviews and rating
information.

Launching

When you create a new Windows Store application using the Visual Studio template, you will end up
with a solution containing one project with a default page called MainPage.xaml and a class that rep-
resents the application defined in the App.xaml.cpp and App.xaml.h files. WinRT invokes the method
called OnLaunched immediately after creating the application instance. You can override this method
in your application to perform some activities.

 CHAPTER 4 Application life-cycle management 115

Understand the OnLaunched event

In this procedure, you will start coding the event handlers for application events.

1. Create a new application project. To do so, open Visual Studio 2012 and select New Project
from the File menu (the sequence can be File | New | Project for full-featured versions of
Visual Studio). Choose Visual C++ in the Templates tree and then Windows Store from the list
of installed templates. Then choose Blank App (XAML) from the list of available projects.

2. Name the new project ALMEvents, and then choose a location on your file system and accept
the default solution name. When you’ve finished, click OK.

As you learned in Chapter 3, the Windows Store Application template provides a default page
(MainPage.xaml), an application entry point in the App class (App.xaml.cpp and App.xaml.h
files), and a default application description in Package.appxmanifest.

3. Open the App.xaml.cpp file and scroll down until you can see the OnLaunched method.

This method is called by WinRT when the user launches the application. An application is
launched when the user clicks the application tile. The default code inside the method simply
instantiates a new Frame class, sets it as the current content, and then navigates to the main
page, calling the Navigate method on the frame and passing the MainPage class. The last line
activates the current content that is the Main Page. The code also contains a test to check for
the presence of an existing frame (meaning the application is already running), which will be
explained later in this chapter.

The following snippet shows the OnLaunched method:

void App::OnLaunched(Windows::ApplicationModel::Activation::LaunchActivatedEventArgs^
 args)
{
 auto rootFrame = dynamic_cast<Frame^>(Window::Current->Content);

 // Do not repeat app initialization when the Window already has content,
 // just ensure that the window is active
 if (rootFrame == nullptr)
 {
 // Create a Frame to act as the navigation context and associate it with
 // a SuspensionManager key
 rootFrame = ref new Frame();

 if (args->PreviousExecutionState ==
 ApplicationExecutionState::Terminated)
 {
 // TODO: Restore the saved session state only when appropriate,
 // scheduling the final launch steps after the restore is
 // complete

 }

116 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

 if (rootFrame->Content == nullptr)
 {
 // When the navigation stack isn't restored, navigate to the
 // first
 // page, configuring the new page by passing required
 // information as a navigation parameter
 if (!rootFrame->Navigate(TypeName(MainPage::typeid),
 args->Arguments))
 {
 throw ref new FailureException(
 "Failed to create initial page");
 }
 }
 // Place the frame in the current Window
 Window::Current->Content = rootFrame;
 // Ensure the current window is active
 Window::Current->Activate();
 }
 else
 {
 if (rootFrame->Content == nullptr)
 {
 // When the navigation stack isn't restored, navigate to the
 // first
 // page, configuring the new page by passing required information
 // as a navigation parameter
 if (!rootFrame->Navigate(TypeName(MainPage::typeid),
 args->Arguments))
 {
 throw ref new FailureException(
 "Failed to create initial page");
 }
 }
 // Ensure the current window is active
 Window::Current->Activate();
 }
}

4. Add the following two lines just at the beginning of the method, before the rest of the code,
as presented in the previous step:

auto dia = ref new Windows::UI::Popups::MessageDialog(
 "App OnLaunched",
 "ALM Events");
dia->ShowAsync();
.....

The first line instantiates the MessageDialog class, passing to it the content and the title as
string parameters. This class represents what in the past was called a message box. The second
line of code shows the message dialog box in the default location and begins an asynchro-
nous operation for processing the dialog box, and then calls the Start method to start the
operation.

 CHAPTER 4 Application life-cycle management 117

5. Press F5 to start the application or deploy the application as you learned in Chapter 3, and tap
or click the application tile. The following image shows the message dialog box.

As you can see, the dialog box is shown full screen, and it displays the title and the content
passed as parameters in the class constructor.

6. Click or tap the Close button to close the dialog box. You will see a completely black page—
this is because the default page presents nothing.

7. Press the Windows button to open the Start screen (you can also move the mouse in the
lower-left corner of the screen and choose Start from the Start menu).

8. Scroll right until you find the ALMEvents application, and tap or click the application tile to
launch it again. The application is already running, and you will not see the dialog box; in
fact, WinRT does not call the OnLaunched method on the application when the application
instance is already loaded.

This behavior is significantly different than in previous versions of Windows, where the system
started a new instance of the application each time the user launched it. In Windows 8, there
can be only one instance running at the same time. When the user launches an already run-
ning application, WinRT just brings the application to the foreground.

9. Close the application by pressing Alt+F4 and repeat steps 5–7 to verify the application
flow again.

118 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

The parameter received by the OnLaunched method is of type LaunchActivatedEventArgs, a class
that implements the IActivatedEventArgs interface you saw in Chapter 3. This interface is implemented
by different classes that serve as event arguments for different activation events. The first property of
the interface is Kind, and it can assume one of the values defined in the ActivationKind enumeration.
This property lets the developer ask for the kind of launch. For instance, if the application is launched
by the user, this property will be ActivationKind.Launch; if the application is launched by the system
when the user selects it as search target, the property will be ActivationKind.Search; if the application
is activated to receive something from other applications using a Share contract, the property will be
ActivationKind.ShareTarget. There are two different methods in the base class to react to this activa-
tion. You will see these differences in this chapter.

Show the launch kind

In this procedure, you will change the code of the previous procedure to show the activation kind.

1. Replace the code you inserted in the previous procedure for the OnLaunched method to
create a message that contains the activation kind as follows. You will need to insert the lines
in bold:

Platform::String^ message = "App Launched: " + args->Kind.ToString();
auto dia = ref new Windows::UI::Popups::MessageDialog(message, "ALM Events");
dia->ShowAsync

...

The first line uses the Kind property of the event args to build the message text, and the sec-
ond line presents it in a message dialog box.

2. Run the application, deploying it from the Build menu, and start the application by clicking
the application tile on the Start screen. You will see the dialog box presenting the message
“App Launched: Launch.”

3. Click the Close button and do not close the application.

4. Go to the Start screen and click the application tile. You won’t see any messages because the
application is already running.

5. Close the application using Alt+F4.

 CHAPTER 4 Application life-cycle management 119

Understand the previous state

In this procedure, you will modify the code for the OnLaunched method to test the execution state for
the previous launch of the application. If the user closes the application normally, the previous execu-
tion state will be ClosedByUser, telling you that everything went well for the user. If the user has never
launched the application, the previous execution state will be NotRunning.

1. Change again the first line of the OnLaunched event to build a more detailed message that
shows the activation kind and the previous execution state by replacing the first line of the
method with the one shown in the following code excerpt (bold line):

Platform::String^ message = "App Launched: " + args->Kind.ToString()
 + " - Previous State: " + args->PreviousExecutionState.ToString();
auto dia = ref new Windows::UI::Popups::MessageDialog(message, "ALM Events");
dia->ShowAsync();
...

2. Deploy the application using the Deploy menu item on the Build menu.

3. Start the application by launching it from the Start screen.

4. Verify that the message “App Launched: Launch – Previous State: ClosedByUser” displays,
meaning the application was closed by you previously (if, in fact, you closed it in the previ-
ous procedure). The message can be “App Launched: Launch – Previous State: NotRunning” if
the application was closed immediately before. Try it closing and launching it from the Start
screen quickly.

5. Close the application using Alt+F4.

6. Modify MainPage.xaml by adding two buttons and their corresponding click events in the Grid
control as follows:

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel Orientation="Horizontal" VerticalAlignment="Top">
 <Button Click="Crash_Click" Content="Crash" />
 <Button Click="Close_Click" Content="Close" />
 </StackPanel>
</Grid>

The first one will be used to perform an invalid operation that causes a crash of the applica-
tion. The second will be used to gracefully close the application from code.

7. Implement the event handlers for the Crash and the Close click events (highlighted in bold)
using the following code in the MainPage.xaml.h (Listing 4-1) and MainPage.xaml.cpp
(Listing 4-2) files, respectively.

