




Microsoft ADO.NET Entity 
Framework Step by Step

John Paul Mueller



Copyright © 2013 by John Mueller
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any 
means without the written permission of the publisher.

ISBN: 978-0-735-66416-6

1 2 3 4 5 6 7 8 9  LSI  8 7 6 5 4 3

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related 
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of 
this book at http://www.microsoft.com/learning/booksurvey. 

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies.  All other marks are property of 
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and 
events depicted herein are fictitious. No association with any real company, organization, product, domain name, 
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without 
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, 
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly 
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Christopher Hearse

Editorial Production: Zyg Group, LLC

Technical Reviewer: Russ Mullen

Indexer: Zyg Group, LLC

Cover Design: Twist Creative • Seattle

Cover Composition: Ellie Volckhausen

Illustrator: Rebecca Demarest



This book is dedicated to Kevin Smith, a good friend who’s 
helped us realize some of our most special dreams. He’s always 
helped us help ourselves—an outstanding gift that’s exceptionally 
rare in this world.

—John Paul Mueller





Contents at a glance

Introduction xvii

PART I INTRODUCING THE ENTITY FRAMEWORK

ChAPTEr 1 Getting to know the Entity Framework 3

ChAPTEr 2 Looking more closely at queries 29

ChAPTEr 3 Choosing a workflow 49

PART II COMPLETING BASIC TASKS

Chapter 4 Generating and using objects 79

ChAPTEr 5 Performing essential tasks 101

PART III MANIPULATING DATA USING THE ENTITY FRAMEWORK

ChAPTEr 6 Manipulating data using LINQ 119

ChAPTEr 7 Manipulating data using entity SQL 147

ChAPTEr 8 Interaction with stored procedures 175

ChAPTEr 9 Interaction with views 193

ChAPTEr 10 Interaction with Table-Valued Functions 213

PART IV OVERCOMING ENTITY ERRORS

ChAPTEr 11 Dealing with exceptions 237

ChAPTEr 12 Overcoming concurrency issues 265

ChAPTEr 13 handling performance problems 287

PART V ADVANCED MANAGEMENT TECHNIQUES

Chapter 14 Creating custom entities 319

ChAPTEr 15 Mapping data types to properties 347

ChAPTEr 16 Performing advanced management tasks 369

Index 405





  vii

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii

PART I INTRODUCING THE ENTITY FRAMEWORK

Chapter 1 Getting to know the Entity Framework 3
Defining an entity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Understanding the Entity Framework elements . . . . . . . . . . . . . . . . . . . . . . . 6

Considering the conceptual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Considering the storage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Considering the model mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Introducing the Entity Framework files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Viewing the Conceptual Schema Definition Language file  . . . . . . . . 9

Viewing the Store Schema Definition Language file . . . . . . . . . . . . .11

Viewing the Mapping Specification Language file. . . . . . . . . . . . . . .11

Developing a simple Entity Framework example  . . . . . . . . . . . . . . . . . . . . .12

Starting the Entity Data Model Wizard . . . . . . . . . . . . . . . . . . . . . . . .12

Using the Entity Data Model Designer . . . . . . . . . . . . . . . . . . . . . . . . .16

Working with the mapping details . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Using the resulting framework to display data . . . . . . . . . . . . . . . . . .22

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . . .26

Chapter 1 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

Chapter 2 Looking more closely at queries 29
Defining a basic query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Creating the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Working with enumerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Obtaining an application data source . . . . . . . . . . . . . . . . . . . . . . . . .33

Creating the test application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

Running the basic query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Creating specific queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Using literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



viii Contents

Using operators, properties, and methods . . . . . . . . . . . . . . . . . . . . .42

Combining and summarizing data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Grouping data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . . .47

Chapter 2 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48

Chapter 3 Choosing a workflow 49
Understanding the code-first workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Understanding the model-first workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Understanding the database-first workflow  . . . . . . . . . . . . . . . . . . . . . . . . .54

Defining the workflow choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

Creating a code-first example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Creating a project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Defining the initial classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Adding Entity Framework 5 support. . . . . . . . . . . . . . . . . . . . . . . . . . .59

Creating a code-first context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Adding a record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61

Viewing the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Creating a model-first example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Defining the database model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Adding a record and viewing the results . . . . . . . . . . . . . . . . . . . . . . .70

Creating a database-first example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

Reverse engineering the database model . . . . . . . . . . . . . . . . . . . . . .71

Adding a record and comparing results  . . . . . . . . . . . . . . . . . . . . . . .73

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Chapter 3 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

PART II COMPLETING BASIC TASKS

Chapter 4 Generating and using objects 79
Understanding the Entity objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Considering object services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Considering the base classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81



 Contents ix

Working with an EntityCollection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Understanding the role of Entity SQL  . . . . . . . . . . . . . . . . . . . . . . . . .84

Making queries using objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Considering the role of lambda expressions . . . . . . . . . . . . . . . . . . . .86

Creating a basic query using Entity SQL  . . . . . . . . . . . . . . . . . . . . . . .86

Creating a basic query using LINQ . . . . . . . . . . . . . . . . . . . . . . . . . . . .88

Modifying data using objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

Adding the forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Adding purchases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Updating purchases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Deleting purchases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

Working with Query Builder methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . . .98

Chapter 4 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99

Chapter 5 Performing essential tasks 101
Defining the essential tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

Viewing the data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Saving changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Inserting new values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Deleting old values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Creating a master/detail form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Creating the data source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Configuring the data source  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

Adding and configuring the controls . . . . . . . . . . . . . . . . . . . . . . . . .110

Testing the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .114

Chapter 5 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

PART III MANIPULATING DATA USING THE ENTITY FRAMEWORK

Chapter 6 Manipulating data using LINQ 119
Introducing LINQ to Entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

Considering the LINQ to Entities provider . . . . . . . . . . . . . . . . . . . . .120



x Contents

Developing LINQ to Entities queries . . . . . . . . . . . . . . . . . . . . . . . . . .122

Defining the LINQ to Entities essential keywords . . . . . . . . . . . . . . .125

Defining the LINQ to Entities operators . . . . . . . . . . . . . . . . . . . . . . .127

Understanding LINQ compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Following an IQueryable sequence . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Following a List sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

Using entity and database functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

Creating the function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

Accessing the function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .145

Chapter 6 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

Chapter 7 Manipulating data using Entity SQL 147
Understanding Entity SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

Considering the Entity SQL data flow . . . . . . . . . . . . . . . . . . . . . . . . .148

Defining the Entity SQL components . . . . . . . . . . . . . . . . . . . . . . . . .149

Selecting data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

Working with literals in Entity SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

Using the standard literals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161

Adding some additional data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

Using a date or time literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164

Interacting with a decimal literal . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

Ordering data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Grouping data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .171

Chapter 7 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172

Chapter 8 Interaction with stored procedures 175
Understanding stored procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176

Adding stored procedures to your model . . . . . . . . . . . . . . . . . . . . . . . . . .179

Defining the stored procedure using Server Explorer . . . . . . . . . . .179

Testing the stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

Updating the model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182



 Contents xi

Modifying a stored procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184

Building an application using stored procedures . . . . . . . . . . . . . . . . . . . .188

Creating a basic stored procedure example  . . . . . . . . . . . . . . . . . . . . . . . .188

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .191

Chapter 8 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

Chapter 9 Interaction with views 193
Understanding views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194

Adding views to your model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

Defining views using Server Explorer . . . . . . . . . . . . . . . . . . . . . . . . .196

Testing the view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198

Updating the model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200

Creating a basic view example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202

Making views writable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .210

Chapter 9 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211

Chapter 10 Interaction with Table-Valued Functions 213
Understanding TVFs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214

Comparing TVFs to views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214

Comparing TVFs to stored procedures  . . . . . . . . . . . . . . . . . . . . . . .215

Defining the storage layer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215

Defining the mapping layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216

Defining the conceptual layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217

Defining the object layer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218

Adding TVFs to your model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218

Defining the TVF using Server Explorer . . . . . . . . . . . . . . . . . . . . . . .219

Testing the TVF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221

Updating the model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223

Calling a TVF using Entity SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

Calling a TVF using LINQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

Mapping a TVF to an entity type collection. . . . . . . . . . . . . . . . . . . . . . . . .228



xii Contents

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .232

Chapter 10 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233

PART IV OVERCOMING ENTITY ERRORS

Chapter 11 Dealing with exceptions 237
Understanding exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

Considering exception sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240

Dealing with the System.Data.EntityException  . . . . . . . . . . . . . . . . 240

Working through System.Data namespace exceptions . . . . . . . . . .242

Working through System.Data.Common namespace  
exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246

Working through System.Data.Linq namespace exceptions  . . . . .247

Handling connection string exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . .248

Seeing the connection string problem . . . . . . . . . . . . . . . . . . . . . . . .248

Creating code for the connection string problem . . . . . . . . . . . . . .250

Adding another layer of exception handling  . . . . . . . . . . . . . . . . . .253

Dealing with query exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256

Dealing with other data exception types . . . . . . . . . . . . . . . . . . . . . . . . . . .258

Understanding concurrency exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . .261

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .262

Chapter 11 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263

Chapter 12 Overcoming concurrency issues 265
Visualizing database concurrency issues  . . . . . . . . . . . . . . . . . . . . . . . . . . .266

Considering optimistic concurrency problems . . . . . . . . . . . . . . . . . . . . . .268

Rejecting the change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269

Performing a partial update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270

Obtaining user input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270

Ignoring concurrency issues completely . . . . . . . . . . . . . . . . . . . . . .270

Performing a forced update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271

Implementing optimistic concurrency in an application . . . . . . . . . . . . . .271

Developing the test environment . . . . . . . . . . . . . . . . . . . . . . . . . . . .272



 Contents xiii

Testing the default concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275

Coding for field changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

Using field-specific concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279

Using row-version concurrency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282

Considering pessimistic concurrency issues . . . . . . . . . . . . . . . . . . . . . . . . .284

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .285

Chapter 12 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286

Chapter 13 Handling performance problems 287
Understanding performance issue sources . . . . . . . . . . . . . . . . . . . . . . . . .288

Considering the layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288

Retrieving too many records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289

Using the local cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290

Relying on pregenerated views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290

Relying on precompiled queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293

Disabling change tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294

Choosing between lazy loading and eager loading . . . . . . . . . . . .294

Viewing performance issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295

Direct query viewing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295

Using third-party products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301

Defining the performance triangle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302

Considering the effects of raw speed . . . . . . . . . . . . . . . . . . . . . . . . .303

Considering the effects of security . . . . . . . . . . . . . . . . . . . . . . . . . . .305

Considering how raw speed and security affect reliability . . . . . . .309

Using multithreading as an aid to speed . . . . . . . . . . . . . . . . . . . . . . . . . . .312

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .315

Chapter 13 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316

PART V ADVANCED MANAGEMENT TECHNIQUES

Chapter 14 Creating custom entities 319
Developing POCO classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320

Configuring the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320



xiv Contents

Adding the classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .322

Creating an ObjectContext class to interact with the  
POCO classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325

Testing the POCO application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .326

Creating a DbContext class to interact with the POCO classes  . . .328

Creating the classes in a different project . . . . . . . . . . . . . . . . . . . . .330

Creating and using event handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337

Handling ObjectContext events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337

Creating and handling custom events . . . . . . . . . . . . . . . . . . . . . . . .339

Creating custom methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341

Creating custom properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .345

Chapter 14 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346

Chapter 15 Mapping data types to properties 347
Understanding mapping automation configuration  . . . . . . . . . . . . . . . . .348

Configuring properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .349

Changing property mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351

Filtering the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352

Working with standard data types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .354

Considering the standard data type mapping scenarios . . . . . . . .354

Creating the Rewards3 database . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355

Performing standard data type mapping . . . . . . . . . . . . . . . . . . . . .358

Working with enumerated data types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361

Working with complex data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363

Working with geography and geometry spatial data types . . . . . . . . . . .366

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .367

Chapter 15 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .368

Chapter 16 Performing advanced management tasks 369
Developing multiple diagrams for a model . . . . . . . . . . . . . . . . . . . . . . . . .370

Creating the new diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371

Configuring the diagram appearance  . . . . . . . . . . . . . . . . . . . . . . . .374



 Contents xv

Performing batch imports of stored procedures and functions . . . . . . . .376

Mapping a stored procedure that returns multiple result sets . . . . . . . . .377

Creating the stored procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378

Using the code-access technique . . . . . . . . . . . . . . . . . . . . . . . . . . . .380

Using the EDMX modification technique . . . . . . . . . . . . . . . . . . . . . .383

Creating entities with inheritance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387

Creating the Rewards4 database . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387

Using inheritance with the model-first workflow . . . . . . . . . . . . . . .388

Using inheritance with the code-first workflow . . . . . . . . . . . . . . . .394

Controlling context actions for automatically generated classes . . . . . . .400

Getting started with the Entity Framework . . . . . . . . . . . . . . . . . . . . . . . . .402

Chapter 16 quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .403

Index 405





  xvii

Introduction

Gaining access to data in a managed way without a lot of coding—that’s a tall order! 
The Entity Framework fulfills this promise and far more. Each version of the Entity 

Framework is more capable than the last. The latest version, Entity Framework version 5, 
provides you with access to far more database features with less work than ever before, 
and Microsoft ADO.NET Entity Framework Step by Step is your gateway to finding just 
how to use these phenomenal new features. In this book, you get hands-on practice 
with all the latest functionality that the Entity Framework provides. By the time you 
finish, you’ll be ready to tackle some of the most difficult database management tasks 
without the heavy-duty coding that past efforts required.

Fortunately, this book doesn’t get so immersed in high-end features that it forgets 
to tell you how to get started. Unlike a lot of tomes on the topic, this book starts simply 
and helps you gain a good foothold in understanding just why the Entity Framework 
is such an amazing addition to the your developer toolbox. You’ll see examples where 
the automation does just about everything for you with little coding required, and 
yet you obtain professional-looking results. In fact, that’s what you’re buying with the 
Entity Framework—a reliable means of creating code quickly and successfully without 
the problems that would ensue if you tried to create the same code completely by 
hand. The book’s 44 examples help you gain experience using the Entity Framework in 
a hands-on environment where you actually create code, rather than just reading about 
what might work.

Of course, you do eventually delve into higher-end topics. You’ll find an entire 
chapter on one of the most requested features, Table-Valued Functions (TVFs). Access 
to this feature alone makes the upgrade to Entity Framework 5 a significant one. You’ll 
also discover how to handle performance problems and perform low-end tasks such as 
using inheritance when creating a model. In short, by the time you finish this book, you 
will have the experience required to handle every common task that developers need 
to know how to perform.

Who should read this book

Anyone who creates database applications using ADO.NET and is tired of writing reams 
of code will definitely benefit from reading this book. What you should ask yourself is 
whether you want to become more productive while writing code that is both more 



xviii  Introduction

reliable and better able to interact with the database. Although the coding examples 
are written in C#, several Microsoft Visual Basic developers tested this book during the 
writing process and found that they could follow the examples quite well. All you really 
need is a desire to write database applications more quickly and with less fuss.

Assumptions
To use this book successfully, you need a good knowledge of database programming 
concepts using a technology such as ADO.NET. Although every attempt is made to ex-
plain basic (and essential) topics, a knowledge of working with databases using the .NET 
Framework will make working through the examples significantly easier.

You also need to know how to write applications using the C# programming lan-
guage. All of the examples are written using C#, and there isn’t any attempt to explain 
how the language elements work. If you don’t have the required C# knowledge, you 
should consider getting John Sharp’s Microsoft Visual C# 2010 Step by Step (Microsoft 
Press, 2010).

Some of the examples also require some knowledge of Transact-Structured Query 
Language (T-SQL). Again, there are plenty of comments provided with the various 
scripts, but there isn’t a lot of additional information provided about language ele-
ments. The book assumes that you know how basic SQL queries work.

Who should not read this book

This book is most definitely not aimed at the complete novice. You must know a little 
about both SQL and ADO.NET to work with the book successfully. In addition, you must 
know the C# programming language fairly well. The examples in the book focus a little 
more on enterprise developers, but hobbyists should be able to follow the examples 
without problem. If you’re looking for a high-end book with lots of low-end program-
ming examples and no hands-on techniques, this is most definitely not the book for 
you. This book is all about getting people started using the Entity Framework in a 
meaningful way to perform most common tasks, which means it uses several different 
techniques to convey information so that a majority of readers can understand and use 
the material presented.



 Introduction  xix

Organization of this book

This book is organized into five parts. Each part is designed to demonstrate a particu-
lar facet of the Entity Framework, with an emphasis on the functionality provided by 
version 5. Here is a brief overview of the book parts (each part introduction has more 
detailed information about the content of the chapters in that part):

■■ Part I: Introducing the Entity Framework This part of the book introduces 
you to the Entity Framework version 5. You’ll discover what is new in this version 
of the Entity Framework and also basic concepts such as the parts of a model. 
Unlike many other texts, this part also tells you about the three workflows avail-
able when working with the Entity Framework: model first, database first, and 
code first. Every chapter includes coding examples that emphasize the basics so 
that you can see precisely how the Entity Framework works at a basic level.

■■ Part II: Completing basic tasks Once you have a basic understanding of 
what the Entity Framework does and why you’d want to use it, it’s time to see 
how to perform basic Create, Review, Update, and Delete (CRUD) operations. 
This part of the book provides an essential discussion of how to perform es-
sential tasks with full automation in place. It’s the part of the book you want to 
read to emphasize speed of development over flexibility in accessing database 
functionality.

■■ Part III: Manipulating data using the Entity Framework Most applications 
require more than a display of raw database data and simple CRUD operations. 
This part of the book takes the next step in your journey of actually controlling 
how the data appears and precisely what data is retrieved from the database. 
You discover two client-side techniques for manipulating data (Language 
Integrated Query [LINQ] and Entity Structured Query Language [Entity SQL]). 
In addition, you see how to use server-based techniques that include stored 
procedures, views, and TVFs.

■■ Part IV: Overcoming entity errors It’s nearly impossible to create an applica-
tion that is free from error. In fact, smart developers know that it is impossible 
because you really never have full control over absolutely all of the code that 
goes into your application. This part of the book discusses three realms of error: 
exceptions, concurrency issues, and performance problems.



xx  Introduction

■■ Part V: Advanced management techniques This is the low-level-coding 
part of the book. This is where you learn how to create custom entities and use 
inheritance as a tool to create more robust models. You also discover tech-
niques for mapping various kinds of data to the Entity Framework, even when 
the Entity Framework normally doesn’t support the data type. The key thing to 
remember about this part is that you discover manual methods for modifying 
how the automation works.

