

Fundamentals of Microsoft®
.NET Programming

Rod Stephens

Copyright © 2011 by Rod Stephens
All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

ISBN: 978-0-7356-6168-4

1 2 3 4 5 6 7 8 9 LSI 6 5 4 3 2 1

Printed and bound in the United States of America.

Microsoft Press books are available through booksellers and distributors worldwide. If you need support related
to this book, email Microsoft Press Book Support at mspinput@microsoft.com. Please tell us what you think of
this book at http://www.microsoft.com/learning/booksurvey.

Microsoft and the trademarks listed at http://www.microsoft.com/about/legal/en/us/IntellectualProperty/
Trademarks/EN-US.aspx are trademarks of the Microsoft group of companies. All other marks are property of
their respective owners.

The example companies, organizations, products, domain names, email addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain name,
email address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without
any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation,
nor its resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions and Developmental Editor: Russell Jones

Production Editor: Jasmine Perez

Editorial Production: S4Carlisle Publishing Services

Technical Reviewer: Debbie Timmins

Indexer: WordCo Indexing Services, Inc.

Cover: Valerie DeGiulio

Contents at a Glance

Introduction xiii

ChaPTEr 1 Computer hardware 1
ChaPTEr 2 Multiprocessing 15
ChaPTEr 3 Programming Environments 25
ChaPTEr 4 Windows Program Components 33
ChaPTEr 5 Controls 49
ChaPTEr 6 Variables 71
ChaPTEr 7 Control Statements 91
ChaPTEr 8 Operators 105
ChaPTEr 9 routines 119
ChaPTEr 10 Object-Oriented Programming 141
ChaPTEr 11 Development Techniques 167
ChaPTEr 12 Globalization 183
ChaPTEr 13 Data Storage 191
ChaPTEr 14 .NET Libraries 209

Glossary 215

Index 227

About the Author 241

 v

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

Contents

Introduction . xiii

Chapter 1 Computer Hardware 1
Types of Computers . 2

Personal Computers . 2

Desktops, Towers, and Workstations . 2

Laptops, Notebooks, Netbooks, and Tablets . 3

Minis, Servers, and Mainframes . 4

Handheld Computers . 5

Comparing Computer Types . 6

Computer Speed . 6

Data Storage . 8

RAM . 9

Flash Drives . 9

Hard Drives .10

Blu-ray, DVD, and CD Drives .10

Working with Files .10

Networks .11

Summary. .13

Chapter 2 Multiprocessing 15
Multitasking .16

Multiprocessing .16

Multithreading . 17

vi Contents

Problems with Parallelism .18

Contention for Resources .18

Race Conditions .18

Locks .19

Deadlocks .20

Looking for Parallelism .21

Distributed Computing .22

Task Parallel Library .23

Summary. .24

Chapter 3 Programming Environments 25
From Software to Hardware .25

Programming Environments .28

Visual Studio .29

Summary. .31

Chapter 4 Windows Program Components 33
Menus .34

Use Ellipses .34

Provide Accelerators .34

Provide Shortcuts .35

Use Standard Menu Items .36

Don’t Hide Commands .38

Use Shallow Menu Hierarchies .39

Keep Menus Short .39

A Menu Example .40

Context Menus .40

Toolbars and Ribbons .42

Dialog Boxes .43

User Interface Design .44

Control Order .44

 Contents vii

Group Related Controls. .44

The Rule of Seven .46

Don’t Allow Mistakes .47

Provide Hints .47

Summary. .48

Chapter 5 Controls 49
Using Controls .51

Windows Forms Controls .52

WPF Controls .57

Properties .60

Windows Forms Properties .60

WPF Properties .63

Methods .66

Events .67

Summary. .69

Chapter 6 Variables 71
Fundamental Data Types .71

Strings . 74

Program-Defined Data Types . 74

Arrays .75

Enumerations .75

Classes .77

Value and Reference Types .78

Type Conversion .82

Explicit Conversion .82

Implicit Conversion .83

Scope, Accessibility, and Lifetime .85

Scope .85

Accessibility .87

Summary. .89

viii Contents

Chapter 7 Control Statements 91
Pseudocode .92

Looping Statements .93

For Loops .93

For Each Loops .94

Do While Loops .95

While Loops .95

Until Loops .95

Conditional Statements .96

If .96

If Else .97

Else If .97

Case .97

Jumping Statements .99

Go To .99

Exit .101

Continue .101

Return .102

Jumping Guidelines .102

Error Handling .103

Summary. .103

Chapter 8 Operators 105
Precedence .106

Operators .106

Parentheses .107

Operator Precedence .108

Operator Overloading .114

Operator Overloading Overload .115

Conversion Operators .116

Summary. .116

 Contents ix

Chapter 9 Routines 119
Types of Routines .120

Advantages of Routines .120

Reducing Duplicated Code .121

Reusing Code .121

Simplifying Complex Code .122

Hiding Implementation Details .122

Dividing Tasks Among Programmers .122

Making Debugging Easier .123

Calling Routines .123

Writing Good Routines .125

Perform a Single, Well-Defined Task .125

Avoid Side Effects .126

Use Descriptive Names .126

Keep It Short .126

Use Comments .127

Parameters .128

Optional Parameters .129

Parameter Arrays .130

Parameter-Passing Methods .130

Reference and Value Types .132

Arrays .134

Routine Overloading .135

Routine Accessibility .136

Recursion .137

Summary. .139

Chapter 10 Object-Oriented Programming 141
Classes .142

Class Benefits .142

x Contents

Properties, Methods, and Events .143

Properties .143

Methods .145

Events .146

Shared Versus Instance Members .146

Inheritance .147

Polymorphism .148

Overriding Members .149

Shadowing Members .151

Inheritance Diagrams .152

Abstraction and Refinement .154

Abstraction .154

Refinement .156

“Is-A” Versus “Has-A” .158

Multiple Inheritance and Interface Implementation 158

Constructors and Destructors .161

Constructors .161

Destructors .163

Summary. .165

Chapter 11 Development Techniques 167
Comments .167

Types of Comments .169

XML Comments .170

Naming Conventions .173

Development Techniques .175

Data-centric Viewpoint .175

User-centric Viewpoint .176

Agile Development .177

 Contents xi

Extreme Programming .178

Test-driven Development .179

Summary. .181

Chapter 12 Globalization 183
Terminology .184

Culture Codes .184

Locale-Specific Text and Symbols .184

Localizing User Interfaces in Visual Studio .185

Locale-Specific Formats .186

Culture-Aware Functions in .NET .187

Summary. .189

Chapter 13 Data Storage 191
Files 191

Text Files .192

Random Access Files .192

INI Files .193

XML Files .194

Config Files .197

The System Registry .199

Relational Databases .200

Other Databases .202

Spreadsheets .202

Object Stores .203

Object-Relational Database .203

Hierarchical Databases .203

Network Databases .205

Temporal Databases .206

Summary. .206

xii Contents

Chapter 14 .NET Libraries 209
Microsoft Namespaces .210

System Namespaces .210

Summary. .213

Glossary 215

Index 227

About the Author 241

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you. To participate in a brief online survey, please visit:

microsoft.com/learning/booksurvey

 xiii

Introduction

Programming languages do one very simple thing: they allow you to write programs
that tell the computer what to do. You can tell a computer to read a value from the

keyboard, add two numbers, save a result in a file on the hard disk, or draw a smiley
face on the screen.

No matter what programming language you use, the underlying commands that
the computer can execute are exactly the same. Whether you use Java, C#, Microsoft
Visual Basic, COBOL, LISP, or any other language, you can make the computer perform
roughly the same tasks. Two languages may have very different syntaxes, and some
languages make some tasks easier than others, but the fundamental operations they
can perform are the same. All these languages can carry out numeric calculations and
manipulate files; unfortunately, none of them can reliably pick lottery winners. (If you
write a program that can, let me know!)

At a more conceptual level, programming concepts have been refined over the years
until most modern languages share a common set of fundamental concepts, such as
variables, classes, objects, forms, menus, files, and multiprocessing. Don’t worry if you
don’t know what these are—the purpose of this book is to provide more information
about such terms and concepts.

Because programming languages share so many operations and concepts,
programming books tend to cover the same topics as well. Books about databases
or graphics cover these specialized topics in great detail. Different authors may place
emphasis on different subjects, but there’s a lot of overlap, particularly in beginning
and general “how to program” books. Every one of these books explains what a variable
is, how to create objects, and what a text file contains.

All this means that if you want to learn more than one programming language
(a practice that I highly recommend), you’re going to encounter much of the same
material repeatedly. Even if you skim the familiar sections, you still have to pay for the
content. You may start with a 600-page book about Visual Basic programming. Later,
when you buy a 500-page C# book, you’ll discover that 200 of those pages cover things
you already know. Next, when your boss decides you need to learn LISP, you’ll find that
your new 550-page book contains 100 pages that you already know. (There are a lot of
differences between LISP and the other two languages, so there will be less overlap if
you shift to that language.)

xiv Introduction

This edition of the Start Here! series changes all that. Rather than making each Start
Here! book cover the exact same topics, those common topics have been moved into
this volume for easy reference. Now if you read Start Here! Learn Microsoft Visual C#
2010 Programming or Start Here! Learn Microsoft Visual Basic Programming, you won’t
need to rehash the exact same topics. Instead, those books refer you to this one for
background information, such as how disk buffering works, freeing the other books to
focus on language-specific issues.

There still will be some overlap between any books about different languages.
For example, Visual Basic and C# both let you read and write disk files. Although Start
Here! Fundamentals of .NET Programming explains in general what disk files are and
how programs interact with them, the other books still need to explain the syntax for
the code that their respective languages use to read and write files.

Note that this book doesn’t necessarily cover every last detail of each background
topic. It just gives you the information you need to understand how programs fit into
a larger context so that you can get the most out of them. For example, this book
explains some important programming issues relating to disk drives, but it doesn’t
explain in detail how disk drives work.

Moving underlying common topics into this separate book provides several benefits,
including the following:

■■ Other Start Here! books can spend less time on the background material
covered in this book and more time on language-specific issues. Those books
can rely on and refer to this book to provide extra detail as needed.

■■ This book provides more room for, and spends more time on, basic concepts
that beginning programming books often must gloss over to make room for
language-specific concepts.

■■ This book provides a single location for learning about general computer
topics, without focusing on a particular language. This is important because
it can give you a broader understanding of what you can make computers do
easily and what might be difficult to make a computer do, regardless of which
programming language you choose.

■■ This book can act as an enhanced glossary, giving you a place to look for
explanations of common computer terms. A normal glossary briefly defines key
terms, but in addition, the rest of the book provides much more detail about
important concepts.

 Introduction xv

Who Should Read This Book

This book is for anyone who wants a basic understanding of computers and the
environments in which programs operate. It provides background information that is
useful when you are trying to learn to use any programming language. It also provides
information that can help you understand how programs work in general. For example,
it explains what multithreading is and why multi-core computers may not always
perform much better than single-core systems.

assumptions
This book does not assume that you have any previous programming experience.
In fact, it doesn’t even assume that you have a computer! Instead, this book is about
understanding computers and programs in general, and Microsoft Windows and .NET
concepts in particular, not about writing programs in a specific language.

This book is intended for two main audiences: those who want to learn a new
programming language, particularly those who are reading one of the other books in
the Start Here! series, and those who want a better overall understanding of computers.

Although the content of this book is as general as possible, it is not primarily in-
tended as a stand-alone work; instead, it’s intended as an accompanying volume for
use with other Start Here! books, which cover a range of languages and technologies.
Most of the information you’ll find here applies to computers and programs running
Windows, but many of the concepts also apply to other operating systems, such as
Unix, Linux, or OS X. Sometimes, however, specificity aids clarity, so in some places this
book is targeted toward Windows.