120 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

LISTING 4-1 Code-behind file for the App class: MainPage.xaml.h

#pragma once

#include "MainPage.g.h"

namespace ALMEvents
{
 /// <summary>
 /// An empty page that can be used on its own or navigated to within a Frame.
 /// </summary>
 public ref class MainPage sealed
 {
 public:
 MainPage();

 protected:
 virtual void OnNavigatedTo(Windows::UI::Xaml::Navigation::NavigationEventArgs^ e)
 override;
 private:
 void Crash_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e);
 void Close_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e);
 };
}

LISTING 4-2 Code-behind file for the App class: MainPage.xaml.cpp

#include "pch.h"
#include "MainPage.xaml.h"

using namespace ALMEvents;

using namespace Platform;
using namespace Windows::Foundation;
using namespace Windows::Foundation::Collections;
using namespace Windows::UI::Xaml;
using namespace Windows::UI::Xaml::Controls;
using namespace Windows::UI::Xaml::Controls::Primitives;
using namespace Windows::UI::Xaml::Data;
using namespace Windows::UI::Xaml::Input;
using namespace Windows::UI::Xaml::Media;
using namespace Windows::UI::Xaml::Navigation;

// The Blank Page item template is documented at
// http://go.microsoft.com/fwlink/?LinkId=234238

MainPage::MainPage()
{
 InitializeComponent();
}

 CHAPTER 4 Application life-cycle management 121

/// <summary>
/// Invoked when this page is about to be displayed in a Frame.
/// </summary>
/// <param name="e">Event data that describes how this page was reached. The Parameter
/// property is typically used to configure the page.</param>
void MainPage::OnNavigatedTo(NavigationEventArgs^ e)
{
 (void) e; // Unused parameter
}

void ALMEvents::MainPage::Crash_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e)
{
 int a = 10;
 int b = 0;
 int c = a / b;
}

void ALMEvents::MainPage::Close_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e)
{
 Application::Current->Exit();
}

8. Deploy the application by right-clicking the project in the solution and choosing Deploy from
the context menu.

9. Launch the application from the Start screen, click Close on the dialog box, and click the Crash
button on the main page. The application should crash, returning to the Start screen in a few
seconds. Be patient.

10. Launch the application again from the Start screen. The dialog box will show NotRunning as
the previous state.

11. Close the dialog box and then click the Close button to gracefully close the application.

12. Launch the application again from the Start screen to verify that the dialog box shows
NotRunning as the previous state.

13. Close the dialog box and then close the application by using Alt+F4 or swiping your mouse or
finger from the upper-center of the screen to the lower-center to close the application in the
canonical way.

14. Wait for at least 20 seconds and then launch the application again from the Start screen to
verify that the dialog box shows ClosedByUser as the previous state.

To summarize, an application receives a call to the OnLaunched method from WinRT when the
user launches the application and the application is not already running. This method receives the
launch kind and the previous state. Also note that there can be only one instance of a Windows Store
application in Windows 8.

122 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

Activating

If the user “launches” the application using the Search contract, the application receives a call to
the OnSearchActivated method, as you learned in Chapter 3. In this case, WinRT calls this proce-
dure activation, as the name of the method implies. Activation is a more correct term, since the
application is not launched by the user. The parameter args received by the OnLaunched method,
as you learned in the preceding procedure, has a property called Kind that can assume the value of
Search, but don’t be confused by this. When the user selects the target of a search, WinRT invokes
the OnSearchActivated method on the App class and never invokes the OnLaunched events. Both
event arguments, as well as other event args for other activation methods, implement a common
interface; this explains why both of them have the same property. The following procedure clarifies
these concepts.

Understand the OnSearchActivated method

In this procedure, you will modify the code for the App.xaml.cpp file to test the activation for search.
You will use the Search Contract template from Visual Studio, which you learned about in Chapter 3.

1. Implement the Search contract by right-clicking the project in Solution Explorer and choosing
Add New Item.

2. Scroll down in the Windows Store folder until you find the Search Contract item.

3. Click the Add button without changing the default name, and click Yes when the dialog box
asks you to add the requested files.

You will not implement a real search page in this procedure; you will just test the activation for
searching.

Adding the Search Contract item modifies the Package.appxmanifest file to declare the Search
contract and adds the following line in the App.xaml.cpp file:

void ALMEvents::App::OnSearchActivated(
 Windows::ApplicationModel::Activation::SearchActivatedEventArgs^ args)
{

 // TODO: Register the Windows::ApplicationModel::Search::
 // SearchPane::GetForCurrentView()->QuerySubmitted
 // event in OnWindowCreated to speed up searches once the
 // application is already running

 // If the app does not contain a top-level frame, it is possible that this
 // is the initial launch of the app. Typically this method and OnLaunched
 // in App.xaml.cpp can call a common method.
 auto previousContent = Window::Current->Content;
 auto rootFrame = dynamic_cast<Windows::UI::Xaml::Controls::Frame^>
 (previousContent);
 if (rootFrame == nullptr)
 {

 CHAPTER 4 Application life-cycle management 123

 // Create a Frame to act as the navigation context and associate it with
 // a SuspensionManager key
 rootFrame = ref new Frame();
 Common::SuspensionManager::RegisterFrame(rootFrame, "AppFrame");

 auto prerequisite = Concurrency::task<void>([](){});
 if (args->PreviousExecutionState ==
 ApplicationExecutionState::Terminated)
 {
 // Restore the saved session state only when appropriate,
 // scheduling the final launch steps after the restore is
 // complete
 prerequisite = Common::SuspensionManager::RestoreAsync();
 }
 prerequisite.then([=](Concurrency::task<void> prerequisite)
 {
 try
 {
 prerequisite.get();
 }
 catch (Platform::Exception^)
 {
 // If restore fails, the app should proceed as though
 // there
 // was no restored state.
 }

 // TODO: Navigate to the initial landing page of the app as if
 // it were launched. This allows the user to return to your app
 // from the search results page by using the back button.

 //Navigate to the search page
 rootFrame->Navigate(TypeName(
 SearchResultsPage::typeid), args->QueryText);
 // Place the frame in the current Window
 Window::Current->Content = rootFrame;
 // Ensure the current window is active
 Window::Current->Activate();

 }, Concurrency::task_continuation_context::use_current());
 }
 else
 {
 //Navigate to the search page
 rootFrame->Navigate(TypeName(SearchResultsPage::typeid),
 args->QueryText);
 // Ensure the current window is active
 Window::Current->Activate();
 }
}

124 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

4. Add the following three bold lines just at the beginning of the OnSearchActivated method:

void ALMEvents::App::OnSearchActivated(
 Windows::ApplicationModel::Activation::SearchActivatedEventArgs^ args)
{
 Platform::String^ message = "App Activated by the Search Contract";
 auto dia = ref new Windows::UI::Popups::MessageDialog(message, "ALM Events");
 dia->ShowAsync();

 ...

5. Deploy the application. If you haven’t closed the application in the previous procedure yet,
activate it and press the Close button or use Task Manager to kill the application.

6. Press Windows+Q, type something in the Search box, and select the ALMEvents application.

7. Verify that the dialog box displays the message “App Activated by the Search Contract.”

You will not receive the dialog box for the application launching because the application was
not launched by the user but activated for a search. Visual Basic, C#, and C++ application base
classes expose different methods to respond to launch and search activations, while WinJS
exposes just a generic activation function where you can test the activation kind property of
the event args.

8. Close the application using Alt+F4.

If the user shares some content from another application, the target application receives a differ-
ent activation called sharing target activation (OnSharingTargetActivated is the name of the corre-
sponding method). You will learn about this kind of activation and the Sharing contract in Chapter 6.

There are other types of activation, each one corresponding to an operation done by the user.
Table 4-1 summarizes the principal activation types.

TABLE 4-1 List of Windows Runtime activations

Method name Description

Activated Invoked when the application is activated by tile activation

File Activated Invoked when the application is activated through file open

File Picker Activated Invoked when the application is activated through file-dialog association

Search Activated Invoked when the application is activated through search association

Sharing Target Activated Invoked when the application is activated through sharing association

Since there are many types of activations, if you want to perform some action not related to a spe-
cific type of activation, you can override the OnInitialize method on the application class. This method
is called from the runtime immediately after the creation of the application instance and before the
specific method for a particular activation.

 CHAPTER 4 Application life-cycle management 125

Suspending

WinRT introduces a new concept in the application life cycle that consists of a two-phase process in
which the application is suspended when the user leaves it to launch or activate a different one and
resumed when the user switches back to it.