Finding your best starting point in this book
The different sections of Microsoft® ADO.NET Entity Framework Step by Step cover a 
wide range of technologies associated with the Entity Framework. Depending on your 
needs and your existing understanding of Microsoft data tools, you may wish to focus 
on specific areas of the book. Use the following table to determine how best to proceed 
through the book.

If you are Follow these steps

New to the Entity Framework Begin with Chapter 1, “Getting to know the 
Entity Framework,” and move through Chapter 
13, “Handling performance problems.” Skip the 
last part of the book until you have gained some 
experience using the automation that the Entity 
Framework provides.

Familiar with earlier releases of the Entity 
Framework

Read through Chapter 1 and Chapter 3, 
“Choosing a workflow,” carefully. Chapter 3 is 
especially important because it helps you under-
stand the new workflows. Work through Parts III, 
IV, and V as needed to update your knowledge.

Interested in learning advanced Entity Framework 
techniques

Move directly to Part V of the book. The first four 
parts of this book are designed to help you learn 
about the Entity Framework and interact success-
fully with the automation it provides.

Interested in using the existing database infra-
structure of your organization

Read Parts I and II to ensure you understand the 
basics of how the Entity Framework works, and 
then skip to Chapter 8, “Interaction with stored 
procedures,” Chapter 9, “Interaction with views,” 
and Chapter 10, “Interaction with table-valued 
functions.” 

Every chapter in this book contains at least one hands-on example (and usually 
more). The only way you’ll actually gain a full understanding of the Entity Framework is 
to download the sample code and then work through the hands-on examples. Each of 
these procedures demonstrates an important element of the Entity Framework.



 Introduction  xxi

Conventions and features in this book

This book presents information using conventions designed to make the information 
readable and easy to follow.

Note Note boxed elements tell you about additional information that will prove 
useful in working with the Entity Framework. Notes normally include text about 
techniques used to create examples or the sources of information used in creating 
the chapter’s content.

Tip Tip boxed elements provide additional information that will enhance your 
productivity, make it easier to perform tasks, or help you locate additional sources 
of information. Most tips provide helpful information that you don’t need to know 
in order to use the book, but the information will prove helpful later as you work 
with real-world code.

Warning Warning boxed elements describe potentially dangerous situations 
where performing an act could result in damage to your application, the data it 
manages, or the user environment (such as the need to keep certain types of in-
formation secure). Pay special attention to warning elements because they’ll save 
you time and effort.

■■ Each exercise consists of a series of tasks, presented as numbered steps (1, 2, 
and so on) listing each action you must take to complete the exercise.

■■ Sidebars contain useful information that isn’t part of the main flow of discussion 
in a chapter. These elements always have a title that tells you about the topic 
of discussion. You can safely skip sidebars if desired or simply read them later. 
Sidebars always provide you with helpful real-world resource information that 
will help you as you create or manage applications.

■■ Text that you type (apart from code blocks) appears in bold.

■■ A plus sign (+) between two key names means that you must press those keys at 
the same time. For example, “Press Alt+Tab” means that you hold down the Alt 
key while you press the Tab key.



xxii  Introduction

■■ A vertical bar between two or more menu items (for example, File | Close) 
means that you should select the first menu or menu item, then the next, and  
so on.

System requirements

You will need the following hardware and software to complete the practice exercises in 
this book:

■■ A copy of Microsoft Windows that will work with Microsoft Visual Studio 2012, 
which can include Windows 7 SP1 (x86 and x64), Windows 8 (x86 and x64), Win-
dows Server 2008 R2 SP1 (x64), or Windows Server 2012 (x64).

■■ A copy of Visual Studio 2012 Professional or better. This book won’t work well 
with Visual Studio 2012 Express Edition. In fact, many of the examples won’t 
work at all, even if you use the downloaded source code.

■■ A copy of Microsoft SQL Server 2012 Express Edition with SQL Server Manage-
ment Studio 2012 Express or higher (included with Visual Studio). You can also 
use the full-fledged version of SQL Server 2012.

Your computer must also meet these minimum requirements (although higher rat-
ings are always recommended):

■■ 1.6 GHz or faster processor

■■ 1 GB of RAM (1.5 GB if running on a virtual machine)

■■ 10 GB of available hard disk space

■■ 600 MB of available hard disk space

■■ 5400 RPM hard drive

■■ DirectX 9–capable video card running at 1024×768 or higher display resolution

■■ DVD drive

Your computer must also have access to an Internet connection to download soft-
ware or chapter examples.



 Introduction  xxiii

Note Many of the tasks in this book require that you have local administrator 
rights. Newer versions of Windows include stricter security that requires you 
to have additional rights to perform tasks such as creating copies of database 
files.

Code samples

Most of the chapters in this book include exercises that let you interactively try out new 
material learned in the main text. All sample projects can be downloaded from the fol-
lowing page:

http://aka.ms/ADONETEFSbS/files

Follow the instructions to download the zip file.

Note In addition to the code samples, your system should have Visual Studio 
2012 Professional (or better) and SQL Server 2012 Express Edition (or better) 
installed. The exercises will include instructions for working with SQL Server 
2012. In most cases, the exercises rely on Server Explorer to make it easy to 
perform all tasks from the Visual Studio Integrated Development Environment 
(IDE). 

Installing the code samples 
All you need to do to install the code samples is download them and unzip the archive 
to a folder on your hard drive. The complete source code file will include all of the 
databases used in the book. Simply attach these databases to your copy of SQL Server 
or open them in Visual Studio by right-clicking Data Connections in Server Explorer and 
choosing Add Connection. Use the Microsoft SQL Server Database Connection option 
when creating the connection. If you encounter problems installing the code samples, 
please contact me at John@JohnMuellerBooks.com. You can also find answers to com-
mon questions for this book on my blog, at http://blog.johnmuellerbooks.com/catego-
ries/263/entity-framework-development-step-by-step.aspx.



xxiv  Introduction

Using the code samples
The downloaded source code includes one folder for each chapter in the book. Simply 
open the chapter folder and then the example folder for the example you want to work 
with in the book. The downloaded source contains the completed source code so that 
you can see precisely how your example should look. If you want to work through the 
examples from scratch, the book contains complete instructions for developing them.

The downloaded source code also contains a Databases folder that contains all of 
the databases for the book. Simply create a connection to the database you need to 
use. The example will tell you which database is required. If you desire, the exercises 
also tell you how to create the databases from scratch so that you can use whatever 
setup you like.

Acknowledgments

Thanks to my wife, Rebecca, for working with me to get this book completed. I really 
don’t know what I would have done without her help in researching and compiling 
some of the information that appears in this book. She also did a fine job of proofread-
ing my rough draft. Rebecca keeps the house running while I’m buried in work.

Russ Mullen deserves thanks for his technical edit of this book. He greatly added to 
the accuracy and depth of the material you see here. Russ is always providing me with 
great URLs for new products and ideas. However, it’s the testing Russ does that helps 
most. He’s the sanity check for my work. Russ also has different computer equipment 
from mine, so he’s able to point out flaws that I might not otherwise notice.

Matt Wagner, my agent, deserves credit for helping me get the contract in the first 
place and taking care of all the details that most authors don’t really consider. I always 
appreciate his assistance. It’s good to know that someone wants to help.

A number of people read all or part of this book to help me refine the approach, test 
the coding examples, and generally provide input that all readers wish they could have. 
These unpaid volunteers helped in ways too numerous to mention here. I especially ap-
preciate the efforts of Eva Beattie and Glenn Russell, who provided general input, read 
the entire book, and selflessly devoted themselves to this project.



 Introduction  xxv

Finally, I would like to thank my editor, Russell Jones; Christopher Hearse; Damon 
Larson; and the rest of the editorial and production staff at O’Reilly for their assistance 
in bringing this book to print. It’s always nice to work with such a great group of profes-
sionals.

Errata & book support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent. Any errors that have been reported since this book was published are listed on our 
Microsoft Press site: 

http://aka.ms/ADONETEFSbS/errata

If you find an error that is not already listed, you can report it to us through the 
same page.

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com.

Please note that product support for Microsoft software is not offered through the 
addresses above.

We want to hear from you

At Microsoft Press, your satisfaction is our top priority, and your feedback our most 
valuable asset. Please tell us what you think of this book at

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in 
advance for your input!

Stay in touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

http://aka.ms/ADONETEFSbS/errata




  1

PART I

Introducing the Entity 
Framework

Creating a database can be difficult. A database models information in the real world using a col-
lection of tables, indexes, views, and other items. In other words, a database is an abstraction of the 
real-world information that it’s supposed to represent. When a developer is tasked with creating an 
application that relies on the data within a database, the developer must create a second level of 
abstraction because the application won’t see the data in precisely the same way that the database 
does. Defining this second level of abstraction is even harder than creating the original database, 
because it requires interpreting the real world through an abstraction. In order to define a realistic 
presentation of the data in the database—one that precisely represents the real world—a developer 
needs help. That’s what the Entity Framework does. It provides help to a developer in the form of a 
modeling methodology that eases the amount of work the developer must perform to create a real-
istic presentation. To make things even easier, the Entity Framework relies on a graphical presentation 
of the data so that the developer can literally see the relationships between the various tables and 
other database items.

Even though the concept of the Entity Framework is straightforward, you need to know more 
about it before you can simply use it to create a connection between the database and your applica-
tion. Working with models is definitely easier than working with hand-coded connections. However, 
you still need to have a good understanding of how those models work and the various ways you 
can interact with them. The purpose of the three chapters in this part is to introduce you to the Entity 
Framework concepts. You’ll use this information to build a picture of how the Entity Framework per-
forms its task so that you can perform more complex operations with the Entity Framework later in 
the book.





  3

C H A P T E R  1

Getting to know the Entity 
Framework

After completing the chapter, you’ll be able to

■■ Define what an entity is and why it’s important.

■■ Specify the major elements of the Entity Framework.

■■ List and describe the files used to store Entity Framework information.

■■ Create a simple Entity Framework example.

When an architect wants to design a real-world building by creating a blueprint, one of the tools 
used to ensure the blueprint is accurate is a model. Often you see a model of the building as 

part of the presentation for that building. Models are helpful because they help others visualize the 
ideas that reside in the architect’s head. In addition, the models help the architect decide whether the 
plan is realistic. Likewise, software developers can rely on models as a means of understanding a soft-
ware design, determining whether that design is realistic, and conveying that design to others. The 
Entity Framework provides the means to create various kinds of models that a developer can interact 
with in a number of ways. As with the architect’s model, the Entity Framework uses a graphical inter-
face to make information about the underlying database structure easier to understand and modify.

The Entity Framework is actually a Microsoft ActiveX Data Object .NET (ADO.NET) technology 
extension. When you create the model of the database, you also make it possible for the Integrated 
Development Environment (IDE) to automatically create some of the code required to make the con-
nection between an application and the database real. Because of the way ADO.NET and the Entity 
Framework interact, it’s possible to create extremely complex designs and then use those designs 
directly from your code in a way that the developer will understand. There isn’t any need to translate 
between the levels of abstraction—the Entity Framework performs that task for you.

Before you can begin using the Entity Framework to perform useful work, however, you need to 
know a little more about it. For one thing, you need to know why it’s called an Entity Framework. It’s 
also important to know how the various models work and how they’re stored on your system, should 
you ever need to access them directly. The following sections provide this information and more 
about the Entity Framework. You’ll then use the knowledge you’ve gained to create a very simple ex-
ample. This example will help you better understand what the Entity Framework can do because you’ll 
actually use it to interact with a simple database.



4  PArT I Introducing the Entity Framework

Defining an entity

An entity is the data associated with a particular object when considered from the perspective of 
a particular application. For example, a customer object will include a customer’s name, address, 
telephone number, company name, and so on. The actual customer object may have more data than 
this associated with it, but from the perspective of this particular application, the customer object is 
complete by knowing these facts. If you want to understand this from the traditional perspective of 
a database administrator, the entity would be a single row in a view that contains all of the related 
information for the customer. It includes everything that the database physically stores in separate 
tables about that particular client. When thinking about entities, you need to consider these views of 
the data:

■■ Physical The tables, keys, indexes, views, and other constructions that hold and describe the 
data associated with a real-world object such as a customer. All of these elements are opti-
mized to make it easier for the Database Management System (DBMS) to store and manipu-
late the data efficiently and reliably, without error. As such, a single customer data entry can 
appear in multiple tables and require the use of multiple keys to create a cohesive view of 
that customer. The physical storage of the data is efficient for the DBMS, but difficult for the 
developer to understand.

■■ Logical The combined elements required to define the data used with a single object, such 
as a client. From a database perspective, the logical view of the data is often encapsulated in a 
view. The view combines the data found within tables using keys and other database elements 
that describe the relationships and order required to re-create the customer successfully. Even 
so, the logical view of a database is still somewhat abstract and could cause problems for the 
developer, not to mention require a lot of code to manage successfully. ADO.NET does reduce 
the amount of coding the developer performs through the use of built-in objects, but the 
developer must still understand the underlying physical construction of that data.

■■ Conceptual The real-world view of the data as it applies to the object. When you view a 
customer, you see attributes that define the customer and remember items that describe the 
customer, such as the customer’s name. A conceptual view of the data presents information in 
this understandable manner—as objects where the focus is on the data, not on the structure 
of the underlying database.

When you want to think about customers as a group, you work with entities. Each entity is a single 
customer, and the customers as a group are entities as well. In order to visualize the data that com-
prises a customer, the Entity Framework relies on models. These models help the developer concep-
tualize the entities. In addition, the Entity Framework stores these models in XML format for use in 
automatically generating code to create objects based on the models. Working with objects makes 
life easier for the developer.



 CHAPTER 1 Getting to know the Entity Framework  5

Note You may be tempted to think of the Entity Framework as a technology that only ap-
plies to Microsoft SQL Server and other relational databases. The Entity Framework is a full 
solution that works with any data source, even flat-file and hierarchical databases. For the 
sake of making the discussion clear, this book will rely upon SQL Server for the examples, 
but you should know that using SQL Server is only a convenience, and you can use the 
Entity Framework for any data source your application needs to work with. In addition, you 
can mix and match data sources as needed within a single application.

In times past, developers needed to consider the physical (tables), logical (views), and conceptual 
(data model) perspectives of data stored in a database. A developer had to know precisely which 
table stored a particular piece of data, how that table was related to other tables in the database, 
and how to relate the data in such a way as to create a complete picture of a particular entity. The 
developer then wrote code to make the connectivity between the application and the database work. 
The Entity Framework reduces the need to perform such tasks. A developer focuses on the entity, not 
the underlying physical or logical structure of the database that contains the data. As a result, the 
developer is more productive. Working with entities also makes the data easier to explain to others.

An entity contains properties. Just as objects are described by the properties they contain, entities 
contain individual properties that describe each data element. A customer’s last name would be a 
property of a customer entity. Just as classes have configurable getters and setters, so do properties 
in the Entity Framework. Every entity has a special property called the key property. The key property 
uniquely defines the entity in some way. An entity can have more than one key property, but it always 
has at least one. An entity can also group multiple properties together to create a complex type that 
mimics the use of user-defined types with standard classes.

Note It’s important to remember that properties can contain either simple or complex 
data. Simple data is of a type defined by the .NET Framework, such as Int32. Complex data 
is more akin to a user-defined type and consists of multiple base types within a structure-
like context.

It’s possible to create a relationship between two entities through an association. For example, you 
might create an association between a customer entity and the order entities associated with the cus-
tomer. The association type defines the specifics of the association. In some respects, an association 
is similar to a database-level join. One or more properties in each entity, called association endpoints, 
define the relationship between the two entities. The properties can define both single and multicol-
umn connections between the two entities. The multiplicity of the association endpoints determines 
whether the association is one-to-one, one-to-many, or some other combination. The association 



6  PArT I Introducing the Entity Framework

is bidirectional, so entities have full access to each other. In addition, an entity association can exist 
even when the target data lacks any form of database-level join specification. All of the association 
instances used to define an association type make up what is called the association set.

In order to allow one entity to view the data provided by an associated entity, the entities have a 
navigation property. For example, a customer entity that’s associated with multiple order entities will 
have a navigation property that allows each order to know that it’s associated with that customer. 
Likewise, each order will have a navigation property that allows each customer entity to see all of the 
orders associated with it. The use of navigation properties allows your code to create a view of the en-
tities from the perspective of a particular entity. When working with a customer entity, the application 
can gain access to all of the orders submitted by that customer. In some respects, this feature works 
much like a foreign key does in a database, but it’s easier to work with and faster to implement.

Some entities derive from other entities. For example, a customer can create an order. However, 
the order will eventually have a state that creates other entities, such as a past-due order entity or a 
delivered-order entity. These derived entities exist in the same container as the order entity as part of 
an entity set. You can view the relationship between entities and derived entities as being similar to 
a database and its views. The database contains all of the data, but a view looks at the data in a par-
ticular way. In the same way, a derived entity would help you create applications that view a particular 
entity type within the set of entities.

The final piece of information you need to know for now about entities concerns the entity con-
tainer. In order to provide a convenient means to hold all of the entity information together, the Entity 
Framework employs the entity container. Before you can interact with an entity, your application cre-
ates an entity container instance. This instance is known as the context. Your application accesses the 
entities within a particular context.

Understanding the Entity Framework elements

The Entity Framework relies on XML files to perform its work. These files perform three tasks: defin-
ing the conceptual model, defining the storage model, and creating mappings between the models 
and the physical database. Even though the Entity Framework does a lot of the work for you, it’s still 
important to understand how these elements work together to create a better environment in which 
to write applications.



 CHAPTER 1 Getting to know the Entity Framework  7

Note This chapter discusses the idea of models generically. However, it’s important to real-
ize that the Entity Framework lets you interact with the database using one of three tech-
niques:

■■ Database first The Entity Framework creates classes that reflect an existing database 
design.

■■ Design first You define a model of the database that the Entity Framework then creates 
on the database server.

■■ Code first You create an application, and the Entity Framework defines a model that it 
then uses to create the database on the database server.

In all three cases, the Entity Framework eventually creates a model that follows the stan-
dards described in this chapter. You’ll learn more about the methods of working with the 
Entity Framework in Chapter 3, “Choosing a workflow.” For now, the important consider-
ation is the model itself.

Now that you a have a little idea of what constitutes the Entity Framework elements, it’s time 
to discuss them in greater detail. In this case, we’re looking at the logical structure of the Entity 
Framework. The physical structure (the XML files and their content) is discussed in the “Introduc-
ing the Entity Framework files” section of the chapter. The following sections discuss the conceptual 
model, storage model, and model mappings.