Who Should Not Read This Book

If you’re interested in general programming—particularly non-Windows and
non–Microsoft .NET Framework programming—this book is not for you. Much of the
information in this book applies to programming in general, but a substantial portion
of the information applies to .NET Framework topics, and this book does not make any
particular effort to distinguish between general and Windows- or .NET Framework–
specific information.

xvi Introduction

What You Need to Use This Book

If you want to use this book, all you’ll need is this book. No computer, no software,
no programming language, and no programming experience is required!

Organization of This Book

If you just want a better understanding of computers and programming concepts, you
can simply read the book.

If you’re reading this book along with one of the other Start Here! books, you can take
a couple of different approaches. First, you can use this book as a reference for the other.
When you reach the part of Start Here! Learn Microsoft Visual C# 2010 Programming that
discusses operators, you may want to read this book’s chapter on operators for additional
background. Start Here! Learn Microsoft Visual C# 2010 Programming may also explicitly
refer to places in this book where you can get additional information on a topic.

Another approach to using this book with another Start Here! book would be to
read this one at odd moments when it’s hard to read the other one. For example, I like
to use my computer to work through examples and experiment with the code as I’m
learning a new language. That makes it hard for me to work through a book like Start
Here! Learn Microsoft Visual C# 2010 Programming on the bus, waiting at the dentist’s
office, or while sunning myself on the beach. In contrast, Start Here! Fundamentals of
Microsoft .NET Programming doesn’t require a computer, so it’s easy to read just about
anywhere (although at the beach, I’d rather play volleyball anyway).

This book is divided into 14 chapters plus a glossary. The chapters are independent,
so you can read them in any order. In fact, many of the sections in the chapters are
independent, so you can jump around within a chapter to suit your interests and needs.

■■ Chapter 1, “Computer Hardware,” briefly describes the hardware of
a computer system. It explains terms such as computer processing unit
(CPU), graphics processing unit (GPU), random access memory (RAM), and
multi-core, and explains why those terms are important to programmers. It
explains how memory, disk accesses, and other hardware issues can affect
a program’s performance.

■■ Chapter 2, “Multiprocessing,” summarizes some of the challenges that face
programmers writing multiprocessing programs. It explains how the future of
programming is likely to be highly parallel and summarizes the Task Parallel
Library (TPL) that makes programming for multi-core systems easier.

 Introduction xvii

■■ Chapter 3, “Programming Environments,” explains what a programming
environment is and describes some of the features that make Microsoft Visual
Studio one of the best programming environments available. It explains how
a program’s code must be compiled and how a programming environment can
make that code transparent to the programmer.

■■ Chapter 4, “Windows Program Components,” describes the pieces of
a Windows program from the user’s point of view. It describes menus, content
menus, accelerators, shortcuts, and dialog boxes. It also mentions several design
considerations that beginning programmers should understand if they want to
make programs easier to use.

■■ Chapter 5, “Controls,” describes in general terms what controls and
components are and how they are used. It also mentions some common
properties, such as Dock and Anchor, which make using many controls easier for
the programmer.

■■ Chapter 6, “Variables,” explains the concept of a variable. It explains variable
concepts such as data types, conversions, strong and weak type checking, value
versus reference types, scope, and accessibility.

■■ Chapter 7, “Control Statements,” describes control statements, such as If Then
and For Each, which a program uses to manage a program’s flow. It describes
these statements in general terms, provides some examples in pseudocode, and
shows a few simple examples in Visual Basic and C# for comparison.

■■ Chapter 8, “Operators,” explains operators. It discusses precedence rules
and operator overloading.

■■ Chapter 9, “Routines,” explains what routines are and how they are useful
in programming. It describes different kinds of routines, such as methods,
subroutines, and functions. It also defines parameters and explains the confusing
topic of parameters passed by value or passed by reference.

■■ Chapter 10, “Object-Oriented Programming,” provides an introduction to
object-oriented programming. It explains classes, constructors, and destructors.
It describes non-deterministic finalization.

■■ Chapter 11, “Development Techniques,” describes basic programming
techniques such as using comments, naming conventions, interfaces,
and generic classes.

xviii Introduction

■■ Chapter 12, “Globalization,” explains how to localize a program in Visual Studio
so that it works in multiple places. It explains several localization issues, such as
different date, number, and currency formats.

■■ Chapter 13, “Data Storage,” describes different methods for storing data such
as using the registry, configuration files, and files on disk. It explains different
kinds of files, such as Extensible Markup Language (XML) files and databases,
and mentions some of the classes that a program would use to work with
different kinds of files.

■■ Chapter 14, “.NET Libraries,” summarizes some of the libraries that are most
useful in writing NET programs. These libraries let a program encrypt and
decrypt information, work with data structures such as stacks and queues,
interrogate objects and types to learn about them, and work with multiple
threads of execution.

■■ The glossary provides a brief summary of key terms to remind you of their
meaning. (In a sense, the whole book acts as a glossary for use by the other
Start Here! books.) It summarizes key concepts in one or two sentences.

Conventions and Features in This Book

To help you get the most from the text and keep track of what’s happening, I’ve used
several conventions throughout the book.

Splendid Sidebars
Sidebars such as this one contain additional information and side topics.

Warning Boxes with a Warning icon like this one hold important, not-to-be-
forgotten information that is directly relevant to the surrounding text.

Note The Note icon indicates notes and asides to the current discussion.
They are offset and placed in a box like this.

 Introduction xix

Tip The Tip icon indicates tips, bits and pieces of advice on effective
programming. They are offset and placed in a box like this.

More Info The More Info icon indicates somewhere you can go to learn for
more information on a particular topic, such as a webpage. They are offset
and placed in a box like this.

As for styles in the text:

■■ New terms and important words are italicized when they are introduced. You
can also find many of them in the glossary at the end of the book.

■■ Keyboard keystrokes look like this: Ctrl+A. The plus sign means that you should
hold down the Ctrl key and then press the A key.

■■ Uniform Resource Locators (URLs), code, and email addresses within
the text are shown in italics, as in http://www.vb-helper.com, x = 10,
and RodStephens@vb-helper.com.

Separate code examples use a monofont type with no highlighting.

Bold text emphasizes code that's particularly important in the current

context.

Note The code editor in Visual Studio provides a rich color scheme to indicate
various parts of code syntax such as variables, comments, and Visual Basic
keywords. The code editor and the Intellisense feature of Visual Studio are
excellent tools to help you learn language features in the editor and help you
prevent mistakes as you code. However, the colors that you can see in Visual
Studio don’t show up in the code in this book.

Source Code

Because this book covers concepts that are independent of any particular programming
language, it also includes little source code from any particular language. You’ll find
occasional bits of source code used to contrast the syntaxes of different languages;
but more often, this book uses pseudocode to demonstrate programming constructs.
Pseudocode is an informal high-level “language” that looks sort of like a programming

xx Introduction

language, but isn’t really. It’s intended to describe a situation sufficiently so that you
could implement the actual code in whatever language you are using.

For example, the following code shows a for loop in pseudocode, which repeats
a particular operation a specific number of times:

For <variable> From 1 To 100

 Do something

This pseudocode says the program should make a variable (however you create
a variable in the language you’re using) and then loop starting at value 1 and finishing
at value 100. For each trip through the loop, the program should “Do something.”

Contrast this with the following C# code:

for (int i = 1; i <= 100; i++)

{

 DoSomething();

}

This code does the same thing as the previous pseudocode, but its syntax
makes understanding the code harder—unless, of course, you know C# (or some
related language, such as C++ or Java). If you don’t know C#, you may have trouble
understanding the point that this code is illustrating.

Acknowledgments

Thanks to Russell Jones, Diane Kohnen, Dan Fauxsmith, Jasmine Perez, and all the
others at O’Reilly Media and Microsoft Press who worked so hard to make this book
possible. Also thanks to John Mueller, Evangelos Petroutsos, and authors of the
language-centric books in this Start Here! series. Between us I think we've put together
a great set of resources!

Errata & Book Support

We’ve made every effort to ensure the accuracy of this book and its companion
content. Any errors that have been reported since this book was published are listed
on our Microsoft Press site:

http://www.microsoftpressstore.com/title/ 9780735661684

http://www.microsoftpressstore.com/title/ 9780735661684

 Introduction xxi

If you find an error that is not already listed, you can report it to us through
the same page.

If you need additional support, email Microsoft Press Book Support
at mspinput@microsoft.com.

Please note that product support for Microsoft software is not offered through
the addresses above.

We Want to Hear from You

At Microsoft Press, your satisfaction is our top priority, and your feedback our most
valuable asset. Please tell us what you think of this book at:

http://www.microsoft.com/learning/booksurvey

The survey is short, and we read every one of your comments and ideas. Thanks in
advance for your input!

Stay in Touch

Let’s keep the conversation going! We’re on Twitter: http://twitter.com/MicrosoftPress.

Other Resources

You can find more information about this book at http://www.vb-helper.com/start_here_
fundamentals.html or at http://www.CSharpHelper.com/start_here_fundamentals.html.
Both of these pages provide links to updates, addenda, and other information related
to this book.

If you’re interested, subscribe to one of my Visual Basic newsletters
at www.vb-helper.com/newsletter.html or visit my C# blog at blog.CSharpHelper.com.

If you have questions, comments, or suggestions, please feel free to email me at
RodStephens@vb-helper.com or RodStephens@CSharpHelper.com. I can’t promise to
solve all your problems, but I do promise to try to help.

 1

Chapter 1

Computer hardware

In this chapter:

■■ What the different kinds of computers are and how the type of computer being used
influences the performance of various kinds of programs

■■ How to assess the speed of a computer and look for potential bottlenecks for different
kinds of programs

■■ The strengths and weaknesses of different data storage devices

■■ How to ensure that data written to a file is saved and not discarded when a program
ends or crashes

■■ What networks and protocols are

ThE MOST ELEGaNTLy WrITTEN PrOGraM IN the world is pointless (except as an esoteric work
of art) if it doesn’t eventually run on some sort of physical device. Often, that device is an ordinary
desktop or laptop computer. Having identified the target platform, you might think you don’t have to
worry about hardware.

To some extent that’s true, and—depending on your program—you may be able to ignore much
of the computer’s hardware. If you have a simple, self-contained, single-user desktop application, you
also may be able to ignore the computer’s power supply, fans, universal serial bus (USB) ports, Blu-ray
drive, Wi-Fi antenna, sound card, microphone, and many other pieces of hardware.

Most programming languages provide high-level access to hardware such as the computer’s disk
drives, memory, keyboard, and mouse, so you don’t necessarily need to know exactly how they work.
For example, you usually don’t need to know how many disk heads a disk drive has or how many
revolutions per second its disks turn to read and write files.

Even though you don’t always need to know all these hardware details, you should at least have
some understanding of what’s going on behind the scenes. For example, if you don’t understand how
memory use relates to paging, poor memory use can drag your entire system to a grinding halt.

2 Start here! Fundamentals of .NET Programming

This chapter explains fundamental hardware concepts that can help you get the most out of your
programs. This information can help you avoid problems that can be difficult to solve after they occur.

Types of Computers

In the 1960s, computers were warehouse-sized monstrosities costing millions of dollars. The acolytes
who worked with these behemoths were engineers who dealt as much with hardware as they did
software, so they generally knew what equipment was present.

Today, computers can be small and inexpensive, and they are just about everywhere: on your desk,
in your dentist’s office, under the hood of your car, and in your phone. Despite being millions of times
smaller than the now-ancient computers of 50 years ago, these new devices are millions of times
more powerful.

Note The Intel 4004 processor introduced in 1971 could perform 0.07 million instruc-
tions per second (MIPS). The fastest processors today are cooled by liquid nitrogen. The
IBM z196 processor, which is currently not for sale, reportedly can execute up to 50 billion
instructions per second (that is, 50,000 MIPS). The Chinese Tianhe-1A supercomputer can
execute 2.57 petaflops (quadrillion floating-point operations per second), although it won’t
fit on your desktop. See http://www.top500.org for the latest information about the world’s
fastest supercomputers.

