

Esposito

Programming/ASP.NET9 7 8 0 7 3 5 6 6 2 8 4 1

ISBN: 978-0-7356-6284-1

9 0 0 0 0

About the Author
Dino Esposito is a well-known expert, trainer,
and consultant on ASP.NET and mobile
technologies. He has written several popular
books, including Programming Microsoft
ASP.NET 4, and is coauthor of Microsoft .NET:
Architecting Applications for the Enterprise.
He’s also a regular contributor to MSDN®
Magazine and speaks at industry events such
as DevConnections and Microsoft TechEd.

Your expert reference to the principles, internal
mechanics, and techniques for ASP.NET MVC 3
Delve into the features, principles, and pillars of the ASP.NET MVC
framework—and begin building your own MVC-based apps
quickly. ASP.NET MVC forces developers to think in terms of distinct
components—Model, View, Controller—that make it easier to
manage application complexity, while enabling strict control over the
markup. Web development expert Dino Esposito deftly illuminates
the framework’s mechanics—and shares best ways to use this
programming model versus Web Forms.

Discover how to:
• Exploit the separation of UI from code for more accurate design
• Process and develop views using HTML helper components
• Keep applications lean with good controller design
• Combine view model objects, template editors, and validators
 to build effective data entry pages
• Design views and controllers to be SEO-friendly and
 localization-aware
• Use AJAX to take full control over HTML
• Design for testability, extensibility, and security
• See when and how to customize ASP.NET MVC

Programming Microsoft®
ASP.NET MVC Program

m
ing

ASP.N
ET M

VC

DEVELOPER ROADMAP

microsoft.com/mspress

Dino Esposito

ASP.NET MVC

Programming
Microsoft®

Microsoft®

U.S.A. $44.99
Canada $47.99

[Recommended]

For system requirements, see the Introduction.

Get code samples on the Web
Ready to download at
http://go.microsoft.com/FWLink/?Linkid=230567

S E C O N D E D I T I O N

2S
E

C
O

N
D

E
D

IT
IO

N

Updated for ASP.NET MVC 3Updated for ASP.NET MVC 3

2
S E C O N D
E D I T I O N

Step by Step
• For experienced developers learning a
 new topic
• Focus on fundamental techniques and tools
• Hands-on tutorial with practice fi les plus
 eBook

Start Here
• Beginner-level instruction
• Easy to follow explanations and examples
• Exercises to build your fi rst projects

Developer Reference
• Professional developers; intermediate to
 advanced
• Expertly covers essential topics and
 techniques
• Features extensive, adaptable code examples

 Professional developers; intermediate to

 Expertly covers essential topics and

Focused Topics
• For programmers who develop
 complex or advanced solutions
• Specialized topics; narrow focus; deep
 coverage
• Features extensive, adaptable code examples

spine = 1.07”

Cyan Magenta Yellow Black

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2011 by Dino Esposito

All rights reserved . No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher .

Library of Congress Control Number: 2011940367
ISBN: 978-0-7356-6284-1

Printed and bound in the United States of America .

First Printing

Microsoft Press books are available through booksellers and distributors worldwide . If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft .com . Please tell us what you think of
this book at http://www .microsoft .com/learning/booksurvey .

Microsoft and the trademarks listed at http://www .microsoft .com/about/legal/en/us/IntellectualProperty
/Trademarks/EN-US .aspx are trademarks of the Microsoft group of companies . All other marks are property of
their respective owners .

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred .

This book expresses the author’s views and opinions . The information contained in this book is provided without
any express, statutory, or implied warranties . Neither the authors, Microsoft Corporation, nor its resellers, or
distributors will be held liable for any damages caused or alleged to be caused either directly or indirectly by
this book .

Acquisitions Editor: Devon Musgrave
Developmental Editor: Devon Musgrave
Project Editor: Devon Musgrave
Copy Editor: Roger LeBlanc
Indexer: Christina Yeager
Editorial Production: Waypoint Press
Cover: Twist Creative • Seattle

To Silvia and my back for sustaining me.

Contents at a Glance

Introduction xiii

PART I ASP.NET MVC FUNDAMENTALS

CHAPTER 1 ASP.NET MVC Controllers 3

CHAPTER 2 ASP.NET MVC Views 41

CHAPTER 3 The Model-Binding Architecture 103

CHAPTER 4 Input Forms 131

PART II ASP.NET MVC SOFTWARE DESIGN

CHAPTER 5 Aspects of ASP.NET MVC Applications 189

CHAPTER 6 Securing Your Application 227

CHAPTER 7 Design Considerations for ASP.NET MVC Controllers 253

CHAPTER 8 Customizing ASP.NET MVC Controllers 281

CHAPTER 9 Testing and Testability in ASP.NET MVC 327

PART III CLIENT-SIDE

CHAPTER 10 More Effective JavaScript 373

Index 415

 vii

Table of Contents

Introduction . xiii

PART I ASP.NET MVC FUNDAMENTALS

Chapter 1 ASP.NET MVC Controllers 3
Routing Incoming Requests . 4

Simulating the ASP .NET MVC Runtime . 4

The URL Routing HTTP Module . 7

Application Routes . 9

The Controller Class .15

Aspects of a Controller .15

Writing Controller Classes . 17

Processing Input Data .21

Producing Action Results .25

Special Capabilities of Controllers .29

Grouping Controllers .29

Asynchronous Controllers .33

Chapter 2 ASP.NET MVC Views 41
Structure and Behavior of a View Engine .42

Mechanics of a View Engine .42

Definition of the View Template .47

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

viii Contents

HTML Helpers .50

Basic Helpers .51

Templated Helpers .56

Custom Helpers .59

The Web Forms View Engine .62

Inside the View Engine .62

Designing a Sample View .65

The Razor View Engine .72

Inside the View Engine .72

Designing a Sample View .78

Templated Delegates .86

Coding the View .90

Modeling the View .90

Advanced Features .96

Summary . .101

Chapter 3 The Model-Binding Architecture 103
The Input Model .104

Evolving from the Web Forms Input Processing 104

Input Processing in ASP .NET MVC .105

Model Binding .107

Model-Binding Infrastructure .107

The Default Model Binder .108

Customizable Aspects of the Default Binder 119

Advanced Model Binding .120

Custom Type Binders .121

A Sample DateTime Model Binder .124

Summary . .129

 Contents ix

Chapter 4 Input Forms 131
General Patterns of Data Entry .132

A Classic Select-Edit-Post Scenario .132

Applying the Post-Redirect-Get Pattern .139

Ajax-Based Forms .143

Automating the Writing of Input Forms .153

Predefined Display and Editor Templates .153

Custom Templates for Model Data Types .163

Input Validation .167

Using Data Annotations .168

Advanced Data Annotations .173

Self-Validation .180

Summary . .185

PART II ASP.NET MVC SOFTWARE DESIGN

Chapter 5 Aspects of ASP.NET MVC Applications 189
ASP .NET Intrinsic Objects .189

SEO and HTTP Response .190

Managing the Session State .193

Caching Data .194

Error Handling .200

Handling Program Exceptions .201

Global Error Handling .206

Dealing with Missing Content .209

Localization .212

Using Localizable Resources .212

Dealing with Localizable Applications .220

Summary . .226

x Contents

Chapter 6 Securing Your Application 227
Security in ASP .NET MVC .227

Authentication and Authorization .228

Extending the Authorize Attribute .229

Implementing a Membership System .232

Defining a Membership Controller .232

The Remember-Me Feature and Ajax .237

External Authentication Services .240

The OpenID Protocol .240

Authenticating via Twitter .246

Summary . .251

Chapter 7 Design Considerations for ASP.NET MVC
Controllers 253

Shaping Up Your Controller .254

Choosing the Right Stereotype .254

Fat-Free Controllers .257

Connecting the Presentation and Back End .264

The iPODD Pattern . .264

Injecting Data and Services in Layers .271

Gaining Control of the Controller Factory .277

Summary . .280

Chapter 8 Customizing ASP.NET MVC Controllers 281
The Extensibility Model of ASP .NET MVC .281

The Provider-Based Model .282

The Service Locator Model .286

 Contents xi

Adding Aspects to Controllers .290

Action Filters .290

Gallery of Action Filters .293

Special Filters .302

Building a Dynamic Loader Filter .306

Action Result Types .312

Built-in Action Result Types .312

Custom Result Types .317

Summary . .326

Chapter 9 Testing and Testability in ASP.NET MVC 327
Testability and Design .328

Design for Testability .328

Loosen Up Your Design .330

Basics of Unit Testing .334

Working with a Test Harness .335

Aspects of Testing .340

Testing Your ASP .NET MVC Code .345

Which Part of Your Code Should You Test? .345

Unit Testing ASP .NET MVC Code .348

Dealing with Dependencies .352

Mocking the HTTP Context .358

Summary . .369

xii Contents

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

PART III CLIENT-SIDE

Chapter 10 More Effective JavaScript 373
Revisiting the JavaScript Language .374

Language Basics .374

Object-Orientation in JavaScript .379

jQuery’s Executive Summary .383

DOM Queries and Wrapped Sets .383

Selectors .385

Events .390

Aspects of JavaScript Programming .392

Unobtrusive Code .392

Reusable Packages and Dependencies .396

Script and Resource Loading .399

ASP .NET MVC, Ajax and JavaScript .403

The Ajax Service Layer .404

Ways to Write Ajax ASP .NET MVC Applications 406

Summary . .414

Index 415

 xiii

Introduction

Get your facts first, and then you can distort them as much as you
please.

—Mark Twain

Until late 2008, I was happy enough with Web Forms . I did recognize its weak points
and could nicely work around them with discipline and systematic application

of design principles . But a new thing called ASP .NET MVC was receiving enthusiastic
reviews by a growing subset of the ASP .NET community . So I started to consider ASP .
NET MVC and explore its architecture and potential while constantly trying to envision
concrete business scenarios in which to employ it . I did this for about a year . Then I
switched to ASP .NET MVC .

ASP .NET was devised in the late 1990s at a time when many companies in various
industry sectors were rapidly discovering the Internet . For businesses, the Internet was
a real breakthrough, making possible innovations in software infrastructure, marketing,
distribution, and communication that were impractical or impossible before . Built on
top of classic Active Server Pages (ASP), ASP .NET was the right technology at the right
time, and it marked a turning point for the Web industry as a whole . For years, being
a Web developer meant gaining a skill set centered on HTML and JavaScript and that
was, therefore, radically different from the skills required for mainstream programming,
which at the time was mostly based on C/C++, Java, and Delphi languages . ASP .NET
combined the productivity of a visual and RAD environment with a component-based
programming model . The primary goal of ASP .NET was to enable developers to build
applications quickly and effectively without having to deal with low-level details such
as HTTP, HTML, and JavaScript intricacies . That was exactly what the community loudly
demanded in the late 1990s . And ASP .NET is what Microsoft delivered to address this
request, exceeding expectations by a large extent .

Ten years later, today, ASP .NET is showing signs of age . The Web Forms paradigm
still allows you to write functional applications, but it makes it harder and harder to
stay in sync with new emerging standards, including both W3C recommendations and
de facto industry standards . Today’s sites raise the bar of features high and demand

xiv Introduction

things like full accessibility, themeability, Ajax, and browser independence, not to
mention support for new tags and features as those coming up with HTML 5 and the
fast- growing mobile space .

Today, you can still use Web Forms in one way or another to create accessible sites
that can be skinned with CSS, offer Ajax capabilities, and work nearly the same across
a variety of browsers . Each of these features, however, is not natively supported and
incorporated in ASP .NET Web Forms, and this contributes to making the resulting appli-
cation more fragile and brittle . For this reason, a new foundation for Web development
is needed . ASP .NET MVC is the natural follow-up for ASP .NET developers—even though
Web Forms will still be there and improved version after version to the extent that it is
possible .

This leads me to another thought . From what I can see, most people using Web
Forms are maintaining applications written for ASP .NET 2 .0 and topped with some
Ajax extensions . Web Forms will continue to exist for legacy projects; I’m not really sure
that for new projects that the small changes we had in ASP .NET 4 and those slated for
ASP .NET 5 .0 will really make a difference . The real big change is switching to ASP .NET
MVC . Again, that’s just the natural follow up for ASP .NET developers .

Who Should Read This Book

This book is not for absolute beginners, but I do feel it is a book for everyone else,
 including current absolute beginners when they’re no longer beginners . The higher
your level of competency and expertise is, the less you can expect to find here that
adds value in your particular case . However, this book comes after a few years of real-
world practice, so I’m sure it has a lot of solutions that may appeal also the experts .
What I can say today is that there are aspects of the solutions presented in this book
that go beyond ASP .NET MVC 4, at least judging from the publicly available roadmap .

If you do ASP.NET MVC, I’m confident that you will find something in this book that
makes it worth the cost .

Assumptions
The ideal reader of this book fits the following profile to some degree. The reader has
played a bit with ASP .NET MVC (the version doesn’t really matter) and is familiar with
ASP .NET programming because of Web Forms development . The statement “ Having

 Introduction xv

played a bit with ASP .NET MVC” raises the bar a bit higher than ground level and
 specifically means the following:

 ■ The reader understands the overall structure of an ASP .NET MVC project (for
example, what controllers and views are for) .

 ■ The reader compiled a HelloWorld site and modified it a bit.

 ■ The reader can securely tweak a web.config or global.asax file.

Anything beyond this level of familiarity is not a contra-indication for using this
book . I built the book (and the courseware based on it) so that everyone beyond a
basic level of knowledge can find some value in it. Rest assured that the value a
 seasoned architect can get out of it is different from the value the book has for an
experienced developer .

In addition, the book also works for everybody who is familiar with the MVC pattern
but not specifically with the ASP.NET platform. Clearly, readers with this background
won’t find in this book a step-by-step guide to the ASP.NET infrastructure, but once
they attain such knowledge from other resources (such as another recent book of mine
published by Microsoft Press, Programming Microsoft ASP.NET 4), they can get the
same value from reading this book as other readers .

Who Should Not Read This Book

The ideal reader of this book should not be looking for a step-by-step guide to
ASP .NET MVC . The book’s aim is to explain the mechanics of the framework and
 effective ways to use it . It skims through basic steps . If you think you need a beginner’s
guide, well, you probably will find this book a bit disappointing. You might not be able
to see the logical flow of chapters and references and you could get lost quite soon. If
you’re a beginner, I recommend you flip through the pages and purchase a copy only
if you see something that will help you in a specific or immediate way (for example,
 material that helps you solve a problem you are currently experiencing) . In this case, the
book has helped you accomplish something significant.

xvi Introduction

System Requirements

You will need the following hardware and software to compile and run the code
 associated with this book:

 ■ One of Windows XP with Service Pack 3 (except Starter Edition), Windows Vista
with Service Pack 2 (except Starter Edition), Windows 7, Windows Server 2003
with Service Pack 2, Windows Server 2003 R2, Windows Server 2008 with Service
Pack 2, or Windows Server 2008 R2.

 ■ Visual Studio 2010, any edition (multiple downloads may be required if using
Express Edition products).

 ■ SQL Server 2008 Express Edition or higher (2008 or R2 release), with SQL Server
Management Studio 2008 Express or higher (included with Visual Studio,
Express Editions require separate download). For a couple of examples, you
might need to install the Northwind database within SQL Server. The database is
included in the package. After installing the Northwind database in SQL Server,
you might also want to edit the connection string as required.

