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Foreword 

For most of computing history, we benefited from exponential increases in perfor-
mance of scalar processors. That has come to an end. We are now at the dawn of 

the heterogeneous parallel computing era. With all applications being power-sensitive 
and all computing systems being power-limited, from mobile to cloud, future comput-
ing platforms must embrace heterogeneity. For example, a fast-growing portion of the 
top supercomputers in the world have become heterogeneous CPU + GPU computing 
clusters. While the first-generation programming interfaces such as CUDA and OpenCL 
have enabled development of new libraries and applications for these systems, there 
has been a clear need for much higher productivity in heterogeneous parallel software 
development.

The major challenge is that any programming interface that raises productivity in 
this domain must also give programmers enough control to reach their performance 
goals. C++ AMP from Microsoft is a major step forward in addressing this challenge. 
The C++ AMP interface is a simple, elegant extension to the C++ language to address 
two major weaknesses of previous interfaces. First, the previous approaches did not 
fit well with the C++ software engineering practice. The kernel-based parallel pro-
gramming models tend to disturb the class organization of applications. Second, their 
C-based indexing for dynamically allocated arrays complicates the code for managing 
locality. 

I am excited to see that C++ AMP supports the use of C++ loop constructs and 
objected-oriented features in parallel code to address the first issue and an array_view 
construct to address the second issue. The array_view approach is forward-looking and 
prepares applications to take full advantage of the upcoming unified address space 
architectures. Many experienced CUDA and OpenCL programmers have found the 
C++ AMP programming style refreshing, elegant, and effective. 

Equally importantly, in my opinion, the C++ AMP interface opens the door for a 
wide range of innovative compiler transformations, such as data layout adjustment and 
thread granularity adjustment, to become mainstream. It also enables run-time imple-
mentation optimizations on data movement. Such advancements will be needed for a 
dramatic improvement in programmer productivity. 

While C++ AMP is currently only implemented on Windows, the interface is open 
and will likely be implemented on other platforms. There is great potential for the 
C++ AMP interface to make an even bigger impact if and when the other platform 
vendors begin to offer their implementation of the interface.
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This book’s publication marks an important milestone in heterogeneous parallel 
computing. With this book, I expect to see many more developers who can produc-
tively develop heterogeneous parallel applications. I am honored to write this foreword 
and be part of this great movement. More important, I salute the C++ AMP engineer-
ing team at Microsoft who labored to make this advancement possible.

Wen-mei W. Hwu 

Professor and Sanders-AMD Chair in ECE,  

University of Illinois at Urbana-Champaign 

CTO, MulticoreWare, Inc.
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Introduction

C++ Accelerated Massive Parallelism (C++ AMP) is Microsoft’s technology for 
 accelerating C++ applications by allowing code to run on data-parallel hardware 

like graphics-processing units (GPUs.) It’s intended not only to address today’s parallel 
hardware in the form of GPUs and APUs, but also to future-proof your code invest-
ments by supporting new parallel hardware in the future. C++ AMP is also an open 
specification. Microsoft’s implementation is built on top of DirectX, enabling portability 
across different hardware platforms. Other implementations can build on other tech-
nologies because the specification makes no requirement for DirectX.

The C++ AMP programming model comprises a modern C++ STL-like template 
library and two extensions to the C++ language that are integrated into the Visual 
C++ 2012 compiler. It’s also fully supported by the Visual Studio toolset with Intelli-
Sense editing, debugging, and profiling. C++ AMP brings the performance of heteroge-
neous hardware into the mainstream and lowers the barrier to entry for programming 
such systems without affecting your productivity.

This book shows you how to take advantage of C++ AMP in your applications. In 
addition to describing the features of C++ AMP, the book also contains several case 
studies that show realistic implementations of applications with various approaches to 
implementing some common algorithms. You can download the full source for these 
case studies and the sample code from each chapter and explore them for yourself.

Who Should Read This Book

This book’s goal is to help C++ developers understand C++ AMP, from the core 
 concepts to its more advanced features. If you are looking to take advantage of hetero-
geneous hardware to improve the performance of existing features within your applica-
tion or add entirely new ones that were previously not possible due to performance 
limitations, then this book is for you.

After reading this book you should understand the best way to incorporate 
C++ AMP into your application where appropriate. You should also be able to use the 
debugging and profiling tools in Microsoft Visual Studio 2012 to troubleshoot issues 
and optimize performance.
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Assumptions
This book expects that you have at least a working understanding of Windows C++ de-
velopment, object-oriented programming concepts, and the C++ Standard Library 
(often called the STL after its predecessor, the Standard Template Library.) Familiarity 
with general parallel processing concepts is also helpful but not essential. Some of the 
samples use DirectX, but you don’t need to have any DirectX background to use the 
samples or to understand the C++ AMP code in them.

For a general introduction to the C++ language, consider reading Bjarne  Stroustrup’s 
The C++ Programming Language (Addison-Wesley, 2000). This book makes use of 
many new language and library features in C++11, which is so new that at the time of 
press there are few resources covering the new features. Scott Meyers’s Presentation 
 Materials: Overview of the New C++ (C++11) provides a good overview. You can pur-
chase it online from Artima Developer, http://www.artima.com/shop/overview_of_the_
new_cpp. Nicolai M. Josuttis’s The C++ Standard Library: A Tutorial and Reference (2nd 
Edition) (Addison-Wesley Professional, 2012) is a good introduction to the Standard 
Library.

The samples in this book also make extensive use of the Parallel Patterns Library 
and the Asynchronous Agents Library. Parallel Programming with Microsoft Visual 
C++ ( Microsoft Press, 2011), by Colin Campbell and Ade Miller, is a good introduction 
to both libraries. This book is also available free from MSDN, http://msdn.microsoft.com/
en-us/library/gg675934.aspx. 

Who Should Not Read This Book

This book isn’t intended to teach you C++ or the Standard Library. It assumes a working 
knowledge of both the language and the library. This book is also not a general intro-
duction to parallel programming or even multithreaded programming. If you are not 
familiar with these topics, you should consider reading some of the books referenced in 
the previous section.

Organization of This Book

This book is divided into 12 chapters. Each focuses on a different aspect of program-
ming with C++ AMP. In addition to chapters on specific aspects of C++ AMP, the book 
also includes three case studies designed to walk through key C++ AMP features used 

http://www.artima.com/shop/overview_of_the_new_cpp
http://www.artima.com/shop/overview_of_the_new_cpp
http://msdn.microsoft.com/en-us/library/gg675934.aspx
http://msdn.microsoft.com/en-us/library/gg675934.aspx
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in real working applications. The code for each of the case studies, along with the 
samples shown in the other chapters, is available for download on CodePlex.

Chapter 1 
Overview and C++ AMP Approach

An introduction to GPUs, heterogeneous computing, paral-
lelism on the CPU, and how C++ AMP allows applications to 
harness the power of today’s heterogeneous systems.

Chapter 2 
NBody Case Study

Implementing an n-body simulation using C++ AMP.

Chapter 3 
C++ AMP Fundamentals

A summary of the library and language changes that make up 
C++ AMP and some of the rules your code must follow.

Chapter 4 
Tiling

An introduction to tiling, which breaks a calculation into 
groups of threads called tiles that can share access to a very 
fast programmable cache.

Chapter 5 
Tiled NBody Case Study

An explanation of the tiled version of the NBody sample de-
scribed in Chapter 2.

Chapter 6 
Debugging

A review of the techniques and tools for debugging a 
C++ AMP application in Visual Studio.

Chapter 7 
Optimization

More details on the factors that affect performance of a 
C++ AMP application, on how to measure performance, and 
on how to adjust your code to get the maximum speed.

Chapter 8 
Performance Case Study—Reduction

A review of a single simple calculation implemented in a vari-
ety of ways and the performance changes brought about by 
each implementation change.

Chapter 9 
Working with Multiple Accelerators

How to take advantage of multiple GPUs for maximum per-
formance, braided parallelism, and using the CPU to ensure 
that you use the GPU as efficiently as possible.

Chapter 10 
Cartoonizer Case Study

An explanation of a complex sample that combines CPU 
parallelism with C++ AMP parallelism and supports multiple 
accelerators.

Chapter 11 
Graphics Interop

Using C++ AMP in conjunction with DirectX.

Chapter 12 
Tips, Tricks, and Best Practices

Instructions on how to deal with less common situations and 
environments and to overcome some common problems.

Appendix 
Other Resources

Online resources, support, and training for those who want to 
learn even more about C++ AMP.

Conventions and Features in This Book

This book presents information using conventions designed to make the information 
readable and easy to follow.

■■ Boxed elements with labels such as “Note” provide additional information or 
alternative methods for completing a step.
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■■ A plus sign (+) between two key names means that you must press those keys 
at the same time. For example, “Press Alt+Tab” means that you hold down the 
Alt key while you press the Tab key.

■■ A vertical bar between two or more menu items (for example, File | Close), 
means that you should select the first menu or menu item, then the next, and 
so on.

System Requirements

You will need the following hardware and software to build and run the samples in this 
book:

■■ Either Microsoft Windows 7 with Service Pack 1 or Windows 8 (x86 or x64). 
The samples should also build and run on Windows Server 2008 R2 (x64) and 
 Windows Server 2012 (x64), but they have not been tested on these OSs.

■■ Visual Studio 2012, any edition (the Professional or Ultimate product is required 
to walk through the profiling examples in chapters 7 and 8).

■■ The DirectX SDK (June 2010) is required to build the NBody case study.

■■ A computer that has a 1.6GHz or faster processor. A four-core processor is 
 recommended.

■■ 1 GB (32-bit) or 2 GB (64-bit) RAM.

■■ 10 GB of available hard disk space (for installing Visual Studio 2012).

■■ 5400 RPM hard disk drive.

■■ A DirectX 11 capable video card (for the C++ AMP samples) running at 1024 x 
768 or higher-resolution display (for Visual Studio 2012).

■■ A DVD-ROM drive (if installing Visual Studio 2012 from a DVD).

■■ An Internet connection to download software or chapter examples.
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Code Samples

Most of the chapters in this book include samples that let you interactively try out new 
material learned in the main text. The working examples can be seen on the web at:

http://www.microsoftpressstore.com/title/9780735664739

Follow the instructions to download the source zip file.

Note In addition to the code samples, your system should have Visual Studio 
2012 and the DirectX SDK (June 2010) installed. If they’re available, install the 
latest service packs for each product.

Installing the Code Samples 
Follow these steps to install the code samples on your computer:

1. Download the source zip file from the book’s CodePlex website, http://ampbook 
.codeplex.com/. You can find the latest download on the Downloads tab. Choose 
the most recent recommended download. 

2. If prompted, review the displayed end user license agreement. If you accept the 
terms, choose the Accept option and then click Next.

3. Unzip the file into a folder and open the BookSamples.sln file using Visual 
 Studio 2012.

Note If the license agreement doesn’t appear, you can access it from the 
CodePlex site, http://ampbook.codeplex.com/license. A copy is also included 
with the sample code.

http://ampbook.codeplex.com/
http://ampbook.codeplex.com/
http://ampbook.codeplex.com/license
http://www.microsoftpressstore.com/title/9780735664739
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Using the Code Samples
The Samples folder that’s created by unzipping the sample download contains three 
subfolders:

■■ CaseStudies This folder contains the three case studies described in chapters 
2, 8, and 10. Each case study has a separate folder:

■■ NBody An n-body gravitational model

■■ Reduction A series of implementations of the reduce algorithm designed 
to show performance tradeoffs

■■ Cartoonizer An image-processing application that cartoonizes sequences 
of images either loaded from disk or captured by a video camera

■■ Chapter 4, 7, 9, 11, 12 Folders containing the code that accompanies the 
 corresponding chapters.

■■ ShowAmpDevices A small utility application that lists the C++ AMP-capable 
devices present on the host computer.

The top-level Samples folder contains a Visual Studio 2012 solution file, Book-
Samples.sln. This contains all the projects listed above. It should compile with no warn-
ings or errors in Debug and Release configurations and can target both Win32 and x64 
platforms. Each of the projects also has its own solution file, should you wish to load 
them separately.
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Overview and C++ AMP Approach

In this chapter:

Why GPGPU? What Is heterogeneous Computing? . . . . . . . . . . . 1

technologies for CPU Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

the C++ AMP Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Why GPGPU? What Is Heterogeneous Computing?

As developers, we are used to adjusting to a changing world. Our industry changes the world almost 
as a matter of routine. We learn new languages, adopt new methodologies, start using new user 
interface paradigms, and take for granted that it will always be possible to make our programs better. 
When it seems we will “hit a wall” following one path to making version n+1 better than version n, we 
find another path. The newest path some developers are about to follow is the path of heterogeneous 
computing. 

In this chapter you’ll review some of the history of performance improvements to see what wall 
some developers are facing. You’ll learn the basic differences between a CPU and a GPU, two of 
the possible components of a heterogeneous computing solution, and what kinds of problems are 
suitable for acceleration using these parallel techniques. Then you’ll review the CPU and GPU paral-
lel techniques in use today, followed by an introduction to the concepts behind C++ AMP, to lay the 
groundwork for the details in the subsequent chapters.

history of Performance Improvements
In the mid-seventies, computers intended for use by a single person were not the norm. The phrase 
“personal computer” dates back only to 1975. Over the decades that followed, the idea of a computer 
on every desk changed from an ambitious and perhaps impossible goal to something pretty ordinary. 
In fact, many desks today have more than one computer, and what’s more, so do many living rooms. 
A lot of people even carry a small computer in their pocket, in the form of a smartphone. For the first 
30 years of that expansive growth, computers didn’t just get cheaper and more popular—they also 
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got faster. Each year, manufacturers released chips that had a higher clock speed, more cache, and 
better performance. Developers got in the habit of adding features and capabilities to their soft-
ware. When those additions made the software run more slowly, the developers didn’t worry much; 
in six months to a year, faster machines would be available and the software would again become 
fast and responsive. This was the so-called “free lunch” enabled by ever-improving hardware perfor-
mance. Eventually, performance on the level of gigaFLOPS—billions of floating points operations per 
 second—became attainable and affordable.

Unfortunately, this “free lunch” came to an end in about 2005. Manufacturers continued to 
 increase the number of transistors that could be placed on a single chip, but physical limitations—
such as dissipating the heat from the chip—meant that clock speeds could no longer continue to 
increase. Yet the market, as always, wanted more powerful machines. To meet that demand, manu-
facturers began to ship multicore machines, with two, four, or more CPUs in a single computer. “One 
user, one CPU” had once been a lofty goal, but after the free lunch era, users called for more than 
just one CPU core, first in desktop machines, then in laptops, and eventually in smartphones as well. 
Over the past five or six years, it’s become common to find a parallel supercomputer on every desk, in 
every living room, and in everyone’s pocket. 