When you design a program, you need to consider the device that will run it so you know what
kinds of capabilities are likely to be present. The following sections summarize common types of
computers that are available today.

Personal Computers
Personal computer (PC) is a general term for a computer intended to be used by a single person at
one time, although multiple users may use it at different times. It includes other categories such as
desktops, laptops, and personal digital assistants (PDAs).

Desktops, Towers, and Workstations
A desktop computer is intended to sit on or beside your desk and not be portable, although most
are small enough these days that you can easily pick one up. Because they are not intended to be
 portable, they typically don’t have batteries and integrated screens or keyboards.

The all-in-one style desktop has an integrated screen or, to look at it in another way, the computer
is attached to a monitor.

A tower is similar to a desktop computer, but in a larger case. Its larger size makes it easier to add
new hardware, although it may make it hard to fit on a desk.

 CHAPTER 1 Computer Hardware 3

A workstation is a more powerful desktop or tower that may have extra features, such as extra
memory and disk space, multiple screens, and fancy graphics hardware for quickly performing three-
dimensional (3-D) rendering.

Desktops, towers, and workstations can be quite powerful. They can have fast processors, lots of
memory, big hard drives, and large monitors so they can tackle almost any task. If they are connected
to a fast network, they also can provide access to centralized databases and servers. Their main disad-
vantages are that they are not portable, and they may be needlessly expensive for some applications,
such as web browsing.

Laptops, Notebooks, Netbooks, and Tablets
A laptop is a computer that is intended to be portable and is used just about anywhere (except in
the swimming pool). You can literally use a laptop on your lap while you are riding a bus or airplane
(legroom permitting).

Because they are intended to run anywhere, laptops have integrated screens and keyboards. They
often run on batteries, so power use and battery quality is very important. Heavy use of some pieces
of hardware such as the graphics processing unit (GPU) and DVD drives can quickly drain the batteries.

Laptop disk and Blu-ray/DVD/CD-ROM drives are often slower and smaller than those in desktop
systems, so programs that use disk files heavily may run more slowly on a laptop. Often, a desktop is
faster than a laptop with the same clock speed because of the performance of devices such as these.

Laptops usually have a touchpad, pointing stick, trackball, or other pointing device. Many people find
these devices harder to use than a mouse, so they add an external mouse connected to the computer.

Notebooks are basically stripped-down laptops that trade power for portability. They are thin, have
relatively small screens, and are ultra-light. They rarely have DVD or CD-ROM drives, and they have
fairly limited graphics capabilities.

Because they have no external media such as DVD drives, they typically have integrated network
connection hardware so you can load software onto them. Network hardware also means you can use
them to access the Internet.

Netbooks are even more stripped down than notebooks. They typically have less powerful proces-
sors and are intended primarily for use with networked applications such as web browsers, where
most of the processing occurs on a remote server.

Note Other terms for these portable computers include subnotebook, ultraportable, and
mini notebook. Many people use all these terms interchangeably.

4 Start here! Fundamentals of .NET Programming

A tablet computer is a portable computer similar to a laptop that uses a touchscreen or stylus as its
primary input device. Tablets may display virtual keyboards on their screens and may use handwriting
recognition for text input.

Laptops and tablets can have most of the same features as desktop systems (such as fast proces-
sors, lots of memory, and big hard drives) so they can handle many application needs.

Some applications can take advantage of a tablet’s touchscreen, and in fact, the lack of a keyboard
can be an advantage in some environments, for example at dusty construction sites, where a key-
board might let dirt into the system.

Laptops and tablets tend to be a bit more expensive than desktop systems, and some users don’t
like their smaller keyboards and lack of a mouse. You can overcome those limitations by adding
an external keyboard and mouse if you like, although that adds further to the cost, and of course,
 reduces portability.

Notebooks and netbooks are often not as powerful as laptops and tablets. They are intended to
be both ultra-portable and less expensive. They are often intended for running networked applica-
tions, such as web browsers. However, they do include keyboards, making them more suitable than
tablets for people who need to type a lot of information.

Minis, Servers, and Mainframes
Mainframes are large centralized computers that can serve hundreds or even thousands of users
simultaneously. Each user connects to the mainframe via a “dumb” terminal that has little or no
processing power; the terminal simply serves as an input device and displays results generated by the
mainframe.

A recent innovation that is similar to mainframe computing is cloud computing, where applications,
data storage, collaboration services, and other key tools are stored on a centralized server that users
access remotely, often through a browser. The users typically connect to the cloud services with a
desktop, laptop, or other computer instead of a “dumb” terminal.

The centralized services provided by the mainframe and cloud computing allow a business to
upgrade tools without modifying the users’ computers. For example, a business can add more disk
space or an upgrade to a centralized application on the central servers with no changes to the users’
computers.

A mini or minicomputer is basically a small mainframe that can serve a dozen to a few hundred
 users simultaneously. Typically, a mainframe might fill a room, whereas a mini might be the size of a
filing cabinet.

Supercomputer is a fairly broad term used to describe only the fastest computers. A supercom-
puter may act as a mainframe and support many simultaneous users, but its focus is on running one
program or a few huge programs extremely quickly, rather than on performing many smaller tasks for
many users. Typical mainframe applications include massive simulations for weather prediction, fluid
dynamics calculations, and nuclear energy research.

 CHAPTER 1 Computer Hardware 5

Often, a supercomputer uses other computers as “front-ends.” Users prepare programs for execu-
tion on a second computer. When the program’s code and data is ready, it is transferred to the super-
computer for execution. The results are then returned to the secondary computer for analysis.

Server is a generic term for any computer that supports multiple users or client applications
simultaneously, so supercomputers, mainframes, and minis are all servers. Mainframes are sometimes
called enterprise servers.

Minis, servers, and mainframes are useful for applications that have large centralized databases
and other resources. For example, suppose you have 100 customer service representatives who may
need to interact with any customer’s records. In that case, it makes sense to store all the customer
information on a server. The users can either use desktop systems to access the information and work
with it on their local machines, or “dumb” terminals to work directly on a mainframe.

It’s worth noting that there are ways to attach dumb terminals to less powerful servers than main-
frames as well.

handheld Computers
Handheld computers are, as the name implies, computers that you can hold in your hand. These range
in size from about the size of a brick to the size of a deck of playing cards.

These devices typically have small screens and may use touchscreens alone or touchscreens with a
stylus for input. Some even have integrated barcode scanners and printers.

Palmtops or pocket computers are small handheld devices, usually with limited graphics and com-
puting power. They are typically used to store simple information such as contact information, phone
numbers, and appointment calendars.

PDAs are similar to palmtops but typically use a stylus and various forms of handwriting recogni-
tion for input.

Smartphones running the Windows Phone 7 operating system, iPhone OS (iOS), or Android are
basically very small, general-purpose computers with integrated telephone features.

Some of the more powerful palmtops include other features, such as networking capabilities and
may even act as music players and phones. Overall, the division between cell phones and palmtops is
becoming blurred because many modern cell phones include all the features previously provided by
PDAs—and even more.

Handheld computers are useful when portability is essential. For example, a telephone technician
would have trouble juggling a laptop at the top of a telephone pole. They also are handy for carrying
information that you want available throughout the day, such as phone numbers and appointment
calendars. These devices tend to have tiny screens and keyboards, so tasks such as entering data on
large forms or viewing large amounts of data can be difficult. More and more these days, smart-
phones have surprisingly fast processors and good graphics capabilities, however.

6 Start here! Fundamentals of .NET Programming

Comparing Computer Types
A program’s use and needs influence the type of computers you should run it on. Consider the pro-
gram’s processing speed, network bandwidth, and screen size requirements and compare them to the
features provided by different computer types.

Conversely, a computer’s specific hardware can influence the kinds of programs that you can build
effectively. For example, if your company has 75 users who all carry only small handheld computers,
your program can’t display large forms containing dozens of menus.

Computer Speed

Many people use clock speed as a measure of a computer’s total computing power, but that term can
be very misleading for a couple of reasons. To really understand why this is so, you need to know a
little about how the computer processes commands.

The computer keeps all its devices synchronized by using its clock. This isn’t a regular clock—it’s
a “clock in a chip,” which keeps highly accurate time and ticks much more rapidly than a wall clock.
The faster the computer’s clock ticks, the more quickly the device can move on to a new task. The
central processing unit (CPU), the computer’s main processor, needs a certain number of clock ticks
to execute each of its instructions. Therefore, the faster the clock ticks (that is, the “clock speed”), the
more instructions the CPU can execute per second.

However, that’s not the end of the story. Different processors use different instruction sets, each of
which can require a different number of ticks. That means different kinds of processors may execute
different numbers of instructions per second, even if they have the same clock speed. You can use
clock rate to compare two of the same kinds of processor (for example, a 2.93-gigahertz (GHz) Intel
Pentium 4 and a 3.0-GHz Intel Pentium 4) but not as an accurate comparison between two processors
of different types (for example, a 3.0-GHz Intel Pentium 4 and a 3.0-GHz AMD Athlon II).

Even if you could figure out which processor executes more instructions per second, that figure
alone doesn’t necessarily tell you which computer will be faster for your program. Many programs—
most, in fact—are limited by factors other than sheer processor speed, including amount and speed
of memory, disk space, network speed, graphics or floating-point processor speeds, and bus speed.

Note The bus is the part of the computer that transfers data between the computer’s dif-
ferent components such as its processor and disk drives. The USB lets a computer connect
to all sorts of external devices, such as hard drives, DVD drives, keyboards, mice, graphics
tablets, flash drives, cameras, and much more.

Many modern computers have multiple processors or multiple cores (execution areas within a
processor), so they can perform more than one task at the same time. Whether the computer gets a
significant benefit from multiple cores depends on whether the tasks it is performing can be easily

 CHAPTER 1 Computer Hardware 7

split into separate pieces—and whether the program was written to take advantage of multi-core
hardware.

Many programs are limited by disk drive speed. Disk drives spin at anywhere from 3,000 RPM to
15,000 RPM (speeds between 4,200 RPM and 7,200 RPM are most typical), so the time it takes to read
and write data can vary dramatically.

Which of these factors is most important for your application depends on what that applica-
tion does. If your program uses a local database (that is, one stored on a hard disk attached to the
computer) heavily, disk speed will be a big factor. If the database is on a remote server accessed via a
network, then the speed of the server and the network’s speed are probably bigger performance fac-
tors for your application than the speed of your local CPU.

The best way to determine how a computer will perform for a given program is to run that
program on the computer. Unfortunately, it’s often too late to fix problems after you’ve written the
program and bought the computer.

To get an idea of how well the program will run ahead of time, focus on the system’s overall per-
formance, running a wide variety of tests rather than looking just at clock speed. To look at one set of
tests in the most recent versions of Microsoft Windows, open the computer’s Start menu, right-click
the Computer entry, and select Properties to see the basic information display shown in Figure 1-1.
(You can also right-click the Computer entry in Windows Explorer and select Properties.) The Win-
dows Experience Index gives you a rough idea of the computer’s overall performance.

FIGURE 1-1 The Windows Experience Index gives an overview of the computer’s performance.

8 Start here! Fundamentals of .NET Programming

To get more detail, click the Windows Experience Index link to see the display shown in Figure 1-2.
This display shows performance scores for several different system features.

FIGURE 1-2 This display shows how well the computer performs on various tests.

On the system shown in Figures 1-1 and 1-2, the graphics scores are the lowest, so this system may
not give the best performance for high-end graphics programs, such as three-dimensional games.
But the processor, random access memory (RAM), and disk scores are higher, so this computer may
be just fine for applications that are not graphics-intensive. (In fact, this computer works just fine for
me on a wide range of applications.)