Considering the conceptual model
The conceptual model is the part of the Entity Framework that developers interact with most. This 
model defines how the database looks from the application’s perspective. Of course, the application 
view must somehow match the physical realities of the underlying database, but there are many ways 
in which this happens. For example, a C# application will use an INT32 value, rather than the Struc-
tured Query Language (SQL) int type. The conceptual model will refer to the data type as INT32, but 
the reality is that the database itself stores the data as an int.

The conceptual model is also used to create the classes used to interact with the database. The 
Entity Framework manages the conceptual model. As you make changes to the conceptual model, the 
changes are reflected in both the classes that the Entity Framework creates for your application and in 
the structure of the database. In addition, the Entity Framework automatically tracks changes to the 
database design and incorporates them into your implementation classes. As a result, your application 
can always access the data and functionality included with the target database.



8  PArT I Introducing the Entity Framework

Note It’s important to realize that changes to the database design can occur at several 
levels. The two most common levels are from the developer, when making changes to 
the database model to accommodate application requirements; and from the Database 
Administrator (DBA), to accommodate enterprise-wide changes to the database as needed 
to efficiently and reliably store information. No matter how a change occurs, the database 
structure is ultimately affected, at which point the Entity Framework detects the change and 
updates the application using the data.

A conceptual model also incorporates the concept of a namespace, just as your applications do. An 
Entity Framework namespace performs the same functions as the namespace in your application. For 
example, it helps define entities with the same name as unique features. Using namespaces also helps 
group like entities together. For example, everything related to a customer can appear in the same 
namespace, making it easier to interact with the customer in every way needed.

At the heart of the conceptual model are the entity and association definitions used to create the 
view of the database. Each entity definition includes the information described in the “Defining an 
entity” section earlier in this chapter. When you use the designer to interact with the database model, 
what you’re really doing is modifying the XML entries that create and define each of these entity 
definitions. The XML entries are stored on disk and used to re-create the graphic appearance of the 
model when you reopen the project.

Considering the storage model
The storage model is the part of the Entity Framework that defines how the database looks from 
the database manager’s perspective. However, this model provides this view within Microsoft Visual 
Studio, and it provides support for the conceptual model. This model is often called the logical model 
because it provides a logical view of the database that ultimately translates into the physical database 
(see the “Defining an entity” section earlier in this chapter for a description of the various database 
views).

As with the conceptual model, the storage model consists of entity and association definitions. 
However, these definitions reflect the logical appearance of the actual database, rather than the 
presentation of the conceptual model within the application. In addition to the entity and association 
definitions, the storage model includes actual database data such as commands used to query the 
information within the database. You’ll also find stored procedures in this model. All of this additional 
information is used by ADO.NET to create connection and command objects automatically, so that 
you don’t have to hand-code the information as part of your application.

Considering the model mappings
At this point, you know that there are two models used with the Entity Framework—the conceptual 
model presents the application view of the database and the storage model presents the logical 
database manager view of the database. These two models are necessarily different. If they were the 



 CHAPTER 1 Getting to know the Entity Framework  9

same, you wouldn’t need two models. The need for two models is also easy to understand once you 
consider that the application’s use of the database is always going to differ from the database manag-
er’s goals of storing the data efficiency and reliably. In order to make the two models work together, 
the Entity Framework requires model mapping—a third element that describes how something in the 
conceptual model translates to the storage model, and vice versa.

The overall goal of the model-mapping part of the Entity Framework is to create a definition of 
how the entities, properties, and associations in the conceptual model translate to elements within 
the storage model. This mapping makes it possible for the application to create a connection to the 
database, modify its structure, manage data, and perform other tasks with a minimum of manually 
written code. Most of the code used to interact with the database is automatically generated for the 
developer using the combination of the conceptual model, storage model, and this mapping layer.

Introducing the Entity Framework files

As previously mentioned, all of the files used with the Entity Framework rely on XML. The use of XML 
makes the files portable and easy to use with other applications. You can also view the content of 
these files and reasonably expect to understand much of what they contain. However, each of the 
Entity Framework elements uses a different XML file with a different file extension and a different 
language inside.

After you create a new application that relies on the Entity Framework and define the required 
database models, you can find the resulting files in the main folder of the project. When working with 
Visual Studio 2012, you’ll find a single Entity Data Model XML (.EDMX) file. However, when working 
with older versions of Visual Studio, you may find individual files for each of the Entity Framework 
elements.

Providing a complete tutorial on each of these files is outside the scope of this book. The following 
sections provide a useful overview of the files, which you can use for further study.

Viewing the Conceptual Schema Definition Language file
The Conceptual Schema Definition Language (.CSDL) file contains the XML required to build the con-
ceptual model of the database content as viewed by the application. You see this content in graphi-
cal format when working with Visual Studio. To see it in plain-text form, locate the .CSDL or .EDMX 
file for your application in the project folder. Right-click this file in Microsoft Windows Explorer and 
choose Open With from the context menu. Locate Notepad or some other suitable text editor in the 
Open With dialog box, clear any option that says that this program will become the default program 
for opening this file, and click OK. You’ll see the XML for the conceptual model for the application. 
Following is the XML for the sample application that appears later in the chapter (some <Schema> 
attributes are removed to make the listing easier to read).



10  PArT I Introducing the Entity Framework

Note When using Visual Studio design tools to create the .CSDL, Store Schema Definition 
Language (.SSDL), and Mapping Specification Language (.MSL) files, all three are stored in 
a single .EDMX file, rather than in separate files. Whether the data appears in a single file or 
within multiple files, it’s always stored as XML. An .EDMX file also contains some designer 
information not found in the separate files. You can safely ignore the designer information 
when viewing the .EDMX file in order to understand how the conceptual model, storage 
model, and model mapping interact.

<!-- CSDL content --> 
<edmx:ConceptualModels> 
  <Schema xmlns="http://schemas.microsoft.com/ado/2009/11/edm"...> 
    <EntityContainer Name="Model1Container" annotation:LazyLoadingEnabled="true"> 
      <EntitySet Name="Customers" EntityType="Model1.Customer" /> 
    </EntityContainer> 
    <EntityType Name="Customer"> 
      <Key> 
        <PropertyRef Name="CustomerID" /> 
      </Key> 
      <Property Type="Int32" Name="CustomerID" Nullable="false"  
                annotation:StoreGeneratedPattern="Identity" /> 
      <Property Type="String" Name="FirstName" Nullable="false" /> 
      <Property Type="String" Name="LastName" Nullable="false" /> 
      <Property Type="String" Name="AddressLine1" Nullable="false" /> 
      <Property Type="String" Name="AddressLine2" Nullable="false" /> 
      <Property Type="String" Name="City" Nullable="false" /> 
      <Property Type="String" Name="State_Province" Nullable="false" /> 
      <Property Type="String" Name="ZIP_Postal_Code" Nullable="false" /> 
      <Property Type="String" Name="Region_Country" Nullable="false" /> 
    </EntityType> 
  </Schema> 
</edmx:ConceptualModels>

The XML makes it easier to understand the preceding discussion of how an Entity object works. 
Notice that the XML describes an entity container, used to hold all of the entities for this particular 
model. Within that container is a single EntityType named Customer. As with all Entity objects, this 
one has a Key property named CustomerID that gives the Entity a unique value. In addition, there are 
a number of properties associated with this Entity, such as FirstName. You’ll see how the properties 
work later in the chapter. Of course, an Entity can have other elements associated with it, and you’ll 
see them at work later in the book.

Look at the individual <Property> entries. Each one includes a .NET type. In this case, the types are 
limited to Int32 and String, but you have access to a number of other types. You can see the primitive 
data types supported by the Entity Framework at http://msdn.microsoft.com/library/ee382832.aspx.



 CHAPTER 1 Getting to know the Entity Framework  11

Viewing the Store Schema Definition Language file
The .SSDL file contains the XML required to define the storage model of the database content as 
viewed by the database manager. As with the conceptual model, you see the database described in 
terms of the entities required to create it. The entries rely on SQL data types, rather than .NET data 
types. Here’s an example of the XML used to create a storage model for the example that appears 
later in the chapter (the <Schema> has been shortened to make the text easier to read):

  <!-- SSDL content --> 
  <edmx:StorageModels> 
  <Schema Namespace="Model1.Store" Alias="Self"...> 
<EntityContainer Name="Model1StoreContainer"> 
  <EntitySet Name="Customers" EntityType="Model1.Store.Customers" store:Type="Tables" 
             Schema="dbo" /> 
</EntityContainer> 
<EntityType Name="Customers"> 
  <Key> 
    <PropertyRef Name="CustomerID" /> 
  </Key> 
  <Property Name="CustomerID" Type="int" StoreGeneratedPattern="Identity"  
            Nullable="false" /> 
  <Property Name="FirstName" Type="nvarchar(max)" Nullable="false" /> 
  <Property Name="LastName" Type="nvarchar(max)" Nullable="false" /> 
  <Property Name="AddressLine1" Type="nvarchar(max)" Nullable="false" /> 
  <Property Name="AddressLine2" Type="nvarchar(max)" Nullable="false" /> 
  <Property Name="City" Type="nvarchar(max)" Nullable="false" /> 
  <Property Name="State_Province" Type="nvarchar(max)" Nullable="false" /> 
  <Property Name="ZIP_Postal_Code" Type="nvarchar(max)" Nullable="false" /> 
  <Property Name="Region_Country" Type="nvarchar(max)" Nullable="false" /> 
</EntityType>

Viewing the Mapping Specification Language file
The .MSL file creates a relationship between the .CSDL and .SSDL files. The mapping serves to define 
how the application view and the database manager view reflect the same database, but from differ-
ing perspectives. For example, the model mapping defines which conceptual model property trans-
lates into a particular storage model property. Here’s the model-mapping content for the example 
that appears later in the chapter:

<!-- C-S mapping content --> 
<edmx:Mappings> 
<Mapping Space="C-S" xmlns="http://schemas.microsoft.com/ado/2009/11/mapping/cs"> 
<EntityContainerMapping StorageEntityContainer="Model1StoreContainer" 
                        CdmEntityContainer="Model1Container"> 
  <EntitySetMapping Name="Customers"> 
    <EntityTypeMapping TypeName="IsTypeOf(Model1.Customer)"> 



12  PArT I Introducing the Entity Framework

      <MappingFragment StoreEntitySet="Customers"> 
        <ScalarProperty Name="CustomerID" ColumnName="CustomerID" /> 
        <ScalarProperty Name="FirstName" ColumnName="FirstName" /> 
        <ScalarProperty Name="LastName" ColumnName="LastName" /> 
        <ScalarProperty Name="AddressLine1" ColumnName="AddressLine1" /> 
        <ScalarProperty Name="AddressLine2" ColumnName="AddressLine2" /> 
        <ScalarProperty Name="City" ColumnName="City" /> 
        <ScalarProperty Name="State_Province" ColumnName="State_Province" /> 
        <ScalarProperty Name="ZIP_Postal_Code" ColumnName="ZIP_Postal_Code" /> 
        <ScalarProperty Name="Region_Country" ColumnName="Region_Country" /> 
      </MappingFragment> 
    </EntityTypeMapping> 
  </EntitySetMapping> 
</EntityContainerMapping> 
</Mapping> 
</edmx:Mappings>

Developing a simple Entity Framework example

The best way to begin learning about the Entity Framework is to use it. This example won’t do any-
thing too spectacular. In fact, it’s downright mundane, but it does reflect a process that many devel-
opers use to experiment with the Entity Framework. In this case, you’ll use the model-first technique 
to create an example application. Remember that in the model-first approach, you begin by creating 
a model that’s then added to the database, rather than relying on an existing database to define the 
model. The model-first technique has the advantage of allowing you to create and manipulate a data-
base that won’t have any impact on anyone else, so you’re free to experiment as much as you want.

The example will start with a Windows Forms application. You’ll create the model needed to make 
the database work with SQL Server Express (installed automatically on your system), and then use the 
resulting model to create a functional application. You’ll test the application by managing some data 
you create with it. The entire process will take an amazingly short time to complete, as described in 
the following sections.

Starting the Entity Data Model Wizard
The first step is to create the database model. You can perform this task using a number of methods, 
most of which developers never use. The easy method is to start the Entity Data Model Wizard and 
have it do the work for you. That’s the approach this example takes, as described in the following 
steps (you can find this project in the \Microsoft Press\Entity Framework Development Step by Step\
Chapter 01\SimpleEF folder of the downloadable source code):



 CHAPTER 1 Getting to know the Entity Framework  13

Creating the SimpleEF application and adding a database model to it

1. Start Visual Studio 2012.

Note This book is designed around Entity Framework 5 and Visual Studio 2012 
Professional or above. You could possibly try other versions of Visual Studio, but 
there is no guarantee that the examples will work. You will most definitely encounter 
problems trying to work through the examples using any of the Microsoft Express 
editions of Visual Studio.

2. Choose File | New | Project to display the New Project dialog box, as shown here:

3. Type SimpleEF in the Name field and click OK. You’ll see a new Windows Forms project.

4. Choose View | Other Windows | Data Sources. You’ll see the Data Sources window, as shown 
here:



14  PArT I Introducing the Entity Framework

5. Click Add New Data Source. You’ll see the Data Source Configuration Wizard dialog box. The 
wizard asks you to select a data source type, as shown here:

6. Select Database and click Next. The Data Source Configuration Wizard asks you to select a 
database model, as shown here:



 CHAPTER 1 Getting to know the Entity Framework  15

Note The Data Source Configuration Wizard provides access to a number of data 
source types, not just a database. For example, you could create an application that 
relies on access to a web service or uses a special kind of object to interact with data. 
There’s also an option to create a data source from your Microsoft SharePoint instal-
lation. These other sources are helpful, but discussing them is outside the scope of 
this book. For the purposes of this book, you work with databases as a data source 
because the Entity Framework deals with databases, not the other data sources at 
your disposal.

7. Choose Entity Data Model and click Next. The Data Source Configuration Wizard asks you to 
choose the model content, as shown here:

8. Choose Empty Model and click Finish. You’ll see Visual Studio perform a few tasks. When you 
have the default User Access Control (UAC) set up, you’ll see a Security Warning dialog box 
telling you that running the script required to generate the Entity Data Model could harm 
your system. If you see this message, check the Do Not Show This Message Again option and 
click OK to continue generating the Entity Data Model. It’s during this phase of the procedure 
that you’ll see the Entity Data Model Wizard perform the tasks required to generate an empty 
model for you. After a few additional moments, you’ll see a blank Entity Data Model Designer 
window like the one shown here:



16  PArT I Introducing the Entity Framework

Note When working with existing data, you choose the Generate From Database 
option instead. The Entity Data Model Wizard will ask you a number of additional 
questions and create a model based on the existing database, including a full set of 
diagrams graphically displaying the database structure. Chapter 3 shows how the 
database-first technique works. For now, just focus on the process used to interact 
with the Entity Framework.

Solution Explorer also shows the result of adding the new data source. Notice the Model1.EDMX 
file shown in the screen shot. This file contains the conceptual model, store model, and model map-
pings. Each feature uses the language (CSDL, SSDL, and MSL) required for that part of the Entity 
Framework data.

Using the Entity Data Model Designer
After you add an Entity Data Model to your application, you can begin adding items to it from the 
toolbox—just as you do when adding controls to your application. For example, if you want to add an 
entity to the model, you drag and drop it onto the Entity Data Model Designer. The toolbox, shown 
here, contains the elements described earlier in the chapter.



 CHAPTER 1 Getting to know the Entity Framework  17

You’ll begin working with a model by adding an Entity to it and then configuring the Entity as 
needed. The example uses a simple Entity named Customer with just a few properties that describe 
the resulting Customer object. In this case, you’ll use the following properties:

■■ First Name (FirstName)

■■ Last Name (LastName)

■■ First Address Line (AddressLine1)

■■ Second Address Line (AddressLine2)

■■ City (City)

■■ State/Province (State_Province)

■■ ZIP/Postal Code (ZIP_Postal_Code)

■■ Region/Country (Region_Country)

Defining the SimpleEF Entity Data Model

1. Drag an Entity object from the toolbox to the Entity Data Model Designer. You’ll see a new 
square added containing a blank entity, as shown here:

Notice that the designer automatically adds an Id property for you. This property uniquely 
identifies a particular entry.

2. Right-click the Entity1 object and choose Rename from the context menu. The Entity1 entry 
changes to a text box. Type Customer and press Enter.

3. Right-click the Id property and choose Rename from the context menu. The Id property 
changes to a text box. Type CustomerID and press Enter.



18  PArT I Introducing the Entity Framework

4. Right-click the Customer object and choose Add New | Scalar Property from the context 
menu. You’ll see a new property added with the name as a text box.

5. Type FirstName (the value shown in parentheses in the previous list) and press Enter.

6. Perform steps 4 and 5 for all of the properties described earlier in this section. When you’re 
finished, your entity should look like this one:

At this point, you could select any of these entity properties and change their properties using 
the Properties window, just as you would with any application feature. For example, you could 
change the Type property to any of the supported data types. However, for the purposes of 
this example, you don’t actually need to change anything.

Notice that the default Entity object color is blue. When working with a complex design, you may 
want to color code the entities to make them easier to identify. For example, you may want to color 
customer entities blue and employee entities red. Color coding can make it easier to find the specific 
entity group you want. To change the color of an entity, select the entity in the designer and change 
the Fill Color property in the Properties window.

Working with the mapping details
At this point, you’ve defined a model for the example application. Right-click the Customer entity 
and choose Validate from the context menu. The IDE tells you that entity Customer isn’t mapped, as 
shown here:

Creating a model doesn’t create the required mapping. In fact, the database you just created 
doesn’t exist at all. The model for the database exists, but you still need to tell Visual Studio to inter-
act with the database manager (SQL Server Express in this case) to create the physical database and 
develop a map between your model and the logical database.



 CHAPTER 1 Getting to know the Entity Framework  19

Developing the database and the required mapping

1. Right-click the Customer entity and choose Generate Database From Model on the context 
menu. You’ll see the Generate Database Wizard dialog box, as shown here:

2. Click New Connection. You’ll see the Choose Data Source dialog box shown here:

3. Select Microsoft SQL Server and then click Continue. You’ll see a Connection Properties dialog 
box like the one shown here:



20  PArT I Introducing the Entity Framework

Note If you plan to work with other database managers, make sure you clear the 
Always Use This Selection check box. Doing so ensures that Visual Studio displays 
this dialog box each time so that you can choose which database manager you want 
to use.