But simply adding cores didn’t make everything faster. Software can be roughly divided into 
two main groups: parallel-aware and parallel-unaware. The parallel-unaware software typically uses 
only half, a quarter, or an eighth of the cores available. It churns away on a single core, missing the 
 opportunity to get faster every time users get a new machine with more cores. Developers who have 
learned how to write software that gets faster as more CPU cores become available achieve close to 
linear speedups; in other words, a speed improvement that comes close to the number of cores on 
the machine—almost double for dual-core machines, almost four times for four-core machines, and 
so on. Knowledgeable consumers might wonder why some developers are ignoring the extra perfor-
mance that could be available to their applications.

heterogeneous Platforms
Over the same five-year or six-year period that saw the rise of multicore machines with more than one 
CPU, the graphics cards in most machines were changing as well. Rather than having two or four CPU 
cores, GPUs were being developed with dozens, or even hundreds, of cores. These cores are very dif-
ferent from those in a CPU. They were originally developed to improve the speed of graphics-related 
computations, such as determining the color of a particular pixel on the screen. GPUs can do that kind 
of work faster than a CPU, and because modern graphics cards contain so many of them, massive 
parallelism is possible. Of course, the idea of harnessing a GPU for numerical calculations unrelated 
to graphics quickly became irresistible. A machine with a mix of CPU and GPU cores, whether on the 
same chip or not, or even a cluster of machines offering such a mix, is a heterogeneous supercom-
puter. Clearly, we are headed toward a heterogeneous supercomputer on every desk, in every living 
room, and in every pocket.

A typical CPU in early 2012 has four cores, is double hyper-threaded, and has about a billion tran-
sistors. A top end CPU can achieve, at peak, about 0.1 TFlop or 100 GFlops doing double-precision 
calculations. A typical GPU in early 2012 has 32 cores, is 32×-threaded, and has roughly twice as many 
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transistors as the CPU. A top-end GPU can achieve 3 TFlop—some 30 times the peak compute speed 
of the CPU—doing single-precision calculations. 

Note  Some GPUs support double precision and some do not, but the reported perfor-
mance numbers are generally for single precision.

The reason the GPU achieves a higher compute speed lies in differences other than the number 
of transistors or even the number of cores. A CPU has a low memory bandwidth—about 20 giga-
bytes per second (GB/s)—compared to the GPU’s 150 GB/s. The CPU supports general code with 
multitasking, I/O, virtualization, deep execution pipelines, and random accesses. In contrast, the GPU 
is  designed for graphics and data-parallel code with programmable and fixed function processors, 
shallow execution pipelines, and sequential accesses. The GPU’s speed improvements, in fact, are 
available only on tasks for which the GPU is designed, not on general-purpose tasks. Possibly even 
more important than speed is the GPU’s lower power consumption: a CPU can do about 1 gigaflop 
per watt (GFlop/watt) whereas the GPU can do about 10 GFlop/watt.

In many applications, the power required to perform a particular calculation might be more 
 important than the time it takes. Handheld devices such as smartphones and laptops are battery-
powered, so users often wisely choose to replace applications that use up the battery too fast with 
more battery-friendly alternatives. This can also be an issue for laptops, whose users might expect all-
day battery life while running applications that perform significant calculations. It’s becoming normal 
to expect multiple CPUs even on small devices like smartphones—and to expect those devices to have 
a GPU. Some devices have the ability to power individual cores up and down to adjust battery life. 
In that kind of environment, moving some of your calculation to the GPU might mean the difference 
between “that app I can’t use away from the office because it just eats battery” and “that app I can’t 
live without.” At the other end of the spectrum, the cost of running a data center is overwhelmingly 
the cost of supplying power to that data center. A 20 percent saving on the watts required to perform 
a large calculation in a data center or the cloud can translate directly into bottom-line savings on a 
significant energy bill.

Then there is the matter of the memory accessed by these cores. Cache size can outweigh clock 
speed when it comes to compute speed, so the CPU has a large cache to make sure that there is 
always data ready to be processed, and the core will rarely have to wait while data is fetched. It’s nor-
mal for CPU operations to touch the same data repeatedly, giving a real benefit to caching approach-
es. In contrast, GPUs have smaller caches but use a massive number of threads, so some threads are 
always in a position to do work. GPUs can prefetch data to hide memory latency, but because that 
data is likely to be accessed only once, caching provides less benefit and is less necessary. For this 
 approach to help, you ideally have a huge quantity of data and a fairly simple calculation that oper-
ates on the data. 

Perhaps the most important difference of all lies in how developers program the two technologies. 
Many mainstream languages and tools exist for CPU programming. For power and performance, C++ 
is the number one choice, providing abstractions and powerful libraries without giving up control. 
For general-purpose GPU programming (GPGPU), the choices are far more restricted and in most 
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cases involve a niche or exotic programming model. This restriction has meant that—until now—only 
a handful of fields and problems have been able to capitalize on the power of the GPU to tackle 
their compute-intensive number-crunching, and it has also meant that mainstream developers have 
avoided learning how to interact with the GPU. Developers need a way to increase the speed of their 
applications or to reduce the power consumption of a particular calculation. Today that might come 
from using the GPU. An ideal solution sets developers up to get those benefits now by using the GPU 
and later by using other forms of heterogeneous computation.

GPU Architecture
As mentioned earlier, GPUs have shallow execution pipelines, small cache, and a massive number of 
threads performing sequential accesses. These threads are not all independent; they are arranged 
in groups. These groups are called warps on NVIDIA hardware and wavefronts on AMD hardware. In 
this book, they are referred to as “warps.” Warps run together and can share memory and cooper-
ate. Local memory can be read in as little as four clock cycles, while the larger (up to four GB) global 
memory might take 400–600 cycles. If a group of threads is blocked while reading, another group 
of threads executes. The GPU can switch these groups of threads extremely fast. Memory is read in a 
way that provides huge speed advantages when adjacent threads use adjacent memory locations. But 
if some threads in a group are accessing memory that is nowhere near the memory being accessed by 
other threads in that group, performance will suffer.

local

. . .

local

. . . . . .

local

. . .

local

GLOBAL

. . .

local

. . . . . .

local

. . .

There’s a large dissimilarity between CPU and GPU architectures. Developers using higher-level 
languages have generally been able to ignore CPU architecture. Lower-level tools such as operating 
systems and optimizing compilers must have that kind of architectural knowledge, but the compiler 
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and the operating system insulate many “ordinary” applications from hardware details. Best practices 
or rules of thumb that you might hold as self-evident are perhaps not self-evident; even on the CPU, a 
simple integer addition that causes a cache miss might take far longer than a disk read that accessed 
only the buffered file contents from a nearby cache. 

Some developers, finding themselves writing highly performance-sensitive applications, might 
need to learn just how many instructions can be executed in the time lost to a cache miss or how 
many clock cycles it takes to read a byte from a file (millions, in many cases). At the moment, this kind 
of knowledge is unavoidable when working with non-CPU architectures such as the GPU. The layers 
of protection that compilers and operating systems provide for CPU programming are not entirely 
in place yet. For example, you might need to know how many threads are in a warp or the size of 
their shared memory cache. You might arrange your computation so that iterations involve adjacent 
memory and avoid random accesses. To understand the speedups your application can achieve, you 
must understand, at least at a conceptual level, the way the hardware is organized.

Candidates for Performance Improvement through Parallelism 
The GPU works best on problems that are data-parallel. Sometimes it’s obvious how to split one large 
problem up into many small problems that a processor can work on independently and in paral-
lel. Take matrix addition, for example: each element in the answer matrix can be calculated entirely 
independently of the others. Adding a pair of 100 × 100 matrices will take 10,000 additions, but if 
you could split it among 10,000 threads, all the additions could be done at once. Matrix addition is 
naturally data-parallel.

In other cases, you need to design your algorithm differently to create work that can be split 
across independent threads. Consider the problem of finding the highest value in a large collection of 
numbers. You could traverse the list one element at a time, comparing each element to the “currently 
highest” value and updating the “currently highest” value each time you come across a larger one. If 
10,000 items are in the collection, this will take 10,000 comparisons. Alternatively, you could create 
some number of threads and give each thread a piece of the collection to work on. 100 threads could 
take on 100 items each, and each thread would determine the highest value in its portion of the col-
lection. That way you could evaluate every number in the time it takes to do just 100 comparisons. 
Finally, a 101st thread could compare the 100 “local highest” numbers—one from each thread—to 
establish the overall highest value. By tweaking the number of threads and thus the number of 
comparisons each thread makes, you can minimize the elapsed time to find the highest value in the 
collection. When the comparisons are much more expensive than the overhead of making threads, 
you might take an extreme approach: 5,000 threads each compare two values, then 2,500 threads 
each compare the winners of the first round, 1,250 threads compare the winners of the second round, 
and so on. Using this approach, you’d find the highest value in just 14 rounds—the elapsed time of 
14 comparisons, plus the overhead. This “tournament” approach can also work for other operations, 
such as adding all the values in a collection, counting how many values are in a specified range, and 
so on. The term reduction is often used for the class of problems that seek a single number (the total, 
minimum, maximum, or the like) from a large data set.
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It turns out that any problem set involving large quantities of data is a natural candidate for paral-
lel processing. Some of the first fields to take this approach include the following:

■■ Scientific modeling and simulation Physics, biology, biochemistry, and similar fields use 
simple equations to model immensely complicated situations with massive quantities of data. 
The more data included in the calculation, the more accurate the simulation. Testing theories 
in a simulation is feasible only if the simulation can be run in a reasonable amount of time.

■■ Real-time control systems Combining data from myriad sensors, determining where 
operation is out of range, and adjusting controls to restore optimal operation are high-stakes 
processes. Fire, explosion, expensive shutdowns, and even loss of life are what the software is 
working to avoid. Usually the number of sensors being read is limited by the time it takes to 
make the calculations.

■■ Financial tracking, simulation, and prediction Highly complicated calculations often 
 require a great deal of data to establish trends or identify gaps and opportunities for profit. 
The opportunities must be identified while they still exist, putting a firm upper limit on the 
time available for the calculation.

■■ Gaming Most games are essentially a simulation of the real world or a carefully modified 
world with different laws of physics. The more data you can include in the physics calculations, 
the more believable the game is—yet performance simply cannot lag.

■■ Image processing Whether detecting abnormalities in medical images, recognizing faces 
on security camera footage, confirming fingerprint matches, or performing any of dozens of 
similar tasks, you want to avoid both false negatives and false positives, and the time available 
to do the work is limited.

In these fields, when you achieve a 10× speedup in the application that is crunching the numbers, 
you gain one of two abilities. In the simplest case, you can now include more data in the calculations 
without the calculations taking longer. This generally means that the results will be more accurate 
or that end users of the application can have more confidence in their decisions. Where things really 
get interesting is when the speedup makes possible things that were impossible before. For example, 
if you can perform a 20-hour financial calculation in just two hours, you can do that work overnight 
while the markets are closed, and people can take action in the morning based on the results of that 
calculation. Now, what if you were to achieve a 100× speedup? A calculation that formerly required 
1,000 hours—over 40 days—is likely to be based on stale data by the time it completes. However, 
if that same calculation takes only 10 hours—overnight—the results are much more likely to still be 
meaningful. 

Time windows aren’t just a feature of financial software—they apply to security scanning, medical 
imaging, and much more, including a rather scary set of applications in password cracking and data 
mining. If it took 40 days to crack your password by brute force and you changed it every 30 days, 
your password was safe. But what happens when the cracking operation takes only 10 hours?

A 10× speedup is relatively simple to achieve, but a 100× speedup is much harder. It’s not that the 
GPU can’t do it—the problem is the contribution of the nonparallelizable parts of the application. 
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Consider three applications. Each takes 100 arbitrary units of time to perform a task. In one, the non-
parallelizable parts (say, sending a report to a printer) take up 25 percent of the total time. In another, 
they require only 1 percent, and in the third, only 0.1 percent. What happens as you speed up the 
parallelizable part of each of these applications?

App1 App2 App3

% sequential 25% 1% 0.1%

Original Sequential time 25 1 0.1

Parallel time 75 99 99.9

Total time 100 100 100

10× Sequential time 25 1 0.1

Parallel time 7.5 9.9 9.99

Total time 32.5 10.9 10.09

Speedup 3.08 9.17 9.91

100× Sequential time 25 1 0.1

Parallel time 0.75 0.99 0.999

Total time 25.75 1.99 1.099

Speedup 3.88 50.25 90.99

Infinite Sequential time 25 1 0.1

Parallel time 0 0 0

Total time 25 1 0.1

Speedup 4.00 100.00 1000.00

With a 10× speedup in the parallel part, the first application now spends much more time in the 
sequential part than in the parallelizable part. The overall speedup is a little more than 3×. Finding 
a 100× speedup in the parallel part doesn’t help much because of the enormous contribution of the 
sequential part. Even an infinite speedup, reducing the time in the parallel part to zero, can’t erase the 
sequential part and limits the overall speedup to 4×. The other two applications fare better with the 
10× speedup, but the second app can’t benefit from all of the 100× speedup, gaining only 50× overall. 
Even with an infinite speedup, the second app is limited to 100× overall.

This seeming paradox—that the contribution of the sequential part, no matter how small a fraction 
it is at first, will eventually be the final determiner of the possible speedup—is known as Amdahl’s 
Law. It doesn’t mean that 100× speedup isn’t possible, but it does mean that choosing algorithms to 
minimize the nonparallelizable part of the time spent is very important for maximum improvement. In 
addition, choosing a data-parallel algorithm that opens the door to using the GPGPU to speed up the 
application might result in more overall benefit than choosing a very fast and efficient algorithm that 
is highly sequential and cannot be parallelized. The right decision for a problem with a million data 
points might not be the right decision for a problem with 100 million data points.
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Technologies for CPU Parallelism

One way to reduce the amount of time spent in the sequential portion of your application is to make 
it less sequential—to redesign the application to take advantage of CPU parallelism as well as GPU 
parallelism. Although the GPU can have thousands of threads at once and the CPU far less, leveraging 
CPU parallelism as well still contributes to the overall speedup. Ideally, the technologies used for CPU 
parallelism and GPU parallelism would be compatible. A number of approaches are possible.

Vectorization
An important way to make processing faster is SIMD, which stands for Single Instruction, Multiple 
Data. In a typical application, instructions must be fetched one at a time and different instructions are 
executed as control flows through your application. But if you are performing a large data-parallel 
operation like matrix addition, the instructions (the actual addition of the integers or floating-point 
numbers that comprise the matrices) are the same over and over again. This means that the cost 
of fetching an instruction can be spread over a large number of operations, performing the same 
instruction on different data (for example, different elements of the matrices.) This can amplify your 
speed tremendously or reduce the power consumed to perform your calculation.