The Windows Experience Index still doesn’t consider your program’s particular needs. For example,
it doesn’t know what kinds of instructions your program will perform the most (such as integer cal-
culations, floating-point calculations, string operations, and so on) and it doesn’t consider network
bandwidth, but at least it provides a reasonably consistent value that can help you compare different
systems. Start there, and then consider the bottlenecks that your program is likely to encounter.

Data Storage

A program can store data in several places, including RAM, flash drives, hard drives, Blu-ray, DVDs,
and CDs. The following sections describe the advantages and disadvantages of each so you can match
them to your program’s needs.

 CHAPTER 1 Computer Hardware 9

raM
RAM is extremely fast, but relatively expensive. Moving data between RAM and the processor is
lightning-fast, so it’s the best place to store frequently used data. Data stored in program variables is
generally stored in RAM, which gives them the best performance.

Unfortunately, RAM is also fairly expensive, so computers often have a limited supply. A typical
computer might have 2 GB of RAM. That may seem like a lot (and it is), but you need to remember
that your program isn’t the only one using the RAM. Every program currently running on the system,
including the operating system itself, shares it. In fact, the commands that make up the executing
programs themselves also take up space in RAM.

Data must move from RAM to the processor and back for anything to occur, so what happens if
the programs use up all the RAM? To work around this problem, the computer can page memory to
disk.

When paging occurs, the computer copies a chunk of its memory onto a hard disk and frees that
memory for use by other programs. Later, when a program needs to access the data in the chunk of
memory that was copied to the hard disk, the computer pages it back into memory, possibly moving
other data to disk to make room in RAM.

Paging lets the computer continue running even if it runs out of RAM—but that capability comes
at a heavy performance price. Disk drives are much slower than RAM, so moving data to and from the
disk slows the system down greatly.

This is a particular problem with programs that use huge amounts of memory. Suppose you have
some complex data analysis program that loads a lot of data into memory. It then jumps around the
data, performing comparisons, calculating averages, and so forth. Because the data doesn’t all fit in
memory at any one time, as the program jumps around in the data, it may cause very frequent pag-
ing. (This is sometimes called thrashing.) When this happens, you often can hear the disk drive work-
ing like crazy, and the computer’s performance drops to a crawl.

You can reduce paging and thrashing by buying a computer that has lots of memory (or by adding
more memory later). And you can reduce the chances of thrashing by structuring programs so they
don’t need to jump back and forth across huge amounts of data as often—or at all. If you can rede-
sign a program so it uses the data in chunks, processing one chunk at a time before moving on to the
next one, the program may page, but it won’t thrash.

Another possibility is to free up chunks of data after using them by disposing of the variables hold-
ing the data. That makes their memory available for use by new data. In this case, the program may
not page at all.

Flash Drives
Flash drives store data in solid-state memory. They have no moving parts and are non-volatile, mean-
ing they don’t require power to retain their data. (In contrast, RAM loses its data if it loses power.)

There are two main varieties of flash drives: USB flash drives and solid-state hard drives.

10 Start here! Fundamentals of .NET Programming

USB flash drives are small and removable. They can fit easily in your pocket, so they are great for
quick backups and transferring data from one computer to another. In many ways, USB flash drives
(also called USB keys) have taken the place of older floppy drives. Flash drives may last a long time,
but people generally use Blu-ray, DVD, and CD drives for permanent storage instead.

Solid-state flash drives are similar to regular disk drives but use flash memory to store data instead
of spinning disks. Because they have no moving parts, they are less vulnerable to vibration and shock.

Flash drives also have faster access times than hard drives. Unfortunately, they’re still considerably
more expensive per gigabyte than regular disk drives.

hard Drives
Normal hard drives store data in spinning magnetic disks. They are generally slower than flash drives,
although they may be faster at transferring large blocks of data. They also have latency, a period of
time that the computer must wait while the drive is positioning itself to read a particular block of
data.

Disk drives have the distinct advantage of being significantly cheaper than flash drives on a per-
gigabyte basis. For example, a 240-GB solid-state drive might cost more than $500, whereas a 1-TB
normal disk drive might cost only $65.

Because these drives are relatively inexpensive and can be quite large (I’ve seen up to 3-TB drives),
they are the most common form of storage in computers today.

Blu-ray, DVD, and CD Drives
Blu-ray, DVD, and CD devices use removable spinning discs to store data. Although they’re less expen-
sive per gigabyte than USB flash drives (typically by a few cents per gigabyte), getting data back from
them can be much slower than from either flash drives or hard drives.

The storage capacity of these discs varies depending on the recording format, but typical values
are 700 MB for CDs, 4.7 GB for DVDs, and 25 GB for Blu-ray.

Their low cost, high capacity, durability, and removability makes these drive types well suited for
backup and long-term storage of large amounts of data.

Working with Files
Before leaving the topic of data storage, I want to briefly mention an important issue related to work-
ing with files.

Disk drives naturally read and write data in large blocks. It takes just as much time to read or write
an entire block as it does to read or write a single byte. To improve performance, disk drives buffer
their data.

 CHAPTER 1 Computer Hardware 11

If you tell a program to read a few bytes from a file, the disk drive actually reads an entire block
and stores it in a buffer (a temporary holding location) in memory. As you request other bytes from
the same file, they may already be in memory, so the program doesn’t need to fetch the new data
from the comparatively slow drive.

Similarly, when you write data into a file, the drive actually stores it in a memory buffer until it has
enough data to be worth writing to the physical disk.

Because the drive buffers data, it’s not obvious when the drive actually writes the data to the disk.
An important consequence of this is that you could lose data if a program ends or crashes before the
drive has gotten around to writing the data.

To prevent this kind of data loss, your programs should always close files when you’re done writing
into them. (Closing input files from which the program is reading data is less critical, but still good
practice.)

Networks

Computer networks—especially the Internet—play a huge role in many computer applications. Even
a typical household may have its own small network connecting computers, printers, and scanners.
There isn’t room to cover computer networking in great depth here, but it is useful to understand
some basic computer terminology.

A computer network is a series of connected devices that allow computers to communicate. Those
devices include:

■■ Network interface card (NIC) Connects a computer to a network and provides the
necessary electronics to send and receive the network’s electrical signals. NICs are also
called network interface controllers, network adapters, LAN adapters, and other similar
terms.

■■ Hub A device with several ports that takes the signals that it receives and rebroadcasts
them to all the ports other than the one on which it received the signal. Hubs connect
multiple computers in a very simple way.

■■ Bridge Similar to a two-port hub, but with more intelligence. A bridge inspects incom-
ing information packets from one port and forwards them to its other port only if the
destination of the packet is on the other side of the bridge. This reduces unnecessary
traffic on the network.

■■ Switch Similar to a bridge, but with more than two ports. Instead of forwarding signals
to every port, they forward signals only to the device that should receive them.

■■ Router Similar to a switch except it can connect multiple networks, possibly using dif-
ferent protocols. The most common routers connect a home computer with an Internet
service provider’s network via a cable or modem.

12 Start here! Fundamentals of .NET Programming

Networks are sometimes categorized by their size. Two of the most common terms used to
 describe networks are local area network (LAN) and wide area network (WAN).

Wi-Fi is the trademarked name of a standard for connecting devices wirelessly. Ethernet similarly
connects devices using wires or cables.

The Internet is a global system of connected computer networks. It is the largest WAN, cov-
ering the entire world. Often, people use the terms Internet and World Wide Web (or just web)
 interchangeably, but the World Wide Web (WWW) is only the collection of all hypertext webpages
available on the Internet. The Internet contains lots of other information as well, including email,
Voice over Internet Protocol (VoIP), and files that are available for download but that are not part of
the World Wide Web.

Communication over a network is controlled by various communication protocols. A communica-
tion protocol is a formal description of the formats and rules for passing information across a network.
Protocols often include several layers. The bottommost layers deal with physical signaling and the way
the network uses electrical signals to send information. Higher-level layers determine how informa-
tion is translated to and from electrical signals. Still-higher levels deal with error correction and how
to determine whether a message has been received correctly.

The Internet uses the Internet Protocol Suite to define how traffic should work. This suite of pro-
tocols is also called TCP/IP, named after the two most important protocols it contains: Transmission
Control Protocol (TCP) and Internet Protocol (IP). TCP provides reliable delivery of a stream of bytes
from one computer to another. IP provides addressing that lets a network route data packets called
datagrams to the appropriate destination.

Two of the most common high-level protocols used on the Internet are HTTP and FTP. Hypertext
Transfer Protocol (HTTP) is a protocol for hypertext documents that contain links that lead to other
documents. This is the protocol that your computer uses when you open a webpage in a browser by
using an address that begins with http://.

File Transfer Protocol (FTP) is a protocol used to transfer files between computers over a network
such as the Internet. This is the protocol that your computer uses when you open a file in a browser
by using an address that begins with ftp://. Often people use special file transfer programs to upload
and download files with the FTP protocol. Addresses that begin with http:// or ftp:// are examples of
Uniform Resource Locators (URLs).

A Uniform Resource Name (URN) is similar to a URL, but it is intended to be a permanent name for
a resource even if the resource is not currently available. The difference between a URL and a URN is
minor, and many people use the terms interchangeably.

More Info For more information on networking topics, search online websites such as
Wikipedia and About.com, or consult a book on networking.

 CHAPTER 1 Computer Hardware 13

Summary

This chapter discussed some of the hardware issues that you should consider when you’re designing
and building an application. It explained how you can use the Windows Experience Index to compare
computers running Windows. It also explained how you should match the needs of an application
with the capabilities of a particular kind of computer.

For example, if you need to support many users on a centralized database, you might want to plan
to use desktop or laptop systems connected to a server on a high-speed network. In contrast, if you
want a small, special-purpose calculator to perform calculations throughout the day, you might be
better off using a handheld computer or smartphone.

This chapter also described different kinds of storage hardware and explains their strengths and
weaknesses. For example, hard drives are slower than RAM, but they are still reasonably quick and
much cheaper, so they are a good choice for storing large amounts of data. DVDs are removable and
even less expensive, so they’re a good choice for backups and long-term storage.

This chapter explained how disk drives buffer input and output, meaning that to prevent data loss,
you should always close files when you are done writing into them.

Finally, this chapter briefly explained some common networking concepts and terminology. It
won’t make you an expert on networks, but it should help you understand normal network discus-
sions, particularly when you deal with networks from the high-level perspective that programmers
usually have when writing computer programs.

This chapter also briefly mentioned multi-core systems: systems with processors that have more
than one core capable of executing commands. Multi-core systems have great potential to increase
performance without requiring faster processors, something that is becoming increasingly difficult
to achieve. The next chapter contains more information about multi-core systems in particular and
multiprocessing in general.

 15

Chapter 2

Multiprocessing

In this chapter:

■■ What multiprocessing is and how modern computers can provide it

■■ The difference between multiprocessing and multitasking

■■ What processes and threads are

■■ How to design programs that can take advantage of multiprocessing

MOOrE’S LaW, NaMED aFTEr INTEL COFOuNDEr Gordon E. Moore, says that the number of
transistors that can be placed on a chip roughly doubles every two years, and that leads directly to an
increase in computer speed. The law has held up remarkably well for more than 40 years and is pre-
dicted to continue to hold for at least a few more years, but chip manufacturers are starting to reach
the physical limitations of what’s possible using current chip fabrication techniques. This might spell
the end to large speed improvements for individual chips, but it doesn’t necessarily mean the end of
performance gains for computers.

Note For more information on Moore’s Law, see http://en.wikipedia.org/wiki/Moore%27s_
law.

Other techniques, such as writing better code and leaner operating systems, can make a computer
faster without changing its underlying hardware. One particularly promising approach to improving
computer performance is multiprocessing.

This chapter describes multiprocessing and explains how you can take advantage of it to get the
best performance possible.