The idea behind this mechanism is to maintain the system responsiveness even if the user launches
many applications. Only the foreground application uses processor time, while other applications are
suspended by the system. There can be a maximum of two running apps when they are in snapped
mode. Usually, when not in snapped mode, there will be only one foreground app. To avoid latency
when the user comes back to a previously launched application, WinRT freezes the application
memory when suspending an application and places it in a special idle state. No CPU cycle, disk, or
network access is given to a suspended application. The result of this mechanism is that the system
remains responsive while the resuming phase is practically instantaneous.

Verify the suspension of the application

In this procedure, you will test the suspension mechanism using the application you are building in
this chapter.

1. Launch the application from the Start screen. Avoid using the Visual Studio 2012 debugger
to test the standard suspension behavior, because while debugging this behavior changes
slightly.

2. Close the dialog box that displays the launch message.

3. Press Alt+Tab or the Windows key to put the current application in the background.

4. Open Task Manager and wait until the application goes into the suspended status. To open
Task Manager, you can press Windows+Q and search the term “Task Manager” in the Apps list,
or you can activate the desktop from the Start screen and right-click the taskbar.

The result of this procedure is shown in Figure 4-10.

126 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

FIGURE 4-10 Using Task Manager to determine application state and resources.

Note Your screen may be slightly different from Figure 4-10 depending on the columns
shown by Task Manager. For instance, the suspension status column has to be manually
enabled in order to be shown.

As you can see, the ALMEvents application (PID 1220) is placed in the suspended state. It uses no
processor time or disk access at all but, as stated earlier, it uses 7.9 MB of frozen memory. This value
may be different on your system.

Switch back to the application by pressing Alt+Tab again and note that the application resumes
instantly without showing a launch message dialog box because the application was just resumed
from the suspended state.

WinRT will suspend the app as soon as it is in the background at least for 10 seconds. In case you
put the app in the background for a time shorter than 10 seconds and you come back, the app prob-
ably will not be suspended.

In case of suspension, the system informs the application immediately before the suspension
manager starts its work, and the application will have only five seconds to perform any suspension
operations. If the app takes longer than five seconds to perform suspension operations, WinRT will
terminate it forcibly.

 CHAPTER 4 Application life-cycle management 127

It is very important to understand the complete flow of suspension/resuming before coding
against it. The system suspends your app whenever the user switches to another app or to the desk-
top. The system resumes your app whenever the user switches back to it. When the system resumes
your app, the content of your variables and data structures is the same as it was before the system
suspended the app. The system restores the app exactly where it left off, so that it appears to the
user as if it’s been running in the background. In practice, there is no need to save the data the user
is working on during the suspension phase if the user comes back to the application. However, if the
system does not have the resources to keep your app in memory, or it needs more resources for other
applications launched by the user, the system will terminate your app. Your app will not be notified of
the termination because WinRT assumes you have already saved any data or state information in the
suspension phase. When the user switches back to a suspended app that has been terminated, the
app receives a different launch, where you have to write the code that restores the application data.

Now that you understand the complete flow, you will add some code to the application you are
developing in this chapter.

Use the Suspending event

In this procedure, you will modify the code for the App.xaml.cpp file to intercept the suspension and
display a message dialog box. This is not what you would do in a real application, but it is important
to understand the complete process.

1. Open the App.xaml.cpp file.

2. In the constructor, the Visual Studio Blank App template prepares the code to hook up the
Suspending event as follows:

App::App()
{
 InitializeComponent();
 Suspending += ref new SuspendingEventHandler(this, &App::OnSuspending);
}

3. Use the following code for the event handler for the Suspending event, replacing the existing
code:

void App::OnSuspending(Object^ sender, SuspendingEventArgs^ e)
{
 (void) sender; // Unused parameter
 (void) e; // Unused parameter

 Platform::String^ message = "App Suspending";
 auto dia = ref new Windows::UI::Popups::MessageDialog(message, "ALM Events");
 dia->ShowAsync();
}

4. Deploy the application and launch it from the Start screen.

5. Close the dialog box that displays the launch.

128 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

6. Press the Windows key to put the current application in the background.

7. Open Task Manager and wait until the application is suspended.

8. When the application is suspended, press Alt+Tab again to return to the application and verify
that the message “App Suspending” appears.

This dialog box was shown during application suspension but, since the application was not in the
foreground anymore, you saw nothing during the system operation. When you reactivate the appli-
cation, WinRT resumes the application as it was prior to the suspension; this is why you can see the
dialog box on the screen only during the resuming operation.

In practice, the dialog box is shown because the application has been resumed exactly where it
was left off. The last thing the application did before the suspension was execute the call to display
this message. You did not see this message during the suspension because the application was sent to
the background.

Simulate an incorrect suspension

The application has only five seconds to respond to the suspension event. If the application needs
more time, WinRT kills the application. In this procedure, you will try this behavior.

1. Close the application if you left it open in the previous procedure.

2. Open the App.xaml.cpp file, comment out the existing code of the OnSuspending method, and
insert the bold line of code in the following excerpt:

void App::OnSuspending(Object^ sender, SuspendingEventArgs^ e)
{
 (void) sender; // Unused parameter
 (void) e; // Unused parameter

 //Platform::String^ message = "App Suspending";
 //auto dia = ref new Windows::UI::Popups::MessageDialog(message, "ALM Events");
 //dia->ShowAsync();
 Concurrency::wait(10000);
}

This code simply waits 10 seconds—too much time for the system, which will kill the applica-
tion after 5 seconds.

3. Deploy the application.

4. Open an instance of Task Manager and minimize it.

5. Go to the Start screen by pressing the Windows key and launch the application.

 CHAPTER 4 Application life-cycle management 129

6. Maximize Task Manager.

You can verify that after some time (maybe 20 seconds or more, depending on the system)
the application disappears from the application list. This means that the application was killed
by the system because the code for the suspending event exceeded the allowed time.

7. Launch the application again and verify the message in the dialog box, which indicates the
previous state as Terminated because the application was terminated (killed) by WinRT. This
procedure can be slightly unpredictable since the runtime can decide to terminate the appli-
cation later. This mechanism makes the debugging of the OnLaunched event very difficult and
time consuming if you are trying to test for a previous termination, but don’t worry—at the
end of this chapter, you will learn how you can simulate suspension, resuming, and termina-
tion from Visual Studio 2012 during a debugging phase.

Request more suspension time

If you need some more time—for instance, to persist some temporary data via web services or in
the cloud—you can inform the system that you are executing an asynchronous operation. Call the
SuspendingOperation.GetDeferral method to indicate that the app is saving its application data
asynchronously. When the operation completes, the handler calls the SuspendingDeferral.Complete
method to indicate that the app’s application data has been saved. If the app does not call the
Complete method, the system assumes the app is not responding and terminates it. When the user
launches the application, you should not rely on the validity of the saved application data.

The SuspendingOperation method has a deadline time. Make sure all your operations are com-
pleted by that time. You can ask the system for the deadline using the Deadline property of the
SuspendingOperation method.

In this procedure, you will change the code for the event handler to write the suspension time on
disk using an asynchronous deferred operation. Theoretically, this operation cannot last longer than
five seconds, but this example shows the correct code to implement an asynchronous operation.

1. Comment the line with the wait call.

2. Add the code shown in bold in the following block:

void App::OnSuspending(Object^ sender, SuspendingEventArgs^ e)
{
 (void) sender; // Unused parameter

 //Platform::String^ message = "App Suspending";
 //auto dia = ref new Windows::UI::Popups::MessageDialog(message, "ALM Events");
 //dia->ShowAsync();
 //Concurrency::wait(10000);

http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.suspendingoperation.getdeferral.aspx
http://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.suspendingdeferral.complete.aspx

130 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

 auto deferral = e->SuspendingOperation->GetDeferral();

 auto settingsValues = Windows::Storage::ApplicationData::Current->
 LocalSettings->Values;
 if (settingsValues->HasKey("SuspendedTime"))
 {
 settingsValues->Remove("SuspendedTime");
 }

 Windows::Globalization::Calendar^ now = ref new Windows::Globalization::Calendar();
 now->SetToNow();
 settingsValues->Insert("SuspendedTime", DateTimeFormatter::LongTime::get()->Format(
 now->GetDateTime()));
 // Perform the async operation
 deferral->Complete();

The first uncommented line gets the deferral from the SuspendingOperation property of the
SuspendingEventArgs class. At the end, the code reports the completion of the deferred operation to
the system.