Vectorization refers to transforming your application from one that processes a single piece of 
data at a time, each with its own instructions, into one that processes a vector of information all at 
once, applying the same instruction to each element of the vector. Some compilers can do this auto-
matically to some loops and other parallelizable operations. 

Microsoft Visual Studio 2012 supports manual vectorization using SSE (Streaming SIMD Exten-
sions) intrinsics. Intrinsics appear to be functions in your code, but they map directly to a sequence 
of  assembly language instructions and do not incur the overhead of a function call. Unlike in  inline 
 assembly, the optimizer can understand intrinsics, allowing it to optimize other parts of your code 
 accordingly. Intrinsics are more portable than inline assembly, but they still have some possible porta-
bility problems because they rely on particular instructions being available on the target architecture. 
It is up to the developer to ensure that the target machine has a chip that supports these intrinsics. 
Not surprisingly, there is an intrinsic for that: __cpuid() generates instructions that fill four integers 
with information about the capabilities of the processor. (It starts with two underscores because it is 
compiler-specific.) To check if SSE3 is supported, you would use the following code:

    int CPUInfo[4] = { -1 }; 
    __cpuid(CPUInfo, 1); 
    bool bSSEInstructions = (CpuInfo[3] >> 24 && 0x1);

Note  The full documentation of __cpuid, including why the second parameter is 1 and 
the details of which bit to check for SSE3 support, as well as how to check for support of 
 other features you might use, is in the “__cpuid” topic on MSDN at http://msdn.microsoft 
.com/en-us/library/hskdteyh(v=vs.100).aspx.

http://msdn.microsoft.com/en-us/library/hskdteyh(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/hskdteyh(v=vs.100).aspx
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Which intrinsic you would use depends on how you are designing your work to be more 
 parallel. Consider the case in which you need to add many pairs of numbers. The single  intrinsic 
 _mm_hadd_epi32 will add four pairs of 32-bit numbers at once. You fill two memory-aligned 128-bit 
numbers with the input values and then call the intrinsic to add them all at once, getting a 128-bit 
result that you can split into the four 32-bit numbers representing the sum of each pair. Here is some 
sample code from MSDN:

#include <stdio.h> 
#include <tmmintrin.h> 
 
int main () 
{ 
    __m128i a, b; 
 
    a.m128i_i32[0] = -1; 
    a.m128i_i32[1] = 1; 
    a.m128i_i32[2] = 0; 
    a.m128i_i32[3] = 65535; 
    b.m128i_i32[0] = -65535; 
    b.m128i_i32[1] = 0; 
    b.m128i_i32[2] = 128; 
    b.m128i_i32[3] = -32; 
 
    __m128i res = _mm_hadd_epi32(a, b); 
 
    std::wcout << "Original a: " <<  
    a.m128i_i32[0] << "\t" << a.m128i_i32[1] << "\t" <<  
    a.m128i_i32[2] << "\t" << a.m128i_i32[3] << "\t" << std::endl; 
    std::wcout << "Original b: " <<  
    b.m128i_i32[0] << "\t" << b.m128i_i32[1] << "\t" << 
    b.m128i_i32[2] << "\t" << b.m128i_i32[3] << std::endl; 
    std::wcout << "Result res: " << 
    res.m128i_i32[0] << "\t" << res.m128i_i32[1] << "\t" << 
    res.m128i_i32[2] << "\t" << res.m128i_i32[3] <<std::endl; 
 
    return 0; 
}

The first element of the result contains a0 + a1, the second contains a2 + a3, the third contains 
b0 + b1, and the fourth contains b2 + b3. If you can redesign your code to do your additions in pairs 
and to group the pairs into clumps of four, you can parallelize your code using this intrinsic. There are 
intrinsics to perform a variety of operations (including add, subtract, absolute value, negate—even do 
dot products using 16 × 16 8-bit integers) in several “widths,” or number of calculations at a time.

One drawback of vectorization with these intrinsics is that the readability and maintainability of 
the code falls dramatically. Typically, code is written “straight up” first, tested for correctness, and 
then, when profiling reveals areas of the code that are performance bottlenecks and candidates for 
vectorization, adapted to this less-readable state. 

In addition, Visual Studio 2012 implements auto-vectorization and auto-parallelization of your 
code. The compiler will automatically vectorize loops if it is possible. Vectorization reorganizes a 
loop—for example, a summation loop—so that the CPU can execute multiple iterations at the same 
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time. By using auto-vectorization, loops can be up to eight times faster when executed on CPUs that 
support SIMD instructions. For example, most modern processors support SSE2 instructions, which 
allow the compiler to instruct the processor to do math operations on four numbers at a time. The 
speedup is achieved even on single-core machines, and you don’t need to change your code at all. 

Auto-parallelization reorganizes a loop so that it can be executed on multiple threads at the same 
time, taking advantage of multicore CPUs and multiprocessors to distribute chunks of the work to all 
available processors. Unlike auto-vectorization, you tell the compiler which loops to parallelize with 
the #pragma parallelize directive. The two features can work together so that a vectorized loop is 
then parallelized across multiple processors.

OpenMP
OpenMP (the MP stands for multiprocessing) is a cross-language, cross-platform application pro-
gramming interface (API) for CPU-parallelism that has existed since 1997. It supports Fortran, C, and 
C++ and is available on Windows and a number of non-Windows platforms. Visual C++ supports 
OpenMP with a set of compiler directives. The effort of establishing how many cores are avail-
able, creating threads, and splitting the work among the threads is all done by OpenMP. Here is 
an  example:

    // size is a compile-time constant 
    double* x = new double[size]; 
    double* y = new double[size + 1]; 
    // get values into y 
    #pragma omp parallel for 
    for (int i = 1; i < size; ++i) 
    { 
        x[i] = (y[i - 1] + y[i + 1]) / 2; 
    }

This code fragment uses vectors x and y and visits each element of y to build x. Adding the pragma 
and recompiling your program with the /openmp flag is all that is needed to split this work among 
a number of threads—one for each core. For example, if there are four cores and the vectors have 
10,000 elements, the first thread might be given i values from 1 to 2,500, the second 2,501 to 5,000, 
and so on. At the end of the loop, x will be properly populated. The developer is responsible for writ-
ing a loop that is parallelizable, of course, and this is the truly hard part of the job. For example, this 
loop is not parallelizable:

    for (int i = 1; i <= n; ++i)   
        a[i] = a[i - 1] + b[i];

This code contains a loop-carried dependency. For example, to determine a[2502] the thread must 
have access to a[2501]—meaning the second thread can’t start until the first has finished. A developer 
can put the pragma into this code and not be warned of a problem, but the code will not produce the 
correct result.
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One of the major restrictions with OpenMP arises from its simplicity. A loop from 1 to size, with size 
known when the loop starts, is easy to divide among a number of threads. OpenMP can only handle 
loops that involve the same variable (i in this example) in all three parts of the for-loop and only when 
the test and increment also feature values that are known at the start of the loop. 

This example: 

    for (int i = 1; (i * i) <= n; ++i)  

cannot be parallelized with #pragma omp parallel for because it is testing the square of i, not just i. 
This next example:

    for (int i = 1; i <= n; i += Foo(abc))

also cannot be parallelized with #pragma omp parallel for because the amount by which i is incre-
mented each time is not known in advance.

Similarly, loops that “read all the lines in a file” or traverse a collection using an iterator cannot be 
parallelized this way. You would probably start by reading all the lines sequentially into a data struc-
ture and then processing them using an OpenMP-friendly loop. 

Concurrency runtime (Concrt) and Parallel Patterns Library
The Microsoft Concurrency Runtime is a four-piece system that sits between applications and the 
operating system:

■■ PPL (Parallel Patterns Library) Provides generic, type-safe containers and algorithms for 
use in your code

■■ Asynchronous Agents Library Provides an actor-based programming model and 
 in-process message passing for lock-free implementation of multiple operations that commu-
nicate asynchronously

■■ Task Scheduler Coordinates tasks at run time with work stealing

■■ The Resource Manager Used at run time by the Task Scheduler to assign resources such as 
cores or memory to workloads as they happen

The PPL feels much like the Standard Library, leveraging templates to simplify constructs such as a 
parallel loop. It is made dramatically more usable by lambdas, added to C++ in C++11 (although they 
have been available in Microsoft Visual C++ since the 2010 release).

For example, this sequential loop:

    for (int i = 1; i < size; ++i) 
    { 
        x[i] = (y[i - 1] + y[i + 1]) / 2; 
    }
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can be made into a parallel loop by replacing the for with a parallel_for:

    #include <ppl.h> 
    // . . . 
    concurrency::parallel_for(1, size, [=](int i) 
    { 
        x[i] = (y[i-1] + y[i+1])/2; 
    });

The third parameter to parallel_for is a lambda that holds the old body of the loop. This still 
 requires the developer to know that the loop is parallelizable, but the library bears all the other work. 
If you are not familiar with lambdas, see the “Lambdas in C++11” section in Chapter 2, “NBody Case 
Study,” for an overview.

A parallel_for loop is subject to restrictions: it works with an index variable that is incremented 
from the start value to one less than the end value (an overload is available that allows incrementing 
by values other than 1) and doesn’t support arbitrary end conditions. These conditions are very similar 
to those for OpenMP. Loops that test if the square of the loop variable is less than some limit, or that 
increment by calling a function to get the increment amount, are not parallelizable with parallel_for, 
just as they are not parallelizable with OpenMP.

Other algorithms, parallel_for_each and parallel_invoke, support other ways of going through a 
data set. To work with an iterable container, like those in the Standard Library, use parallel_for_each 
with a forward iterator, or for better performance use a random access iterator. The iterations will not 
happen in a specified order, but each element of the container will be visited. To execute a number of 
arbitrary actions in parallel, use parallel_invoke—for example, passing three lambdas in as arguments. 

It’s worth mentioning that the Intel Threading Building Blocks (TBB) 3.0 is compatible with PPL, 
meaning that using PPL will not restrict your code to Microsoft’s compiler. TBB offers “semantically 
compatible interfaces and identical concurrent STL container solutions” so that your code can move 
to TBB if you should need that option.

task Parallel Library
The Task Parallel Library is a managed (.NET Framework) approach to parallel development. It 
 provides parallel loops as well as tasks and futures for developers who use C#, F#, or VB. The CLR 
Thread Pool dispatches and manages threads. Managed developers have other parallel options, 
including PLINQ. 

WArP—Windows Advanced rasterization Platform
The Direct3D platform supports a driver model in which arbitrary hardware can plug into Microsoft 
Windows and execute graphics-related code. This is how Windows supports GPUs, from simple graph-
ics tasks, such as rendering a bitmap to the screen, all the way to DirectCompute, which allows fairly 
arbitrary computations to occur on the GPU. However, this framework also allows for having graphics 
drivers that are implemented using CPU code. In particular, WARP is a software-only implementation 
of one such graphics device that is shipped together with the operating system. WARP is capable of 
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executing both simple graphics tasks—as well as complicated compute tasks—on the CPU. It lever-
ages both multithreading and vectorization in order to efficiently execute Direct3D tasks. WARP is 
often used when a physical GPU is not available, or for smaller data sets, where WARP often proves to 
be the more agile solution. 

technologies for GPU Parallelism
OpenGL, the Open Graphics Library, dates back to 1992 and is a specification for a cross-language, 
cross-platform API to support 2D and 3D graphics. The GPU calculates colors or other information 
specifically required to draw an image on the screen. OpenCL, the Open Computing Language, is 
based on OpenGL and provides GPGPU capabilities. It’s a language of its own similar in appear-
ance to C. It has types and functionality that are not in C and is missing features that are in C. Using 
OpenCL does not restrict a developer to deployment on specific video cards or hardware. However, 
because it does not have a binary standard, you might need to deploy your OpenCL source to be 
compiled as you go or precompile for a specific target machine. A variety of tools are available to 
write, compile, test, and debug OpenCL applications.

Direct3D is an umbrella term for a number of technologies, including Direct2D and Direct3D APIs 
for graphics programming on Windows. It also includes DirectCompute, an API to support GPGPU 
that is similar to OpenCL. DirectCompute uses a nonmainstream language, HLSL (High Level Shader 
Language) that looks like C but has significant differences from C. HLSL is widely used in game devel-
opment and has much the same capabilities as the OpenCL language. Developers can compile and 
run the HLSL parts of their applications from the sequential parts running on the CPU. As with the rest 
of the  Direct3D family, the interaction between the two parts is done using COM interfaces. Unlike 
OpenCL,  DirectCompute compiles to bytecode, which is hardware portable, meaning you can target 
more architectures. It is, however, Windows-specific.

CUDA, the Compute Device Unified Architecture, refers to both hardware and the language that 
can be used to program against it. It is developed by NVIDIA and can be used only when the applica-
tion will be deployed to a machine with NVIDIA graphics cards. Applications are written in “CUDA C,” 
which is not C but is similar to it. The concepts and capabilities are similar to those of OpenCL and 
DirectCompute. The language is “higher level” than OpenCL and DirectCompute, providing simpler 
GPU invocation syntax that is embedded in the language. In addition, it allows you to write code 
that is shared between the CPU and the GPU. Also, a library of parallel algorithms, called Thrust, 
takes inspiration from the design of the C++ Standard Library and is aimed at dramatically increasing 
 developer productivity for CUDA developers. CUDA is under active development and continues to 
gain new capabilities and libraries.

Each of these three approaches to harnessing the power of the GPU has some restrictions and 
problems. Because OpenCL is cross-platform, cross-hardware (at least in source code form), and 
cross-language, it is quite complicated. DirectCompute is essentially Windows-only. CUDA is essen-
tially  NVIDIA-only. Most important, all three approaches require learning not only a new API and a 
new way of looking at problems but also an entirely new programming language. Each of the three 
languages is “C-like” but is not C. Only CUDA is becoming similar to C++; OpenCL and  DirectCompute 
cannot offer C++ abstractions such as type safety and genericity. These restrictions mean that 
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mainstream developers have generally ignored GPGPU in favor of techniques that are more generally 
accessible.

requirements for Successful Parallelism
When writing an application that will leverage heterogeneity, you are of course required to be aware 
of the deployment target. If the application is designed to run on a wide variety of machines, the 
machines might not all have video cards that support the workloads you intend to send to them. The 
target might even be a machine with no access to GPU processing at all. Your code should be able to 
react to different execution environments and at least work wherever it is deployed, although it might 
not gain any speedup.