 ■ Computer that has a 1.6 GHz or faster processor (2 GHz recommended).

 ■ 1 GB (32 Bit) or 2 GB (64 Bit) RAM (Add 512 MB if running in a virtual machine
or SQL Server Express Editions, more for advanced SQL Server editions).

 ■ 3.5 GB of available hard disk space.

Code Samples

This book features a companion website that makes available to you all the code used
in the book. This code is organized by chapter, and you can download it from the
 companion site at this address:

http://go.microsoft.com/FWLink/?Linkid=230567

Follow the instructions to download the Mvc3-SourceCode.zip file.

 Introduction xvii

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion con-
tent . Any errors that have been reported since this book was published are listed on our
Microsoft Press site at oreilly .com:

http://go.microsoft.com/FWLink/?Linkid=230565

If you find an error that is not already listed, you can report it to us through the
same page .

If you need additional support, email Microsoft Press Book Support at mspinput@
microsoft.com .

Please note that product support for Microsoft software is not offered through the
addresses above .

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset . Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas . Thanks in
advance for your input!

Stay in Touch

Let’s keep the conversation going . We’re on Twitter: http://twitter.com/MicrosoftPress

http://go.microsoft.com/FWLink/?Linkid=230565
mailto:mspinput@microsoft.com
mailto:mspinput@microsoft.com
http://www.microsoft.com/learning/booksurvey
http://twitter.com/MicrosoftPress

 xix

Acknowledgments

The man who doesn't read good books has no advantage over the
man who can't read them.

—Mark Twain

This is a book that I had no plans to write . It was Devon Musgrave who pushed me
to update the previous edition, which was based on MVC 2 . We looked at some

 Amazon reviews and we found out that there were some things in the previous edi-
tion that needed some fixing. Yes, feedback does help, and even though book reviews
are not always crystal clear in their origin (there could be anybody behind a nickname),
ideas expressed are always an asset .

So I looked over some of those reviews and critically reviewed the old book, chapter
by chapter. And I found a few things to fix; not coincidentally, the same things I changed
along the way in my ASP .NET MVC courseware . The fundamental change that hopefully
makes this book far more valuable than the previous edition is that I managed to move
the focus from the infrastructure to actual coding .

I wrote quite a few books that people found useful and helpful in their ability to
understand the underlying machinery of a technology . This is not a winning point for
a substantial part of the ASP .NET MVC audience . Most ASP .NET MVC developers have
significant experience and excellent skills; they may not know ASP.NET MVC in detail,
but they know a lot about Web programming and they're quick learners . They need to
ramp up on ASP .NET MVC and understand its intricacies and they don’t see the point
of studying the underpinnings of the framework . So Devon guided me to refresh the
book to give it a different slant . This book ended up as a complete rewrite; not simply a
refresh . But now I’m really proud of this new baby . And I hope it addresses some of the
nicknames (hopefully, real people) who reviewed and commented the MVC 2 book on
Amazon a few months ago .

Marc Young took the responsibility of ensuring the technical quality of the book . And
he pushed me hard on making the companion code a super-quality product, which is
much better organized than in the past . (I admit I tend to be as lazy on companion code
as I tend to be deep—and sometimes repetitive—on concepts .)

I have a joke about my English in every book . I write over and over again how bad
my English is and how great Roger LeBlanc is in making it good . After a decade spent
 writing books in English I really think that it’s now good enough to keep Roger’s work to a
minimum . And, in fact, in this book Roger played the wider role of managing editor .

xx Acknowledgments

Steve Sagman has been like a background task pushing notifications timely. I made
most of the promised deadlines, but Steve has been flexible enough to adjust deadlines
so that it seemed that I made all of them . Working with Steve is kind of relaxing; he
never transmits pressure but he kicks in at the right time; which is probably the secret
trick to not adding pressure .

Like millions of other Italian students, I spent many teenage hours trying to catch the
spirit of the Divine Comedy . As you may know, the whole poem develops around a
journey that Dante undertakes through the three realms of the dead guided by the
 Roman poet Virgilio . I too spent many hours of my past months trying to catch and
express the gist of ASP .NET MVC . I began a journey through controllers, views, models
and filters guided by a top-notch developer, trainer and friend—Hadi Hariri.

Loyal readers of my books may know about my (insane) passion for tennis . My wife
Silvia told me once “OK, you like tennis so much, but is there any chance that you can
make some money from it?” I never dared ask whether she meant “making money
playing and winning tournaments” or “making money through software .” To be on the
safe side, I decided to train and play a lot more while spending many hours helping out
Giorgio Garcia and the entire team at Crionet and e-tennis .net to serve better Web and
mobile services to tennis tournaments and their fans . I joined Crionet as the Chief Tech-
nical Officer and I’m really enjoying going out for tournaments and focusing on domain
logic of a tennis game . It was really nice last June to make it to the Wimbledon’s Centre
Court and claim it was for work and not for fun!

My son Francesco (13) is now
 officially a junior Windows Phone
7 developer with five applications
already published to the marketplace .
By the way, check out the nicest of
his apps—ShillyShally, a truly profes-
sional tool for decision makers . He
doesn’t do much Web programming
now, but he’s pushing me hard for a
mobile book—which is exactly one
of my ongoing projects as I write
these notes . If you do, or plan to do,
mobile stay tuned or, better yet, get
in touch .

Michela (10) is simply the perfect end
user in this crazy technological world and a wonderful lover of German shepherds and
baby tigers .

 103

C H A P T E R 3

The Model-Binding Architecture

It does not matter how slowly you go, so long as you do not stop.
—Confucius

By default, the Microsoft Visual Studio standard project template for ASP .NET MVC applications
includes a Models folder . If you look around for some guidance on how to use it and information

about its intended role, you quickly reach the conclusion that the Models folder exists to store model
classes. Fine, but which model is it for? Or, more precisely, what’s the definition of a “model”?

In general, there are at least two distinct models—the domain model and the view model . The
former describes the data you work with in the middle tier and is expected to provide a faithful rep-
resentation of the domain entities . These entities are typically persisted by the data-access layer and
consumed by services that implement business processes . This domain model (or entity model or even
data model, if you like) pushes a vision of data that is, in general, distinct from the vision of data you
find in the presentation layer. The view model just describes the data being worked on in the presen-
tation .

Having said that, I agree with anyone who says that not every application needs a neat separation
between the object models used in the presentation and business layers . Nonetheless, two distinct
models logically exist, and coexist, in a typical layered web solution . You might decide that for your
own purposes the two models nearly coincide, but you should always recognize the existence of two
distinct models that operate in two distinct layers .

This chapter introduces a third type of model that, although hidden for years in the folds of the
ASP .NET Web Forms runtime, stands on its own in ASP .NET MVC—the input model . The input model
refers to the model through which posted data is exposed to controllers .

In Chapter 1, “ASP .NET MVC Controllers,” we discussed request routing and structure of c ontroller
methods . In Chapter 2, “ASP .NET MVC Views,” we discussed views as the primary result of action
 processing . We didn’t discuss thoroughly yet how a controller method gets input data .

104 PART I ASP .NET MVC Fundamentals

The Input Model

In ASP .NET Web Forms, we had server controls, view state, and the overall page life cycle working
in the background to serve developers input data that was ready to use . With ASP .NET Web Forms,
 developers had no need to worry about an input model . Server controls in ASP .NET Web Forms
 provide a faithful server-side representation of the client user interface . Developers just need to write
C# code to read from input controls .

This approach doesn’t work well with the philosophy of ASP .NET MVC—which is more close to the
metal with very thin abstraction over HTTP . Moreover, ASP .NET MVC makes a point of having highly
testable controllers—which means that controllers should receive input data, not retrieve it . To pass
input data to a controller, you need to package data in some way . This is precisely where the input
model comes into play .

To better understand of the importance and power of the new ASP .NET MVC input model, let’s
start from where ASP .NET Web Forms left us .

Evolving from the Web Forms Input Processing
An ASP .NET Web Forms application is based on pages, and each server page is based on server
 controls . The page has its own life cycle that spans from processing the raw request data to arrang-
ing the final response for the browser. The page life cycle is fed by raw request data such as HTTP
headers, cookies, the URL, and the body, and it produces a raw HTTP response containing headers,
cookies, the content type, and the body .

Inside the page life cycle there are a few steps in which HTTP raw data is massaged into more
 easily programmable containers—server controls . In ASP .NET Web Forms, these “programmable
 containers” are never perceived as being part of an input object model . Furthermore, many develop-
ers don’t realize the existence of such a model . In ASP .NET Web Forms, the input model is just based
on server controls and the view state .

Role of Server Controls
Suppose you have a web page with a couple of TextBox controls to capture the user name and
 password . When the user posts the content of the form, there will likely be a piece of code to process
the request as shown here:

public void Button1_Click(Object sender, EventArgs e)
{
 // You're about to perform requested action using input data.
 CheckUserCredentials(TextBox1.Text, TextBox2.Text);
 ...
}

The overall idea behind the architecture of ASP .NET Web Forms is to keep the developer away
from raw data . Any incoming request data is mapped to properties on server controls . When this is
not possible, data is left parked in general-purpose containers such as QueryString or Form .

 CHAPTER 3 The Model-Binding Architecture 105

What would you expect from a method like the Button1_Click just shown? That method is the Web
Forms counterpart of a controller action . Here’s how to refactor the previous code to use an explicit
input model:

public void Button1_Click(Object sender, EventArgs e)
{
 // You're actually filling in the input model of the page.
 var model = new UserCredentialsInputModel();
 model.UserName = TextBox1.Text;
 model.Password = TextBox2.Text;

 // You're about to perform the requested action using input data.
 CheckUserCredentials(model);
 ...
}

The ASP .NET runtime environment breaks up raw HTTP request data into control properties, thus
offering a control-centric approach to request processing .

Note that in the upcoming ASP .NET Web Forms 4 .5, Microsoft is going to introduce some model
binding capabilities just along the lines shown a moment ago . In particular, they suggest you call a
method of yours from within Button1_Click (a go-without-saying practice) and give this method any
signature you need . Parameters on this signature can be decorated with attributes to instruct the
runtime to try to resolve those values from QueryString, Forms or other value providers .

Role of the View State
Speaking in terms of a programming paradigm, a key distinguishing character between ASP .NET Web
Forms and ASP .NET MVC is the view state . In Web Forms, the view state plays a central role and helps
server controls to always be up to date . Because of the view state, as a developer you don’t need to
care about segments of the user interface you don’t touch in a postback . Suppose you display a list
of choices for the user to drill down into . When the request for details is made, in Web Forms all you
need to do is display the details . The raw HTTP request, however, posted the list of choices as well as
key information to find. The view state makes it unnecessary for you to deal with the list of choices.

The view state and server control build a thick abstraction layer on top of classic HTTP mechanics,
and they make you think in terms of page sequences rather than successive requests . This is neither
wrong nor right; it is just the paradigm behind Web Forms . In Web Forms, there’s no need for clearly
defining an input model. If you do that, it’s only because you want to keep your code cleaner and
more readable .

Input Processing in ASP.NET MVC
In Chapter 1, you saw that a controller method can access input data through Request collections—
such as QueryString, Headers, or Form—or value providers . Although it’s functional, this approach is
not ideal from a readability and maintenance perspective . You need an ad hoc model that exposes
data to controllers .

106 PART I ASP .NET MVC Fundamentals

Role of Model Binders
The input model has one main trait . It models any data that comes your way through an HTTP request
into manageable and expressive classes . As a developer, you’re largely responsible for designing these
classes . What about mapping request data onto properties?

ASP .NET MVC provides an automatic binding layer that uses a built-in set of rules for mapping
request data to properties from any value providers . The logic of the binding layer can be customized
to a large extent, thus adding unprecedented heights of flexibility as far as the processing of input
data is concerned .

Flavors of a Model
The ASP .NET MVC default project template offers just one Models folder, thus implicitly pushing
the idea that “model” is just one thing—the model of the data the application is supposed to use .
 Generally speaking, this is a rather simplistic view, though it’s effective in very simple sites .

If you look deeper into things, you can recognize three different types of “models” in ASP .NET
MVC, as illustrated in Figure 3-1 .

Middle-tierControllerClient

View

Input model Domain model

View model

FIGURE 3-1 Types of models potentially involved in an ASP .NET MVC application .

The input model provides the representation of the data being posted to the controller . The view
model provides the representation of the data being worked on in the view . Finally, the domain model
is the representation of the domain-specific entities operating in the middle tier.

In this book, I’m not specifically covering the domain model because it results from the applica-
tion of patterns and practices that would require a book of its own. I’ll briefly touch on these topics
in Chapter 7, “Design Considerations for ASP .NET MVC Controllers .” You might want to check out the
book I wrote with Andrea Saltarello called Microsoft .NET: Architecting Applications for the Enterprise
(Microsoft Press, 2008) to read more about layered solutions . I covered the view model in Chapter 2
and will be discussing the input model in this chapter .

Note that the three models are not neatly separated, which Figure 3-1 shows to some extent . You
might find overlap between the models. This means that classes in the domain model might be used

 CHAPTER 3 The Model-Binding Architecture 107

in the view, and classes posted from the client might be used in the view. The final structure and
 diagram of classes is up to you .

Model Binding

Model binding is the process of binding values posted over an HTTP request to the parameters used
by the controller’s methods. Let’s find out more about the underlying infrastructure, mechanics, and
components involved .

Model-Binding Infrastructure
The model-binding logic is encapsulated in a specific model-binder class . The binder works under the
control of the action invoker and helps to figure out the parameters to pass to the selected controller
method .

Analyzing the Method’s Signature
As you saw in Chapter 1, each and every request passed to ASP .NET MVC is resolved in terms of a
controller name and an action name . Armed with these two pieces of data, the action invoker—a
native component of the ASP .NET MVC runtime shell—kicks in to actually serve the request . First, the
invoker expands the controller name to a class name and resolves the action name to a method name
on the controller class . If something goes wrong, an exception is thrown .

Next, the invoker attempts to collect all values required to make the method call . In doing so,
it looks at the method’s signature and attempts to find an input value for each parameter in the
 signature .

Getting the Binder for the Type
The action invoker knows the formal name and declared type of each parameter . (This information is
obtained via reflection.) The action invoker also has access to the request context and to any data up-
loaded with the HTTP request—the query string, the form data, route parameters, cookies, headers,
files, and so forth.

For each parameter, the invoker obtains a model-binder object . The model binder is a component
that knows how to find values of a given type from the request context. The model binder applies
its own algorithm—which includes the parameter name, parameter type, and request context
available—and returns a value of the specified type. The details of the algorithm belong to the
 implementation of the model binder being used for the type .

ASP .NET MVC uses a built-in binder object that corresponds to the DefaultModelBinder class . The
model binder is a class that implements the IModelBinder interface:

public interface IModelBinder
{
 Object BindModel(ControllerContext controllerContext, ModelBindingContext bindingContext);
}

108 PART I ASP .NET MVC Fundamentals

Let’s first explore the capabilities of the default binder and then see what it takes to write custom
binders for specific types later.