The code gets the LocalSettings property of the application data and inserts a key called
SuspendedTime with the current time in the collection. The LocalSettings class lets the developer
save simple key/value pairs in the local application data folder. As you will learn in Chapter 10,
“Architecting a Windows 8 app,” WinRT denies access to the classic file system and provides a local
or roaming space, called application data, that applications can use to store data. This kind of stor-
age recalls in many aspects the IsolatedStorage provided by the Silverlight and the Windows Phone
runtime. You can also use a RoamingSettings property, instead of the LocalSettings one, if you want to
share your app data across multiple devices. The RoamingSettings property is a cloud-based isolated
storage, which relates the data to the current user’s Windows Live ID account.

Warning Remember that the entire method must return within the deadline.

You can also hook the suspending event inside the code of an application page. This is very useful
to save the state of the page during the suspension to restore it in case of termination. Be aware that
the Suspending event is not raised in the UI thread, so if you have to perform some UI operations, you
need to use a dispatcher.

You can debug the code for the suspending method as usual, and you can also force a suspen-
sion during a debugging session from Visual Studio. You will try this functionality during the next
procedure.

Resuming

In the “Suspending” section of this chapter, you implemented a suspension event handler in the appli-
cation class to calculate and save the current suspension time to the application data storage.

 CHAPTER 4 Application life-cycle management 131

In this procedure, you will read the saved time from the application data storage during the
resume operation from the application class, and then you will implement the code to show the same
data within a page.

The resume operation is useless if the application was suspended by the system because the
memory dedicated to the application is just frozen and not cleared. Instead, if the system needed
more memory and decided to terminate the application, the resume operation is the right place to
read the data saved in the suspension procedure.

You can intercept the resume operation hooking up the Resuming event of the application class
if you want to perform some operations on the application. For instance, you can save the page the
user had open before the suspension and, in case of application termination, open that page instead
of the default one, as you can see in the following code sample:

static Platform::String^ currentPage;

App::App()
{
 InitializeComponent();
 Suspending += ref new SuspendingEventHandler(this, &App::OnSuspending);
 Resuming += ref new EventHandler<Platform::Object^>(this, &App::OnResuming);
}

void App::OnSuspending(Object^ sender, SuspendingEventArgs^ e)
{
 (void) sender; // Unused parameter

 auto def = e->SuspendingOperation->GetDeferral();

 auto settingsValues = Windows::Storage::ApplicationData::Current->LocalSettings->Values;
 if (settingsValues->HasKey("Page"))
 {
 settingsValues->Remove("Page");
 }
 settingsValues->Insert("Page", currentPage);

 def->Complete();

}

void App::OnResuming(Object^ sender, Platform::Object^ e)
{
 (void) sender; // Unused parameter
 auto settingsValues = Windows::Storage::ApplicationData::Current->LocalSettings->Values;
 if (settingsValues->HasKey("Page"))
 {
 if (dynamic_cast<Platform::String^>(settingsValues->Lookup("Page")) ==
 "CustomerDetails")
 {
 // Activate the Customer Details Page
 }
 }

}

132 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

The code is straightforward: the OnSuspending event handler saves the name of the current page
in the local application data store, and the OnResuming event handler reads that value when the
application is resumed from a terminated state.

An application can leverage the resuming operation, performing some actions even if the appli-
cation was not terminated. For instance, you can request data taken from a web service or remote
source if the suspend operation was done some minutes before the resume, in order to present fresh
content to the user.

Refresh data during resume

In this procedure, you will modify the code for the MainPage.xaml.cpp file to display the time the
page was launched, suspended, and resumed.

1. Open the MainPage.xaml file and add three TextBlocks. The first one will display the time the
page was first opened, the second will display the time the page was suspended, and the third
will display the time the page was resumed. Use this code as a reference:

<Page
 x:Class="ALMEvents.MainPage"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="using:ALMEvents"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 mc:Ignorable="d">

 <Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
 <StackPanel Orientation="Vertical" VerticalAlignment="Top" Margin="10,01,10,10">
 <Button Click="Close_Click" Content="Close" />
 <TextBlock Name="firstTime" FontSize="24" Margin="10,10,10,10" />
 <TextBlock Name="suspendTime" FontSize="24" Margin="10,10,10,10" />
 <TextBlock Name="resumeTime" FontSize="24" Margin="10,10,10,10" />
 </StackPanel>
 </Grid>
</Page>

2. Open the MainPage.xaml.h file and add check that the code corresponds to the following
listing:

#pragma once
#include "MainPage.g.h"
namespace ALMEvents
{
 /// <summary>
 /// An empty page that can be used on its own or navigated to within a Frame.
 /// </summary>
 public ref class MainPage sealed
 {
 public:
 MainPage();

 CHAPTER 4 Application life-cycle management 133

 protected:
 virtual void OnNavigatedTo(
 Windows::UI::Xaml::Navigation::NavigationEventArgs^ e) override;
 private:
 void Close_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e);
 void Current_Resuming(
 Platform::Object^ sender, Platform::Object^ e);
 };
}

3. Open the MainPage.xaml.cpp file and use the following code as a reference to hook up the
resuming event to display the suspended time restored from the application state and the
resumed time.

#include "pch.h"
#include "MainPage.xaml.h"

using namespace ALMEvents;

using namespace Platform;
using namespace Windows::Foundation;
using namespace Windows::Foundation::Collections;
using namespace Windows::UI::Xaml;
using namespace Windows::UI::Xaml::Controls;
using namespace Windows::UI::Xaml::Controls::Primitives;
using namespace Windows::UI::Xaml::Data;
using namespace Windows::UI::Xaml::Input;
using namespace Windows::UI::Xaml::Media;
using namespace Windows::UI::Xaml::Navigation;
using namespace Windows::Globalization::DateTimeFormatting;

// The Blank Page item template is documented at
// http://go.microsoft.com/fwlink/?LinkId=234238

MainPage::MainPage()
{
 InitializeComponent();
 Windows::Globalization::Calendar^ now = ref new Windows::Globalization::Calendar();
 now->SetToNow();
 firstTime->Text = "Ctor : " + DateTimeFormatter::LongTime::get()->
 Format(now->GetDateTime());
 App::Current->Resuming += ref new EventHandler<Platform::Object^>(this,
 &MainPage::Current_Resuming);
}

134 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

void MainPage::Current_Resuming(Platform::Object^ sender, Platform::Object^ e)
{
 this->Dispatcher->RunAsync(
 Windows::UI::Core::CoreDispatcherPriority::Normal,
 ref new Windows::UI::Core::DispatchedHandler(
 [this]() {
 auto settingsValues = Windows::Storage::ApplicationData::Current->
 LocalSettings->Values;
 if (settingsValues->HasKey("SuspendedTime"))
 {
 suspendTime->Text = "Suspended : " + settingsValues->
 Lookup("SuspendedTime")->ToString();
 }
 Windows::Globalization::Calendar^ now =
 ref new Windows::Globalization::Calendar();
 now->SetToNow();
 resumeTime->Text = "Resumed :" + DateTimeFormatter::LongTime::get()->
 Format(now->GetDateTime());
 }));
}

void ALMEvents::MainPage::Close_Click(Platform::Object^ sender,
 Windows::UI::Xaml::RoutedEventArgs^ e)
{
 Application::Current->Exit();
}

/// <summary>
/// Invoked when this page is about to be displayed in a Frame.
/// </summary>
/// <param name="e">Event data that describes how this page was reached. The Parameter
/// property is typically used to configure the page.</param>
void MainPage::OnNavigatedTo(NavigationEventArgs^ e)
{
 (void) e; // Unused parameter
}

In the MainPage class constructor, the second and subsequent lines of code assign the current
time to the first label. This code is executed only when the application instantiates the page,
which occurs when the user launches the application or when the application is resumed
from a terminated state. This code is not executed when the application is resumed from the
suspended state.

The Current_Resuming event handler reads the value of the SuspendedTime key in the appli-
cation data store and assigns it to the second label. It then assigns the current time to the
last label. This code is not executed in the UI thread, which is why the code is executed by
a dispatcher.

 CHAPTER 4 Application life-cycle management 135

4. Deploy the application.

5. Launch the application from the application tile on the Start screen and close the initial
dialog box.

6. Press the Windows key and then go to the desktop.

7. Open Task Manager and wait until the application is suspended by the system.

8. Minimize Task Manager.

9. Return to the application by pressing Alt+Tab. The result is shown in the following screen shot.

10. Close the application using the Close button.

To facilitate debugging the suspending and resuming events, Visual Studio provides two menu
items that enable you to ask WinRT to suspend and resume the application during a debugging ses-
sion. This feature is useful because it lets you avoid using Task Manager, and you can invoke this event
as needed.