In the early days of GPGPU, floating-point calculations were a challenge. At first, double-precision 
operations weren’t fully available. There were also issues with the accuracy of operations and error-
handling in the math libraries. Even today, single-precision floating-point operations are faster 
than double-precision operations and always will be. It might be necessary to put some effort into 
establishing what precision your calculations need and whether the GPU can really do those faster 
than the CPU. In general, GPUs are converging to offer double-precision math and moving toward 
IEEE 754-compliant math, in addition to the quick-and-dirty math that they have supported in earlier 
generations of hardware.

It is also important to be aware of the time cost of moving input data to the GPU for processing 
and retrieving output results from the GPU. If this time cost exceeds the savings from processing 
the data on the GPU, you have complicated your application for no benefit. A GPU-aware profiler is 
a must to ensure that actual performance improvement is happening with production quantities of 
data. 

Tool choice is significant for mainstream developers. Past GPGPU applications often had a small 
corps of users who might have also been the developers. As GPGPU moves into the mainstream, 
developers who are using the GPU for extra processing are also interacting with regular users. These 
 users make requests for enhancements, want their application to adopt features of new platforms as 
they are released, and might require changes to the underlying business rules or the calculations that 
are being performed. The programming model, the development environment, and the debugger 
must all allow the developer to accommodate these kinds of changes. If you must develop different 
parts of your application in different tools, if your debugger can handle only the CPU (or only the 
GPU) parts of your application, or if you don’t have a GPU-aware profiler, you will find developing for 
a heterogeneous environment extraordinarily difficult. Tool sets that are usable for developers who 
support a single user or who only support themselves as a user are not necessarily usable for devel-
opers who support a community of nondeveloper users. What’s more, developers who are new to 
parallel programming are unlikely to write ideally parallelized code on the first try; tools must support 
an iterative approach so that developers can learn about the performance of their applications and 
the consequences of their decisions on algorithms and data structures.

Finally, developers everywhere would love to return to the days of the “free lunch.” If more hard-
ware gets added to the machine or new kinds of hardware are invented, ideally your code could just 
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benefit from that without having to change much—or at all. It might even be possible to benefit from 
improved hardware using the same executable that was deployed to the old hardware and not even 
need to recompile.

The C++ AMP Approach

C++ AMP is a library and a small language extension that enables heterogeneous computing within a 
single C++ application. (AMP stands for Accelerated Massive Parallelism.) Visual Studio has new tools 
and capabilities to support debugging and profiling C++ AMP applications, including GPU debugging 
and GPU concurrency visualization. With C++ AMP, mainstream C++ developers can use familiar tools 
to create applications that are portable and future-proof and that can achieve dramatic acceleration 
for data-parallel-friendly applications.

C++ AMP Brings GPGPU (and More) into the Mainstream
One mission of C++ AMP is to bring GPGPU programming to every developer whose applications can 
benefit from it. The video cards required to support it are now almost ubiquitous. The overarching 
mission, however, is larger than just GPGPU: C++ AMP is a way to harness heterogeneous computing 
platforms, such as GPUs and CPU vector units, and make them accessible to millions of mainstream 
developers in ways that are not otherwise possible. Although the shift to data-parallel program-
ming—and especially to portable implementations expressed in C++—is an enormous undertaking, it 
is not the first such transformation that has happened to the software development experience. 

Many of the techniques or technologies that change our industry and our world start out in 
 research or academia and are used by only a tiny number of developers who use very specialized 
tools and are able to do very difficult things. To change the industry and the world, those techniques 
have to come out to the masses and be considered mainstream. This process has happened with 
 other technologies—GUI interfaces, for example. At first only a few developers had the specialized 
skills required to work with controls, react to mouse events, and so on. As libraries, frameworks, 
and tools were developed and released, more and more developers were able to produce GUI 
 applications, and they are now considered the norm. Some libraries, frameworks, and tools are more 
popular than others, and all contribute to the ecosystem that supports GUI development.

A similar process happened with object-oriented development. At first a few researchers were 
advocating a new way of designing and building software while the mainstream continued to develop 
procedural applications. As frameworks and tools have been developed and released, adoption has 
increased to a point where object-oriented development is considered the norm and used, to varying 
degrees, by essentially all developers in the majority of mainstream languages.

Such a change might be happening with touch and with natural user interfaces, and it is definitely 
happening with the concurrency revolution. The first phase was CPU concurrency. The second phase 
is heterogeneous concurrency. Bringing that ease and normality to heterogeneous computing will 
 require tools, libraries, and frameworks. C++ AMP and Visual Studio are just what mainstream devel-
opers need to harness the power of the GPU and beyond.
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An interesting possibility is that mainstream developers might find themselves benefiting from 
C++ AMP without directly using it. If library developers adopt C++ AMP, code that uses those  libraries 
will gain the speedup without having to understand how it was done. The opportunity to create 
domain-specific libraries could be significant.

C++ AMP Is C++, Not C
There are a number of other approaches to GPGPU development and all of them involve C-like 
languages. Although C is a powerful and high-performance language, C++ is clearly the number 
one choice for performance-conscious developers who’d like to work in a modern programming 
language. C++ provides abstraction and type-safe genericity that enable developers to tackle larger 
problems and use more powerful libraries and constructs, and these features are available when  using 
C++ AMP, too. You can use templates, overloading, and exceptions in the same way as you do in 
other parts of your applications.

Because C++ AMP is C++, not C and not a C-like language, the extra types you need for concur-
rent development are not extensions or additions to the language; they are template types. This gives 
you type-safe genericity—you can distinguish between an array of floats and an array of ints—while 
reducing your learning curve. Adding abstractions and useful types to C is one of the very problems 
C++ was designed to solve. 

In the past, standard C++ (say, C++11) has supported only CPU programming. The C++ Parallel 
Patterns Library, PPL, offers a set of types and algorithms in the style of the Standard Library that 
support multicore development in C++. This lets C++ developers take advantage of new hardware by 
using the language and tools they are already using. C++ AMP brings that same comfort and conve-
nience to heterogeneous computing.

C++ AMP Leverages tools You Know
C++ AMP is fully supported by Visual Studio 2012 and will be usable on Windows machines right 
away. That alone will open the doors to all the developers who use C++ in Visual Studio. These devel-
opers will not need to learn a new tool or a new language to start using the power of the GPU. They 
will have to learn to think in a data-parallel way and to evaluate the costs, calculated in execution time 
or watts consumed, of their decisions about algorithms and data structures. Using familiar tools will 
make the overall skills gap one that can be bridged. Visual Studio provides IntelliSense, GPU debug-
ging, profiling, and other features that enable developers to do far more than just write and compile 
code.

Visual Studio is popular even with developers who aren’t targeting Windows. What’s more, 
C++ AMP development is not necessarily restricted to Windows or to Visual Studio users; it has 
been released as an open specification, and work is underway for other vendors to add C++ AMP 
to their toolsets. For example, AMD will put it into their FSA reference compiler for Windows and 
 non- Windows platforms.
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C++ AMP Is Almost All Library
The key to writing in the language you know is to keep it as the language you know. C++ AMP is an 
extension to C++ and does include a couple of keywords that are not in C++11. However, it is just 
two keywords, not a large collection of language changes. Further, the new main keyword, restrict, 
is in use in C99 and is therefore a reserved word, one unlikely to cause collisions with existing code-
bases. Everything else that makes C++ AMP work involves a library of types and functions. Develop-
ers who are comfortable with the Standard Library or with PPL will immediately be comfortable with 
C++ AMP.

Here’s a simple example. Consider this traditional code for adding two vectors. None of this is 
parallel:

void AddArrays(int n, const int* const pA, const int* const pB, int* const pC)  
{  
    for (int i = 0; i < n; ++i)   
    {  
        pC[i] = pA[i] + pB[i];  
    }  
} 

The preceding code is both easy to read and easy to understand. The following code shows the 
types of changes that make this operation massively parallel and leverage the GPU:

#include <amp.h>  
using namespace concurrency;  
  
void AddArrays(int n, const int* const pA, const int* const pB, int* const pC)  
{  
    array_view<int, 1> a(n, pA);  
    array_view<int, 1> b(n, pB);  
    array_view<int, 1> c(n, pC);  
   
    parallel_for_each(c.extent, [=](index<1> idx) restrict(amp)  
        {  
            c[idx] = a[idx] + b[idx];  
        });  
}

As you can see, the code wasn’t really changed much. The changes include the following:

1. Including amp.h to use the library

2. Because the types and functions are in the concurrency namespace, adding a using statement 
to reduce your typing

3. Using array views to manage copying the data to or from the accelerator

4. Changing the language for to a library parallel_for_each and using a lambda as the last param-
eter to that function call

5. Using the restrict(amp) clause to identify accelerator-compatible code 
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These are the only changes required. There are no changes to project settings or environment 
variables. There is no code elsewhere that this needs to call. This is the whole thing.

What happens behind the scenes? One simplified explanation is that the lambda, the kernel that 
is passed to the parallel_for_each, is compiled to HLSL when your application is compiled. The run 
time for C++ AMP, a DLL that is included with the Visual C++ redistributable package, compiles the 
HLSL bytecode to hardware-specific machine code at run time. You don’t need to know this to use 
C++ AMP; it is taken care of by the library.

In the code sample just presented, you don’t see any code to copy the two input arrays, pA and pB, 
to the accelerator or any code to copy the result back into pC. The array_view objects handle this. An 
array_view is a portable view that works with, and abstracts over, CPU and GPU memories, whether 
they are colocated on the same chip or are two parts. You can build an array_view wrapping a C-style 
array as in this example or wrapping over a std::vector, if that is where your data is. 

You may also hint about copy requirements. Consider the following start of a function:

void MatrixMultiply(std::vector<float>& C,  
    const std::vector<float>& A, const std::vector<float>& B, 
    int M, int N, int W) 
{ 
    array_view<const float, 2> a(M, W, A); 
    array_view<const float, 2> b(W, N, B); 
    array_view<float, 2> c(M, N, C); 
    c.discard_data();

The first two array_view objects specify that they are arrays of const float. This means there is no 
need to sync them back from the accelerator after the processing is complete—they can take a one-
way trip there. Similarly, the third array_view is of float, but although it is associated with C, the call to 
discard_data() indicates that whatever values happen to be in the memory are not meaningful to any-
one, so there is no need to copy the initial values in C over to the accelerator. This makes setting up 
the array_view very quick. The results will be copied back from the accelerator when the array_view 
objects are accessed on the CPU or when they go out of scope, whichever happens first. 

This hinting needs no new language keywords and can be accomplished just with template over-
loading. There is no new paradigm for the developer to learn.

The original mathematical logic (such as it is) remains untouched and perfectly readable. There’s 
no mention of polygons, triangles, meshes, vertices, textures, memory, or anything other than 
 adding up matrix elements to get a sum. This is why C++ AMP can make heterogeneous computing 
 mainstream.

The details of the parameters to the parallel_for_each and the use of the new restrict keyword will 
be in the case study in the next chapter.
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C++ AMP Makes Portable, Future-Proof executables
Once your code is compiled, the same executable can run on a variety of machines, as long as the 
machine has a DirectX 11 driver: Windows 7 and later or Windows Server 2008 R2 and later. You are 
not restricted to a particular vendor or video card family.

When coded appropriately, your application can react to the environment in which it’s running 
and take advantage of whatever acceleration is available. If the machine has hardware with a DX11 
driver, it will speed up. Deployment is simply a matter of copying the executable and some depen-
dent dynamic-link libraries (DLLs) (included in the Visual C++ redistributable) to the target machine. 

For example, a single executable was written and copied to several different machines. It produces 
the following output on a virtual machine without access to the GPU:

CPU exec time: 112.206 (ms) 
No accelerator available

And it produces the following output on a machine (more powerful than the laptop hosting the 
virtual machine) with a typical recent mainstream video card, the NVIDIA GeForce GT 420:

CPU exec time: 27.2373 (ms) 
GPU exec time including copy-in/out: 19.8738 (ms)

This dramatic speed improvement is made possible by a simple query that establishes which 
 accelerators are available:

    std::vector<accelerator> accelerators = accelerator::get_all();

You can then check the returned vector. If it’s empty, no accelerators are available. It’s a best 
practice to always ensure that there is an accelerator before trying to execute code that depends on 
one. Getting into that habit enables your applications to work on a variety of target machines while 
imposing minimal restrictions on your end users. As a developer with Visual Studio installed, you will 
always have an accelerator (which might just be an emulator provided for debugging), so forgetting 
to check at run time for the existence of at least one accelerator could easily lead to the classic “works 
on my development machine” scenario.

C++ AMP not only makes executables that work on a variety of machines, but it’s also designed 
to be future-proof. In the future, code you write to take advantage of GPU acceleration might be de-
ployed to the cloud and might run over a number of machines, or it could run multithreaded on the 
CPU only. Heterogeneity in the future will mean more than just CPU+GPU; therefore, C++ AMP is not 
just a GPU solution, but also a heterogeneous computing solution that supports efficient mapping of 
data-parallel algorithms to many hardware platforms.
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With multicore programming now becoming mainstream, you can leverage 4, 8, or 16 cores on 
a relatively ordinary computer. With some additional effort, you could also leverage the vector unit 
on each of these cores (using SSE, AVX, or WARP). GPGPU programming means you can spread your 
work across hundreds of hardware threads today and even more in the near future. With the cloud, 
using Infrastructure as a Service (IaaS) or Hardware as a Service (HaaS) offerings, you could conceiv-
ably leverage tens of thousands of hardware threads. But imagine being able to combine the two and 
reach the GPU cores on those cloud machines, reaching tens of millions of hardware threads. What 
could that enable?

Summary

This chapter provided background about the types of problems for which heterogeneous computing 
is suited and the history of application performance improvements over the last few decades. It intro-
duced C++ AMP and explained the motivation for the design of C++ AMP. The remainder of this book 
explains the library and language extensions in more detail, demonstrates how to use more advanced 
techniques to achieve the maximum performance improvement for your applications, shows how to 
use the Visual Studio support, and provides guidance for mainstream developers interested in using 
C++ AMP as a way to harness heterogeneity now. 
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Working with Multiple 
Accelerators 

In this chapter:

Choosing Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
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So far, the examples in the book have covered using C++ AMP with a single accelerator: a single 
physical GPU, a WARP accelerator, or the reference (REF) accelerator. Each of these accelerator 

types is described in this chapter. Although using a single accelerator is probably the most common 
scenario today, the computer running your application might soon have more than one accelerator. 
This could be a combination of one or more discrete GPUs, a GPU integrated with the CPU, or both. 
If your application wants to use all of the available compute power, it needs to efficiently orchestrate 
executing parts of the work on each accelerator and combining the results to give the final answer. 
This chapter shows how to choose among different C++ AMP accelerators and select the best ones 
for your code. It also covers running C++ AMP on more than one accelerator and using Parallel 
 Patterns Library (PPL) code running on the CPU to orchestrate the GPU accelerators or execute work 
more suited to the CPU. These strategies will maximize your application’s performance.