The Default Model Binder
The default model binder uses convention-based logic to match the names of posted values to
parameter names in the controller’s method . The DefaultModelBinder class knows how to deal with
primitive and complex types, as well as collections and dictionaries . In light of this, the default binder
works just fine most of the time.

Note If the default binder supports primitive and complex types and the collections
thereof, will you ever feel the need to use something other than the default binder? You
will hardly ever feel the need to replace the default binder with another general-purpose
binder . However, the default binder can’t apply your custom logic to massage request data
into the properties of a given type . As you’ll see later, a custom binder is helpful when the
values being posted with the request don’t exactly match the properties of the type you
want the controller to use . In this case, a custom binder makes sense and helps keep the
controller’s code lean and mean .

Binding Primitive Types
Admittedly, it sounds a bit magical at first, but there’s no actual wizardry behind model binding. The
key fact about model binding is that it lets you focus exclusively on the data you want the controller
method to receive . You completely ignore the details of how you retrieve that data, whether it comes
from the query string or the route .

Let’s suppose you need a controller method to repeat a given string a given number of times .
Here’s what you do:

public class BindingController : Controller
{
 public ActionResult Repeat(String text, Int32 number)
 {
 var model = new RepeatViewModel {Number = number, Text = text};
 return View(model);
 }
}

Designed in this way, the controller is highly testable and completely decoupled from the ASP .NET
runtime environment . There’s no need for you to access the Request object or the Cookies collection
directly .

Where do the values for text and number come from? And which component is actually reading
them into text and number parameters?

 CHAPTER 3 The Model-Binding Architecture 109

The actual values are read from the request context, and the default model-binder object does the
trick . In particular, the default binder attempts to match formal parameter names (text and number in
the example) to named values posted with the request . In other words, if the request carries a form
field, a query string field, or a route parameter named text, the carried value is automatically bound
to the text parameter . The mapping occurs successfully as long as the parameter type and actual
value are compatible . If a conversion cannot be performed, an argument exception is thrown . The
next URL works just fine:

http://server/binding/repeat?text=Dino&number=2

Conversely, the following URL causes an exception:

http://server/binding/repeat?text=Dino&number=true

The query string field text contains Dino, and the mapping to the String parameter text on the
method Repeat takes place successfully. The query string field number, on the other hand, contains
true, which can’t be successfully mapped to an Int32 parameter . The model binder returns a param-
eters dictionary where the entry for number contains null . Because the parameter type is Int32—that
is, a non-nullable type—the invoker throws an argument exception .

Dealing with Optional Values
Note that an argument exception that occurs because invalid values are being passed is not detected
at the controller level. The exception is fired before the execution flow reaches the controller. This
means that you won’t be able to catch it with try/catch blocks .

If the default model binder can’t find a posted value that matches a required method parameter,
it places a null value in the parameter dictionary returned to the action invoker . Again, if a value of
null is not acceptable for the parameter type, an argument exception is thrown before the controller
method is even called .

What if a method parameter has to be considered optional?

A possible approach entails changing the parameter type to a nullable type, as shown here:

public ActionResult Repeat(String text, Nullable<Int32> number)
{
 var model = new RepeatViewModel {Number = number.GetValueOrDefault(), Text = text};
 return View(model);
}

Another approach consists of using a default value for the parameter:

public ActionResult Repeat(String text, Int32 number=4)
{
 var model = new RepeatViewModel {Number = number, Text = text};
 return View(model);
}

110 PART I ASP .NET MVC Fundamentals

Any decisions about the controller method’s signature are up to you . In general, you might want
to use types that are very close to the real data being uploaded with the request . Using parameters
of type Object, for example, will save you from argument exceptions, but it will make it hard to write
clean code to process the input data .

The default binder can map all primitive types, such as String, integers, Double, Decimal, Boolean,
DateTime, and related collections . To express a Boolean type in a URL, you resort to the true or false
strings . These strings are parsed using .NET native Boolean parsing functions, which recognize true
and false strings in a case-insensitive manner . If you use strings such as yes/no to mean a Boolean, the
default binder won’t understand your intentions and places a null value in the parameter dictionary,
which might cause an argument exception .

Value Providers and Precedence
The default model binder uses all the registered value providers to find a match between posted

values and method parameters . By default, value providers cover the collections listed in Table 3-1 .

TABLE 3-1 Request collections for which a default value provider exists

Collection Description

Form Contains values posted from an HTML form, if any .

RouteData Contains values excerpted from the URL route .

QueryString Contains values specified as the URL’s query string.

Files A value is the entire content of an uploaded file, if any.

Table 3-1 lists request collections being considered in the exact order in which they are processed
by the default binder . Suppose you have the following route:

routes.MapRoute(
 "Test",
 "{controller}/{action}/test/{number}",
 new { controller = "Binding", action = "RepeatWithPrecedence", number = 5 }
);

As you can see, the route has a parameter named number . Now consider this URL:

/Binding/RepeatWithPrecedence/test/10?text=Dino&number=2

The request uploads two values that are good candidates to set the value of the number param-
eter in the RepeatWithPrecedence method. The first value is 10 and is the value of a route parameter
named number . The second value is 2 and is the value of the QueryString element named number .
The method itself provides a default value for the number parameter:

public ActionResult RepeatWithPrecedence(String text, Int32 number=20)
{
 ...
}

 CHAPTER 3 The Model-Binding Architecture 111

Which value is actually picked up? As Table 3-1 suggests, the value that actually gets passed to the
method is 10—the value read from the route data collection .

Binding Complex Types
There’s no limitation on the number of parameters you can list on a method’s signature . However, a
container class is often better than a long list of individual parameters . For the default model binder,
the result is nearly the same whether you list a sequence of parameters or just one parameter of a
complex type . Both scenarios are fully supported . Here’s an example:

public class ComplexController : Controller
{
 public ActionResult Repeat(RepeatText inputModel)
 {
 var model = new RepeatViewModel
 {
 Title = "Repeating text",
 Text = inputModel.Text,
 Number = inputModel.Number
 };
 return View(model);
 }
}

The controller method receives an object of type RepeatText . The class is a plain data-transfer
object defined as follows:

public class RepeatText
{
 public String Text { get; set; }
 public Int32 Number { get; set; }
}

As you can see, the class just contains members for the same values you passed as individual
parameters in the previous example . The model binder works with this complex type as well as it did
with single values .

For each public property in the declared type—RepeatText in this case—the model binder looks
for posted values whose key names match the property name . The match is case insensitive . Here’s a
sample URL that works with the RepeatText parameter type:

http://server/Complex/Repeat?text=Dino&number=5

Figure 3-2 shows the output the URL might generate .

112 PART I ASP .NET MVC Fundamentals

FIGURE 3-2 Repeating text with values extracted from a complex type .

Binding Collections
What if the argument that a controller method expects is a collection? For example, can you bind the
content of a posted form to an IList<T> parameter? The DefaultModelBinder class makes it possible,
but doing so requires a bit of contrivance of your own . Have a look at Figure 3-3 .

FIGURE 3-3 The page will post an array of strings .

When the user hits the Send button, the form submits its content. Specifically, it sends out the
content of the various text boxes . If the text boxes have different IDs, the posted content takes the
following form:

TextBox1=admin@contoso.com&TextBox2=&TextBox3=&TextBox4=&TextBox5=

 CHAPTER 3 The Model-Binding Architecture 113

In classic ASP .NET, this is the only possible way of working because you can’t just assign the same
ID to multiple controls . However, if you manage the HTML yourself, nothing prevents you from
assigning the five text boxes in the figure the same ID. The HTML DOM, in fact, fully supports this
scenario (though it is not recommended) . Therefore, the following markup is entirely legal in ASP .NET
MVC and produces HTML that works on all browsers:

@using (Html.BeginForm())
{
 <h2>List your email address(es)</h2>
 foreach(var email in Model.Emails)
 {
 <input type="text" name="emails" value="@email" />

 }
 <input type="submit" value="Send" />
}

What’s the expected signature of a controller method that has to process the email addresses
typed in the form? Here it is:

public ActionResult Emails(IList<String> emails)
{
 ...
}

Figure 3-4 shows that an array of strings is correctly passed to the method thanks to the default
binder class .

FIGURE 3-4 An array of strings has been posted .

As you’ll see in greater detail in the next chapter, when you work with HTML forms you likely need
to have a pair of methods—one to handle the display of the view (the verb GET), and one to handle
the scenario in which data is posted to the view . The HttpPost and HttpGet attributes allow you to
mark which scenario a given method is handling for the same action name . Here’s the full implemen-
tation of the example, which uses two distinct methods to handle GET and POST scenarios:

[ActionName("Emails")]
[HttpGet]
public ActionResult EmailForGet(IList<String> emails)
{
 // Input parameters
 var defaultEmails = new[] { "admin@contoso.com", "", "", "", "" };

114 PART I ASP .NET MVC Fundamentals

 if (emails == null)
 emails = defaultEmails;
 if (emails.Count == 0)
 emails = defaultEmails;
 var model = new EmailsViewModel {Emails = emails};
 return View(model);
}

[ActionName("Emails")]
[HttpPost]
public ActionResult EmailForPost(IList<String> emails)
{
 var defaultEmails = new[] { "admin@contoso.com", "", "", "", "" };
 var model = new EmailsViewModel { Emails = defaultEmails, RegisteredEmails = emails };
 return View(model);
}

Here’s the full Razor markup for the view you see rendered in Figure 3-5:

@using BasicInput.ViewModels.Complex;
@model EmailsViewModel

@section title{
 @Model.Title
}

@using (Html.BeginForm())
{
 <h2>List your email address(es)</h2>
 foreach(var email in Model.Emails)
 {
 <input type="text" name="emails" value="@email" />

 }
 <input type="submit" value="Send" />
}

 <hr />
 <h2>Emails submitted</h2>

 @foreach (var email in Model.RegisteredEmails)
 {
 if (String.IsNullOrWhiteSpace(email))
 {
 continue;
 }

 @email
 }

 CHAPTER 3 The Model-Binding Architecture 115

FIGURE 3-5 The page rendered after a POST .

In the end, to ensure that a collection of values is passed to a controller method, you need to
 ensure that elements with the same ID are emitted to the response stream . The ID, then, has to match
to the controller method’s signature according to the normal rules of the binder .

Note As you might have figured out already, the default model binder does a lot of work
for you. However, it requires that you use fixed IDs in the HTML forms you create. That’s
the way in which the component works, and it’s probably the only way to make it work in a
rather generic way for a variety of classes .

Binding Collections of Complex Types
The default binder can also handle situations in which the collection contains complex types, even
nested:

[ActionName("Countries")]
[HttpPost]
public ActionResult ListCountriesForPost(IList<Country> countries)
{
 ...
}

As an example, consider the following definition for type Country:

public class Country
{
 public Country()

116 PART I ASP .NET MVC Fundamentals

 {
 Details = new CountryInfo();
 }
 public String Name { get; set; }
 public CountryInfo Details { get; set; }
}
public class CountryInfo
{
 public String Capital { get; set; }
 public String Continent { get; set; }
}

For model binding to occur successfully, all you really need to do is use a progressive index on the
IDs in the markup . The resulting pattern is prefix[index].Property, where prefix matches the name of
the formal parameter in the controller method’s signature:

@using (Html.BeginForm())
{
 <h2>Select your favorite countries</h2>
 var index = 0;
 foreach (var country in Model.CountryList)
 {
 <fieldset>
 <div>
 Name

 <input type="text"
 name="countries[@index].Name"
 value="@country.Name" />

 Capital

 <input type="text"
 name="countries[@index].Details.Capital"
 value="@country.Details.Capital" />

 Continent

 @{
 var id = String.Format("countries[{0}].Details.Continent", index++);
 }
 @Html.TextBox(id, country.Details.Continent)

 </div>
 </fieldset>
 }
 <input type="submit" value="Send" />
}

The index is numeric, 0-based, and progressive . In this example, I’m building user interface blocks
for each specified default country. If you have a fixed number of user interface blocks to render, you
can use static indexes:

<input type="text"
 name="countries[0].Name"
 value="@country.Name" />

<input type="text"
 name="countries[1].Name"
 value="@country.Name" />

 CHAPTER 3 The Model-Binding Architecture 117

Note that holes in the series (for example, 0 and then 2) stop the parsing, and all you get back is
the sequence of data types from 0 to the hole .

The posting of data works fine as well. The POST method on the controller class will just receive
the same hierarchy of data, as Figure 3-6 shows .

FIGURE 3-6 Complex and nested types posted to the method .

Rest assured that if you’re having trouble mapping posted values to your expected hierarchy of
types, it might be wise to consider a custom model binder .

Binding Content from Uploaded Files
Table 3-1 indicates that uploaded files can also be subject to model binding. The default binder
does the binding by matching the name of the input file element used to upload with the name of a
parameter . The parameter (or the property on a parameter type), however, must be declared of type
HttpPostedFileBase:

public class UserData
{
 public String Name { get; set; }
 public String Email { get; set; }
 public HttpPostedFileBase Picture { get; set; }
}

The following code shows a possible implementation of a controller action that saves the uploaded
file somewhere on the server machine:

public ActionResult Add(UserData inputModel)
{
 var destinationFolder = Server.MapPath("/Users");
 var postedFile = inputModel.Picture;
 if (postedFile.ContentLength > 0)
 {
 var fileName = Path.GetFileName(postedFile.FileName);
 var path = Path.Combine(destinationFolder, fileName);
 postedFile.SaveAs(path);
 }

 return View();
}

118 PART I ASP .NET MVC Fundamentals

By default, any ASP .NET request can’t be longer than 4 MB . This amount should include any
 uploads, headers, body, and whatever is being transmitted. The value is configurable at various levels.
You do that through the maxRequestLength entry in the httpRuntime section of the web.config file:

<system.web>
 <httpRuntime maxRequestLength="6000" />
</system.web>

Obviously, the larger a request is, the more room you potentially leave for hackers to ̀prepare
attacks on your site . Note also that in a hosting scenario your application-level settings might
be ignored if the hoster has set a different limit at the domain level and locked down the
 maxRequestLength property at lower levels .

What about multiple file uploads? As long as the overall size of all uploads is compatible with the
current maximum length of a request, you are allowed to upload multiple files within a single request.
However, consider that web browsers just don’t know how to upload multiple files. All a web browser
can do is upload a single file, and only if you reference it through an input element of type file. To
upload multiple files, you can resort to some client-side ad hoc component or place multiple INPUT
elements in the form . If multiple INPUT elements are used, and properly named, a class like the one
shown here will bind them all:

public class UserData
{
 public String Name { get; set; }
 public String Email { get; set; }
 public HttpPostedFileBase Picture { get; set; }
 public IList<HttpPostedFileBase> AlternatePictures { get; set; }
}

The class represents the data posted for a new user with a default picture and a list of alternate
pictures . Here is the markup for the alternate pictures:

<input type="file" id="AlternatePictures[0]" name="AlternatePictures[0]" />
<input type="file" id="AlternatePictures[1]" name="AlternatePictures[1]" />

Note Creating files on the web server is not usually an operation that can be accomplished
by relying on the default permission set . Any ASP .NET application runs under the account
of the worker process serving the application pool the application belongs to . Under nor-
mal circumstances, this account is NETWORK SERVICE, and it isn’t granted the permission
to create new files. This means that to save files you must change the account behind the
ASP .NET application or elevate the privileges of the default account .