Use Visual Studio to debug the suspending and resuming events

In this procedure, you will use Visual Studio to debug the suspending and resuming events.

1. Open the App.xaml.cpp file and place a breakpoint in the first line of the OnSuspending
method.

2. Open the MainPage.xaml.cpp file and place a breakpoint in the first line of the Current_
Resuming method.

3. Press F5 to start a debugging session and wait until the application is visible on the screen.

4. Press Alt+F4 to return to Visual Studio, and in the Debug Location toolbar choose Suspend.
If this toolbar is not visible, you can enable it by choosing the Toolbars item from the
View menu, and then selecting the Debug Location item. The toolbar is visible in the
following graphic.

136 Build Windows 8 Apps with Microsoft Visual C++ Step by Step

The breakpoint in the suspend event handler will be hit. Press F5 to continue. The breakpoint
in the resume event handler will be hit soon because the application was taken to the fore-
ground by Visual Studio when you pressed F5.

5. Press F5 again and verify that the application is visible and presents the three labels with dif-
ferent times.

6. Press Alt+F4 to return to Visual Studio, and use the Debug Location toolbar to select Resume
to verify you can debug directly the resume procedure without the need to debug the sus-
pend procedure first. You can also click the Resume button on the Debug Location toolbar.

7. Using the Debug Location toolbar, select Suspend and Shutdown. The application will first go
in the suspended state and then will be terminated by the runtime. With this option, you can
debug the code for the OnLaunched event to test a previous termination.

To summarize, the system suspends your app whenever the user switches to another app or to the
desktop, and the system resumes your app whenever the user switches back to it. When the system
resumes your app, the content of your variables and data structures is the same as it was before the
system suspended the app—in other words, the system restores the app exactly where it left off, so
that it appears to the user as if it’s been running in the background the whole time. However, the app
may have been suspended for a significant amount of time, so it should refresh any displayed content
that might have changed while the app was suspended, such as news feeds or the user’s location.

 CHAPTER 4 Application life-cycle management 137

Summary

In this chapter, you saw the complete application life cycle at run time. You saw how to package and
install an application in the local system, and how to create a package for the Windows Store. Finally,
you were treated to an exploration of the various events that the Windows Runtime (WinRT) fires to
launch, activate, suspend, resume, and terminate a Windows 8 application.

Quick reference

To Do this

Create the application package Access the Store menu from Visual Studio, and choose Create App
Package.

Install an application locally for testing You can use the classic F5 button to deploy and run the app automatically,
or you can choose Deploy from the project contextual menu, or you can
create the app package and launch the batch file.

Save temporary data Use the Suspending event from the application class.

Test suspend and resume Debug the application and use the Suspend and Resume buttons on the
Visual Studio Debug Location toolbar.

Uninstall an application Go to the Start screen, right-click the tile, and choose Uninstall. You can
also swipe down your finger on the tile to activate the lower toolbar.

 343

launching
creating using C++, 114
Kind property, 118
OnLaunched event, 115–118
previous execution state, 119–121

manifest, 104–106
packages, 107–110
registration for WinRT, 157–159
resuming

debugging in Visual Studio, 132–135
overview, 131–132
refreshing data, 132–135

suspending
debugging in Visual Studio, 132–135
overview, 125
requesting more suspension time, 129–130
Suspending event, 127–128
time limit for responding to suspension

event, 128–129
verifying suspension, 125–127

Windows Store and, 110–114
Application UI tab, Manifest Designer, 105
ApplicationView class, 290
app variable, 189
App.xaml.cpp file, 91, 114, 122, 162, 266
App.xaml file, 69
App.xaml.h file, 91, 114
.appxsym file, 109
.appxupload file, 108
architecture

app storage/cache
caching data in Windows 8 app, 332–333
overview, 330–332

communication layer using OData service
implementing, 318–323
overview, 318

Index

Symbols
* character, 212
#include statement, 151, 276

A
Account picture provider extension, 24
ACK (Windows App Certification Kit), 111
ActivatableClassId key, 159
activating applications

OnSearchActivated method, 122–124
overview, 122

ActivationKind enumeration, 95, 118
Add-AppxDevPakage.bat file, 109
Akzidenz-Grotesk font, 32
All keyword, 100
AllowCropping property, 176
ALMEvents application, 117, 124, 126
Alt+F4 shortcut, 72
Alt+Tab shortcut

using in Windows 8, 90
new implementation of, 48

Always on to command, 26
Animation Library, Microsoft, 58
animations, 58
AppBar control, 265–268
app bars, Windows 8, 3, 8–10
App class, 162, 194, 266
App_Code folder, 317
App.config file, 320
Appearance property group, 215, 291
ApplicationData class, 330, 331
applications

activating
OnSearchActivated method, 122–124
overview, 122

Assets node, 296

344 Index

communication layer using SOAP service
implementing, 314–318
overview, 314

consuming data in app
OData service, 327–329
overview, 323
SOAP service, 323–326

data layer
implementing in C# with Entity Framework

5, 312–313
overview, 311–312

definitions for, 308–310
OData security infrastructure, 338–342
overview, 307
SOAP security infrastructure

consuming service with user name and pass-
word authentication, 335–337

overview, 333–334
TransportWithMessageCredential security

mode, 334–335
validating customer authentication with,
337–338

and Windows 8, 310–311
of WinRT, 144–147

Assets node, 296
AsTask syntax, 253
asynchronous patterns

asynchronous methods
overview, 241–243
responsiveness during long-running

task, 244–248
cancelling operations, 251–253
with Parallel Patterns Library in C++

choosing file from library, 237–241
overview, 235–237

synchronizing execution context, 262–263
tracking operation progress

overview, 253–254
using progress bar, 254–259

waiting for event
executing parallel actions while waiting, 250
overview, 248–249

waiting for multiple calls executed in
parallel, 260–262

attached properties, 199
authentication

with username and password, 335–337
validating, 337–338

Auto Hide button, 266

AutoPlay extension, 24

B
Background property, 87
BackgroundTaskBuilder class, 20
background tasks, 19–21
Background tasks extension, 24
backward compatibility of Windows 8, 2
badges, 15
basicHttpBinding binding, 334
Basic touch mode command, 26
Bauhaus influence on UI

clear typography, 37
colors, 38
functionality and content, 36–37
grid system, 37–38
iconography, 39
industrialization, 37
overview, 36
photos, 38

Bing Daily app, 46, 62
Bing Finance app, 62
Bing Travel app, 58
Bing Weather app, 4
BitmapImage instance, 171
BIZ (business) layer, 308
Biz class, 78, 97
Biz.h file, 77, 82
Blank App template, 66
BorderBrush property, 215
Border control

class for, 213–216
rendering of, 86, 87

BorderThickness property, 215
BottomAppBar node, 266
Brush property group, 227, 230
building Windows 8 apps

overview, 65
search functionality

default search component, testing, 89–96
search contract, adding, 88–89
search logic, implementing, 97–101

software installation, 65–66
UI elements, 75–88
Windows Store project templates

exploring deployed app on system, 71–73
projects, creating, 67–70
search declaration, adding, 74–75

 CustomersService class, 317

 Index 345

business (BIZ) layer, 308
Button control, 142, 153, 163, 169, 198, 238

C
C#

consuming WinMD libraries in, 151–154
implementing data layer with Entity Framework

5, 312–313
using WinRT from, 142–143

C++
creating WinMD libraries, 150–151
using WinRT from, 143–144

cache, app
caching data in Windows 8 app, 332–333
overview, 330–332

Cached File Updater contract, 23
Calendar app, 19
CameraCaptureUI class, 143–145, 171, 176
CameraCaptureUIMode parameter, 171
Camera settings extension, 24
cancellation_token class, 251
cancellation_token_source class, 251
cancelling asynchronous operations, 251–253
Canvas control, 197–199
Capabilities section, 104
CaptureArea control, 140
CaptureFileAsync method, 143–145, 171
catch statement, 253
.cer file, 108
certificates extension, 24
Chakra engine, 147
Change PC Settings command, 18
Change resolution command, 27
charms bar, Windows 8

location of, 49
overview, 11

clear typography, 37
CLI (Common Language Infrastructure), 141
ClosedByUser state, 119
Close event, 119
CLR (common language runtime), 21, 312
CodeBehind attribute, 317
colors, 38
ColumnDefinition class, 208
ColumnDefinitions property, 81, 86, 207
Column property, 81, 208
COM (Component Object Model), 139