16 Start here! Fundamentals of .NET Programming

Multitasking

Even the slowest computers are much faster than their human users. A typical computer spends prac-
tically all its time sitting around twiddling its electronic thumbs waiting for the user to do something.
When the user presses a button or clicks the mouse, the computer springs into action, performs a
task, and then goes back to waiting.

For example, the world record for fastest typing was set by Barbara Blackburn at 212 words per
minute, or about 18 characters per second. Not even the world’s fastest typists can keep up with a
computer that can execute millions of instructions per second.

To make better use of the computer’s blinding speed, modern operating systems multitask. In mul-
titasking, the computer runs several tasks (known as processes) in turn. The operating system lets one
process execute for a while so it can perform calculations, update its display on the screen, respond to
user events such as button clicks, and so on. The operating system then pauses that process and lets
another one take a turn. It continues rotating through the processes so they each get to execute.

So long as the operating system can switch the processes quickly enough, they appear to the user
as if they are all executing simultaneously, although they are really just taking turns. This works well
so long as the system doesn’t have too many intensive processes, but if some of the processes are
performing really heavy-duty calculations, the computer may have trouble maintaining the illusion
that it’s running simultaneous tasks.

This is where multiprocessing enters the picture. Multitasking fosters the illusion that the computer
is performing several tasks at once. In multiprocessing, the computer really is doing several things
simultaneously.

Multiprocessing

In multiprocessing, a computer uses multiple execution elements to perform several tasks at the
same time. Those elements could be separate processors running on separate chips or, as is increas-
ingly common these days, they can be separate cores within the same processor. A core is the part
of a processor that actually executes commands. By putting more than one core on the same chip, a
computer can greatly increase its potential computing power.

Today, two or four core computers are common, processors with six or eight cores are also avail-
able, and one experimental processor contains more than 1,000 cores! (To learn more about this
innovative computer, see http://www.physorg.com/news/2011-01-scientists-cores-chip.html.)

With the end of Moore’s Law looming over the horizon, these sorts of multi-core systems offer a
potential road to increased performance, but multiple cores do not guarantee that applications will
run faster. The operating system itself may be able to run different programs on different cores, but a
single program could become stuck on a single core and have limited performance. You can allow a
single program to run on multiple cores by using multiple threads.

http://www.physorg.com/news/2011-01-scientists-cores-chip.html

 CHAPTER 2 Multiprocessing 17

Multithreading

A process is an instance of a program running on a computer. (Note that you could have multiple
instances of the same program running. For example, you might have two browsers open or two
instances of WordPad running.) A thread is a sequence of instructions within a single process that
may execute in parallel with other threads. Sometimes you can execute multiple threads within the
same process at the same time. Each thread keeps track of its position within the program’s code and
can move through the code as it needs to without interfering with the other threads. This is called
multithreading.

For example, suppose you write a program that takes a stock’s historical prices, performs some sort
of complex statistical calculation, and predicts the stock’s future price. (If you can get that last part to
work reliably, let me know!) Now suppose you want to perform the same task for several stocks. You
could have the program perform the calculations sequentially, one after another. If each calculation
takes about 30 seconds and you want to predict prices for 10 stocks, the total time will be around 300
seconds, or 5 minutes.

Another approach would be to start 10 threads, one for each stock. A thread would perform the
statistical calculation for its stock and display the result.

A single-CPU system will multitask, switching quickly back and forth between the threads to give
the illusion that they are all executing at the same time. There is still only one CPU, however, so the
total time will still be around 5 minutes. In fact, there is a little bit of overhead in switching between
threads so the total run time may be slightly longer.

In contrast, a computer with multiple cores may truly be able to execute more than one thread
at a time. In that case, the total time will be roughly the original total time of 5 minutes divided by
the number of cores, plus some overhead for setting up the threads and keeping track of what they
are all doing. A two-core system might require about 2.5 minutes, whereas a four-core system might
need only around 1.25 minutes to finish the calculations.

Unfortunately this speed improvement isn’t automatic or free. In addition to a small (but signifi-
cant) amount of overhead to set up threads, a program may pay a large performance penalty if the
threads interfere with each other. Interference can take the form of several different potential prob-
lems with parallelism.

Note Some compilers may be able to detect pieces of code that can always execute safely
in parallel and in that case you may gain some benefit from multiple cores without any
additional work. To get the full benefit, however, you need to structure your program
properly.

18 Start here! Fundamentals of .NET Programming

Problems with Parallelism

At a high level, running threads in parallel is easy to understand. When you look closely at specific
tasks, however, you can encounter several problems. Some of these include contention for resources,
races, and deadlocks.

Contention for resources
Sometimes multiple threads need to use the same resources. Consider again the stock calculator ex-
ample. Suppose the program starts 10 threads to perform calculations for 10 stocks. The first task that
each thread must perform is using the Internet to get its stock’s price data. If your network bandwidth
is limited, this will be a big bottleneck as each thread demands access to the network. Even if your
network has plenty of bandwidth, the website that you access to get the stock prices needs to process
all the requests and, if it’s a slow website, that may cause a bottleneck.

Similarly, multiple threads may need to access the same disk drive, CD or DVD drive, or other lim-
ited resource, and performance can be limited as a result. It’s bad enough that these sorts of conten-
tion can limit performance, but they can also cause incorrect behavior. The most common example of
this kind of error is called a race condition.

race Conditions
A race condition occurs when the result of a calculation depends on the exact sequence or timing of
execution in multiple threads.

For example, suppose you want to compute the total of 2 million numbers. You could loop
through the numbers and add them up one at a time, but you want to save time with multithread-
ing, so you break the task into two pieces and solve each piece in a separate thread. The first thread
adds the first million numbers to a value called total and the second thread adds the second million
numbers to total. The basic algorithm for each thread looks like this:

For i = start To finish

 Get total

 Calculate result = total + value[i]

 Save result In total

This code enters a loop where the looping variable i starts at the value start and runs to the value
finish. In other words, it takes the values start, start + 1, start + 2, . . ., finish.

The values start and finish represent the indices of the values that a thread should process. In this
example, the first thread’s values for start and finish would be 1 and 1,000,000, and the values for the
second thread would be 1,000,001 and 2,000,000. The two threads run exactly the same code; only
the values' start and finish are different for the two threads.

 CHAPTER 2 Multiprocessing 19

Inside the loop, each thread reads the current value of the total variable, adds the value pointed to
by the current value of i to total, and saves the new result in total.

If you’re running a single thread to process all the values, this code works perfectly. However, if you
use two threads running at the same time, they can enter a race condition. Consider this sequence of
events as the two threads execute inside their loops.

Thread 1: Get total

Thread 2: Get total

Thread 1: Calculate result = total + value[i]

Thread 1: Save result In total

Thread 2: Calculate result = total + value[i]

Thread 2: Save result In total

In this case, both threads start by reading the value total. Because thread 1 does this right after
thread 2 does it, both threads get the same value.

Next, thread 1 adds a value to total and saves the result back in the value total. Then thread 2 does
the same. Because thread 2 still has the original value for total, it overwrites the new value saved by
thread 1.

For a concrete example, suppose total starts with the value 100 and the two threads are adding the
values 20 and 30, respectively. Both start by reading the value 100. Thread 1 then adds 20 and saves
the result 120 in the value total. Next, thread 2 adds 30 to the value that it originally read (100), gets
the result 130, and saves it in the value total. Instead of holding the correct result 150, total now holds
130.

Warning Race conditions can be extremely difficult to detect because bugs appear only
when events occur in exactly the right order. If the sequence of events that leads to the er-
ror is unlikely, you may run a program thousands of times before you encounter the error.
When the error does occur, you may be unable to reproduce the exact sequence of events
in multiple threads that caused it.

One way to prevent a race condition is to use a lock on the critical section of code.

Locks
A lock guarantees that a thread has exclusive access to a piece of code, memory, or other item that
it needs to prevent a race condition or other bug. In the previous example, a thread could use a lock
to gain exclusive access to the variable total while performing its calculation. The new code looks like
this:

20 Start here! Fundamentals of .NET Programming

For i = start To finish

 Lock total

 Get total

 Calculate result = total + value[i]

 Save result In total

Now, if two threads are running at the same time, one cannot read the value of total while the oth-
er has it locked so it cannot interfere with the other thread. Instead, it waits until the lock is released,
and then it locks the total value and performs its own calculation without interference.

Unfortunately, locks add considerable overhead to a program because making multiple threads
coordinate in this way makes them much slower. The more locks a program must make and release,
the more slowly the program will execute. In this example, the threads must lock and unlock the value
total for each of the 2 million numbers that should be totaled.

In this particular program, the problem is even worse because each thread performs calculations
only while it’s running code inside the lock; therefore, no two threads can be doing anything sig-
nificant at the same time, which eliminates all the benefits of multithreading. The result is that this
program really performs its calculations one at a time sequentially, just spread across multiple threads
in a complicated way using 2 million locks. All those locks guarantee that this program will be much
slower than the original single-threaded program, which didn’t need to use any locks.

Locks solve one problem but sometimes cause another: deadlocks.

Deadlocks
A deadlock occurs when two threads are waiting for resources held by each other. For example, sup-
pose thread 1 has resource A locked and is waiting for resource B, but thread 2 has resource B locked
and is waiting for resource A. Neither thread can get the second lock it needs, so it cannot continue.
Because of this, neither thread will release the lock that it already holds, so they’re both stuck.

In this example, the deadlock is simple and easy to avoid by making both threads lock resource A
before locking resource B. Then, if thread 1 locks resource A, thread 2 cannot lock resource B until it
first locks resource A.

Detecting and breaking deadlocks in more general situations can be harder. If a program has many
threads that need exclusive access to lots of resources in complex combinations, it can be difficult to
prevent deadlocks.

 CHAPTER 2 Multiprocessing 21

Looking for Parallelism

Some problems have naturally parallel solutions. For example, consider the Mandelbrot set shown in
Figure 2-1. To produce this image, the program considers each pixel in the result separately. For that
pixel, it performs a series of calculations that do not involve the other pixels in any way. This program
can make as many threads as it wants, and each can work independently to calculate a color for its
own pixel.

The only place where the threads need to interact is when they copy their results into the single
final image. Even there, the threads don’t need to use locks because each thread works with a differ-
ent pixel and doesn’t need to look at or modify the other pixels.

FIGURE 2-1 Displaying the Mandelbrot set is an embarrassingly parallel task.

This kind of algorithm, which is naturally parallel, is sometimes called embarrassingly parallel. Other
embarrassingly parallel problems include ray tracing, generating frames for an animated movie (which
may also involve ray tracing), some artificial intelligence approaches such as genetic algorithms, and
random heuristics where the program picks a random solution and evaluates its effectiveness.

Even if a problem isn’t embarrassingly parallel, you may be able to come up with a workable paral-
lel solution. For example, consider the earlier problem of adding up 2 million numbers. The simple
solution of making two threads each add up half of the numbers doesn’t work because they spend a
huge amount of time competing for access to the value total.

22 Start here! Fundamentals of .NET Programming

However, suppose each thread added up its own subtotal and only copied the result into total
when it was finished. The new thread code looks like this:

subtotal = 0

For i = start To finish

 Get subtotal

 Calculate result = subtotal + value[i]

 Save result In subtotal

Lock total

 Get total

 Calculate result = total + subtotal

 Save result In total

In this version of the program, the loop where most of the work occurs contains no locks, so the
threads can work independently. Only at the end do the threads need to lock the value total. The
previous version of the program required 2 million locks, and those locks prevented the threads from
running in parallel. This version uses only two locks and the threads can execute the vast majority of
their calculations in parallel, so this version will be much faster.

Note This code was written with the assumption that the threads can access the values
they are adding without interfering with each other, and that may not always be the case.
If the values are stored on a disk drive, reading one value may move the disk heads, so it
takes longer to read other values. If the values are all together on the disk, however, the
program can probably read them all into memory at once, and then the threads can work
in parallel without disk contention.