Choosing Accelerators

C++ AMP allows you to enumerate the available accelerators and choose the ones on which your 
 application will run. Your application can also filter the accelerators based on their properties and 
select a default accelerator.
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enumerating Accelerators
The following code uses accelerator::get_all() to enumerate all the available accelerators and print 
their device paths and descriptions to the console:

    std::vector<accelerator> accls = accelerator::get_all(); 
 
    std::wcout << "Found " << accls.size() << " C++ AMP accelerator(s):" << std::endl;  
    std::for_each(accls.cbegin(), accls.cend(), [](const accelerator& a) 
    { 
        std::wcout << "  " << a.device_path << std::endl  
            << "    " << a.description << std::endl << std::endl; 
    });

The description property provides a user-friendly name for the accelerator, but the device_path 
property provides a persistent unique identifier that is more useful for programmatically select-
ing  accelerators. The device path is also persistent across processes and Microsoft Windows–based 
 sessions, provided the hardware isn’t changed or the system reinstalled. For example, your applica-
tion can use the device_path to refer to an accelerator selected by the user in a previous application 
session.

You can run this example by loading the Chapter9\Chapter9.sln solution. Build the sample in 
Release configuration and run it using Ctrl+F5 to start it without the debugger attached. Here’s some 
example output from this code: 

    Using device : NVIDIA GeForce GTX 570 
 
    Enumerating accelerators 
 
    Found 4 C++ AMP accelerator(s): 
      PCI\VEN_10DE&DEV_1081&SUBSYS_15703842&REV_A1\4&2EB3824&0&0018 
        NVIDIA GeForce GTX 570 
 
      PCI\VEN_10DE&DEV_1081&SUBSYS_15703842&REV_A1\4&2276C4A6&0&0038 
        NVIDIA GeForce GTX 570 
 
      direct3d\warp 
        Microsoft Basic Render Driver 
 
      direct3d\ref 
        Software Adapter 
 
      cpu 
        CPU accelerator 
 
    Found 2 C++ AMP hardware accelerator(s): 
      PCI\VEN_10DE&DEV_1081&SUBSYS_15703842&REV_A1\4&2EB3824&0&0018 
      PCI\VEN_10DE&DEV_1081&SUBSYS_15703842&REV_A1\4&2276C4A6&0&0038 
    Has WARP accelerator: true 
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    Looking for accelerator with display and 1MB of dedicated memory... 
      Suitable accelerator found. 
 
    Setting default accelerator to one with display and 1MB of dedicated memory.. 
      Default accelerator is now: NVIDIA GeForce GTX 570

The list shows all the available C++ AMP accelerators. In this example, it shows the following 
 accelerators: 

■■ Two GPUs, each with unique device paths and a description containing the GPU’s friendly 
name. 

■■ The WARP accelerator with description “Microsoft Basic Render Driver.”

■■ The reference, or REF accelerator, also referred to as the “Software Adapter.” 

■■ The CPU accelerator.

Your application can select a device using one of the following device path names that are 
 predefined as static properties on the C++ AMP accelerator class:

■■ accelerator::direct3d_ref The REF accelerator, also called the Reference Rasterizer or 
“Software Adapter” accelerator. It emulates a generic graphics card in software on the CPU to 
provide Direct3D functionality. It is used for debugging and will also be the default accelera-
tor if no other accelerators are available. As the name suggests, the REF accelerator should 
be considered the de facto standard if you suspect a bug with your hardware vendor’s driver. 
Typically, your application will not want to use the REF accelerator because it is much slower 
than hardware-based accelerators and will be slower than just running a C++ implementation 
of your algorithm on the CPU.

■■ accelerator::cpu_accelerator The CPU accelerator can be used only for creating arrays that 
are accessible to the CPU and used for data staging. Your application can’t use this for execut-
ing C++ AMP code in the first release of C++ AMP. Further details on using the CPU accelera-
tor to create staging arrays and host arrays are covered in Chapter 7, “Optimization.”

■■ accelerator::direct3d_warp The WARP accelerator, or Microsoft Basic Render Driver,  allows 
the C++ AMP run time to run on the CPU. The WARP accelerator uses the WARP software 
rasterizer, which is part of the Direct3D 11 run time. The WARP accelerator uses multicore and 
data-parallel Single Instruction Multiple Data (SIMD) instructions to execute data-parallel code 
very efficiently on the CPU. Your application can use WARP as a fallback when no physical 
GPU is present. The WARP accelerator supports only single-precision math, so it can’t be used 
for fallback for kernels that require double precision or limited double-precision kernels. An 
overview of WARP can be found in “Windows Advanced Rasterization Platform (WARP) Guide” 
on MSDN: http://msdn.microsoft.com/en-us/library/gg615082.aspx.

■■ accelerator::default_accelerator The current default accelerator. See the next section for 
more information on the default accelerator. 
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Note that although the WARP accelerator runs directly on the CPU, it is also considered to be an 
emulated accelerator. The accelerator::is_emulated property is true for both the REF and WARP  
accelerators. 

You can filter out accelerators by examining each accelerator’s properties, as shown in the follow-
ing code:

    std::vector<accelerator> accls = accelerator::get_all(); 
    accls.erase(std::remove_if(accls.begin(), accls.end(), [](accelerator& a) 
        { 
            return a.is_emulated;  
        }), accls.end()); 
    std::wcout << "Found " << accls.size() << " C++ AMP hardware accelerator(s):" << std::endl; 

Now accls contains only the GPU accelerators available. Similarly, accelerator device paths can be 
used to test for the presence of a particular type of accelerator. For example, your application might 
check for the presence of a WARP accelerator and give the user an option to fall back on this if no 
C++ AMP-capable GPUs are present.

    std::vector<accelerator> accls = accelerator::get_all(); 
    bool hasWarp = std::find_if(accls.begin(), accls.end(), [=](accelerator& a) 
        {  
            return a.device_path.compare(accelerator::direct3d_warp) == 0;  
        }) != accls.end(); 
    std::wcout << "Has WARP accelerator: " << (hasWarp ? "true" : "false") << std::endl;

The accelerator class also provides properties to query various attributes of an accelerator: the 
amount of dedicated memory, whether a display is attached, double-precision support, version 
number, and whether a debug layer is enabled. For example, the following code searches for a GPU 
accelerator with at least 2 MB of memory, limited double-precision support, and a connected display:

    std::vector<accelerator> accls = accelerator::get_all(); 
    bool found = std::find_if(accls.begin(), accls.end(), [=](accelerator& a)  
        {  
            return !a.is_emulated && a.dedicated_memory >= 2048 &&  
                a.supports_limited_double_precision && a.has_display;  
        }) != accls.end(); 
    std::wcout << "Suitable accelerator " << (found ? "found." : "not found.") << std::endl;

See Chapter 12, “Tips, Tricks, and Best Practices,” for further discussion of double, limited-double, 
and single-precision support. See the “accelerator Class” topic on MSDN for further details about 
the properties and methods on accelerator for filtering: http://msdn.microsoft.com/en-us/library/
hh350895. 

the Default Accelerator
The C++ AMP run time selects the default accelerator according to the following rules. If the applica-
tion is being debugged under the GPU debugger, then the default accelerator is specified by the proj-
ect properties setting (see Chapter 6, “Debugging”). When the application is not launched in debug 
mode, the CPPAMP_DEFAULT_ACCELERATOR environment variable, if defined, is used to determine 
the default accelerator. Otherwise, the default will be set to the nonemulated accelerator with the 

http://msdn.microsoft.com/en-us/library/hh350895
http://msdn.microsoft.com/en-us/library/hh350895
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largest amount of dedicated memory. When more than one such accelerator has the same amount of 
dedicated memory, the first accelerator without a display is chosen. This is an implementation detail 
and might change in subsequent releases. Regardless of the implementation specifics, the C++ AMP 
run time will always try to pick the best accelerator as the default.

The C++ AMP run time sets the default accelerator when your code asks for it, either with an 
explicit call or by creating an array. The default accelerator is also set by a call to parallel_for_each that 
does not either explicitly specify an accelerator_view or capture an array or texture that would implic-
itly specify one. Before that point in your code, you can set the default accelerator yourself, using the 
accelerator::set_default() method. Calls to set_default() after the run time has already set a default will 
return false, indicating that the call failed to change the default accelerator. The following example 
sets the default accelerator to a GPU with 1 MB of memory and a connected display:

    std::vector<accelerator> accls = accelerator::get_all(); 
    std::vector<accelerator>::iterator usefulAccls = std::find_if(accls.begin(), accls.end(), 
        [=](accelerator& a)  
        {  
            return !a.is_emulated && (a.dedicated_memory >= 1024) && a.has_display;  
        }); 
    if (usefulAccls != accls.end()) 
    { 
        accelerator::set_default(usefulAccls->device_path); 
        std::wcout << "  Default accelerator is now "  
            << accelerator(accelerator::default_accelerator).description << std::endl; 
    } 
    else 
        std::wcout << "  No suitable accelerator available" << std::endl;

As discussed in Chapter 3, “C++ AMP Fundamentals,” all C++ AMP kernels run on an 
 accelerator_ view. An accelerator_view represents a logical, isolated view on a particular accelerator. If 
no accelerator_ view is specified, an accelerator_view on the default accelerator is used. You can specify 
which accelerator to use by passing an accelerator_view associated with a particular accelerator to 
the invocation of parallel_for_each or by capturing an array or texture stored on the desired accelera-
tor. In this example, accls is a std::vector containing two or more accelerator instances. The default 
accelerator is set to accls[0], but the array, onData1, is initialized with an additional accelerator_view 
parameter associating it with accls[1].default_view. The following kernel runs on accls[1] even though 
accls[0] is the default accelerator because the parallel_for_each captures dataOn1, an array associated 
with the default accelerator_view of accls[1]: 

    accelerator::set_default(accls[0].device_path);    // Accelerator 0 is now the default 
    array<int> dataOn1(10000, accls[1].default_view); 
 
    parallel_for_each(dataOn1.extent, [&dataOn1](index<1> idx) restrict(amp)  
    {  
        dataOn1[idx] = // ... 
    });

If your kernel uses array_view rather than array, the accelerator_view must be passed as an 
 additional parameter to the parallel_for_each. Again, the following kernel executes on accls[1]:
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    std::vector<int> dataOnCpu(10000, 1); 
    array_view<int, 1> dataView(1, dataOnCpu); 
 
    parallel_for_each(accls[1].default_view,  
        dataView.extent, [dataView](index<1> idx) restrict(amp)  
    {  
        dataView[idx] = // ... 
    });

Attempting to execute a kernel on one accelerator that contains references to an array stored 
on a different accelerator will result in a concurrency::runtime_exception. If the kernel references an 
 array_view that wraps data stored on a different accelerator, the data will be implicitly copied onto 
the accelerator specified by the parallel_for_each invocation.

Using More Than One GPU

If your application detects more than one C++ AMP-capable GPU accelerator, the question becomes: 
How can you take advantage of this? The answer is to schedule work on all accelerators concurrently, 
allocating a portion of the total work to each accelerator, and finally to combine the results. This 
approach is often called the scatter-gather or master-worker pattern. The CPU divides the work and 
scatters it among the available workers. Workers complete their portion of the work and the result is 
gathered back up to the CPU master, which then either uses the final result or scatters more work to 
the GPU workers.

The following example calculates the weighted average of the elements in a matrix using a single 
parallel_for_each to execute the computation on the default C++ AMP accelerator. Each thread on the 
GPU calculates the weighted average of an element in matrix C from the corresponding elements in 
matrix A using a weighting function, WeightedAverage().

    const int rows = 2000, cols = 2000; shift = 60; 
    std::vector<float> vA(rows * cols); 
    std::vector<float> vC(rows * cols); 
    std::iota(vA.begin(), vA.end(), 0.0f); 
 
    array_view<const float, 2> a(rows, cols, vA);  
    array_view<float, 2> c(rows, cols, vC); 
    c.discard_data(); 
 
    extent<2> ext(rows - shift * 2, cols - shift * 2); 
    parallel_for_each(ext, [=](index<2> idx) restrict(amp) 
    { 
        index<2> idc(idx[0] + shift, idx[1] + shift); 
        c[idc] = WeightedAverage(idc, a, shift); 
    }); 
    c.synchronize();

The WeightedAverage() function simply calculates an average using the weighted sum of the 
surrounding pixels, and the parameter shift specifies the size of the surrounding pixel window. This 
actual function isn’t that important; for the purposes of the example, it is just work being done on the 
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GPU that depends on surrounding values in the matrix. Although this is a trivial example, it serves to 
 demonstrate some of the complexities when partitioning a computation across more than one GPU. 
The Cartoonizer case study in Chapter 10, “Cartoonizer Case Study,” shows an example of a much 
more computationally intensive application that uses a similar algorithm.

3

4

In the diagram, matrix element [4, 3] is calculated based on the 24 surrounding elements with 
a shift parameter of 2 for a 8 × 8 matrix. Even on a single accelerator new values can be calculated 
only for matrix elements sufficiently far away from the edge of the matrix that a full window can be 
used to calculate the average. These elements are represented by the 8 × 10 shaded area on the next 
diagram. The border around the edge is called the halo; it holds read-only values that are required to 
correctly calculate new values for elements that lie inside the halo.