For years, the identity of the application pool has been a fixed identity—the
 aforementioned NETWORKSERVICE account, which is a relatively low-privileged, built-in
identity in Microsoft Windows . Originally welcomed as an excellent security measure, the
practice of using a single account for a potentially high number of concurrently running
services in the end created more problems than it helped to solve .

 CHAPTER 3 The Model-Binding Architecture 119

In a nutshell, services running under the same account could tamper with each other . For
this reason, in Microsoft Internet Information Services 7 .5, by default worker processes run
under unique identities that are automatically and transparently created for each newly
created application pool . The underlying technology is known as Virtual Accounts and is
currently supported by Windows Server 2008 R2 and Windows 7 . For more information,
have a look at http://technet.microsoft.com/en-us/library/dd548356(WS.10).aspx .

Customizable Aspects of the Default Binder
Automatic binding stems from a convention-over-configuration approach. Conventions, though,
sometimes harbor bad surprises . If, for some reason, you lose control over the posted data (for
example, in the case of data that has been tampered with), it can result in undesired binding—any
posted key/value pair will, in fact, be bound . For this reason, you might want to consider using the
Bind attribute to customize some aspects of the binding process .

The Bind Attribute
The Bind attribute comes with three properties, which are described in Table 3-2 .

TABLE 3-2 Properties for the BindAttribute class

Property Description

Prefix String property. It indicates the prefix that must be found in the name of the
posted value for the binder to resolve it . The default value is the empty string .

Exclude Gets or sets a comma-delimited list of property names for which binding is not
allowed .

Include Gets or sets a comma-delimited list of property names for which binding is per-
mitted .

You apply the Bind attribute to parameters on a method signature .

Creating Whitelists of Properties
As mentioned, automatic model binding is potentially dangerous when you have complex types .
In such cases, in fact, the default binder attempts to populate all public properties on the complex
types for which it finds a match in the posted values. This might end up filling the server type with
unexpected data, especially in the case of request tampering . To avoid that, you can use the Include
property on the Bind attribute to create a whitelist of acceptable properties:

public ActionResult RepeatOnlyText([Bind(Include = "text")]RepeatText inputModel)
{
 ...
}

120 PART I ASP .NET MVC Fundamentals

The binding on the RepeatText type will be limited to the listed properties (in the example, only
Text) . Any other property is not bound and takes whatever default value the implementation of
 RepeatText assigned to it . Multiple properties are separated by a comma .

Creating Blacklists of Properties
The Exclude attribute employs the opposite logic: it lists properties that must be excluded from
 binding . All properties except those explicitly listed will be bound:

public ActionResult RepeatOnlyText([Bind(Exclude = "number")]RepeatText inputModel)
{
 ...
}

You can use Include and Exclude in the same attribute if dong so allows you to better define the set
of properties to bind . If, for instance, both attributes refer to the same property, Exclude will win .

Using a Prefix
The default model binder forces you to give your request parameters (for example, form and query
string fields) given names that match formal parameters on target action methods. The Prefix
 attribute allows you to change this convention . By setting the Prefix attribute, you instruct the model
binder to match request parameters against the prefix rather than against the formal parameter
name . All in all, alias would have been a much better name for this attribute . Consider the following
example:

[HttpPost]
[ActionName("Emails")]
public ActionResult EmailForPost([Bind(Prefix = "foo")]IList<String> emails)
{
 ...
}

For the emails parameter to be successfully filled, you need to have posted a field whose name is
foo, not emails . The Prefix attribute makes particular sense on POST methods .

Finally, note that if a prefix is specified, it becomes mandatory and fields whose name is not
 prefixed are not bound.

Advanced Model Binding

So far, we’ve examined the behavior of the default model binder . The default binder does excellent
work, but it is a general-purpose tool designed to work with most possible types in a way that is not
specific to any of them. The Bind attribute gives you some more control over the binding process,
but there are some reasonable limitations to its abilities . If you want to achieve total control over the
binding process, all you do is create a custom binder for a specific type.

 CHAPTER 3 The Model-Binding Architecture 121

Custom Type Binders
There’s just one primary reason you should be willing to create a custom binder: the default binder
is limited to taking into account only a one-to-one correspondence between posted values and
 properties on the model .

Sometimes, though, the target model has a different granularity than the one expressed by form
fields. The canonical example is when you employ multiple input fields to let users enter content for a
single property—for example, distinct input fields for day, month, and year that then map to a single
DateTime value .

Customizing the Default Binder
To create a custom binder from scratch, you implement the IModelBinder interface . Implementing
the interface is recommended if you need total control over the binding process . If, say, all you need
to do is keep the default behavior and simply force the binder to use a nondefault constructor for a
given type, inheriting from DefaultModelBinder is the best approach . Here’s the schema to follow:

public RepeatTextModelBinder : DefaultModelBinder
{
 protected override object CreateModel(
 ControllerContext controllerContext,
 ModelBindingContext bindingContext,
 Type modelType)
 {
 ...
 return new RepeatText(...);
 }
}

Another common scenario for simply overriding the default binder is when all you want is the
 ability to validate against a specific type. In this case, you override OnModelUpdated and insert your
own validation logic, as shown here:

protected override void OnModelUpdated(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
{
 var obj = bindingContext.Model as RepeatText;
 if (obj == null)
 return;

 // Apply validation logic here for the whole model
 if (String.IsNullOrEmpty(obj.Text))
 {
 bindingContext.ModelState.AddModelError("Text", ...);
 }
 ...
}

You override OnModelUpdated if you prefer to keep in a single place all validations for any
 properties . You resort to OnPropertyValidating if you prefer to validate properties individually .

122 PART I ASP .NET MVC Fundamentals

Important When binding occurs on a complex type, the default binder simply copies
matching values into properties . You can’t do much to refuse some values if they put the
instance of the complex type in an invalid state .

A custom binder could integrate some logic to check the values being assigned to proper-
ties and signal an error to the controller method or degrade gracefully by replacing the
invalid value with a default one . Although it’s possible to use this approach, it’s not com-
monly used because there are more powerful options in ASP .NET MVC that you can use to
deal with data validation across an input form . And that is exactly the topic I’ll address in
the next chapter .

Implementing a Model Binder from Scratch
The IModelBinder interface is defined as follows:

public interface IModelBinder
{
 Object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext);
}

Here’s the skeleton of a custom binder that directly implements the IModelBinder interface . The
model binder is written for a specific type—in this case, MyComplexType:

public class MyComplexTypeModelBinder : IModelBinder
{
 public Object BindModel(ControllerContext controllerContext,
 ModelBindingContext bindingContext)
 {
 if (bindingContext == null)
 throw new ArgumentNullException("bindingContext");

 // Create the model instance (using the ctor you like best)
 var obj = new MyComplexType();

 // Set properties reading values from registered value providers
 obj.SomeProperty = FromPostedData<string>(bindingContext, "SomeProperty");
 ...
 return obj;
}

// Helper routine
private T FromPostedData<T>(ModelBindingContext context, String key)
{
 // Get the value from any of the input collections
 ValueProviderResult result;
 context.ValueProvider.TryGetValue(key, out result);

 // Set the state of the model property resulting from value
 context.ModelState.SetModelValue(key, result);

 CHAPTER 3 The Model-Binding Architecture 123

 // Return the value converted (if possible) to the target type
 return (T) result.ConvertTo(typeof(T));
}

The structure of BindModel is straightforward. You first create a new instance of the type of
 interest . In doing so, you can use the constructor (or factory) you like best and perform any sort of
custom initialization that is required by the context . Next, you simply populate properties of the
freshly created instance with values read or inferred from posted data . In the preceding code snippet,
I assume you simply replicate the behavior of the default provider and read values from registered
value providers based on a property name match . Obviously, this is just the place where you might
want to add your own logic to interpret and massage what’s being posted by the request .

Note that when writing a model binder, you are in no way restricted to getting information for the
model only from the posted data—which represents only the most common scenario . You can grab
information from anywhere—for example, from the ASP .NET cache and session state—parse it, and
store it in the model .

Note ASP .NET MVC comes with two built-in binders beyond the default one . These
additional binders are automatically selected for use when posted data is a Base64
stream (ByteArrayModelBinder type) and when the content of a file is being uploaded
(HttpPostedFileBaseModelBinder type) .

Registering a Custom Binder
You can associate a model binder with its target type globally or locally . In the former case, any
 occurrence of model binding for the type will be resolved through the registered custom binder . In
the latter case, you apply the binding to just one occurrence of one parameter in a controller method .

Global association takes place in the global.asax file as follows:

void Application_Start()
{
 ...
 ModelBinders.Binders[typeof(MyComplexTypeModelBinder)] =
 new MyCustomTypeModelBinder();
}

Local association requires the following syntax:

public ActionResult RepeatText(
 [ModelBinder(typeof(MyComplexTypeModelBinder))] MyComplexType info)
{
 ...
}

Local binders always take precedence over globally defined binders.

124 PART I ASP .NET MVC Fundamentals

As you can tell clearly from the preceding code within Application_Start, you can have multiple
binders registered . You can also override the default binder if required:

ModelBinders.Binders.DefaultBinder = new MyNewDefaultBinder();

Modifying the default binder, however, can have a large impact on the behavior of the application
and should therefore be a very thoughtful choice .

A Sample DateTime Model Binder
In input forms, it is quite common to have users enter a date . You can sometimes use a jQuery UI to
let users pick dates from a graphical calendar . The selection is translated to a string and saved to a
text box . When the form posts back, the date string is uploaded and the default binder attempts to
parse it to a DateTime object .

In other situations, you might decide to split the date into three distinct text boxes—for day,
month, and year . These pieces are uploaded as distinct values in the request . The result is that the
default binder can manage them only separately—the burden of creating a valid DateTime object
out of day, month, and year values is up to the controller . With a custom default binder, you can take
this code out of the controller and still enjoy the pleasure of having the following signature for a
 controller method:

public ActionResult MakeReservation(DateTime theDate)

Let’s see how to arrange a more realistic example of a model binder .

The Displayed Data
The sample view we consider next shows three text boxes for the items that make up a date and a
submit button . You enter a date, and the system calculates how many days have elapsed since or how
many days you have to wait for the specified day to arrive. Here’s the Razor markup:

@model DateEditorResponseViewModel
@section title{
 @Model.Title
}

@using (Html.BeginForm())
{
<fieldset>
 <legend>Date Editor</legend>
 <div style="margin:20">
 <table><tr>
 <td>@DateHelpers.InputDate("theDate", Model.DefaultDate)</td>
 <td><input type="submit" value="Find out more" /></td>
 </tr></table>
 </div>
</fieldset>
}
<hr />
@DateHelpers.Distance(Model.TimeToToday)

 CHAPTER 3 The Model-Binding Architecture 125

As you can see, I’m using a couple of custom helpers to better encapsulate the rendering of some
view code . Here’s how you render the date elements:

@helper InputDate(String name, DateTime? theDate)
{
 String day="", month="", year="";
 if(theDate.HasValue)
 {
 day = theDate.Value.Day.ToString();
 month = theDate.Value.Month.ToString();
 year = theDate.Value.Year.ToString();
 }
 <table cellpadding="0">
 <thead>
 <th>DD</th>
 <th>MM</th>
 <th>YYYY</th>
 </thead>
 <tr>
 <td><input type="text" name="@(name + ".day")"
 value="@day" style="width:30px" /></td>
 <td><input type="text" name="@(name + ".month")"
 value="@month" style="width:30px"></td>
 <td><input type="text" name="@(name + ".year")"
 value="@year" style="width:40px" /></td>
 </tr>
 </table>
}

Figure 3-7 shows the output .

FIGURE 3-7 A sample view that splits date input text into day-month-year elements .

126 PART I ASP .NET MVC Fundamentals

The Controller Method
The view in Figure 3-7 is served and processed by the following controller methods:

public class DateController : Controller
{
 [HttpGet]
 [ActionName("Editor")]
 public ActionResult EditorForGet()
 {
 var model = new DateEditorViewModel();
 return View(model);
 }

 [HttpPost]
 [ActionName("Editor")]
 public ActionResult EditorForPost(DateTime theDate)
 {
 var model = new DateEditorViewModel();
 if (theDate != default(DateTime))
 {
 model.DefaultDate = theDate;
 model.TimeToToday = DateTime.Today.Subtract(theDate);
 }
 return View(model);
 }
}

After the date is posted back, the controller action calculates the difference with the current day
and stores the results back in the view model using a TimeSpan object . Here’s the view model object:

public class DateEditorViewModel : ViewModelBase
{
 public DateEditorViewModel()
 {
 DefaultDate = null;
 TimeToToday = null;
 }
 public DateTime? DefaultDate { get; set; }
 public TimeSpan? TimeToToday { get; set; }
}

What remains to be examined is the code that performs the trick of transforming three distinct
values uploaded independently into one DateTime object .

Creating the DateTime Binder
The structure of the DateTimeModelBinder object is not much different from the skeleton I described
earlier . It is just tailor-made for the DateTime type:

public class DateModelBinder : IModelBinder
{
 public Object BindModel(ControllerContext controllerContext, ModelBindingContext
bindingContext)
 {

 CHAPTER 3 The Model-Binding Architecture 127

 if (bindingContext == null)
 {
 throw new ArgumentNullException("bindingContext");
 }

 // This will return a DateTime object
 var theDate = default(DateTime);

 // Try to read from posted data. xxx.Day|xxx.Month|xxx.Year is assumed.
 var day = FromPostedData<int>(bindingContext, "Day");
 var month = FromPostedData<int>(bindingContext, "Month");
 var year = FromPostedData<int>(bindingContext, "Year");

 return CreateDateOrDefault(year, month, day, theDate);
 }

 // Helper routines
 private static T FromPostedData<T>(ModelBindingContext context, String id)
 {
 if (String.IsNullOrEmpty(id))
 return default(T);

 // Get the value from any of the input collections
 var key = String.Format("{0}.{1}", context.ModelName, id);
 var result = context.ValueProvider.GetValue(key);
 if (result == null && context.FallbackToEmptyPrefix)
 {
 // Try without prefix
 result = context.ValueProvider.GetValue(id);
 if (result == null)
 return default(T);
 }

 // Set the state of the model property resulting from value
 context.ModelState.SetModelValue(id, result);

 // Return the value converted (if possible) to the target type
 T valueToReturn = default(T);
 try
 {
 valueToReturn = (T)result.ConvertTo(typeof(T));
 }
 catch
 {
 }

 return valueToReturn;
 }

 private DateTime CreateDateOrDefault(Int32 year, Int32 month, Int32 day, DateTime?
defaultDate)
 {
 var theDate = defaultDate ?? default(DateTime);
 try
 {
 theDate = new DateTime(year, month, day);
 }

128 PART I ASP .NET MVC Fundamentals

 catch (ArgumentOutOfRangeException e)
 {
 }

 return theDate;
 }
}

The binder makes some assumptions about the naming convention of the three input elements . In
particular, it requires that those elements be named day, month, and year—possibly prefixed by the
model name. It is the support for the prefix that makes it possible to have multiple date input boxes in
the same view without conflicts.