4. Choose the name of the server you want to use in the Server Name drop-down list box.

5. Type TestCustomer in the Select Or Enter A Database Name field.

Note If you click Test Connection at this point, you should see an error message 
stating the database doesn’t exist. That’s because Visual Studio hasn’t created it yet. 
The database will exist after these steps are complete.

6. Click OK. You’ll see a dialog box telling you that the database doesn’t exist. Visual Studio asks 
permission to attempt to create the database for you.



 CHAPTER 1 Getting to know the Entity Framework  21

7. Click Yes. Visual Studio creates the new database for you. This is a blank database—it doesn’t 
contain any tables, views, indexes, or anything else normally associated with a database. You’ll 
return to the Generate Database Wizard dialog box. However, now the connection informa-
tion is filled in.

8. Click Next. The Generate Database Wizard creates the Data Definition Language (DDL) script 
required to create everything in the model you designed, as shown here. You can scroll 
through this script to see the SQL statements used to make your model a real database and 
associated table.

9. Click Finish. You’ll see the script, Model1.EDMX.sql, open. It hasn’t executed yet. All that the 
Generate Database Wizard has done is create the script required to make your database 
model functional.

10. Choose SQL | Transact-SQL Editor | Execute. You’ll see a connection dialog box where you can 
enter the information required to connect to the SQL Server instance you’ve selected.

11. Enter any required credentials and click Connect. Visual Studio connects to the database 
manager and executes the SQL script it created. At this point, your database is ready for use. 
Notice that you didn’t have to access the database manager yourself or create any scripts by 
hand.



22  PArT I Introducing the Entity Framework

Using the resulting framework to display data
Now that you have a database to use—a database generated from a model you created—you might 
want to see the database in action. There are a number of ways to accomplish the task, but for this 
first sample, it’s probably best to try something easy. The one piece of information you absolutely 
need to know before you start is that the model you created earlier also generated code. Part of this 
code is the creation of a container that you use to access the database. The container class always 
starts with the name of the model, followed by the word container. For this example, this means that 
the name of the container class is Model1Container.

Nothing else you do with the Entity Framework is going to be outside your experience if you’ve 
worked with collections in the past. The following steps create a simple application that will test just 
a few of the features that this model provides. Chapter 2, “Looking more closely at queries,” will help 
you start performing more complex tasks.

Creating an application based on the TestCustomer database

1. Add four buttons to the Windows Forms application you created at the outset of this example, 
and name them btnCount, btnAdd, btnDelete, and btnQuit. Here’s an example of the simple 
form as it appears in the downloadable source:

2. Right-click the Form1.cs entry in Solution Explorer and choose View Code from the context 
menu. You’ll see the Code Editor. Add a reference to the model container and instantiate it in 
the form’s constructor, as shown here:

// Define a container to hold the database information. 
Model1Container ThisContainer; 
 
public Form1() 
{ 
   InitializeComponent(); 
 
   // Instantiate the container. 
   ThisContainer = new Model1Container(); 
}



 CHAPTER 1 Getting to know the Entity Framework  23

ThisContainer contains a reference to all of the elements found in the model. In this case, the 
model only contains a reference to one table, Customers. However, in a production applica-
tion, you could use ThisContainer to access every table, view, index, or other feature in the 
database.

3. Double-click Count. Visual Studio creates an event handler for you. Add the following code to 
the event handler:

private void btnCount_Click(object sender, EventArgs e) 
{ 
   // Display the number of database records. 
   MessageBox.Show("There are " +  
      ThisContainer.Customers.Count().ToString() + 
      " Records."); 
}

The container for all of the database elements is found in ThisContainer. Within the container 
is a table named Customers. The Count() method outputs the number of records in the speci-
fied table.

4. Double-click Add and add the following code to the resulting event handler:

private void btnAdd_Click(object sender, EventArgs e) 
{ 
   // Create a new record. 
   Customer ThisCustomer = ThisContainer.Customers.Create(); 
 
   // Add some random data. 
   Random ThisValue = new Random(DateTime.Now.Millisecond); 
   ThisCustomer.FirstName = ThisValue.Next().ToString(); 
   ThisCustomer.LastName = ThisValue.Next().ToString(); 
   ThisCustomer.AddressLine1 = ThisValue.Next().ToString(); 
   ThisCustomer.AddressLine2 = ThisValue.Next().ToString(); 
   ThisCustomer.City = ThisValue.Next().ToString(); 
   ThisCustomer.State_Province = ThisValue.Next().ToString(); 
   ThisCustomer.ZIP_Postal_Code = ThisValue.Next().ToString(); 
   ThisCustomer.Region_Country = ThisValue.Next().ToString(); 
 
   // Add a new record. 
   ThisContainer.Customers.Add(ThisCustomer); 
   ThisContainer.SaveChanges(); 
 
   // Inform the user. 
   MessageBox.Show("Added " + ThisCustomer.CustomerID.ToString()); 
}

The example begins by creating a new Customer record, ThisCustomer. It then fills the fields 
with random numeric values. The content is simply there to make it easy to view the record 
information later.

In order to add the new record to the database, the example calls the ThisContainer.
Customers.Add() method. This method requires a Customer object as input. The changes won’t 
take effect until the application calls ThisContainer.SaveChanges(). You need to make sure your 



24  PArT I Introducing the Entity Framework

code calls the SaveChanges() method regularly; otherwise, you risk losing application data. 
Finally, the application shows the record number added to the application.

5. Double-click Delete and add the following code to the resulting event handler:

private void btnDelete_Click(object sender, EventArgs e) 
{ 
   // Obtain the first record. 
   Customer ThisCustomer = null; 
   if (ThisContainer.Customers.Count() > 0) 
      ThisCustomer = ThisContainer.Customers.First(); 
   else 
   { 
      // Display an error message if there are no records to delete. 
      MessageBox.Show("No Records to Delete"); 
      return; 
   } 
 
   // Delete it. 
   ThisContainer.Customers.Remove(ThisCustomer); 
   ThisContainer.SaveChanges(); 
 
   // Inform the user. 
   MessageBox.Show("Deleted " + ThisCustomer.CustomerID.ToString()); 
}

A production application would have a lot more checks than this one does, but the code 
begins by checking whether there are any records to delete in the Customers table. If not, the 
event handler exits after providing an error message.

There are a number of ways to obtain a record from the Customers table. For that mat-
ter, you might simply want to search for a particular record based on some criterion and 
delete all those that match. In this case, the code uses the ThisContainer.Customers.First() 
method to obtain a copy of the first record in the table. The code then calls ThisContainer.
Customers.Remove() to remove the record and ThisContainer.SaveChanges() to make the 
changes permanent. The code then informs the user about the deletion and displays the ID of 
the customer it deleted.

6. Double-click Quit and add the following code to the resulting event handler:

private void btnQuit_Click(object sender, EventArgs e) 
{ 
   // Save the database. 
   ThisContainer.SaveChanges(); 
 
   // End the program. 
   Close(); 
}

One task you should always perform before you exit the application is to save the database 
changes one more time—just to ensure that none of the changes are lost. After the code calls 
ThisContainer.SaveChanges(), it exits by closing the form.



 CHAPTER 1 Getting to know the Entity Framework  25

7. Click Start and try some of the buttons. For example, click Count and you’ll see the current 
record count (0 if there are no records). Click Add and you’ll see the identifier of the customer 
that the application has added. Likewise, click Delete and you’ll see the identifier of the cus-
tomer that the application has deleted. Make sure you end up with at least one record in the 
database.

8. Choose View | Server Explorer. You’ll see the Server Explorer window shown here:

9. Drill down into the TestCustomer.dbo\Tables\Customers entry, as shown in the preceding im-
age. Notice that the complete table structure is precisely as you designed it.

10. Right-click Customers and choose Show Table Data from the context menu. You’ll see a new 
window appear with the data from the table as shown here (your data will most definitely dif-
fer from mine because the data is randomly generated in this application):

This environment is fully interactive, so you can use it to check the results of your database 
experiments. More importantly, you can use it to modify the data as necessary to meet test 
requirements.

11. Click Quit to end the application. You can always experiment with this application later.



26  PArT I Introducing the Entity Framework

Getting started with the Entity Framework

The Entity Framework makes it possible to write database applications using less manually written 
code because the Entity Framework relies on the content of the conceptual model, storage model, 
and mapping model files to automatically generate classes that an application can use to access the 
database reliably. The use of the Entity Framework makes developers more productive and gener-
ally reduces application errors. In addition, the automation that the Entity Framework provides helps 
ensure that the application remains up to date. Changes made by the developer or DBA are automati-
cally reflected in the application.

This chapter has introduced you to the Entity Framework. Make sure you understand the three 
layers—conceptual model, storage model, and model mapping—before you proceed to Chapter 2. 
Also take time to create the sample application and view the files it creates. The more time you spend 
interacting with the data that the Entity Framework creates and manages, the better. Of course, all of 
the work of creating classes is done for you in the background, but it’s still a good idea to know the 
source of the automation and have an idea of how it works for those situations where the automation 
doesn’t quite produce the results you expected. As part of working with this chapter, try creating your 
own project based on data that you already have in a sample database on your system. (Please don’t 
work with any production data until you’re proficient with the Entity Framework.)

Chapter 2 takes the next natural step in working with the Entity Framework. Instead of simply cre-
ating a project and viewing the resulting files, you’re going to begin working with some data by mak-
ing queries. After all, data stored in a database isn’t useful until you can get it out and display it to an 
end user in a useful form. Once you complete Chapter 2, you may want to come back to this chapter 
and use the techniques described here to view the files that the sample in that chapter creates. You’ll 
see some differences because now you’ll be interacting with the data in a meaningful way. Viewing 
the differences will add to your knowledge of how the Entity Framework interacts with the database 
and generates XML to model it.



 CHAPTER 1 Getting to know the Entity Framework  27

Chapter 1 quick reference

To Do this

See how the application views the database Open the .CSDL or .EDMX file and view its content.

See how the database manager views the database Open the .SSDL or .EDMX file and view its content.

Determine how the Entity Framework resolves differences 
between the application view and the database manager 
view of the database

Open the .MSL or .EDMX file and view its content.

Create a new conceptual model Click Add New Data Source in the Data Source window and 
choose Empty Model when prompted.

Add entities to the new conceptual model Drag and drop an Entity object from the Entry Framework 
folder of the toolbox to the Entity Data Model Designer.

Generate a physical database based on your design Right-click the entity you want to work with and choose 
Generate Database From Model on the context menu.

Generate the tables and other elements in your model Choose SQL | Transact-SQL Editor | Execute.

Use the new database in an application Create a reference to the model container, such as 
Model1Container ThisContainer = new Model1Container();, 
where Model1 is the name of the model you want to use.



  119

C H A P T E R  6

Manipulating data using LINQ

After completing the chapter, you’ll be able to

■■ Describe the basics of LINQ to Entities functionality.

■■ Specify how LINQ statements are compiled.

■■ List and use the essential LINQ to Entities functions.

In most cases, developers with a strong C# background, but without an equally strong database 
background, use Language Integrated Query (LINQ) to query the databases they create and manage 

using the Entity Framework. LINQ to Entities offers a number of benefits to developers, but the main 
benefit is simplicity. It’s possible to create relatively complex queries without knowing much about the 
underlying database from a DBMS perspective. Developers can also use syntax that’s familiar to make 
the query, rather than resorting to working with SQL. In addition, the compiler performs part of the 
work of interacting with the database for the developer, so that the developer can focus on the data-
set and not on the language used to access it. In short, the developer gains a considerable efficiency 
advantage using LINQ to Entities.

This chapter begins by introducing you to LINQ to Entities. You need to know something about 
how LINQ to Entities works, and you also need to know the syntax so that you can make queries. 
The chapter won’t provide an extensive reference, but you’ll have enough information to perform 
common tasks and a few advanced tasks. The point is that you’ll have the information required to get 
started using LINQ to Entities to perform useful work. The material provided will help you understand 
the examples better.

Tip There are actually two syntaxes you can use to formulate a LINQ query: query and 
method based. The query expression syntax tends to be easier to understand and clearer, 
so that’s the form used in this book whenever possible. The method-based expression syn-
tax is more flexible, and you can perform a few tasks using it that you can’t with the query 
expression syntax, so the book will use this form when necessary to perform complex tasks. 
Presenting the examples this way will help you better understand when you need to use 
one syntax over the other. You can also read a comparison of the two syntaxes at http://
msdn.microsoft.com/library/bb397947.aspx.



120  PArT III Manipulating data using the Entity Framework

As with any LINQ query, LINQ to Entities queries are compiled to determine what they actually 
mean. The compiler takes the query you create and turns it into something that .NET understands. 
The next section of this chapter discusses how this process occurs and how it affects the way you use 
LINQ to Entities. This part of the chapter also provides a few insights into when you need to use the 
method-based expression syntax to obtain the output you desire.

The final part of the chapter discusses how to use LINQ to Entities with both entity and database 
functions, which, after all, is the entire point of working with LINQ to Entities in the first place. This 
section provides you with examples you can use to better understand how LINQ to Entities works. In 
addition, this material sets the stage for future examples in the book. When you finish this section, 
you’ll have the knowledge needed to move on to the more advanced examples in the book.

Note LINQ to Entities is just one form of a more complex product that appears under the 
LINQ umbrella. There are, in fact, many different forms of LINQ you can use. However, 
once you know how to use one form of LINQ, you essentially know how to use them 
all. That’s one of the beauties of a declarative language—you focus on what you need, 
rather than how to obtain it. You can find a general overview of LINQ as a product at 
http://msdn.microsoft.com/library/bb308959.aspx.

Introducing LINQ to Entities

One of the most important concepts to understand about LINQ to Entities is that it’s a declarative 
language. The focus is on defining what information you need, rather than on how to obtain the in-
formation. This means that you can spend more time working with data and less time trying to figure 
out the underlying code required to perform tasks such as accessing the database. It’s important to 
understand that declarative languages don’t actually remove any control from the developer; rather, 
they help the developer focus attention on what’s important.

The sections that follow provide you with a basic overview of LINQ to Entities. You learn about how 
the LINQ to Entities provider, EntityClient, works, discover how to create a basic query, and then move 
on to some reference information you need later to work with LINQ to Entities in examples. These 
sections will continue to be useful as a reference as you progress through the book, so keep them in 
mind as you move on to other topics later.

Considering the LINQ to Entities provider
When working with LINQ to Entities, you rely on a new provider named EntityClient. LINQ to Entities 
transforms your query into EntityClient objects and method calls. The EntityClient provider then 
creates an interface between the LINQ to Entities queries and the underlying Microsoft ADO.NET 
providers through the various layers of the Entity Framework. The EntityClient interacts directly with 
the conceptual model, as shown in the following graphic.

http://msdn.microsoft.com/library/bb308959.aspx


 CHAPTER 6 Manipulating data using LINQ  121

Warning A number of drawings and discussions available online don’t mention the need 
for a database-specific provider. If you’re using a DBMS other than Microsoft SQL Server 
or one of the compatible DBMSs described in Chapter 1, “Getting to know the Entity 
Framework,“ then you’ll find that your queries won’t work. You still depend on ADO.NET to 
complete tasks.



122  PArT III Manipulating data using the Entity Framework

You don’t create an EntityClient directly. Instead, you indirectly work with the members of the Sys-
tem.Data.EntityClient namespace (see http://msdn.microsoft.com/library/system.data.entityclient.aspx 
for details). In order to start a session with a database, the application creates a connection to it with 
the EntityConnection object. It then transmits queries and other requests using an EntityCommand 
and reads the results using an EntityDataReader. When you work with LINQ to Entities, the compiler 
generates the necessary code for you—the focus for you as a developer is the query declaration, 
rather than the actual code used to make the calls. However, it’s important to know what happens in 
the background.

The standard ADO.NET providers are still used to communicate with the database. However, you 
don’t need to worry about writing all of the code used to perform this communication; EntityClient 
performs this task for you. A simple way to look at EntityClient is as a translator that takes your de-
clarative language query and puts it into terms that ADO.NET can understand.

The LINQ to Entities provider interacts with ADO.NET directly, which means that you don’t need 
any other provider to use LINQ to Entities with other databases. However, ADO.NET uses database-
specific providers. Microsoft Visual Studio ships with ADO.NET providers for both SQL Server and SQL 
Server Compact. Of course, there are other databases on the market. You can find a number of ADO.
NET providers for other databases at http://msdn.microsoft.com/data/dd363565.aspx. If you don’t find 
a suitable provider on MSDN, try other sites, such as Devart (http://www.devart.com/linqconnect/ ) and 
SQLite (http://www.sqlite.org/ ).

Developing LINQ to Entities queries
There are a number of ways to formulate LINQ queries. The use of different approaches provides 
developers with flexibility and enables a developer to code using the style that the developer is used 
to. The first division in LINQ queries is the syntax. A developer has a choice between using the query 
expression syntax or the method-based expression syntax. Of the two, the query expression syntax is 
the easiest to understand, while the method-based expression syntax offers the greatest flexibility.

It’s also possible to specify precise output type or to allow the compiler to derive the output type 
based on the query you create (an implicit type). A precise output type means providing a specific 
type, such as IQueryable<Customers>. A derived output type relies on the var keyword (see http://
msdn.microsoft.com/library/bb383973.aspx for a detailed description of this keyword). The compiler 
determines the variable type for you. The precise output type provides you with additional control 
over how the query is made and the results it provides. Using the var keyword is necessary at times 
because you may not be able to determine the precise type. In addition, the var keyword makes it 
more likely that the query will succeed and provide usable data, because the compiler determines the 
correct type for you.

The query itself requires the use of keywords or methods that reflect those keywords. When using 
the query expression syntax, a query will use the select, in, and from keywords as a minimum. The best 
way to see how this works is through an example. The following procedure relies on the ModelFirst 
example you created in the “Creating a model-first example” section of Chapter 3, “Choosing a work-
flow.” (You can find this example in the \Microsoft Press\Entity Framework Development Step by Step\
Chapter 06\ModelFirst (LINQ Query) folder of the downloadable source code.)



 CHAPTER 6 Manipulating data using LINQ  123

Creating a LINQ to Entities query

1. Copy the ModelFirst example you created in Chapter 3 to a new folder and use this new copy 
for this example (rather than the copy you created in Chapter 3).