It’s possible to divide the work across several accelerators by creating array_view instances 
 corresponding to subregions of the matrices and executing these on different accelerators. In this 
case, each accelerator must be passed to not only the elements for which it will calculate new values 
but also the halo elements. This increases the amount of data being transferred. For large arrays, 
where the halo width is much smaller than the overall matrix dimensions, this does not present a 
significant  additional overhead. The following diagram shows the partitioning of the matrix onto two 
accelerators. Note that each accelerator is allocated a half of the computable matrix, a 4 × 10 region, 
and the halo elements needed to calculate the result. Now the accelerators can work in parallel to 
calculate the weighted sum of the respective portions of the matrix allocated to them. 
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A TaskData structure is used to track the work assigned to each C++ AMP accelerator. It stores 
the default accelerator_view for each accelerator and the start row and read and write extents of the 
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submatrices that the accelerator will use for its part of the overall calculation. The writeExt holds the 
dimensions of the shaded rows, and writeOffset holds the number of offset rows to the top of the 
shaded areas.

struct TaskData 
{ 
    int id; 
    accelerator_view view; 
    int startRow; 
    extent<2> readExt; 
    int writeOffset; 
    extent<2> writeExt; 
 
    TaskData(accelerator a, int i) : view(a.default_view), id(i) {} 
    // ... 
};

The TaskData structures are initialized to divide up the rows of the matrix between the available 
accelerators. The TaskData struct defines a static method to do this.

    static std::vector<TaskData> Configure(const std::vector<accelerator>& accls,  
        int rows, int cols, int shift) 
    { 
        std::vector<TaskData> tasks; 
        int startRow = 0; 
        int rowsPerTask = int(rows / accls.size()); 
        int i = 0; 
        std::for_each(accls.cbegin(), accls.cend(),  
            [=, &tasks, &i, &startRow](const accelerator& a)  
        { 
            TaskData t(a, i++); 
            t.startRow = std::max(0, startRow - shift); 
            int endRow = std::min(startRow + rowsPerTask + shift, rows); 
            t.readExt = extent<2>(endRow - t.startRow, cols); 
            t.writeOffset = shift; 
            t.writeExt = extent<2>(t.readExt[0] - shift -  
                ((endRow == rows || startRow == 0) ? shift : 0), cols);  
            tasks.push_back(t); 
            startRow += rowsPerTask; 
        }); 
        return tasks; 
    } 

Your application can then create an array_view for the subregion of matrices of A and C and 
 execute a C++ AMP kernel on each accelerator to calculate the values for the corresponding subre-
gion of matrix C. 

    const int rows = 2000, cols = 2000; shift = 60; 
    std::vector<TaskData> tasks = TaskData::Configure(accls, rows, cols, shift); 
 
    std::vector<float> vA(rows * cols); 
    std::vector<float> vC(rows * cols); 
    std::iota(vA.begin(), vA.end(), 0.0f); 
 
    std::for_each(tasks.cbegin(), tasks.cend(), [&avCs](const TaskData& t) 
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    { 
        avCs.push_back(array<float, 2>(t.readExt, t.view)); 
    }); 
 
    std::for_each(tasks.cbegin(), tasks.cend(), [=](const TaskData& t) 
    { 
        array_view<const float, 2> a(t.readExt, &vA[t.startRow * cols]);  
        array_view<float, 2> c = avCs[t.id]; 
        index<2> writeOffset(t.writeOffset, shift); 
        parallel_for_each(t.view, t.writeExt, [=](index<2> idx) restrict(amp) 
        { 
            index<2> idc = idx + writeOffset; 
            c[idc] = WeightedAverage(idc, a, shift); 
        }); 
    }); 
 
    std::for_each(tasks.cbegin(), tasks.cend(), [=, &vC](const TaskData& t) 
    { 
        array_view<float, 2> outData(t.writeExt, &vC[(t.startRow + t.writeOffset) * cols]); 
        avCs[t.id].section(index<2>(t.writeOffset, 0), t.writeExt).copy_to(outData); 
    });

This example uses a std::for_each to launch a kernel on each GPU and then a second loop to synchro-
nize the results back to the CPU. The full implementation is in the MatrixMultiGpuSequentialExample 
function in Main.cpp.

If you run the sample on a machine with more than one C++ AMP-capable GPU, you will see 
 output similar to the following. The exact times will vary based on the GPUs being used, as well as 
other factors, such as the type of CPU and the speed of the PCI bus and RAM on your computer.

    Matrix weighted average 2000 x 2000 matrix, with 121 x 121 window 
    Matrix size 15625 KB 
 
    Single GPU matrix weighted average took                         1198.91 (ms) 
    2 GPU matrix weighted average (p_f_e) took                       649.923 (ms) 
    2 GPU matrix weighted average took                               652.042 (ms) 

The matrix weighted average on two GPUs is faster, showing an improvement of 84 percent. This 
is not 100 percent because there is some overhead associated with distributing the calculation across 
two GPUs. 

This is a small sample designed to make the code easier to read, but it doesn’t represent the sort of 
real workloads that will be able to take full advantage of more than one GPU and the CPU. The NBody 
and Cartoonizer case studies can both be run on multiple GPUs.

Swapping Data among Accelerators

The weighted average example does not share any data between accelerators during the calcula-
tion. The result for each matrix element depends on the surrounding elements, but each accelera-
tor contains a halo of additional read-only elements. Iterative calculations that rely on neighboring 
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 elements stored on other GPUs will need to refresh updated elements before the next iteration step 
can proceed.

When using multiple GPUs, it’s often necessary to swap some or all of the data between steps in a 
calculation. Typically, the process of a calculation step looks like this:

1. Divide current data among different GPUs.

2. Calculate results on each GPU based on its local data.

3. Swap some or all result data among GPUs by copying it to CPU memory and then back to the 
other GPUs.

4. Go to step 2.

Depending on your application, you might need to share some or all of the result data after each 
calculation step. For example, the multi-GPU implementation in the NBody case study (in Chapter 2, 
“NBody Case Study”) shares all the data after each time step. In contrast, the Cartoonizer case study 
has only to share the edges of each subregion of the image being processed (see Chapter 10). In 
either case, there must be sufficient computation at each step to outweigh the cost of the additional 
data transfers.

Let’s consider a modified version of the original multi-GPU weighted average code that repeats 
the weighting calculation 10 times. This version of the code is defined in the LoopedMatrixMultiGpu() 
function in Main.cpp. Implementing the iterative algorithm efficiently on two accelerators requires 
swapping additional data, as illustrated in the following diagram: 
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At the end of each loop iteration, the new results from rows 4 and 5 on accelerator 1 must be 
copied into the halo cells in rows 0 and 1 of accelerator 2. Similarly, the new values from accelera-
tor 2 must be copied into the halo of accelerator 1. No further calculation can take place while this is 
happening. The larger the averaging window, the more data will be transferred after each step of the 
calculation.

In this iterative example, the data is broken up and stored in separate array instances on each 
 accelerator. The std::vector instances arrAs and arrCs store these array instances for each accelerator.
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    const int rows = 2000, cols = 2000; shift = 60; 
    std::vector<TaskData> tasks = TaskData::Configure(accls, rows, cols, shift); 
 
    std::vector<float> vA(rows * cols); 
    std::vector<float> vC(rows * cols); 
    std::iota(vA.begin(), vA.end(), 0.0f); 
 
    std::vector<array<float, 2>> arrAs; 
    std::vector<array<float, 2>> arrCs; 
     
    std::for_each(tasks.begin(), tasks.end(), [&](const TaskData& t) 
    { 
        arrAs.push_back(array<float, 2>(t.readExt, &vA[t.startRow * cols], t.view)); 
        arrCs.push_back(array<float, 2>(t.readExt, t.view)); 
    });

Two additional arrays on the CPU are used to swap the data among the array instances stored on 
each GPU.

    array<float, 2> swapTop = array<float, 2>(extent<2>(shift, cols),  
        accelerator(accelerator::cpu_accelerator).default_view); 
    array_view<float, 2> swapViewTop = array_view<float, 2>(swapTop); 
    array<float, 2> swapBottom = array<float, 2>(extent<2>(shift, cols),  
        accelerator(accelerator::cpu_accelerator).default_view); 
    array_view<float, 2> swapViewBottom = array_view<float, 2>(swapBottom);

The new multiaccelerator code is shown below. The full source is in the 
 LoopedMatrixMultiGpu Example() function in Main.cpp. During each loop iteration, it calculates the 
updates to the submatrices on each accelerator and then swaps just the upper and lower edges to 
update the halo elements of each matrix. Finally, it swaps the vector containing the results for each 
 accelerator, arrCs, for the vector containing next inputs, arrAs.

for (int i = 0 ; i < iter; ++i) 
{ 
    //  Calculate a portion of the result on each GPU 
 
    std::for_each(tasks.cbegin(), tasks.cend(), [=, &arrAs, &arrCs, &vC](const TaskData& t) 
    { 
        array<float, 2>& a = arrAs[t.id]; 
        array<float, 2>& c = arrCs[t.id]; 
 
        parallel_for_each(t.view, t.readExt, [=, &a, &c](index<2> idx) restrict(amp) 
        { 
            c[idx] = a[idx]; 
            if ((idx[0] >= shift) && (idx[0] < (rows - shift)) &&  
                (idx[1] >= shift) && (idx[1] < (cols - shift))) 
                c[idx] = WeightedAverage(idx, a, shift); 
        }); 
    }); 
 
    //  Swap edges 
 
    std::vector<completion_future> copyResults((tasks.size() - 1) * 2); 
    parallel_for(0, int(tasks.size() - 1), [=, &arrCs, &copyResults](size_t i) 
    { 
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        array_view<float, 2> bottomEdge =  
            arrCs[i + 1].section(index<2>(tasks[i + 1].writeOffset, 0),  
                swapViewBottom.extent);  
        array_view<float, 2> bottomEdge =  
            arrCs[i + 1].section(index<2>(tasks[i +1].writeOffset,0),  
                swapViewBottom.extent); 
        copyResults[i] = copy_async(topEdge, swapViewTop); 
        copyResults[i + 1] = copy_async(bottomEdge, swapViewBottom); 
    }); 
 
    parallel_for_each(copyResults.begin(), copyResults.end(), [=](completion_future& f)  
    { f.get(); }); 
 
    parallel_for(0, int(tasks.size() - 1), [=, &arrCs, &copyResults](size_t i) 
    { 
        array_view<float, 2> topEdge =  
            arrCs[i].section(index<2>(tasks[i].writeOffset + tasks[i].writeExt[0] - shift, 0),  
                swapViewTop.extent); 
        array_view<float, 2> bottomEdge = arrCs[i + 1].section(swapViewTop.extent); 
        copyResults[i] = copy_async(swapViewTop, bottomEdge); 
        copyResults[i + 1] = copy_async(swapViewBottom, topEdge); 
    }); 
 
    parallel_for_each(copyResults.begin(), copyResults.end(), [=](completion_future& f) 
    { f.get(); }); 
 
    //  Swap results of this iteration with the input matrix 
    std::swap(arrAs, arrCs); 
}

The swapping steps use copy_async() rather than copy() to minimize the impact of any copy 
operations by parallelizing them as much as possible. The copying takes place in two phases: first, 
the edges are copied into CPU memory (operations A and C in the previous diagram), and then 
they are copied back to the other GPU (operations B and D in the diagram). Each copy operation 
returns a  completion _ future. After all the copy operations have been started, the program uses 
 completion _ future::get() to wait until all the copy operations have finished before starting the next 
phase.

The following example also uses copy_async() rather than copy() to move data from the CPU 
memory to the accelerator.

    const int size = 1024 * 1024; 
    std::vector<float> vA(size, 0.0f); 
    array<float, 1> arrA(size); 
 
    std::cout << "Data copy of " << size << " bytes starting." << std::endl; 
    completion_future f = copy_async(vA.cbegin(), vA.cend(), arrA); 
    f.then([=] () 
    {  
        std::cout << “  Finished asynchronous copy!” << std::endl;  
    }); 
    std::cout << "Do more work on this thread..." << std::endl; 
    f.get(); 
    std::cout << "Data copy completed." << std::endl;
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The output from this code looks like this. The output from the main application thread “Do more 
work on this thread...” is displayed before the output from the completion_task::then function, 
“ Finished asynchronous copy,” which executes after the copy is complete.

    Data copy of 1048576 bytes starting. 
    Do more work on this thread... 
      Finished asynchronous copy! 
    Data copy completed.

The example demonstrates two things: first, copy_async() allows the calling thread to 
 continue to do more work without waiting for the copy to complete; and second, it uses the 
 completion _ task::then() method to specify further operations to execute after the task itself has 
 completed.

On Windows 7, this asynchronous approach to copying is more important because it also 
 minimizes lock contention. On Windows 7, C++ AMP copy operations from the GPU to CPU involve 
two locking operations: first a process-wide DirectX kernel lock is taken, followed by a read lock on 
the source data. If the C++ AMP kernel calculating the results still has a write lock on the data  being 
copied, the copy operation will take the DirectX kernel lock and block when attempting to acquire 
a read lock on the source data until the C++ AMP kernel completes and frees the resource lock. This 
means that the copy operation holds the DirectX kernel lock for the entire duration of the C++ AMP 
kernel execution and the data transfer, preventing other threads from submitting work to other GPUs 
during this period. If your application is executing C++ AMP kernels from more than one CPU thread, 
this lock contention will result in serialization of kernels that were intended to run concurrently on 
different GPUs. The end result is that your application will not see the performance gains you expect 
from adding more GPUs.

The key to getting the best possible performance is to minimize the length of time during which 
the copy operation takes these locks. The code here can be rewritten to minimize the time that the 
copy call holds the process-wide DirectX kernel lock. 

    std::vector<float> resultData(100000, 0.0f); 
    array<float, 1> resultArr(resultData.size()); 
 
    // parallel_for_each calculates resultArr data... 
 
    copy(resultArr, resultData.begin());

The following code does this by queuing the copy on another thread by using copy_async(). It then 
waits for all work on the accelerator view to complete before attempting to get the result of the copy. 
This means that the locks are taken for the shortest possible time.

    // parallel_for_each calculates resultArr data... 
 
    completion_future f = copy_async(resultArr, resultData.begin()); 
    resultArr.accelerator_view.wait(); 
    f.get();
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On Windows 7, the accelerator_view::wait() method has some CPU impact because it is a spin wait, 
so you should only use this approach where the benefits of the improved concurrency when using 
multiple GPUs outweighs the additional load placed on the CPU.

Note This example uses completion_future::get() rather than completion_future::wait(). In 
the current futures implementation, exceptions thrown by the future are only surfaced by 
calls to get(). Using get() ensures that your application can handle errors  correctly.

Finally, after all the iterations have completed, the data is copied back into vC on the CPU.

    array_view<float, 2> c(rows, cols, vC); 
    std::for_each(tasks.crbegin(), tasks.crend(), [=, &arrAs, &c](const TaskData& t) 
    { 
        index<2> ind(t.writeOffset, shift); 
        extent<2> ext(t.writeExt[0], t.writeExt[1] - shift * 2); 
        array_view<float, 2> outData = c.section(ind, ext);  
        arrAs[t.id].section(ind, ext).copy_to(outData); 
    });

The output window shows the relative performance of this iterative averaging implementation 
compared to the single average version described previously. Based on the time for a single average 
calculation, you would expect the iterative version to take 5790 ms (10 times as long). In fact, it takes 
6309 ms, or an additional 582 ms. This represents an overhead of roughly 9 percent. 