With this custom binder available, all you need to do is register it either globally or locally . Here’s
how to make it work with just a specific controller method:

[HttpPost]
[ActionName("Editor")]
public ActionResult EditorForPost([ModelBinder(typeof(DateModelBinder))] DateTime theDate)
{
 ...
}

Figure 3-8 shows the final page in action.

FIGURE 3-8 Working with dates using a custom type binder .

 CHAPTER 3 The Model-Binding Architecture 129

Summary

In ASP .NET MVC as well as in ASP .NET Web Forms, posted data arrives within an HTTP packet and is
mapped to various collections on the Request object . To offer a nice service to developers, ASP .NET
then attempts to expose that content in a more usable way .

In ASP .NET Web Forms, the content is parsed and passed on to server controls; in ASP .NET MVC,
on the other hand, it is bound to parameters of the selected controller’s method . The process of bind-
ing posted values to parameters is known as model binding and occurs through a registered model-
binder class . Model binders provide you with complete control over the deserialization of form-post-
ed values into simple and complex types .

In functional terms, the use of the default binder is transparent to developers—no action is
required on your end—and it keeps the controller code clean . By using model binders, including cus-
tom binders, you also keep your controller’s code free of dependencies on ASP .NET intrinsic objects,
and thus make it cleaner and more testable .

The use of model binders is strictly related to posting and input forms . In the next chapter, we’ll
discuss aspects of input forms, input modeling, and data validation .

Index

 415

Symbols and Numbers
/ (forward slash) character, 10

route processing and, 13
@ expressions, 73–75

for passing data to view, 78
templated delegates, 86–88

~ (tilde) operator, 66, 216

A
about view, 82
about.aspx file, 48–49
Accept-Encoding header, 295–297, 401
acceptance tests, 348
AcceptVerbs attribute, 19, 303–304
access to action methods, restricting, 228–229
access tokens, 250
AccountController class, reworking, 232–233
action filters, 203, 281–282

action method selectors, 303–304
action name selectors, 302–303
Ajax calls, restricting to, 305
built-in, 292–293
classification of, 291–292
Controller class filter methods, 292
dynamically added, 307–312
embedded and external filters, 290–291
filter interfaces, 292
fluent code, 307–308
global, 206, 293
HandleError attribute, 205
interception points, 307
interfaces, 290, 292
for localization, 219
precedence, 293
response compression, 295–298

response header, 294–295
submit buttons, restricting to, 305–306
testing, 365–368
view model, filling, 301–302
view selector, 298–300

action helpers, 21, 98
action invokers, 18–19, 45–46

customizing, 308–309
default action invoker, 202–203
registering, 285, 309–310
replaceability of, 282
serving requests, 107
unit-test-specific, 367–368

action links, 152–153
Ajax helpers, 406–408

action method selectors, 303–304
action methods, 20–21 . See also controller methods

asynchronous, 36–40
attaching behavior to, 291 . See also action filters
authorization, 229
code in, 263
coding, 254
ideal coding, 263–264
input data processing, 20–25
localization logic, 219
RDD stereotypes for, 255–257
Request objects, input data from, 22
restricting access, 228–229
results, 25–29
results generation, 21
roles of, 254–255
signatures of, 21
task performance, 21

action name selectors, 302–303
action names, 17

binding to methods, 18–19
validating, 302–303

416

action parameter, 18
action result types, 312–325

binary data, 322–324
built-in, 312–317
ContentResult objects, 317
custom types, 317–325
EmptyResult objects, 317
HttpStatusCodeResult class, 313–314
JavaScriptResult class, 314–316
JSON data, 316–317
JSONP responses, 318–320
PDF files, 324–325
processing, 45
syndication feed responses, 320–322

action selectors, 302
action method selectors, 303–304
action name selectors, 302–303

ActionFilterAttribute class, 298
deriving from, 293

ActionLink method, 54–55, 152–153
ActionMethodSelectorAttribute class,
IsValidForRequest method overrides, 305
ActionName attribute, 303
ActionResult class, 25, 27

result types, 26
ActionResult objects, 21, 312

ViewName property, 349
actions

binding to methods, 19–20
HTTP verbs, expressing with, 10, 19

ad hoc method selectors, 306
AddHeader filter, 294–295

overriding, 368
address bar, URLs in, 139–140
aggregate roots, 269
Agile manifesto, 266
Ajax, 3

ASP .NET MVC, JavaScript, and, 403–414
jQuery model, 151–152
JSON data, downloading via, 318–320
Remember-me feature and, 237–239

Ajax applications, 373
development, 403
JavaScript code, organizing, 409–410
JSON data providers, 408–409
service layer, 403–405

Ajax calls, restrictions on, 305, 318

Ajax forms, 143–153
callbacks, order of, 146
controller methods, 147–148
creating, 144–145
hyperlinks, 152–153
infrastructure, 145–147
page title, updating, 148–150
unobtrusive JavaScript model, 150–152
validation, 177–178

Ajax helpers, 406–408
sample, 61

Ajax requests, custom headers, 149
Ajax.BeginForm helper, 144
AjaxContext class members, 146
AjaxOptions class, 144

members, 152
OnSuccess property, 149
properties of, 144–146

anonymous functions, 374, 378–379, 394
AppFabric Caching services, 195, 198
application layer, in iPODD architecture, 266
application pools, worker processes, 119
application routes, 9–15 . See also routes

defining, 11–12
physical files, requests for, 14
processing, 12–13
route handlers, 13–14
routing, preventing, 14–15

applications . See also Ajax applications; ASP .NET
MVC; Web Forms

coexistence of MVC and Web Forms, 3
localizable, 220–226
session state management, 193–194
three-level architecture, 264

architecture
iPODD pattern, 265–271
three-level architecture, 264

argument exceptions from invalid values, 108–109
arrange, act, assert layout, 337–338
array of strings, posting, 112–113
Art of Unit Testing, The (Osherove), 348
ArtOfTest, 101
ASP .NET

intrinsic objects, accessing, 71
requests, serving, 4
stateful programming model, 131
URL routing module, 8
virtual path providers, 64–65

ASP .NET 4 auto-encoding feature, 59

action parameter

 417

ASP .NET MVC
asynchronous actions, 35–36
binders, built-in, 123
controllers, 7, 15–40
custom components, 3
error handling, 200–212
error messages, displaying, 137–139
extensibility model, 281–289
HTML helper methods, 51
input processing, 105–106
intrinsic objects, 189–200
JavaScript, Ajax, and, 403–414
localization, 212–226
REST orientation, 10
run-time environment, 3
runtime, simulating, 4–7
security, 227–231
server controls, 70–71
Service Locator pattern, 287–288
testing code, 345–368
transitioning to, 3–4
validation provider infrastructure, 168–169
view, recreating and repopulating, 135
workflow, 41

ASP .NET MVC 3, 4
dependency resolvers, 285
sample code, 232
view engines, 42–43

ASP .NET Web Forms . See Web Forms
ASPX pages, 27–28
ASPX view engine, 28 . See also view engines

cache, 63
location formats, 63
precedence of, 48
server controls, 50
visual layout representation, 47

assertions per test, 343
async points, 34–35
Async suffix, 37
AsyncController class, 33

controllers derived from, 36
asynchronous action methods, 36–37

attributes, 39
candidates for, 39–40
coding, 38
invokers for, 38
naming, 37

asynchronous actions, 34–36

asynchronous controllers, 33–40
asynchronous methods, testing, 354–358
asynchronous pages, 33–34
AsyncManager class

OutstandingOperations member, 38
Parameters dictionary, 38

AsyncTimeout attribute, 39, 292
ATOM 1 .0 feeds, 320–322
attribute filters in jQuery, 388–389
attributes, for exception handling, 263–264
Authenticated method, 244–245
authentication, 228–229

configuring, 228
Forms authentication, 228–229
OpenID, 240–246
via Twitter, 246–251
Windows authentication, 231

authentication cookies
adding data, 245
creating, 243–244, 249
long-lasting, 237

authentication services, 240–251
IIS, 227

authorization, 228–229
for action methods, 229
output caching and, 229

Authorize attribute, 228–229
authorization capabilities, 229
extending, 229–231
output caching and, 229

Authorize filter, 292
AuthorizedOnly attribute, extending, 238–239
auto-adapting applications, 221
auto-encoding feature, 59
Autofac, 275
AutoMapper, 269
automated input forms, 153–167
automated tests, 327 . See also testability; testing

framework for, 335
automatic parameter resolution, 21

B
back end, connecting with presentation layer,
264–279
back-office systems, 153
BeginForm helper, 52–53
BeginRouteForm helper, 52–53

 BeginRouteForm helper

418

behaviors
reusing, 294 . See also action filters
separating from content, presentation, 394
separating from response generation, 3

binary data, returning, 322–324
Bind attribute, 119, 134–135

Exclude property, 120
Include property, 119–120
Prefix attribute, 120

bind/unbind functions, 390–391
BindAttribute class, 119
binding and unbinding, 390–391

live binding, 391
binding collections, 112–115

of complex types, 115–117
binding layer, 105–106
Boolean values, display template for, 157–158
browser caching, 401–402
Browser Template pattern, 406
browsers

closures and prototypes and, 382
geo-location capabilities, 225
HTTP compression, 295–298
nonblocking scripts download, 400–401
synchronous download, 399–400
view selectors, 298–300

BuildManagerViewEngine class, 64
business-layer validation, 180
ByteArrayModelBinder type, 123

C
C#, in Razor templates, 74–76
Cache object, 190, 194–200

accessing, 195
limitations of, 195
mocking, 363–365

cache objects, deriving, 198
caching, 194–200

cached data, displaying, 195
caching service, injecting, 195–198
data, displaying, 195
distributed caching, 198–199
management of items, 194–195
method responses, 199–200
partial output caching, 200
view locations, 63–64

caching service
initializing and injecting, 197–198
injecting, 195–198

callbacks
attaching functions, 390–391
mapping between ASP .NET MVC and jQuery, 152
unobtrusive JavaScript and, 151–152

canonical URL format, 192
Cascading Style Sheets (CSS), 393–394
Castle Windsor, 275
catch-all parameters, 14–15
catch-all routes, 210–211

definition, 211
catch blocks, 202
CDN, 145
centralized validation, 181–182
CheckIfUserIsAuthenticated method, 239
child actions, 99

input data from, 24
marking, 200

child filters in jQuery, 387
ChildActionOnly attribute, 99, 292
class-level validation, 181–182
ClassCleanup attribute, 337
classes . See also controller classes

dependency inversion, 271–272
partial classes, 343
Service Locator based, 286–287
test fixtures, 336–337
testing in isolation, 340–341

ClassInitialize attribute, 337
client-side features, 373 . See also JavaScript; jQuery
client-side validation, 167–185

culture based, 178–179
custom attributes, 182–183

closures, 380–381
code . See also design, software; design principles;
software

“Don’t Repeat Yourself (DRY)” principle, 86
fluent code, 307–308
packaging, 397–399
readability, 95

code blocks, 66–68
Code Contracts, 185, 263–264
code coverage of testing, 344–345
code injection, 274
code nuggets, 73–75

special expressions, 74–75
code reuse, HTML helpers and, 70
collections, binding, 112–117
comments, in Razor expressions, 75
Compare attribute, 175

behaviors

 419

complex types
acceptable properties, 119–120
binding, 111–112, 122
binding collections of, 115–117

Compress attribute, 296
writing, 297

compression
of responses, 295–298
of static resources, 401

compression filters, 295–298
configuration files, validation attributes, 180
confirmation messages, for reposting input forms,
139
consumer key/consumer secret pair, 246, 249
containers, 21

classes, 111
global containers, 395–397
IoC frameworks, 275
passing data to view with, 90

content
separating from presentation, behavior, 394
URLs, synchronization with, 139–140

content delivery networks (CDNs), 401–402
Content-Encoding header, 295–297
content files, referencing, 216
content filters in jQuery, 388
Content folder, grouping resources under, 216
ContentResult class, 26
ContentResult objects, 29, 317
context objects, lifetime of, 271
control of software, 329
Controller class, 290

filter methods, 292
ModelState dictionary, 137
RouteData property, 22
ValueProvider property, 23

controller classes
Authorize attribute, adding, 228–229
creating, 254
global action filters, 293
HandleError attribute, 205–206
handling exceptions directly, 201–202
method overrides in, 290–291
OnException method, overriding, 202–204
response headers, 290
worker services, injecting, 276–277

controller factory, 288
controlling, 277–279
custom, 277–278

registering, 277, 285
replaceability of, 282
Unity based, 278–279

controller methods . See also action methods
Ajax aware, 147–148
input parameters, 22
renaming, 303
render actions, 194
testing, 365–368
view component selection, 9

controller names, 17–18
Controller RDD stereotype, 255–256
controllers, 7, 15–29, 41

action methods, 21–25, 291 . See also action filters
adding aspects, 290–312
aspects of, 15–16
asynchronous, 33–40
caching, injecting, 195–197
capabilities of, 29–40
collections, passing to, 112–115
coordinators, 133
custom base class for, 309–310
data exposed to, 103
design considerations, 253–264
granularity, 15
grouping, 29–33
as infrastructure, 263
input data to, 104
intrinsic objects, accessing, 71
JavaScript, 409–410
membership controllers, 232–237
method signature, 107
number of, 15
in presentation layer, 16
presentation layer and back end, connecting,
264–279
render actions, 98–99
role of, 253
session state, accessing, 194
stateless components, 15
testability, 16
testing, 99
view, rebuilding, 301
view, separation from, 16, 194
and view engines, interaction, 42
worker services and, 259–262
writing, 17–21

Convention-over-Configuration pattern, 96, 119

Convention-over-Configuration pattern

420

cookies
mocking, 361
persistent authentication cookies, 237
value provider and, 24

Coordinator stereotype, 133, 255–257, 264
coordinators, 133
coupling

loosely coupled systems, 286
low coupling principle, 330
testability and, 333
tight coupling, 330–331

CPU-bound operations, 39
CreateAuthCookie method, 249
CreateMetadata method, overriding, 161–162
CreateRequest method, 243
cross-property annotations, 173–175
CRUD (Create, Read, Update, Delete) applications,
256, 347
.cshtml file, for declarative helpers, 83
CSS, 393–394
CSS-based selectors, 385
culture

auto-adapting, 221
changing programmatically, 222–225
detecting, 215
getting and setting, 221–222
neutral, 221

culture-based client-side validation, 178–179
culture-driven view engines, 283–284
Culture property, 221
culture script files, 179
CultureAttribute class, 224
CultureAttribute filter, 298
CurrentCulture property, 222
CurrentUICulture property, 222
custom components, registering, 285
custom errors, enabling, 205
custom headers, for Ajax requests, 149
custom HTML helpers, 59–61
custom model binders, 121–124
custom view engines, 96–98
CustomerModelBase class, 301
CustomValidation attribute, 174–175

vs . custom validation attributes, 175–176
Cutting Edge column in MSDN Magazine, 276