This example shows how the approach you use can determine whether a program will benefit from
multithreading. The key to making this solution work is avoiding locks. A good multithreaded ap-
plication doesn’t use too many locks, avoids making threads contend for other scarce resources such
as disk drives, and generally keeps calculations as separate as possible, as long as possible. Often, a
thread’s contribution to the overall solution is used at the end of the thread’s calculations.

Distributed Computing

In distributed computing, multiple computers linked by a network work together to perform a task.
You can think of distributed computing as similar to multithreading except that the “threads” run on
different computers.

Although coordination among threads on the same computer can be cumbersome, communica-
tion among computers in a distributed application is much slower. That means distributed computing
is most useful when the problem is embarrassingly parallel. For example, several computers could be
assigned the task of generating separate frames for an animated movie. Those computers could then
use multithreaded ray tracing programs to calculate the pixels in each frame.

 CHAPTER 2 Multiprocessing 23

Other examples of distributed computing are “grid computing” applications, which use idle com-
puters scattered across the Internet to perform CPU-intensive calculations while their users aren’t
using them. Some of these efforts involve thousands of (or even millions of) computers. Examples
include SETI@home, which tries to detect alien signals in vast amounts of radio signal data; Folding@
home, which simulates protein folding and molecular dynamics to study diseases; and the Great Inter-
net Mersenne Prime Search (GIMPS), which tries to find Mersenne primes of the form 2p – 1 for some
number p.

Note Currently, only 27 Mersenne primes are known. The largest known prime of any kind
is the Mersenne prime 243,112,609 – 1.

Distributed computing is a specialized subtopic in a specialized field, but some of its basic ideas
can be very useful when designing multithreaded (or even single-threaded) programs. One of the
most important of those ideas is that each of the cooperating programs should be as independent as
possible. If thousands of computers need to communicate frequently with each other or with a central
computer, the network’s communications needs will quickly outweigh any potential benefits.

Similarly, keeping each thread as separate as possible (avoiding direct communication between
them and avoiding locks) makes threads faster, easier to debug, and more scalable so you can easily
add more if necessary.

Even if your computer has only a single core, breaking operations up into independent pieces
makes writing and debugging the pieces easier. If the pieces are self-contained, then you can debug
one without worrying as much about how changes to it will affect other pieces of code.

Keeping the pieces as separate as possible also can help you rewrite the program later if you de-
cide to spread it across multiple threads.

Task Parallel Library

How you create multiple threads depends on the operating system and language you are using.
Microsoft’s Task Parallel Library (TPL) is a specific library of tools that makes running parallel threads
relatively easy for Microsoft .NET applications.

The following list summarizes the main tools provided by the TPL:

■■ Parallel.Invoke Executes several pieces of code at the same time.

■■ Parallel.For Executes the same pieces of code several times in parallel, with different
numbers as parameters. For example, it might invoke some code to produce frames in
an animated movie where the parameters 1, 2, 3, and so on are passed to the code so it
knows which frame number to generate.

24 Start here! Fundamentals of .NET Programming

■■ Parallel.ForEach Executes the same pieces of code several times in parallel, with
different arbitrary values as parameters. This is similar to Parallel.For except that the
code receives arbitrary values specified by the program as inputs rather than numbers
in a sequence. For example, the program could pass each thread a separate image
to manipulate. The threads could then perform image processing techniques on the
 images, creating embossed images.

These three TPL operations provide a relatively simple way for a program to use multiple threads.
These may not handle every scenario that you can imagine, and threads still may run into race, lock,
deadlock, and other parallel issues, but these are fairly easy to use.

The TPL is also designed to use multiple cores, if they are available, without imposing too much
overhead on single-core systems, so you can run the same program on different computers and
expect reasonable performance, whether the computer has 1 core or 16.

Summary

This chapter discussed multiprocessing and the ways modern computers provide parallel computing,
or at least an illusion of it. All modern computers provide multitasking, quickly switching back and
forth among applications to make it seem as if they are all running at the same time.

Some computers have more than one element that can execute instructions, and those computers
can perform multiprocessing, truly executing multiple tasks at the same time. Those computers may
have multiple processors, or they may have multiple cores within the same processor.

Multi-core systems are becoming increasingly common. To get the best performance from your
programs, you need to consider parallel programming issues as you write your programs. If you keep
the individual parts of a program as separate as possible, you may be able to execute them on differ-
ent threads running on separate cores, which will improve performance.

Even if you don’t plan to run a program across multiple threads, keeping the various elements of
your programs as separate as possible makes them easier to write and debug.

Chapter 1, “Computer Hardware,” described a range of computer hardware that you might use,
such as desktops, laptops, and smartphones. This chapter described topics in parallel programming
that you can use to make computer software take advantage of the processors and cores provided
by the computer’s hardware. The next chapter bridges the gap between the topics of hardware and
software, explaining how programming environments translate the software that you write into com-
mands that the hardware can actually execute.

 227

~ operator, 108, 111
--x operator, 108, 111
++x operator, 108, 111

A
A.B operator, 108
About command, 38
abstract classes, 151
abstraction, 154–156
accelerators (with menus), 34–35
Accept button, 43
accessibility, 87–89

of routines, 136
accessors, 144
addition, 106
additive operators, 109
agile development, 177–178
A(i) operator, 108
A[i] operator, 108
AL register, 25
Alt key, 34
Anchor property, 61, 62
AndAlso operator, 109
And operator, 109
AppendText method, 66
arrays, 75
arrays, parameter, 130, 134
artificial intelligence, 21
assemblers, 26
assembly language, 26
Assert method, 179
Assignment operators, 110
auto-hiding windows, 30
automatic documentation from, 171
AutoSize property, 61

Index

Symbols
^ operator, 107, 109, 111
^= operator, 110
- operator, 108
-= operator, 110
! operator, 108
!= operator, 109
? operator, 113
?: operator, 109
* operator, 108
*= operator, 110
/ operator, 108
/= operator, 110
\ operator, 108
\= operator, 110
& operator, 109, 112
&& operator, 109
&= operator, 110
% operator, 108
%= operator, 110
+ operator, 108
+= operator, 110
< operator, 109
<< operator, 109, 112
<<= operator, 110
<= operator, 109
<> operator, 109
= operator, 109
== operator, 109
> operator, 109
>= operator, 109
>> operator, 109, 112
>>= operator, 110
| operator, 109, 112
|= operator, 110
|| operator, 109

BackColor property

228 Index

B
BackColor property, 61
BackgroundImage property, 61
Background property, 63
BackgroundWorker control, 52
backing field, 144
BindingNavigator control, 52
BindingSource control, 52
bits, 72
bit shift operators, 109
bitwise operators, 111–112
Blackburn, Barbara, 16
block comments, 169
Blu-ray, 10
Boolean data type, 73
BorderBrush property, 63
Border control, 57, 60
BorderStyle property, 61
BorderThickness property, 63
break keyword (C#), 101
bridges, 11
buffer, memory, 11
build automation tools, 28
bus, 6
Button control, 52, 57
bytecode, 26
Byte data type, 73
bytes, 72

C
C#, 26

arrays in, 75
auto-implemented properties in, 145
break keyword in, 101
comments in, 127
concatenation operators in, 114
enumerations in, 76
For loop in, 92
getter/setter methods in, 144
hiding implementation details in, 122
implicit conversion in, 83
operator overloading in, 114
parameter arrays in, 130
parameter-passing methods in, 131
persistent variables in, 89
routines in, 120
structures in, 77

C++, 26
comments in, 127

calling (of routines), 123–124
call stack, 123
call stack window (Visual Studio), 30
Cancel button, 43
Canvas control, 57
Case statement, 97–99
catching the error, 103
Catch keyword, 103
C, comments in, 127
CD drives, 10
central processing unit (CPU), 6
Char data type, 73
CheckBox control, 52, 57
CheckedListBox control, 52
Checked property, 61
CIL. See Common Intermediate Language
CInt function (Visual Basic), 83
class(es), 77–78, 142

constructors in parent, 163
as reference types, 79
structures vs., 78

Clear method, 66
Click event, 67, 68
clock speed, 6
cloud computing, 4
CLR. See Common Language Runtime
code

reducing duplicated, 121
reusing, 121
simplifying complex, 122

code editors, 28
code reuse

inheritance as, 148
polymorphism as, 149

code tag (Visual Studio), 172
coercion, 83
ColorDialog control, 52
ComboBox control, 52, 57
commands

disabling vs. hiding, 38
multiple ways to invoke, 42
separators between, 40

comma-separated value (CSV) files, 192
comments, 167–173

block, 169
for routines, 127–128
types of, 169
XML, 170–173

 data storage

 Index 229

Common Intermediate Language (CIL), 26
Common Language Runtime (CLR), 26
communication protocols, 12
comparison operators, 109
compilers, 28
ComplexNumber class, 116
components, program, 49
compound assignment operators, 114
computer-aided design (CAD), 38
computer hardware, 1–14

and data storage, 8–11
and networks, 11–12
and speed, 6–8
types of computers, 2–6

computers, 2–6
comparing types of, 6
desktops, 2–3
handheld, 5
laptops, 3–4
mainframes, 4–5
minis, 4–5
netbooks, 3–4
notebooks, 3–4
personal computers, 2
servers, 4–5
tablets, 3–4
towers, 2–3
workstations, 2–3

computer speed, 6–8, 16
concatenation operator, 109
concatenation operators, 114
conditional logical operators, 112–113
conditional operator, 109
conditional operators, 113
conditional statements, 96–99

Case statement, 97–99
Else If statement, 97
If Else statement, 97
If statement, 96

configuration files (config files), 197–199
constructors, 161–162
container controls, 64
Content property, 63, 64
ContextMenu property, 61
context menus, 40–41
ContextMenuStrip control, 52
Continue statement, 101–102, 102
controls, 49–70

custom, 28

events used with, 67–69
grouping related, 44–46
methods used with, 66–67
order of, 44
properties of, 60–66
using, 51–52
for Windows Forms, 52–56
WPF, 57–60

control statements, 91–104
conditional statements, 96–99
and error handling, 103
jumping statements, 99–102
looping statements, 93–96
and pseudocode, 92–93

conversion, data type, 82–84
conversion operators, 116
Convert class, 188
copying structures, 82
Copy method, 66
cores, 6

multiprocessing and, 16
CPU. See central processing unit
CSV. See comma-separated value files
c tag (Visual Studio), 172
culture codes, 184
currency, culture-specific values for, 187
Cursor property, 61
custom controls, 28
Cut method, 66

D
databases

and computer speed, 7
hierarchical, 203–205
network, 205–206
object-relational, 203
object stores, 203
relational, 200–202
spreadsheets, 202–203
temporal, 206

data-centric viewpoint, 175–176
DataGridView control, 52
DataSet control, 52
data storage, 8–11, 191–208

Blu-ray, 10
CD drives, 10
DVDs, 10
files, 192–199

data storage (continued)

230 Index

data storage (continued)
flash drives, 9–10
hard drives, 10
hierarchical databases, 203–205
network databases, 205–206
object-relational databases, 203
object stores, 203
RAM, 9
relational databases, 200–202
spreadsheets, 202–203
system registry, 199–200
temporal databases, 206
and working with files, 10

data type (of variable), 72
data types

conversion of, 82–84
fundamental, 71–73
program-defined, 74–78

Date data type, 73
DateTimePicker control, 52
deadlocks, 20
Debug class, 179
debuggers, 28
debugging, 123

comments and, 127
Decimal data type, 73
declarations, 72
dependency graphs (Visual Studio), 30
deriving, 147
description tag (Visual Studio), 172
design time, 28
desktop computers, 2–3
destructors, 163–165
development techniques, 167–182

agile development, 177–178
comments, role of, 167–173
data-centric, 175–176
extreme programming, 178
naming conventions, 173–175
test-driven development, 179–180
user-centric, 176–177