2. Add a new button to Form1. Name the button btnQuery and set its Text property to &Query.

3. Double-click btnQuery to create a new click event handler.

4. Type the following code for the btnQuery_Click() event handler:

private void btnQuery_Click(object sender, EventArgs e) 
{ 
    // Create the context. 
    Rewards2ModelContainer context = new Rewards2ModelContainer(); 
 
    // Obtain the customer list. 
    var CustomerList =  
        from cust in context.Customers 
        select cust; 
 
    // Process each customer in the list. 
    StringBuilder Output =  
        new StringBuilder("Customer List:"); 
    foreach (var Customer in CustomerList) 
    { 
        // Create a customer entry for each customer. 
        Output.Append("\r\n" + Customer.CustomerName +  
            " has made purchases on: "); 
 
        // Process each purchase for that particular customer. 
        foreach (var Purchase in Customer.Purchases) 
            Output.Append("\r\n\t" + Purchase.PurchaseDate); 
    } 
 
    // Display the result on screen. 
    MessageBox.Show(Output.ToString()); 
}

The example begins by creating a context. It’s important to remember that you still need to 
create this connection to the Entity Framework layers in order to access the database. The 
LINQ query will be translated by the EntityClient into a series of commands that will interact 
with the context to perform the tasks you specify.

The LINQ query comes next. Notice that the example is using the var keyword rather than 
a specific type. The example asks for the list of customers from the context and places each 
customer in cust. It then selects cust and places this value in CustomerList. Hover the mouse 
over CustomerList in the foreach loop that follows, and you’ll see that Visual Studio really does 
assign it a type of IQueryable<Customers>, as shown here:



124  PArT III Manipulating data using the Entity Framework

Let’s say that you decide you want to use IEnumerable instead of IQueryable (see the “Deter-
mining when to use IEnumerable in place of IQueryable” sidebar for details). In order to use 
IEnumerable, you’d need to rewrite the query like this:

// Obtain the customer list. 
IEnumerable<Customers> CustomerList =  
    from cust in context.Customers 
    select cust;

This is a master/detail database setup, so the example creates two foreach loops to process the 
data. The first foreach loop obtains one Customer from CustomerList and processes the cus-
tomers one at a time. The second foreach loop obtains one Purchase from Customer.Purchases 
and processes each purchase for that customer one at a time. The result is an output string 
that is displayed in a message box.

5. Click Start or press F5. The application compiles and runs.

6. Click Query. You’ll see the result shown here (assuming that you ran the example from Chapter 
3 and didn’t modify the code from that example):

Note Most of the information you see in the dialog boxes in this chapter will match those 
on your system. However, you’ll encounter a few differences, such as dates. In addition, the 
application dialog boxes may not match precisely. These small differences won’t make any 
difference in the performance of the example applications.



 CHAPTER 6 Manipulating data using LINQ  125

Determining when to use IEnumerable in place of IQueryable
When working with LINQ to Entities, some developers assume that you should always use 
IQueryable because it derives from IEnumerable and therefore must be superior. Actually, the 
two interfaces have specific purposes and you should employ the one that works best for your 
particular need. There are quite a few differences between the two, but here are some general 
rules of thumb you can follow:

■■ IEnumerable Provides a forward-only in-memory presentation of data. Because the 
query is executed immediately and completely, your application will see a performance 
boost during the enumeration process when the user is most apt to see the difference. 
Working with IEnumerable means that your application uses Func objects that result in the 
query being executed immediately. You can read more about Func objects at http://msdn.
microsoft.com/library/bb534960.aspx.

■■ IQueryable Provides remote access to a database or a web service and allows both for-
ward and reverse iteration. Use this form to enhance the flexibility of your application and 
its ability to work with remote sources, especially web services. Working with IQueryable 
means that your application uses Expression objects that result in the query being ex-
ecuted only when the application requests an enumeration. Because the query is delayed, 
an IQueryable object can perform certain optimizations when using a where or other 
clause that would throw out some of the results that would normally be processed by an 
IEnumerable object. The tradeoff is that you save memory and some network bandwidth 
in exchange for longer enumeration times. You can read more about Expression objects at 
http://msdn.microsoft.com/library/system.linq.expressions.aspx.

Using the correct object type for the situation can improve the efficiency of your applica-
tion. It’s important to consider how your application works when making the choice. When in 
doubt, IQueryable is the preferred choice because it does offer greater flexibility, and the per-
formance benefits of IEnumerable could be outweighed by the amount of data retrieved over 
high-cost network connections. When creating a query that includes a where clause, the costs 
of using IEnumerable quickly make IQueryable the better choice. IEnumerable is almost always 
a better choice when making a straightforward query, like the one in the example, because the 
example uses all of the results anyway.

Defining the LINQ to entities essential keywords
It’s important to know the basic keywords used to create a LINQ query. Interestingly enough, there 
are only a few keywords to remember, but you can combine them in various ways to obtain specific 
results. The following list contains these basic keywords and provides a simple description of each one 
(future examples will expand on these definitions for you):



126  PArT III Manipulating data using the Entity Framework

■■ ascending Specifies that a sorting operation takes place from the least (or lowest) element 
of a range to the highest element of a range. This is normally the default setting. For example, 
when performing an alphabetic sort, the sort would be in the range from A to Z.

■■ by Specifies the field or expression used to implement a grouping. The field or expression 
defines a key used to perform the grouping task.

■■ descending Specifies that a sorting operation takes place from the greatest (or highest) ele-
ment of a range to the lowest element of a range. For example, when performing an alpha-
betic sort, the sort would be in the range from Z to A.

■■ equals Used between the left and right clauses of a join statement to join the primary 
contextual data source to the secondary contextual data source. The field or expression on the 
left of the equals keyword specifies the primary data source, while the field or expression on 
the right of the equals keyword specifies the secondary data source.

■■ from (required) Specifies the data source used to obtain the required information and 
defines a range variable. This variable has the same purpose as a variable used for iteration in 
a loop.

■■ group Organizes the output into groups using the key value you specify. Use multiple group 
clauses to create multiple levels of output organization. The order of the group clauses deter-
mines the depth at which a particular key value appears in the grouping order. You combine 
this keyword with by to create a specific context.

■■ in (required) Used in a number of ways. In this case, the keyword determines the contextual 
database source used for a query. When working with a join, the in keyword is used for each 
contextual database source used for the join.

■■ into Specifies an identifier that you can use as a reference for LINQ query clauses such as 
join, group, and select.

Warning A common error that some developers make is to confuse the into key-
word with the in keyword. The into keyword serves an entirely different purpose, and 
using it in place of the in keyword will cause an error.

■■ join Creates a single data source from two related data sources, such as in a master/detail 
setup. A join can specify an inner, group, or left-outer join, with the inner join as the default. 
You can read more about joins at http://msdn.microsoft.com/library/bb311040.aspx.

■■ let Defines a range variable that you can use to store subexpression results in a query 
expression. Typically, the range variable is used to provide an additional enumerated output 
or to increase the efficiency of a query (so that a particular task, such as finding the lowercase 
value of a string, need not be done more than one time).



 CHAPTER 6 Manipulating data using LINQ  127

■■ on Specifies the field or expression used to implement a join. The field or expression defines 
an element that is common to both contextual data sources.

■■ orderby Creates a sort order for the query. You can add the ascending or descending key-
word to control the order of the sort. Use multiple orderby clauses to create multiple levels of 
sorting. The order of the orderby clauses determines the order in which the sort expressions 
are handled, so using a different order will result in different output.

■■ where Defines what LINQ should retrieve from the data source. You use one or more 
Boolean expressions to define the specifics of what to retrieve. The Boolean expressions are 
separated from each other using the && (AND) and || (OR) operators.

■■ select (required) Determines the output from the LINQ query by specifying what informa-
tion to return. This statement defines the data type of the elements that LINQ returns during 
the iteration process.

Defining the LINQ to entities operators
The keywords described in the “Defining the LINQ to Entities essential keywords” section of the 
chapter determine what happens when a query is made using the query expression syntax. Operators 
determine how the query is made when using the method-based expression syntax. You use opera-
tors to modify the output in the following ways:

■■ Sort Modify the natural order of the data returned from the data source. For example, you 
could create a sorted order of customers based on their last name, even if the database keeps 
the customer list in a random order.

■■ Group Create an order that is depending on a specific field or expression. For example, you 
could group a list of customers by the first letter of their last name.

■■ Shape Modify the natural appearance of the data to obtain specific results. For example, you 
could filter the data so that the output only contains customers whose last name begins with a 
G, or you could determine the average value of the data using aggregation.

The following sections describe a number of common tasks you can perform using LINQ to Entities 
operators. These are basic operations. Remember that you can combine operators to create almost 
any data manipulation scenario. Using LINQ to Entities operators makes it possible for you to declare 
what you want as output, rather than determine how to obtain it. The compiler determines how a 
particular task is done.



128  PArT III Manipulating data using the Entity Framework

Note LINQ to Entities supports most, but not all, of the standard LINQ methods. For ex-
ample, you can use a Select method with this signature:

IQueryable<TResult> Select<TSource, TResult>( 
this IQueryable<TSource> source, 
Expression<Func<TSource, TResult>> selector 
)

But you can’t use a Select method with this signature:

IQueryable<TResult> Select<TSource, TResult>( 
this IQueryable<TSource> source, 
Expression<Func<TSource, int, TResult>> selector 
)

The difference is subtle. Notice that the second signature includes an int as part of the Func 
declaration, which means you can’t use the index of the element, as described at http://
msdn.microsoft.com/library/system.linq.enumerable.select.aspx. You can see a complete list 
of the supported and unsupported methods at http://msdn.microsoft.com/library/bb738550.
aspx.

performing filtering and projection
The main task of any LINQ to Entities expression is to obtain data and provide it as output. The 
“Developing LINQ to Entities queries” section of this chapter demonstrates the techniques for 
performing this basic task. However, once you have the data, you may want to project or filter it as 
needed to shape the data prior to output.

Projection is the act of modifying the output to shape it in a specific way. For example, you can 
change the case of the characters in a string or perform a calculation on numeric output. It’s also pos-
sible to use methods to transform the data in a variety of ways that are only limited by your imagina-
tion and the requirements of your application. The methods associated with projection are Select() 
and SelectMany().

Filtering is the act of removing undesirable elements from the output. You may only want the 
names of customers who have achieved a certain number of sales or who live in a particular area. Use 
the Where() method to achieve the desired level of filtering.

Note LINQ to Entities supports all of the common LINQ methods associated with filtering 
and projection, except for those that require a positional (indexing) argument.

Performing joins
Look again at the example in the “Developing LINQ to Entities queries” section of this chapter. Notice 
that the example is able to obtain the list of purchases associated with a particular customer because 
there is a navigable property that is defined as part of the model. It’s important to keep this bit of 



 CHAPTER 6 Manipulating data using LINQ  129

information in mind, especially when you normally work with SQL Server directly by making SQL 
statements. The join defined by LINQ to Entities is for related tables that have no navigable proper-
ties in the model. The result is the same as a standard join, but the purpose of the join is different. Use 
navigable properties whenever possible to work with related tables.

When performing a join to group like tables together, you use the Join() or GroupJoin() method. 
The tables must still possess a common attribute or property that you can exploit to create the rela-
tionship. For example, let’s say that your in-house database has a table containing a list of products 
that employ a bar code for identification. However, the description of the product resides on a web 
service hosted by the supplier. You can use a join on the bar code to obtain a description for the 
product in your in-house database from the supplier’s web service. Because you don’t support or own 
the supplier’s database, the database won’t appear as part of your model, and you won’t have any 
navigable properties to access it.

Note The LINQ to Entities Join() and GroupJoin() methods provide full support for all of the 
standard LINQ overrides, except those that require use of the IEqualityComparer interface. 
This is because LINQ to Entities can’t translate the comparer to the source database. You 
can read more about IEqualityComparer at http://msdn.microsoft.com/library/ms132151.
aspx.

Creating a set
Shaping a result set means defining the set according to specific properties. For example, you might 
only want the distinct elements from the result set of a query. Even though a particular row in a table 
is distinct, the result set may not contain the entire row, resulting in duplicates in the output, so you 
need a way to shape the output so the user only sees unique entries. The methods for creating sets 
are All(), Any(), Concat(), Contains(), DefaultIfEmpty(), Distinct(), EqualAll(), Except(), Intersect(), and 
Union().

Note The LINQ to Entities set-related methods provide full support for all of the standard 
LINQ overrides, except those that require use of the IEqualityComparer interface. This is 
because LINQ to Entities can’t translate the comparer to the source database. You can read 
more about IEqualityComparer at http://msdn.microsoft.com/library/ms132151.aspx.

Ordering the output
Sorting a result set modifies the order in which the individual records appear so that the user can 
more easily detect patterns in the output, find a specific output, and look for errors, such as misspell-
ings and duplicate entries. You can combine ordering methods to create a unique output. However, 
it’s an error to provide the same ordering methods more than one time on a result set, and you’ll see 
an exception if you try to do so. The ordering methods are OrderBy(), OrderByDescending(), ThenBy(), 
ThenByDescending(), and Reverse().



130  PArT III Manipulating data using the Entity Framework

When ordering a result set, it’s important to realize that LINQ to Entities works against the data 
source, rather than using an in-memory representation, as would be done when working with the 
Common Language Runtime (CLR) objects. The data source may have special sort functionality imple-
mented, such as case ordering, kanji ordering, and null ordering. The difference in sort functionality 
will affect the output you see.

Note The LINQ to Entities ordering-related methods provide full support for all of the 
standard LINQ overrides, except those that require use of the IComparer interface. This is 
because LINQ to Entities can’t translate the comparer to the source database. You can read 
more about IComparer at http://msdn.microsoft.com/library/8ehhxeaf.aspx.

Grouping the output
Sorting a result by grouping like items together using a common attribute (such as all customers who 
live in a particular city) helps users see patterns in the output. When grouping like items together, you 
use the GroupBy() method. It’s possible to create multiple levels of grouping by combining multiple 
GroupBy() method calls. Unlike sorting methods, you can create multiple levels of the same GroupBy() 
method calls because each GroupBy() method call creates a new level in the output.

When grouping a result set, it’s important to realize that LINQ to Entities works against the data 
source, rather than using an in-memory representation, as would be done when working with the CLR 
objects. The data source may contain null values that will affect the output in ways that you don’t see 
when performing the same task using CLR objects.

Note The LINQ to Entities GroupBy() method provides full support for all of the standard 
LINQ overrides, except those that require use of the IEqualityComparer interface. This is 
because LINQ to Entities can’t translate the comparer to the source database. You can read 
more about IEqualityComparer at http://msdn.microsoft.com/library/ms132151.aspx.

Performing aggregation
Shaping the result set by combining or aggregating it in certain ways can help a user see the infor-
mation in a new way. For example, you might obtain the average of a numeric field so that the user 
knows when a particular entry is either higher or lower than average. The methods you use to aggre-
gate data are Aggregate(), Average(), Count(), LongCount(), Max(), Min(), and Sum().

There are some significant differences in the way that aggregation occurs when using LINQ to 
Entities, as contrasted to using the CLR. The most important difference is that the calculations occur 
on the server, so any loss of precision or type conversions will occur on the server as well. When an 
error occurs, such as an overflow, the exception is raised as a data source or Entity Framework excep-
tion, rather than a standard CLR exception. The errors are only raised when they conflict with the data 
source assumptions about the data. For example, when working with null values, a CLR calculation 



 CHAPTER 6 Manipulating data using LINQ  131

will raise an error, but SQL Server won’t. Table 6-1 describes how SQL Server handles nulls so that you 
know what to expect as output.

TABLE 6-1 Techniques SQL Server uses to handle nulls

Method No data All nulls Some nulls No nulls

Average Returns null Returns null Returns the average 
of the non-null values 
in the sequence

Returns the average 
of all of the values in 
the sequence

Count Returns 0 Returns the number 
of null values in the 
sequence

Returns the com-
bined number of null 
and non-null values 
in the sequence

Returns the total 
number of values in 
the sequence

Max Returns null Returns null Returns the maxi-
mum of the non-
null values in the 
sequence

Returns the maxi-
mum of all of the val-
ues in the sequence

Min Returns null Returns null Returns the minimum 
of the non-null values 
in the sequence

Returns the minimum 
of all of the values in 
the sequence

Sum Returns null Returns null Returns the sum of 
the non-null values in 
the sequence

Returns the sum of all 
of the values in the 
sequence

Interacting with type
Shaping data by converting its type from one form to another lets you perform additional tasks, such 
as creating specific output views. For example, it’s common to convert data to a string type so that it’s 
possible to use the string methods to manipulate the appearance of the data in certain ways, such as 
to make the data more aesthetically pleasing to the viewer.

The only types that you can convert or test are those that map to an Entity Framework type. 
This functionality works at the conceptual level, rather than at the data source, as does some of the 
other functionality discussed so far. The two common methods for converting and testing data are 
Convert() (primitive types) and OfType() (entity types). When working with C#, you can also use the 
is() and as() methods.

Tip You can find information about primitive type mapping at http://msdn.microsoft.com/
library/ee382832.aspx. Entity type mapping information appears at http://msdn.microsoft.
com/library/ee382837.aspx. Even though the documentation doesn’t specifically mention it, 
you can also use the OfType() method with complex types, which are described at http://
msdn.microsoft.com/library/ee382831.aspx. When working with a DBMS other than SQL 
Server, you need to find the mapping for that DBMS. For example, the documentation for 
MySQL appears at http://www.devart.com/dotconnect/mysql/docs/DataTypeMapping.html.

http://www.devart.com/dotconnect/mysql/docs/DataTypeMapping.html


132  PArT III Manipulating data using the Entity Framework

Paging the output
Paging methods sort the data by interacting with the rows out of order or shape the data by remov-
ing some rows entirely. The output you receive depends on the way in which you use the paging 
methods in your code. The paging methods are ElementAt(), First(), FirstOrDefault(), Last(), LastOrDe-
fault(), Single(), Skip(), Take(), and TakeWhile(). If you try to use a paging method on a sequence that 
doesn’t contain any entries or contains all null values, the result is null.

Note Not all overrides of all of the paging methods are supported, because there isn’t any 
way to map them to a function at the data source. The functionality you receive from the 
paging methods depends on the capabilities of the DBMS you work with. Some DBMSs will 
return a default value for some methods, and this value is always converted to an Entity 
Framework primitive type result or a reference type with a null default. Unless your ADO.
NET provider fully documents the Entity Framework paging method functionality sup-
ported, you’ll need to test this functionality as part of your application (realizing that it may 
not work at all).

Summarizing the LINQ operators
LINQ (and by extension LINQ to Entities) supports a number of operators that you access as methods. 
The following list provides a description of each of these methods; you can use it to determine which 
to use to perform a specific task:

■■ Aggregate() Applies an accumulator function over the elements of a sequence. For ex-
ample, you might choose to concatenate the individual strings of a series of records together. 
You can read more about this method at http://msdn.microsoft.com/library/bb548651.aspx.

■■ All() Determines whether all of the elements in a sequence satisfy a particular condition. You 
can read more about this method at http://msdn.microsoft.com/library/bb548541.aspx.