D
data

bringing to client, 408–409
caching, 194–200
displaying or editing, 154
drop-down lists, populating, 133

data access, testing, 353–354
data access layer

in iPODD architecture, 266
testing, 348

data annotations, 154–155
advanced, 173–180
cross-property annotations, 173–175
for read-only members, 161
Remote attribute, 179–180
self-validation and, 181
specifying, 180
using, 168–173
for validation, 169
validation attributes, custom, 175–176
vs . VAB, 183–184

data-driven tests, 339
data entry, general patterns, 132–153
data layer, in iPODD architecture, 269–271
data tables

building with code blocks, 66–68
building with HTML helpers, 68–69

data-transfer objects (DTOs), 269
data types

custom display and edit templates for, 158–160
default display and edit templates for, 156–158
edit and display modes, 156
validating, 160

data validation . See validation
DataAnnotationsModelMetadataProvider class, 161
DataAnnotationsModelValidatorProvider class,
168–169
databases, storing localizable resources in, 225–226
DataSet design, 268
DataSource attribute, 339
DataType attribute, 160
date objects, 261

rendering, 125
DateTime model binder, 124–128

controller method, 126
DateTimeModelBinder object, 126–128

DDD methodology, 274
debugging vs . testing, 328
decision coverage of testing, 344

cookies

 421

declarative HTML helpers, 83–84
limitations of, 84–86

DefaultActionInvoker class, 282
DefaultControllerFactory class, 282

overridable methods, 278
DefaultModelBinder class, 107–108, 112–113

inheriting from, 121
DefaultViewLocationCache class, 63
defer attribute, 400
delegates, templated, 86–88
delimiters, 10
dependencies

abstracting, 345
grouping, 274
resolving, 275–276
resolving with Service Locator, 287
testing and, 352–358

Dependency Injection (DI), 257, 264, 274–275, 332
Inversion of Control frameworks, 275–276
vs . Service Locator pattern, 286–287

Dependency Inversion Principle (DIP), 257, 271–272,
286, 332

Dependency Injection pattern, 274–275
Service Locator pattern, 272–273

dependency resolvers
defining, 288–289
registering, 289
services, locating with, 162

design, software
collaboration, 266
considerations, 253–264
interface-based programming, 330–332
iPODD pattern, 265–271
testability and, 328–334

Design for Testability (DfT), 328–330
design principles

code comments, 258
Dependency Inversion Principle, 257, 271–275,
286
Design for Testability, 328–330
“Do not put it in the controller” principle, 346
“Don’t Repeat Yourself (DRY)” principle, 86
Interface Segregation principle, 236
low coupling, 330–334
principle of separation of concerns (SoC), 16
short methods, 258
for worker service classes, 258–262
YAGNI principle (You Aren’t Gonna’ Need It), 196

desktop browsers, 298

development of software, SOLID acronym, 332
DfT, 328–330
DI . See Dependency Injection (DI)
dictionary values

registering, 285
replaceability of, 282

DIP . See Dependency Inversion Principle (DIP)
display, separating from request processing, 40
Display helpers, 56–57, 154–156, 158–160
display templates

custom, 158–160
for data types, 156–158
naming, 159–160
nested models, 166–167
in Razor, 163
tabular, 163–165

DisplayForModel, 58
distributed caching, 198–199
DLR, 91
DNOA library, 241, 247, 249–250
Domain-Driven Design (DDD) methodology, 274
domain entities, 103
domain layer

class visibility, 269
in iPODD architecture, 268–269
testing, 347

domain models, 103, 106
definition of, 268
Entity Framework model, 132

domain services, 268–269
domains, transient vs . persistent, 269
“Don’t Repeat Yourself (DRY)” principle, 86
DotNetOpenAuth (DNOA) library, 241, 247

token manager objects, 249–250
double encoding, 59–60
drop-down lists, populating, 133–134
Dynamic Language Runtime (DLR), 91
dynamic objects, 57, 91–92, 95–96

for internal data, 95–96

E
each function, 384
ECMAScript 5, 374
Edit actions

POST and GET actions, splitting, 140–141
requests for, 134

Edit-and-Post pattern, 132
editable fields, validation helpers, 137

editable fields, validation helpers

422

Editor helpers, 56–58, 154–156
customizing, 158–160

editor templates
custom, 158–160
for data types, 156–158
naming, 159–160
in Razor, 163
tabular, 164–165

EditorForModel, 58
ELMAH, 208
embedded files, referencing, 217–219
Embedded Resource build action, 213–214, 218
embedded resources, 213–214
EmptyResult class, 26
EmptyResult objects, 317
encapsulation, closures, 380–381
encoding values, 297
Engines member, 43
Enterprise Library Validation Application Block, 180
Entity Framework model, 132, 268
entity model

creating, 268
definition of, 268

enumerated types, validating, 171–172
Error controller, 210
Error event, 206–207
error handling, 200–212

with attributes, 263–264
catch-all routes, 210–211
email messages for, 207
Error Logging Modules And Handlers, 208
global error handling, 206–209
from global.asax file, 206–207
with HTTP modules, 207–208
IIS error handling, bypassing, 211–212
landing page, 207
missing content, 209–212
program exceptions, 201–206
route exceptions, 209

Error Logging Modules And Handlers (ELMAH), 208
error messages

capturing, 175
displaying, 137–139
for input validation errors, 172–173

error pages, IIS level, 211–212
error view, switching to, 204
event handling, 70
Exception class, exception classes deriving from, 202
exception classes, deriving from Exception, 202

exception handling, 202
exception types, built-in, 202
exceptions

alerting administrator about, 207
handling directly, 201–202
handling with attributes, 263–264
model binding, 208
route exceptions, 209

Execute method, 77
ExecuteResult method, 46, 313
ExecuteResult objects, 323
expando objects, 95–96
ExpandoObject type, 96
extensibility models, 281–289, 327

provider-based model, 282–286
Service Locator model, 286–289
TempData storage, alternate, 284–285
view engine, culture-driven, 283–284

extensibility points, 281
replaceable components, 282–283

extension methods, 88

F
F5 keypresses, 139–140
factories, 274
factory classes

globally accessible, 285
registering, 285

fake objects, 341–342, 352
humble objects, 358

feedback, passing to view, 141–142
Felker, Donn, blog, 25
file content, replying with, 26
FileContentResult class, 26
FileContentResult objects, 323
FilePathResult class, 26
FilePathResult objects, 323–324
FileResult class, 323
files

creating on web server, 118
localizable, 216–217

FileStreamResult class, 26
FileStreamResult objects, 323–324
Filter class, 311
filter function, 389
filter methods in Controller class, 292
filter providers, 310–312

Editor helpers

 423

FilterAttribute class
inheriting from, 293
Order property, 293

FilterInfo class, 307
filters in JQuery, 387–389
FilterScope enumeration, 311
finalizer methods, 34, 36

coding, 38
find function, 389
FindPartialView method, 44
FindView method, 44
Flickr, 240
fluent code, 307–308
form data, input data from, 24
<form> tag, 53
formatted text

displaying, 88
templated delegates and, 88–89

forms . See also Web Forms
Ajax-based, 143–153
posting changes, 136–137

Forms authentication, 228–229
friendly names, 243–245
FriendlyIdentifierForDisplay property, 243
front-end test tools, 99–101
function coverage of testing, 344
functions, in JavaScript, 378–379

G
geo-localization, 221
geo-location, 225
GET and POST actions, splitting, 140–141
GetFilters method, 307
GetGlobalResourceObject method, 217
GetHttpMethodOverride method, 304
getJSON function, 320
GetPreferredEncoding method, 297
GetRouteDataForUrl method, 351–352
GetValue method, 24
GetWebResourceUrl, 219
global binders, 123
global containers, 395–397
global error handling, 206–209
global filters, 206

for localization, 222–223
registering, 224

global variables, 375–376
declaring, 395–396

global.asax file
action filters, registering, 310
Application_Start, 206
custom view engine entry, 97–98
error handling from, 206–207
routes registered in, 11

GlobalFilters collection, 293
globalization, validation and, 178–179
Google, 240

OpenID URL, 241
Google Gears, 225
GZIP compression, 401

H
HandleError attribute, 205–206, 292–293
helper classes, 94

proliferation, 95
@helper keyword, 84
HiddenInput attribute, 167
hiding user interface elements, 231
hoisting, 377
HTML

form tag, 53
composing, 27–28

HTML 5, 373
new tags, 394

HTML content, replying with, 26
HTML elements, rendering, 54
HTML encoding, 86
HTML forms, rendering, 52–53
HTML helpers, 50–61, 68–70, 131

action links, 54–55
Ajax helpers, 61, 406
custom helpers, 59–61
declarative, 83–86
for default text, 60
editable forms, building, 153–154
HTML elements, rendering, 54
HTML forms, rendering, 52–53
HtmlHelper class, 55–56
metadata use, 154
MvcHtmlString wrapper objects, 59–60
overloads, 52
partial views, rendering, 55
stock set of methods, 51
structure of, 59
templated HTML helpers, 56–58
templates, acceptance of, 87
validation helpers, 137

HTML helpers

424

HTML layouts, matching to view names, 47
HTML-level code reuse, 51
HTML markup, returning, 27–28
HTML Message pattern, 143, 406, 408
Html property, 52
HTML responses

generation of, 41
view engines and, 42

Html.ActionLink helper, 18
HtmlHelper class, 51, 55–56

native methods, 55–56
HtmlHelper type, 85
Html.Pager helper, 69
Html.Raw helper method, 75
Html.SimpleGrid helper, 69
HTTP codes

custom pages or routes for, 209
HTTP 301 code, 190–191
HTTP 302 code, 190
HTTP 401 code, 231
HTTP 403 code, 313–314
HTTP 404 code, 8, 14, 209, 211, 313–314

HTTP compression, 295–298
HTTP context, mocking, 350, 358–368
HTTP endpoints, calling, 408
HTTP GETs, 19
HTTP handlers

asynchronous, 33
behavior, defining, 5–6
invoking, 6–7
URLs, binding to, 4

HTTP modules, global error handling with, 207–208
HTTP POSTs, 19
HTTP verbs

accepting, 304
actions, expressing with, 10, 19

HttpApplication objects Error event, 206–207
HttpContext objects, 190

mocking, 359
HttpContextBase class Cache property, 363–364
HttpGet attribute, 113
HttpMethodOverride method, 53
HttpNotFoundResult class, 26
HttpPost attribute, 113
HttpPostedFileBase type, 117
HttpPostedFileBaseModelBinder type, 123
HttpRequest objects, 190
HttpResponse class RedirectPermanent method, 191
HttpResponse objects, 190–193
HttpSessionState class, 193–194

HttpSessionState objects, 190
HttpStatusCodeResult class, 313–314
HttpUnauthorizedResult class, 26
HttpVerbs enum type, 19
Humble Object pattern, 355–358
hyperlinks in Ajax forms, 152–153

I
I/O-bound operations, 39–40
I/O completion ports, 35
IActionFilter interface, 290, 292
IAsyncResult objects, 34–35
IAuthorizationFilter interface, 292
ICacheService interface, 196–197
ICacheService objects, 196
IClientValidatable interface, 178, 182–183
IConsumerTokenManager interface, 249
IControllerFactory interface, 277
ID selectors, 385
Idiomatic Presentation, Orchestration, Domain and
Data pattern . See iPODD (Idiomatic Presentation,
Orchestration, Domain and Data) pattern
IExceptionFilter interface, 292
Ignore attribute, 338
IHtmlString interface, 60
IHttpHandler interface, 5
IIS

authentication services, 227
error handling, bypassing, 211–212
integrated mode, 227
worker process identities, 119

images, optimizing, 402–403
immediate functions, 398
IModelBinder class, 282
IModelBinder interface, 107, 121

definition of, 122
IModelBinderProvider class, 282
inbound links, case sensitivity, 192
inheritance, 310

with prototypes, 382
@inherits declaration, 78
initialization code, 391–392
injectable dependencies, 393–394 . See also
unobtrusive JavaScript
injection

caching service, 195–198
code injection, 274

HTML layouts, matching to view names

 425

injection (continued)
of dependencies, 264 . See also Dependency
Injection (DI)
of malicious code, 227

inline code, 66
inline expressions, 66
input data

controller access to, 105
editing, 134–136
invalid, 138
manual retrieval of, 21–25
from multiple sources, 23
passing to processing layer, 133
processing, 21–25
from Request object, 22
from routes, 22–23
saving, 136–139
sources of, 24

INPUT elements, multiple, 118
input forms

Ajax-based, 143–153
automating writing of, 153–167
data entry patterns, 132–153
Post-Redirect-Get pattern, 139–143
repost confirmation message, 139
script files for, 178
Select-Edit-Post pattern, 132–139
validation, 54, 167–185

input model, 103–106
model binders, 105–106

input parameters, source of, 20
input processing

ASP .NET MVC, 105–106
Web Forms, 104–105

input validation, 167–185
for Ajax forms, 177–178
centralized validation, 181–182
client-side validation, 177–178
Code Contracts, 185
cross-property annotations, 173–175
culture-based client-side validation, 178–179
data annotations, 168–180
dynamic, 183–185
enumerated types, 171–172
error messages, 172–173
levels of, 167–168
model classes, decorating, 170–171
remote, 179–180
self-validation, 180–185
validation attributes, custom, 175–176

validation provider infrastructure, 168–169
integration tests, 333
interception points for action filters, 307
interface-based programming, 330
Interface Segregation principle, 236, 332
interfaces for action filters, 292
internal components, replacement of, 281–289
InternalsVisibleTo attribute, 343
Internet Information Services . See IIS
intrinsic objects, 189–200

Cache object, 194–200
HTTPResponse object, 190–193
Session object, 193–194

Inversion of Control (IoC) frameworks, 275–276, 281
configuration data, 279
dependency resolvers in, 288–289

InvokeActionMethodWithFilters method, 307
overriding, 307–308

invokers for asynchronous methods, 38
IoC . See Inversion of Control (IoC) frameworks
iPODD (Idiomatic Presentation, Orchestration,
Domain and Data) pattern, 265–271

data layer, 269–271
domain layer, 268–269
orchestration layer, 267
presentation layer, 266–267

IResultFilter interface, 292
IRouteHandler interface, 13
IsValidForRequest method, overriding, 305
@item, 87
Item indexer, 22
ITempDataProvider class, 282
iTextSharp library, 324
IValidatableObject interface, 181
IValueProvider class, 282
IView interface, 46
IViewEngine class, 282
IViewEngine interface, 42

members, 44
methods, 44

J
JavaScript

in Ajax applications, organizing, 409–410
anonymous functions, 374
ASP .NET MVC, Ajax, and, 403–414
basics, 374–379
closures, 380–381

JavaScript

426

JavaScript (continued)
custom objects, 382
functions, 378–379
global self-contained functions, 410
hoisting, 377
for HTML 5, 373
immediate functions, 398
jQuery library, 383–392
libraries, 298
local and global variables, 375–376
Module pattern, 398–399
Namespace pattern, 397–398
null vs . undefined, 375
object orientation, 379–382
objects, 377–378
properties, grouping in containers, 395–397
prototypes, 381–382
reusable packages and dependencies, 396–399
script and resource loading, 399–403
static analysis of, 376
type system, 374–375
unobtrusive, 150–152
unobtrusive code, 392–396
updaters and controllers, 409–413
uses, 374
var keyword, 376