Diagnostics namespace, 179
dialog boxes, 43

menu hierarchies vs., 39
DirectoryEntry control, 52
DirectorySearcher control, 52
disk drives

reading from and writing to, 10
speed of, 7

distributed computing, 22–23

division, 106
division operator, 112
DockPanel control, 57
Dock property, 61, 62
documentation, automatic, 171
document object model (DOM), 196
Document Type Definition (DTD), 197
DocumentViewer control, 57
DOM. See document object model
DomainUpDown control, 53
DoubleClick event, 68
Double data type, 73
Do While loops, 95
DragDrop event, 68
DragEnter event, 68
DragLeave event, 68
DragOver event, 68
DrawToBitmap method, 66
DTD. See Document Type Definition
dumb terminals, 5
duplicated code, 121
DVDs, 10

E
Ellipse control, 57
ellipses (in menus), 34
Else block, 97
Else If block, 97
Else If statement, 97
embarrassingly parallel algorithms, 21
Enabled property, 61
encapsulation, 142
Enter event, 68
enumerations, 75–77
equality operators, 109
error handling, in control statements, 103
ErrorProvider component, 49
ErrorProvider control, 53, 56
errors, 103. See also user errors
event handlers, 67
EventLog control, 53
events, 67–69, 146
example tag (Visual Studio), 172
exception tag (Visual Studio), 172
Exit command, 34
Exit Function statement, 102
Exit statement, 101, 102
Exit Sub Function statement, 102

 HelpProvider control

 Index 231

Expander control, 57, 60
explicit conversion, 82–83
exponentiation, 108
Extensible Application Markup Language
(XAML), 65, 213
Extensible Markup Language (XML), 170. See
also XML comments

file editing in, 30
eXtensible Stylesheet Language for Transformations
(XSLT), 197
external keyboard, 4
extreme programming, 178

F
factory methods, 146
fields, 143
File menu, 34
files, 192–199

config, 197–199
INI, 193–194
random access, 193
text, 192
working with, 10
XML, 194–197

FileSystemWatcher control, 53
File Transfer Protocol (FTP), 12
Finalize routine, 163
FindAll method, 67
FindOne method, 67
flash drives, 9–10
floating point data types, 73
FlowLayoutPanel control, 53, 56
Focus method, 66
FolderBrowserDialog control, 53
Folding@home, 23
FontDialog control, 53
FontFamily property, 63
Font property, 61
FontSize property, 63
FontStyle property, 63
FontWeight property, 63
For Each loops, 94–95
ForeColor property, 61
Foreground property, 63
For loops, 93

C#, 92
pseudocode for, 92
Visual Basic, 92

formats, locale-specific, 186–187
FormClosed event, 68
FormClosing event, 68
forms

control order in, 44
designing, with Visual Studio, 51
error flags in, 48
grouping related controls in, 44

Fortran, 26
fractals, 137
Frame control, 57
Friend keyword, 87, 136
FTP. See File Transfer Protocol
functions, 120
F(x) operator, 108

G
garbage collector (GC), 164
GetError method, 67
getter method, 144
GetToolTip method, 67
GIMPS. See Great Internet Mersenne Prime Search
global issues, 183–190

culture-aware functions in .NET, 187–189
culture codes, 184
formats, locale-specific, 186–187
terminology, 184
text/symbols, locale-specific, 184–185
Visual Studio, user interfaces in, 185–186

Go To statement, 99–100, 102
restrictions on, 100

Great Internet Mersenne Prime Search (GIMPS), 23
“grid computing” applications, 23
Grid control, 57, 64
GridSplitter control, 57
GroupBox control, 53, 56, 57

H
handheld computers, 5
hard drives, 10
hardware. See computer hardware
Has-A relationships, 158
Height property, 63
Help menu, 38
HelpProvider control, 53

hierachies, menu

232 Index

hierachies, menu, 39
hierarchical databases, 203–205
hints, providing, 47–48
HScrollBar control, 53
HTTP. See Hypertext Transfer Protocol
hubs, 11
Hypertext Transfer Protocol (HTTP), 12

I
IBM z196 processor, 2
icons, 36
IDisposable interface, 164
If Else statement, 97
If statement, 96

Continue statement vs., 102
Image control, 58
ImageList control, 53
Image property, 61
immutability, 78
implementation details, hiding, 122
implicit conversion, 83–84
include tag (Visual Studio), 172
inheritance diagrams, 152–154
inheritance(s), 147–148

multiple, 158–160
INI files, 193–194
instance members, 146–147
instance (of a class), 142
instantiation, 142
Integer data type, 73
integer division operators, 108
integrated development environments (IDEs), 29.
See also Visual Studio
Intel 4004 processor, 2
IntelliSense, 30, 170–171
interfaces

localization of, in Visual Studio, 185–186
multiple, 158–160

internal keyword, 87, 136
internationalization, 184
Internet, 12
Internet Explorer 7

menus in, 36
Internet Protocol (IP), 12
Internet Protocol Suite, 12
intern pool, 74
Invalidate method, 66

IP. See Internet Protocol
irrational numbers, 116
Is-A relationships, 158
Items property, 61
item tag (Visual Studio), 172

J
Java, 26

comments in, 127
Java bytecode,, 27
Java Virtual Machine (JVM), 27
jumping statements, 99–102

Continue statement, 101–102
Exit statement, 101
Go To statement, 99–100
Return statement, 102

Just-In-Time (JIT) compilation, 26
JVM. See Java Virtual Machine

K
keyboards, external, 4
KeyDown event, 68
KeyPress event, 68
KeyUp event, 68
Kill method, 67

L
Label control, 53, 58
LAN adapters, 11
LANs. See local area networks
laptops, 3–4
layout (of forms), 44
LayoutTransform property, 63
Leave event, 68
lifetime, 88–89
LinkLabel control, 53
ListBox control, 53, 58
listheader tag (Visual Studio), 172
lists, Rule of Seven for, 46
list tag (Visual Studio), 172
ListView control, 53, 58
Load event, 68
local area networks (LANs), 12
locales, 184

 multithreading

 Index 233

localization, 184
formats, locale-specific, 186–187
text/symbols, locale-specific, 184–185
Visual Studio, user interfaces in, 185–186

Location property, 61
locks, 19–20
logical operators, 109
Long data type, 73
long date, culture-specific values for, 187
looping statements, 93–96

Do While loops, 95
For Each loops, 94–95
For loops, 93
Until loops, 95–96
While loops, 95

loops, variables in, 94

M
mainframes, 4–5
Mandelbrot set, 21
Margin property, 63
MaskedTextBox control, 53
MaxHeight property, 63
MaximumSize property, 61
MaxWidth property, 63
MediaElement control, 58, 60
members

overriding, 149–151
shadowing, 151–152

memory
copying and, 81
paging of, 9

memory buffer, 11
Menu control, 58
menus, 34–40

accelerators with, 34–35
context, 40–41
disabling vs. hiding commands in, 38
ellipses with, 34
example, 40
length of, 39–40
pop-up, 40
shallow hierarchies for, 39
shortcuts with, 35–36, 41
standard menu items, 36–38
in Visual Studio, 30

MenuStrip control, 53, 56
Mersenne primes, 23

MessageQueue control, 54
methods, 66–67

in object-oriented programming, 145
routines vs., 120

method scope, 85
Microsoft, 50
Microsoft.CSharp, 210
Microsoft namespaces, 210
Microsoft .NET Framework version 3.0, 50
Microsoft.VisualBasic, 210
Microsoft.Win32, 210
Microsoft.Windows.Themes, 210
million instructions per second (MIPS), 2
MinHeight property, 63
minicomputers, 4–5
MinimumSize property, 61
mini notebooks, 3
MinWidth property, 63
MIPS. See million instructions per second
modal dialog boxes, 43
modeless dialog boxes, 43
Mod operator, 109
modulus operator, 108, 109
MonthCalendar control, 54
Moore, Gordon E., 15
Moore's Law, 15
mouse, 3
MouseClick event, 68
MouseDown event, 68
MouseEnter event, 68
MouseHover event, 68
MouseLeave event, 68
MouseMove event, 68
MouseUp event, 68
MultiColumn property, 61
multi-core systems, 13, 16
multi-line comments, 127
MultiLine property, 61
multiplication, 106
multiplicative operators, 108
multiprocessing, 15–24

about, 16
and distributed computing, 22–23
multitasking vs., 16
multithreading, 17
and parallel solutions, 21–22
and problems with parallelism, 18–20
Task Parallel Library and, 23–24

multitasking, 16
multithreading, 17

multi-way branch

234 Index

multi-way branch, 97
MustInherit keyword, 151
MustOverride keyword, 151
MyBase keyword, 163
MyClass keyword, 162

N
Name property, 51
names (for routines), 126
namespaces

Microsoft, 210
System, 210–213

naming conventions, 173–175
narrow values, 84
netbooks, 3–4
.NET Framework libraries, 209–214

Microsoft namespaces in, 210
System namespaces in, 210–213

network adapters, 11
network connection hardware, 3
network databases, 205–206
network interface card (NIC), 11
network interface controllers, 11
networks, 11–12
New (new) keyword, 79
NIC. See network interface card
notebooks, 3–4
NotifyIcon control, 54
Not operator, 108
NumericUpDown control, 54
numeric values, converting, 82

O
Object data type, 73
Object Management Group (OMG), 154
object-oriented programming (OOP), 141–166

abstraction in, 154–156
classes in, 142
constructors in, 161–162
destructors in, 163–165
events in, 146
inheritance diagrams in, 152–154
inheritance in, 147–148
Is-A vs. Has-A relationships in, 158
methods in, 145
multiple inheritances/interfaces in, 158–160

overriding members in, 149–151
polymorphism in, 148–149
properties in, 143–145
refinement in, 156–158
shadowing members in, 151–152
shared vs. instance members in, 146–147

object-oriented tools, 29
object-relational databases, 203
object stores, 203
OMG. See Object Management Group
OOP. See object-oriented programming
OpenFileDialog control, 54
operating system, multitasking by, 16
operators, 105–118

bitwise, 111–112
compound assignment, 114
concatenation, 114
conditional, 113
conditional logical, 112–113
conversion, 116
division, 112
modulus, 112
overloading of, 114–116
parentheses with, 107
post- and pre-increment, 110–111
precedence of, 106, 108–110

OrElse operator, 109
Or operator, 109
overloading, operator, 114–116
overloading, routine, 135–136

P
PageSetupDialog control, 54
paging, 9
Paint event, 68
pair programming, 178
palmtops, 5
Panel control, 54
Parallel.ForEach tool, 24
Parallel.For tool, 23
Parallel.Invoke tool, 23
parallelism

problems with, 18–20
solutions using, 21–22

parameters
and routine overloading, 135–136
arrays, 130, 134
optional, 129–130

 ribbons

 Index 235

passing methods, 130–132
reference types, 132–134
for routines, 128–136
value types, 132–134

paramref tag (Visual Studio), 172
param tag (Visual Studio), 172
para tag (Visual Studio), 172
parent class, constructors in, 163
parentheses (with operators), 107
Parse method, 188
Pascal, 26, 174
passing methods (parameters), 130–132
PasswordBox control, 58
Paste method, 66
PCs. See personal computers
PDAs, 5
percentage, culture-specific values for, 187
PerformanceCounter control, 54
permission tag (Visual Studio), 172
persistent variables, 89
personal computers (PCs), 2
petaflops (quadrillion floating-point operations per
second), 2
PictureBox control, 54
pocket computers, 5
pointing stick, 3
PointToClient method, 66
PointToScreen method, 66
polymorphism, 143, 148–149
pop-up menus, 40
post-increment operators, 110–111
precedence, operator, 106, 108–110
pre-increment operators, 110–111
primary operators, 108
primary tags (XML comments), 172–173
PrintDialog control, 54
PrintDocument control, 54
PrintPreviewControl, 54
PrintPreviewDialog control, 54
private accessibility, 87
Private (private) keyword, 87, 136
procedure scope, 85
Process control, 54
processes, 16
processors