    Matrix weighted average 2000 x 2000 matrix, with 121 x 121 window 
    Matrix size 15625 KB 
 
    Single GPU matrix weighted average took                         1070.74 (ms) 
    2 GPU matrix weighted average (p_f_e) took                       579.947 (ms) 
    2 GPU matrix weighted average took                               585.191 (ms) 
 
    Weighted average executing 10 times 
 
    2 GPU matrix weighted average took                              6309.93 (ms)

Dynamic Load Balancing

The example above used two identical GPUs and assumed that no other applications were scheduling 
work on them. What if your application is running on a machine with two or more different GPUs? 
For example, your computer might have come with an integrated GPU on the motherboard but you 
added a more powerful discrete GPU, or other applications are using some of the available GPUs for 
other work. In both cases, scheduling the same amount of work on each of the available GPUs will not 
give the best results; the application’s performance will be limited by the slowest GPU.

The answer is to implement a load-balancing algorithm to allocate work between the available 
GPU accelerators. Your application can load-balance based on the relative performance of each GPU, 
using either the time taken for a kernel to run or the amount of work completed. In some cases, if the 
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GPUs have wildly differing performance characteristics, then just using the best one or two might be 
the more efficient solution.

A common approach for doing this is the master-worker pattern. The master breaks the problem 
up into tasks and adds them to a queue. The master then assigns tasks from the queue to the avail-
able workers. Once a worker completes a task, it returns the results to the master. The master then 
assigns another task to the worker until no more tasks remain. Finally, it shuts down the workers and 
hands the results off to the application. The example shown here uses a work-stealing variation of 
master-worker in which worker GPUs take work from a master task queue on the CPU rather than 
waiting for it to be assigned to them.

The advantage of this approach is that it automatically load-balances across worker GPUs with 
different performance characteristics. It will also efficiently handle scheduling work on GPUs with 
varying workloads from other applications running on them. For effective load balancing there must 
be enough tasks to occupy all the available GPUs. Smaller tasks make for effective load balancing but 
add to the management overhead. Which task size you use largely depends on the application.

The following is a simple example to show the task partitioning of a C++ AMP kernel that modifies 
a one-dimensional array. The sample uses a Task type to track the range within the input data associ-
ated with each task.

    typedef std::pair<size_t, size_t> Task; 
 
    inline size_t GetStart(Task t) { return t.first; } 
    inline size_t GetEnd(Task t) { return t.first + t.second; } 
    inline size_t GetSize(Task t) { return t.second; }

The example creates a concurrent_queue<Task> of tasks and then starts a thread for each accelera-
tor using a parallel_for. Each thread pops tasks from the queue and executes a C++ AMP kernel to 
process the section of the array associated with the task. Once the queue is empty, the parallel_for 
completes.

    const size_t dataSize = 101000; 
    const size_t taskSize = dataSize / 20; 
    std::vector<int> theData(dataSize, 1); 
 
    //  Divide the data up into tasks 
 
    concurrent_queue<Task> tasks; 
    for (size_t i = 0; i < theData.size(); i += taskSize) 
        tasks.push(Task(i, std::min(i + taskSize, theData.size()) - i)); 
 
    //  Start a task for each accelerator 
 
    parallel_for(0, int(accls.size()), [=, &theData, &tasks, &critSec](const unsigned i) 
    { 
        Task t; 
        while (tasks.try_pop(t)) 
        { 
            array_view<int> work(extent<1>(GetSize(t)), theData.data() + GetStart(t)); 
            parallel_for_each(accls[i].default_view, extent<1>(GetSize(t)),  
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                [=](index<1> idx) restrict(amp) 
            { 
                work[idx] = // ... 
            }); 
            // Wait in order to stop synchronize from blocking the process 
            accls[i].default_view.wait();   
            work.synchronize(); 
        } 
    });

For clarity, the code that writes status updates to the console has been removed. You can see the full 
source code in Chapter8\main.cpp in the WorkStealingExample() function.

Note The preceding code sample contains an additional call to accls[i].default_view.wait(); 
prior to synchronizing the work data. This is required on Windows 7 to ensure that calls 
to array_view::synchronize() do not block because this will prevent all other threads from 
 accessing the GPUs. This is not the case on Windows 8.

As you can see from the output when running a Debug build, tasks are executed on both the avail-
able GPUs, but GPU 1 does the majority of the work. In this case, GPU 0 is also being used by other 
processes and has a display connected to it.

    Queued 20 tasks 
     Starting tasks on 1: NVIDIA GeForce GTX 570 
     Starting tasks on 0: NVIDIA GeForce GTX 570 
      Finished task 0 - 5050 on 1 
      Finished task 10100 - 15150 on 1 
      Finished task 15150 - 20200 on 1 
      Finished task 20200 - 25250 on 1 
      Finished task 25250 - 30300 on 1 
      Finished task 30300 - 35350 on 1 
      Finished task 5050 - 10100 on 0 
      Finished task 35350 - 40400 on 1 
      Finished task 40400 - 45450 on 0 
      Finished task 45450 - 50500 on 1 
      Finished task 50500 - 55550 on 0 
      Finished task 55550 - 60600 on 1 
      Finished task 60600 - 65650 on 0 
      Finished task 65650 - 70700 on 1 
      Finished task 70700 - 75750 on 0 
      Finished task 75750 - 80800 on 1 
      Finished task 80800 - 85850 on 0 
      Finished task 85850 - 90900 on 1 
      Finished task 90900 - 95950 on 0 
      Finished task 95950 - 101000 on 1 
     Finished 7 tasks on 0 
     Finished 13 tasks on 1

You might be considering using the WARP accelerator in conjunction with the GPUs to add 
 another accelerator and thereby improve overall performance. Often, this might not result in any 
significant improvement in performance. First, the WARP accelerator usually achieves only a small 
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fraction of the performance of a dedicated/physical GPU, so the additional CPU overhead and code 
complexity  required to coordinate the additional WARP accelerator don’t result in any overall gains. 
Second, the CPU is already being used to coordinate the task parallelism to control the GPUs and 
copy data to and from them. Running a WARP accelerator workload on the CPU in combination with 
a physical GPU might degrade performance rather than improve it because the WARP  accelerator 
uses CPU resources that would otherwise be used to distribute work to the GPUs. Therefore, it’s 
recommended that your application use the WARP only as a fallback CPU solution when no GPU 
 accelerators are available.

Note For a more general discussion of the master-worker pattern and other patterns for 
distributing work on parallel computers, see Patterns of Parallel Programming by Mattson, 
Sanders, and Massingill.

Braided Parallelism

Combining task parallelism with data parallelism is often referred to as braided parallelism. This 
 pattern has obvious applications when it comes to programming today’s heterogeneous computers. 
For maximum performance, your application should make use of all the available processors, both on 
the CPU and GPUs.

So far the examples in this chapter have used the CPU just to orchestrate work being executed 
on C++ AMP-enabled accelerators. Braided parallelism can be taken further because it allows you to 
leverage the power of both the CPU’s cores and any available GPUs. If some parts of your application 
lend themselves to massive data parallelism on the GPU but others are more suitable to execution on 
the CPU, then it’s possible to combine the PPL and C++ AMP to take advantage of both. 

When deciding which parts are best placed on the GPU and which should remain on the CPU, you 
should think carefully about your application’s overall workflow. Even some data-parallel algorithms 
might be better suited to executing on the CPU. For example, if the algorithm doesn’t use enough 
data to keep the majority of the GPU’s threads occupied or can’t meet the restrictions required of 
code running in a C++ AMP kernel, it’s a poor fit for C++ AMP. You should also consider reorganiz-
ing your workflow to minimize both the number of data transfers between the GPU and CPU and the 
volume of data transferred.

The Cartoonizer case study in Chapter 10 illustrates using braided parallelism to process images 
and video using a task-parallel pipeline on the CPU combined with data-parallel image processing on 
the GPU. The pipeline on the CPU loads, reformats, and resizes images or video frames. The GPU(s) 
are used to cartoonize the images before the CPU finally displays the result. Here, PPL tasks running 
on the CPU execute part of the processing and orchestrate C++ AMP accelerators. 

When designing a braided application, it’s important to consider the overall workflow of your 
 application. It might be tempting to simply measure and profile your application and then to 
 rewrite the data-parallelizable hotspots as C++ AMP kernels so that they can execute on the GPUs. 
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 Although this will certainly make some parts of your application run faster, Amdahl’s law will eventu-
ally limit overall application performance. Taking a more holistic view during (re)design will probably 
lead to finding more exploitable opportunities for parallelism and consequently better application 
 performance.

The PPL, the Standard Library, and C++ AMP all provide support for creating parallel workflows 
 using asynchronous methods. This allows you to create applications that execute work on both the 
CPU and GPU(s) concurrently, maximizing your application’s performance. 

Although a full discussion of asynchronous programming and the Futures and Task Graph  patterns 
are outside the scope of this book, good introductions to both can be found on MSDN “ Parallel 
 Programming with Microsoft Visual C++, 5: Futures” at http://msdn.microsoft.com/en-us/library/
gg663533 and on the Berkeley Patterns Wiki at http://parlab.eecs.berkeley.edu/wiki/patterns/patterns.

Many of the tradeoffs and guidelines for designing braided parallel applications are the same as 
those for designing all parallel applications. There is a significant overhead associated with moving 
data to and from a discrete GPU, and the design should seek to minimize this. In some cases, this 
might mean reordering your application workflow to reduce the number of data copies. In others, 
it might mean implementing some parts of your workflow in C++ AMP even though they are more 
suited to a task-parallel implementation on the CPU. 

The design should also account for the very different performance characteristics of GPUs for 
different workloads. They perform data-parallel work very efficiently but perform poorly when the 
workload can’t be (re)written in a data-parallel way. Some types of computation are hard to imple-
ment in a data-parallel manner—for example, code that makes heavy use of branching. These parts of 
your application might be better executed on the CPU.

The Cartoonizer case study in Chapter 10 covers a complete application implemented with braided 
parallelism.

Falling Back to the CPU

If no C++ AMP-capable GPUs are available, your application could default back to parallel implemen-
tation on the CPU by using the PPL or the C++ AMP WARP accelerator. The section “Enumerating 
Accelerators” covers how to enumerate the available accelerators and choose the best one for your 
application. By default, the C++ AMP run time will fall back to the WARP accelerator if it is available 
(on Windows 8) and no C++ AMP-capable GPU accelerators are present.

Using a WARP accelerator allows your application to run on the CPU the same code that runs on 
the GPU, so there is less code to maintain. The WARP accelerator takes advantage of multicore and 
SIMD instructions and can result in comparable or even better performance than PPL code running 
on the CPU. This is particularly true if your algorithm would have been implemented on the CPU in a 
data-parallel way. Coding your algorithm in C++ AMP makes it simpler for the compiler to make good 
use of all the CPU cores and to vectorize your code.

http://msdn.microsoft.com/en-us/library/gg663533
http://msdn.microsoft.com/en-us/library/gg663533
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In some cases, you might be able to use a different algorithm and data structures on the CPU to 
improve the performance that C++ AMP code running on WARP would achieve. This is especially true 
if there is a very efficient task-parallel approach that maps better to a multicore CPU than the data-
parallel C++ AMP code. The case studies included in this book illustrate these tradeoffs.

The NBody case study (see Chapter 2) does not use WARP; if no suitable GPU is available, it falls 
back to a custom implementation written for the CPU, the advanced CPU integrator. The advanced 
CPU integrator is able to halve the number of force calculations by taking advantage of the force 
 particle A exerts on particle B being the exact opposite of the force particle B exerts on particle A. 
It also breaks down the calculation in such a way as to maximize cache coherence, and therefore it 
 improves core utilization as the application becomes memory-bound. The advanced CPU integrator 
also uses explicitly coded SSE vectorization using intrinsic functions. This also improves the perfor-
mance of the advanced CPU integrator. In contrast, the NBody sample’s C++ AMP integrators rely 
on the massive data parallelism of the GPUs and directly calculate both forces for each particle pair. 
Incurring the  additional cost of these calculations is more efficient on the GPU than implementing an 
integrator that tries to take advantage of the pair calculations with a much more complex kernel.

The Reduction case study has no code to detect or choose accelerators and compares both 
sequential and parallel CPU implementations to C++ AMP implementations on every run. The copy 
time, whether to a GPU accelerator or to a WARP accelerator, outweighs the execution time, but the 
Reduction code might be appropriate for C++ AMP if it were part of a larger calculation that could 
justify the copy time. On a variety of hardware, the execution time on WARP was never less than the 
CPU execution time, but the most optimized WARP time was not significantly more than the CPU 
time. It’s possible that the effort saved by not needing to maintain separate CPU and accelerator ver-
sions of the same algorithms would be significant. In that case, getting roughly the same performance 
on WARP and not needing to write a CPU version would be a good solution, producing an application 
that runs on a variety of hardware without needing to be written twice.

In Chapter 10, the Cartoonizer case study shows an example in which WARP delivers better 
performance than the CPU implementation. In this case, the CPU code uses the same data-parallel 
algorithm as the C++ AMP code and relies on the C++ compiler’s autovectorization features to take 
advantage of SIMD. The C++ AMP implementation using WARP runs faster than the CPU implementa-
tion because it is able to better take advantage of all the cores and their vector processing units.

Few developers can afford to declare that their application won’t run on hardware that doesn’t 
include a DirectX 11 accelerator. Whether you choose to support configurations without a hardware 
accelerator by using WARP or by creating a CPU-based implementation using PPL—and possibly 
SSE—largely depends on the nature of your application. WARP might well be the best choice if your 
algorithm is data parallel and does not use double precision or it’s not possible to take advantage of 
task parallelism on the CPU to write a more efficient implementation. 
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Summary

C++ AMP provides a flexible model for selecting the right accelerator for your application. When 
no GPUs are available, your application can fall back on the CPU using the WARP accelerator (on 
 Windows 8) to execute your data-parallel code. If your algorithm can be expressed more efficiently in 
a task-parallel way on the CPU, then your application can also provide an alternative implementation 
using the PPL. You will also need to implement a CPU version of your algorithm if you intend to sup-
port target machines running Windows 7 that do not have a C++ AMP-capable GPU.

C++ AMP and the PPL can also be combined to leverage the power of multiple GPUs and multiple 
CPU cores. The performance gains from running on more than one GPU can be very significant, pro-
vided the algorithm can be split efficiently between GPUs and the overhead of any synchronization 
and data copying minimized. Braided parallelism also provides more opportunities for taking advan-
tage of both data parallelism on the GPU and task parallelism on the CPU to maximize application 
performance. 