JavaScript Patterns (Stefanov), 398
JavaScriptResult class, 26–27, 314–316
JavaScriptSerializer class, 316
JetBrains ReSharper, 92
jQuery, 151–152, 383–392

bind/unbind functions, 390–391
constraints of, 396
DOM queries, 383–385
DOM readiness, 391–392
events, 390–392
filters, 387–389
getJSON function, 320
global namespace, pollution of, 409–410
globalization plug-in, 179
HTTP endpoints, calling, 408
jQuery function, 383–384
library structure, 383
live binding, 391
page readiness, 391–392
plug-ins, 394–396, 409
queries, running, 384
selectors, 385–390
Template plug-in, 412

wrapped sets, 383–385
jQuery function, 383–384
jquery.unobtrusive-ajax.js file, 151, 153
JSLint, 376
JSON-based solutions, 413–414
JSON calls, 316
JSON content, returning, 28–29
JSON data

Ajax, downloading via, 318–320
returning, 316–317

JSON data providers, 408–409
Json method, 21
JSONP protocol (JSON with Padding), 318–320
JsonpResult class, 318–319
JsonResult class, 26, 316

L
LABjs library, 400
lambda expressions, 57
Language attribute, 67
languages, switching on the fly, 224
layer, definition of, 264
layered code, 16
layout pages, 79

data, sharing with, 88–89
default content, 81
nesting, 82–83
sections, 80–81
templated delegates and, 87–88

Layout property, 79
layout templates

code, flowing into, 80
requesting, 82

legacy URLs, 193
lengthy operations, 33–36

asynchronous methods for, 39–40
links, route-based, 17–18
Liskov’s Substitution Principle, 332
live binding in jQuery, 391
local binders, 123, 128
local variables, 375–376
localizable applications, 220–226
localizable resources, 212–220

global file for, 214–215
localizable files, 216–217
localizable text, 214–216
localizable views, 219–220
storing in database, 225–226

JavaScript

 427

localization, 212–226
auto-adapting applications, 221
culture, changing programmatically, 222–225
custom view engine, 283–284
global filters for, 222–223
localizable applications, 220–226
localizable resources, 212–220
multilingual applications, 221–222
with resource files, 172–173
testing, 349–351

localized views, 283
location formats, 63
locators, calling, 273
login and logout, 232–233
LogOff method, 233
LogOn method, 233
LogOnViewModel class, 234
loosely coupled systems, 286
low coupling principle, 330

M
magic strings, 91
maintainability of software, 327, 330
malicious code, preventing injection, 227
MapRoute method, 11, 36
markup

control over, 3
HTML encoding, 88
wrapping in HTML tags, 74

Martin, Robert, 271
@Master directive, 65
master views, 50

defining in ASPX, 65–66
defining in Razor, 78–79

McKean, Alan, 254
mediators in testing, 355–358
membership API, integrating with, 234–235
Membership class, 234
membership controllers, defining, 232–237
membership providers, creating, 234–235
membership system

implementing, 232–239
membership controller, defining, 232–237
Role API, 236–237
SimpleMembership API, 236
user credentials, validating, 233–234

Memcached, 195
Memo class, 170–171

MemoryCache class, 198
MemoryCache objects, 198
metadata

consumption of, 154–155
data annotations, 154
processing, 57
reading, 158

metadata providers, 154
for read-only members, 161–162
registering, 162

method responses
caching, 199–200
compressing, 295–298

method selectors, 303–304, 306
method signature, controller, 107
methods

Ajax calls, restricting to, 305
duplicate names, 20
HTTP verbs, associating, 19
validating, 303–304

Microsoft content delivery network (CDN), 145
Microsoft Enterprise Library, 183–184
Microsoft IntelliSense, 382
Microsoft Internet Information Services . See IIS
Microsoft Moles, 334, 364
Microsoft .NET: Architecting Applications for the
Enterprise (Esposito and Saltarello), 106, 168, 332
Microsoft Office, creating PDFs with, 325
Microsoft Office automation, 325
Microsoft Passport, 240
Microsoft Visual Studio . See Visual Studio
Microsoft Visual Studio Team Foundation Server
custom policies, 330
MicrosoftAjax.js file, 145, 153, 177
MicrosoftMvcAjax.js file, 145, 153, 177
minification, 401
missing content, handling, 209–212
missing resources, 26
mobile browsers, 298
mock objects, 341–342, 352

dynamically generated, 361
mocking

Cache object, 363–365
HTTP context, 350, 358–368
HttpContext object, 359
Request object, 359–360
Response object, 360–361
Session object, 362–363

mocking frameworks, 353–354

mocking frameworks

428

model binder, default, 108–119
binding collections, 112–117
complex types, 111–112
customizable aspects, 119–120
customizing, 121–122, 124
fixed IDs, 115
optional values, 109–110
prefixes, 120
primitive types, 108–109
validation, 168
value providers used, 110

model-binder classes, 107
model binder provider

registering, 285
replaceability of, 282

model binders, 22
implementing, 122–123
registering, 123–124, 285
replaceability of, 282
role of, 105–106
sample binder, 124–128

model binding, 107–120
advanced model binding, 120–128
Bind attribute, 119
binder, getting, 107–108
binding collections, 112–117
complex types, 111–112
custom binders, 121–124
default model binder, 108–120
exceptions, intercepting, 208
infrastructure, 107
method signature, analyzing, 107
nullness, checking for, 139
optional values, 109–110
primitive types, 108–109
progressive and static indexes, 116–117
properties, excluding, 120
properties, including, 119–120
sample custom binder, 124–128
uploaded files, 117–119

model binding layer, 20
model metadata

registering, 285
replaceability of, 282

Model property, 78–79
model validator

registering, 285
replaceability of, 282

Model-View-Controller pattern, 3

ModelMetadataProvider class, 282
ModelMetadataProvider type, 162
models, types of, 106
Models folder, 103, 106
ModelState dictionary, 137–139

editing, 172–173
feedback, adding, 142
invalid values in, 169

ModelValidatorProvider class, 282
Module pattern, 398–399
Moq, 342
MSDN Magazine, 276
MSTest, 335–336, 344

TestContext variable, 339
multilingual applications, 221–222
multiple file uploads, 118
multiserving applications, 298
Mvc Futures, 284–285
MvcHtmlString wrapper objects, 59–60
myOpenID, 242

N
name/value pairs, 377
namespace function, 397–398
Namespace pattern, 397–398
namespaces

data annotations in, 154
importing, 80

NCache, 195
nested layouts, 82–83
nested models, 166–167
 .NET objects, serializing, 316
NETWORK SERVICE account, 118
new keyword, 379–380
NHibernate, 268
Ninject, 275
NMock2, 342
NoAsyncTimeout attribute, 39
NonAction attribute, 19, 303–304
nonpublic members, testing, 343–344
nonvirtual methods, testing, 334
nth-child filter, 388
null values, 375
nullness, checking for, 24, 139
NUnit, 335–336

model binder, default

 429

O
OAuth

applications, registering, 246–247
functionality of, 250
vs . OpenID, 246, 251

Object Design: Roles, Responsibilities, and
Collaborations (Wirfs-Brock and McKean), 254
object model, definition of, 268
object orientation

closures, 380–381
in JavaScript, 379–382
prototypes, 381–382
testability and, 334

Object/Relational Mapper (O/RM) tools, 268
object stereotypes, 254–255
Object type, 380
Object.aspx template, 158
objects

editing, 57–58
in JavaScript, 377–378

Office automation, 325
OnActionExecuted method, 290, 292
OnActionExecuting method, 224, 290, 292
OnAuthorization method, 292

overriding, 230
OnBegin callbacks, 152
OnComplete callbacks, 152
onEditCompleted JavaScript function, 149
OnException method, 292

implementing, 204
overriding, 202–204

onload event, 391–392
OnModelUpdated method, overriding, 121
OnPropertyValidating method, 121–122
OnResultExcepted method, 292
OnResultExcepting method, 292
OnResultExecuting method, 298
OnSuccess callback, 152
Open/Closed Principle, 332
OpenID, 240–246

OpenID URL, 241–242
sample application for connecting to providers,
241–242
vs . OAuth, 246, 251

OpenID providers, 240
OpenIdRelyingParty type, 243
OperationCounter class, 38

operations
lengthy operations, 33–36
termination of, 35

optimization, 401–402
orchestration, chunky vs . chatty, 267
orchestration layer, 267

testing, 347
Order property, 293
Osherove, Roy, 348
output caching

authorization and, 229
partial, 200

OutputCache attribute, 199–200, 293
properties of, 199

OutstandingOperations member, 38

P
page life cycle, 104–105
page-loading performance, 399–400
page titles, updating in Ajax forms, 148–150
PageData dictionary, sharing with layouts and views,
88–89
paging data, 69–70
parameters

catch-all parameters, 14–15
prefixes, 120

Parameters dictionary, 38
partial classes, 343
Partial helper, 55, 136
Partial method, extending, 219–220
partial output caching, 200
partial rendering, 143, 147–148 . See also Ajax forms
partial views

for property types, 57
rendering, 55
resolving, 58, 284

PartialViewResult class, 26
Passport authentication, 227
passwords

storing, 235
validating, 235–236

path coverage of testing, 344
patterns

Browser Template pattern, 406
of data entry, 132–153
Dependency Injection pattern, 274–275
HTML Message pattern, 406, 408
Humble Object pattern, 355–358

patterns

430

patterns (continued)
iPODD pattern, 265–271
Module pattern, 398–399
Namespace pattern, 397–398
Post-Redirect-Get pattern, 139–143
Select-Edit-Post pattern, 132–139
Service Locator pattern, 272–273
unobtrusive JavaScript, 150–152

PDF files
creating, 324–325
returning, 324–325

per-status code views, 209
performance

closures and prototypes and, 382
databases and, 226

permanent redirection, 190–191
persistent cookies, 237
persistent entities, 269
Pex add-in, 345
physical files

request handling, 14
requests for, 14

placeholders in URLs, 10
plain-old CLR (POCO) classes, 268
positional filters in jQuery, 387
POST actions

and GET actions, splitting, 140–141
updating via, 141

Post-Redirect-Get pattern, 139–143
POST actions, updating via, 141
POST and GET actions, splitting, 140–141
POST requests, terminating, 140
redirects, saving data across, 141–143

POST requests, termination of, 140
postbacks

server controls and, 70
state, persisting, 131
URL for, 137

posted files, input data from, 24
posting changes, 136–137
PostResolveRequestCache event, 9
precedence of request collections, 110
preconditions, determining with Code Contracts,
263–264
prefixes, 120, 128
presentation, separating from content, behavior, 394
presentation layer

and back end, connecting, 264–279
controller in, 40
idiomatic, 266

in iPODD architecture, 266–267
validation, 168–183

primitive types, 374
binding, 108–109

principle of separation of concerns (SoC), 16
PrivateObject class, 344
productivity, 327
program exceptions, handling, 201–206
progressive indexes, 116
properties

remote validation, 179–180
whitelists and blacklists of, 119–120

prototype property, 377
prototypes, 381–382
provider-based extensibility model, 282–286

extensibility points, 282–283

Q
queries, selectors, 385–390
query strings, input data from, 24

R
Rapid Application Development (RAD), 327
raw HTTP request data

modeling of, 105–106
Web Forms processing, 104–105

Razor view engine, 28, 72–89 . See also view engines
@ expressions, 73–75
C#-based vs . Visual Basic-based views, 75–76
code nuggets, 73–75
custom base class, 77–78
custom templates, 163
DateTime binder markup, 124
declarative HTML helpers, 83–86
default content placeholders, 81
layout pages, 79
precedence of, 48
sample view, 78–86
search locations, 72–73
view object, 76–77
WebMatrix part, 47

RDD, 254
concepts and terms, 255
Controller stereotype, 255–256
Coordinator stereotype, 133, 255–257
stereotypes, 255

read-only templates, 161–162

patterns

 431

readability of software, 330
ReadOnly attribute, 154, 161–162
ready event, 392
readyState property, 392
redirection

permanent, 190–191
saving data across, 141–143
testing, 351

RedirectPermanent method, 191
RedirectResult class, 26, 351
RedirectResult type Permanent, 191
RedirectToRouteResult class, 26, 351
refactoring, 70
reflection, 58
Register actions, 41
register.aspx pages, 41
RegisterCacheService method, 198
RegisterRoutes method, 11, 351
RelyingParty property, 243
Remember-me feature, Ajax and, 237–239
Remote attribute, 179–180
remote validation, 179–180
render action methods, 68
render actions, 98–99, 194, 301
RenderAction helper, 98–99
RenderBody method, 80
RenderPage method, 81
RenderPartial helper, 55, 136
RenderSection method, 80–81

overloading, 87–88
replaceable components, 283–289

registering, 285
replacement of internal components, 281–289
repositories, injecting worker services, 276–277
repository classes, 269–270

context objects, lifetime of, 271
methods in, 270
structure of, 270

Representational State Transfer (REST), 9–10
Request collections, 105
request collections, precedence, 110
Request objects

input data from, 22
mocking, 359–360

request processing
asynchronous, 33–37
separating from display, 40
sequence of, 45
synchronous, 36–37
by URL routing HTTP module, 7–9

request tampering, 119
RequestContext class, 13
Request.Params dictionary, 22
requests

asynchronous, 33–36
culture, setting, 222–223
execution, 255
handling via routing, 14
length of, 118
for physical files, 14
resolving, 17, 107
results of, 3
routing, 4–15
user placement of, 3

RequireHttps filter, 293
RequireJS library, 400
requirement churn, 327
ReSharper (JetBrains), 92, 335
resource files, multiple, 215
resource manager culture detection, 215
ResourceManager class, 217
resources

Content folder, grouping under, 216
culture-specific, 215
definition of, 213
embedded, 213–214, 217–219
for error messages, 172–173
global vs . local, 212
identification of, 4
localizable, 212–220
localizable text, 214–216
missing, 26
public and internal, 213
storing in database, 225–226

Resources folder, multiple RESX files, 215
response generation, separating from behavior, 3
response headers

for Ajax requests, 149
custom, 290–291, 294–295

Response objects
mocking, 360–361
TrySkipIisCustomErrors property, 211

response stream
customizing, 190
generating, 46

responses
binary data, 322–324
compressing, 295–298
JavaScript, 314–316
JSON data, 316–317

responses

432

responses (continued)
JSONP responses, 319
PDF files, 324–325
status code and description, 313
syndication feed responses, 320–322

Responsibility-Driven Design (RDD) . See RDD
REST, 9–10
result filters, 298
results, action, 25–29

HTML markup, 27–28
JSON content, 28–29
mechanics of, 27
predefined types, 26

RESX files
multiple, 215
role of, 213–214

reusable packages, 396–399
Rhino Mocks, 342
Role API, 236–237
role providers, custom, 236–237
RoleProvider class, 236
roles

definition of, 236
validating, 237

round brackets in Razor expressions, 75
Route class, 55
route exceptions, handling, 209
route handlers, 13–14

custom, 14, 17–18
RouteData collection, 17
RouteData objects, 13
RouteData.Values dictionary, 23
RouteExistingFiles property, 14
RouteLink helper, 54
routes, 10

attributes of, 12
catch-all routes, 210–211
constraints, 12
default, 10, 12
devising for SEO, 191–192
input data from, 22–24
placeholders in, 10
processing, 12–13
processing order, 12
registering, 11, 17–18
testing, 351–352
URLs, matching to, 12–13