CommitButtonText property, 168
Common Language Infrastructure (CLI), 141
common language runtime (CLR), 21, 312
Common property group, 231
communication layer

using OData service
implementing, 318–323
overview, 318

using SOAP service
implementing, 314–318
overview, 314

CompanyName property, 337
compatibility issues, 2
Complete method, 129
Component Object Model (COM), 139
concurrency::task class, 236, 241
consuming data in app

OData service, 327–329
overview, 323
SOAP service, 323–326
with user name and password

authentication, 335–337
Contact picker extension, 24
content, emphasis on, 36–37
continuationContext parameter, 262
contracts, 22–23
ControlChannelReset event, 20
ControlChannelTrigger, 20–21
controls

creating styles, 226–228
creating templates, 229–232
customizing, 220
customizing copy of predefined style, 224–226
customizing predefined style, 222–223
customizing predefined template, 233–234
using predefined style, 220–221
using predefined template, 232–233

ControlTemplate element, 229, 232, 233
Copy screenshot command, 27
CoreDispatcher class, 263
CornerRadius property, 215
Crash event, 119
Create App Packages wizard, 107–109
create_async function, 241
create_task method, 164, 236, 252–253
CurrentPrincipal method, 337
Current_Resuming event, 134
CustomAttributes key, 159
CustomerDataService class, 319
CustomersDataGroup type, 325
CustomersService class, 317

CustomersService.cs file, 316

346 Index

CustomersService.cs file, 316

D
DAL (data access layer), 308
DataContext property, 272
data layer

implementing in C# with Entity Framework
5, 312–313

overview, 311–312
DataRequested method, 182
DataService<T> class, 319
DataSource class, 271
DataSource.h file, 271, 276
DataTemplate elements, 273
DataTransferManager class, 182, 185
Deadline property, 129
debugging in Visual Studio, 132–135
Debug Location toolbar, 136
default.js file, 189
DefaultViewModel property, 96, 99
Delay function, 255
Description property, 274
Designer window, 194
design requirements for WinRT, 148–149
Design view, 142, 195
Desktop App Certification, Windows 8, 111
Direct2D App template, 67
Direct3D App template, 67
Dispatcher instance, 263
Dispatch object, 259
DisplayData method, 249
DisplayMemberPath property, 84
DLL template, 67
Document Library property, 169
Document Object Model, XML, 148
Document Outline tab, 225, 229, 266
DoSomeWorkAsync method, 255

E
edges of apps, 48–50
Ellipse control, 229
else if statement, 190
Entity Framework 5, 312–313
EntitySetRights enumeration, 319
ExePath key, 159
Extensible Application Markup Language (XAML)

common styles for, 69

controls in, 149
editing, 195
pickers in, 161

F
FacebookURL variable, 340
FailWithDisplayText method, 183
File Activated activation, 124
File activation extension, 24
FileIO class, 235
FileOpenPicker class, 238–239
file picker

allowing multiple files, 164
changing button text for, 168
changing view mode for, 168–169
clearing selections in, 167
creating project for, 162–164
deploying project, 166
method for, 164–165
selecting files in, 167

File Picker Activated activation, 124
File Picker contract, 23
filled state, 61–62
Fill property, 230
flexible layouts

creating project for, 286–290
creating shapes for, 290–292
landscape view, 292–294
portrait view, 292

FlipView control, 278–281
FontSize property, 196, 227
FontWeight property, 228, 234
Foreground property, 227
form factors, 58–60
Frame class, 115
FullName property, 75, 84
full screen mode, 46–48

G
Game Explorer extension, 24
gestures. See touch gestures
GetIids method, 147
get method, 236
GetPeople method, 97
GetRuntimeClassName method, 147
GetTrustLevel method, 147
globally unique identifier (GUID), 109

 layout controls

 Index 347

GoToState method, 290
Grid App (XAML) template, 42, 45, 66
Grid control, 205–213
Grid panel, 81
grid system, 37–38
GridView control

overview, 85
and resolution size, 59
using, 275–278

groups of tiles
creating, 7
moving tiles between, 7

GUID (globally unique identifier), 109

H
Height property

Auto setting, 82, 204
TextBlock control, 195
undefined, 211

Help command, 27
HomeAppBarButtonStyle style, 266
HTML5 (HyperText Markup Language 5), 154–157

I
IActivatedEventArgs interface, 118
IAsyncActionWithProgress<TProgress>

interface, 253
IAsyncOperation interface, 236
IAsyncResult interface, 164
iconography, 39
IDE (integrated development environment), 164, 238
Identity tag, 109
IInspectable interface, 146
ILDASM tool, 145
Image control

filling parent element with, 277
rendering of, 86
Source property for, 84, 171
using with webcam, 169

#include statement, 151
industrialization of UI, 37
InitializeComponent method, 182, 245
InitializeProgressBar method, 244–245
InitializeService method, 319
InputData method, 249
integrated development environment (IDE), 164, 238
International Typographic Style, 31, 33

InternetAvailable event, 20–21
Internet Explorer, 47
InternetNotAvailable condition, 21
IProgress<T> interface, 254
IQueryable interface, 319
IRandomAccessStream interface, 171
IRS module, 110
IsMailAddress method, 150, 153, 155–156
ItemsSource property, 273, 277
ItemTemplate property, 83–84, 284

J
JSON (JavaScript Object Notation), 314

K
kind property, 190
Kind property, 118, 122

L
LastExecutionDateTime variable, 330
LaunchActivatedEventArgs class, 95, 118
launching applications

Kind property, 118
OnLaunched event, 115–118
overview, 114
previous execution state, 119–121

Launch property, 118
layout controls

AppBar control, 265–268
Border control, 213–216
Canvas control, 197–199
flexible layouts

creating project for, 286–290
creating shapes for, 290–292
landscape view, 292–294
portrait view, 292

FlipView control, 278–281
Grid control, 205–213
GridView control

overview, 85
and resolution size, 59
using, 275–278

ListView control, 83, 180, 270–275, 291, 300
Margin property, 216–220
overview, 197
ScrollViewer control, 201–204

Layout property, 204, 231

348 Index

SemanticZoom control, 282–286
StackPanel control, 200–201
WebView control, 269–270

Layout property, 204, 231
Learn with the Colors application, Windows 8, 114
Left property, 199
life-cycle of applications

activating
OnSearchActivated method, 122–124
overview, 122

launching
OnLaunched event, 115–118
overview, 114
previous execution state, 119–121

resuming
debugging in Visual Studio, 132–135
overview, 131–132
refreshing data, 132–135

suspending
debugging in Visual Studio, 132–135
overview, 125
requesting more suspension time, 129–130
Suspending event, 127–128
time limit for responding to suspension

event, 128–129
verifying suspension, 125–127

ListBox control, 163
ListView control, 83, 180, 270–275, 291, 300
live tiles, 297–303
LoadState method, 95, 99
LocalFolder property, 331
Local Machine button, 218, 291
LocalSettings class, 130
LockScreenApplicationAdded event, 20–21
LockScreenApplicationRemoved event, 20–21
lock screen, Windows 8, 18
Logo.png, 70, 106
LogoWide.png file, 296
LongCalculationAsync method, 246, 249–250
LongCalculation method, 242–243, 245–246

M
Mail app tile, 3
MainPage class, 115, 134, 170, 181–182, 244
MainPage.xaml, 114
MainPage.xaml.cpp file, 132, 182, 245, 269
MainPage.xaml.cs file, 164
MainPage.xaml file, 69, 76, 79, 86, 162–163, 266

MainPage.xaml.h file, 182, 244, 271
MainPage.xaml.xpp file, 181
MaintenanceTrigger, 20
manifest, application, 104–106
Manifest Tool Input and Output page, 150
Margin property, 82, 195, 216–220
Margin Top property, 291
message box, 116
MessageDialog class, 116, 329
methods, asynchronous

overview, 241–243
responsiveness during long-running

task, 244–248
MFC (Microsoft Foundation Classes), 161
Microsoft Developer Network (MSDN), 7
Microsoft Foundation Classes (MFC), 161
Microsoft Management Console (MMC), 336
Miscellaneous property group, 231
MMC (Microsoft Management Console), 336
Mouse mode command, 26
moving tiles, 7
m:properties element, 323
MSDN (Microsoft Developer Network), 7
multitier solutions, 308
Music Library property, 169
MyTextBlockStyle style, 228