■■ Any() Determines whether a sequence contains any elements. You can read more about this 
method at http://msdn.microsoft.com/library/bb337697.aspx.

■■ Average() Computes the average of the elements found in a sequence. You can read more 
about this method at http://msdn.microsoft.com/library/bb354760.aspx.

■■ Concat() Adds (concatenates) one sequence to another, so that you end up with a single se-
quence. You can read more about this method at http://msdn.microsoft.com/library/bb302894.
aspx.

■■ Contains() Looks for the specified element in the specified sequence using the default 
equality comparator. You can read more about this method at http://msdn.microsoft.com/
library/bb352880.aspx.

■■ Convert() Changes the base type of an element into another base type. You can read more 
about this method at http://msdn.microsoft.com/library/system.convert.aspx.



 CHAPTER 6 Manipulating data using LINQ  133

■■ Count() Obtains the number of elements in a sequence. You can read more about this 
method at http://msdn.microsoft.com/library/bb338038.aspx. (See the LongCount() method 
when you want to count a large number of elements.)

■■ DefaultIfEmpty() Returns the sequence when there are elements to return. Otherwise, this 
method returns the default value for the specified sequence, which will likely be an empty 
or null value. You can read more about this method at http://msdn.microsoft.com/library/
bb360179.aspx.

■■ Distinct() Returns only the unique elements from a sequence. When two elements have the 
same value, returns just one of the two elements. You can read more about this method at 
http://msdn.microsoft.com/library/bb348436.aspx.

■■ ElementAt() Returns the element found at the specified index. You can read more about 
this method at http://msdn.microsoft.com/library/bb299233.aspx.

■■ EqualAll() Determines whether two sequences are precisely equal, which means that they 
must have the same members appearing in the same order. This operator isn’t documented 
as a standard LINQ operator, so Microsoft may restrict its use. You can read more about this 
method at http://msdn.microsoft.com/vstudio/bb737910.aspx.

■■ Except() Creates a sequence that contains the elements that don’t match between two 
sequences. The comparison is made using the default comparer. You can read more about this 
method at http://msdn.microsoft.com/library/bb300779.aspx.

■■ First() Returns the first element in a sequence. You can read more about this method at 
http://msdn.microsoft.com/library/bb291976.aspx.

■■ FirstOrDefault() Returns the first element in a sequence or a default element when no 
elements exist. You can read more about this method at http://msdn.microsoft.com/library/
bb340482.aspx.

■■ GroupBy() Places the elements in a sequence in groups using the specified key. You can 
read more about this method at http://msdn.microsoft.com/library/bb534501.aspx.

■■ GroupJoin() Combines and groups two separate sequences into a single sequence using a 
common attribute or property. The resulting groups are based upon the same type of expres-
sion used to group a single sequence using the Group() method. You can read more about this 
method at http://msdn.microsoft.com/library/bb534675.aspx.

■■ Intersect() Produces the set intersection of two sequences by using the default comparator. 
You can read more about this method at http://msdn.microsoft.com/library/bb460136.aspx.

■■ Join() Combines two separate sequences into a single sequence using a common attribute 
or property. You can read more about this method at http://msdn.microsoft.com/library/
bb534675.aspx.

■■ Last() Returns the last element in a sequence. You can read more about this method at 
http://msdn.microsoft.com/library/bb358775.aspx.

http://msdn.microsoft.com/library/bb338038.aspx


134  PArT III Manipulating data using the Entity Framework

■■ LastOrDefault() Returns the last element in a sequence or a default element when no 
elements exist. You can read more about this method at http://msdn.microsoft.com/library/
bb301849.aspx.

■■ LongCount() Obtains the number of elements in a sequence and returns that value as a 
64-bit number. You use this version of Count() when the number of elements is high and you 
want to avoid a potential overflow condition. You can read more about this method at http://
msdn.microsoft.com/library/bb353539.aspx.

■■ Max() Determines which element contains the maximum value in a sequence. You can read 
more about this method at http://msdn.microsoft.com/library/bb335614.aspx.

■■ Min() Determines which element contains the minimum value in a sequence. You can read 
more about this method at http://msdn.microsoft.com/library/bb298087.aspx.

■■ OfType() Determines whether an element is of a specific type. You can read more about this 
method at http://msdn.microsoft.com/library/bb360913.aspx.

■■ OrderBy() Sorts the elements of a sequence in ascending order using the specified key. You 
can read more about this method at http://msdn.microsoft.com/library/bb534966.aspx.

■■ OrderByDescending() Sorts the elements of a sequence in descending order using the 
specified key. You can read more about this method at http://msdn.microsoft.com/library/
bb534855.aspx.

■■ Reverse() Inverts the order of the elements in a sequence. The elements aren’t sorted—
merely reversed in order. You can read more about this method at http://msdn.microsoft.com/
library/bb358497.aspx.

■■ Select() Chooses each element of a sequence and optionally modifies its form. You can read 
more about this method at http://msdn.microsoft.com/library/bb548891.aspx.

■■ SelectMany() Chooses each element of a sequence, places it in an IEnumerable object, and 
flattens the entire sequence into a single sequence. You can read more about this method at 
http://msdn.microsoft.com/library/bb534336.aspx.

■■ Single() Returns the only element in a sequence that satisfies the specified condition and 
throws an exception if more than one element that satisfies the condition exists. You can read 
more about this method at http://msdn.microsoft.com/library/bb155325.aspx.

■■ Skip() Bypasses (skips) the specified number of elements in a sequence and then returns the 
elements that remain. You can read more about this method at http://msdn.microsoft.com/
library/bb358985.aspx.

■■ Sum() Adds (sums) the individual values of each element in a sequence to create a total. You 
can read more about this method at http://msdn.microsoft.com/library/bb298138.aspx.

■■ Take() Returns the specified number of elements in a sequence and then skips (bypasses) 
the elements that remain. You can read more about this method at http://msdn.microsoft.com/
library/bb503062.aspx.



 CHAPTER 6 Manipulating data using LINQ  135

■■ TakeWhile() Returns the specified number of elements in a sequence while the specified 
condition remains true, and then skips (bypasses) the elements that remain. You can read 
more about this method at http://msdn.microsoft.com/library/bb534804.aspx.

■■ ThenBy() Performs a subsequent sorting of elements in a sequence in ascending order us-
ing the specified key. You must precede this method call with either the OrderBy() or Order-
ByDecending() method call. You can read more about this method at http://msdn.microsoft.
com/library/bb534743.aspx.

■■ ThenByDescending() Performs a subsequent sorting of elements in a sequence in descend-
ing order using the specified key. You must precede this method call with either the OrderBy() 
or OrderByDecending() method call. You can read more about this method at http://msdn.
microsoft.com/library/bb534736.aspx.

■■ Union() Produces the set union of two sequences by using the default comparator. You can 
read more about this method at http://msdn.microsoft.com/library/bb341731.aspx.

■■ Where() Filters a sequence based on the criterion you provide in the form of an expression. 
You can read more about this method at http://msdn.microsoft.com/library/bb534803.aspx.

Understanding LINQ compilation

LINQ to Entities compiles the queries you create into something that the EntityClient can understand. 
You’ve seen one example of this compilation in the “Developing LINQ to Entities queries” section 
of the chapter in the form of bubble help. You were able to hover the mouse over the CustomerList 
object and see its type.

The following sections look at compilation in another way. These procedures take you through 
the process of using a query with the debugger. It’s interesting to see how the debugger handles the 
query based on the way you create it. In fact, using the debugger as shown in the following proce-
dures will help you gain a much better understanding of the Entity Framework as a whole because 
you can trace through the tasks it performs in the background for you.

Following an IQueryable sequence
The example shown in the “Developing LINQ to Entities queries” section of the chapter uses the var 
keyword to create the CustomerList object. The var keyword is also used to create Customer and Pur-
chase. When using the var keyword, you allow the compiler to automatically determine which type to 
use to satisfy a particular need. However, it’s nice to see this process in action.

Simply running the example leaves some questions unanswered. For example, you may wonder 
how and when Customer and Purchase are created. Working through the example with the debugger 
helps you answer these kinds of questions.



136  PArT III Manipulating data using the Entity Framework

Tracing through an IQueryable example

1. Open the ModelFirst example that you worked with in the “Developing LINQ to Entities que-
ries” section of the chapter.

2. Place a breakpoint at the foreach line so that it looks like this:

3. Click Start or press F5. The application compiles and runs.

4. Click Query. The debugger stops the application at the foreach line. There are some interest-
ing things to see at this point.

5. Choose Debug | Windows | Autos. You’ll see the Autos window shown here:

Notice that even though CustomerList uses var as its type, the actual type is IQueryable. The 
value of CustomerList is a form of the query you used.

When you open the Results View, you see that there are two members of type System.Data.
Entity.DynamicProxies. When working with the Entity Framework, it actually creates a dynami-
cally generated derived type that acts as a proxy for the entity. You can read about these 
proxies at http://msdn.microsoft.com/data/jj592886.aspx. For now, it’s important to realize that 
the TestModelFirst.Customers objects don’t actually exist.

6. Expanding the Results View has automatically created the customers for you, so click Stop.

7. Perform steps 3 and 4 again to restart the debugger.

8. Click Step Into or press F11 three times. Visual Studio opens a new file, Customers.cs, and 
places the instruction pointer on the constructor for the Customers class, as shown here:



 CHAPTER 6 Manipulating data using LINQ  137

Here, the application is actually creating a Customers object. This object includes Purchases, as 
shown.

9. Click Step Into or press F11 four times. The debugger takes you back to the original file and 
highlights the in part of the foreach loop, where it verifies that there is another item to pro-
cess.

10. Click Step Into or press F11. The debugger highlights the var Customer part of the foreach 
loop. Choose Debug | Windows | Locals. You’ll see the Locals window, as shown here:

Notice that Customer is still null. However, the data type shows that var Customer creates a 
TestModelFirst.Customers type. The compiler has automatically chosen the correct type for the 
variable.

11. Click Step Into or press F11. The value of Customer changes to a System.Data.Entity.
DynamicProxies entry. The type is correct for the kind of information presented, and you see 
the individual values for Customer when you click the plus sign next to it.



138  PArT III Manipulating data using the Entity Framework

12. Click Step Into or press F11 six times. The instruction pointer will end up at the Output.
Append() line. Notice that the application doesn’t create the Purchase object as it did the 
Customer object. That’s because the Purchase object already exists as part of the Customer 
object.

13. Click Step Into or press F11 enough times to take the instruction pointer back to the in part of 
the foreach loop. When you click Step Into or press F11 one more time, the debugger reopens 
Customers.cs, and you start the process of creating a Customers object again, as described in 
step 9. You can follow this process at least twice if you created the records described in previ-
ous chapters.

14. Click Stop to end the debugging session. At this point, you know that working with the Entity 
Framework with IQueryable means creating objects on demand.

Following a List sequence
Working with IQueryable produces one result. However, converting the query to a List and then 
processing that List produces another. It’s interesting to modify the code slightly to see what happens 
when you use a List to interact with a LINQ to Entities query. The following procedure does just that.

Tracing through a List example

1. Modify the query in the ModelFirst example so that it looks like this:

// Obtain the customer list in list form. 
List<Customers> CustomerList = 
    (from cust in context.Customers 
     select cust).ToList<Customers>();

The result of the query is the same. The only difference is that the output is converted to a 
List.

2. Click Start or press F5. The application compiles and runs.

3. Click Query. The debugger stops the application at the foreach line.

4. Click Step Into or press F11 four times. You end up at the opening curly brace for the foreach 
loop. Notice that the debugger didn’t open Customers.cs or interact with the constructor in 
that file. That’s because the act of converting the query output to a List automatically retrieves 
the data from the database.

5. Choose Debug | Windows | Locals. You’ll see the Locals window shown here:



 CHAPTER 6 Manipulating data using LINQ  139

Notice that, even though the CustomerList type is not System.Collections.Generic.
List<TestModelFirst.Customers>, the Customer object hasn’t changed from before. It’s still of 
type TestModelFirst.Customers and contains a System.Data.Enty.DynamicProxies value. The 
only change that using a List creates is the fact that the data entries are retrieved immediately, 
rather than as needed. That said, using a List could save time when working with larger data-
sets. You could always create a thread for the data retrieval process so the user can continue 
working in the foreground.

6. Click Stop to stop the debugger.

Using entity and database functions

Functions are an important part of modern database applications. You use them to perform a variety 
of tasks, such as finding the average value of a customer’s purchases. Creating and using functions 
need not be a grueling task. The following sections describe how to create and use functions with the 
Entity Framework. You can find this example in the \Microsoft Press\Entity Framework Development 
Step by Step\Chapter 06\ModelFirst (Function) folder of the downloadable source code.

Creating the function
Before you can use a function, you must create it. The following procedure demonstrates one tech-
nique for creating functions in SQL Server without leaving the Visual Studio IDE. The procedure relies 
on the ModelFirst example you created in the “Creating a model-first example” section of Chapter 3.



140  PArT III Manipulating data using the Entity Framework

Defining a function using Visual Studio

1. Copy the ModelFirst example you created in Chapter 3 to a new folder and use this new copy 
for this example (rather than the copy you created in Chapter 3).

2. Choose View | Server Explorer. You’ll see the Server Explorer window shown here:

3. Open the Rewards2 connection.

4. Right-click the Functions folder and choose Add New | Table-Based Function. Visual Studio 
opens a new SQL file for you that contains a basic template for creating table-based functions.

5. Type the following code into the file:

USE [Rewards2] 
GO 
 
CREATE FUNCTION [dbo].[AveragePurchase] 
( 
   @CustomerId int 
) 
RETURNS DECIMAL(3,2) 
AS 
BEGIN 
   DECLARE @Average DECIMAL(3,2) 
   SELECT @Average = avg(Amount) 
      FROM Purchases  
      WHERE CustomersId = @CustomerId; 
   RETURN @Average 
END

This function begins by selecting the appropriate database for modification. It then creates 
a function named AveragePurchase, which accepts a single input, CustomerId. The function 
creates a variable, @Average, of type DECIMAL, and uses it as part of an SQL statement that 
selects the average of the purchases contained in Amount from the Purchases table, where the 
CustomerId value matches the @CustomerId input. The result is the average purchase amount 
for a single customer.



 CHAPTER 6 Manipulating data using LINQ  141

6. Right-click anywhere in the code window and choose Execute from the context menu. You’ll 
see the Connect To Server dialog box.

7. Provide the required credentials and click Connect. Visual Studio will execute the command 
for you. You should see “Command(s) completed successfully.” on the Message tab that ap-
pears when you execute the command.

8. Right-click the Rewards2 entry in Server Explorer and choose Refresh from the context menu. 
You’ll see the new function appear in the Functions folder, as shown here:

9. Right-click AveragePurchase and choose Execute from the context menu. You’ll see an Execute 
Function dialog box like the one shown here, telling you the function requires an input value 
to execute:



142  PArT III Manipulating data using the Entity Framework

10. Type 1 in the Value field for @CustomerId and click OK. Visual Studio automatically creates a 
new query and executes it. You’ll see the output shown here:

11. Close the SQL file without saving it. The test shows that the query works.

Accessing the function
At this point, you have a database function you can use. You know it works because you tested it. Of 
course, you have to figure out how to access the function from your code. The following procedure 
shows how to access the function from within your application.

Tracing through a List example

1. Open the Rewards2Model.EDMX file by double-clicking its entry in Solution Explorer.

2. Right-click in any clear area of the designer and choose Update Model From Database from 
the context menu. You’ll see the Update Wizard dialog box shown here:



 CHAPTER 6 Manipulating data using LINQ  143

3. Check AveragePurchase and click Finish. It seems as if nothing has happened to your diagram, 
but the .EDMX file does indeed include a change.

4. Open the Form1.cs file. Add this using statement to the beginning of the file:

using System.Data.Objects.DataClasses;

5. Add this function to the file:

[EdmFunction("Rewards2Model.Store", "AveragePurchase")] 
public static decimal? AveragePurchase(Int32 CustomerId) 
{ 
   throw new NotSupportedException("Direct calls are not supported."); 
}

This function requires a little explanation. The [EdmFunction()] attribute tells the compiler to 
look into the .EDMX file in the requested store, which is Rewards2Model.Store in this case, for 
a function named AveragePurchase. You added this entry during the update, even though it 
doesn’t show up in the designer.

The function itself requires an odd format. For one thing, it’s a static function, and the return 
type is decimal. Notice the question mark (?) behind the type declaration. You must include 
it or the function won’t work. The function name comes next, along with any arguments the 
function requires. The only content for the function is the exception shown. The function actu-
ally executes at the database.



144  PArT III Manipulating data using the Entity Framework

6. Add a new button to Form1. Name the button btnAverage and set its Text property to 
&Average.

7. Double-click btnAverage to create a new click event handler.

8. Type the following code for the btnAverage_Click() event handler:

private void btnAverage_Click(object sender, EventArgs e) 
{ 
   // Create the context. 
   Rewards2ModelContainer context = new Rewards2ModelContainer(); 
     
   // Make the query. 
   var CustomerList = 
      from cust in context.Customers 
      select new 
      { 
         Name = cust.CustomerName, 
         Average = AveragePurchase(cust.Id) 
      }; 
 
   // Create a string to hold the result. 
   StringBuilder Output = new StringBuilder(); 
    
   // Parse the result. 
   foreach (var CustEntry in CustomerList) 
      Output.Append( 
         CustEntry.Name + " makes an average purchase of "  
         + CustEntry.Average + ".\r\n"); 
 
   // Display the result on screen. 
   MessageBox.Show(Output.ToString()); 
}

The code begins by creating a context. It then creates a LINQ to Entities query based on 
that context. Notice that the select part of the query is different. It creates a new object 
that contains two entries: Name and Average. The Name entry is directly obtained from 
cust.CustomerName. However, the Average entry is actually a call to the AveragePurchase() 
function you created in the database in the “Creating the function” section. What you end up 
with is a structure-like IQueryable object. (Tracing through this example in the debugger is 
educational, and you should give it a try.)

After the application obtains the names and averages, it creates a string from them using a 
foreach loop. Notice that you access the entries as properties. CustEntry is actually an anony-
mous type. The code ends by displaying the output in a message box.

Note This is an example of an application where you must use var instead of either 
IQueryable or IEnumerable. The problem is that you’re working with an anonymous 
type—a type that isn’t known at design time.