IBM z196 processor, 2
Intel 4004 processor, 2

program-defined data types, 74–78
arrays, 75

classes, 77–78
enumerations, 75–77
structures, 76–77

programmers, dividing tasks among, 122–123
programming environments, 25–32

languages in, 25–28
tools included in, 28–29
Visual Studio, 29–30

ProgressBar control, 54, 58
properties, 60–66, 143–145

Name, 51
Windows Forms, 60–62
WPF, 63–66

Properties window, 43
property get method, 144
PropertyGrid control, 54
property set method, 144
Protected Friend keyword, 87, 136
protected internal keyword, 87, 136
Protected (protected) keyword, 87, 136
pseudocode, 92–93
Public (public) keyword, 87, 136

R
race conditions, 18–19
RadialGradientBrush control, 65
RadioButton control, 54, 58
RAM, 9
random access files, 193
random heuristics, 21
ray tracing, 21
Rectangle control, 58
recursion, 137–138
Redo method, 66
reference types, 78–82, 132–134
refinement, 156–158
Refresh method, 66
regression testing, 29
relational databases, 200–202
remarks tag (Visual Studio), 172
RenderTransform property, 63
ResizeBegin event, 69
ResizeEnd event, 69
Resize event, 69
resources, parallelism and contention for, 18
returns tag (Visual Studio), 172
Return statement, 102
ribbons, 42

RichTextBox control

236 Index

RichTextBox control, 55, 58
routers, 11
routine overloading, 135–136
routines, 119–140

accessibility of, 136
advantages of, 120–123
calling, 123–124
dividing, among programmers, 123
parameters for, 128–136
recursion with, 137–138
separating out, 125
types of, 120
writing good, 125–128

routine scope, 85
Rule of Seven, 46
run time, 28
RunWorkerAsync method, 67

S
Save As command, 34
Save command, 34
SaveFileDialog control, 55
SByte data type, 73
scope, 85–86
scope blocks, 92
ScrollBar control, 58
ScrollBars property, 61
Scroll event, 69
ScrollToCaret method, 66
ScrollViewer control, 58
seealso tag (Visual Studio), 172
see tag (Visual Studio), 173
SelectAll method, 66
SelectedIndexChanged event, 69
SelectedIndex property, 61
SelectionMode property, 61
Select method, 66
Separator control, 58
separators (between commands), 40
sequence diagrams (Visual Studio), 30
SerialPort control, 55
servers, 4–5
ServiceController, 55
SetError method, 67
SETI@home, 23
setter method, 144
SetToolTip method, 67

Shared keyword, 88, 146
shared members, 146–147
shortcuts, menu, 35–36, 41
Short data type, 73
short date, culture-specific values for, 187
side effects, avoiding, 126
Sierpinski curve, 138
signed integer data types, 73
Silverlight, 50
Simple Object Access Protocol (SOAP), 197
Single data type, 73
Size property, 61
sizing/resizing (of modal dialog boxes), 43
Slider control, 58
smartphones, 5
SOAP. See Simple Object Access Protocol
solid-state hard drives, 9
source code management tools, 29
spaghetti code, 100
speed, computer, 6–8, 16
SplitContainer control, 55
spreadsheets, 202–203
SQL Server Express, 201
stack frame, 123
StackPanel control, 58
Start method, 67
statements, 72

indentation in, 92
rewriting, 111

static keyword, 88
StatusBar control, 58
StatusStrip control, 55, 56, 60
Stop method, 67
StringBuilder class, 74
String data type, 73
String.Format method, 188
strings, 74

type conversion with, 82
structures, 76–77

classes vs., 78
copying, 82
passing, by value, 134
as value types, 79

subclassing, 147
subnotebooks, 3
subtraction, 106
summary tag (Visual Studio), 172
supercomputers, 2, 4
supporting tags (XML comments), 172–173

 ultraportables

 Index 237

switches, 11
symbols, locale-specific, 184–185
System.CodeDom namespace, 211
System.Collections namespace, 211
System.ComponentModel namespace, 211
System.Configuration namespace, 211
System.Data namespace, 211
System.Deployment namespace, 211
System.Device.Location namespace, 211
System.Diagnostics namespace, 211
System.DirectoryServices namespace, 211
System.Drawing namespace, 211
System.Globalization namespace, 211
System.IO namespace, 212
System.Linq namespace, 212
System.Management namespace, 212
System.Media namespace, 212
System.Messaging namespace, 212
System namespace, 210
System namespaces, 210–213
System.Net namespace, 212
System.Numerics namespace, 212
System.Printing namespace, 212
System.Reflection namespace, 212
system registry, 199–200
System.Resources namespace, 212
System.Runtime namespace, 212
System.Security namespace, 212
System.ServiceProcess namespace, 212
System.Speech namespace, 212
System.Text namespace, 213
System.Threading namespace, 213
System.Timers namespace, 213
System.Transactions namespace, 213
System.Web namespace, 213
System.Windows namespace, 213
System.Xaml namespace, 213
System.Xml namespace, 213

T
TabControl, 55
TabControl control, 59, 60
TabIndex property, 62
TableLayoutPanel control, 55
tablets, 3–4
Tag property, 62
Task Parallel Library (TPL), 23–24
tasks, performing single, well-defined, 125–126

TCP. See Transmission Control Protocol
TCP/IP, 12
temporal databases, 206
term tag (Visual Studio), 173
ternary operator, 113
test-driven development, 179–180
testing, regression, 29
testing tools, 29
TextBlock control, 59
TextBox control, 55, 59, 62
TextChanged event, 69
text files, 192
text, locale-specific, 184–185
Text property, 62, 64
thrashing, 9
threads, 17

distributed computing, 22
Tianhe-1A supercomputer, 2
time, culture-specific values for, 187
timer components, 49
Timer control, 55
ToolBar control, 59
toolbars, 42

in Visual Studio, 30
ToolStripContainer control, 55
ToolStrip control, 55, 56
ToolTip control, 55
tooltips, 47
ToString method, 86, 188
touchpad, 3
touchscreens, 4
towers, 2–3
TPL. See Task Parallel Library
trackball, 3
TrackBar control, 55
track bars, 47
Transmission Control Protocol (TCP), 12
TreeView control, 59
Try Catch Finally block, 103
Try keyword, 103
type conversion

explicit conversion, 82–83
implicit conversion, 83–84

U
UInteger data type, 73
ULong data type, 73
ultraportables, 3

UML. See Universal Modeling Language

238 Index

UML. See Universal Modeling Language
unary operators, 108
Undo method, 66
Unicode, 74
UniformGrid control, 59
Uniform Resource Locators (URLs), 12
Uniform Resource Names (URNs), 12
Universal Modeling Language (UML), 154
Until loops, 95–96
URLs. See Uniform Resource Locators
URNs. See Uniform Resource Names
USB, 6
USB flash drives, 9
user-centric viewpoint, 176–177
user errors, preventing, 47
user interface design, 44–48

control order in, 44
grouping related controls in, 44–46
hints, providing, 47–48
Rule of Seven and, 46
user errors, preventing, 47

UShort data type, 73

V
ValueChanged event, 69
Value property, 62
value tag (Visual Studio), 173
value types, 78–82, 132–134
variables, 71–90

and accessibility, 87–89
defined, 72
and fundamental data types, 71–73
lifetime of, 88–89
loop, 94
persistent, 89
and program-defined data types, 74–78
and scope, 85–86
and strings, 74
and type conversion, 82–84
and value/reference types, 78–82

Viewbox control, 59
Visibility property, 63
Visible property, 62
Visual Basic, 26

arrays in, 75
auto-implemented properties in, 145
comments in, 127

Continue statement in, 101
destructors in, 163
Exit Function statement in, 102
Exit statement in, 101
Exit Sub Function statement in, 102
expression evaluation in, 107
For loop in, 92
implicit conversion in, 83
operator overloading in, 114
optional parameters in, 129
parameter arrays in, 130
parameter-passing methods in, 131
property get/property set methods in, 144
routines in, 120
structures in, 77

Visual Studio, 29–30
accelerators in, 34
call stack window in, 124
debugger in, 123
designing forms with, 51
localization of user interfaces in, 185–186
shortcut editor in, 36
Toolbox window in, 42
XML comments in, 170

VScrollBar control, 55

W
WaitForExit method, 67
WANs. See wide area networks
WebBrowser control, 55
web service, 197
While loops, 95
wide area networks (WANs), 12
wide values, 84
Width property, 63
Wi-Fi, 12
windows, in Visual Studio, 30
Windows Experience Index link, 8
Windows Forms

about, 50
Button control in, 146
controls in, 52–56, 63
events, 68
methods, 66
properties of, 60–62

Windows Phone 7 operating system, 29

 XSLT. See eXtensible Stylesheet Language for Transformations

 Index 239

Windows Presentation Foundation (WPF), 34, 210
about, 50
controls in, 57–60, 63
properties of, 63–66

Windows program components, 33–48
context menus, 40–41
dialog boxes, 43
menus, 34–40
ribbons, 42
toolbars, 42
user interface design, 44–48

Word 2007, ribbon in, 42
words., 72
workstations, 2–3
World Wide Web (WWW), 12
WPF. See Windows Presentation Foundation
WrapPanel control, 59

X
XAML. See Extensible Application Markup Language
Xbox 360 game platform, 29
XML. See Extensible Markup Language
XML comments, 170–173

automatic documentation from, 171
creating, 172
and IntelliSense, 170–171
primary and supporting tags with, 172–173

XML files, 194–197
XML Path (XPath), 197
XML Schema Definition (XSD), 197
x-- operator, 108, 111
x++ operator, 108, 111
Xor operator, 109
XSLT. See eXtensible Stylesheet Language for
Transformations

about the author

Rod Stephens started out as a mathematician, but while
studying at MIT, he discovered the joys of algorithms and has
been programming professionally ever since. During his career,
he has worked on an eclectic assortment of applications in such
diverse fields as telephone switching, billing, repair dispatching,
tax processing, wastewater treatment, photographic
processing, vision diagnostics, cartography, and training for

professional football players. Rod has spoken at programming conferences and user’s
group meetings, and is an experienced instructor.

A Visual Basic Microsoft Most Valuable Professional (MVP), Rod has written
24 books that have been translated into half a dozen different languages, and more
than 250 magazine articles covering C#, Visual Basic, Visual Basic for Applications,
Delphi, and Java. Rod’s popular VB Helper website (http://www.vb-helper.com)
receives several million hits per month and contains thousands of pages of tips,
tricks, and example code for Visual Basic programmers. His new C# Helper website
(http://www.csharphelper.com) contains similar tips, tricks, and examples for C#
developers.

Sign up for his Visual Basic newsletters at http://www.vb-helper.com/newsletter.html,
visit his blog at http://blog.csharphelper.com, or contact him at RodStephens@vb-helper.
com or RodStephens@csharphelper.com.

	Introduction
	Chapter 1: Computer Hardware
	Types of Computers
	Personal Computers
	Desktops, Towers, and Workstations
	Laptops, Notebooks, Netbooks, and Tablets
	Minis, Servers, and Mainframes
	Handheld Computers
	Comparing Computer Types

	Computer Speed
	Data Storage
	RAM
	Flash Drives
	Hard Drives
	Blu-ray, DVD, and CD Drives
	Working with Files

	Networks
	Summary

	Chapter 2: Multiprocessing
	Multitasking
	Multiprocessing
	Multithreading
	Problems with Parallelism
	Contention for Resources
	Race Conditions
	Locks
	Deadlocks

	Looking for Parallelism
	Distributed Computing
	Task Parallel Library
	Summary

	Index