N
Namespace property, 324, 327
Navigate method, 115
navigationParameter parameter, 95
netTcpBinding binding, 334
NetworkInformation type, 333
NetworkStateChange event, 20
NorthwindDataSource type, 324
NorthwindEntities class, 313, 319
NotRunning state, 119, 121

O
OAuth (Open Authentication), 311
OData (Open Data Protocol)

communication layer
implementing, 318–323
overview, 318

consuming data in app, 327–329
security infrastructure for, 338–342

OleDbCommand object, 310

 RefreshAppBarButtonStyle style, 266

 Index 349

onactivated event handler, 189
OnInitialize method, 124
OnLaunched method, 95, 115–118, 121
OnlineIdConnectedStateChange event, 20
OnResuming method, 132
OnSearchActivated method, 91, 95, 122–124
OnSharingTargetActivated method, 124
OnSuspending method, 128, 132
OpenAsync method, 171
Open Authentication (OAuth), 311
Open Data (OData) Protocol. See OData (Open Data)

Protocol
Operation2Async method, 262
OperationContract attribute, 315
Orientation property, 84, 200

P
Package.appxmanifest file

images referenced in, 70, 296
overview, 69, 104
Package Name property, 324
Show Name property in, 166

Package Name property, 158, 324, 327
packages, 107–110
Padding property, 234
Page element, 272
PageHeaderTextStyle style, 82, 221–222, 225
Page node, 266
Panel class, 197, 213
parallel actions, 250
Parallel Patterns Library (PPL)

choosing file from library, 237–241
overview, 235–237

pch.h file, 78
Person class, 180
Photo property, 84, 277
photos instead of drawings, 38
pickers

file picker
allowing multiple files, 164
changing button text for, 168
changing view mode for, 168–169
clearing selections in, 167
creating project for, 162–164
deploying project, 166
method for, 164–165
selecting files in, 167

overview, 161–162

PickMultipleFilesAsync method, 164, 168
PickSingleFileAsync method, 168, 239, 251, 253
Picture Library property, 169
Pin button, 72
pinch operation, 26, 57
Plain Old XML (POX), 314
Play To contract, 23
populateDataSource method, 332
POX (Plain Old XML), 314
PPL (Parallel Patterns Library). See Parallel Patterns

Library (PPL)
predefined styles

customizing, 222–223
customizing copy of, 224–226
using, 220–221

predefined templates
customizing, 233–234
using, 232–233

previous execution state, 119–121
Print task settings extension, 24
Privacy Policy command, 13
Product class, 273
ProgressBar control, 244
Progress property, 255–256
Progress<T> class, 254
project templates

creating projects, 67–70
search declaration, adding, 74–75

Properties section, 104
Properties window, 196
Protocol activation extension, 24
public classes, 149
public structures, 149
public types, 149
publishing Windows 8 apps, 7
PushNotificationTrigger, 20–21

Q
QueryText property, 95

R
RAC (runtime callable wrapper), 147
RDBMS (relational database management

system), 312
ReadTextAsync method, 236, 250, 253
Really Simple Syndication (RSS), 314
RefreshAppBarButtonStyle style, 266

refreshing data when resuming applications, 132–135

350 Index

refreshing data when resuming
applications, 132–135

registering applications for WinRT, 157–159
Registry Editor tool, 158
relational database management system

(RDBMS), 312
report method, 256
Representational State Transfer (REST), 309
Request property, 183
responsiveness during long-running task, 244–248
REST (Representational State Transfer), 309
resultGridView control, 98
result page for Share contracts, 188–190
resuming applications

debugging in Visual Studio, 132–135
overview, 131–132
refreshing data, 132–135

Resuming event, 131
Rich Site Summary (RSS), 314
RoamingFolder property, 331
RoamingSettings property, 130, 330
RoamingStorageQuota property, 332
Rotate clockwise command, 26, 292
Rotate counterclockwise command, 26
Rotation touch mode command, 26
RowDefinitions property, 81, 86, 211
Row property, 81, 211
RSS (Rich Site Summary), 314
RunAsync method, 263
runtime callable wrapper (RCW), 147

S
SampleUtility.cpp node, 151
SaveAppBarButtonStyle style, 266
Screenshot settings command, 27
ScrollViewer control, 201–204
Search Activated activation, 124
SearchActivatedEventArgs class, 95–96
Search contract, 23, 88–89, 91, 122
search functionality

default search component, testing, 89–96
search contract, adding, 88–89
search declaration, adding, 74–75
search logic, implementing, 97–101

SearchPeople.xaml.cpp file, 99
SearchPeople.xaml.cs file, 95
SearchPeople.xaml file, 89, 98
Search property, 118

security infrastructure
for OData service, 338–342
for SOAP service

consuming service with user name and pass-
word authentication, 335–337

overview, 333–334
TransportWithMessageCredential security

mode, 334–335
validating customer authentication with,
335–337

SelectionChanged event handler, 300
semantic zoom feature

control for, 282–286
overview, 55–57

Service attribute, 317
ServiceContract attribute, 315
Services assembly, 317
ServicingComplete event, 20
SessionConnected event, 20–21
SessionDisconnected event, 20–21
SetBitmap method, 183
SetHtml method, 183
Set location command, 27
SetRtf method, 183
SetStorageItems method, 183
SetText method, 183
Settings command, 18
Settings contract, 23
Settings panel, 12
Set to Auto button, 204
SetUri method, 183
Share contracts

defined, 23
using native applications, 178–179
overview, 176–177
result page for, 188–190
source application for, 180–185
target application for, 185–188

Share pane, 177, 179
ShareTarget property, 95, 118
SharingSource project node, 180
Sharing Target Activated activation, 124
Show Advanced Properties button, 234
ShowFilters property, 100
Show Name property, 166, 171
ShowSendUI method, 185
ShowShareUI method, 185
silhouette of apps, 39–46
Simple Object Access Protocol (SOAP). See SOAP

(Simple Object Access Protocol)

 TileWideText03 template, 300

 Index 351

SizeChanged event, 290
Smaller command, 3
SmallLogo.png, 70, 106
SmsReceived event, 20
snapped state, 60–62
snapping Windows 8 apps, 5–6
SOAP (Simple Object Access Protocol)

communication layer
implementing, 314–318
overview, 314

consuming data in app, 323–326
overview, 309
security infrastructure for

consuming service with user name and pass-
word authentication, 335–337

overview, 333–334
TransportWithMessageCredential security

mode, 334–335
validating customer authentication with,
337–338

software required for building apps, 65–66
Solution Explorer pane, 180
source application for Share contracts, 180–185
Source property, 84, 171
SplashScreen.png, 70, 106
Split App template, 42
SqlConnection class, 310
SSL/certificates extension, 24
StackPanel control, 200–201, 203, 267
StackPanelHorizontal sample project, 201
StandardStyles.xaml file, 69, 221, 266
Star option, 209, 213
Start method, 116
Start screen, Windows 8

app bar, 110
overview, 2–3
tiles for, 296–297

Static Library template, 67
Status Values options, View menu, 73
storage, app

caching data in Windows 8 app, 332–333
overview, 330–332

StorageFile class, 171
StorageFolder class, 331
StoreLogo.png, 70, 106
Stretch property, 280
StrokeThickness property, 230
Style elements

creating, 226–228
overview, 224

Style property, 82, 221
Submit an App page, Windows Store, 112
SuggestedStartLocation property, 168
Support Request command, 13
SuspendedTime key, 130, 134
suspending applications

debugging in Visual Studio, 132–135
defined, 4
overview, 125
requesting more suspension time, 129–130
Suspending event, 127–128
time limit for responding to suspension

event, 128–129
verifying suspension, 125–127

Suspending event, 127–128
SuspendingEventArgs class, 130
SuspendingOperation method, 129
SuspendingOperation property, 130
swipe gesture, 54
Swiss Design, 31, 33
synchronizing execution context, 262–263
System.Data.* namespaces, 310
SystemEventTrigger, 20

T
target application for Share contracts, 185–188
task_canceled exception, 253
task_continuation_context parameter, 263
Task Manager, 125–126
templates for controls, 229–232
TemporaryFolder property, 332
Terminated state, 129
TextBlock control, 82, 84, 195, 277
TextBox control, 238
Text property, 84, 196, 274
TextWrapping property, 222
then method, 236
ThreadPoolTimer class, 263
tiles, Start screen

configuring live tiles, 297–303
configuring standard, 296–297
defined, 2–3
groups of

creating, 7
moving tiles between, 7

overview, 294–295
TileTemplateType enumeration, 302
TileWideText03 template, 300

time limit for responding to suspension event, 128–129

352 Index

time limit for responding to suspension
event, 128–129

TimeTrigger, 20
TimeZoneChange event, 20
Title property, 183
Toast Capable option, 303
ToastNotificationManager class, 303
toasts, creating, 303–305
Toolbox tab, 198
Top property, 199
ToString method, 273
touch gestures, 50–55
touch keyboard, 52
tracking progress

overview, 253–254
using progress bar, 254–259

TransportWithMessageCredential security
mode, 334–335

Turn Live Tile Off option, 3
typography, clear, 37

U
UIElement class, 273
UI (user interface)