 CHAPTER 6 Manipulating data using LINQ  145

9. Click Start or press F5. The application compiles and runs.

10. Click Average. You’ll see the output shown here:

Getting started with the Entity Framework

This chapter has introduced you to LINQ to Entities, which provides a method of querying a database 
using a simple and straightforward query language. The most important idea to take away from this 
chapter is that LINQ to Entities makes it possible to focus on the information you need to work with, 
rather than the method used to obtain it. In order to define what information you need, a declarative 
language uses a set of keywords and operators that make it possible to tell the compiler what you 
want. LINQ to Entities queries are compiled into a form that the .NET Framework understands. So, 
there isn’t any hocus-pocus going on—LINQ to Entities simply makes it possible for you to get your 
work done faster and with fewer errors.

The chapter contains a number of examples. What you need to do at this point is play with those 
examples to determine how they work. If necessary, single-step through the code using the debugger 
to determine precisely how the queries work. Once you understand the queries as they appear in the 
chapter, make changes to them to see how different operators and keywords affect the output. The 
best way to gain an appreciation of how LINQ to Entities works is to play with it. Spend some time 
mixing and matching items until you gain a clear understanding of how each item works.

Chapter 7 moves on to another way of interacting with data, using Entity SQL. In this chapter, you 
gain an in-depth view of working with Entity SQL to perform specific tasks. As in Chapter 6, you start 
with a basic tutorial of how Entity SQL works, and then move on to examples that demonstrate how 
to use it. When you finish Chapter 7, you’ll be able to compare LINQ to Entities with Entity SQL to de-
termine the strengths and weakness of each approach. You’ll also have a better idea of which technol-
ogy you prefer to use to address a particular need.



146  PArT III Manipulating data using the Entity Framework

Chapter 6 quick reference

To Do this

Access a non–SQL Server database using LINQ to Entities Obtain the required database-specific provider to use 
with ADO.NET.

Create a basic LINQ to Entities query Combine the from, in, and select keywords to create 
an expression, and then place the output from this 
expression into a variable. For example, var CustomerList 
= from cust in context.Customers select cust obtains a list 
of all of the customers found in the Customers table of 
the specified context named context.

Specify that LINQ group the return values in a certain 
way

Use the group keyword to specify that you want 
grouping and the by keyword to define which field or 
expression to use to perform the grouping task. Place 
the result of the grouping into a variable by using the 
into keyword.

Specify that LINQ sort the return values in a certain way Use the orderby keyword to specify that you want the 
output sorted and include a field or expression to use to 
perform the sorting task. Control the order of the sort 
using the ascending or descending keyword.

Output a result set using an in-memory presentation 
that provides performance benefits during enumeration

Create an output object based on IEnumerable.

Output a result set using a remote presentation that 
provides flexibility

Create an output object based on IQueryable.

Project specific output values from the query Use the Select() or SelectMany() methods.

Filter the output to remove undesirable elements Use the Where() method.

Join two data sources that lack a navigable property Use the Join() or GroupJoin() method to create an inner, 
group, or left-outer join.

Create a result set that exhibits one or more specific 
properties

Use the set-related methods: All(), Any(), Concat(), 
Contains(), DefaultIfEmpty(), Distinct(), EqualAll(), 
Except(), Intersect(), and Union().

Change the order in which the rows in a result set appear Use the ordering-related methods: OrderBy(), 
OrderByDescending(), ThenBy(), ThenByDescending(), and 
Reverse().

Define groups of rows containing the same attribute Use the GroupBy() method.

Define new views of existing data by combining rows Use the aggregation-related methods: Aggregate(), 
Average(), Count(), LongCount(), Max(), Min(), and Sum().

Perform type conversion and testing Use the Convert() (primitive types) and OfType() (entity 
types). When working with C#, you can also use the is() 
and as() methods.

Access the rows out of order or remove some rows from 
the sequence depending on position

Use one of the paging methods: ElementAt(), First(), 
FirstOrDefault(), Last(), LastOrDefault(), Single(), Skip(), 
Take(), or TakeWhile().



 405

as() method, 131
association endpoints, 5
association sets, 6
asterisk (*), 85, 194
Atomicity, Consistency, Isolation, and Durability 

(ACID), 265
at (@) sign, 177
Attach Databases dialog box, 355
automatically generated classes

context actions for, 400–402
POCOs, 330–334

Average() method, 130, 131, 132
AveragePurchase function, 215
@Average variable, 140
AVG function, 155

B
base() method, 61, 336
BaseType property, 338, 348
batch imports of stored procedures, 376–377
batch queries, 85
BINARY keyword, 152
binary strings, 152
BindingSource control, 40, 112
Boolean literals, 152, 159
bring-your-own-device (BYOD), 103
btnAdd_Click() event handler, 62, 70, 329
btnConcurrency_Click() event handler, 274
btnDelete_Click() event handler, 209
btnDisplay_Click() event handler, 88
btnEDMX_Click() event handler, 386
btnQuery7_Click() event handler, 298
btnQuery_Click() event handler, 202, 226
btnUpdate_Click() event handler, 209
built-in functions, 85
Button control, 189

Index

Symbols
* (asterisk), 85, 194
@ (at) sign, 177
@CustId value, 206
=> (lambda operator), 86
&& (logical AND) operator, 43
|| (logical OR) operator, 43
@PurchaseId parameter, 208

A
Abstract property, 389
accumulator function, 132
ACID (Atomicity, Consistency, Isolation, and 

Durability), 265
Add Association dialog box, 68, 389
AddClient() method, 204, 209
Add Connection dialog box, 64
Add Entity dialog box, 229, 391
Add Inheritance dialog box, 390
Add() method, 23, 63, 71, 329
Add New Item dialog box, 67, 322–323
<add> tag, 241
aggregate functions, 155
Aggregate() method, 130, 132
agile programming, 320
All() method, 129, 132
ALTER keyword, 185, 195, 210
Always Use This Selection check box, 20
Amount property, 68, 279
Anchor property, 112
Any() method, 129, 132
App.CONFIG file, 333
ArgumentException, 242
ascending keyword, 126
AS keyword, 177



buttons, toolbar

406  Index

buttons, toolbar, 41
by keyword, 126
BYOD (bring-your-own-device), 103

C
Cannot Create the Connection! error message, 253
canonical functions, 154
CASE statements, 158–159, 185
ChangeConflictException, 247
CHECKSUM_AGG function, 155
ChooseClients() method, 189
ChooseClients_Result type, 184
Choose Data Source dialog box, 19, 64
client wins, 271
Close() method, 382
Closing() event, 39
CLR (Common Language Runtime), 52, 81, 130, 213
Clustered Index Scan object, 297
code-access technique, 380–383
CodeFirstClasses, 60
code-first workflow

adding Entity Framework 5 support, 59–60
creating code-first context, 61
creating entities with inheritance, 394–400
creating project, 57–58
defining initial classes, 58–59
overview, 51–53, 57
records, adding, 61
technique defined, 7

Code Generation Strategy property, 321
collections

constructor for, 153
functions for, 155

color-coding entities, 375
ComboBox control, 189
CommandText property, 149, 382
Common Language Runtime (CLR), 52, 81, 130, 213
CompiledQuery class, 293
complex type mapping

defined, 216
overview, 363–366
tag for, 217

<ComplexType> tag, 217
composable entity, 210
Concat() method, 129, 132
conceptual layer for TVFs, 217–218
conceptual model, 8–9

Conceptual Schema Definition Language file  
(.CSDL ), 9–10

concurrency
exceptions, 261–262
optimistic concurrency

developing test environment, 272–275
field-level concurrency code, 277–279
field-specific concurrency, 279–282
ignoring concurrency issues completely,  

270–271
implementing, 271
issues with, 268–269
obtaining user input, 270
partial updates, 270
performing forced updates, 271
rejecting changes, 269–270
row-version concurrency, 282–284
testing, 272–276

overview, 266–268, 285–286
pessimistic concurrency, 284–285

Concurrency Mode property, 279, 350
Connection Properties dialog box, 19–20
connection security, 306–307
connectionString attribute, 388
connection string exceptions

handling, 250–256
overview, 248–249

<connectionStrings> tag, 241
Connect To Server dialog box, 392
ConstraintException, 239, 243
Contains() method, 129, 132
context actions, 400–402
context, defined, 6
Convert() method, 131, 132
Cost property, 297
COUNT_BIG function, 156
COUNT function, 156
Count() method, 23, 45, 130, 131, 133
CreateDatabaseIfNotExists<TContext> class, 81
CREATE keyword, 194, 210
Create New SQL Server Database dialog box,  

387–388
CREATE PROCEDURE statement, 177
CREATEREF operator, 154
CRUD (Create, Read, Update, and Delete), 80, 178, 

193, 216, 265, 319
.CSPROJ file, 321
@CustId value, 206



 design first technique

 Index  407

custom entities
event handlers

creating custom, 339–341
ObjectContext events, 337–339
overview, 337

methods, 341–343
overview, 319–320, 345
POCO classes

adding classes for model, 322–324
using automatic generation, 330–334
configuring model, 320–321
creating DbContext class to interact with 

POCO, 328–329
creating ObjectContext class to manage 

POCO, 325–326
using manual generation, 334–337
overview, 320
testing, 326–328

properties, 343–345
Customer class, 59
CustomerList variable, 329
CustomerMap() method, 362
CustomerName property, 279, 340, 394
CustomersId property, 68, 395
_Customers variable, 326

D
Database Administrators (DBAs), 8, 172, 176, 194, 

213, 265, 343
Database attribute, 394
Database class, 82
database-first workflow

overview, 54–55, 71–72
records, adding, 73–74
reverse engineering database model, 71–73
technique defined, 7

database management system (DBMS), 4
Database option, Data Source Configuration 

Wizard, 107
database owner (DBO), 176
Data Definition Language (DDL) scripts, 21, 84
DataException, 251
Data Manipulation Language (DML), 84
data manipulation tasks, 106
data, modifying using objects

adding forms, 90–91
adding purchases, 92–93

deleting purchases, 95–97
overview, 90
updating purchases, 93–95

Dataset option, Data Source Configuration 
Wizard, 108

Data Source Configuration Wizard, 14, 34–35
DataSource property, 111
data sources, local, 304
Data Tools Operations window, 198, 359, 362, 379
data types, mapping

changing property mapping, 351–352
complex data types, 363–366
configuring properties, 349–351
enumerated data types, 361–363
filtering data, 352–354
geometry spatial data types, 366
overview, 347–348, 367
standard data types, 354–361

date or time literal, 164–165
DATETIME keyword, 151, 165
DBAs (Database Administrators), 8, 172, 176, 194, 

213, 265, 343
DbCommand class, 157
DBConcurrencyException, 262
DbConnection class, 157
DbContext class, 52, 74, 81, 328–329
DbException, 246
DbExtensions class, 82
DbModelBuilder class, 81
DbModelBuilderVersionAttribute class, 82
DBMS (database management system), 4
DBO (database owner), 176
DbSet class, 81
DbUpdateConcurrencyException, 280, 281
DCSimplePOCO class, 336
DDD (Domain-Driven Design), 319
DDL (Data Definition Language) scripts, 21, 84
DDL Overwrite Warning dialog box, 391
deadlock, 261
decimal literal, 166–168
Decimal type, 152, 184
DefaultIfEmpty() method, 129, 133
DeleteClient() method, 209
DeletedRowInaccessibleException, 244, 262
DEREF operator, 154
derived output type, 122
descending keyword, 126
design first technique, 7



Details option, Data Source Configuration Wizard

408  Index

Details option, Data Source Configuration 
Wizard, 110

DetectChanges() method, 324
diagrams

appearance
adding type to display, 375
color-coding entities, 375
overview, 374
using grids, 374

creating multiple for model, 370–371
exporting as image, 375–376

DialogResult property, 91
Discount property, 391
Distinct() method, 129, 133
DML (Data Manipulation Language), 84
Domain-Driven Design (DDD), 319
dot syntax, 85
DropCreateDatabaseAlways<TContext> class, 82
DropCreateDatabaseIfModelChanges<TContext> 

class, 82
DropDownStyle property, 39
DuplicateKeyException, 247
DuplicateNameException, 244
DynamicProxies class, 136, 137
DynamicProxy class, 324

E
eager loading, 294–295
Edit Columns dialog box, 112
[EdmFunction()] attribute, 143, 218
EDMGen.EXE (Entity Data Model Generator) 

tool, 290
EDMX (Entity Data Model XML)

files, 9, 52
mapping stored procedures using, 383–387

EFTracingProvider, 301
ElementAt() method, 96, 132, 133
elements, Entity Framework

conceptual model, 7–8
model mappings, 8–9
overview, 6–7
storage model, 8

ELSE clause, 159, 185
Enabled property, 39
EnablePlanCaching property, 290
EndEdit() method, 243
EnterpriseSec.CONFIG file, 309
entities

color-coding, 375
creating with inheritance

with code-first workflow, 394–400
with model-first workflow, 388–394
overview, 383–388

defined, 4–6
EntityClient provider, 120–122
EntityCollection class, 82–84
EntityCommand class, 122
EntityCommandCompilationException, 259–260
EntityCommandExecutionException, 241
EntityConnection class, 308
EntityConnectionStringBuilder class, 307
EntityConnectionString class, 242
entity container, 6
Entity Data Model Generator (EDMGen.EXE) 

tool, 290
Entity Data Model Wizard, 67, 306
Entity Data Model XML. See EDMX
EntityDataReader class, 122
EntityException, 238, 254
Entity Framework. See entities

developing simple example
overview, 12
starting Entity Data Model Wizard, 12–16
using Entity Data Model Designer, 16–18
using resulting framework to display 

data, 22–25
working with mapping details, 18–21

elements
conceptual model, 7–8
model mappings, 8–9
overview, 6–7
storage model, 8

files
.CSDL file, 9–10
.MSL file, 11–12
overview, 9
.SSDL file, 11

overview, 1
quick reference, 27

Entity Framework Profiler, 301
Entity Key property, 350
Entity object, 10
EntityObject class, 324
Entity property, 338
Entity SQL

calling TVF, 225–227
components

CASE expression, 158–159



 geometry spatial data types

 Index  409

functions, 154–156
grouping, 158
literals, 150–153
namespaces, 157
navigation, 158
overview, 149
paging, 157
references, 154
SELECT VALUE and SELECT methods, 149–150
type constructors, 152–153

data flow, 148–149
grouping data, 169–171
literals

adding additional data, 162–164
date or time literal, 164–165
decimal literal, 166–168
ordering data, 168–169
overview, 161
standard, 161–162

overview, 147–148
quick reference, 172–174
role of, 84–87
selecting data, 159–160
viewing queries using, 298–301

EntitySqlException, 241
entity type mapping

defined, 216
mapping TVF, 228–231
tag for, 217

enumerated types
mapping to properties, 361–363
new feature, 32

Enum Type Name field, 32
EqualAll() method, 129, 133
equals keyword, 126
EvaluateException, 244
event handlers

creating, 339–341
custom, 337
ObjectContext events, 337–339

exceptions
concurrency exceptions, 261–262
connection string exceptions

handling, 250–256
overview, 248–249

examining, 258–261
overview, 237–240, 262–263
query exceptions, 256–258
sources

overview, 240

System.Data.Common namespace 
exceptions, 246

System.Data.EntityException class, 240–242
System.Data.Linq namespace exceptions, 247
System.Data namespace exceptions, 242–245

EXCEPT keyword, 84
Except() method, 129, 133
Execute Function dialog box, 141
Execute() method, 87
ExecuteReader() method, 149, 382
Execute Stored Procedure dialog box, 186
ExecuteStoreQuery() method, 285
Execution Plan tab, 297
EXISTS keyword, 84
Export Diagram As dialog box, 375–376

F
FavoriteColor class, 32–33
FavoriteColor property, 351
field-level concurrency, 277–279
field-specific concurrency, 279–282
FileLoadException, 252
files, Entity Framework

.CSDL file, 9–10

.MSL file, 11–12
overview, 9
.SSDL file, 11

Fill Color property, 375
finally clause, 239
First() method, 24, 89, 132, 133, 160
FirstOrDefault() method, 132, 133
forced updates, 271
foreach statements, 89, 124, 170
ForeignKeyReferenceAlreadyHasValueException, 247
Foreign Key Relationships dialog box, 65
FROM keyword, 84, 122, 126
FullName property, 251
Function Imports folder, 205
functions

batch imports of, 376–377
Entity SQL, 154–156

G
Generate Database From Model option, 349
Generate Database Wizard dialog box, 19, 391
Generate From Database option, 16
geometry spatial data types, 366



GetCustomers() method

410  Index

GetCustomers() method, 314
GetName() method, 162
GetNextResult() method, 387
Getter property, 350
GetUserFavorites application, 41
globally unique identifiers (GUIDs), 152
GO keyword, 177
GPS (Global Positioning System), 366
grids, in diagrams, 374
GROUP BY clause, 158, 170
GroupBy() method, 130, 133
group functions, 156
GroupJoin() method, 129, 133
group keyword, 126
GUIDs (globally unique identifiers), 152

H
HasColumnType() method, 365
HashSet class, 324
HasMaxLength() method, 365
HIPAA (Health Insurance Portability and 

Accountability Act), 269
Huagati Query Profiler, 301

I
ICollection interface, 83, 323
id argument, 86
IDE (integrated development environment), 3
Id property, 17, 153, 197
IEnumerable interface, 125
IEqualityComparer interface, 129
ignoring concurrency issues, 270–271
Import Selected Stored Procedures And Functions 

Into The Entity Model option, 376
Include() method, 337, 400
information overload, 44
inheritance in entities

code-first workflow, 394–400
model-first workflow, 388–394
overview, 383–388

IN keyword, 84, 122, 126
InnerException, 255, 360
InRowChangingEventException, 243
Int32 type, 7, 31–32
integrated development environment (IDE), 3
IntelliTrace, 301
INTERSECT keyword, 84

Intersect() method, 129, 133
into keyword, 126
int type, 7
InvalidCommandTreeException, 243
InvalidConstraintException, 244
InvalidExpressionException, 244
InvalidOperationException, 242, 257–258
IOrderedQueryable interface, 203
IQueryable interface, 122, 125, 135–138, 307
IsComposable attribute, 215
IsDBNull() method, 245
IsGet property, 340
is() method, 131

J
join keyword, 126
Join() method, 129, 133
joins, LINQ to Entities, 128–129

K
KEY operator, 154
Key property, 5, 46
keywords, LINQ to Entities, 125–127

L
Label control, 189
lambda expressions, 86
Language Integrated Query. See LINQ
last in wins, 268
Last() method, 132, 133
LastOrDefault() method, 132, 134
layers, and performance, 288–289
lazy loading

and performance, 294–295
overview, 304

Lazy Loading Enabled property, 294
let keyword, 126
LIMIT keyword, 157
LINQ (Language Integrated Query). See also LINQ 

to Entities
calling TVF, 210, 227–228
compilation

following IQueryable sequence, 135–138
following List sequence, 138–139
overview, 135

creating query using, 88–89



 Model Browser window

 Index  411

entity and database functions
accessing unction, 142–145
creating function, 139–142
overview, 139

grouping data using, 46–47
using operators in, 43
overview, 119–120
quick reference, 146
testing for literal values in, 42