RouteTable.Routes collection, 11

routing
preventing, 14–15
subdomains awareness, 55

RSS 2 .0 feeds, 320–322
run-time environment of ASP .NET MVC, 3

S
Saltarello, Andrea, 106, 168, 332
Save As dialog box, 323
ScaffoldColumn attribute, 167
scalability, asynchronous operations and, 33–34
ScaleOut, 195
script functions, programmatically invoking, 316
Script property, 314
<script> tags, 316

defer attribute, 400
for JSONP calls, 320

scripts
compressing, 401
loading, 399–401

sealed classes, testing, 334
search engine optimization (SEO) . See SEO
security, 227–231

authentication services, 240–251
definition of, 227
membership system, implementing, 232–239
per-status codes and, 209

Select-Edit-Post pattern, 132–139
drop-down lists, presenting, 133–134
Edit actions requests, 134
input data, editing, 134–136
input data, passing to processing layer, 133
input data, saving, 136–139
storage layer, saving changes to, 132
view, recreating and repopulating, 135
view model objects, obtaining, 133

selectors, 385–390
compound, 386–387
CSS-based selectors, 385
filters, 387–389
ID selectors, 385
tag-based selectors, 386

Selenium, 101
self-validation, 180–185
SEO, 190–193

per-status code views and, 209
redirection and, 190–191
routes and URLs, devising, 191–192
trailing slash and, 192–193

responses

 433

separation of concerns (SoC), 16, 257
layers for, 271

server applications, Office automation in, 325
server controls, 49–51, 70–71

input validation and, 131
role of, 104–105
stateful programming and, 131

server-side validation, 179
servers

files, creating on, 118
files, saving uploaded, 117

service layer, Ajax, 403–405
Service Locator (SL) pattern, 272–273

in ASP .NET MVC, 287–288
dependency resolver, defining, 288–289
vs . Dependency Injection, 286–287

service locators, 162
registering, 287

Service-Oriented Architecture (SOA), 267
session class, faking, 362
Session object, 193–194

feedback, saving to, 141–143
mocking, 362–363

session state management, 193–194
SetControllerFactory method, 277
Shared Cache, 195
SimpleMembership API, 236
simplicity of code, 329, 340
Single Responsibility Principle, 332
single sign-on schemes, 246
singly registered components, 287–288
SOA, 267
SoC, 16, 257, 271
software . See also design, software; design principles

control, 329
interface-based programming, 330–332
maintainability, 330
readability of, 330
simplicity of, 329
SOLID development principles, 236, 257, 271, 332
testing and testability, 327–369
units of, 334
visibility of behavior, 329

SOLID acronym, 236, 257, 271, 332
solutions, layering in, 40
SortEncodings method, 297
Spring .NET, 275
sprites, 402–403
StackOverflow, 284
stateful programming models, 131

statement coverage of testing, 344
static indexes, 116–117
static resources

download time, minimizing, 401–402
script loading, 399–401

status codes . See also HTTP codes
custom pages or routes for, 209
encapsulating, 314

Stefanov, Stoyan, 398
stereotypes, object, 254–255
StopRoutingHandler class, 14
storage, types of, 266
storage layer, saving changes to, 132
string members, null, 139
string parameters, null, 139
strings, arrays of, 112–113
strongly typed view models, 78, 92–94
StructureMap, 275
subdomains, awareness of`, 55
submit buttons, restricting methods to specific,
305–306
SwitchToErrorView method, 204
syndication feed responses, 320–322
SyndicationResult class, 320
System.Runtime.Caching assembly, 198
System.ServiceModel.Syndication namespace, 320
System.ServiceModel.Web assembly, 320
System.Web.WebPages assembly, 76

T
table-based layouts, 163–164
tag-based selectors, 386
TagBuilder class, 59
TempData

registering, 285
replaceability of, 282

TempData dictionary, 141–143
alternate storage, 284–285

templated delegates, 86–88
and formatted text, 88–89
and layout pages, 87–88
sharing, 89

templated HTML helpers, 56–58
overloads, 56

TemplateInfo property, 157
test doubles, 341–342

for dependencies in testing, 352–356
test environment, choosing, 335–336

test environment, choosing

434

test fixtures, 336–337
test harnesses, 330, 334–339

arrange, act, assert layout, 337–338
test environment, choosing, 335–336
test fixtures, 336–337

test methods, 334
arrange, act, assert layout, 337–338

testability
control, 329
coupling and, 330–331, 333
definition, 328
object orientation and, 334
relativity of, 332–333
simplicity, 329
software design and, 328–334
visibility, 329

TestClass attribute, 337
TestCleanup attribute, 337
TestDriven .NET, 335
testing

acceptance tests, 348
action filters, 365–368
assertions per test, 343
asynchronous methods, 354–358
data access layer, 348
data access operations, 353–354
data-driven tests, 339
definition, 328
dependencies, dealing with, 352–358
domain layer, 347
front-end test tools, 99–101
HTTP context, mocking, 358–368
Humble Object pattern, 355–358
ignoring tests, 338–339
importance of, 327
inconclusive tests, 338–339
integration tests, 333
localization, 349–351
mediators in, 355–358
for nullness, 139
orchestration layer, 347
redirections, 351
routes, 351–352
test environment, choosing, 335–336
test fixtures, 336–337
unit testing, 334–345
unit testing ASP .NET MVC code, 348–352
views, 99–101
vs . debugging, 328
which part to test, 345–348

TestInitialize attribute, 337
TestMethod attribute, 337
text

HTML encoding, 59–60
localizable, 214–216

ThreadAbortException, 203
threads in asynchronous operations, 34–36
three-level architecture, 264
tier, definition of, 264
tight coupling, 330–331
timeout values, for asynchronous operations, 39
TimeSpan objects, 126
titles, page, updating in Ajax forms, 148–150
token managers, 249–250
tooltips, adding, 70–71
transient entities, 269
trigger methods, 34–36

attributes on, 39
coding, 38

try/catch blocks, exception handling with, 201–202
TrySkipIisCustomErrors property, 211
Twitter user authentication, 246–251
Typemock, 334, 342
Typemock Isolator, 364

U
UICulture property, 221
UIHint annotation, 159

for read-only templates, 161–162
unauthorized access, 26
undefined variables, 375
Uniform Resource Identifiers (URIs), 4
Uniform Resource Locators (URLs) . See URLs
Uniform Resource Names (URNs), 4
unit testing, 334–345 . See also testability; testing

of ASP .NET MVC code, 348–352
assertions, 343
code coverage, 344–345
fakes and mocks, 341–342
focus of, 331
granularity of, 329
HTTP context, mocking, 358–368
inner member testing, 343–344
limited scope, 340
reliability of, 344
test environment, choosing, 335–336
test harnesses, 334–339
testing in isolation, 340–341

test fixtures

 435

unit testing (continued)
as white-box testing, 347
writing tests, 348

units of code, 334
Unity, 275–276, 279

custom controller factory in, 278–279
dependency resolver, 288–289

unobtrusive JavaScript, 147, 150–152, 392–396 . See
also JavaScript

Ajax callbacks, order of, 146
for client-side validation, 178
jQuery plug-ins, 394–396
rules of, 393–394

Update method, 137
update operations, 141
updaters, JavaScript, 409–413
uploaded files, binding, 117–119
URIs, 4
URL parameters, 10
URL patterns, 10

in routes, 12
URL rewriting, 7–8
URL routing, 8–10

physical files requests, 14
preventing for defined URLs, 14–15
route handlers, 13–14
routes, defining, 11–12
routes, processing, 12–13

URL routing HTTP module, 7–9
internal structure, 9
role of, 8–9

URL template, 156–157
Url.Content method, 66

content files, referencing, 216
extending, 216–217

UrlHelper class, 54
URLs, 4

absolute paths of, 10
canonical URL format, 192
case sensitivity, 192
custom, 10, 17
devising for SEO, 191–192
HTTP handlers, binding to, 4
invalid, 209
legacy URLs, 193
page-agnostic, 6–7
parsing, 5–6
parts of, 4
for posts, generating, 137
recognized, 4–5, 7

routes, matching to, 12–13
routing, preventing, 14–15
synchronization with displayed content, 139–140
syntax, defining, 4–5
tilde () operator, 66, 216
trailing slash, 192–193
uniqueness, 191–192
of update operations, 141

URNs, 4
use-cases, presentation layer, 269
user authentication via Twitter, 246–251
user credentials, validating, 233–234
user interface

drop-down lists, presenting, 133–134
hiding elements, 231
updating, 409

UserData property, 245
users

creating, 232
friendly names of, 243
identifying, 241–245
logging on and off, 232–233
requests, placing, 3
roles, 236

@using directives in Razor files, 80

V
VAB, 183–184
ValidateAntiForgeryToken filter, 293
ValidateInput filter, 293
validation, 58

of action names, 302–303
centralized, 181–182
client-side validation, 177–178
data type validation, 160
input validation, 167–185
of methods, 303–304
of passwords, 235–236
of roles, 237
on server, 179
against specific types, 121
for update operations, 137
of user credentials, 233–234

Validation Application Block (VAB), 183–184
validation attributes, custom, 175–176
validation messages, 54
validation providers, 168–169
ValidationAttribute class, 169

 ValidationAttribute class

436

ValidationMessage helper, 137
value provider factories, 285–286
value providers, 105, 285–286

custom, 25
list of, 24
request collections covered, 110

ValueProvider dictionary, 24–25
ValueProviderResult type, 24
values, editing, 57–58
var keyword, 376
variables

dynamic variables, 95–96
hoisting, 377
local and global, 375–376
values of, 375

VaryByParam attribute, 199
view class, custom, 77–78
view context, 90
view engines, 41 . See also ASPX view engine; Razor
view engine

anatomy of, 44–45
calling, 45–46
class hierarchy, 64
and controllers, interaction, 42
culture-driven, 283–284
custom, 96–98
default conventions and folders, 47–49
detecting, 43–44
HTML helpers, 50–61
HTML markup, composing, 28
location format properties, 98
markup language, 47
mechanics of, 42–47
Razor view engine, 72–89
registering, 285
replaceability of, 282
role of, 46
structure and behavior of, 42–50
Web Forms view engine, 62–71

View method, 45–46
view name, 46

view-model classes
defining, 92–93
modeling view in, 94
packaging, 96
retrieving, 93–94
reusing, 94

view model objects, obtaining, 133

view models, 21, 56, 103, 106
for Ajax forms, 148
filling, 301–302
messages related to, 137–138

view names
HTML markup, translating into, 47
resolving, 47–49

view objects, 44, 46–47
Razor view object, 76–77

view selectors, 298–300
view state

role of, 105
stateful programming and, 131

view subsystem, action results and, 3
view templates

defining, 47–50
generation of, 3
locating, 47–48
locations, 28, 62
markup languages, 48
master view, 50
purpose, 49–50
readability, 72
search locations, 63
sections, 80–81
syntaxes, 28, 48–49
ViewData content, retrieving, 90–91

ViewBag dictionary, 50
in code nuggets, 78
passing data to view with, 90–92

ViewBag property, 57
ViewData dictionary, 50

in code nuggets, 78
content, retrieving, 90–91
passing data to view with, 90–91

ViewEngineResult objects, 44–45
ViewEngines class, 43
ViewModels folder, 96
ViewName property, 349
ViewPage class, 52
ViewResult class, 26, 46
ViewResult objects, 28, 47
views

Ajax, adding, 143
code blocks, 66–68
coding, 90–101
controller methods, calling from within, 98
controllers, separation from, 16, 71, 194

ValidationMessage helper

 437

views (continued)̀
designing in ASPX view engine, 65–71
designing in Razor view engine, 78–86
feedback, passing to, 141–143
global information around, 301–302
hierarchical, 163
localizable, 219–220
locations cache, 63–64
master views, 65–66
modeling, 90–96
names, 46
partial, 55, 147–148
passing data to, 66–67, 71, 78, 88–92
reading and maintaining, 72
recreating and repopulating, 135
rendering, 46–47
rendering logic, 68–69
resolving, 58, 284
strongly typed models, 92–94
testing, 99–101, 348–349
view-model classes, 92–94

Views folder, 28, 47–48
_ViewStart.cshtml file, 79
ViewStartPage class, 88–89
ViewUserControl class, 55
Virtual Accounts, 119
virtual file systems, 65
virtual path providers, 64–65
VirtualPathProvider class, 64–65
VirtualPathProviderViewEngine class, 64
visibility of software behavior, 329
Visual Basic, in Razor templates, 74–76
Visual Studio

code-coverage tools, 344
controller class, creating, 254
debugging tools, 327
IntelliSense, and dynamic types, 92
Moles add-in, 334, 364
Pex add-in, 345
test fixtures, 336–337

W
WatiN, 100–101
W3C API, 225
web applications . See also applications

session state management, 193–194
virtual file system for, 65

Web browsers . See browsers
Web Forms

code-behind class, 40
compression, 295
HTML, composing, 27–28
input processing, 104–105
location-aware physical resources, 4
master/detail view, 301
obsolescence of, 3
page life cycle, 104–105
page-processing phase, 40
pages, logic and view in, 41
resource folders, 212
server controls, 49
submit buttons, 305
switching views, 300
view, recreating and repopulating, 135
view engine, 62–71, 81
view state, 105

web pages
initialization code, 391–392
script loading, 399–401
sprites, 402–403
static files, 401–402

Web UI testing tools, 101
web.config file

<authentication> section, 228
client-side validation entry, 177
for custom view engines, 98
<customErrors> section, 200
<dynamicFilters> section, 309
globalization section, 221–222
httpRuntime section, 118

WebFormViewEngine class, 62–63
properties, 62

WebMatrix, 84
WebPage class, 52
WebSecurity class, 236
WebViewPage class, 76

IsSectionDefined method, 81
RenderBody method, 80

Wilson, Brad, 158
Windows 7 Virtual Accounts, 119
Windows authentication, 228, 231
Windows Server 2008 R2 Virtual Accounts, 119
Wirfs-Brock, Rebecca, 254
worker process identities, 119
worker service classes, 258–262

implementing, 260–262

 worker service classes

438

worker services
controller classes, injecting into, 276–277
orchestration and, 267
repositories, injecting, 276–277

WorkerServices folder, 260
wrapped sets, 384

chaining operations, 389–390
enumerating content, 384–385
find or filter function, 389

X
X-HTTP-Method-Override, 304
XML rulesets, 184

XMLHttpRequest objects, 237
xUnit .net, 335–336

Assert.Throws method, 339
test classes, 337

xxxAsync method, 35–37
xxxCompleted method, 37
xxxFor helpers, 52

Y
YAGNI principle (You Aren’t Gonna’ Need It), 196
Yahoo!, 240

OpenID URL, 241

worker services

	Cover
	Contents at a Glance
	Table of Contents
	Introduction
	Who Should Read This Book
	Assumptions
	Who Should Not Read This Book
	System Requirements
	Code Samples
	Errata & Book Support
	We Want to Hear from You
	Stay in Touch

	Acknowledgments
	Chapter 3:The Model-Binding Architecture
	The Input Model
	Evolving from the Web Forms Input Processing
	Input Processing in ASP.NET MVC

	Model Binding
	Model-Binding Infrastructure
	The Default Model Binder
	Customizable Aspects of the Default Binder

	Advanced Model Binding
	Custom Type Binders
	A Sample DateTime Model Binder

	Summary

	Index