Bauhaus style in
clear typography, 37
colors, 38
functionality and content, 36–37
grid system, 37–38
iconography, 39
industrialization, 37
overview, 36
photos, 38

characteristics of Windows 8 apps
animations, 58
comfort and touch, 50–55
different form factors, 58–60
edges, 48–50
filled state, 61–62
full screen, 46–48
overview, 39
semantic zoom, 55–57
snapped state, 60–62

customizing controls
creating styles, 226–228
creating templates, 229–232
customizing copy of predefined style,
224–226

customizing predefined style, 222–223
customizing predefined template, 233–234
overview, 220
using predefined style, 220–221
using predefined template, 232–233

designing flexible layouts, 286–294
drawing using Visual Studio 2012

creating project, 193–194
creating user interface, 195–197
overview, 193

elements, 75–88
influences

functionalism, 29–31
"international language", 33–34
simple iconography, 35
Swiss Design, 31–33

layer for, 308
layout for

Border control, 213–216
Canvas control, 197–199
Grid control, 205–213
Margin property, 216–220
overview, 197
ScrollViewer control, 201–204
StackPanel control, 200–201

overview, 29
tiles

defining for Start screen, 296–297
defining live tiles, 297–303
overview, 294–295

toasts
creating, 303–305
scheduling, 303–305

Windows 8 UI-specific controls
AppBar control, 265–268
FlipView control, 278–281
GridView control, 275–278
ListView control, 270–275
SemanticZoom control, 282–286
WebView control, 269–270

UniformToFill property, 280
Uninstall option, 3
Unit Test Library template, 67
unpinning, 71
UserAway event, 20
user interface (UI). See UI (user interface)
UserNotPresent event, 21
UserPresent event, 20–21
using statement, 182

 Windows+Q shortcut, 11, 74

 Index 353

V
VerticalAlignment property, 222
ViewModel property, 97
View state, 286
Visibility property, 291
VisualElements, 106
VisualStateManager class, 288
Visual Studio 2012

debugging in
application resume, 132–135
application suspension, 132–135

drawing UI using
creating project, 193–194
creating user interface, 195–197
overview, 193

overview, 24–25
Windows 8 Simulator, 26–27

W
WaitForMultipleObjects method, 260
waiting

for asynchronous event
executing parallel actions while waiting, 250
overview, 248–249

for multiple calls executed in parallel, 260–262
WCF (Windows Communication Foundation), 149,

312
Weather app, 38, 61, 293
WebAuthenticationBroker class, 339–340
WebAuthenticationResult class, 341
WebAuthenticationStatus property, 341
webcam API, 169–176
Web Services Description Language (WSDL), 335
WebView control, 269–270
when_all function, 260
WideLogo property, 106
Width property, 82, 195, 204, 211
Windows 8

and app architecture, 310–311
UI-specific controls for

AppBar control, 265–268
FlipView control, 278–281
GridView control, 275–278
ListView control, 270–275
SemanticZoom control, 282–286
WebView control, 269–270

Windows 8 apps. See also building Windows 8 apps
app bar, 8–10

badges, 15
characteristics of

animations, 58
comfort and touch, 50–55
different form factors, 58–60
edges, 48–50
filled state, 61–62
full screen, 46–48
overview, 39
semantic zoom, 55–57
silhouette, 39–46
snapped state, 60–62

charms bar, 10–13
contracts, 22–23
contrasting, 19–21
extensions, 24
live tiles, 15–16
lock screen, 17–19
overview, 1
publishing, 7
snapping, 5–6
suspension of apps, 4
toasts, 16–17
Visual Studio 2012, 24–25
Windows 8 Simulator, 26–27
Windows Runtime (WinRT) and, 13–14

Windows 8 operating system. See also UI (user
interface); Windows 8 apps

backward compatibility of, 2
comparison to previous Microsoft OS's, 1
Start screen, 2–3
suspension of apps by, 4
switching to classic Windows Desktop, 5
tiles, 2–3

Windows App Certification Kit (ACK), 111
Windows Communication Foundation (WCF), 149,

312
Windows+C shortcut, 11, 18, 22
Windows Desktop, switching to, 5
Windows+F shortcut, 11, 74
Windows+H shortcut, 11
Windows+I shortcut, 12
Windows Library for JavaScript (WinJS), 161
Windows+L shortcut, 17
Windows.Media.winmd file, 145
Windows Metadata (WinMD). See WinMD (Windows

Metadata)
Windows Presentation Foundation (WPF), 161
Windows Push Notification Services (WNS), 304
Windows+Q shortcut, 11, 74

Windows Runtime APIs

354 Index

Windows Runtime APIs
overview, 161
pickers

file picker, 162–169
overview, 161–162

Share contracts
using native applications, 178–179
overview, 176–177
result page for, 188–190
source application for, 180–185
target application for, 185–188

webcam, 169–176
Windows Runtime Component template, 67
Windows Runtime (WinRT). See WinRT (Windows

Runtime)
Windows Store, 110–114. See also Windows 8 apps
Windows Store project templates

creating projects, 67–70
search declaration, adding, 74–75

Windows+Z option, 10
WinJS (Windows Library for JavaScript), 154–157,

161
WinMDCPPLibrary project, 152–153, 156
WinMDCSConsumer project, 152
WinMDJSConsumer project, 156
WinMD (Windows Metadata)

consuming libraries in C#, 151–154
consuming libraries in HTML5/WinJS, 154–157
creating libraries using C++, 150–151
library for, 330
overview, 141, 149

WinRT (Windows Runtime)
app registration, 157–159
architecture of, 144–147
badges, 15
design requirements for, 148–149
overview, 13–15, 139–142
using from C# Windows 8 app, 142–143
using from C++ Windows 8 app, 143–144
WinMD libraries

consuming in C#, 151–154
consuming in HTML5/WinJS, 154–157
creating using C++, 150–151
overview, 149

WMAppManifest.xml, 105
WNS (Windows Push Notification Services), 304
WPF (Windows Presentation Foundation), 161
WSDL (Web Services Description Language), 335
wsFederationHttpBinding binding, 334
wsHttpBinding binding, 334

X
XAML (Extensible Application Markup Language)

common styles in, 69
controls in, 149
editing, 195
pickers in, 161

x:Key attribute, 222
XML Document Object Model, 148

Z
ZoomedInView property, 283, 285
ZoomedOutView property, 283, 285

 CHAPTER ## Chapter Title 355

About the authors

LUCA REGNICOLI is a consultant, trainer, and author who has specialized in user
interface technologies for .NET applications since 2003. He developed the presentation
tier of many enterprise applications in Windows Presentation Foundation, Silverlight,
and Windows Phone. Luca is a cofounder of DevLeap, a company focused on providing
high-value content and consulting services to professional developers. He is the author
of a book in Italian language about ASP.NET. He has also been a regular speaker at major
conferences since 2001.

PAOLO PIALORSI is a consultant, trainer, and author who specializes in developing
distributed application architectures and Microsoft SharePoint enterprise solutions. He is
the author of about 10 books, including Programming Microsoft LINQ in Microsoft .NET
Framework 4 and Microsoft SharePoint 2010 Developer Reference. Paolo is a cofounder of
DevLeap, a company focused on providing content and consulting to professional devel-
opers. He is also a popular speaker at industry conferences.

ROBERTO BRUNETTI is a consultant, trainer, and author with experience in enterprise
applications since 1997. Roberto is a cofounder of DevLeap—together with Paolo Pialorsi,
Marco Russo, and Luca Regnicoli—a company focused on providing high-value content
and consulting services to professional developers. He is the author of a few books: one
about ASP.NET, published in 2003, another about Windows Azure Beta, and the last one
on Windows Azure published by Microsoft Press in 2011. He has also been a regular
speaker at major conferences since 1996 and he works closely with Microsoft in events
and training courses.

	Cover
	Contents
	Chapter 1
	Chapter 4
	Index