LINQPad, 302
LINQ to Entities

EntityClient provider, 120–122
keywords, 125–127
operators

creating set, 129
grouping output, 130
interacting with type, 131
ordering output, 129–130
overview, 127–128
paging output, 132
performing aggregation, 130–131
performing filtering and projection, 128
performing joins, 128–129

overview, 120
queries, 122–125
viewing queries using, 295–298

List class, 59, 139
literals

Entity SQL
adding additional data, 162–164
date or time literal, 164–165
decimal literal, 166–168
defined, 150–153
ordering data, 168–169
overview, 161
standard, 161–162

queries, creating using, 41–42
LLBLGen Pro, 302
Load() method, 38
local cache, and performance, 290
local data sources, 304
Locate Database Files dialog box, 355–356
lock() method, 314
logical AND (&&) operator, 43
logical OR (||) operator, 43
LongCount() method, 130, 134

M
Machine.CONFIG file, 309
management content, 163
Manage NuGet Packages, 60, 335
mapping

data types to properties
changing property mapping, 351–352
complex data types, 363–366
configuring properties, 349–351
enumerated data types, 361–363
filtering data, 352–354
geometry spatial data types, 366
overview, 347–348, 367
scenarios for, 354–355
standard data types, 355–361

stored procedures
using code-access technique, 380–383
creating stored procedure, 378–380
using EDMX modification technique, 383–387
overview, 377–378

MappingException, 241, 259
mapping layer, for TVFs, 216–217
Mapping Specification Language (.MSL) files, 11–12
master/detail form, creating

adding and configuring controls, 110–112
configuring data source, 109–110
creating data source, 106–109
overview, 106
testing result, 112–113

MAX function, 156
Max() method, 45, 130, 131, 134
memory, security for, 307–308
MetadataException, 241, 249
MetadataWorkspace class, 309
method-based expression syntax, 119
methods

custom, 341–343
queries, creating using, 42–43

MigrateDatabaseToLatestVersion<TContext, 
TMigrationsConfiguration> class, 82

MIN function, 156
Min() method, 45, 130, 131, 134
MissingPrimaryKeyException, 244
Model1Container class, 22
model, adding TVF

defining using Server Explorer, 219–221
testing, 221–222
updating model, 223–225

Model Browser window, 205, 224



ModelFirst application

412  Index

ModelFirst application, 183
model-first workflow

creating entities with inheritance, 388–394
defining database model, 66–69
overview, 53–54, 66
records, adding, 70–71

model mappings, Entity Framework, 8–9
Modifiers property, 91
MSL (Mapping Specification Language) files, 11–12
multiple diagrams for model

creating diagrams, 371–374
diagram appearance

adding type to display, 375
color-coding entities, 375
using grids, 374

exporting as image, 375–376
overview, 370–371

MultipleResultData class, 382
MultipleResultSet class, 382
Multiplicity property, 83
MULTISET keyword, 153
multithreading, 312–315

N
NameArgs class, 340
named type constructor, 153
Name property, 340
namespaces, Entity SQL, 157
NAVIGATE operator, 154
navigation, Entity SQL, 158
New Project dialog box, 13, 57
NextResult() method, 382
NHibernate, 319
NoNullAllowedException, 244
non-Unicode characters, 150
NotSupportedException, 242
Nullable property, 350
null keyword, 152
numeric literals, 151
NUnit, 303

O
ObjectContext class

using CompiledQuery class, 293
creating to manage POCO, 325–326
events for, 337–339
security, 307

object layer for TVFs, 218
Object Linking and Embedding for Databases  

(OLE-DB), 246
ObjectMaterialized event, 337
ObjectNotFoundException, 244
Object-Relational Mapping (ORM), 319
objects. See also POCOs

base classes, 81–82
EntityCollection object, 82–83
Entity SQL, role of, 84–85
modifying data using

adding forms, 90–91
adding purchases, 92–93
deleting purchases, 95–97
overview, 90
updating purchases, 93–95

object services, 80–81
overview, 79–80
queries using

creating query using Entity SQL, 86–87
creating query using LINQ, 88–89
lambda expressions, role of, 86
overview, 85

Query Builder methods, 97–98
quick reference, 99

ObtainClients() function, 226
OCSimplePOCO class, 325
OdbcException, 246
ODBC (Open Database Connectivity), 55, 246
OfType() method, 131, 134, 400
OleDbException, 246
OLE-DB (Object Linking and Embedding for 

Databases), 246
on keyword, 127
OnModelCreating() method, 81, 360, 399
Open Database Connectivity (ODBC), 55, 246
Open Table Definition option, 65
Open With dialog box, 9
OperationAbortedException, 245
operators

LINQ to Entities
aggregation, 130–131
filtering and projection, 128
grouping output, 130
joins, 128–129
ordering output, 129–130
overview, 127–128
paging output, 132
sets, 129
types, 131



 _Purchases variable

 Index  413

queries, creating using, 42–43
optimistic concurrency

defined, 261
developing test environment, 272–275
field-level concurrency, 277–279
field-specific concurrency, 279–282
ignoring concurrency issues completely, 270–271
implementing, 271
issues with, 268–269
obtaining user input, 270
partial updates, 270
performing forced updates, 271
rejecting changes, 269–270
row-version concurrency, 282–284
testing, 272–276

OptimisticConcurrencyException, 261, 262
Options dialog box, 37
OracleException, 246
ORDER BY clause, 220
OrderByDescending() method, 129, 134
orderby keyword, 127
OrderBy() method, 129, 134, 203
OrderedData variable, 203
ORM (Object-Relational Mapping), 319
OVER clause, 220–221
Overwrite Warning dialog box, 391

P
paging methods, 132
partial updates, 270
performance

issues with
disabling change tracking, 294
layers, 288–289
lazy loading vs. eager loading, 294–295
using local cache, 290
overview, 288
relying on precompiled queries, 293–294
relying on pregenerated views, 290–293
retrieving too many records, 289

multithreading, 312–315
overview, 287, 315
triangle of

overview, 302–303
reliability, 309–312
security, 305–309
speed, 303–305

viewing issues using third-party products,  
301–302

viewing queries
using Entity SQL, 298–301
using LINQ to Entities, 295–298
overview, 295

pessimistic concurrency, 261, 268, 284–285
POCOs (Plain Old CLR Objects)

adding classes for model, 322–324
using automatic generation, 330–334
code-first workflow, 347
configuring model, 320–321
creating DbContext class to interact with 

POCO, 328–329
creating ObjectContext class to manage 

POCO, 325–326
using manual generation, 334–337
overview, 320
testing, 326–328

precise output type, 122
Precision property, 68, 230
precompiled queries, 293–294
pregenerated views, 290–293
Preview Database Updates dialog box, 283, 358, 

361, 379
properties

custom, 343–345
defined, 5
mapping data types to

changing property mapping, 351–352
complex data types, 363–366
configuring properties, 349–351
enumerated data types, 361–363
filtering data, 352–354
geometry spatial data types, 366
overview, 347–348, 367
standard data types, 354–361

queries, creating using, 42–43
PropertyConstraintException, 239, 243, 245
ProviderIncompatibleException, 241
provider-specific functions, 155
providers, third-party, 55
Purchase class, 59
Purchase Data dialog box, 95
PurchaseDate property, 279
@PurchaseId parameter, 208
Purchases property, 323
_Purchases variable, 326



queries

414  Index

Q
queries

combining and summarizing data, 44–45
creating specific queries

adding button to toolbar, 41
using literals, 41–42
using operators, properties, and 

methods, 42–43
overview, 41

defining basic query
creating model, 30–31
creating test application, 36–39
enumerations, 31–33
obtaining application data source, 33–36
overview, 30
running basic query, 39–40

exceptions, 256–258
grouping data, 45–47
LINQ to Entities, 122–125
using objects

creating query using Entity SQL, 86–87
creating query using LINQ, 88–89
lambda expressions, role of, 86
overview, 85

optimized, 304
overview, 29
precompiled, 293–294
quick reference, 48
viewing

using Entity SQL, 298–301
using LINQ to Entities, 295–298
overview, 295

Query Builder methods
defined, 79
objects, 97–98

query expression syntax, 119

R
ReadOnlyException, 245
ReadOnly property, 91
real numbers, 151
Record Added dialog box, 394
record retrieval, and performance, 289
Reference Manager dialog box, 62, 332
references, Entity SQL, 154
REF operator, 154
Refresh() method, 281
rejecting changes, 269–270

reliability, performance triangle, 309–312
Remove() method, 24, 96
result_expression, 159
RETURN statement, 197
ReturnType attribute, 215
Return Type property, 230
Reverse() method, 129, 134
Rewards2 database, 66–67, 109, 196
Rewards2_log.ldf file, 356
Rewards2Model class, 333
Rewards2ModelContainer class, 70, 87, 203, 338, 360
RewardsContext class, 63
RewardsModel.Context.cs file, 74
RowChanging event, 243
ROW keyword, 153
ROW_NUMBER() function, 220
row-version concurrency, 282–284
ROWVERSION data type, 285

S
SaveChanges() method, 24, 40, 63, 71, 164, 245, 311, 

401
SavingChanges event, 337
Scalar Property Format value, 375
<ScalarProperty> tag, 217
scalar value, 155
Scale property, 68, 230
Security.CONFIG file, 309
security, performance triangle

of configuration, 308–309
connections, 306–307
for memory, 307–308
overview, 305–306
user interaction, 308

Seed() method, 82
SelectedIndex property, 203
SelectedItem property, 226
select keyword, 122, 127
SelectMany() method, 128, 134
Select() method, 128, 134
SELECT method, Entity SQL, 87, 149–150, 158
SELECT VALUE method, Entity SQL, 149–150, 159
Server Explorer

defining stored procedures using, 179–181
defining TVFs, 219–221
defining views using, 196–198
window for, 63

sets, LINQ to Entities, 129



 testing

 Index  415

Setter property, 351
Show Grid option, 374
Show Table Data option, 34, 66
Single() method, 132, 134
SKIP keyword, 157
Skip() method, 132, 134
Snap to Grid option, 374
speed, performance triangle, 303–305
SQL, Entity. See Entity SQL
SqlException, 246
SqlQuery() method, 284, 285
SQL Server Compact, 54
SQL (Structured Query Language), 7
SSDL/MSL Overwrite Warning dialog box, 391
SSDL (Store Schema Definition Language) files,  

10, 11
standard data types

mapping, 355–361
overview, 354
scenarios for, 354–355

Start() method, 313
STDEV function, 156
STDEVP function, 156
storage layer for TVFs, 215–216
storage model, 8–9
Stored Procedure Mapping option, 207
stored procedures

batch imports of, 376–377
building application using, 188
creating basic example, 188–190
defining using Server Explorer, 179–181
and Entity SQL, 85
mapping

creating stored procedure, 378–380
overview, 377–378
using code-access technique, 380–383
using EDMX modification technique, 383–387

modifying
adding update to the model, 186–187
overview, 184
performing required update, 185
retesting stored procedure, 186

overview, 175–179
quick reference, 192
testing, 181–182
vs. TVFs, 215
updating model, 182–184

Stored Procedures And Functions folder, 377
StoreGeneratedPattern property, 350

Store Schema Definition Language (.SSDL) files,  
10, 11

store wins, 270
StringBuilder class, 204
string literal, 150
StrongTypingException, 245
Structured Query Language (SQL), 7
subqueries, 85
SUM function, 156
Sum() method, 130, 131, 134
switch block, 203
SyntaxErrorException, 245
sys.geography data type, 366
sys.geometry data type, 366
System.Data.Common namespace, 246
System.Data.EntityClient namespace, 122
System.Data.EntityException class, 240–242
System.Data.Entity namespace, 52, 60, 81
System.Data.Linq namespace, 247
System.Data namespace, 242–245
System.Data.Objects.DataClasses namespace, 83
System.Data.Spatial namespace, 366

T
Tables option, Data Source Configuration 

Wizard, 109
Table-Valued Function (TVF). See TVF
Take() method, 132, 134
TakeWhile() method, 132, 135
tasks

creating master/detail form
adding and configuring controls, 110–112
configuring data source, 109–110
creating data source, 106–109
overview, 106
testing result, 112–113

deleting old values, 105
inserting new values, 104–105
overview, 101
quick reference, 114–115
saving changes, 104
viewing data, 102–103

Test Connection option, 20
testing

optimistic concurrency, 272–276
POCOs, 326–328
stored procedures, 181–182
TVFs, 221–222



TestModelFirst.csproj.Views.cs file

416  Index

views, 198–199
TestModelFirst.csproj.Views.cs file, 293
TestModelFirst namespace, 313
ThenByDescending() method, 129, 135
ThenBy() method, 129, 135
third-party providers, 55
TIME keyword, 151
ToArray() method, 38
ToFormattedString() method, 343
ToList() method, 98, 245
toolbar buttons, 41
toolStripButton1_Click() event handler, 41, 43
TOP keyword, 157
ToShortDateString() method, 242
ToString() method, 160
ToTraceString() method, 298
Transact-Structured Query Language (T-SQL), 84
Translate() method, 382
triangle, performance

overview, 302–303
reliability, 309–312
security

of configuration, 308–309
connections, 306–307
for memory, 307–308
overview, 305–306
user interaction, 308

speed, 303–305
try...catch blocks, 238
T-SQL (Transact-Structured Query Language), 84
TVF (Table-Valued Function)

adding to model
defining using Server Explorer, 219–221
overview, 218
testing, 221–222
updating model, 223–225

calling using Entity SQL, 225–227
calling using LINQ, 227–228
conceptual layer, 217–218
mapping layer, 216–217
mapping to entity type collection, 228–231
object layer, 218
overview, 213–214, 232
storage layer, 215–216
vs. stored procedures, 215
vs. views, 214

Type attribute, 385
type constructors, Entity SQL, 152–153
TypeName attribute, 217
types

adding to diagram, 375
LINQ to Entities, 131

U
UAC (user access control), 15
UDF (User-Defined Function), 154, 213
Unicode, 150
UnintentionalCodeFirstException class, 82
UNION keyword, 84
Union() method, 129, 135
UpdateCheck property, 247
UpdateClient() method, 206, 209
Update Completed Successfully message, 198
UpdateException, 245
Update Model From Database option, 200, 223
UpdateRecord form, 273
Update Wizard dialog box, 142–143
Updating Newer Data dialog box, 278
UPDLOCK table, 285
user access control (UAC), 15
User-Defined Function (UDF), 154, 213
userFavoritesBindingNavigator component, 38
userFavoritesBindingSource component, 38
UserFavoritesModel.EDMX file, 351
UserId property, 30
user interface, 304
using statement, 52

V
VAR function, 156
var keyword, 88, 122
VARP function, 156
ViewClients view, 201
View Detail dialog box, 260, 359
VIEW keyword, 210
views

defining using Server Explorer, 196–198
example of, 202–204
making writable, 204–209
overview, 193–195, 210
pregenerated, 290–293
testing, 198–199
vs. TVFs, 214
updating model for, 200–202



 writable views

 Index  417

W
WHERE clause, 161, 170
where keyword, 127
Where() method, 128, 135, 209, 245
workflows

choice of, defining, 55–57
code-first workflow

adding Entity Framework 5 support, 59–60
creating code-first context, 61
creating project, 57–58
defining initial classes, 58–59
overview, 51–53, 57
records, adding, 61

database-first workflow
overview, 54–55, 71–72
records, adding, 73–74
reverse engineering database model, 71–73

model-first workflow
defining database model, 66–69
overview, 53–54, 66
records, adding, 70–71

overview, 49–51
quick reference, 75

writable views, 204–209





About the Author

JOHN PAUL MUELLER is a freelance author and technical editor. He has 
writing in his blood, having produced 92 books and over 300 articles to date. 
The topics range from networking to artificial intelligence and from database 
management to heads-down programming. Some of his current books include 
Windows command-line references, books on HTML5 and JavaScript, several 
books on C#, and an IronPython programmer’s guide. His technical-editing 

skills have helped more than 65 authors refine the content of their manuscripts. John 
has provided technical-editing services to both Data Based Advisor and Coast Computer 
magazines. He’s also contributed articles to magazines such as Software Quality Con-
nection, Mendix.com, DevSource, InformIT, SQL Server Professional, Visual C++ Develop-
er, Hard Core Visual Basic, asp.netPRO, Software Test and Performance, and Visual Basic 
Developer. Be sure to read John’s blog at http://blog.johnmuellerbooks.com/.

When John isn’t working at the computer, you can find him outside in the garden, cut-
ting wood, or generally enjoying nature. John also likes making wine and knitting. When 
not occupied with anything else, he makes glycerin soap and candles, which comes in 
handy for gift baskets. You can reach John on the Internet at John@JohnMuellerBooks.
com. John is also setting up a site at http://www.johnmuellerbooks.com/. Feel free to take 
a look and make suggestions on how he can improve it.



 Now that 
you’ve  
read the  
book...

Was it useful?
Did it teach you what you wanted to learn?
Was there room for improvement?

Let us know at http://aka.ms/tellpress

Your feedback goes directly to the staff at Microsoft Press,  
and we read every one of your responses. Thanks in advance!

Tell us what you think!


	Chapters at a glance
	Contents
	Introduction
	Chapter 1: Getting to know the Entity Framework
	Defining an entity
	Understanding the Entity Framework elements
	Considering the conceptual model
	Considering the storage model
	Considering the model mappings

	Introducing the Entity Framework files
	Viewing the Conceptual Schema Definition Language file
	Viewing the Store Schema Definition Language file
	Viewing the Mapping Specification Language file

	Developing a simple Entity Framework example
	Starting the Entity Data Model Wizard
	Using the Entity Data Model Designer
	Working with the mapping details
	Using the resulting framework to display data

	Getting started with the Entity Framework
	Chapter 1 quick reference

	Chapter 6: Manipulating data using LINQ
	Introducing LINQ to Entities
	Considering the LINQ to Entities provider
	Developing LINQ to Entities queries
	Defining the LINQ to Entities essential keywords
	Defining the LINQ to Entities operators

	Understanding LINQ compilation
	Following an IQueryable sequence
	Following a List sequence

	Using entity and database functions
	Creating the function
	Accessing the function

	Getting started with the Entity Framework
	Chapter 6 quick reference

	Index