The NBody case study code from Chapter 2 shows how it’s possible to use C++ AMP to take 
 advantage of multiple GPUs. The NBodyAmpMultiTiled class defined in NBodyAmpMultiTiled.h shows 
how to implement n-body on more than one GPU accelerator. In the NBody example, the particle 
update calculation is divided among the available GPUs. At the end of each time step the new particle 
positions and velocities are copied back onto the CPU and then the new data for all particles is sent to 
the GPUs. The Cartoonizer case study presented next in Chapter 10 also discusses using C++ AMP on 
more than one GPU in more detail. In this case, the Cartoonizer shares only image halo data among 
GPUs after each stage of the calculation. 
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(XPDM), 304
modifying simple into tiled algorithm

tile barriers and synchronization, 74–76
tiled matrix multiplication, 76–77
using tile_ static memory, 69
writing simple algorithms, 68–69

multicore programming, 20
multiplication

array, 70
matrix, 70–72, 75, 76–77

N
namespace

concurrency:fast..math, 61
concurrency::precise_math, 61
graphics, 259

NBody case study, 21–38
callback functions in, 30–34
CPU calculations in, 29–34
falling back to CPU, 221
prerequisites for, 21–22
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running on multiple GPUs, 211
running sample for, 22–24
structure of, 28–29
using graphics interop, 280–282

NBodyGravityAMP project
NBodyAmpTiled class in, 85–86

NBodyGravityCPU project, 85–86
in tiling NBody case study, 90

.NET Application, deployment from
, 306

norm and unorm, in graphics interop, 258, 263
NVIDIA

CUDA and, 13
Streaming Multiprocessors, 138
warps on, 4

O
occupancy

choosing tile size and size of, 80
guidelines for improving, 157–158

Open GL (Open Graphics Library), 13
OpenMP (OpenMultiprocessing), 10–11
operators, supported by short vector types, 259–260
optimizing

aliasing
performance impact of, 141

array of structs vs. struct of arrays, 38, 149–151
arrays of structs vs. structs of arrays, 149–151
computation

avoiding divergent code, 158–161
choosing the appropriate precision, 161–162
costing mathematical operations, 163
loop unrolling, 164–165, 195–198, 200
queuing modes, 168–169
using barriers for, 164

constant memory, 155–156
copying to and from GPU efficiently, 141–146

about, 141
leaving data on GPU, 144
removing unnecessary copies, 142–144
using overlapping asynchronous copies, 144–

145
using staging arrays, 145–146

efficient accelerator global memory access, 146–
148
occupancy and registers, 157–158

performance
about, 127–128
about preparing for, 169
analyzing performance, 128
measuring performance of kernel, 129–131
using concurrency visualizer, 131–135
using Concurrency Visualizer SDK, 137–138

texture memory, 156. See also textures
tile static memory access, 152–155. See also tile_
static memory

P
padding tiles, 285–286
Parallel algorithm, 179
parallel-aware vs. parallel-unaware, software, 2
parallel_for algorithm, 12
parallel_for_each()

about, 55–56
aliasing invocations, 138–140
debugging tiled, 115
extent used in, 41, 54
lambdas used in, 41, 54
setting accelerator for running, 106
tiled, 67–68
tiled_extent in, 87
tile_static memory and, 89
using array_view as parameter, 56, 66–67

parallel_for_each algorithm, 12, 18
parallel_for function, 35
parallel_for loop, retractions for, 12
parallel_invoke algorithm, 12
parallelism

candidates for, 6
performance improvement through, 5–6
requirements for, 14
speeding up time windows and, 6–7
technologies for CPU, 8–13

ConcRT, 11–12
OpenMP, 10–11
vectorization, 8–10
WARP, 12–13

technologies for GPU, 13
Parallel Patterns Library (PPL)

C++ AMP and, 17
ConcRT and, 11–12
leveraging, to use all CPU cores, 90
using multiple CPU cores, 35
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Parallel Programming with Microsoft Visual C++, 
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Parallel Stacks window, 115–116
Parallel Watch Window, 117–118, 121
"Patterns of Parallel Programming" (Mattson, 
Sanders, and Massingill), 219
performance case study, reduction, 175–176

about the study, 171–172
C++ AMP algorithms

about, 179
cascading reductions, 198–200
eliminating bank conflicts, 193
loop unrolling, 195–198
minimizing divergence, 192–193
naively tiled, 185–186
reducing stalled threads, 194–195
simple, 180–182
simple optimized, 183–185
simple with array_view, 179
tiled with shared memory, 187–190

constants and constraints in, 174–175
CPU algorithms, 178–179
overhead in, 178
structure of, 172–174

performance improvements, history of, 1
performance optimization

about, 127–128
about preparing for, 169
analyzing performance

about, 128
measuring performance of kernel, 129–131
using concurrency visualizer, 131–135
using Concurrency Visualizer SDK, 137–141

personal computing, history of, 1–2
pipeline, implementation of

about features of Cartoonizer, 255
Cartoonizer performance, 250
Cartoonizing stage

about, 236
IFrameProcessor implementations, 239–245

data structures in, 229–230
edge detection algorithms used by 
Cartoonizer, 241
ImagePipeline class, 232–236
using multiple accelerators in, 246–251

forked pipeline strategy, 249–252
strategy for, 246–248

platforms for heterogeneous computing, 2–3
PLINQ, 12
pointers, references and, 58

portability of executables, 19–20
power requirements vs. battery life, in 
applications, 3
PPL (Parallel Patterns Library)

C++ AMP and, 17
ConcRT and, 11–12
leveraging, to use all CPU cores, 90
using multiple CPU cores, 35

precise_math namespace functions
about, 161–162
list of, 163

precision, choosing the appropriate, 161–162
programmable memory, 65
programming, multicore, 20

Q
queuing modes, 168–169

R
race conditions, 75, 121, 144, 165
race conditions, detecting in GPU debugging,  
110–111
read-only resources, 142
real time control systems, as candidate for parallel 
processing, 6
reduction, about, 5
reduction performance case study

about the study, 171–172
C++ AMP algorithms

about, 179
cascading reductions, 198–200
eliminating bank conflicts, 193
loop unrolling, 195–198
minimizing divergence, 192–193
naively tiled, 185–186
reducing stalled threads, 194–195
simple, 180–182
simple optimized, 183–185
simple with array_view, 179
tiled with shared memory, 187–190

concurrency visualizer markers, 175–176
constants and constraints in, 174–175
CPU algorithms, 178–179
overhead in, 178
structure of, 172–174

REF accelerator (Reference Rasterizer), 205
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reference accelerators, debugging using, 22, 101, 
106–108
references, pointers and, 58
registers, 157
remote machine

configuring for debugging, 301
Resource Manager, 11
resources, for C++AMP, 309–311
restrict(amp)

functions marked with, 57–59
restrict keyword, 65
root and power functions, 61
run time

initialization of, 128
read-only resources and, 142

Run To Cursor command, debugging using, 123

S
scalar types

texel, 262–264
unorm and snorm scalar types, 258
using HLSL, 258

scientific modeling and simulation, as candidate for 
parallel processing, 6
section() method, 144
sequential algorithm, 178
servers, running C++ AMP on

enumerating C++ AMP-capable devices,  
304–306
running

as a service or under Session 0, 305
on true headless servers, 305
without connected display, 305
with XPDM graphics devices present, 304

shared pointers
declaring global, 29

short vector types
about, 259–260
accessing vector components, 260
operators supported by, 259–260
template metaprogramming, 260–262
texel, 262–264, 278–279
using in Cartoonizer case study, 270

ShowAmpDevices sample, 22
Show Threads In Source button, 113
SIMD (Single Instruction, Multiple Data), 8
simple algorithms, 68–69
simple code vs. tiled code in tiling NBody case 
study, 87

single-core CPU algorithm, 35
"Software Adapter" accelerator, 205
Software Emulator

in GPU debugging, 106–108
SSE (Streaming SIMD Extensions) 3, code for 
checking support of, 8–9
SSE (Streaming SIMD Extensions), readability of

readability of, 35
staging arrays, using, 145–146
staging buffer, 145
Standard Library

C++ AMP and, 17
mathematical functions from, 61
parameters in, 61

static memory, tiled, 65
Step Over command, visible glyphs in, 103
storage specifier, tile_static as, 76
Streaming Multiprocessors, 138
Streaming SIMD Extensions (SEE) 3, code for 
checking support of, 8–9
Streaming SIMD Extensions (SSE), readability of

readability of, 35
structs

in CPU calculations, 29–30
in GPU programming, 38
of arrays vs. arrays of structs, 38, 149–151

swapping data between accelerators, 211–214
synchronization, tile barriers and, 74–76
synchronize() method, 142
synchronizing data automatically, 60, 142

T
Task Graph pattern, 220
Task Parallel Library, 12
Task Scheduler, 11
TDR (Timeout Detection and Recovery)

about, 296
avoiding, 297
detecting and recovering from, 298
disabling on Windows 8, 297–298

template metaprogramming, 260–262
texels

for data storage of textures, 262–264
value types, 278–279

texture captured by reference, captured containers 
as, 138
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textures
about, 262
as read-only, 142
copying data to and from, 264–266
Direct3D resource interop and, 277–280
maximum size of, 270
memory in, 155–156
reading from, 266–267
read-write, 269–270
texels

for data storage of, 262–264
value types, 278–279

using in Cartoonizer case study, 270
vs. arrays, 270–271
writeonly_texture_view, 269–270
writing to, 267–268

thawing threads, 121–122
Threading Building Blocks (TBB) 3.0, compatibility 
with PPL, 12
threads

arranged in groups, 4
CLR Thread Pool and, 12
freezing and thawing, 121–122
GPUs executing in kernel, 138
grouping. See tiling
handling truncated elements with edge, 287
reducing stalled, 194–195
seeing, 112–116

displaying GPU Threads Window, 113–114
filtering threads, 120–122
flagging threads, 119
grouping threads, 119
turning on thread markers, 113
using Parallel Stacks window, 115–116
using Parallel Watch Window, 117–118, 121
using Run To Cursor command, 123

splitting work between, using OpenMP, 10–11
taking more control of, 121–122
"tournament" approach in comparing, 5

Thrust, library of parallel algorithms, 13
tile barrier, 74–75, 89, 110, 114, 196–197

omitting in GPU debugging call to, 110–111
tiled calculation

performing, 64
tiled_extent, 66–67, 68, 69, 87
tiled_index, 67–68, 69
tiled matrix multiplication code, 76–77
tile() function, 87, 88
tile_origin, in tiled index, 67

tiles
padding, 285–286

tile size
choosing, 67, 69, 79, 95–98
effects of, 77–79
mismatches, dealing with, 283–284

tile_static memory
about, 65
access, 152–155
in reduction performance case study, 185
in  tiled parallel_for_each, 87–88
using, 70–73

tile_static storage, 65, 76
tiling

about, 64–65
barriers and synchronization, 74–76
formula for tiled origin, 68
matrix multiplication, 291
modifying simple into tiled algorithm

tile barriers and synchronization, 74–76
tiled matrix multiplication, 70–72, 75, 76–77
using tile_ static memory, 69
writting simple algorithms, 68–69

NBody case study
about, 83
choosing tile size, 95–98
NBodyAmpTiled class in, in NBodyGravityAMP 

project, 85–86
simple code vs. tiled code in, 87
tiling n-body algorithms, 85–86
using concurrency visualizer, 90–93

tiles
padding, 285–286, 290
truncating, 286–288

timing in execution on GPU, 78
writing tiled algorithms, 68–69

tiling NBody case study
about, 83
choosing tile size, 95–98
NBodyAmpTiled class in, in NBodyGravityAMP 
project, 85–86
simple code vs. tiled code in, 87
tiling n-body algorithms, 85–86
using concurrency visualizer, 90–93

TimeFunc(), 176
Timeout Detection and Recovery (TDR)

about, 296
avoiding, 297
detecting and recovering from, 298
disabling on Windows 8, 297–298

time windows, speeding up, 6
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timing
in execution on GPU, 78

tips and tricks, 302
atomic operations, 292–294
dealing with tile size mismatches, 283–284
debugging on Windows 7, 300–302

configuring project, 301
configuring remote machine, 301
deploy and debug project, 302

deployment
C++ AMP and Windows Store, 306
C++ CLR application, 307
C++ CLR project, 307
deploying applications, 303
library, 306
.NET Application, 306
running C++ AMP on servers, 304–306
using C++ AMP from managed code, 306
Windows 8 application, 306

double precision support
full, 300
limited, 300

features in Windows 8, 295
function objects vs. lambdas, 291–292
handling truncated elements

with edge treads, 287
with sections, 288–289

in debugging GPU, 108–109
initializing arrays, 290
tiles

padding, 285–286, 290
truncating, 286–288

Timeout Detection and Recovery, 296
detecting and recovering from, 298
disabling on Windows 8, 297–298

"tournament" approach, in comparing threads, 5
TransposeExample() function, 284
trigonometry functions, 61

U
UI code, in DirectX, 28
unary negation operator, supported by short vector 
types, 260

V
value types, texels, 278–279
VCRedist (Visual C++ 2012 Redistributable 
Package), 303

vectorization, 8–10
vector, synchronizing values in the array_view to, 51
views

Concurrency Visualizer, 90–93
creating accelerator, 48–49

Visual C++
PPL in, 11
precise and fast compiler flags, 163
support of OpenMP, 10
website for book on parallel programming 
with, 225

Visual C++ 2012 Redistributable Package 
(VCRedist), 303
visualizer, concurrency. See also Concurrency 
Visualizer SDK

channels in window of, 134
Visual Studio 2012

auto-vectorization and auto-parallelization in, 9
C++ AMP accelerator and, 48
C++ AMP implemented in, 16
Concurrency Visualizer and, 90
debugging using, 101, 102, 104, 110
reference accelerator in, 22
supporting C++ AMP applications, 15
supporting vectorization in, 8
version needed for reduction performance case 
study, 175

Visual Studio Concurrency Visualizer
channels in window of, 134
examining memory access patterns, 149
markers in reduction performance case 
study, 175–176
using, 90–93, 131–135

W
warps, 79, 104–105, 123, 138, 147, 149–152, 157–159, 
192–193, 196–198

about, 4
on NVIDIA hardware, 4

WARP (Windows Advanced Rasterization 
Platform), 22, 39, 198, 204–206, 218–221, 253, 295

about, 12–13
accelerator, 205, 218–219, 220
C++ AMP accelerator and, 48
tile size and, 79

wavefronts. See warp
wavefronts, on AMD hardware, 4
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Windows 7
debugging on, 300–302
debugging on Windows 7

configuring project, 301
configuring remote machine, 301
deploy and debug project, 302

Windows 8 Store
application, deployment from, 306
C++ AMP and, 306
debugging using reference accelerators, 
debugging using, 101
disabling TDR on, 297–298
emulator as accelerator on, 22
features in, 292–294
Windows Display Driver Model support on, 300

Windows Device Driver Model (WDDM), 168
Windows Display Driver Model (WDDM) 1.1, 300
Windows high-resolution performance timer 
API, 129
Windows XP display driver model (XPDM), 304
writeonly keyword

substitute for, 60
writeonly_texture_view, 138, 269–270
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